
Department of Computing
Imperial College London

BEng Individual Project

Phishing Website Identification
through Visual Clustering

Author:

Nic Prettejohn

Supervisor:

Dr. Ben Glocker

Second Marker:

Dr. Bernhard Kainz

June, 2016

Abstract

Phishing is a form of online fraud, where criminals exploit the implicit trust placed
in an organisation’s website branding to acquire sensitive information from the
organisation’s customers. Major browser vendors race through hundreds of thou-
sands of spam emails a day, assessing each URL to find Phishing websites to add
to their blacklists. The quantity of suspect sites is so large that automated classi-
fication is essential.

Creators of Phishing sites are aware of the popular text-based classifiers and im-
plement a variety of countermeasures to disguise the site from software while re-
maining recognisable to humans. Consequently researchers are exploring using
computer vision to better recognise Phishing sites.

We present Distinctive Region Classifier - a novel approach to identify the
targets of potential Phishing attacks from screenshots. It is a multi-class classifier
that combines computer vision techniques with density-based clustering to identify
a page by elements that are indicative of a single class in our training set. Our
system performs comparably with published approaches in this space.

Additionally, we present resilient distributed implementation of a visual classifier
and blacklist. We find our cluster accelerates classification to a rate equal to
commercial anti-Phishing measures.

i

Acknowledgements

I would like to thank my supervisor, Dr. Ben Glocker, for agreeing to supervise
this project, and for sharing his insight into computer vision. Secondly I would
like to thank Netcraft for sharing some of their Phishing data with me. It was
indispensable throughout the project.

To Mum and Dad, thank you for your support, love and encouragement. And
finally, thank you Evie, Tony, David, and Luke. I’ve learnt a great deal over the
last three years, and I couldn’t have done it without you.

ii

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 4

1.3 Contributions . 4

2 Background 6

2.1 Phishing . 6

2.1.1 Phishing Countermeasures 7

2.1.2 Phishing Classification . 9

2.1.3 Countermeasures to Anti-Phishing Techniques 10

2.2 Computer Vision . 13

2.2.1 Template Matching . 13

2.2.2 Feature Extraction . 14

2.2.3 SIFT . 14

2.2.4 SURF . 15

2.2.5 Feature Matching . 15

2.3 Clustering Analysis . 16

2.3.1 K-Means Clustering . 16

2.3.2 DBSCAN . 17

2.4 Evaluating Performance of Phishing Classifiers 17

2.4.1 Sensitivity and Specificity 18

iii

Contents iv

2.4.2 Confusion Matrix . 19

2.4.3 Macro-Average and Micro-Average 20

2.4.4 Threshold-based Decision 20

2.4.5 ROC Curve and PR Curve 21

2.5 Visual Similarity Clustering . 22

2.5.1 Classification with Document Object Model 22

2.5.2 Classification with Screenshots 24

2.5.3 Using Computer Vision Feature Selectors and Extractors . . 29

2.6 Distributed Processing . 32

2.6.1 Amazon Web Services . 32

2.6.2 Hadoop . 33

2.6.3 Storm . 34

3 Experiments 35

3.1 Test Data Collection . 35

3.2 Evaluation Harness . 36

3.3 Evaluation . 37

3.3.1 Hue Saturation Histogram Correlation 37

3.3.2 Keypoint Clustering with SURF and K-Means - Kuan-Ta
Chen et al. 43

4 Proposal 49

4.1 Observations . 49

4.2 Training . 50

iv

Contents v

4.3 Classification . 50

4.4 Discussion . 51

5 Implementation 53

5.1 Architecture . 53

5.2 Amazon Web Services . 53

5.3 Image Submission . 54

5.4 Storm . 55

5.4.1 Image Classifier . 56

5.5 Blacklist . 57

5.5.1 DB Interface . 57

5.5.2 Database . 57

6 Evaluation 59

6.1 Distinctive Region Classifier . 59

6.1.1 Performance . 59

6.1.2 Case Studies . 62

6.1.3 Noisy Training Pages . 63

6.1.4 Homography Detection . 64

6.2 Scalable Classification Cluster . 65

6.2.1 Classification Throughput 65

6.2.2 Cost Analysis . 66

6.2.3 Blacklist . 67

v

Contents vi

6.2.4 Cannot retrain cluster without shutting it down and rede-
ploying . 67

7 Conclusions 69

7.1 Objectives . 69

7.1.1 Classifier . 69

7.1.2 Distributed Classification Cluster 70

7.2 Further Work . 70

7.2.1 Speed Improvements . 70

7.2.2 An improved algorithm for calculating similarity between
regions . 71

7.2.3 Alternative Feature Descriptors 71

Bibliography 72

vi

Introduction

Why does phishing work? Basically because con artists are really good at

persuading people to do really dumb things.

– Richard Clayton, Cambridge Computer Laboratory [1]

A career as a cyber-criminal has never been so attractive. The payouts are high,

convictions are difficult, and the required technical expertise to get started is

surprisingly low. Cyber-criminals exploit the fully globalised nature of the Internet

and enjoy the protection offered by a fragmented global justice system and poor

extradition policies.

In Iain Softley’s 1995 cult classic Hackers, Jonny Lee Miller and his co-stars por-

tray hyper-intelligent cyber-vigilantes: using their expert skills and knowledge to

compromise corporate firewalls as if they were arcade games. Although Hackers

takes the hacker subculture to its extreme, the myth that cyber-criminals are ex-

traordinary in technical ability perpetuates to this day. The unfortunate reality is

the tools of the trade are readily available to anyone with laptop and an Internet

connection. The tools are easy-to-use and sophisticated — the criminal’s success

is almost invariant to their technical ability.

One of the easiest ways to start one’s career in cyber-crime is Phishing. Phishing

is a form of online fraud, where criminals exploit the implicit trust placed in an

organisation’s branding to acquire sensitive information from the organisation’s

customers. This sensitive information can be used for identity theft, bank fraud,

or as part of a larger campaign to compromise the victim, their employer, or their

national government.

The World Wide Web is a popular platform for Phishing. A Phishing website is

1

1. Introduction 2

a website that masquerades as a trusted brand, but is actually controlled by a

criminal. All data sent to the website, such as user names, passwords, and credit

card numbers, can then be utilised by the criminal or sold on the black market.

Cloning a website is difficult, but anyone can download a Phishing Kit that imitates

a particular organisation. The kit is developed by a technical individual and is sold

to would-be Phishers. The kit normally contains a clone of the organisation’s login

page, and is configured to email the Phisher the credentials obtained. Hosting

for the website can be paid for anonymously through Bitcoin1, or stolen credit

card numbers obtained on the black market; or through a variety of software

packages that discover vulnerable websites and assist the criminal in uploading

their Phishing site to the server[2]. Links to Phishing sites can then be distributed

via email, social media, or web advertising.

The Internet community has responded to the threat users face from Phishing. All

major desktop and mobile web browsers (Microsoft Internet Explorer, Microsoft

Edge, Google Chrome, Mozilla Firefox, Apple Safari, Opera) use blacklists to

display warnings to their users when they attempt to access a known Phishing

site.

It is fundamental to the effectiveness of Phishing blacklists that they are updated

regularly. Phishing sites are created at a rate of over 70,000 websites a month [3].

Security researchers find Phishing websites through email honeypots2 and spam

filters. This creates a classification problem, where each website linked within a

spam email must be assessed to discern whether it is indeed a Phishing website

and should be blocked.

The scale of Phishing activity has lead to the automation of classification of Phish-

1Bitcoin is a digital currency that offers anonymity to its users, a popular feature for criminals.
For more information, please see http://bitcoin.org

2A honeypot, in the context of spam collection, is a computer or mail server that deliberately
tries to the collect as much spam as possible for analysis.

2

http://bitcoin.org

1. Introduction 3

ing websites. Due to the widespread use of the web browsers (Google Chrome has

over a billion users[4]) the impact of the blacklists is massive, and, transitively, so

is the impact of the classification process. High precision3 is essential.

1.1 Motivation

Users depend on the appearance of a website as an indication of its authenticity

[5]. While factors such as SSL certificates and a sensible URL field can provide

additional signals to inform a careful user, if the page didn’t look like a trusted

brand the user wouldn’t be fooled into submitting their sensitive information.

We can make this an image classification problem. For each candidate page, take a

screenshot of the page and compare its similarity to screenshots of known legitimate

sites. If the candidate looks similar to one of the legitimate pages, and the URL

of the candidate does not match, we can consider it Phishing.

A webpage is made up of many components - images, tables, buttons and input

fields - but not all of them are equally indicative of the organisation responsible for

the website. Like a human, an automated classifier should evaluate how distinctive

a component is to the organisation’s own pages. For example, a logo is very

distinctive as it won’t appear on any other legitimate sites, whereas a login button

is not.

We could carefully construct a training set of a number of key components, such

as extracting the logos for each of the sites we want to protect, and then matching

these. However, our hypothesis is we should be able to generalise this. Addi-

tionally, it is possible that an automated approach would find recognition that a

human might not think to extract - such as icons and buttons.

3In the statistical sense

3

1. Introduction 4

The quantity of URLs that require assessment from spam emails is substantial.

Computer vision algorithms are substantially more computationally intensive than

text based approaches, limiting the throughput that can be achieved on a single

computer. For the security community to make use of these intelligent approaches,

the classification system must be distributed across many computers.

1.2 Objectives

The goal of this project is to develop a multi-class classifier that can generalise

recognisable elements of a legitimate website (e.g. the company’s logo) and use

these elements to identify the target of Phishing websites. We aim to create a

classifier which can perform at 100% precision and maximise its recall.

Additionally, we have a secondary goal of developing an end-to-end distributed

classification system, capable of identifying the target of the screenshots submitted

to it through an Application Programming Interface (API), and, if the webpage is

indeed Phishing, adding it to our own blacklist.

1.3 Contributions

We present a novel approach to Phishing classification: a Distinctive Region

Classifier. DRC considers dense clusters of high-contrast keypoints as regions of

a Web page. DRC is trained with a small set of screenshots of labelled legitimate

websites and Phishing sites. It identifies the target of a candidate Phishing site

by comparing regions extracted from a screenshot against its training set and

establishes an estimate for the region’s robustness as an indicator for a single class.

If there are enough distinctive regions matching a single brand, the candidate is

considered a match.

4

1. Introduction 5

We also examine a variety of the published work in this space. We discuss their

evaluation techniques, performance, and reason which attributes would make a

good classifier.

Additionally, we present a scalable distributed classification cluster utilising Apache

Storm - a distributed streaming processing system. We evaluate its performance

running Distinctive Region Classifier running on 16 instances at Amazon Elastic

Compute Cloud. We achieve throughput of up to two classifications a second.

Finally we evaluate the effect of a including Phishing sites in addition to legitimate

pages in a brand’s ground truth, and show it improves both precision and recall

substantially.

5

Background

In this chapter we introduce techniques used by the security community to protect

users, and techniques used by criminals to avoid Phishing countermeasures. We

provide background on tools we evaluated for use in our classifier. We review a

number of metrics used in reviewing the performance of academic Phishing clas-

sifiers. Finally we discuss related work which uses visual similarity to identify

Phishing sites.

2.1 Phishing

A Phishing site, Phishing page or - colloquially - Phish is a website that seeks

to mislead a victim into giving sensitive information to the site’s controller - a

Phisher. Phishing websites are designed to be similar to their target - a legitimate

website, often a financial institution or social network, where the credentials have

value to the Phisher either personally on the black market.

A victim of Phishing typically received the link to the website in an email. A

popular template for Phishing emails is to imitate an official email from a popular

institution, and claim that something has gone wrong with the user’s account. The

email will claim the user must log in soon or verify their details at a link included

in the email.

6

2. Background 7

Figure 2.1: A Phishing website targeting Microsoft.

2.1.1 Phishing Countermeasures

Browser Plugins and Extensions

A number of clients have been developed to protect users from navigating to fraud-

ulent websites on their computers. In mid 2000s, Anti-Phishing toolbars were in-

credibly popular. Cranor et al.[6] evaluate the performance of 10 different toolbars.

Most made use of a small number of heuristics for detecting Phish in addition to

a blacklist of known Phishing sites. Heuristics might include checking whether the

page is served over a non-standard port or whether the page has an SSL certificate.

However, in 2016, very few people use anti-Phishing toolbars as the functionality

has been integrated into the browsers. Delaying page loads to analyse the content

first and cluttering the interface are not popular today. Additionally, none of the

most popular mobile browsers support extensions - putting the responsibility into

the hands of the browser developers.

7

2. Background 8

Blacklists

Blacklists have been found to be a far more precise mechanism as candidate URLs

can undergo much more thorough analysis than can be completed before a page

load. Most popular blacklists update every five minutes, so the delay is not signif-

icant enough to substantially impact the blacklist’s effectiveness.

As blacklists are now the de-facto standard for Phishing protection, we aim to

develop an approach that would fit as a reliable feed into a blacklist, as opposed

to developing a native application or browser extension.

Phishing Takedown

Microsoft estimated the annual cost of Phishing to the world economy at $5

billion[7]. The huge cost to society is most felt by financial institutions - in many

countries, including the UK and the US, the banks must reimburse their customers

in the event of fraud except in cases where the customer has been unduly careless.

Consequently, a growing number of institutions pay to have Phishing websites

defrauding their customers taken down from the Internet. A Phishing takedown is

ususally very simple to perform. The majority of web site owners hosting Phishing

sites do not know the page is on their site [2] as it was placed there by a criminal

who compromised the server. By making contact with the web site owner or

hosting company over email or telephone, institutions can have the Phishing page

off the Internet within hours.

Nevertheless, these companies are not altruistic. Institutions are only interested in

paying for takedowns against attacks that target their own brand. Consequently,

they require a brand-aware filter to highlight the attacks targeting their institution.

8

2. Background 9

2.1.2 Phishing Classification

Candidate URL Collection

There are a variety of measures used within the security community to find possible

Phishing sites. One of the most popular methods is extracting URLs from spam

emails. Whittaker et al.[8] developed the Phishing classifier that maintains the

Google safe-search blacklist and are in the enviable position of being able to extract

URLs from every spam email sent to a GMail account.

Netcraft[9] relies on a combination of reports from its community[10], and addi-

tionally purchases feeds of spam URLs and emails from individuals and vendors

maintaining email spam honeypots.

Binary Classification Vs Multi-class Classification

Anti-Phishing research has attempted to classify Phishing sites with both binary

classification and multi-class classification techniques.

Binary Classification Produce a single model that can assess a candidate and

return 0 if the site is benign, or 1 if the site is phishing.

Multi-class Classification Produce a model (or collection of models) that can

assess a candidate’s similarity to a brand and cluster it. One can arrive at a

binary classification once clustered by verifying whether the site is running

on the matched institutions domain or webservers.

Binary classification approaches often extract features that are associated with

Phishing sites to train a machine learning classifier. Whittaker et al. [8] utilise a

9

2. Background 10

page’s PageRank1, the number of nested sub-domains in the URL2, whether the

page has a password field and more.

Binary classification limits the response we can make once we have found a Phish-

ing site. If we wish to be able to provide a filter for organisations who perform

Phishing takedowns, then we must identify the target of the Phishing site to know

which organisation to inform about the attack.

Text Based Classification

The majority of methods employed in the anti-Phishing community extract fea-

tures from the source code of the website. Whether hashing the source code of the

page and the files linked to it[11] or training machine learning classifiers on text

features [12], these approaches are susceptible to a number of defences from the

the Phisher.

2.1.3 Countermeasures to Anti-Phishing Techniques

Since automated Phishing classification was introduced, Phishers have responded

creatively to disguise the websites from classifiers, while still succeeding at im-

itating their target. There exists an arms race between the Phishing and the

Anti-Phishing communities.

To avoid detection from classifiers looking for key words, Phishers will replace

key content with images[13]. The technique can be taken to the extreme as in

Figure 2.2 where the page background is a screenshot of the authentic page and

the content is only the absolute minimum to position text boxes for the victim’s

input.

1Google’s proprietary score of how influential a page can be in Google Search
2Phishing sites can register domains like securitybank.com and will host a site at

www.paypal.com.online.securitybank.com to mislead users

10

2. Background 11

Figure 2.2: An example we created using a screenshot of the Imperial Shibboleth
login page as a background image. There is no distinguishing HTML, only the
minimum required to layout the text boxes for the victim’s details.

Phishers can also obfuscate text from automated classifiers, but maintain an au-

thentic appearance, by replacing some characters with homoglyphs. A homoglyph

is a character that looks very like another. A simple example would be the char-

acter for zero and the Latin alphabet letter O. However, instead of well-known

substitutions, Phishers will make use of alternative alphabets such as Cyrillic to

find alternative characters for Latin letters, punctuation, and even whitespace[14].

11

2. Background 12

(a) This Facebook Phishing site requires
the user’s details to avoid account dele-
tion for “security reasons”.

(b) This Adobe Phishing site requires
the user’s phone number to view a doc-
ument.

Figure 2.3: Both Phishing pages imitate the branding of their targets, but neither
of these pages appear on the legitimate sites

Imitate the brand, not the page

Afroz and Greenstadt [15] address that some Phishers do not attempt to imitate

a page that exists on the legitimate site. By cloning components associated with

the targeted brand, such as logos and colour scheme, they can achieve a site that

is resilient to classifiers that only look for similarity to legitimate pages. A popular

choice is a false security alert - such as “confirm your security details” or “your

account is at risk of deletion” (See Figure 2.3). This is because potential victims

believe it is possible for such pages to exist on the legitimate site, and they have

just never seen it before - reasoning away differences in styling.

In Figure 2.4 we present two attacks that imitate their target claiming to have

found “irregular activity” on the potential victims account. These pages target

two different companies, judging from their logos, but are otherwise identical.

Afroz and Greenstadt found this technique was responsible for 21.05% of the Phish-

ing sites in their dataset from PhishTank. They hypothesised one could improve

the classifier by including previously seen examples as in their training set. We

12

2. Background 13

(a) A page seeks the user’s details to verify
they are not a fraudster.

(b) A similar page, but targeting Dropbox,
also seeks to verify the user is not a fraud-
ster.

Figure 2.4: The two pages are possibly from the same Phish Kit, but have been
modified to target different brands.

explore the effectiveness of this technique in our experiments and evaluation.

2.2 Computer Vision

Computer Vision is a field of Computer Science aiming to develop algorithms and

techniques to enable software to understand images and videos. Typically this

includes: distinguishing and recognising objects in scenes; image enhancement;

object tracking in video; and pattern recognition.

2.2.1 Template Matching

Template Matching is a technique to find a training image within a larger candidate

image. The training image is “dragged” across the larger candidate, comparing all

the pixels in the training image to the pixels at the same offset in the candidate

image. This is very fast but suffers from being sensitive to small distortions in the

candidate image.

13

2. Background 14

Subtle differences can be introduced in the screenshots by errors incurred when the

Phishing site was cloned from the original page. This can result in components like

input boxes, buttons and logos being translated or scaled in the candidate image.

The effect is two images that are very similar to a human, or at least still contain

similar branding, can be interpreted as completely different by the technique.

2.2.2 Feature Extraction

Researchers employ a Computer Vision technique called Feature Extraction to

sample an image for distinctive elements, such as corners and blobs, and match

these samples in techniques that are invariant to luminance, rotation, scale or affine

shift. It is made up of two stages: Keypoint detection, which finds the regions of

images that the techniques heuristic suggests are recognisable even after significant

distortion - such as corners or blobs of high contrast; and extraction, which com-

putes a feature vector called a descriptor to represent the feature. The number of

dimensions in the descriptor depends on the technique and its parameters.

The keypoints found and what information about the local area the descriptor

should contain depends on the feature extraction technique being employed. Two

popular techniques are SIFT and SURF.

2.2.3 SIFT

SIFT[16] (Scale Invariant Feature Transform) is a Computer Vision technique de-

veloped by David Lowe to extract features that are intolerant to scale (Resizing)

and rotation. Additionally, SIFT feature descriptors are partially invariant to

illumination changes and geometric distortion.

SIFT finds keypoints through an iterative process. The algorithm first performs

Difference of Gaussian filtering - a technique that increases the visibility of edges

14

2. Background 15

and details - on the image at multiple scales. The pixels that have maximum

contrast to their immediate neighbours at all scales are selected as keypoint can-

didates. The DoG process can yield points that are sensitive to noise, so the

candidates are further filtered to remove low contrast keypoints and noisy key-

points along edges. SIFT additionally obtains an orientation for each keypoint by

evaluating the gradient direction of the pixels around it.

SIFT descriptors have 128 features and are made up of histograms of the orienta-

tion of the pixels neighbouring a feature, providing a descriptor that is invariant

to location, scale and rotation.

2.2.4 SURF

Speeded Up Robust Features (SURF) is a variation on SIFT that offers improved

speed at similar performance[17]. It achieves this by performing filtering using a

square shaped filter - in place of the Gaussian filter used by SIFT - when finding

high contrast pixels. SURF then makes use of a blob detector to find points of

interest. The operations are all on integers which speeds the detection process

over SIFT at the cost of accuracy at extremes.

SURF descriptors consist of 64 features. The features are calculated from the in-

tensity distribution of the local area around a keypoint, with additional orientation

detection to provide rotation invariance. There is a variant named Upright-SURF

(U-SURF) that forgoes rotation invariance in favour of extraction speed. U-SURF

can be four times faster than SIFT[17].

2.2.5 Feature Matching

Given a collection of feature descriptors for a candidate image, and a collection

of feature descriptors for another image, the next step is to match the keypoints.

15

2. Background 16

Each of the descriptors in the candidate image is compared to every descriptor in

the training image. A descriptor in the candidate image matches a descriptor in the

training image for which the distance between the two descriptors is minimised. For

both SIFT and SURF, the distance is calculated as the Euclidean distance between

the two feature vectors. A short euclidean distance indicates the neighbouring

pixels around the two keypoints are similar.

Feature matching is exhaustive - every feature in the candidate image is matched

to a feature in the training image - which can introduce some matches where the

distance between the two descriptors is relatively large. Consequently, pruning

poorly matching keypoints can improve the performance of algorithms that utilise

the matches.

2.3 Clustering Analysis

Cluster Analysis is the action of grouping points or objects into clusters by com-

paring some or all of their attributes.

2.3.1 K-Means Clustering

K-Means clustering is a technique which groups vectors into K clusters, such that

the squared distances from each vector to the center of the cluster (centroid) is

minimised. Finding the optimal value is NP-hard, so approximation is required.

A popular approach is Lloyd’s Algorithm[18].

The algorithm is as follows: Given K initial centroids (Normally chosen through

randomisation), assign every point to its nearest centroid. Now iteratively calculate

new means for the centre of a cluster and change the centroids to the new value.

The cluster is finished when the centroid does not move more than ε in an iteration.

16

2. Background 17

K-Means can suffer from requiring the number of clusters to be specified in ad-

vance. Additionally, clusters are often similar sizes spatially due to the algorithm

minimising the width within a cluster.

2.3.2 DBSCAN

DBSCAN - Density-Based Spatial Clustering of Applications with Noise - is an

approach that groups vectors into clusters where, unlike K-Means clustering, DB-

SCAN will create as many clusters as needed.

Clusters are formed by selecting a point at random and examining its radius ε.

Any points within a radius of ε will be added to the cluster. In turn, any points

that are within ε of the new points will be added to the cluster. Restricting

all nodes to be within ε of another node maintains a minimum constant density

within a region. If a cluster cannot find more neighbours and does not have at

least minimum samples points, it will be labelled as noise.

2.4 Evaluating Performance of Phishing Classi-
fiers

To evaluate clustering classifiers, researchers typically train with a set of legitimate

web pages. Their testing set will consist of Phishing sites targeting these pages,

in addition to a selection of other legitimate sites. A threshold or threshold-vector

will be defined, and sites that are above the threshold will be considered Phish

and those below marked as not. Researchers can then make use of a number of

metrics to compare the performance of their classifiers.

17

2. Background 18

2.4.1 Sensitivity and Specificity

True Positive Rate TPR (Sensitivity / Recall) (Equation 2.1) and False Positive

Rate FPR (1-Specificity) (Equation 2.2) are the most common measures of Phish

classifier performance.

True Positive Correctly identifying Phishing site’s target.

True Negative Correctly classifying a legitimate site as legitimate.

False Positive Incorrectly identifying the target of a Phishing site, or classifying

a non-Phishing site as Phishing.

False Negative Incorrectly classifying a Phishing site as not-Phishing.

TPR = Recall =
True Positives

True Positives + False Negatives
(2.1)

FPR =
False Positives

False Positives + True Negatives
(2.2)

Additionally, researchers compare their system’s Accuracy (Equation 2.4) - a ratio

of the number of correct classifications and all classifications made; and Precision

(Equation 2.3) - the proportion of positive classifications that are correct.3

Precision =
True Positives

Positive Classifications
(2.3)

Accuracy =
True Positives + True Negatives

Positive Classifications + Negative Classifications
(2.4)

3This serves as an answer to the question: “What is the probability that we have correctly
identified a Phishing site?”

18

2. Background 19

These measures aren’t necessarily all equally important. Research has shown [5]

[19] [20] that even a small number of false positives can lead to the user growing

frustrated with the system, losing faith, and disabling it. Phish Blacklists are in-

corporated and kept up to date by every major web browser vendor - false positives

would lead to prominent site being inaccessible to all users of that browser.

Additionally, one must bear in mind the scale at which commercial vendors oper-

ate. Whittaker et al. wrote Google’s Phishing classifier considered 1,500,000 URLs

in the first two weeks of August 2009[8]. Even a 1% False Positive Rate would

mean tens of thousands of websites would be incorrectly blocked for the majority

of the Web’s users.

2.4.2 Confusion Matrix

We can assess multi-class classifiers directly by plotting the classification decisions

on a confusion matrix (Table 2.1). The columns represent the prediction the

classifier has made for the class of a subject, and the rows represent the actual

class of the subject.

Table 2.1: A confusion matrix of four classes

A B C D

A 1 0 0 0

B 2 1 0 0

C 2 1 3 2

D 0 0 1 4

The diagonal axis represents correct classifications. A better classifier would have

a higher density of classifications along this axis.

19

2. Background 20

2.4.3 Macro-Average and Micro-Average

Micro and macro averages can be thought of the average performance of the clas-

sifier as a whole. Micro averages are weighted by the class distribution of the

underlying data, and macro averages are computed from the total performance of

the classifier.

The micro-average of recall and precision are defined in equations 2.5 and 2.6.

Rmicro =

∑n
i=1 TPi∑n

i=1 TPi + FPi

(2.5)

Pmicro =

∑n
i=1 TPi∑n

i=1 TPi + FNi

(2.6)

The macro-average of recall and precision are defined in equations 2.7 and 2.8.

Rmacro =
1

n

n∑
i=1

TPi

TPi + FPi

(2.7)

Pmacro =
1

n

n∑
i=1

TPi

TPi + FNi

(2.8)

Where n is the number of classes, and TPi, FPi , FNi are the number of true

positives, false positives, and false negatives for class i.

2.4.4 Threshold-based Decision

A multi-class Phishing classifier attempts to identify the class a subject belongs

to. However, it is possible the subject is not a Phishing site and does not belong

in any of the classes. Researchers arrive at a ‘yes/no’ decision for whether a site is

20

2. Background 21

a Phishing site or not by introducing a threshold-based decision. If the similarity

between the subject and its closest matching class does next exceed a threshold t,

then the subject is considered benign.

2.4.5 ROC Curve and PR Curve

A Receiver Operating Characteristic (ROC) Curve is a plot (See Figure 2.5) of

the true positive rates of a classifier against its false positive rates for different

decision thresholds. The curve allows us to judge the tradeoffs between improving

detection (True Positive Rate) at the expense of degrading Precision.

Figure 2.5: Multiple classifiers compared on a ROC Curve.
Source: By BOR at the English language Wikipedia, CC BY-SA 3.0, "https:
//commons.wikimedia.org/w/index.php?curid=10714489"

Precision-Recall (PR) Curves are an alternative to ROC Curves for classifiers

operating on datasets where there is a significant skew in the class distribution[21].

A PR Curve is a plot of the Precision of a classifier against its Recall, i.e True

Positive Rate, for different thresholds. In a domain that is heavily skewed towards

Negatives, a significant change in number of False Positives would not change

21

"https://commons.wikimedia.org/w/index.php?curid=10714489"
"https://commons.wikimedia.org/w/index.php?curid=10714489"

2. Background 22

the ROC Curve by an equivalent amount as the number of False Positives is

compared to the much larger number of True Negatives. A significant change in

False Positives would have a much larger effect on Precision, and consequently the

graph.

2.5 Visual Similarity Clustering

2.5.1 Classification with Document Object Model

Liu et al. [22] proposed a system for visual clustering of Phishing sites. They

compute visual similarity from the webpage’s Document Object Model (DOM)

as opposed to considering a screenshot of the page. The system compares three

degrees of similarity: block similarity, layout similarity, and overall style similarity.

The system first segments both the candidate and training page into salient blocks

[23] based on the Document Object Model. Nodes which do not have any visual

impact on the page are removed, and the remaining ones are clustered according

to adjacency and appearance.

Block similarity is calculated by comparing features like font, text size, and colour

for text blocks; and width, height, dominant colour and file creation date for im-

age blocks. The similarity score of two blocks is calculated as a weighted average

of normalised representations of these features, with the weights set empirically.

Through experimentation, the authors found that coloured features (Such as back-

ground colour and text colour) were particularly distinctive, so awarded those fea-

tures higher weights. Blocks with similarities above a threshold are considered

matched between the two pages. The blocks in the training page are matched one

by one with blocks in the candidate page.

Layout similarity is calculated by comparing blocks with identical contents and

22

2. Background 23

comparing their position relative to other blocks on the page using a neighbour-

hood relationship model[23]. Two blocks are considered matched if, in addition

to block similarity, they satisfy the same position constraints (as derived from the

neighbourhood relationship model) with corresponding already matched blocks. A

similarity score is calculated as the ratio of matching blocks to the total number

of all blocks on the page.

Overall style similarity is calculated by comparing histograms of a number of

distributions, including page background colour, border size and style, font family

and text size. The similarity score is calculated as the normalised correlation

coefficient of these histograms.

They evaluate the system against a dataset of 8 Phishing pages, home pages for

the 6 different sites targeted, and 314 additional commercial bank home pages.

Instead of combining the three metrics - block similarity, layout similarity, and

overall style similarity, the authors consider a pair of pages a match if any one of

the metrics exceeds a threshold t.

At t = 0.9 Liu et al. successfully classified 7 of the 8 Phishing pages (True Positive

Rate of 87.5%) and no false positives (False Positive Rate of 0.0%). At t = 0.7,

the system correctly classifies all 8 Phishing pages, but falsely identifies 4 other

pages (True Positive Rate 100.0%, False Positive Rate 1.29%).

The system relies on two key assumptions: The salient block segmentation process

will return similar similar blocks for two pages that appear the same, and the

block’s style attributes are indicative of the block’s appearance.

The first assumption is defeated both accidentally and deliberately by Phishers. If

a Phisher clones the website indirectly - by developing against it visually, they will

could inadvertantly introduce different block structure. Any additional content the

phisher includes (adverts) would increase the number of blocks that don’t have any

23

2. Background 24

match and reduce the block similarity score considerably. Phishers deliberately

replace content with images [13] to avoid detection by string matching algorithms

which also dramatically alter the page structure.

The second assumption fails for websites that make heavy use of images. Many

parts of a websites distinctive style can come from the images they use. Banners,

buttons, borders, icons and more are often implemented with images by the bank’s

developers. Use of CSS sprites 4 corrupts any attempt at dominant colour detec-

tion. Additionally, Phishers can make use of homographs, images in place of text,

and other obfuscation techniques to minimise the amount of style information in

the Document Object Model.

2.5.2 Classification with Screenshots

The drawbacks in a DOM based classifier are effectively defeated by considering

the page at the pixel level. By loading the page in a web browser and taking a

screenshot, all the JavaScript has executed, CSS rules have applied, Java Applets,

Flash movies, images and others are included in the image data considered by the

classifier5.

Earth Movers Distance

Fu et al. [24] propose a clustering system based on the Earth Mover’s Distance

between signatures extracted from preprocessed screenshots of the candidate site

and a training site. The authors chose this method as it has been shown to

have advantages in representing multifeatured signatures. The authors point to

4A technique where multiple icons are concatenated to a single image, and the image is
carefully positioned and occluded by CSS so only a desired icon is visible. This technique is
employed to reduce page load time by reducing the number of requests

5Assuming the browser can render the components. We examine where this isn’t the case in
Implementation Challenges

24

2. Background 25

its success in vision problems in contour matching [25] and as a metric for image

retrieval [26].

In the preprocessing step, the images are normalised to 100 * 100 pixels using

Lanczo’s algorithm. The authors reason there is no best normalised size and chose

100 * 100 pixels empirically - as with all of their variables. Next, the colour space

is reduced by downsampling from 232 to (28/CDF)4 where CDF is the Colour

Degrading Factor. Fu et al. use a CDF of 32, giving 4096 different colours.

An image’s signature is a collection of features and weights. A feature is a tuple of

a degraded colour and its centroid (as a one dimensional pixel index) in the image.

The feature’s weight is its colour’s frequency in the page. To reduce the size of

the signature, the authors only include the 20 most heavily weighted features.

A signature is shown in Equation 2.9 where dc is a degraded colour, Cdc is its

centroid, and Fdc is its frequency.

S =<<< dc1, Cdc1 >,Fdc1 >, ..., << dcN , CdcN>, FdcN >> (2.9)

Earth Mover’s Distance is an algorithm based on a transportation problem to

evaluate the distance between two signatures. Each signature is defined as a set of

features and weights. The first signature P represents producers and the second

signature C represents consumers. There is an additional third input: a distance

matrix D, representing a map of the distance from any of the producers to any

of the consumers where each cell Di,j is the normalised distance from Pi to Ci.

Transporting products from P to C carries a fee proportional to distance and

product weight.

The task is to move as much product from P to C as possible and minimise the total

transportation fee. This is a linear programming problem and, once solved, the

25

2. Background 26

final distance is the ratio of total transportation cost to total product transported.

Fu et al. compute the Earth Mover’s Distance for each of their training images

against a candidate image. They convert this dissimilarity score d to a similarity

score s with the formula s = 1−
√
d. The square root function serves to improve

the distribution of distances in the range (0, 1).

The authors propose a threshold vector for classifying images. Each target has its

own threshold found through classifying a training set consisting of 1,000 benign

websites and the 9 known Phishing sites. The system is evaluated on 9,272 different

benign websites and the same 9 known Phishing sites. Their system arrives at

88.88% True Positive Rate, and 0.13% False Positive Rate.

Intuitively a threshold vector is a significant improvement over a single scalar for

the entire classifier. Some Phishing targets have greater variety in their own web

pages, leading to a variety in Phishing pages targeting them. Additionally, due

to the prevelance of Phishing kits, mistakes made during the cloning process are

likely to occur multiple times, with a small amount of variation introduced by

Phishers who extend the Phish kit to include adverts, or other variations.

A significant drawback of the authors’ evaluation is their limited data set of just

9 Phishing sites, and only one of the targets has more than one Phishing sites

targeting it. The authors use the same Phishing sites in training their threshold

vector as in the evaluation of its performance. This leads to overfitting, as in real

use the classifier won’t necessarily have seen the exact image before.

Gestalt Theory and Compression

Chen et al. [27] propose a clustering approach based on Gestalt theory. Gestalt

theory is a psychological theory that human perception is based on the whole

object, and is not just its parts. Relating to Phishing classification, Chen et al

26

2. Background 27

propose that a user’s perception of a website, and consequently their recognition of

the site’s origin, is based more than just the individual components. The authors

reason that the Gestalt process transforms the visual representation of the web

page and produces a supersignal. The supersignal is the collapsed form of all the

features on a page into a single impression.

Chen et al. reason that one can approximate a supersignal with algorithmic infor-

mation theory, specifically Kolmogorov complexity [28]. Kolmogorov complexity

is viewed as the ultimate compressor - producing, for any arbitrary string, the

minimum description of that string, given a description language. Cilibrasi and

Vitanyi [29] demonstrated that Kolmogorov complexity can be approximated by

modern compression techniques and developed Normalised Compression Distance

(NCD) for clustering data. NCD is a non-negative number representing the differ-

ence between the two inputs. It is defined in Equation 2.10 where C is defined such

that C(X) is the length of a compressed string X, for any arbitrary compression

function.

NCD(A,B) =
C(A+B)−min(C(A), C(B))

max(C(A), C(B))
(2.10)

One can intuitively reason that NCD(x, x) ≈ 0 if one assumes, for an optimal

compression algorithm, that C(x + x) ≈ C(x) and C(x + x) ≥ C(x). Using the

interpretation of similarity as the inverse of distance, the more similar two images

are the smaller the distance between them.

Chen et al. apply NCD to Phishing clustering by calculating the NCD between

a candidate screenshot and each of the images in their training set. The authors

recognise that they can only approximate a perfect compression algorithm, and

consequently NCD is not commutative. Consequently, the authors define the dis-

tance between two images as the arithmetic mean of both orderings of the two

27

2. Background 28

images (Equation 2.11).

NCD(x, y) +NCD(y, x)

2
(2.11)

Chen et al. evaluate their system with a data set of screenshots of home pages of

16 popular targets of Phishing attacks, and 20 screenshots of Phishing sites that

target these sites for a total of 320 Phishing sites. The authors consider two one-

dimensional compression libraries, Blocksort[30] and LZMA[31], justifying the use

of a one-dimensional compression technique over two-dimensional techniques like

JPEG by pointing to the success of one-dimensional compression in other image

clustering research, and the difficulty of defining what it means to ‘concatenate’

two images, including their header information.

The authors formed two groups for a z-test for sample means: the first contain-

ing each of the pairings of their legitimate sites (120 unique pairs); the second

comparing each legitimate site to its known Phishing pages. Their hypothesis is

legitimate sites will have a lower distance to their corresponding Phishing sites

than to other legitimate sites. In both cases the authors reject the null hypothesis

with p ¡ 0.05 and conclude their hypothesis - that distance values in group two are

significantly less than group one - is supported.

The authors evaluate their algorithm as a classifier using a threshold-based decision

rule: They compare each candidate against each site in their training set. If

a pair’s NCD is below a threshold, the candidate is judged to be targeting the

corresponding training site. The authors evaluated a number of different thresholds

such that they were able to compute a ROC curve for false positive rates from 0%

to 100%. At the corner of the curve - their best possible result - they achieved a

true positive rate of 95.6% and a false positive rate of 0.8% for LZMA.

Intuitively, one would improve their algorithm by calculating a distinct threshold

28

2. Background 29

for each target given some past classifications - there could be more variety in

the styles of Phishing sites targeting Paypal than Bank of America. Once the

distance has been calculated for a candidate against all images in the training set,

the closest matching target and its respective threshold can be compared to the

shortest distance found. One could arrive at a threshold by classifying a small

training set for each target and choosing a threshold for which true positives and

false positives are acceptable.

2.5.3 Using Computer Vision Feature Selectors and Ex-
tractors

Afroz and Greenstadt [15] proposed PhishZoo, a system that uses a number of

features - both text based, image based - come up with a comprehensive profile

of each target. Their most successful features involved a hybrid of text matching,

screenshot matching, and logo matching. For screenshot and logo matching they

used SIFT[16] for feature detection and matching.

Before arriving at SIFT, the authors evaluated other techniques including template

matching and OCR. They found template matching failed due to small variations

in scale and other small distortions. They found some success with OCR on logos

where the text was clear, such as Paypal, but was less successful for logos mixing

fonts, sizes and images such as Bank of America and Ebay.

SIFT was chosen as it is a more sophisticated approach used in the computer vision

community for object recognition and image matching. The authors considered

using variants of SIFT, but surmised that the SIFT was a reasonable choice for

initial exploration.

To arrive at a score for logo matching, the authors extracted features for each of

the logos in their training set. They would then extract all the images hyperlinked

in the candidate web page individually and find matching keypoints between the

29

2. Background 30

two images, then calculate a match score (Figure 2.12).

Match score =
Number of keypoints matched

Total keypoints in the original logo
(2.12)

Afroz and Greenstadt also score the similarity of screenshots of the pages. They

would extract the features in full resolution screenshots of their training page and

candidate page, then find all the keypoints in the training image that matched the

candidate image. The match score would be calculated in the same way as the

logo’s match score.

The authors evaluated their classifier using a data set of 1000 Phishing sites, in

addition to 200 popular legitimate sites. They evaluated each of their features in-

dividually and found screenshots alone were not particularly effective (81.% True

Positive Rate, 30.3% False Positive Rate). In their evaluation they argue scene

analysis or image segmentation would be necessary for screenshots to be a descrip-

tive feature.

With logo matching the authors had more success, particularly improving on the

false positive rate with an 82.7% True Positive Rate and 2.5% False Positive Rate.

They summarise that their success in logo matching supports their argument that

with proper image segmentation, screenshots of pages would be a more descriptive

feature.

SURF Selectors and K-Means clustering

Kuan-Ta Chen et al. [32] proposed a system that couples feature extraction with

clustering to introduce relative spacial locality into the classification. They hy-

pothesise that features can be clustered into recognisable components - such as

features identifying corners of text boxes being clustered into a web form.

30

2. Background 31

Keypoints are found by a Harris-Laplacian corner detector[33] and descriptors are

extracted using the authors’ own descriptor - named Lightweight Contrast Context

Histogram (L-CCH). L-CCH is based on Contrast Context Histogram (CCH)[34],

but is adapted to not be rotation invariance - justifying that such transformations

are rarely seen in Phishing sites - creating a simpler and more efficient descriptor.

The descriptor calculates difference in contrast between each pixel within a 9 pixel

radius of the keypoint and the keypoint itself, grouped into histogram bins of 24.

When matching keypoints in the training image to keypoints in the candidate

image, they compare the distance to the closest match to the distance to the

second-closest match. If the ratio between the two distances is greater than 0.6,

they exclude the match. This results in excluding keypoints in the training image

that can match equally well in more than one place on the candidate image. This

is based on the Lowe Ratio Test[35], a technique to find descriptors that match a

single object in a database of images much better than any others.

The system then geographically clusters keypoints that have ‘good’ matches with

the k -means algorithm[18]. The authors empirically evaluated their classifier and

arrived at k = 4 as yielding the best results. For pages where the number of ‘good’

matches is lower than 4 (making k -means clustering impossible) the process system

can short circuit as the candidate is dissimilar to all the pages in the training set.

Clusters in a training image are then matched to clusters in a candidate image

through voting: A cluster A in one image matches a cluster B in the other image

if the majority of the keypoints in A match keypoints in B. A keypoint is labelled

geographically matched if its cluster matches its corresponding keypoint’s cluster.

The two pages’ similarity score is the ratio between the number of geographically

31

2. Background 32

matched keypoints and the number of all keypoints identified in the two pages.

Similarity =
|Tg|+ |Cg|
|T |+ |C|

(2.13)

where: T , C are sets of all keypoints in the training and candidate image; and

Tg, Cg are sets of geographically matched keypoints in the training and candidate

image.

Kuan-Ta Chen et al. evaluated their system with 1,638 Phishing sites targeting 5

popular sites, in addition to 300 legitimate pages from 74 other websites. Through

empirical study they arrived at a similarity threshold of 0.6 - pages with higher

scores are designated Phishing. Their system has 98%-100% True Positive Rate

and 0.1% across the five targets they considered.

2.6 Distributed Processing

To perform classifications quickly on large data sets, we must consider distributed

processing across many computers.

2.6.1 Amazon Web Services

Amazon Web Services[36] is a suite of computer infrastructure-for-hire products

offered by Amazon. From load balancers to databases, Amazon offers more than

50 products for rent.

We consider Amazon’s Elastic Compute Cloud (EC2). It offers Virtual Private

Servers (VPS) with wide range of configuration options. Computation is charged

by the hour.

32

2. Background 33

2.6.2 Hadoop

Hadoop is a distributed batch processing framework. Its origin began when Google

released a paper describing the Google File System[37] and a second paper de-

scribing MapReduce[38]. Google used the technology to perform massive data

processing tasks such as ranking every web page on the Web.

Developers at the Yahoo started Hadoop in response one year later. It is made

up of a distributed file system HDFS (Hadoop Distributed File System) and the

MapReduce system for distributed processing of large amounts of data. Hadoop

was open sourced in 2009 and adopted by the Apache Software Foundation who

oversee its development to this day.

A job is split into a number of tasks by the JobTracker running on a master node.

These tasks are then distributed to worker nodes in the cluster. On each worker

a TaskTracker performs the work described by the task, and then informs the

JobTracker once its finished.

As Hadoop is a batch processing framework, it requires all the data it needs to

process at the beginning. It splits, distributes, and replicates all the data to

machines in the cluster before performing the desired processing.

Use in Phishing Classification

Shrestha et al. [39] developed a Phishing classifier to run on Apache Hadoop.

They evaluated it against a massive testing set of 80,965 Phishing websites. They

tested evaluated their approach on the University of Alabama at Birmingham’s

computer cluster, and on Amazon’s Elastic Map Reduce service. They were able

to perform all their classifications within 6 minutes across 20 machines at Amazon

- one hundred times faster than the same code on their machine. A significant

33

2. Background 34

factor in the speed improvement, in addition to the quantity of computers, was

the availability of more powerful machines at Amazon than their own.

2.6.3 Storm

Storm[40] is a distributed stream processing framework. Storm was open sourced

by Twitter in 2014.

Storm considers data processing as a pipeline of transformations. Storm clusters

are arranged by the application developer into a topology. Nodes within the topol-

ogy are either spouts or bolts. Spouts provide input into the topology from an

external source, and bolts perform data processing.

Data is passed around within the topology as tuples, representing a single unit

of data as input to the bolts. The application developer specifies the quantity of

each of the types of spouts and bolts they want, and Storm’s master node named

nimbus will distribute the applications across a cluster of computers - evaluating

which computers are resource constrained to distribute the work in a way that

maximises performance from the cluster.

Each tuple is given a unique id. When a bolt has finished processing a tuple, it acks

the id so the sender of the tuple knows it has been successfully processed. If the

tuple is not acked within a configurable timeout, the tuple is resent - though may

be delivered to a different bolt of the same type - and the processing is repeated.

This improves the robustness of the cluster.

A Phishing site classification system must be real-time. Phishing sites are at their

most lucrative in the first few hours, so blacklisting the page quickly is vital.

34

Experiments

In this chapter we evaluate the clustering approach discussed in chapter 2, in

addition to a histogram correlation classifier. We use our dataset to validate their

results and to provide a benchmark for our own approach. In chapter 4 we propose

our own approach and evaluate it on the same data.

3.1 Test Data Collection

We have obtained data from Netcraft[9] for our evaluation. Netcraft is a world-

leading supplier of Phishing countermeasures including a Phishing blacklist, Phish-

ing takedowns, and more.

Candidates that cannot be classified by Netcraft’s proprietary Phishing classifier

are reviewed manually. To guard against the potential for drive-by malware be-

ing inadvertently installed by reviewers during the review process, all manually

classified candidates are submitted to the Netcraft’s sand-boxed screenshot ser-

vice. Instead of visiting the sites themselves, reviewers consider the screenshots in

addition to meta information from the site.

We downloaded a small subset of Netcraft’s screenshots to create a training set

and testing set. We then picked the 30 most commonly represented targets from

the data we downloaded. Additionally, we created a truth set by navigating to the

login pages of these common targets and capturing a screenshot of the page.

Our training set consists of 10 randomly selected labelled pages per class for a

total of 300 pages. Our full testing set consists of 1600 Phishing sites with an

skewed distribution across the classes.

35

3. Experiments 36

Table 3.1: Size of training and full testing sets for each class

Target Train Test Target Train Test Target Train Test

Adobe 10 23 Comcast 10 18 Microsoft 10 190

Apple 10 255 DHL 10 16 Paypal 10 168

B. de Credito 10 16 Dropbox 10 20 Ricardoeletro 10 18

B. do Brasil 10 48 Ebay 10 116 Taobao 10 39

B. Santander 10 17 Facebook 10 79 Tencent 10 32

Barclays 10 35 Freefr 10 20 Tesco 10 13

BNP Paribas 10 16 Google 10 59 USAA 10 29

Capital One 10 13 HMRC 10 25 Wells Fargo 10 47

Cartasi 10 171 ICBC 10 16 Yahoo 10 27

Chase 10 21 L.B. Postale 10 17 Zhejiang 10 36

3.2 Evaluation Harness

Our experiments were implemented in Python, using OpenCV and NumPy, from

the original papers with some small variations were required. For each classification

we recorded the predicted class, the correct class and the similarity score for the

closest match. We then consider the impact of introducing a threshold-based

decision classifier at different thresholds.

OpenCV (Open Source Computer Vision) is a substantial library offering hunderds

of methods for image processing, computer vision and machine learning. It is

written in C++, but has official supported C and Python bindings.

36

3. Experiments 37

Table 3.2: Performance: Histogram Correlation Classifier - Single Training Page

Target TP FP FN Precision Recall

Total 835 769 769

Micro-averaged 0.52 0.52

Macro-averaged 0.71 0.44

3.3 Evaluation

3.3.1 Hue Saturation Histogram Correlation

We developed a system to classify screenshots by their colour histogram. The

system converts each screenshot to Hue Saturation Value (HSV) colour space and

compute a 2D histogram from each pixel’s hue and saturation. It then compares

two screenshots by calculating the correlation coefficient between their histograms.

The correlation coefficient acts as our similarity score.

We evaluated the impact of two different kinds of training data: screenshots of the

legitimate site, and our training sample of Phish. We experiment with multiple

training sizes to establish the impact of introducing screenshots of known Phishing

Sites into our training image set.

In Figure 3.1 we evaluate the performance of the Histogram classifier with a single

screenshot of the target’s website. We calculate the number of True Positives,

False Positives, and False Negatives, in addition to Precision and Recall, for each

target (Table 3.2). We calculate both micro and macro averages of Precision and

Recall to compare the classifier as a whole.

Figure 3.1 shows that sites across our testing set are frequently misidentified as

Apple. We inspected the legitimate Apple login page (Figure 3.2) and found the

image is almost exclusively greyscale. The HSV colour space defines the hue and

37

3. Experiments 38

Figure 3.1: A Confusion Matrix of our small test set with a singe legitimate page
as a training.

38

3. Experiments 39

saturation of greyscale colours to be 0. As all greyscale values have a hue and

saturation of 0, there is a large peak at the origin of the histogram for Apple. A

significant number of pages make use of white, black or grey coloured background

- correlating with the Apple page. If the candidate image’s other colours don’t

correlate with the ground truth of their target, the candidate can be misclassified

as Apple.

Figure 3.2: The ground truth Apple Store Login form.

Figure 3.1 also demonstrates the limitations of only training with a single screen-

shot of the legitimate site. No Phishing sites targeting Barclays, BNP Paribas,

Facebook or Taobao could be identified. We examined the legitimate pages and

Phish for these targets and found Phishing sites that did not look like the legiti-

mate site at all, but are clearly imitating the brand.

39

3. Experiments 40

(a) The legitimate Facebook home page (b) An imitation Facebook Security
Alert

Figure 3.3: Two completely different pages that target the same brand.

As discussed in subsection 2.1.3, Afroz et al. [15] found that fabricating branded

websites that do not have corresponding legitimate pages was responsible for

21.05% of the Phish they observed. Consequently we expanded the ground truth

of the Histogram Classifier to include our smaller training set. It is clear from the

strong correlation in Figure 3.4 and overall performance (Table 3.3) that even just

a small training sample of 10 Phishing pages per target dramatically improves the

performance of the classifier compared to training on just a single legitimate page

for each class.

40

3. Experiments 41

Table 3.3: Histogram Correlation - 10 Page Per Class Training Set

TP FP FN Precision Recall

Total 1276 328 328

Micro-averaged 0.80 0.80

Macro-averaged 0.85 0.82

Figure 3.4: Confusion matrix for Histogram Correlation Classifier.

41

3. Experiments 42

Figure 3.5: A ROC Curve shows the classifier’s performance at different thresholds.

42

3. Experiments 43

Table 3.4: Histogram Correlation - 10 Page per Class Training Set with threshold
of 1

TP FP FP Precision Recall

Total 624 0 980

Micro-averaged 1.00 0.39

Macro-averaged 1.00 0.41

We evaluated the performance of the classifier when using a threshold-based de-

cision rule. If the similarity score (the correlation coefficient between the two

histograms) is greater than a threshold t, the website is considered Phishing. We

evaluated thresholds within the range 0.01 to 1.00 and plotted the performance

of the classifier as a ROC Curve (Figure 3.5). At a threshold of 1.00, the classi-

fier performs with a precision of 1 - that is, every page it believes is Phishing is

Phishing. 41% of the Phish in our test set could be classified with this classifier

(Table 3.4) at this threshold.

As we have removed byte-level identical files from our training set, these pages must

be otherwise identical except for variations in metadata in the file brought about

by the screenshot process. This approach performs well for Phishing campaigns

that exist on multiple URLs. This technique could be used in conjunction with

another classifier to remove low-hanging fruit before assessing the remainder with

a classifier with a more intelligent approach to variations.

3.3.2 Keypoint Clustering with SURF and K-Means - Kuan-
Ta Chen et al.

We looked to evaluate the performance of an approach that makes use of spatial

clustering. Intuitively, individual keypoints can be combined to form recognisable

regions of a legitimate site - such as a logo, navigation bar, and structure of the

login section.

43

3. Experiments 44

Table 3.5: K-Means SURF Clustering - Single Page Per Class Training Set

TP FP FN Precision Recall

Total 973 577 627

Micro-averaged 0.63 0.61

Macro-averaged 0.75 0.61

Table 3.6: K-Means SURF Clustering - 10 Page Per Class Training Set

TP FP FN Precision Recall

Total 1343 247 257

Micro-averaged 0.84 0.84

Macro-averaged 0.86 0.86

Ideally we would have liked to have evaluated the approach proposed by Kuan-Ta

Chen et al. however their Context Colour Histogram descriptor is only available

as a Windows binary, and not in source code form. The authors have shown that

their approach has similar performance to SIFT[34], suggesting it could be used as

an alternative. However, we found that the speed of SIFT was too slow to perform

a larger evaluation. Consequently we chose to substitute SURF, as it has a very

similar design and is far faster.

The authors first propose using a single screenshot of the legitimate site in the

training set. There is a clear correlation in the confusion matrix (Figure 3.6) but

we see particularly poor results for Apple and Taobao. None of the sites targeting

Apple were correctly classified, and only one for Taobao. Apple and Taobao both

have a variety of commonly Phished pages that do not look similar, such as the

Apple Store and iCloud. To try to catch these, we increased the number of pages

per target in our training set to 10.

Both precision and recall improve with the larger training set. We evaluated the

approach as a threshold-based decision classifier. Kuan-Ta Chen et al. recommend

44

3. Experiments 45

Figure 3.6: Confusion matrix for K-Means SURF Clustering with a single ground
truth image.

45

3. Experiments 46

Figure 3.7: Confusion matrix for K-Means SURF Clustering with a 10 page per
class training set.

46

3. Experiments 47

Table 3.7: K-Means SURF Clustering (K=4) - t=0.6

TP FP FN Precision Recall

Total 846 1 754

Micro-averaged 1.00 0.53

Macro-averaged 1.00 0.56

Figure 3.8: A ROC Curve shows the K-Means SURF Clustering classifier’s per-
formance at different thresholds.

a threshold of 0.6 to arrive at a binary decision on whether a site is Phishing or

not for their classifier. At this threshold (Table 3.7), we found the classifier had a

precision of nearly 1 (only one false positive), but a recall of only 0.56.

We evaluated the impact of thresholds t from 0.01 to 1.00. We found (Figure 3.8)

that the threshold can be lowered to 0.35, gaining true positive classifications,

without incurring additional false positives.

47

3. Experiments 48

Table 3.8: K-Means SURF Clustering (K=4) - t=0.35

TP FP FN Precision Recall

Total 961 1 639

Micro-averaged 1.00 0.60

Macro-averaged 1.00 0.63

48

Proposal
4.1 Observations

For a user to identify the brand of a website, there must exist components or

features on the page that only appear on pages associated with that brand. These

could be logos, icons, the style of the login form, menus or other aspects of the

page. Many regions are common across different targets, such as individual form

fields, and we should not base a classification decision on matching such regions.

Feature detectors and extractors used in computer vision, such as SURF and SIFT,

find many small keypoints, often with a radius of just a few pixels. A Phishing

classifier should match larger elements of a webpage that are recognisable to a

human.

We cannot use a K-Means clustering algorithm to find regions that indicate the

identity of the page. Variety in styling and layout means there is not a common

number of K regions across Phish targeting a single site, let alone across all Phish.

Any grouping of keypoints must be relative to the number of components on the

page.

A target cannot be represented by a single legitimate page in our ground truth.

Many targets have multiple sign-in pages with vastly different styles for the dif-

ferent products they offer. Additionally, Phishing websites may be completely

fabricated and not have a corresponding legitimate page.

49

4. Proposal 50

4.2 Training

The classifier considers a set of labelled training images. We maintain a set of

HSV histograms representing each training image the classifier has been trained

on. When we train on a new image, we calculate the correlation coefficient between

it and the histograms of all the other images we’ve seen. If a new training image

perfectly correlates with a page the classifier has trained on, the new training image

is ignored. This avoids cluttering the model with features that offer no additional

classification performance.

Next, we find keypoints in the image using FAST - a high speed feature detector.

We geospatially cluster these keypoints using DBSCAN. DBSCAN is a density-

based clustering algorithm that groups points which are close together into clusters.

Keypoints which are not close to others are considered outliers and are not included

in any clusters. We name each cluster a region.

We exclude the outliers from our set of features. We extract descriptors for the re-

maining keypoints using BRIEF - a binary descriptor extractor. We chose BRIEF

due to its significant matching speed compared to SURF[41], while retaining recog-

nition performance. All keypoints and their corresponding descriptors are grouped

by their cluster into regions. Each region is recorded as part of a model represent-

ing the target. We repeat this for every page in our training set, adding regions

that we find on pages to our model of a particular target. This effectively gives us

a model for all the regions associated with our target in our training set.

4.3 Classification

Our hypothesis for page matching is simple: Regions that make good indicators

that a page is imitating a target T do not appear on pages that do not imitate T .

50

4. Proposal 51

e.g. The Paypal logo is a good indicator a Phishing site is targeting Paypal, as it

does not appear on

We extract keypoints from the candidate image using FAST and cluster them with

DBSCAN, removing any outliers. We then calculate BRIEF descriptors for the

remaining features.

Regions that appear in our candidate image are compared to all the regions we’ve

trained on. Regions are compared by matching keypoints within each region. The

distance between two regions is defined as the mean euclidean distance of their

matching keypoints.

For each region in a candidate image, we examine the two closest matching regions

in our model - where the second-closest matching region is from a different target

to the closest. We then apply a ratio test to establish the distinctiveness of the

closest matching region. We calculate the ratio of the distances from the candidate

to each of the two regions. If the ratio is less than a threshold r, then the closer

region is suitably distinctive to use in classification decision making. We tag the

candidate region with the identity of the region it most closely matches.

Once we have processed all the regions in the candidate image, we identify its

target to be the target its regions have matched the most. The similarity score is

the ratio of regions that match that target and the total number of regions in the

image.

4.4 Discussion

We recognised the parallels between our region matching requirement and image

stitching - a technique used to join two images of the same scene with overlapping

regions taken from two different perspectives, often to create a panorama. We

51

4. Proposal 52

evaluate why we do not use the technique in our evaluation subsection 6.1.4.

52

Implementation
5.1 Architecture

The classifier consists of three components, a screenshots submission server and

queue (section 5.3), an image classifier (subsection 5.4.1), and a blacklist server

(section 5.5). The image classifier is part of a storm cluster. The classifier is hosted

on Amazon Web Services, a cloud computing provider, to allow horizontal scaling

of classification as necessary.

We used Python throughout the system. The language was chosen for the image

classifier due to its OpenCV bindings and ease of prototyping when compared

to C++ or C. We reduce complexity of the system by using the same language

throughout - made easy by Python’s great standard library and large choice of

additional libraries.

5.2 Amazon Web Services

We deploy our classifier on Amazon Web Service’s Elastic Compute Cloud plat-

form. We can speed up deployment of the cluster by configuring a virtual ma-

chine once with our classifier and dependencies, and then using Amazon’s virtual

machine snapshot tool to store the configuration for later. A can set up a new

machine using the previous snapshot as a template, saving the substantial time

spent installing software.

53

5. Implementation 54

Figure 5.1: Overview of the implementation architecture
point

5.3 Image Submission

We produced an image submission API to receive screenshots to our classification

system. Screenshots are submitted in addition to the URL the image was fetched

from for identification.

The web server is written in Python using the Tornado[42] web framework to parse

the requests. On receiving an image, the submission system Base64 encodes the

image and inserts it into a Redis[43] queue through its popular Python client[44].

Each element in queue is a tuple of the URL and the Base64 encoded image.

We chose Redis as the backend of our queueing system as it can recover from

disk in the event of a power outage, is incredibly memory efficient, and the data

is inherently ephemeral. We do not require a queueing system which supports

automatic retries as that is handled out of the box by Storm spouts.

54

5. Implementation 55

Table 5.1: Redis Tuple

Index Description

0 URL of the site

1 screenshot, base 64 encoded

2 Submission DateTime

5.4 Storm

We created an Apache Storm cluster for the screenshot and classification process.

An Apache Storm cluster is made up of nodes divided into spouts and bolts. Bolts

can take input from spouts or other bolts, but spouts take no input from the

cluster. Spouts read from a source, in this case the Redis submission queue, and

submit tuples to connected bolts.

We use streamparse [45] to communicate with Storm from our Python code.

Streamparse is a Python interface to the underlying Storm framework. It sup-

ports easy deployment to the cluster through the command sparse submit, which

packages the source code and uploads it to the cluster for execution.

The submission spout continually polls the submission queue for new images.

When one is returned, it is placed on a pending buffer to be delivered to one

of the classifier bolts connected to it. When the classifier bolt is available for an-

other image, it will ask for one from the submission spout and will receive a tuple

containing the image and a unique identifier for the tuple.

The spout keeps track of tuples it has sent and acknowledgements it has received.

If the spout does not receive an acknowledgement with the tuple’s identifier within

a timeout, it will retransmit the tuple. We define the timeout to be a generous

one minute. The timeout must be longer than the time it takes to classify a page.

55

5. Implementation 56

As classification time is proportional to the number of training images, we would

need to adjust the timeout if the number of training images was increased from

our current number of 10. We configured Storm to drop URLs which have been

resubmitted twice so as to not clog up the classifier if the page takes unexpectedly

long to classify.

When the classifier receives a tuple, it decodes the image back to a native image

format. It executes the classifier against the image to identify its target. The

result and its similarity score are submitted to the Blacklist database interface

with an HTTP request.

We had to perform extensive configuration tuning to achieve results from Storm.

The software has many parameters around timeouts. Storm’s ideal use case is

a large number of very simple and very fast data transformations arranged in a

topology to perform a complex transformation. Our classifier can take up to a

minute to classify a site in its worst case. By default, Storm would require an

acknowledgement from classifier bolt within a few seconds.

5.4.1 Image Classifier

We implemented our image classifier in Python. We chose Python due to its great

library support and ease of prototyping. Although a dynamic ‘slow’ language,

much of the computationally intensive operations in the classifier were performed

in C by libraries such as OpenCV 3.1[46], NumPy[47], and scikit-learn[48]. We use

OpenCV for constructing histograms, for finding keypoints, extracting descriptors

and then matching them. We use NumPy for its array slicing and performant

vector operations. And we use scikit-learn for its clustering libraries.

The result of classification can either be one of the labels for the training data

used to construct the classifier, or - if the candidate cannot be matched with any

56

5. Implementation 57

label - the sentinel value None. We then submit labeled results to the Blacklist

DB Interface over HTTP.

5.5 Blacklist

5.5.1 DB Interface

The Blacklist DB Interface provides a simple web API for the submitting the

results of the classification. We choose to go via a web application instead of

going straight to the database to avoid directly pinning the database schema to

the classification code. The schema is currently very simple, but were the blacklist

page given more functionality it may require refactoring. The DB interface API

limits the refactoring to the just the database and the API, and not every single

classifier running in the cluster.

The interface interacts with the database with SQLAlchemy - a Python Object

Relational Mapper for databases.

5.5.2 Database

The database itself runs PostgreSQL[49]. The data has no characteristics that

make PostgreSQL a better choice than any other database, it was chosen as I am

familiar with it and SQLAlchemy’s supports it.

Finally, we prepared a proof-of-concept read-only API to the blacklist that allows

developers of products who require a Phishing blacklist, such as email clients and

web browsers, to query for new a list of Phishing sites.

57

5. Implementation 58

Table 5.2: Classification Log

Column Type

url Arbitrary length string

submitted at DateTime

classified at DateTime

target Arbitrary length string

58

Evaluation

In this chapter we evaluate the performance of the Distinctive Region Classifier,

and examine some case studies of it performing both well and poorly. We also

evaluate the performance and cost of the distributed classification cluster.

6.1 Distinctive Region Classifier

6.1.1 Performance

We evaluated the performance of the classifier trained with our training set of 10

images for each target, and tested against our remaining set. From the confusion

matrix in Figure 6.1 we can see the classifier performs well across all clusters with

a clear strong correlation.

In Table 6.1 we summarise the performance of the classifier in terms of precision

and recall. A precision of 0.9 overall or 0.85 weighted by classifier , but not 100%.

From the ROC and PR curves in Figure 6.2, we see precision can be improved to 1

with the introduction of a threshold. When we introduce a threshold of t = 0.73,

the recall is reduced to 0.57 for the classifier as a whole (macro-average).

We found these results to be a promising indicator for the technique, though there

Table 6.1: Distinctive Region Classifier Performance

Target TP FP FN Precision Recall

Total 1307 143 293

Micro-averaged 0.90 0.82

Macro-averaged 0.85 0.85

59

6. Evaluation 60

Figure 6.1: Confusion matrix for Distinctive Region Classifier with no threshold

Table 6.2: Distinctive Region Classifier - t=0.73

Target TP FP FN Precision Recall

Total 869 0 731

Micro-averaged 1.00 0.54

Macro-averaged 1.00 0.57

60

6. Evaluation 61

(a) The ROC curve (b) The PR curve

Figure 6.2: ROC and PR curves for the Distinctive Region Classifier

is still some way to go. The high number of false negatives (Table 6.1) is due to

classifier being unable to find any regions that pass the ‘distinctiveness’ ratio test

between a site and our training set at all. We believe this is due to calculating the

distance between two regions as the mean distance of all the matching keypoints.

The distance calculation between matching keypoints does not take into account

any change in spatial layout of the points. This result is keypoints can be regarded

as very similar, but actually appear scattered around such that it is impossible the

regions they are part of are similar (For an example, see Figure 6.5).

If two dissimilar regions are calculated a low distance, when that distance is com-

pared to the distance between two similar regions - the ratio test will fail. The

similar region will not be considered distinctive enough to be used for identifica-

tion.

61

6. Evaluation 62

Figure 6.3: The classifier identifies the Paypal logo and matches the two pages
without requiring a separate logo training set.

6.1.2 Case Studies

Paypal Logo Detection

In Figure 6.3 we can see the approach performing as we hoped. The image on

the left is a candidate image for classification, and the image on the right is a

training image for Paypal. Without any supervision, the classifier has recognised

that the region of keypoints which overlap the logo is distinctive to just one target -

Paypal. Despite pages actually looking completely different, the classifier correctly

identifies the Phishing site.

Matching text

Text on webpages normally has high contrast with its background. Consequently,

corners of letters and numbers are frequently selected as keypoints by the keypoint

detector. In Figure 6.4 the two pages match by the placeholder text in their

password fields. The Santander logo does actually match a region in our training

set of the Santander logo. However, there are only two regions on the candidate

image that match any other target. This case study exposes that our algorithm

62

6. Evaluation 63

Figure 6.4: The classifier matches the word “Password” between the Santander
page and the Ebay page.

needs to make an intelligent decision in the case of a tie in the number of distinctive

regions attributed to a target.

Additionally, descriptors that match corners of a letter can also match corners of

completely different letters - creating false matches. In Figure 6.5 the labels for

the address fields in Capital One are rearranged to match the footer in the Wells

Fargo page. We could improve our distance calculation in matching regions to take

into account the relative spatial distribution of matching points, possibly through

comparing the vector between two keypoints in the candidate region to the vector

between the corresponding keypoints in the training region.

6.1.3 Noisy Training Pages

One risk of including Phishing sites in the training set for the Distinctive Region

Classifier is if the Phishing sites are ‘fake pages’ - that is, the page is not imitating

any page on the legitimate site - or if the Phishing site includes substantial addi-

tional graphics such as adverts, is those regions will be associated with the brand

but are not distinctive to Phishing webpages targeting just that brand.

63

6. Evaluation 64

Figure 6.5: The labels for the address fields in the Capital One page are rearranged
to match the footer in the Wells Fargo page

A case where this can occur is customisable Phishing kits. As we saw in Figure 2.4,

as Phishing kit could provide a site that is completely generic but the only dif-

ference between the two pages could be the logo. If we only had the one in our

training set, even if we had seen the logo before, it’s possible the generic content

would outweigh the logo when evaluating the target of the site.

Nevertheless, we could not find any examples of this in our results. Additionally,

we believe the effect would be reduced still further for larger training sets.

6.1.4 Homography Detection

When matching regions of two images, we must calculate a distance that represents

how dissimilar regions are. At present we use mean distance of the matching

points in both regions. We considered the parallels between this process and

image stitching - commonly used to create panoramas.

If one region contains a component like a logo that exists or partially exists in

the other region, then a homography will exist that transforms the region such

that the common points will align. Brown and Lowe[50] proposed a probabilistic

64

6. Evaluation 65

model for assessing whether a homography is correct. Their probability measure

would provide a score of the similarity between the two regions. Unfortunately,

our implementation proved prohibitively slow - despite using the OpenCV imple-

mentation. With potentially 30 regions per page and 300 pages in our training

set, the operation is too computationally expensive to perform without an index

to reduce the number of regions compared.

6.2 Scalable Classification Cluster

6.2.1 Classification Throughput

We initiated our cluster to have 16 AWS virtual machines - or instances - with the

c4.4xlarge configuration. This configuration was chosen due to offering 16 cores

at the lowest price.

Processor No. Cores Memory

Intel Xeon E5-2666 v3 16 30

We initially constructed our Storm topology such that each computer hosted one

classifier bolt. Once we started our testing, we found this only used a quarter of

the available CPU time. OpenCV and NumPy both make use of multi-processing

for some of their algorithms when executed on large datasets. We expect the CPU

was not being fully saturated by the process due to time spent waiting for other

parallel computations to finish. As the number of cores on the machine is large, the

amount of time spent performing housekeeping of parallel process like collecting

results bottlenecks the CPU.

We redeployed the cluster, this time with 64 classifiers - 4 classifier bolts per

computer. The CPU utilisation of the cluster went up significantly - from 18% to

65

6. Evaluation 66

(a) The Storm User Interface (b) CPU utilisaiton of the whole cluster.
The second peak is after deploying an ad-
ditional 48 bolts onto the cluster.

Figure 6.6

over 70%. (Figure 6.6).

We tested the system by submitting our 1600 test screenshots. To avoid creating

a bottleneck where the computing cluster was classifying screenshots faster than

we could upload new ones, we first copied the files to the API server as a batch

and then submitted each screenshot automatically to localhost. This tested the

submission process, while avoiding slowing down the classification process due to

a slow source.

We found the cluster operated at an average throughput of 1.44 classifications a

second, and the average classification time approximately 45 seconds.

6.2.2 Cost Analysis

Determining the cost of Amazon EC2 services is straight forward as their prices

are public. c4.4xlarge instances cost $0.838[51] an hour. 16 instances would cost

$13.408 an hour. At our rate of classification that corresponds to 271 classifications

per dollar.

66

6. Evaluation 67

Figure 6.7: A short blacklist from our classifier’s decisions. Note the screenshots
are identified as file names in place of URLs as we do not have the URLs for these
files, and the filename provides the screenshot’s location on our file system.

6.2.3 Blacklist

Once classified, reports are available in an application-friendly schema.

6.2.4 Cannot retrain cluster without shutting it down and
redeploying

A significant drawback of the cluster is it cannot retrain nodes in the cluster

without shutting down the cluster, replacing the training set, and starting it up

again. To ensure that the training set stays current, ideally we would like to add

functionality for the classifiers to retrain on-the-fly.

67

6. Evaluation 68

We hypothesise the classifier could routinely check a shared file system for new

training images. In the event new ones are added, each classifier should wait a

random amount of time before beginning training. As a classifier cannot perform

classifications while training, the random wait prevents the classifiers from all

pausing at the same time.

68

Conclusions

In this chapter summarize the achievements of the project and suggest some work

for the future.

7.1 Objectives

7.1.1 Classifier

We have succeeded in developing an effective classifier that identifies Phishing sites

from distinctive features that only occur in sites targeting the brand. We evaluated

the performance of our classifier on a large data set of Phishing sites and found

it can classify 57% of Phishing sites it examines with 0 false positives. 0 false

positives means the system could be deployed in classifying Phishing attacks for

influential blacklists such as the Google Safe Browsing blacklist.

We evaluated a wide range of published Phishing classification systems for their

merit, and incorporated techniques into our approach such as clustering keypoints

found by feature detectors used in computer vision.

Additionally we succeeded in demonstrating that including labelled Phishing sites

in the training set for a Phishing classifier will improve the performance of the

classifier. We showed this was true with three different classification algorithms,

Histogram Correlation, K-Means SURF Clustering, and Distinctive Region Classi-

fier. We believe we are the first to do demonstrate this improvement for exclusively

image-based Phishing classifiers.

69

7. Conclusions 70

7.1.2 Distributed Classification Cluster

We also succeeded in developing a scalable classification system, and evaluated

it on Amazon’s Elastic Compute Cloud. The system uses popular industry dis-

tributed processing framework Apache Storm, which can handle resubmission of

classifications that if a classifier goes down. The system has developer-friendly

APIs for screenshot submission.

In the real-world, classification systems need to be capable of classifying millions

of websites a month. Our cluster is already prepared to classify at this frequency.

The distributed classifier proved fast enough to classify far in excess of the 70,000

unique Phishing sites a month recorded by the Anti-Phishing Working Group [3].

Additionally, we evaluated the cost of the cluster in terms of how many classifica-

tions it can perform per dollar spent.

7.2 Further Work

Over the period of this project, we established a great many improvements and

ideas that we would like to have investigated if more time could be available for

the project.

7.2.1 Speed Improvements

At present our implementation of identifying distinctive regions involves compar-

ing to every single region in the training set. We would like to explore the use of

fast data structures for spacial search such as FLANN (Fast Library for Approx-

imate Nearest Neighbours). Although we attempted to use its implementation

in OpenCV to identify a subset of regions to compare, bugs within the OpenCV

70

7. Conclusions 71

library prevented us from completing it.

7.2.2 An improved algorithm for calculating similarity be-
tween regions

In our evaluation we addressed how the lack of a distance metric that was aware

of the expected location of two matching points increases our false negative rate.

We would like to evaluate more techniques for computing similarity, particularly

approaches that incorporate the spatial distribution of matching keypoints on each

region. We believe this would reduce the false negative rate of the classifier.

7.2.3 Alternative Feature Descriptors

At present we describe keypoints in a screenshot with BRIEF feature descriptors.

BRIEF feature descriptors, like many other descriptors, only consider the intensity

of the neighbouring pixels. This affords tolerance to lighting changes which is useful

for object recognition in photographs. However, within a webpage, the colour and

saturation of a keypoint are particularly useful indicators for matching. Colour

carries an important association with branding, so it is unlikely the Phisher will

dramatically change the colour scheme of a logo they have put on their website

as this would be a huge indicator for potential victims that the page was not

legitimate.

71

Bibliography

[1] Richard Clayton. Security Protocols: 13th International Workshop, Cam-
bridge, UK, April 20-22, 2005, Revised Selected Papers, chapter Insecure
Real-World Authentication Protocols (or Why Phishing Is So Profitable),
pages 89–96. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[2] Tyler Moore and Richard Clayton. Financial Cryptography and Data Security:
13th International Conference, FC 2009, Accra Beach, Barbados, February
23-26, 2009. Revised Selected Papers, chapter Evil Searching: Compromise
and Recompromise of Internet Hosts for Phishing, pages 256–272. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[3] Anti-Phishing Working Group. Phishing activity trends report q1-
q3 2015. http://docs.apwg.org/reports/apwg_trends_report_q1-q3_

2015.pdf, December 2015. [Online; accessed 06-May-2016].

[4] Venture Beat. Google chrome now has over 1 bil-
lion users. http://venturebeat.com/2015/05/28/

google-chrome-now-has-over-1-billion-users/, May 2015. [Online;
accessed 06-May-2016].

[5] Rachna Dhamija, J Doug Tygar, and Marti Hearst. Why phishing works.
In Proceedings of the SIGCHI conference on Human Factors in computing
systems, pages 581–590. ACM, 2006.

[6] Lorrie Faith Cranor, Serge Egelman, Jason I Hong, and Yue Zhang. Phinding
phish: An evaluation of anti-phishing toolbars.

[7] http://news.biharprabha.com/2014/02/20-indians-are-victims-of-online-phishing-attacks-microsoft/.
[Online; accessed 04-June-2016].

[8] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-scale automatic clas-
sification of phishing pages. In NDSS, volume 10, 2010.

[9] http://netcraft.com. [Online; accessed 03-06-2016].

[10] http://toolbar.netcraft.com/stats/reporters. [Online; accessed 03-06-
2016].

[11] Brad Wardman and Gary Warner. Automating phishing website identification
through deep md5 matching. In eCrime Researchers Summit, 2008, pages 1–7.
IEEE, 2008.

72

http://docs.apwg.org/reports/apwg_trends_report_q1-q3_2015.pdf
http://docs.apwg.org/reports/apwg_trends_report_q1-q3_2015.pdf
http://venturebeat.com/2015/05/28/google-chrome-now-has-over-1-billion-users/
http://venturebeat.com/2015/05/28/google-chrome-now-has-over-1-billion-users/
http://news.biharprabha.com/2014/02/20-indians-are-victims-of-online-phishing-attacks-microsoft/
http://netcraft.com
http://toolbar.netcraft.com/stats/reporters

Bibliography 73

[12] Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang, and Suku Nair. A compari-
son of machine learning techniques for phishing detection. In Proceedings of
the Anti-phishing Working Groups 2Nd Annual eCrime Researchers Summit,
eCrime ’07, pages 60–69, New York, NY, USA, 2007. ACM.

[13] http://news.netcraft.com/archives/2005/05/12/fraudsters_seek_

to_make_phishing_sites_undetectable_by_content_filters.html.
[Online; accessed 04-June-2016].

[14] Evgeniy Gabrilovich and Alex Gontmakher. The homograph attack. Com-
munications of the ACM, 45(2):128, 2002.

[15] S. Afroz and R. Greenstadt. Phishzoo: Detecting phishing websites by looking
at them. In Semantic Computing (ICSC), 2011 Fifth IEEE International
Conference on, pages 368–375, Sept 2011.

[16] David G. Lowe. Object recognition from local scale-invariant features. Inter-
national Conference on Computer Vision, 1999.

[17] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In Computer vision–ECCV 2006, pages 404–417. Springer, 2006.

[18] Stuart P Lloyd. Least squares quantization in pcm. Information Theory,
IEEE Transactions on, 28(2):129–137, 1982.

[19] Dinei Florencio and Cormac Herley. Stopping a phishing attack, even when
the victims ignore warnings. Microsoft Research MSR-TR-2005, 142, 2005.

[20] Wen-tau Yih, Joshua Goodman, and Geoff Hulten. Learning at low false
positive rates. In CEAS, 2006.

[21] Jesse Davis and Mark Goadrich. The relationship between precision-recall and
roc curves. In Proceedings of the 23rd international conference on Machine
learning, pages 233–240. ACM, 2006.

[22] Wenyin Liu, Xiaotie Deng, Guanglin Huang, and A. Y. Fu. An antiphishing
strategy based on visual similarity assessment. IEEE Internet Computing,
10(2):58–65, March 2006.

[23] Yin Liu, Wenyin Liu, and Changjun Jiang. Advances in Web-Age Informa-
tion Management: 5th International Conference, WAIM 2004, Dalian, China,
July 15-17, 2004, chapter User Interest Detection on Web Pages for Building
Personalized Information Agent, pages 280–290. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004.

73

http://news.netcraft.com/archives/2005/05/12/fraudsters_seek_to_make_phishing_sites_undetectable_by_content_filters.html
http://news.netcraft.com/archives/2005/05/12/fraudsters_seek_to_make_phishing_sites_undetectable_by_content_filters.html

Bibliography 74

[24] A.Y. Fu, Liu Wenyin, and Xiaotie Deng. Detecting phishing web pages with
visual similarity assessment based on earth mover’s distance (emd). Depend-
able and Secure Computing, IEEE Transactions on, 3(4):301–311, Oct 2006.

[25] Kristen Grauman and Trevor Darrell. Fast contour matching using approxi-
mate earth mover’s distance. In Computer Vision and Pattern Recognition,
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Confer-
ence on, volume 1, pages I–220. IEEE, 2004.

[26] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s
distance as a metric for image retrieval. International journal of computer
vision, 40(2):99–121, 2000.

[27] Teh-Chung Chen, Scott Dick, and James Miller. Detecting visually similar
web pages: Application to phishing detection. ACM Trans. Internet Technol.,
10(2):5:1–5:38, June 2010.

[28] Ming Li and Paul Vitnyi. An Introduction to Kolmogorov Complexity and Its
Applications. Springer-Verlag New York, 1997.

[29] R. Cilibrasi and P. M. B. Vitanyi. Clustering by compression. IEEE Trans-
actions on Information Theory, 51(4):1523–1545, April 2005.

[30] Michael Burrows and David Wheeler. A block-sorting lossless data compres-
sion algorithm. In DIGITAL SRC RESEARCH REPORT. Citeseer, 1994.

[31] Igor Pavlov. 7-zip compression utility, 2009.

[32] Kuan-Ta Chen, Chun-Rong Huang, Chu-Song Chen, and Jau-Yuan Chen.
Fighting phishing with descriminative keypoint features. [Online; accessed
03-June-2016], 2009.

[33] Krystian Mikolajczyk and Cordelia Schmid. Indexing based on scale invariant
interest points. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth
IEEE International Conference on, volume 1, pages 525–531. IEEE, 2001.

[34] Chun-Rong Huang, Chu-Song Chen, and Pau-Choo Chung. Contrast context
histograman efficient discriminating local descriptor for object recognition and
image matching. Pattern Recognition, 41(10):3071–3077, 2008.

[35] David G Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[36] https://aws.amazon.com/.

74

https://aws.amazon.com/

Bibliography 75

[37] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. In ACM SIGOPS operating systems review, volume 37, pages 29–43.
ACM, 2003.

[38] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[39] N. Shrestha, R.K. Kharel, J. Britt, and R. Hasan. High-performance classi-
fication of phishing urls using a multi-modal approach with mapreduce. In
Services (SERVICES), 2015 IEEE World Congress on, pages 206–212, June
2015.

[40] https://storm.apache.org/.

[41] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. Computer Vision–ECCV
2010, pages 778–792, 2010.

[42] http://www.tornadoweb.org/en/stable/.

[43] http://redis.io/.

[44] https://github.com/andymccurdy/redis-py.

[45] https://github.com/Parsely/streamparse/.

[46] http://opencv.org/.

[47] http://www.numpy.org/.

[48] http://scikit-learn.org/stable/.

[49] https://www.postgresql.org/.

[50] Matthew Brown and David G Lowe. Automatic panoramic image stitching
using invariant features. International journal of computer vision, 74(1):59–
73, 2007.

[51] https://aws.amazon.com/ec2/pricing/. [Online; accessed 08-June-16].

75

https://storm.apache.org/
http://www.tornadoweb.org/en/stable/
http://redis.io/
https://github.com/andymccurdy/redis-py
https://github.com/Parsely/streamparse/
http://opencv.org/
http://www.numpy.org/
http://scikit-learn.org/stable/
https://www.postgresql.org/
https://aws.amazon.com/ec2/pricing/

	Introduction
	Motivation
	Objectives
	Contributions

	Background
	Phishing
	Phishing Countermeasures
	Phishing Classification
	Countermeasures to Anti-Phishing Techniques

	Computer Vision
	Template Matching
	Feature Extraction
	SIFT
	SURF
	Feature Matching

	Clustering Analysis
	K-Means Clustering
	DBSCAN

	Evaluating Performance of Phishing Classifiers
	Sensitivity and Specificity
	Confusion Matrix
	Macro-Average and Micro-Average
	Threshold-based Decision
	ROC Curve and PR Curve

	Visual Similarity Clustering
	Classification with Document Object Model
	Classification with Screenshots
	Using Computer Vision Feature Selectors and Extractors

	Distributed Processing
	Amazon Web Services
	Hadoop
	Storm

	Experiments
	Test Data Collection
	Evaluation Harness
	Evaluation
	Hue Saturation Histogram Correlation
	Keypoint Clustering with SURF and K-Means - Kuan-Ta Chen et al.

	Proposal
	Observations
	Training
	Classification
	Discussion

	Implementation
	Architecture
	Amazon Web Services
	Image Submission
	Storm
	Image Classifier

	Blacklist
	DB Interface
	Database

	Evaluation
	Distinctive Region Classifier
	Performance
	Case Studies
	Noisy Training Pages
	Homography Detection

	Scalable Classification Cluster
	Classification Throughput
	Cost Analysis
	Blacklist
	Cannot retrain cluster without shutting it down and redeploying

	Conclusions
	Objectives
	Classifier
	Distributed Classification Cluster

	Further Work
	Speed Improvements
	An improved algorithm for calculating similarity between regions
	Alternative Feature Descriptors

	Bibliography

