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Abstract

Parametric types offer a programmer a much greater degree of flexibility when developing programs.
For example, a list may be parametric as to its contents. This list may then be instantiated to a list
of numbers, or a list of student records, or any type the developer requires. Often type parametri-
sation is restricted to types and does not permit values. Thus we can have containers which are
parametric with respect to type of the element, yet not with respect to number of elements

Further parametrisation of types on values would allow programmers to create much tighter rela-
tionships between a type and a value. It would make it possible to refer to containers of different
fixed lengths as belonging to different types. We can use this distinction to ensure that operations,
such as matrix multiplication, can only be used with values which are correct for the operation.
This allows us to remove the run-time checks that must otherwise be executed on every execution to
ensure the operation is well-defined. Parametrisation of types on values exists in various program-
ming languages including imperative languages such as C++ as well as functional languages like Idris.

In this report I discuss the construction of Ponyta, an extension of the Pony programming lan-
guage with value-dependent types. I have extended the existing Pony compiler to support types
parametrised on values. I have enhanced the standard library with new data structures which utilise
value-dependent types, creating efficient stores for data. And I have extended the Pony compiler so
as to evaluate complex compile-time expressions.
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1 Introduction

Pony is an object-orientated, actor-model, capabilities-secure programming language[8]. In
Pony we can create an array of elements through a parametrised class Array[T]; this class
represents a contiguous, resizeable memory container for elements of type T. There is no
concept of null in Pony and all accesses to the container are guaranteed to be safe, unlike
in C where we can access past the end of an array. However, all of the information regarding
the size of the container and the indices for accesses is only known at runtime, this prevents
us from optimising for the size of the structure and verifying accesses at compile time. What
if we wanted to define a container Vector that is parametrised not only by the type of its
elements but also by how many elements it has, perhaps as follows:

1 class Vector[A, size: USize]

2 fun apply(i: USize): A ? =>

3 // code for getting ith element of the vector with sanity checks

4

5 fun update(i: USize , value: A): A^ ? =>

6 // code for updating the ith element of the vector with sanity checks

This defines a contiguous memory container for size elements of type A. We could then
create and use an instance of a Vector such as in the following:

12 actor Main

13 new create(env: Env) =>

14 let vector: Vector[Student 4] = Vector[Student , 4]. create ()

15 vector.update(0, Student.create("Tim"))

16 let student: Student = vector.apply (0)

Creating a fixed size container of Students which is guaranteed to have 4 elements. Pro-
viding the size of the structure statically and fixing this size opens the possibility for more
efficient data layouts and optimisations. For example, we can now allocate exactly enough
memory for the elements of the container together with the encapsulating object.

These layouts and optimisations are not so simple with an Array as we may be able to re-
size the data, thus the elements are stored externally to the object leading to indirection in
accesses. Similarly the size is only known dynamically, therefore it is non-trivial to optimise
code based on the size of the Array.

The benefits of static information extend beyond more efficient data layouts and code gener-
ation. As we have all information regarding the size of these structures we could statically
assert some properties that, if violated, cause compilation to be aborted. Consider we
defined another access method in our Vector:

1 class Vector[A, n: USize]

2 fun get[i: USize ](): A =>

3 # Assert(i < n)

4 // code for getting ith element without sanity checks
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Here the get() method is also parametrised on a USize and the # denotes an expression
we want evaluated at compile-time. Now we have the ability to statically ensure accesses
are valid.

1 actor Main

2 new create(env: Env) =>

3 let vector: Vector[Student , 4] = Vector[Student , 4]. create ()

4 vector.get [2]() // compiles

5 vector.get [14]() // fails to compile

Furthermore, consider expanding parametrisation of types to include values defined by other
types instead of just integers. Such as defining a Matrix whose dimensions are part of the
type signature by using a Vector as defined above. A possible definition could be:

1 class Matrix[A, n: USize , dims: Vector[USize , # n] val]

2 embed _data: Vector[A, # _alloc ()]

3

4 fun tag _alloc (): USize =>

5 // calculates the number of elements in the matrix

6

7 fun _calculate_address(indices: Vector[USize , # n]): USize ? =>

8 // calculates the address of an element

9

10 fun apply(indices: Vector[USize , # n]): this ->A ? =>

11 _data._apply(_calculate_address(indices))

12

13 fun ref update(indices: Vector[USize , # n], value: A): A^ ? =>

14 _data._update(_calculate_address(indices), consume value)

The Matrix type depends on the value of n, which represents the number of dimensions in
the Matrix, and the value of dims, which defines the size of each dimension in the Matrix.
Note also that the type of the Matrix has been defined such that the length of the Vector

of dimensions must be n, therefore attempting to construct a value where this property did
not hold would fail to type check. With such a definition we could then construct and use
a Matrix as follows:

1 actor Main

2 new create(env: Env) =>

3 let matrix: Matrix[Student , 2, # {3, 4}] = Matrix[Student , 2, # {3,

4}]. create ()

4 // constructs a 3 x 4 matrix

5

6 let bad_matrix: Matrix[Student , 2, # {7, 8, 9}] = Matrix[Student , 2,

# {7, 8, 9}]. create ()

7 // fails to compile as too many dimensions provided

8

9 matrix.apply ({0, 1})

10 // Valid , both indices are within valid bounds

11

12 matrix.apply ({1, 6})

13 // Invalid , the second index exceeds the bounds of the second

dimension
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14

15 matrix.apply ({6, 1})

16 // Invalid , the first index exceeds the bounds of the first dimension

We can use these value-dependent types to provide even more assurances at compile-time.
Recall that for the matrix multiplication operation C = AB, when A is a n×m matrix and
B is an m× p matrix then C is an n× p matrix. We can construct a function, using value-
dependent types, that ensures that we only multiply matrices of the correct dimensionality.
Consider the following:

1 actor Main

2 fun matrix_mul[n: USize , m: USize , p: USize]

3 (a: Matrix[U32 , 2, # {n, m}], b: Matrix[U32 , 2, # {m, p}]):

4 Matrix[U32 , 2, #{n, p}] ? =>

5

6 new create(env: Env) =>

7 let m1 = Matrix[U32 , 2, # {2, 3}]. undefined ()

8 let m2 = Matrix[U32 , 2, # {3, 5}]. undefined ()

9

10 let m3 = matrix_mul [2, 3, 5](m1 , m2) // will compile

11

12 let m4 = matrix_mul [2, 3, 5](m1 , m1) // will fail to compile

In this example, the call at line 12 will fail as the second Matrix does not have the correct
dimensions. Thus we can use these value-dependent types to ensure correctness of expres-
sions and functions.

It can be seen that we are constructing a type system where the type of data is not just a
member of a fixed set of types used to ensure that operations adhere to a notion of type
safety, but the type depends on the data for which it provides a type. Furthermore, these
types can be used to ensure correctness of operations.

1.1 Contributions

In this project I have developed Ponyta; Pony with value-dependent types. In this project
I present the following contributions:

• Development of the Pony compiler to support value-dependent types; offering Pony devel-
opers a more flexible type system. This implementation allows developers to parametrise
and instantiate types using primitive values such as integers and booleans. Developers
can also parametrise types on instances of any class which is possible for the compiler to
represent as a compile-time object. Part of this development involved defining a notion
of subtyping between value-dependent types. This subtyping relies on an equivalence
between static values which has also been defined for Ponyta in this project. This de-
velopment involved considering many design alternatives for the Ponyta type system,
selecting those that best fit the existing language.
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• Implementation of a pseudo-interpreter for evaluating complex compile-time expressions.
Utilising the capabilities and the distinction between single-assignment and re-assignable
names in Pony to determine what information is known at compile-time. This information
has been used to define a set of rules on the values that can be used within compile-
time expressions. The compiler adopts this interpreter to provide a developer with the
flexibility to evaluate expressions, which adhere to the given rules, at compile-time. This
interpreter works on the compile-time representations of values which have been developed
during this project.

• Extension of the Pony standard library with Vector and Matrix classes which adopt the
new value-dependent types. I present the flexibility available using value-dependent types
by defining an n-dimensional Matrix class using only constructs available to any Pony
developer. This report presents the results of benchmarking these new data structures.
The results show that these structures can elicit equivalent or better run-times than the
standard containers provided in the Pony standard library. These structures present a
developer with the opportunity to utilise more efficient containers for building programs.
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2 Background

In this background I will discuss the history of Pony, including the features adopted by Pony
and the theory underpinning these features. I will discuss how these features are related to
Ponyta and several design alternatives. I will also present existing languages and research
where value-dependent types have been explored and adopted. These value-dependent types
appear in functional languages such as Idris and also in more widely adopted languages such
as C++. I explore these areas for inspiration and lessons which where used for building
Ponyta. I finally give background on LLVM, multi-stage programming and the existing
Pony compiler to provide knowledge on how value-dependent types is incorporated into the
compiler.

2.1 Pony

Pony is an object-orientated, actor-model, capabilities-secure programming language[8].
The language adopts many new and existing concepts in type systems and concurrent
programming to construct a powerful programming language.

2.1.1 Actor-Model Programming

In typical concurrent programming, threads serve as the unit of concurrent computation.
Threads will usually share unrestricted access to the same memory. Therefore, programmers
require various synchronisation constructs, such as locks and thread scheduling, to ensure
accesses are safe and do not introduce data races whilst avoiding deadlocks; issues which
are still difficult to avoid. When a bug is encountered in such a program, trying to resolve
it is typically non-trivial as it likely depends on some particular scheduling of interactions
between threads which is not easily reproducible.

Hewitt and Agha highlight the main issues in the design of programming languages for con-
current systems as being shared resources, dynamic reconfigurability and inherent parallelism[15].
That is the model upon which the language is based must address handling shared resources
which may change, the creation of new objects and the communication of such and that the
amount of concurrency available should be evident from the structure of a program using
this model.

The actor-model uses message-passing as the basis for concurrent computation. The only
way to affect an actor is to send it a communication; an actor will carry out actions, as de-
fined in its behaviour, in response to processing these communications[15]. The delivery of
messages is guaranteed in this model however the order of delivery may be non-deterministic.
The actor-model is inherently concurrent and all actors in a system carry out their actions
concurrently. In Pony each actor executes methods sequentially and processes messages
in order, with multiple actors executing concurrently. These actors are far cheaper than
typical threads as they do not require locks and context switches[8] due to the inherent
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concurrency of this model. Typical implementations of concurrent programming languages,
such as Erlang, combine this actor model with isolated memory per process to ensure safe
concurrency [22]. Using isolated memory means that message passing between actors comes
with the overhead of copying messages from one memory area to another. Pony adopts the
actor-model but provides a more efficient implementation of message passing by allowing
actors to share memory but guarantees safety through a system of capabilities described in
section 2.1.3.

The actor-model provides useful results for building parallel programs beyond the inherent
concurrency of the model. An actor model can provide modularity of programs; actors
only interact with each other via message passing and so the inner workings of one actor is
not visible to another. Also, parallel programs built using actor systems can be composed
together to build larger systems by extending message passing between these systems[15].

2.1.2 Basic Pony Programs

The program which follows is an example program written using the Pony language. To
summarise the following example; we define a class Math which has a function that sums two
values. We also define two actors, MathServer and Main which is a subtype of MathClient.
Main has a MathServer as a field and when constructed sends server a message to invoke
the behaviour send() with the arguments (4, 7, this). When the send() behaviour
executes it creates a new Math object, calls the method sum() with the provided arguments
and then sends the client the message to invoke the response() behaviour with the
result value. The Main actor will at some point execute response() and print result to
standard output.

1 class Math

2 fun sum(x: U32 , y: U32) : U32 =>

3 var result = x

4 result + y

5

6 trait MathClient

7 be response(result: U32)

8

9 actor MathServer

10 be send(x: U32 , y: U32 , client: MathClient tag) =>

11 let math: Math = Math.create ()

12 client.response(math.sum(x, y))

13

14 actor Main is MathClient

15 let env: Env

16 var server: MathServer = MathServer

17

18 be response(result: U32) =>

19 env.out.print(result.string ())

20

21 new create(env ’: Env) =>

9



22 env = env ’

23 server.send(4, 7, this)

Pony supports named constructors. A constructor is specified by the keyword new; here
the constructor of the actor Main is create(). The default constructor for a class or actor
is the create() constructor and if no constructor is defined, and no create() method is
defined, then the create() constructor is provided by the compiler (this is demonstrated
in the MathServer actor). The fun keyword defines a method; at line 2 we define the
method sum with two parameters of type U32 that returns a value of type U32. A use of the
sum method can be seen at line 12. Pony is expression oriented, and the return value of a
function is the last expression of that function[8], here the return value of function sum is
the value result + y. Note also that we can declare variables with either let or var, the
former permits only a single assignment to the declared variable whereas the latter allows
reassignment.

A declaration may be supplied with a type, such as the declaration let math: Math at line
11, or it may be left to be inferred by the compiler, for example var result = x at line 3.
When we construct an object we specify which constructor to use, at line 11 we explicitly
use the create() constructor. If no constructor is specified then the compiler attempts to
use the create() constructor, this is the case when we create a new MathServer at line 16.
Arguments can be provided to a constructor if necessary, for example let f = Foo(4) if
the create() constructor of Foo took one argument.

Pony provides various types including classes, actors and primitives. These types are
used to instantiate values which have different roles in a Pony program. As we have dis-
cussed, actors are the unit of concurrency in Pony. Pony provides classes as in other
object-orientated languages such as Java, these are used to construct objects. Pony also
allows primitives, these are similar to classes; the distinction is that primitives do not
have fields and there is only on instance of a primitive[8].

To construct a valid Pony program a Main actor must be defined and take a single Env argu-
ment. Like a class, an actor may have fields and methods but it may also have behaviours as
described in 2.1.1. A behaviour is denoted by the be keyword; we can define the name and
parameters of a behaviour but we do not define the return type. A behaviour cannot have a
defined return type as we cannot return a value from a behaviour; a behaviour will execute
asynchronously so we do not know when it will complete and as such we can not depend
on a return value from the behaviour[8]. For convenience the return value of invoking a
behaviour is the actor whose behaviour was called, this is to allow chaining of behaviour
invocations. An example of a behaviour can be seen at line 18, the response() behaviour
receives a U32 a prints out the result

At line 11 we define a trait MathClient which defines a type and its methods and behaviours.
Here the trait is used to define what behaviours a MathClient has; we later use the is
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keyword to say that Main is a subtype of MathClient (this will be discussed further in
section 2.1.7). Main inheriting from MathClient allows us to call the send() behaviour of a
MathServer with this as an argument. The send() behaviour of a MathServer accepts a
MathClient as one of its arguments. Notice here we also have another keyword tag; this is
an example of a capability as described in section 2.1.3. The tag capability in the signature
of send() is used to type the actor and denotes that we are only permitted to invoke the
behaviours of the actor[24].

2.1.3 Capabilities

Pony combines the actor model with shared memory to improve the efficiency of message
passing between actors. This combination avoids the requirement of copying all messages
from one actor to another. Sharing memory between actors could introduce the possibil-
ity of data races however Pony statically ensures freedom from data races through deny
properties[24]. These properties make explicit what operations are permitted on another
reference to the same object.

A capability indicates what operations (reads and writes) are denied on other references
of the same object. These capabilities form a pair of properties which express what is de-
nied globally and what is denied locally and from these properties the permitted operations
through these aliases are derived [24]. The properties provided by each of these capabilities
are detailed in table 1.

Deny global read/
write aliases

Deny global
write aliases

Allow all
global aliases

Deny local read/write aliases iso

Deny local write aliases trn val

Allow all local aliases ref box tag

(Mutable) (Immutable) (Opaque)

Table 1: Capability matrix from [24]. Capabilities in italics are sendable.

An example of one of these capabilities is ref. ref denies global read and write aliases
but locally permits both, therefore ref is both safe to read and write locally as no other
actor can cause a read or write data race. It is important to note that these capabilities
are part of the type system and it is in this way that data race freedom is statically ensured.

Take the following example adapated from [24]:
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1 class List

2 var x: U32 = 3

3

4 fun box size1(): U32 => ...

5 fun val size2(): U32 => ...

6

7 actor Main

8 new create(env: Env) =>

9 let l1: List ref = List

10 let l2: List val = List

11

12 l1.size1 ()

13 l1.x = 4

14 // Invalid , will fail to type check

15 l1.size2 ()

16

17 l2.size1 ()

18 l2.size2 ()

19 // Invalid , will fail to type check

20 l2.x = 5

The method size1() defined on line 4 includes a reference capability. The reference capa-
bility on the methods makes explicit the capability required of an object on which size1()

is called (this is known as the receiver). The three capabilities used in this example are
ref, described earlier, val which denies global and local write aliases and also box. box

guarantees that if an actor has a reference to an object then no other reference to this
object can be used by another actor to write to the value[24]. In size1() we know that no
other actor can write to the object on which the method was called; this means that it is
safe to read the object and enforces a read-only behaviour of the object[24]. box permits
local write aliases which is demonstrated in the example above; we create l1 which is of
the type List ref. List ref allows us to locally read and write to the value of the the
list. We go on to call size1() on l1; the call of size1() is safe as ref permits only local
write aliases. As an actor executes sequentially, no read/write data races can occur due to
a single actor reading and writing a value at the same time. We cannot call size2() on
l1 as val demands that we have no local or global write aliases, a weaker claim than that
of box. Therefore, the call of size2() will not successfully typecheck. We repeat similarly
with l2 which is of type List val. We can call both size1() and size2() on l2 as the
deny properties are the same or greater than what is required, however we cannot write to
the value as is attempted at line 20.

The type system contains more capabilities such as iso which indicates that an actor has
isolated access to an object. iso permits local read and write aliases but denies global
read and write aliases. Capabilities are further explored in [24]. The capabilities determine
which values are safe to send between actors and what an actor may do with a reference to
an object and so we can begin to see how they make concurrent access of shared memory
safe.
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Challenges and Applications for Ponyta

Capabilities were of importance in determining whether expressions were valid type param-
eters. We need to consider the following two definitions of C1 and whether both a legal
definitions:

1 class C1[n: Student val]

2

3 class C1[n: Student ref]

One answer is that we need to differentiate between the capabilities of value-dependent
types. The capability needs to be known in the definition of the class so that we know in
what ways it can be used, for example whether it is safe for the value to be sent to another
actor. The capability also needs to be considered so that we know what operations can be
performed at compile time. If we consider val to enforce read-only behaviour such as const
in C[24], then this impacts what we statically know about our value, such as the values of
fields in an object. However, allowing varying capabilities on these type parameters would
mean that we could manipulate the value on which a type depends. For example:

1 class C1[s: Student ref]

2 fun apply(age ’: U32) =>

3 s.age = age ’

This would mean that our static information could be mutable and we would require track-
ing such changes to correctly use the values.

Alternatively, we could enforce that all values provided as type arguments must have a val

capability. This demands that a value, and transitively all their fields[24], are only readable;
this would also allow us to send the values between actors. If we adopted this approach
then we would only need to write definitions of the form:

1 class C1[n: Student]

Here the capability val would be implicit (this has been left as an extension). This would
use the value in a more functional approach in that the information would be immutable
and we would statically know everything about the value as it would not change after con-
struction (provided we knew how it had been constructed).

In Ponyta we have adopted the approach that all value parameters must have val capabil-
ity, we discuss this choice further in section 5.

Capabilities, and capability modifiers, also had an important role in the design of the APIs
for Vector and Matrix. Consideration had to be given to which capabilities were required
of receivers and arguments in these APIs to develop safe and useful containers.

2.1.4 Generics

Pony allows a programmer to define classes and actors, as well as traits and interfaces
discussed in more depth in section 2.1.7. Pony’s type system supports generics to allow for
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defining polymorphic classes and actors. These generics are used to create types parametric
as to another defined type. Consider the following:

1 class C1[A]

2 let f: A

3

4 new create(f’: A) =>

5 f = f’

6

7 actor Main

8 new create(env: Env) =>

9 let s = Student.create ()

10 let c1student = C1[Student ](s)

11 // Valid , will type check

12

13 let c1u32 = C1[U32](s)

14 // Invalid , will fail to type check

Line 1 defines the class C1 which is parametrised on the generic type A. This allows us to in-
stantiate a C1 with any type as an argument. We instantiate these types by providing a type
argument, constructing a new definition where all references to type parameters have been
replaced with the respective type argument. For example, at line 9 we create c1student

of type C1[Student], this will have the field f of type Student. This field is initialised in
the constructor create() using the Student argument. Conversely, the constructor call at
line 13 will fail to type check as we pass an argument of type Student to the constructor
of C1[U32] when an argument of type U32 is expected.

Pony also supports constraints for these generics type as in the following example:

1 class C1[A: Number]

2 // definition of C1

3

4 actor Main

5 new create(env: Env) =>

6 let c1u32 = C1[U32]

7 let c1i64 = C1[I64]

8

9 // Invalid , will fail to type check

10 let c1student = C1[Student]

This defines a class C1 parametrised on a type A which is constrained to be a subtype of
Number. This constraint means we can construct the values at lines 6 and 7 yet we cannot
construct a value of type C1[Student] as we attempt to at line 10.

A programmer is allowed to provide the default type of a generic; this permits definitions
of classes such as:

1 class C1[A: Number = U32]

Here the default type of A is the type U32. This would have allowed us to write line 6 in
the above as the following:
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6 let c132 = C1

My project is concerned with extending this parametrisation of types to further consider
types which are parametrised on values. This will involve extending the syntax for defining
these type parameters as well as defining the semantics of these types and how they may
be used. The issues involved with this will be explored throughout this background.

2.1.5 Variance

Programming languages often support a notion of subtyping with variance in generics;
for example Scala supports variance annotations for generics and Java supports wildcard
types[26].

Covariant subtyping in generics allows use of a subtype of the type parameter in place of
the desired type. Take the following example in Java:

1 class Shape {}

2 class Square extends Shape {}

3

4 ArrayList <? extends Shape > list = new ArrayList <Square >();

5

6 // this will fail to type check

7 ArrayList <Shape > list2 = new ArrayList <Square >();

The ArrayList<? extends Shape> type at line 4 demonstrates covariant subtyping; it
allows us to provide an ArrayList where the type argument is a subtype of Shape; in
particular we use a value of type ArrayList<Square>. This type checks as a type C<U> is
a subtype of C<? extends T> if U is a subtype of T. We will only be able to access the
element of list as if they were Shapes, without casting, but this behaviour is desirable in
some contexts.

Java classes are type invariant in their use of generics; this means that line 5 in the above ex-
ample will fail to type check as ArrayList<Square> is not a subtype of ArrayList<Shape>.
Java expects the type arguments to be the same in the static and dynamic type. Only when
we introduce wildcards into our generic parameters can we get covariant and contravariant
subtyping.

Contravariant subtyping in generics allows the use of a super-type of the type parameter in
place of the desired type. Again, exploring this through Java wildcards:

1 class Shape {}

2 class Square extends Shape {}

3

4 ArrayList <? super Square > list = new ArrayList <Shape >();

5

6 // this will fail to type check

7 ArrayList <Square > list = ArrayList <Shape >();
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Line 4 displays the use of contravariant subtyping as the assignment of a value of type
ArrayList<Shape> to a variable of type ArrayList<? super Square> passes type check-
ing. This type checks because a type C<U> is a subtype of C<? super T> if T is a subtype
of U, this is contravariance. Once again, compare this to the assignment without wildcards
at line 5, this will fail to type check.

This use of variance in Java is called use-site variance[26] and is fairly expressive. Other
languages, such as Scala, support declaration-site variance where the variance on generics
is declared with the definition of the class through variance annotations. An example from
[26] demonstrates their use:

1 trait Func[-A, +B]

The + and - annotations in Scala define covariant and contravariant type parameters of
Func, a type Func[C, D] is a subtype of Func[A, B] if C is a super-type of A and D is
a subtype of B. These annotations declare that the type A may only appear in covariant
positions, such as method return types, and that B may only appear in contravariant posi-
tions, such as method parameter types [14]. This system of typing is less complex and less
powerful than the use-site declarations in Java[26].

A type system with variance elicits greater expressivity yet it comes with the caveat that
in general type checking becomes undecidable (as is explored in [26]); decidability can be
recovered by adopting only fragments of these typing relationships and thus reducing the
expressivity of the language. Pony avoids these issues as it is type invariant with subtyping
of generics. A result of this is that the language has less expressive power in its typing and
that we cannot have programs with assignments such as the one at line 8 in the following:

1 trait Shape

2

3 class Square is Shape

4

5 actor Main

6 new create(env: Env) =>

7 // Invalid , Array[Square] is not a subtype of Array[Shape]

8 arr: Array[Shape] = Array[Square ]. create (4)

In the above example, arr is of type Array[Shape] and we try and assign to it a value of
the type Array[Square]. This is not permitted as the type system demands type invariance
in the type parameters of classes. That is we require that the type on which the Array is
parametrised must be the same in the declaration and use.

Pony overcomes this limitation in the type system through another form of subtyping which
I discuss in section 2.1.7.
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2.1.6 F-bounded Polymorphism

We now consider F-bounded polymorphism to motivate the requirement for exploring re-
cursively defined types such as the following:

1 trait T1[x : T1[# x]]

2

3 class C1 is T1[# C1.create ()]

Consider the following example from [21] which I have translated from the mathematical
notation used by Canning et. al into Java:

1 public class Main {

2 public static interface Movable {

3 public Movable move(Integer dx, Integer dy);

4 }

5

6 public static class Point implements Movable {

7 private int x;

8 private int y;

9

10 public Point(int x, int y) {

11 this.x = x;

12 this.y = y;

13 }

14

15 public Movable move(Integer dx, Integer dy) {

16 return new Point(x + dx, y + dy);

17 }

18 }

19

20 public static class Q implements Movable { ... }

21

22 public static class R implements Movable {

23 public Movable move(Integer dx, Integer dy) {

24 return new Q();

25 }

26 }

27

28 public static Movable translate(Movable x) {

29 return x.move(1, 1);

30 }

31

32 public static void main(String [] args) {

33 Point p1 = new Point(1, 7);

34 Point p2 = ((Point) translate(p1));

35

36 R r1 = new R();

37 // This will type check but the cast will fail

38 // at runtime as the value is of type Q

39 R r2 = ((R) translate(r2));

40 }

41 }
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We begin by defining an interface Movable which represents the class of objects which can
be moved. In this class we define a method move(). Assume this method is supposed to
define creating a new Movable object which is at the position of the current object moved
by dx and dy. The return type of this method is Moveable; this is the only return type we
could give this method to ensure that it was polymorphic and would work for all subclasses
of Moveable. We go on to define three classes Point, Q and R all of which are subclasses
of Movable. Then we define a method translate() which takes a Movable and moves the
object. Notice that the only return type we could give the method is Movable due to the
return type of move().

However, consider now that we want our move() method and translate() method to be
more specific. Moreover, we want them to return an object that is of the same type as the
original Moveable object; that is when we translate a Point we want a Point returned.
In the above example we have no alternative but to cast our return values and hope that
the values are of the required type. Examples of this can be seen at lines 34 and 39 in the
above, the cast of translate(p1) is successful yet the case at line 39 fails. This fails as R’s
definition of move() returns a value of type Q but given the definition of Movable we could
not have prevented this in translate().

Before addressing how this can be rectified let us first look at bounded quantification[21].
Consider the following:

1 public class C1<A extends B> { ... }

Here, the type parameter A ranges over all classes which are a subclass of B. Therefore, B
is the bounds of the quantification of A.

We now consider F-bounded quantification, a concept introduced to object-orientated lan-
guages by Canning et al. in [21]. Let us define a new interface FMovable and redevelop our
earlier example to be:
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1 public class Main {

2 public static interface FMovable <T> {

3 public T move(Integer dx, Integer dy);

4 }

5

6 public static class Point implements FMovable <Point > {

7 private int x;

8 private int y;

9

10 public Point(int x, int y) {

11 this.x = x;

12 this.y = y;

13 }

14

15 public Point move(Integer dx, Integer dy) {

16 return new Point(x + dx, y + dy);

17 }

18 }

19

20 public static class Q implements FMovable <Q> { ... }

21

22 public static class R implements FMovable <Q> {

23 public Q move(Integer dx, Integer dy) {

24 return new Q();

25 }

26 }

27

28 public static <T extends FMovable <T>> T translate(T x) {

29 return x.move(1, 1);

30 }

31

32 public static void main(String [] args) {

33 Point p1 = new Point(1, 7);

34 Point p2 = translate(p1);

35

36 R r1 = new R();

37 // This will fail to type check

38 R r2 = translate(r1);

39 }

40 }

Here, the FMovable interface represents the same class of objects as the Movable class from
before. Note that FMovable is now parametrised on the type T and that move() is de-
fined to return a value of the type T. In the translate() method we use an F-bound of
FMovable<T>, the function ranges over all types T such that T is a subclass of FMovable<T>
and types our function such that it takes an argument of type T and returns a value of T.
The F-bound is the crucial point that allows us to create a function of this type, it allows
us to range only over the those types such that the operation is defined for that type, these
types are the within the F-bound.
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We can now guarantee that translate() of a Point will return a Point, demonstrated
on line 34. This type checks as we have defined that Point extends FMovable<Point>.
translate() of an object of type R will cause a type error as R does not extend FMovable<

R>, R is not within the F-bound. This gives us a powerful result that we have polymorphism
where we can use a more specific type instead of just the superclass.

Furthermore, we can define classes which are parametrised on a type constrained to be
within a certain F-bound. Consider the subject-observer pattern, a subject has many ob-
servers which are subscribed to it and notifies these observers when the subjects state
changes, we would like to create a tight relationship between a particular subclass of an ob-
server and subclass of a subject. Using F-bounded polymorphism we can recursively define
a subject and observer to obtain such a relationship, like so:

1 public class Subject <S extends Subject <S, O>, O extends Observer <S, O

> >{...}

2

3 public class Observer <S extends Subject <S, O>, O extends Observer <S, O

> >{...}

4

5 public class MySubject extends Subject <MySubject , MyObserver >{...}

6

7 public class MyObserver extends Observer <MySubject , MyObserver >{...}

8

9 // this will fail to type check

10 public class BadObserver extends Observer <MySubject , BadObserver >{}

The F-bounds on the type parameters of Subject and Observer are Subject<S, O> and
Observer<S, O>. These constraints create a tight relationship between a class which is
a subclass of Subject and a class which is a subclass of Observer. This requires the
type checking of each class to proceed in lock step; when we type check MySubject we
require that MySubject extends Subject<MySubject, Observer> which we defined, we
also require that MyObserver extends Observer<MySubject, MyObserver> which we also
defined, thus type checking passes. Consider line 10, here type checking fails as we require
MySubject extends Subject<MySubject, BadObserver>, which we do not have.

As we have seen in section 2.1.4 Pony supports generics and so we can use this notion of
F-bounded polymorphism. We can construct the subject-observer pattern from above like
so:
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1 trait Subject[S: Subject[S, O], O: Observer[S, O]]

2

3 trait Observer[S: Subject[S, O], O: Observer[S, O]]

4

5 actor MySubject is Subject[MySubject , MyObserver]

6

7 actor MyObserver is Observer[MySubject , MyObserver]

8

9 // this will fail to type check

10 actor BadObserver is Observer[MySubject , BadObserver]

Challenges and Applications for Ponyta

This leads us to consider types which depend on a value of its own type. An example which
looks reminiscent of F-bounded polymorphism is:

1 trait T1[x : T1[# x]]

2

3 class C1 is T1[# C1.create ()]

When we were using types, the bounds on the parameter quantified the type to be within
the F-bound. Here, we instead say that T1 depends on a value x that is of type T1[# x].
When we define C1 to be a subclass of T1 we must provide a value of type T1, here we only
have the option of constructing a C1. However, we need to know what C1 is before we can
construct one yet the definition of C1 depends on the value of a C1. This begins to the raise
the question of whether recursive definitions, such as T1, should be permitted.

Furthermore, we must give thought to how a definition in Pony, such as the following, should
be handled:

1 class C1[f: C1 = # C1]

2

3 actor Main

4 new create () =>

5 let c1 = C1

This defines a class C1 which is parametrised on a value of type C1. The problem here is
that the default value is a new C1. The default argument provides a developer with the
means to write an infinite type. Instantiating a C1 with no type argument will continue
to create C1 types which are further parametrised on C1. If we attempt to construct this
at compile time we will likely enter an infinite construction of C1 objects and run out of
memory. Also, If we tried to type check this we would result in an infinite type tree as
we continue to try and type check the default argument and so we can argue that classes
defined like this are ill-formed.

This looks like an easy case to recognise syntactically. However, consider cases where the
infinite recursion is caused by classes mutually depending on one another as in the following:
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1 class C1[c2: C2 = # C2]

2

3 class C2[c1: C1 = # C1]

This example encapsulates two infinite types which depend upon each other; the issue is
that C1 (and also C2) transitively refers to itself through class usage. This relationship
between C1 and itself needs to be derived statically so as to disallow definition of types like
this. We discuss the solution to the issues raised due to these infinite types in section 5.3.4.

2.1.7 Structural and Nominal subtyping

Pony adopts two forms of subtyping relationships, structural and nominal. Nominal sub-
typing is explicit subtyping through names; that is for types U and T , U is a subtype of T
if and only if it is declared to be[27]. In Pony nominal subtyping occurs through the use of
traits. For example:

1 trait Shape

2 fun area(): U32

3

4 class Square is Shape

5 let length: U32 = 4

6 fun area(): U32 => length * length

7

8 class Rectangle

9 let height = 6

10 let width = 4

11 fun area(): U32 => height * width

12

13 actor Main

14 fun foo(shape: Shape) =>

15 // interacts with shape

16

17 new create(env: Env) =>

18 foo(Square.create ())

19

20 // Invalid , Rectangle is not a subtype of Shape

21 foo(Rectangle.create ())

Here a Square is declared explicitly to be a Shape so we can use an object of type Square

when an object of type Shape is expected, as can be seen at line 18. Rectangle has the
all methods provided by a Shape but has not been declared to be one and so cannot be
used in place of one; this means the call of foo at line 21 will fail to compile. This form of
subtyping allows explicit design intent by a programmer, which can then be verified by a
type system, helping to avoid unintentional typing relationships between classes which can
lead to allowing objects to be used in places where they perhaps should not have been.

In a system with structural subtyping a type U is a subtype of T if its methods and fields
are a superset of T ’s methods and fields[27]. Pony also supports this notion of subtyping
through interfaces:
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1 interface ShapeI

2 fun area(): U32

3

4 class Square

5 let length: U32 = 4

6 fun area() : U32 => length * length

7 fun string (): String => length.string ()

8

9 actor Main

10 fun foo(shape: ShapeI) =>

11 // interacts with shape

12

13 new create(env: Env) =>

14 // A Square can be used where a Shape is expected

15 foo(Square.create ())

Now Square is structurally a ShapeI and so can be used wherever a ShapeI is expected
without the programmer having to explicitly state that a Square is a ShapeI. This allows
for easy introduction of subtyping relations in the future without having to redefine classes
to explicitly cater for the the new type; for example, if we were to later introduce the
interface:

1 interface Stringable

2 fun string (): String

Now, without changing the definitions of the classes we have so far, we can use any class
which provides a string() method in place of a Stringable, such as a Square. This
subtyping has the caveat that it can introduce unintentional type hierarchies. Consider an
interface Drawable which provides a draw() method and the classes Shape and Cowboy both
of which have a draw() method[27]; it is quite likely the second class’s notion of draw is not
what we desire when we require a Drawable. Nominal subtyping allows the programmer to
be explicit with this relationship.

I first present the ReadSeq[A], the readable interface of a sequence, as defined in the
standard library:

1 interface box ReadSeq[A]

2 fun size(): USize

3

4 fun apply(i: USize): this ->A ?

5

6 fun values (): Iterator[this ->A]^

With structural subtyping we have a useful result in that we can treat all of Array[U64],
Vector[U64, 3] and Vector[U64, 72] as ReadSeq[U64]. This has two important aspects;
firstly that when we extend the Pony standard library with Vectors all existing code which
works with ReadSeqs will be able to use Vectors. Secondly, notice how we can treat both
of Vector[U64, 3] and Vector[U64, 72] as ReadSeq[U64], this allows us to forget some
information about the type if it is not important to us.
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Structural subtyping in Pony also provides us with another important result which we now
explore. Consider the following Pony program:

1 trait Shape

2 fun area(): U32

3

4 class Square is Shape

5 let length: U32 = 4

6 fun area() : U32 => length * length

7

8 // interface T1 which uses a type parameter to define the

9 // the type of the return value from the apply method

10 interface T1[A: Shape]

11 fun apply(): this ->A

12

13 class C1[A: Shape]

14 let f: A

15 new create(f’: A) => f = consume f’

16 fun apply(): this ->A => f

17

18 // interface T2 which uses a type parameter to type

19 // the parameter of the apply method

20 interface T2[A: Shape]

21 fun apply(s: A)

22

23 class C2[A: Shape]

24 fun apply(s: A) => true

25

26 actor Main

27 new create(env: Env) =>

28 let c1a: T1[Shape] = C1[Shape]( Square)

29 let c1b: T1[Shape] = C1[Square ]( Square)

30

31 // this will fail type checking

32 let c1c: T1[Square] = C1[Shape]( Square)

33

34 let c2a: T2[Square] = C2[Square]

35 let c2b: T2[Square] = C2[Shape]

36

37 // this will fail type checking

38 let c2c: T2[Shape] = C2[Square]

We can see that at lines 29 and 35 assignments which we would expect to be permitted by
a type system with subtyping with variance, this is a result of structural subtyping.

We are permitted to use a C1[Square] as T1[Shape] at line 29 as the type parameter A

of T1 only appears in covariant positions, namely in the return type of the method apply.
Similarly, in line 35 we can assign a object of type C2[Shape] to a constant of type T2[

Square] as the type parameter A of T2 only appears in contravariant positions, namely the
parameter of the apply method.
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Challenges and Applications for Ponyta

Introducing value-dependent types into a type system with structural subtyping requires
that we consider the interactions between them. For example consider a program as follows:

1 interface I1[n : U64]

2 fun apply(i: U64): U64 =>

3 i * n

4

5 class C1 is I1[2]

6

7 actor Main

8 fun foo(arg: I1 [72]): U64 =>

9 arg.apply (12)

10

11 new create(env: Env) =>

12 let i1: I1[72] = C1

13 foo(C1.create ())

The problem here is that the methods and fields of I1[2] are a superset of those of I1[72],
they are a superset as the return type and argument type of the apply method are the same.
Therefore, under the current definition of structural subtyping the I1[2] is a subtype of
I1[72]. Also note that I1[72] is a subtype of I1[2]

We can question as to whether such a subtyping relationship is correct. Consider what we
would expect the return of the call to apply to be at line 9. It is likely that we would expect
it to be the result of 12 * 72, but this is not necessarily the case. As can be seen at line
13 we can pass an object of type I1[2] as an argument to the method foo. Furthermore,
provided an object provides a method apply which returns a U32 we could expect any value
in the range of U32.

There are some solutions that can be proposed in order to address this problem:

• A simple solution is to accept this as the expected behaviour. This behaviour is similar
to when we define an interface which is parametrised on a type but the type parameter
is not used in the argument nor the return types of any method. If we were to consider
such an interface to be called I2[A]; then for all A,B we have that I2[A] is a subtype
of I2[B] and vice versa. This would mean a similar semantics between using values
and types as parameters to interfaces which is desirable from a developers point of view.
Although there is a subtle difference between the value and type parameters. We can
use the value parameters to change the behaviour of methods (e.g. setting bounds while
loop conditions) defined in an interface whereas it is more difficult to do so using type
parameters.

• A simple and safe solution is to disallow parametrisation on values in interfaces to avoid
the ambiguity altogether, this seems to be a fairly strict restriction but it does remove
the above problem.
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• The problem could be avoided by the following; when an interface is parametrised on
a value then only classes which explicitly implement the interface with an equal type
argument can be used as an argument. This would mean that the value argument for the
interface would be derivable and we would be able to compare whether it is safe to use.
So in the above we know that C1 is a I1[2] so we can disallow its use. Yet this means we
would lose the use of interfaces as structural subtyping in the presence of value-dependent
types.

We must also consider how likely it is for such a case to arise. Notice that the above
example is fairly contrived; an interface has been constructed such that it depends on a
value yet this value is only used to define the body of a method. The value on which the
interface depends has no effect on the argument and return types of any method. This is
not typically the way in which one would use structural subtyping. Indeed we can see this
quite evidently through the keyword interface, these are meant to define some generic
interface for using objects which provide a certain API. Similarly, we can also question how
useful parametrising an interface on a value is for defining an API. For example:

1 interface I1[A, n: U32]

2 fun apply(v: Vector[A, # n])

Although quite a synthetic definition, the above does detail how parametrising an interface
on a value doesn’t gain us much flexibility when using an instantiation of that interface. In
the above a more flexible definition would be to parametrise apply(). However, there may
indeed be cases when such definitions are useful and so we should be hesitant to disallow
them.

We discuss the solution which has been adopted later in section 5.3.2.

2.1.8 Intersection, Union and Tuple Types

Pony’s type system supports further interesting features; intersection, union and tuple types.
We discuss these types here to lead into an issue which can arise from inheriting from value-
dependent instances of these more complex types.

The intersection of two types A and B is represented in Pony by (A & B). This type
characterises values which are of both types and provide all of the methods and fields of
both types. In Pony this allows a class to inherit fields and methods from multiple traits
and interfaces by taking the intersection of them, an example of this follows:

1 class C1 is (Hashable & Stringable)

Hashable and Stringable are interfaces defined in the Pony standard library. This dec-
laration of C1 means that it is both Hashable and Stringable and so will have both a
hash() method and string() method.
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The union type of the types A and B is expressed as (A | B). This describes a value that
may be a value of type A or B or both; we can access only the methods of a value of
type (A | B) that appear in both A and B. This allows us to write programs such as the
following:

1 class C1

2 fun foo(): U32 =>

3 // body of foo

4

5 fun bar(): U32 =>

6 // body of fooA

7

8 class C2

9 fun foo(): U32 =>

10 // body of foo that differs to class C1 foo

11

12 class C3

13 fun bar(value: (C1 | C2)) =>

14 // call foo on the value as C1 and C2 both have a foo method

15 value.foo()

16

17 // type error as C2 does not provide a bar method

18 value.bar()

19

20 fun baz() =>

21 // call bar with either a C1 or a C2

22 bar(C1.create ())

23 bar(C2.create ())

The method call foo() at line 15 type checks as foo() belongs to both C1 and C2, however
the call bar() at line 18 will fail to type check as is does not belong to C1.

Tuple types are used to type values with the product of types, for example we can have:

1 class C1

2 class C2

3 class C3

4

5 class C4

6 fun bar(value: (C1 , C2 , C3)) =>

7 let a: C1 = value._1

8 let b: C2 = value._2

9

10 // type error

11 let c: C1 = value._3

12

13 // destructures the tuple

14 (var a2 , var b2 , let c3) = value

We can access the elements of the tuple by the position of the element in the tuple, this
is the operation at line 7, value._1 gets the first element of the tuple. The type of each
element corresponds to the type defined in the tuple type, for example the first element will
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have type C1, therefore the assignment at line 11 will fail to type check as value._3 has
type C3.

Challenges and Applications for Ponyta

An issue that needs to be considered is how the following example should be handled:

1 trait T1[n: U32]

2 fun apply(): U32 => n

3

4 class C1 is (T1[2] & T1 [72])

We declared C1 to be of type T1[2] and T1[72], at line 4, and so it will have the methods
of both traits. More precisely C1 will have two definitions of apply one which returns 2 and
one which returns 72. The problem arises that we do not know which method should or
will be called. We can construct a similar example in the existing language by appending
the values to the trait names and reifying the body of the traits as in the following:

1 trait T1_2

2 fun apply(): U32 => 2

3

4 trait T1_72

5 fun apply(): U32 => 72

6

7 class C1 is (T1_2 & T1_72)

If we attempt to compile the above, the compiler will warn us that C1 has multiple possi-
ble bodies for apply and that we must locally disambiguate the definition that we desire.
This approach is useful for a developer as it avoids unintentional execution of the wrong
method at runtime and so I aimed to achieve a similar result when inheriting methods from
parametrised traits and interfaces. This case also arises for union types in a similar way.

This is an issue which was not noticed in the implementation of generics in Pony. Namely,
we can successfully compile the following program:

1 trait T1[A]

2 fun apply(): U32 =>

3 let a = Array[A]

4

5 class C1 is (T1[String] & T1[U32])

The above will include two definitions of apply() in C1. The method which is executed is
the apply() method provided by T1[String]. We discuss the implementation of this in
section 5.3.3

2.2 Dependent Types

Type systems span a diverse range of methods and type theory to provide typing and check-
ing to programming languages; in many statically typed languages, data and functions are
checked with respect to a fixed set of types (this can include classes and so on that are
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parametrised on other types). These types do not determine the values for which they
provide a type, for example statically a value of one type can be exchanged for any other
value of the same type without having an effect on the outcome of type checking. To create
a deeper connection between predicate logic and type systems Howard and Bruijn intro-
duced dependent types[17]. Dependent types are an extension of traditional type systems
which introduce types which depend on the data for which they provide a type, providing
a tighter relationship between a value and its type. The flexible and expressive power of
these types allows us to statically verify far more than what is typically achievable in a
type system. As we will see later these types can be seen to be proof carrying code, al-
lowing us to prove properties of our programs, such as the validity of array access operations.

These types have been implemented in various languages and have been the subject of
research which explores what they can be used to prove at compile time. In the following
sections I will further explore these kinds of types and how they can be applied to create
interesting types that depend on the values of both simple and more complex types, and
how these can be used to enable us to statically prove properties in Idris and C++.

2.2.1 Idris

Idris is a functional programming language, similar to Haskell, that has dependent types
built in[4]. Here I further explore dependent types in Idris, taking inspiration from Conor
McBride’s ”Why Dependent Types Matter”[16]. For this section I will use the natural
numbers as they are provided in the Idris prelude[4], that is:

1 data Nat = Z | S Nat

If we look first at the typical example of vectors with a known length as presented in [18]:

1 data Vect : Nat -> Type -> Type where

2 Nil : Vect Z a

3 (::) : a -> Vect k a -> Vect (S k) a

Here we define the data type Vect as being constructed from a natural number which
denotes the length of the vector, and a type which details the type of the elements of the
Vect . We use two constructors to inductively define a vector; Nil which has the universally
quantified type Vect Z a for all a (this is implicit just as in languages like Haskell), and
(::) which builds a value of type Vect (S k) a given a value of type a and vector of
type Vect k a. Note that the type of a vector is defined in terms of a natural number
(in particular in the (::) case we use the successor), instead of just the type Nat, that
is the type of the vector depends on the value of the natural number. Creating a vector of
integers of length 3 can then be done as follows:

4 intVec : Vect 3 Int

5 intVec = 1 :: 2 :: 3 :: Nil

Dependent types can be used to relate the input of a function to its output. This allows
us to verify that postconditions are maintained by that function. Let us define the (++)

function for vectors in the following way[18]:
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6 (++) : Vect n a -> Vect m a -> Vect (n + m) a

7 (++) Nil ys = ys

8 (++) (x :: xs) ys = x :: (xs ++ ys)

Here we have that the vector that is returned as a result of the append operation is defined
to be of the type Vect (n + m) a, i.e. a vecctor whose length is the sum of the two
input lengths. Idris guarantees that the body of the function adheres to this type signature.
To demonstrate that Idris verifies that our result is a vector of the desired type, consider
what happens if we define the (::) case for the append operation (line 8 above) as follows:

8 (++) (x :: xs) ys = x :: (xs ++ xs)

If we try and compile this definition, the Idris type system informs us that this case in the
function body does not adhere to the type signature. We get the following error:

When checking right hand side of ++ with expected type

Vect (S k + m) a

When checking an application of constructor :: :

Type mismatch between

Vect (k + k) a (Type of xs ++ xs)

and

Vect (plus k m) a (Expected type)

Specifically:

Type mismatch between

plus k k

and

plus k m

The type system has statically determined that the function body does not maintain the
invariant that the result is a vector whose length is the summed length of the two input
vectors (defined in the type signature); here the error tells us that the types plus k k

and plus k m cannot be made to unify (i.e. the lengths may differ). It is here that we can
start to observe that dependent types become a form of proof carrying code. We can ignore
this information and make the append more general. For example, if we defined append to
have the type:

1 (++) : Vect n a -> Vect m a -> Vect x a

Then, we lose information about the result, we no longer say anything about the length of
the resulting vector as we have replaced the length of the vector, (n + m), with x so it
can be any length. Statically, we would not detect any error if we redefined the last line to
be:

1 (++) (x :: xs) ys = x :: (xs ++ xs)

as the postcondition of the function still holds as the result of the new functions still has a
length.

If we use the earlier defined intVec we can see the result of performing an append (using
the correct definition of append).
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1 intVec ++ intVec

2 [1, 2, 3, 1, 2, 3] : Vect 6 Int

As would be expected we get a vector of type Vect 6 Int.

Now we can look at defining matrices as dependent types where the dimensions of the matrix
are part of the type of the matrix. We will here define a matrix as a vector of vectors. We
do this as defining a multi-dimensional matrix in Idris is non-trivial.

1 data Matrix : Type -> (n : Nat) -> Vect n Nat -> Type where

2 MNil : Matrix a Z Nil

3 MCons : Vect m a -> Matrix a k dims -> Matrix a (S k) (m :: dims)

This data type is defined in a similar manner as a vector but note that the definition of the
matrix is dependent on both the value of n (the number of rows in the matrix) as well as
dependent on the value of Vect n Nat (the vector defining the dimension of each row)
that we just defined. This demonstrates that types can depend on the value of more than
just simple types such as natural numbers. Also note that the value n is the same in both
the matrix and the vector. Using this definition we can construct the following matrix:

1 intMat : Matrix Int 2 [3, 2]

2 intMat = MCons [7, 9, 6] (MCons [7, 9] MNil)

Yet it is not possible to construct any value of the type:

1 Matrix Int 2 [1]

We could also define a function with the following type signature:

1 addM : Num a => Matrix a n v -> Matrix a n v -> Matrix a n v

That enforces properties that the two input matrices are not only of the same type but of
the same dimensions and that we get a result of the same type. Here Num a => states that
a must be a member of the class Num so that we can perform addition with the elements
of the matrices.

The above is the main link between dependent types and my project, that is representing
statically known values in types. I now further discuss the power of dependent types and
how they allow us to express a range of properties of programs beyond just specifying the
size of data.

We can also define relations between values as dependent types themselves so that we can
prove stronger postconditions of our functions and data types. The following investigates
Conor McBride’s approach to defining Order as a dependent type and using this to later
define operations that assert in their type that their result is ordered. The following ex-
amples can be found in [16] written in McBride’s language Epigram however here I have
translated them to Idris to further explore dependent types.

Consider if we were to define a data type such as:
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1 data Order = LE | GE

When type checking a function, the values LE and GE could be used interchangeably without
causing changes to the static result[16]. Such an alteration would only manifest itself at
runtime; therefore this would allow us to only express ordering between elements when we
execute the program which would have to be asserted dynamically. However, by making
Order a dependent type we can give meaning to the data statically[16]. Let us first define:

1 data Le : Nat -> Nat -> Type where

2 LEZ : Le Z x

3 LES : Le x y -> Le (S x) (S y)

Here we first construct the data type Le to inductively define the less than or equal relation
on natural numbers as a dependent type. This would mean that LES (LES LEZ) would
be typeable with of the types (Le 2 2), (Le 2 3), (Le 2 4), ... and so we
cannot construct the value without some context. Note that although Le 5 2 is a type,
we cannot construct any value which has this type.

We then proceed to use this definition to express how two natural numbers are ordered in
the data type Order :

1 data Order : Nat -> Nat -> Type where

2 LE : (Le x y) -> Order x y

3 GE : (Le y x) -> Order x y

4

5 order : (x: Nat) -> (y: Nat) -> Order x y

6 order Z y = LE LEZ

7 order (S x) Z = GE LEZ

8 order (S x) (S y) with (order x y)

9 | LE xley = LE (LES xley)

10 | GE ylex = GE (LES ylex)

Compare this revised definition to the original definition of Order , we have now given
meaning to the numbers in the constructors of Order . Finally, we define the function
order which given two natural numbers x, y gives a result which is of the type Order

x y; guaranteeing that the result is ordered.

It is then apparent that as we can express the local ordering between pairs of elements in
the type Order , we can do as McBride displayed[16] which is that we can express that a
list is ordered in its data type.

1 data OList : Nat -> Type where

2 ONil : OList b

3 OCons : (x : Nat) -> Le b x -> OList x -> OList b

In the above definition, b represents the lower bound of the list i.e. the least value that can
be appended to the front of the list. To demonstrate this data type in use, we can construct
the value:

1 OCons 3 (LES (LES LEZ)) ONil
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but not the value

1 OCons 1 (LES (LES LEZ)) ONil

as 1 is less than the lower bounds of the list, namely 2 represented by (LES (LES LEZ)),
so we cannot add it to the front of the list.

We can now express that the resulting type of a merge of two ordered lists is an ordered
list.

1 merge : OList b -> OList b -> OList b

2 merge ONil ys = ys

3 merge xs ONil = xs

4 merge (OCons x blex xs) (OCons y bley ys) with (order x y)

5 | LE xley = OCons x blex (merge xs (OCons y xley ys))

6 | GE ylex = OCons y bley (merge (OCons x ylex xs) ys)

Utilising these we can construct a very crude sorting algorithm that takes a list of natural
numbers and provides the postcondition that the result is ordered.

1 sort : List Nat -> OList 0

2 sort = (foldl1 merge) . map (\x => OCons x LEZ ONil)

McBride details a more involved merge sort algorithm that better explores sorting the list,
however the above algorithm demonstrates the point I wish to make; our function carries
a proof of sorting a list and statically provides meaning to its operation. Take for example
the execution of:

1 sort [3, 1, 2]

We will get a value which is guaranteed to be ordered. Namely we get the following:

1 OCons 1 LEZ (OCons 2 (LES LEZ) (OCons 3 (LES (LES LEZ)) ONil))

Which if were to ”flatten” this structure into a list would be:

1 [1, 2, 3]

Thus we have related the input data with the output data and we have used our type sys-
tem to construct a proof that the postcondition regarding the resulting list (i.e. the ordered
property of the lists) is guaranteed by performing the operation.

A point worth noting here as that the ordering example is only defined for the natural
numbers, as such we can only have OList of natural numbers. It would be ideal to extend
this so that we could have OLists of any member of a type class like Ord (the class of
totally ordered data types). The OList data type depends on Le so we would also have
to make this data type polymorphic in some way. Also order is used in merge and this
function too depends on Nats due to the definition of the data type Order which depends
on Le. Here Le is coupled tightly to the structure of Nat making defining Le, Order or
OList polymorphically difficult.
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It is fairly evident from the above that obtaining this information in a type can become
quite involved. The vector is fairly straightforward to define in terms of dependent types
and we get some nice simple results from its use, even the matrix example is reasonably
straightforward. However, when we begin to define the orderings of natural numbers, our
types and functions which interact with them become notably more complex. McBride’s
language Epigram expresses these data types in a natural deduction format[16] which makes
them clearer than when defining them in Idris. Observe that the merge operation requires
the two ordered lists to have the same lower bound, we would perhaps like to instead have
that the new lower bound is the least of the two input lists but this would require expressing
”minimum” as a dependent type also and then including this in the type of merge , further
increasing the complexity of our typing. This demonstrates how these dependent types,
although very powerful, can quickly become unwieldy to construct and use.

It is not only the programmer who faces a more complex task when using dependent types,
they are free to use them to whatever expressiveness they wish, but the type system has
to become more advanced to support these types. The type system needs to be able to
ensure that the type Vect (1 + 2) Int is the same as the type Vect 3 Int as well
as being able to infer the values of dependent types in some cases.

In fact type checking in the presence of dependent types can be undecidable, therefore
a type system which caters for them must implement some method to handle this, this
is addressed in Epigram by using general recursion in types to ensure that type checking
terminates. Alongside the increase in complexity of types is the increase in complexity of
code, for example we have to handle more complex data structures when writing functions,
this can be seen in the merge function above.

2.2.2 C++

C++ does not support the rich system of dependent types provided by Idris, however it
does support templating on non-type parameters as well as type parameters [12]. These
templates can be used to construct both templated classes and functions. Consider the
following example:

1 template <uint32_t lo, uint32_t hi>

2 uint32_t extract(uint32_t bits) {

3 static_assert(hi >= lo , "hi must be greater than or equal to lo");

4 constexpr uint32_t mask = ((1 << (hi - lo + 1)) - 1) << lo;

5 return (bits & mask) >> lo;

6 }

7

8 int main() {

9 extract <1, 4>(3);

10

11 // this will fail to compile

12 extract <5, 1 >(17);

13 }
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In the above we define a templated function for extracting the bits from a number between
the range of lo and hi. This is template meta-programming; we defined a general way
of performing an operation, by writing the call extract<1, 4>(3). This call will create
a function with lo set to 1 and hi set to 4 that will then be called with the argument 3.
We have also used constexpr, this tells the compiler that the value of mask is a compile
time expression. To ensure that the operation is defined on a range that makes sense we
used static_assert; this checks our expression at compile time and if it fails then so does
compilation, an example of this is at line 12[12]. These templates have some important
properties; firstly, they allow us to define all functions for extracting bits from value in a
general way, but we could have done this by passing hi and lo as arguments. Secondly,
using templates gives us a faster function at runtime as we do not have the overhead of
passing and looking up arguments, also we are able to push some of the cost of evaluating
expressions into the compiler, such as the evaluation of mask. At runtime the function that
is executed at the point of the call at line 9 is the following:

1 uint32_t extract <1, 4>(uint32_t bits) {

2 uint32_t mask = 30;

3 return (bits & mask) >> 1;

4 }

Utilising these templates, we can once again construct the vector with a statically known
length as before:

1 template <typename T, size_t S>

2 class vector

3 {

4 T arr[S];

5 public:

6 vector(T(&array)[S]) {

7 for (size_t i = 0; i < S; ++i)

8 arr[i] = array[i];

9 }

10

11 T& operator [] (size_t nIndex) {

12 assert(nIndex < S && "Index exceeds dimensions of vector");

13 return arr[nIndex ];

14 };

15

16 /* remaining definition of vector */

17 };

We can then define functions which statically validate accesses to the vector (these could
have been member functions of a vector):
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15 template <size_t nIndex , typename T, size_t S>

16 T get(vector <T, S> &v) {

17 static_assert(nIndex < S, "Index exceeds dimensions of vector");

18 return v[nIndex ];

19 }

20

21 template <size_t nIndex , typename T, size_t S>

22 void set(vector <T, S> &v, T e) {

23 static_assert(nIndex < S, "Index exceeds dimensions of vector");

24 v[nIndex] = e;

25 }

As is often the case when we move to imperative programming from functional program-
ming, the checks we perform are made explicit by the programmer. Here static_asserts
check that the accesses are within the bounds of the vector at compile time. Compare the
vector accesses which are validated statically against those which are validated dynamically.
Take the following vector:

1 int a[2] = {1, 2};

2 vector <int , 2> v(a);

We can access the vector in one of the two following ways:

1 get <1>(v);

2 v[1];

In this case the accesses are valid and will compile and execute as expected. Now compare
this to the example where the access is out of the vectors bounds:

1 get <42>(v);

2 v[42];

Both accesses are invalid and will fail an assertion, however the first access will violate an
assertion statically and will fail to compile. The second example will successfully compile
and the access will only trigger the assertion when executed. It is not always simple or pos-
sible to statically verify accesses and so we need to use the static information in conjunction
with the dynamic information. For example, consider the following append operation:

1 template <typename T, size_t S1, size_t S2>

2 vector <T, S1+S2 > append(vector <T, S1 > &v1 , vector <T, S2 > &v2) {

3 vector <T, S1+S2 > b;

4 for (size_t i = 0; i < S1; ++i)

5 b[i] = v1[i];

6 for (size_t i = 0; i < S2; ++i)

7 b[S1+i] = v2[i];

8 return b;

9 }

This provides the same guarantees about the size of the return vector as we had in Idris,
however all accesses here are validated dynamically.
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Although constructing the vector example is rather straightforward, producing the matrix
class is less so. This is due to restrictions in C++ on non-type template parameters. We
cannot simply create a class such as:

1 template <typename T, size_t s, vector <s, T> dims >

2 class Matrix {

3 /* definition of a matrix */

4 }

We can construct such a definition in Ponyta as we will see later in section 7.

To obtain a definition like the above we use a pointer as the template parameter. C++
templates do not allow templating on an object; it is only possible to template on a pointer
to an object (as in the listing below) or a reference to an object. We also need to create a
global static Vector to pass as a type argument when constructing a Matrix. This looks
like the following:

1 template <typename T, size_t s, Vector <s, T>(* dims)>

2 class Matrix {

3 /* definition of a matrix */

4 }

5

6 static int sa[2] = {7, 4}

7 static Vector <int , 2> sv(sa);

8

9 int main {

10 Matrix <int , 2, &sa > mat;

11 }

Pony does not distinguish between a value and a pointer to a value, as everything is im-
plicitly a pointer to a value. Therefore, we do not need to create this restriction in an
implementation of value-dependent types for Ponyta. When we parametrise a type on a
value in Pony we will be able to use a type as the constraint for the value and the type will
imply whether a pointer to a value is provided, in the case of objects, or a literal value is
used, as in the case of primitive literals.

Observe in the vector example above the internal representation of vector was not const

and so our get() method cannot return a constexpr value. This would prevent us using
any of the elements of the static Vector to perform access validation in the Matrix. This
is a limitation with how we defined a vector, another representation of Vector can be seen
in Appendix A. This approach represents the vector as a linked list and combines C++
templates with the meta-programming library to traverse the data structure and obtain
values, as all nodes are const we can know these values at compile time. Using the linked
list definition it is possible to create the Matrix as above.
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Lessons for Ponyta

The C++ approach to templates is closer to what has been adopted in Ponyta. The concerns
for the templates in Ponyta and C++ involve what we define to be a value type parameter.
In C++ these values are restricted to integral types, pointer types, pointer to member
types, enumeration types and lvalue reference types (taking a variable by reference as the
template parameter)[12]. This means we cannot always use compile-time known values,
also known as literal types[1], directly as template arguments. In C++ template arguments
must be immutable, although one can template on an immutable pointer to a mutable value.
The requirement of immutable template arguments is demonstrated in the following C++
program:

1 class C1

2 {

3 public:

4 const int x;

5 constexpr C1(int x): x(x) {}

6 };

7

8 template <const C1 &c> class C2 {};

9

10 static constexpr C1 c1(12);

11

12 int main()

13 {

14 C2 <c1 > c2;

15 }

In the above, C++ demands that the template argument c1 be constexpr. If we did not
provide a constexpr constructor for C1 and did not make c1 constexpr then the instanti-
ation at line 14 would fail.

It is also worth considering what constitutes as a compile time expression. In C++ a pro-
grammer makes explicit what they want and expect to be statically known or statically
computable through the constexpr keyword. The statically known values are referred to
as literal types[1]; these may be assigned to constexpr variables as well as being returned
from constexpr functions. There are rules which define what can be a literal type in C++,
this includes scalar types, reference types and arrays of literal types. A programmer can
extend this set of types by defining a class with a constexpr constructor and using only
const members. A programmer can also define functions as constexpr, these are functions
where the result is be computable at compile time, this imposes some restrictions on how
the function can be defined (for example looping constructs could not be used in C++11).
In Ponyta we attempt to impose few restrictions, allowing values that we can track through
and between compile-time expressions. We will discuss the rules in Ponyta more in section 4.

We must also consider whether a programmer should make explicit the expressions they
want evaluated at compile-time; this is the approach taken in C++ and also in Ponyta. An
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alternative is to implement the compiler such that it can infer which expressions can be
evaluated at compile-time. There are trade-offs in either solution. If we adopt the inference
approach then we avoid an over use of keywords as well as making the use of the language
easier for a programmer. Inferring compile-time expression may also allow unintentional
use of these compile-time expressions by a programmer, possibly leading to the compiler
reducing code complexity is some cases.

Inferring compile-time expressions comes with the overhead of the compiler inspecting ev-
ery expression to determine whether it can be evaluated at compile-time. Enforcing that
a programmer marks expressions that they want evaluated at compile-time does not re-
sult in such an overhead. Marking expressions also ensures a programmer knows as early
as possible which compile-time expression failed. Consider a programmer relying on some
value being known at compile-time to compute some other value, yet a change in the first
prevents the use of the second. These effects from a distance issues do not make for useful
diagnostics for a developer.

We can also observe that in C++ we need the values used to instantiate a template to be
global, static values. We require them to be global as they may be used across multiple
class instantiations and so all objects of such type must have access to the value. Here static
defines static storage duration, this means that the storage for the object is allocated when
the program begins and deallocated when the program ends and that only one instance of
the object exists [11]. These are properties of objects used for defining types that have been
considered when implementing types dependent on objects in Pony. We have achieved this
by using global constants provided by LLVM, we discuss these further in section 4.1.3.

2.2.3 Index Types

Xi and Pfenning introduced the dependently typed functional language DML (Dependent
ML) with parametric types [29]. Types may be declared to depend on a value which is
constrained to be of a type drawn from a different set of types, only int and bool are
presented in [29]. The value on which a type depends are not constrained to be only of
some type but may also be constrained to satisfy some predicate. Consider an equivalent
comparison with a Ponyta program:

1 class C1[n: {s: USize | s > 10}]

Here the class C1 depends on a USize which must be greater than 10. The parametric types
are used to track properties of a type such as the length of a list, and how additions and
removals from a list effect the length of the resulting list.

Campos and Vasconcelos extended these parametric types to imperative languages[20, 19].
These types are referred to as index types, an example of such a type is int<7> which types
the value 7. The novelty of these index types is that the type may change over the lifetime
of a program. For example a variable i incremented on each iteration of a loop may initially
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have the type int<0>, then int<1> and so on[20]. The index types can then be used to
track the mutation of an object through a method. For example, tracking that a list object
which has type list<n> has type list<n + 1> upon completion of a append() method. [19]

These types provide a very rich and novel means for providing types to values. However,
both [20, 19] conclude that an issue which must be addressed in any implementation of
these types is a careful tracking of aliases of a value. Without careful handling of aliases we
could have two references to, say, a list where each reference claims the list has a different
length. To handle this, an implementation must ensure that old aliases to a value are no
longer usable.

In Pony we can destroy old aliases with a consume expression (used to destructively read
a value). However, Pony does not enforce that old aliases are destroyed on reads of values
by default. We could add extra support to the language to ensure we do not have multiple
aliases to a value with an index type. We would also have to add support to Pony to adopt
these types that change (however only the value-dependent types may change). Ultimately,
I favour the dependent types presented in languages such as Idris adn C++, where the type
of a value is fixed as this feels like a better fit to the existing language. Also, as can be seen
in section 6, the implementation of the Vector should mean that the type of the value never
changes as it may lead to issues with respect to memory accesses. The predicates that a
type argument must satisfy to be used to create a legal instantiation of a type would be a
interesting addition to Ponyta and are considered as an extension to the work presented in
this report.

2.3 Multi-Stage programming

In [28], Taha explores the programming concept of multi-stage programming. Taha de-
scribes Meta-Ocaml, a language which allows a programmer to annotate how they would
like to generate syntactically well-formed OCaml code at runtime. This code is then run
using an OCaml interpreter. These annotations represent a kind of template function that
allow generating specialised functions for input parameters at runtime. This runtime code
generation allows programmers to write general programs that avoid the overhead of recur-
sion by generating the necessary body for the function. Taha explores this in the context
of a factorial function which generates all multiplications in a single expression without
requiring recursive calls to compute sub-goals.

Links to Ponyta

Consider the C++ templates described in section 2.2.2. A templated function is generated
in the intermediate representation of the program when we supply it with type arguments.
Generating code may in turn lead to further generation of code if the body of the function
contains templated functions or classes. Generating code at compile time means that if we
violate the rules of the templates or we violate a static_assert then our program will not
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be built into anything that can be executed or linked against. The approach adopted by
C++ is similar to that which is used in the Pony Compiler.

The concept of multi-stage programming as detailed in[28] is closely related to Ponyta as we
will be creating types parametrised on values. Providing arguments to a parametrised type
will not generate Pony code but will instead generate the intermediate representation for
a concrete instance of the type. Generation involves replacing all instances of a parameter
with the respective provided value. The difference between meta-programming in Pony and
MetaOCaml is that the annotations are used to generate code at compile time in Pony
instead of run time, as in MetaOCaml.

2.4 LLVM

The Pony compiler adopts the LLVM compiler infrastructure for backend optimisations
and code generation. By adopting the LLVM infrastructure the Pony compiler can focus
on providing a front-end for the Pony language and the necessary powerful type-system.
Many of the design decisions made during this project are strongly related to the underlying
LLVM framework. In this section we will discuss LLVM and introduce some of the syntax
so that we may discuss, in depth, some of the design choices in later sections.

The LLVM project provides a range of open-source compiler and toolchain technologies[5].
This toolchain includes the LLVM core libraries which operate on a target-independent IR
(intermediate representation) of programs. These libraries involve target-independent and
target-dependent optimisations for programs as well as providing multiple backends to lower
the IR to work on a variety of architectures.

LLVM uses a static single assignment (SSA) representation for representing programming
languages; this representation is used throughout LLVM tools. The IR has three forms. One
representation is an in-memory compiler IR used for analysis and optimisation within the
LLVM tools. Another representation is a bitcode representation; this representation is used
for tools which build upon LLVM. Finally, the IR has a human readable form which we will
use throughout this report to explore the design and implementation of value-dependent
types in the Pony compiler.

When compiling a program, the Pony compiler instantiates all reachable types and builds
descriptions for these types in terms of LLVM structs. The compiler also generates IR for
each reachable method. Take the following Pony program:
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1 class C1

2 let field: U32

3 new create(field ’: U32) => field = field ’

4

5 actor Main

6 new create(env: Env) =>

7 let c = C1(23)

Compiling this program generates about 3500 lines of LLVM IR. We will inspect certain
aspects of this IR to understand the LLVM syntax and semantics. Let us examine some of
the LLVM IR generated for C1(23), at line 7, in the above.

1 %C1_Desc = type { i32, i32, i32, i32, i32, void (i8*, %__object *)*, void

(i8*, %__object *)*, void (i8*, %__object *)*, void (i8*, %__object*,

%__message *)*, void (%__object *)*, i32, [0 x i32]*, [0 x { i32,

%__Desc* }]*, [1 x i8*] }

2

3 @C1_Desc = internal constant %C1_Desc { i32 23, i32 16, i32 0, i32 0, i32

8, void (i8*, %__object *)* null, void (i8*, %__object *)* null, void (

i8*, %__object *)* null, void (i8*, %__object*, %__message *)* null,

void (%__object *)* null, i32 -1, [0 x i32]* null, [0 x { i32, %__Desc*

}]* null, [1 x i8*] [i8* bitcast (%C1* (%C1*, i32)* @C1_ref_create_Io

to i8*)] }

4

5 %C1 = type { %C1_Desc*, i32 }

Here we can see two forms of identifiers. The identifiers with a leading @ denote global
variables [6] whilst those with a leading % denote local variables. In the above we have that
line 1 defines a local variable (%C1_Desc) which describes the structure of the C1 descriptor
header. This header consists of information for an object such as the number of fields, the
trace function to use when tracing the object, the virtual table for the object and more
information.

At line 4, we construct a global constant instance of %C1_Desc which is named @C1_Desc,
this instance assigns values to all elements of the %C1_Desc structure. Finally we create
another local variable at line 7, %C1, this is another local variable which describes the type
of a C1.

The C1 type contains only two elements, the first element is the descriptor header we mention
earlier, the second is the i32 field. We can now look at the IR generate for the create()

constructor for a C1 ref. The generated IR has been reproduced in the following:
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1 define fastcc %C1* @C1_ref_create_Io(%C1* dereferenceable (16) %this, i32

%"field ’") {

2 entry:

3 %this1 = alloca %C1*

4 store %C1* %this, %C1** %this1

5 %"field ’2" = alloca i32

6 store i32 %"field ’", i32* %"field ’2"

7 %0 = getelementptr inbounds %C1, %C1* %this, i32 0, i32 1

8 %1 = load i32, i32* %0

9 store i32 %"field ’", i32* %0

10 ret %C1* %this

11 }

Let us first detail the function signature; we defined the global method @C1_ref_create_Io

which takes as arguments a %C1* and an i32. The argument types are a pointer to a C1

object and a U32 value respectively. The first argument is the receiver on which the method
will operate, the second argument is the U32 argument field’ that was defined on line 3
of the original Pony program. The dereferenceable syntax here states that our pointers
may be dereferenced and the size which appears after the dereferenceable key words is
the size of the pointee type[6].

We now proceed to detail the create() constructor. On line 3 we allocate a new C1* which
obtains a C1[String val]** value which is assigned to %this1. On line 5, the address of
the receiver object (%this) is then stored in the memory location represented by %this1.
On lines 5 and 6 we perform similarly to obtain a reference to the U32 field’ argument.
The getelementptr instruction on line 7 calculates an address to the field field in %this,
the 0 argument looks through the pointer and the 1 argument is used as an offset into the
object to get the address of the field field. On line 8, the pointer to the U32 is loaded
from the calculated address and assigned to %1 (this is the used for destructive reads in
Pony, however here we will not use the result). On line 9, the i32 argument %"field’" is
stored at the address calculated using the getelementptr instruction. Finally, on line 10
we return the receiver.

This example illustrates much of the LLVM IR that will be used throughout the rest of this
report to explain the code generation aspects in developing Ponyta.

2.5 Pony and Ponyta

The Pony compiler, ponyc, is a compiler (written in C) for the Pony language currently
under development. It support actors, capabilities, generics, F-bounded polymorphism,
structural and nominal subtyping and union, intersection and tuple types as we have dis-
cussed so far. On top of this, the Pony compiler supports features such as:
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• Delegates

• Exceptions

• Lambda functions

• Pattern matching

• Partial application

• Consume

• Recovery

• Viewpoint Adaptation

• Aliases

• C FFI

The compiler is a multi-pass compiler; it incrementally builds an abstract syntax tree (AST)
intermediate representation (IR) from source code and performs static checking on this
representation. The AST representation of the program is then lowered to the LLVM IR.
The Pony compiler has been extended to support Ponyta.

2.5.1 Multi-Pass Compilation

The Pony compiler takes a Pony program as input and passes over the program multiple
times before the final executable is generated. These passes include generating the AST,
expanding syntactic sugar, type checking expressions and generating LLVM IR. A summary
of the compiler passes, which are of interest for this project, can be found in fig. 1. Here I
omit the scope, import, flatten and docs passes.
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input

parse

syntax

sugar

name

traits

expr

ir

output

Parse input to AST.

Sanitise AST syntax.

Desugar AST.

Check names and mark references to variables and types in
AST.

Include reified trait bodies in classes which inherit from
traits.

Assign types to AST nodes and typecheck program.

Generate LLVM IR from AST.

Figure 1: Summary of Pony compiler passes.

The following describes, in detail, the passes of the compiler that have been changed to
accommodate Ponyta.
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Parse

This pass parses the input program checking that the program adheres to the defined parse
rules; It is in this pass that the initial AST representation is constructed.

Changes for Ponyta

This pass has been extended to incorporate new parse rules for parsing compile-time ex-
pressions and permitting values to appear within type arguments.

Syntax

The AST constructed by the parse pass represents only a program that adheres to parse
rules, this does not necessarily mean that the program which was successfully parsed used
valid syntax. For example, a convention adopted in Pony is that identifiers for types must
begin with an upper case letters whereas identifiers for variables must begin with lowercase
letters. Take the following program which violates this convention:

1 actor Main

2 fun foo(arg: u32) =>

3 // definition of foo

This program would cause no error if only the parse pass of the compiler was used, however
when enabling the syntax pass an error would be raised that u32 is not a valid type identifier.

Changes for Ponyta

This pass has been altered so that type parameters now permit value identifiers as well as
type identifiers. Initially this pass had extra restrictions to ensure only type identifiers could
appear as parameters. This restriction existed as we could only defined types parametric
with respect to other types.

This pass will also be changed to understand the new required syntax of value-dependent
types such as enforcing that constraints of type parameters must themselves be type iden-
tifiers and not value identifiers.

Sugar

The Pony language defines many abbreviations to allow a programmer to write more concise
programs. The abbreviations are expanded in the sugar pass. This pass updates the AST
with new nodes which represent the expansions. For example one such rewriting involves
calling the default create() constructor when no constructor is provided. One could think
of this as rewriting the following program:

1 let c: C1 = C1

to instead be:

1 let c: C1 = C1.create ()
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Such a process is also referred to as de-sugaring. This pass has not been adapted but it is
worth detailing as we will use many abbreviations throughout this report.

Name

This stage is concerned with the names of types that are used in a Pony program. This
involves verifying that a type that is used in a program is defined in the program, for
example:

1 class C1

2 let x: A

The error that A is undefined will be detected at this stage. This stage also manipulates
the representation of parametrised types in the AST. Consider the following example:

1 class C1[A]

2 fun id(x: A) => x

Parsing this example will build an AST that represents that x is of type A, where A is a type
in the program not the type defined by the type parameter. In this stage the definition of
the parametrised type is traversed and the uses of the parameter type are replaced with
new nodes that make this reference explicit. This setup is used in later stages when type
arguments are supplied so that a concrete implementation of methods and fields can be
created for subtypes and values. Also, if a class A already exists then the above example,
specifically line 1, will raise an error during this stage as the parameter will shadow the
existing type.

Changes for Ponyta

So as to follow how type parameters are handled so far, this stage has been augmented to
incorporate the addition of value-dependent types. For example in the following:

1 class C2[n: U32]

2 fun get(): U32 =>

3 n

the type parameter n on line 3 needs to be distinguished from a variable n; this pass will
handle replacing these nodes in the AST in much the same way as for types.

Traits

Consider the following:

1 trait T1[A: Number]

2 fun id(x: A): A => x

3

4 class C1 is T1[U32]

The class C1 here inherits the methods of T1; the traits pass is concerned with determining
these methods and adding them to the definition of C1. When adding these methods the
type arguments, here U32, are used to replace the type parameters of T1 to construct an
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instantiated version of the trait. The instantiated methods get added to the AST of the
class definition, therefore the node for C1 has a subtree representing that it has the method:

1 fun id(x: U32): U32 => x

Changes for Ponyta

This pass has been altered to replace value type parameters with the supplied value argu-
ment. This replacement will need to ensure that replacing occurrences of references to the
type parameter result in the same value being used. If we do not ensure this then we will
face the issue presented in the following Ponyta program:

1 trait T1[s: Student]

2 fun foo(): Student => s

3

4 fun bar(): Student => s

5

6 class C1 is T1[# Student.create ()]

7

8 actor Main

9 new create(env: Env) =>

10 let c = C1

We rewrite the methods of c to be:

1 class C1

2 fun foo(): Student => Student.create ()

3

4 fun bar(): Student => Student.create ()

While this above reification would still provide the same result we would not be recognising
the type argument provided as the value which is used to reify the class. A way of handling
this is to evaluate the expression provided as an argument and replace all occurrences of the
type parameter in the definition of the class with a reference to this value. Alternatively,
ensuring that the same expression returns the same value (for expressions marked with #)
will also obtain a working implementation which respects the type argument supplied. We
discuss this method more in section 8.

Expr

This pass in the compiler is concerned with type checking and type inference. This pass
is also responsible for some transformations of the AST such as distinguishing between a
reference to a function and a constructor. The expr pass is responsible for raising errors in
programs such as in the following:

1 actor Main

2 new create(env: Env) =>

3 let x: String = 3

A type error for line 3 will be raised during the expr pass. It is also in this pass that we
instantiate classes and type check generics. Consider the following:
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1 class C1[A: Stringable]

2

3 actor Main

4 new create(env: Env) =>

5 let c = C1[Bool]

The expr pass will construct instantiated definitions of C1[String] and C1[Bool]. Part of
this instantiation involves checking that Bool adheres to the constraints of the parameter.
Namely, the expr pass ensures that Bool is a subtype of Stringable.

Changes for Ponyta

This pass required a large amount of work to incorporate types which depend on values as
types. This pass has been extended to check the types of values provided as type arguments.
We also had to develop the subtyping relationships for Ponyta. This subtyping relationship
involved adding logic so that the compiler can test equality between two compile-time values.
Consider the following example:

1 class C1[s: Student]

2

3 actor Main

4 new create(env: Env) =>

5 let x = C1[# Student.create ()]

6 let y = C1[# Student.create ()]

7 let z: C1[# Student.create ()] = C1[# Student.create ()]

We needed to decide whether x and y are of the same type. One solution is to say that
they are not, the arguments provided are not the same object and so x and y are not of the
same type. However, this may mean that line 7 represents an invalid assignment. Another
solution is to use a notion of equality instead of sameness, this could be in terms of a
recursive structural equality (i.e. do two compile-time objects fields have equal values) or
could perhaps request a user defined equality method to be provided. We will discuss the
solution in detail in section 5.2.

Codegen

This pass is responsible for generating LLVM IR from the AST representation of the pro-
vided program. My contributions to this pass of the compiler are in developing generation
of LLVM IR for new data structures for Pony as well as generating code that interacts with
and uses compile-time values (such as statically constructed objects).

2.5.2 Parser

Pony has an LL(1) grammar. This means that the parser uses 1 token to look ahead
when parsing input to decide which parse rule is applicable[25]. LL(1) grammars are both
decidable and unambiguous, making the design of tools to work with the grammar much
simpler. These grammars also lend themselves to fast parsing algorithms[25]. However,
these grammars have the impact that alternate rules have to be unambiguous in their
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first token; to take an example from the Pony grammar (here given as BNF parse rules),
〈typeargs〉 are defined to be:

〈typeargs〉 ::= ’[’ 〈typearg〉 (’,’ 〈typearg〉)* ’]’

〈typearg〉 ::= 〈type〉

This lets us write a type arguments of the form:

1 C1[U32]

In Pony, an upper-case identifier represents a type and a lower-case identifier represents a
value. Therefore, the above expresses providing the type argument U32 to the type C1.

Consider that we now want to express that a type argument may be a value (not a type),
such as the following:

1 C1[Student.create ()]

Line 1 above represents us passing a new Student object as an argument to the type C1.
We need to alter the parse rule 〈typearg〉 to permit parsing of this syntax, we can use a
〈postfix〉 (the definition of which can be found in section 3) to represent the value. Now
we face the issue that the rules for 〈type〉 and 〈postfix〉 can both begin with an ID token.
Therefore, to make the grammar unambiguous (and LL(1)) we introduce a token, here ’#’,
to differentiate between the two cases:

〈typearg〉 ::= 〈type〉 | ’#’ 〈postfix 〉

In fact, as the token for a literal value, e.g. 2, cannot clash with a type we can provide a
slight convenience to a developer by defining 〈typearg〉 as follows:

〈typearg〉 ::= 〈type〉 | 〈literal〉 | ’#’ 〈postfix 〉

The desired meaning can now be obtained but we must write:

1 C1[ # Student.create ()]

The effects of this choice in grammar are taken into consideration when extending the syntax
of the language so as to design an LL(1) grammar, adopting appropriate keywords where
necessary.
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3 Language Extension

We will first discuss the value-dependent types extension to Pony by considering how we
will extend the syntax. Initially we will consider extending the abstract syntax used in the
Pony formal model [24]; this syntax has been reproduced in figs. 2 and 3.

P ∈ Program ::= CT AT

CT ∈ ClassDef ::= class C F K M

AT ∈ ActorDef ::= actor A F K M B

S ∈ TypeID ::= A | C
T ∈ Type ::= Sκ
ET ∈ ExtType ::= T | S (iso | trn | ref)◦
F ∈ Field ::= var f : T
K ∈ Ctor ::= new k(x : T)⇒ e

M ∈ Func ::= funκ m(x : T) : ET⇒ e

B ∈ Behv ::= be b(x : T)⇒ e

n ∈ MethID ::= k | m | b
κ ∈ Cap ::= iso | trn | ref | val | box | tag
e ∈ Expr ::= this | x | x = e | null | e; e

| e.f | e.f = e | recover e
| e.m(e) | e.b(e) | S.k(e)

E[·] ∈ ExprHole ::= x = E[·] | E[·]; e | (E[·]) | E[·].f
| e.f = E[·] | E[·].f = z | E[·].n(z)
| e.n(z, E[·], e) | recover E[·]

Figure 2: Syntax

C ∈ ClassID k ∈ CtorID
A ∈ ActorID m ∈ FuncID
f ∈ FieldID b ∈ BehvID

this, x ∈ SourceID n ∈ CtorID ∪ BehvID
t ∈ TempID y, z ∈ LocalID

Figure 3: Identifiers
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We now go on to extend this syntax to include parametrised classes, actors and methods.
The changes to the abstract syntax have been highlighted in figs. 4 and 5.

P ∈ Program ::= CT AT

CT ∈ ClassDef ::= class C [TP] F K M

AT ∈ ActorDef ::= actor A [TP] F K M B

S ∈ TypeID ::= A | C
T ∈ Type ::= Sκ

ET ∈ ExtType ::= CN | S (iso | trn | ref)◦
CN ∈ Constraint ::= T | I | C[ta]
TC ∈ TypeConstraint ::= I : CN
VC ∈ ValueConstraint ::= v : CN
TP ∈ TypeParam ::= TC | VC
ta ∈ TypeArg ::= CN | e
F ∈ Field ::= var f : CN

K ∈ Ctor ::= new k [TP] (x : CN )⇒ e

M ∈ Func ::= funκ m [TP] (x : CN ) : ET⇒ e

B ∈ Behv ::= be b [TP] (x : CN )⇒ e

n ∈ MethID ::= k | m | b
κ ∈ Cap ::= iso | trn | ref | val | box | tag
e ∈ Expr ::= this | x | v | x = e | null | e; e

| e.f | e.f = e | recover e
| e.m [ta] (e) | e.b [ta] (e) | S.k [ta] (e)

E[·] ∈ ExprHole ::= x = E[·] | E[·]; e | (E[·]) | E[·].f
| e.f = E[·] | E[·].f = z | E[·].n(z)
| e.n(z, E[·], e) | recover E[·]

Figure 4: Extended Syntax

C ∈ ClassID k ∈ CtorID
A ∈ ActorID m ∈ FuncID
f ∈ FieldID b ∈ BehvID

this, x ∈ SourceID n ∈ CtorID ∪ BehvID
t ∈ TempID y, z ∈ LocalID
I ∈ TypeParamID v ∈ ValueParamID

Figure 5: Extended Identifiers

Note that, while the Pony compiler supports generic types parametrised on other types, the
formal model does not yet support these generic types[24]. Thus, we extend the syntax to
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consider types parametrised on both types and values.

We first consider the extensions required to accommodate for type parameters. We introduce
a new syntax rule for defining Constraints; these are used to constrain the type parameters
such that the supplied parameter is a subtype of the constraint. These constraints may be
concrete types or they may be other parameters as can be seen in the TypeConstraint rule.
The TypeConstraint allows us to constrain a type parameter to be a subtype of the type
provided upon declaration of the generic type. These constraints are part of the definition
of TypeParam, a rule which is used to augment ClassDef , ActorDef , Ctor, Func and
Behv such that we can construct parametric definitions of classes, actors and methods.
Part of these parametric definitions require that our fields can now be of the type defined
by the parameter. Thus we change the Field rule to permit such definitions. Finally, to
allow us to instantiate these templates, we define TypeArg which may be a Constraint.
These type arguments can be seen to be used in Expr as we can now also supply a type to
an actor, class or method definition so that we can reify them to obtain a concrete definition.

The extended syntax gives some indication as to which parts of the type system and com-
piler will need to be altered to support value dependent types as a new language feature.
Firstly, we need to extend type parameters to permit value parameters; this can be seen in
the definition of TypeParam. We permit a TypeParam to be either a TypeConstraint or
a V alueConstraint, allowing us to distinguish between which kind of parameter we expect.
A V alueConstraint allows us to expect a value parameter of a certain type. Note that we
could not omit the type constraint of the value parameter otherwise we would not know the
type of the value in the template definition and thus we could not type check the template.
It would be possible to omit the constraint of TypeConstraint (although here we do not)
as this would denote that we permit any type.

In a similar manner to parameters we must also extend type arguments so that we can
instantiate types using values. This can be seen in the definition of Expr; this definition
has been extended such that we can provide type arguments to methods, behaviours and
constructors. Notice that the definition of TypeArg allows us to provide either a Constraint
or an Expr as a type argument; Expr allowing us to provide values as type arguments.

Also, observe that Expr has been extended so that we can use V alueParamIDs in ex-
pressions, these can be used with classes and methods which are parametrised on values.
To utilise parametric definition will require replacement of identifiers by their respective
provided arguments.

To utilise parametrised types will also require evaluation of value argument expressions as
we will require statically known values to utilise these types. This highlights that we will
need to include evaluation of expressions within our type system.
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We can surmise from these extensions that we will have to extend the compiler to perform
at least the following:

• Extended syntax to incorporate value parameters and arguments for types.

• Reification of definitions; replacing parameter references with argument values.

• Static evaluation of expressions.

We aim to make such changes that are useful and intuitive to a developer, including clear
syntax and semantics when evaluating compile-time expressions which match their runtime
counterpart.

We now go on to detail a reduced subset of the Pony BNF adopted by the compiler in
fig. 6. This syntax extends beyond the abstract syntax presented in fig. 2, for example in
fig. 6 we distinguish between ’var’, ’let’ and ’embed’ (rule 〈pattern〉). Figure 6 includes
the extensions necessary for value dependent types (which have been highlighted). The
rules which are of note are 〈typearg〉 and 〈term〉; I have extended both of these rules to
include an alternative of ′#′〈postfix〉. The extensions to these rules relate back to fig. 4 in
that we can now provide value arguments to parametrised types. This reflects the similar
change to the Expr rule in fig. 4. In this BNF description we make no distinction between
a TypeParamID and V alueParamID. This can be seen in the definition of 〈typeparam〉
which uses an ID to capture both cases. The lack of a distinction between a type identifier
and value identifier does not present ambiguity in the compiler. Pony avoids the ambiguity
by adopting the convention that all types must begin with an uppercase letter and variables
may not begin with an uppercase letter. This convention means we can always distinguish
between the two kinds of identifiers.

We use the ′#′ to denote compile-time expressions. This syntax is used to indicate that the
expression should be evaluated by the compiler (possibly failing as the expression was not
possible to evaluate at compile-time). A developer should be aware that the ′#′ compiler
directive behaves like an operator with the weakest precedence. Therefore an expression
such as # (C1.create(2)).string() behaves like # ((C1.create(2)).string()), pars-
ing the entire expression as a compile-time expression.

Finally, note that, for convenience, I have also extend the syntax to allow programmers to
write literal Vectors. This syntax can be seen in the highlighted rule in 〈atom〉. We will
discuss Vectors further in section 6.

Now that we have discussed the syntax for this extension, we go on to explore how value-
dependent types have been supported in the compiler. We will look, first, at compile-time
expressions in section 4 and then how they are used to extend Pony’s type system with
value-dependent types in section 5. We then look at how we have adopted value-dependent
types to extend the Pony standard library with a new Vector class in section 6.
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〈class def 〉 ::= (’interface’ | ’trait’ | ’class’ | ’actor’) 〈cap〉? ID 〈typeparams〉? 〈members〉

〈members〉 ::= 〈field〉* 〈method〉*

〈field〉 ::= (’var’ | ’let’) ID ’:’ 〈type〉 (’=’ 〈infix 〉)?

〈method〉 ::= (’fun’ | ’be’ | ’new’) 〈cap〉? ID 〈typeparams〉?
’(’ 〈params〉? ’)’ (’:’ 〈type〉)? (’=>’ 〈exprseq〉)?

〈exprseq〉 ::= 〈assignment〉 (〈exprseq〉)?

〈assignment〉 ::= 〈infix 〉 (’=’ 〈assignment〉)?

〈infix 〉 ::= 〈term〉 (〈binop〉)*

〈binop〉 ::= (’+’ | ’-’) 〈term〉

〈term〉 ::= ’if’ 〈exprseq〉 ’then’ 〈exprseq〉 (〈elseif 〉 | (’else’ 〈exprseq〉))? ’end’
| ’while’ 〈exprseq〉 ’do’ 〈exprseq〉 (’else’ 〈exprseq〉)? ’end’
| 〈pattern〉
| ’#’ 〈postfix 〉

〈elseif 〉 ::= ’elseif’ 〈exprseq〉 ’then’ 〈exprseq〉 (〈elseif 〉 | (’else’ 〈exprseq〉))?

〈pattern〉 ::= (’var’ | ’let’ | ’embed’) ID (’:’ 〈type〉)?
| 〈parampattern〉

〈parampattern〉 ::= (’not’ | ’-’) 〈parampattern〉
| 〈postfix 〉

〈postfix 〉 ::= 〈atom〉 (〈dot〉 | 〈typeargs〉 | 〈call〉)*

〈call〉 ::= ’(’ 〈positional〉? ’)’

〈dot〉 ::= ’.’ ID

〈atom〉 ::= ID | ’this’ | 〈literal〉
| ’[’ (’as’ 〈type〉 ’:’)? 〈exprseq〉 (’,’ 〈exprseq〉)* ’]’
| ’{’ (’as’ 〈type〉 ’:’)? 〈exprseq〉 (’,’ 〈exprseq〉)* ’}’

〈postional〉 ::= 〈exprseq〉 (’,’ 〈exprseq〉)*

〈type〉 ::= ID 〈typeargs〉? 〈cap〉? (’ˆ’ | ’ !’)?

〈cap〉 ::= ’iso’ | ’trn’ | ’ref’ | ’val’ | ’box’ | ’tag’

〈typeargs〉 ::= ’[’ 〈typearg〉 (’,’ 〈typearg〉)* ’]’

〈typearg〉 ::= 〈type〉 | 〈literal〉 | ’#’ 〈postfix 〉

〈typeparams〉 ::= ’[’ 〈typeparam〉 (’,’ 〈typeparam〉)* ’]’

〈typeparam〉 ::= ID (’:’ 〈type〉)? (’=’ 〈typearg〉)?

〈params〉 ::= 〈param〉 (’,’ (〈param〉)*

〈param〉 ::= (〈parampattern〉 | ’ ’) (’:’ 〈type〉)? (’=’ infix)?

〈literal〉 ::= ’true’ | ’false’ | INT | FLOAT | STRING

Figure 6: Reduced BNF



4 Compile Time-Expressions

We must consider the rules that allow us to know that a expression is a compile-time
expression. We also need to consider which capabilities we allow a compile-time expression
to have and incorporate. In the following sections I will discuss the rules which must be
followed in compile-time expressions. I will also describe how I have implemented a pseudo-
interpreter which is used by the compiler to evaluate compile-time expressions.

4.1 Evaluation of Compile-Time Expressions

To develop value-dependent types requires a means by which the compiler can know, stat-
ically, values which are passed to instantiate a class. To allow greater flexibility in these
types the compiler also requires the ability to evaluate expressions which involve such stat-
ically known values. Consider the return type of add from the Vector API which can be
found in section 6.4:

1 Vector[this ->A!, #(_size + _size ’)]^

The type in the above requires us to be able to statically evaluate #(_size + _size’).

We need not restrict these compile time expressions to appear within type arguments only.
We can see in fig. 6 that the Pony syntax has been extended to permit compile-time ex-
pressions wherever a 〈term〉 is expected. This allows a developer to request that some of
their code is evaluated at compile-time.

Developing a means for evaluating expressions at compile-time relied on two observations:

1. Pony programs are parsed to an intermediate AST representation on which the com-
piler performs all of its passes.

2. Evaluation of compile-time expressions is, in essence, rewriting parts of the AST to a
value that the expression would evaluate to at runtime.

From these observations we can conclude that we can build a pseudo-interpreter which op-
erates on the AST representation of expressions and rewrites expressions to their evaluated
equivalent. We may then embed this pseudo-interpreter into the compiler and use it to
evaluate compile-time expressions during compilation.

Alongside the concerns of how to build an interpreter that evaluates compile-time expres-
sions, we must also consider at what stage of compilation we attempt evaluation of such
expressions. An implementation should be able to detect type errors and not attempt eval-
uation of expressions with such errors. Take the following expressions which are not type
safe:

1 let x: U32 = #(1 and false)

2 let y: U32 = #(U32 (16) and true)
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Both of the above compile-time expressions have type errors, therefore the compiler should
not attempt to evaluate the expressions.

Finally, we impose the restriction that all compile-time expression must result in a val

capability value. The expression within a compile-time expression does not necessarily have
to be be of val capability however the evaluated result must be recoverable to a val. This
recovery means that the capability of the value must be able to seen as a val capability.
We will discuss this restriction further in sections 4.1.3 and 5

4.1.1 Primitives

I have considered the primitive literal integer, floating-point, boolean and string values to
be compile-time expressions as their value is known statically. Each of these literals has
an internal representation in the compiler. integers are represented using 128-bit lexical
unsigned integers (a struct of 2 64-bit unsigned integers). Floating-point values are repre-
sented using double-precision floating-point values. Boolean values are represented using
two identifier tokens, namely TK_TRUE and TK_FALSE. Finally, strings are represented using
C-style strings.

The values are used to represent literals for the classes such as U32, I64, F32, Bool and
String (among others) which appear in the Pony standard library. The class for each of
these values define a set of methods used to perform operations using these values. I also
consider the methods defined on these classes to be compile-time expressions.

To evaluate these methods, I have implemented that the interpreter maintains a method-
lookup table which maps a pair of type name and function name to a C function. These
bespoke C functions inspect the AST which represents the expression and builds a new node
with the appropriate result. The original expression is then replaced with the resulting node.

This means that we can write programs such as the following:

1 let x: U32 = #(7 + 42)

The expression is evaluated during compilation rewriting the AST as follows:
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=

let

"x"

#

call

positionalargs

42

funref

7 "add"

=⇒

=

let

"x"

49

Figure 7: AST rewriting

and so we generate code for the following:

1 let x: U32 = 49

An issue with implementing this is demonstrated in the following example:

1 class C1

2 fun apply(): U32 =>

3 #(1 + 2)

Type-checking is performed from the leaves of the AST and progresses up towards the root.
This has the effect that we do not know the type of neither 1 nor 2 as we see these nodes
before seeing the context in which they are used; these literals could have any literal Number
type (e.g. I32, U64, etc.).

A solution to this lies in the assumption that all of these integer values work on the same
underlying representation, the 128-bit lexical integer (floats and integers use different tokens
and so we can distinguish which representation is to be used during evaluation). This integer
representation can be used to perform arithmetic and bitwise operations to obtain evaluated
expressions. One issue that arose from this is demonstrated in the following example:

1 let x: I32 = -1

2 let y: I32 = #(-1)

The assignment in line 1 works as the type of 1 is inferred to be an I32, which is within
the range of an I32, after which the negation operation is executed on 1. However, the
assignment at line 2 is subtly different as the negation is applied to 1. The negation results
in a node which is the largest 128-bit value, which is out of range for an I32. This required
manipulation of the lexical integers so that the interpreter could track whether a value was
believed to be negative or not. This allowed the compiler to check whether a value or its
negated counterpart (if necessary) was within range of the data type.
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4.1.2 Compile-Time Variables

It is also possible to track the value of some variables throughout a program; I now define
which variables can be used within compile-time expressions. Take the following example:

1 let x: U32 = # 4

2 let z: U32 = # x

3

4 var y: U32 = # 17

5 y = 4

6 let p: U32 = # y

Recall from section 2.1.2 the distinction between let and var; let constants may not be
reassigned, whereas we may reassign to a var variable as we see fit.

The assignments at lines 1 and 2 should succeed as both 4 and the value of x are known at
compile time. These values are known at compile-time as a result of two facts:

1. x is a let constant and therefore cannot be reassigned

2. The right-hand side of both expressions are compile-time expressions and therefore
the compiler knows their values.

Contrast line 2 with the assignment at line 6; evaluation of # y will fail as y is a var variable.
Indeed we can see that y is reassigned at line 3 and so the compiler would no longer know
the value of y. Although determining the value of y in the above is simple, We impose
the restriction that var variables are not permitted in compile-time expression so that the
compiler is not required to track all assignments to these variables. Consider the following:

1 var i: U32 = # 0

2 while i < 10 do

3 i = #(i + 1)

4 end

Here, the AST could not simply be written to evaluate #(i + 1) at compile-time as the
value of i changes on each iteration of the loop. Disallowing var variables prevents us
having to support this case.

However, it is possible to track the value of var variables in certain contexts. Consider the
following:

1 # (var i: USize = 3

2 i = i * i

3 i = i + 10)

In the above example the declaration and all assignments to i are encapsulated within the
compile-time expressions, thus such expressions should be legal.

Note that the following expressions is disallowed,
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1 # (var i: USize = 3

2 i = i * i

3 i = i + 10)

4 let z: USize = i

This is because the i variable will not exist when we assign the value to z. The first expres-
sion will have been re-written to its result, thus removing the variable i from the program.
Therefore the reference to i is an error. This shows that compile-time expressions require
their own scopes to avoid the issue described.

I now define some rules on the variables we can use within compile-time expressions;

• let constants which have been assigned compile-time expressions are usable within compile-
time expressions.

• var variables declared within compile-time expressions are usable within the same compile-
time expression.

These rules encapsulate the circumstances in which the compiler can track the value of
constants and variables.

The compiler uses frames for type-checking. These handle scoping and provide a symbol
table for each scope so as to track the definition of variables and their assigned types. I
have extended this so that a symbol can also include a value; the extra value allows the
symbol table to map a variable or constant to a given value. A mapping is only created or
updated when the variable or constant is permitted in compile-time expressions under the
above rules.

4.1.3 Objects and Constructors

We can extend the values that can exist in a compile-time representation beyond just
primitive values and also develop compile-time objects. Take the following Pony program:

1 class C1

2 let x: U32

3 let y: Bool

4 new val create(x’: U32 , y’: Bool) =>

5 x = x’

6 y = y’

7

8 class C2

9 let c: C1 val

10 new val create(c’: C1 val) => c = c’

11

12 actor Main

13 new create(env: Env) =>

14 let c = # C2(C1(12, true))
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In this example we define two classes C1 and C2; C1 has U32 and Bool fields and C2 has a
C1 field. At line 11 we then construct two compile-time objects, a C1 and C2 object.

I have constructed an internal representation of objects which is an AST node that stores the
name of the object and the value of each member. Also stored with the object is a symbol
table whose purpose will described shortly. The AST representation of the compile-time
object on line 14 in the example above can be seen in fig. 8.

constant object

"C2 $1$1"

name

members

constant object

"C1 $1$0"

name

members

12 true

C1

type

C2

type

Figure 8: AST representation of # C2(C1(12, true))evaluated

Each object is given a hygienic name; a name that is guaranteed not to clash with any other
name. This is constructed by mangling together the type and a counter kept for each pack-
age. We provide a name for the objects to allow for identity equivalence of objects. Also, we
require a name so that we can refer to the constructed globals in the LLVM IR. An example
of this hygienic naming is visible in fig. 8. The C1(12, true) object has the name C1_$1$0.

The fields of compile-time objects are obtained by evaluating the requested constructor
for the object. Assigning a value to a field in a constructors maps the field name to the
field value in the symbol-table of the object. After calling the constructor the fields are
inspected and their values appended to the members node of the object. There is no dupli-
cation of data here as the nodes are referenced to by pointers, the members as children is
an implementation choice to avoid orphan nodes as this can cause issues during compilation
when traversing the AST. Storing the symbol tables allows us to evaluate field lookups in
compile-time expressions by looking up the value mapped to by the requested field.

These compile-time objects are lowered into the LLVM IR as global constants, these are
statically initialised values which are placed in the read-only section of memory and as such
can never be modified [6]. Constructing these values as global constants is necessary as
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these objects may be used when constructing a dependent type, such values need to be
known statically to construct a definition of the class thus they must be global. We are also
safe in making the values appear in the read-only data section (and thus immutable) as
these objects are guaranteed to have val capability and therefore will never change during
runtime.

The generated LLVM IR for the example described above is reproduced in the following:

1 @"C1_$1$0"=internal constant %C1 { %C1_Desc* @C1_Desc, i32 12, i1 true }

2 @"C2_$1$1"=internal constant %C2 { %C2_Desc* @C2_Desc, %C1* @"C1_$1$0" }

Here we statically define two objects, the first is @"C1_$1$0" with the field values 12 and
true. Similarly, the object @"C2_$1$1" is defined with the member @"C1_$1$0".

The capabilities involved in compile-expressions must also be considered; the capabilities of
both the value returned as a result of a compile time expression and the capabilities of val-
ues we can use within the expression. We explore this in the context of compile time objects.

Take the following example:

1 class Student

2 let age: U32

3 new val create(age ’: U32) => age = age ’

4

5 actor Main

6 new create(env: Env) =>

7 let s1: Student val = # Student (13)

8 let age = # s1.age

Here we first define a class Student which has a single U32 field. We also provide a con-
structor, create(), which returns a Student of val capability.

At line 7 we request a compile-time Student, we then read the Student’s age in the compile-
time expression at line 8. The expression at line 8 demonstrates why compile-time values
are required to be of val capability; for the compiler to to know the value of s1.age at
compile-time, it must be the case that the value has not changed since its definition. In
other words, we require that compile-time values are immutable, compare this with both
the functional immutable objects in Idris and constexpr variables in C++.

For the purposes of this exploration, consider that ref capability values were permitted in
compile-time expressions and we constructed the following program:
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1 class Student

2 let age: U32

3 new ref create(age ’: U32) => age = age ’

4

5 actor Main

6 new create(env: Env) =>

7 let s1: Student ref = # Student (13)

8 s1.age = 47

9 let age = # s1.age

In this example we alter the value of the age field and then attempt to read this value in
the compile-time expression at line 9. Similarly to var variables, the compiler would have
to track all writes to the s1 object to obtain the correct result (i.e. 47). This motivates the
conclusions that the result of a compile-time expressions should have val capability.

We do not make any restriction on the capabilities which may appear inside of the compile-
time expressions. We are free to provide this freedom as we only permit compile-time
variables to be used across different compile-time expressions, the capability of which must
be val and are therefore immutable. All other objects must have been constructed within
the current compile-time expression and therefore we can track their values. Currently
Ponyta does not support mutable data structures, disallowing compile-time object with
var fields. Mutable compile-time objects is presented as an extension in section 11.3.

4.1.4 Method Calls

We extend compile-time expressions to include evaluation of method calls. Methods on
primitive values are handled by defining methods internal to the compiler which know how
to appropriately rewrite the AST as discussed in section 4.1.1.

The evaluation of compile-time methods extends also to user defined methods. Take the
following program:

1 actor Main

2 fun foo(x: U32 , y: U32 , z: U32): U32 =>

3 (x * y) + z

4

5 new create(env: Env) =>

6 let m = # foo(2, 8, 3)

First note how we have so far detailed a method for evaluating compile-time expressions
which works on the AST representation of an expression. Secondly note how we have an
AST representation of the method foo. Therefore, to extend the Pony interpreter to sup-
port method calls involves mapping parameters to values and evaluating the body of the
function like any other compile-time expression.

One can also call methods on compile-time values such as in the following:
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1 class C1

2 let x: U32

3

4 new create(x’: U32) => x = x’

5

6 fun apply(): U32 => x + x

7

8 actor Main

9 new create(env: Env) =>

10 # C1(42).apply()

In this example, the receiver is a newly constructed C1 object with a U32 field assigned the
value 42. The method evaluation continues as described earlier, however in the interpreter
we first note what the receiving object is so that we can look up the value of fields that are
used within method calls.

The interpreter does not currently support methods which manipulate the state of an object,
this is why we impose the restriction that compile-time objects may not have var fields.

4.1.5 Compile-Time Errors and Static Assertions

Assertions in languages such as Java and C++ result in an aborting call from the program
if the predicate to the assertion results in false. For example:

1 int main()

2 {

3 assert(false); // this will cause the program to abort at runtime

4 }

C++ also provides a static_assert which must pass at compile time for a program to
successfully compile. An example follows:

1 int main()

2 {

3 static_assert(false); // this will fail compilation

4 }

There is no notion of assertions in Pony however we are able to throw errors from certain
contexts and use these errors for control flow and error handling. These errors and control
flow are demonstrated in the following:

1 primitive Assert

2 fun apply(b: Bool) ? => if not b then error end

3

4 actor Main

5 new create(env: Env) =>

6 let i: USize = 13

7 try

8 Assert(i < 10) // this expression will throw an error

9 else

10 env.err.print("Error!")

11 end
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In line 1 we define a primitive Assert which takes a single Bool argument and if the ar-
gument is not true then an error is thrown. The fact that apply() can result in error

requires the method to be partial, denoted by ?. Calling the apply() method at line 8
requires that we surround the call in a try expression.

We now consider the result of attempting to evaluate error expressions statically. If a
compile-time expression encounters an error expression during compilation then this re-
sult is propagated up to the enclosing expression and if there is any mechanism designed
to handle this (i.e. a try expression) then this is used. If no mechanism has been provided
to control flow through the expression then error will be the result of the compile-time
expression. If a compile-time expression results in error then compilation is aborted and
an error reported detailing the origin of the error.

This approach allows to makes static assertions; take the following example:

1 actor Main

2 new create(env: Env) =>

3 let i: USize = # 13

4 # Assert(i < 10) // this expression will cause compilation to fail

Here we define i as a compile-time constant and statically assert that i < 10. This ex-
pression will cause compilation to be aborted as the expression will result in an error. Note
also that we are able to omit the try expression surrounding the call to apply(), this is
as the call to apply() has been evaluated at compile time and thus cannot throw an error
dynamically.

4.1.6 Other Compile-Time Expressions

I have detailed in this report the considerations of most compile-time expressions, focusing
on those which are of most interest. It should be noted that the interpreter supports more
expressions such as sequencing and control flow structures (e.g if and while expressions)
that can be used within compile-time expressions. These have been implemented to permit
using the same methods both statically and dynamically more flexibly by a developer. We
do not explore these expressions further for conciseness.

4.1.7 Caching Evaluations

To ensure that the same expression results in the same object on every evaluation and also
as an optimisation to obtain better compilation times, the interpreter caches the results of
evaluating expressions. This caching maps an expression to its evaluated result. When the
interpreter attempts to evaluate a compile-time expression the cache is first queried to test
if the expression has been mapped to a result, if so that cached result is returned.

This can be used to give memoisation in recursive functions. Consider the following defini-
tion of the Fibonacci sequence:
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1 fun fib(n: USize): USize =>

2 if n < 2 then

3 n

4 else

5 fib(n - 1) + fib(n - 2)

6 end

If we call this function as # fib(3), we will invoke the call fib(2) which in turn will invoke
the call fib(0) and fib(1), caching each result. To evaluate fib(3) we will also invoke
fib(1), however we have previously evaluated this call so we can simply return the cached
result.

This makes the evaluation of calls such as fib(50) cheaper when compared with the dy-
namic call as we have memoisation of calls.

Caching the result of expressions means that when we evaluate two expressions which are
the same (based on AST equivalence) we will get the same result. It is in this way that we
ensure that compile-time expressions which are duplicated (such as when reifying a trait to
include the definition of methods in a class) have neither the issue of repeated execution
nor evaluation to different objects.

4.2 Rules Summary

We can summarise the rules for compile-time expressions as follows:

• Primitive literal values such as integers, floating-point values, boolean and strings are
compile-time values.

• Basic (e.g. add, and) methods defined for these primitives are compile-time expressions.

• let constants which have been assigned compile-time expressions are usable within compile-
time expressions.

• var variables declared within compile-time expressions are usable within compile-time
expressions.

• Only classes defined without using var fields may be instantiated as compile-time objects.

• Compile-time expressions must be recoverable to val capability values.

• Field lookups on compile-time objects are compile-time expressions.

• Methods built using these rules, and using compile-time values for arguments, can be
used within compile-time expressions.

• If the result of a compile-time expression is an error then compilation fails.

• Actors and behaviours cannot be used in compile-time expressions.
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5 Value-Dependent Types

With the notion of compile-time expressions in-place we can begin discussing extending
Pony’s type system to incorporate value-dependent types. We discussed the additional
syntax both abstractly and using the BNF adopted by the compiler in section 3. Consider
an example of such syntax in the following:

1 class CStatic[n: USize]

2 fun apply(): USize => n

3

4 actor Main

5 new create(env: Env) =>

6 let c : CStatic [2] = CStatic [2]

Figure 9: Value-Dependent class CStatic

Line 1 describes the class CStatic which depends on a value of type USize. We refer to
the value on which CStatic has been parametrised as n in the definition of the class, this
can be seen on line 2. The definition of CStatic looks very similar to if we had defined n

to be a field of CStatic which was initialised in the constructor. For example:

1 class CDynamic

2 let x: USize

3

4 new create(x’: USize) => x = x’

5

6 fun apply(): USize => x

7

8 actor Main

9 new create(env: Env) =>

10 let c : CDynamic = CDynamic (2)

Figure 10: Class CDynamic with a field

There is an important distinction between fig. 9 and fig. 10, namely the difference between
static and dynamic information. In fig. 9 the definition of n is provided statically on line
6. In fact the definition of CStatic in fig. 9 acts as a template for a definition of a class
which will be constructed when the template is instantiated with a value replacing n. We
reify the class CStatic using the type arguments, replacing the type parameters, therefore
in fig. 9 we reify CStatic[2] to create a definition with 2 replacing n, giving us a definition
of CStatic[2] which is presented in the following:

1 class CStatic [2]

2 fun apply(): USize => 2
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Here we can see that we do not require any field for n as in fig. 10; we do not require the field
as n has been replaced in the body of apply(). This replacement of a reference by a value
to construct a new definition of a type is the meaning we give to the term value-dependent
type in Pony. The type that we construct, its fields and methods depend on the value which
we provide.

I will now described how I have implemented this in the compiler. We first have an AST
which represents the generic class C1Static[n: USize] which is detailed in fig. 11

class

"CStatic" typeparams

valueformalparam

"n" USize

members

fun

"apply" USize valueformalparamref

"n"

...

Figure 11: AST representation of CStatic[n: USize]

In fig. 11 we can see that we have a valueformalparam node, this describes a value param-
eter that is required to instantiate a templated class of function. The valueformalparam

node tracks both the name of the parameter and its constraint (here "n" and USize re-
spectively). We can also observe that class AST has a fun subtree which has child nodes
detailing the name, return type and body of the method. The body subtree has a single
node valueformalparamref which is used to mark a reference to the value parameter (here
"n"). These valueformalparamref nodes are initially constructed in the ”names” pass of
compilation by looking up the definition of a reference and transforming the node accord-
ingly.

We can construct a instance of the CStatic[n: USize] class such as follows:

1 CStatic [2]. create ().apply ()

Calling methods and constructors with instantiated types leads to reifiying the methods
using the type arguments supplied. For example, the apply() method will be reified to the
AST shown in fig. 12. This reification replaces all references to n with the provided type
argument
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fun

"apply" USize 2

new

"create" CStatic

typeargs

valueformalarg

2

true

Figure 12: AST representation of reified apply() and create()

These reified methods are used for subtyping to check validity of arguments and return
types. This can be seen in the AST representation of create(), the middle subtree rep-
resent the return type of the constructor. Here we can see that the return type of the
constructor has been reified to CStatic[2].

The code generated for the value-dependent types reflects the value on which they depend
on. Observe the the following two instantiations of CStatic and their respective calls to
apply():

1 actor Main

2 new create(env: Env) =>

3 CStatic [8]. apply()

4 CStatic [63]. apply()

Here we have instantiated CStatic[n: USize] with two different type argument, namely
8 and 63. We then call apply() on each of these constructed objects, It is important to
note that this will generate two different definitions of the function apply, one where n has
been reified to 8 and another where n has been reified to 63.

As we have already discussed, these two instantiations reify to two distinct definitions of
CStatic[8] and CStatic[63]. We generate code for these two classes, constructing unique
names and definitions by mangling the value argument into the type name. These two
distinct types can be seen by observing the following generate LLVM IR:

1 %CStatic_8 = type { %CStatic_8_Desc* }

2 %CStatic_63 = type { %CStatic_63_Desc* }

Note then that as we have replaced all references to the value parameters in the AST
representation of methods, we may use all of the existing code generation. Therefore we
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interact with value-dependent types in the same way as any other data at the LLVM IR
level. The two definitions of apply() are shown in the following LLVM IR:

1 define fastcc i64 @CStatic_8_val_apply_Z(%CStatic_8* nocapture readnone

dereferenceable (8) %this) {

2 entry:

3 ret i64 8

4 }

5

6 define fastcc i64 @CStatic_63_val_apply_Z(%CStatic_63* nocapture readnone

dereferenceable (8) %this) {

7 entry:

8 ret i64 63

9 }

I now introduce an example of a type which depends on an object value:

1 class C1

2 let x: U32

3 new create(x’: U32) => x = x’

4

5 class C2[c: C1 val]

6 fun apply(): C1 val => c

7

8 actor Main

9 new create(env: Env) =>

10 let c2 = C2[# C1(48)]

At line 9 in the above we instantiate C2 with an object of type C1. Notice that the provided
argument is a compile-time object. We will now briefly discuss the capabilities of value
parameters. For similar reasons to those discussed in section 4.1.3, we require that all value
parameters are of val capability. This is similar to how in C++ template arguments must
be statically know and immutable (although in C++ we may instantiate an immutable
pointer to a mutable value). Notice that we also get this guarantee in Idris for free as
the language is functional and thus all data is immutable. We enforce this restriction as
we require that data on which a type depends is immutable, a guarantee provided by the
val capability. We require that the data is immutable so that we can statically use the
type argument in the compile-time expressions defined in the class, we see an example of
this in section 7. We could allow mutable references to type arguments but we would not
statically known any information about this value. Furthermore, we would have to ensure
that we used the correct viewpoint adaptation rules of value parameters to ensure we do not
invalidate Pony’s guarantee of no data races. Otherwise, we could introduce types which
provide access to mutable values in multiple actors. As mutable values do not provide much
use as value parameters, no more than dynamically passing the value, and to ensure that
values remain constant we require that value parameters have val capability.

Recall from section 4 that the result of a compile-time expression must be val, therefore as
all type arguments must be compile-time expressions we can only instantiate a type with
val type arguments.
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We return again to our example. Any instantiation of C2 depends on an object of type C1;
in fact,it depends on a particular instance of a C1 object. This is reflected once again in the
reified AST and generated code:

1 @"C1_$1$0" = internal constant %C1 { %C1_Desc* @C1_Desc, i32 48 }

2 %"C2_C1_$1$0" = type { %"C2_C1_$1$0_Desc"* }

The first line, in the above, is the static object @"C1_$1$0", The second line is the type of
C2[# C1(48)], where the type name has be mangled together with the name of the object
constructed by # C1(48), namely @"C1_$1$0". Note here that, as mentioned earlier, C2
does not have the object has part of the structure, the type has only a description header.
The object has already been used to reify the methods as necessary. This reification can be
seen in the following:

1 define fastcc %C1* @"C2_C1_$1$0_ref_apply_o"(%"C2_C1_$1$0"*

dereferenceable (8) %this) {

2 entry:

3 %this1 = alloca %"C2_C1_$1$0"*

4 store %"C2_C1_$1$0"* %this, %"C2_C1_$1$0"** %this1

5 ret %C1* @"C1_$1$0"

6 }

Line 5 is the line which is of interest here. We directly refer to the global @"C1_$1$0, clearly
distinguishing the difference between value-dependent types and values passed as arguments.

We now go on to consider how the type system incorporates these new types.

5.1 Equivalent Value-Dependent Types

A very important consideration for value-dependent types is what it means for two value-
dependent types to be equivalent. We consider two value-dependent types to be equivalent
using the same notion of equivalent types used for generics in Pony. This is that the
template type and all type arguments are the same; recall from section 2.1.5 that Pony is
type invariant. We introduce the extra constraint on value-dependent types which is that
value arguments must be equal. Consider the following program:

1 class C1[n: USize]

2

3 actor Main

4 new create(env: Env) =>

5 let c: C1[4] = C1[4] // successfully compiles

6 let c: C1[4] = C1[72] // fails to compile as 4 != 72

There are subtleties in a notion of equality between value arguments, one such subtlety
is that two expressions which are not the same may in fact result in the same value. For
example:

1 actor Main

2 new create(env: Env) =>

3 let c: C1[4] = C1[# (1 + 3)] // successfully compiles
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In the above assignment the two instantiations of C1 use different expressions to denote
the same value. Therefore, before we check equivalence between values we first attempt
evaluation of expressions to reduce expressions to their result.

However, evaluating expressions to a value is not always possible. We may be type-checking
a template definition. In the template definition we may be working with unknown values
that will be provided later. I now go on to describe the notion of equality between value
arguments and type-checking value-dependent classes and functions.

5.2 Equality of Compile-Time Expressions

We defined subtyping of value-dependent types to be based on equality of values. We must
be specific about the meaning of equality and when such equality applies. Consider the
following example:

1 class C1[n: U32]

2

3 class C2[n: U32 , m: U32]

4 let c: C1[n] = C1[m]

5

6 actor Main

7 new create(env: Env) =>

8 let c1 = C2[1, 1]

9 let c2 = C2[72, 13]

We must consider how to handle such a program. Consider first the definition of c1 at line
8. We instantiate the class C2 with the arguments [1, 1], thus the reified class will look
like:

1 class C2[1, 1]

2 let c: C1[1] = C1[1]

This looks to be a valid and well-formed class definition that should be accepted at type
checking. Consider now the definition of c2 at line 9. Here we instantiate C2 with different
arguments, namely [72, 13]. Again, let us observe the reified class:

1 class C2[72, 13]

2 let c: C1[72] = C1[13]

Clearly, such a definition should be rejected by the type checker as C1[13] is not a subtype
of C1[72].

This leads us to consider how permissive we should be with type checking and here we
propose some possible solutions for handling the above issue.

5.2.1 Type Checking on Reification

One of the most permissive type checking approaches is obtained by only type checking
the class/method upon reification. The templated method is not fully type checked and
permits the assignment:
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1 let c: C1[n] = C1[m]

We can instantiate the class, which constructs a reified definition, as in the following:

1 class C2[1, 1]

2 let c: C1[1] = C1[1]

The reified definition is type checked again and found to be type safe. If only this reification
were used then the program would compile. In other words, the following program would
be permitted.

1 actor Main

2 new create(env: Env) =>

3 let c1 = C2[1, 1]

Conversely, the following program would be disallowed:

1 actor Main

2 new create(env: Env) =>

3 let c2 = C2[72, 13]

Due to the reification at line 3 creating a definition which would fail type checking.

This style of typechecking is inspired by the C++ lazy type checking of templates. Take
the following C++ class:

1 template <size_t n>

2 class C1 {}

3

4 template <size_t n, size_t m>

5 class C2

6 {

7 C1 <n> c = C1 <m>();

8 }

Without any call to the constructor of C2 the above definition would not only be allowed
but would in fact never be type checked, we would be permitted to define C2 as follows:

1 template <size_t n, size_t m>

2 class C2

3 {

4 C1 <n> c = C1 <m>();

5 bool x = 5;

6 }

A C++ compiler would only report an error when we attempted to construct an object in
the following way (for example):

1 C2 <72, 13> c;

This method has the benefits of being the most permissive for programmers as well as only
requiring equality between known values instead of unknowns type parameters. However, a
class or method body will require type checking on every instantiation. Such an approach
could have a noticeable impact on compilation time. Also, consider the practical appli-
cations for permitting such definitions, the above Pony example will only pass for a very
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limited number of instantiations (compare with the number of possible instantiations) and
a developer does not gain much from such a definition as they must statically know both
parameters. These arguments lead to a more restrictive approach as is described in the
following section.

5.2.2 Syntactic Equality of Expressions

Syntactic equality of expressions requires only type checking of the template definition
and does not require subsequent checks upon each reification. We allow subtyping between
values if the two values are syntactically the same. Thus, we would never allow the definition
from our earlier example due to the following assignment:

1 let c: C1[n] = C1[m]

This is disallowed as m and n are syntactically different arguments. As we disallow such
definitions at the template level, we know that the body of classes and methods are type
safe when we reify them, thus we need only replace the parameters with their arguments.

This approach is similar to a class defined as follows:

1 class C1[A, B]

2 let array: Array[A] = Array[B]

In Pony, the above definition is disallowed as no guarantee can be made about the types of
A and B.

This notion of equality leads to a similar type-checking system with generics. This approach
also requires the fewest passes for type-checking whilst not causing too much restriction to
a developers flexibility in defining value-dependent types. For these reasons we adopt this
notion of equality between type arguments.

5.2.3 Semantic Equality of Expressions

Semantic equality of expressions is an extension of the previous solution; we could go on to
test whether two expressions are considered to be equivalent, for example n + m and m + n.
Note that this approach is only required when we type check only the template definition
and not the reified class, otherwise we could simply evaluate two reified expressions and
test that we get the same value.

5.2.4 Equality of Compile-Time Objects

Under the syntactic equality of expressions we also need to consider what it means for two
compile-time objects to be equivalent. Consider the following examples:
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1 class C1

2

3 class C2[c: C1]

4

5 class C3

6 let c2: C2[# C1] = C2[# C1]

This example prompts us to consider whether the assignment at line 6 is valid. This becomes
a question of how we consider two object values to be equal. Two possible solutions to
equivalence follow.

Object Structural Equivalence

This would consider two values to be equal if all of their fields were considered to be equal,
this would mean that the example above would be considered valid as the two C1 objects
would be equivalent.

Object Identity Equivalence

This is more a notion of whether two objects are the same object. This would suggest that
the example above would not be valid and we would instead have to write something like:

1 class C3

2 let c1 = C1.create ()

3 let c2: C2[# c1] = C2[# c1]

This is a natural progression from section 5.2.2 where we check whether two expressions are
syntactically the same. Recall from section 4.1.3 that compile time objects are represented
with a special AST node which contains the name of a compile-time object, thus we simply
compare the names of two objects.

I have adopted identity equivalence in my implementation of Ponyta. I chose this ap-
proach as the result of compile-time expressions are cached. Therefore programs with
value-dependent types, such as the one presented when introducing object equivalence, will
result in the same object being used in each expression. Furthermore, this avoids requiring
to recurse into the AST to determine equality. Finally, this feels like a closer relation to
the generated code. If we consider the same structure to be equivalent then a type which
depends on a value could be used any different (yet equivalent) object. This will still give
the same result as the values are equivalent but would provide a slightly different meaning
to value-dependent types.

5.3 Subtyping Value-Dependent Types

I now present some of the issues and applications that the existing Pony type system presents
for Ponyta and how these have been resolved.
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5.3.1 Nominal Subtyping

As discussed in section 2.1.7, Pony supports nominal subtyping through traits. This
subtyping does not change with the introduction of value-dependent types. Therefore we
can write programs such as the following:

1 trait T1[n: USize]

2 class C1 is T1[0]

3

4 actor Main

5 fun foo(t: T1[0]) => true

6

7 new create(env: Env) => foo(C1)

5.3.2 Structural Subtyping

In section 2.1.7 we discussed possible issues, and some solutions, with structural subtyping
of value-dependent types. In keeping with the extension so far, we aim to provide some
semantics which are clear and useful to a developer but also follow the current implemen-
tation. If we first consider the following Pony program:

1 interface I1[A]

2 fun apply() =>

3 let a = Array[A]

4

5 class C1 is I1[String]

6

7 actor Main

8 fun foo(i: I1[Bool]) =>

9 i.apply()

10

11 new create(env: Env) =>

12 foo(C1)

In line 12 of this example we pass a value of type C1 when an I1[Bool] is expected. This
raises the question of whether I1[String] is a subtype of I1[Bool]. The type parameter
A does not appear in either the parameter types nor the return type of any method in I1.
Therefore, I1[Bool] and I1[String] are structurally equivalent. This equivalence means
that the above program is correct.

We will use this example for generics to help us define structural subtyping for value-
dependent types. Take the following Example:
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1 interface I1[A, n : U32]

2 fun apply(i: U32)

3

4 class C1 is I1[Student , 2]

5

6 actor Main

7 fun bar(i: I1[Student , 47])

8

9 new create(env: Env) =>

10 let c: C1 = C1.create ()

11 bar(c)

In this example, we are presented with a similar question to that of structural subtyping
with generics. Namely, is I1[Student, 2] a subtype of I1[Student, 47]. As in the pre-
vious example, the value parameter does not appear in a parameter or return type of any
method in I1. We conclude that I1[Student, 2] is a subtype of I1[Student, 47].

Note that these values can indeed affect the structure of an interface. We can affect the
structure by including the values within the types of parameters and return types, such as
in the following:

1 interface I1[n: USize]

2 fun apply(): Vector[U32 , n] =>

3 Vector[U32 , n]. undefined ()

4

5 class C1 is I1[12]

6 class C2 is I1[2]

7

8 actor Main

9 fun foo(i: I1[2]) =>

10 i.apply()

11

12 new create(env: Env) =>

13 foo(C2) // legal

14 foo(C1) // will error at compile -time

Now, as the values alter the types of the entities within I1, we have that I1[12] is not a
subtype of I1[2] nor is I1[2] a subtype of I1[12].

5.3.3 Intersection and Union Types

We discussed possible issues with respect to ambiguity introduced when using the intersec-
tion or union of value-dependent types in section 2.1.8. The example which posed an issue
is the following:

1 trait T1[n: U32]

2 fun apply(): U32 => n

3

4 class C1 is (T1[2] & T1 [73])
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We handle this in a similar way to how we check subtyping between value-dependent types.
The method apply() from T1[2] is added to C1, this is then followed by an attempt to add
apply() from T1[73] to C1. Before adding the second definition of apply() we check to
see whether a definition for apply() already exists. We will find that a definition already
exists and so we test whether this introduces an ambiguous definition.

To check for an ambiguous definition first involves determining if the definition of apply()
comes from the same trait; if not, then we will certainly introduce an ambiguous definition.
If the definition comes from the same trait, as it does in the example above, we proceed
to test for type argument equality based on AST equivalence. If the AST equivalence
succeeds, then we will not introduce any ambiguity as we have only used the same method
twice, otherwise the compiler will error stating that an ambiguous definition of apply()
in C1 has been found. This implementation has also been applied to prevent ambiguous
method bodies when inheriting from two instantiations of the same generic trait.

5.3.4 F-Bounded Polymorphism and Infinite types

We discussed F-Bounded polymorphism in section 2.1.6 and suggested that there may be
issues giving meaning to programs such as the following:

1 trait T1[x : T1[# x]]

2 fun apply(): T1[# x] => x

3

4 class C1 is T1[# C1.create ()]

5 new val create () => true

The issue being that the type of x depends on x itself. A possible solution is to consider
this to be an infinite type that cannot be constructed, the compiler can then catch this and
inform the developer that this type definition causes an error.

To explain an alternative to this requires noting the difference between a value and a
reference to that value. If we now rewrite the above definition using reference to denote
references to a value we get the following:

1 trait T1[x: T1[# reference(x)]]

Now we assign types to the two values we have in this definition, namely x and # reference

(x). we assign both of these values the type T1[# reference(x)], noting here that we
leave the value # reference(x) in the type to not have any type (attempting to assign a
type to this value would result in defining an infinite type).

We go on to instantiate this type, namely:

1 class C1 is T1[# C1.create ()]

Assume that # C1.create() evaluates to C1_$1$1. The subtyping of T1[# C1_$1$1] would
include the following methods in C1:
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1 fun apply(): T1[# C1_$1$1] => C1_$1$1

This definition would provide all C1 objects with access to some global C1 object through
the interface defined by T1. The semantics of this and the benefits that it provides to a
programmer are unclear. More research is required to see if this is a useful to include in
Ponyta. For now, we conclude that such definitions of types are not supported in Ponyta.
Currently my implementation does not warn or forbid against such definitions however
compilation will not succeed if a class like the above is defined.

5.4 Trace Function

The Pony runtime includes a garbage collector used to deallocate objects that are no longer
reachable and thus unusable. The garbage collector is based on each actor maintaining a
reference count of each reachable object.[23] These reference counts are maintained through
trace functions. One concern is whether we should trace the values provided as static
parameters for types. Take the following example:

1 class C1[s: Student]

2 fun apply: U32() => s.age

3

4 actor Main

5 new create(env: Env) =>

6 let s = # Student (42)

7 let c1 = C1[# s]

Recall from section 4.1.3 that this will construct a LLVM global constant object. These
constant objects should never be garbage collected as we may construct types which depend
on these values. We may have the case that no object has the type of a value-dependent
type, however this does not mean that we cannot have a such a value at any point in the
future. We may later construct an object typed using a value-dependent type. Therefore
we should ensure that we do not remove these types otherwise we could have definitions of
methods which will behave incorrectly at runtime, attempting to use deallocated objects.

This does mean that any compile-time object will remain in memory for the lifetime of a
program even if it is unused. Possible analysis could be made to see which objects are used
to define types, removing those which are not used to define types after they have been
used. However, the LLVM optimiser has many powerful optimisations which can be applied
to global constants that means they will in many cases be removed before constructing the
executable if possible.
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6 Vector Class

We now consider a new class for the Pony standard library which adopts such value-
dependent types. The Vector class represents a data structure of elements whose size
is both fixed and known statically. The Vector class was designed to be similar to Idris
style vectors where we know how many elements are in the vector and the vector does not
grow or shrink. The references to the elements of the Vector are embedded within the
Vector object, differing from Array objects which we will now discuss.

6.1 Layout

The Vector class is similar to the existing Array built-in for Pony. One difference is that
the allocated memory for an Array is determined at run-time and is dynamically managed,
increasing and reducing the used memory as functions are called. A result of this dynamic
memory management is that a Array manages both how many members it stores and also
the number of elements for which memory has been allocated.

A Vector is a fixed, statically known, sized memory store whose memory is allocated once.
The Vector represents something similar to the vectors found in Idris. Defining the Vector

class in this way means that the vector does not require means to track the allocated mem-
ory nor the number of elements in the vector.

Another difference between an Array and Vector is the layout of the class in memory. An
Array maintains three members; the number of elements, the amount of allocated memory
and a Pointer (which acts as an interface to memory) which points to where the elements
exist in memory. A Vectors size is known before allocation and, once allocated, will remain
the same size. These properties allows us to optimise the structure of the object and store
the elements embedded within the encapsulating object. This fundamental difference means
that a Vector[String, 2] is of a different size to that of a Vector[String, 7].

We further discuss the difference in object layout between the following Array[Student]

and Vector[Student, 4] by utilising the following Pony snippet:

1 let vector: Vector[String , 4] = {"A", "B", "C", "D"}

2 let array: Array[String] = ["A", "B", "C", "D"]

The two objects can be considered as having the following memory layouts displayed in
fig. 13. Note in particular that the Array class must store the contents externally.
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Array U32 Descriptor

0

size: USize = 4

1

alloc: USize = 4

2

ptr: Pointer[String] = a1

3

”A”

a1+0

”B”

a1+1

”C”

a1+2

”D”

a1+3

(a) Array Layout

Vector U32 4 Descriptor

0

”A”

1

”B”

2

”C”

3

”D”

4

(b) Vector Layout

Figure 13: Comparing Array and Vector layouts

6.2 Implementation

Consider the layout of an Array[A] object as described in fig. 13a. The elements of an
Array are stored through the indirection of the Pointer member. The Array[A] has 3
fields, _size, _alloc and _ptr. When we allocate an Array[A] it will always have 3 mem-
bers.

However, the class Vector[A, _size: USize] defines a class where the number of members
is unknown until instantiation of the type. Upon instantiation, say Vector[String, 7],
the Vector object will have 7 String members. We can, therefore, observe that when we
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allocate a Vector[String, 7], we must allocate at least an object large enough to accom-
modate 7 elements of type String. This requires compiler support to know how to allocate
such an object as well as support for interacting with objects of type Vector[String, 7].

There were multiple possible solutions for building the Vector[A, _size: USize], these
are as follows:

6.2.1 Embedding a Pointer[A]

This approach was inspired by the implementation of the Array class; the Array class uses
a Pointer as a means to interface with memory. Reproduced here is part of the Array class
to demonstrate such an implementation.

1 class Array[A] is Seq[A]

2 """

3 Contiguous , resizable memory to store elements of type A.

4 """

5 var _size: USize

6 var _alloc: USize

7 var _ptr: Pointer[A]

8

9 new create(len: USize = 0) =>

10 """

11 Create an array with zero elements , but space for len elements.

12 """

13 _size = 0

14 _alloc = len

15 _ptr = Pointer[A]. _alloc(len)

16

17 fun apply(i: USize): this ->A ? =>

18 """

19 Get the i-th element , raising an error if the index is out of bounds.

20 """

21 if i < _size then

22 _ptr._apply(i)

23 else

24 error

25 end

As can be seen at line 15, the _ptr is initialised through a Pointer[A].alloc(len), repre-
senting a pointer to an area of allocated memory. This allocated memory is external to the
Array[A] object as explained in fig. 13a. However, we only allocate this memory externally
in Array[A] as we do not know how large the Array will be at compile time and therefore
it must be able to grow and shrink in size.

In the case of Vectors we know the number of elements contained in the Vector, therefore
we can allocate the exact amount of memory required and store the elements internally,
avoiding a level of indirection to the elements. In the Vector case we also do not require
tracking the number of elements in the Vector nor the allocated amount of memory, thus
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giving us a more compact representation. In summary, this representation saves us 3 fields
(machine words) and a level of indirection.

We now consider the embed keyword in Pony. This keyword changes the representation of
an object in memory. Consider the following example where a field is embedded in a class:

1 class C1

2 let x: U32 = 2

3

4 class C2

5 embed c: C1 = C1

The embedded field at line 5 represents that an object of type C1, instead of a reference to
an object of type C1, is stored within an object of type C2. This is the effect that we want
in our layout of a Vector. Consider a definition of a Vector as follows:

1 class Vector[A, _size]

2 """

3 Contiguous , fixed memory to store elements of type A.

4 """

5 embed _ptr: Pointer[A]

6

7 new init(seq: Seq[A]) =>

8 """

9 Create an vector with zero elements , but space for len elements.

10 """

11 true

12

13 fun apply(i: USize): this ->A ? =>

14 """

15 Get the i-th element , raising an error if the index is out of bounds.

16 """

17 if i < _size then

18 _ptr._apply(i)

19 else

20 error

21 end

Note at line 5 we have embedded the _ptr, the effect of this is that the pointer should point
to a element within the Vector object. All element accesses are then handled through the
_ptr.

While this approach enables re-use of the Pointer[A] class and the logic for memory
manipulation, we are faced with some issues:

Allocating the Pointer[A]

We can see that _ptr is not initialised in the definition of Vector. The pointer should not
be allocated when the constructor is called as we will have already allocated the memory
when we request a new Vector. This means that the pointer should not be initialised in any
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constructor, instead the pointer should be set to point to the beginning of the Vector. An
impact of this would be that the _ptr field would be left uninitialised in a constructor (as
the compiler would handle the initialisation), requiring extra support by the type system
to ignore a violation of Pony’s requirement of no undefined or null values.

Semantics of embedding a Pointer[A]

To embed one object within another requires that the object has some structure at runtime,
for most classes such a structure will contain a descriptor header and any fields of the object.
However, the Pointer[A] class is a special class which has no structure at runtime, the
pointer is represented using an LLVMPointerType. The result of this means that embedding
the pointer has no observable runtime effect on the layout of the object but instead tells
the compiler to arrange that the pointer points to the beginning of the object.

Use of resizable memory

Enabling the embedding of the memory in the vector object would mean one would have
to be careful to not call resizing operations. Although such calls are restricted to the
builtin package (a package which uses a number of unsafe operations that are presented to
developers using a wrapper method which sanity checks arguments provided), the restriction
are made by making the _ptr field private (as is the case here). We can still consider the
repercussions of using resizing operations on a Vector object. A high level concern with
allowing resizing a Vector object is that we only have static information regarding the size
of the Vector, we do not have any field to dynamically track how large a Vector is as we
never expect it to change. This would mean that methods which use this length would use
inaccurate information, this could mean copying of too few or many elements for example
(such as in the add method) leading to using unallocated memory and thus bugs.

Conclusions of approach

The biggest issues present in this approach are the large amounts of manipulation of the
compiler to support the approach, alongside the complicated semantics of these changes.
As such this solution was deemed to not be particularly useful and did not seem like the
best implementation for the Vector.

6.2.2 Elements as Fields

To avoid the use of a Pointer field the following alternative was considered. When con-
structing a Vector[A, _size] object, space would be reserved for _size elements of type
A. The structure of this object would consist of a pointer to the descriptor table and _size

fields which are accessed with special _apply() and _update() compiler intrinsics. Each
element of the Vector would be stored as an embedded field in the object. The method
which is described in the next section is similar to this approach. This approach presented
in the following section was preferred due to being able to adopt an LLVMArrayType data
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structure. This approach would have required embedding _size number of copies of the
element type structure in the Vector.

6.2.3 Elements as an Array

This approach is similar to the previous implementation possibility. Here, instead of im-
plicitly adding _size fields to an object of type Vector[A, _size: USize] we observe the
following; we statically know _size, we know that all elements will appear contiguously
in the object layout and finally LLVM provides a structure to represent such structures,
namely LLVMArrayType.

Therefore, to construct a Vector[A, _size: USize] we represent the structure of the
elements as a LLVMArrayType with _size elements of type A. Consider the following:

1 let v = Vector[U32 , 4]. undefined ()

Let us consider the structure of such an object in terms of the LLVM IR:

1 %"Vector_U32_val_$value_4"

2 = type { %"Vector_U32_val_$value_4_$desc"*, [4 x i32] }

Here we can see that the structure is a struct containing two elements, the descriptor
table and an array of 4 i32s. The latter is an example og the LLVMArrayType. Such an
implementation is hidden from the user as the definition of the Vector class would be:

1 class Vector[A, _size]

2 """

3 Contiguous , fixed memory to store elements of type A.

4 """

5

6 fun _apply(i: USize): this ->A ? =>

7 """

8 Get the i-th element.

9 """

10 compile_intrinsic

11

12 fun _update(i: USize , value: A): A^ =>

13 """

14 Change the i-th element.

15 """

16 compile_intrinsic

17

18 fun apply(i: USize)

19 """

20 Get the i-th element , raising an error if the index is out of bounds.

21 """

22 if i < _size then

23 _apply(i)

24 else

25 error

26 end

85



Note that at line 10 and 16 we use compile_intrinsics to handle interfacing with the
elements of the Vector. These are expressions which denote that the body of this method
will be supplied by the compiler. These expressions are reserved for when it is not possible
or very difficult to write the body in Pony. These compile intrinsics will be replaced with
the appropriate LLVM IR, given the type of the elements in the Vector, for interacting
with the LLVMArrayType element.

Take the following instantiation, update and access of a Vector:

1 let v: Vector[String , 2] = Vector[String , 2]. init(["A", "B"])

2 v.update(1, Student("C"))

3 let s: String= v.apply (1)

We can look at the LLVM IR which is generated in place of the compile_intrinsic for the
_update() and _apply() methods. First we look at the code generated for the _apply()

method:

1 define fastcc %String* @"Vector_String_val_$value_2__apply"

2 (%"Vector_String_val_$value_2"* dereferenceable (24), i64) {

3 entry:

4 %2 = getelementptr inbounds

5 %"Vector_String_val_$value_2"* %0, i32 0, i32 1, i64 %1

6 %3 = load %String ** %2

7 ret %String* %3

8 }

We can see on line 2 that this method takes two arguments; the first argument is the vector
that we wish to access and the second is the index of the element which we would like to
return. Line 4 is where we calculate the address of the element using the getelementptr

instruction; this instruction takes the vector as its first argument and then the subsequent
3 arguments are indices for getting the pointer to the element. The getelementptr in-
struction gets the address %0 + 0 + 1 + %1; In other words, the address of the vector plus
0 as the getelementptr instruction requires all calculations for dereferencing. Thus we
must provide an argument which looks through the pointer to the vector. We then add 1
to obtain the array element of the vector, finally adding the value %1 (the index argument
to the function) which tells us which element we want. Once we have the pointer to our
element we load it and return the value.

Next we go on to look at the _update() method:

1 define fastcc %String* @"Vector_String_val_$value_2__update"

2 (%"Vector_String_val_$value_2"* dereferenceable (24), i64,

3 %String* dereferenceable (32)) {

4 entry:

5 %3 = getelementptr inbounds

6 %"Vector_String_val_$value_2"* %0, i32 0, i32 1, i64 %1

7 %4 = load %String ** %3

8 store %String* %2, %String ** %3

9 ret %String* %4

10 }
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The code which is presented here closely resembles the _apply() method. The difference
between _apply() and _update() is that we expect a third argument to _update(), this
is the new value that we wish to store. We again calculate the address of the element and
load the value, however after the load we replace the value with the new value (the new
value being %3) using a store. Finally, we return the old value so as to perform an operation
similar to Pony’s destructive reads.

The leading _ in Pony marks a method or field as private to a class, therefore neither the
_apply() nor _update() methods are visible outside of the builitins package (where this
class can be found). We make these private as their arguments are not sanity checked and
they cannot throw any errors. We use these primitives and wrap them with safe versions
of these calls as can be seen in the apply() method at line 18. In this method we first
check that the index is inbounds before we access the elements, throwing an error if it is not.

It is this solution which has been adopted as the implementation for Vectors. This approach
was selected as it used LLVM built-in types to represent the structure of the type, also
removing a level of indirection. This was also selected over embedding a pointer as this
implementation is simpler to implement in the compiler. We also did not require most of
the behaviour of the Pointer, such as resizing the memory allocated; this implementation
avoids being able to use such methods.

6.3 Trace Function

We discussed in trace functions in section 5.4 and that we would not require adding extra
tracing for the static values. For the Vector we do require a bespoke trace function as we
are adopting a new structure of objects of Vector[A, _size: USize] (for some given type
A and value _size).

There are two cases for the trace function for Vectors. One case is that the elements do
not need tracing (for example for integer primitives); in which case we do not trace the
elements and we can immediately return from the trace method. The second case is when
the elements do need tracing (for example object elements); in the case tracing is required,
calling the trace function on each element in turn and then returning from the function.

We are able to test the Vector trace function using three actors which collaborate in the
following way:

1. Actor one sends a message of 3 Strings to actor two

2. Actor two receives the Strings and constructs a Vector from them. Actor two sends
the constructed Vector to actor three.

3. Actor three tests the contents of the Vector against the original known values asserting
that they are as expected.
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At each step we invoke the Pony garbage collector,. If the trace function for the Vector

did not trace the elements then the original Strings would be garbage collected and so the
final actor’s assertions would (likely) fail. The test which has been detailed here can be
found in Appendix D.

The test which we have described only checks that the Strings were not deallocated during
the test. It is more difficult to ensure that objects with no references are deallocated; this
would require some telemetary data indicating how much memory and how many objects
had been allocated and deallocated. Currently Pony supports telemetry data indicating how
much data and how many objects had been allocated but not deallocated. Other telemetry
data that is possible to use is the amount of time spent in trace functions, this would
indicate that an object had been traced but not whether it was indeed garbage collected.

6.4 API

We can now further discuss how we use these Vectors and how they use value-dependent
types. Reproduced in fig. 14 is part of the API for the Vector class. We attempt to provide
an API which provides similar functionality to the Array class. In this API we are able
to remove at least one argument in all of the constructors when compared with the Array.
The argument we do not require is the argument which states the size of the Array to be
allocated. The construction of this API has also lead to consideration in altering the Array

API, for example providing an equivalent of the generate() constructor. In this API we
are also able to construct further value-dependent types in methods signatures using the
information available. We now go on to discuss such methods.

6.4.1 add method

We define the add method (line 48 in fig. 14) on the Vector class to have the following
signature:

1 class Vector[A, _alloc: USize]

2 fun add[_size ’: USize]( vector: Vector[this ->A, m]):

3 Vector[this ->A!, #(_alloc + _size ’)]^ =>

4 // definition of add

Addressing each component of this signature individually as follows:

Class Definition: Vector[A, _alloc: USize]

This defines the Vector class to be parametrised on a USize, this represents the number of
elements in the vector in the type, and a type A which denotes the type of the elements in
the Vector.
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1 class Vector[A, _size: USize]

2 new init(from: Iterator[A^]) ?

3 """

4 Create a vector , initialised from the given iterator.

5 """

6

7 new generate(f: {ref(USize): A^ ?} ref) ?

8 """

9 Create a vector initiliased using a generator function

10 """

11

12 new undefined[B: (A & Real[B] val & Number) = A]()

13 """

14 Create a vector of len elements , populating them with random memory.

15 This is only allowed for a vector of numbers.

16 """

17

18 fun filter(f: {val(box ->A): Bool} val): Array[this ->A!]

19 """

20 Return an array of elements that satisfy the predicate f

21 """

22

23 fun copy_to(dst: Seq[this ->A!])

24 """

25 Copy the contents of this Vector to another Sequence

26 """

27

28 fun string(f: {val(box ->A!): String} val): String ref^

29 """

30 Return a string representation of the vector

31 """

32

33 fun size(): USize

34 """

35 Return the parameterised size

36 """

37

38 fun apply(i: USize): this ->A ?

39 """

40 Get the i-th element , raising an error if out of bounds.

41 """

42

43 fun ref update(i: USize , value: A): A^ ?

44 """

45 Change the i-th element , raising an error if out of bounds.

46 """

47

48 fun add[_size ’: USize](that: Vector[this ->A, _size ’]):

49 Vector[this ->A!, #(_size + _size ’)]^

50 """

51 Build a vector from the contents of the original vectors.

52 """

Figure 14: Vector API



Method Type Parameters: add[_size’: USize]

The add method for vectors is parametrised on a value _size’ of type USize. The argument
that is passed for this parameter is used so that the type system knows the size of the vector
argument that is passed for the add method.

Method Arguments: (vector: Vector[this->A, _size’])

Here the argument is defined to be a second Vector of size _size’, this must match the
size on which the add method was parametrised. Also, the contents of the Vector must
be the same as how the receiver views objects of type A (note that this is the same type
A on which the receiving vector has be parametrised). This viewpoint adaption means, for
example, that if the receiver has val capability then contents must of type how val sees A.

Method Return Type: Vector[this->A!, #(_alloc + _size’)]^

The return value of the vector add method is a new vector which contains references to the
elements of both the receiving Vector’s members and also the argument Vector’s members.
Thus, we obtain a vector of type Vector[this->A!, #(_alloc + _size’)]^. The return
type denotes a vector which is of size #(_alloc + _size’) (the sum of the sizes of the two
vectors). The elements of the new vector are of type this->A!; the ! represents that we
have an alias to the elements, we justify that this is the type of the elements as we have
created a new reference to the elements and we have also maintained the existing reference
from the existing vectors. Finally, we return an ephemeral Vector (denoted by ^), this is
the case as the method will construct a new Vector to which no reference will exist once
we leave the scope of the function.

We define the method in such a way using the add method as this suggests we could write
the following:

1 actor Main

2 new create(env: Env) =>

3 let v1 = Vector[String , 4]. init(["A", "B", "C", "D"])

4 let v2 = Vector[String , 2]. init(["E", "F"])

5 let v3: Vector[String , 6] = v1 + v2

Here the + operator is syntactic sugar for calling the add method with v1 as the receiver
and v2 as the argument; returning the joined vectors together to get us v3.

However, note we defined add to be parametrised on a USize argument. In the above
example the + operator does not provide this argument; this means that we would have to
define line 5 as follows:

5 let v3: Vector[String , 6] = v1.add [2](v2)

To be able to perform the addition operation for two vectors, the Pony compiler requires
support for inference of value arguments. To demonstrate this, consider the following:
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1 class C1[n: U32]

2 fun apply(): U32 => n

3

4 fun add[m:U32](c: C1[m]): U32 =>

5 apply () + c()

6

7 actor Main

8 new create(env: Env) =>

9 C1[2]. add [4](C1[4])

Noting again how we must provide the argument 4 to add, we can see however that from the
argument provided to add (i.e. C1[4]) that we know the value of m at compile time. Thus
it becomes possible to omit the argument to add and infer the value from the argument
c. This is currently a desired feature of the Pony compiler (alongside inference of type
arguments), which once complete will allow for more succinct use of value dependent types.

6.4.2 generate and string methods

We will briefly discuss two interesting methods in the Vector API; the generate method
and the string method. Firstly, note the definition of the generate constructor:

1 new generate(f: {ref(USize): A^ ?} ref) ?

The {ref(USize): A^ ?} syntax is used to denote the type of a ref object that has a
method called apply which accepts a USize argument and returns a value of type A, possibly
raising an error. This allows us to pass lambda methods to the generate() constructor.
This constructor generates a new Vector by repeatedly invoking the generator function,
the f argument, supplied. This allows us to construct vectors in the following ways:

1 let v1 = Vector[U32 , 6]. generate(lambda ref()(rand=MT) => rand.u32() end)

2 let v2 = Vector[U32 , 4]. generate(v1)

Here v1 is initialised to random values and v2 is a vector which duplicates the first 4 ele-
ments of v1. Note here how we are able to pass either a function, as in line 1, or a previously
constructed object, as in line 2. We can do this as the Vector adheres to type constraint
of the genereate() constructor. This provides us with a fair amount of flexibility in how
we construct Vectors.

Along a similar theme we define the string method:

1 fun string(f: {val(box ->A!): String} val): String ref^

This allows us to construct a string representation of the vector by accepting a function
which knows how to turn the element type of the vector into a string, this is then invoked
on each element to build up the complete representation. Such a method gives us a lot of
flexibility over how we represent the elements, we could even represent the same contents
in multiple ways by passing different functions to the string method, furthermore it allows
us to construct string representations for objects which are not a subtype of Stringable.
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6.4.3 filter method

We have included a means by which to filter a vector to obtain only those values which
satisfy the provided predicate function. This method is of interest as we cannot return a
Vector as the result, we a forced to return some Seq object (here we have use Array) as we
do not know the size of the resulting structure at compile time. Compare this to Vector ’s
in Idris where it is possible to lose the information of the dimensions of a vector by stating
that it has an arbitrary size. We do not have this flexibility in Pony and so we must return
an Array.
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7 Matrix Class

To demonstrate further the flexibility in Ponyta using value-dependent types and compile-
time expressions I extended the Pony standard library with another class, namely the
Matrix class.

The Matrix class depends on two values. The first value is denoted by a USize named n,
this details the number of dimensions of the matrix. The second value is a Vector[USize,

# n] named dims, this stores information describing the size of each dimension. Example
instantiations of a Matrix follow:

1 let m1 = Matrix[Student , 2, # {3, 4}] // 3 x 4 matrix

2 let m2 = Matrix[Student , 4, # {1, 2, 3, 4,}] // 1 x 2 x 3 x 4 matrix

3

4 let m3 = Matrix[Student , 5, # {1, 2}]

5 // will fail to compile as we haven ’t provided enough dimensions

The {3, 4} syntax denotes a literal Vector. The literal Vector on line 1 is inferred to be
of type Vector[USize, 2].

The signature for the Matrix was defined in section 1, reproduced here:
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1 class Matrix[A, n: USize , dims: Vector[USize , # n] val]

2 embed _data: Vector[A, # _alloc ()]

3

4 fun tag _alloc (): USize =>

5 var i: USize = 0

6 var acc: USize = 1

7 while i < n do

8 acc = acc * dims._apply(i = i + 1)

9 end

10 acc

11

12 new undefined[B: (A & Real[B] val & Number) = A]() =>

13 _data = Vector[A, # alloc()]. _create ()

14

15 fun _calculate_address(indices: Vector[USize , # n]): USize ? =>

16 if n == 0 then return 0 end

17 var address: USize = 0

18 var i: USize = 0

19 while i < (n - 1) do

20 if indices(i) > dims(i) then error end

21 address = (address + indices(i)) * dims(i + 1)

22 i = i + 1

23 end

24 if indices(i) > dims(i) then error end

25 address + indices(i)

26

27 fun apply(indices: Vector[USize , # n]): this ->A ? =>

28 _data._apply(_calculate_address(indices))

29

30 fun ref update(indices: Vector[USize , # n], value: A): A^ ? =>

31 _data._update(_calculate_address(indices), consume value)

We could have defined the Matrix using an Array whose size was determined dynamically,
however we again aim to remove the indirection to elements and allocate an appropriately
sized object.

The definition of the Matrix class we provide here, uses the richness provided by value-
dependent types and compile-time expressions to define a fixed arbitrary sized data struc-
ture, which can be accessed in a non-trivial way to obtain a row-order layout of multi-
dimensional data.

Note in this definition that the Matrix depends on a Vector object dims. This displays
how we can parametrise type on values beyond just the primitive built-in values such as
integers and booleans. Furthermore, note the type signature for the apply() method. We
ensure that we have exactly the correct number of indices provided. We do this by expect-
ing a Vector with as many elements as the number of dimensions. This is an interesting
result as if we pass an argument with the incorrect number of arguments, the call will raise
an error at compile-time. However, we expect a different number of indices based on the
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instantiation of the Matrix. This is something we could not have defined in Pony and is a
very interesting achievement of Ponyta.

At line 2 we define the single field, _data, of the Matrix class which is the one-dimensional
Vector used to store the elements of the Matrix. A point of interest is how the size of the
Vector is determined using a compile-time expression, namely the evaluation of alloc().
I have defined the member _data to be embedded within the Matrix

The alloc() function iterates through dims, multiplying the dimensions together to cal-
culate the number of elements in the Matrix. This is an example of compile-time iteration
using var variables and statically known objects. Notice this method has tag capability;
this capability is required because it allows us to call the method on an object which has
not been initialised. Even though the tag capability forbids access to fields of the receiver,
this does not impede the implementation of _alloc(), since all information required for
this object is found in the type of the object.

To obtain a row-order layout of a Matrix we use a _calcluate_address() method which
takes as an argument a Vector[USize, # n] where the i-th element in the Vector is the
index into the i-th dimension. The calculation used to obtain the index into _data is similar
to that used in section 9.2.1 in the one-dimensional vector case, here scaled to n-dimensions.
The _calcluate_address() is used for both accessing and updating elements as can be
seen at lines 28 and 31.

One of the most important results of this class is the fact that we have defined the entire
class in Pony, thus demonstrating the flexibility in defining types provided by Ponyta.

7.1 Layout

Consider the following Matrix instantiation:

1 let matrix = Matrix[U32 , # {1, 2, 3}]

The elements of the matrix are ordered as follows to obtain a row-order layout:

{0,0,0} {0,0,1} {0,0,2} {0,1,0} {0,1,1} {0,1,2}

Note that the elements of each row appear contiguously. We select this layouts for two
reasons. Firstly, it is the simplest representation to obtain using only high-level Pony and
without having to incorporate extra compiler-support. Compare this with arbitrarily nested
Vectors. We could not write this using only Pony as we would not know the depth of the
nesting and therefore we would not know the type. Such a representation would require to
be constructed when generating code. Secondly, and more importantly, this layout used to
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represent a two-dimensional Matrix using only a Vector elicited better runtime compared
with a nested data structure. We will see this result in section 9.2.1.
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8 Compiler Support

I have discussed so far how value-dependent types have been implemented and also how
compile-time expressions are evaluated. Also, I have discussed how these have affected
code generation. I now detail at what stages of compilation changes have been made
to accommodate these new features. Detailing why these changes are required of their
respective pass.

8.1 Parse

The changes for this pass can be found in section 3. This consists of extending the parser
to support the syntax for compile-time expressions. Also, supporting the syntax for literal
Vectors. Building the AST representation in both cases.

8.2 Syntax

This pass has been changed to ensure that the type parameters adhere to a legal syntax.
This change in syntax now permits both upper and lower cases identifiers (previously only
upper case was permitted for type parameters). Also, the constraints of these parameters
are also check to ensure they are types and not values.

8.3 Name

We discussed earlier that references to value parameters are marked in the AST by a
valueformalparamref node. It is in the ”name” pass that this transformation is made. All
references in the AST are initially marked by a reference node. Each reference node is
inspected during this pass. A lookup is performed to find the original definition of the value
referenced by the reference. If this definition is a value parameter then the reference is
transformed to a valueformalparamref.

8.4 Traits

I have extended the reification of generic traits in this pass. This extension includes reifying
traits with value arguments as described in section 5. Note that this replacement is entirely
textual as discussed in section 2.5.1. The expressions are not evaluated before reification as
they have not been typechecked and therefore may be unsafe to evaluate. This duplication
of expressions is handled using the cached results to ensure we obtain the same result in
all replacements. The cache is also used to avoid paying extra time during compilation to
evaluate the same expression multiple times.

8.5 Expr

The ”expr” pass has been further developed to incorporate the new value-dependent types
and their subtyping rules. This pass also handles providing types to compile time expres-
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sions, recovering the capability to val. Also, this pass infers the type of literal vectors
and coerces vector elements to their desired typed. For example, infering the type Vector

[String, 3] from the expression:

1 let v = {"A", "B", "C"}

I have extended the type checking algorithm with an extra case which checks ”subtyping”
between values. This is in fact the check for equality that we discussed in section 5. Before
checking this equality we attempt to evaluate the expressions. If the expression cannot be
evaluated, possibly as we are type checking a template, we compare equality on the original
expression.

8.6 IR

The first part of this pass involves the compiler determining which types and methods are
reachable in the current program. Each of these types and methods are respectively added
to a list of reachable types and reachable methods. It as at this stage that we evaluate
all compile-time expressions (which haven’t been evaluated as a result of type checking).
We recursively search the AST representation of only the reachable methods and types,
evaluating any compile-time expressions which we find along the way.

We defer evaluation of compile-time expression this late in compilation for the following
reasons. We require that all expressions and any classes/methods/expressions transitively
involved in the evaluation of the expression to have been typechecked. This is because the
interpreter expects the AST of the program to have been appropriately transformed by the
type-checking pass.

Deferring evaluation until this stage also means that we only evaluate expressions which
will have a result on the produced program. We do not evaluate any expression which is
unreachable. This has the effect that expressions which would result in failure of compila-
tion but are unreachable will not raise any error to the developer. However, we argue that
this is not a detrimental side-effect. A developer is only alerted to the errors which prevent
the program from compiling.

One issue with this approach is that the compiler duplicates many AST nodes throughout
the passes, including the compile-time expressions. This occurs for example when we infer
the type of a variable based on the value which is assigned to the variable. Thus we invoke
the interpreter on the same expression multiple times. This cost has been amortised by
caching the result of evaluation as described in section 4.1.7.

It is also in this stage that all new code generation has been added to the compiler. This
includes function generation for value-dependent types. Constructing Vectors, their com-
piler intrinsics methods and trace method. This generation also includes building a constant
object in LLVM IR from constant objects in the AST.
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8.7 Evaluation

I have developed the psuedo-interpreter as a component of the compiler that can be utilised
by other passes of the compiler to evaluate expressions. This allows the interpreter to be
used in both the ”expr” pass for type checking and in the ”ir” pass for evaluation of ex-
pressions.

The interpreter is passed an AST representation of an expression which is to be evaluated.
The interpreter uses rules which are selected based on the identifier of an AST node. Eval-
uation proceeds recursively, evaluating the child nodes such as receivers and arguments,
before evaluating the parent node.

Evaluation can involve looking up methods and values that are referenced in an expression.
I have implemented the interpreter such that a new node is generated by evaluation. This
is to avoid nodes which are being used elsewhere in the AST from being altered. After
evaluation of an expression a final step is performed to replace the expression sub-tree with
the result sub-tree, as show in section 5.
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9 Evaluation

9.1 Comparison with the State of the Art

Throughout this report I have compared value-dependent types in Ponyta with those pre-
sented in Idris and also with the templated methods and compile-time expressions available
in C++. I now present a qualitative analysis of Ponyta.

9.1.1 Comparison with C++ templates and constexpr

We first compare Ponyta with C++ in terms of the syntax and rules required of templates
and constexpr functions. We can also compare Ponyta with C++ with respect to the
flexibility that each language provides to a developer.

Compile-Time Expressions

In C++, constexpr functions can use any literal type, locals, iteration, conditionals and
calls to other compile-time expressions. We make similar restrictions in Ponyta. Take the
following C++ example:

1 int foo()

2 {

3 return 1;

4 }

5

6 constexpr int bar(int x)

7 {

8 return x * foo();

9 }

10

11 int main()

12 {

13 constexpr int y = bar (12);

14 }

This program will fail to compile as the function bar() calls a non-constexpr function,
namely foo(). However, note that the function adheres to all rules required of a constexpr

function except the constexpr keyword.

We now show how Ponyta is more flexible in allowing a developer to evaluate expressions at
compile-time. Consider the same example as above, however we will now write the program
using Ponyta:

1 actor Main

2 fun foo(): U32 => 1

3 fun bar(x: U32): U32 => x * foo()

4

5 new create(env: Env) =>

6 # bar (12)
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We impose the same restrictions as defined for C++. All variables must be known at
compile-time and all functions called within a compile-time expressions must be compile-
time functions. The above function will successfully compile and execute in Ponyta. In this
respect Ponyta is more relaxed than C++. In Ponyta we trust the developer has adhered
to the rules of compile-time expressions and attempt to evaluate their expressions. If an
error is encountered during evaluation then an error is reported detailing what could not
be evaluated.

By avoiding the constexpr keyword and using a # to denote compile-time expressions, we
allow a developer more flexibility in using compile-time expressions. A developer can at-
tempt to evaluate a function or expression at compile-time by placing a # in front of such
an expression. This is a much less invasive and involved change than adding constexpr

keywords to constructors and functions which may otherwise require no alteration.

We were able to avoid the constexpr keyword in some cases due to the capabilities of
values and distinguishing between single-assignable and re-assignable names in Pony. The
val capability gave us a read-only behaviour on values which was very similar to const.
Ensuring value were val once they left a compile-time expression and together with the let
constants provided a very good starting point to determining which values could be known
at compile-time.

Furthermore, recall that Pony makes no distinction between objects and pointers as in
C++. This allows us template functions and classes in a more straightforward manner.
Consider the following C++ program:

1 class C1

2 {

3 public:

4 int x;

5 C1(int x): x(x) {}

6 };

7

8 template <C1* c>

9 class C2

10 {

11 public:

12 int apply() { return c->x; }

13 };

14

15 static C1 c1(12);

16

17 int main()

18 {

19 C2 <&c1 > c2;

20 int x = c2.apply();

21 }
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In the above, to instantiate C2 we have to provide a C1* with static linkage. This is why
we must define c1 at line 15 as static and take the address of it at line 19. Once, again
consider the same program written in Ponyta:

1 class C1

2 let x: USize

3 new create(x’: USize) =>

4 x = x’

5

6 class C2[c: C1 val]

7 fun apply(): USize => c.x

8

9 actor Main

10 new create(env: Env) =>

11 let c2 = C2[# C1(12)]

12 let x: USize = c2()

Here we have no distinction between objects and pointers. We also do not require to declare
type arguments as static global values as we did in C++. We construct a new C1 object at
line 11 as the result of a compile-time expression.

We can argue from the examples shown here that typically the Ponyta syntax is more
succinct for defining and using value-dependent types than in C++.

Permissiveness of Templates

We can also compare the permissiveness of templates in C++ when compared with parametrised
classes and methods in Ponyta. We discussed in section 5.2 that in Ponyta, parametrised
classes and methods and type-checked using only the template definition. Under this ap-
proach we restricted equality of value-dependent types to syntactic equality of expressions.

C++ defers type checking a templated class or method until the template has been instan-
tiate. This lazier approach to type check provides a developer with slightly more flexibility
when defining templates. However, this lazier approach comes with the caveat of type
checking every instantiation of the class or method. Ponyta’s approach to this requires only
a single type checking pass on the template.

Therefore we make a tradeoff between permissiveness and efficiency. The eager approach
seems to have been the correct choice for Pony. This method matched the existing imple-
mentation for generics and thus provides a developer with a consistent behaviour. Moreover,
it is not often that a developer will need to write two different expressions to represent the
same value. Finally, consider type checking every different instantiation of a Vector or
Matrix. This could lead to many type checking passes and, in turn, a significant overhead
in compilation time.
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Template Specialisation

C++ allows a developer to construct specialised instances of templated classes and methods.
Consider the following, templated, definition of the factorial function in C++:

1 template <int n>

2 int fac() { return n * fac <n - 1>(); }

3

4 template <>

5 int fac <0>() { return 1; }

6

7 template <>

8 int fac <1>() { return 1; }

9

10 int main()

11 {

12 fac <10 >();

13 }

Here we have provided specialised definitions for fac<0>() and fac<1>(). Notice the call
fac<10>() at line 12. When the definition of foo is reified using the value 10, we will
also have to instantiate foo<9>. Similarly, we will have to instantiate foo<8> and so un-
til foo<1>. At this point we no longer have to reify any more instantiations as we have
provided the method body for the instantiation foo<1>. Without this base case, we would
keep instantiating methods until we exceeded the template instantiation depth.

In Pony we cannot specialise parametrise methods and classes as we can in C++. We can
construct a program such as in the following:

1 actor Main

2 fun fac[n: USize ](): USize =>

3 n * fac[#(n - 1)]()

4

5 new create(env: Env) =>

6 fac [10]()

Currently in Pony, we cannot prevent the call fac[10]() from instantiating fac for all values
in USize. However, we discuss future support of template specialisation in section 11.5. This
feature will build upon value-dependent types to give developers an even greater degree of
flexibility.

9.1.2 Comparison with Idris value-dependent types

Let us now examine Ponyta in comparison with Idris. Recall the Vect data type:

1 data Vect : Nat -> Type -> Type where

2 Nil : Vect Z a

3 (::) : a -> Vect k a -> Vect (S k) a

Here the Vect data type has two constructors, Nil and Cons which build up a list which
tracks its length in the type. We have the Vector which satisfies this property. For the
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purpose of this evaluation we will attempt to define something similar to the Idris style
vector. We will define a linked list that knows its length in the type signature. Take the
following definition of such a list:

1 trait List[A, n: USize]

2 class Nil[A] is List[A, 0]

3 class Cons[A, n: USize] is List[A, # n]

4 let head: A

5 let tail: List[A, # (n - 1)]

6 new create(head ’: A, tail ’: List[A, # (n - 1)]) =>

7 head = consume head ’

8 tail = consume tail ’

In this definition we use a trait to define the List type which is composed of an element
type and a length. We then use classes as our constructors. The Nil[A] class is used to
represent an empty list (i.e. List[A, 0]. The Cons class is used to add another element
to the front of the list. The Cons class uses a field, head, to represent the element which
it is appending to the head of a list. The class has a second field, tail, used to track the
remainder of the list. Notice that the tail must have type List[A, # (n - 1)] and that
the Cons class is of type List[A, # n]. We can then go on to construct a list as follows:

1 actor Main

2 new create(env: Env) =>

3 let l3: List[String , 2] = Cons[String , 1]("B", Cons[String , 0]("A",

Nil[String ]))

Therefore, we have been able to construct the lists as in Idris. Notice that we couldn’t pass
the Cons constructor a list that would generate an incorrectly sized list. This is due to the
constraint on the tail type, namely the tail must be of type List[A, # (n - 1)]. From
this we get similar guarantees as we do about the length of the Vect in Idris.

Let us now attempt to define, in Ponyta, the append operation we saw earlier in Idris. In
the following example we use lists of only type U32 for clarity.

1 fun append[n: USize , m: USize](xs: List[U32 , # n], ys: List[U32 , # m]):

List[U32 , # (m + n)] ? =>

2 match xs

3 | let nil: List[U32 , 0] => ys

4 | let cons: Cons[U32 , # n] => Cons[U32 , # (m + n)](cons.head ,

append[# (n - 1), # m](cons.tail , ys))

5 else

6 error

7 end

One thing that we can see here is that the definition is much more verbose than in Idris.
We require all sizes and types to be provided as parameters to the function. Furthermore,
this definition will fail to compile. The compiler cannot prove that # ((m + n)- 1, the
length of the tail at line 4, is equivalent to # (m + (n - 1)), the return type of the
append. It is in this way that Ponyta only provides simple value-dependent types and not
a fully dependently typed language. More research can be made in this area to help the
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compiler prove more equivalences between expressions using compile-time expressions and
value-dependent types.

We will now see that there are cases where Ponyta provides clearer definitions and allows
for easier construction of value-dependent types. In Idris to access a Vect we provide a
finite set which must be smaller than or equal to the size of the Vect. The size of the set
is used as the index into the Vect . An example of this access follows:

1 index (FS (FS FZ)) [1, 2, 3] -- compiles

2

3 index (FS (FS FZ)) [1] -- fails to type check

Here, FZ is set of size zero, FS is constructor which takes a set and creates a set which is
one larger[4]. The example on line 1 is safe as the set has a size less than that of the Vect.
The example on line 3, however, fails to compile as the set has size 2 whilst the Vect is
of size 1. Whilst this ensures that the index is safe and guaranteed to be in bounds, the
access is not particularly clear nor concise. In Ponyta we can define a similar access which
statically guarantees an access will be in bounds and is more concise. For this example we
reuse the Assert primitive:

1 class Vector[A, _size: USize]

2 ... // API so far

3 fun apply_static[i: USize ]() =>

4 # Assert(i < _size)

5 _apply(i)

Here we use a static argument as an index into the Vector. We use Assert to ensure that
the index is within bounds at compile-time. This definition allows us to safely access a
Vector as follows:

1 let v = {1,2,3}

2 v.apply_static [2]() // compiles

3

4 v.apply_static [13]() // fails to compile

Here, we get a similar result but the syntax can be seen to be clearer and more succinct.

Moreover, recall that in Idris, in section 2.2.1, we constructed a different matrix type com-
pared with the Ponyta Matrix. We constructed a list of lists in Idris instead of a matrix. We
defined the Idris matrix in this way as constructing the multi-dimensional Matrix presented
in Ponyta is non-trivial. This is due to us not being able to easily define and update an
appropriately sized Vector as we can in Ponyta. This is a result of Idris being a functional
programming language. The Idris data package represents a matrix as a two-dimensional
data structure with a row and column size as part of the type[2]. Multi-dimensional matri-
ces can be achieved by nesting matrices. This gives a nice result as we can see that there
are types which become easier to construct with value-dependent types in Ponyta than in
Idris. In Ponyta we have a single type which represents a matrix of any dimensionality.
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From this we can conclude that Ponyta provides developers with a different set of features
than Idris. This difference allows some types and functions to be more easily defined in one
language compare to the other. Whilst this project hasn’t developed a fully dependently-
typed language like Idris, we have shown that we have created a fairly flexible extension to
the Pony type system, successfully creating many of the types we explored earlier in Idris.
Of particular importance is how we have been able to define the Vector and Matrix classes.
We now go on to evaluate these classes.

9.2 Value-Dependent Data Structures

This project has presented two new data structures in Ponyta. Namely, the Vector class
in section 6 and the Matrix class in section 7. I now evaluate the efficiency of these data
structures when compared with the existing data structures in Pony.

9.2.1 Benchmarking Vectors

As detailed in section 6, the Vector adopts a different layout when compared with an Array.
We remove a layer of indirection to data as we do not go through a pointer. This leads to
considering whether there is any practical performance difference between using a Vector

and using an Array.

Sorting Benchmark

To explore this, a sorting package was developed which included an interface as follows:

1 interface Sortable[A: Comparable[A] #read]

2 fun size(): USize

3 fun apply(i: USize): A ?

4 fun ref update(i: USize , value: A): A^ ?

This interface represents a data structure which can be sorted; these structures require
apply and update methods so that we can alter the contents of the structure. Note also
the type constraint of Sortable, [A: Comparable[A] #read]. This ensures that we can
compare elements of these structures. This allows us to treat Vectors, Arrays and Lists
as Sortable and thus we can use the same sorting methods.

Included in the sorting package are some well known sorting algorithms such as insertion
sort, quick sort, heap sort and bubble sort (among others). Arrays and Vectors of increasing
sizes were sorted using the various sorting algorithms to measure for observable differences
in performance. Benchmarking was performed on a 3.40GHz 4 Core Intel Core i7-4770 with
16GB of memory. Each sorting was repeated 20 times and the average time taken. The
graphs in fig. 15 detail the results of this benchmarking:

106



29 211 213 215 217 219
105

106

107

108108

109

1010

101110111011

Number of Elements

T
im

e
T

a
ke

n
p

er
E

le
m

en
t

(n
s)

Insertion Sort

Vector

Array

29 211 213 215 217 219
103

104104

105

106

107

108108

109

1010

101110111011

Number of Elements

T
im

e
T

a
ke

n
p

er
E

le
m

en
t

(n
s)

Bubble Sort

Vector

Array

29 211 213 215 217 219
103

104104

105

106

107

108108

109

1010

101110111011

Number of Elements

T
im

e
T

a
ke

n
p

er
E

le
m

en
t

(n
s)

Quick Sort

Vector

Array

29 211 213 215 217 219
103

104104

105

106

107

108108

109

1010

101110111011

Number of Elements

T
im

e
T

a
ke

n
p

er
E

le
m

en
t

(n
s)

Merge Sort

Vector

Array

29 211 213 215 217 219
103

104104

105

106

107

108108

109

1010

101110111011

Number of Elements

T
im

e
T

ak
en

p
er

E
le

m
en

t
(n

s)

Sorting

Quicksort Vector

Quicksort Array

Merge Vector

Merge Array

Insertion Sort Vector

Insertion Sort Array

Bubblesort Vector

Bubblesort Array

Figure 15: Comparison of sorting algorithms
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Benchmark Results

The results for these benchmarks can be found in Appendix J. We can see from these results
that there is a 1.03 times speed-up on average using Vectors instead of Arrays. This speed-
up is not as large as expected, however consider that the presented results are measured
in nanoseconds. We measure these results in nanoseconds as the benchmarks were already
fairly quick.

These results suggest that there is little or no runtime impact due to this change in object
layout. Although this contradicts the initial hypothesis that such a change in layout would
benefit execution time, we can conjecture the reasons for this result. The LLVM backend
could heavily optimise the sorting algorithms such that all of the accesses to the Array do
not first lookup the pointer in the Array but use the pointer directly. Furthermore, even if
the compiler did not perform this optimisation, the pointer would likely be cached by the
processor. These optimisations could amortise the cost of the indirection involved when
using an Array.

Nested Data Benchmark

Further efforts to find differences between the runtime behaviour of Arrays compared with
Vectors lead to researching whether the equivalent of these structures in the C++ STL
(Standard Template Library) had been benchmarked (noting that the Pony Vector corre-
sponds to std::array and Array to std::vector).

Research for further benchmarking resulted in sources which compared the initialisation of
a nested std::vector with a nested std::array, claiming to display a noticeable differ-
ence in performance. However, reviewing the provided code snippets revealed a use of push
when initialising the std::vector, thus the the std::vector was being resized multiple
times during the initialisation. Thus, this test wasn’t an appropriate benchmark as it did
not measure a difference as a result of object layout and it is possible to allocate enough
memory for both the std::vector and std::array to avoid the use of push.

One result which is of interest, in C++, is that we can allocate an std::array entirely
on the stack (members included) whereas when we construct a std::vector, even if the
data structure is on the stack its elements will be on the heap. Allocating these different
data structures in C++ can lead to a difference in performance due to the requirement of
requesting heap memory when allocating the std::vector elements whereas the space for
a std::array is reserved on the stack when entering a function [10]. However in Pony all
objects live on the head, and as such a differentiation does not arise.

This research lead to further consideration of initialising nested Arrays and Vectors. A
second benchmark can be found in Appendix C. We aimed to write code that is difficult for
the LLVM backend to optimise; avoiding the performance benefits of caching by regularly
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Figure 16: Updating Nested Data Structures

invalidating the cache and then requesting data that once existed in the cache. In Ap-
pendix C we construct two actors; one actor constructs a nested Vector and then initialises
this structure such that every element is equal to its position in the structure. We then loop
over the nested Vectors, however note that we update column by column instead of row
by row. The second actor performs similarly, however uses Arrays as the data structure in
place of Vectors

When we construct these nested Vectors and Arrays we get a two-dimensional data struc-
ture laid out in row-major order (i.e. the elements of rows are contiguous in memory).
Therefore to access these structures as if they were laid out in column-major order would
be inefficient as we would be accessing a different Array/Vector on each iteration which
incurs a performance impact as we cannot (necessarily) cache the data structures. We use
this method in an attempt to force the lookup of an element from the Array structure which
has the double indirection when accessing elements.

The results of executing this on Arrays and Vectors can be found in Appendix K and these
have been plotted in fig. 16. In fig. 16 we can observe more difference between the execution
time when updating Arrays compared with updating Vectors. The speed-up obtained using
Vectors ranged between 0 - 2.5 times speed-up with an average of 1.47 times speed-up when
using Vectors. Inspection of the generated LLVM reveals that the actor interacting with
the Vectors had been optimised much more than the actor which interacted with Arrays.
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Floyd-Warshall Benchmark

I present a final benchmark which is of particular interest. I present this benchmark as it
is used to assess the existing Pony compiler. This benchmark is of interest as altering the
underlying representation of the graph had a dramatic impact on the performance of the
Benchmark. The initial representation of the graph was a two-dimensional array of U32 (i.e.
Array[Array[U32]]), as described in section 9.2.1 such a representation involves finding
the pointer field in the outer array, dereferencing this pointer to obtain the desired inner
array and repeating on the obtained array. The representation of the graph was altered to
use a one-dimensional array of U32 (i.e Array[U32]) whose size was large enough to accom-
modate all nodes of the original graph, this required then changing index calculations to
access the correct elements. Presented in the fig. 17 is a comparison of the Floyd-Warhsall
benchmark which compares these two data-layouts. The one-dimensional Array showed a
1.41 times speed-up compared with two-dimensional Arrays.
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Figure 17: Floyd-Warshall Benchmark using one-dimensional and two-dimensional Arrays

I ran a similar experiment using the Vector class in place of the Array class to explore:

1. Whether a similar trend was observed between one-dimensional and two-dimensional
Vectors.

2. Whether the Vector class performed any better than the Array class.

Figure 18 displays the results of using a Vector class instead of an Array class together
with the original Array class.

110



218 220 222 224
10−2

10−1

100

101

Number of Elements

T
im

e
T

a
ke

n
(s

)

1D Array
2D Array
1D Vector
2D Vector

(a) Comparison using a log scale

218 220 222 224

0

5

10

15

Number of Elements

T
im

e
T

ak
en

(s
)

1D Array
2D Array
1D Vector
2D Vector

(b) Comparison without a log scale

Figure 18: Floyd-Warshall Benchmark using one-dimensional and two-dimensional Arrays
and Vectors

We can see from fig. 18 that the different Vector layouts do not display such a large dif-
ference in runtimes when compare with the Array layouts. The one-dimensional Vector
performs very similarly to the two-dimensional Vector, with the one-dimensional layout
providing a 1.10 times speed-up. Furthermore, both Vector layouts elicit better perfor-
mance than the one-dimensional Array. In fig. 18a we can see that, for all number of
elements, the Vector gives a reduced runtime when compared with the Array. On average
the one-dimensional Vector gave a 1.24 times speed-up compared with the one-dimensional
Array. We also plot the results without a log scale in fig. 18b, to display a more noticeable
difference between the runtimes using Array and Vector. Notice again that in fig. 18b the
nesting of Vectors did not noticeably impact the runtime.

The performance improvement displayed using Vectors is likely a result of the LLVM back-
end have greater capability to optimise the generated code. Using the LLVMArrayType

layout provides the LLVM optimiser with extra information for analysis, namely the size
of memory allocated. Furthermore, the LLVM optimiser has optimisation passes which are
designed around LLVM aggregate types (such as the LLVMArrayType used for Vectors)[7].

The code for the implementation of each benchmark using the representations of Array

[Array[U32]], Array[U32], Vector[Vector[U32, #size], #size] and Vector[U32,

#size] can be found in Appendices E to H. The results for the Floyd-Warhsall benchmarks
can be found in Appendix L.
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9.2.2 Benchmarking Matrix

Having defined the Matrix class in section 7, an interesting experiment is to compare
this with the one-dimensional Vector using the same Floyd-Warshall benchmark used to
compare Arrays and Vectors. We expect that the Matrix behaves identically to the one-
dimensional Vector case as we use the same representation. The benchmark used to eval-
uate the Matrix class can be found in Appendix I, the results for this benchmark can be
found in Appendix L.
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Figure 19: Floyd-Warshall Benchmark using a one-dimensional Vector and a Matrix

Benchmarking the Vector against the Matrix using the Floy-Warhsall algorithm produced
the result in fig. 19. The results obtained indicate that, despite having a very similar un-
derlying representation, the Matrix performed significantly worse than the Vector. We
can first notice that we were not able to perform the Floyd-Warshall algorithm on Matrix

objects as large as we were for Vectors. Using more that 216 elements exceeded the amount
of memory available. This is a particularly odd result as the size required should have been
very similar. Secondly, the run-time for the Matrix class is significantly worse than the
Vector. The Vector elicited a 25 times speed-up compared with the Matrix. Both of these
results may be a consequence of LLVM being able to apply more powerful optimisations on
the Vector and not on the Matrix, possibly making the Vector algorithm a constant-size
operation.

Initial research into this suggested that an issue may be due to the fact that the calculation
of the address within the Matrix benchmark occurs within the class instead of in the loop
in the Floyd-Warhsall benchmark. This leads to LLVM not optimising the data accesses,
possibly missing loop induction variables. More research is required to discover why this
was the result of benchmarking. Improving the Matrix class to obtain a better runtime
using this matrix is left as a future extension.
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9.2.3 Conclusions on Results

The benchmarking presented in this section has shown that the new data structures for
Ponyta are able to obtain better runtimes when executing certain benchmarks. We must
consider the benchmarks that were used for researching these results. In all of these bench-
marks, the size of the data structure was known a priori.

The Vector and Matrix types presented in this report rely on the size being specified at
compile-time. Therefore, to use these classes effectively requires knowledge of the dimen-
sions before execution. The original Floyd-Warshall benchmark (provided to me by Juliana
Franco) read the graph from a file. The benchmark constructed a graph whose size was
specified by a command line argument. The command line argument is only available at
runtime and not at compile time. To use the Vector class over the Array in such a situation
may not be possible or at least not as precise in terms of memory usage. One could allocate
a Vector large enough for any situation, leading to a possible over allocation of memory.
This may not be possible at all if there are no known bounds on the size of a the store.
Furthermore, these structures are not suitable if the stores are being resized frequently
(although not a particularly effective use of Array). Resizing is not an operation which
is possible for Vectors. To increase the size of a Vector requires static knowledge on the
previous size, the new size and a shallow copy from one data structure to the next.

From the results presented in this section I form the following conclusion. We have success-
fully developed more efficient containers to use when the size of the container is known in
advance. Therefore these statically determined, fixed sized data structures should be used
in conjunction with the data structures whose size is determined dynamically.

9.3 Compilation Time

Whilst value-dependent types and compile-time expression provide a developer with a
greater degree of flexibility, these extensions come at the cost of compilation time. This is
unavoidable as expressions are evaluated during compilation, however we can measure the
extent to which this impacts compilation times. For this measurement I present the time
required to compile the earlier presented Floyd-Warshall benchmarks. I use these bench-
marks due to the increasing dependence on value-dependent types, the Array benchmark
uses very few value-dependent types (only for defining a run-method), the Vector bench-
mark uses only compile-time integers and the Matrix uses compile-time integers, objects
and methods. To obtain the results in this section, each benchmark was compiled 100 times
and the lowest time taken.
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Figure 20: Compilation time for Floyd-Warshall benchmarks

In fig. 20, we can see the compilation times of each benchmark. Only the compilation times
of the one-dimensional Vector and Array have been reproduced here to allow for easier
comparison with the Matrix class. We can see that there is only a minor increase in com-
pilation time between the Array and Vector benchmark.

We can observe from fig. 20 that we do not appear to suffer much overhead as a result of the
extra evaluation at compile-time. Noting in particular that Matrix class, which heavily re-
lies on compile-time expressions, suffers from only a 0.5 second increase in compilation time.

This is a very important result, we saw in section 9.2 that we can obtain better runtimes
using Vectors instead of Arrays. This result would be less useful if the compilation time
required to achieve it was very high. Here we have shown this is not the case. In fact we only
pay a small penalty in compilation for the increase in performance. Consider the one-time
compilation cost against the multiple runtimes that could be improved using this feature.
We can claim that we have developed the efficient containers using value-dependent types
that we were aiming to create.

I have further compared the compilation times obtained using the unmodified Pony compiler
and using the Ponyta compiler. For this comparison, I took a variation of the Floyd-Warshall
Array benchmark and removed all value-dependent types. The results from this comparison
can be seen in fig. 21.
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Figure 21: Compilation time for Pony and Ponyta compilers

In fig. 21, both compilers demonstrated a compilation time of 2.54 seconds. This result is
due to compiling a fairly small program and so not much difference is visible. To account
for this I replicated the body of the getDistance() method 560 times. The results from
this comparison can be found in fig. 22.
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Figure 22: Compilation time for Pony and Ponyta compilers

A more noticeable distinction can be seen in fig. 22. The unmodified Pony compiler compiled
the program 1.24 times faster than the Ponyta compiler. This result shows that the extra
logic for value-dependent types has introduced an impact on compilation time. From this
we can conclude that the implementation of value-dependent types should be reviewed
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to see where time can be saved during compilation. The most likely candidate for this
is the following; during compilation all reachable methods are inspected for compile-time
expressions so that they can be evaluated. We could instead mark a function in an earlier
pass that has a compile-time expression and only inspect the definition of such functions.

9.4 Pony Developers Group

The work presented in this report has been shared with the Pony developer group who
have had a positive reaction to the development. This has involved discussion with the
group who responded with interest in using and incorporating the feature. Some response
includes furthering the project by supporting value constraints which we will discuss fur-
ther in section 11.4. The repository used for this project has also been made available to
the Pony developer group, some of whom have marked their interest by starring the project.

Finally, there was some discussion around providing two access methods for the Vector

API, one which allowed static verification of accesses to ensure the index was in bounds.
This would be usable alongside the dynamic access verifications when we statically do not
know the index being accessed.

9.5 Bug Fixes

During this project I was able to uncover and fix some bugs that existed in the Pony
compiler. These bugs include inheriting from the intersection of two instances of the same
trait, this would define ambiguous method inclusions. For example:

1 trait T1[A]

2 fun foo() => Array[A]

3 class C2 is (T1[String] & T1[U32])

Other bugs were related constructing type constraints that resulted in infinite type checking.
For example:

1 class C1[A: B, B: A]

2 class C2[A, B: A]

The above bugs were highlighted as a result of considering generics from a different per-
spective. The first bug regarding multiple trait inheritance is easier to see as a bug when
one considers the instantiation to be able to change the definition of the body using a value.
The second bug is easier to see when we first consider defining something as follows:

1 class C3[A, n: A]

Note, that this example successfully compiles. This experiment naturally progresses to test-
ing with parametrising on types instead of values.

Another bug which was discovered through constructing a benchmark involved type aliases
for lambda functions. Initially these crashed the compiler but were corrected. These type
aliases however cannot use type parameters such as in the following:
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1 type Sort[A] is {( Sortable[A]): Bool}

Finally, writing the API for Vector lead to realising some issues with alias types. These
were discovered by Sylvan Clebsch upon reviewing my API. These bugs have either been
reported to the Pony github repository[9, 13, 3] and waiting to be fixed, or I have fixed them
as a part of this project. This is a positive effect of this project as it has helped improve
the quality of the Pony compiler.
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10 Conclusions

In this project I have extended the Pony compiler to support value-dependent types in
Pony. The new version, Ponyta, allows developers to parametrise types on built-in as well
as user-defined values, and offers a more flexible and more powerful type system to build
programs.

This project involved understanding and altering many aspects of the Pony compiler. Al-
most all passes of the compiler required alteration and deep knowledge of their interactions
to ensure features were implemented correctly. To give a sense of scale, this project resulted
in adding nearly 4700 lines of new code to the Pony compiler, test suite and standard li-
brary. The size of the Pony compiler, test suite and standard library upon completion of
this project was approximately 140,000 lines of code.

This project also involved a sophisticated design of the Vector and Matrix API (presented
in sections 6 and 7). For these, I suggested new styles for using Pony’s features to develop
APIs; this style will be adopted in other, existing APIs.

Pony Interpreter

During this project I have developed an interpreter which is able to evaluate a substantial
fragment of the Pony language as complex compile-time expressions. This fragment includes
conditional expressions, while expressions, try expressions, errors, assignments, objects and
method calls. Pony includes further expressions such as match expressions and for-loops
over iterators which are currently not supported by the interpretor. Although Ponyta
does not provide access to all Pony features, we have shown that Ponyta does provide a
considerable degree of flexibility. The compile-time supported fragment of Pony has allowed
us to construct some interesting classes which rely on compile-time expressions, namely the
Matrix class.

Efficient Containers

Part of this project was to define efficient containers which used value-dependent types. We
have been able to successfully define both the Vector and Matrix classes that we aimed
to create. We have also shown that we managed to obtain improved performance from
a Vector when compared with a Array. Therefore we have been able to construct an
efficient, flexible data store during this project. Unfortunately, the Matrix data structure
underperformed, this will be researched further to provide better behaviour.

Limitations

We have provided a more flexible type system for Pony developers. This type system still
imposes some restrictions on developers, for example we cannot currently ensure equality

118



of expressions in template definitions of classes and methods. This is a direction in which
Ponyta could be explored further.
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11 Future Work

Ponyta brings many new features to the Pony programming language. We will now discuss
how these new features can be developed further.

11.1 Improving Matrix

As we discussed in section 9.2.2, the Matrix class did not produce the results that one would
expect given the underlying representation. Further exploration of the Matrix class would
be useful to understand and improve the performance of the Matrix. This may require
more of an exploration into the representation of data together with an analysis of how to
allow for better LLVM optimisations using this class.

11.2 Improving Compile-Time Expressions

The pseudo-interpreter produced in the project incorporates a reasonable about of the Pony
language. This allows developer to execute much of their code at compile-time. The Pony
programming language provides many features that have not been incorporated into the
interpreter due to time constraints. This extension involves extending the interpreter to be
able to evaluate more of the Pony language at compile-time.

Finally, as we discussed in section 9.3, the evaluation of compile-time expressions comes at
the cost of an increased compilation time. Researching methods to reduce this cost would
be worthwhile.

11.3 Mutable Compile-Time Objects

Consider the following expression:

1 class C1

2 var x: USize

3 new create(x’: USize) => x = x’

4 fun ref update(x’: USize) => x = x’

5

6 actor Main

7 new create(env: Env) =>

8 let c = #(C1(2).update (32))

9 #(c.update (41)) // fails compilation as c is of type C1 val

In the compile-time expression at line 8 a C1 object is created and then its field updated
through the update() method. Notice that all the information regarding the creation and
update of the C1 object is contained within the compile-time expression and it is not until
we leave the compile-time expression that we require the object to be of capability val. The
val capability of c means that the expression at line 9 will still cause compilation to fail due
to the incorrect capability to call update. Also note that we would not be able to use the
C1 object as a type parameter without first recovering the object to capability val due to
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the restriction that all type arguments must be compile-time expressions recoverable to val.

This extension, which allows the use of ref objects within compile-time expressions, requires
work to be able to update the the state of internal objects. Allowing ref objects also means
that caching results requires more care when handling the expressions such as the following:

1 #(let v = {1,2,3}. values (); v.next(); v.next())

In the above expression, it is necessary that v.next() returns a different result on each call.
This would perhaps require caching results of method calls based on an objects current state.

11.4 Constraints for Value Parameters

As can be seen throughout this report, in Pony it is possible to provide an upper-bound
(or constraint) to a type parameter. These type constraints can be seen in the following
example:

1 class C1[A: Number]

Here the type parameter A is constrained to be a subtype of Number. In much the same way
it would be useful and provide an even richer type system if we could also provide some
predicate constraints for value parameters that must be met for an instantiation to be valid.
Consider the following example:

1 class C2[n: {s: USize | s > 10}]

This example adopts the syntax for constraints on index types presented in [20]. Here we
define a class C2 which depends on a USize which is greater than 10. Now consider the two
following instantiations:

1 let x = C2[2]

2 let y = C2[37] // This instantiation will fail

The assignment at line 2 should fail as the type argument 37 does not satisfy the constraint
{s: USize | s > 10}. This could be extended to arbitrary predicates which operate on
any type provided the predicate could be evaluated statically. This notation, essentially,
denotes a constraint of the union of all types which satisfy the predicate.

A suggestion made by a Pony developer was that we could go on to develop the Vector

API using value constraints as follows:

1 class Vector[A, _size: USize]

2 ... // API so far

3 fun apply_static[i: {s: USize | s < _size }]() =>

4 _apply(i)

Noting here that the apply_static() method is not partial as in the dynamic apply()

method. This method is not partial as we can only instantiate the method with values
which are guaranteed by the compiler to be within the bounds of the Vector.
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11.5 Template Specialisation

We discussed template specialisation in section 9.1.1, we now go on to consider it as an
extension to Ponyta. Consider the following example:

1 actor Main

2 fun fac[n: USize ](): USize =>

3 if n < 2 then

4 1

5 else

6 n * fac[#(n - 1)]

7 end

8

9 new create(env: Env) =>

10 let x = fac [10]

The above definition of fac() will result in constructing many definitions of fac(). Notice
that for any instantiated definition of fac[# n](), we must also create the instantiated
method fac[# (n - 1)](). The compiler does not know that when n < 2 then fac[#

(n - 1)] will not be called. Therefore the compiler will create the reified definition of
fac[# (n - 1)]. These reifications could go on until all values of USize have been used to
instantiate fac().

It would be useful to allow developers to define specialised definitions of a template for given
values. Providing template specialisation would help developers avoid the infinite template
instantiation problem described above. We could then perhaps define the fac function as
follows:

1 actor Main

2 fun fac [0](): USize => 1

3 fun fac [1](): USize => 1

4 fun fac[n: USize ](): USize => n * fac[#(n - 1)]

5

6 new create(env: Env) =>

7 let x = fac [10]

Here we provide the definitions of fac[0]() and fac[1]() upfront. In such a case, the
compiler would not have to create reified definitions of theses two cases. The compiler
would use the definitions provided by the developer. We could perhaps go on to combine
this with value-dependent types with constraints and write a definition of fac() as follows:

1 actor Main

2 fun fac[n: {s: USize | s < 2}](): USize => n

3 fun fac[n: USize ](): USize => n * fac[#(n - 1)]

This can be compared to the case methods which are available in Pony. An example of
these case methods is:

1 actor Main

2 fun fac(n: USize): USize if n < 2 => n

3 fun fac(n: USize): USize => n * fac(n - 1)
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At runtime the patterns are exhaustively checked and the matching method selected (or
None is returned if no pattern matches). An equivalent approach could be used for instan-
tiating specialised definitions; raising a compilation error if no pattern matches.

11.6 Formal Model

An interesting piece of future work would be to extend the Pony formal model to incorporate
value-dependent types. There is much literature on dependent types, it would be interesting
to combine this with the novel type system presented in the Pony formal model.
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Appendices

A Linked List Vector

The following describes how to construct a Vector in C++ as linked list and where the
elements of the Vector are accessible at compile time.

1 #include <type_traits >

2

3 template <typename T, int size >

4 struct Vector

5 {

6 const T elem;

7 const Vector <T, size -1> next;

8

9 template <typename ...TS>

10 constexpr Vector(T elem , TS...ts) :

11 elem(elem), next(ts...) {}

12

13 constexpr Vector(T elem , Vector <T, size -1> next) :

14 elem(elem), next(next) {}

15

16 template <int n>

17 constexpr T get() const;

18 };

19

20 template <typename T>

21 struct Vector <T, 0> {};

22

23 template <typename T, int size , int n, typename = void >

24 struct _get_helper;

25

26 template <typename T, int size , int n>

27 struct _get_helper <T, size , n, std:: enable_if_t <(n < 0 || n >= size)>>

28 {

29 static constexpr T get(Vector <T, size > v) {

30 static_assert (0 <= n && n < size ,

31 "index must be less than dimensions of vector");

32 return 0;

33 }

34 };

35

36 template <typename T, int size , int n>

37 struct _get_helper <T, size , n, std:: enable_if_t <(n < size && n > 0)>>

38 {

39 static constexpr T get(Vector <T, size > v) {

40 return _get_helper <T, size -1, n-1>::get(v.next);

41 }

42 };

43

44 template <typename T, int size >

126



45 struct _get_helper <T, size , 0, std:: enable_if_t <(size > 0)>>

46 {

47 static constexpr T get(Vector <T, size > v) {

48 return v.elem;

49 }

50 };

51

52 template <typename T, int size >

53 template <int n>

54 constexpr T Vector <T, size >::get() const

55 {

56 return _get_helper <T, size , n>:: get(*this);

57 }

58

59 int main() {

60 constexpr Vector <int , 3> v1(1, 2, 3);

61 constexpr Vector <int , 5> v2(7, 9, 8, 2, 1);

62

63 constexpr int x = v2.get <2>();

64 // Invalid , will fail at compile time

65 v1.get <x>();

66 }

Each Vector has a value elem and a next node next. When we construct a Vector we pass
in variable number of values of type T. The argument gets destructed to instantiate the
elem with the first value and then constructing a Vector (whose size is one less than the
current vector) with the remaining arguments. Compare this to the inductive definition we
had in Idris.

The get method is implemented through templated _get_helpers which are enabled as
appropriate through the meta-programming construct std::enable_if_t. We specify a
base case, when n is 0 and size is greater than 0. We also specify the inductive case when
n is within the bounds of the vector dimensions; in this case we recurse and get with the
next node, decrementing the size and n. We also define the error case for when n is not
within the bounds of the vector.

B Benchmarking Sorting Sequences

1 use "random"

2 use "collections"

3 use "time"

4

5 actor Sorter[dim: USize]

6 fun _sort(s: Sortable[U32], f: {( Sortable[U32]) ?} val ,

7 total_itrs: U64): U64 ? =>

8 var j: U64 = 0

9 var total: U64 = 0

10 while (j = j + 1) < total_itrs do
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11 var time = Time.nanos()

12 f(s)

13 time = Time.nanos () - time

14 total = total + time

15 end

16 total / total_itrs

17

18 be sort(ret: Main , f: {( Sortable[U32]) ?} val , name: String ,

19 total_itrs: U64) =>

20 try

21 ret.complete(

22 var g = lambda ref(i: USize)(rand=MT): U32 => rand.u32() end

23 _sort(Vector[U32 , #dim]. generate(g), f, total_itrs),

24 g = lambda ref(x: USize)(rand=MT): U32 => rand.u32() end

25 _sort(Array[U32]. generate(g, dim), f, total_itrs),

26 name , dim

27 )

28 else

29 ret.failed ()

30 end

31

32 actor Main

33 let env: Env

34 let results_map: Map[String , Map[USize , (U64 , U64)]]

35 = Map[String , Map[USize , (U64 , U64)]]

36 var runners: USize = 18 * 6 // number of dims * number of sorts

37 var fail: Bool = false

38

39 be complete(vec_time: U64 , array_time: U64 , name: String , size: USize)

=>

40 try

41 results_map(name).update(size , (vec_time , array_time))

42 else

43 failed ()

44 end

45 runners = runners - 1

46 if runners == 0 then

47 display_results ()

48 end

49

50 be failed () =>

51 fail = true

52

53 be display_results () =>

54 if fail then

55 env.err.print("Failed")

56 return

57 end

58 var line = String.append("Sort | Size | Vector Time | Array Time")

59 env.out.print(line.string ())

60 line = String.append("---------------------------------------")

61 env.out.print(line.string ())
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62 for (name , map) in results_map.pairs() do

63 var i: USize = 0

64 while i < map.size() do

65 let dim = 2 << i

66 try

67 (let v_time , let a_time) = map(dim)

68 env.out.print(String.append(name).append(" | ")

69 .append(dim.string ()).append(" | ")

70 .append(v_time.string ()).append(" | ")

71 .append(a_time.string ()).string ())

72 else

73 failed ()

74 end

75 i = i + 1

76 end

77 end

78

79 fun ref init() =>

80 let sorts

81 = ["quick", "heap", "merge", "insertion", "selection", "bubble"]

82 for name in sorts.values () do

83 results_map.update(name , Map[USize , (U64 , U64)])

84 end

85

86 new create(env ’: Env) =>

87 env = env ’

88

89 init()

90

91 let sorts = Array [({( Sortable[U32]) ?} val , String)]

92 sorts.push(

93 (lambda (s: Sortable[U32]) ? => Sort[U32]. quick_sort(s) end ,

94 "quick"))

95 sorts.push(

96 (lambda (s: Sortable[U32]) ? => Sort[U32]. heap_sort(s) end ,

97 "heap"))

98 sorts.push(

99 (lambda (s: Sortable[U32]) ? => Sort[U32]. merge_sort(s) end ,

100 "merge"))

101 sorts.push(

102 (lambda (s: Sortable[U32]) ? => Sort[U32]. insertion_sort(s) end ,

103 "insertion"))

104 sorts.push(

105 (lambda (s: Sortable[U32]) ? => Sort[U32]. selection_sort(s) end ,

106 "selection"))

107 sorts.push(

108 (lambda (s: Sortable[U32]) ? => Sort[U32]. bubble_sort(s) end ,

109 "bubble"))

110

111 let total_itrs: U64 = 20

112 for (sort , name) in sorts.values () do

113 Sorter [2]. sort(this , sort , name , total_itrs)
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114 Sorter [4]. sort(this , sort , name , total_itrs)

115 Sorter [8]. sort(this , sort , name , total_itrs)

116 Sorter [16]. sort(this , sort , name , total_itrs)

117 Sorter [32]. sort(this , sort , name , total_itrs)

118 Sorter [64]. sort(this , sort , name , total_itrs)

119 Sorter [128]. sort(this , sort , name , total_itrs)

120 Sorter [256]. sort(this , sort , name , total_itrs)

121 Sorter [512]. sort(this , sort , name , total_itrs)

122 Sorter [1024]. sort(this , sort , name , total_itrs)

123 Sorter [2048]. sort(this , sort , name , total_itrs)

124 Sorter [4096]. sort(this , sort , name , total_itrs)

125 Sorter [8192]. sort(this , sort , name , total_itrs)

126 Sorter [16384]. sort(this , sort , name , total_itrs)

127 Sorter [32768]. sort(this , sort , name , total_itrs)

128 Sorter [65536]. sort(this , sort , name , total_itrs)

129 Sorter [131072]. sort(this , sort , name , total_itrs)

130 Sorter [262144]. sort(this , sort , name , total_itrs)

131 end

C Benchmarking Nested Data Structures

1 use "collections"

2 use "time"

3

4 actor ArrayActor[dim: USize]

5 fun create_array (): Array[Array[USize]] ? =>

6 let x: USize = 2 // FIXME: just for the capture

7 Array[Array[USize ]]. generate(

8 lambda (i: USize)(x): Array[USize ]^ ? =>

9 Array[USize]. generate(

10 lambda (j: USize)(i): USize^ =>

11 (i * dim) + j

12 end , dim)

13 end , dim)

14

15 fun update_array(a: Array[Array[USize ]]) ? =>

16 var i: USize = 0

17 while i < a(0).size() do

18 var j: USize = 0

19 while j < a.size() do

20 a(j).update(i, a(j)(i) + 1)

21 j = j + 1

22 end

23 i = i + 1

24 end

25

26 be run(ret: Main tag , total_itrs: U64 , name: String) =>

27 try

28 var array_time: U64 = 0

29 var itr: U64 = 0

30 let a: Array[Array[USize]] = create_array ()
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31 while (itr = itr + 1) < total_itrs do

32 var time = Time.nanos()

33 update_array(a)

34 time = Time.nanos () - time

35 array_time = array_time + time

36 end

37 array_time = array_time / total_itrs

38 ret.complete(array_time , name)

39 else

40 ret.failed ()

41 end

42

43 actor VectorActor[dim: USize]

44 fun create_vector (): Vector[Vector[USize , # dim], # dim] ? =>

45 let x: USize = 2 // FIXME: just for the capture

46 Vector[Vector[USize , # dim], # dim]. generate(

47 lambda (i: USize)(x): Vector[USize , # dim]^ ? =>

48 Vector[USize , # dim]. generate(

49 lambda (j: USize)(i): USize^ =>

50 USize ((i * dim) + j)

51 end)

52 end)

53

54 fun update_vector(v: Vector[Vector[USize , # dim], # dim]) ? =>

55 var i: USize = 0

56 while i < v(0).size() do

57 var j: USize = 0

58 while j < v.size() do

59 v(j).update(i, v(j)(i) + 1)

60 j = j + 1

61 end

62 i = i + 1

63 end

64

65 be run(ret: Main tag , total_itrs: U64 , name: String) =>

66 try

67 var vector_time: U64 = 0

68 var itr: U64 = 0

69 // FIXME: type inference is messed up on value dependent types

70 let v: Vector[Vector[USize , #dim], #dim] = create_vector ()

71 while (itr = itr + 1) < total_itrs do

72 var time = Time.nanos()

73 update_vector(v)

74 time = Time.nanos () - time

75 vector_time = vector_time + time

76 end

77 vector_time = vector_time / total_itrs

78 ret.complete(vector_time , name)

79 else

80 ret.failed ()

81 end

82
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83 actor Main

84 var runners: U64 = 2

85 let runs: Map[String , U64] = Map[String , U64]

86 let env: Env

87

88 be failed () =>

89 env.err.print("Error!")

90

91 be complete(time: U64 , name: String) =>

92 runs.update(name , time)

93 runners = runners - 1

94 if runners == 0 then

95 print_results ()

96 end

97

98 be print_results () =>

99 for (key , value) in runs.pairs() do

100 let s = String.append(key).append(": ").append(value.string ()).

string ()

101 env.out.print(s)

102 end

103

104 new create(env ’: Env) =>

105 env = env ’

106 let size: USize = # 2048

107 let v_out = String.append("Vector | ").append(size.string ()).string ()

108 let a_out = String.append("Array | ").append(size.string ()).string ()

109 VectorActor[#size ].run(this , 100, v_out)

110 ArrayActor[#size].run(this , 100, a_out)

D Vector Trace Test

1 use "ponytest"

2

3 class iso _TestVectorTrace is UnitTest

4 """

5 Test val trace optimisation

6 """

7 fun name(): String => "builtin/Vectortrace"

8

9 fun apply(h: TestHelper) =>

10 _VectorTrace.one(h)

11 h.long_test (2 _000_000_000) // 2 second timeout

12

13

14 actor _VectorTrace

15 be one(h: TestHelper) =>

16 @pony_triggergc[None](this)

17 let s1 = recover String.append("wombat") end

18 let s2 = recover String.append("aardvark") end

19 let s3 = recover String.append("meerkat") end
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20 _VectorTrace.two(h, consume s1, consume s2, consume s3)

21

22 be two(h: TestHelper , s1: String , s2: String , s3: String) =>

23 @pony_triggergc[None](this)

24 try

25 let v = recover Vector[String , 3]. init([s1 , s2 , s3]. values ()) end

26 _VectorTrace.three(h, consume v)

27 else

28 h.fail("constructing vector failed")

29 end

30

31 be three(h: TestHelper , v: Vector[String , 3] iso) =>

32 @pony_triggergc[None](this)

33 try

34 h.assert_eq[String ]("wombat", v(0))

35 h.assert_eq[String ]("aardvark", v(1))

36 h.assert_eq[String ]("meerkat", v(2))

37 else

38 h.fail("access to vector failed")

39 end

40 h.complete(true)

E Floyd-Warshall One-Dimensional Array

1 use "collections"

2 use "random"

3 use "time"

4

5 actor GraphActor

6 fun getDistance[n: USize](dp: Array[USize]): Array[USize] ? =>

7 for k in Range(0, n) do

8 for i in Range(0, n) do

9 for j in Range(0, n) do

10 let a = (i * n) + j

11 let b = (i * n) + k

12 let c = (k * n) + j

13 dp.update(a, (dp(b) + dp(c)).min(dp(a)))

14 end

15 end

16 end

17 dp

18

19 be run[n: USize ](ret: Main tag) =>

20 try

21 let dp = Array[USize]. generate(

22 lambda ref(i:USize)(rand=MT): USize =>

23 rand.next().usize ()

24 end , n * n)

25

26 var time = Time.nanos()

27 getDistance[#n](dp)
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28 time = Time.nanos () - time

29 ret.complete[#n](time)

30 else

31 ret.failed ()

32 end

33

34 actor Main

35 let env: Env

36 let ga: GraphActor = GraphActor

37 let runs: U64 = 100

38 let results: Map[USize , (U64 , U64)] = Map[USize , (U64 , U64)]

39

40 be complete[n: USize ](time: U64) =>

41 try

42 (var finished , var total_time) = results(n)

43 finished = finished + 1

44 total_time = total_time + time

45 if finished == runs then

46 total_time = total_time / runs

47 env.out.print(total_time.string ())

48 return

49 end

50 results.update(n, (finished , total_time))

51 ga.run[#n](this)

52 else

53 failed ()

54 end

55

56 be failed () =>

57 env.err.print("Failed")

58

59 new create(env ’: Env) =>

60 env = env ’

61 try

62 for i in Range(0, 12) do

63 results.insert (2 << i, (U64 (0), U64 (0)))

64 end

65 ga.run[#(2 << 0)](this)

66 ga.run[#(2 << 1)](this)

67 ga.run[#(2 << 2)](this)

68 ga.run[#(2 << 3)](this)

69 ga.run[#(2 << 4)](this)

70 ga.run[#(2 << 5)](this)

71 ga.run[#(2 << 6)](this)

72 ga.run[#(2 << 7)](this)

73 ga.run[#(2 << 8)](this)

74 ga.run[#(2 << 9)](this)

75 ga.run[#(2 << 10)](this)

76 ga.run[#(2 << 11)](this)

77 else

78 failed ()

79 end
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F Floyd-Warshall Two-Dimensional Array

1 use "collections"

2 use "random"

3 use "time"

4

5 actor GraphActor

6 fun getDistance[n: USize](dp: Array[Array[USize ]]) ? =>

7 for k in Range(0, n) do

8 for i in Range(0, n) do

9 for j in Range(0, n) do

10 dp(i).update(j, (dp(i)(k) + dp(k)(j)).min(dp(i)(j)))

11 end

12 end

13 end

14 dp

15

16 be run[n: USize ](ret: Main tag) =>

17 try

18 let dp = Array[Array[USize ]]. generate(

19 lambda ref(i:USize)(rand=MT): Array[USize] ? =>

20 Array[USize]. generate(

21 lambda ref(j:USize)(rand): USize =>

22 rand.next().usize ()

23 end , n)

24 end , n)

25

26 var time = Time.nanos()

27 getDistance[#n](dp)

28 time = Time.nanos () - time

29 ret.complete[#n](time)

30 else

31 ret.failed ()

32 end

33

34 actor Main

35 let env: Env

36 let ga: GraphActor = GraphActor

37 let runs: U64 = 100

38 let results: Map[USize , (U64 , U64)] = Map[USize , (U64 , U64)]

39

40 be complete[n: USize ](time: U64) =>

41 try

42 (var finished , var total_time) = results(n)

43 finished = finished + 1

44 total_time = total_time + time

45 if finished == runs then

46 total_time = total_time / runs

47 env.out.print(total_time.string ())

48 return

49 end
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50 results.update(n, (finished , total_time))

51 ga.run[#n](this)

52 else

53 failed ()

54 end

55

56 be failed () =>

57 env.err.print("Failed")

58

59 new create(env ’: Env) =>

60 env = env ’

61 try

62 for i in Range(0, 12) do

63 results.insert (2 << i, (U64 (0), U64 (0)))

64 end

65 ga.run[#(2 << 0)](this)

66 ga.run[#(2 << 1)](this)

67 ga.run[#(2 << 2)](this)

68 ga.run[#(2 << 3)](this)

69 ga.run[#(2 << 4)](this)

70 ga.run[#(2 << 5)](this)

71 ga.run[#(2 << 6)](this)

72 ga.run[#(2 << 7)](this)

73 ga.run[#(2 << 8)](this)

74 ga.run[#(2 << 9)](this)

75 ga.run[#(2 << 10)](this)

76 ga.run[#(2 << 11)](this)

77 else

78 failed ()

79 end

G Floyd-Warshall One-Dimensional Vector

1 use "collections"

2 use "random"

3 use "time"

4

5 actor GraphActor

6 fun getDistance[m: USize](dp: Vector[USize , #(m * m)]) ? =>

7 for k in Range(0, m) do

8 for i in Range(0, m) do

9 for j in Range(0, m) do

10 let a = (i * m) + j

11 let b = (i * m) + k

12 let c = (k * m) + j

13 dp.update(a, (dp(b) + dp(c)).min(dp(a)))

14 end

15 end

16 end

17

18 be run[n: USize ](ret: Main tag) =>
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19 try

20 let dp = Vector[USize , #(n * n)]. generate(

21 lambda ref(i:USize)(rand=MT): USize =>

22 rand.next().usize ()

23 end)

24

25 var time = Time.nanos()

26 getDistance[#n](dp)

27 time = Time.nanos () - time

28 ret.complete[#n](time)

29 else

30 ret.failed ()

31 end

32

33 actor Main

34 let env: Env

35 let ga: GraphActor = GraphActor

36 let runs: U64 = 100

37 let results: Map[USize , (U64 , U64)] = Map[USize , (U64 , U64)]

38

39 be complete[n: USize ](time: U64) =>

40 try

41 (var finished , var total_time) = results(n)

42 finished = finished + 1

43 total_time = total_time + time

44 if finished == runs then

45 total_time = total_time / runs

46 env.out.print(total_time.string ())

47 return

48 end

49 results.update(n, (finished , total_time))

50 ga.run[#n](this)

51 else

52 failed ()

53 end

54

55 be failed () =>

56 env.err.print("Failed")

57

58 new create(env ’: Env) =>

59 env = env ’

60 try

61 for i in Range(0, 12) do

62 results.insert (2 << i, (U64 (0), U64 (0)))

63 end

64 ga.run[#(2 << 0)](this)

65 ga.run[#(2 << 1)](this)

66 ga.run[#(2 << 2)](this)

67 ga.run[#(2 << 3)](this)

68 ga.run[#(2 << 4)](this)

69 ga.run[#(2 << 5)](this)

70 ga.run[#(2 << 6)](this)
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71 ga.run[#(2 << 7)](this)

72 ga.run[#(2 << 8)](this)

73 ga.run[#(2 << 9)](this)

74 ga.run[#(2 << 10)](this)

75 ga.run[#(2 << 11)](this)

76 else

77 failed ()

78 end

H Floyd-Warshall Two-Dimensional Vector

1 use "collections"

2 use "random"

3 use "time"

4

5 actor GraphActor

6 fun getDistance[n: USize](dp: Vector[Vector[USize , #n], #n]) ? =>

7 for k in Range(0, n) do

8 for i in Range(0, n) do

9 for j in Range(0, n) do

10 dp(i).update(j, (dp(i)(k) + dp(k)(j)).min(dp(i)(j)))

11 end

12 end

13 end

14

15 be run[n: USize ](ret: Main tag) =>

16 try

17 let dp = Vector[Vector[USize , #n], #n]. generate(

18 lambda ref(i:USize)(rand=MT): Vector[USize , #n] ? =>

19 Vector[USize , #n]. generate(

20 lambda ref(j:USize)(rand): USize =>

21 rand.next().usize ()

22 end)

23 end)

24

25 var time = Time.nanos()

26 getDistance[#n](dp)

27 time = Time.nanos () - time

28 ret.complete[#n](time)

29 else

30 ret.failed ()

31 end

32

33 actor Main

34 let env: Env

35 let ga: GraphActor = GraphActor

36 let runs: U64 = 100

37 let results: Map[USize , (U64 , U64)] = Map[USize , (U64 , U64)]

38

39 be print(s: String) =>

40 env.out.print(s)
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41

42 be complete[n: USize ](time: U64) =>

43 try

44 (var finished , var total_time) = results(n)

45 finished = finished + 1

46 total_time = total_time + time

47 if finished == runs then

48 total_time = total_time / runs

49 env.out.print(total_time.string ())

50 return

51 end

52 results.update(n, (finished , total_time))

53 ga.run[#n](this)

54 else

55 failed ()

56 end

57

58 be failed () =>

59 env.err.print("Failed")

60

61 new create(env ’: Env) =>

62 env = env ’

63 try

64 for i in Range(0, 12) do

65 results.insert (2 << i, (U64 (0), U64 (0)))

66 end

67 ga.run[#(2 << 0)](this)

68 ga.run[#(2 << 1)](this)

69 ga.run[#(2 << 2)](this)

70 ga.run[#(2 << 3)](this)

71 ga.run[#(2 << 4)](this)

72 ga.run[#(2 << 5)](this)

73 ga.run[#(2 << 6)](this)

74 ga.run[#(2 << 7)](this)

75 ga.run[#(2 << 8)](this)

76 ga.run[#(2 << 9)](this)

77 ga.run[#(2 << 10)](this)

78 ga.run[#(2 << 11)](this)

79 else

80 failed ()

81 end

I Floyd-Warshall Matrix

1 use "random"

2 use "collections"

3 use "time"

4

5 actor GraphActor

6 fun getDistance[n: USize](dp: Matrix[USize , 2, # {n, n}]) ? =>

7 for k in Range(0, n) do
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8 for i in Range(0, n) do

9 for j in Range(0, n) do

10 dp({i, j}) = (dp({i, k}) + dp({k, j})).min(dp({i, j}))

11 end

12 end

13 end

14

15 be run[n: USize ](ret: Main tag) =>

16 try

17 let dp = Matrix[USize , 2, # {n, n}]. generate(

18 lambda ref(i: USize)(rand=MT): USize =>

19 rand.next().usize ()

20 end

21 )

22

23 var time = Time.nanos()

24 getDistance[#n](dp)

25 time = Time.nanos () - time

26 ret.complete[#n](time)

27 else

28 ret.failed ()

29 end

30

31 actor Main

32 let env: Env

33 let ga: GraphActor = GraphActor

34 let runs: U64 = 100

35 let results: Map[USize , (U64 , U64)] = Map[USize , (U64 , U64)]

36

37 be complete[n: USize ](time: U64) =>

38 try

39 (var finished , var total_time) = results(n)

40 finished = finished + 1

41 total_time = total_time + time

42 if finished == runs then

43 total_time = total_time / runs

44 env.out.print((n * n).string () + ": " + total_time.string ())

45 return

46 end

47 results.update(n, (finished , total_time))

48 ga.run[# n](this)

49 else

50 failed ()

51 end

52

53 be failed () =>

54 env.err.print("Failed")

55

56 new create(env ’: Env) =>

57 env = env ’

58 try

59 for i in Range(0, 12) do
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60 results.insert (2 << i, (U64 (0), U64 (0)))

61 end

62 ga.run[#(2 << 0)](this)

63 ga.run[#(2 << 1)](this)

64 ga.run[#(2 << 2)](this)

65 ga.run[#(2 << 3)](this)

66 ga.run[#(2 << 4)](this)

67 ga.run[#(2 << 5)](this)

68 ga.run[#(2 << 6)](this)

69 ga.run[#(2 << 7)](this)

70 ga.run[#(2 << 8)](this)

71 ga.run[#(2 << 9)](this)

72 ga.run[#(2 << 10)](this)

73 ga.run[#(2 << 11)](this)

74 else

75 failed ()

76 end

J Sorting Benchmark Results

Number of Elements Array Time (ns) Vector Time (ns) Speed-up

512 19598 18368 1.07

1024 42101 38897 1.08

2048 74433 70433 1.06

4096 161410 151172 1.07

8192 256574 567521 0.45

16384 538240 574021 0.94

32768 1145006 1363374 0.84

65536 2426292 2513981 0.97

131072 5421476 5349500 1.01

262144 12438516 11235882 1.11

Average Speed-up 0.96

Table 2: Quicksort Results
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Number of Elements Array Time (ns) Vector Time (ns) Speed-up

512 13086 13097 1.00

1024 63732 53517 1.19

2048 84533 78581 1.08

4096 358713 322019 1.11

8192 546127 481698 1.13

16384 3459813 3383352 1.02

32768 17035071 16153593 1.05

65536 20871251 19122859 1.09

131072 45455351 41612666 1.09

262144 613874697 583460529 1.05

Average Speed-up 1.08

Table 3: Mergesort Results

Number of Elements Array Time (ns) Vector Time (ns) Speed-up

512 371906 366447 1.01

1024 1079171 1370761 0.79

2048 4271018 4630770 0.92

4096 18939902 17416206 1.09

8192 82978200 73742683 1.13

16384 337927538 314694614 1.07

32768 1345116348 1246506808 1.08

65536 5319004868 5273600274 1.01

131072 21021372053 21012888861 1.00

262144 84161782776 84505306957 1.00

Average Speed-up 1.01

Table 4: Insertion Sort Results
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Number of Elements Array Time (ns) Vector Time (ns) Speed-up

512 71506 68359 1.05

1024 340598 246364 1.38

2048 1099031 1006907 1.09

4096 3848380 4184625 0.92

8192 15478134 14618474 1.06

16384 68931104 65160613 1.06

32768 275607046 256874318 1.07

65536 1068993529 1049785698 1.02

131072 4403358398 4318378983 1.02

262144 17564798129 17399321766 1.01

Average Speed-up 1.07

Table 5: Bubble Sort Results

K Nested Benchmark Results

Number of
Elements

Time per Array
Element (ns)

Time per Vector
Element (ns)

Speed-up

4 16.75 12.75 1.31

16 8.13 3.75 2.17

64 4.97 2.25 2.21

256 4.88 1.93 2.54

1024 3.95 2.38 1.66

4096 8.10 6.10 1.33

16384 5.60 5.49 1.02

65536 3.95 3.74 1.05

262144 4.22 3.41 1.24

1048576 5.25 4.75 1.10

4194304 6.13 6.13 1.00

16777216 8.33 8.33 1.00

67108864 16.91 11.27 1.50

268435456 28.75 20.11 1.43

Average Speed-up 1.47

Table 6: Nested Benchmark Results

143



L Floyd-Warshall Benchmark

Number
of

Elements

1D Array
Time (ns)

2D Array
Time (ns)

1D Vector
Time (ns)

2D Vector
Time (ns)

Matrix
Time (ns)

4 485 383 254 474 911

16 660 668 586 693 4519

64 2633 2594 2308 2136 31588

256 11630 14785 10354 10789 245435

1024 70119 99306 61353 64138 1902437

4096 520182 781953 443619 464513 14876344

16384 3566970 5581209 2994001 3033874 119047260

65536 25562820 42503486 21788826 20994411 941635128

262144 197582482 333438148 168388445 160383423 -

1048576 1590107000 2686352289 1230765172 1488617687 -

4194304 13264552889 22098325496 11207657062 11371675433 -

16777216
104326614037 174120470468

86764696659 88472051624 -

Table 7: Floyd-Warshall Benchmark Results
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