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This project aims to provide better predictions on bus journey times in Central London, taking

into account of real time delays, and informing users of alternative routes through an interactive,

location-aware mobile app in the event of a delay.

The first stage involves collecting bus arrivals data from the TfL Unified API, and cleaning of

noisy data. We then explore patterns in the historic bus journey times, such as periodicities and

autocorrelation, in order to obtain clues of how to reuse them. For real time delays, we examine

past delays for each pair of adjacent bus stops, and characterise them into lookup tables so that

future delays can be quickly assessed.

Finally, we piece together a number of historic and real-time based prediction methods to battle

against each other. Results suggest that historic travel times for weekdays and weekends should

be treated differently, and that historic data considered in prediction generation should not be too

distant. Real-time based methods are comparable to historic based prediction methods, and are

significantly superior during holidays.
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1. Introduction

1.1. What is this project about?

London is a metropolitan with more than 3.5 million vehicles on the road1[1]. Traffic congestion

in London has long been an issue, and it has even been reported as the ‘most congested city in

Europe’[2]. As a result, bus journey times can vary a lot depending the time of the day, particularly

between rush hours and in the middle of the night.

With billions of bus journeys made on the transport network in London2[3], it is clear that even

the slightest amount of time that can be saved per bus journey will be of immense benefit to the

population. If commuters could get hold of estimates of their travel time with less uncertainty,

they could spend less time waiting for a bus, take alternative routes to avoid getting stuck in a

traffic jam, be on time for work or meetings, thereby reducing their cost in commuting.

While there are many friendly-to-use apps that perform route planning on the bus network across

Central London, such as Citymapper, Google Maps, and TfL3 Route Planner (section 2.4), they all

focus on forwarding real time live feeds of bus arrivals to users, but fail to utilise the potential of

historic arrival times4[4], which when under suitable analysis could potentially give better arrival

predictions than live feeds standalone, and detect anomalies in current journey times.

Therefore, this project aims to analyse real time and historic data of bus arrivals, so as to give more

accurate predictions of bus journey times. An easy to use interface should also be developed, so

that should a delay be detected, affected users should be warned and alternative routes suggested.

1.2. Why is this problem difficult?

One of the challenges lie in efficient handling of large data sets. With more than 600 bus routes

and 19000 stops in Central London, millions of rows and Gigabytes of data must be handled,

and extensive computing resources are required to monitor, analyse data and service user requests

real-time at the same time.
1According to Transport for London, 3,530,399 unique vehicles entered the Congestion Charging Zone during char-

ging hours in December, 2015.
2According to Transport for London, 2.397 billion bus journeys were made in London in the year 2013-2014.
3From now on we will use TfL as shorthand for Transport for London.
4According to Shashi Verma, director of customer experience at TfL, “Citymapper and other transport apps don’t do

any further analysis of the data - it’s all official information coming directly from London’s transport system”.
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1.3. What we set out to achieve

Since arrivals predictions of the entire bus network (nearly 100,000 arrival predictions5) come in

every 10 seconds, the program must be able to absorb and classify all information within the 10

second window. Under limited resources6 the program must be both computationally and memory

efficient. We would also like to ultimately present a frontend app to users for real-time route

planning and management, and hence latency between data processing and discovery of delays

should be kept low.

Another difficulty lies in data analysis. While the heart of the project involves working with

both historic and real-time data, gathering an organised and usable historic dataset has proved

challenging. The live feeds of bus arrivals predictions from TfL are noisy in nature, and care

has to be taken to filter out invalid predictions. Irregularities in historic data will also need to be

carefully examined, such as breakdown, early termination or diversion of buses (section 4).

A handful of studies [5, 6, 7, 8, 9, 10, 11, 12] can be found in literature on bus arrivals predictions

(section 2.5), where sophisticated statistical and machine learning techniques have been applied.

Nevertheless, they are experimental in nature and are confined to individual bus routes where the

geography along the routes are studied in-depth, and extra devices installed on buses to collect

further data. This unfortunately is not possible in our situation, given the vast amount of bus

routes to cover and limited resources available for this project. Therefore, this project will be one

of a kind in achieving large scale monitoring and analysis of buses.

1.3. What we set out to achieve

This project begins with building a historic database of all bus arrivals in Central London. We

monitor the current arrivals of all bus stops, filter out noisy predictions that we find invalid, before

logging them to our database (section 4).

The next stage is then to analyse historic data, such as the average journey times in between two

stops, and identify any trends with regards to the time of the day or day of the week. We start off

by employing basic statistical analysis, looking at historic means, standard deviations, periods and

autocorrelations, and compare them to our real-time measurements in search for delays (section

5). Based on initial results we devise prediction methods and evaluate them under appropriate

error measures (section 6). Should the results be dissatisfactory, or time permitting, we will be

looking into more advanced approaches as suggested in the literature (section 2.5).

The final stage is to produce an interactive app that allows route planning and delay notification,

which should generate journey time predictions based on our analysis. Should a delay along the

user’s route be detected, he / she should also be informed of how much longer the journey is

expected to take, the new estimated arrival time, and any quicker alternative routes that can be

5Assuming 19,000 stops and the top 5 arrivals predictions of each stop being monitored, this amounts to 19,000×5 =
95,000 arrivals predictions in total per request.

6Programs are distributed across 3 VMs provided by CSG - each with 4 cores and 8GB of RAM.
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1. Introduction

taken together with their estimated arrival times.
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2. Background

2.1. The TfL Bus Network

The bus network in London is extraordinary in many ways. London as a compact and highly

populated city is served by more than 600 bus routes. As a result, many have overlapping route

sections, from high traffic areas in the city centre such as Oxford and Regent Street, to suburbs

such like Tubbenden Lane in Orpington.
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Figure 2.1.: Bus spider map showing bus routes that serve Royal Albert Hall. Only major stops are
shown. It can be seen that routes 9 and 10 share the section between Hammersmith
and Hyde Park Corner.
Courtesy of Transport for London. Retrieved from https://tfl.gov.uk/maps_/bus-
spider-maps. Last accessed 28 May, 2016.
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2. Background

A notable example is routes 9 and 10, where they share a total of 18 stops between Hammersmith

and Hyde Park Corner (figure 2.1). Within this section both routes share the same bus stops,

and passengers commuting within the section will be indifferent to the route number, boarding

whichever bus that comes first. The presence of shared route sections allows us to aggregate data

from different bus routes to obtain a larger data set and perform more reliable analysis.

2.1.1. The iBus vehicle tracking system

All buses in Central London are equipped with the iBus Automatic Vehicle Location system[13]. It

utilises various technologies including the Global Positioning System (GPS), odometers, speedo-

meters, turn-rate sensors and rate gyro in order to pinpoint the location of buses in operation to an

accuracy of 100 metres[14]. The data derived allows the TfL central system to automatically and

continuously issue predictions for all bus stops and routes in Central London.

2.1.2. Open data

Traditionally, bus predictions have suffered from limited access, having only been circulated

within TfL and emergency services. In 2011 TfL has taken the initiative to make bus predictions

and route information accessible on the internet and through their unified API, details of which

to be discussed in section 2.2. This has given rise to 3rd party apps such as CityMapper (section

2.4.1) that integrates everything in one place, so that users can have easy access to live bus inform-

ation wherever they are on their mobiles. Since all buses in Central London are managed by TfL,

effectively data of all bus routes serving London can be acquired.

The information contained in the developers’ version of predictions is richer than what one would

usually expect. Apart from the route number and expected time to arrival, they also contain the

registration number of the bus, which makes it possible to track down a bus and log travel times7.

7Formally, a prediction is a JSON entity that consists of the fields:

• lineId - The bus route that the vehicle is currently serving

• direction - The direction of the bus route that the vehicle is serving (either inbound or outbound)

• vehicleId - The registration number of the bus

• naptanId - The NaPTAN identifier of the stop that the bus is approaching

• expectedArrival - The expected arrival time of the bus at the stop

• timestamp - A timestamp generated by the TfL server referencing the time of creation of the prediction

12



2.2. TfL Unified API

2.2. TfL Unified API

Transport for London’s unified API provides developers access to various information regarding

the London transport network. These include[15]:

• Journey planning • Timetables

• Status • Embarkation points and facilities

• Disruptions and planned works • Routes and lines

• Arrival/departure predictions • Fares

Figure 2.2.: Examples of requests supported by the TfL Unified API.
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2. Background

Figure 2.3.: UML class diagram of selected requests supported by the TfL Unified API that we
will be using.

Responses are returned in JSON format, and data is cached on their system[16] and updated only

periodically, from anywhere between 10 seconds (e.g. live predictions) to a day (e.g. route in-

formation), depending on the query as specified by the API.

Figure 2.3 shows the UML class diagram of the relevant TfL API calls that we will be using. The

TfL Journey Planner (section 2.4.3) can invoked by specifying the initial and final coordinates, and

detailed information including path coordinates, walking and transport instructions, intermediate

stops along the route, expected journey times etc. are returned. Route information including

sequence of stops and timetables can be obtained, and arrivals information can be acquired by bus

route or mode, as we will go into great detail in section 4 - Implementation.
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We will be making use of this API to obtain bus information and arrivals predictions throughout

the remainder of the project.

2.3. Inferring bus arrivals from predictions

2.3.1. Procedure

We can infer bus arrivals at stops by keeping track of the changes in states of predictions. The

key is in the disappearance of predictions as a bus travels past a stop. If we continuously monitor

the states of predictions referring to a fixed bus and stop pair, assuming that bus predictions are

continuously updated when buses are on the road, we can take the final state before disappearing

as the most accurate, and therefore treating its expected arrival time as the actual arrival time at

the stop.

Figure 2.4.: Examples of changes in states of bus predictions. Prediction for Royal Albert Hall
disappears after the bus travels past it.

Figure 2.4 illustrates an example of the technique. Suppose we observe a prediction at 9:08 AM

referring to bus LTZ1060 serving route 9 in the inbound direction, which has just departed Queen’s
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2. Background

Gate and is expected to approach Royal Albert Hall8 at 09:10:50. 2 minutes later at 9:10 AM,

we observe changes to the prediction, where the expected arrival time has now been altered to

09:12:25. After another minute, we observe another update to the prediction, with expected arrival

time 09:11:50. Eventually at 9:12 AM, the prediction no longer appears, and we are left with

predictions of the vehicle pointing to stops further down the line (on this occasion Prince of Wales

Gate9). We therefore infer that bus LTZ1060 has arrived at Royal Albert Hall at 09:11:50.

By repeating the above process for the next stop, we can obtain an estimate of the arrival time

at the next stop. Taking the difference of the two timestamps (arrival times), we can deduce the

journey time between the two stops. Generalising to all buses in operation and stops in Central

London we can then build a database of historic bus travel times (section 4.2).

2.3.2. Anomalies

Unfortunately, care has to be taken when applying the above procedure, as anomalies have been

found to arise.

Figure 2.5.: Anomaly 1 - Temporary disappearance of predictions

8Identified by naptanId 490011750E.
9Identified by naptanId 490011198E.
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One is the temporary disappearance of predictions. Consider the situation in figure 2.5, a variation

of the example given previously in figure 2.4, with the prediction for Royal Albert Hall temporarily

disappearing at the 9:10 AM mark, then reappearing at 9:11 AM. The above procedure would lead

us to believe that the bus has arrived Royal Albert Hall at 09:10:50, and proceeded to the next stop

thereafter.

Figure 2.6.: Anomaly 2 - Batch update of predictions

Second is the batch update of predictions. Figure 2.6 depicts one such situation, in which the

source of predictions have failed to refresh for a long time, and therefore the bus under study has

travelled a few stops down the route, before the next batch of predictions coming in, to suggest

the current location of the bus. In this example, incremental disappearance of predictions for the

stops in between - Royal Albert Hall, Prince of Wales Gate and Rutland Gardens is not observed,

but rather batch disappearance occurs at the 9:15 AM mark.

17



2. Background

Figure 2.7.: Anomaly 3 - Missing predictions

Third is missing predictions. Owing to diversion or other causes, predictions for a certain section

along a bus route may not be present. Figure 2.7 shows one such case, where predictions for stops

between Queen’s Gate and Knightsbridge Station, i.e. Royal Albert Hall, Prince of Wales Gate

and Rutland Gardens, are non-existent.
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2.4. Existing Journey Planners

Figure 2.8.: Anomaly 4 - Inconsistent predictions

Fourth is inconsistent predictions in time. As predictions are generated on the basis for individual

stops, there are no guarantees that the expected arrival times for stops down a route are increasing,

as one might expect. In fact, it was found that the expected arrival times at later stops could be

earlier than those of previous stops. Figure 2.8 illustrates an example, where the expected arrival

time for Prince of Wales Gate (09:11:50) comes before that of Royal Albert Hall (09:12:25),

although the bus is routed to first visit Royal Albert Hall.

We will look at addressing these anomalies in section 4.2.2 - noise removal.

2.4. Existing Journey Planners

There are a number of journey planners available in the market that allows for route planning on

London’s public transport network. We introduce three popular apps - CityMapper, Google Maps

and TfL Journey Planner.
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2. Background

2.4.1. CityMapper

Figure 2.9.: Screenshots of the CityMapper route planning (left) and results page (right) on iOS.
Photo courtesy of
http://cdn4.aptoide.com/imgs/2/0/c/20c57d4d937143ac0c8df7437ac70ad3_screen_384x640.png
(left) and http://cdn.appstorm.net/iphone.appstorm.net/iphone/files/2013/09/citymapper-
route-plan1.jpg (right). Last accessed 7 Feb 2016.

CityMapper10 is a journey planning app that is in operation in many famous international cities,

some of which are London, New York, Paris, Rome, Singapore and Hong Kong[17]. It runs on

iOS, Android and the web, and supports point-to-point journey planning, so that when a user spe-

cifies the origin and destination, CityMapper will search for a suitable route through the public

transport network, and return the details of the route, including travel instructions, expected jour-

ney times and fares. It is highly regarded for its intuitive interface, user-friendliness and accurate

routing information[18].

Predictions are solely repeated4 from the TfL live feeds in real time, and so further analysis is not

performed to improve the accuracy of predictions. As such, predictions are subject to noise. This

is an area we will be working on, and given that CityMapper has a solid and proven front-end, we

look up to CityMapper as the benchmark in design of our app.

10Startup company founded by Azmat Yusuf in London, 2011.
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2.4.2. Google Maps

Figure 2.10.: Screenshot of the Google Maps route planner on Google Chrome, from Imperial
College to Trafalgar Square.

Google Maps11 is a long-standing mobile and desktop app that supports route planning in most

cities around the world. As it aims for general availability around the world, trade off with city

specific features is inevitable, such as journey fares, tips on which underground carriage to take,

etc. It is widely used by the public since it is preinstalled and easily accessible on Android devices.

Its source(s) of arrivals information for London is undocumented. Data is likely to come from the

TfL live feeds, as some of the stop details (e.g. Stop ID) as shown in figure 2.10 are internal to

TfL and unlikely necessary for the public. If such, arrivals predictions are simply forwarded to the

public, so noise will be present as in the case of CityMapper. We hope to address this issue in our

project to provide more accurate estimates.

11http://maps.google.co.uk. Last accessed 11 Feb, 2016.
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Figure 2.11.: Screenshot of the Google Maps traffic page on Google Chrome, on traffic conditions
near West Brompton. Darker areas (e.g. red) indicate heavy traffic, and hence a user
could expect delays.

A key feature worth mentioning is the ’Traffic’ page, in which Google crowdsources data from

smartphone users[19] on the road to construct a real-time map of road conditions (figure 2.11).

Roads are highlighted with different colours to indicate their respective actual speeds of traffic,

and hence users could infer delays visually. An unfortunate limitation is that Google does not

provide numerical estimates of delays, making this information hard to reuse for our purposes of

generating live predictions. Nevertheless, it will serve later as a useful tool for checking whether

we have correctly identified delays, as our conclusions should in theory coincide.
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2.4.3. TfL (Transport for London) Journey Planner

Figure 2.12.: Screenshot of TfL Journey Planner on Google Chrome, from Imperial College to
Trafalgar Square.

TfL Journey Planner is the official webapp12 run by Transport for London to plan journeys in

Central London on the public transport network managed by Transport for London. Despite having

a comparatively basic graphical user interface, it pretty much matches CityMapper and Google

Maps in terms of route planning features.

Similar to CityMapper, it utilises the TfL live feeds to generate current predictions along the user’s

route, but does not make use of historic data to improve predictions. It is also susceptible to noise

since it does not perform filtering on live predictions4.

2.5. Bus Prediction Techniques in Literature

A number of studies have been performed on historic and real-time bus arrivals data to achieve bet-

ter predictions in journey times. The techniques employed include the following machine learning

and statistical methods:

Machine learning methods Statistical methods

Artificial neural network (ANN) Regression model

Support vector machine (SVM) Time series

k-th nearest neighbour (k-NN) Kalman filter

12https://tfl.gov.uk/plan-a-journey/. Last accessed 7 Feb, 2016.
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2.5.1. Artificial Neural Network (ANN)

Artificial neural networks are a family of machine learning models that resemble biological neural

networks (e.g. the brains of animals), consisting of inter-connected neurons. ANNs are powerful in

the sense that they can identify non-linear relationships between predictor variables and response

variables.

Figure 2.13.: An illustration of the artificial neural network with 3 input neurons, 4 hidden
neurons and 2 output neurons. Photo courtesy of http://engineering.electrical-
equipment.org/wp-content/uploads/2013/05/Artificial-Neural-Network-Based-
Power-System-Restoration-2.jpg. Last accessed 8 Feb 2016.

An artificial neural network consists of

• an input layer, having the same number of neurons as the number of predictor variables, so

that each neuron corresponds to each predictor variable and accepts corresponding possible

values as inputs;

• one or more hidden layers within which neurons in a layer are interconnected with all neur-

ons in adjacent layers; and

• an output layer, in which each neuron take a possible value of the response variable, so that

each will receive a probability representing the likelihood of it being true.

The backpropagation algorithm is then applied over a set of training data, iteratively adjusting the

“weights” of connections in between neurons in order to minimise the errors over the input-output

neurons, thereby learning the relationship between the predictor and response variables.
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Chien et al.[8] studied the bus arrivals times of route 39 in New Jersey, the United States. Both

link-based and stop-based approaches were investigated, where stop-based journey times refer to

journey times measured directly between adjacent stops, and link-based journey times refer to the

journey times between adjacent stops evaluated as the sum of individual chunks between road

intersections (figure 2.14).

Figure 2.14.: Transit route segment with link-based and stop-based travel times: (a) segment
between stops; (b) link-based travel time; (c) stop-based travel time.
Reproduced from Chien et al.[8], figure 1.

The ANN models for the respective link-based and stop-based approaches were built, together

with their “enhanced” counterparts which were adaptive to real-time situations. It was found

that without integrating the adaptive algorithm, the stop-based ANN outperformed the link-based

ANN, particular between stops with multiple intersections. But when it comes to the adaptive

ANNs, both stop-based and link-based ANNs were easily outperformed, especially in multistop

predictions.

Although ANNs have been shown promising in this respect, there may be limitations in employing

ANNs for the purpose of this project. One such limitation is the availability of predictor variables.

Bus travel distance, link traffic volume, link speed, link delay, link queue time and passenger

demands at stops were made predictor variables for the link-based and stop-based models, whereas

it may be difficult to obtain these information for Central London, in particular the traffic volume
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and passenger demands at stops, which are not made available by the TfL API.

2.5.2. Support Vector Machine (SVM)

Support vector machines are supervised machine learning models that performs classification and

regression on data. It classifies data by mapping predictor variables into higher dimension spaces,

and seeking hyperplanes that best separate data of one category from another. Unlike ANNs

which are prone to overfitting, SVMs always lead to the unique and globally optimum solution,

and therefore achieving a higher generalisation performance than ANNs. One main drawback is

the lengthy training process, as the learning algorithm runs in between O
(
n2
)

and O
(
n3
)

time,

where n is the size of training examples[5].

Figure 2.15.: Optimal hyperplane generated by the support vector machine in classifying between
the two categories of data - red and blue.
Photo courtesy of http://docs.opencv.org/2.4/_images/optimal-hyperplane.png. Last
accessed 8 Feb, 2016.

Bin et al.[5] performed a study on the arrival times of transit route 4 in Dalian, China, generating

predictions using SVM and comparing them to ANN. The training data was classified into four

categories, depending on whether one belonged to peak-hours and whether it was sunny at that

time. It was found that SVM outperformed ANN by 5− 7% across all 4 categories, and that

predictions generated by SVM were relatively stable compared to ANN as the RMSE13 graphs of

SVM showed less hikes than those of ANN.

13Abbreviation for root-mean-square error.
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Similar to ANNs, SVMs are computationally intensive to train, and therefore considerable training

process may need to be undergone before good results are observed. They are also “black boxes”,

making results difficult to understand and explain, particularly when compared to regression or

time series methods.

2.5.3. k-th Nearest Neighbour (k-NN)

The k-th nearest neighbour algorithm is a lazy-learning machine learning algorithm for classific-

ation and regression. Training data is simply stored in Euclidean space, and any generalisation

beyond the training data is deferred until a query instance is presented. The algorithm will then

search through the k instances closest to the query instance in terms of a pre-defined distance

function, and assigns to the query instance a classification by majority vote.

Figure 2.16.: Example of k-NN classification. The query instance (green circle) should be
classified as red triangles or blue squares. If k = 3 (solid line circle) the former is as-
signed, whereas if k = 5 (dashed line circle) the latter is assigned. Photo courtesy of
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/KnnClassification.svg/2000px-
KnnClassification.svg.png. Last accessed 9 Feb, 2016.

Chang et al.[7] built a nearest neighbour non-parametric model (NN-NPR) to forecast multiple-

interval bus travel times of an intra-city route in Seoul, South Korea, and it was found to outper-

form the historic-average model. However, it was also noted that their original k-NN forecasting

algorithm had longer execution time than other prediction techniques. Yu et al.[6] performed a

study in Hong Kong comparing multiple prediction techniques such as SVM, ANN, k-NN and lin-

ear regression in bus arrival times, but to find that k-NN were only as good as the linear regression

model, and being beaten by both SVM and ANN.
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2.5.4. Regression model

Regression models are used in statistics to fit relationships between covariates (called predictor

variables) and the outcome (called response variable). Linear regression is a common approach,

in particular the generalised linear model is popular, in which the response variable is expressed

as a function of the linear combination of predictor variables. The fitted relationship can then be

interpolated or extrapolated to generate forecasts on unseen data.

Figure 2.17.: Example of linear regression. Photo courtesy of ht-
tps://en.wikipedia.org/wiki/Linear_regression#/media/File:Linear_regression.svg.
Last accessed 9 Feb, 2016.

Patnaik et al.[11] worked on estimation of bus arrival times on an urban bus route in the northeast

United States. The generalised linear model was adopted, where the distances, dwell times in

between stops, the number of stops, and time period of each day were selected as predictor vari-

ables. It was found the RMSE between estimated and actual mean travel times were quite close to

each other, and R2 = 0.99≈ 1, suggesting that the linear model may be a decent approach.

Compared to time series models, the latter is better suited to time series data, as regressions models

do not take into account of (auto)correlation of error terms[20].

2.5.5. Time series

Time series models describe relationships between past, present and future observations. An ex-

ample is the autoregressive integrated moving average (ARIMA) family, in which observations

in later times are represented as a linear combination of earlier observations and noise terms.

Since time series models are dependent on the similarity between real-time and historical patterns,

wide fluctuations in historical data could lead to large differences between predictions and actual

observations[7].
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Figure 2.18.: A time series plot of the annual number of earthquakes in the world with seismic
magnitude over 7.0, for 99 consecutive years. Photo courtesy of
https://onlinecourses.science.psu.edu/stat510/sites/onlinecourses.science.psu.edu.stat510/files/
L01/graph_01.gif. Last accessed 9 Feb, 2016.

Suwardo el al.[12] studied bus arrival times along the Ipoh-Lumut corridor in Malaysia with the

ARIMA model. The forecasts were based solely on historical travel time, without taking into

account of other factors such as traffic conditions. It was found that the observed arrival times lay

within the 95% confidence interval of predicted arrival times, suggesting time series analysis may

be a feasible approach.

We will be pursuing techniques in time series throughout the later chapters.

2.5.6. Kalman filter

The Kalman filter has been another popular statistical method adopted in bus arrivals prediction

studies. Its underlying principle is Bayesian inference14, in which the prior distribution describing

a previous state will be updated based on new observations to form the posterior distribution. It is

widely adopted in industry for its non-computationally intensive nature, which is advantageous in

generating real-time predictions[7].

14The Kalman filter is a special case of the Bayesian network where the random variables are Gaussian.
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Figure 2.19.: A diagram depicting the internal procedure of the Kalman filter. Photo courtesy of
https://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/
Basic_concept_of_Kalman_filtering.svg/400px-Basic_concept_of_Kalman_filtering.svg.png.
Last accessed 10 Feb, 2016.

Chien and Kuchipudi[9] applied the Kalman filter on a section of the New York State Thruway

to study vehicle travel times, using the automated tag times when a vehicle passes through a toll

plaza. Link-based and path-based variants were investigated, and it was found that the link-based

models performed remarkably well, whereas the path-based model fell a bit short in the event of

congestion or traffic accident. While we acknowledge that the study was performed on general

vehicles, there is reason to believe the results should extend well to buses, as the monitoring of

bus arrivals at stops resembles much the tagging of vehicles at toll plazas. Indeed it is revealed

that the iBus system (section 2.1.1) applies the Kalman filter on the data collected from GPS in

determining the location of buses[14], with which predictions are based upon.

We note that this method is more complex than the time series model, and assumes Gaussian

noise terms. We shall therefore take this as a backup plan, should time series analysis fail to give

promising results.

2.5.7. Hybrid approaches

Combinations of the above methods are also present in literature. Bai et al.[21] performed a

comparison study between the ANN, SVM, Kalman, ANN-Kalman, and SVM-Kalman algorithms

on five bus routes running along the Shennan Boulevard in Shenzhen, China. It was found that the

ANN-Kalman and SVM-Kalman combination approaches significantly outperformed15 their pure

counterparts, and it was attributed to traditional machine learning algorithms (ANN and SVM)

15The pure ANN, SVM and Kalman models recorded RMSEs between 71 and 75, whereas the hybrid ANN-Kalman
and SVM-Kalman models recorded a RMSE of only 30.

30



2.5. Bus Prediction Techniques in Literature

being able to extract patterns in the historical data better, whereas the Kalman filter adapted well

to dynamic traffic conditions in real-time.
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3.1. Overview

The project can be split into several stages. Since TfL does not provide a historic database that we

can query on, we first have to build our own.

The first stage is to gather live bus predictions from TfL, and channel them into our database, so

that analysis can then be performed afterwards. The second stage is then the ’trial and error’ phase

- we shall simulate a series of user journeys, and experiment with different techniques and formulas

in generating our predictions to find out which methods will give the most reliable results. The

final phase will involve wiring up everything together, presenting and summarising the results of

our analysis in a neat, interactive, user-friendly front-end mobile app, so that the ordinary citizen

can appreciate our work, and benefit from it by saving valuable time in commuting.

We now go into the design of our project - introducing which technologies have been utilised and

why they were chosen, and explain how computing resources are split across various components

in our project.

3.2. Technologies

3.2.1. Choice of scripting host - Apache Cloudstack / CloudVM

Given that TfL predictions come in round the clock, and that end users can commute any time, the

first thing to consider is a host that is reliably available 24/7. It will also need to be computationally

powerful and have fast network connectivity, so that database queries can be processed efficiently,

and live feeds from TfL can also be quickly denoised within the 10 second window frame before

inserted into the database. Another aspect to be taken into consideration is extensibility, given that

we are accumulating massive historic data in the order of Gigabytes, we may want to expand disk

capacity in case disk space runs out.

The virtual machines managed by CSG running on Apache Cloudstack16 address the above needs

very well. The machines are highly configurable, such as the number of cores, RAM, and disk

space. For our purposes, we have acquired three VMs with 4 cores, 4Ghz and 8 GB of RAM.

16Apache CloudStack is an open source cloud computing software for deploying large networks of virtual machines.
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3.2.2. Choice of backend scripting language - Go

The language that we write in for our backend has to be highly efficient, in particular modern big

data paradigms emphasises importance in parallelism and concurrency. This immediately rules out

interpreted and dynamically typed languages such as Python, despite having a wealth of libraries

available. In fact, fast programming languages have traditionally been represented by the likes of

C, C++, Java, and the call for concurrency pinpoints heavily to Java.

Figure 3.1.: A benchmark of various programming languages on nested loop additions.[22]
Photo courtesy of http://blog.carlesmateo.com/wp-content/uploads/2014/10/blog-
carlesmateo-com-performance-several-languages-php7-phantomjs-nodejs-java-
bash-go-perl-luajit-hhvm3_9-scale_mod5.png. Last accessed 1 May, 2016.

Not so until recently that the Go programming language17 came into the picture. The static,

compiled programming language was designed with concurrency at its heart. Its performance

is in the class of Java, but with much better memory footprint and scalability when it comes to

threading[23][24]. Other advantages include web server support in its standard library, allowing

for ease of integration with the rest of code; availability of Postgres binding making it easy to

communicate with the database; and less verbose syntax compared to Java, making it favourable

in terms of development time.

17Developed by Google and released in 2009, the compiled, statically typed language featured a new paradigm for
concurrency - “goroutines” and “channels”, which aims at addressing difficulties in sharing the same piece of data
in a thread-safe manner across threads in traditional threading models.
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3.2.3. Choice of database management system - PostgreSQL

With massive amounts of live feeds continuously received and processed, it is vital that data can be

stored and retrieved efficiently. In order to perform valid analysis, data integrity is also of utmost

importance.

An SQL18 database with ACID19 properties is therefore ideal. PostgreSQL20 is known to adhere

to the ANSI SQL features very well, and is generally acclaimed to be stable and reliable, even over

years of heavy use[25]. Handy features include concurrent building of indices without blocking

write operations, so that we can defer building of the necessary indices on the fly to save space,

without hindering updates on our live production table.

3.2.4. Choice of front end - Android application

We wish to make the final results from our research accessible to a wide audience in a friendly

manner. Options of a web app or mobile app have been considered.

Advantages of building a web app include compatibility across a range of devices (desktops,

laptops, Blackberry, iOS and Android smartphones), and less costly development time. The down-

side to this is the lack of user-interactive features, such as location detection, live notification,

which could be a game changer in user experience, considering a commuter may only be inter-

ested in delays affecting his/her journey between the current location and the destination, and may

be put off by the need to actively check a website in order to be informed of delays.

18SQL refers to Structured Query Language, which is a special-purpose programming language tailored for data ma-
nipulation in a relational database management system.

19ACID refers to atomicity, consistency, isolation and durability. These properties are crucial in ensuring data integrity.
20PostgreSQL is an open source object-relational database management system implementing the majority of the core

SQL:2011 standard.
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Figure 3.2.: Market share of different smartphone operating systems, as of Quarter 3 of 2015.
Photo courtesy of Statista, http://venturebeat.com/2016/02/05/microsoft-nokia-and-
the-burning-platform-a-final-look-at-the-failed-windows-phone-alliance/. Last ac-
cessed 1 May, 2016.

Therefore we decide to stick with a mobile app. For the purpose of our project we will be building

an Android app, given that Android is the most popular mobile operating system as of 2015 (figure

3.2). Android also has built in map support, so we could identify the location of users, and give

relevant updates on their intended routes based on their current locations.

It is certainly possible to implement another client on other mobile operating systems, should

the reader be interested, and can be done easily by querying the same APIs (appendix B) as the

Android app does on the web server that we set up.

3.3. Components

We shall now give a high-level overview of the architecture of our backend. As large amounts

of data needs to be processed in real time, proper division of work across computing resources is

critical. One approach is to visualise the problem as a production chain, where live predictions
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from TfL are first gathered into our database, then fed down to the analyser. The results (i.e.

predictions in journey times and current delays) can then be made available on a webserver, which

provides an endpoint for other clients (e.g. the front-end mobile app) to request from.

3.3.1. Allocation of computing resources

We note that the earlier stages of the chain will be more resource intensive, as live predictions

across Central London from TfL come in at 10 second intervals, and they have to be swiftly

denoised and inserted into the database before the next batch of data comes in. The process

of insertion into the database is also coupled with update of indices, during which the database

could be locked up. This may even lead to other SELECT queries being blocked when analysis

is performed in later stages. Therefore, we decide to allocate more computing power for these

actions.

The later stages concerning analysis of historic data and queries from clients are not imposed

with strict timing requirements, and are intermittent in nature. To save unnecessary computing

resources we allocate only a single VM for all such purposes.

Figure 3.3.: Distribution of work across the 3 virtual machines.

Three virtual machines were acquired from CSG in total, each of 4 cores, 4 GHz and 8 GB RAM.

The first virtual machine is solely reserved to host the Postgres database and handle database

requests. We also allocated for now 600GB of disk storage, which can be easily extended if

need be when the disc fills up with predictions, for the Postgres database. The second virtual

machine is assigned the duty of repeated polling of TfL live feeds, and noise removal of insensible

predictions before sending them into the Postgres database. The rest of operations are handled by

36



3.3. Components

the remaining virtual machine, including active detection of delays, web server hosting for client

connections and evaluation of different prediction methods on historic data.

3.3.2. Database

The database consists of a number of tables, the main of which (table journey_history) stores

the historic records of bus arrivals, and the rest background information for validation and auxiliary

purposes. We will now give a brief overview of important tables, further details to be given in

section 4 - Implementation. Figure 3.4 gives a UML representation of some of the key tables in

the database.
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lines

id CHARACTER VARYING

adjacent_stops

from_id CHARACTER VARYING

to_id CHARACTER VARYING

line_id CHARACTER VARYING

bound CHARACTER VARYING

current_estimates

from_id CHARACTER VARYING

to_id CHARACTER VARYING

historic_estimate INTERVAL(6)

real_time_estimate INTERVAL(6)

estimate INTERVAL(6)

delay BOOLEAN

last_updated TIMESTAMP(6) WITHOUT TIME ZONE

delay_count INTEGER

delay_expected_to_last INTERVAL(6)

delay_history

from_id CHARACTER VARYING

to_id CHARACTER VARYING

historic_estimate INTERVAL(6)

real_time_estimate INTERVAL(6)

estimate INTERVAL(6)

real_time_count INTEGER

time_of_discovery TIMESTAMP(6) WITHOUT TIME ZONE

delay_characteristics

from_id CHARACTER VARYING

to_id CHARACTER VARYING

day_of_week INTEGER

hour_of_day INTEGER

delayed_by INTERVAL(6)

num_buses INTEGER

expected_lasting_time INTERVAL(6)

last_updated TIMESTAMP(6) WITHOUT TIME ZONE

journey_history

line CHARACTER VARYING

bound CHARACTER VARYING

vehicle_id CHARACTER VARYING

from_id CHARACTER VARYING

to_id CHARACTER VARYING

from_timestamp TIMESTAMP(6) WITHOUT TIME ZONE

to_timestamp TIMESTAMP(6) WITHOUT TIME ZONE

from_timestamp_tfl TIMESTAMP(6) WITHOUT TIME ZONE

to_timestamp_tfl TIMESTAMP(6) WITHOUT TIME ZONE

time_taken INTERVAL(6)

interpolated BOOLEAN

db_inserted_timestamp TIMESTAMP(6) WITHOUT TIME ZONE

line_stop_points

line_id CHARACTER VARYING

bound CHARACTER VARYING

stop_seq INTEGER

naptan_id CHARACTER VARYING

next_buses

line CHARACTER VARYING

bound CHARACTER VARYING

naptan_id CHARACTER VARYING

vehicle_id CHARACTER VARYING

expected_arrival_time TIMESTAMP(6) WITHOUT TIME ZONE

last_updated TIMESTAMP(6) WITHOUT TIME ZONE

stops

id CHARACTER VARYING

name CHARACTER VARYING

icscode CHARACTER VARYING

latitude NUMERIC

longitude NUMERIC

station_naptan CHARACTER VARYING

terminus_departures

line CHARACTER VARYING

bound CHARACTER VARYING

naptan_id CHARACTER VARYING

vehicle_id CHARACTER VARYING

expected_departure_time TIMESTAMP(6) WITHOUT TIME ZONE

last_updated TIMESTAMP(6) WITHOUT TIME ZONE

tfl_predictions_history

line CHARACTER VARYING

bound CHARACTER VARYING

from_id CHARACTER VARYING

to_id CHARACTER VARYING

predicted_time INTERVAL(6)

departure_time TIMESTAMP(6) WITHOUT TIME ZONE

timetable

line_id CHARACTER VARYING

bound CHARACTER VARYING

naptan_id CHARACTER VARYING

weekday INTEGER

departure_time TIME(6) WITHOUT TIME ZONE

Figure 3.4.: UML diagram of selected tables in database. Primary keys are denoted with a “key
icon” next to the table attribute, and foreign keys are represented by green arrows.

The main table journey_history is the table that keeps records of past travel of all buses. It

includes information of the times (specified by from_timestamp, to_timestamp) during which

individual journeys between each pair of neighbouring stops (represented by from_id, to_id)

along a bus route (line) and direction (bound) were made, together with the registration number

38



3.3. Components

(vehicle_id) of the bus in question. For example, the record:

represents that bus LTZ 1094 (serving route 9 in the inbound direction) took 1 minute 26 seconds

to travel between Royal Albert Hall and Prince of Wales Gate (corresponding to ids 490011750E

and 49001198E respectively), from 18:38:12 to 18:39:38 on 2nd May, 2016.

The tables lines, stops, line_stop_points and adjacent_stops are helper tables that con-

tain all bus route and stop information in Central London. They are used for validation checks,

and lookup to convert TfL internal identifiers to human readable form. Their significance will be

discussed in the Implementation section. For example:

by looking up the stops table we obtain the correspondence between identifiers 490011198E,

490011750E and the place names “Prince of Wales Gate” and “Royal Albert Hall”.

The remaining tables current_estimates, delay_history, delay_characteristics,

tfl_predictions_history, timetable, terminus_departures and next_buses are used

for prediction analysis. The current_estimates table caches predictions for current travel

times between each pairs of neighbouring bus stops, based on the best prediction method to

be found later. We will be going into the details in the Optimisation section (section 7). The

delay_history table stores information on past delays, the delay_characteristics table on

how long delays or unusual traffic are expected to last (section 5.2), and the tfl_predictions_history

table contains what TfL gave as predictions and will serve as benchmark for evaluating whether

our predictions outperform theirs. In addition to computing travel times on buses, passenger wait-

ing times are also a subject under study, and the tables timetable, terminus_departures and

next_buses come into play, which will be discussed also in the Optimisation section (section 7)

after we develop appropriate prediction techniques.

3.3.3. Backend scripts

Scripts are set up for the actions that needs to be performed periodically, such as the polling and

processing of bus predictions from the TfL server, estimation of current travel times, detection of

delays, and updating of route information.

In order to safeguard scripts from unexpected termination, Cron jobs are set up to test at one

minute intervals whether the scripts are in a running state. Should a script be found not running, it

would be restarted.
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For debugging purposes output from all scripts are kept as logs. To prevent filling up of disk space,

logs older than 3 days are removed at midnight every day.

3.3.4. Web server

In order to pass on our data to our clients, such as predictions and current delay information, we

set up a web server endpoint for clients to query on, and return JSON in response. This has the

benefit of encapsulating the internal structure of our backend codebase, and allowing the flexibility

of extra client implementations. The details can be found in appendix B.

3.3.5. Android app

The Android app is the component that interacts at the forefront user level. It aims at providing a

nice user experience, and bridging the gap between the needs for route planning of the user, and

the prediction generation process in the backend. It also echos detected delays in the backend to

the user as notifications so that the user can pick up the signal in a passive manner.

Figure 3.5.: Screenshots of the Android app. (1) The leftmost screenshot is the home page of
the app, in which the current location of the user is shown. (2) The second shows
all detected delays in Central London, sorted by the distances to the user’s current
location. (3) The third displays a streetview of the destination, route results, and
journey times already taken into consideration of current delays. (4) The last gives an
interactive map and detailed instructions of the intended route, and pinpoints where
delays are occurring.

We take advantage of the location-aware capabilities of smartphones. For example, a user may

only be interested in delays near his / her current position, so we order delays based on their
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3.3. Components

distances to the user’s location. Delays along a route only has effect on the user if it lies between

the user’s current position and the destination, and so we need not alert the user if we detect that

he / she has already travelled past the places affected by the delays.

Details of the app will be discussed in the user guide in appendix C.
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4. Implementation

4.1. Stage I - Setting up backbone

4.1.1. Core database

The first stage involved acquiring the necessary background information from the core TfL dataset,

including all bus route and stop information. A key motivation being that TfL imposes a quota

on the developers’ request limit per minute21, and given the vast number of bus routes in Central

London22 it would be impractical (and inefficient) to query the TfL core dataset each time auxiliary

information is required. Another is that by creating our own copy of route and stop information

database, we could virtually perform any SQL query, not limited to the ways that the TfL API

allows, such as which parameters must be supplied and which would be returned.

lines

id CHARACTER VARYING

adjacent_stops

from_id CHARACTER VARYING

to_id CHARACTER VARYING

line_id CHARACTER VARYING

bound CHARACTER VARYING

line_stop_points

line_id CHARACTER VARYING

bound CHARACTER VARYING

stop_seq INTEGER

naptan_id CHARACTER VARYING

stops

id CHARACTER VARYING

name CHARACTER VARYING

icscode CHARACTER VARYING

latitude NUMERIC

longitude NUMERIC

Figure 4.1.: UML diagram of the core tables lines, stops, line_stop_points,
adjacent_stops

21As of 3 May, 2016, TfL sets a maximum request limit of 500 API calls per minute on their core dataset.
22671 bus routes in Central London are managed by TfL as of 4 May, 2016.
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4.1. Stage I - Setting up backbone

Therefore we set up a few tables23 that replicates the information available on the TfL servers.

Figure 4.1 shows the relationships between the core tables that we are going to set up, in which

the key icons denote primary keys of the table and arrows represent foreign keys.

The table lines contains all the bus routes that are managed by TfL. The id attribute is the

identifier of each bus route (i.e. the bus route number).

The table line_stop_points records the stops information of each bus route. Its attributes

consist of line_id, the identifier of the bus route; bound, the direction the route; stop_seq, the

sequence number of the stop of the given route and direction24, and finally naptan_id (NaPTAN

identifier25), which is an internal identifier used by TfL to identify stops across Central London.

The table adjacent_stops is a rewrite of the table line_stop_points, where each record rep-

resents a pair of neighbouring stops of a given line and bound. It therefore contains all individual

links in the London bus network, and are essentially the building blocks of all bus journeys, since

all valid bus journeys by design can be decomposed into records in the table. The attributes line

and bound have the same meaning as in the table line_stop_points, whereas from_id and

to_id represent the NaPTAN identifiers of the pair of neighbouring stops involved.

Finally, the table stops contain all stop information across Central London. It records the NaPTAN

identifier of each stop id, together with the name of the stop, icscode (another internal identifier

that TfL uses to label their stops), and the world coordinates - latitude and longitude.

4.1.2. Data consistency

To ensure data consistency across the tables, the line identifier id in the lines table is made a

foreign key to the line_id attribute of tables line_stop_points and adjacent_stops:

line_stop_points(line_id)
f k
=⇒ lines(id)

adjacent_stops(line_id)
f k
=⇒ lines(id)

since we would like to ensure that the details appearing in tables line_stop_points and adjacent_stops

indeed refer to valid routes. By enabling ON DELETE CASCADE on the foreign key relations,

we also have the added benefit that when TfL withdraws a bus route (i.e. removes an entry

from the lines table), the corresponding details would be deleted automatically from the tables

line_stop_points and adjacent_stops.

We could have done the same with attributes naptan_id, from_id, to_id in tables line_stop_points

and adjacent_stops, as they all refer to NaPTAN ids, and should appear in the id column of
23These tables can be set up by running the scripts createtables.go, updatelines.go,

updatelinestoppoints.go, updateadjacentstops.go and updatestops.go in order.
24Stop sequences are labelled sequentially from 0 onwards, where 0 represents the starting terminus of the route of a

given direction.
25NaPTAN is a shorthand for “National Public Transport Access Nodes”, which is Britain’s national system for unique

identification of points of access to public transport.[26]
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the table stops.

line_stop_points(naptan_id)
f k
=⇒ stops(id)

adjacent_stops(from_id)
f k
=⇒ stops(id)

adjacent_stops(to_id)
f k
=⇒ stops(id)

This was unfortunately not possible execution wise, as the TfL API does not provide a direct call

to obtain all stop information, and so we need to aggregate all appearances of stops in the tables

lines_stop_points and adjacent_stops to form the stops table. We therefore have it the

other way round instead26.

4.1.3. Flexibility

We must also be aware that bus routes are subject to alteration any time. The TfL API refreshes

its source of route information every day. Therefore, we must update our databases accordingly

so as to be consistent, particularly for the route planning function that we will be implementing.

A Cron job has been set up to synchronise the databases27 every day at midnight 2am, which is a

less busy time of the day to minimise disruptions.

Once the core database is set up we will then have the ability to watch out for invalid bus pre-

dictions, or edge cases in the next stage. For example, we might find that a bus prediction actu-

ally refers to a stop not on the route (possibly due to diversion), or that a prediction temporarily

disappears. All these checks would not have been possible had we not have the exact routing

information of each bus route.

Apart from validation of data, the core database helps immensely in providing information that

is not straightforwardly available from the TfL API, such as detection of cycles in bus routes,

querying intermediate stops and determining the relative order of two stops along a given bus

route.

4.2. Stage II - Live feeds data collection

We now describe in detail the process of acquiring live bus predictions from the TfL web server,

filtering out invalid predictions and handling of edge cases, before inserting them into the historic

database of journey times.

26πnaptan_idline_stop_points =
(
πfrom_idadjacent_stops∪πto_idadjacent_stops

)
⊇ πidstops in relational algebra

terms.
27In effect the scripts updatelines.go, updatelinestoppoints.go, updateadjacentstops.go and

updatestops.go are run in order.
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4.2. Stage II - Live feeds data collection

4.2.1. Downloading live bus predictions from TfL

There are two main channels through which live bus predictions are broadcast from TfL. The first

is the “instant” API, in which static JSON data is returned from the TfL server, and the source

is regularly refreshed at regular intervals. The second is the “stream” API, in which JSON is

continuously streamed through sockets.

While the latter has the advantage that bus predictions are released immediately once ready from

the TfL server, and hence should lead to lower latency, it doesn’t address our needs very well.

For example, as predictions for each stop come in one by one, and that no particular ordering

relative to the sequence of bus stops down a route is guaranteed, it is difficult to gather a complete

snapshot of all arrival predictions, so as to determine the location of a bus based on the expected

arrival times at each stop. TfL has also declared that owing to large amounts of data potentially

transferred, the usage of each developer is actively monitored, and actions will be taken should

there be excessive use. The term “excessive use” is not quantified clearly, and it is not worth the

risk since we require live bus predictions 24/7 uninterrupted.

Figure 4.2.: A screenshot of the available “instant” TfL API calls that return live bus predictions.
(Top) Returns arrival predictions by bus route, whose source is updated every 50
seconds. (Bottom) Returns the top N predictions of each bus stop for all stops in
Central London, whose source is updated every 10 seconds.
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Therefore, it is decided that we stick to the “instant” API. The “instant” API provides two main

entry points for obtaining live bus predictions, one is querying by bus route, so that all predictions

associated with the desired bus route are returned. The other returns the top N predictions of each

bus stop for all stops across Central London (figure 4.2).

We would very much prefer the first approach, as we essentially would like to track the buses that

are assigned to each bus route, in order to determine their locations within the route. Unfortunately,

TfL imposes a limit of 500 requests per minute for each developer across all “instant” API calls,

and given that there are 671 bus routes28 in Central London, at best we would only be able to

acquire all bus predictions in 2 minute cycles, which is not practical given the dynamic nature of

bus predictions.

We therefore have to resort to the second approach. We would eventually need to create our own

adapter to classify bus predictions by bus route, so as to monitor their relative positions along

respective routes.

Since only the top N predictions are returned for each bus stop, it now boils down to determining

an appropriate choice of N. Although TfL claims that the source is refreshed at 10 second intervals,

after some observations it was found that predictions for each individual bus route are updated per

5 refreshes, and hence ≈ 50 seconds. Coincidentally this is exactly that of the first approach. We

therefore need to ensure that N is large enough, to cover all bus arrivals that are about to happen in

the next 50 seconds. What hinders N from being too large is the amount of data transferred (and

internet speed), since with N = 1 it was found that approximately 1MB of data was transferred,

so we would expect roughly NMB of data usage per query. Given that the source is updated

every 10 seconds, we would ultimately want our handler to be able to complete each cycle within

10 seconds. Therefore, by trial and error we picked N = 10, assuming that less than 10 buses

are arriving at each stop in the next 50 seconds, and checking that we are indeed collecting all

predictions by examining the busiest stops in Central London.

4.2.2. Processing live bus predictions

Assumptions Now that we have got a bunch of bus predictions at hand, we need to interpret

them to find out where the buses actually are. To this end, we need some assumptions:

• (Assumption 1) A bus has departed a stop if its prediction at that stop disappears.

• (Assumption 2) The dwelling time at each stop is negligible, i.e. a bus is in between two

stops almost surely.

• (Assumption 3) The time of departure (= time of arrival by the previous assumption) at a

stop is taken to be the expectedArrival field claimed by the TfL prediction.

28As of 4 May, 2016.
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While at first sight assumption 2 seems unreasonable, it is regretfully difficult to obtain estimates

for dwelling times, since such data is not provided by TfL. As we gather a large sample of bus

predictions, each individual bus predictions would either overestimate or underestimate the actual

arrival / departure times at stops, as hence the dwelling times should on average cancel out, and

the averaged journey times should tend to the true mean29.

Procedure With these assumptions settled, we could start figuring out when the buses arrived

at each stop. We first partition all incoming predictions into their corresponding bus routes, so that

we will monitor each vehicle continuously along the route the prediction claims it is on. This is

done by setting up a cache for each bus route30, in which we hold as keys the registration number

of the vehicle to identify the bus currently serving that route, and as values all the predictions that

refer to the bus. We can then determine which stop a bus is going to approach next, by extracting

the prediction that yields the closest expectedArrival time from now.

We expect TfL to continuously give updates to each prediction, until the prediction disappears as

the bus leaves the station. All we have to do is then update the corresponding cache entry, when

the next batch of predictions come in. In case TfL withdraws a bus from the route (say at the

end of the day or alteration of bus assignments), the corresponding entry in the cache would be

deleted.

Noise removal As innocent as it seems, the above procedure doesn’t work well in reality, due

to unexpected behaviour31 of the predictions. We list below the pitfalls that we have fallen into,

and the corresponding workarounds.

1. Temporary disappearance of prediction

It was found that predictions could temporarily disappear then reappear, thereby under-

mining assumption 1. A particular difficulty with this is that there is no guarantee on the

maximum gap in between the disappearance and reappearance, and hence we cannot be sure

that a disappearance is final and for real. To mitigate this, we need another assumption:

• (Assumption 4) The disappearance of a prediction after its claimed expectedArrival

time is treated for real.

29The central limit theorem says that if Xi are identical and independent random variables, then

∑
n
i=1 Xi

n
d−→ N

(
E (Xi) ,

Var(Xi)

n

)
i.e. the arithmetic mean of the Xi’s would be asymptotically distributed as a normal distribution with the same mean
as each random variable, and 1

n of the original variance.
If Xi represents the journey times inferred by bus predictions, then as we average over a large sample size (large

n), we should obtain predictions very close to the true journey time, since the variance tends to 0 as n→ ∞.
30The caches are backed by the hashmap data structure. Operations on each cache run concurrently in different

goroutines, for efficiency and isolation, so that in case an operation doesn’t work for a bus route due to an edge
case, the others would not be impacted.

31Unexpected in the sense that they are undocumented in the TfL API documentation[16].
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Therefore, if a bus claimed that it would arrive at stop XYZ at 15:04:05, and the predic-

tion disappeared at 15:04:26, we would see it as the bus departed stop XYZ at 15:04:05,

regardless of whether the prediction reappears some time later.

It is debatable whether this is the best approach, as we might as well wait for another minute

or so, by which time the probability of reappearance should have been much lower32, before

taking the disappearance of a prediction for real. Nevertheless we prefer to keep things

simple and adopt the former approach.

2. Batch update of predictions

Another anomaly is that rather than pushing out incremental updates at 10 second intervals

for all predictions, i.e. if a bus departed a stop we would expect its prediction to disappear

by the feed within the next 10 seconds, it was found that TfL releases all updates of a given

bus route at the same time in batches approximately every 50 seconds33. There are even

occasions where the source fails to refresh for some minutes, therefore predictions may not

catch up with the live status of the bus very well.

In particular we would often notice that by the next batch of updates, a bus would have been

a few stops down the route from its last reported location. In such case, we could only rely

on the same batch of predictions when it was last reported for the arrival times of the stops

in between. This will be further discussed in the “Interpolation” section below.

3. Missing predictions

There are cases where predictions are never supplied for some stops in between, possibly

owing to diversion or other causes34.

It is not certain whether the bus has actually visited those stops, and therefore we discard

the affected portions of the journey, without logging them in our database.35

4. Inconsistent predictions

Since a prediction describes the expected arrival time to a stop, it does not automatically

imply relationships across stops of the same bus route. It was discovered that, occasionally

the expected arrival time of a stop comes temporally after that of another stop further down

the route. This is clearly not possible in real life.

32We can model the temporary disappearance of a prediction as a two state Markov model. Let state 1 denote that a
prediction is present, and state 2 denote its absence. Assuming constant hazards µ12 in a prediction disappearing
and µ21 in reappearing, the probability that a prediction disappearing at time 0 and reappearing at time t is given by

p21 (t) =
µ21

µ12 +µ21
− µ21

µ12 +µ21
e−(µ12+µ21)t

which follows an exponential decay.
33In essence each update comes every 50 seconds for each bus route, and there is a phase difference in multiples of 10

seconds between different routes.
34Another associated anomaly is when predictions do appear for a route, but not on stops of the route
35There is a saying of “garbage in, garbage out”, that if reconstructing predictions do not represent the true arrival

times well, then it may become noise and worsen our results rather than help.
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As this anomaly is not observed to occur frequently, we decide to discard the affected por-

tions.

5. Outdated predictions

This appears to be a bug of the TfL server. At random times, the server returns a historic

image of predictions (i.e. all predictions refer to some time in the past, as far as a day ago).

By trial and error it was discovered that the source is dependent on the count parameter

(the variable N referred to earlier in this section) supplied in the API request, and so by

alternating between different numbers we seem to be able to bypass the problem, provided

that not all sources fail at the same time.

As a hack we decide to make N variable, rather than fixed at N = 10. As before we need

to ensure that N is large enough to cover all predictions in Central London, but sufficiently

small so that data can be transferred quickly for all data to be processed within the 10 second

window frame. A little experiment suggested that

N = {10,11,12,13,14,15}

yielded good results, since we did not notice any extra problems brought out compared to

the case when N = 10. Therefore, whenever outdated predictions are detected, the program

would try switching to another value of N, until the predictions resume normal.

Interpolation In order to deal with the edge cases described above, we apply interpolation36

techniques in order to reconstruct or rectify invalid predictions in between stops.

We first collect all TfL predictions into the caches of each bus route described above. We note that

TfL usually starts issuing predictions a few stops ahead, and hence in most cases we would have

got the predictions for the few stops that are upcoming of each bus in our cache.

We are now ready to handle anomaly 2 - “Batch update of predictions”. In the case when a bus has

got to a few stops down the route by the time the next batch of predictions arrive, we would first

find out the stops that were in between, and look at whether we have got those predictions in our

cache. We note that these predictions may not be very accurate since they have not been subject to

updates the whole time during this leg of the journey. Nevertheless, we adopt them whenever they

are available and does not violate temporal constraints (see anomaly 4 - “Temporally Inconsistent

predictions”).

36Interpolation refers to a method of constructing new data points within the range of a discrete set of known data
points.
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4.2.3. Insertion into database

The table journey_history, which has been briefly introduced in the Design section (section

3.3.2), is the one that we keep past travel records of all buses. Each row consists of the fields:

• line - The bus route that a bus is serving

• bound - The direction of the bus on the bus route (either inbound or outbound)

• vehicle_id - The registration number of the bus

• from_id - The NaPTAN identifier of the stop that the bus has departed from

• to_id - The NaPTAN identifier of the stop that the bus is arriving at, or the next stop of

from_id along the bus route and direction

• from_timestamp - The time at which the bus is acknowledged to have departed from_id

• to_timestamp - The time at which the bus is acknowledged to have arrived to_id

• from_timestamp_tfl - The time at which TfL generated the prediction from_timestamp

• to_timestamp_tfl - The time at which TfL generated the prediction to_timestamp

• time_taken - The time taken for this journey, defined as to_timestamp - from_timestamp.

• interpolated - A boolean indicating whether this record is a result of interpolation.

• db_inserted_timestamp - The time at which the record was inserted into database.

We note that each record refers to adjacent stops along a bus route, and hence we should be able to

decompose any bus journey into the sum of these records. In effect we are pivoting the predictions

obtained earlier to form this database, after applying the noise removal techniques discussed in the

previous subsection.

To allow for fast searches for later analysis we have built multi-column indices on the frequently

used columns, such as from_id, to_id, from_timestamp, to_timestamp, line, bound and

vehicle_id.

We deliberately do not enforce foreign key relationships between this table and the core database,

although in theory some columns should match the core database37. This is just in case TfL

removes existing bus routes, in which case the corresponding entries in the core database will also

be deleted on cascade, but we do not wish to lose the corresponding historic records in this table.

37For example the attribute line should match line_id in table lines, and from_id, to_id should match id in
table stops.
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4.2.4. Safety checks

Timing of each processing cycle To ensure that live feeds are processed fast enough within

the 10 second window frame, so that each batch of incoming predictions won’t lag further and

further behind schedule cumulatively, we timed each cycle and logged them into our database.

Over the course of 100,000 cycles, it was found that on average 9.864 seconds were taken for

each cycle. To be conservative, taking into account of internet speeds38, the total cycle time might

just exceed 10 seconds a little bit. Just to be sure of the effects, we also monitored the database

of historic predictions from time to time, and did not notice any significant traces of delayed

insertion39.

Detection of loops in bus routes Loops in bus routes may also pose problems, in particular

if a bus visits the same stop twice by design, we will need to take the effort to find out which visit

does a bus prediction refer to.

By querying the core database, it turns out that only one route40 is affected, it being a circular

route (with the same departure and arrival terminus). Since there is insufficient information to

tell whether a prediction refers to the time of arrival at the terminus or the time to wait until for

departure, we simply do not log them into our database of historic records.

38Though this should be minor since the virtual machines which hosted the script had a measured internet connection
speed of ≈500Mb/s.

39This is done by spotting the difference between the fields db_inserted_timestamp and to_timestamp, which in
theory should be minimal. Indeed we observed insignificant deviation throughout the project (at most a few seconds
off).

40Route H2 serving the Golders Green area, as of 6 May, 2016.
Search performed with the following SQL query:
SELECT DISTINCT line_id, naptan_id, name
FROM line_stop_points AS t

JOIN stops
ON line_stop_points.naptan_id=stops.id
WHERE EXISTS ( SELECT *

FROM line_stop_points
WHERE t.line_id=line_id
AND t.bound=bound
AND t.naptan_id=naptan_id
AND t.stop_seq<>stop_seq);

returning results
line_id naptan_id name

h2 490015496GW Golders Green Station
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With the historic database of bus travel times set up, we can start to utilise information stored

therein to generate better predictions. The question is how - is there a formula or theory that tells

us how best to use them?

5.1. Periodicity

A first attempt involves figuring out patterns between historic data and real time data, since if there

is a high correlation between the past and future, we might be able to get very good results just by

reusing historic data.

A natural potential to explore is the periodicity of data. Commuters may have regular travel

patterns, such as daily commutes to work. Buses may adhere to the same schedule on different

days of the week. Road conditions may exhibit certain patterns over time, such as congestions

during peak hours of the day, and quiet in the middle of the night. We therefore try to look into

any trends that are prevalent in the set of historic data.

5.1.1. Choice of bus stop pairs under study

To find out whether bus journey times are periodic, an experiment has been set up on a number

of route segments in Central London. In order to be fair, and to find out any interesting variations

across the city, we have chosen a few locations that are at the heart of the city centre, and some

near the outskirts. The specific route segments that have been studied are:

• Savoy Street - Bedford Street41

• Waterloo - Lancaster Place42

• Marble Arch Underground Station - Dorchester Hotel43

41Served by 24 routes, namely 11,13,139,15,176,23,6,87,9,91,N11,N13,N15,N155,N199,N21,N26,N343,N44,N551,N87,N89,N9,N91,
as of 8 May, 2016.

42Served by 20 routes, namely 1,139,168,171,172,176,188,243,26,341,4,59,68,76,N1,N171,N343,N68,RV1,X68, as
of 8 May, 2016.

43Served by 15 routes, namely 10,137,148,16,2,36,414,436,73,74,82,N137,N16,N73,N74, as of 8 May, 2016.
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• Regent Street / St Jame’s - Piccadilly Circus Underground Station44

• Exhibition Road - Royal Albert Hall45

• Nutfield Close - White Hart Lane Rail Station46

• East Croydon - Lunar House47

• Heathrow Park Thistle Hotel - Pinglestone Close48

• Rochester Way / Falconwood Station - Eltham Cemetery49

Selected places in Central London

Locations

Savoy Street

Waterloo Station

Marble Arch

East Croydon

Exhibition Road

Regent Street

Heathrow Park Thistle Hotel
(Stop F)

Rochester Way Falconwood
Stn (Stop R)

Nutfield Close

Figure 5.1.: A map of the route segments that we are examining for periodicity in bus journey
times.

44Served by 17 routes, namely 12,13,139,159,23,3,453,6,88,94,N109,N113,N13,N136,N18,N3,N97, as of 8 May,
2016.

45Served by 5 routes, namely 10,452,52,9,N9, as of 8 May, 2016.
46Served by 5 routes, namely 149,259,279,349,N279, as of 8 May, 2016.
47Served by 2 routes, namely 50,N68, as of 8 May, 2016.
48Served by 2 routes, namely 423,81, as of 8 May, 2016.
49Served by 3 routes, namely 621,B15,B16, as of 8 May, 2016.
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Figure 5.1 shows the locations of the selected route segments on a map. Four have been chosen

to spread out a little bit in the north, east, south and west directions, and the remaining five in the

city centre. We hope that these locations will be representative of the general situation of Central

London.

5.1.2. Autocorrelation Plot

A popular method in time series analysis is examining the autocorrelation of a set of data. Auto-

correlation refers to the correlation of a time series with itself a specific time apart (called the

time lag). For example, if a series has a period of 12 months, we should expect a high correlation

between the series and itself shifted by 12 months. Formally, the autocorrelation sequence ρτ

representing the autocorrelation at different lags τ of a time series Xt is defined by

ρτ :=
Cov(Xt ,Xt+τ)

Var(Xt)
(5.1)

As with correlation coefficients, a value near 1 indicates Xt and Xt+τ are highly positively correl-

ated, and hence strongly suggests a period of τ for the time series Xt . On the contrary, a value

near -1 indicates negative correlation, and suggests that the series exhibits opposite effects when

the time is τ apart. A value near 0 shows weak / no correlation, so the series may not exhibit

periodicity.

The autocorrelation series are then computed50 for each of these sections, with historic bus journey

times collected in our database ranging over a month51. The series can be visualised as plots, with

time lag on the x - axis and the autocorrelation at each lag on the y - axis.

50We first partition each day into 24-hour blocks, and classify the historic bus journey times into their corresponding
blocks. We can then represent each block with a single value on the average journey time within that hour. We treat
each block as realisations of the random variable Xt , where Xt represents the average journey times within the t th

block. Finally, the estimator (corresponding to equation 5.1)

ρ̂τ =
1
N ∑

N−τ

t=1 (Xt − X̄)(Xt+τ − X̄)

1
N ∑

N
t=1 (Xt − X̄)2

is used to compute the autocorrelation coefficients of the corresponding time lags τ (the difference in indices of the
blocks, which is exactly how many hours apart are the two blocks of data).

51Data taken from the period 23 February - 31 March, 2016.
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5.1. Periodicity

Figure 5.2.: Autocorrelation plot of bus journey times for the selected route segments, with lags
shown until 31 days = 744 hours. We see different shapes (and therefore periods)
depending on the location.

A plot of the autocorrelation sequences of bus journey times for lags between 0 and 31 days is

shown in figure 5.2. On first sight we see that the sequences vary in amplitude and shape, but are

rather consistent in terms of periodicity. In fact, all of them seem to have local peaks at 24 hour

intervals. This strongly suggests that journey times have something to do with the time of the day.

We also observe that the graph almost certainly repeats itself every 7 peaks (i.e. 7 days). To look

into the details, we present each of the plots separately, and truncated to show only the first 7 peaks

(i.e. time lag ≤ 7×24 = 168 hours).
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Figure 5.3.: Closer looks into the autocorrelation plots of each individual route segment, with lags
shown for the first 7 days (≈ 168 hours).

We note that all of them has perfect autocorrelation at time lag 0. This is not at all surprising, as a

time lag of 0 simply means that we are correlating the series with itself, which should yield perfect

match. This is not to be taken as the series has a period of 0.

An interesting finding is the variety in smoothness of the shapes of the autocorrelation plots. We

see that most plots are sinusoidal like, whereas some are a bit rough and noisy. This may be due

to the nature of the route section being examined, some such as Heathrow Park Thistle Hotel -

Pingleton Close and Rochester Way / Falconwood Station - Eltham Cemetery are not served by

night buses, and hence the lack of data in late night and early mornings. We therefore do not see

that much of a negative correlation at time lags of 12,36, . . . ,12+24k hours.

It may also be the case that the road conditions are not sensitive to the time of the day, particularly

in the suburbs (Rochester Way / Falconwood Station - Eltham Cemetery), and hence we observe a

relatively flat autocorrelation series, mostly composed of random white noise.

Figure 5.4.: Autocorrelation plots of all route segments superposed together, with lags shown for
the first 7 days (≈ 168 hours).
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Another observation worth mentioning is the relative peak heights of the autocorrelation sequences.

Figure 5.4 shows the autocorrelation plots superposed together, covering time lags up to seven

days. The route sections

• Exhibition Road - Royal Albert Hall,

• Marble Arch Underground Station - Dorchester Hotel,

• Nutfield Close - White Hart Lane Rail Station

consistently reach high peaks every 24 hours, with an autocorrelation as much as±−0.8, whereas

some others, such as

• Savoy Street - Bedford Street,

• Regent Street / St Jame’s - Piccadilly Circus Underground Station

have considerably lower peaks for time lags of 2 - 5 days. This may mean that traffic conditions of

the former route sections are almost the same every day, and therefore less sensitive to the day of

the week, whereas the latter ones exhibit very different behaviour depending on whether the day

is a weekday or weekend.

Having looked at the autocorrelation plots, there is reason to believe that bus journey times of most

routes exhibit periodicity. The problem rather lies with the different periods that each route has.

While it would be great if we could determine the optimal periods of all individual route segments

in Central London, it is far too costly. We seek a trade-off - we assume that all route segments

have the same period.

The autocorrelation plots above suggest 24 hours and 7 days as potential candidates. While almost

all plots achieve their highest peaks at 7 day intervals, and hence we should expect better results,

reusing data every 24 hours means that we could also take into account of recent disruptions, such

as road works. We therefore need to investigate the effectiveness of both methods. This will be

left to the Evaluation section (section 6).

5.2. Delay classification

A main aim of the project is to successfully detect real-time delays, and alerting the user for

alternative routes. We therefore need a mechanism to determine whether a delay has occurred, and

ideally whether we expect it to persist until the user passes by that section.

An approach that we will be taking involves investigating historic delays, in order to find out any

characteristics that we can associate with the delays at different locations. For example, we might

look at the “shapes” of the delays, that is, how long a delay typically lasts before traffic resumes
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normal. We could also look at the certainty of delay inference - as we observer more and more

buses to take longer than usual, should we be more or less optimistic that a delay will persist for

the next 10 minutes?

5.2.1. Choice of bus stop pairs under study

In contrast to section 5.1.1, in which we have sampled a wide variety of locations throughout

London to examine the periodicity in bus journey times, we focus our attention on areas of high

traffic flow where delays occur frequently. By searching through the historic database of delay

records, the top 10 locations where bus journey times take longer or shorter than usual52 are:

1. Oxford Circus - Tottenham Court Road

2. Museum Street - Cambridge Circus

3. Monument - Great Tower Street

4. Grosvenor Gardens - Victoria Coach Station

5. Gerrard Place - Denmark Street

6. Edith Grove - Worlds End Health Centre

7. Blackbird Cross - Kings Drive

8. Park House - Hampton Court Gardens

9. Beechfield Road - Catford & Catford Bridge Stations

10. Cephas Street - Darling Row

52Based on records between 24 February, 2016 and 12 May, 2016.
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5.2. Delay classification

Locations of Delay Analysis

Locations

Oxford Circus - Tottenham
Court Road

Museum Street - Cambridge
Circus

Monument - Great Tower
Street

Grosvenor Gardens - Victoria
Coach Station

Gerrard Place - Denmark
Street

Edith Grove - Worlds End
Health Centre

Blackbird Cross - Kings Drive

Park House - Hampton Court
Gardens

Beechfield Road - Catford &
Catford Bridge Stations

Cephas Street - Darling Row

Figure 5.5.: A map of the route segments that we are examining for delay in bus journey times.

Figure 5.5 shows the locations of the above selected route segments. We see that most lie within

the city centre, with only a few exceptions.

5.2.2. Choice of Measures

In order to identify delays, we must choose a baseline that we assume are normal traffic times, so

that we can then claim a delay if recent travel times are much in excess of the baseline. To this

end, we pick the Historic 5 days weekdays; 7/14/21 days weekends (half hour offset with 1 hour

window) method, one of the best historic based prediction methods (to be discussed in section 6.2

- Prediction Methods), which utilises past data to generate current estimates of travel times, as a

basis for the usual traffic times when delays are not occurring.

We also need to define the thresholds that we will be using, which when exceeded can we then

claim a delay.
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5. Experimentation

The first is the “delay threshold”, that is, the length of period (or duration) by which recent travel

times exceed historic counterparts. Say if we set a delay threshold of 2 minutes, then if a bus

typically takes 5 minutes to travel along a road section, and today we find that it takes 7 minutes,

we can conclude that a delay is occurring.

The second is the “bus count threshold”, that is, the consecutive number of buses which we observe

have exceeded the delay threshold. If we set it to three, then if we detected three consecutive buses

having taken longer than usual by 2 minutes (assuming we are using the same delay threshold of

2 minutes as above), then we claim that a delay is occurring. Note that the “bus count threshold”

is independent of the “delay threshold”.

With these thresholds in mind, we can derive useful heuristics that helps us understand the under-

lying structure of delays.

5.2.3. Lasting time of delays

We can construct a table of the combined effect of knowing the delay threshold and bus count

threshold.

Figure 5.6.: A table of the average persisting delay and “early” durations of buses travelling
between Oxford Circus and Tottenham Court Road Station. Cells of deeper green
represent delays can be expected to last longer, given that we have continuously ob-
served that number of buses exceeding a particular delay threshold. Cells in red refer
to lack of information, i.e. we have not observed any occurrences of that number of
consecutive buses being delayed by a minimum of the corresponding delay threshold.
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5.2. Delay classification

Figure 5.6 shows the average persisting duration of delays and “early” bus journeys (bus journeys

that are faster than usual)53 between Oxford Circus sand Tottenham Court Road, given that we

have observed a consecutive number of buses that have exceeded the delay threshold (for “early”

journeys that would refer to journeys that are faster than the usual travel time by the duration

specified by the delay threshold). We observe that on the whole (subject to small perturbations), if

we look at columns, extreme delays actually occur less frequent than minor delays, conditioning

on observing the same number of buses that have exceeded a particular delay threshold. If we look

at rows, we see that certainty in delays lasting longer first increases, then decreases, as we observe

more and more buses that exceed a particular delay threshold.

The details for the other pairs of stops under study are shown below:

Figure 5.7.: Museum Street - Cambridge Circus

Figure 5.8.: Monument - Great Tower Street

53This case is prominent especially during bank holidays, when traffic tends to be much quieter than usual.
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Figure 5.9.: Grosvenor Gardens - Victoria Coach Station

Figure 5.10.: Gerrard Place - Denmark Street

Figure 5.11.: Edith Grove - Worlds End Health Centre
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5.2. Delay classification

Figure 5.12.: Blackbird Cross - Kings Drive

Figure 5.13.: Park House - Hampton Court Gardens
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Figure 5.14.: Beechfield Road - Catford & Catford Bridge Stations

Figure 5.15.: Cephas Street - Darling Row

We see that the magnitudes of average delays differ quite substantially depending on the location.

Some even hardly had major delays, such as Edith Grove - Worlds End Health Centre, Park House

- Hampton Court Gardens. It is therefore not straightforward to apply a common absolute measure

to all locations in detecting delays, such as fixing a common delay or bus count threshold.

A resolution is to consider delays individually for each pair of neighbouring stops. We may want

to profile each of them separately to devise different heuristics. In fact we can build tables as

above for all such pairs of stops, and cache them in our database for reverse lookup. By examining

recent arrivals, we can look up the corresponding cells that apply for the estimated duration that

the “delay” shall last.
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5.2. Delay classification

One drawback is the computationally intensive nature, as there are more than 23,000 such pairs

of stops54. It typically takes hours to complete an iteration. We will look into implementation for

the general case when we study prediction methods (section 6.7), and optimising the speed in the

“Optimisation” section (section 7.3 on page 100) .

54As of 21 May, 2016, there are 23,424 pairs of neighbouring bus stops in the TfL Central London bus network.
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In section 5.1 we explored the periodicity of bus journey times between pairs of neighbouring

stops. It has been found that most journeys under examination exhibit periodic variations every 24

hours / 7 days.

In practice few journeys would consist only of two stops, so we would also like to see how the

above results extend to longer journeys. We therefore have selected a few bus routes for invest-

igation across Central London to compare the effectiveness of our predictions versus the baseline

ones given by the TfL Journey Planner (section 2.4.3).

In order to predict the travel time across the entire journey, we first decompose it into pairs of

neighbouring stops. For each pair we apply a method (section 6.2) to generate a current estimate

of travel times, and finally aggregate them to form the prediction for the entire journey.

6.1. Choice of routes under study

To be fair, we have sampled a variety of routes with contrasting characteristics. Some are the

most crowded[27] and pass through the busiest districts in the city centre, while others serve the

countryside. They also vary considerably in length, the longest taking 1.5 hours to complete a

single trip55 while the shortest within a mere 20 minutes56. Some of the selected routes also

overlap with each other57. The bus routes that we will be investigating are:

• Route 5: Romford↔ Canning Town

• Route 9: Hammersmith↔ Aldwych

• Route 10: Hammersmith↔ King’s Cross

• Route 18: Euston↔ Harrow

• Route 25: Oxford Circus↔ Ilford

• Route 29: Trafalgar Square↔Wood Green

55Route 436 takes on average 70 - 105 minutes during day time to complete a single trip.
56Route 507 takes on average 15 - 20 minutes on a single trip.
57Routes 36 and 436 share the section between Paddington and New Cross.

Routes 9 and 10 share the section between Hammersmith and Hyde Park Corner.
Routes 279 and 349 share the section between South Tottenham and Ponders End.
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• Route 36: Queen’s Park↔ New Cross

• Route 38: Victoria↔ Clapton Road

• Route 73: Victoria↔ Stoke Newington

• Route 86: Stratford↔ Romford

• Route 149: London Bridge↔ Edmonton Green

• Route 162: Eltham↔ Beckenham Junction

• Route 208: Lewisham↔ Orpington

• Route 243: Waterloo↔Wood Green

• Route 279: Manor House↔Waltham Cross

• Route 336: Locksbottom↔Catford Bridge

• Route 349: Stamford Hill↔ Glyn Road

• Route 436: Paddington↔ Lewisham

• Route 484: Lewisham↔ Camberwell Green

• Route 507: Victoria↔Waterloo

A map marked with the 20 bus routes above are shown in figure 6.1. The routes stretch out from

the city centre in most directions, possibly a little short in the south west direction. Selecting these

routes with overlapping sections allows us to investigate whether journey times between the same

pairs of stops are route dependent.
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Figure 6.1.: A map of the bus routes that we are examining for evaluation.

We have taken all bus routes in their entirety, except the two end points (the first stop and the last).

One reason being the problem of circular routes that we detected in section 4.2.4, where a bus

route uses the same stop as the starting and ending terminus of the route. We would be unable

to tell whether a prediction refers to whether the bus is going to depart the starting terminus, or

arriving at the ending terminus. Another being that predictions are sometimes not stable at the

endpoints, say a bus might terminate early or enter service a few stops down the route from the

starting terminus, and erratic behaviour of predictions may be observed at the termini.

6.2. Prediction methods

It is time to put theory into practice. While we found in section 5.1 that good results should be

obtained by reusing historic data in intervals of 24 hours / 7 days, we need to test our theory in the
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real world. We propose a number of methods in generating predictions58, and perform a shoot-out

among them.

6.2.1. Historic based methods

1. Historic 1/2/3 days

This method predicts the current journey times by taking the arithmetic mean of historic

travel times 1, 2 and 3 days earlier at the same time within ±15 minutes. For example, if

the time now is 9:30AM, then bus travel records lying within 9:15-9:45AM of yesterday,

the day before, and 2 days before will be taken into consideration. Since arithmetic means

are susceptible to outliers, extreme data points, which we assume being the top 2 and bot-

tom 2 percentile of the travel times in consideration, are taken away before the mean is

computed59.

One may challenge the suitability of the ±15 minute window being too narrow, and hence

leading to a small sample size when the times are averaged. To this end, we will also

consider variations of ±30 minute window later.

2. Historic 7/14/21 days

This method predicts the current journey times by taking the arithmetic mean of historic

travel times 7, 14 and 21 days earlier at the same time within ±15 minutes. The top 2 and

bottom 2 percentile are cut off where possible in the same fashion before computing the

mean.

The main aim of this method is to rival against the Historic 1/2/3 days method. They both

contain 3 days’ worth of predictions, and should be of similar sample size when the travel

times are averaged. The success of the Historic 1/2/3 days method provides evidence for

choosing 24 hours as the period, whereas that of Historic 7/14/21 days would lead us to lean

towards 7 days.

3. Historic 7/14/21 days (discarding interpolation)

This method is based on Historic 7/14/21 days, except that we do not take into account of

historic records that are a result of the interpolation techniques we applied.

58Essentially we will be considering a class of models in time series analysis - the autoregressive (AR) model. An
AR(p) model represents the current value Xt based on the last p values Xt−1,Xt−2, . . . ,Xt−p:

Xt = c+
p

∑
i=1

ϕiXt−i + εt

where c denotes the constant term and εt the error term. The historic based methods that we will be exploring are
essentially variants on the combinations of the ϕi’s.

59Truncation is performed only if we have more than two data points, or else no data will be left.

71



6. Evaluation

The purpose is to evaluate whether the interpolation methods that we have adopted are

reliable. If so, this method should give non-inferior results to the Historic 7/14/21 days

method.

4. Historic 7/14/21 days (same route only)

This method is based on Historic 7/14/21 days, except that we only take into account of

historic records that refer to the same bus route only, in case there are multiple routes serving

the same pair of neighbouring bus stops.

This is to test whether bus journey times along the same road exhibit route dependent char-

acteristics, such as different passenger demands for each bus route leading to deviations in

loading and unloading times.

5. Historic 5 days weekdays; 7/14/21 days weekends

This method takes a hybrid approach; it adopts different strategies depending on whether

the day is a weekday or a weekend. Should it be a weekday, the current journey times

are predicted by taking the arithmetic mean of historic travel times of the last 5 weekdays.

For example, if today is Thursday, then historic records of last Thursday, Friday and this

Monday, Tuesday, Wednesday are considered. On weekends, it falls back on the Historic

7/14/21 days method. As with the previous methods, we discard the top and bottom 2

percentile of the travel times before computing the mean.

This has the benefit of being able to reuse more recent travel records on weekdays (within

5 days instead of 21 as with the Historic 7/14/21 days method), and therefore taking into

consideration of recent changes on road conditions such as temporary roadworks which

might last only for a few days. As for weekends, it is unlikely that Saturday and Sunday

exhibit similar traffic flows60, and hence it was decided not to group them together. We shall

see whether treating weekdays as the same category will give improved or worse results

compared to the Historic 7/14/21 days method.

6. Historic 5 days weekdays; 7/14/21 days weekends (discarding interpolation)

Similar to Historic 7/14/21 days (discarding interpolation), but based on Historic 5 days

weekdays; 7/14/21 days weekends.

7. Historic 5 days weekdays; 7/14/21 days weekends (same route only)

Similar to Historic 7/14/21 days (same route only), but based on Historic 5 days weekdays;

7/14/21 days weekends.

Moving offset The methods that we have been exploring have so far been “static”, in the sense

that they all look up historic records with window centred about the time of the day when the

60Bus schedules are mostly different for Saturdays and Sundays.
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trip begins, rather than actively tracking the times as the journey progresses and compensating for

fluctuations in road conditions.

An example should clarify the problem statement. Suppose a commuter needs to travel on a long

distance trip that takes an hour. He sets off at 7am, when traffic is relatively clear. The above

methods would take into account historic records that are centred about the 7am mark. But by the

time he reaches near his destination it would have been 8am, when traffic starts to build up and

journey times could take considerably longer. Thus the above methods could potentially lead to

an underestimate of travel times by design. We aim to address this issue by introducing “active

tracking” of the user’s journey - we incrementally predict journey times between neighbouring

stops based on the times that the user is expected to reach the corresponding sections.

To illustrate the idea, consider a simple journey of 3 stops, from bus stop A, stopping at B, before

reaching C. Suppose it is now 7am. For the first section of the journey (between stops A and B) we

can obtain an estimate of travel times by considering historic journey times (between stops A and

B) as above. Say an estimate of 3 minutes is returned. We then proceed to generate the prediction

between stops B and C, taking into account of the fact that the user is expected to arrive at stop B

only by 7:03am, and therefore any historic records used to generate the prediction between stops

B and C will be centred around 7:03am, rather than 7am.

8. Historic 7/14/21 days (moving offset)

This method is based on Historic 7/14/21 days, where the historic records used to generate

predictions for each pair of neighbouring stops are centred differently, based on when the

user is expected to be at that part of the journey, as described in the paragraph above.

By comparing this method with the baseline (Historic 7/14/21 days), we can find out whether

slight changes in the time of day has a significant effect on bus journey times.

9. Historic 7/14/21 days (moving offset discarding interpolation)

This method combines Historic 7/14/21 days (moving offset) and Historic 7/14/21 days

(discarding interpolation).

10. Historic 7/14/21 days (moving offset same route only)

This method combines Historic 7/14/21 days (moving offset) and Historic 7/14/21 days

(same route only).

11. Historic 5 days weekdays; 7/14/21 days weekends (moving offset)

Similar to Historic 7/14/21 days (moving offset), but based on Historic 5 days weekdays;

7/14/21 days weekends.

12. Historic 5 days weekdays; 7/14/21 days weekends (moving offset discarding interpolation)

This method combines Historic 5 days weekdays; 7/14/21 days weekends (moving offset)
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and Historic 5 days weekdays; 7/14/21 days weekends (discarding interpolation).

13. Historic 5 days weekdays; 7/14/21 days weekends (moving offset same route only)

This method combines Historic 5 days weekdays; 7/14/21 days weekends (moving offset)

and Historic 5 days weekdays; 7/14/21 days weekends (same route only).

Sliding window So far we have been taking predictions falling within a sliding window of

30 minutes (±15 minutes) around the times of travel. While choosing a narrow window has the

advantage that the results are less likely to be blurred by neighbouring regions of times, having a

small sample falling within the window means the any adverse effects exerted by outliers will be

more prominent. We seek to find out the effects in reality by also considering a sliding window of

1 hour (±30 minutes) to see whether there are statistically significant differences.

14. Historic 7/14/21 days (moving offset with 1 hour window)

This method is the same as Historic 7/14/21 days (moving offset), except we consider all

historic records lying within ±30 minutes, rather than ±15 minutes, of the desired travel

times.

15. Historic 7/14/21 days (moving offset discarding interpolation with 1 hour window)

Same as Historic 7/14/21 days (moving offset discarding interpolation), except we consider

all historic records lying within ±30 minutes of the desired travel times.

16. Historic 5 days weekdays; 7/14/21 days weekends (moving offset with 1 hour window)

Same as Historic 5 days weekdays; 7/14/21 days weekends (moving offset), except we con-

sider all historic records lying within ±30 minutes of the desired travel times.

17. Historic 5 days weekdays; 7/14/21 days weekends (moving offset discarding interpolation

with 1 hour window)

Same as Historic 5 days weekdays; 7/14/21 days weekends (moving offset discarding inter-

polation), except we consider all historic records lying within ±30 minutes of the desired

travel times.

6.2.2. Real-time based methods

Apart from estimating current travel times with historic data, we would also like to attempt the

same with real time information, and compare their performances.

One major limitation of using real time data only is the sample size available. Unlike the case with

historic data, where we could easily increase the sample size just by including data from more

days in the past, real time data is restricted to the recent and immediately available data. It could
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be the case that within the last 30 minutes, only 1 or 2 records exist, and we must be cautious of

whether they are truly representative of the actual traffic conditions.

18. Real time median

This method predicts the current journey times by taking the median of the travel times

within the last 30 minutes.

One may notice that median, rather than the arithmetic mean, is adopted here. This is

because we expect a small sample of real time data available, and taking the median is a

simple and straightforward way of suppressing the effect of outliers.

Note that unlike historic based methods, we do not remove the top and bottom 2 percentile

of travel times.

19. Real time last two

This method predicts the current journey times by taking the arithmetic mean of the last two

records, or not at all if fewer than two records exist the past 30 minutes.

The purpose is to test whether data closer to the time of travel is more indicative of the real

time situation. For instance, we may be able to differentiate the peak from the demise of a

delay, as we should obtain high values at peaks and low values when a delay is near its end,

whereas taking the median as in Real time median could give the same number regardless of

whether a delay has just started (on an increasing trend) or is about to end (on a decreasing

trend).

Similar to the historic methods, we consider variations of 1 hour windows, rather than 30 minutes,

in order to investigate whether a larger sample size would outweigh the effects of potentially

outdated data.

20. Real time mean (1 hour window)

This method predicts the current journey times by taking the arithmetic mean of travel times

falling within the past hour. In order to reduce the effect of outliers, the top and bottom two

percentiles of data are truncated before computing the arithmetic mean.

Thanks to the one hour window, a reasonable sample size remains after truncation. A sample

of ≈ 10 is observed for stops in the city centres and ≈ 4 in the country side after truncation,

so we should be able to obtain representative results.

21. Real time median (1 hour window)

Same as Real time median, except that we consider all records lying in the past hour rather

than 30 minutes.

22. Real time last three (1 hour window)
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This method is an extension of the Real time last two method, where we consider the arith-

metic mean of the last three records rather than two, over an observation period of one hour

rather than 30 minutes.

The point of adopting a one hour window is simply to allow for more data to be captured, and

therefore increasing our likelihoods of obtaining three or more records in order to generate

our prediction. If we do not observe three records within the past hour, we would rather not

generate a prediction than to rely on data further in the past, which may not be reflective of

the current traffic conditions.

6.3. Qualitative Evaluation: Visualisation

In order to qualitatively visualise how our predictions perform over a period of time, we have also

plotted the sequence of journey times falling within a time frame as time series. For each route

under examination we produce line charts of journey times against the times at which the journeys

took place. To simplify our discussion we refer to only bus route 9 for now. The features that we

discuss below hold in general for the other routes under examination.

Figure 6.2.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction over a one
week period between 29th May, 2016 and 4th June, 2016.

76



6.3. Qualitative Evaluation: Visualisation

Figure 6.2 shows the journey times of bus route 9 over a one week interval. We see that travel

times are in general much higher in the midst of the day than in the early mornings or late nights.

This appears to justify our need for moving offset predictions. There are also periods of inactivity

as this is not a 24-hour route.

Figure 6.3.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing only the actual journey times and official
predictions given by the TfL journey planner.

To dig deeper we break down the chart into individual components. Figure 6.3 shows only the

actual journey times recorded, and the official expected journey times returned from the TfL Jour-

ney Planner61. The blue line corresponds to the actual journey times, whereas the orange line

represents the official predictions. We see that the actual journey times fluctuate erratically over

time, possibly owing to traffic lights or customer incidents. The TfL predictions on the other hand

exhibit much less variability, and are more or less piecewise constant during the day except in the

early mornings and late nights. In general both tend to rise and fall at the same time, suggesting

that TfL may also have performed similar historic analysis in generating their predictions.

61More precisely, we have been polling the TfL server for expected journey times at 10 minute intervals, and logging
them into our database. We can therefore select the record closest to the departure time of the journey as the official
TfL prediction (i.e. an error of at most±5 minutes from the actual time of departure), assuming that TfL predictions
remain more or less the same within a 10 minute interval.
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Figure 6.4.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing only the actual journey times, and pre-
diction methods of the historic 7/14/21 days family.

We now investigate prediction methods from the same family. Figure 6.4 shows the actual journey

times, together with variations of the Historic 7/14/21 days method, namely

• Historic 7/14/21 days

• Historic 7/14/21 days (discarding interpolation)

• Historic 7/14/21 days (same route only)

Note that we have not included the moving offsets counterparts, for simplicity. We can observe

that the line charts representing the three methods (non-blue) are very close together, nearly over-

lapping with each other, compared to the one representing actual journey times (in blue). We

therefore proceed below to show only a representative from each family, in order to clearly visu-

alise the differences between families in the graphs.
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Figure 6.5.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing only the actual journey times and the
historic 1/2/3 days prediction method.

We start off with the Historic 1/2/3 days family. Figure 6.5 shows the charts of the actual journey

times and the Historic 1/2/3 days method. The Historic 1/2/3 days method is really a hit or a miss,

doing extremely well occasionally (orange line being close to the blue) but could also be very off

(an error of 20 minutes accounting for 1
3 of the journey time) for a significant portion of time. It

also is not consistent as to which times of the day does this prediction method perform well or

worse. This method seems to give a better fit for the last 4 days than the first 3 days, the last 4 days

being Wednesday, Thursday, Friday and Saturday. This is not surprising, as traffic conditions are

likely to be different on weekdays and weekend, so prediction for a Monday using historic travel

times on Sunday, Saturday and Friday is unlikely a good idea.
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Figure 6.6.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing only the actual journey times and the
historic 7/14/21 days prediction method.

We now look at the Historic 7/14/21 days family in a similar fashion. The results from the Historic

7/14/21 days method (figure 6.6) are clearly better than the Historic 1/2/3 days method, with the

shape mostly coinciding with the actual journey times, though at times the peaks do not match

in height. We can however see that the predictions are at least consistently well at the start of

each day, between 5 and 7 AM. This shows that sampling from historic data in intervals of 7 days

does extract some useful information, as long as trends do not change by much, such as the early

mornings in this case.
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Figure 6.7.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing only the actual journey times, historic
7/14/21 days and historic 7/14/21 days with moving offset prediction method.

Figure 6.7 overlays also the Historic 7/14/21 days (moving offset) method, indicated by the pink

line. It pretty much has the same shape as the base Historic 7/14/21 days method, but reacting to

changes earlier, and results in translation-like effect to the left. With the moving offset technique,

we seem to get better predictions at the end of the day, in addition to the early mornings.
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Figure 6.8.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing only the actual journey times, historic 5
days weekdays; 7/14/21 days weekends and historic 5 days weekdays; 7/14/21 days
weekends with moving offset prediction method.

Moving on to the Historic 5 days weekdays; 7/14/21 days weekends family, we immediately notice

a huge improvement (figure 6.8). The grey line represents the base Historic 5 days weekdays;

7/14/21 days weekends method, whereas the green line represents the moving offset counterpart.

Both of them are fairly close to the actual journey times (blue line) most of the time, but the

moving offset version performs better particularly in early mornings and evenings where there are

continuous sharp increases and decreases in journey times. This suggests that the moving offset

technique does allow for unidirectional changes in road traffic better.
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Figure 6.9.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing only the actual journey times, and all real
time based prediction methods.

Finally we move onto real time based methods. Figure 6.9 shows the actual journey times as well

as all real time prediction methods for comparison. A first observation is that all of them are very

close to each other, with shape almost the same as the actual journey times, but being shifted to

the right. This is within expectation, as predictions are generated based on actual travel times

in the immediate past, and therefore should be more or less identical to the recent travel times

within a 30 minute or one hour interval. We also notice that the time series are less smooth and

have greater fluctuations than those of the historic based methods, potentially owing to a lower

available sample size when evaluating predictions and therefore larger variances.

The above results extend in general to the other routes under examination. The corresponding

charts for the remaining routes can be found in the source code repository (see Appendix A).

6.4. Quantitative Evaluation: Performance measures

With the above historic and real time prediction methods introduced, we can perform quantitative

evaluations on selected bus routes in section 6.1. This analysis could be extended to all routes in
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Central London in theory, but owing to complexity constraints62, we have decided to explore on a

small sample of routes that should be representative.

The idea is that good predictions should centre around the actual journey times, and therefore any

deviations (or error terms) when aggregated across stops along a route should on average cancel

out. As an example, consider a short route consisting of three stops W,X ,Y,Z :

Journey segment W → X X → Y Y → Z Entire route
Prediction (in seconds) 43 30 57 130

Actual travel time (in seconds) 42 32 55 129
Deviation / error -1 +2 -2 -1

Table 6.1.: Example of a good prediction method. Predictions centre around actual journey times
and therefore errors on average cancel out along the route.

Journey segment W → X X → Y Y → Z Entire route
Prediction (in seconds) 43 30 57 130

Actual travel time (in seconds) 40 28 55 123
Deviation / error -3 -2 -2 -7

Table 6.2.: Example of a poor prediction method. Predictions are skewed to one side of the actual
times, and therefore errors accumulate, leading to a wide margin when summed over
the entire route.

Tables 6.1 and 6.2 shows the effects of good and poor prediction methods. We can see that when

the errors terms are summed up along the route, the combined error given by the good prediction

method remains small, whereas that of the poor becomes worse.

We therefore can use the error term aggregated across entire bus routes as an indicator of how a

prediction method performs. To this end, we pick a time frame in the past and calculate deviations

of our predictions of the total journey time on the selected routes from the actual journey times.

We consider three performance measures:

• Root mean square error (RMSE) - This measure is defined by√
∑

n
t=1 (x̂t − xt)

2

n

where xt refers to the actual journey time taken on a bus trip, x̂t refers to the corresponding

prediction generated by one of our methods, and n the total number of such journeys that

we are including. For example, we might be able to observe six journeys on route 9 over a

two hour period and obtain the following dataset:

62Since we are exploring 20+ prediction methods, each covering 20 bus routes and a time frame of a few days, it
typically takes a number of hours to complete an iteration on the VMs that we are using.
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t 1 2 3 4 5 6

xt (Actual journey time in minutes) 40 60 42 45 43 46

x̂t (Predicted journey time in minutes) 42 43 43 44 45 45

in such case the root mean square error will be given by√
(40−42)2 +(60−43)2 +(42−43)2 +(45−44)2 +(43−45)2 +(46−45)2

6
= 7.07 minutes

meaning our predictions are on average 7.07 minutes off from the actual journey times.

We note that this measure considers the sum of squares of each error term, before taking the

square root, and therefore the effect of extreme errors (when predictions give poor results)

will be given more weight than smaller errors (when predictions give relatively accurate

results), and therefore may give a large deviation even if only one or two predictions are

poor. We mitigate this by introducing alternative performance measures.

• Mean absolute error (Mean AE) - This measure is defined to be

∑
n
t=1 |x̂t − xt |

n

where we use the same notation as before. Taking the same data set as above we obtain a

mean absolute error of

|40−42|+ |60−43|+ |42−43|+ |45−44|+ |43−45|+ |46−45|
6

= 4 minutes

We see that this is significantly smaller than that given by the RMSE measure. This is

because we have mostly accurate predictions (within ±2 minutes), with the exception of

the 2nd journey in which the actual journey time was underestimated by 17 minutes. Thus

a smaller error given by the Mean AE than the RMSE may mean that on the whole our

predictions are mostly reliable, with the occasional exceptions.

• Median absolute error (Median AE) - This measure is defined to be

median |x̂t − xt |

over the n samples. With the same data set as above we obtain a median absolute error of

median (|40−42| , |60−43| , |42−43| , |45−44| , |43−45| , |46−45|) = 1.5 minutes

We see that this gives an even smaller number than the Mean AE. We have completely

excluded the effect of the 2nd prediction, as the median turns a blind eye on extreme data

points. Despite suggesting very good results, we may need to be cautious in giving our

complete trust as the existence of the poor predictions may mean something can be done to

improve our model, or reveal bugs.
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Figure 6.10.: Table of performance measures evaluated on the different prediction methods intro-
duced in section 6.2, for route 9 in the inbound direction between 29th May, 2016
and 4th June, 2016.

Figure 6.10 shows the performance measures applied on bus route 9 over the same two day period

as we did in Qualitative Evaluation: Visualisation (section 6.3). Note that the actual journey times

serve as the baseline, and therefore all errors are computed with respect to the actual journey times.

The rightmost column “# Data points” indicates the number of data points (n in the formulae

introduced above) that we took into consideration in error computation. We see that out of the 385

actual journeys recorded (as depicted by the row corresponding to Actual Time), we have been able

to generate the corresponding predictions, with the exception of those prediction methods with less

than 385 data points63. These methods are usually more susceptible to loss of data points, as they

discard individual predictions for each pair of adjacent stops along the route whenever they are a

result of interpolation, not belonging to the same bus route, or fail in real time when there are lack

of buses in the past 30 minutes or so. Individual predictions failing for any pairs of adjacent stops

would invalidate the prediction for the entire journey, so what we have is really a lower bound of

the available data points (or upper bound in the loss of data points), for passengers that do not

travel on the entire bus route.

Cells in green indicate that our prediction method, as suggested by the row, outperforms the offi-

cial TfL prediction under the performance measure suggested by the column. On this occasion we

see that all prediction methods do better than the TfL prediction. We note that different prediction

methods outperform the TfL prediction to different extents. Most notably is the Historic 5 days

weekdays; 7/14/21 days weekends family, with a mere average median absolute error of approx-

imately 3 minutes, compared to 4 minutes given by the Historic 7/14/21 days family, 3 minutes
63These are Historic 5 days Mon-Fri, 7/14/21 days Sat Sun (discarding interpolation), Historic 5 days Mon-Fri, 7/14/21

days Sat Sun (moving offset discarding interpolation), Historic 5 days Mon-Fri, 7/14/21 days Sat Sun (same route
only), Historic 7/14/21 days (same route only), Historic 7/14/21 days (moving offset discarding interpolation),
Historic 7/14/21 days (discarding interpolation), Real time last three (1 hour window), Real time median, and Real
time last two on this occasion.
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30 seconds given by the real time family, and 7 minutes by the official TfL prediction. This shows

that historic analysis is indeed useful.

In order to piece together a complete picture, we need to aggregate performance measures over the

other routes under examination to find out which prediction method(s) consistently do well across

a diversity of routes. A difficulty is that the errors are not directly comparable across routes, since

certain routes take much longer to complete and therefore larger errors are within expectation.

We therefore attempt two approaches - the first being a crude measure, hoping to eliminate route

dependent effects on the performance measures; the second being evaluation of percentage errors,

so that the error terms can be scaled according to the length of the route, in order to give a fair

comparison between routes.

Aggregation of performance measures

1. Crude scoring method

We devise a simple scoring mechanism below. We award one point to prediction methods

that outperform the TfL predictions on a particular route under a performance measure, zero

if on average equal, and minus one if worse.

score =


+1 if prediction method is better than TfL

0 if prediction method is equal to TfL

−1 if prediction method is worse than TfL

In figure 6.10 all our prediction methods would get one point under all performance meas-

ures. Aggregating the scores over all 20 routes, and we count each direction (either outbound

or inbound) as a separate entity, we obtain results in figure 6.11, where we have ordered pre-

diction methods by descending score with respect to the median absolute error measure. We

note that 40 is the maximal achievable score64 and -40 the minimal.

6420 routes × 2 directions per route = 40 combinations.
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Figure 6.11.: Table of scores generated by the crude scoring method aggregating over all routes
under examination evaluated on the different prediction methods introduced in sec-
tion 6.2, between 29th May, 2016 and 4th June, 2016, ordered in descending order by
the median absolute error measure.

In fact, the rankings are fairly consistent across all three performance measures, with the

Historic 5 days weekdays; 7/14/21 days weekends family clearly topping the other families.

2. Percentage errors

One may challenge that the crude scoring method does not really reflect to what extent a

prediction method outperforms TfL. This can be seen when a prediction scores one point,

regardless of whether it significantly or marginally outperforms the TfL prediction method,

for a given bus route. This may lead to prediction methods that are just slightly better than

TfL but consistent across all routes to come on top of the scoring table, whereas those that

performs really well in some of the cases may be drowned and neglected.

To this end, we consider the percentage improvements over the offical TfL prediction in

terms of the errors (i.e. the performance measures defined above - RMSE, mean absolute

error and median absolute error) for each prediction method. More formally, for each pre-

diction method on a particular route, we evaluate

score =
error given by TfL prediction − error given by prediction method

error given TfL prediction
×100%

as a measure of how “superior” our prediction method is compared to the errors given by

the TfL baseline (positive if better and negative if worse than TfL). Taking the arithmetic

mean across all routes under study, we obtain a score for each prediction method.
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Figure 6.12.: Table of scores generated by the percentage errors method aggregating over all
routes under examination evaluated on the different prediction methods introduced
in section 6.2, between 29th May, 2016 and 4th June, 2016, ordered in descending
order by the median absolute error measure.

Figure 6.12 shows the scores evaluted under this scoring mechanism. The prediction meth-

ods have been sorted by descending score with respect to the median absolute error measure.

One the whole we see similar results, where the Historic 5 days weekdays; 7/14/21 days

weekends and Real time families are neck and neck depending on the performance measure,

but they both clearly beat the Historic 7/14/21 days family.

Bank holidays We obtain interesting (and surprising) results if we look specifically at days

on which people have special commuting patterns, such as bank holidays. Figures 6.13 and 6.14

show the score tables under the same bus routes, where we have restricted the time frame to a

24 hour period on 29th May, 2016, which happens to be a spring bank holiday. Scores have been

ordered in descending order according to the RMSE measure. We see that the predictions methods

that performed consistently well across all three error measures are the real-time based methods,

achieving 20+ points and relative superiority of ≈ 24−30% to the TfL method, whereas all other

methods achieved a score near 0 or negative in the RMSE measure. This is because journey

times are in general faster than usual, and therefore leading to historic based prediction methods

overestimating travel times.
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Figure 6.13.: Table of scores under the crude scoring method aggregating over all routes under ex-
amination evaluated on the different prediction methods introduced in section 6.2 on
the spring bank holiday, 29th May, 2016, ordered in descending order by the RMSE
measure.

Figure 6.14.: Table of scores under the percentage errors method aggregating over all routes un-
der examination evaluated on the different prediction methods introduced in section
6.2 on the spring bank holiday, 29th May, 2016, ordered in descending order by the
RMSE measure.

Unfortunately there has not been libraries available for GoLang to determine UK bank holidays

as of writing65, and there is particular difficulty in screening out such cases in production. We

therefore regretfully have to neglect it on this occasion, but in theory we should obtain better

results when implementations are feasible in the future.

65As of 8 June, 2016.
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6.5. Results

With the score table in figure 6.11, we are now in a position to answer the questions that have been

posed as we came up with the prediction methods.

6.5.1. Reliability of interpolation

In section 4.2.2 we discussed the use of interpolation to deduce the arrival times of buses where

necessary. Looking at the scores of the baseline methods with their discarding interpolation coun-

terparts, we do not observe consistently better results by discarding historic records as a result of

interpolation. We therefore trust that our interpolation method does not give inferior results, and

that our interpolation method is reliable.

6.5.2. Effect of bus route on journey times along shared road sections

By comparing the scores of the baseline methods with their same route only counterparts, we do

not observe improved results by considering only historic records that belong to the same bus route

on road sections that are shared by multiple bus routes. The effects of individual bus routes, such

as differences in passenger demands and dwelling times, are therefore negligible compared to road

traffic.

6.5.3. Periodicity vs Recent Data

The superiority of the Historic 5 days weekdays; 7/14/21 days weekends family over the Historic

7/14/21 days family suggests that it is more important to adapt to changes in recent road conditions,

than to strictly enforce the periodicity of data of 7 days when considering historic records, leading

to the use of records in the distant past as far as 21 days.

6.5.4. Moving offset

The moving offset versions for both the Historic 5 days weekdays; 7/14/21 days weekends and

Historic 7/14/21 days family almost always give a better score than the baseline methods. This

suggests that compensating for changing road traffic as a user travels is indeed preferable where

possible.

6.5.5. Width of sliding window

So far we have considered two types of sliding windows - half hour and one hour windows centred

around the desired travel times. The scoring table suggests the latter as a better candidate. This
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means that a larger sample size outweighs any potentially negative effects due to changing road

conditions.

6.5.6. Historic vs real-time based methods

We see that the Historic 5 days weekdays; 7/14/21 days weekends gains an edge over the real time

family on the crude scoring evaluation method, whereas the percentage error method suggests

the other way round. This suggests that they have strengths in different areas - the historic based

prediction methods are able to outperform the TfL prediction in a wider variety of situations, while

the real-time based methods on average gives superior results than the historic methods when they

both outdo the TfL prediction method.

6.6. Winners

6.6.1. Historic based methods

Based on the above discussion, the hybrid method Historic 5 days weekdays; 7/14/21 days week-

ends (moving offset 1 hour window) establishes itself as the king of historic based prediction meth-

ods, having achieved one of the best scores both within its family and other prediction methods

combined.

Realistically, it is difficult to implement moving offset methods in production, owing to compu-

tational costs. This is because the historic records to be retrieved for computation of predictions

are highly dependent on the user’s choice of route, based on the time which the user is expected to

reach each individual chunk along the intended route. This will mean special servicing (looking

up of the live database of historic journey times) is required for each user request, and scalability

will be disastrous as the number of simultaneous user request grows.

We would therefore prefer methods that are static, so that a cache of current journey times, inde-

pendent of the users’ choice of route can be built, ensuring all user requests can be serviced by

fast lookup on the cached table. This immediately suggests the simple Historic 5 days weekdays;

7/14/21 days weekends method, which performed reasonably well in our score table, having put

all prediction methods from the Historic 7/14/21 days family to shame.

However, we may be able to do better from the results just learnt. We can tweak the sliding

window to an hour instead of 30 minutes, and attempt to compensate for changes in road traffic by

centring predictions at some predefined time beyond the time of departure, with the same rational

as that of moving offset.

As most journeys under examination are found take on average an hour to complete, a first attempt

would be setting the predefined time to be half of that, so that predictions get centred around the
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30 minute mark, to hopefully balance off any increasing or decreasing trends in road traffic.

We therefore introduce the historic based prediction method:

3. Historic 5 days weekdays; 7/14/21 days weekends (half hour offset with 1 hour window)

This method is based on the Historic 5 days weekdays; 7/14/21 days weekends method,

but we consider historic records lying between ±30 minutes of the time 30 minutes after

departure. For example, if we are departing at 9 AM, then predictions are generated based

on records lying within ±30 minutes of 9:30 AM of 7, 14 and 21 days ago, effectively

records between 9 AM and 10 AM on those days.

The results are shown in figures 6.10 and 6.11 above. We see that this method surprisingly per-

forms at least as good as Historic 5 days weekdays; 7/14/21 days weekends (moving offset 1 hour

window), the best performing historic based method that we have found thus far.

With all the advantages we have listed out, we will be using the method Historic 5 days week-

days; 7/14/21 days weekends (half hour offset with 1 hour window) as our desired historic-based

prediction method in later discussion.

6.6.2. Real-time based methods

All prediction methods from the real time family are pretty much comparable to each other, with

only the Real time median (1 hour window) method falling short of its peers a bit. Nevertheless

we see a slight edge of the Real time median method over the others, winning by a slight margin

based on the three performance measures. We therefore pick Real time median as the ultimate real

time based prediction method for the purpose of prediction generation.

6.7. Mixed methods

Having selected the best historic and real-time based prediction methods, it is time to piece both

together, to take advantage of known periodicities of journey times and also quickly adapt to

temporary changes, such as delays or bank holidays.

In section 5.2 we looked at a couple of pairs of adjacent stops for the average lasting time of

delays (or journeys faster than usual). We built individual tables for each pair of stops, so that the

expected lasting time of such delays or early trips can be looked up. We can apply the same idea

on historic and real-time based prediction methods. The idea is to use journey times given by the

historic based prediction method by default, unless looking up of the real time situation on the

tables suggest any delays / early trips to last beyond the time when the user is expected to go past

the section.
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To this end, we introduce two additional prediction methods, based on the best historic and real-

time prediction methods we have found:

4. Mixed historic & real time (with delay threshold of 3 buses 2 minutes)

This method is a combination of the Historic 5 days weekdays; 7/14/21 days weekends

(half hour offset with 1 hour window) and Real time median method. It falls back on the

historic based Historic 5 days weekdays; 7/14/21 days weekends (half hour offset with 1

hour window) method, unless it is detected that the last 3 buses in the recent past all exceed

the historic journey times by more than ±2 minutes, with which we then switch to the

prediction generated by the Real Time median method. To prevent looking at records which

are too outdated back in time, we set up an artificial time limit of 120 minutes, so that if

we do not observe 3 buses within the last 2 hours, we would simply stick with the historic

based prediction.

5. Mixed historic & real time (with delay reverse lookup)

This method is also a mixture of the Historic 5 days weekdays; 7/14/21 days weekends

(half hour offset with 1 hour window) and Real time median method, where we only ad-

opt real time estimates if the expected lasting time of the current situation indicated by the

cell entries66 (figure 5.6), is longer than the time that the user is expected to reach the sec-

tion. Should there be multiple cell entries applicable67, we pick the entry with the greatest

expected lasting time.

These two methods are different in that the former is a simplified model - it considers a fixed

threshold in delays for all pairs of stops in Central London, i.e. assuming the real-time based

method is more reliable whenever there are at least three buses consecutively being delayed or

faster than usual by 2 minutes, and that any delays happening now are for sure affecting the user

so long as his/her route will be passing through the sections being delayed, regardless of how long

after now will that be.

We can therefore be able to find out whether the simpler model delivers results just as good.

6.7.1. Building of reverse lookup tables

The latter mixed method involves looking up of the current situation on the table of historic lasting

times of delays to determine whether the real time estimates should be used rather than historic

estimates. We now describe the implementation of these tables.

We partition each week into individual days of the week, and each day into 24 hour slots. This

is based on the assumption that delays happening on the same day of the week (e.g. Mondays)

66The number of buses in the recent past that has consistently exceeded historic journey times by more than±x minutes,
x≥ 2.

67For example having detected 4 buses late by 5 minutes also implies that 3 buses were late by 4 minutes.
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6.7. Mixed methods

and the same time (e.g. 9 AM) last more or less the same. So, our table will consist of entries

for each day of the week at a certain hour, for each pair of adjacent stops in Central London.

Lookups will be performed on the rows that match in terms of the the day of the week and hour

slot. Therefore, we will not be looking up historic delays on Mondays 9 AM if it is now Tuesday

9 AM for instance.

6.7.2. Qualitative Evaluation: Visualisation

Repeating the above evaluation procedures (sections 6.3 and 6.4) we obtain figures 6.15, 6.16, 6.10

and 6.11. Figures 6.15 and 6.16 display the time series charts of the two mixed based methods on

route 9 between 29th May and 4th June, accompanied by the actual journey times for comparison.

Figure 6.15.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing the actual journey times and the two
mixed methods. Highlighted in blue is the simpler mixed method Mixed historic &
real time (with delay threshold of 3 buses 2 minutes).
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6. Evaluation

Figure 6.16.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing the actual journey times and the two
mixed methods. Highlighted in light blue is the reverse lookup mixed method Mixed
historic & real time (with delay reverse lookup).

We see that the chart for the Mixed historic & real time (with delay threshold of 3 buses 2 minutes)

method (figure 6.15) appears more spiky, due to the effects from the real time components kicking

in - note that this simpler method has successfully detected delays on 2 PM of 29th May and 9 AM

of 2nd June, compared to the other mixed method. Unfortunately, false positives can also be seen

near 9 AM on the 3rd June, where it spiked upwards whereas the actual journey times actually

went down in the other direction.

On the other hand, the more complex Mixed historic & real time (with delay reverse lookup)

method did not exhibit irregularities. In fact, on this occasion it overlaps completely with the

underlying historic method Historic 5 days weekdays; 7/14/21 days weekends (half hour offset

with 1 hour window) (figure 6.17), suggesting that real time estimates were not switched to at all.

Digging down it was found to be a lack of training examples on the reverse lookup table, since

we partitioned time by weekday and hour, and therefore any delays have mostly been new unseen

examples, and hence we fail to learn from past experience and switch to real time estimates where

necessary.
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Figure 6.17.: Time series chart of journey times in minutes (y-axis) against the departure times of
the corresponding journeys (x-axis), of bus route 9 in the inbound direction between
29th May, 2016 and 4th June, 2016, showing the Historic 5 days weekdays; 7/14/21
days weekends (half hour offset with 1 hour window) method only.

6.7.3. Quantitative Evaluation: Performance measures

Looking back at figures 6.10, 6.11 and 6.12 we obtain a quantitative estimate of how our mixed

based methods perform relative to the pure historic and real-time based methods.

They both gained a top of the range score in the Mean and Median absolute error measures overall,

despite falling a bit short in the RMSE measure in figures 6.11 and 6.12. Digging into the indi-

vidual journeys (figure 6.10), we see that the reverse lookup method Mixed historic & real time

(with delay reverse lookup) displayed a slight edge over the simpler Mixed historic & real time

(with delay threshold of 3 buses 2 minutes). This may mean that it is better to be conservative in

using the real time information, unless it is certain that the delays are going to last long.

6.7.4. Winner

With the above discussion in mind we will be giving the award to Mixed historic & real time (with

delay reverse lookup), and utilising it hereafter and for prediction generation for the final app.
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7. Optimisation

Now that we have established a desirable prediction method, it remains to wire up our backend

and frontend, so that our users can be easily informed of journey times and any delays affecting

them. An important factor to consider is the responsiveness of our frontend client, as users would

not want to have to wait for a substantial amount of time before predictions are made available to

them.

So far to generate predictions we have been looking up historic records from the live production

table journey_history directly. This is undesirable as reads from this table may block updates

to the table, and therefore hindering incoming predictions to be stored swiftly. As the number of

user grows, we will have difficulty in serving requests concurrently.

7.1. Caching current predictions

One way out is to create another temporary table, mainly for fast lookup in order to generate

estimated journey times of users. We could precompute the current estimates of travel times

between all pairs of adjacent stops within the Central London network, which takes only one pass,

and store them in a table for universal lookup. Note that the precomputation is over all pairs

of stops at once, and therefore saving any network traffic overhead otherwise if they were to be

computed lazily when each user makes a request. This has the effect of diverting traffic away from

the journey_history table, and preventing live updates from being held up by locks.

Figure 3.4 on page 38 shows the internal structure of the current_estimates table, where we

record for each pair of adjacent stops (identified by from_id, to_id - NaPTAN identifiers of the

stops), the current historic based estimate, real-time based estimate and estimate (i.e. mixed-based

estimate), with the winner methods that we found in the Evaluation section (section 6). The fields

delay, delay_count and delay_expected_to_last suggests whether a delay is ongoing, and

if so, tells us also how many recent buses have been consecutively delayed, and how long the delay

is expected to last based on past experience (section 5.2). We also record the time when the record

was generated, as a timestamp in the field last_updated, so that we only fetch records that are

computed recently when user requests come in68.

68This is necessary as some pairs of stops are not served 24 hours (i.e. those with only day buses or night buses),
and occasionally we may not get updates if buses are on diversion. In such cases the entries in the table
current_estimates would be outdated, and not reflective of the current traffic and travel times.
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When we need to generate predictions for a user defined route departing now, we first decom-

pose the route into pairs of adjacent bus stops, and look up the corresponding entries in the

current_estimates table. Should all entries be recently updated enough, we can proceed to

sum them up as the prediction for the intended route. One catch is that we prefer to use real-

time based estimates only when delays are expected to last till the time when the user travels past

the route section, whereas the estimate field refers to the mixed-based estimates based on the

“current” road conditions. We therefore having calculated as the first pass of when the user is ex-

pected to arrive at each stop pair, can then consult the delay_expected_to_last field, so that

we really use the real_time_estimate only if we find that delays should persist long enough to

affect the user’s journey.

7.2. Waiting times

An important component in commuting is the time spent at bus stops waiting for the next bus. It

would be misleading to the user if we only take into account of the travel times of buses on the

road, in particular when the waiting times could make up 10 or 20 minutes of the total journey

time. Therefore, we need to build facilities that allow us to predict times that a user can expect to

wait for the next bus to arrive. Fortunately, we have actually got most bits done, the remaining is

to infer the times that buses would arrive at each stop based on their current locations. In other

words, we simply have to apply our prediction method on all current buses to find out the times

required to travel to each stop down their respective routes.

The next_buses table (figure 3.4 on page 38) caches all the times that buses currently in operation

are expected to arrive at the stops along their routes. Each entry consists of the line and bound

(i.e. direction - either outbound or inbound) of the bus, the naptan_id of the stop that the bus is

expected to arrive, the registration plate of the bus as the vehicle_id, and the time that the bus

is expected to arrive, expected_arrival_time. We also store the timestamp of when the record

was generated, last_updated, for debugging purposes.

While this method should generate arrival times for most stops and bus route combinations, we

still need to handle the remaining edge cases. One such case is at stops near the departing ter-

minus, when no buses are found to have been on its way to pick up passengers yet. In such

cases, we could only rely on the times that TfL give on when buses are expected to depart the

terminus, and from then we calculate when the buses should arrive at the stops of interest. The

table terminus_departures is used to store such predictions. We store the same content as in

next_buses, only that entries in this table contain the departing terminus of each bus route.

For the minority of cases where the user requests to depart at some future point in time, predic-

tions may not be available and we need to infer arrival times based on bus schedules. The table

timetable records all scheduled departures of all bus routes at their termini, based on the day

of the week. Assuming that buses depart on schedule, we can apply the prediction method Mixed
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7. Optimisation

historic & real time (with delay reverse lookup) as above to infer the arrival times at stops, and

therefore obtain corresponding predictions of how long users can expect to wait at bus stops.

7.3. Delay characteristics

In section 5.2 we looked at classification of delays based on the number of consecutive buses

exceeding a certain threshold in time longer or shorter than usual, and came up with the table

delay_characteristics to cache the expected lasting times of such anomalies. A problem

we encountered was the vast number of pairs of neighbouring bus stops in Central London, and

partitioning time into weekdays and one hour slots resulted in large number of combinations to

handle, therefore causing each iteration of database update to take immensely long.

A quick observation at figures 5.6 - 5.15 suggests that more than half of the entries are actually

0 for most of the time. By leaving omitting such entries we can reduce the size of update by

50%+. We therefore apply updates only for entries whose expected_lasting_time are greater

than zero, and we also attach information on when this update is performed in the last_updated

field. This has drastically reduced the time of each iteration to approximately 4 hours, which is

much more manageable.
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8. Conclusion

8.1. Regularities in bus journey times

Having examined multiple prediction methods on bus journey times across a variety of routes in

Central London, we find that the best performing historic methods are from the historic based

Historic 5 days weekdays; 7/14/21 days weekends family. This suggests that bus journey times

subject to usual traffic are periodic to a certain extent, where journey times are pretty much similar

between Mondays and Fridays, and standalone on Saturdays and Sundays.

Historic journey times are therefore in general indicative of the current journey times, with the ex-

ception of the occasional delay and abrupt changes in commuting patterns, such as bank holidays.

In such cases the real time based prediction methods are far more reliable.

In delay handling, it is better to be conservative when trying to adopt real time estimates, to avoid

being tricked by short-lived delays which may not have much of an impact on actual journeys.

The superiority of the hybrid Historic 5 days weekdays; 7/14/21 days weekends family over the

7/14/21 days weekends family suggests importance in adapting to recent changes in road condi-

tions, and not relying on historic data too distant in the past.

8.2. Working with third party components

Working with external APIs has always presented certain challenges, as limited access and control

over them means that any anomalies therein cannot be solved from the root, but rather workarounds

have to be developed. It also takes continuous effort to discover any edge cases and develop

corresponding patches.

8.3. Gains on concurrency

The use of concurrency has proven to greatly enhance efficiency by reducing the effects of I/O

bottlenecks from network or database communication. Proper division of work into threads (such

as subdividing all bus routes into their own goroutines in our case) has also allowed for isolation,

so that an edge case for one would not take down the others.
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9. Future Work

9.1. Variations on parameters of existing prediction methods

The prediction methods studied were a coarse illustration of the main directions, where we con-

sidered only one or two representatives in the aspects of discarding interpolation, same route only,

averaging with means, medians, and families with different periods. There is still potential to fine

tune the parameters, such as

• Swapping Historic 7/14/21 days for Historic 7 days or Historic 7/14 days, in order to in-

vestigate the trade-off between the extent to which historic data should be considered verses

sample size,

• Trying out other sliding windows, such as 45 minutes, 75 minutes or 90 minutes etc.

9.2. Aggregating results over all bus routes

While the structure and code of the project has been designed to be able to evaluate on all bus

routes in Central London, owing to computational complexity and running time we have limited

ourselves to approximately 20 bus routes in the analysis. It will be straightforward to include all

bus routes in the numerical analysis, provided we have more powerful machines.

9.3. Other prediction methods in literature

While other varieties of bus journey times prediction methods are present in literature, such as

ANNs, SVMs, regression models and Kalman filters introduced in the Background section (section

2.5), we haven’t had the opportunity to explore them in our project and compare with the time

series based approaches that we have used. It will be interesting to find out how the above methods

generalise to the case of large cities, rather than focusing on only a small number of routes.
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A. Source code

A.1. GitHub repository

A copy of the source code is available on

http://github.com/karl-chan/Active_Delay_Warning_Transport_App.

All plots in the report can be located under the /charts directory.
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B. Web server API

We introduce here the server that we have set up, from which front end clients (as in the case of

our Android app) can query for route planning and live delay data.

B.1. Journey planner

GET http://146.169.46.107/journeyplanner

Request parameters fromLat: the latitude of the origin

fromLng: the longitude of the origin

toLat: the latitude of the destination

toLng: the longitude of the destination

isDeparting: ’true’ if journey needs to be based on fixed departure time,

’false’ if to be based on fixed arrival time.

departureOrArrivalTime: timestamp in RFC3339Nano format,

signifying the departure or arrival time depending

on the isDeparting field

This API call acts as a proxy to the TfL Journey Planner for routing, and replaces travel times with

our estimates. It returns routing information, historic and real time estimates of travel times, and

the next buses to arrive.

B.2. Delay status

GET http://146.169.46.107/delaystatus

No Request parameters required

This API call returns all pairs of neighbouring bus stops that are currently affected by delays,

together with their historic, real time estimates, and the number of buses in the last two hours that

were delayed.
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B. Web server API

B.3. Next bus

GET http://146.169.46.107/nextbus

Request parameters stops: the NaPTAN ids of stops in interest, delimited by comma

numRouteOptionsPerStop: the number of bus routes to observe for each stop

in the stops list, delimited by comma

(Note: they need to be in same order as in the stops list)

lineBoundCombinations: the interested bus routes and directions for each stop,

in the format line,bound for each stop in the stops list,

delimited by comma

(Note: they need to be in same order as in the stops list)

This API call gives updates on the next buses that are about to arrive at a given stop, including bus

route, registration number of the bus and expected arrival time.

B.4. Delayed routes

GET http://146.169.46.107/delayedroutes

No Request parameters required

This API call returns all bus routes affected by delays, and their end-to-end estimated historic and

real-time based travel times.
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C. User Guide

C.1. Home page

Figure C.1.: Home page of the app, in which the current location of the user is shown

The home page (figure C.1) of the app shows a handy map of the current location of the user, and

is the entry point of the route planning feature. For convenience the most recent 5 journeys are

also listed, and the user has the option of pinning them, so that for daily commutes the user can
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C. User Guide

simply tap onto them to get to the route results page.

C.2. Current delays

Figure C.2.: Detected delays in Central London, sorted by the distances to the user’s current
location.

Swiping the home page to the right gives the page of all delays in Central London (figure C.2).

It includes information on between which pairs of stops do delays occur, the bus routes that are

affected, their distances to the user’s current location, and current estimated travel time compared

to the historic average. At the bottom is the filter bar that enables users to filter out delays that

affect the bus route(s) of interest.
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C.2. Current delays

Figure C.3.: Routes affected by delays, together with their historic and real-time journey estimates.

If we are interested in the effects of delays on bus routes end-to-end, tapping the checkbox switches

us to another view. Instead of individual pairs of stops, we now obtain information on entire bus

routes (figure C.3), sorted in descending order by the amount of delay incurred. We can therefore

easily find out which bus routes are currently most severely delayed.
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C. User Guide

C.3. Route planner

Figure C.4.: Street view of the destination, route results, and journey times taking into considera-
tion of current delays.

The journey results page (figure C.4) provides a number of available routes on the Central London

bus network between the user’s intended origin and destination. The estimated travel time has

already taken into account of any current delays69 affecting the route, and should it be the case a

helpful message is also displayed regarding how much longer the route may take than usual. At

the top is a street view of the destination, which hopefully helps users who is new to the route to

locate their destination when they get near.

69One may notice that the estimate is the same as the historic travel time here. This is because delay for the section
is expected to be short-lived based on past data. The real time estimate reflects the travel time with the current
road conditions, and assumes all current delays will definitely affect the user. This will be further discussed in the
performance evaluation section - section 6.2.
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C.4. Navigation

C.4. Navigation

Figure C.5.: Interactive map with instructions of the intended route, and pinpoints where the next
buses and delays are.
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C. User Guide

Figure C.6.: Detailed instructions of the intended route, including navigation by foot and expected
times to each stop.

Tapping on a route in the journey results page will bring you to the details page (figure C.5), which

displays the entire trip on a map, with brief step-by-step navigation instructions at the bottom.

Detailed navigation instructions (such as turning at which road, walking for how many metres on

each road) can be obtained by swiping to the right to the Details tab (figure C.6).
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C.5. Delay notification

C.5. Delay notification

Figure C.7.: Background monitoring of user’s route, so that navigation instructions are continu-
ously updated and issued as notifications. Delays notifications are issued in red, and
by tapping users will be presented with alternative routes.

On the lower right corner of the map is the notification toggle, which the user should enable when

he starts travelling on the intended route, so that his / her current location will be continuously

monitored and notifications issued should delays be found on the way (figure C.7). Delays that af-

fect the route are also shown on the map, and by clicking on the appropriate markers, the expected

additional travel time will be displayed as a tooltip. A short paragraph regarding the sections that

are delayed are shown in red, and the user could simply tap onto it to search for alternative routes

from his / her current location to the destination.
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