Imperial College
London

IMPERIAL COLLEGE LONDON
DEPARTMENT OF COMPUTING

MENG INDIVIDUAL PROJECT

MCMAS-DYNAMIC

Symbolic Model Checking for Linear Dynamic Logic
and Several Temporal and Epistemic Extensions

Supervisor:

Author: Prof. Alessio LoMuscIoO

Jeremy Liang An KoNG Second Marker:

Dr. Krysia BRODA

13 June 2016

Abstract

Linear Dynamic Logic (LDL) is a relatively modern specification language, put forth by Vardi
in 2011. Specifying properties in LDL is attractive owing to its high expressivity (equivalent
to w-regular languages and monadic second order logic) and clear and simple syntax. Further-
more, verifying LDL properties is computationally attractive as the problem has a reasonable
(PSPACE) complexity. This report documents the development of novel, practical algorithms
for LoL model checking. We extend LDL with epistemic modalities (giving rise to LDLK), with
full branching time semantics (CDL*K), and with finite trace semantics (CDL*yK). We show
that these extensions preserve the PSPACE-completeness of LDL model checking, and develop
algorithms for model checking these languages.

We also document the design and implementation of these algorithms in MCMAS-Dynamic,
which is an extension of the MCMAS model checker. MCMAS-Dynamic is the first model
checker that supports LDL, LDLK, CDL*K and CDL*K properties. We comprehensively eval-
uate our tool, considering its correctness and scalability over several practical scenarios and
specifications. We demonstrate our tool’s resilience to large models, its high expressive power,
as well as its limitations concerning large formulae. Our results suggest that in many cases,
LDL and even CDL*K model checking can be feasible in practice.

iii

Acknowledgements

I would like to thank:

Prof. Alessio Lomuscio, for his guidance and support throughout the entire project. His
suggestions and feedback have certainly spurred much exploration, and helped me develop
a substantially more expressive and powerful tool than I initially thought possible.

Dr. Krysia Broda, for her input, feedback and suggestions especially during the early
stages of the project.

Prof. Michael Huth, my personal tutor, for his support and advice over the years.

Bryan, James, Tom and Andrea, with whom I’ve had opportunities to discuss and validate
some of my ideas (even though they may not initially have been as acquainted with systems
verification).

my family and friends for their support throughout my four years at Imperial.

Contents

1 Introduction 1
1.1 Primary Objectives e 3
1.2 Challenges e e 4
1.3 Contributions L e 5

2 Background 7
2.1 Formal Verification Techniques and Model Checking 7
2.2 Frameworks for Modelling Systems Lo oL 7

2.2.1 Kripke Models 7
2.2.2 Interpreted Systems Lo 9
2.3 Specification Languages oo 11
2.3.1 Linear Temporal Logic (LTL) 11
2.3.2 Computation Tree Logic (CTL) 14
2.3.3 Full Branching Time Logic (CTL*) 18
2.3.4 Linear Dynamic Logic (LDL) 20
2.3.5 Epistemic Logic and Linear Temporal Logic (LTLK) 22
2.3.6 Summary e e e e 25
2.4 Verification Techniques 25
2.4.1 Explicit Construction Lo 25
2.4.2 Binary Decision Diagrams 0L 25
2.4.3 Symbolic Model Checking L L. 28
2.5 LrL Model Checking in Greater Detail 31
2.5.1 Biichi Automata 31
2.5.2 Tableau Construction: Reduction to CTL Model Checking 32
2.5.3 Counterexample Generation 35
2.6 LDL Model Checking in Greater Detail 37
2.6.1 eNFAs and Thompson’s Construction 38
2.6.2 Alternating Automata 39
2.6.3 LbDL Specifications as Alternating Automata 42
2.6.4 Breakpoint Construction 45
2.7 Existing Model Checkerso 47
2.7.1 MCMAS e 47
2.7.2 MCK . .. 47
2.7.3 NuSMV e 48
2.7.4 VerICS e 48
2.7.5 SPIN . . . e 48
2.8 Deeper Investigation of MCMAS 48
2.81 Usage e 49
2.8.2 Architecture 50

vii

Contents

viii
2.8.3 Interpreted Systems Programming Language (ISPL)
3 Linear Temporal Epistemic Logic (LTLK)
3.1 Algorithm
3.1.1 Recursive Descent over Epistemic Modalities
3.1.2 Complexity Analysis
3.2 Implementation L Lo
3.2.1 Expression Parsing
3.2.2 Tableau Construction
3.2.3 Structural Composition
3.2.4 Path Finding in the Composed Model
3.2.5 Counterexample Generation
3.2.6 Comparison with MCK
4 Full Branching Time Epistemic Logic (CTL*K)
4.1 Algorithm e
4.1.1 Recursive Descent over Path Quantifiers
4.1.2 Complexity Analysis oL
4.2 TImplementation
4.2.1 Expression Parsing
4.2.2 Recursive Descent oo L.
4.2.3 Counterexample and Witness Generation

5 Linear Dynamic Epistemic Logic (LDLK)

5.1 Algorithm
5.1.1 Alternating Automata
5.1.2 Critical Sets
5.1.3 Finding Critical Sets
5.1.4 Symbolic Breakpoint Construction and Model Composition
5.1.5 Complexity Analysis

5.2 PSPACE-Completeness of LDLK

5.3 Implementation
5.3.1 Overall Solution Architecture
5.3.2 Expression Parsing
5.3.3 e-NFAs and Critical Sets
5.3.4 Alternating Automaton Construction
5.3.5 Symbolic Breakpoint Construction
5.3.6 Structural Composition and Path Finding
5.3.7 Counterexample Generation

5.4 Performance Optimisations
5.4.1 Analysis on Large Models
5.4.2 Analysis on Large Formulae
5.4.3 Automata Simplification
5.4.4 Efficient Conjunct Computation

6 Full Branching Time Dynamic Epistemic Logic (CDL*K)

6.1 Syntax and Semantics Lo
6.2 Algorithm
6.2.1 Recursive Descent oL

6.2.2 Complexity Analysis

Contents ix
6.3 PSPACE-Completeness of CDL*K 97
6.4 Implementation L L L 98

6.4.1 Overall Solution Architecture 98
6.4.2 Expression Parsing 99
6.4.3 E¢ and Recursive Descent, 99
6.4.4 Counterexample and Witness Generation 100
6.4.5 Performance Optimisations 100

7 Finite Trace Semantics 101
7.1 LbpL over Finite Traces (LDLy) 101
7.2 CDL*K over Finite Traces (CDL*/K) 102
7.3 Implementation 104

7.3.1 Specifying Finite Trace Semantics 104
7.3.2 Input File Preprocessing L 105
7.3.3 Finite Translation Function 106

8 Experimental Evaluation 107
8.1 Imstallation and Usage 107
8.2 Acceptance Tests 108

8.2.1 System Tests 109

8.2.2 Differential Testing 110
8.3 Performance Test Setup L 111
8.4 Dining Cryptographers 112
8.5 Counter e 119
8.6 Bit Transmission e e 123
8.7 Prisoners 127
8.8 Go-Back-N 134
8.9 Summary e 139

9 Project Evaluation 141

9.1 Theory o 141
9.1.1 Strengths 142
9.1.2 Weaknesses 142

9.2 TImplementation L 142
9.2.1 Strengths 143
9.2.2 Weaknesses 144

10 Conclusions 145
10.1 Summary of Worko 145
10.2 Future Extensions e e 146

10.2.1 Expressivity and Functionality 147
10.2.2 Performance and Reliability 147

Bibliography 149

Appendices 155

A ISPL Model for the Bit Transmission Protocol 155

B ISPL Model for the Go-Back-N Protocol 159

X Contents

C Additional Proofs 163

Chapter 1

Introduction

Computers and computer systems have been becoming increasingly more integral in our daily
lives. We rely on their correctness in a variety of circumstances — clear examples include smart-
phones, point-of-sale systems and electronic mail. However, the development of these systems
(both in terms of hardware and software) is a human process and thus naturally subject to
error. Developers often do make significant efforts in ensuring that their systems are robust
(through writing tests, code reviews and, in certain cases, static analysis tools such as FindBugs
[4]). These processes have shown promise in reducing defect rates [15, 56, 12], but they are fun-
damentally incomplete — they can demonstrate that bugs and errors exist, but have no way of
showing that a system is wholly correct. In view of the potentially catastrophic consequences of
hardware and software errors, such as a race condition in the Therac-25 radiotherapy machine
leading to massive radiation overdoses and the death of several patients [61], or a floating point
division bug in Intel’s Pentium processor leading to a recall costing the company an estimated
$475 million [74], in many cases it is prudent to verify the correctness of computer systems.

Formal verification of both hardware and software has seen increasing take-up in industry,
especially in safety-critical applications. These techniques can prove that programs (or pro-
gram fragments) satisfy a given specification (modulo bugs or errors in implementation of said
technique). For example, various static analysis and model checking tools were used in the de-
sign and implementation of flight control software for the Curiosity rover that landed on Mars
— and these tools found many bugs, even leading to a redesign of one of the subsystems in the
flight control software [51]. Other industrial applications of model checking include verifying
correctness of microprocessors at Intel [47], the world’s largest semiconductor vendor by market
share [44], and checking that third-party device drivers use the Windows driver API correctly
[14].

Model checking a computer system involves building a model M encompassing the possible
states the system can be in as well as transitions between these states, and checking that some
specification ¢ holds across (typically) all reachable states of the model. However, computer
systems in practice tend to be very large, and these models tend to grow exponentially as more
components are added — this is known as the state explosion problem [69]. Thus, for the tech-
nique to scale effectively we cannot simply explicitly build the model; we need to construct and
verify properties in a more sophisticated manner. This is covered in greater detail in Section 2.4.

Multi-agent systems refer to computer systems involving interactions between multiple intel-
ligent agents. These agents act in different ways based on the external environment that they
can observe — an ideal rational agent is one that maximises its performance based on the ob-

LTLK CTLK
(Part 1; Ch. 3) (Already supported)
CTL*K
(Part 2; Ch. 4)
\ 4 Y
LDL{K
LDLK CDLK f
(Part 3; Ch. 5) (Part 5; Ch. 7)
Y
CDL*K CDL*K
(Part 4; Ch. 6) (Part 5; Ch. 7)

Figure 1.1: Illustration of relationships between various temporal-epistemic logics. The arrows
denote that one logic is strictly subsumed by another: A — B if every property expressible in
A is also expressible in B, and there exists a property expressible in B not expressible in A.

servations it makes [82]. These systems see potential applications across a diverse spectrum of
fields, such as reasoning about auctions [77], traffic control [25] and robotic swarms [58].

Specifications for model checking are often expressed in temporal logic [79]; these logics vary
in their expressive power as well as complexity for model checking. There are several tools
available that support model checking of temporal logic properties in multi-agent systems. Ex-
amples include MCMAS, which supports Computation Tree Logic (CTL) and Alternating-Time
Temporal Logic (ATL) with epistemic and deontic modalities [65], and MCK which supports
LtL, CTL and CTL* with epistemic modalities [5]. Over the course of this project, we imple-
mented a model checker for several temporal logics of increasing expressivity in the context of
multi-agent systems, as illustrated in Figure 1.1.

It is well-known that CTL and LtL have “incomparable” expressive power [68]; there are prop-
erties that can be expressed in LTL but not in CTL and vice versa. However, there exist claims
that LTL is frequently considered better suited to writing specifications for systems occurring
in practice [79, 95]. This project will, as a first step, focus on implementing an open source
model-checker for LTLK in the context of multi-agent systems; the aforementioned MCK is
closed-source. While algorithms for model checking LTL are well-known [28, 79|, extending
these to handle epistemic modalities is less so. We then extend the model checker to handle full
branching time logic with epistemic modalities (CTL*K) in multi agent systems.

We then turn our attention to Linear Dynamic Logic (LDL), an extension of LTL with dy-

Chapter 1. Introduction 3

namic modalities expressed in syntax analogous to Propositional Dynamic Logic [35]. LDL is
attractive as a specification language as it is strictly more expressive than LTL. In addition
to LTL properties, it also allows other structural properties to be expressed as well, such as
a formula ¢ holding in even states on every path (impossible in LTL [35] without formulae of
infinite size, but succinctly [(T; T)*]¢ in LDL). It also has incomparable expressive power with
CTL*; there are statements expressible in each that are not expressible in the other (in par-
ticular, the ‘even states’ property is also not expressible in CTL*). Furthermore, such regular
properties have seen use in industrial applications [47]. However, LDL model checking maintains
the same worst-case complexity (like LTL and CTL* model checking, it is PSPACE-complete
[96]). We seek to implement a model checker for LDL with epistemic modalities (LDLK); we
are not currently aware of any existing model checkers that support LDL or LDLK specifications
(open source or otherwise).

We then proceed to generalise the LDLK algorithm to support full branching time dynamic
logic with epistemic modalities (CDL*K). This subsumes both LDLK and CTL*K, allowing us
to express complex structural properties, such as “in every even state on every path, it is pos-
sible for ¢ to hold after an odd number more steps” (A[(T; T)*|E(T;(T;T)*)¢) in a succinct
way. We also implement counterexample generation for CDL*K properties. Furthermore, we
demonstrate that model checking CDL*K also maintains the PSPACE-completeness of LTLK,
CTL*K and LDLK model checking, in spite of its strictly greater expressiveness. We also ex-
plore possibilities for verifying CDL*K properties over finite traces, show that the CDL*K model
checking problem over finite traces is PSPACE-complete and provide a reduction of this problem
to the infinite trace CDL*K model checking problem. We are not aware of any existing model
checkers that support CDL* or CDL*K specifications (on finite or infinite traces).

1.1 Primary Objectives

The goal of this project is to implement model checkers for LTL, CTL* and LDL and their
epistemic extensions in the context of multi-agent systems. We also aim to implement a model
checker for the full branching time extension of LDL with epistemic modalities, CDL*K, as well
as a model checker for LDL and CDL*K over finite traces. At a high level, we seek to achieve
this by carrying out the following for each specification language:

1. Research existing methods for verifying formulae expressed in the relevant
specification language. For LTL and CTL*, we need to find out more information
about existing algorithms and evaluate whether they are amenable to symbolic model
checking (such as the tableau construction algorithm [28] or the recursive approach of
[39]), as well as whether and how these algorithms can be adapted to handle epistemic
modalities.

For LDL and its extensions, this is more difficult owing to its relative novelty; there
does not appear to be a “standard” algorithm for LDL model checking.

2. Design a suitable algorithm for verifying properties specified in the relevant
specification language. There appear to be many possible choices for LTL and CTL*,
though due to the aforementioned state explosion problem it is important to represent the
state space efficiently. Furthermore, a method of handling the epistemic modalities also
needs to be devised.

For LDL there does not appear to be an existing algorithm (the closest we have found

4 1.2. Challenges

appears to be the alternating automaton construction presented in [41], though it fea-
tures a quantification over potentially arbitrarily many paths). As before, we also need
to determine how to incorporate epistemic modalities in our algorithm. Our algorithm
will thus need to be original, and hence justifying its correctness and complexity is also
important. This applies to the extensions of LLDL we plan to explore as well, which to the
best of our knowledge are novel.

3. Implement a tool allowing appropriate specifications to be verified over multi-
agent systems. We plan on implementing this as an extension of an existing model
checker — otherwise, we would need to spend time developing many other components
(such as a specification language, parser, tool for determining fair and reachable states
etc.) that are not intended to be the focus of this project.

The tool should be able to, given some specification of a multi-agent system and temporal-
epistemic properties, determine if said properties are satisfied. In particular, it should sup-
port fairness constraints, as well as the generation of suitable counterexample or witness
traces as appropriate.

4. Evaluate the tool’s correctness, performance and scalability. We will verify the
tool’s correctness by manually devising many test cases designed to exercise the tool’s
functionality, as well as comparing its behaviour with equivalent specifications in lan-
guages that MCMAS already supports.

The tool will also be evaluated on its scalability, using several well-known problems in
the literature such as the dining cryptographers. Although the model checking problems
for these languages are PSPACE-complete (for LtL, CTL* and LDL this is established in
[39] and [96]; we will prove this for the extensions), encouraging empirical results for LTL,
at least, have been obtained in practice if suitable data structures are used [28].

1.2 Challenges

We faced several challenging tasks throughout this project; in particular, we had to translate
complex, abstract algorithmic concepts into (relatively) low-level C++ code with no prior ex-
perience in this field beyond the Systems Verification and Software Reliability courses. Some of
the primary challenges we faced were as follows:

1. Lack of (documented) existing algorithms. While algorithms for model-checking
LTL and CTL* are well-known, how these may be extended with epistemic modalities
and multi-agent systems appears considerably less well-known (that said, they certainly
exist, since MCK is able to check such properties). We applied ideas from [70], [40] and
[28] in developing algorithms for model-checking LTLK and CTL*K that, to the best of
our knowledge, are not explicitly documented elsewhere. Some adaptations to the afore-
mentioned algorithms were also necessary during implementation, to deal with MCMAS’
existing encoding of the model.

Furthermore, we have not found any algorithms for model checking LDL or CpL* (with
or without epistemic modalities), and there are no existing model checkers for it. There is
an alternating automaton construction for LDL specifications [41], which does indeed con-
firm that LDL model checking is feasible, though there are some obstacles to an efficient
concrete implementation (in particular, the construction involves a quantification over a

Chapter 1. Introduction 5

potentially unbounded number of e-paths). In general, we find that the lack of available
information made it considerably more difficult to make inroads into the LbDL and CpL*
model checking problems.

2. Working with the legacy MCMAS codebase. The existing MCMAS codebase while
open-source appears to have accrued substantial technical debt, with considerable use of
‘God objects’ with many responsibilities (in particular, the bdd_parameters struct) and
global variables (such as agents, a vector of agent specifications). This did lead to con-
fusing bugs due to undocumented and, in some cases, unexpected dependencies between
methods'. Furthermore, while user documentation for MCMAS is available, technical
documentation was nonexistent. We were also unable to find any existing tests (unit,
regression or otherwise) for MCMAS at all, which initially made it difficult to ascertain if
our changes had wider-reaching effects.

Furthermore, MCMAS itself did have subtle, complex bugs that were difficult to iden-
tify (and this was exacerbated by the aforementioned technical debt). We discovered (and
fixed) a bug in MCMAS concerning witness generation for CTL formulas of the form EG¢.

3. High computational complexity. Model checking of LTL and CTL* is PSPACE-
complete, and the adaptations we have made to support epistemic modalities preserve
this (intuitively, these involve polynomially many calls to a plain LTL model checking
algorithm). When faced with poor performance, it was at times difficult to determine
whether said poor performance was a fundamental limitation of the algorithms being
used or whether the implementation of the algorithms was inefficient (as far as we know,
both situations have arisen in practice).

Model checking of LDL is also PSPACE-complete [96]; we prove that this also holds
for CpL* (Section 6.3), and as before our adaptations to support epistemic modalities
preserve this. This also holds for the finite trace versions (for LDL, this was shown in [35];
for CpL* we show it in Section 7.2). When testing for correctness, we also encountered
difficulties verifying that certain edge cases were respected (because our attempted tests
involved constructing very specific formulae that would trigger said edge case, and these
were, at times, too large to feasibly verify).

1.3 Contributions

The main contributions of our project are as follows:

1. Open source model checking tool for LTLK and CTL*K. We extended the functional-
ity of MCMAS, a leading model checker for multi-agent systems [10], to verify properties
specified in LTLK and CTL*K. We also implemented support for counterexample and
witness generation. This contribution would make MCMAS the first open source model
checker for these specification languages, allowing others to more easily develop further
extensions on top of our tool and/or improve its performance. Details of the algorithms
used, as well as the implementation, may be found in Chapters 3 and 4 respectively.

'For example, the aforementioned bdd_parameters struct has two variables for the transition relation reachRT
and vRT; which is actually used when computing preimages depends on whether caching of BDDs is enabled or
not. A cleaner solution could involve a separate abstraction for the transition relation, with the actual concrete
implementation selected and instantiated at runtime.

6 1.3. Contributions

2. First practical algorithm for LDLK model checking. We modify the construction
previously put forth in [41] to devise an alternating automaton construction amenable to a
concrete implementation. We prove that our alternative construction is correct, and show
how it can be implemented symbolically using the construction of [20]. This algorithm is
discussed in Section 5.1.

3. Formalism of the full branching time extension of Linear Dynamic Logic (LDL),
Cpr*. We formalise the natural full branching time extension of LDL, and show that it
subsumes both CTL* and LDL. We show that despite its expressive power, CDL* is still
PSPACE-complete. Furthermore, we present an algorithm for model checking of CpL*
properties, possibly extended with epistemic modalities (CDL*K). This is described in
greater detail in Sections 6.1 through 6.3.

4. First model checking tool for LDLK and CDL*K. We further extended the func-
tionality of MCMAS to verify properties specified in LDLK and CDL*K. We discuss our
symbolic implementation of our LDLK and CDL*K algorithms using binary decision dia-
grams. We also introduce several performance optimisations and justify their correctness.
We are not aware of any existing model checkers that support LDLK or CDL*K. Details of
the algorithms used and implementation may be found in Chapters 5 and 6 respectively.

5. Formalism of the finite trace semantics version of CbL*k (CpL*K), along with
a model checking algorithm. We formalise the finite trace semantics version of CDL*K,
and show that it is PSPACE-complete. We present a reduction of CDL* jK model checking
to regular CDL*K model checking and argue its correctness. This is discussed in greater
detail in Section 7.2.

6. First model checking tool for LDLK and CDL*K over finite traces. We further
extended MCMAS to support verification of LDLK and CDL*K properties over finite trace
semantics, by implementing the aforementioned reduction of CDL*K model checking over
finite traces to that over infinite traces. We then discuss the extension of our tool to verify
properties over these semantics. This is discussed in greater detail in Chapter 7.

7. Comprehensive ISPL test-suite for each specification language. In order to verify
correctness of our implementation, we developed a substantial test-suite of ISPL models
and specifications for each of our specification languages. We included a script that
automatically invokes MCMAS, parses its output and verifies that the program returns
the (manually determined) correct answer. The ISPL files are part of the codebase and
may easily be repurposed to check correctness of further extensions to MCMAS, such as
performance optimisations and/or attempting alternative verification techniques such as
SAT solving or use of sentential decision diagrams. They can also be used to check other
model checking tools for multi-agent systems. More detail concerning this testsuite may
be found in Section 8.2.

8. Practical experimental evaluation. We evaluated how well our implementations of
support for the various specification languages scales on a variety of well-known problems
in the literature. We also showcased the additional expressivity of the various specification
languages, in terms of interesting properties that MCMAS would previously not have been
able to verify. This is discussed in greater detail in Sections 8.3 through 8.9.

A more detailed evaluation of our project may be found in Chapter 9.

Chapter 2

Background

In this chapter we introduce various existing techniques from systems verification, as well as
several preliminaries from automata theory as well as regular expressions which are relevant to
our report. We also include a list of existing model checkers which are related to our work, and
discuss in greater depth the existing architecture of the MCMAS model checker [10] which we
plan to extend with support for the four additional specification languages.

2.1 Formal Verification Techniques and Model Checking

Formal verification, at a high level, involves the use of mathematical or logical methods to show
that a system obeys various functional properties [19]. Typically, this involves:

1. a framework for modelling systems such as a description language,

2. a specification language allowing properties to be verified to be formally and precisely
described, and

3. a verification method for determining whether a given system satisfies various properties
[54].

We focus on model checking, which involves building a model Mg for a system S under consider-
ation, and expressing each property P as a suitable logical formula ¢p. The verification methods
we employ involve determining whether a given model Mg satisfies ¢pp (written Mg E ¢p) [54].
Model checking is useful in that it is a (largely) automatic technique [30] — while users do need
to manually specify some description of S and P, once that is done (generally) no further input
from the user is required.

We will examine possible options for each of the three aforementioned components in turn.

2.2 Frameworks for Modelling Systems

2.2.1 Kripke Models

Kripke models are among the most popular frameworks for modelling systems in the context of
model-checking temporal properties. We first define several preliminaries and illustrate them
with an example:

Definition 2.1. (Kripke Frames) A Kripke frame F' is a pair (W, R), where W refers to a
non-empty set of worlds and R is a binary accessibility relation on W (that is, R C W x W).

8 2.2. Frameworks for Modelling Systems

suspended

Figure 2.1: Transition system for the Kripke frame F' modelling a thread.

Suppose we wish to model a thread in a program. This thread may either be running, suspended
or done. If a thread is running, it may complete execution, or be suspended by the operating
system scheduler. If a thread has been suspended, it may be scheduled again (and thus become
running). Threads that are done remain done. A single thread can be modelled as F' = (W, R),
where W = {running, suspended, done} and R = {(running, suspended), (suspended, running),
(running, done), (done, done)}. Kripke frames can intuitively be represented as as a transition
system or graph, as outlined in Figure 2.1.

Kripke frames do express how a system can evolve, but they do not allow us to (succinctly)
discuss properties of the system. This may be done by fixing a set of atomic propositions AP,
representing properties of interest, and describing the states in which said atomic propositions
hold. This results in a Kripke model:

Definition 2.2. (Kripke Models) A Kripke model is a pair (F,h), where F' = (W, R) is a
Kripke frame and h is an assignment from atomic propositions AP into the worlds of F' (that
is, h : AP — 2W),

Continuing from the previous example, we can define AP = {¢pu} modelling whether a thread
is currently using CPU cycles or not. The truth assignment h then decides which atomic
propositions are true at which worlds in W. In this case, a suitable assignment could be
h(cpu) = {running} since programs that are suspended or have finished running should not be
using the CPU. (F,h) is then a Kripke model for the thread.

Notably, Kripke models only admit a single accessibility relation R. This means that they
are not well-suited to handling properties across multiple modalities (such as both temporal
and epistemic modalities, which are important for multi-agent systems). A possible solution
to this involves allowing multiple accessibility relations to be specified within a single frame or
model; this can be done as follows.

Definition 2.3. (Kripke Frames with Multiple Relations) A Kripke frame with multiple
relations F is a tuple (W, Ry ... R,,) for n > 1, where each R; for i € [1..n] is a binary relation
on W (that is, R; CW x W).

Definition 2.4. (Kripke Models with Multiple Relations) A Kripke model with multiple
relations M is a tuple (F,h) where F' is a Kripke frame with multiple relations and h is an
assignment from atomic propositions AP into the worlds of F' (that is, h : AP — 2W).

We can define equivalence frames as a special case of Kripke frames with multiple relations,
which can be used to evaluate epistemic modalities (that is, modalities about knowledge).

Chapter 2. Background 9

Definition 2.5. (Equivalence Frames) Suppose our system under consideration has n agents.
An equivalence frame F = (W,~1 ... ~y,) is a tuple where W is a non-empty set of worlds, and
for every ¢ in [1..n] ~,, is an equivalence relation over W x W.

Intuitively, each equivalence relation partitions the set of worlds W into equivalence classes,
which represent the possible views of the environment as viewed by the respective agent [62].
An alternative to Kripke models which appears more closely linked to multi-agent systems, as
well as captures individual agents’ actions is the formalism of interpreted systems.

2.2.2 Interpreted Systems

Interpreted systems are a formalism used to model multi-agent systems and reason about knowl-
edge in such systems [75]. Consider the following definition from [64]:

Definition 2.6. (Interpreted Systems) Suppose we have a set of agents ¥ = {1...n} and a
special agent known as the environment, E. Let AP be a set of atomic propositions. Formally,
we can describe an interpreted system by a tuple Z = <(LZ-, Act;, P, ti)ieEu{E}a I, h>, as follows:

e For each agent i, L; refers to a finite set of private local states, and Act; refers to a finite set
of actions that the agent can take. These actions must be performed following a protocol
P, : L; — 24¢ which indicates which actions are allowable given the private local states
of the agent.

e The environment E similarly has a finite set of local states Lg, actions Actg and protocol
Pg.

e For each agent i, the evolution of the agents’ local states is given by t; : L; X Lg X
Acty X ... X Act, X Actgp — L; — in other words, agents’ evolution depends only on their
local state, the state of the environment and the actions taken by all of the agents. In
particular, the evolution of local state is not dependent on other agents’ local states. (The
environment’s evolution is given by tg : Ly x Acty X ... x Act, x Actgp — Lg.) It is
assumed that agents evolve simultaneously.

e The global state of the system at a given time instant is given by g € L1 X ... x L, X Lg.
Let G be the set of reachable global states (so G C (L X ... x L, x Lg)), and Act =
Acty X ... X Act, x Actg be the set of joint actions. Then t : G x Act — G, the
composition of ¢; for every i (including the environment), is given by t(g,a) = ¢ iff
Vi.ti(li(9),le(g),a) = li(¢") where l;(g) denotes the local state of agent i in g, a € Act,
and Vi.a; € P;(l;(g)) (where a; € Act; and a; refers to the agent i’s action).

e The set G of reachable global states can be obtained by considering the evolutions of the
system from a set of initial global states I.

e h: AP — 2% is a valuation function for the atomic propositions in AP, identifying which
global states said atomic propositions are true in.

As our work focuses heavily on verifying temporal properties over interpreted systems, we illus-
trate the above with a concrete example, and one well-known in the literature — the bit trans-
mission protocol as described in [65]. Suppose we have a sender, which wants to communicate
the value of a bit to another agent, a receiver. However, the channel they are communicating
on exhibits failures; it may fail to deliver a message (in either direction). Once the receiver
receives the bit, it begins sending acknowledgments (acks) back to the sender; once the sender
receives an ack it stops trying to send the bit. This can be modelled using interpreted systems,
as follows:

10 2.2. Frameworks for Modelling Systems

1. To model the faulty channel, we can assign it local states Ly = {R, S, RS, none} cor-
responding to whether it is able to deliver messages from the Receiver, Sender, both, or
neither. The behaviour of the channel itself should be independent of the other agents; this
can be established by giving it four actions corresponding to the four local states, a proto-
col allowing it to act in any of these four actions, independent of the other agents’ actions,
and an evolution function solely dependent on which action is chosen. In other words
Ag = {aRr,as,aRrs, Gnone}, PE(lg) = Ag for any g € Lg and tg(lg,a1,a2,ap) = a(ag)
where a(a;,) = lg for every lp € Lg.

2. We need four local states for the sender agent (call the sender agent 1), as we need to
express whether the bit it is trying to communicate is a 0 or 1, and whether it has received
an ack. It has three actions: either it sends a 0, sends a 1 or sends nothing. This can be
written S; = {0,1,04, 14} and Act; = {send0, sendl, none}. If the sender has received
an ack, its only action is none; otherwise, it sends the correct value of the bit — so,
P1(0) = {send0}, Pi(1) = {sendl} and P;(04) = Pi(14) = {none}. We return to the

evolution function later.

3. We need three local states for the receiver agent (call the receiver agent 2) — either it has
not received the bit, or has received the bit (which is either 0 or 1). It has two actions:
it either sends nothing, or sends an ack. So this can be written So = {none, 0,1} and
Acty = {none,ack}. The receiver sends acks if and only if it has received the bit, so
Py(none) = {none} and Py(0) = P»(1) = {ack}.

4. For the evolution function of the sender agent, if the channel is able to deliver messages
from the receiver and it has sent an ack, then the sender can receive the ack (transitioning
in local state from 0 to 04 or from 1 to 14). Otherwise, it remains in the same state. So,

0a L1 =0AIlg€{R,RS} Aas = ack
ti(lh,lg,a1,a2,ap) =< 14 li =1Nlg € {R,RS} A ag = ack
{1 otherwise
5. Similarly, for the receiver agent, if the channel is able to deliver messages from the sender
and it is sending a bit, then the receiver can receive the bit and update its local state;
otherwise, it remains in the same state.
0 Ig€e{S,RS} Naj = send0
tg(lg,lE,al,ag,aE)Z 1 g E{S,RS}/\al = sendl
lo otherwise

6. The initial global states for this system are the ones in which the sender has not received
an ack, and the receiver has not received a bit. We thus have

I ={(li,l2,lg) : 1 € {0,1} A ly = none}
7. We can define suitable atomic propositions — for example, if we want to express the idea

that the sender has received an ack with the atomic proposition recack, this would apply
on the reachable global states where I3 € {04,14}. In other words,

h(recack) = {(l1,1l2,lg) : l1 € {04,1a} A (l1,12,lg) € G}

This concludes our discussion of interpreted systems. For a more comprehensive treatment, one
can consult [64].

Chapter 2. Background 11

2.3 Specification Languages

Many types of modal logics have been proposed and used for model checking various properties
over systems — in particular, temporal logics concerning time have allowed desirable proper-
ties to be expressed, such as safety and liveness properties [54]. Intuitively, a safety property
expresses that an undesirable state is never reached; a liveness property expresses that some
desirable state is reached (possibly eventually, or infinitely often) [66]. Since our work focuses on
model checking within the context of multi-agent systems, epistemic logics concerning agents’
knowledge are also relevant.

In this section we will discuss the syntax, semantics, expressivity and complexity of several
popular specification languages. Where appropriate, we will also discuss known algorithms for
model checking said specification languages. It is worth mentioning that there tends to be a
trade-off between expressivity and model checking complexity. To illustrate the differences in
expressivity of the various specification languages, we attempt to translate ten English state-
ments into each logic, as follows.

1. The train will leave the station in the next state.

2. The train will not leave until the doors are closed.

3. The train can leave at some point in the future.

4. Tt is always possible for the train to leave the station.
5. The train will eventually come to a permanent stop.

6. It is always possible for the train to leave the station and the train will eventually come
to a permanent stop.

7. The train always has the blue flag raised in the even states.
8. It is always the case that if train A is in the tunnel, train B knows the tunnel is occupied.

9. If train A knows that train B is in the tunnel, train B knows that train A knows, and
train A knows that train B knows that train A knows, et cetera.

10. If the train has the blue flag raised in the even states, then the controller eventually knows
that the train can eventually come to a permanent stop.

2.3.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) is a popular specification logic. It treats time as a linear sequence
of determined, discrete events [66].

Definition 2.7. (LTL Syntax) The syntax of an LTL formula ¢ is as follows:

¢, := p where p is an atomic proposition
| T
’ “LrL
’ ¢LTL A ¢LTL
’ X ¢L’1‘L

’ ¢LTLU ¢LTL

12 2.3. Specification Languages

In addition to the above, we typically take as abbreviations L = =T, ¢ V¢ = =(=¢ A =),
= =0V, o p=(0 =)A=), F¢=TU¢ and Gp = ~F~¢ (where ¢ and ¢

are LTL formulae).

In order to define the semantics of LTL formulae in interpreted systems, we need to first define
what is meant by a path in an interpreted system — it intuitively is a sequence of global states
that respect the transition relation of the interpreted system.

Definition 2.8. (Paths and Path Suffixes) Let 7 = <(Li,Acti,Pi,ti)ieEU{E},I, h> be an
interpreted system. A path 7 in Z is an infinite sequence of global states gg, g1, g2, . . . such that,
for all i, g; € G and there exists some a € Act with g;11 = t(g;,a). Also, we define the i*" state

of a path by (i) = g;, and the i*" suffir of a path 7 by 7 = gi, gi+1,.... We say that a path
m starts at or starts from some global state g iff 7(0) = g.

We also introduce shorthand for cyclic paths; suppose we have a path

T =490,91,925 -3 9ky Gk+15 9k+25 - - - y Gk+n> - - -

which after gi., repeatedly revisits states g1 through gx, in the same order (so there exists
some nonnegative k and positive n such that gxy,+; = grs, for all i« > 1). We can write such a
path in an abbreviated form 7 = go, g1, 92, -+, 9k, (Gk+1, - - - » Gktn)"-

We now define the semantics of LTL over interpreted systems, as follows.

Definition 2.9. (LTL Semantics) Let Z = <(Li,Acti,R,ti)i€2U{E},I, h> be an interpreted
system and 7 a path in Z. Z, 7 F ¢ may be defined inductively as follows:

o 7,7k piff 7(0) € h(p) (for atomic proposition p).

e I mkET.

Z,mE ¢ iff it is not the case that Z, 7 F ¢ (written Z, 7 ¥ ¢).

I.iEQAY It T, mF ¢ and T, 7 F 1.

I,mEX¢iff Z,7! E ¢.

T, E ¢Uqp iff 3j > 0 such that Z, 77 E 4 and for 0 < k < j, I, 7" E ¢.

The semantics for the various abbreviations can be derived from the above, though it may be
useful to consider them explicitly as well:

e Tk L.

IrEoVvVyYif ZmrE¢orZ,mEY.

I,rEo it T, nEdorZ,mEY.

IrEovif I nEpand Z,rEY, or Z,m ¥ ¢ and Z,7 ¥ 1.

I,mEF¢iff 35 > 0.7,77 E ¢.

o I,mEGoiff Vj > 0.7, 7 E ¢.

Further, for a given global state g € G, I, g F ¢ iff ¢ holds on all possible paths starting from g.

Chapter 2. Background 13

Intuitively, X ¢ means that ¢ holds in the neXt state and ¢U means that ¢ always holds Until
1 does (and, importantly, at some point 1) becomes true; this is relaxed by the “weak-until”
abbreviation sometimes used — pW1) = (¢U1)) V G¢). Further to this, the common abbrevia-
tions F'¢ and G¢ mean that ¢ holds at some point in the Future, and that it is Going to be
true forever in the future respectively [66].

In terms of expressivity, we revisit the ten statements originally presented and attempt to
express them using LTL, where possible.

1. The train will leave in the next state: X (train leaves).

2. The train will not leave until the doors are closed: (—(train leaves)U (close doors)). (Note:
This example could arguably be written with weak until instead, though it is probably
desirable that the train is eventually able to leave.)

3. The train can leave at some point in the future: Not possible, as LTL always quantifies
over all paths and this statement is attempting to express that some path on which the
train permanently leaves the station exists. It is worth mentioning that we can express
the negation of this property as G—(train leaves); if this is satisfied on all paths then the
original statement is false, so we can partially alleviate this limitation [54].

4. It is possible for the train to permanently leave the station: This property mixes existential
and universal path quantifiers and thus cannot be expressed in LTL; the complement will
still contain both existential and universal path quantifiers (albeit reversed) and so we
cannot use the technique for statement 3.

5. The train will eventually come to a permanent stop: F'G(stop).

6. It is always possible for the train to leave the station and the train will eventually come
to a permanent stop: Not possible; consider statement 4.

7. The train always has the blue flag raised in the even states: This cannot be expressed in
LTL — we can approximate it with (blue) A X X (blue) etc., but to truly capture it with
this approach would require a formula of infinite size.

8. It is always the case that if train A is in the tunnel, train B knows the tunnel is occupied:
Not possible as LTL does not have epistemic modalities.

9. If train A knows that train B is in the tunnel, train B knows that train A knows, and
train A knows that train B knows that train A knows, et cetera: As in statement 8, not
possible as LTL does not have epistemic modalities.

10. If the train has the blue flag raised in the even states, then the controller eventually knows
that the train can eventually come to a permanent stop: Not possible, for varying reasons
— consider statements 4, 7 and 8.

In particular, LTL is unable to express properties concerning the existence of paths originating
from a state (it assumes that we consider all paths). It is, of course, also unable to express
properties concerning modalities other than time.

There are several algorithms for model checking LTL. Typically, these entail either

e the construction of an explicit Biichi automaton corresponding to the model and LTL
specification, and checking it for nonemptiness [45], or

14 2.3. Specification Languages

e a tableau construction algorithm which generates a symbolic Biichi automaton; composing
this automaton with the original model yields a composition under which the original LTL
specification holds if and only if a different CTL specification with fairness constraints also
holds [28].

Existing studies have generally shown that the latter approach tends to be superior, as it can be
implemented symbolically [78]. As LTL is clearly a key point of focus of our project, we discuss
these algorithms in considerably greater detail in Section 2.5. In general, model checking for
Lrr is PSPACE-complete; algorithms generally require time linear in the size of the model but
exponential in the size of the specification being checked. More formally, we introduce big-O
notation, following the definition from [33].

Definition 2.10. (Big-O Notation) We say that f(n) = O(g(n)) if there exists some positive
¢ and ng, such that 0 < f(n) < cg(n) for all n > ng. For example, f(n) = n? + n is O(n?),
because we can choose ng = 1 and ¢ = 2; consider that for every ng > 1, n? > n and so
f(n) = n?2+n < n?+n?=2n2 But f(n) is not O(n) — this can be shown via a proof by
contradiction. Supposing it was, there must exist some ¢ and ng such that 0 < n? 4+n < cn for
every n > ng. However, n? +n < cn holds iff n 4 1 < ¢ holds (since n is positive), and thus the
inequality only holds for n < ¢—1 i.e. it cannot be the case that it holds for arbitrarily large n.

Thus, we can write the aforementioned complexity as O (|Z |2|¢’|) [28].

2.3.2 Computation Tree Logic (CTL)

Computation Tree Logic (CTL) is another popular specification logic. Unlike LTL, it is a
branching-time logic, modelling time as a tree structure with multiple possible paths [54]. An
advantage of CTL is that it allows explicit quantification over paths [66].

Definition 2.11. (CTL Syntax) The syntax of a CTL formula ¢cyy, is as follows:

¢cr, = p where p is an atomic proposition
| T

’ _\(ZSCTL

| ¢CTL A ¢CTL

’ EX (Z)CTL

’ EG¢CTL

’ E(¢CTLU¢CTL)

In addition to the above, suppose ¢ and ¥ are CTL formulae. We typically take as abbreviations
from propositional logic L = =T, ¢ Vip = =(mp A), ¢ = ¢ = =V, ¢ < ¢ = (¢ —
¥) A (¢ — ¢). The remainder of the temporal connectives for CTL can be defined from the
aforementioned three, as follows. First observe from [54] that

A(@Uy) = ~(E(=9)U(=p A —¢)) V EG—)

We can then define AF¢p = A(TU¢), EF¢ = E(TU¢®) and AGp = —~EF-¢. Finally AX¢ =
“EX .

We can now define the semantics of CTL over interpreted systems. Notice that these semantics
are defined directly over states.

Definition 2.12. (CTL Semantics) Let Z = <(Li,Acti,Pi,ti)iezu{E},I, h> be an interpreted
system and ¢ a global state in Z. Z, g F ¢ may be defined inductively, as follows:

Chapter 2. Background 15

e 7,gFE piff g € h(p) for atomic proposition p.

e T gFT.

o 7,9 FE —¢ iff it is not the case that Z, g FE ¢.

e TgFoNYif T, gFE¢pand Z,gF 1.

o 7,9 F EX¢ iff there exists some path 7 in Z starting at g, such that Z, (1) E ¢.

e 7.9 F EG¢ iff there exists some path 7 in Z starting at g, such that Vi > 0 we have
Z, (i) E ¢.

o 7,9 F E(¢U) iff there exists some path 7 in Z starting at g, such that 3i > 0 such that
Z,7(i) E 1 and for all 0 < j < ¢ we have Z,7(j) E ¢.

As before, it may be useful to explicitly set out the semantics for the abbreviations.
e T,.gk L.
e ZL,gEoVyif Z,gEporZ,gFE .
e T.gFop—Yif T,gE porZ, gk .
e T gFopeyif TgEpandZ,gF Y, or Z,gF ¢ and Z,g K 1.
e 7,9 F EF¢iff there exists some path 7 in Z starting at g, such that 3i > 0 with Z, 7 (i) F ¢.
o 7,gF AX¢ iff on every path 7 in 7 starting at g we have Z,7(1) F ¢.
e 7,9 F AG¢ iff on every path m in Z starting at g, Vi > 0 we have Z, (i) F ¢.

e 7,gF A(pUv) iff on every path 7 in Z starting at g, 3i > 0 such that Z, x (i) F ¢ and for
all 0 < j < i we have Z,7(j) F ¢.

e 7,gF AF¢ iff on every path 7 in Z starting at g, 3i > 0 with Z, (i) E ¢.

Intuitively, the temporal connectives’ first letters indicates whether they are concerned with
evolution ‘along All paths’ or ‘along at least (there Exists) one path’ [54]. The second letters,
as in LTL, suggest the property holding in the neXt state, Going to hold forever, one property
holding Until another becomes true, or holding at some point in the Future [66].

We turn our attention to the expressivity of CTL — we revisit the ten statements originally
presented and now try to express them in CTL.

1. The train will leave in the next state: AX (train leaves).
2. The train will not leave until the doors are closed: A(—(train leaves)U (close doors)).

3. The train can leave at some point in the future: EF(train leaves) — ‘there exists a path
on which, at some point in the future, the train leaves’.

4. It is possible for the train to permanently leave the station: EF(AG(train left)).

16 2.3. Specification Languages

o)
g1 g2 g3
"/

Figure 2.2: Counterexample state space for AF(AG(stop)) and statement 5; the nodes at
which stop holds are shaded green.

5. The train will eventually come to a permanent stop: Not possible [79]. It seems that
AF(AG((stop)) might work, but it actually does not — consider a simple interpreted system
7 with three global states and a suitable global evolution as represented in Figure 2.2,
where I = {¢1} and h(stop) = {g1, g3}. Notice that Z,g; ¥ AF(AG(stop)). Consider the
path looping infinitely in g;; we can write this as (g1)“ using the shorthand from Definition
2.8. Clearly AG(stop) does not hold in any state along this path, as g2 can always be a
successor of g1, giving us Z, g1 ¥ AF(AG(stop)). However, the train will eventually come
to a permanent stop if the system is in state gi; either it stays permanently in g1, or it
transitions to go, after which it must transition to gs and loop forever in gs.

6. It is always possible for the train to leave the station and the train will eventually come
to a permanent stop: Not possible; consider statement 5.

7. The train always has the blue flag raised in the even states: This cannot be expressed in
CTL. As before, we can approximate it with (blue) A AX AX (blue) etc., but to capture it
with this approach would again require a formula of infinite size.

8. It is always the case that if train A is in the tunnel, train B knows the tunnel is occupied:
Not possible as CTL does not have epistemic modalities.

9. If train A knows that train B is in the tunnel, train B knows that train A knows, and
train A knows that train B knows that train A knows, et cetera: As in statement 8, not
possible as CTL does not have epistemic modalities.

10. If the train has the blue flag raised in the even states, then the controller eventually knows
that the train can eventually come to a permanent stop: Not possible, for varying reasons
— consider statements 7 and 8.

While CTL is able to quantify explicitly over paths, it is restricted in that each temporal op-
erator is necessarily preceded by a path quantifier. Consequently, there can be difficulties with
describing behaviours that may arise on different branches at different times [79] (such as in our
statement 5). How significant this limitation is in an industrial context is certainly contentious
[95]. Like LrL, CTL is also a temporal logic and thus on its own cannot express properties
concerning non-temporal modalities.

Several methods exist for model checking a CTL formula ¢. Typically, we will often want
to determine if a property is satisfied from the initial states of our system Z; in other words,
whether I C [¢]|7, where [¢]7 is the set of global states in which ¢ holds (that is, [¢]z = {g €
G :Z,9 E ¢}). However, it is often algorithmically more convenient to simply compute [¢]z
and then check whether I C [¢]7 [66]. Typically, this involves recursively computing the states
at which the various subformulas of ¢ hold, and synthesising these results appropriately when
computing ¢. Alternatives do exist, such as automata construction [17]. For example, given

Chapter 2. Background 17

[¢]z, computing [E X ¢]7 involves finding all states that can possibly evolve into any of the states
in [¢]z.

Definition 2.13. (Existential and Universal Preimages)

Let T = <(Li,Acti,B,ti)i€EU{E},I, h> be an interpreted system and X C G. The ezistential
preimage of X refers to the set of global states in G which can possibly evolve into a state in
X; that is, preg(X) = {g € G : Ja € Act.t(g,a) = ¢’ Ng' € X}. The universal preimage of S
is defined similarly as the set of global states in G which necessarily evolve into a state in X;
prey(X) ={g € G : Vg € t(g,a).g' € X}. Notice that prey(X) = G — pre5(G — X).

Clearly, this gives us the facility to check EX and AX; through the use of fix-point compu-
tations, this allows us to check the other temporal modalities as well. We outline two helper
procedures that can be used in model checking CTL formulae of the form AF¢ and E(¢U).

Definition 2.14. (Fixed Points) Let f : S — S be a function and S be a set. Let X C S.
Then, X is a fized point of f iff f(X) = X. X is the least fized point of f iff X is a fixed point
and, for every fixed point V of f, X C V. The least fixed point of f may be written as LEP(f).
Conversely, X is the greatest fized point of f iff X is a fixed point, and for every fixed point V'
of f,V CX.

Definition 2.15. (SAT4r and SATgry) We define SATsr(¢) = LFP(f) where f(X) =
[¢]7 U prey(X). Intuitively, AF'¢ is true in the states where ¢ already holds, or in the states
from which all evolutions lead to states in which AF¢.

We also define SATgy(¢,9) = LFP(g) where g(X) = [¢]z U ([¢]z N pres(X)). Intuitively,
E(¢U1) holds in the states where 1 is true, or in the states where ¢ is true and there exists an
evolution to a state where E(¢pU1)) holds. Please consult [66] for a more detailed explanation
as to why these are correct.

We can now compute [¢]7 inductively, depending on the principal connective of ¢. A possible
method is as follows (adapting the algorithm from [66] for interpreted systems):

1. [Tz =G.
2. [z = 0.
3. [plz = h(p) (where p is an atomic proposition).
4. [=¢]z = G —[¢]z.
5. [0 Alz = [d]z N [Vl
6. [¢ VYl =[glz U [¥]z.
7. (¢ = Ylz = [¢lz U [Ylz.
8. [¢ ¢ Y]z = ([¢lz N [Ylz) U ([=o]z N [¢]7).
9. [EX¢|z = pres([¢]z).
10. [EG9|r = [AF-¢]z.
11. [E(oUy)]z = SATpu (4, ¢).
12. [EF¢]z = [E(TU®)lz.

18 2.3. Specification Languages

13. [AX @]z = prey([¢]7).
14. [AG¢]|z = [~EF~d]z.
15. [A(oU)]z = [(E((—)U(=¢ A =) V EG)]z.
16. [AF¢|r = SAT4r(¢).

In general, CTL model checking can be carried out in linear time with respect to both the size
of the interpreted system Z under consideration and the specification ¢ being considered. In
other words, model checking can be done in O(|Z||¢|) time [84].

2.3.3 Full Branching Time Logic (CTL¥*)

Full Branching Time Logic (CTL*) is a more general temporal logic, in which we allow path
quantifiers to prefix unrestricted combinations of the LTL temporal modalities [40]. We present
the syntax of CTL* below.

Definition 2.16. (Path Formula) The syntax of a path formula 1) is as follows:

1 = ¢ where ¢ is a state formula; this will be defined shortly.

We also include the abbreviations from propositional logic and for the temporal modalities from
LtL (that is, where ¢ and 1 are path formulas, L = =T, ¢V = =(mp A1), ¢ = Y = —¢ VP,
P p=(0=2V)N (W —9¢), Fop=TU¢ and Gp = ~F'¢).

Definition 2.17. (State Formulas) The syntax of a state formula ¢ is as follows:

¢ ::= p where p is an atomic proposition
| T

| —¢

| oG

| E% where v is a path formula

As before, we also include the abbreviations from propositional logic. (That is, where ¢ and v are

state formulas, | = =T, ¢Vp = =(=pA—), ¢ — ¢ = =¢pVp and ¢ <> Y = (¢ — V)A (Y — @)).
We also add an additional abbreviation, A¢ = =E—¢.

Definition 2.18. (CTL* formulas) When not otherwise qualified, a CTL* formula refers to
a state formula, as defined in Definition 2.17.

The semantics of CTL* may be defined as follows:

Definition 2.19. (CTL* semantics) Let Z = <(Li,Act¢, Pi,ti)iesuieys I h> be an interpreted
system. Let g € G be a global state of the system and 7 be a path in Z. Then,

e 7,9 F E1 iff there exists a path 7 starting at g such that Z, 7 E 1.
e 7,gE Avy iff on all paths 7 starting at g, we have Z, 7 E 1.

e 7,9 F ¢ otherwise follows the semantics of CTL.

Chapter 2. Background 19

o I.mE ¢ iff Z,7(0) E ¢ (where ¢ is a state formula).
e 7T 7 F 9 otherwise follows the semantics of LTL.

Clearly, CTL* subsumes both LTL and CTL [40]; for any given LTL or CTL formula v or ¢
respectively, it is possible to rewrite said formula as an equivalent CTL* formula. Consider the
LrL formula 1; we say that Z,¢g E ¢ in LTL iff on every path starting at g we have Z, 7 E .
This precisely matches the semantics for the CTL* formula Ap.

On the other hand, consider the CTL formula ¢; we can clearly generate an equivalent for-
mula in CTL* by immediately invoking the appropriate modality when building path formulae.
More formally, CTL can be seen as the subset of CTL* where path formulae are restricted to
Xo¢, U, F¢p and G¢ where ¢ is a state formula.

However, CTL* is clearly strictly more expressive than both CTL and LTL. Most obviously,
it can express combinations of properties that can only be represented in one or the other. We
return to the ten statements initially presented, and (attempt to) express them in CTL*.

1. The train will leave in the next state: A(X (train leaves)) (brackets added for emphasis of
the difference between CTL and CTL*).

2. The train will not leave until the doors are closed: A(—(train leaves)U (close doors)).

3. The train can leave at some point in the future: E(F'(train leaves)) — ‘there exists a path
on which, at some point in the future, the train leaves’.

4. Tt is possible for the train to permanently leave the station: F(F(A(G(train left)))).
5. The train will eventually come to a permanent stop: A(FGstop).

6. It is always possible for the train to leave the station and the train will eventually come to
a permanent stop: E(F(A(G(train left)))) A A(FGstop). This is simply the conjunction
of statements 4 and 5, though we were previously not able to express this since neither
LrL nor CTL could express both.

7. The train always has the blue flag raised in the even states: This still cannot be expressed
in CTL*. As before, it seems we can approximate it with A((blue) A X X (blue)...) but a
formula of infinite size would still be required with this approach.

8. It is always the case that if train A is in the tunnel, train B knows the tunnel is occupied:
Not possible as CTL* does not have epistemic modalities.

9. If train A knows that train B is in the tunnel, train B knows that train A knows, and
train A knows that train B knows that train A knows, et cetera: As in statement 8, not
possible as CTL* does not have epistemic modalities.

10. If the train has the blue flag raised in the even states, then the controller eventually knows
that the train can eventually come to a permanent stop: Not possible, for varying reasons
— consider statements 7 and 8.

Thus CTL* seems quite expressive; it is able to represent a fairly wide variety of temporal prop-
erties. Nonetheless, there are still several potentially interesting temporal properties (statement
7) that are not expressible in CTL*.

20 2.3. Specification Languages

Model checking CTL* can be done by a reduction to the LTL model checking techniques discussed
in Section 2.3.1 and elaborated upon in Section 2.5. This is typically done with a ‘recursive
descent’ approach; see [39] for more details. The complexity is similar to that for LTL; expo-
nential in the formula size and linear in the model size (in terms of computational complexity,
model checking CTL* is also PSPACE-complete) [39]. Nonetheless, despite subsuming LTL and
having the same worst-case computational complexity, in practice verifying properties in CTL*
is often slower than in LTL [84].

2.3.4 Linear Dynamic Logic (LbpL)

Linear Dynamic Logic (LDL) is a relatively new logic, proposed by Vardi in 2011 as a replace-
ment for LTL [96]. The syntax of LDL formulas is as follows.

Definition 2.20. (LDL Syntax) An LDL formula ¢ is constructed by the following grammar:

¢ ::= p where p is an atomic proposition

p = 1) where v is a propositional formula
|67
| pt+p
{ i p

p

We include the usual propositional abbreviations for LDL formulas ¢; that is, 1L = =T,
GV = (=pA—), ¢ =Y ==V, ¢ Y= (p— p) A = ¢). We also add a
modal abbreviation [p|¢ = —(p)—¢. As may be apparent, the syntax of LDL borrows heavily
from that of Propositional Dynamic Logic (PDL), a popular specification language for programs
[35].

We now define the semantics for LDL over interpreted systems.

Definition 2.21. (LDL semantics) Let Z = <(Li7ACtiaPiati)ieEu{E}aL h> be an interpreted
system. Let 7w be a path in Z. Then,

o 7,7k piff 7(0) € h(p).
e I mET.

o 7 7kF —¢ iff it is not the case that Z, 7 F ¢.

I,rEAGIF T, mE ¢ and Z,7 = 1.

Z,7 E (p) ¢ iff there exists some i > 0 such that (0,i) € R(p,7) and Z, 7" F 1.
The relation R is inductively defined, as follows:

e R(¢,s) = {(i,i+1): 7" E 1} (where 1 is a propositional formula)

o R(67%,5) = {(i,i) : 7 F 9}

* R(p+p,s)=R(p,s) UR(p', 5)

Chapter 2. Background 21

e R(p;p,s)={(i,j) : Ik s.t. (i,k) € R(p,s) A (k,j) € R(p/,5)}
e R(p*,s)={(,9)}U{(i,7): Tk s.t. (i,k) € R(p,s) A (k,j) € R(p*,s)}

Analogous to LTL, for a global state g € G, we have Z, g F ¢ iff on every path 7 starting at g
we have Z, 7 F ¢.

Intuitively, the path expressions p in the dynamic modalities behave similarly to regular expres-
sions, in that they take on the following meanings:

e 1) checks if the propositional formula 1 holds at the current instant along this path.

e ¢7 checks if the LDL formula ¢ holds at the current instant along this path. Unlike 1,
though, we do not consider the evaluation of ¢7 to “progress” along the path, as we would
with).

e p+ p models nondeterministic selection between two path expressions; it checks whether
either of the path expressions p or p’ is satisfied by this path.

e p; p models sequential composition of two path expressions; it checks whether it is possible
for the current path to satisfy p and then p'.

e (p*) models zero or more instances of p, much like the Kleene star for regular expressions.

The semantics of Z,m E (p)¢ then intuitively mean that some prefix of m matches the path
expression p, and then the remaining suffix of 7 satisfies ¢. For the dual operator we have
I, m E [p]¢ iff for every prefix of m matching the path expression p, the remaining suffix of =
satisfies ¢.

Thus, for example, supposing p, ¢ and r are atomic propositions, the LDL formula (p7; g; (p+q))r
holds on a path 7 if we currently have both p and ¢ holding (otherwise p?; ¢ is not satisfied),
followed by a state where either p or ¢ holds, followed by a state where r holds. We now
demonstrate the expressivity of LDL by attempting to translate the ten English statements to
LpL.

1. The train will leave the station in the next state: (T)(train leaves). Notice that any single
state matches the propositional formula T, so we are looking at whether (train leaves)
holds in the next state, as desired. [T](train leaves) also has the same semantics, since
the path expression T can also only possibly match one state.

2. The train will not leave until the doors are closed: ((—(train leaves))*)(doors closed).
This holds if the doors are closed immediately; otherwise, for the formula to be satis-
fied, in every state before the doors are closed, the train must not leave. (This assumes
the “strong until” reading of the statement; if the train doors are never closed and the
train never leaves the specification is false. We can construct a “weak until” version:
(—(train leaves)®)(doors closed) V [T*]—(train leaves).)

3. The train can leave at some point in the future: Not possible, since LDL quantifies over
all paths. We can express the negation of this property as —(T*)(train leaves) and use
the technique mentioned in [54] to check whether this property holds.

4. Tt is always possible for the train to leave the station: Not possible, and we cannot use the
technique for statement 3 as well since this involves both existential and universal path
quantifiers.

22 2.3. Specification Languages

5. The train will eventually come to a permanent stop: (T*)[T*](stop). This holds if there
exists some point after which after any number of additional states the train will stop,
which is captured by the LDL formula.

6. It is always possible for the train to leave the station and the train will eventually come
to a permanent stop: Not possible; consider that we could not express statement 4.

7. The train always has the blue flag raised in the even states: [(T; T)*](blue flag raised).
Since any even length sequence matches (T; T)* we need (blue flag raised) to hold after
any even length sequence i.e. in all of the even states.

8. It is always the case that if train A is in the tunnel, train B knows the tunnel is occupied:
Not possible as LDL focuses purely on time; it does not have epistemic modalities.

9. If train A knows that train B is in the tunnel, train B knows that train A knows, and
train A knows that train B knows that train A knows, et cetera. Not possible as LDL
focuses purely on time; it does not have epistemic modalities.

10. If the train has the blue flag raised in the even states, then the controller eventually knows
that the train can eventually come to a permanent stop: Not possible, for varying reasons
— consider statements 4 and 8.

We thus observe that the expressivity of LDL and CTL* are incomparable; there are state-
ments in each one that are not expressible in the other (statement 7 was expressible in LDL
but not in CTL*, while statements 4 and 6 were expressible in CTL* but not in LpL). It has
been shown that the properties expressible in LDL correspond to the properties expressible in
monadic second-order logic [96], and hence also to the w-regular properties [24].

LDL maintains the exponential-compilation property of LTL; that is, we can compile an LDL
formula into a Biichi automaton with size exponential in the formula length [96]. This implies
that the model checking problem for LDL is, like LtL, PSPACE-complete [41]. While we are
not aware of any existing model checkers for LDL, an alternating automaton construction for
checking LDL exists [41].

2.3.5 Epistemic Logic and Linear Temporal Logic (LTLK)

The previous four logics are temporal logics — that is, they focus on properties of a system over
time. However, within the context of multi-agent systems we are often concerned with other
modalities, in particular the knowledge that agents may possess'. We typically pair epistemic
logic with a temporal specification language, to allow specifications about agents’ knowledge
over time. In this section we discuss the addition of epistemic modalities to linear temporal
logic, giving rise to the temporal-epistemic specification language LTLK. It should be noted
that the other temporal specification languages can also be enriched with epistemic modalities,
with varying expressivity and complexity.

Definition 2.22. (LTLK Syntax)
Let Z be an interpreted system; Z = <(L¢,Acti,B,ti)i€EU{E},I, h>. The syntax of an LTLK
formula ¢1 is as follows:

! Other logics such as deontic logic or alternating-time temporal logic (ATL) focus on other relevant properties,
such as rules agents should follow and strategies agents can pursue, respectively.

Chapter 2. Background 23

¢1mix := p where p is an atomic proposition
T

|

| “PLrLk

’ ¢LTLK A QSLTLK
’ X d)LTLK

’ ¢LTLK U ¢LTLK
| Ki¢rrk where i € ¥

| Er¢rmk where ' €%
’ Drorrix where I' C %
| Croumk where ' C X

Let ¢ and ¢ be LTLK formulae. We add the standard propositional abbreviations as well; that

is, L="T, ¢Vt =(20AN), ¢ 2 =0V, ¢ Y= (¢—=¢)A() = ¢), and the
temporal abbreviations from plain LTL: F'¢p = TU¢ and G = —F—¢.

The semantics of LTLK for the non-epistemic operators are the same as that of LTL. We define
the semantics for the epistemic operators as follows.

Definition 2.23. (LTLK Semantics)

Let Z be an interpreted system; Z = <(Li, Acti, Py ti)iesueys 1 h>. Let g € G be a global state
of Z and m be a path in Z. Define [; : G — L; as the function returning the local state of the
ith agent from the input global state. Then,

e 7,7 E K;¢ iff for every path p where [;(7(0)) = l;(p(0)) we have Z, p E ¢.

e 7,1 E Er¢ iff for every path p where [;(7(0)) = l;(p(0)) for some agent i € I we have

I,pE ¢.
e 7.7 E Dr¢ iff for every path p where [;(7(0)) = 1;(p(0)) for all agents i € I' we have
I,pE ¢.
o 7,7k Cr¢ iff for every path p where p1, p2, ... are paths such that {;(7(0)) = lg, (p1(0)) =
Uiy (p2(0)) = ... =1;(p(0)) for agents i,j,k1,... € I', we have Z,p E ¢.

e The semantics for the temporal and propositional connectives, and for atoms, follows that
of LTL.

LTLK satisfaction over states is defined in a similar way to LTL satisfaction over states; we say
that Z,g F ¢ if Z, m E ¢ for every path m starting at g.

We consider private knowledge as a function of local states [66]. K;¢ means “the agent ¢ knows
¢”; that is, in every possible global state g where [;(g) matches the agent’s local state, ¢ holds.
Further to this, the intuitive reading of the other epistemic modalities are as follows [66]:

e Fr¢ is defined on the union of the equivalence relations for the agents in I'; based on this
we can conclude Er¢ = A, K;¢. Thus Er¢ may be read as ‘all agents (Everybody) in
the group I' knows ¢’.

el

e Dr¢ is defined on the intersection of the equivalence relations for the agents in I'; it
appears impossible to define this in terms of K;¢. It can be read as ‘it is Distributed
knowledge in the group I' that ¢’. Intuitively, if Dr¢ holds and the agents in I' share their
knowledge, they can collectively determine that ¢ holds.

24 2.3. Specification Languages

e (¢ is defined on the transitive closure of the equivalence relations for the agents in I';
this is equivalent to the unbounded conjunction Fr¢ A ErEr¢ A A typical reading
would be that ‘it is Common knowledge in the group I' that ¢’.

The above semantics are known as observational semantics; they do not consider that agents
may, in practice, be aware of how much time has passed (clock semantics) or their previous
states (perfect recall) [53]. We choose these semantics as they do not affect the complexity of
the model-checking problem, as opposed to clock semantics (leading to complexity exponential
in the size of the model, thereby significantly inhibiting scalability) or perfect recall (which is
undecidable in general) [53].

In terms of expressivity, clearly as far as temporal properties are concerned LTLK does not
add to LTL; revisiting the ten statements presented at the beginning, clearly its performance on
statements 1 through 7, as well as 10, remains the same. However, it does allow us to consider
and evaluate statements 8 and 9, which require specifications to capture epistemic modalities.

8. It is always the case that if train A is in the tunnel, train B knows the tunnel is occupied:
G((A in tunnel) — Kp(tunnel occupied)).

9. If train A knows that train B is in the tunnel, train B knows that train A knows, and
train A knows that train B knows that train A knows, et cetera: G(K4(B in tunnel) —
CrK 4(B in tunnel)) where I' = {A, B}. We assume here that knowledge is introspective
(that is, an agent knows that it knows what it knows; K;¢ — K;K;¢ is assumed valid).

Model checking of epistemic modalities on their own can be done by computing the states in
which the relevant subformula ¢ holds and then appropriately transforming this set of states
depending on the epistemic accessibility relations [66]; for model checking of generic LTLK
formulae, please consult Section 3.1. We introduce a preliminary definition that will be useful:

Definition 2.24. (Epistemic Accessibility) Let Z = <(Li,Acti,H~,ti)i€ZU{E},I, h> be an
interpreted system. Let g,¢' € G be two global states of G. Then, we define the epistemic
accessibility relation for agent i, ~,C G x G by (g,¢") € G iff l;(g) = l;(¢'). We also define
accessibility relations corresponding to the other epistemic modalities:

o ~ECGXGhy(g9,¢) €Giff Ji € G st li(g) = L)
o ~PCGxGhy(g,9)€Giff VieG,li(g) =1l(g)
o ~{C G x G =LFP(f) where f(X)=~f U{(g,9") : 3(9,9") € X s.t. (¢, ¢") e~E}

We briefly outline how, given the set of states [¢]7 C G satisfying a formula ¢, we can evaluate
the epistemic modalities over ¢. Suppose S = [¢]7.

o [Ki¢lz=G—{g:3¢ € (G—5)A~i(9,9')}.

o [Erdlz=G—{g:3¢ € (G—S)A~F (9.9}
o [Drolz =G —{g:3¢9' € (G- A ~L (9,9}
o [Crolz =G —{9:3¢ € (G-~ (9.9)}-

Intuitively, we are finding the states from which an agent (or group of agents) cannot know ¢
(that is, there exists some global state where ¢ does not hold that is indistinguishable to the
agent or group of agents), and then taking the complement.

Chapter 2. Background 25

2.3.6 Summary

There are a “whole zoo” [54] of temporal logics available that can capture varying properties of
interest; in this section we have discussed the syntax, semantics, expressivity and complexity of
four popular temporal specification languages, briefly mentioning existing model checking algo-
rithms where appropriate. We have shown that some of them have incomparable expressivity
(CtL and LrL; CTL* and LDL) in that in both directions, there are properties expressible in
one logic but not in the other. Generally, additional expressivity tends to come at a cost in
terms of computational complexity; further to that, especially if one considers industrial appli-
cations of verification the utility of what can be expressed is also an important consideration
[95]. Furthermore, there are many cases where algorithms do not actually reach their worst-case
complexity; in spite of LTL and CTL* model checking both being PSPACE-complete, the former
has often been faster in practice [84].

We have also outlined observational semantics for epistemic modalities, and shown how they
can augment LTL to allow us to reason about knowledge with a linear-time view using LTLK.
Similar approaches can be used to extend the other logics with such capabilities [66].

2.4 Verification Techniques

In this section we discuss some of the methods by which specifications can be verified; that is,
given an interpreted system Z and modal formula ¢, for a given global state g how we compute
whether 7, g E ¢. In practice, as previously discussed it is often more convenient to compute
the set of states in which ¢ holds, [¢]z, and then check whether g € [¢]7 [66].

2.4.1 Explicit Construction

One possible approach involves explicitly constructing a directed graph representing Z; this
would involve constructing nodes for the global states G and edges depending on the evolution
function ¢. Thereafter, we can attempt to directly evaluate properties on said graph; for exam-
ple, for model checking CTL we can explicitly implement the state-labelling algorithms outlined
in Section 2.3.2. However, this approach does not scale well; it is particularly vulnerable to the
state explosion problem, in that the size of the model (here graph) will grow exponentially as
additional components are introduced to a system [32]. Explicitly enumerating the states of
the model does not work well with this, as many algorithms tend to require set operations over
states that will be very costly (in general, linear in the size of the model per set operation).

In practice, explicit approaches are often only able to cope with models with order 108 states
[66]. Through the use of more sophisticated methods of representing the model and states, it is
possible to perform better in practice.

2.4.2 Binary Decision Diagrams

Binary decision diagrams can be used to represent Boolean functions in a compact manner.
In general, for a Boolean function with n variables, many “classical” representations such as
truth tables, Karnaugh maps or sum-of-products form have many or all functions requiring
exponential space; more practical representations such as reduced sums of products still have
weaknesses in that they lack canonicity and can result in sudden degradations in performance
even when simple operations such as complementation are performed [23]. Binary decision
diagrams attempt to address some of these weaknesses.

26 2.4. Verification Techniques

(1) BDT for (x Ay)V =z (2) BDD after application of (C1)

(3) BDD after application of (C3) (4) BDD after two applications of (C2)

Figure 2.3: BDT for (z A y) V z and its reduction to a reduced BDD.

Definition 2.25. (Binary Decision Trees) A binary decision tree (BDT) is a complete bi-
nary tree with a unique starting node. Within the BDT, each internal node is labelled with
a Boolean variable and each terminal node is labelled either ‘0’ or ‘1’; all internal nodes on
the same level of the tree share the same label. Each internal node has 2 outgoing edges, one
labelled ‘0’ and one labelled ‘1’. We adopt a convention that the ‘0’ edge is represented by a
dotted line and ‘1’ by a solid line.

BDTs serve as a representation of a Boolean function f(z1,z2...xy,). To evaluate f(z1,2z2...zy),
we proceed as follows: beginning from the starting node, we traverse the graph. When visiting
an internal node labelled with variable x;, we follow the outgoing ‘0’ edge if x; = 0 and the
outgoing ‘1’ edge if x; = 1. When we reach a terminal node, the value of said terminal (either
0 or 1) is the value of f for the relevant values of x;.

For example, consider the Boolean function f(z,y,2) = (xAy)V z. We can construct a BDT for
f by selecting an ordering of the variables and building a suitable tree. For example, consider

Figure 2.3.

BDTs clearly have size exponential in the number of inputs to the Boolean function being

Chapter 2. Background 27

considered. Nonetheless, we can apply various heuristics to, in many cases, significantly reduce
the size of a BDT [66].

e (C1l) Removal of duplicate terminals. We can condense all terminal nodes to (up
to) two nodes — one representing 0 and another representing 1. We can then redirect all
edges pointing to 0 terminals to the one 0 and all edges pointing to 1 terminals to the one
1.

e (C2) Removal of redundant tests. If both outgoing edges of a node m point to the
same node n, we can remove m from the BDD and redirect all edges incident on m to n.

e (C3) Removal of duplicate non-terminals. If two distinct nodes m and n are roots
of structurally identical sub-BDDs, we can condense them into a single node (say n) and
redirect all edges incident on m to n.

We now show concretely how these rules can be used to reduce the BDT in Figure 2.3 while
preserving an equivalent structure:

e We first apply (C1), merging all of the terminals for 0 and 1 to a single terminal for each
value. We obtain the BDD (2) in Figure 2.3.

e We then apply (C3); notice that all internal nodes labelled z apart from the rightmost
one have their ‘0’ outgoing edge going to the terminal 0 and their ‘1’ outgoing edge going
to the terminal 1. We now have the BDD (3) in Figure 2.3.

e We then apply (C2) twice: notice that the left internal node labelled y and the right
internal node labelled z have both outgoing edges pointing to the same node, and can
thus be removed. We now obtain the BDD (4) in Figure 2.3; no further simplifications
are possible.

We can generalise BDTs to BDDs, as follows.

Definition 2.26. (Binary Decision Diagrams) A binary decision diagram (BDD) is a finite
directed acyclic graph with a unique initial node. Within the BDD, each internal node is labelled
with a Boolean variable and each terminal node is labelled either ‘0’ or ‘1’. Each internal node
has 2 outgoing edges, one labelled ‘0’ and one labelled ‘1’. We adopt the same convention as
we did for BDTs; the ‘0’ edge is represented by a dotted line and the ‘1’ edge by a solid line.
The semantics of BDDs (in terms of the way they represent a Boolean function) are identical
to that for BDTs.

Definition 2.27. (Reduced Binary Decision Diagrams) A binary decision diagram is said
to be reduced if none of the optimisations C1 — C3 as defined earlier can be applied.

BDDs and reduced BDDs as defined in Definitions 2.26 and 2.27 are not canonical in that a
formula can have multiple representations (even in the reduced case). For example, the reduced
BDD (4) in Figure 2.3 and the reduced BDD in Figure 2.4 both represent the same boolean
function (x Ay) V z. We now discuss how a canonical representation for a given formula can be
obtained, through the use of variable orderings.

Definition 2.28. (Variable Ordering and Ordered BDDs) Let L = [z}, 22,...zy] be an
ordered list of variables without duplications, and let B be a BDD. B has the variable ordering
L iff the label of every internal node is contained in L and, for every occurrence of z; followed
by z; along a path in B we have i < j. An ordered BDD (OBDD) is a BDD which has an
ordering for some list of variables.

28 2.4. Verification Techniques

Figure 2.4: Reduced BDD for (x A y) V z using a different variable ordering.

Definition 2.29. (Compatible Variable Orderings) Let By and B, be OBDDs with vari-
able orderings Ly and L, respectively. By and B, have compatible variable orderings iff there
does not exist a pair (x,y) such that x comes before y in L; and y comes before = in L,.

It is known that once a variable ordering has been determined, the reduced OBDD correspond-
ing to a given Boolean function f is unique; furthermore, if two reduced OBDDs By and B,
have compatible variable orderings then they must have the same structure [66].

The selection of which variable ordering should be used to optimise the size of the reduced
OBDDs is known to be an NP-complete problem [22]. Nonetheless, it is important to avoid
worst-case performance; for example, for Boolean functions of the form ¢ = \/,(z; Ay;) for inte-
ger 0 < i < N, optimal orderings such as [z, yo, 1, Y1, - - -, TN—1, Yn—1] yield reduced OBDDs of
linear size (here 2N +2), while worst-case orderings such as [xo, Z1, ..., LN—1, YN—1, YN—2; - - - » Y0]
yield reduced OBDDs of exponential size (here 2V*+1) [23]. In practice, many BDD packages
such as CUDD [88] use the sifting algorithm which involves a dynamic local search heuristic;
see [81] for more detail.

Another advantage of BDDs is that, in general, performing tests and comparisons as well as
various operations on BDDs can be efficient. Supposing f, g are Boolean functions with the
same variable ordering, checking if f and ¢ are equivalent can be done by checking if their BDDs
By and B, are structurally identical. Checking validity or satisfiability for a given Boolean func-
tion f is even simpler; we simply check if the BDD By is equal to just the single terminal By
(valid iff equal), or if it is equal to the single terminal By (satisfiable iff not equal) [66]. Several
other operations such as complementation (constant time by swapping the 0 and 1 terminals)
or finding a satisfying assignment can be done very efficiently as well, especially if the BDDs
are small [86]. A more detailed discussion of how Boolean operations may be applied on BDDs
can be found in [23].

2.4.3 Symbolic Model Checking

Symbolic model checking involves encoding sets (in particular, sets of states) and functions over
sets as Boolean formulas, and manipulating these Boolean formulas to determine if Z, g F ¢ for
some interpreted system Z, global state g and specification ¢. In particular, this can be done
without explicitly enumerating the global states G of Z; we use the reduced OBDDs introduced

Chapter 2. Background 29

in Section 2.4.2 to perform these operations efficiently. The technique can often handle state
spaces as large as 10%° states [66].

Suppose we have a set S = {a,b,c}. Then, we can identify an element in S using n = 2
bits (in general, we need [log, |S|] bits). For example, using two boolean variables =1 and s,
we can encode a as —x1 A—xa, b as ~xr1 Axy and ¢ as x1 Axg, leaving x1 A—x9 as an uninstantiated
element [66].

Subsets of S can then be represented by Boolean formulas f using n variables. Suppose
X C 5. We can encode X by choosing fx = \/,cxe(x) where e(z) is the encoding of el-
ement z into a Boolean formula. For example, the subset ¥ = {a,b} can be encoded as
fy = (mx1 A —z2) V (mxyp Axe) = —x1. We can then represent fy (or in general the formula for
any subset) with an OBDD after fixing a suitable variable ordering. To improve this encoding,
we can decide to include uninstantiated elements in our encoding if it will improve the size of the
reduced OBDDs; the entire set S can be represented as fg = (—z1A—x2)V(~z1Az2)V (T1AT2) =
—(z1A—x3), though obviously fs = T is also acceptable (as we don’t care about whether 21 A—xo
is present or not) and gives rise to a smaller reduced OBDD [66]. In particular, this allows us
to represent subsets of the global states G of Z using BDDs.

We can thus encode set operations as Boolean operations on their representative formulas;

clearly, fvrw = fv A fw, fruow = fv V fiv and f_yv = —fy. These operations can be per-
formed symbolically on binary decision diagrams for efficiency.

We proceed by constructing the transition relation of Z; that is, R = {(g,¢’) : Ja € Act.g’ =
t(g,a)}. Clearly, R C G x G. If we encode two copies of G, one using the variables =1, ...z,
and another using z, .../, then we can express R as a BDD over the two sets of variables?. In
practice, it has been found that interleaving variables from the current and next states tends
to lead to more efficient reduced OBDDs [66].

We illustrate this construction with a concrete example, illustrated in Figure 2.5. Consider
a simple interpreted system with three global states; G = {g1, g2, g3} and a transition relation
R = {(91,92),(92,93), (91,91), (g3,93)}. We can choose an encoding for the states of G using
two propositional variables 1 and z9; we represent g; by —x1 A —z9, g2 by 1 A —x5 and g3 by
x1 A x2. We can then encode the transition relation as in (3) in Figure 2.5 where ‘-’ represents
the “don’t care” states (where we have either —~x; Ao or =2 Az since they reference an unin-
stantiated state), and then determine a suitable Boolean expression for the transition relation
R, such as fr = (mz1 A—ah) V (x1 Axhy). (Of course, other choices of fr are possible, depending
on which “don’t care” states one includes in one’s choices.).

Many of the model checking algorithms depend on our ability to compute universal and ex-
istential preimages (as defined in Definition 2.13). It may be noted that the universal image
may be expressed in terms of an existential preimage, as follows:

prey(X) = {g € G :Vg' € t(g,a).g' € X}

=G-{geG:-Vg €t(g,a).g € X}
=G-{geG:3¢g €t(g,a).g' ¢ X}

2Tt is certainly possible to use fewer variables if we attempt to take R as a direct subset of G x G, but this
adds significant complexity to the implementation. Furthermore, this can make taking the projection of one set
of the global states, which is needed when taking the existential preimage, somewhat complicated.

30 2.4. Verification Techniques

R
1

8
_
8
)
8
.
8
o~

S =

@ State ‘ Encoding

g1 T A\ X2
@ g2 A IANRH D)
g3 r1 A\ T2

(1) Transition relation (2) State encoding (3) Transition relation encoding

O = O

e e i e e == e M s B e B e B s B e

=== = O O OO === O OO

—, OO, PR OO, FOOFFHOO

— OR OFR ORFRORFRORFRORFORFO
O

_= O

Figure 2.5: Encoding of a simple interpreted system.

=G-{geG:3¢ €t(g,a).g € G- X}
= G — pre5(G — X)

Thus, it is sufficient to outline how to compute an existential preimage — recall that preg(X) =
{g € G:3a € Act.t(g,a) = ¢’ N¢g' € X}; equivalently we have pre3(X) ={g € G: R(g,9')N¢g €
X}. Suppose we have for a set of states X a Boolean function fx and a BDD By, and for the
transition relation R a Boolean function fr and BDD Bpg.

1. We first relabel every internal node in Bx to use the “primed” version of the variable.
This gives us a BDD Bx.

2. We use the apply algorithm as documented in [23] to compute a BDD representing fx/A fg;
that is, apply(A, Br, Bx). The procedure is based on the Shannon expansion

fi <op> fo=((m2:i) A (file;=0 < 00 > fole;=0)) V (i A (filz;=1 < 0p > falz;=1))

Suppose we are trying to compute apply(< op >, By, By) where B and By are BDDs
with compatible variable orderings. Since they have compatible variable orderings, it is
possible to topologically sort all of the variables in By and Bs to produce a combined
ordering [z1, %2, ...2,]. We proceed recursively as follows:

e If both B; and B> are terminal nodes then B; < op > Bs can be directly calculated
and is a terminal node.

e Otherwise, if By and Bs have their starting node labelled with the same variable x;,
then we return a BDD with starting node x;. We recursively apply < op > to the
‘0’ children of both By and Bs to calculate the ‘0’ child of the starting node in the
output BDD, and use a similar method to calculate the ‘1’ child.

Chapter 2. Background 31

e Otherwise, suppose that B; has a starting node with label x;, and By has a starting
node that is a terminal or has label z; where j > ¢. Then By must be independent of
i (since j > i and we have topologically sorted the variable ordering). We can thus
return a BDD with starting node x;, and recursively apply < op > to the ‘0’ child of
Bj and (all of) Bs to calculate the ‘0’ child of the starting node in the output BDD,
and use a similar method to calculate the ‘1’ child.

e Otherwise, By has a starting node with label x;, and By has a starting node that is
a terminal or has label x; with ¢ > 5. We proceed as in the third case, with B; and
Bs, z; and x; swapped.

In practice, the above algorithm is implemented with a dynamic programming optimisa-
tion to avoid evaluating any given pair of subgraphs more than once [23]. This results in
a BDD Bprax; we need to extract the current states that are related to at least one state
in X',

3. We use the ezists algorithm to return the set of states (defined over the non-primed vari-
ables) for which there exists at least one next state. We have fy.c(x) = 3213r5 ... 327, (frA
fx); to evaluate a single existential quantification we observe that 3xf = fl.—o V f|z=1-
Thus, for each variable z; we need to compute apply(V, restrict(0, z;, Bf), restrict(1, z;, Bf))
where the restrict function traverses the BDD; when encountering internal nodes labelled
x;, we delete them and replace all incident edges with the appropriate child of that node.
This allows us to compute a BDD for f,.;(x)-

This completes our discussion of how BDDs may be used for symbolic model checking. These
techniques are instrumental in allowing in our implementation of model-checking algorithms for
LTLK, CTL*K and LDL to scale to larger state-spaces.

2.5 LrL Model Checking in Greater Detail

In this section we briefly discuss the automata-theoretic basis behind algorithms for model-
checking LrL. We then outline in detail the tableau construction of Clarke et al. [28], involving
the reduction of the LTL model checking problem to that of CTL model checking with fairness
constraints, via the construction of a symbolic Biichi automaton.

2.5.1 Biuchi Automata

One approach for model checking LTL specifications (and model checking in general) involves
viewing evolution paths of systems as infinite words over some alphabet, as documented in [94].

Definition 2.30. (Automata) Let an alphabet ¥ be a nonempty set. An infinite word is
then an infinite sequence ag, a1 ... of symbols in ¥. A nondeterministic automaton A is a tuple
A= (%,5,5% p, F) where X is an alphabet, S is a finite nonempty set of states, S° C S is a
finite nonempty set of initial states, F C S is a set of accepting states and p : (S x X) — 2% is
a (partial) transition function.

Definition 2.31. (Biichi Automata) Let A = (%, 5, 5%, p, F) be an automaton. Define a run
r of A on an infinite word w = ag, a1,. .. as a sequence of states sg, s1, ... where so € S° and
Si+1 = p(si,a;) for every ¢ > 0. Let lim(r) refer to the set of states visited infinitely often by r;
this must be nonempty since r is infinite while S is not.

A is a Biichi automaton if we define r as an accepting run iff some accepting state is reached

32 2.5. LTL Model Checking in Greater Detail

infinitely often (formally if there exists f € F with f € lim(r)). An infinite word w is then
accepted by A iff there exists some accepting run of A with input w. The language of A, L, (A)
is the set of infinite words accepted by A.

Intuitively, if we consider ¥ = 24F (where AP is the set of atomic propositions), we can express
paths as infinite words over Y. In particular, it has been shown that given an LTL formula ¢, one
can construct a Biichi automaton which characterises precisely the evolution paths satisfying ¢
— formally, given a path 7 there exists a Biichi automaton A such that 7 F ¢ iff 7 € L, (A).
The details of this construction are outlined in [79]; we do not go into further detail as we are
not employing such a direct translation. Alternative constructions such as alternating automata

[94] also exist.

Once we have constructed an automaton Ay for our LTL formula ¢, we can use it for model
checking by constructing a Biichi automaton for the system Z being modelled that accepts any
valid runs; this can be done by defining A7 = (X, G, I, R,G) where R = {(g,¢') : Ja € Act.g’ =
t(g,a)}. The model checking problem then reduces to verifying that all computations accepted
by Az are also accepted by Ag; equivalently verifying emptiness of the automaton accepting
L,(Az) N L,(A-y) — this automaton can be constructed from the automata from Az and A,
(e.g. using constructions detailed in [94]).

It is thus possible to perform LTL model checking by explicitly building the Biichi automa-
ton (or building other automata that are able to characterise LTL specifications), and then
composing it with the automaton representing our model — and this approach is used by several
model checkers, such as SPIN [50] or SPOT [38]. However, these approaches tend not to scale
as well as symbolic approaches [78].

2.5.2 Tableau Construction: Reduction to CtL Model Checking

It is possible to construct a symbolic Biichi automaton for an LTL formula, using what is known
as the tableau method [28]. This approach is used by many modern symbolic model-checkers
such as NuSMV and CadenceSMV [79], and these implementations have been found to scale
better than many tools that use explicit constructions [78]. This can be used to reduce the
problem of LTL model checking to CTL model checking with fairness constraints.

Observe that to carry out LTL model checking it suffices to, given an LTL formula ¢, be able to
determine if there exists a path satisfying ¢. To determine LTL satisfaction over states, which
depends on all paths from a given state satisfying ¢, observe that

L,gF ¢ <1, mE ¢ for all paths 7 starting at ¢
< it is not the case that (not (Z,n E ¢ for all paths 7 starting at g))
< it is not the case that (Z, 7 ¥ ¢ for some path 7 starting at g)
< it is not the case that (Z, 7 F —¢ for some path 7 starting at g)

Intuitively, this holds from the CTL* equivalence Af = —E—f; the ability to determine if there
exists a path with an arbitrary LTL specification holding gives us the facility to find the states
in which an arbitrary LTL specification ¢ holds, by finding the states on which there exists a
path with —¢ and taking the complement. We thus focus on, given an interpreted system Z,
global state g and LTL specification ¢, determining if there exists a path 7 starting at g such
that Z,m E ¢. At a high level, the algorithm works as follows, adapting the construction from
[28] to work over interpreted systems:

Chapter 2. Background 33

e Given ¢, we construct a Kripke structure for ¢ called the tableau T, encoding all of the
paths satisfying ¢.

e Compose T and Z, finding the set of paths appearing both in T" and Z. A global state in
7, say g, has a path satisfying ¢ if and only if there is a path in the composition satisfying
¢ starting from g.

We first outline the tableau construction for a given LTL formula ¢. Note that this construction
is independent of the system Z under consideration.

Definition 2.32. (Elementary Formulas) For a given LTL formula ¢, the elementary for-
mulas of ¢, el(¢) are recursively defined, as follows:

e cl(p) = {p} (where p is an atomic proposition).

o ¢l

j

(

(

(m¢) = el(¢).

o cl(¢p A) = el(¢) Uel(y).

o cl(X¢) = {Xop}Uel(e).

o el(¢Uy) = {X(oU¢)} Uel(¢) Uel(y).

The set of states in the tableau for ¢, Sp is given by the power-set of el(¢), P(el(¢)). The
truth assignment for atomic propositions in the tableau, hp is as follows: p holds in precisely
the states containing p. We also define a function sat, which associates each subformula of the
original formula ¢ with a set of states in the tableau.

Definition 2.33. (sat function) The sat function from subformulas 1 of ¢ to states of the
tableau (hence sat : (subformulas of ¢) — P(el(¢))) is defined as follows:

() = {o: ¢ € 7} (for 1 being an clementary formula).
e sat(T) = Sr.
o sat(—)) = St — sat(y).
o sat(i1 Aa) = sat(i1) N sat(hz).
o sat(1Uvs) = sat(ya) U (sat(yn) N sat(X (1Ueh))).

Note that we do not need to separately handle subformulae of the form X1t as these are neces-
sarily elementary formulas based on Definition 2.32 and thus fall under the first case.

Intuitively, sat(¢)) captures the states in the tableau in which v is satisfied. We can then
define the transition relation for the tableau, which focuses on ensuring that the semantics of
elementary formulas of the form X1 are respected.

Definition 2.34. (LTL Tableau Transition Relation) Suppose Ry is the transition relation
for the tableau T for formula ¢. This is defined by

Rr(o,o')= N\ (0 €sat(Xy) o € sat(y))
(Xv)eel(e)

34 2.5. LTL Model Checking in Greater Detail

Figure 2.6: Tableau for pUg.

We use an example from [28]. Consider the formula ¢ = pUq. Clearly the elementary formulas
of ¢ are simply el(¢) = {p,q, X¢}. There are thus 8 states in the tableau corresponding to the
8 possible subsets of el(¢).

Consider the labelling in Figure 2.6. Clearly, sat(X¢) = {1,2,3,5} since those are the states
with X¢. sat(¢) = sat(pUq) = sat(q) U (sat(p) N sat(Xp)) = {1,2,3,4,6}. Thus, we have
transitions from each state in sat(X¢) to each state in sat(¢), and transitions from each state
in sat(—~X¢) = Sy — sat(X ¢) to each state in sat(—¢) = St — sat(p).

Notice that the definition of Ry does not guarantee eventuality properties, so it is not nec-
essarily the case that all paths beginning at a state o € sat(¢) satisfy ¢ [28]. For example,
consider the path m = 3“; while state 3 is in sat(pUq), pUq clearly does not hold on 7 as ¢
never becomes true. We thus need to add an additional condition: for every subformula of the
form U1y in ¢ and for every state o on w, if o € sat(¥1Uts) and o ¢ sat(is), then there
must exist a later state on m in sat(e2). In other words, 12 must hold at some future point.
This is implemented by adding a fairness constraint —(¢1U12) V 15 for every such subformula.
Intuitively, T' now includes every path satisfying ¢; if Z, 7 E ¢ then there must be a path 7’ in
T starting at some state in sat(¢) with the atomic propositions in 7’ and 7 being consistent.

Chapter 2. Background 35

Please see [28] for a full proof.

We then need to determine the product of the tableau T" and our interpreted system Z. Here,
we adapt the definition of product from [28]:

Definition 2.35. (Product of Tableau and Interpreted System)

Let T = (S, Ry, hr) be the tableau as constructed using Definitions 2.32 and 2.34, and Z =
<(Li,ACtz‘,Pz',ti)z‘er{E},I, hz> be an interpreted system. The product of T and Z may be
described as a Kripke structure (S, R, h) as follows.

e S={(0,9):0€SrNge GAVp e AP.c € hp(p) <> g € hz(p)}.
e R={((o1,91),(02,92)) : Rr(o1,02) A Ja € Act.t(g1,a) = g2}
e h(p) ={(0,9):0 € hr(p)} for every p € AP.

We also extend the definition of sat over S; sat(o, g) holds iff sat(o).

Intuitively, P contains the sequences for which there are paths in both T and M which are
consistent in their atomic propositions. We thus need to find the states in the product that are
in sat(¢) that satisfy all of the eventuality constraints. More formally, as described in [28], we
have that Z has a path starting at g satisfying ¢ iff there is some o € Sp such that (o, g) € sat(¢)
and P, (0,g) F EGT with the fairness constraints —(1;U12) V 1y for every subformula ¢ U1

of ¢.

All of these procedures can be implemented symbolically using BDDs — please consult Sec-
tion 3.2 for implementation details.

2.5.3 Counterexample Generation

A useful feature of model checkers is their ability to return counterexample or witness traces,
explaining why specifications are not satisfied or satisfied, respectively [31]. Since we demon-
strated a reduction of the LTL model checking problem to the CTL model checking problem
with fairness constraints in Section 2.5.2, we can use algorithms for finding witnesses to the
CtL formula EGT with fairness constraints, such as in [29], to find counterexamples to an LTL
formula ¢. This involves first building the tableau for ¢ and composing it with the model Z,
and then running our CTL with fairness constraints algorithm on the composition.

We now outline at a high level the algorithm from [29]. Suppose we want to find a witness
trace for the formula EG¢ with 11,9, ..., 1, as fairness constraints. Let f be the function

n
f(@) = [0z A \IEX(E(8)zU (A [$i]2)))]z
i=1
Then, the greatest fixed point of f is the set of states satisfying EG¢ with the fairness constraints
¥1,...,%n, as shown in [29]. We proceed by attempting to compute a witness by connecting the
strongly connected components of the state transition graph that satisfy each fairness constraint
while ensuring that ¢ is always maintained throughout.

Definition 2.36. (Strong Connection, Strongly Connected Components) Suppose s, ¢
are two nodes in a directed graph G. Then s and t are strongly connected iff there is a path from
s to t and a path from ¢ to s. Clearly, strong connection is an equivalence relation; we define
the equivalence classes given by partitioning the nodes of G by this relation as the strongly
connected components (SCCs) of G.

36 2.5. LTL Model Checking in Greater Detail

Figure 2.7: Sample state space over which we try to find a witness for EGp with fairness
constraints ¢ and r; each atomic proposition is true in precisely the states indicated with said
proposition. Suppose state 1 is the starting state.

Throughout this section let us define the set of states satisfying FG¢ as the set of states
satisfying it under the fairness constraints q,...,1,. We illustrate the algorithm with an
example — suppose we want to find a witness for EGp under fairness constraints ¢ and r for the
model in Figure 2.7.

We first evaluate the fix-point calculation of E([¢]zU (S A [1i]1)), where S is the set of states
in which FG¢ holds under the fairness constraints. We store the intermediate results obtained
from the fixed point calculation of E([¢|zU (S A [¢i]z)) — we define the intermediate result Q?’i
as the set of states from which a state in S A [¢;]7 is reachable in j steps while preserving ¢
[29]. For example, for the model above we have:

o Q) ={3,8}. We have S = {1,...,8} since from these states (and only these states) we
can have p until we transition into the blue SCC in Figure 2.7, which has both ¢ and r
infinitely often. Also, we have [¢]7 = {3, 8, 11}.

e Qf ={2,3,7,8}. 2 and 7 are successors of the previous set Qf which satisfy p. Notice
that we do not include 11 since it does not satisfy p.

o Q1 =1{1,2,34,78).
e Q(= {7}. This does not include 9, 10 or 11 because they are not in S.
o Q] ={4,7,8}.

o) =1{1,2,3,4,7,8}, by iteratively taking predecessors of the previous set which have p.

Chapter 2. Background 37

We then select some starting state s which satisfies EG¢. For our model, the only starting state
is 1, and it indeed satisfies EGp, so we select it. We attempt to greedily minimise the length of
the witness path by selecting a fairness constraint ¢; that can be reached in the smallest num-
ber of steps k (note that the problem of finding a witness of minimal length is NP-complete, as
shown in [29]). This is clearly ¢, as it is reachable in 2 steps (while r is only reachable in 4).

We now determine a path to an actual state that satisfies EG¢ A v;; this can be done by
iterating downwards through the Q}m sets, from 7 = k to 0, and choosing successors of the
current node. For example, starting from state 1, we choose a successor of 1 in Qf; we can
choose 2. Then, we choose a successor of 2 in QF; we can choose 3. We thus have a path 1,2, 3.
Let the actual state we finished in be t.

We then repeat the above process for the remaining fairness constraints, starting from ¢. For
the example above, we only have r left, and we would construct the path 3,4, 7.

Once all fairness constraints have been considered, suppose we are in a state tp. We then
need to find a simple path from ¢r back to our initial state ¢t that has ¢ true on every state;
this would complete a cycle that passes through every fairness constraint. We can thus obtain
a witness for EG¢, which would be the path that follows this cycle infinitely.

However, if finding such a path is not possible (and it is not possible in our example, since
our starting state 1 is not a successor of any other state), we have from the definition of @) that
tr must also satisfy EG¢. It suffices to restart the entire process from tp [29]; tF and t are
not in the same SCC of the transition graph. Since tp itself satisfies EG¢, we can effectively
eliminate all SCCs that cannot be reached from the SCC of tr (as we can find a witness in the
SCCs reachable from this SCC). In our example, we would restart from 7, and find that we
already have r, and can obtain ¢ by following the path 7,8. After that, we can indeed return
to our starting state by the path 8, 7.

The algorithm will terminate: the number of SCCs that we will need to consider has thus
been reduced by at least one, since the SCC containing ¢ is unreachable. Furthermore, since we
are considering finite Kripke models, we can be sure the algorithm will eventually find a cycle
(consider that once only one SCC needs to be considered, we will find a cycle since our starting
point at that time will still satisfy EG¢). We then return the concatenation of the path used
to travel from s to tp and the witness path found starting from ¢g itself — for our example, this
would be 1,2,3,4, (7,8)“.

This algorithm was implemented in MCMAS, though there were some issues with its imple-
mentation. We discovered a subtle bug in the existing implementation concerning the afore-
mentioned example in that MCMAS would terminate instead of restarting if it was not possible
to return to the starting state after satisfying all fairness constraints. There were also challenges
in reusing it for LTLK model checking. Please consult Section 3.2.5 for more details.

2.6 LbpL Model Checking in Greater Detail

In this section we discuss existing literature that is relevant to our LDL model checking algo-
rithms. We first introduce Thompson’s construction, which converts a regular expression into a
nondeterministic finite automaton. We then introduce the concept of alternating automata, and
then discuss an alternating automaton construction for LDL specifications introduced in [41].

38 2.6. LbDL Model Checking in Greater Detail

We also introduce the breakpoint construction of [73], which can be used to reduce alternating
automata to nondeterministic Biichi automata. We employ both of these techniques to perform
model checking of LDL (and, as it turns out, CDL*) specifications — this is discussed in greater
detail in Section 5.1.

2.6.1 NFAs and Thompson’s Construction

We first introduce automata with e-transitions, and the concept of the e-closure of a state (which
is required to define acceptance in an e-NFA). The definition is adapted from [52].

Definition 2.37. (e-NFAs) An e-NFA is a nondeterministic finite automaton which also
features e-transitions, which do not consume input symbols. Formally, an e-NFA is a tuple
A=(%,8,5%p, f) where ¥ is an alphabet, S is a finite nonempty set of states, s is an initial
state, f is an accepting state and p : (S x (LU {€})) — 2° is a (partial) transition function.
Notice that we have restricted the definition of a general automaton, requiring |S°| = 1 and
|F'| =1 — the e-NFAs generated by Thompson’s construction follow this property.

Definition 2.38. (e-Closure) Let s be a state in an e-NFA A = (%, 5, 5%, p, f). The e-closure
of s, E(s) refers to the set of states reachable from s by following zero or more e-transitions;
more formally, it is the minimum set of states E(s) such that:

e s E(s), and
o tc E(s)Nuc€p(t,e) = ue E(s).

Furthermore, for two states s,t € .S, we define II(s,) as the set of all e-paths from s to ¢ — that
is, all possible sequences sg, s1, . . ., s, where sg = s, s, = t, and p(s;,€) = s;_1 fori € {1,...,n}.

Definition 2.39. (Acceptance of e-NFAs) Let A = (%, 5,5, p, f) be an e-NFA. Then, we
define a new relation p’ : (S x ¥*) — 2%, which reflects the possible states one can transition to
given each input word, as follows:

e) (s,€) = E(s) for every s € S, and
o (s, aw) = Uysep(s) Uuep(t,a) P/ (4 w) for every s € S, a € 5, w € 7.
We say that a word w € ¥* is accepted by A if f € p/(s, w).

Thompson’s construction is an algorithm for converting regular expressions to e-NFAs, with
languages equal to the set of words accepted by said regular expressions [89]. These nonde-
terministic finite automata feature e-transitions, which may be followed without consuming a
symbol from the input (in the context of model checking, this means that such transitions do
not involve a transition in the underlying model). Apart from the test constructions in LDL,
we can inductively construct e-NFAs for the path expressions within the dynamic modalities of
LpL using Thompson’s construction, as follows:

e A propositional formula ¢ may be viewed as a transition from one state to another, which
may be followed only if the current symbol satisfies ¢. We can construct this as a two-state
e-NFA, with the state after the transition being accepting.

e For p1;p2, we intuitively need to match py and then ps. An e-NFA for pi;ps may be
constructed as follows: Construct a starting state s°, and add a single e-transition into
the initial state of p;. Then, from the accepting state of the e-NFA for p;, add an e-
transition into the initial state of po. We add an e-transition from the accepting state of
p2 into a new acecpting state.

Chapter 2. Background 39

e For p; + po, we intuitively need to accept every word accepted by either p; or po. An
e-NFA for p; + p may be constructed by creating a new start state s° and then nondeter-
ministically transitioning into the start state of the e-NFAs for either p; or pa. We need
to accept a word if we end in either of the accepting states, so we construct a new final
accepting state s’ and add an e-transition from the accepting states of both sub-e-NFAs
into s’.

e For p*, we need to have the option of skipping the path expression altogether, as well
as returning back to the start after a successful match. We thus construct the e-NFA as
follows: introduce a new initial state s as well as a new final accepting state s’. We also
add several e-transitions that capture the aforementioned intuition:

— from s% to s’ (since zero iterations of p is acceptable),

from s to the initial state of the e-NFA for p,

from the accepting state of the e-NFA for p to s’, and
— from the accepting state of the e-NFA for p to its initial state.

The above constructions are graphically depicted in Figure 2.8.

2.6.2 Alternating Automata

LpL allows us to require that paths satisfy conjunctive properties. This is because it allows
conjunction, and also allows use of tests. For example, consider the LDL formula (¢?)1. This
formula is true on the paths that, from their start states, satisfy both ¢ and v; intuitively, to
check if some path 7 satisfies the formula, we need to check that it satisfies ¢ and .

If we use an automata-theoretic approach for model checking LDL specifications, to check a
path m we would need to construct automata for both ¢ and v, and check that these automata
both accept m. More generally, we need to extend the nondeterministic automata introduced in
Section 2.5.1 to allow for simultaneous transitions into multiple states. This is feasible in the
formalism of alternating automata [93]. We first define the set of positive Boolean formulae and
what it means for a set of propositions to satisfy such formulae:

Definition 2.40. (Positive Boolean Formulae) Let AP be a set of atomic propositions.
The set of positive Boolean formulas over AP, BT (AP) refer to the Boolean formulas that can
be constructed from the propositions of AP and the Boolean primitives T and L using only A
and V. Furthermore, we say that for S C AP and Boolean formula B € BT (AP), S satisfies B
if B is true when the propositions p € S are true and all other propositions are false.

We now formally define alternating automata.

Definition 2.41. (Alternating Automata) An alternating automaton A is a tuple A =
(%2,8,5% p, F) where ¥ is an alphabet, S is a finite nonempty set of states, S° C S is a finite
nonempty set of initial states, I C S is a set of accepting states and p : (S x X) — BT(S) is a
(partial) transition function.

Intuitively, the boolean formulae B (.S) reflect the possible sets of states we can transition into
from the current state. For example, suppose we have p(sg,p) = (s1 V s2) A (s3 V s4); this
means that the automaton from state sg, after processing the symbol p, transitions into one
of the states from s; and so, and one of the states from s3 and s4. Due to the possibility of
transitioning into multiple states after processing a symbol, runs of alternating automata are

40 2.6. LbDL Model Checking in Greater Detail

:

s
L automaton
€
P15 P2
P2 1 €
automaton J
e N
€ P1 €
automaton
_ Y,
- N pP1+pP2
P2
€ automaton €
_ Y,
€ p € .
automaton
L J
€
€

Figure 2.8: Thompson’s construction for e-NFAs. The blocks indicating sub-automata have
their starting state on the left and accepting state on the right. Overall starting states are
marked with s, and overall accepting states are depicted with a double circle.

Chapter 2. Background 41

) (=)
OO ORORO

(1) Partial run tree of A (depth 1) (2) Alternative partial run tree of A (depth 1)

(3) Partial run tree of A (depth 2) (4) Partial run tree of A (depth 3)

Figure 2.9: Various run trees for the example alternating Biichi automaton A on (ab)®.

trees rather than sequences [93].

Finally, we define alternating Biichi automata.

Definition 2.42. (Alternating Biichi Automata) Let A = (%, 5, S, p, F) be an alternating
automaton. A run of A on some infinite word w = agaj ... is a tree rooted at some s° € S
such that, adapting the definition from [93]:

If a node in the run tree s has distance i from the root of the tree, and p(s,a;) =0,
then x has k child subtrees z1,.. .,z for some k < |S]|, and the set corresponding
to the roots of these child subtrees satisfies 6.

Further to the above, we define a branch 8 in T as a sequence of nodes xg,x1 ... from the
root where for every ¢ > 0, x; is a child of x;_1 in T. We define lim(f) as the set of states
visited infinitely often in 5. A is an alternating Biichi automaton if we define a run tree T to
be accepting if for every branch g8 in T, we reach a transition to T or there exists some f € F
where f € lim(S3).

Similar to nondeterministic Biichi automata (Definition 2.31), an infinite word w is then ac-
cepted by A iff there exists some accepting run of A with input w. The language of A, L, (A)
is the set of infinite words accepted by A.

We illustrate the concept with an example. Consider the following alternating Biichi automaton
A= (%,8,8p, F):

e ¥ ={a,b}, S={s1,s0,83}, S"={s1}, F = {51}, and

A =1,3
e p(sia) = {51 2 0= b3 by = s for all i
s1Vsy 1=2

42

2.6. LbDL Model Checking in Greater Detail

Then, consider that since S° only contains s, all run trees must have s; at their root. Consider
a run on the infinite word (ab)v:

Since p(s1,a) = s1 A sg, the children of the root node must contain s; and s. s3 may or
may not be a child of the root, so both run trees (1) and (2) in Figure 2.9 are permissible.

Considering run tree (1), the next symbol of the word is b, and so the children of each
state must include itself — so (3) in Figure 2.9 is a possible partial run tree.

Next, observe that the next symbol of the word is now a, and we can expand the nodes
for s; and sy following the transition relation. A possible expansion is (4) in Figure 2.9.

Notice that we can always choose to transition from s; to only s; and sz, and s to only
s1 if the current symbol is a, and if it is b we can choose to transition from s; and s2 to
themselves only. Thus, it is possible to generate a run tree on which every branch only
has s; and sy. Furthermore, we cannot stay in sg infinitely, since we have a infinitely often
and these necessitate a transition out of so. Hence, every branch has s; infinitely often,
and thus there exists an accepting run of A on (ab)®. Hence we say that A accepts (ab)®.

If we have F' = {s3}, observe that any run tree over (ab)* has a branch on which the only
state is s1, so our automaton has no accepting run; it does not accept (ab)® in this case.

2.6.3 LbDL Specifications as Alternating Automata

We now introduce a translation of LDL formulae ¢ to suitable alternating Biichi automata Ay,
such that Ay has an accepting run if and only if there exists a path satisfying ¢. This construc-
tion was introduced in [41]; we adapt it for consistency with the notation we are using.

We first introduce a negation normal form for LDL.

Definition 2.43. (LDL Negation Normal Form) Let ¢ be an LDL formula. ¢ is in negation
normal form if all negations apply only to atomic propositions, and it does not contain any
instances of — or <> (notice that these are alternative ways of expressing negation).

Converting an arbitrary LDL formula to negation normal form can be done by “pushing”
negations, using De Morgan’s laws and the dual definitions of (p)¢ and [p]¢:

P Ap) = (=9) V (~¢)

PV Y) = (=¢) A ()

¢ =) ==(-o V) =N ()
(p

We now present the construction, assuming that the formula to be translated is in negation
normal form. We first handle the propositional cases:

For an atomic proposition ¢, we transition into an accepting state if ¢ holds, and into a
rejecting state if ¢ does not hold. This can be done with just one state, which transitions
into T if ¢ holds, and into L if ¢ does not hold.

Chapter 2. Background 43

e —¢ is handled in the same way as above, except we transition into T if ¢ does not hold
and L if ¢ holds. (Recall that negation applies to atomic propositions only because we
have assumed that the formula to be translated is in negation normal form.)

e [f there exists a path satisfying ¢ A1), it must satisfy both ¢ and . This may be handled
by introducing a new initial state s°, which has the conjunction of the transition relations
of the original starting states. The overall automaton has accepting states equal to the
union of the accepting states of the sub-automata.

e Similarly, if there exists a path satisfying ¢ V v it must satisfy either ¢ or . This case
can be handled by introducing a new initial state s°, which has the union of the transition
relations of the original starting states (for V). As before, the overall automaton has
accepting states equal to the union of the accepting states of the sub-automata.

It remains to handle the modal cases. Recall that using Thompson’s construction (introduced
in Section 2.6.1) we can convert a regular expression into an e-NFA. We can expand Thompson’s
construction to deal with tests, through the use of marked e-NFAs from [41], as follows:

Definition 2.44. (Marked -NFA) A marked e-NFA is an e-NFA augmented with a marking
function. Formally, a marked e-NFA is a tuple A = (%, S, s°, p, f,m) where ¥ is an alphabet, S is
a finite nonempty set of states, sV is an initial state, f is an accepting state, p : (S x (ZU{e})) —
25 is a (partial) transition function and m : S — ¢rpy, is a (partial) marking function assigning
LDL formulae to states. Further to the above, if m = sqg... s, is a path in a marked e-NFA, we
define the markings over 7, m(w) = {m(s;) |i € {0,...,n}}.

Upon encountering a test 67, we convert it into a single-state automaton that is accepting, but
is marked with the test §; when combining sub-automata (e.g. for + and ; constructions) we
preserve the existing markings. Intuitively, when a transition involves a test 6, we need to check
that the test holds — a transition via both the starting state of the automaton and our original
path in the e-NFA of the regular expression captures this intuition.

We now introduce the construction for the diamond modality. Let (¢)y be an LDL formula,
where ¢ contains k tests 61,...,0;. We have

A<¢>¢:(Z,STUSwUslU...USk,{Sg},p,F¢UF1U...UFk)

where S, refers to the states of the marked e-NFA corresponding to the modality ¢, Sy the
states of the automaton for 1, and S7 through Sy, the states of the automata for the k tests; Fy,
refers to the accepting states of the automaton for ¥, and F} through Fj refer to the accepting
states of the automata for the k tests. Furthermore, we have

pw(sa A) s € S¢
pi(s, A) seS;,je{l,... .k}
p(s, A) = \/s'eST\{fr} \/WGH(S,S’) \/tEpT(s’,A) (t N /\9jem(7r) Pj(S?>A))
Vv s €S,
\vweﬂ(s,fr) <pw(8?p’ A) A /\QjEm(w) ﬂj(S?a A))

(2.1)
where Il(s,t) refers to the set of e-paths from s to ¢, as defined in Definition 2.38.

Intuitively, this construction is the union of the automata for the regular expression ¢, its k

44 2.6. LbDL Model Checking in Greater Detail

tests 0y .. .0 and the following formula 1, with the transition relation modified (in particular,
we are adding transitions for the tests, as well as removing e-transitions which are not allowed
in alternating automata [41]). The transition relations for ¢ and the tests are unaffected; the
transition relation for the regular expression ¢ is, as follows:

e The upper disjunct quantifies over non-final states of .S,.. We consider all ¢ paths that end
in some state s’, from which we transition to ¢ with an A transition. We account for the
tests encountered along our e-path via conjunctive transitions into the relevant automata.

e The lower disjunct quantifies over € paths that end in f,., the accepting state of our marked
e-NFA. Consider that the A must still be processed in the automaton for ¢, so we redirect
edges going in to f, to the successors of the initial state of the automaton for ¢ (with an
A-transition). As before, we account for the tests with suitable conjunctive transitions.

The definition of the automaton for [¢]i) is dual. Suppose ¢ contains k tests 61,...,0;. We
construct the automata for the negations of these tests — let these be o1,...,0;. Then,

A[¢]¢:(E,STUSwUSlU...USk,{SE},p,STUF¢UF1U...UFk)

where the S;, F; refer to the states and initial states of o; (for 1 < i < k). Notice that every
state in S, is now accepting, since we do not want to reject executions that never match the
regular expression at all. Our modified transition relation is now

py (s, A) s,

p;(s, A) scS;,je{l,... .k}
p(87 A) = /\S/EST\{fT} /\WGH(S@/) /\tepr(s’,A) (t \VJ \/QJ Em(ﬂ—) pj(sg)’ A))

) s€ S,

Aseces <p¢(q2” AV Vo, em(m) i85 A)>

In terms of model checking, we take ¥ = 247 where AP is a set of atomic propositions that
are relevant to the system under analysis. The alphabet thus consists of subsets of the atomic
propositions (in practice, the atomic propositions that are true at each step in the path being
considered).

We illustrate this with an example — let us construct the automaton for ((p? + ¢?))r. We
first construct the sub-automata for the tests, the suffix as well as the regular expression.
Constructing a marked e-NFA for the tests p? and ¢7 is simple, as shown in (1) in Figure 2.10.
We can then compose these marked e-NFAs using Thompson’s construction (discussed in Sec-
tion 2.6.1), yielding (2) in Figure 2.10. We can also construct the automata for the tests and the
suffix, which is (3) in Figure 2.10. Now, we can build the alternating automaton for ((p?+¢?))r.

Consider s1. Observe that the automaton (2) itself does not have any non-e transitions, so
regardless of which atomic propositions are true in the current state, the first disjunct of equa-
tion 2.1 does not apply. We then consider the second disjunct; f, = s4, and we observe that
there are precisely 2 e-paths from s; to s4 — 71 = s1, 89, 84 and mo = s1, S3, S4. Now notice that
m(m) = {p} and m(ma) = {q}. Also, defining 6; = p, f3 = q, observe that we have

T reA
pw(S?/)’A):{J_ rd A

Chapter 2. Background 45

~@,

(1) Marked ¢-
NFAs for tests

(2) Marked e-NFA

for regular
expression
r
Ep T 9 T T
L L L
—|p —|q -r

(3) Automata for
tests and suffix

Figure 2.10: Sub-automata for constructing an alternating automaton for ((p? + ¢?))r.

T cA
p1(s2, A) ={ b

1 p¢ A
T g€ A
p2(387 A) =
1 qg¢ A
And hence
P(31, A) = (plb(s?/n A) A pl(s(l)v A)) \4 (pill(s?p? AN pQ(Sg, A))
= pw(s%, A) A (pr(sY, A) V pa(s), A)) by distributivity

This captures the intended meaning (that we need r, and either p or ¢ true in the initial state
of this path of our system’s evolution). Supposing the current symbol in our alphabet (corre-
sponding to a state of the system being analysed) satisfies p and r, but not q. Then, we can
construct an accepting run of A7), as the T transition is available — we can reach the
T transition in pg and p;. Conversely, if we only had r satisfied, we have to transition to L
regardless of which of the test automata we choose to transition into — and thus there cannot
be an accepting run for any path starting in such a state.

(Note that we can similarly define the transition relation p over the rest of the states, such
as sg through s4 from the automaton, and they are a part of the model. They are not required
for our analysis here, though.)

2.6.4 Breakpoint Construction

Alternating automata are useful in that they provide a relatively succinct representation of a
property that is to be verified, as compared to nondeterministic Biichi automata [93]. However,

46 2.6. LbDL Model Checking in Greater Detail

directly checking these automata for the existence of run trees appears difficult; one way to deal

with this complexity involves converting them to equivalent nondeterministic Biichi automata
[21].

A possible approach for this conversion is known as the breakpoint construction and was first
outlined in [73]; we use a simpler version of the formulation in [20]. Let A = (247,85, 5%, p, F)
be an alternating Biichi automaton; there exists a nondeterministic Biichi automaton A’ =
(24P 87 sV o/, F') that accepts a path if and only if A also accepts it (i.e. L,(A) = Ly, (A4")).
Furthermore, we define the set of rejecting states Sy = S\F. Then, A’ can be constructed as
follows:

o S =129 x 25N
o s¥ = (s0,0)
o F'= {29 x {0}}

e Furthermore, we define p’ such that (L', R') € p((L,R),A) where A € X, where L =
{l1,..., 1} if there exist L}, ..., L] satisfying the following:

— L’ satisfies p(lj, A) for j € {1,...,n}

-y =

_ R/ g L/

— either R =0 and R' = L' N Sy, or R # () and R' U (L' N F) satisfies A\ cpp(r, A)

Intuitively, the states of A’ consist of pairs of subsets of the states of A — each pair has a Left set
L and Right set R. The sets L], ..., L, used to construct the Left set L encode the expansions
of a run tree of the original alternating automaton A; the Right set R consists of rejecting states
visited since the last time R was empty. For example, if for every state r € R we have that
p(r, A) is satisfiable by L', and every state in L’ is accepting, then we have L' U F = L', and so
we can choose R’ = ().

We walk through a portion of the breakpoint construction for the simple alternating Biichi
automaton introduced in Section 2.6.2. The transition relation of that automaton was

A ,=1,3)
p(si,a) = o152 Z ;p(8i,b) = s; for all 4. (2.2)
s1Vsy 1=2

Consider Figure 2.11:

e For the starting state ({s1},0), if the current symbol is a, we need L’ to satisfy p(s1,a) =
(s1 A s2). Suppose we pick L' = {s1,s2}. Then, because R = (), we have R’ as the
rejecting states in L’ i.e. R’ = {so}. If the current symbol is b, then any state with
s1 € L' is acceptable.

e For the state ({s1, s2}, {s2}), if the current symbol is a we need the new L’ to have a subset
which satisfies p(s1,a) and a subset which satisfies p(s3,a). We can pick L' = {s1,s2}
again. However, this time because R #), we need R’ U {s1} to satisfy p(s2,a). We can
choose R’ = (); hence, we can transition to ({s1, s2},0). If the current symbol is b, we can
pick L' = {s1, s2} again, but we need R’ U {s1} to satisfy p(s2,b) = s2, so we again need
R, == {82}.

Chapter 2. Background 47

b
Q (51, 2) 22 (515250 (5253 J
A

a,b b
y
d (51,52} 52 | (s1.53) s3) |
A L)
b abl |2 b

Y

=xa

Figure 2.11: Portion of the nondeterministic Biichi automaton generated by the breakpoint
construction on the automaton with transition relation in Equation 2.2. We do not include the
entire nondeterminstic Biichi automaton owing to its size.

e For the state ({s1,s2},0), the requirements on L’ are similar to ({s1,s2}, {s2}). We need
the new L’ to contain both s; and sq. If we pick L' = {s1, s2}, then since R = (), we have
R’ = {s2} in either case.

This breakpoint construction may be carried out explicitly, though as the above construction
has an exponential blowup in the number of states (possibly O(3") in the worst case [20], since
each automaton state may either be in L, in both L and R or neither) we prefer to use the
symbolic encoding introduced in [20].

2.7 Existing Model Checkers

In this section we briefly outline several existing model-checking tools. We consider their ca-
pabilities for handling various specification languages and, where appropriate, the algorithms
they use.

2.7.1 MCMAS

MCMAS is an open source model checker for multi-agent systems developed at Imperial College
London; it implements symbolic model checking with binary decision diagrams using the CUDD
package [65, 10]. MCMAS accepts input in the form of Interpreted Systems Programming Lan-
guage (ISPL) specifications, and is able to verify CTLK and ATLK properties. Extensions exist
that allow verification of properties with unbounded numbers of agents, verification of proper-
ties in strategy logic, or use sentential decision diagrams (SDDs) to boost performance [10].

We discuss MCMAS’ existing architecture in greater detail in Section 2.8; this is important
as we will be implementing our tool as an extension to MCMAS.

2.7.2 MCK

MCK was the first symbolic model checker supporting temporal-epistemic specifications. It
supports other approaches as well, such as explicit state and bounded model checking [5].

48 2.8. Deeper Investigation of MCMAS

The model checker supports CTL*K specifications; in addition to the observational semantics
supported by MCMAS, it also supports clock semantics and perfect recall semantics for a
fragment of these specification languages [53]. Tests have suggested that MCK may be less
efficient than MCMAS on large state-spaces, however [65].

2.7.3 NuSMV

NuSMYV is one of the most commonly used symbolic model checkers [65], and one of the top-
performing model checkers in terms of speed and accuracy [78]. It supports BDD-based symbolic
model checking as well as SAT-based and bounded model checking for CTL and LTL specifica-
tions [8]. NuSMV does not readily support epistemic specifications or interpreted systems ‘out
of the box’, though it is possible to translate interpreted systems into SMV code [76] which
NuSMV can then verify. It is worth noting that the algorithm that NuSMV uses to verify LTL
specifications involves the tableau construction presented in [28].

Furthermore, NuSMV also supports parsing of Property Specification Language (PSL) spec-
ifications, a temporal logic that also supports regular expressions. However, as of version 2.6,
it only supports the verification of PSL specifications that can also be expressed in LTL or CTL
[26].

2.7.4 VerlICS

VerICS is a model checker for real-time specifications and multi-agent systems that supports
SAT-based approaches [100]. Unlike MCMAS which attempts verification by analysing all
possible states of a system, VerICS focuses on bounded model checking; the techniques are
fundamentally different and are arguably complementary [65]. VerICS does support CTL*
specifications, as well as partial support for LTLK as defined in this report® and CTL extended
with a variety of epistemic logics.

2.7.5 SPIN

SPIN is a tool allowing for verification of asynchronous process systems; it can accept a system
specification in Process Meta Language (PROMELA) and verifies properties specified in LTL. It
builds a Biichi automaton for the system as well as for the property (as described in 2.5.1)
and checks for non-emptiness of their product [50]. Notice that agents in interpreted systems
tend to evolve synchronously while SPIN focuses on asynchronous systems. There also does not
appear to be native support for epistemic specifications.

2.8 Deeper Investigation of MCMAS

We decided to extend the model-checker MCMAS to support formulae in the additional speci-
fication languages. This allowed us to re-use various components of MCMAS, such as the lexer
and parser, system by which agents and states were encoded, as well as the algorithms for
computing reachable states. (Of course, we would need to modify or extend some parts, such
as the lexer and parser, to accept expressions in the new specification languages.)

This section contains a more involved investigation into the usage and architecture of MC-
MAS (specifically, version 1.2.2 which was the latest version at the time we started the project).

3Based on [11] distributed knowledge does not seem to be supported, and common knowledge cannot be
expressed succinctly.

W N e

© 0w N9 o »

Chapter 2. Background 49

Understanding the architectural as well as low-level implementation details of MCMAS was
instrumental in being able to successfully extend its capabilities to handle the new specification
languages while, as far as possible, maximising code reuse and avoiding reimplementing existing
functionality.

2.8.1 Usage

MCMAS is distributed as an open source tool; it may be downloaded as a zipped file from
[10]. The tool itself is packaged with user documentation which explains in greater detail how
it should be used. In this section we thus consider and highlight the features most relevant to
our investigation.

MCMAS is typically invoked from the command line; the user optionally specifies one or more
flags that control its execution, as well as the path of the ISPL file to be checked. One can
invoke MCMAS with the -h flag to list all of the valid options. For example, we could run
MCMAS with the following command on bit_transmission.ispl, an ISPL file representing
the bit transmission protocol as in Appendix A (though with fewer formulae), where we request
MCMAS to also output counterexamples (-c 1).

$./mcmas -c 1 bit_transmission.ispl

MCMAS then automatically determines whether each of the formulae holds as well as suitable
witnesses or counterexamples; more detail concerning how it does so may be found in Section
2.8.2. It prints suitable output:

sk sk ok ok sk sk sk ok ok ok sk ok ok sk ok sk ok sk ok sk ok sk sk sk ok ok sk sk sk ok ok sk sk ok ok sk ok sk ok sk sk sk ok ok sk ok sk ok sk ok sk ok ok sk sk ok ok sk sk ok ok ok sk ok ok ok sk ok ok ok ok ok
MCMAS v1.2.2

This software comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Please check http://vas.doc.ic.ac.uk/tools/mcmas/ for the latest release.
Please send any feedback to <mcmas@imperial.ac.uk>
KK o KoK K oK KK o oK oK K o oK oK K oK oK K K oK KK 3 oK KK oK oK K o oK oK K ok oK oK K ok oK K 3 ok KK 3 ok oK K o ok ok K o oK oK K oK oK oK K oK oK K K oK oK K K

Command line: ./mcmas -c 1 bit_transmission.ispl

bit_transmission.ispl has been parsed successfully.
Global syntax checking...
Done
Encoding BDD parameters...
Building partial transition relation...
Building BDD for initial states...
Building reachable state space...
Checking formulae...
Building set of fair states...
Verifying properties...
Formula number 1: (AG (bitO || bit1)), is TRUE in the model
-- Sorry it is not possible to compute witnesses for non-ECTLK formulae
Formula number 2: (EF recbit), is TRUE in the model
The following is a witness for the formula:
<01 >
States description:
————————————— State: 0 -----------------
Agent Environment
state = none
Agent Sender

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

50 2.8. Deeper Investigation of MCMAS

ack = false

bit = b0
Agent Receiver

state = empty

------------- State: 1 -----------------
Agent Environment
state = SR
Agent Sender
ack = false
bit = b0
Agent Receiver
state = r0

done, 2 formulae successfully read and checked
execution time = 0.01

number of reachable states = 18

BDD memory in use = 9018048

Observe that MCMAS indicates that both formulas hold in the model (lines 23, 25), as well as
a witness path for EFrecbit (lines 26 through 46). Since AG(bit0 V bitl) holds in the model,
it holds over every possible execution, and MCMAS thus does not report a witness. MCMAS
also prints several metrics concerning runtime and memory usage (lines 48 through 50); we will
be analysing these, as well as several additional metrics (which will be printed if we set the
-v (verbosity) flag to at least a certain level) when performing our experimental evaluation in
Chapter 8.

2.8.2 Architecture

At a high level, MCMAS accepts an ISPL file as input and determines if the temporal logic
specifications (normally provided in CTLK or ATLK) in the ISPL file hold. Figure 2.12 highlights
the intermediate steps taken by MCMAS when verifying such specifications, which are as follows:

1. MCMAS reads an ISPL file as input, and parses it using lex and yacc to determine
the structure of the ISPL file. In addition to this, various command-line arguments can
be provided, which can control several parameters of MCMAS’ execution such as the
heuristics used to decide on variable ordering for BDDs, or the level of verbosity with
which output should be printed. Greater detail about the syntax of ISPL may be found
in Definition 2.45.

2. MCMAS then encodes the interpreted system Z using BDDs. This is done by iterating
through the agents and allocating BDD variables to them (as well as the environment).
For each agent, we allocate two separate sets of variables to reflect the agent’s local states
in the current and next states (following the symbolic model checking procedure described
in Section 2.4.3). We also allocate variables representing the actions a given agent might
select on each evolution, given the protocol specified for that agent. This is used to build
a transition relation R for our interpreted system Z.

3. MCMAS then computes the set of states reachable in the model; most of the logic is found
in computereach.cc. This is done by (symbolically) computing the least fixed point of
f(X) = InitStates U succ(X) where succ(X) refers to the successors of X. It is worth
noting that this step can be fairly time-consuming; it typically requires the most time out
of any of the steps in the model-checking process.

Chapter 2. Background 51

Input: ISPL program, command line arguments

Encode agents’ .
states and actions C(.)mpute set o
with OBDDs fair states

|

{Compute set Of} {Find states where}

reachable states formulae hold

Compare reach-
able states with
states where
formulae hold

TRUE (possibly with witness) FALSE (possibly with counterexample)

Figure 2.12: High level architecture of MCMAS.

1
2
3

52 2.8. Deeper Investigation of MCMAS

4. If fairness constraints are present in the model, MCMAS calculates the states that are the
start of a fair path (in model_checking.cc). This is done by building BDDs for each of
the fairness properties in the ISPL program, representing the states in which they hold,
and then performing a fix-point calculation finding the states in which there exist paths
where each fairness property holds infinitely often (which is detailed in [29]).

5. MCMAS then finds the states in which the temporal-epistemic logical formulae in the
ISPL program hold. The modal_formula class is used to represent a modal formula, and
calling check_formula() on a given instance returns a BDD corresponding to the states
in which the relevant formula holds. For CTLK operators, MCMAS implements an opti-
mised variant of the algorithm discussed in Section 2.3.2 (in particular, it implements the
optimisation with EG discussed in [66]) extended to handle epistemic operators. MCMAS
also supports ATLK specifications, the details of which are not the focus of this project.

6. Finally, MCMAS compares the reachable states with the states in which the logical formu-
lae hold (in other words, it compares the results of steps 3 and 5). This is carried out by,
for a specification formula ¢, constructing the formula V, = InitStates — ¢ and (symbol-
ically) computing the reachable states in which V;, holds, comparing it against the overall
set of reachable states. The specification is decided to be TRUE in the model if and only
if the two are equivalent; otherwise, the specification is decided as FALSE. This is correct,
since if the two are not equivalent, it must be the case that there exists a reachable state
g in which V;, does not hold (since the set of reachable states in which Vy holds is by
definition a subset of the set of reachable states). Then, we have Z, g ¥ InitStates — ¢,
which holds if and only if g is both an initial state and Z, g ¥ ¢; hence, there is an initial
state in which ¢ does not hold, meaning the specification ¢ is false in the model.

7. Optionally, the user may generate witnesses and/or counterexamples, by specifying a
command-line flag —c. This may be useful in understanding why the model satisfies or
does not satisfy a specification. If this flag is specified, then

e If a formula using only non-negated existential quantifiers (an ECTLK formula) is
true (e.g. EG¢), then MCMAS generates and outputs a witness (an execution on
which the formula is satisfied).

e If a formula using only non-negated universal quantifiers (an ACTLK formula) is false
(e.g. AF¢), then MCMAS generates and outputs a counterexample (an execution
on which the formula is not satisfied).

MCMAS does also have several other capabilities, such as allowing the user to manually explore
the system with a simulation, or to try different algorithms for selecting BDD variable orderings.
Some of these alternative options are displayed if one runs MCMAS with the -h flag; these
additional capabilities are also documented in [7].

2.8.3 Interpreted Systems Programming Language (ISPL)

MCMAS accepts specifications in Interpreted Systems Programming Language (ISPL). The
general structure of an ISPL file is as follows, from [7]:

Definition 2.45. (ISPL Syntax) The syntax of an Interpreted Systems Programming Lan-
guage (ISPL) file at a high level is as follows:
Semantics = MultiAssignment | SingleAssignment

Agent Environment
Obsvars:

© 0w N O Ot

52

Chapter 2. Background 53

end Obsvars
Vars:

end Vars
RedStates:

end RedStates
Actions = {...};

Protocol:

end Protocol
Evolution:

end Evolution
end Agent

Agent TestAgent
Lobsvars = {...};

Vars:

end Vars
RedStates:

end RedStates
Actions = {...};

Protocol:

end Protocol
Evolution:

end Evolution
end Agent

Evaluation
ené.ﬁvaluation
InitStates
ena'initStates
Groups
en&'éroups
Fairness
ené.%airness
Formulae

end Formulae

We focus particularly closely on the sections of the syntax above that are pertinent to our
extension of MCMAS to support model checking of additional specification languages.

e The Agent declarations allow users to specify the environment as well as relevant agents
(note that TestAgent is simply an agent name, and is not a reserved word). In particular,
Obsvars in the environment refer to variables observable by all agents; an agent can also

54

2.8. Deeper Investigation of MCMAS

specify Lobsvars referring to environment variables it can see. RedStates is used in
deontic properties (reflecting the states which are considered incorrect behaviour for the
underlying agent) and is not relevant to our work.

The Evaluation section (lines 38-40) allows users to specify boolean variables to be used
when specifying fairness specifications as well as formulae. These variables typically in-
volve Boolean combinations of relational expressions over variables in the program and
help to make specifications more succinct. For example, using the Bit Transmission Pro-
tocol example discussed in Section 2.2.2, we can define an atomic proposition recack if
(Sender.state = OA or Sender.state = 1A). This is significant as the atomic propo-
sitions used in specifications are not directly represented as BDD variables; we will need
to adapt the symbolic algorithm presented in [28] when computing the product of the
tableau and the interpreted system under investigation.

The InitStates section (lines 42-44) allows the users to specify precisely which states
are valid starting states in the system. We are not concerned with whether the formulae
to be verified hold in states that are not reachable from any of the starting states.

The Groups section (lines 46-48) allows users to specify groups of agents, which will be
referenced when specifying properties using the grouped epistemic modalities such as Fr,
Dr and Cr.

The Fairness section (lines 50-52) allows users to specify fairness conditions, which are
Boolean combinations of relational expressions over program variables. These expressions
must hold infinitely often along all execution paths of the system, and are to be respected
when model checking the additional specification languages as well. Note that this is
particularly important for CTLK because the specification language by itself cannot express
properties holding on paths satisfying fairness constraints.

The Formulae section (lines 54-56) contains the list of formulae the system will be checked
on. In the base version of MCMAS, CTLK and ATLK formulae with deontic operators are
permitted.

Chapter 3

Linear Temporal Epistemic Logic
(LTLK)

In this chapter we introduce a model checking technique for Linear Temporal Logic with epis-
temic modalities (LTLK), which was introduced in Section 2.3.5. We discuss the recursive
algorithm of [70], and show that the adaptation preserves the time complexity of LTL model
checking, which is exponential in the size of the formula, but linear in the size of the model.

We then discuss details of our symbolic implementation of LTLK model checking over inter-
preted systems, including counterexample generation. We implemented this as an extension of
the MCMAS model checker. We conclude with a brief comparison of our tool with MCK; al-
though verifying LTLK is already supported by MCK, how it is implemented in MCK is unclear.

The original work discussed in this chapter that was developed as part of this individual project
is as follows:

1. Extension of MCMAS to support LTL semantics. MCMAS previously only had
support for CTL and ATL, which are branching-time logics; properties about paths (e.g.
“if p happens at some point, then ¢ also does”) would previously not have been verifiable.

2. Integration and extension of the abilities of MCMAS to handle epistemic
modalities with LTL semantics. We further extended our LTL extension of MCMAS
to support epistemic modalities, allowing us to support LTLK in full.

3. MCMAS counterexample generation bugfix. We fixed a bug concerning counterex-
ample generation for EGT in MCMAS. This may have arisen in practice, even for CTLK
properties, and is thus useful even outside of the context of our LTL implementation.

3.1 Algorithm

3.1.1 Recursive Descent over Epistemic Modalities

We solve the model-checking problem for LTLK by reducing it to the problem of model-checking
plain LTL; we can then use the tableau construction method described in Section 2.5.2 to reduce
that to the CTL model-checking problem with fairness constraints, which is already supported
by MCMAS. This reduction can be carried out by adapting the recursive descent-based ideas of
[70], which worked on verifying LTLK with bounded model checking, in the context of symbolic
model checking with OBDDs.

95

56 3.1. Algorithm

For a given LTLK formula ¢ and interpreted system Z, we seek to determine the states g in which
T, g E ¢ holds; that is, [¢p]z. We first compute the set of states in which each top-level epistemic
subformula K;, Er1y, Driy or Cpiyp of ¢ holds. We then treat these as atomic propositions
when computing the states in which ¢ holds. This can be done recursively; since formulas are
finite, they must have a finite nesting depth, and hence the recursion is finitely deep and we
will eventually reach a formula that is a plain LTL formula, which we know how to check. For
example, consider the LTLK formula

»p=G (Ka(F(E{a,b} (Gp)) — GQ)) (3-1)

where p,q are atomic propositions. We can compute the set of states in which ¢ holds, as
follows.

1. First compute the set of states in which Gp (in red) holds using the tableau method (this
is an LTL formula).

2. Then compute the set of states in which E¢, 31 (Gp) (in blue) holds; we know the states in
which Gp holds and can thus compute this using the epistemic accessibility relation for
the agents a and b.

3. Then compute the set of states in which F(E{,;(Gp)) — Gq (in green) holds. This is
equivalent to finding the set of states in which F'r — Gq holds, where r is a fresh atomic
proposition holding in precisely the states where E{a,b}(Gp) held. This is an LTL formula
and we can thus use the tableau method.

4. Then compute the set of states in which K, (F(E,3y(Gp)) — Gq) (in purple) holds. This
can be computed using the epistemic accessibility relation, as in step 2.

5. Finally compute the set of states in which ¢ holds; as in step 3, this is equivalent to finding
the set of states in which G7’ holds, where r’ is another fresh atomic proposition holding
in precisely the states where K, (F(E,)(Gp)) — Gq) held. Again, this is an LTL formula
and we can thus use the tableau method.

(In practice, this is implemented in a top-down rather than a bottom-up manner, though in the
interest of clarity of explanation we opted with a bottom-up presentation here.)

3.1.2 Complexity Analysis

It is known that LT, model checking is linear in the size of the model but exponential in the size
of the formula — it is O(2/¢! x |Z|) [84]. However, the algorithm in question requires Biichi au-
tomata to be computed on-the-fly, which does not work well with symbolic model checking. The
tableau construction for —¢ itself generates O(2|¢") states, though we do not need to construct
these states explicitly. Thereafter, we check (EG(T)) over the model with additional fairness
constraints — the “model” here, however, is the product of the original system as well as the
tableau (Definition 2.35) and thus has O(2/¢! x |Z|) states. CTL model checking is linear in the
size of the model, formula and number of fairness constraints [13, 84]. We have linearly many
fairness constraints in the worst case (recall that we generate one fairness constraint for every
subformula involving a F, G or U modality); thus this step requires time O(2/¢11°819] x |7]). We
then need to check whether any states returned are in sat(¢), as well as perform negation —
these steps are certainly bounded by O(2/¢!) in the worst case (we can compute sat(¢) and then
explicitly test membership). Hence our LTL algorithm runs in time O(2/¢1'°819] x |Z|); this is
suboptimal but we believe this is outweighed in practice by the empirical efficiency of symbolic

Chapter 3. Linear Temporal Epistemic Logic (LTLK) 57

model checking, as suggested in [78].
We now show that the recursive descent approach presented above for LTLK preserves the
O(2/¢1o81¢l » |Z|) time complexity. We first introduce a lemma:

Lemma 3.1. Suppose that for i € 0,...,k we have f(y;,n) = O(n2%°8%) and 0 < y; < .
Further suppose that f(z,n) = (Zf:of(yi,n)> + O(n2%1°8®). Then, f(z,n) = O(n2%187).

Proof. From the definition of big-O notation we have for each i, f(y;,n) < ¢;n2¥i1°8¥% for
some positive ¢;. Then, observe that

k
fla,n) = (Z f(yz-,m) +O(n2*18)
i=0
k
< (Z cin2¥i logyi) + O(n2% o) by above assertion
i=0
k
< (Z cin2vilos y") + cn2vloe® for some positive ¢, by definition
i=0
k
< (Z cin2zl°gx> + cn2®lose since for each i, 0 < y; < x and so 2¥ logyi < gwlogz

=0

() e

Furthermore, since every ¢; and ¢ are positive, their sum is positive. Thus f(z,n) = O(n2%'°8%),

Observe that |Z| is constant, while |¢| is decreasing after each recursive call. Hence, we define
f(#],1Z]) as the time taken to evaluate a path formula ¢ with model size |Z|, which is constant
throughout. Furthermore, observe that combining previous solutions involves two steps:

e Assign fresh atomic propositions. The number of propositions is clearly bounded linearly
in the size of the formula, since each proposition requires an appropriate subformula.
Using pointers to the existing sets of states, or other suitable data structures, this step as
a whole runs in O(|¢|) time.

e We then either need to compute the set of states over which an epistemic modality holds,
using the epistemic accessibility relation (e.g. step 2 or 4 in our example formula 3.1), or
perform model checking of an LTL formula (steps 1, 3 and 5).

— Computing the set of states over which an epistemic modality holds may be done
by considering the equality of local states as far as an agent or group of agents is
concerned [66]. Assuming that the epistemic accessibility relations are pre-computed,
we can determine which states these hold in in O(|Z|) time.

— Performing model checking of an LTL formula with O(|¢|) fairness constraints requires
O(2/91081¢l » |Z|) time (as discussed at the beginning of this subsection).
Thus, this step runs in O(2/1°81¢1 x |Z|) time.

Thus, Lemma 3.1 applies and we have that the time complexity of our algorithm is 0(2“75‘ log[@]
|Z|). Note that if the LTL algorithm ran in O(2/?l x |Z|), then our recursive descent algorithm
would also run in O(2/?l x |Z|) time; the proof is similar, using Lemma C.1 instead.

58 3.2. Implementation

3.2 Implementation

At a high level, we needed to modify the following aspects of MCMAS:
e Add support for parsing formulae specified in LTLK (Section 3.2.1).
e For each formula ¢, construct the symbolic tableau for ¢ (Section 3.2.2).

e Compose the symbolic tableau with the Kripke structure for the model, which MCMAS
has already computed (Section 3.2.3).

e Check EGT in the model, from states not in sat(¢); then negate the result (Section 3.2.4).

e Finally, add support for counterexample generation; if a formula ¢ is false, we want a
counterexample trace (Section 3.2.5).

3.2.1 Expression Parsing

The only section of MCMAS’s implementation of the ISPL grammar we needed to change would
be the Formulae section; we would need to add the ability for users to specify LTLK formulae
here. We adopted the relatively simple approach of requiring users to specify the specification
language they were using, by prefixing their LTLK formulae with the new keyword LTL; a sim-
ilar approach is used in other popular model checkers such as NuSMV which requires users to
specify LTLSPEC (instead of simply SPEC for CTL specifications) [8]. This is otherwise a valid
identifier (albeit unlikely), so it is possible that an extremely small subset of old models will no
longer work if this change is made to the grammar.

In terms of implementation, MCMAS uses lex and yacc to split an input ISPL file into tokens
and parses these tokens. The following changes were made to the grammar:

1. As discussed in the first paragraph, a new LTLPREFIX terminal was added, which is “LTL”.

2. The formlist nonterminal, used to parse line 55 in the sample syntax listing in Definition
2.45, was extended with rules allowing sequences with an LTLPREFIX terminal followed by
a 1ltlformula nonterminal, and parsing an LTLK formula from the nonterminal.

3. The 1tlformula nonterminal has several production rules corresponding to the syntax of
LrLK formulae as defined in Definition 2.22. For usability reasons, we support common
propositional abbreviations (such as V or —) as well as the G and F' temporal connectives.

4. Both 1tlformula and the original formula nonterminal (which supported CTLK and
ATLK specifications) require a way of specifying atomic propositions. As the parsing logic
for this is nontrivial (94 lines of code), we refactored these rules to a new terminalformula
nonterminal which is a possible outcome of parsing an 1tlformula or formula.

5. We decided to duplicate the definitions of epistemicprefix and gepistemicprefix,
the nonterminals internally used when parsing an individual or group epistemic modality
such as K(a, B) where a is an agent’s name and B is a formula. I thus made separate
epistemicprefixltl and gepistemicprefixltl nonterminals.

This was to avoid requiring users to specify that they were using LTLK repeatedly; other-
wise, specifications such as LTL G K(a, F p) would result in syntax errors (as the gram-
mar expects a standard formula, not an 1tlformula in the bracket) — the alternative of

TG W N =

© 0 N O s W N =

Chapter 3. Linear Temporal Epistemic Logic (LTLK) 59

requiring users to write LTL G K(a, LTL F p), as well as permitting mixed specifications
(e.g. LTL G K(a, AG EF p)) was deemed unacceptable. Note that the algorithm is per-
fectly able to cope with mixing LT, and CTL specifications across epistemic modalities;
this decision was made in the interest of usability, not because of any limitations of the
algorithm itself.

An interesting feature of our parsing is that when interpreting a 1t1formula, epistemicprefixltl

or gepistemicprefixltl, we treat this nonterminal as a node in the formation tree of our for-
mula. For example, code for one of the production rules is as follows:

| LTLPREFIX 1ltlformula SEMICOLON {
if ($2!=NULL) {
is_formulae->push_back(modal_formula (60, $2));
}
}

This constructs a modal_formula with operator 60 (this is a char value used to distinguish
between operators internally in MCMAS) and first argument being the result of parsing the
1tlformula nonterminal. This allows us to know more easily when we need to use the tableau
construction, and also yields a subsequent easier transition to model checking CTL*K formulae;
this operator may easily be re-used as the CTL*K path quantifier A.

MCMAS also carries out a semantic check after formulae are parsed in syntaxcheck.cc.
The modal_formula class representing modal formulae has a check_atomic_proposition()
method, which verifies that all atomic propositions appearing in each formula are defined. I
extended this method to handle LTLK expressions appropriately.

3.2.2 Tableau Construction

We implemented LTLK model checking with the tableau construction detailed in Section 2.5.2.
This involved creating a new utility class 1tlk.cc, which included several utility methods.
These methods recursively compute several components of the tableau construction. The key
new methods added are as follows:

modal_formula* remove_path_gs(modal_formula* formula);
set<modal_formulax*x>* get_elementary_formulas(modal_formula* formula);
BDD check_path_sat(modal_formula* formula, bdd_parameters* para,
const map<modal_formula*, BDD>& index_map,
const map<modal_formula*, BDD>&% next_index_map,
bool next);
BDD build_path_tableau(bdd_parameters* para,
const map<modal_formula*, BDD>& index_map,
const map<modal_formula*, BDD>& next_index_map);

1. remove_path_gs() is a preliminary step that rewrites expressions of the form G¢ to
= F—¢, recursively traversing the formation tree of the specification. This made imple-
menting some of the other methods easier; it would have been possible to rewrite F'¢ as
(TU¢) (where T would be represented with the BDD 1) but adapting the other methods
to deal with F' was considerably easier than doing so with G.

2. get_elementary_formulas () returns a set of pointers to elementary formulae (Definition
2.32) of a given modal formula. This function allocates new memory for formulae not part
of the existing specification (in particular, when a (¢U1)) specification is encountered,
generating an elementary formula X (¢Uv))).

60 3.2. Implementation

3. check_path_sat() implements the sat function in Definition 2.33, directly handling
modalities of the form F'¢ as well. When invoked on a formula, it returns a BDD corre-
sponding to the states in which it holds (provided it is an LTLK formula). The boolean
argument indicates whether we are trying to compute the sat function over the variables
referring to the current or next set of states.

4. build_path_tableau() constructs the tableau symbolically by building its transition
relation (Definition 2.34). This method returns the transition relation as a BDD.

The map arguments in the latter two methods serve as a map of elementary formulas of the
tableau to BDD variables in the new symbolic structure created.

3.2.3 Structural Composition

MCMAS checks the states in which a modal formula ¢ holds by calling its check_formula()
method, which returns a BDD corresponding to the states in which said formula holds. To
determine whether a specification holds in general, it checks if all of the initial states are part
of the BDD returned; in practice this works by checking InitStates — ¢ and checking that the
resultant BDD is the BDD for 1.

Since this method is invoked recursively on input formulae, the use of a special operator in-
dicating the root of an LTLK formula’s parse tree (as discussed in Section 3.2.1) allows us to
execute the same construction steps regardless of what the principal connective of the LTLK for-
mula might be. At a high level, when check_formula is invoked on said operator, the method
proceeds as follows:

1. remove_1tl_gs() as discussed in Section 3.2.2 and then push_negations() are used to
remove GG operators and simplify the formula, removing redundant negations.

2. A helper function compute_epistemic_subformulae () is used which carries out recursive
descent of the tree as described in Section 3.1, computing a map between pointers to modal
formulas and BDDs representing the states in which they hold. Subsequently, top-level
epistemic subformulae are treated as elementary formulas which are true precisely in the
set of states represented by the corresponding BDD.

3. get_elementary_formulas() is called on the output of push_negations(), extracting
the elementary formulas. Suppose there are n such formulas.

4. 2n new BDD variables are declared using CUDD’s BDD manager; we iterate through
the elementary formulas and allocate 2 variables to each formula, one representing the
elementary formula’s current state and one representing its next state. We also need to
supplement the bdd_parameters struct’s v and pv vectors, referring to variables concern-
ing the current and next state respectively, with the new variables!. Furthermore, during
this step we build up two maps linking said elementary formulas to their BDD variables.

5. build_1tl_tableau() is called on the output of push_negations(), which constructs
the transition relation for the tableau. This uses the maps populated in the previous step.

At this point, we need to compose the tableau and ISPL model, with the goal of finding suitable
paths in both the model and tableau. However, the symbolic algorithm presented in [28] achieves
consistency between model and tableau BDD variables by using the same BDD variable for both

'Many utility methods, such as taking preimages, make assumptions about the bdd_parameters struct.

© 0 N O Uk W N =

Chapter 3. Linear Temporal Epistemic Logic (LTLK) 61

the model and tableau in the case of atomic propositions. This is not directly possible here,
because of the way MCMAS allocates BDD variables; in particular, atomic propositions in the
tableau are Boolean variables specified in the Evaluation section. To enforce consistency in
the transition relation, we augment the tableau with a set of consistency rules:

Definition 3.1. (Consistency Rules) Suppose p is a tableau variable that is true only in the
states satisfying A. Then, a consistency rule for p is

T,gEp+Z,gFA

This is implemented using a build_consistency_rules() method, which iterates through the
elementary formulas and builds up a suitable BDD enforcing if-and-only-if constraints between
the relevant tableau variable and its underlying meaning in the BDD of the model. The tableau
then has these constraints added (implemented as tableau *= rules). The composition in-
volves adding the tableau’s transition relation to para->vRT, a vector of the various transition
relations used by the agents that is used to compute the global transition relation. Notice
that with the existing MCMAS architecture it is not necessary to enforce constraints between
variables corresponding to the next states of the agents as well as next tableau variables, be-
cause the method for computing existential preimages (exists_EX in utilities.cc) already
checks said correspondence in the next state before returning the existential preimage (though
in general this check does need to be made at some point before returning meaningful results).

3.2.4 Path Finding in the Composed Model

We then construct the fairness constraints we need to apply to ensure that eventuality properties
are satisfied; this is implemented through the use of a helper get_1t1_fairness_constraints()
method which walks the formation tree of the formula and upon reaching the F' or U connectives,
adds a suitable fairness constraint (a BDD for the states that need to be visited infinitely often).

Next, we check the CTL specification EGT under the existing fairness constraints as well as the
additional ones we generated. It is worth noting that some small steps are needed to keep the
bdd_parameters struct consistent with the new model being examined, such that the utility
methods for checking EG with fairness constraints work properly.

Next, recall that the tableau construction has the property that if a state satisfies FGT under
the relevant fairness constraints, as well as sat(¢), then there exists an infinite path on which
¢ holds in the starting state. Thus, to check that all paths from a starting state satisfy ¢, we
need to check that no path satisfies ~¢. We thus compute a BDD for sat(—¢), compose it with
the consistency rules and then find the states satisfying both EGT and sat(—¢). We compute
the projection of this BDD to get the set of states in the original model from which there exists
an infinite path with —¢ holding in the starting state, and then take its complement to find the
states from which no path has —¢ holding in the starting state i.e. all paths have ¢ holding in
the starting state. This may be best illustrated with the following code:

// infinite_paths is the BDD with EG T + fairmness

BDD sat_neg_f =

! (new_formula->check_1ltl_sat(para, index_map, next_index_map, false)) * rules;
infinite_paths *= sat_neg_f;

// We don’t care about the starting states of the tableau
for (map<modal_formulax*, BDD>::iterator it = index_map.begin();
it != index_map.end(); ++it) {
infinite_paths = infinite_paths.ExistAbstract(it->second);

10
11
12
13
14
15
16
17

© W N O W N

62 3.2. Implementation

}
for (map<modal_formula*, BDD>::iterator it = next_index_map.begin();
it != next_index_map.end(); ++it) {
infinite_paths = infinite_paths.ExistAbstract(it->second);
}
// We want the states satisfying A f = !E! £
result = !infinite_paths;

// (the product of result with the reachable states is returned)

We conclude with a small amount of clean-up work, resetting the global variable agents as well
as BDD parameters such as para->vRT back to their original values, as well as freeing memory.

3.2.5 Counterexample Generation

We used the algorithm described in Section 2.5.3 for LTLK counterexample generation. The
algorithm was already partially implemented in MCMAS, though there was a bug involving
how the cases where it was not possible to loop back to a state in the first SCC were handled.
This was illustrated by the example in Figure 2.7. We submitted a bug report and fixed the
bug by restarting the algorithm from the state in which the “deadlock” occurred [57].

Once we fixed the aforementioned bug, implementing LTLK counterexample generation for an
LrLK formula ¢ involved constructing EGT (line 2) and then finding a witness for EGT in the
composition of the model and tableau, starting from a state in which sat(¢) does not hold:

// Compute EG True given eventualities are satisfied

modal_formula* spec = new modal_formula(ll, new modal_formula(5, NULL));
// This enforces that the automaton is followed
modal_formula* val = ((modal_formula *) new_formula->obj[0]);

BDD sat_bdd = val->check_path_sat(para, index_map, next_index_map, false);
sat_bdd *= rules;
*state *= !sat_bdd; // select from non-accepting tableau states
bool successful_cex
= spec->build_cex(state, index, para, countex, idbdd, cextr);

(Note: build_cex is an existing function in modal_formula that constructs a witness.)

3.2.6 Comparison with MCK

MCK (introduced in Section 2.7.2) is an existing model checker for multi-agent systems. Al-
though MCK does support verification of LTLK specifications (as discussed in Section 2.7.2), it
is distributed as closed-source and there appears to be little published on the underlying theory
of its LTLK implementation?.

In addition to the existing observational semantics supported by both MCK and our tool,
MCK also supports verification of fragments of LTLK over clock semantics (in which agents are
aware of time) and perfect recall semantics (where agents remember all actions and past states)?.

We did not carry out a performance comparison with MCK. However, given that both our
extension and MCK use the tableau construction? to reduce the problem to one of CTLK model
checking [6] and it was suggested that MCMAS tends to scale better than MCK over CTLK
properties [65], it would be likely that MCMAS would scale better for LTLK properties as well.

*We had difficulty in finding any technical documentation for how MCK supports these specification languages,
and others have apparently had such difficulties as well [70, 71].

3The formulas supported are the formulas which only use X, and G¢ where ¢ itself is non-temporal.

4The part of the theory of MCK that was uncertain was how it handles epistemic modalities.

Chapter 4

Full Branching Time Epistemic
Logic (CTL*K)

In this (relatively short) chapter we discuss how to perform model checking of Full Branching
Time Logic (CTL*) with epistemic modalities. We apply the reduction of CTL* model checking
to LrL model checking presented in [39], show that this still holds with epistemic modalities,
and show that we still maintain the O(2/¢! x |Z]) time complexity of model checking LTL.

We then present how we extended our LTLK model checker (as described in Section 3.2) to
handle CTL*K model checking and counterexample generation. The original work discussed in
this chapter that was developed as part of this individual project is as follows:

1. Extension of MCMAS to support CTL* semantics. As discussed in Section 2.3.3,
there are properties that can be expressed in CTL* that can be expressed in neither LTL
nor CTL. Thus, this extension further expands the spectrum of properties which MCMAS
is able to verify.

2. Extension of MCMAS to support epistemic modalities for CTL* properties. We
extended our CTL* extension of MCMAS to support epistemic modalities. This allows us
to support CTL*K in full.

4.1 Algorithm

4.1.1 Recursive Descent over Path Quantifiers

The reduction of the CTL* model checking problem to the LTL model checking problem is doc-
umented in [39]; we can similarly adapt it to handle CTL*K using a construction analogous to
what was described in Section 3.1. Recall that if we build the tableau for a given path formula ¢
as described in Section 2.5.2 and compose it with the model, the states which satisfy EFGT with
the appropriate fairness constraints as well as sat(¢) are the ones from which there exists an
infinite path satisfying E¢. Since A¢ = —FE—¢ this is sufficient for model checking an arbitrary
CTL*K specification.

To check if Z,g F ¢ where ¢ is a CTL*K state formula, we proceed inductively on the struc-
ture of ¢. The propositional cases are relatively simple; we focus in greater detail on the E¢ case.

We first compute the set of states in which each top-level epistemic subformula K;v, Ery, Dry

63

64 4.1. Algorithm

or Cr1 of ¢, or path-quantified subformula Ev or Ay holds. (This may involve recursive compu-
tations, of course.) Similar to the LTLK algorithm, we again treat these as atomic propositions
when computing the states in which ¢ holds. As before, formulas are finite and these quantifiers
must thus necessarily have a finite nesting depth. For example, consider the CTL*K formula

¢ =A((pV E(FK.q)U(XA(Gq)))
where p, ¢ are atomic propositions. We can compute the set of states in which ¢ holds as follows:

1. First compute the set of states in which K,q (in red) holds. This involves using the
epistemic accessibility relation for agent a on h(q).

2. Then compute the set of states in which F(F'(K,q)) (in blue) holds; we can use a modified
version of the tableau algorithm as discussed in the first paragraph of this section. This is
equivalent to finding the states where E(F'r) holds for fresh atomic proposition r, where
r holds in precisely the states with K,q.

3. Then compute the set of states in which A(Gq) (in green) holds; this is equivalent to the
set of states in which the LTL formula Gg holds. We can use the tableau algorithm of
Section 2.5.2 to find this (or, alternatively, rewrite this as ~E—(Gq)).

4. Finally compute the set of states in which ¢ holds. This is equivalent to the set of states
in which A((pV s)U(Xt)) holds, where s and ¢ are fresh atomic propositions holding in
precisely the states where E(F(K,q)) and A(Gq) hold respectively; the formula here is
an LTL formula and we can use the tableau algorithm to find this set of states.

4.1.2 Complexity Analysis

This procedure for CTL*K preserves the worst-case time complexity of LTL model checking —
that is, O(2!%! x|Z|). We proceed via an argument similar to what was presented in Section 3.1.2.

As before, observe that |Z| is constant, while |$| is decreasing after each recursive call. Similarly,
we define f(|¢|,|Z|) as the time taken to evaluate a CTL* formula ¢ with model size |Z|. Now,
consider the work required when combining results:

e As before, assigning atomic propositions is O(|¢|) with a suitable data structure.

e At each step, we may either have to compute the states over which an epistemic modality
holds, or compute the states over which a path formula holds. This requires time bounded
by the same asymptotic complexity as that of the LTLK model checking algorithm, as
discussed in Section 3.1.2.

e Alternatively, we may need to evaluate a propositional formula over the states of the model
(e.g. for a state formula p A ¢). This can be done in O(|¢||Z|) time; observe that each
operator can be evaluated in O(]Z|) time since this involves a constant number of unions,
intersections or complements over a set of states bounded by size O(|Z]), and there are at
most O(|¢|) such operators.

We can thus apply Lemma C.1, giving us the result that this CTL*K model checking algorithm
has time complexity of O(2!%! x |Z|). However, our implementation uses an O(2/¢/'°819l x |T])
algorithm for LTLK, and so its time complexity is, by Lemma 3.1, also O(2/#11°819] » |7]). As
before, we believe this is outweighed by the practical efficiency of symbolic approaches.

Chapter 4. Full Branching Time Epistemic Logic (CTL*K) 65

4.2 Implementation
At a high level, we needed to modify the following aspects of MCMAS:
e Add support for parsing formulae specified in CTL*K (Section 4.2.1).

e Implement the recursive descent approach over both epistemic modalities and path quan-
tifiers (Section 4.2.2).

e Finally, add support for counterexample and witness generation. If a formula A¢ is false,
we want a counterexample trace; if a formula E¢ is true, we want a witness trace (Section
4.2.3).

4.2.1 Expression Parsing

Similar to implementing LTLK model checking, the only section of MCMAS’ implementation
of the ISPL grammar that I needed to change was the Formulae section. We similarly require
users to explicitly indicate that they are specifying formulae in CTL*; in particular, since CTL*
subsumes both CTL and LTL this distinction is useful. The following changes were made to the
grammar:

1. A new CTLSPREFIX terminal was added which is “CTL*”. It may be possible that users
have used this as an identifier, though it seems unlikely and it seems that in most cases a
simple sed operation renaming said identifier would be able to fix such ISPL programs.
Note that no other new tokens were needed, as “A” and “E” are already reserved because
they are used when parsing CTL’s AU and EU expressions.

2. The formlist nonterminal was extended with several additional rules allowing parsing of
CTL*K formulae.

3. Two nonterminals, ctlsformula and pathformula were added, which have several pro-
duction rules corresponding to the syntax of CTL*K state and path formulae, respectively.

Notice that although LTLK formulae generally follow the CTL*K path formula syntax,
we prefer to maintain separate nonterminals and rules for them, partly to help enforce
consistency of specification languages within a formula as well as because a CTL*K path
formula can also be a state formula. Unifying pathformula and 1ltlformula without
further checks would allow erroneous constructions such as LTL p or X (E q); to be
parsed.

4. The epistemicprefix and gepistemicprefix nonterminals again had to be duplicated,
to force consistency of specification languages across epistemic modalities and avail the
user of the requirement of respecifying this every time an epistemic modality is used.

5. As far as parsing LTLK formulae is concerned, while the production rules of 1tlformula
are kept separate from those of pathformula, the object returned from parsing an LTL
formula ¢ is actually treated very similarly to a CTL*K formula of the form A¢, apart
from the to_string() method. We have added an A path quantifier with op value to 50.
We have also added a new E path quantifier, with an op value of 51. (We decided not
to merge the LTL root token with the A path quantifier, as this would affect the output
presented to users.)

© 0 N O Uk W N =

© 0w N Ot s W N

[
o

66 4.2. Implementation

4.2.2 Recursive Descent

Instead of simply computing the top-level epistemic subformulae as discussed in Section 3.2.3,
we change the relevant method (previously called compute_epistemic_subformulae()) to eval-
uate all top-level epistemic or path-quantified subformulae. As before, these are then treated
as atomic propositions throughout the rest of the computation.

To avoid unnecessary negation, we have also changed the way in which we use the tableau
construction. Calling check_formula() on a CTL* formula of the form A¢ (as well as an LTL
formula) rewrites said formula as =E—¢ and checks the states in which the new formula holds.
The tableau construction described in Section 3.2 is used in a largely unchanged form (other
than the handling of further nested path quantifiers as atomic propositions) to check formulae
of the form F¢ up to and including the checking of EGT with fairness. Thereafter, since we
want to find the states from which there exists an infinite path on which ¢ holds in the starting
state, it is sufficient to find the states in the product satisfying both EGT and sat(¢), and then
determining the corresponding states in the original model. This is implemented as follows:

// infinite_paths is the BDD with EG T + fairness

BDD sat_f = new_formula—>check_1tl_sat(para, index_map, 0) * rules;
infinite_paths *= sat_f;

// Find the original states with E f
// (Logic to abstract away tableau states, as in section 3.2.4)

result = infinite_paths;
// (the product of result with the reachable states is returned)

4.2.3 Counterexample and Witness Generation

The algorithm described in Section 2.5.3 for LTL counterexample generation is also applicable
to CTL* counterexample or witness generation. Consider that for a given path formula ¢, the
counterexample generation algorithm returns an infinite path on which ¢ is satisfied — in the
case of LTL counterexample generation, we used this algorithm to search for infinite paths in the
composition satisfying —¢. For CTL*, we still find counterexamples for universally quantified
path formulae in the same way. We also find witnesses demonstrating that an existentially
quantified path formula holds, using the same algorithm, with a small change (in particular, we
look for states in sat(1)) as opposed to states not in sat(¢)). This is implemented as follows:

// EG True given eventualities are satisfied
modal_formula* spec = new modal_formula(ll, new modal_formula(5, NULL));

// This enforces that the automaton is followed
modal_formula* val = ((modal_formula *) new_formula->obj[0]);
BDD sat_bdd = check_path_sat(val, para, index_map, next_index_map, false);
sat_bdd *= rules;
*state *= sat_bdd; // This is changed from the LTL algorithm!
bool successful_cex
= spec->build_cex(state, index, para, countex, idbdd, cextr);

Our algorithm only does this with one level of depth — in other words, supposing we had a
formula E(G(¢ N E(F(v)))), the algorithm returns a witness for the outer formula, without
identifying a witness for E(F(v)) at each node in the path. Computing nested witnesses is not
difficult to add, but was not done in the interest of time (as well as readability of the output).

Chapter 5

Linear Dynamic Epistemic Logic
(LDLK)

One of the shortcomings of LTLK and CTL*K is that they cannot express all w-regular proper-
ties, such as “p holds in every other state” [99]. This limitation, which has been claimed to arise
in practice [60] is addressed by Linear Dynamic Logic (LDL) which was introduced by Vardi
in [96]. LDL has since sparked some research interest, with several analyses carried out into
variants of the logic [35, 41, 98].

In this chapter we discuss our novel approach for carrying out symbolic model checking of
Linear Dynamic Logic (LDL) with epistemic modalities (LDLK). We begin by reducing the
LDLK model checking problem to the LDL model checking problem. We then adapt the con-
struction in [41] to build an alternating automaton recognising the paths in which an LDL
formula holds. We then employ the algorithm of [20] to construct a symbolic Biichi automaton,
and compose it with the model of our interpreted system. We show that this construction runs
in time exponential in the size of the formula, but linear in the size of the model.

We then discuss our concrete implementation of a symbolic model checking tool for LDLK
specifications. We conclude with a discussion of several performance optimisations, both theo-
retical and practical, and an explanation of how we have implemented them in our tool. The
original work discussed in this chapter that was developed as part of this individual project is
as follows:

1. Combination of epistemic logic and LDL. To the best of our knowledge, LDL has
not been applied in the context of epistemic logics before. We extend LDL with epistemic
modalities, giving rise to LDLK, and give an algorithm that allows us to perform model
checking of LDLK. We show that LDLK, like LDL, is PSPACE-complete.

2. Critical set based alternating automaton construction for LbL. We introduce
a notion of critical sets, which improves on the construction in [41] in that it does not
require us to consider every possible e-path. This allows us to construct an alternating
automaton recognising the paths in which a given LDL formula holds.

3. Extension of MCMAS to support LbL. We implement our critical set based alter-
nating automaton construction for LDL, as well as the symbolic breakpoint construction
of [20] to convert these alternating automata into equivalent symbolic Biichi automata.
We then compose said symbolic Biichi automata with the model of our system, to verify

67

68 5.1. Algorithm

whether LDL properties hold. To the best of our knowledge, this is the first model checker
for LDL.

4. Extension of MCMAS to support LDLK. We concretely implement our approach
for handling epistemic modalities in our extension of MCMAS. This allows us to support
verification of LDLK properties. Again, to the best of our knowledge, this is the first
model checker for LDLK.

5. Performance Optimisations for LDLK model checking. We discuss how we min-
imise the e-NFAs constructed for a given regular expression at each step. We introduce
two further optimisations — propositional shortcircuiting and conjunct separation. These
optimisations have helped our tool scale to larger state spaces and/or perform verifica-
tion more quickly. Furthermore, we discuss practical implementation techniques used to
compute the symbolic breakpoint construction efficiently (as far as BDDs are concerned).
We have implemented all of these optimisations in our tool.

5.1 Algorithm

5.1.1 Alternating Automata

We first use the recursive descent approach as explained in Section 3.1.1 to handle epistemic
modalities. Given an LDLK formula, we first evaluate any epistemic subformulae, and introduce
fresh atomic propositions that hold in precisely the states in which said epistemic subformulae.
For example, to model check the LDL formula

(Ka(r)? + Kp(q)?); (Kp(q)? + Kp(p)?); T) Ka(r)

we can first determine the states in which K,(r), Kp(q) and Kj(p) each hold. We then define
a, B and v to hold in said sets of states, and model check

((a?+B7); (B +77); Ther (5.1)

In this way, we reduce the problem of LDLK model checking to LDL model checking.

We can then proceed using the alternating automaton construction described in Section 2.6.3,
constructing e-NFAs for regular expressions as well as alternating automata as necessary. How-
ever, there is one notable issue with a concrete implementation of this construction — recall
Equation 2.1 for the transition relation of automata for formulae of the form (@)1, presented
again below:

pw(sa A) s € Sw

pj(s,A) s€8j,je{l,... .k}
p(s,A) = < Vaesais1 Vrer(s,s) Vieo(s,4) (75 A Nojem(n) i (85, A))

Vv s €S,

\/ﬂ'EH(S,fr) (Pw(sgw A) N /\OjEm(w) pj(sg')a A))

Consider the s € S, case; we require quantification over all e-paths from state s to s’ in the
upper disjunct, and over all e-paths from s to f, in the lower disjunct. This may potentially
be unbounded since e-NFAs may not be acyclic (for example, consider the e-NFA for p**). For
the (¢)1) modality, it is sufficient to consider simple paths [41], though the maximum number

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 69

Figure 5.1: Marked e-NFA for the modality (a? + 87); (87 +~7); T

of simple paths in a graph with n nodes may still potentially be factorial'; simply storing all of
these potential sets of markings may require factorial or exponential time and space. A possible
approach could be to compute this relation on-the-fly, as is suggested in [41], though this tends
to be difficult to combine with symbolic model checking [20].

5.1.2 Critical Sets

We thus introduce the notion of minimal and maximal critical sets, which allow us to reduce the
number of paths we need to consider when computing the transition relation for the alternating
automata we construct. Intuitively, the minimal critical sets refer to the smallest possible sets
of tests that one needs to transition into on an e-path from s to s’; the maximal critical sets refer
to the largest possible sets of tests one needs to transition through. Viewed with the perspective
of wanting to travel from s to s, they refer to the easiest (respectively, hardest) routes that one
can take. We illustrate these for the formula 5.1 with an example, and then formally define them.

Consider the marked e-NFA for the modality in formula 5.1, as shown in Figure 5.1. Intu-
itively, we can travel from the starting node s’ to s/, going through tests that pass, if we
can pass 8 or we can pass both o and ~. Indeed, the minimal critical sets from s to s’ are
{{B},{a,~}}. If we had B and ~, we could travel through the first test for 5 and the v test,
but importantly, we didn’t need v (since we could have chosen to take the second f3 test instead).

Conversely, the mazximal critical sets refer to the most “difficult” routes that one can choose.
In this case, they are {{a, 8}, {a,v},{5,7}}. Notice that while {«, 3,7} is obviously sufficient,
there is no route that requires all of them (and hence it is not a maximal critical set).

We now formally define marking sets, as a preliminary to formalising critical sets.

Definition 5.1. (Marking Sets) Let s, s’ be two nodes in a marked e-NFA A = (X, S, 5%, p, f,m).
M C range(m) is a marking set from s to s if there exists an e-path © = sg, s1,. .., S, where
so = s, sp, = s’ and for every i € {0,...,n}, m(s;) is either undefined or in M. Furthermore,
for every marking p € M, there exists some s; (i € 0,...,n) such that m(s;) = u. We say that
a path m = s¢,...,s, from s to s’ induces a marking set M’, where M’ is the set of markings

{k|35 €{0,...,n}.m(s;) = k}.

Definition 5.2. (Critical Sets) Let s, s’ be two nodes in a marked e-NFA A = (%, 5,5%, p, f,m).
M is a minimal critical set of the markings range(m) from s to &, if:

'For a complete graph, this would be given by 7 (i! x (7)). A tighter bound might be possible for our
automata.

70 5.1. Algorithm

e M is a marking set from s to s, and

e there does not exist M’ C range(m) such that M’ C M and M’ is a minimal critical set.
The mazximal critical set is defined dually; M is a mazimal critical set of range(m) if:

e M is a marking set from s to s, and

e there does not exist M’ C range(m) such that M C M’ and M’ is a maximal critical set.

We now show that to construct the transition relation for an automaton for formulae of the
form ()1, instead of considering all possible sets of markings generated by the e-paths from s
to s, it suffices to consider only the minimal critical sets.

Theorem 5.1. Let 71 be an e-path from s to s’ in a marked e-NFA A = (%, 5,s% p, f,m),
which was constructed for the regular expression ¢. Let M; be the set of markings induced by
w1 and suppose M is not a minimal critical set. Then the transition relation for the automaton
for (¢)1) does not change even if we do not consider .

Proof. We consider the case where s’ # f,. first. Since M; is a marking set from s to &,
but not a minimal critical set, by Definition 5.2 there must exist some minimal critical set
M such that M C M;. Since M is a minimal critical set, it is a marking set and thus must
have been induced by some path m,. Now consider the transition relation p of the combined
automaton. Clearly, the s € Sy and s € S; cases are unaffected — we consider the s € S, case.
Clearly the second disjunct involving II(s, f,) is unaffected. Now consider the first disjunct:

VoV V(e A e

s'eS\{fr} m€ll(s,s") tepr(s',A) 6;em(m)
=V V V tan N pi(s)A) | vae
s'eS\{fr} \m€ll(s,s")\{m1,m+} t€pr(s',A) 0;em(m)

where @ = \/ \/ tA /\ ,oj(s?, A) |. Now, we expand Q:

we{m 7} t€pr(s',A) 0;em(m)

VoV e A pj<s97A>)
V

me{m, 7« } t€pr(s',A) 0;em(m)
=V [tr A w54 v tA pj(s}, A)
tepr(s’,A) 0;em(my) tepr(s’,A) O;em(my)

I
<

TN YT v(m (st 4)
tepr(s’,A) 0;em(my) O;em(my)

= tA /\ p;i(s?, A) v p;(s?, A) by distributivity
tepr(s’,A) 0;em(m) O;em(ms)

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 71

Since m(m.) = M C My = m(m), we can partition M; into the elements that are in M and the
elements not in M. Thus we have:

\/ tA /\ pj(S?’A) v /\ pj(s(])'vA)

tepr(s’,A) 0;em(m) 0;em(ms)

=V [t N\ pi(s) A) A A pish A | v N\ pi(s), A)

1€pr(s",A) 6;€m(m) 0;€(m(m)\m(m,) 6;€mr.)
= \/ LA /\ Pj (S?a A)
tepr(s,A) 0;€m(my)

with the last step holding by the absorption law [48]. Finally, substituting this equivalent
expression for) back in the original formula and re-unifying the quantification over paths, we
have

V V Vooltn A eSS4 | va

s'eSP\{fr} \m€ll(s,s")\{m1,7x} t€pr(s’,A) 0;em(m)
=V V Voo(tr A eils] 4
s'eS\{fr} \m€ll(s,s")\{m1}tepr(s',A) 0;em(m)

Thus, as required, we need not consider 7;. The case for s’ = f, is similar, involving distribution
over the marking sets and absorption as before, though over the lower disjunct instead. We can
also construct a dual argument for eliminating paths inducing non-mazimal critical sets in the

[¢]Y case.

Hence, it suffices to consider the minimal (respectively, maximal) critical sets of markings when
constructing the automata for (¢)y) (respectively, [p|y). Effectively, we reformulate p, the
modified transition relation, where MinCS(s,s’) denotes the set of minimal critical sets from
s to s, as:

(pw(S,A) s € Sw
pi(s, A) seSjjed{l,....k}
P(37 A) = \/s’EST\{fT} \/MEMinCS(s,s’) \/tEpT(s’,A) (t A /\GJEM pj(897 A))
Vv sES,
\VMeMmcs(er) (%(S?pv A) A /\9jeM Pj(s?a A)>

(5.2)
Similarly, for [¢]y, where MaxzCS(s,s’) denotes the set of maximal critical sets from s to ',
we have:

py(s, A) s €Sy

pi(s, A) seS,jed{l,... .k}
p(s, A) = { Nyesifr Avremazcsis,s) Nepn(s/,4) (t V' Vo, enr i85 A))

A s €S,

/\MEMaxCS(s,fT) (ptb(qgn A) v vejeM pj(sg'v A))

(5.3)

72 5.1. Algorithm

We can verify that the number of critical sets is sub-exponentially bounded in the size of the
e-NFA, as opposed to factorial.

Theorem 5.2. Suppose we have a marked e-NFA with n nodes — the set of nodes is S. Then,
the maximal number of minimal critical sets (and also the maximal number of maximal critical

sets) is given by
(1)
3]

Proof. First observe that, by definition, if M, My are both minimal or maximal critical sets,
then we cannot have M; C Ms. We formulate this problem in terms of a graph problem on the
Hasse diagram for the power-set of S, P(S) under the relation C, taking definitions from [90].

Definition 5.3. (Immediate Predecessors and Successors) Let R be a partial order on a
set S, and a,b € S,a # b. a is an immediate predecessor of b under R if (a,b) € R, and there
does not exist any ¢ # a,b with (a,c) € R and (¢,b) € R. b is an immediate successor of a if a
is an immediate predecessor of b.

Definition 5.4. (Hasse Diagram) A Hasse diagram is a compact way of representing a partial
order between elements in a set S as a directed graph. The nodes of the graph are the elements
of S. Instead of representing all pairs of elements (a,b) € S x S in the partial order, we only
include an edge (a,b) in the graph if a is an immediate predecessor of b.

As discussed, we consider the Hasse diagram for P(.S) under C. Suppose our set of minimal (or
maximal) critical sets is). Then, there cannot be a path between any 2 elements ¢1,¢2 € @,
q1 # q2 (if there was, then ¢; C g2, which is not allowed). This is equivalent to identifying that
over every path from) to each ¢; € @, and from ¢; to S, no other ¢; € Q(j # i) is also on the
path.

We proceed by an inductive argument over the depth of nodes with respect to (). Let L be
the set of nodes at depth i, i < |5] and suppose there are no nodes at depths strictly less than
1. We show that if @) respects the subset property, then it is always possible to replace L with
immediate successors of L (i.e. depth ¢ + 1) while preserving the subset property — the other
sets are not affected because the new sets introduced are supersets of the old sets (which were
not subsets of the other sets), and thus cannot be subsets of the other sets. It remains to show
that choosing a set of immediate successors is possible.

Consider an arbitrary subset of L, L’ and the immediate successors of L', R. Clearly, these form
a bipartite graph. The nodes in L’ must have (n — i) immediate successors, since it is possible
to add any of the (n — i) elements not in the current set to reach an immediate successor. The
nodes in R, on the other hand, can have at most i+ 1 predecessors (which would be obtained by
removing each element). Since the total degrees of the nodes from each set must be the same,

(n—d)|L]

IR = (1+1)

Since i < [%] by construction, but i and | %] are integers, we have i < % — 1. Then,

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 73

n—1
i+1
SR > (L

Hence, since we selected an arbitrary subset of L, we conclude that for every subset of L,
there are at least as many immediate successors. Now, consider Hall’s theorem for matching in
bipartite graphs (as may be found in [33]):

Theorem 5.3. (Hall’s Theorem) Suppose G is a bipartite graph, with bipartite sets L and
R. For every set L' C L, let N(L') be the set of nodes in R that are connected to some node of
L. Then, there is a matching that covers L if and only if |L'| < |N(L)| for all subsets L’ of L.

Thus, there exists a matching between L and its immediate successors that covers L. Applying
the above result and working forwards from a depth of 0, for any set of minimal (or maximal)
critical sets we can propagate elements at depths less than | 5] to depth [5].

We use a similar argument in the other direction. Let R be a set of nodes at depth 4, i > ||
and suppose there are no nodes at depths strictly greater than 7. We seek to show that if Q
respects the subset property, then it is always possible to replace R with as many immediate
predecessors of R. The other sets are not affected as the existing sets were not subsets of sets
in R, and the new sets introduced are subsets of the sets in R. We now consider a subset of R,
R’ and its immediate predecessors L. They form a bipartite graph, as before; the nodes in R’
have ¢ immediate successors since it is possible to delete any of the i elements from each node,
while the nodes in L can have at most (n — i) successors each (since there are only (n — i) more
elements that could be added). As before, the total degrees of the nodes from each set must be
the same, so

(i + IR

L] >
n—1

Since n is a positive integer, | 2| > 2 — 1. Thus, i > 2 — 1 and so
p » L9 2 72 , 2~ 2

>n 1
Z _— — —
-2 2
2t >n—1
1+1>n—1
t+1 51
n—i
L] > |R'|

Since we selected an arbitrary subset of R, for every subset of R there are at least as many
immediate predecessors. Thus again, by Hall’s theorem there exists a matching between R and
its immediate predecessors that covers R. Thus, we can similarly propagate elements at depths
greater than | 5| back to [§]. This would lead to a contradiction if there were more than (Lg j)

critical sets, since there are only (LZ J) possible elements at depth [%]. Note that the bound is
2

achievable since we can select all of the elements at depth | 5] as critical sets.

Hence, this does reduce the number of test sets we need to consider for each node from potentially
factorial to sub-exponential (we can bound it more tightly to O(n~1/227) [42]). Note that we
do not need to store all of the test sets explicitly; we can in fact store a Boolean combination
of the states to be transitioned into.

© 0 N O U R W N =

[S S G G
S © ® N O U A W N~ O

74 5.1. Algorithm

5.1.3 Finding Critical Sets

Finding critical sets can be done by a variant of breadth-first search (BFS) over the e-closure
of each node in the alternating automaton; we augment the BFS to keep track of the current
node as well as test sets used along the current path. We also prune paths early if we can be
sure that exploring them yields no benefit. For example, to find the minimal critical sets for
all states in the e-closure of s, we can proceed as follows (the algorithm below is expressed in
pseudocode):

let closure be a map<node, set<set<test>>>
add a pair (s, {}) to queue Q
while Q is not empty
node curr = Q.front.first();
set<test> test_set = Q.front.second();
remove front of Q

if (closurel[curr] is null)
closure[curr] = {test_set}

else if (closure[curr] contains a subset of test_set)
continue

else if (closure[curr] contains a superset of test_set)

closure[curr] = (closure[curr] union {test_set}) - {superset}
else
closure[curr] = closurel[curr] union {test_set}

// Note: If we hit continue above, this part does not run.
for each outgoing edge of curr
if (curr is an epsilon transition)
add (endpoint of transition, test_set union {marking at endpoint}) to Q

At each step in the BFS, we check if the set of tests required to reach a node is a subset or
superset of a known set (the closure) for that node. If we know a set that is a subset of the
current test set, then any more tests along this path cannot be part of a minimal critical set,
and we thus stop search along this path. The maximal case is similar, except we prune the
search if a known set is a superset of our current set.

Based on experimental results, this step appears to require time exponential in the size of
our alternating automaton, which is linear in the size of our formula [41]. Thus finding these
sets appears to take time exponential in the size of the formula. We formalise a bound:

Lemma 5.1. In the minimal critical set algorithm, each test set does not travel down the same
edge of the automaton more than once.

Proof. Suppose some test set T is propagated down some edge e. Since markings along
edges do not change, suppose e has marking m; we reach line 17 of the algorithm with the set
T" = T\{m}. Consider that after 7" is seen for the first time, either 7” is already in the closure
of the current node, or we have some alternative set 7" C T” (if another set triggered line 13) in
the closure. Thus the closure must contain a subset of 7", which means we must have reached
the continue statement on line 11. This means we do not reach line 17 with 7" a second time.
Hence, the same test set never travels down the same edge more than once, as required.

The proof for the maximal critical set algorithm is similar. There are O(n?) edges and O(2") pos-
sible test sets; hence, using Lemma 5.1 we have at most O(n?2") loop iterations. Furthermore,
using suitable data structures (e.g. from [83]), the queries in lines 10, 12 and 14 can be answered
in amortised linear time, yielding overall time complexity bounded by O(n32") = O(2"en),
We suspect that the actual bound may be tighter, but this is sufficient for our purposes.

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 75

An alternative construction which would work for finding minimum critical sets could involve
computing a topological ordering of a subgraph of the automaton graph which has all cycles
removed while still remaining connected. The topological sort process involves augmenting
depth-first search with suitable bookkeeping, and should run in time linear in the number of
nodes and edges [33]. Thereafter, we can consider one node at a time, and take the union
over the test sets built from the previous nodes intersected with the label at the current node
(effectively, using a dynamic programming approach).

We did not focus on alternative search algorithms owing to limited development time, given
that the computation time required for this step as observed in practice (as described in Section
5.4) is relatively insignificant.

5.1.4 Symbolic Breakpoint Construction and Model Composition

We thus can compute a representation of the transition relation for an alternating automaton
representing an arbitrary LDL formula ¢. This allows us to use the construction presented in
[20] and discussed in Section 2.6.4 to build a symbolic structure A, (effectively, a symbolic
Biichi automaton) that accepts a given infinite path if and only if it would have been accepted
by our original alternating automaton. By composing this symbolic structure for ¢, Ay, and
our model Z together (taking the product of their states, and ensuring that they synchronise
in terms of when atomic propositions hold, what transitions are allowed etc.), we can check
whether there exists an infinite path on which ¢ holds by checking whether there exists a fair
path in the model Z on which Ay also accepts.

Then, recalling the semantics of LDL over states from Definition 2.21, we have that for some
state g € G,

L,gF ¢ <1, mFE ¢ for all paths 7 starting at ¢
< it is not the case that (not (Z, 7 E ¢ for all paths 7 starting at g))
< it is not the case that (Z, 7 ¥ ¢ for some path 7 starting at g)
< it is not the case that (Z, 7 F —¢ for some path 7 starting at g)

Thus, if we want to find the states in which an LDL formula ¢ holds, we can proceed by explicitly
building an alternating automaton for —¢ and then using the symbolic construction to convert
it into a symbolic Biichi automaton. We then compose it with the model Z and check for infinite
paths; the states returned by this process are those for which Z, 7 E —¢ for some path 7 starting
at g. Thus, taking the complement of this set gives us the states for which Z, 7 F ¢ for every
path 7 starting at g i.e. the states satisfying ¢.

5.1.5 Complexity Analysis

Following the steps we have presented above, we now outline how we can determine the states
where Z, g F ¢ and the time complexity of each step. Let the time complexity of our algorithm
be T'(|¢], |Z1).

1. Scan ¢ for epistemic modalities. Compute the states in which said epistemic modalities
hold, and introduce appropriate fresh atomic propositions to replace them. Supposing we
have n epistemic modalities and each has size ko, ki ...k, (all of which are necessarily
smaller than |¢|), this step requires time Y7 T(|k;|, |Z|) + O(|¢]).

76 5.1. Algorithm

2. Construct the formula —¢ (after step 1), and convert —¢ to negation normal form (Defi-
nition 2.43). This step may require time O(|¢|).

3. Construct an explicit alternating automaton corresponding to =¢ (now in negation normal
form). Note that compared to our approach for LTL or CTL* where we avoided explicitly
building the Biichi automaton, explicitly constructing an alternating automaton here is
acceptable because the alternating automaton is linear in the size of the formula (it has
O(|¢]) many states). The time required for this construction is dominated by the step of
finding critical sets. This step, as shown in Section 5.1.3, may take O(2|¢‘log|¢‘) time in
the worst case.

4. Convert the alternating automaton from step 3 into a symbolic Biichi automaton. This
step generates a symbolic Biichi automaton, though with an exponential blowup in the
state space [20]. Our automata have O(|¢|) states, so in the worst case this step may
require O(3/91) time.

5. Compose our symbolic Biichi automaton with the interpreted system Z, and check EGT
with suitable fairness constraints. This step involves CTL model checking with fairness,
which is linear in the size of the model, formula, and number of fairness constraints
[13]. The size of the model is O(3/¢! x |Z|), the formula size is constant and there is one

fairness constraint for the symbolic automaton. Hence, the time complexity of this step
is 0311 x |Z)).

6. Take the complement of the set of states returned in step 5 (since that was the set of
states from which there existed an infinite path with —¢). This step runs in O(|Z|) time.

We claim the overall time complexity (that is, the sum over all steps) is O (max(2/¢1'°191 3191||)).
To prove this, we need a slightly expanded version of Lemma 3.1 which accounts for the possi-
bility of either of the terms dominating.

Lemma 5.2. Suppose that for i € 0,...,k we have f(y;,n) = O(max(2%!°8% n3¥)) and
0 < y; < x. Further suppose that f(z,n) = Zf:(] f(yi,n) + O(max(2%1°8% n3%)). Then
f(z,n) = O(max (271987 n3%)).

Proof. From the definition of big-O notation we have for each i, f(y;,n) < ¢; max(2V:1°8% n3¥:)
for some positive ¢;. Observe that because y; < x, 2¥i1°8¥% < 271987 anq 3% < 3%, We have

f(z,n)

k
<Z f i, n)) +O(max(2" %87, n37))
1=0

k
< <Z ¢; max(2Yi 108 yi,n3yi)> + O(max(2%1°8% n3%)) by above assertion
=0

k
< <Z ¢; max(2¥ IOgyi,n3yi)> + cmax(2%1°8% n3%) for some positive ¢
=0

k
< <Z ¢; max(2°1082 nSx)> + cmax (271087 n3%)
=0

k
= ((Z CZ') + c) max(2” logz n3")
=0

Thus the result follows. This is (singly) exponential in the size of the formula, but linear in the
size of the model, which is in line with the LTL and CTL*K algorithms.

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 7

5.2 PSPACE-Completeness of LDLK

Theorem 5.4. LDLK model checking is PSPACE-complete (provided the model M is given
explicitly).

Proof. PSPACE-hardness follows from a straightforward reduction of LDL model checking,
which is known to be PSPACE-complete [41], to LDLK model checking. Supposing the LDL and
LpLK model checking problems involve, for a given instance (M, s, ¢) determining if M, s F ¢,
we have that (M, s,) is a yes-instance of LDL model checking iff (M, s, ¢) is a yes-instance
of LDLK model checking, since ¢ does not contain epistemic modalities and the semantics of
LDLK apart from epistemic modalities match precisely that of LDL.

We now show PSPACE membership, by showing that our LDLK algorithm will operate in poly-
nomial space if the underlying LDL model checking algorithm operates in polynomial space.
Such an algorithm exists, since LDL model checking is in PSPACE. The maximum possible
depth of recursion is bounded by the length of the formula, and hence polynomial in the input
size (so we can use, say, a stack to remember where we are in the recursion). Furthermore,
at each step there are at most polynomially many recursive calls to be made (again, bounded
by the length of the subformula currently being analysed). The total number of expressions
which have epistemic modalities as their principal connective is thus polynomial. We can com-
pute the states in which each of these epistemic subformulae holds, by using the LDL model
checking algorithm (which runs in polynomial space) and applying the epistemic accessibility
relation (which is a subset of the Cartesian product of the states of M, and hence polynomial
in the input size). We can also store the result of each of these recursive calls (even though
there might not be a need to) because they return a subset of the states, which is polynomially
bounded in the size of M (since it was given explicitly). Thus, the entire procedure can operate
in polynomial space, thus showing PSPACE membership.

Combining the above two results shows that LDLK model checking is PSPACE-complete, like
LpL model checking.

5.3 Implementation

5.3.1 Overall Solution Architecture

Owing to the greater complexity of the construction for LDL as opposed to LTL and CTL*, we
introduce several objects that collaborate in our implementation:

e 1d1_modality, which encapsulates a regular expression. These objects are created when
parsing the regular expressions inside dynamic modalities. They also support compilation
into marked e-NFAs.

e automaton_node and automaton_edge, which represent the nodes and edges of the e-NFAs
and the alternating automata.

e finite_nfa, which represents a marked e-NFA and supports computation of minimal
and maximal critical sets. We construct these objects when constructing the alternating
automata for an LDL formula of the form (@) or [¢p].

e dynamic_automaton, which represents an alternating automaton constructed for an LDL
formula and supports compilation into a symbolic Biichi automaton for composition with
the model being checked.

78 5.3. Implementation

e modal_formula, which coordinates the construction, use and destruction of the aforemen-
tioned classes.

At a high level, we modify or extend MCMAS to perform the following:
e Parse regular expressions and LDLK formulae (Section 5.3.2).
e Construct marked e-NFAs and support finding critical sets in these e-NFAs (Section 5.3.3).

e Construct a dynamic_automaton — an alternating automaton for the LDLK formula to be
checked (Section 5.3.4).

e Execute the symbolic breakpoint construction (Section 5.3.5).

e Construct the automata and perform the composition correctly when checking an LDLK
modal_formula (Section 5.3.6).

e Generate counterexample paths for LDLK formulae that do not hold (Section 5.3.7).

5.3.2 Expression Parsing

As before, the only section of MCMAS’ implementation of the ISPL grammar we needed to
change was the Formulae section; we would need to add the ability for users to specify LDL
formulae here. The following changes were made to the grammar:

1. We prefer users to explicitly state which specification language they are using, as previ-
ously discussed in Section 3.2.1. We added a new terminal, LDLPREFIX which is “LDL”.

2. The formlist nonterminal, which is used to parse lists of formulae (line 55 in Definition
2.45), was extended with several production rules allowing parsing of 1d1formulas.

3. The 1d1formula nonterminal was added, which has several production rules corresponding
to the syntax of LDL formulae. We reused the existing terminals for “<” and “>” which
are used for comparison of fixed-range integers, but added two new terminals for “[” and

M] 2

4. The 1dlmodality nonterminal was added, which has several production rules correspond-
ing to the syntax of the dynamic modalities in LDL. We reused the existing terminals
for “+” and “#”, which are already used to support arithmetic over fixed-range integers,

as well as “;” which is normally used to terminate statements, but had to add a new
terminal for “?” (which is used to represent tests).

5. Finally, we added suitable versions of the epistemicprefix and gepistemicprefix non-
terminals, to support LDL specifications while avoiding requiring the user to re-specify
that he was writing formulae in LDL.

In addition, we suitably extended syntaxcheck.cc to ensure that all atomic propositions ap-
pearing in each formula as well as in each dynamic modality were well defined. We also added a
further check to verify that the formulae in dynamic modalities (apart from tests) were propo-
sitional formulae (i.e. ensuring that syntactically malformed formulae such as ((p)q)r were
rejected), following the syntax of LDL presented in Definition 2.20.

The parsing step creates a modal_formula object for each LDL formula; at the root, these have
an op value (used internally within MCMAS to distinguish operators) of 80, using a technique

© 0 N O U R W N =

I N R R e T e e e
GR W N R O © XN O A W N~ O

© 0 N s W N

=
—= O

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 79

similar to our construction for LTL. We also used op values of 70 and 71 to refer to formulae of
the form (p)¢ and [p]®, respectively. Naturally, we had to extend modal_formula with an addi-
tional constructor that accepts a 1d1_modality as its first operand, and a modal_formula as its
second operand; the existing constructors only supported varying numbers of modal_formula
operands, or an atomic_proposition argument.

The 1d1_modality objects representing regular expressions are also created during parsing;
similar to modal_formula, we internally distinguish them using operator values. The class also
has multiple constructors, corresponding to the varying cases:

class 1ldl_modality:public Object

{
/* 0 = p
* 1 = p?
* 10 = ml;m2
* 11 = ml+m2
* 20 = mlx
x/

unsigned char op;
Object* obj[2]; // arguments
public:
// One argument, modal formula case
1dl_modality(unsigned char o, modal_formula * ml);

// One argument, modality case (star)
1dl_modality(unsigned char o, 1dl_modality * ml);

// Two modality arguments (+ and *)
1dl_modality(unsigned char o, 1dl_modality * ml, 1dl_modality * m2);

// Construct the marked eps-NFA
finite_nfa* build_regex_nfa();

// omitted: utility methods
}

5.3.3 e-NFAs and Critical Sets

The aforementioned 1d1_modality class has a build_regex_nfa() method, which constructs
the marked e-NFA for that dynamic modality. This is represented by the finite_nfa class,
which maintains a start state, a set of accepting states as well as a map of states to modal
formulae. We use a standard adjacency list representation for the automata, since we expect
said automata to be fairly sparse:

struct automaton_node

{
vector<automaton_edge*>* transitions;
}s
struct automaton_edge
{
automaton_node* endpoint;
bool is_epsilon;
modal_formula* transition_label;
3

The finite_nfa class itself is implemented with several factory methods that follow Thomp-
son’s construction (we have one method for each type). The class also features two key methods

© W N s W N

O N R R T e e e e
AR W N R O © XN oA W N~ O

[
(=]

80 5.3. Implementation

— epsilon_closure_minimal and maximal, which take a starting node and return all nodes in
the e-closure of said starting node, along with their minimal or, respectively, maximal critical
sets. We simply use an explicit set of sets of modal formulae here, as we find in practice that this
is not a performance bottleneck (even though, as noted in Section 5.1.2, this could potentially
use exponential space in the worst case).

The epsilon_closure methods directly implement the breadth-first search algorithm put forth
in Section 5.1.3. We directly iterate through the set of sets in the closure, looking for a subset;
this may potentially require exponential time in the worst case, as compared to the possible
guarantee of amortised linear time if we use a set-trie [83], but we have found this to not be a
performance bottleneck in practice as well.

5.3.4 Alternating Automaton Construction

The dynamic_automaton class is used to represent an alternating automaton. We highlight its
key fields and methods below:

class dynamic_automaton:public Object

{
map<automaton_node*, BDD>* transition_mapping;
automaton_nodex initial_state;
set<automaton_node*> accepting_states;
map<automaton_node*, BDD> state_map;
// omitted: private constructor populating the above fields
public:
// Constructs a dynamic automaton for the given formula and substitutions
static dynamic_automaton* construct_dynamic_automaton (
modal_formula* 1dl_formula, bdd_parameters* para,
map<modal_formula*, BDD>* epistemic_valuation);
// Return states from which the automaton has an accepting path
BDD check_dynamic_automaton(bdd_parameters* para);
// Construct a witness path.
// Named as such for consistency
bool build_cex (BDD* state, unsigned int index, bdd_parametersx* para,
vector<vector<int >*>* countex, map<int,BDD*>*x idbdd,
vector<vector<transition*>*>*x cextr);
// omitted: private utility methods
s

The contents of the fields are fairly self-explanatory, apart from the state_map; this maps nodes
of the automaton to BDD variables, which are used for efficient symbolic manipulation of the
transition mapping (especially when combining sub-automata) as well as compilation into sym-
bolic Biichi automata with the symbolic breakpoint construction (discussed in greater detail in
Section 5.3.5).

We use the factory pattern to create objects of this class, owing to the complexity of construc-
tion; given an 1d1_formula in negation normal form, a pointer to a struct bdd_parameters
which represents data about how MCMAS is using BDDs, and a mapping of epistemic subfor-
mulae to the states in which they hold, the construct_dynamic_automaton method builds an
alternating automaton that accepts precisely the paths on which the input 1d1_formula holds.

N OO e W NN =

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 81

T
p
-p
1

(1) Standard construction (2) Alternative, implemented construction

Figure 5.2: Alternative implementations of alternating automata for the atomic proposition p.

construct_dynamic_automaton recurses over the formation tree of the input 1d1_formula,
explicitly constructing the states of the alternating automaton (which we find acceptable, given
that it is only linear in the size of the formula — note that transitions are symbolically repre-
sented). We proceed by discussing the various cases in turn.

Base Cases

The base cases involve atomic propositions, epistemic modalities (recall that these are treated
as fresh atomic propositions holding in specific states), and negations of these (we have a pre-
condition that the formula is in negation normal form). We need to construct automata that
transition to T if the proposition holds (or its negation for negated atoms), and L otherwise;
this is pictured in item (3) in Figure 2.10.

Our implementation is slightly different; instead of handling T and | as special cases, we
introduce trap states which have the same effect, in that a transition into these trap states is
always (for T) or never (for 1) accepting. We thus introduce three states; a start state, an
accept state and a reject state. The transition mapping is defined such that the accept and
reject states always transition only to themselves, and the start state transitions into the appro-
priate state depending on whether or not the relevant proposition holds (negated or otherwise).
This is illustrated in Figure 5.2, and implemented as follows:
transition_mapping->insert (
make_pair (start_node,

(atomic_states * state_mapl[accept_node]) +

(latomic_states * state_map[reject_nodel]))
);
transition_mapping->insert (make_pair (accept_node, state_map[accept_nodel]));
transition_mapping->insert (make_pair(reject_node, state_map[reject_nodel));

(Note that if a proposition is negated, atomic_states is already negated before line 1 in this

listing.)

Finally, we mark the accept state (and only the accept state) as an accepting state of the
alternating automaton, and invoke the constructor.

Propositional Cases

For the propositional cases (A and V; we also support — for usability reasons), we first recur-
sively construct automata for the two subformulae. We then take the union of the two sub-

W N e

© 0 N o »

11
12

82 5.3. Implementation

automata. Further to that, we introduce a fresh starting state new_start which can transition
into either of (or both of) the sub-automata as necessary. The new starting state can transition
into the successors of the initial state of the sub-automata, depending on which propositional
case we are dealing with:

BDD first_successors

= automatonl—>transition_mapping—>find(automaton1—>initia1_state)—>second;
BDD second_successors

= automaton2->transition_mapping->find(automaton2->initial_state)->second;
if (op == 1) {

new_start_relation = first_successors * second_successors; // AND
} else if (op == 2) {

new_start_relation = first_successors + second_successors; // OR
} else if (op == 4) {

new_start_relation = !first_successors + second_successors; // IMPLIES
}

We then mark new_start as the only starting state. (Note that we cannot necessarily remove
either of the original starting states, since the sub-automata may not necessarily be acyclic.)

Modal Cases

We outline the implementation of our construction for (p)¢ or [p]¢. Note that our top-level
modal_formula has two arguments in this case — we have an 1d1_modality for p, and we have
a modal_formula for ¢.

We first recursively construct an automaton for ¢. We then construct the marked e-NFA for p
(using the build_regex_nfa() method introduced in Section 5.3.3). Next, we iterate through
the states of the marked e-NFA; we iteratively construct the updated transition relation for
each node, as well as (recursively) build automata for the tests (or their negations, for the box
case). For each state, we first retrieve its minimal or maximal e-closure using the methods
described in Section 5.3.3. We then iterate over every node in the closure and construct the
transition relation as indicated in Equation 5.2 for the diamond case, or Equation 5.3 for the
box case using BDDs. Whenever we encounter a test 6, we recursively construct an automaton
for it (diamond case) or its negation (box case), and add that automaton’s states and transition
relation to our current automaton (by taking the union).

Finally, we invoke the constructor. The starting state of the overall automaton is the starting
state of the automaton for p. It is worth noting that specifically for the box modality, there is
an additional step of making every node in the automaton for p accepting (since we are quan-
tifying over the cases after a successful match, not asserting the existence of a successful match).

We have thus covered all of the cases and outlined how, in practice, we construct a repre-
sentation of an alternating automaton (a dynamic_automaton) from a modal_formula after
suitable preprocessing (for the epistemic modalities, and conversion to negation normal form).

5.3.5 Symbolic Breakpoint Construction

We implemented a symbolic version of the breakpoint construction from [20], discussed in Sec-
tion 2.6.4, in the dynamic_automaton class. The construction featured in the paper is somewhat
more complex as it introduced an additional optimisation for parts of the alternating automata
that are very weak; for simplicity of implementation, as well as because the experimental results

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 83

were not conclusive, we use the “basic” breakpoint construction as outlined in Section 2.6.4.
We implement this as follows:

e We first create the BDD variables required by the construction. For each state s in the
alternating automaton:

— If s is accepting, we need to consider whether it is in the current set L, and whether
we will be transitioning to it in the next state (recall that we require two copies of the
variables for symbolic model checking, as explained in Section 2.4.3). We thus create
one additional BDD variable for the next states L’ (we reuse the BDD variables that
were used when constructing the transition relation for the alternating automaton
for checking whether states are currently in L). Let the variables for s be sz, and s/ .

— Otherwise, we create three additional BDD variables corresponding to whether s is
in the current set L, whether it is in R, as well as the next states for each of these
variables. (As before, we reuse the existing BDD variables for checking whether
states are currently in L). In this case, we refer to the variables for s as sz, sg, s,
and .

We thus declare three additional maps of automaton nodes to new BDD variables; these
maps are referenced throughout our construction. Let us define S;, to be the original set
of variables as found in the state map and Sg to be the set of variables checking whether
states are in the current R set. Furthermore, let S7 and S be the next versions of these
sets of variables.

e We want our symbolic structure to accept a path if and only if the alternating automaton
would also accept it. This is satisfied if R is perpetually empty; that is, we introduce one
fairness constraint F’ = /\Ses\F —SR.

e We then set up the transition relation. The authors of [20] decompose this into three
parts, which we follow in our adaptation for our implementation:

-1 = /\ (sg — 7). This captures the requirement from Section 2.6.4 that the
seES\F
subset R’ chosen must be a subset of L'.

— Tre = /\(sL — p(8)[SL/S]); p(s)[S]/S] refers to p(s) with a substitution, where
seS
the variables in S are replaced with the corresponding variables in S} . This term

expresses the requirement that the subsets of L’ may be transitioned into from the
current state.

~Tp = [F'A N\ (L =sm) | VI=F'A N (sr=p9)SLr/9)) |5 p(s)[S1R/S]
seS\F seS\F
again refers to p(s) with a substitution, though this time the variables in S are
replaced with the corresponding variables in S% for the rejecting states, and the
corresponding variables in S} for the accepting states. This captures the last clause
of the construction outlined in Section 2.6.4.

The overall transition relation is then 17 ATrc ATr. We construct the transition relation
symbolically using BDDs; in particular, we found the SwapVariables() method of the
CUDD package to be useful in setting up the substitutions here.

84 5.3. Implementation

5.3.6 Structural Composition and Path Finding

MCMAS, by default, caches the transition relation from one time step to the next; we need
to update this cache with the transition relation for our symbolic Biichi automaton. The
check_dynamic_automaton() method updates this cache, and then performs CTL model check-
ing for FGT with one additional fairness constraint (the aforementioned fairness constraint F’).

Before we return the result of the check for FGT, there are two postprocessing steps we need
to carry out:

e We only want to consider the states in which the symbolic Biichi automaton is also in
its initial state. This is obtained by taking the intersection of the result with a symbolic
representation of said initial states. Recall from Section 2.6.4 that the starting state of the
nondeterministic Biichi automaton is (s°,) — we thus only want to consider the starting

states where we have | s A /\ —sp A /\ -5k |. This is implemented as follows:

seS\{s°} seES\F
1 BDD result_fair = check_EG_fair (para->bddmgr->bdd0ne(),
2 para, accepting_BDDs);
3
4 BDD variable_id = (state_map.find(initial_state))->second;
5 result_fair *= variable_id;
6 for (map<automaton_nodex*, BDD>::const_iterator it = state_map.begin();
7 it !'= state_map.end(); ++it) {
8 if (it->second != variable_id) {
9 result_fair *= !(it->second);
10 }
11 if (rejecting_state_map.find(it->first) != rejecting_state_map.end()) {
12 result_fair *= !(rejecting_state_map[it->first]);
13 }
14}

e Furthermore, we want to return the states of the original model where the property holds;
in other words, any information about the states of the symbolic Biichi automaton itself
should not be returned as a part of our result. This is implemented by selecting any states
where, after the previous filtering step, there exists a valid starting configuration of the
symbolic Biichi automaton, as follows:

for (map<automaton_node*, BDD>::iterator state_map_it = state_map.begin();
state_map_it != state_map.end(); ++state_map_it) {
result_fair = result_fair.EXistAbstract(state_map_it—>second);
}
for (map<automaton_node*, BDD>::iterator
rejecting_state_map_it = rejecting_state_map.begin();
rejecting_state_map_it != rejecting_state_map.end();
++rejecting_state_map_it) {
result_fair = result_fair.EXistAbstract(rejecting_state_map_it—>second);

© 0 N O U W N

0}
The check_dynamic_automaton() method concludes with a small amount of cleanup work.

Finally, we extend the check_formula() method of the modal_formula class to handle the
modal cases for LDLK. Much like in our LTLK implementation, check_formula() should never
be called directly on a diamond or box modality (op values 70 and 71 respectively); instead, the
method should only be called on the LDL root (op value 80). We handle this case as follows:

© W N s W N

W N

© 0w N >«

11

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 85

modal_formula* nnf_formula
= (new modal_formula(3, (modal_formula*) obj[0]))->push_negations (0);

map<modal_formula*, BDD> epistemic_valuation;
nnf_formula->compute_epistemic_path_subformulae(para, &epistemic_valuation);
dynamic_automaton* da =
dynamic_automaton::construct_dynamic_automaton(nnf_formula, para,
&epistemic_valuation);
result = !(da->check_dynamic_automaton(para));

We first convert the negation of the current formula to negation normal form (NNF) in line 2.
We then compute the states in which all epistemic subformulae hold, using a similar approach to
our implementations for LTLK and CTL*K as in Section 3.2.3 (line 5). We construct a dynamic
automaton for our NNF formula, given the states in which all of the epistemic subformulae hold
(line 7), and call its check_dynamic_automaton() method to find the states in which there
exist an infinite path with the negation of our formula. Finally, we negate this to find the states
in which all paths satisfy our formula (line 9).

5.3.7 Counterexample Generation

We implemented counterexample generation for LDLK formulae in a similar manner to that
for LTLK and CTL*K. Suppose that the LDLK formula ¢ does not hold in all states; this
means that there is some state, from which there exists some path along which ¢ does not hold.
Thus, implementing LDLK counterexample generation involved constructing the symbolic Biichi
automaton for —¢, and then finding a witness for FGT in the composition of the model and
the automaton. The build_cex method in modal_formula constructs a dynamic_automaton
for ¢ and then calls said dynamic_automaton’s own build_cex method; this, in turn, sets up
the construction correctly and calls build_cex on EGT. This is implemented as follows:

modal_formula* spec = new modal_formula(ll, new modal_formula(5, NULL));
BDD result_fair = (state_map.find(initial_state))->second;
for (map<automaton_node*, BDD>::const_iterator it = state_map.begin();
it != state_map.end(); ++it) {
if (it->second !'= state_map.find(initial_state)->second) {
result_fair *= !(it->second);

}
}
*state *= result_fair;
bool successful_cex = spec->build_cex(state, index, para, countex, idbdd, cextr);

If MCMAS is invoked with the -c option, it will generate a suitable counterexample trace.

5.4 Performance Optimisations

We observed that our tool for model checking LDLK specifications could perform well on large
state spaces, if specification formulae were very small; conversely, for large formulae, the tool
did have some difficulty. Given that the LDLK model checking problem is PSPACE-complete,
and our algorithm as discussed in Section 5.1.5 has runtime linear in the size of the model but
exponential in the size of the formula, to some extent this may be unavoidable. Nonetheless,
we did explore several possible avenues for improving the performance of our implementation.

We considered optimising our tool’s behaviour in two dimensions — its performance on large
models, as well as its performance on large formulae.

g s W N =

W N e

© 0 N9 o O«

11
12

86 5.4. Performance Optimisations

5.4.1 Analysis on Large Models

Consider the Prisoners scenario discussed in Section 8.7; we attempt to verify the formula
[T*]-Ezxecute for N = 20 prisoners. The formula (and hence the automaton for the formula)
is very small — however, the model has just over 64 billion states (MCMAS reports this as
6.41709 x 10'%). We observed using the callgrind profiler that the runtime (in terms of
number of CPU cycles consumed) was dominated by computing the set of fair, reachable states.
(Paths have been shortened and function arguments truncated for clarity.)

20 reach = compute_reach(in_st, v, pv, a...);

61 => 777:BDD::operator=(BDD const&) (1x)

49,028,820,105 => computereach.cc:compute_reach(...) (1x)

...)
2 do_model_checking (para);
295,498,144 => model_checking.cc:do_model_checking(bdd_parametersx*) (1x)

The numbers on the left refer to the number of CPU cycles spent evaluating the relevant method.
Observe that in this case, computing the set of fair reachable states required more than 165
times as many CPU cycles as actually performing model checking. This does suggest that it
is not likely that our algorithm is very sensitive to increases in the size of the model, and also
suggests that it may be more worthwhile to investigate optimising the large formula case instead
of the large model case.

5.4.2 Analysis on Large Formulae

Again, we used the callgrind profiler to analyse the runtime behaviour of our implementation,
and visualised it using the kcachegrind tool. Consider Figure 5.3, which shows profiling data
for verifying the formula ((T; T)*)(recack) — ((T)*)(recbit A—recack)? for the bit transmission
protocol (introduced earlier in Section 2.2.2, with ISPL code in Appendix A). Note that in the
bit transmission protocol, there are only 22 reachable states.

The profiling data suggests that the time-consuming step in this case involved carrying out
the symbolic breakpoint construction (as opposed to, say, constructing the alternating automa-
ton, or performing model checking in the composition of the tableau and the model; these would
be reflected in construct_dynamic_automaton() or check_EG_true() respectively). We in-
vestigate this in greater detail using callgrind_annotate, which can give us an estimate of
the number of CPU cycles spent executing each line of the source code. Consider the following
excerpt from running callgrind_annotate on the output of callgrind (whitespace added and
comments removed for readability):

8 BDD symbolic_tramsition = t_I * t_LC * t_R;
78,129,202,979 => ?77:BDD::operator*(BDD const&) const (2x)

2 agents ->push_back (NULL) ;
1 para->vRT->push_back (symbolic_transition);
1 para->calReachRT = true;

vector<BDD> accepting_BDDs;
. accepting_BDDs.push_back(accepting_BDD);
9 BDD result_fair = check_EG_fair (para->bddmgr->bdd0ne (), para,
accepting_BDDs);
48 => 777:Cudd::bdd0One() const (1x)

2This property means “if the Sender receives an ack after some even number of states, then there is some
point in the path where the Receiver had received the bit, but the Sender had not received the ack.” This is
clearly true, as the Receiver only begins sending acks once the bit has been received.

Chapter 5. Linear Dynamic Epistemic Logic (LDLK)

87

| 1 X
| 1 x
dynamic_automaton::check_dynamic_

automaton(bdd_parameters#)
99,97 %

2z x

BDD::operator*(BDD const&) const

98.35 %

1211 x

(G636 187...

1434 994... 1285 667...

Figure 5.3: Approximation of CPU time used by each method when verifying

1166 630...

((T; T)Y*)recack) — ((T)*)(recbit A\ —recack), visualised with kcachegrind. This highlights
that check_dynamic_automaton() calls BDD operator* twice, but these two calls consumed

98.35% of the CPU cycles used by MCMAS.

13
14

88 5.4. Performance Optimisations

1,271,713,062 => utilities.cc:check_EG_fair (BDD, bdd_parametersx*,
std::vector<BDD, std::allocator<BDD> >) (1x)

This confirms that the symbolic breakpoint construction is indeed where most of the time is
being spent — the process of just composing t;, trc and tg itself already requires 61.4 times
as many CPU cycles as the EGT model checking step — and we thus decided to focus our
optimisation efforts toward this. We focused on improving performance in two ways:

1. Reduce the number of states in the alternating automaton. This would likely reduce
the time required for said breakpoint construction. For each state of our alternating
automaton, we require either 2 BDD variables (if it is accepting) or 4 (if it is not) in
our symbolic Biichi automaton. Thus, each state that we are able to prune from the
alternating automaton would reduce the Biichi automaton state space by a factor of 4 or
16 respectively.

2. Improve the efficiency of the way we compose tr, t o and tr (even though the final result
we compute is the same). This involves exploiting several logical equivalences (in partic-
ular, the commutativity and associativity of A) whilst considering the time complexity of
BDD operations.

5.4.3 Automata Simplification

We introduced four measures to reduce the number of states in the alternating automaton, as
follows.

1. Minimise e-NFAs to include only states that are directly reachable after non-
€ transitions. Consider the transition relations that we construct for our automata
(Equations 5.2 and 5.3). Observe that if we have a state s that does not have any
inbound non-e transitions, the state will never actually be transitioned to in the alternating
automaton (since it does not satisfy s € p,(s’, A) for any s’ and A), and can thus be
removed. We can thus construct the full marked e-NFAs from the modal expressions,
and filter the states to only consider those which have inbound non-e transitions, before
computing the transition relation and including them in our alternating automaton.

2. Avoid constructing automata for non-temporal tests. Consider that if we have
a test for a propositional formula ¢, whether the test succeeds or fails depends only on
the current state. Thus, instead of constructing an automaton for this test and transi-
tioning into it, it suffices to, for the relevant critical set, add a condition that we must
be in a state where ¢ also holds. We check if the test formula is non-temporal using the
is_NonTemporal () method of modal_formula. For example, we implement the construc-
tion of each term of the upper disjunct of Equation 5.2 for the s € .S, as follows:

if ((*prod_it)->is_NonTemporal ()) {
sum_term *= (*xprod_it)->check_formula(para);

} else {
modal_formula* nnf_formula = (*prod_it)->push_negations (0);
dynamic_automaton* nnf_automaton

= construct_dynamic_automaton(nnf_formula, para, epistemic_valuation);
state_map.insert (nnf_automaton->state_map.begin(),
nnf_automaton->state_map.end());
transition_mapping->insert (nnf_automaton->transition_mapping->begin(),
nnf_automaton->transition_mapping->end());
sum_term *= nnf_automaton->transition_mapping
->find (nnf_automaton->initial_state)->second;

© 0 N U W N

e
w N = O

accepting_states.insert (nnf_automaton->accepting_states.begin(),

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 89

14 nnf_automaton->accepting_states.end());

15}

16 required_tests += sum_term;

3. Propositional shortcircuiting. Suppose we have a propositional subformula ¢ (which
possibly uses epistemic modalities). While constructing a suitable automaton representing
this subformula is certainly correct, it is unnecessary as whether ¢ holds or not only
depends on the current state. Thus, we can treat all such subformulae as new atomic
propositions holding in precisely the states said propositional subformulae hold. This
leads to a boost in performance, as we avoid constructing the full dynamic automaton
representing ¢; for example, if ¢ is the conjunction of several non-temporal properties, we
can simply generate an automaton for ¢ that has just three states, rather than generating
the alternating automaton for the conjunction, which introduces more than three states
per conjunct (following Section 5.1.1).

4. Conjunct partitioning. Suppose we have a formula of the form ¢ A). While we can
construct an alternating automaton for both ¢ and v, it is likely to be substantially faster
if we separately construct automata for ¢ and v, and independently use the symbolic
breakpoint construction when building these automata (this gives us an O(3|¢| + 3“”)—
sized symbolic Biichi automaton construction, as opposed to O(3/¢1+1¥1)). This is safe:

Z,gEONY
<> on every path 7 starting at g we have Z, 7 E p A
<> on every path 7 starting at g, both Z,mn = ¢ and Z, 7 F ¢
+> (on every path 7 starting at g, Z, 7w F ¢) and (on every path 7 starting at g, Z, 7 F v)
~Z,gEpand Z,gF Y

This is implemented by performing a check on the abstract syntax tree of the modal_formula
before building the alternating automata, and rewriting our formulae accordingly.

5.4.4 Efficient Conjunct Computation

Recall that the symbolic breakpoint construction requires us to compute the conjunction of 77,
Trc and Tg, which were defined in Section 5.3.5. The former two terms 77 and Tp¢ consist of
many conjuncts, and owing to the commutative and associative properties of boolean AND, we
can select an order to construct this conjunction that is efficient as far as BDD manipulation
is concerned. Although Tg includes a disjunction, each of its disjuncts also consist of several
conjuncts — thus, we can construct each disjunct in a way that is efficient for BDD manipulation.

This is significant, since from [23] we have that the complexity of an apply operation on two
BDDs B; and Bz is O(|Bi| x |Bz|). Choosing an efficient order of operations can have a con-
siderable impact on runtimes. For example, consider the expression L A ¢ A ¢, where ¢ and ¥
have BDDs By and By, of size N > 1:

e Computing (L A (¢ A 9)) requires us to evaluate apply(A, By, By), which has time com-
plexity O(N?).

e Computing ((L A ¢) A 9) requires us to evaluate apply(A, By, By) and apply(A, Bo, By);
each of these operations has time complexity O(NN) and thus the overall time complexity

is O(N).

N e W N =

© 0w N Ot W N

90 5.4. Performance Optimisations

We first investigate Tp = | F' A\ (s = k) | V {~F'A N (sr— p(s)[Spr/S]) |. We
seS\F sES\F
compute each disjunct using an accumulator approach, as we find this works well in practice.
For instance, for the second disjunct, we have:
BDD rejection_term = (!accepting_BDD);
for (map<automaton_node*, BDD>::iterator afa_it = transition_mapping->begin();
afa_it != transition_mapping->end(); ++afa_it) {
if (accepting_states.find(afa_it->first) == accepting_states.end()) {
BDD substitute_relation = afa_it->second.SwapVariables(q_L, q_LRp);
rejection_term *= (!rejecting_state_map[afa_it->first] + substitute_relation);
}
}

We did consider using the distributive property of A over V to rewrite the expression as

Tp = A @V

¢€TrRp YETRN

where Trp = {F'} U{(s}, = s%) : s € S\F}, Tey = {~F'} U{(sy = p(S)[SLr/S]) : s € S\F}.
However, this did not seem to be effective, owing to the quadratic blowup in the size of the
formula. Even though each BDD in Tgrp is likely to be very small, meaning that the cost of
constructing the BDD for a single conjunct of T}, is also likely to be small, this appeared (em-
pirically) to be outweighed by the increased size of the formula. We thus compute Tk using an
accumulator BDD for each conjunct, and then applying V once (as outlined above).

Next, we investigate 17 = /\ (s — s7). Notice that by construction, the BDD repre-
seS\F
senting each conjunct of 77 is very small, possibly with just 2 non-terminal nodes. However
the BDD for 77 itself may potentially be very large, depending on the variable ordering used?.
Furthermore, consider that Tg is likely to already have used many or all of the variables in S},
or S%. We thus (generally speaking) do not anticipate a large increase in the BDD size, even as
we compute the conjunction of T and the individual conjuncts of T7. We found that using T
as an accumulator and iteratively computing its conjunction with the conjuncts of 17 was sub-
stantially more efficient in practice than computing 77 first and then evaluating apply(A, 11, TR).

Our reasoning for Trc = /\(SL — p(8)[SL./S]) is similar (though it is not necessarily the

ses
case that each conjunct is as small as that in 77, owing to the presence of the transition rela-

tion). We thus reuse our (accumulated) result of Tp A 17 as an accumulator, and iteratively
compute its conjunction with the conjuncts of Trc. This is implemented by constructing a
vector of conjuncts and iterating through them:

for (map<automaton_node*, BDD>::iterator afa_it = transition_mapping—>begin();
afa_it != transition_mapping->end(); ++afa_it) {
if (accepting_states.find(afa_it->first) == accepting_states.end()) {

// q’R implies q’L
target_BDDs.push_back ((!next_rejecting_state_map[afa_it->first] +
next_state_map[afa_it->first]));
}
}

for (map<automaton_node*, BDD>::iterator afa_it = transition_mapping->begin();

3That said, it may be linear as well, if we have a fortuitous variable ordering.

10
11
12
13
14
15
16
17
18
19

© 0w N Ot W N

I e T T o =
Qs W N = O

Chapter 5. Linear Dynamic Epistemic Logic (LDLK) 91

afa_it != transition_mapping->end(); ++afa_it) {
BDD substitute_relation = afa_it->second.SwapVariables(q_L, q_Lp);
target_BDDs.push_back(!state_map[afa_it->first] + substitute_relation);
}

// this is t_R, calculated above

BDD symbolic_transition = acceptance_term + rejection_term;

for (int i = 0; i < target_BDDs.size(); ++i) {
symbolic_transition #*= target_BDDs[i];

}

Further to the above, we also attempted to compute the conjunction of Tk and the individual
conjuncts of T7 and T ¢ in parallel. We implemented this using OpenMP [9], a popular parallel
programming framework:

#pragma omp parallel // Runs the following code block in parallel.
{
Cudd cudd(4 * transition_mapping->size(), 0, CUDD_UNIQUE_SLOTS,
options["cachesize"], options["maxmem"], 0);
Cudd_AutodynDisable (cudd.getManager ());
Cudd_ShuffleHeap (cudd.getManager (), para->bddmgr->getManager ()->invperm);
BDD privateBDD = cudd.bddOne ();
#pragma omp for nowait // no need to synchronize at end of loop
for (int i = 0; i < target_BDDs.size(); ++i) {
privateBDD *= target_BDDs[i].Transfer (cudd);
}

#pragma omp critical // need to synchronize access, CUDD not thread-safe
{
symbolic_transition *= privateBDD.Transfer (*x(para->bddmgr));
}
}

However, we found that this did not seem to improve performance, and in many cases even led
to a slowdown. This is for several reasons — firstlyy MCMAS’ BDD package CUDD [3] is not
thread-safe, and requires each thread to have a separate BDD manager which maintains hash
tables and caches for BDDs. We thus need to manually set up a BDD manager for each thread
(lines 3-6) and transfer each BDD from the original BDD manager to and from the thread’s
private manager (lines 10, 14). Furthermore, opportunities for caching to improve performance
across threads are not exploited, because caches are implemented at the BDD manager level
[3]. Secondly, as discussed earlier apply operations on BDDs scale with the product of the size
of the BDD operands; hence, computing partial results and combining these can actually be
significantly more expensive (and we found this to occur in practice).

We analyse in greater detail the impact of these performance optimisations in Chapter 8.

Chapter 6

Full Branching Time Dynamic
Epistemic Logic (CDL*K)

In this chapter we formalise the full branching-time extension of LDLK, CDL*K; this allows us
to specify properties concerning the existence of paths, which LDLK did not readily allow us to
do. We show that CDL*K subsumes both LDLK and CTL*K. We then provide an algorithm
for model checking CDL*K that builds on our LDLK algorithm, and show that it preserves the
same asymptotic time complexity as our LDLK algorithm.

We then discuss our implementation of a tool for symbolic model checking of CDL*K specifi-
cations, along with how we handled counterexample generation and optimised its performance.
The original work discussed in this chapter that was developed as part of this individual project
is as follows:

1.

Formalism of the syntax and semantics of CDL*K. To the best of our knowledge,
this is a novel logic; no other work on CDL*K currently exists.

CpL*Kk model checking algorithm. We show that the construction of [39] is applicable
to LDLK and CDL*K. We then outline how our LDL and LDLK algorithms from Chapter
5 can be used to check CDL*K properties.

. Proof that CprL*k is PSPACE-complete, with runtime exponential only in the

size of the formula. This means that CDL*K despite its high expressive power still
maintains the same theoretical complexity as LTL.

. Extension of MCMAS to support CbL*kK. We concretely implemented our CDL*K

model checking algorithm as an extension of MCMAS. This further augments the capa-
bilities of MCMAS, as there are CDL*K properties that are neither expressible in CTL*K
nor in LDLK (Lemma 6.3).

6.1 Syntax and Semantics

The syntax of CDL*K is defined as follows:

Definition 6.1. (CpL*k Path Formula) The syntax of a CDL*K path formula 1 is as follows:

1) := ¢ where ¢ is a CDL*K state formula; this will be defined shortly.

—p

93

94 6.1. Syntax and Semantics

We also include the abbreviations from propositional logic and for the box modality from LDL
(that is, where ¢ and ¢ are path formulas, L = =T, ¢V = =(=p A), ¢ = ¢ = —d V1,
o =(¢ = Y)A (Y —) and [p¢ = ~(p)=¢).

Definition 6.2. (CDL*K State Formulas) The syntax of a CDL*K state formula ¢ is as
follows:

¢ ::= p where p is an atomic proposition
| T
| ¢
| oAS
| E7% where ¢ is a CDL*K path formula
| K¢ where i€ X
| Er¢ whereI' C %
| Dr¢ whereI' C %
| Cr¢ where ' C ¥

As before, we also include the abbreviations from propositional logic. (That is, where ¢ and 1) are

state formulas, | = =T, ¢Vp = =(=pA—), ¢ = 1 = =¢pVp and ¢ <> Y = (¢ — V)A (Y — @)).
We also add an additional abbreviation, A¢ = =E—¢.

The semantics of CDL*K may be defined as follows:

Definition 6.3. (CpDL*K semantics) Let Z = <(Li, Acti, Py ti)iesueys 1 h> be an interpreted
system. Let g € G be a global state of the system and 7 be a path in Z. Then,

e 7, gF E1 iff there exists a path 7 starting at ¢g such that Z, 7 F 1.

Z,g E Ay iff on all paths 7 starting at g, we have Z, 7 E 1.

7,9 E ¢ otherwise follows the semantics of CTLK.
o I,mE ¢ iff Z,w(0) FE ¢ where ¢ is a CDL*K state formula.
e 7,7 FE 1 otherwise follows the semantics of LDLK.
We observe that CDL*K is a relatively expressive specification language:

Lemma 6.1. Every LDLK property may be expressed in CDL*K.

Proof. Consider the LDLK property ¢. We have Z, g E ¢ if and only if on every path 7 starting
at g we have Z,m F ¢. However, this is clearly expressible as the CDL*K property A¢, which
has the same semantics.

Lemma 6.2. Every CTL*K property may be expressed in CDL*K.
Proof. We have the same constructs available for the state formulae, so it suffices to show that
the CTL*K path formulae are expressible in CDL*K. We handle these by cases:

Chapter 6. Full Branching Time Dynamic Epistemic Logic (CDL*K) 95

o I,mE X¢iff T, m' £ ¢. This holds iff the suffix of 7 after dropping the first state satisfies

¢, and thus holds iff Z, w £ (T)¢.

o .7 E ¢Ut iff 3j > 0 such that Z,7/ £ ¢ and for 0 < k < j, Z,7* E ¢. This holds iff

Z,m E ((¢)*)1, which holds iff there exists some prefix of 7 along which ¢ holds at every
state, and 1 holds thereafter.

We revisit the ten statements we introduced in Section 2.3, and express them in CDL*K.

1.

10.

The train will leave the station in the next state: A([T](train leaves)).

. The train will not leave until the doors are closed: A({(—(train leaves))*)(close doors)).
. The train can leave at some point in the future: E({T*)(train leaves))

. It is always possible for the train to leave the station: A([T*]E({T*)(train leaves)))

. The train will eventually come to a permanent stop: A((T*)[T*|(stop)).

. It is always possible for the train to leave the station and the train will eventually come

to a permanent stop: A(([T*]E((T*)(train leaves))) A (T*)[T*](stop)).
The train always has the blue flag raised in the even states: A([(T; T)*](blue flag raised)).

It is always the case that if train A is in the tunnel, train B knows the tunnel is occupied:
A([T*]((A in tunnel) — K p(tunnel occupied))).

. If train A knows that train B is in the tunnel, train B knows that train A knows, and train

A knows that train B knows that train A knows, et cetera: A([T*](Ka(B in tunnel) —
Cr(B in tunnel))) where I' = { A, B}.

If the train has the blue flag raised in the even states, then the controller eventually knows
that the train can eventually come to a permanent stop:

A(([(T5 T)*](blue flag raised)) — (T*) Kcontrotter (E({(T*)[T*](stop))))

Thus, CDL*K is indeed considerably expressive; it subsumes all of the logics we have previously
analysed in this project, as shown earlier with Lemmas 6.1 and 6.2, and is even more expressive.

Lemma 6.3. There exist properties expressible in CDL*K that are not expressible in either
LDLK or CTL*K.

Proof. Property 10 in our example above is such a property. It mixes the universal and
existential path quantifiers (which LDLK cannot express), and includes a statement concerning
parity over a path (which CTL*K cannot express).

Nonetheless, it is worth noting that there certainly are temporal properties that are not ex-
pressible in CDL*K!.

'For example, the property that “if p holds for N continuous states, then once p does not hold, g must
immediately hold for N continuous states”; this corresponds to a non-regular language.

96 6.2. Algorithm

6.2 Algorithm

6.2.1 Recursive Descent

Our approach here is similar to that for extending our LTLK model checking tool to handle
CTL*K model checking as discussed in Section 4.1.1. The algorithm for checking if an LDLK
formula ¢ holds on all paths involves constructing a symbolic Biichi automaton for —¢, compos-
ing it with the model, performing model checking of FGT with a suitable fairness constraint
and finally complementing the result. This can easily be repurposed to check the CDL*K state
formula FE¢, which involves constructing a symbolic Biichi automaton for ¢, composing it with
the model, and performing model checking of EGT with a suitable fairness constraint. We can
thus directly adapt the LDLK algorithm to check CDL*K state formulae of the form A¢ or E¢,
where ¢ is a CDL*K path formula; this can be applied to check arbitrary CDL*K formulae.

This is best illustrated with an example; consider the CDL*K formula

¢ =E({((p? +q7); T)")r A Ka(A([T"]p — [T"]q)) A E([(p:7)"]a))
where p, g, r are atomic propositions. We proceed as follows.

1. First evaluate the states in which A([T*]p — [T*]¢) (in red) holds. This has the same
semantics as the LDLK formula [T*]p — [T*]g, so we can find the states in which this
holds.

2. Next, evaluate the states in which K, s (in blue) holds, where s is a fresh atomic proposition
holding in precisely the states where A([T*]p — [T*]q) holds — we know this because we
computed it in step 1. This can be computed using the epistemic accessibility relation for
the agent a.

3. Next, evaluate the states in which E([(p;7)*]q) (in green) holds. This has the form E1)
where 1 is a CDL*K path formula, so we can evaluate it.

4. Finally, evaluate the states in which E({((p?+¢?); T)*)r At Au), where t is a fresh atomic
proposition holding in precisely the states where K,s holds and u is another fresh atomic
proposition holding in precisely the states where E([(p;7)*]q) holds. We know both of
these, because we computed them in step 2 and step 3 respectively. Again, this has the
form E1), where 1 is a CDL*K path formula, so we know how to evaluate this.

6.2.2 Complexity Analysis

Recall from Section 5.1.5 that the complexity of our LDLK algorithm is O(max(2/?/1og 19l 3191|T])).
We claim that the algorithm above only requires O(max(2/?/1°¢ 19l 3I¢l|Z|)) time when combining
the results for subformulae at each step; this would allow us to use Lemma 5.2 to conclude that
the recursive descent procedure above preserves the O(max(2/?11¢1¢l 319/|7])) time complexity.
Observe that at each step in the recursion, we need to perform one or more of the following:

e Assign fresh atomic propositions to subformulae. This can be done in constant time for
each subformula, assuming a suitable data structure, and hence requires O(|¢|) time in
the worst case (since there can only be linearly many such subformulae).

e Find the states over which an epistemic modality holds. As discussed in Section 3.1.2 this
can be done in O(|Z|) time.

Chapter 6. Full Branching Time Dynamic Epistemic Logic (CDL*K) 97

e Perform model checking of a formula A¢ or E¢, where ¢ is a CDL*K path formula. This
can be done in O(max(2/¢11°8191 31#l|Z])) time, following our earlier result from Section
5.1.5.

e Evaluate a propositional formula over the states of the model (e.g. for a state formula
p A q). Observe that each operator can be evaluated in O(|Z|) time since this involves a
constant number of unions, intersections or complements over a set of states bounded by
size O(|Z|), and there are at most O(|¢|) such operators; so this would be bounded by

O(|o[1Z])-

Hence, the overall additional “work” we may need to do requires O(max(2/¢/1°81¢l 3I9l|Z|))
time. By Lemma 5.2 we have that our CDL*K model checking algorithm, as a whole, runs in
O(max(2/91oe1¢l 3I¢|7|)) time. Notice that based on this result, the runtime is exponential only
in the size of the formula (not in the size of the model).

6.3 PSPACE-Completeness of CDL*K

Theorem 6.1. Model checking of CDL*K is PSPACE-complete (assuming that the model M
is given explicitly).

Proof. We first show PSPACE-hardness by reducing the problem of model checking LDL,
which is known to be PSPACE-complete [96], to the CDL*K model checking problem. Suppose
we have a model M, a state s and a LDL formula ¢. The LDL model checking problem then
involves determining if M, s F ¢, which holds if on every path 7 starting from s, M, 7 E ¢.
This matches precisely the semantics of the CDL*K formula A¢ i.e.

M, sErpL ¢ < M, s Eqpx Ag

where the turnstile subscripts indicate the logic involved. Thus, (M, s, ¢) is a yes-instance
of LpL model checking if and only if (M, s, A¢) is a yes-instance of CDL*K model checking.
Constructing A¢ from ¢ can clearly be carried out in polynomial time. Thus model checking of
CpL*K is PSPACE-hard.

We then show PSPACE membership, by showing that the recursive descent approach pre-
sented in Section 6.2 operates in polynomial space if we use a polynomial space algorithm for
LpL model checking (which exists, since LDL model checking is PSPACE-complete and hence in
PSPACE). Consider that the maximum possible depth of the recursion is bounded by the length
of the formula, and is thus polynomial in the input size (thus, it is safe for us to keep track of
where we are in the recursion — for example, with a stack). Furthermore, at each step of the
recursion, we may have to perform one or more of the following tasks, following our argument
in Section 6.2.2:

e Assign fresh atomic propositions to subformulae. There can only be polynomially (lin-
early, in fact) many subformulae, and thus maintaining a mapping (say) of a fresh atomic
proposition to a subformula can easily be done in polynomial space.

e Find the states over which an epistemic modality holds. The epistemic accessibility rela-
tion as well as the states over which said epistemic modality holds can be computed in
polynomial space (a naive algorithm could simply check each of the O(n?) pairs of states
and record whether they are observationally equivalent to the relevant agents).

98 6.4. Implementation

e Perform model checking of a formula A¢, where ¢ is a path formula. We invoke the
polynomial space LDL model checking algorithm on ¢ for this case.

e Perform model checking of a formula E¢, where ¢ is a path formula. We invoke the
polynomial space LDL model checking algorithm for checking —¢, and take the complement
of the result. This can be done in polynomial space; consider that if f(x) is a polynomial,
then f(x + ¢) for constant c is also a polynomial, by the binomial expansion [33]. We can
thus safely assert that the LDL model checking algorithm still runs in polynomial space;
the complement can be done in space O(|M]), which is clearly polynomial in the input
size.

e Evaluate a propositional formula over the states of the model (e.g. for a state formula
p A q). Evaluating an operator involves a constant number of unions, intersections or
complements over sets of states bounded by size O(|M]). There are at most O(|¢|) such
operators, and the result of each computation takes up O(|]M|) space, so we would use at
most O(|¢||M|) space, which is certainly polynomial in the size of the input.

Thus, each of these steps can be carried out in polynomial space, and there is a polynomial
number of such tasks (since the recursion depth is polynomial, and the number of tasks at each
level of the recursion is at most constant; note that we have grouped similar tasks together).
Hence, even if we store all of our intermediate results, the overall space used is still polynomial.
Thus, CDL*K model checking can be done in polynomial space — i.e. it is in PSPACE.

Combining our results for hardness and membership gives us that CDL*K model checking is,
indeed, PSPACE-complete.

It may be worth noting that our implementation for LDLK may not necessarily use polynomial
space, because it constructs a symbolic Biichi automaton of exponential size using BDDs, which
can use exponential space in the worst case [66]. Nonetheless, we believe this is outweighed by
the average-case efficiency of BDDs.

6.4 Implementation

6.4.1 Overall Solution Architecture

We extended several existing objects and methods to add support for CDL*K model checking.
We did not have to add any new classes for this; the collaborating objects and the roles they
play are similar to that for LDLK (as described in Section 5.3.1). At a high level, we modify or
extend MCMAS to perform the following:

e Parse CDL*K formulae (Section 6.4.2).
e Add support for model checking of E¢, where ¢ is a CDL*K path formula (Section 6.4.3).

e Implement the recursive descent approach for dealing with nested path or epistemic modal-
ities (Section 6.4.3).

e Generate counterexample paths for universally quantified CDL* formulae that do not hold,
and generate witnesses for existentially quantified CDL*K formulae that do hold (Section
6.4.4).

e Extend the performance optimisations implemented for LDLK formulae to CDL*K formulae
(Section 6.4.5).

© W N s W N

e
w N = O

Chapter 6. Full Branching Time Dynamic Epistemic Logic (CDL*K) 99

6.4.2 Expression Parsing

We extended the implementation of the ISPL grammar to support parsing CDL*K formulae.
The following changes were made to the grammar:

e As before, we prefer users to explicitly indicate their specification language of choice. A
new terminal CDLSPREFIX which is “CDL*” was added, which allows users to specify a
CpL*K formula.

e The formlist terminal was extended. This terminal parses lists of formulae; we extended
it with several production rules allowing it to parse cdlsformulas.

e The cdlsformula nonterminal was added, which has production rules corresponding to
the syntax of CDL*K state formulae.

e The cdlspathformula nonterminal was added, which has production rules corresponding
to the syntax of CDL*K path formulae. For usability and clarity of output reasons (as
discussed in Section 4.2.1), we opted to keep the terminals for LDL formulae and CDL*K
path formulae separate.

e Finally, we added new versions of the epistemicprefix and gepistemicprefix nonter-
minals to support CDL*K formulae without respecifying that the formulae inside epistemic
modalities would also be in CDL*K.

The syntax check step (syntaxcheck.cc) was also extended to verify that all atomic proposi-
tions in a CDL*K formula were well-defined.

6.4.3 E¢ and Recursive Descent

Most of the complex logic for constructing a suitable alternating automaton, converting it into
a symbolic Biichi automaton and composing it with the model was kept separate from the main
modal_formula class. Previously, our method for an LDL formula ¢ involved converting —¢
to negation normal form, building the automaton, checking EGT in the composition of the
model and our automaton, and finally negating the result; this is the same approach we use for
formulae of the form A¢ (which have the same semantics).

The approach for E¢ is very similar. However, the initial and final negations are unneces-
sary — we convert ¢ to negation normal form, build the automaton for it and check EGT in the
composition of the model and our automaton. This is implemented as follows:

case 82: // CDL*’s E
{

modal_formula* nnf_formula = ((modal_formula*) obj[0])->push_negations(0);

map<modal_formula*, BDD> epistemic_valuation;
nnf_formula—>compute_epistemic_path_subformulae(para, &epistemic_valuation);

dynamic_automaton* da =
dynamic_automaton::construct_dynamic_automaton(nnf_formula,
para, &epistemic_valuation);
result = da->check_dynamic_automaton (para);
break;

100 6.4. Implementation

We also extend the compute_epistemic_path_subformulae() method to treat the CDL*K A
and E tokens as top-level path subformulae. They will thus be computed first (line 6) and subse-
quently treated as fresh atomic propositions when we build the dynamic automaton. Similarly,
we extended the construct_dynamic_automaton() method to be aware of the possibility of
encountering these tokens, and to construct the automata accordingly, treating these as atomic
propositions.

6.4.4 Counterexample and Witness Generation

The algorithm for counterexample or witness generation for CDL*K properties is very similar
to that for LDLK; the paths found when we check EGT in the composition of the model
and our automata are precisely the witness paths (for E-quantified formulae that are true) or
counterexample paths (for A-quantified formulae that are false). We extended the build_cex ()
method of modal_formula to handle the additional cases.

6.4.5 Performance Optimisations

Since our CDL*K algorithm uses the same methods from dynamic_automaton as the LDLK
algorithm, the optimisations for LDLK discussed in Section 5.4, apart from conjunct partition-
ing, are automatically applied to our CDL*K algorithm. We also added support for conjunct
partitioning when dealing with CDL*K formulae of the form A(¢ A). There was one further
optimisation specific to CDL*K that we added — disjunct partitioning. This is the natural ex-
tension of conjunct partitioning (item 4 in Section 5.4) to E-quantified formulae; we rewrite
formulae of the form E(¢ V 1) to (E¢) V (Ev), as long as ¢ V 1 is not propositional (if it is,
propositional shortcircuiting applies first):

Z,9F E(¢ V)
<> there exists a path 7 starting at g we have Z, 7w F ¢ V ¢
<> there exists a path 7 starting at g with Z,n E ¢ or Z, 7w F ¢
+ (exists a path 7 starting at g with Z, 7 F ¢) or (exists a path 7 starting at g with Z, 7 F v)
T, gEEporZI,gF Ey
—T,gE EpV Ey

Thus as required the optimisation is safe.

Chapter 7

Finite Trace Semantics

The logics we have discussed in the previous chapters deal with infinite traces. However, the
synthesis problem (that is, given a specification, generate a model that satisfies the specification)
is very difficult in the infinite trace case, but often feasible in the finite trace case [35]. Further-
more, finite traces and synthesis over finite traces are sufficient for many real-world applications,
such as planning in artificial intelligence [35] or monitoring business meta-constraints® [36].

In this chapter we first introduce LDL over finite traces (LDLy), which was introduced by
De Giacomo and Vardi in [35]. We then formalise the corresponding full branching time version
with epistemic modalities — CDL*K with finite trace semantics (CDL*K). Next, we introduce
an original algorithm for reducing CDL* yK model checking to CDL*K model checking, and show
that CDL* K is also PSPACE-complete. We conclude with discussing our extension of MCMAS
to support verifying properties using these finite trace semantics. The original work discussed
in this chapter that was developed as part of this individual project is as follows:

1. Formalism of CDL*K over finite traces, CDL* K. To the best of our knowledge, this
interpretation of CDL*K is also novel.

2. CpL* K model checking algorithm, and proof of correctness. We introduce the
concept of a path terminator agent, and use this agent to reduce the CDL* ;K model
checking problem to the CDL*K model checking problem.

3. Proof that CpL* ;K is PSPACE-complete, with runtime exponential only in the
size of the formula. This shows that CDL* /K has the same theoretical complexity as
LrLy (LTL on finite traces), which is already PSPACE-complete [35].

4. Extension of MCMAS to support finite trace semantics (LDL;/K and CDL*/K).
We augment our CDL*K extension of MCMAS to support verifying LDLK and CDL*K
properties over finite traces. To the best of our knowledge, this is the first model checking
tool for these specification languages as well.

7.1 LbL over Finite Traces (LDLy)

The syntax of LDLy is precisely the same as that of LDL (as introduced in Section 2.3.4).
However, the semantics are adjusted for the setting of finite traces:

1For example, for a payroll process, a constraint could be “employees cannot be paid severance pay until they
leave the company”.

101

102 7.2. CDL*K over Finite Traces (CDL*¢K)

Definition 7.1. (LDL; semantics) Let 7 = <(Li,Acti,Pi,ti)iegu{E},I, h> be an interpreted
system. Let 7w be a path in Z. Furthermore, let Last be a nonnegative integer, indicating the
index of the last state of 7 that should be considered. Then,

o 7,7, Last F p iff 7(0) € h(p).

o T w,LastFET.

e 7,7, Last F —¢ iff it is not the case that Z, w, Last F ¢.

o I.m,LastE ¢ Ny iff Z, 7, Last E ¢ and Z, 7, Last E .

e T, Last F {p) ¢ iff there exists 0 < i < Last s.t. (0,i) € R(p,n) and Z, ', Last F 1.

R is defined in the same way as in Definition 2.21.

Similar to LDL, for a global state ¢ € G, we have Z,g F ¢ iff on every path m and every
possible choice of Last starting at g we have Z, w, Last E ¢.

7.2 CDL*K over Finite Traces (CDL*/K)

Again, the syntax of CDL*/K is identical to that of CDL*K; we adjust the semantics of the
path formulae to match that of LDL; path formulae. In other words, as in LDLf, we have
T, 7, Last = (p) ¢ iff there exists 0 < i < Last such that (0,i) € R(p,n) and Z, 7" F 1. More
formally, we have

Definition 7.2. (CpL* K semantics) Let Z = <(Li, Acty, Piyti)iesuieys 1, h> be an interpreted
system. Let g € G be a global state of the system and 7 be a path in Z. Then,

o 7,g E E1 iff there exists a path 7 starting at g and value of Last such that Z, 7, Last F 1.

Z,g E Ay iff on all paths 7 starting at g and all values of Last, we have Z, w, Last F 1.

Z,g E ¢ otherwise follows the semantics of CTLK.

I,7m,LastE ¢ iff Z,m(0) E ¢ (where ¢ is a CDL* /K state formula).

T, 7, Last F 1 otherwise follows the semantics of LDL;K (that is, LDL; extended with
epistemic modalities).

We perform model checking of CDL* K by reducing the problem to that of model checking
CpL*K. This is done by introducing an additional path terminator agent, whose purpose is
simply to keep track of whether the current path is still “alive” or not.

Definition 7.3. (Path Terminator) A path terminator P is an agent in an interpreted system,
which has local states Lp = {alive,dead} and actions Actp = {continue, stop}. Furthermore,
Pp(alive) = {continue, stop}; Pp(dead) = {stop}. The evolution of P is such that P is alive
after a continue action and dead after a stop action.

When performing verification, we want the agent to start in the “alive” state, indicating that
the current path is still alive, but at some (nondeterministic) point transition to the “dead”
state, indicating that the current path has ended. Furthermore, to ensure that we only consider
finite traces, we add an additional fairness constraint, that the agent is dead. This removes the
runs where the agent is alive infinitely often.

Chapter 7. Finite Trace Semantics 103

Now, observe that we can simulate any given value of Last, because it is possible for the path
terminator to remain in the alive state precisely Last times, and then thereafter transition to
the dead state. To enforce the changed semantics for (p) ¢, we introduce a finite translation
function, as follows:

Definition 7.4. (Finite Translation) Let ¢ be a CbDL* path formula. Then, we define the
finite translation of ¢, f(¢), as follows:

f(p) = p, where p is an atomic proposition
f(=0) = ~f(9)
fFoNd) = F(@) N F(¥)

o f({p)p) = (p)(Alive A ¢), where Alive is an atomic proposition holding if and only if the
path terminator is alive.

Theorem 7.1. Let 7 = <(Li,Acti,Pi,ti)iEEU{E},I, h> be an interpreted system; furthermore,
let 70 = <(Li7ACtiy-Piuti)iEEU{E,PathTerminator}7Ila W) be an interpreted system, where I’ is I
with Alive true, and h’' has the Alive atomic proposition. Then, for a given path 7 in Z and
nonnegative integer Last, let 7’ be a path in 7', that is 7 augmented with the path terminator
being alive in the first Last steps and dead thereafter. Let Z, 7 Frnore ¢ denote ¢ holding on
7 over finite traces, and Z, w Eqyre ¢ denote ¢ holding on 7 over infinite traces. Then,

Z,m, Last Frmre ¢ < Ila 7’ FInrinre f(¢)

Proof. Consider that the semantics are identical apart from the (p)¢ case. We handle this
case by structural induction; we assume as the inductive hypothesis that Z, 7, Last Frire @ <
7' 7" Erxemare f(¢), and also that R(p,7) = R(p,n’). Throughout the rest of the proof, we
define F unqualified as Fiypinre. Observe that we have

Il? ud FIneiniTe f(</0>¢)
I, 7 E (p)(Alive A f(9))
") and T, 7" E Alive A f()

< Ji >0s.t. (0,7) € R(p, 7

<3 >0s.t. (0,i) € R(p,n’) and Z, 7" E Alive and Z, 7" F f(¢) by definition of A
<3 >0s.t. (0,9) € R(p,7') and (i < Last) and Z, 7" E f(¢) by construction of 7’
<30 <i < Last s.t. (0,i) € R(p,n’) and Z, 7" E f(¢)

<30 < i < Last s.t. (0,i) € R(p,) and Z, 7, Last Epmrs ¢ by the inductive hypotheses

1,7, Last Frre ¢

as required.

Since the above theorem applies for all values of Last, and we can simulate all possible values of
Last by giving the path terminator nondeterministic behaviour as described above, we have re-
duced CbL* K model checking to CDL*K model checking, for which we can use our existing tool.

We conclude this section with a proof concerning the complexity of this logic.

Theorem 7.2. CbL* ;K model checking is PSPACE-complete (assuming that the model M is
given explicitly).

104 7.3. Implementation

Proof. We first show PSPACE-hardness, by reduction from LDL; model checking, which was
shown to be PSPACE-complete in [35]. Suppose we have a model M, a state s and a LDLy
formula ¢. The LDL; model checking problem then involves determining if M, s F ¢, which
holds if on every path 7 starting from s and every value of Last, M, w, Last F ¢. This matches
the semantics of the CDL* K formula A¢ i.e.

M, sFLpL, ¢ > M, s ':CDL*fK A¢

where the turnstile subscripts indicate the logic involved. Thus, (M, s, ¢) is a yes-instance of
LpL; model checking if and only if (M, s, Ap) is a yes-instance of CDL* ;K model checking.
Constructing A¢ from ¢ can clearly be carried out in polynomial time. Thus model checking of
CpL*¢K is PSPACE-hard.

Membership in PSPACE follows by the reduction presented above. Since as demonstrated above
we can reduce CDL* ;K model checking to CDL*K model checking, which as shown in Section
6.3 is in PSPACE, and PSPACE is closed under reduction [97], membership follows. Note
that the reduction can easily be done in polynomial time, since we add 1 agent which has 2
states (so, at most, we need to generate linearly many more additional states), add 1 (constant)
fairness constraint and compute the finite translation (which is linear in the size of the formula).
Hence, as required, CDL* yK model checking is PSPACE-complete. The runtime is clearly also
polynomial in the size of the model, since the reduction is doable in time polynomial in the
size of the model, it increases the model size only by a constant factor, and the CDL*K model
checking step is also, itself, polynomial in the size of the model. Thus, we have exponentiality
only in the size of the formula.

7.3 Implementation

We introduced or extended several files from MCMAS to add support for CDL* fK model check-
ing:

e 1d1f.cc which contains a collection of utility methods for constructing the path termi-
nator, computing the finite translation function over modal formulae, as well as string
constants relating to these;

e 1d1f.hh which contains an interface to the relevant utility methods and string constants;
e read_options.cc which is updated to recognise the new flag we introduce (Section 7.3.1);

e modal_formula.cc which is updated to invoke the finite translation function (from 1d1f.cc)
on LbLyK and CDL* K formulae if the flag is set;

e main.cc which is updated to call into the relevant methods from 1d1f.cc to set up the
path terminator agent, if the flag is set.

We also added several tests over finite trace semantics, and extended the check.py script to
call MCMAS with the correct command-line options for these tests.

7.3.1 Specifying Finite Trace Semantics

We added a new command-line flag -1d1f that allows users to specify that they want LDLK
and CDL*K properties to be verified over finite traces. This was chosen as opposed to having
the user specify this on a per-formula basis (e.g. using “LDLf <p#*>[g*]r” to mean the LDL

© 0 N O s W N =

N e e
= W N = O

Chapter 7. Finite Trace Semantics 105

formula (p*)[¢*|r verified over finite traces), primarily because MCMAS constructs the full
model before verifying any properties on it, and the path terminator agent that we introduce
for verifying LDLK or CDL* ;K would cause the size of our model to double. This could slow
down verification of the properties specified over infinite traces (since all of our model checking
algorithms are linear in the size of the model). Note that the inclusion of this flag does not
affect the results returned by the algorithms for the other logics; for instance, an LTL formula
will always be verified with infinite trace semantics even if the -1d1f flag is passed.

7.3.2 Input File Preprocessing

Observe that the path terminator agent can be expressed in ISPL as follows:

Agent PathTerminator

Vars:
alive : boolean;
end Vars
Actions = {continue, stop};
Protocol:
alive=true : {continue, stop};

alive=false: {stop};
end Protocol
Evolution:
alive=true if (Action=continue);
alive=false if (Action=stop);
end Evolution
end Agent

We did initially consider simulating the creation of such an agent internally. However, the logic
for creating such an agent was somewhat convoluted; it seemed distributed over various parts
of the parsing and syntax checking stages. We thus found it considerably easier to, instead,
construct a temporary file with the additional agent, evaulation variables, specific initial states
and fairness formulae. (The latter three requirements could have been established internally
without too much difficulty; however, given that we were constructing such a temporary file,
we decided that it was very simple to add these constructions here.)

We implement the creation of such a temporary file in the 1d1f.cc class; we have a method
void build_1dlf_file(string filename) that, given a string filename (which is typically
taken from the command line arguments supplied to MCMAS), creates a temporary file with
the additional constructions. This method relies on patterns in the syntax of an ISPL file (see
definition 2.45), as well as an internal guarded_find method that helps us find the locations of
critical tokens. We add the aforementioned constructs in the following positions:

e We add the PathTerminator agent just before the Evaluation section (that would be at
the end of the Agents section). In practice, we actually add PathTerminatorN, where N
is the smallest natural number for which this string is never found in the original ISPL
file. This is done to avoid potential naming conflicts.

e We add one propositional variable to the Evaluation section, Alive holding if and only if
PathTerminatorN.alive = true; N was the number from the previous step. In practice,
again to avoid conflicts with other evaluation variables, we in practice add AliveM, where
M is the smallest natural number for which this string is not found in the ISPL file.

e We add to the InitStates the constraint that the path terminator is initially alive (i.e.
PathTerminatorN.alive=true). This is added as a conjunct to the existing InitStates.

© 00 N R W N =

—= e
=]

106 7.3. Implementation

e [t is uncertain what the semantics of Fairness constraints are meant to be along a finite
path; the LDL/CDL* interpretation of a fairness constraint p, T*p over finite trace
semantics holds iff p holds in the last state being considered on a path. Currently, we
ignore the user’s Fairness section and replace it with our own, with 'AliveM as the only
fairness constraint (or add a Fairness section if none exists since this is optional in ISPL).
For usability reasons, we print a warning if the input file did contain a Fairness section,
highlighting that any fairness constraints the user may have specified are being ignored.

We then use this temporary file as input to the parser, which suitably constructs the relevant
agents, propositions etc. following the “existing” workflows of MCMAS.

7.3.3 Finite Translation Function

We have notably not included the finite translation function in the previous step, owing to
technical reasons — this translation is inductively defined, and we find that it is much more
easily done after the parser has done its work and generated a formation tree for the formula.

We implement this translation function as 1d1f_augment () in 1d1f.cc; it consumes a pointer
to a modal formula (in practice, a path formula) and returns a pointer to a new formula cor-
responding to the finite translation of the input. The method is implemented following said
translation — for the diamond modality, this is done as follows:

case 70: // diamond
{
string* eval_property_name = new string(Ldlf::EVAL_NAME);
modal_formula* conjunct_augmented
= new modal_formula (1,
1d1f_augment ((modal_formula*) (formula->get_operand(1))),
new modal_formula(new atomic_proposition(eval_property_name)));
return new modal_formula (70,
(1ldl_modality*) (formula->get_operand(0)),
conjunct_augmented);

}

For the diamond case we have implemented the finite translation from Definition 7.4. For
the box case we have implemented f([p]¢) = [p](Alive — f(¢)); consider that this is correct,
because we have

F(616) = F(~{p)~9) since [pl = ~(p)o
=-f({p)—0) by definition of f
= —(p)(Alive A f(—¢)) by definition of f
= —(p)(Alive N = f(¢)) by definition of f
= —(p)~(—Alive V f(9)) De Morgan’s laws, double negation
= —(p)—(Alive — f(¢9)) definition of implies
= [pl(Alive - £(6)) since [p]¢ = (o)

This function is called from the check_formula() method of modal_formula prior to model
checking a formula of the form A¢, F¢ or an LDLK formula ¢, if the -1d1f flag is set. It is
worth noting that this check takes place after we check whether propositional shortcircuiting,
discussed in Section 5.4, is applicable; this is safe since from Definition 7.4 propositional formulae
will not change under finite translation. Note that because we convert the CDL* K model
checking problem to a CDL*K model checking problem, the optimisations we have implemented
in Sections 5.4 and 6.4.5 are all still applicable.

Chapter 8

Experimental Evaluation

In this chapter we first outline how to install and use MCMAS-Dynamic, the extension of MC-
MAS that we have developed to support LTLK, CTL*K, LDLK and CDL*K specifications (as
well as finite trace semantics for the latter two). We then discuss the set of acceptance tests
we have constructed, to give us evidence that our tool behaves as expected and to allow us to
make changes more confidently.

We then discuss our setup for investigating the performance of our tool. Finally, we anal-
yse our tool’s performance over several scalable scenarios, considering how it scales with model
and specification size, as well as how the algorithms for the varying specification languages
compare.

8.1 Installation and Usage

MCMAS is distributed as an open source tool; the latest version may be downloaded from [10].
The user can download a zipped archive of the source files, and then run make to build the
CUDD BDD package [88] and MCMAS.

The installation and build process for MCMAS-Dynamic is similar. It is worth noting, however,
that the installation process for both tools is actually dependent on several additional utilities
which are required to build the program:

e make to run suitable commands to build the tool,
e flex and bison, which are used to generate a parser from the MCMAS grammar files,
e a suitable C++ compiler (one can set this in the Makefile; the default is g++), and

e (Optional, and newly added) python for the various testing utilities (sanity checks, as well
as performance benchmarking).

These utilities, if not already available, can be installed using apt-get. After make has com-
pleted, it may be useful to first run the check.py script in the test directory, which runs a
suite of system tests to uncover possible problems (whether with the build process or otherwise).

MCMAS-Dynamic is generally used in a similar way to MCMAS; the usage of MCMAS itself is

described in Section 2.8.1. It is invoked from the command line, accepts suitable arguments, and
processes the input ISPL file (at a high level, following the steps outlined in Section 2.8.2). Our

107

© 0w N Ot W N

W WO NN NN NN RN NN R R R e e e e
O © ® N O G A W N = O © 0 N3O A W N~ O

108 8.2. Acceptance Tests

extension does support some of the existing command line options (in particular, counterexam-
ple generation with -c and verbose output with -v). Furthermore, we added one command line
option; if one wants to verify LDLK or CDL*K properties over finite traces, one should specify
the -1d1f flag. MCMAS-Dynamic then produces output:

K ok ok ok ok ok sk ok ok sk o ok sk ok ok ok ok o ok sk ok o ok ok o ok sk sk ok ok ok ok ok sk sk K ok ok o ok ok sk ok ok sk ok ok ok ok ok sk ok 3 ok ok ok ok ok sk ok ok ok ok ok sk ok K ok ok ok ok K
MCMAS -Dynamic v1.2.3

This software comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Please check http://vas.doc.ic.ac.uk/tools/mcmas/ for the latest release.
Please send any feedback to <mcmas@imperial.ac.uk>
Kok ok K KoK o oK K KK oK oK K KK oK oK oK K oK oK ok K KoK ok oK K KK ok ok K KK ok ok K oK K oK oK K oK K oK oK o oK K oK oK o ok K oK oK o ok K KoK oK ok K KK ok K

Command line: ./mcmas -1d1f examples/strongly_connected.ispl

Warning: LDL/CDL* on finite traces is incompatible with fairness constraints.
(it’s not possible to have something infinitely often on a finite path.)
examples/strongly_connected.ispl has been parsed successfully.
Global syntax checking...
Done
Encoding BDD parameters...
Building partial transition relation...
Building BDD for initial states...
Building reachable state space...
Checking formulae...
Building set of fair states...
Verifying properties...
Formula number 1: (F (G stop)), is TRUE in the model
Formula number 2: <(tt)*>[(tt)*]stop, is FALSE in the model
Formula number 3: (A <(tt)*>stop), is TRUE in the model
done, 3 formulae successfully read and checked
execution time in ms = 25 (0.025 s)
number of reachable states = 12
BDD memory in use = 9832784

There are a few differences with “vanilla” MCMAS:

e Of course, we see here the verification of LrL, LDL and CDL* properties (lines 25-27,
respectively), which MCMAS did not previously support.

e We observe the new flag -1d1f for finite trace semantics (line 11), which the LpL and
CpL* properties were verified over. We also observe the warning that the user’s fairness
constraints were overridden (lines 13-14).

e The model under examination is that from Figure 2.2 with s; as the only starting state.
We note that the LTL property is still verified over infinite traces (line 25; it remains true,
while the LDL property in line 26 which has the same semantics over infinite traces is
actually false when interpreted over finite traces — consider the finite trace s, s2).

e We also observe that the execution time output is now given more precisely (line 29). The
reason for this change is discussed in Section 8.3.

8.2 Acceptance Tests

We paid significant attention to testing throughout the development process; this was impor-
tant in giving us evidence that our implementation was sound and indeed behaved correctly.

Chapter 8. Experimental Evaluation 109

Furthermore, as many of our procedures for model checking depended on all cases being han-
dled correctly (for example, the alternating automaton construction for LDL formulae), having
a robust testsuite would allow us to more quickly diagnose and fix bugs. Maintaining such a
testsuite would also help us make changes more confidently, as we could easily gain at least
some insight as to whether we had accidentally broken a different part of our program. This
would have been tricky with the base version of MCMAS, which does not come with any form
of testing (unit, integration or otherwise).

8.2.1 System Tests

Unfortunately, the existing design of MCMAS is not particularly amenable to unit testing. This
is because unit testing involves us testing the behaviour of objects or methods in isolation; the
existing design of MCMAS does have some issues which inhibited unit testing, as follows.

e MCMAS has several global variables (declared in utilities.hh) which are first populated
whilst building the model. Many key utility methods (such as computing preimages)
expect these variables to already be populated correctly; furthermore, there are certain
undocumented invariants that are assumed. This makes testing said methods in isolation
difficult, as one has to ensure that the relevant global variables are populated correctly.

e There are also several large, complex objects with many different responsibilities. The
most egregious offender here is the bdd_parameters struct, which controls usage and
caching of BDDs as well as several other parameters. Suitably populating these objects
as well as ensuring that all invariants that hold in an actual run of the program also hold
in test runs would be a fairly difficult and time-consuming undertaking.

A possible solution to the above could be to invest some time and effort in refactoring and
adding tests to the existing MCMAS codebase. However, the time investment required would
be substantial, and we find that this is also not the focus of our project.

We thus decided to implement tests at a coarser granularity that would still allow us to verify
the behaviour of our program. This involved adding system-level tests, in the form of ISPL
files that specify a model, formulae and expected answers (true or false) for each formula. We
could then invoke MCMAS on said test file, and compare the actual output with what was
expected. This allowed us to achieve some test coverage without requiring us to refactor any of
the underlying MCMAS code.

To automate the above process, we wrote a Python script check.py that automatically runs
tests on several ISPL test files, parsing them as well as interpreting MCMAS’s output to deter-
mine if the actual results MCMAS produces matches our pre-specified expected result.

Our automated testing proved especially useful when implementing support for CTL*K; when
we refactored parts of the grammar as well as the LTLK model checking logic (treating LTLK
formulae as A-quantified CTL*K formulae to avoid code duplication), we found that we could
quickly and easily check if we had accidentally broken the LTLK model-checking logic. We faced
similar issues (and again, found our testsuite very useful) when extending our LDLK model
checker to support CDL*K.

Our testsuite covers a fairly wide variety of specifications across the four languages for which
we have implemented model checking, including complex formulae with substantial nesting of
modalities (for LDLK and CDL*K). We also added tests for LDLK and CDL*K over finite traces.

© 00 N s W N

N S e
Gk W N = O

110 8.2. Acceptance Tests

We found this very useful in giving us confidence that our changes at each step (especially
performance optimisations) did not affect the correctness of our implementation.

Unfortunately, we did not add tests to check the correctness of counterexample generation.
The main problem we encountered was that the algorithm for generating witnesses for EGT in
MCMAS is nondeterministic; it relies on the CUDD library’s PickOneMinterm() method which
randomly selects a state from which the formula holds [3]. Furthermore, returning minimal
counterexamples in general is NP-complete [29], and we did not find an easy way of obtaining
a canonical form for counterexamples. Verifying that a counterexample returned was correct
in general would involve writing a verifier that could parse MCMAS’ witness output and check
that the output was indeed a valid counterexample, which seems excessively complex (and is
not the focus of our project). This problem could perhaps be mitigated by developing models
where there only exists one witness or counterexample path, though we did not pursue this in
the interest of time.

8.2.2 Differential Testing

I adapted the idea of differential testing which is frequently used in compiler testing, where
the same input is given to several programs purporting to carry out the same function, and
mismatches in output could indicate bugs [37]. In the context of MCMAS, this relies on the
fact that there are many properties that can be expressed in multiple specification languages; a
mismatch in our answers from the various algorithms indicates a bug (as there is only one correct
answer). I wrote several specifications for the bit transmission protocol that could be expressed
in multiple specification languages and ensured that MCMAS returned the same result for all
of the specifications. An example is as follows (more examples may be found in Appendix A):
Formulae

-- The bit is always eventually received.

-- False, since the environment may not work.

AF recbit;

LTL F recbit;

CTL* A(F recbit);

LDL <tt*> recbit;

CDL* A(<tt*> recbit);

-- Always possible to eventually receive the bit.
-- True (there’s no amnesia or other reason why it becomes impossible)
AG EF recbit;
CTL* A(G(E(F(recbit))));
CDL* A([tt*](E(<tt*>(recbit))));
end Formulae

While useful, the strategy is limited to some extent since it can only expose bugs that occur
when dealing with formulas in the common fragment of the specification languages under con-
sideration. For example, LDLK and CTL*K have incomparable expressive power (as shown in
Section 2.3.4); this technique will not be able to find bugs that only manifest when dealing
with LDLK formulae that are inexpressible in CTL*K, and vice versa. Furthermore, even if
a discrepancy is found, it may not immediately be clear which answer is wrong (though the
cases we have designed are sufficiently simple that we are able to manually determine the right
answer).

Another limitation of this approach is that each of the logics we implemented added expressive
power, in the sense that there exist specifications in each language that could not be expressed
in the previous languages implemented up to that point — for example, there exist properties

W N e

w

Chapter 8. Experimental Evaluation 111

expressible in CDL*K that cannot be expressed in CTLK, LTLK, CTL*K or LDLK. Thus, this
technique will not be able to provide complete coverage of each specification language. Further-
more, interpreting the same formula over finite and infinite trace semantics can lead to vastly
different results; properties such as T*¢ (“¢ occurs infinitely often” in LDLK) can change
completely (to “¢ holds on the last step of the path” in LDL¢K).

8.3 Performance Test Setup

We ran MCMAS-Dynamic on virtual machines in the Department of Computing, using the
department’s Apache CloudStack [1] service. The machines we used for testing ran Ubuntu
14.04 LTS, had two 2.7 GHz CPU cores and 16 GB of RAM. With a suitable verbosity level
(-v 4), MCMAS will print output which indicates how much time was spent on each step of
the encoding (such as encoding the ISPL model with BDD variables, computing the set of fair
and reachable states, and model checking each formula). We determined that the impact of
these print statements on the runtime is unlikely to be significant, since we only add a small
number of print statements — for example, we add 1 print statement for each step in computing
the depth of the model, as well as only 1 print statement per formula being checked. We did,
however, have to fix an issue with the way MCMAS presents its time output, which could lose
precision:

cout << "execution time =
<< ((tmbl.time-tmb.time) + (tmbl.millitm-tmb.millitm)/1000.0) << endl;

The above calculation with floating point numbers has limited precision; on the lab machines
we used, this only seemed to give us about 7 decimal digits of precision — for example, printing
100, 000.0+0.001 returned simply 100000. One possibility could be to use long doubles though
we decided to simply return the (integer) number of milliseconds used for the purpose of these
tests. We maintain the display of the approximate number of seconds as well, for readability.
cout << "execution time in ms = "

<< (tmbl.time-tmb.time)*1000 + (tmbl.millitm-tmb.millitm)

< < n (n

<< ((tmbl.time-tmb.time) + (tmbl.millitm-tmb.millitm)/1000.0)
<< " s)" << endl;

To mitigate the effects of random noise on runtimes, we also verify each specification three times
and take the median of the results. We also enforce a timelimit of 10° seconds for any given run.

We considered five different scenarios in our evaluation:

1. Dining Cryptographers (Section 8.4); this model allows us to test how our algorithms
for LTLK and LDLK scale against the “basic” MCMAS algorithm for CTLK with models
and formulae of increasing size. This scenario also showcases the effectiveness of our LDLK
optimisations.

2. Counter (Section 8.5); this model is particularly amenable to LbL and CDL* properties

concerning parity that are not expressible in CTL*.

3. Bit Transmission (Section 8.6); our analysis on this model focuses on testing how our
algorithms scale with a model of constant size, but formulae of increasing size.

4. Prisoners and a Lightbulb (Section 8.7); this model allows us to test how our al-
gorithms scale with formulae of constant size, but a rapidly increasing model. We also
consider more complex properties that are only expressible in LDLK or CDL*K.

112 8.4. Dining Cryptographers

Figure 8.1: Possible instance of the Dining Cryptographers protocol. The arrows are labelled
with the results of the coin flips that the relevant cryptograhers see.

5. Go-Back-N (Section 8.8); we model this automatic repeat-request network protocol in
ISPL as a practical example of some of the capabilities of CDL*K, and evaluate various
properties about this protocol over both infinite and finite traces.

8.4 Dining Cryptographers

The dining cryptographers protocol, proposed by Chaum in [27] involves multi-party computa-
tion! of the boolean OR function with the restriction that at most one bit is 1. The problem
may be formulated as follows, quoting from [27]:

Three cryptographers are sitting down to dinner at their favorite three-star restau-
rant. Their waiter informs them that arrangements have been made with the maitre
d’hétel for the bill to be paid anonymously. One of the cryptographers might be pay-
ing for the dinner, or it might have been the NSA (U.S. National Security Agency).
The three cryptographers respect each other’s right to make an anonymous payment,
but they wonder if the NSA is paying.

The protocol works as follows (note that this protocol is clearly extensible to N > 3 cryptogra-
phers, following the same logic):

1. Each cryptographer flips a fair coin in secret.

2. They share this result with the cryptographer on their right. (We assume the cryptogra-
phers are seated in a circle.)

3. Each cryptographer announces if the two coins he can see are the same or different. If a
cryptographer paid for the dinner, he announces the opposite of the actual result.

4. A cryptographer paid for the dinner iff the number of ‘different’ announcements is odd.
For example, a possible way in which the protocol may proceed is reflected in Figure 8.1. Then:

e A announces that he sees two different coins.

1This involves agents computing a function over inputs known only to them, without revealing any more
information about the inputs than would be revealed from the output. For example, suppose Alice and Bob have
one bit each and want to compute boolean AND. If they both have 1s, the output will be 1 and thus each will
know the other’s bit — this is considered OK. However, if Alice has a 0 and they find that the output is 0, Alice
should not be able to tell if Bob has a 0 or a 1. (Again, if Bob has a 1, then he knows Alice has a 0 — this is also
considered OK.)

Chapter 8. Experimental Evaluation 113

e B announces that he sees two same coins.
e C sees two different coins, but being the payer announces that he sees two same coins.

From this, the the number of ‘different’ announcements is 1, which is odd, so A and B can
conclude that one of the cryptographers paid for the dinner (of course, C already knows this).
(We assume that all parties are cooperative and follow the protocol.) However, consider that it
is not possible for either A to determine whether B or C paid:

e B flipped a fair coin, which landed either H or T.
e If it landed H, as in Figure 8.1, then B did not invert the difference, so C is the payer.

e The coin might have landed T, however, in which case given B’s and C’s announcements
B inverted the difference and thus would have been the payer.

e For A to make any further conclusions he would need more information about the result
of the coin flip, but the protocol does not allow for this.

It is also not possible for B to determine whether A or C paid:
e C flipped a fair coin, which landed either H or T.
e If it landed T, as in Figure 8.1, then A did not invert the difference, so C is the payer.

e The coin might have landed H, however, in which case A inverted the difference and C
did not, so A is the payer.

e For B to make any further conclusions he would need more information about the result
of the coin flip, but again the protocol does not allow for this.

However, they can deduce someone paid:
e Suppose no one paid, then everyone must have told the truth.
e Since B sees two same coins, A’s coin flip must equal B’s own coin flip.
e Since C sees two same coins, B’s coin flip must equal C’s own coin flip.

e But then A’s coin flip must equal C’s coin flip (by transitivity of equals), yet A said
different — a contradiction.

As demonstrated above, there are intuitive logical arguments for the correctness of this protocol,
as in [27]. Nonetheless, the problem also naturally lends itself to formulation as an interpreted
system; we can express assertions that we wish to make about the protocol using temporal-
epistemic logic. We encode this protocol into an interpreted system, as follows.

e Each of the three cryptographers is encoded as an agent, with local state corresponding
to whether he is the payer and the two coins he sees. The agents’ actions involve making
announcements as to whether they see same or different coin flips.

e The agents’ protocols require them to follow the overall protocol as described above.

e We restrict the initial states to those where either zero or one cryptographer(s) paid for
the dinner.

114 8.4. Dining Cryptographers

e We define as atomic propositions ¢;paid for each cryptographer ¢, holding iff cryptographer
1 paid the bill, and odd and even corresponding to whether the total number of ‘different’
announcements was odd or even respectively.

We then express the interpreted system in ISPL (see Section 2.8.3), in particular using ISPL’s
Lobsvars? construct for the coins, which allows for easier enforcement of the coins being con-
sistent across agents. This allows us to express several properties of interest, which we used
for our tests. It is worth noting that these specifications can be expressed in CTLK, LTLK and
LDLK. Of course, they can also be expressed in CTL*K and CDL*K, though our algorithms for
these logics will simply invoke the model checking algorithms for the linear time versions of the
relevant logics; we would expect the results for these logics to be very similar to that for LTLK
and LDLK respectively.

1. If the number of ‘different’ announcements is odd, a non-paying cryptographer
knows someone else paid, but does not know who. This may be expressed in CTLK

as
N
/\ AG | (odd N =eipaid) = | Kcorypt, \/cjpaid A /\ ~Kcrypt, cjpaid
i=1 j#i ji

and equivalently in LTLK as

N
/\ G | (odd AN —¢ipaid) = | Kcrypt, \/ cipaid | A /\ ~Kcrypt, cjpaid
i=1 ji ji

and, finally, in LDLK as

N
/\ [T*] | (odd A —cipaid) = | Kcrypt, \/ cipaid | A /\ ~Kcpypt, cjpaid
i=1 i ji

We use the symmetry of the problem and focus on cryptographer 1 rather than all cryp-
tographers. The specification in CTLK then becomes

AG | (odd N =c1paid) = | Korypt, \/ cjpaid | A /\ K rypt, cjpaid
i#1 i#1

and that in LTLK becomes
G | (odd N —cipaid) — | Kcrypt, \/ cjpaid | A /\ K rypt, cjpaid
i#1 i#1

and finally in LDLK becomes

[T*] | (odd A —cipaid) — | Kcrypt, \/ cjpaid | A /\ K rypt, cjpaid
i#1 i#1

2These are environment variables that are visible only to a subset of the agents.

© 0 N O Uk W N =

N N S e =
® N O Uk W N = O

Chapter 8. Experimental Evaluation 115

2. Under no circumstances can a cryptographer know that anyone other than
themselves has paid. This may be expressed in CTLK as

N
AG | \ N\ (“Ecrypt,cipaid)
i=1 j#i

and equivalently in LTLK as

N

G /\ /\ (mKcrypt,; ¢jpaid)
i=1 j#i

and also in LDLK as

N
[T7] /\ /\ (mKcrypt;cjpaid)
i=1j£i

3. If the number of ‘different’ announcements is even, it is common knowledge
that no one paid. Where I refers to all of the cryptographers, this may be expressed

in CTLK as
N
AG | even — Cr /\ —cjpaid
j=1
and equivalently in LTLK as
N
G | even — Cp /\ —c;paid
j=1

and also in LDLK as

N
[T*] | even — Cr /\ —cjpaid
j=1

These may be suitably expressed in the Formulae section of the relevant ISPL file. For example,
for LTLK and 5 cryptographers, we can express the properties as follows.

Formulae
-- property (1)
LTL G((odd and !clpaid) ->
(K(DinCryptl,(c2paid or c3paid or c4paid or cbpaid))
and !K(DinCryptl,c2paid) and !'K(DinCryptl, c3paid)
and !'K(DinCryptl,cdpaid) and !'K(DinCryptl,cbpaid)));

-- property (2)

LTL G(!K(DinCryptl, c2paid)
and !K(DinCryptl, c3paid)
and 'K(DinCryptl, c4paid)
...
and !'K(DinCrypt5, cédpaid));

-- property (3)
LTL G(even ->
GCK (cryptos, !clpaid and !c2paid and !c3paid and !c4paid and !cbpaid));
end Formulae

116 8.4. Dining Cryptographers

(Naturally, these were programmatically generated; this would be essential for larger values of
N.)

As far as acceptance testing is concerned, all of these properties should hold for any value
of N > 3. That said, the focus of this section is more on performance testing, examining how
well the LTLK and LDLK algorithms scale against the existing CTLK algorithm. Our experi-
mental results for the aforementioned specifications are presented in Table 8.1. Note that the
“Non-MC” time (the second column in each table) refers to the mean time taken by MCMAS
to parse the input ISPL file, encode the model with BDD variables and compute the set of
reachable states. Also, we have presented separately the results for a naive implementation of
the algorithm discussed in Section 5.1 (LDLK), and for said algorithm after applying the perfor-
mance optimisations discussed in Section 5.4 (LDLK(OP)). We can make several observations
about the data:

e Expectedly, in general it appears exponentially more time is needed to verify specifica-
tions for larger values of N (regardless of specification language), though there is a notable
exception with N = 10 taking much longer than N = 11 and, to a lesser extent, N = 11
taking longer than N = 12.

Note that the size of the model grows exponentially as N increases (consider that each
additional cryptographer introduced adds one more coin), which makes even the CTLK
algorithm require exponentially more time.

e Model checking LTLK specifications does indeed take longer than CTLK specifications; this
makes sense in terms of the computational complexity of the relevant algorithms (linear
in the size of the specification for CTLK but exponential for LTLK) as well as because
there is a clear overhead in constructing the tableau and consistency rules. Running this
through a profiler (we used callgrind) seemed to reveal that using the tableau method
seems to require significantly many more iterations and hence more existential preimages
than checking the equivalent CTLK specification.

e Depending on the specification, the optimised LDLK algorithm may perform notably bet-
ter (specification 1), or similarly (for specifications 2 and 3) to the LTLK algorithm. We
attribute this to our performance optimisations discussed in Section 5.4; observe that the
unoptimised LDLK algorithm quickly runs out of memory and/or time, as the Biichi au-
tomata generated can be very large.

The asymptotic complexity of our LDLK algorithm is actually marginally better than
that of our LTLK algorithm (O(max(2/¢118l?l 3I¢l|7])) for LpLk, and O(2/¢1"°819l|Z|) for
LtLK). However, we suspect that the LTLK algorithm has potential to be optimised further
(for instance, by using alternative variable encoding techniques as suggested in [80]). We
did not focus on optimising the LTLK algorithm at all, apart from verifying propositional
formulae over states as opposed to over paths.

e Considering the algorithms’ performance as N increases, it seems that the LTLK algorithm
is slowest on specification 1; the CTLK and optimised LDLK algorithms appear slowest on
specification 2. The result for LTLK is interesting; we would expect performance to degrade
most quickly on specification 2 owing to its quadratic growth in size as N increases (as
compared to linear). Using callgrind, we traced this down to CUDD taking longer to
compute each existential preimage when model checking specification 1. Owing to limited

Chapter 8. Experimental Evaluation

117

Specification 1

Non-MC Model Checking Time (s) BDD Memory (bytes)
N | Time (s) | CTLk LTLK LpLk LbpLk(OP) CTLK LrLk LpLk LpLk(OP)
3 0.001 0.001 0.003 TIMEOUT 0.002 9368000 9748160 TIMEOUT 9649952
4 0.026 0.001 0.003 TiMEOUT 0.002 9360800 9802336 TIMEOUT 9667296
5 0.066 0.002 0.010 - 0.005 9517280 10906176 - 10241184
6 0.107 0.002 0.010 - 0.005 9608288 11029920 - 10291264
7 0.293 0.006 0.031 - 0.015 10581152 14161472 - 12330208
8 0.564 0.005 0.034 - 0.021 11183680 15233520 - 13610016
9 0.594 0.005 0.052 - 0.020 11943776 18780576 - 14235040
10 6.211 0.349 1.051 - 0.582 47320192 54309296 - 57092256
11 2.366 0.041 0.241 - 0.127 20551808 35235776 - 24236576
12 3.383 0.019 0.100 - 0.061 16028736 25104304 - 20008032
15 26.153 0.370 1.157 - 0.709 50538048 47728160 - 48033536
18 67.049 0.573 1.808 - 1.010 49998752 50665824 - 59538048
20 546.151 | 20.860 72.342 - 43.533 | 206514656 509806192 — 355785216
22 | 1,615.210 | 25.655 99.862 - 69.491 | 321949600 786076336 - 569407152
25 | TIMEOUT - - - - - - - -

Specification 2

Non-MC Model Checking Time (s) BDD Memory (bytes)
N | Time (s) | CTLk LTLK LpLk LpLk(oP) CTLK LTLK LpLk LpLk(oP)
3 0.005 0.001 0.002 TiMEOUT 0.002 9368000 9543552 TIMEOUT 9649952
4 0.027 0.001 0.003 OOM 0.003 9328064 9594704 OOM 9667296
5 0.067 0.003 0.006 - 0.006 9550016 10053424 - 10175712
6 0.109 0.002 0.008 - 0.006 9641024 10319984 - 10324000
7 0.296 0.008 0.023 - 0.020 10617984 12201104 - 12362944
8 0.561 0.009 0.035 - 0.024 11257344 13409200 - 13610016
9 0.600 0.011 0.047 - 0.029 12044032 14707856 - 14627940
10 6.260 0.473 0.694 - 0.689 45920576 52829760 - 56116384
11 2.359 0.066 0.168 - 0.133 20738016 28235104 - 24242720
12 3.399 0.043 0.125 - 0.075 15721824 20865984 - 20269952
15 30.217 0.542 0.893 - 0.699 50053152 39635552 - 39994688
18 77.260 0.572 1.347 - 1.152 49998752 60217184 - 59513472
20 585.183 | 24.741 46.994 - 48.275 | 206514656 300752192 - 355785216
22 | 1,808.148 | 28.713 67.472 - 74.346 | 321953696 416069552 — 569407152
25 | TIMEOUT - - - - - - - -

Specification 3

Non-MC Model Checking Time (s) BDD Memory (bytes)
N | Time (s) | CTLk LTLK LpLk LbpLK(OP) CTLK LrLK LpLk LpLK(OP)
3 0.005 0.001 0.001 0.033 0.002 9368000 9620480 12374112 9649952
4 0.026 0.001 0.002 0.966 0.002 9360800 9643968 35088384 9667296
5 0.065 0.002 0.007 TIMEOUT 0.006 9582752 10250592 TIMEOUT 10273920
6 0.109 0.002 0.007 - 0.005 9641024 10366144 - 10324000
7 0.293 0.006 0.020 - 0.016 10650720 12720192 - 12395680
8 0.558 0.005 0.025 - 0.023 11290080 13764672 - 13421760
9 0.600 0.006 0.029 - 0.023 12078816 15140672 - 14668832
10 6.198 0.312 0.743 - 0.614 39422656 60352896 - 57135264
11 2.358 0.045 0.137 - 0.113 20807584 30065216 - 28404608
12 3.353 0.032 0.085 - 0.068 15881440 20504512 - 20546240
15 27.535 0.413 0.793 - 0.699 49889472 49820768 - 39978304
18 69.606 0.589 1.071 - 1.066 50064288 50204432 - 59579008
20 576.043 | 21.169 50.431 - 45.810 | 206514656 331828416 — 355785216
22 | 1,776.829 | 26.475 67.405 - 73.167 | 321953696 489645040 - 569407152
25 | TIMEOUT - - - - - - - -

Table 8.1: Experimental results for the Dining Cryptographers scenario.

118

8.4. Dining Cryptographers

time as well as a lack of understanding of the internals of CUDD, we decided not to
investigate this point further.

In terms of memory, we observe that verifying CTLK properties was generally cheapest
(with an exception when N = 15, which may have arisen when computing intermediate
sets of states). Again, depending on specification as well as N, either LTLK or LDLK
properties were the most expensive. CTLK using the least memory is intuitive, owing to
the complexity of the additional symbolic structures we construct when verifying LTLK or
LDLK properties. For example, consider Specification 1.

— For LTLK, the tableau construction requires an additional 2(N + 2) BDD variables;
two for each of the N epistemic modalities, as well as two for each of the atomic
propositions odd and cpaid.

— For LDLK (optimised), the automaton we generate always uses 18 additional BDD
variables. This is because we are constructing automata for formulae of the form
(T*)—) for some subformula 1 which is only dependent on the current state. We
thus apply propositional shortcircuiting and avoid constructing the automaton for .
The resulting alternating automaton has 5 states (2 from the regex automaton, after
minimising the e-NFA, and 3 from the automaton for a propositional formula). Only
one of these states (the state after the true transition from the propositional formula)
is accepting, and we thus have 4 x 4 + 2 = 18 variables. Note that the amount of
additional memory used is more than constant, because the transition relation of the
alternating automaton also uses the variables in the original model.

e Interestingly, for CTLK it seems that peak BDD memory usage is equal across two or all

three specifications in several cases (such as specifications 1 and 3 for N = 4; all three for
N =3 and N = 20). We suspect that the CTLK algorithm might be even more efficient
for those cases; this observation suggests that in those cases, peak memory usage was
involved at the time of building the model and/or computing the set of reachable states.
This is, unsurprisingly, not the case for LTLK, since we need to create the relevant tableau
for the formula and compose it with the model, and these tableaus have different sizes
even for the same N.

We also observe equal peak BDD memory usage across the specifications for the opti-
mised LDLK algorithm (for N = 3, N = 20 and N = 22) — we suspect the meaning here is
different, however, since building the model or computing reachable states is independent
of our formulae and these values are greater than the corresponding values for CTLK.
We have established above that the number of additional BDD variables used in the last
step is constant. Furthermore, recall that our algorithm for checking [T*]¢ requires us
to construct the alternating automaton for (T*)—i). However, because our specifications
are true, - is actually unreachable in the model, and the final alternating automata we
build for all of the specifications are isomorphic to one another. Thus, for these values
of N we suspect that peak BDD memory usage occurred during the symbolic breakpoint
construction — this is a deterministic procedure and the resulting Biichi automata would
thus also be isomorphic. (Note that runtimes still differ, perhaps owing to different times
taken to show that =) indeed is unreachable in our model.)

It appears that although LTLK and (optimised) LDLK model checking is slower than CTLK
model checking, the overall execution time is still dominated by other parts of MCMAS,
in particular building the model and computing the set of reachable states as mentioned

Chapter 8. Experimental Evaluation 119
down down down down down down

Figure 8.2: State space of a counter for arbitrary N.

in Section 2.8.2. With that in mind, this slowdown seems acceptable, and in most cases
relatively insignificant.

8.5 Counter

Consider an integer counter which ranges from 1 to some even positive integer N. The counter
changes its value by 1 on each time step (it can non-deterministically increment or decrement
its value, as long as it stays within the allowable range). This can be encoded into a simple
interpreted system as follows:

e We have a single agent, which has a state corresponding to the value of the counter. The
agent has two actions up and down.

e The agent’s protocol is used to ensure that the value of the counter stays in range. (Thus,
we permit up only when the counter’s value is not N, and permit down only when the
counter’s value is not 1.)

e The transition relation simply updates the counter’s local state appropriately (increasing
the value by 1 if the action is up, and decreasing it by 1 if the action is down).

e We restrict the initial states to those in which the value of the counter is even.
e We define several atomic propositions of interest:

— even, which holds in all even states;
— max, which holds when the counter’s value is at its maximum (i.e. V), and

— nearMaz, which holds when the counter’s value is either 1 below its maximum, or
at its maximum (i.e. N —1 or N).

This is more intuitively represented in Figure 8.2. We can then express several properties about
the counter’s behaviour:

1. After an even number of steps, the value of the counter is even. Intuitively, this
is true owing to the parity of the counter after an even number of operations. This can
be expressed as the LDLK formula

[(T;T)*|even

2. After an odd number of steps, the value of the counter is odd. Again, this is
true owing to the parity of the counter after an odd number of operations. This can be
expressed as the LDLK formula

[T;(T; T)*]—even

120 8.5. Counter

3. It is always the case that if the value of the counter is at its maximum, then
after every two steps the counter will still be at its maximum. This is false,
except for IV = 2, since one can perform two down actions. This can be expressed as the
LbLK formula

[T*](maz — [(T; T)*|max)

4. It is always the case that if we are in an even state, then it is possible to reach
the maximum state following an alternating sequence of even and odd states.
Intuitively, this holds; the sequence must alternate between even and odd, as a result of
parity. This can be expressed as the CDL*K formula

A[T*](even — E({(even;—even)*)mazx))

5. If the value of the counter starts near maximum, then there exists a path
which is infinitely often not near maximum, yet is near maximum after every
block of three steps. Again, this is intuitively true as long as N > 2. Observe that if
the counter is at N — 1 we can perform down, up, up which leaves the counter at N; if the
counter is at N we can perform down, down, up which leaves the counter at N — 1. This
path also visits N — 2 infinitely often. This can be expressed as the CDL*K formula

nearMax — E(T*(-nearMaz) A [(T; T;T)*|near Max)

We present our experimental results for verifying the five aforementioned specifications over
counters of varying size in Table 8.2, using the optimised LDLK and CDLK algorithms.

Non-MC Model Checking Time (s) BDD Memory (bytes)
N Time (s) Spec 1 Spec 2 Spec 3 Spec 4 Spec 5 Spec 1 Spec 2 Spec 3 Spec 4 Spec 5
2 0.002 0.001 0.002 0.030 0.003 0.008 | 9037520 9157008 11165072 9330512 9884176
4 0.002 0.001 0.002 0.055 0.002 0.046 | 9074352 9161104 12129616 9355888 12227824
16 0.002 0.001 0.001 0.049 0.004 0.064 | 9103984 9202192 11759440 9429712 12461264
64 0.002 0.001 0.002 0.070 0.007 0.054 | 9177968 9276176 12068720 9606000 12535248
256 0.009 0.001 0.002 0.148 0.027 0.072 9567056 9655264 12639920 10281552 13601616
1024 0.136 0.004 0.005 0.509 0.155 0.074 9921328 9921328 15087440 11059408 13771760
4096 1.534 0.324 0.342 5.930 2904 0.033 | 11130992 11229200 26486928 14110576 13268752
8192 7.909 1.462 1.484 15.327 15.008 0.065 | 15835280 15933488 26613936 23692944 17975152
16384 22.720 5.007 5.742 14.391 8.080 0.040 | 13734000 13734000 28142608 20214640 15906608
32768 108.104 19.276 20.134 32.389 33.516 0.037 | 20480272 20480272 35689073 24614096 20635472
65536 412.164 76.708 82.539 294.255 533.740 0.144 | 34120944 34120944 40447312 46335376 33882928
131072 2,171.876 859.138 918.807 110.722 936.337 0.072 | 49532208 49532208 50107248 49874576 49685360
262144 | 12,068.591 | 4,632.815 4,748.332 275.927 5,079.043 0.108 | 62289040 62289040 62569168 62402032 62442192
524288 | 49,737.791 | 19,926.556 20,812.064 17,651.938 47,158.764 1.747 | 95112592 95112592 94755792 95454960 94677968
1048576 | TIMEOUT - - - - - - - - - -

Table 8.2: Experimental results for the Counter scenario.

uorjenyear reyuewLedxy g reidery)

1¢l

122

8.5. Counter

From these results, we draw several conclusions:

In general, for larger values of IV, it takes longer to verify the various specifications. We
observe that there are a few exceptions to this (specification 3, N = 131072 and 262144;
specification 4, N = 16384; many of the results for specification 5).

For each value of N, specification 2 generally takes slightly longer to verify than specifica-
tion 1. We expect this owing to the (slightly) larger alternating automaton for specification
2; we add one more state to the e-NFA for the regular expression, which is non-accepting
since we need to construct the automaton for (T;(T; T)*)even. This results in MCMAS
using 4 more BDD variables; the increase is marginal (certainly not by a factor of 2* = 16),
presumably owing to the empirical efficiency of BDDs.

For smaller values of IV, as expected, the memory used for BDDs is slightly larger for
specification 2 than for specification 1. However, for N > 16384 we observe that they
are equal, and unlike in the Dining Cryptographers scenario (discussed in Section 8.4)
the alternating automata are certainly not isomorphic to one another. Nonetheless, the
peak memory usage is the same; we suspect this may be a result of the formula being
unsatisfiable in both cases (since both specifications are true).

Specification 3 initially took the longest to verify, though it seemed to scale relatively well.
While the specification does seem larger than specifications 1 or 2, profiling reveals that
the construction of the alternating automaton is nonetheless much faster for specification
3, perhaps because the predicate maz applies to just 2 specific states. We observed that
for the same value of N, it seems more iterations are needed before the algorithm for
checking FGT converges; this initially dominates runtime, though for larger values of N
the cost of automata construction for specifications 1 and 2 overtakes this.

Specification 4 consistently took the longest time to verify; this is unsurprising, seeing as
verifying it first requires constructing an automaton for {(even; —even)*)max and checking
it with the model. This automaton is similar in structure to the automaton we build for
specification 1. We then need to construct another automaton for (T*)(even A —1)) where
1 holds in the states that E((even; ~even)*)maz holds, and check it with the model.

On the other hand, Specification 5 was, for larger values of N, by far the quickest to
verify. There is only one path modality, though model checking E(T*(—nearMaz) A
[(T; T; T)*|near Max) was still surprisingly quick. Firstly, we observed that constructing
the automaton was fast, probably because near Max applies to two specific states. Then,
checking whether a given path satisfies [T*[(T*)(—nearMax) A [(T; T; T)*|nearMaz is
also fast:

— If a path starts in a state mot near the maximum, it will immediately be rejected
since it will not satisfy [(T; T; T)*|near Max.

— If a state is near the maximum, there is a path with a period of just length 6 that
will satisfy the formula.

In other words, for every path we can determine whether it satisfies (T*(—near M az)A
[(T;T; T)*near M azx) relatively quickly — intuitively, only a constant number of iterations
is required before our fix-point algorithm for checking FGT converges. We profiled several
runs using callgrind and observed that, regardless of N, precisely 28 calls to check_EX,
the method for finding the successor states of the system, were made. Hence, the model
checking step is fast, though generally still increasing with time as the time taken to
compute each preimage may have increased with increasing V.

Chapter 8. Experimental Evaluation 123

8.6 Bit Transmission

Recall the Bit Transmission Protocol, presented earlier in Section 2.2.2, where the Sender aims
to communicate the value of a bit to the Receiver over a channel that may drop messages. We
can readily encode this system in ISPL (see Appendix A for a possible implementation).

Observe that the state space of this interpreted system is small:

e The Sender has 4 possible states; it has a bit, which is either 0 or 1, and a boolean
indicating whether it has received an ack or not.

e The Receiver has 3 possible states; it either has not received the bit yet, has received a 0,
or has received a 1.

e The Environment has 4 possible states; it can send or drop messages in each direction
(sender to receiver, and vice versa).

This suggests 48 possible states. However, not all of these states are reachable; the actual
number of reachable states is 22.2 The purpose of this scenario is, then, to consider how our
algorithms scale with the size of the formulae being verified. In terms of computational com-
plexity, this is a theoretical weakness of both our LTLK and LDLK algorithms — they require
time exponential in the size of the formula.

We thus verify the following families of specifications over our model, for differing values of
N and differing choices of algorithms (depending on the languages in which properties can be
specified).

1. It is possible for the Sender to receive the ack within N steps. This is true
for N > 2 (consider the situation where the environment always works). This can be
expressed in CTL as

EX...EX recack
| F——
N times

It can be expressed in CTL* as
E(X(...E(X(recack)...))

e —
N times

It can be expressed in CDL* as

E([T](... E([T)(recack) . ..))

L 1
N times

Of course, this can be equivalently expressed in CTL* and CDL* with only one path
quantifier — i.e. E(X ... Xrecack) or E[(T;...; T)|recack, but for this specific formula,
there is no need to reason over paths.

2. On every path, if the environment is working for the first N steps, then the
ack is definitely received after said N steps. This is true for N > 2, but not for

3Considering the joint states of Sender and Receiver, there are actually only 6 possibilities:
{(0,7),(1,7),(0,0),(1,1),(04,0),(14,1)} where ? denotes “no information” and 04 denotes “0 with ack received”
(and 14 is defined similarly). Also, the ISPL implementation remembers the previous environment state, so (0, 0)
and (1,1) after a delivery to the Sender but not the Receiver are also unreachable.

124 8.6. Bit Transmission

N =1 (since only one message has been sent at this point). This cannot be expressed in
CTL as it considers structural properties of specific paths. It can be expressed in LTL as

X (envworks A X (envworks A X(...))) = | X...X recack
| I

]
depth of N Xs (N+1) times

and in LDL as

[T; envworks; . .. ; envworks]recack
L (]

N times

Note that this property can also be specified as the following LTL specification, though we
tested the specification with nesting of X's as the size of the above specification is linear
as opposed to quadratic in N.

i=1 1 times

N
(/\X...Xenvworks) — X ... X recack
| I | | I |
(N+1) times

We tested the appropriate algorithms on the specifications above; in the LDL or CDL* cases,
we tested both with and without optimisation. Furthermore, for Specification 2, we tested the
effect of applying only the automata simplification optimisations (i.e. using the naive method
of computing the symbolic breakpoint construction) — this is shown in the table as CDL*K(ASO)
meaning automata simplification only, while CDL*K(OP) refers to the CDL*K algorithm with
all optimisations included.

Our experimental results are presented in Table 8.3.

Specification 1

Non-MC Model Checking Time (s) BDD Memory (bytes)
N | Time (s) | CtLk CtL*k CbpL*k CDL*K(OP) CTLK CTL*K CpL*k CDL*K(OP)
5 0.002 | 0.000 0.001 0.002 0.002 | 9018048 9158816 9398208 9398208
10 0.002 | 0.000 0.002 0.004 0.004 | 9018048 9299584 9819296 9819296
20 0.002 | 0.000 0.003 0.009 0.009 | 9018048 9591360 10686368 10686368
30 0.002 | 0.001 0.005 0.013 0.013 | 9018048 9887232 11508176 11508176
40 0.002 | 0.000 0.007 0.018 0.018 | 9018048 10187200 12391952 12391952
50 0.003 | 0.000 0.009 0.023 0.023 | 9018048 10476928 13258288 13258288
100 0.002 | 0.001 0.019 0.058 0.058 | 9018048 11989856 25937664 25937664
250 0.002 | 0.002 0.068 0.154 0.156 | 9018048 24832288 38454768 38454768
500 0.003 | 0.004 0.156 0.351 0.362 | 9018048 32484256 60201136 60201136
750 0.003 STACK OVERFLOW
Specification 2
Non-MC Model Checking Time (s) BDD Memory (bytes)
N | Time (s) | CTL*K CpL*k CbDL*K(AsO) CDL*K(OP) CTL*K CpL*k CbDL*K(AsO) CDL*K(OP)
2 0.003 0.001 0.004 0.003 0.002 9191552 9600352 9311040 9376512
3 0.002 0.002 0.019 0.006 0.005 9313168 10820672 9542240 9687520
4 0.002 0.005 2.099 0.020 0.014 9763552 17364224 10150752 10543616
5 0.003 0.023 804.672 0.138 0.040 12219184 54799968 12023008 13152480
6 0.003 0.140 55,017.928 4.999 0.150 26329632 268374624 17525856 20859136
7 0.003 1.965 TiMEOUT 85.651 8.169 93538864 TIMEOUT 34936832 44230496
8 0.003 15.642 - 1,031.127 152.041 468454240 - 94779200 99197152
9 0.003 | 215.265 - 11,632.178 4,653.998 2717969456 - 260908768 273472480
10 0.006 | 681.687 - TimMEOUT 70,085.323 | 15737761440 - TiMEOUT 794670688
11 0.005 OOM - - TIMEOUT OOM - - TIMEOUT
Table 8.3: Experimental results for the Bit Transmission scenario.

uorjenyear reyuewLedxy g reidery)

gcl

126 8.6. Bit Transmission

From these results, we observe the following:

e In general, the time taken to verify specifications increases as IV increases. This is in line
with expectations, as all of the algorithms are at least linear (if not exponential) in the
size of the formulae being verified.

e For specification 1, the CTLK algorithm is unsurprisingly the fastest; the CTL*K and
CpL*K algorithms (in that order) require more time and memory, as they need to construct
additional symbolic structures which are composed with the model. The peak BDD
memory consumption of the CTLK algorithm is constant, suggesting that this was incurred
when building the model. Nonetheless, all of the algorithms are able to verify large
specifications reasonably quickly.

e The optimisations we introduced for the CDL*K algorithm in Section 6.4.5 do not seem to
be helpful for Specification 1; in fact, for larger N we observe a small but notable drop in
performance for the optimised algorithm. This is in line with expectations, as Specification
1 does not admit any of the automata simplification optimisations we introduced, and
there is a small overhead involved in checking whether an optimisation is applicable (such
as attempting to prune unreachable states from e-NFAs). The automata for Specification
1 are also very small, limiting the extent to which efficient conjunct computation could
help boost performance.

e We encountered stack overflows when attempting to verify Specification 1 with large values
of N (such as N = 750). This is a result of MCMAS’s recursive implementation of how
modal formulae are checked (check_formula()), which assumes that formulae can be
dealt with recursively. Fixing this would require a significant amount of effort to refactor
the existing code to use an iterative approach (such as simulating the call stack on a
suitable heap-allocated data structure). It would also have questionable practical use
(formulae of depth 500 were being dealt with fine); we thus decided not to focus on it.

— It is worth noting that although the CTL*K and CDL*K formulae have a nesting
depth of 2N, our algorithms recurse only on the inner path quantifier (i.e. each
step actually travels 2 “levels” in). Thus, even though these formulae have double
the nesting depth as the CTLK formula for the same N, we do not see the stack
overflow as early as 7% = 375 (we were able to check N = 500 for these specification
languages as well).

e For Specification 2, the CTL*K algorithm scales better than the (fully) optimised CDL*K
algorithm; although the CDL*K algorithm might actually seem to have better asymptotic
complexity, we expect that the constant factors involved are considerably larger, and
furthermore we are uncertain as to whether the relatively subtle difference between the
complexities would be highlighted for small values of V.

— As far as model checking time is concerned, both algorithms appear to scale exponen-
tially in IV for this specification; we plot this in Figure 8.3. For our (experimentally
determined) model checking times T', we performed a linear regression of log T" against
Nlog N, to investigate how well T follows our theoretical complexity result 2/V1°g N,
It appears we have a good fit, with R? = 0.9897 for CTL*K and R? = 0.9703 for
CDL*K.

— We observed that our optimisations for CDL*K were also useful for this specification.
There were two optimisations that were particularly relevant:

Chapter 8. Experimental Evaluation 127

Model Checking Time of CTL*K Algorithm against NV Model Checking Time of CDL*K Algorithm against N

103 E
= 102}
[} E
g 10!t
& i
2 100}
% =
g0t
&) i
cRUN
E E
= 1073

—
9
-

105 | 8

103 L

101 L

1071 L

Model Checking Time (s)

1073

2 4 6 8 10 2 4 6 8 10

Figure 8.3: Plot of the model checking time required for Specification 2 for the Bit
Transmission protocol, where the property is specified in CTL*K and CDL*K. Note the use of

a logarithmic scale on the vertical axes.

x Firstly, the pruning of states with no inbound non-¢ transitions from the e-NFAs
was effective. Consider Figure 8.4, which shows why this optimisation is very
useful in this case; we use 4N + 4 fewer BDD variables (which leads to an
exponential reduction in the size of the state space that we subsequently need
to consider).

* Secondly, the efficient conjunct computation (Section 5.4.4) optimisation is also
very relevant, because the automata for these formulae are relatively complex.
We observe a significant speed-up by adding this optimisation, and also become
able to verify the specification for N = 10 for which automata simplification alone
appeared insufficient. Interestingly, we actually use (slightly) more memory when
this optimisation is active; since this is a measure of peak BDD memory usage, it
is possible that our accumulator reaches an intermediate state which uses more
memory than the final result of t; Atrc A tg.

— However, the CTL*K algorithm appears substantially more memory-hungry than
the optimised CDL*K algorithm. We suspect that this might be owing to the way
we build consistency rules for the tableau construction (discussed in Section 3.2.3);
our implementation currently separately constructs these consistency rules for each
occurrence of envworks. This could perhaps be addressed by “canonicalising” atomic
propositions — that is, constructing a single tableau variable for each unique atomic
proposition.

8.7 Prisoners

The 100 prisoners and a lightbulb puzzle may be stated as follows, as in [92]:

A group of 100 prisoners, all together in the prison dining area, are told that they
will be all put in isolation cells and then will be interrogated one by one in a room
containing a light with an on/off switch. The prisoners may communicate with one
another by toggling the light switch (and that is the only way in which they can com-
municate). The light is initially switched off. There is no fized order of interrogation,

128 8.7. Prisoners

)

)
J

envworks J

raaN N .
{ <) 1L

envworks envworks

“recack

recack

(1) Unoptimised alternating automaton; this has 3 4+ (2 x N) 4+ 2 = 2N + 5 rejecting states,
and 1 accepting state. (We leave the e-transitions that were generated by Thompson’s
construction and subsequently removed by Equation 5.2 in grey, to show why so many states
were generated.) The number of BDD variables this contributes to the symbolic Biichi
automaton is 4(2N + 5) + 2(1) = 8N + 22.

tt envworks envworks envworks

“recack

“recack

(2) Alternating automaton, after pruning states which have only inbound e-transitions in the
e-NFA (and rewiring states accordingly). This has 2+ N + 2 = N + 4 rejecting states, and 1
accepting state; the number of BDD variables this contributes to the symbolic Biichi
automaton is 4(N +4) +2(1) = 4N + 18.

Figure 8.4: Representation of alternating automata for the LDL formula
—[T; envworks; . . . ; envworks|recack, where envworks occurs N times, before and after
pruning states of the e-NFA with only inbound e-transitions.

Chapter 8. Experimental Evaluation 129

or fized interval between interrogations, and the same prisoner may be interrogated
again at any stage. When interrogated, a prisoner can either do nothing, or toggle
the light-switch, or announce that all prisoners have been interrogated.

If that announcement is true, the prisoners will (all) be set free, but if it is false,
they will all be executed. While still in the dining room, and before the prisoners go
to their isolation cells, can the prisoners agree on a protocol that will set them free
(assuming that at any stage every prisoner will be interrogated again sometime)?

Clearly, the problem is generalisable to positive integer IV prisoners. One possible solution to
this problem involves the prisoners setting up a simple protocol where one of them serves as
a counter, as discussed in [92] (the paper also discusses other more complex alternatives that
may result in a faster correct announcement):

e Non-counting prisoners switch on the light the first time they enter the room with the
light off; otherwise they do nothing.

e The counting prisoner keeps track of the number of times he has entered the room with
the light on. For the first N — 2 times this happens, he switches the light off; thereafter,
he announces (correctly) that all prisoners have been interrogated at least once.

Intuitively, the protocol is correct as the counting prisoner must see the light switched on N —1
times, and each of these acts must have been done by a distinct non-counting prisoner. It also
eventually reaches a conclusion since each prisoner must be interrogated infinitely often. We
can encode the setup above into an interpreted system as follows:

e The environment keeps track of whether the bulb is on or off, as well as which prisoner is
currently being interrogated (if any).

e We define one agent for the prison, which as an action chooses one of the prisoners to in-
terrogate. The prison also keeps local state noting which prisoners have been interrogated,
and whether a decision to release or execute the prisoners has been made.

e We define one agent for the counter (without loss of generality, we treat this as prisoner
number 0). The counter keeps track of the number of times it has switched the light off;
and, if chosen to be interrogated, either switches the light off and updates its count, does
nothing (if the light is already off) or announces that all prisoners have been interrogated
following the aforementioned protocol.

e The remaining prisoners are each represented as an agent following the protocol as dis-
cussed above. They need two local states, tracking whether they have been interrogated
with the light off for the first time or not.

e We restrict the initial states to those where the bulb is off, the counter’s internal count is
0, and the prison’s internal state is that no one has been interrogated yet, and neither a
release nor an execute action has taken place yet.

e We define as atomic propositions interrogated; for each prisoner i holding precisely in the
states when prisoner 7 has been interrogated, release and execute holding in the states
after an announcement has been made depending on whether or not all prisoners have ac-
tually been interrogated, announce holding after the counter has made an announcement,
and on holding in the states where the lightbulb is on.

We can express the above system in ISPL, taking note of the following caveats:

130 8.7. Prisoners

e We define in the Evaluation section several relevant propositions corresponding to the
aforementioned atomic propositions.

e We add fairness constraints (Fairness) that each prisoner is interrogated infinitely often,
to encode the assumption that “at any stage every prisoner will be interrogated again
sometime”. However, since the prison stops interrogating prisoners after a decision to
release or execute has been made, the actual fairness constraint is implemented as a
disjunction of these (that is, Interrogatel or Release or Execute for each prisoner
0<I<N).

e The system follows a two-step cycle:

1. The prison agent selects a prisoner to be interrogated (this choice is its action for
this step). None of the other agents perform significant actions (i.e. their actions do
not change the state of the system).

2. The prisoner that has been selected may interact with the light bulb according to his
protocol. If this is the counter, he may, on this step, also announce that all prisoners
have been interrogated. If no announcement was made, go back to step 1.

We seek to verify several properties about the protocol, as follows:

1. The protocol satisfies liveness; the prisoners will eventually be released. This
may be expressed in CTLK as AF(release), in LTLK as Frelease, and in LDLK as
(T*)release. This formula is true for any value of N, because of the constraint that
at any stage, every prisoner will be interrogated again sometime. (Note that without
fairness constraints, it is possible for a prisoner to never be selected for interrogation and
thus for the protocol to never terminate.)

2. The counter knows that all prisoners have been interrogated when he an-
nounces this. This property is true for any N, and may be expressed in CTLK as

N-1
AG <announce — Kcoounter (/\ interrogatedi>>
=0

and equivalently in LTLK as

N-1
G <ann0unce — Kcoounter (/\ interrogatedi>>

=0

and also, equivalently in LDLK as

N—-1
[T%] (announce — Koounter (/\ interrogatedi>>

=0

3. The announcement is always first made on an even round. This is true for any N,
because of the way the system is implemented which follows a two-step cycle of choosing
a prisoner to interrogate and allowing the interrogated prisoner to act. This may be
expressed in LDLK as

(T;(T; T)")(—announce A [T|announce)

Chapter 8. Experimental Evaluation 131

Notice that the atomic proposition announce becomes true forever once the announcement
has been made, hence to verify that the announcement was first made on an even round,
we need the formula to hold after matching the regular expression to be —announce A
[T]announce. This property is not expressible in either CTLK or LTLK (or, for that matter
CTL*K) as it discusses parity.

4. It is possible for the bulb to be repeatedly toggled, until the prisoners are
released. This is a variant of the alternating sequences property (Specification 4 in
Section 8.5), adjusted for the two-step cycle of our interpreted system. It is true for any
N; the path where the prison alternates selecting an uninterrogated non-counting prisoner
and the counter satisfies this property. This is expressible in CDL* as

E{(—on;—on; on;on)*)release

Like property 3, this property is not directly expressible in either CTLK or LTLK, because
it is concerned with the structure of individual paths as well as with the existence of a
suitable path. However, we can attempt to reason about it in CTL*K because we know
that each non-counting prisoner can only switch the bulb on once. Hence, such a path
must necessarily terminate in 4(N — 1) = 4N — 4 steps (i.e. the path modality will match
the —on; —on; on; on pattern N — 1 times). We can thus express the (English) property in
CTL*K as follows (though, of course, this is not equivalent in the general case):

E —on A X(—on A X(on A X(on A X(...))) /\(X...X release)
L 1 | I—
N — 1 cycles; 1 cycle refers to a check over 4 steps 4N —4 Xs
Notice that the size of this formula is linear in NV, while the CDL*K formula is independent
of N.

We present our experimental results in Tables 8.4 and 8.5. From the data, we draw the following
conclusions:

e As before, the time and memory required to verify the various formulae increases as N
increases. Note that the state space increases with N log N as N increases, since although
we extend the Prison and Environment with a constant number of variables, as well as
add a new non-counting prisoner agent, the counter’s range must also increase. These
increases in time and memory appear to be more than N log N; given that this occurs not
just for our algorithms but also for the base CTLK algorithm, we suspect this is a result
of higher overheads involved in BDD manipulation. For the N = 70 case, it may be the
case that CUDD’s cache limit was reached as well.

— Further to the above, it is in line with expectations that CTLK model checking is
fastest; generally, this is followed by CDL*K and then CTL*K. In general, we attribute
this to the performance optimisations introduced for CDL*K; we did not focus on
optimising our CTL*K algorithm. However, this is not the case for specification 1,
on which the CTL*K algorithm performs slower than even the unoptimised CDL*K
algorithm. We profiled both the CTL*K and CDL*K algorithms on specification 1,
and found that the CTL*K algorithm required between 1.6 to 1.8 times as many
preimages when checking EGT.

— Generally, although the CTL*K and (optimised) CDL*K algorithms are slower than
the CTLK algorithm, they are less than an order of magnitude slower. This supports

132 8.7. Prisoners
Specification 1
Non-MC Model Checking Time (s) BDD Memory (bytes)

N | Time (s) CTLK CTL*K CpL*k CDL*K(OP) CTLK CTL*K CpL*k CbpL*K(OP)

3 0.003 0.003 0.011 0.010 0.009 9346720 9679008 9796448 9796448

4 0.014 0.006 0.025 0.017 0.017 9560160 10074560 9876896 9844160

5 0.034 0.022 0.094 0.054 0.052 10264752 11112688 11487952 11447024

6 0.072 0.025 0.121 0.064 0.061 10633632 12412544 11437344 11265472

7 0.154 0.053 0.232 0.118 0.113 11184624 12740528 12053808 11953552

8 0.284 0.096 0.413 0.196 0.192 12275888 14431312 13233040 12940464

9 0.425 0.177 0.757 0.333 0.330 13123744 15784576 15443680 15132672

10 0.799 0.284 1.211 0.523 0.507 14409296 16421520 16610544 16356816

12 1.714 0.580 2.601 1.007 0.969 18781040 28743984 29131472 20255888

15 6.896 1.641 8.054 2.705 2.758 39503904 48158048 45105664 45015648

20 37.718 5.473 30.722 9.339 8.769 58307168 58480000 58466464 58466464

25 97.090 14.526 92.619 26.049 25.596 58527088 58794128 58809264 58762160

30 283.561 46.038 333.814 102.538 93.654 59992608 60044688 60055888 60055888

35 720.700 94.541 561.454 174.097 166.856 95526112 95518960 95520080 95485264

40 | 1,855.243 | 193.303 1,303.565 392.683 377.383 | 167638608 167631616 167575472 167523072

45 | 4,094.211 | 613.567 4,090.987 1,366.970 1,319.548 | 239580192 239595808 239396464 239196448

50 | 4,107.177 | 767.768 4,143.739 1,139.734 1,127.406 | 271397200 271408880 271376112 271335152

Specification 2
Non-MC Model Checking Time (s) BDD Memory (bytes)

N Time (s) CtLk CTL*K CpL*k CbpL*K(OP) CTLK CTL*K CpL*k CbpL*k(OP)
3 0.004 0.001 0.005 0.091 0.004 9346720 9531680 14448096 9520224
4 0.014 0.002 0.007 29.635 0.005 9560160 9581440 60731776 9602720
5 0.034 0.005 0.017 164,027.331 0.011 9959888 10410864 666474896 10352336
6 0.071 0.005 0.017 TIMEOUT 0.012 10637728 11074368 TIMEOUT 10993344
7 0.154 0.009 0.029 - 0.012 10973872 11502576 - 11392912
8 0.283 0.012 0.044 - 0.031 11928016 11955440 - 11974672
9 0.421 0.018 0.065 - 0.046 12655136 12690752 - 12703840
10 0.802 0.026 0.098 - 0.066 12991280 13761456 - 13416496
12 1.719 0.043 0.151 - 0.097 15580880 16702928 - 17076144
15 6.951 0.084 0.324 - 0.210 24397728 34904832 - 25430592
20 37.300 0.262 0.850 - 0.615 58008160 58054016 - 58093728
25 106.786 0.456 1.553 - 1.117 49694064 49782928 - 49918896
30 286.829 0.980 3.304 - 2.472 59984416 60073370 - 60094800
35 719.531 2.073 6.286 - 4.871 95444192 95506672 - 95546704
40 1,854.067 3.216 9.815 - 7.865 167501392 167635712 - 167600048
45 4,058.024 7.170 31.083 - 18.830 239281184 239464736 - 239482480
50 4,081.914 12.667 37.794 - 27.984 270987600 271034096 - 271036144
70 | 83,361.493 | 171.577 482.374 - 372.987 | 1056725152 1057175664 — 1057050736

Table 8.4: Experimental results for Specifications 1 and 2 for the Prisoners scenario. For
Specification 2, N = 5, we report a result for unoptimised CDL*K that is longer than our
100, 000 second timeout, as MCMAS-Dynamic completed model checking before we manually
checked on the process.

Chapter 8. Experimental Evaluation

133

Specification 3

Non-MC | Model Checking Time (s) | BDD Memory (bytes)

N | Time (s) CDL*K CDL*K(OP) CpL*k CpL*k(oP)

3 0.004 | TiMEOUT 0.064 | TIMEOUT 12513280

4 0.015 - 0.082 - 13430624

5 0.035 - 0.119 - 14908688

6 0.072 - 0.161 - 16186016

7 0.157 - 0.261 - 19343824

8 0.289 - 0.304 - 16576080

9 0.430 - 0.517 - 19570336

10 0.813 - 0.767 - 20381168

12 1.771 - 1.454 - 36720336

15 6.551 - 3.339 - 47253760

20 39.149 - 10.460 - 58631904

25 97.479 - 31.883 - 62000736

30 281.561 - 125.726 - 60188960

35 723.037 - 201.838 - 95656368

40 | 1,931.644 - 460.450 - 167734448

45 | 4,413.650 - 1,321.359 - 239649808

50 | 4,354.936 - 1,402.677 - 271487776

Specification 4
Non-MC Model Checking Time (s) BDD Memory (bytes)

N | Time (s) CpL*k Cpr*k(op) CTL*K CpL*k CDL*K(OP) CTL*K
3 0.004 0.069 0.017 3.265 13754080 10247392 90855936
4 0.015 0.087 0.031 OOM 14200800 10583616 OOM
5 0.035 0.244 0.108 - 19087792 12491344 -
6 0.071 0.205 0.115 - 18288224 12516480 -
7 0.154 0.350 0.218 - 29372240 13930960 -
8 0.284 0.572 0.376 - 35499056 15589008 -
9 0.429 0.883 0.658 - 36291680 17283936 -
10 0.815 1.500 1.091 - 46844272 20384432 -
12 1.738 2.415 2.220 - 44009616 36089232 -
15 7.026 6.114 6.009 - 51791104 49690336 -
20 38.035 23.943 23.197 - 58944000 58364864 -
25 98.500 81.433 71.918 - 60745264 58582736 -
30 282.580 323.992 310.658 - 60349744 60089616 -
35 713.533 655.159 555.417 - 95831648 95541680 -
40 | 1,938.729 | 1,067.446 1,127.992 — | 167973376 167573424 -
45 | 4,304.172 | 3,968.253 3,882.683 — | 239834128 239410800 -
50 | 4,399.351 | 7,866.579 7,618.838 — | 271944480 271404256 -

Table 8.5: Experimental results for Specifications 3 and 4 for the Prisoners scenario.

134 8.8. Go-Back-N

our hypothesis that our implementation for CTL*K and CDL*K is scalable in terms
of the size of the model. Consider that we were able to verify all of the specifications
over state spaces as large as 2.1923 x 10% states (which is the case for N = 50). We
were even able to verify Specification 2 over 1.60202 x 10%° states (N = 70).

e The impact of our CDL*K algorithm optimisations (introduced in Section 5.4) varies
depending on the specification.

— For specifications 1 and 4 there is generally a small performance improvement; the
relevant optimisation here is the pruning of redundant states from e-NFAs, which
reduces the state space by a constant factor. Note that exceptions do exist (N = 15
for specification 1, N = 40 for specification 4), perhaps because some overhead is
necessary to carry out these optimisations.

— For specification 3, the optimisation that is relevant also appears to be the pruning
of redundant states from e-NFAs. However, as the automaton for this formula is sub-
stantially more complex than the automata for specifications 1 and 4, the “constant
factor savings” in the state space are significantly larger. Efficient conjunct compu-
tation is also significant for this specification, owing to complexity of the automaton.

— For specification 2, although pruning of redundant states does take place, we sus-
pect propositional shortcircuiting is the more significant optimisation, leading to a
dramatic performance improvement. The entire expression inside the box modality
is only dependent on the current state, and can thus be evaluated first.

e It is perhaps reassuring, if expected, to see the CDL*K algorithm perform better than the
CTL*K algorithm on an approximation of specification 4 in CTL*K. Clearly, the CTL*K
property is stronger, and it is the weakest strengthening of the original condition that we
were able to construct — in that sense, a direct comparison might not be fair. Nonetheless,
this example does serve to highlight the richer expressivity of CDL*K.

8.8 Go-Back-N

Go-Back-N is a pipelined network communication protocol, with the aims of providing recov-
ery from dropped packets as well as improving channel utilisation in high-latency conditions
[46]. Much like the Bit Transmission Protocol discussed in Section 8.6, we have a Sender which
aims to communicate information to a Receiver over an unreliable channel which may drop
messages (though it will not corrupt messages). The Sender has a buffer of M data packets
which he wishes to send to the Receiver; he transmits these along with a sequence number
(which ranges from 1 to M). Furthermore, he does not wait for an acknowledgement after each
packet; instead, he keeps transmitting up to a window of N unacknowledged packets (i.e. if the
Sender has received an acknowledgement for packet k, he can try to send all packets from k + 1
to k + N). Upon receipt of a packet, the Receiver sends an acknowledgement indicating the
last packet it has received in sequence. We illustrate a possible run of the protocol in Figure 8.5.

We construct a model of a synchronous variant of the Go-Back-N protocol in ISPL, as fol-
lows. An example of our ISPL implementation may be found in Appendix B.

e We use bits for the data packets. This may seem inefficient as we are using log M bits of
overhead for 1 data bit — however, packets in practice are substantially larger than 1 bit.
We use bits for verification because this is sufficient for us to assert properties concerning
correctness of the protocol (e.g. the Receiver and Sender are never in conflict).

Chapter 8. Experimental Evaluation 135

time
)
Ssentdfr ! | Receiver
ent:
< Received: 0
Acked: 0 -
——
Sender .
cont: 3 Receiver
ent:
< Received: 0
Acked: 0 -
Sender .
cont: 3 Receiver
ent:
< Received: 1
Acked: 0 -
(.)
Sender »| Receiver
Sent: 3 Received: 1
Acked: 0 < @_@_ (3 is ignored)
— N
) T)
Ssentdfr —4 "l Receiver
ent:
‘—@ Received: 1
Acked: 1
— —
cont 4 Receiver
ent:
Received: 1
Acked: 1

\ 4

Figure 8.5: Graphical representation of a sample run of the Go-Back-N protocol for N = 3.
The messages from the Sender to the Receiver are annotated with sequence numbers; the
messages from the Receiver to the Sender indicate acknowledgment of the corresponding

packets. Packet 2 is lost in transmission on the first run (step 2); however, because the

Receiver indicates that it has missed a packet when it receives packet 3 (step 4), the Sender

knows it needs to retransmit packet 2 when it receives the duplicate ACK (step 6).

136

8.8. Go-Back-N

The Environment is used to model a three-step bidirectional communication channel; a
packet that the Sender places on the channel, if successfully delivered, will be visible to
the Receiver three rounds later. The channel may drop packets in step 1 or step 2 in either
direction; the Environment’s actions involve choosing which packets (if any) are dropped.

The Sender agent has M bits to transmit to the receiver, as well as two counters recack
and dispatch which, respectively, keep track of the last acknowledgment received and
the last packet sent. It follows the protocol described above; in the event it receives a
duplicated ACK or does not receive any relevant ACKs before it reaches the end of its
transmission window, it restarts from just after the last packet that was ACKed.

The Receiver agent receives the M bits that the Sender sends; after receiving the bit 7,
it acknowledges this by sending an ACK message i to the Sender. In the event that the
receiver receives a bit out of order (e.g. it receives a bit with sequence number 2 from the
start), it ignores the bit and repeats the current ACK message, if applicable?.

We define as atomic propositions:
— mismatch;, which holds if the Receiver has “received” a bit in position ¢ that is

different from that of the Sender;

— envworks, which holds if the channel is delivering messages in both directions (for
one round);

— envbroken, which holds if the channel is dropping messages in both directions (for
one round);

— rbity=v (i € {1,..., M}, v €{0,1}) which holds if the receiver’s view of bit i is v.

Unfortunately, the state machine grows complex fairly quickly, even for small values of N and
M [46]. Nonetheless, we attempted to verify several properties:

1. The Sender and Receiver are never in conflict (on the bits the Receiver knows).

This is true, as the system does not corrupt bits. We can write this in LDL or LDL; as

M
[T7] </\ (—\mismatchi)>

i=1

(Of course, this property can be written similarly in LTL or CTL; that said, the focus of
this example is more to compare the performance of finite and infinite trace semantics.)

. If the channel always works, then eventually everyone knows that the Receiver

knows the value of the last bit. This is true over infinite trace semantics, but not
over finite trace semantics (since we can terminate a trace early). We can express this in
LDLK or LDL;K, where I' refers to the group of all of the agents, as

([T*(envworks)) — (T*)Ep (Kgr(rbityr = 0) V Kg(rbityr = 1))

If the channel only works for bursts of one or two steps at a time, but quickly
recovers when it fails, then it is possible for the protocol to succeed — that is,
eventually everybody knows that the Receiver knows the value of the last bit.
(Here, by quickly recovers, we mean that the channel is only down for one step at a time.)

“This is an inefficiency of Go-Back-N that is addressed by the selective repeat protocol [46], though the state
machine becomes even more complex.

Chapter 8. Experimental Evaluation 137

This is sufficient, as enough messages will be delivered since the Sender keeps sending a
steady flow of messages. It can be expressed in CDL*K or CDL* /K as

envworks — E({((envworks; envbroken) + (envworks; envworks; envbroken))*)v)
where 1) refers to the protocol succeeding — that is,
W = Er(Kg(rbity = 0) V Kg(rbita = 1))

Note that if we changed this property to common knowledge, it would not hold (and would
not hold even if the channel always worked); the Receiver does not receive ACKs for the
ACKSs he sends, so the Receiver has no way of knowing that the Sender knows he knows
the value of the last bit.

Notice that for this scenario we need to document the non-model checking time for infinite and
finite trace semantics separately, because under finite traces we double the size of the model by
adding the path terminator agent, and also add a (small) additional preprocessing and parsing
load. Our results are presented in Table 8.6. From the data, we draw the following conclusions:

e Generally, as M increases, the time required to build the model and verify specifications,
as well as the BDD memory usage all increase. This is unsurprising, since the size of the
(reachable) state space increases.

e The pattern is not as clear when IV increases; as we increase IV from 2 to 3 we obtain
increases in the state space, but this is not necessarily the case when we increase N from
3 to 4; our experimental results include both increasing and decreasing reachable state
space sizes, as well as times for both building the model and model checking itself.

e Furthermore, observe that when M = 3 and we increase N from 3 to 4, the results for
both model checking and non-model checking times, as well as BDD memory used are
very similar (and the reachable state space also has the same size). This is in line with
expectations, since the semantics are the same in both instances; the Sender is allowed to
send all of the bits without any acknowledgements.

e Also, generally verifying properties using our algorithm for finite traces adds a cost in
terms of non-model checking time.

— This is in line with expectations, since as explained earlier the size of the model
is doubled, and we also need to preprocess the input ISPL file. We found that the
number of reachable states in the finite traces case was consistently just under double
that in the infinite traces case. Note that it was not exactly double, because for initial
states in the original model that are never revisited, the combined state of said initial
state and the path terminator being dead is not reachable in the new model.

— There is a notable exception for M = 4 and N = 3 that was consistent across the
specifications; again, we attribute this to empirical efficiency of BDDs.

e In terms of model checking time, verifying properties over finite traces is typically more
costly.

— This is unsurprising. Recall that to determine whether paths that satisfy our spec-
ification hold in our model, we need to check FGT with fairness constraints in the
composition of the model and our symbolic Biichi automata for the formulae. This
step is linear in the size of the model and the number of fairness constraints; our

138

8.8. Go-Back-N

Specification 1

Non-MC Time (s) Model Checking Time (s) BDD Memory (bytes)

N M | Lpork(or) Lbrysk(opr) | LDLK(OP) LpLyk(opP) | LpLk(or) LDLfK(OP)

3 0.555 0.876 0.035 0.071 13935168 16992336

4 1.852 2.733 0.089 0.333 31431008 42200304

2 5 7.882 26.434 0.230 0.534 38859136 45837552

6 21.470 32.453 0.513 0.862 55756992 57809488

7 57.575 78.479 3.020 9.310 65904992 87732560

3 1.668 2.825 0.106 0.216 31742272 32853616

4 6.023 5.254 0.227 0.408 47626528 48179184

3 5 43.049 54.116 1.033 3.486 46593184 64310640

6 146.583 149.138 8.159 27.833 | 111751232 150102160

7 622.082 1,344.836 65.719 332.687 | 282844416 375338960

3 1.673 3.131 0.106 0.216 31742272 32853616

4 12.681 19.723 0.583 1.349 53341856 58823408

4 5 36.367 48.294 1.127 8.044 58447680 90168944

6 96.940 133.701 7.386 30.001 | 115645504 155371344

7 506.742 813.535 25.191 191.873 | 269264992 378968752

Specification 2
Non-MC Time (s) Model Checking Time (s) BDD Memory (bytes)

N M | Lpork(op) LbrLysk(opr) | LDLK(OP) LpLyk(opP) | LpLk(or) LDLfK(OP)

3 0.554 0.868 0.242 0.299 31676352 41972784

4 1.852 2.663 0.797 0.864 51096064 56373776

2 5 7.840 24.829 1.864 7.283 59379616 63214768

6 20.840 33.412 8.083 9.120 57835488 82117552

7 56.313 79.921 253.259 40.706 | 138874272 191735568

3 1.672 3.180 0.975 1.493 53353280 58174352

4 6.060 5.035 2.004 3.520 57011904 62035504

3 5 39.424 56.335 30.385 23.420 67000544 130813648

6 139.527 148.035 228.246 68.292 | 156081952 254456368

7 622.950 1,322.311 2,331.437 606.917 | 410939520 903662864

3 1.671 2.951 0.981 1.403 53353280 58174352

4 12.777 17.343 15.226 13.585 62455008 80508048

4 5 27.266 46.589 62.521 35.942 68901280 178513808

6 112.874 134.280 223.339 79.966 | 155536160 249179600

7 502.012 828.060 | 2,428.861 750.290 | 716820352 707239696

Specification 3

Non-MC Time (s) Model Checking Time (s) BDD Memory (bytes)
M | Cpr*k(or) Cbpr*;k(op) | CpL*k(opr) CbL*;k(op) | CpL*K(OP) CDL*;K(OP)
3 0.553 0.872 0.301 0.654 37254208 44368880
4 1.831 2.597 0.868 2.534 51022752 60351184
5 7.782 21.638 2.584 48.234 54868128 61721168
6 21.064 27.076 8.350 82.197 59992096 66953136
7 56.144 67.026 221.307 587.844 138291104 195161360
3 1.658 2.918 1.056 4.382 57462208 59780464
4 6.013 4.650 2.447 7.653 57940896 58999216
5 40.948 50.262 26.029 165.710 68177024 135566928
6 131.702 148.430 133.488 414.669 150692640 222690960
7 613.147 1,283.107 1,567.676 4,509.025 388678912 749100848
3 1.659 2.927 1.052 4.486 57462208 59780464
4 10.224 18.685 8.054 51.139 60842528 69763824
5 37.677 44.169 34.074 227.603 66147104 179391344
6 97.237 120.720 124.864 410.961 151523552 225101712
7 501.267 741.615 1,159.449 4,967.685 761274912 604519376

Table 8.6: Experimental results for the Go-Back-N scenario.

Chapter 8. Experimental Evaluation 139

reduction doubles the size of the model (by introducing the path terminator) and
also adds one fairness constraint (—Alive). Furthermore, the finite translation in-
creases the size of the formula being verified (it adds a propositional operator and an
instance of the Alive proposition for each modality), potentially leading to a further
increase in the time required.

— However, this is not the case for Specification 2; this is because the specification
holds over infinite traces, and requires us to iterate through the full depth of the
model (since for the proposition to hold we need the Sender to receive an ack for
bit M). Conversely, for finite traces we can very quickly show that the proposition
does not hold, since the trace can be aborted early. We profiled several runs of our
tool with callgrind, and found that fewer preimages were required for finite traces
(e.g. for M = 4 and N = 2, we required 99 preimages to verify the property over
infinite traces, but only 21 to show that it did not hold over finite traces — even
though each preimage in the infinite trace case is costlier owing to the larger model).
Furthermore, as M increases, the number of preimages required for infinite traces
increases®, while that over finite traces appeared to hold constant (21 in all cases).

e Over infinite traces, verification of Specification 1 scales most easily, followed by Specifi-
cation 3, with Specification 2 being slowest.

— This may be surprising given the size of the formulae, as the order might seem
reversed from that (i.e. Specification 2 is smallest and Specification 1 is largest).
However, consider that for Specification 1, the propositional shortcircuiting optimi-
sation allows us to treat the entire expression within the box modality as a single
atomic proposition when verifying it. Specification 3 may seem large, but in terms of
automata construction we only need to build the automata for the expression within
the F-quantifier; after we find the states in which the E-quantified subformula holds,
we also use propositional shortcircuiting to return the final result.

— Opver finite traces, verification of Specification 2 seems to scale better than that of
Specification 3, perhaps owing to the relative ease of showing Specification 2 is not
satisfied over finite traces as discussed above.

e The propositional shortcircuiting optimisation also applies to verifying Specification 1
over finite traces. This is suggested by the memory usage for this specification, which
remains on the same order of magnitude as that for Specification 1 over infinite traces.
(Without the optimisation, the memory usage will tend to increase substantially; consider
the results for Specification 2 of the Prisoners scenario, which is similar, in table 8.4.)
This is true for Specification 3 as well, though the effect may not be as pronounced.

8.9 Summary

In general, we observe that our extensions of MCMAS to support the verification of properties
in LTLK, CTL*K, LDLK and CDL*K, along with the finite trace extensions of the last two,
generally have lower performance than that of MCMAS on CTLK specifications. This is unsur-
prising given the higher theoretical complexities of model checking our additional specification
languages (all PSPACE-complete, as opposed to CTLK model checking which is in P).

The degree of this slowdown depends on the specification being verified. Generally for small

®We needed 75 preimages for M = 3, N = 2 and 123 for M = 5, N = 2; we conjecture 24M + 3 overall.

140 8.9. Summary

specifications and/or specifications with substantial non-temporal components, our extensions
while slower are still on the same order of magnitude as the original CTLK algorithm, as far as
model checking time is concerned. This is in line with expectations, as while the model checking
problems for all of our additional specification languages are PSPACE-complete, they are fized
parameter tractable. In particular, the runtimes for our model checking algorithms are linear in
the size of the model, and exponential only in the size of the formula. For example, consider
Specification 2 for the Prisoners scenario (Section 8.7); we were able to verify the protocol’s
safety in CTL*K and CDL*K even when N = 70 (yielding a state space with more than 103°
reachable states).

The main bottleneck as far as LTLK and CTL*K model checking performance are concerned
especially for large formulae appears to be the checking of EGT with fairness constraints; this
makes sense as the additional fairness constraints introduced can add a substantial overhead
to this check. In the interest of time, we did not focus on optimising this algorithm, so there
may have been other inefficiencies that we did not consider. On the other hand, for LDLK and
CDL*K, the main performance bottlenecks appear to be performing the symbolic breakpoint
construction and checking of EGT with the model of our system, which is in line with our expec-
tations. We have taken steps to address the former through several performance optimisations
(Section 5.4) and shown that these optimisations can be useful in practice. Unfortunately, the
latter appears inevitable especially in models for which counterexamples and/or witnesses are
necessarily long (and thus require many iterations before convergence).

Of course, there are reasons besides performance for which our extensions are useful. They
contribute significantly to the range of specifications that MCMAS can verify; there are many
temporal properties expressible in our additional specification languages that are not expressible
in CTLK®. For example, these include specifications that are concerned with

e properties of individual paths (e.g. Specification 2 for Bit Transmission and Go-Back-N),
e parity (e.g. Specifications 1 to 3 and 5 for the Counter, Specification 3 for the Prisoners),
e arbitrary-length alternating sequences (e.g. Specification 4 for the Counter), and

e more complex regular properties over individual paths (e.g. Specification 4 for Prisoners,
Specification 3 for Go-Back-N).

One can also consider the ten properties we used to compare the expressivity of various tempo-
ral logics in Section 2.3; MCMAS would previously only have been able to verify the properties
expressible in CTLK (i.e. statements 1-4, 8 and 9), while our extensions allow verification of all
ten properties (since all of the properties are expressible in CDL*K, shown in Section 6.1).

Furthermore, we extended MCMAS’s capabilities to verify properties over finite trace semantics,
as introduced in Chapter 7. This is novel and different from the other specification languages
(as well as the existing specification languages supported by MCMAS), which are verified over
infinite traces.

In that sense, our extensions are not designed to replace the original tool; they are designed to
add additional expressive power to MCMAS (even if the ability to verify some of these proper-
ties comes with a high cost). We find that in general, they are able to handle reasonably large
state spaces, especially if specification formulae are not excessively large.

SMCMAS also supports ATLK, though this is not relevant as our extensions were not concerned with verifying
strategic ability.

Chapter 9

Project Evaluation

In this chapter we begin by evaluating the strengths and weaknesses of our theoretical contribu-
tions. We then evaluate the strengths and weaknesses of our implementation of these algorithms
in MCMAS-Dynamic.

9.1 Theory

Our project focused on developing practical, efficient model checking algorithms for LTLK,
CTL*K and LDLK. We also explored interesting temporal and epistemic extensions of LDLK
(CDL*K, as well as finite trace semantics), formalised them and developed model checking
algorithms for them as well. Our theoretical contributions are as follows:

1.

Epistemic Modalities for LTLK and CTL*K. We presented an algorithm for handling
epistemic modalities within LTL and CTL*, using a recursive descent approach. We showed
that these algorithms preserve the theoretical complexities of the relevant model checking
problems — that is, O(2!%! x |Z|), if one uses an optimal LTL algorithm.

. Formalism of CbpL*k. We added epistemic modalities to LDL, giving rise to LDLK,

and formalised its full-branching time extension CDL*K. We showed that the LDLK and
CpL*K model checking problems are both PSPACE-complete.

. Practical model checking algorithms for LDLK and CDL*K. We modified the con-

struction of [41] for LDL by introducing the notion of critical sets. This allowed us to
concretely construct alternating automata accepting precisely the models corresponding
to a given LDL formula in a bounded amount of time. We proved that our construction
is correct, and that it runs in O(max(2/?/181¢l 3191|Z])) time. We generalised our algo-
rithm to handle epistemic modalities, as well as our full branching time extension, while
preserving the same asymptotic time complexity. We also proposed several optimisations
that simplified the alternating automata generated by this procedure, and proved their
correctness.

. Formalism of CDL*K over finite traces. We formalised the full-branching time ex-

tension of LDL; with epistemic modalities, CDL* ;K. We showed that CDL* ;K model
checking is also PSPACE-complete.

. Algorithm for CbL*K and LDLK over finite traces. We presented a reduction of

CpL* ;K model checking to CDL*K model checking, and justified its correctness. Since
CbL*fK subsumes LDLK, the algorithm is also applicable to LDL¢K properties.

141

142 9.2. Implementation

9.1.1 Strengths
We observe the following strengths in our theoretical contributions:

1. Optimal time complexity for LTLK and CTL*K. Our algorithms proposed for LTLK
and CTL*K can achieve optimal asymptotic time complexity, provided the underlying LTL
model checking algorithm has optimal asymptotic time complexity!.

2. Amenability to practical symbolic implementations. Our novel algorithms for
LpLK and CDL*K are largely amenable to symbolic model checking. An exception might
be the states of the alternating automaton construction (Section 5.1.1), but we believe
this is not an issue as its size is linear in the specification size. The transitions of the
alternating automata can be computed symbolically.

3. Balance between expressive power and complexity. We put forth the formalism
of CDL*K, which has substantial expressive power in that it can express all w-regular
properties, and subsumes many popular temporal-epistemic logics (such as LTLK, LDLK,
CtLK and CTL*K). However, CDL*K remains in the PSPACE complexity class; in theory,
model checking CDL*K is no harder than model checking LTL.

4. Formal correctness. We have formalised the concepts used in our model checking
algorithms; furthermore, we either reuse standard, established techniques (e.g. symbolic
breakpoint construction, Section 2.6.4) or use original techniques for which we have proved
correctness (e.g. non-critical set path elimination, Theorem 5.1 in Section 5.1.2). Hence,
we can be confident that our model checking algorithms are formally correct.

9.1.2 Weaknesses

On the other hand, we also observe two main weaknesses of our theoretical contributions:

1. Uncertainty concerning optimality of our LDLK model checking algorithm. We
have provided an O(max(2/?1'°¢1¢l 31¢/|7|)) bound on the runtime of our LDL model check-
ing algorithm. It is uncertain whether a tighter bound is possible (we suspect a lower
bound is O(2/¢!|Z]), since the LTL model checking problem reduces to the LDLK model
checking problem). Nonetheless, our algorithm is singly exponential with exponentiality
only in formula size, which we believe renders it suitable for many practical applications.

2. Suboptimal space complexity. Our algorithms for model checking LDLK and CDL*K
(as well as for these languages over finite trace semantics) involve the symbolic breakpoint
construction, which constructs a Biichi automaton with O(3/¢!) states. Since we eagerly
construct said automaton, our algorithms may require exponential space — this is subop-
timal, since the model checking problem for these languages is in PSPACE. We believe
that the empirical efficiency of binary decision diagrams compensates for this in practice.

9.2 Implementation

Our project also focused on implementing the model checking algorithms developed for each
specification language, and evaluating the correctness, performance and scalability of our im-
plementation. In addition to the three languages we originally targeted (LTLK, CTL*K and

Tt is worth noting that the algorithms we actually implemented eagerly construct the Biichi automata and
thus are not asymptotically optimal; however, we believe this is outweighed in practice by the average-case
efficiency of symbolic model checking.

Chapter 9. Project Evaluation 143

LDLK), we also did this for CDL*K, and the finite trace semantics versions of both LDLK and
CpL*K. Our practical contributions were as follows:

1. MCMAS-Dynamic. We extended the MCMAS model checker with support for each of
the aforementioned specification languages. For LTLK and CTL*K, this involved a sym-
bolic implementation of the tableau construction of [28], as well as of the algorithms we
introduced; for LDLK and CDL*K, this involved a hybrid implementation of our alter-
nating automaton construction (explicit states, but symbolic transitions), followed by a
symbolic implementation of the breakpoint construction. For finite trace semantics, we
implemented our reduction of the finite trace model checking problem to an equivalent
model checking problem over infinite traces. We also extended the MCMAS parser to
support specifications in each of the newly supported languages, as well as implemented
counterexample generation for LDLK or universally quantified CDL*K formulae (and wit-
ness generation for existentially quantified CDL*K formulae).

Furthermore, we implemented all of the automata simplification optimisations for LDLK
proposed in Section 5.4.3, as well as investigated and optimised the sequencing of BDD
operations for computing the symbolic breakpoint construction (Section 5.4.4). Since
our CDL*K and finite traces algorithms all use our LDLK model checking procedure as a
subroutine, they also benefit from these optimisations.

2. Experimental evaluation. We evaluated how our implementation scaled on several
scenarios, both in terms of models as well as formulae of increasing size. We compared
our extension’s performance against MCMAS on equivalent CTLK formulae, as well as
against itself (e.g. on equivalent LTLK and LDLK formulae). We also demonstrated the
rich expressivity of the additional specification languages supported, and considered and
analysed the impact of our performance optimisations.

9.2.1 Strengths

We observed the following strengths in our tool as well as relevant implementation work:

1. First model checker for LDL and its extensions. To the best of our knowledge,
no other model checking tool supports LDL specifications. Our extension of MCMAS
adds support for not just LDL or its epistemic extension LDLK, but also for the various
extensions we have explored (full branching time semantics, finite trace semantics). We
believe this novelty is the greatest strength of our project.

2. Largely symbolic implementation. We have represented all additional automata con-
structions as well as model checking steps symbolically, apart from the states of the LDL
alternating automaton construction. We believe this is acceptable, as these alternating
automata are linear in the size of the formulae being verified [41]; transitions (which may
be exponential in the formula size) are represented symbolically, and the construction of
the nondeterministic Biichi automaton we use to check the property (which may incur
an exponential blow-up) is also implemented symbolically. Our experimental evaluation
(Chapter 8) verifies that in many cases, CDL*K model checking can be practical.

3. Expressive power. Our tool supports specifications in CDL*K, which as shown in Sec-
tion 6.1 is a very expressive temporal-epistemic logic. At the path level, CDL*K allows
all w-regular properties to be expressed; at the state level, CDL*K supports mixed quan-
tification over paths. Furthermore, we also support the finite trace variant of CDL*K.

144 9.2. Implementation

This significantly enhances the expressivity of our tool, compared to “vanilla” MCMAS
(CTLK and ATLK), MCK (CTL*K) or NuSMV (CtL and LTL). Yet, as discussed above,
our implementation of CDL*K model checking is still practical in many cases.

4. Comprehensive experimental evaluation. Our evaluation covered how our tool scales
over several pertinent parameters (formula size, model size, optimisations, finite vs. in-
finite traces). We were able to demonstrate our tool’s relative resilience to large models
(best exemplified through the Prisoners scenario, Section 8.7) and its high expressive
power (summarised in Section 8.9), as well as the effectiveness of our optimisations. We
were also able to demonstrate its worst-case O(2/¢/1°819]) behaviour (Specification 2 in the
Bit Transmission scenario, Section 8.6).

9.2.2 Weaknesses

Conversely, we also observed several potential areas for improvement:

1. Low performance. For equivalent specifications, we observe that our extensions tended
to be substantially slower than the existing CTLK implementation in MCMAS. This is in
line with expectations, given the higher computational complexity of the model checking
problems for the various languages we considered (all PSPACE-complete, as opposed to
P for CTLK).

We believe that our extension is practically useful, nonetheless, as it supports a wide
variety of properties not expressible in CDLK. Furthermore, our algorithms are fixed pa-
rameter tractable — even though they may require exponential time, we have exponentiality
only in the size of the formula. Thus, as shown in Chapter 8, we were able to handle rea-
sonably large (or, in some cases, very large) state spaces if formulae were small, which
has been claimed to be the case in practice [79]. In several cases, our LDLK optimisations
were useful in speeding up verification of LDLK and CDL*K properties to require time on
a similar order of magnitude as that for CTLK, though this is unlikely to be possible in
general?.

2. Code health. We attempted to maintain a relatively clean design as far as our exten-
sions are concerned (for example, introducing several abstractions in the form of automata,
modalities, nodes etc., as in Section 5.3.1). However, in the interest of time we decided
to follow many of the existing code patterns in MCMAS, even if they were not optimal
from a software engineering point of view (for example, we used the existing monolithic
bdd_parameters struct, as well as depend on several global variables such as agents).

This also made unit testing difficult, as discussed in Section 8.2.1. We mitigated this
by implementing a framework for automated system testing, and creating a large set of
test specifications which cover various formulae across our specification languages (again,
discussed in Section 8.2.1). We also checked that our tool was consistent across equivalent
formulae in multiple specification languages (Section 8.2.2). However, our tests were still
limited in that they did not cover counterexample generation (owing to nondeterminism)
and were at a relatively coarse granularity. We nonetheless found said tests invaluable in
giving us confidence that our changes were correct.

2We say unlikely because it is not definitively known whether P is a strict subset of PSPACE, so it could be
the case that these model checking problems actually have the same theoretical complexity.

Chapter 10

Conclusions

As discussed at the beginning of Chapter 5, w-regular properties are useful in systems verifi-
cation; yet, we were not able to find model checkers that support automatic verification of all
such properties. We addressed this problem by devising a novel adaptation of the alternating
automaton construction from [41] using critical sets, which admits a concrete implementation,
and used this to develop the first model checker for LDLK.

We also considered extensions of LDLK such as CDL*K and finite trace semantics that fur-
ther improve the expressive power of LDLK, and developed algorithms and tool support for
these extensions. Although the theoretical complexity of verifying such properties can be high,
our experimental results show that in many scenarios, these techniques are still feasible in prac-
tice and can be used to verify agents’ behaviour, as well as identify counterexample or witness
traces where appropriate (which, in turn, may be useful in identifying and fixing bugs).

10.1 Summary of Work

We first summarise the work that we have done, considering this against our objectives set out
in Section 1.1. We laid out our objectives in an iterative fashion, seeking to develop, implement
and then evaluate algorithms for temporal-epistemic logics of increasing expressive power, as
laid out in Figure 1.1.

We began with Linear Temporal Epistemic Logic (LTLK). We reduced the LTLK model check-
ing problem to the standard (that is, non-epistemic) LTL model checking problem. We showed
that our algorithm had runtime exponential in the formula size but linear in the model size.
We then concretely implemented the tableau construction with some adaptation, owing to the
peculiarities of MCMAS, and thus added support for symbolic model checking of LTL and LTLK
properties to MCMAS (inclusive of counterexample generation). We also uncovered and fixed
a subtle bug concerning MCMAS’s existing counterexample generation implementation.

We then extended our work to Full Branching Time Epistemic Logic (CTL*K), using the re-
cursive descent ideas put forth in [39]. As before, we implemented support for symbolic model
checking of CTL* and CTL*K properties to MCMAS (again, inclusive of counterexample gen-
eration).

Next, we tackled the problem of model checking Linear Dynamic Epistemic Logic (LDLK)

specifications. We considered the interaction of LDL with epistemic modalities, and showed
that LpLK is PSPACE-complete. We developed a novel construction for LDL which helps us

145

146 10.2. Future Extensions

eliminate the requirement of considering every e-path from the construction in [41]. We showed
that the alternative construction is correct, and runs in time singly exponential in the size of
the formula but linear in the size of the model. We implemented the first model checker for
LpL and LDLK (to the best of our knowledge), using our alternating automaton construction
and the symbolic breakpoint construction of [20]. We also investigated multiple approaches for
improving the performance of our implementation, both in terms of simplifying automata as
well as making efficient use of BDDs. We showed that these optimisations were correct, and im-
plemented all of them in our tool. We also implemented support for counterexample generation.

We then introduced the full branching time extension of LDLK, CDL*K, which adds support for
existential path quantification to LDLK. We formalised its syntax and semantics, and provided
a model checking algorithm that used our LDLK algorithm that was singly exponential in the
size of the formula and linear in the size of the model. We used this algorithm to show that
CpL*K is PSPACE-complete, which gives it the same theoretical complexity as LTL even though
it is substantially more expressive (we showed it subsumed CTL*K and LDLK, which themselves
subsume LTLK). We also used this algorithm to implement the first model checker for CprL*
and CDL*K (again, to the best of our knowledge).

We then considered LDLy, which is LDL over finite traces, and introduced our novel exten-
sion CDL*¢K (which is CDL*K over finite traces). We provided a model checking algorithm
for CDL*¢K, showed its correctness, and also showed that this logic is PSPACE-complete with
runtime exponential only in the size of the formula. We extended our tool to allow verification
of CDL* /K properties, including counterexample generation.

We then tested the performance of our model checker over a wide variety of scalable scenar-
ios and specifications. We showed that while the worst-case O(2/¢11°81¢) hehaviour can indeed
occur, for reasonably small specifications the tool is still able to verify properties over large
state spaces (possibly as large as 103° states in some cases). We also put forth many examples
of properties that our extension can handle, that could not previously be verified by MCMAS
owing to the limited expressivity of being restricted to CTLK alone.

In terms of functionality, we have been largely successful in our goals. We have indeed de-
veloped algorithms for model checking each specification language, justified their correctness,
implemented model checkers for each language and subjected our implementations to significant
acceptance and scale testing. There is still certainly room for improvement, especially in terms
of performance. To some extent, this is an unavoidable consequence as our specification lan-
guages have substantially higher model checking complexities. We have mitigated this through
several performance optimisations, and believe the additional expressivity of our tool certainly
compensates for said low performance. There also remains much scope to push this further, as
outlined in Section 10.2.2.

10.2 Future Extensions

We believe we have made significant progress towards practical LDLK and CDL*K model check-
ing, by implementing the first LDL model checker, as well as implementing support for several
temporal and epistemic extensions. Nonetheless, there is much room for this project to be ex-
tended, both in terms of theory and implementation. We partition this section into a discussion
of extensions concerning expressive power and/or functionality of our tool or logics, as well as
extensions concerning performance or reliability of our algorithms or implementations.

Chapter 10. Conclusions 147

10.2.1 Expressivity and Functionality

e Metric LDL or CbL*. The metric extension of LDL or CDL* includes modalities which
have a constant bounded match length; for example, [p; ¢*]<ar holds iff after every match
of p;¢* of length at most 4, r holds. Currently, we can simulate this by enumerating all
possible matches (e.g. [(p+p; (¢+ ¢; (¢+¢; q))]r) but this needs to be done manually, and
tends to be infeasible in practice especially for large time bounds. A first improvement
could be to add a simultaneous transition into a counting automaton that keeps track of
the time left before one has to exit the nodes in the e-NFA; alternatively, one may attempt
to extend the breakpoint construction to account for this (as suggested in [41]).

e Parametric LDL or CbpL*. The parametric extension builds on the above metric ex-
tension, by allowing users to specify arbitrary bounds on matches (and having the tool
automatically determine the optimal bound values). For example, given (p;¢*)<,r, the
tool should either indicate that the formula is unsatisfiable for any value of z, or indicate
the smallest value of = for which it holds. More detail can be found in [41].

e Heuristics for shorter witnesses/counterexamples. We currently rely on the algo-
rithm implemented to determine witnesses for EG in MCMAS to determine counterex-
amples or witness traces for LTLK, CTL*K, LDLK and CDL*K formulae (including the
finite trace variants of the latter two)®, which is based on the algorithm from [29]. Shorter
counterexamples are often easier to understand and debug [85], and there exist methods
such as that presented in [49] which, while potentially slower than that proposed in [29],
have stronger guarantees about the lengths of counterexamples produced. It may be worth
noting that the problem is NP-complete in general [29].

e LDLK or CDL*K interpreted over probabilistic systems. Interpreted systems do not
currently have a notion of probability (only nondeterminstic choice). Currently, logics
like CDL*K only allow us to quantify universally or existentially over paths. It is thus
not possible to specify properties concerning probability (for example, “the probability is
less than 10~ that the trains will crash” as opposed to “it is not possible for the trains
to crash”). Adding support for such properties could be done by extending interpreted
systems with action probabilities (effectively, defining a discrete-time Markov chain over
global states) and extending specification formulae to support reasoning about probability.

The PRISM model checker [59] supports a logic which subsumes PCTL*, an extension of
CTL* with probabilistic operators, though it currently does not directly support epistemic
modalities. Adding support for PCTL*K (or probabilistic LDLK or CDL*K) might allow
verification of interesting properties, such as safety of multi-party computation protocols.
For example, using the dining cryptographers scenario (Section 8.4), this allows us to ver-
ify an even stronger property than Specification 1; we can verify that if the coin flip was
odd and Cryptographer 1 did not pay, then he knows someone paid, but does not know
12

that any other individual cryptographer paid with probability more or less than —=.

10.2.2 Performance and Reliability

e More sophisticated automaton minimisation. We pruned states which did not have
incoming non-e transitions from the e-NFAs when constructing the automata for LDL

Though we did fix a bug in it, as discussed in Section 3.2.5.
2 A protocol which reveals that Cryptographer 2, say, paid with probability 1 —
specifications in Section 8.4.

107599 would still satisfy the

148

10.2. Future Extensions

(Section 5.4.3). However, it may be possible to achieve even smaller alternating automata
using techniques such as quotientiation, which involves merging states which are “equiv-
alent” in some sense (see [43] for more detail). This could lead to a significant reduction
in the state space of the Biichi automata after we perform the symbolic breakpoint con-
struction. Alternatively, the techniques of [87] may be useful in reducing the size of the
Biichi automata, for both the LTL tableau as well as the automata for LDL.

Alternative symbolic encodings for LTL or CTL*. We use the tableau construction
of [28], which is also used in other popular model checkers such as MCK and NuSMV.
However, approaches that use multiple encodings in parallel have shown encouraging re-
sults in practice [80]; this may be useful in boosting the performance of our LTLK and
CTL*K implementations.

Symbolic breakpoint construction optimisation. We have implemented a symbolic
version of the Miyano-Hayashi construction from [20]. However, the writers also suggest
an alternative formulation which is claimed to be potentially more efficient as it exploits
parts of the alternating automata that are linear weak (that is, parts which have no cycles
other than self-loops). Furthermore, the automata we construct are weak [41] (that is,
each strongly connected component has only accepting or rejecting states); our current
approach does not take advantage of this at all.

Alternative verification techniques. We have focused on symbolic model checking
(SMC) of LrL, LDL and their extensions, through the use of binary decision diagrams.
However, it may be worthwhile investigating the performance of LDL model checking
using alternative techniques, such as bounded model checking (BMC) — this has also been
found to be useful in practice, especially in cases where properties can quickly be shown
to be false [18]. BMC is also useful in generating minimal counterexamples [55], which
our current SMC-based approach does not guarantee. Furthermore, even within SMC, we
can consider the impact of using alternative data structures such as sentential decision
diagrams [34], which have seen applications in model checking [67].

Investigation of BDD efficiency. Throughout this project, apart from the efficient
conjunct computation optimisation (Section 5.4.4) we have largely treated CUDD, the
BDD library that MCMAS uses, as a black box. It may be possible to achieve better
performance by optimising the way in which we use the tool (e.g. variable ordering or
reordering heuristics, further optimisation as far as order of operations is concerned, tuning
of caching parameters etc.). Alternatively, it may be possible to obtain better performance
by using different BDD packages, such as BuDDy [2].

Parallel construction or verification. We attempted to carry out the symbolic break-
point construction in parallel, though this did not work well owing to overheads from
CUDD as well as the high cost involved in combining partial results (see the end of
Section 5.4.4 for a discussion). Using BDD packages that support concurrency, such as
BDDNOW [72] or Sylvan [91] could make this more efficient.

Random differential testing. We drew on the idea of differential testing (Section
8.2.2) to help give us confidence that our tool behaved correctly. A natural extension to
this would be to randomly generate formulae in CTLK or LTLK, and then automatically
translate them to relevant formulae in the logics that subsume them (CTL*K, LDLK and
CDL*K) — a mismatch would indicate a bug in at least one of the algorithms concerned.
This would allow us to test our implementations on far more difficult and complex formulae
than we were able to manually construct and verify.

Bibliography

“Apache CloudStack: Open Source Cloud Computing”. 8 May 2016. <https://
cloudstack.apache.org/>

“BuDDy: A BDD package.” 6 Jun 2016. <http://buddy.sourceforge.net/manual/
main.html>

“The cudd package (Internal). Internal data structures of the CUDD package.”
12 May 2016. <http://www.async.ece.utah.edu/~myers/nobackup/ee5740_98/cudd/
cuddAllDet.html >

“FindBugs™ — Find Bugs in Java Programs”. 10 Jan 2016. <http://findbugs.
sourceforge.net/>

“MCK”. 10 Jan 2016. <http://cgi.cse.unsw.edu.au/~mck/pmck/>

“MCK 1.1.0: User Manual.” 30 May 2016. <cgi.cse.unsw.edu.au/~mnck/pmck/mcks/
docDownload/manual >

“MCMAS v1.2.2: User Manual”. 18 Jan 2016. <http://vas.doc.ic.ac.uk/downloads/
manual.pdf>

“NuSMV home page”. 10 Jan 2016. <http://nusmv.fbk.eu/>
“OpenMP.org.” 2 June 2016. <http://openmp.org/wp/>

“VAS — Verification of Autonomous Systems >> MCMAS”. 18 Jan 2016. <http://vas.
doc.ic.ac.uk/software/mcmas/>

“Verics | VerICS”. 18 Jan 2016. <http://verics.ipipan.waw.pl/>

Ayewah, Nathaniel, et al. “Using FindBugs on production software.” Companion to the
22nd ACM SIGPLAN conference on Object-oriented programming systems and applica-
tions. ACM, 2007.

Baier, Christel, and Joost-Pieter Katoen. Principles of model checking. Vol. 26202649.
Cambridge: MIT press, 2008.

Ball, Thomas, Vladimir Levin, and Sriram K. Rajamani. “A decade of software model
checking with SLAM.” Communications of the ACM 54.7 (2011): 68-76.

Basili, Victor R., and Richard W. Selby. “Comparing the effectiveness of software testing
strategies.” Software Engineering, IEEE Transactions on 12 (1987): 1278-1296.

Bauland, Michael, et al. “The tractability of model-checking for LTL: The good, the bad,
and the ugly fragments.” FElectronic Notes in Theoretical Computer Science 231 (2009):
277-292.

149

https://cloudstack.apache.org/
https://cloudstack.apache.org/
http://buddy.sourceforge.net/manual/main.html
http://buddy.sourceforge.net/manual/main.html
http://www.async.ece.utah.edu/~myers/nobackup/ee5740_98/cudd/cuddAllDet.html
http://www.async.ece.utah.edu/~myers/nobackup/ee5740_98/cudd/cuddAllDet.html
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://cgi.cse.unsw.edu.au/~mck/pmck/
cgi.cse.unsw.edu.au/~mck/pmck/mcks/docDownload/manual
cgi.cse.unsw.edu.au/~mck/pmck/mcks/docDownload/manual
http://vas.doc.ic.ac.uk/downloads/manual.pdf
http://vas.doc.ic.ac.uk/downloads/manual.pdf
http://nusmv.fbk.eu/
http://openmp.org/wp/
http://vas.doc.ic.ac.uk/software/mcmas/
http://vas.doc.ic.ac.uk/software/mcmas/
http://verics.ipipan.waw.pl/

150

Bibliography

[17]

[18]

[19]
[20]

Bernholtz, Orna, Moshe Y. Vardi, and Pierre Wolper. “An automata-theoretic approach
to branching-time model checking.” Computer Aided Verification. Springer Berlin Heidel-
berg, 1994.

Biere, Armin, et al. “Bounded model checking.” Advances in Computers 58 (2003): 117-
148.

Bjesse, Per. “What is formal verification?.” ACM SIGDA Newsletter 35.24 (2005): 1.

Bloem, Roderick, et al. “Symbolic implementation of alternating automata.” Implemen-
tation and Application of Automata. Springer Berlin Heidelberg, 2006. 208-218.

Boker, Udi, Orna Kupferman, and Adin Rosenberg. “Alternation removal in Biichi au-
tomata.” Automata, Languages and Programming. Springer Berlin Heidelberg, 2010. 76-
87.

Bollig, Beate, and Lngo Wegener. “Improving the variable ordering of OBDDs is NP-
complete.” Computers, IEEE Transactions on 45.9 (1996): 993-1002.

Bryant, Randal E. “Graph-based algorithms for boolean function manipulation.” Com-
puters, IEEE Transactions on 100.8 (1986): 677-691.

Biichi, Julius Richard. “Weak Second-Order Arithmetic and Finite Automata.” Mathe-
matical Logic Quarterly 6.1-6 (1960): 66-92.

Burmeister, Birgit, Afsaneh Haddadi, and Guido Matylis. “Application of multi-agent
systems in traffic and transportation.” Software Engineering. IEE Proceedings. Vol. 144.
No. 1. IET, 1997.

Cavada, Roberto, et al. “NuSMV 2.6 User Manual.” 1 June 2016. <http://nusmv.fbk.
eu/NuSMV/userman/v26/nusmv . pdf >

Chaum, David. “The dining cryptographers problem: Unconditional sender and recipient
untraceability.” Journal of Cryptology 1.1 (1988): 65-75.

Clarke, Edmund, Orna Grumberg, and Kiyoharu Hamaguchi. “Another look at LTL model
checking.” Computer Aided Verification. Springer Berlin Heidelberg, 1994.

Clarke, Edmund M., et al. “Efficient generation of counterexamples and witnesses in sym-
bolic model checking.” Proceedings of the 32nd annual ACM/IEEE Design Automation
Conference. ACM, 1995.

Clarke, Edmund M., Orna Grumberg, and Doron Peled. Model checking. MIT press, 1999.

Clarke, Edmund, et al. “Tree-like counterexamples in model checking.” Logic in Computer
Science, 2002. Proceedings. 17th Annual IEEE Symposium on. IEEE, 2002.

Clarke, Edmund M., et al. “Model checking and the state explosion problem.” Tools for
Practical Software Verification. Springer Berlin Heidelberg, 2012. 1-30.

Cormen, Thomas H., et al. Introduction to Algorithms. MIT Press, 2009.

Darwiche, Adnan. “SDD: A new canonical representation of propositional knowledge
bases.” IJCAI Proceedings-International Joint Conference on Artificial Intelligence. Vol.
22. No. 1. 2011.

http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf

Bibliography 151

[35]

[41]

[42]

[43]

[44]

[45]

[46]

[48]

[49]

De Giacomo, Giuseppe, and Moshe Y. Vardi. “Linear temporal logic and linear dynamic
logic on finite traces.” Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence. AAAT Press, 2013.

De Giacomo, Giuseppe, et al. “Monitoring business metaconstraints based on LTL and
LDL for finite traces.” Business Process Management. Springer International Publishing,
2014. 1-17.

Donaldson, Alastair. “Software Reliability — Compilers and Undefined Behaviour.” De-
partment of Computing, Imperial College London, 2015.

Duret-Lutz, Alexandre, and Denis Poitrenaud. “SPOT: an extensible model checking li-
brary using transition-based generalized Biichi automata.” Modeling, Analysis, and Simu-
lation of Computer and Telecommunications Systems, 2004.(MASCOTS 2004). Proceed-
ings. The IEEE Computer Society’s 12th Annual International Symposium on. IEEE,
2004.

Emerson, E. Allen, and Chin-Laung Lei. “Modalities for model checking (extended ab-
stract): branching time strikes back.” Proceedings of the 12th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. ACM, 1985.

Emerson, E. Allen, and Joseph Y. Halpern. ““Sometimes” and ‘“not never” revisited: on
branching versus linear time temporal logic.” Journal of the ACM (JACM) 33.1 (1986):
151-178.

Faymonville, Peter, and Martin Zimmermann. “Parametric linear dynamic logic.” arXiv
preprint arXiv:1408.5957 (2014).

Finch, Steven. “Central Binomial Coefficients.” 29 April 2016. <http://www.people.
fas.harvard.edu/~sfinch/csolve/cbc.pdf>

Fritz, Carsten, and Thomas Wilke. “Simulation relations for alternating Biichi automata.”
Theoretical Computer Science 338.1-3 (2005): 275-314.

Gartner. “Global Market Share Held by Semiconductor Vendors in 2015.” Statista —
The Statistics Portal. Statista. 10 Jan 2016. <http://www.statista.com/statistics/
266143/global-market-share-of-leading-semiconductor-vendors/>

Gastin, Paul, and Denis Oddoux. “Fast LTL to Biichi automata translation.” Computer
Aided Verification. Springer Berlin Heidelberg, 2001.

Gopalan, Anandha. “Networks and Communications: Transport Layer.” Department of
Computing, Imperial College London, 2016. 28 May 2016. <https://www.doc.ic.ac.
uk/~axgopala/nac/slides/nac_03.pdf>

Harrison, John. “Formal Methods at Intel — An Overview.” Second NASA Formal Methods
Symposium. Vol. 8. 2010.

Hodkinson, Tan. “140 Logic.” Department of Computing, Imperial College London, 2015.

Hojati, Ramin, Robert K. Brayton, and Robert P. Kurshan. “BDD-based debugging of
designs using language containment and fair CTL.” Computer Aided Verification. Springer
Berlin Heidelberg, 1993.

http://www.people.fas.harvard.edu/~sfinch/csolve/cbc.pdf
http://www.people.fas.harvard.edu/~sfinch/csolve/cbc.pdf
http://www.statista.com/statistics/266143/global-market-share-of-leading-semiconductor-vendors/
http://www.statista.com/statistics/266143/global-market-share-of-leading-semiconductor-vendors/
https://www.doc.ic.ac.uk/~axgopala/nac/slides/nac_03.pdf
https://www.doc.ic.ac.uk/~axgopala/nac/slides/nac_03.pdf

152 Bibliography

[50] Holzmann, Gerard J. “The model checker SPIN.” IEEE Transactions on software engi-
neering 5 (1997): 279-295.

[51] Holzmann, Gerard J. “Landing a spacecraft on Mars.” Software, IEEE 30.2 (2013): 83-86.

[52] Howell, Rodney R. “epsilon-NFA’s and regular expressions.” 24 April 2016. <http://
people.cis.ksu.edu/~rhowell/770s04/lectures/3-twoup.pdf >

[53] Huang, Xiaowei, and Ron van der Meyden. “Symbolic Model Checking Algorithms for
Temporal-Epistemic Logic.”

[54] Huth, Michael, and Mark Ryan. Logic in Computer Science: Modelling and reasoning
about systems. Cambridge University Press, 2004.

[55] Jones, Andrew V., and Alessio Lomuscio. “A BDD-based BMC approach for the verifica-
tion of multi-agent systems.” Proc. of CS€P. Vol. 9. 20009.

[56] Kemerer, Chris F., and Mark C. Paulk. “The impact of design and code reviews on
software quality: An empirical study based on PSP data.” Software Engineering, IEEE
Transactions on 35.4 (2009): 534-550.

[57] Kong, Jeremy, and Alessio Lomuscio. “MCMAS 1.2.2 — EG counterexample generation
deadlock.” Personal communication, 2016.

[58] Kouvaros, Panagiotis, and Alessio Lomuscio. “A counter abstraction technique for the
verification of robot swarms.” Twenty-Ninth AAAI Conference on Artificial Intelligence.
2015.

[59] Kwiatkowska, Marta, Gethin Norman, and David Parker. “PRISM 4.0: Verification of
probabilistic real-time systems.” Computer Aided Verification. Springer Berlin Heidelberg,
2011.

[60] Leucker, Martin, and César Sdnchez. “Regular linear temporal logic.” Theoretical Aspects
of Computing — ICTAC 2007. Springer Berlin Heidelberg, 2007. 291-305.

[61] Leveson, Nancy G., and Clark S. Turner. “An investigation of the Therac-25 accidents.”
Computer 26.7 (1993): 18-41.

[62] Lomuscio, Alessio, and Mark Ryan. “On the relation between interpreted systems and
Kripke models.” Agents and Multi-Agent Systems Formalisms, Methodologies, and Appli-
cations (1998): 46-59.

[63] Lomuscio, Alessio, and Marek Sergot. “Deontic interpreted systems.” Studia Logica 75.1
(2003): 63-92.

[64] Lomuscio, Alessio, and Franco Raimondi. “Model checking knowledge, strategies, and
games in multi-agent systems.” Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems. ACM, 2006.

[65] Lomuscio, Alessio, Hongyang Qu, and Franco Raimondi. “MCMAS: an open-source model
checker for the verification of multi-agent systems.” International Journal on Software
Tools for Technology Transfer (2015): 1-22.

[66] Lomuscio, Alessio. “C303: Systems verification.” Department of Computing, Imperial

College London, 2015.

http://people.cis.ksu.edu/~rhowell/770s04/lectures/3-twoup.pdf
http://people.cis.ksu.edu/~rhowell/770s04/lectures/3-twoup.pdf

Bibliography 153

[67]

[69]

[70]

[71]

[82]
[83]

Lomuscio, Alessio, and Hugo Paquet. “Verification of Multi-Agent Systems via SDD-
based Model Checking.” Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2015.

Maidi, Madjid. “The common fragment of CTL and LTL.” Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

McMillan, Kenneth Lauchlin. “Symbolic model checking: an approach to the state explo-
sion problem.” (1992).

Meski, Artur, Wojciech Penczek, and Maciej Szreter. “BDD-based Bounded Model Check-
ing for LTLK over Two Variants of Interpreted Systems.” Proc. of LAM (2012): 35-50.

Meski, Artur, et al. “BDD-versus SAT-based bounded model checking for the existential
fragment of linear temporal logic with knowledge: algorithms and their performance.”
Autonomous Agents and Multi-Agent Systems 28.4 (2014): 558-604.

Milvang-Jensen, Kim, and Alan J. Hu. “BDDNOW: a parallel BDD package.” Formal
Methods in Computer-Aided Design. Springer Berlin Heidelberg, 1998.

Miyano, Satoru, and Takeshi Hayashi. “Alternating finite automata on w-words.” Theo-
retical Computer Science 32.3 (1984): 321-330.

Nicely, Thomas R. “Pentium FDIV Flaw FAQ.” Some Results of Research in Computa-
tional Number Theory (2008).

Porter, Timothy. “Interpreted systems and Kripke models for multiagent systems from a
categorical perspective.” Theoretical computer science 323.1 (2004): 235-266.

Raimondi, Franco, and Alessio Lomuscio. “A tool for specification and verification of
epistemic properties in interpreted systems.” Electronic Notes in Theoretical Computer
Science 85.2 (2004): 176-191.

Rogers, Alex, et al. “The effects of proxy bidding and minimum bid increments within
eBay auctions.” ACM Transactions on the Web (TWEB) 1.2 (2007): 9.

Rozier, Kristin Y., and Moshe Y. Vardi. “LTL satisfiability checking.” Model checking
software. Springer Berlin Heidelberg, 2007. 149-167.

Rozier, Kristin Y. “Linear temporal logic symbolic model checking.” Computer Science
Review 5.2 (2011): 163-203.

Rozier, Kristin Y., and Moshe Y. Vardi. “A Multi-Encoding Approach for LTL Symbolic
Satisfiability Checking.” 14 May 2016. <http://www.cs.rice.edu/~vardi/papers/
fmllb.pdf>

Rudell, Richard. “Dynamic variable ordering for ordered binary decision diagrams.” Pro-
ceedings of the 1993 IEEE/ACM international conference on Computer-aided design.
IEEE Computer Society Press, 1993.

Russell, Stuart, and Peter Norvig. “Artificial intelligence: a modern approach.” (1995).

Savnik, Iztok. “Index data structure for fast subset and superset queries.” Awailability,
Reliability, and Security in Information Systems and HCI Springer Berlin Heidelberg,
2013. 134-148.

http://www.cs.rice.edu/~vardi/papers/fm11b.pdf
http://www.cs.rice.edu/~vardi/papers/fm11b.pdf

154

Bibliography

[84]

[85]

[36]

[87]

Schnoebelen, Philippe. “The Complexity of Temporal Logic Model Checking.” Advances
in modal logic 4.393-436 (2002): 35.

Schuppan, Viktor, and Armin Biere. “Shortest Counterexamples for Symbolic Model
Checking of LTL with Past.” Tools and Algorithms for the Construction and Analysis
of Systems (2005): 493-509.

Somenzi, Fabio. “Binary Decision Diagrams.” Calculational System Design 173 (1999):
303.

Somenzi, Fabio, and Roderick Bloem. “Efficient Biichi automata from LTL formulae.”
Computer Aided Verification. Springer Berlin Heidelberg, 2000.

Somenzi, Fabio. “CUDD: CU decision diagram package-release 2.4. 0.” University of Col-
orado at Boulder, 2009.

Thompson, Ken. “Programming techniques: Regular expression search algorithm.” Com-
munications of the ACM 11.6 (1968): 419-422.

van Bakel, Steffen. “Discrete Mathematics Lecture Notes: Part 1.” Department of Com-
puting, Imperial College London, 2015.

van Dijk, Tom, Alfons Laarman, and Jaco van de Pol. “Multi-core BDD operations for
symbolic reachability.” Electronic Notes in Theoretical Computer Science 296 (2013): 127-
143.

van Ditmarsch, Hans, Jan van Eijck, and William Wu. “One Hundred Prisoners and a
Lightbulb — Logic and Computation.” Twelfth International Conference on the Principles
of Knowledge Representation and Reasoning. 2010.

Vardi, Moshe. “Alternating automata and program verification.” Computer Science Today
(1995): 471-485.

Vardi, Moshe Y.“An automata-theoretic approach to linear temporal logic.” Logics for
concurrency. Springer Berlin Heidelberg, 1996. 238-266.

Vardi, Moshe Y. “Branching vs. linear time: Final showdown.” Tools and Algorithms for
the Construction and Analysis of Systems. Springer Berlin Heidelberg, 2001. 1-22.

Vardi, Moshe Y. “The rise and fall of LTL.” GandALF. EPTCS 54 (2011).

Vega, Frank. “NP versus PSPACE.” 24 May 2016. <https://hal.archives-ouvertes.
fr/hal-01196489/file/NP-versus-PSPACE. pdf>

Weinert, Alexander, and Martin Zimmermann. “Visibly Linear Dynamic Logic.”
arXiv preprint arXiv:1512.05177 (2015). 30 May 2016. <http://arxiv.org/pdf/1512.
05177v1.pdf>

Wolper, Pierre. “Temporal logic can be more expressive.” Information and Control 56.1
(1983): 72-99.

Wozna, Bozena, and Andrzej Zbrzezny. “VerICS 2006-a Model Checker for Real-Time and
Multi-Agent Systems.”

https://hal.archives-ouvertes.fr/hal-01196489/file/NP-versus-PSPACE.pdf
https://hal.archives-ouvertes.fr/hal-01196489/file/NP-versus-PSPACE.pdf
http://arxiv.org/pdf/1512.05177v1.pdf
http://arxiv.org/pdf/1512.05177v1.pdf

Appendix A

ISPL Model for the Bit
Transmission Protocol

This example is taken from [7], with minor adaptations (specifically, removing the fairness
constraint, allowing the channel to start in any state, and adding several Evaluation variables).

-- The Bit transmission problem in ISPL (from Fagin et al., Reasoning
-- about knowledge, 1995).
-- Basic case, no faulty behaviour for Receiver.

Agent Environment

Vars:

state : {S,R,SR,nonel};
end Vars
Actions = {S,SR,R,nonel};
Protocol:

state=S: {S,SR,R,nonel;
state=R: {S,SR,R,none};
state=SR: {S,SR,R,none};
state=none: {S,SR,R,nonel};

end Protocol

Evolution:
state=S if (Action=S);
state=R if (Action=R);
state=SR if (Action=SR);
state=none if (Action=none);

end Evolution

end Agent

Agent Sender

Vars:
bit : { b0, bl}; -- The bit can be either zero or one
ack : boolean; -- This is true when the ack has been received
end Vars
Actions = { sbO,sbl,nothing };
Protocol:

bit=b0 and ack=false : {sbO0};
bit=b1l and ack=false : {sbl};
ack=true : {nothing};
end Protocol
Evolution:
(ack=true) if (ack=false) and
(((Receiver.Action=sendack) and (Environment.Action=SR))
or
((Receiver.Action=sendack) and (Environment.Action=R))

155

156

40)

41 end Evolution

42 end Agent

43

44 Agent Receiver

45 Vars:

46 state : { empty, r0, rl1 3};

a7 end Vars

48 Actions = {nothing, sendack};

49 Protocol:

50 state=empty : {nothing};

51 (state=r0 or state=r1): {sendack};

52 end Protocol

53 Evolution:

54 state=r0 if (((Sender.Action=sb0) and (state=empty) and
55 (Environment.Action=SR)) or

56 ((Sender.Action=sb0) and (state=empty) and
57 (Environment.Action=S)));

58 state=r1 if (((Sender.Action=sbl) and (state=empty) and
59 (Environment.Action=SR)) or

60 ((Sender.Action=sbl) and (state=empty) and
61 (Environment.Action=8)));

62 end Evolution

63 end Agent

64

65 Evaluation

66 recbit if ((Receiver.state=r0) or (Receiver.state=rl));

67 recack if ((Sender.ack = true));

68 bit0 if ((Sender.bit=b0));

69 bit1l if ((Sender.bit=bl));

70 envworks if (Environment.state=SR);

71 tt if ((Sender.bit = b0) or (Sender.bit = bl));

72 end Evaluation

73

74 InitStates

75 ((Sender.bit=b0) or (Sender.bit=bl)) and

76 (Receiver.state=empty) and (Sender.ack=false);

77 end InitStates

78

79 Groups

80 gl = {Sender ,Receiverl};

81 end Groups

82

83 Formulae

84 -- The bit is always eventually received.

85 AF recbit;

86 LTL F recbit;

87 CTL* A(F recbit);

88 LDL <tt*> recbit;

89 CDL* A(<tt*> recbit);

90

91 -- If the sender receives an ack, he knows the receiver knows
92 -- the value of the bit.

93 AG (recack -> K(Sender, K(Receiver, bit0) or K(Receiver, bitl)));
94 LTL G(recack -> K(Sender, K(Receiver, bit0) or K(Receiver, bitl)));
95 CTL* A(G(recack -> K(Sender, K(Receiver, bit0) or K(Receiver, bitl))));
96 LDL [tt*] (recack -> K(Sender, K(Receiver, bit0) or K(Receiver, bit1)));
97 CDL* A([tt*](recack -> K(Sender, K(Receiver, bit0) or K(Receiver, bitl))));
98

99 -- It’s possible for the bit to eventually be received.

Appendix A. ISPL Model for the Bit Transmission Protocol 157

100 EF recbit;

101 CTL* E(F recbit);

102 CDL* E(<tt*> recbit);

103

104 -- Always possible to eventually receive the bit.

105 AG EF recbit;

106 CTL* A(G(E(F(recbit))));

107 CDL* A([tt*](E(<tt*>(recbit))));

108

109 -- On every path, if the bit is received then an ack is received.
110 LTL (F recbit) -> (F recack);

111 LDL (<tt*> recbit) -> (<tt*> recack);

112 CDL* A((<tt*> recbit) -> (<tt*> recack));

113

114 -- If the environment works on every other step, then the ack is

115 -- eventually received.

116 LDL ([(tt;tt)*] envworks) -> (<tt*> recack);

117 CDL* A (([(tt;tt)*] envworks) -> (<tt*> recack));

118

119 -- If the environment works on every other step, then the ack is

120 -- eventually received on an odd / even step. Both false

121 -- Note that we don’t say anything about the environment’s behaviour
122 -- on odd steps.

123 LDL ([(tt;tt)*] envworks) -> (<(tt;tt)*> (!recack and <tt>recack));
124 LDL ([(tt;tt)*] envworks) -> (<tt;(tt;tt)*> (!recack and <tt>recack));

125 end Formulae

Appendix B

ISPL Model for the Go-Back-N

Protocol

Please see Section 8.8 for a greater discussion of the details of this protocol. This instance has

a buffer size M = 3, and a window size N = 2.

-- The Go-Back-N ARQ protocol.
-- This instance has a buffer size of 3 and window

-- Generated by Jeremy Kong

Semant

Agent
Vars
st
S_
S_

H n n K un nHK

end
Acti
Prot

0t
end

Evol
st
st
st

state=none if Action=none;

r_3=s_r_2 if (Action=SR or Action=S);
r_3=empty if (Action=R or Action=none);
r_2=s_r_1 if (Action=SR or Action=S);
r_2=empty if (Action=R or Action=none);

S_
S_
S_
S_
S_
S_

);

ics = SingleAssignment;
Environment
ate: {S, R, SR, none};

r_1: {b0, bl, emptyl};
r_1_seq: 0..3;

s_1: 0..3;

r_2: {b0, bl, emptyl};
r_2_seq: 0..3;

s_2: 0..3;

r_3: {b0, bl, emptyl};
r_3_seq: 0..3;

s_3: 0..3;

Vars

ons = {S, R, SR, none}l};
ocol:

her: {S, R, SR, nonel};
Protocol

ution:

ate=S if Action=S;
ate=SR if Action=SR;
ate=R if Action=R;

r_l=empty if (Sender.Action=none);

r_1=b0 if (

(Sender .Action=b10) or
(Sender.Action=b20) or
(Sender .Action=b30)

159

size of 2

160

end Ev

end

s_r_1=bl if

(

(Sender .Action=bl1l) or
(Sender.Action=b21) or
(Sender .Action=b31)

seq=2
_seq=3
_seq=3

if
if
if
if
lution

HHHHHHHHU)U)U)MU)UJV

r
r
r
r
r
r
_S
_S
S
_S
S
S
S
S

S
s
r_
0
r_
0 if
0
1
2
3

1_
1
1
1
2_
3
_3
_3=
2
_2
1
1
1
1
o

Agent

Agent Sender
Lobsvars={s_r_1,
Vars:

done: boolean;

if
if
if
if

(Sender .Action=b10 or Sender.Action=bl1l);
(Sender .Action=b20 or Sender.Action=b21);
(Sender .Action=b30 or Sender.Action=b31);
(Sender .Action=none);

eq=s_r_1_seq if (Action=none) or !(Action=none);
eq=s_r_2_seq if (Action=none) or !(Action=none);
s_2 if (Action=S or Action=SR);
if (Action=R or Action=none);
s_1 if (Action=S or Action=SR);

(Action=R or Action=none);
(Receiver.Action=null);
(Receiver.Action=r1);
(Receiver.Action=r2);
(Receiver.Action=r3);

r_s_3, s_r_1_seq};

recack: 0..3;
dispatch: 0..3;
valuel: {b0, bil};
value2: {b0, bil};
valued: {b0, bil};
end Vars
Actions = {none, b10, bill, b20, b21, b30, b31};
Protocol:
done=true {none};
dispatch=1 and valuel=b0 : {b10};
dispatch=1 and valuel=bl : {bl1l};
dispatch=2 and value2=b0 : {b20};
dispatch=2 and value2=b1l : {b21};
dispatch=3 and value3=b0 : {b30};
dispatch=3 and value3=bl : {b31};

end

Other: {nonel};
end Protocol
Evolution:
done=true if (Environment.r_s_3=3);
(recack=1) if (Environment.r_s_3=1);

if (Environment.r_s_3=2);
(recack=3) if (Environment.r_s_3=3);
(dispatch=dispatch+1) if (done=false) and

(recack=2)

(recack + 2 > dispatch) and
(dispatch < 3);

(dispatch=recack+1) if (done=false) and

(Environment.r_s_3=recack) or
!'((recack + 2 > dispatch) and (dispatch < 3));

(dispatch=dispatch) if (done=true);
end Evolution

Agent

Agent Receiver

100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159

Appendix B. ISPL Model for the Go-Back-N Protocol

161

Lobsvars={r_s_1, s_r_3, s_r_3_s
Vars:
recvl {empty, r0, ri};
recv2 {empty, r0, ri};
recv3 {empty, r0, ri};
end Vars
Actions = {null, rl, r2, r3};
Protocol:

recvl=empty or Environment.s_r_3=empty

eql};

{null};

recvli<>empty and recv2=empty and Environment.s_r_3<>empty
recv2<>empty and recv3=empty and Environment.s_r_3<>empty

recv3<>empty and Environment.s_r_3<>empty:

end Protocol
Evolution:

{r3};

recvl=ro0
recvli=ril
recv2=r0
recv2=rl
recv3=r0
recv3=rl

end Evolut
end Agent

Evaluation

if

if

if

if

if

if

ion

(Environment .
(Environment .
(Environment.
(Environment .
(Environment.
(Environment.
(Environment.
(Environment.
(Environment.
(Environment.
(Environment.
(Environment.

VJU!(IJUJVIUJVJUIUJUJMUJ

_r
_Tr
r
_r
_r
Ir
_r
_r
r
_r
_r
_r

tt if (Environment.state = SR

mismatchl if

mismatch2 if

mismatch3 if

(Receiver.
(Receiver.
(Receiver.
(Receiver.
(Receiver.
(Receiver.

recvl=r0
recvli=ri
recv2=r0
recv2=rl
recv3=r0
recv3=ril

rbit30 if
rbit31 if

(Receiver.recv3=
(Receiver.recv3=

r0);
rl);
envworks if (Environment.state=SR);
envbroken if (Environment.state=none);

end Evaluation
InitStates
(
Receiver.recvli=empty and
Receiver .recv2=empty and
Receiver.recv3=empty and
Sender .done = false and
Sender .recack = 0 and
Sender .dispatch = 1 and
Environment.s_r_1l=empty and
Environment.s_r_2=empty and
Environment.s_r_3=empty and
Environment.r_s_1=0 and
Environment.r_s_2=0 and
Environment .r_s_3=0
);
end InitStates

_3=b0) and (recvi=empty) and

_3_seq=1);

3=bl) and (recvli=empty) and

_3_seq=1);

_3=b0) and (recv2=empty) and

3_seq=2);

_3=b1) and (recv2=empty) and

_3_seq=2);

3=b0) and (recv3=empty) and

_3_seq=3);

_3=b1) and (recv3=empty) and

_3_seq=3);

) or ! (Environment.state
and Sender.valuel=bl) or
and Sender.valuel=b0);
and Sender.value2=bl) or
and Sender.value2=b0);
and Sender.value3=bl) or
and Sender.value3=b0);

SR

{r1};
{r2};

);

162

160 Groups

161 gl = {Sender, Receiver};

162 end Groups

163

164 Formulae

165 LDL [ttx*](

166 'mismatchl and

167 !mismatch2 and

168 'mismatch3

169)

170 LDL ([tt*] envworks) ->

171 (<tt*> GK(gl, K(Receiver, rbit30) or K(Receiver, rbit31)));

172 CDL* envworks -> E(<((envworks; envbroken) + (envworks; envworks; envbroken))x*>
173 GK(gl, K(Receiver, rbit30) or K(Receiver, rbit31)));

174 end Formulae

Appendix C

Additional Proofs

Lemma C.1. Suppose that for i € 0,. ..,k we have f(y;,n) = O(n2%) and 0 < y; < z. Further
suppose that f(z,n) = <Zf:0f(yi,n)> + O(n2%). Then, f(x,n) = O(n27%).

Proof. From the definition of big-O notation we have for each i, f(y;,n) < ¢;n2¥% for some
positive ¢;. Then, observe that

k
(Z F s, n>> +0(n2")
=0

k
(Z cm2yi> + O(n2%) by above assertion

fz,mn)

IN Il

IN

s.
M?r]

(e}
¢

3
)
&

(i > + cn2” for some positive ¢, by definition
i=0

IA

k
(Z cian) + cn2* since for each 7, 0 < y; < x and so 2¥ < 2%
i=0

Furthermore, since every ¢; and c¢ are positive, their sum is positive. Thus f(z,n) = O(n2%).

163

	Introduction
	Primary Objectives
	Challenges
	Contributions

	Background
	Formal Verification Techniques and Model Checking
	Frameworks for Modelling Systems
	Kripke Models
	Interpreted Systems

	Specification Languages
	Linear Temporal Logic (Ltl)
	Computation Tree Logic (Ctl)
	Full Branching Time Logic (Ctl*)
	Linear Dynamic Logic (Ldl)
	Epistemic Logic and Linear Temporal Logic (Ltlk)
	Summary

	Verification Techniques
	Explicit Construction
	Binary Decision Diagrams
	Symbolic Model Checking

	Ltl Model Checking in Greater Detail
	Büchi Automata
	Tableau Construction: Reduction to Ctl Model Checking
	Counterexample Generation

	Ldl Model Checking in Greater Detail
	-NFAs and Thompson's Construction
	Alternating Automata
	Ldl Specifications as Alternating Automata
	Breakpoint Construction

	Existing Model Checkers
	MCMAS
	MCK
	NuSMV
	VerICS
	SPIN

	Deeper Investigation of MCMAS
	Usage
	Architecture
	Interpreted Systems Programming Language (ISPL)

	Linear Temporal Epistemic Logic (Ltlk)
	Algorithm
	Recursive Descent over Epistemic Modalities
	Complexity Analysis

	Implementation
	Expression Parsing
	Tableau Construction
	Structural Composition
	Path Finding in the Composed Model
	Counterexample Generation
	Comparison with MCK

	Full Branching Time Epistemic Logic (Ctl*k)
	Algorithm
	Recursive Descent over Path Quantifiers
	Complexity Analysis

	Implementation
	Expression Parsing
	Recursive Descent
	Counterexample and Witness Generation

	Linear Dynamic Epistemic Logic (Ldlk)
	Algorithm
	Alternating Automata
	Critical Sets
	Finding Critical Sets
	Symbolic Breakpoint Construction and Model Composition
	Complexity Analysis

	PSPACE-Completeness of Ldlk
	Implementation
	Overall Solution Architecture
	Expression Parsing
	-NFAs and Critical Sets
	Alternating Automaton Construction
	Symbolic Breakpoint Construction
	Structural Composition and Path Finding
	Counterexample Generation

	Performance Optimisations
	Analysis on Large Models
	Analysis on Large Formulae
	Automata Simplification
	Efficient Conjunct Computation

	Full Branching Time Dynamic Epistemic Logic (Cdl*k)
	Syntax and Semantics
	Algorithm
	Recursive Descent
	Complexity Analysis

	PSPACE-Completeness of Cdl*k
	Implementation
	Overall Solution Architecture
	Expression Parsing
	E and Recursive Descent
	Counterexample and Witness Generation
	Performance Optimisations

	Finite Trace Semantics
	Ldl over Finite Traces (Ldl_f)
	Cdl*k over Finite Traces (Cdl*_fk)
	Implementation
	Specifying Finite Trace Semantics
	Input File Preprocessing
	Finite Translation Function

	Experimental Evaluation
	Installation and Usage
	Acceptance Tests
	System Tests
	Differential Testing

	Performance Test Setup
	Dining Cryptographers
	Counter
	Bit Transmission
	Prisoners
	Go-Back-N
	Summary

	Project Evaluation
	Theory
	Strengths
	Weaknesses

	Implementation
	Strengths
	Weaknesses

	Conclusions
	Summary of Work
	Future Extensions
	Expressivity and Functionality
	Performance and Reliability

	Bibliography
	Appendices
	ISPL Model for the Bit Transmission Protocol
	ISPL Model for the Go-Back-N Protocol
	Additional Proofs

