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Abstract

This project describes the development of a machine learning model
that integrates Bayesian statistics in logic-based learning. This results in a
model that is easy to comprehend, a benefit of first-order logic theories, and
is able to express uncertainty like statistical models. We do this by defining
a programming language for probabilistic logic programming, and then de-
veloping algorithms that learn the statistical parameters of the program and
the structure of its first-order logic theory. The probabilistic programming
language has certain interesting properties when compared to state-of-the-
art probabilistic logic programs, including the use of stable set semantics
and Bayesian priors. In addition, the algorithm introduces the concept of
abductive-inductive learning in probabilistic inductive logic programming
(PILP), i.e. learning first-order theories by combining abduction and induc-
tion.

First, we define annotated literal programs, a type of probabilistic logic
program in which every literal is annotated with a parameter for a Bernoulli
or Beta distribution. The associated probabilistic model, which is defined
by a generative story for a normal logic program, uses independent Bernoulli
trials to determine whether each literal should be included in the theory.
We outline parameter learning algorithms for the program based on sta-
tistical abduction. We define PROBXHAIL (PROBabilistic eXtended Hy-
brid Abductive-Inductive Learning), an inductive-abductive algorithm for
structural learning that is a generalization of XHAIL[26]. The properties of
annotated literal programs and the corresponding machine learning algo-
rithms are evaluated in light of state-of-the-art probabilistic logic program-
ming languages.
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Chapter 1

Introduction

Logic-based learning is concerned with learning explicit rule sets that ex-
plain data, often in the form of first-order logic theories. The greatest benefit
of logic-based models is that rule sets are very easy to interpret in a natural
language, which can be very useful in data mining. Moreover, extending
the models with prior knowledge is very straightforward. Modifying the
model involves simply adding intuitive rules or constraints. A disadvan-
tage of logic-based models is that they do not typically handle noisy and
uncertain data well.

A commonly used method in machine learning is Artificial Neural Net-
works. With this approach, any function can be approximated to an arbi-
trary degree by building a network of computational units called neurons.
Neurons output a single value, which is based on the a weighed input from
other neurons. Learning involves choosing the weights that minimize the
error between the output and the expected result. Artificial Neural Net-
works are designed to approximate real-valued functions and because of
that they are, in a way, a complete opposite of logic-based models: they
are much more scalable, distributable and capable of handling noisy and
redundant data (e.g. images). On the other hand, the connectivity weights
are not easily interpreted by humans. This means that it is very hard to
comprehend the significance of the features in the learned model.

Another common set of methods in machine learning rely on Bayesian
statistics. The learning task is to find parameters for statistical models that
maximize the likelihood of the data given the parameters and the model.
Inference on these models can be very efficient and can be used on large
data sets. Statistical models are typically easier to interpret than Artificial
Neural Networks, though understanding what has been learned still in-
volves interpreting the meaning of parameters of statistical distributions.
Another difficulty lies in coming up with a correct probabilistic model,
which is able to capture the conditional dependencies of the data.

An example that illustrates the advantages and disadvantages of differ-
ent machine learning models is shown in Figure 1.1, where three different
machine learning models are proposed for the same task. The goal is to
learn when 2 different coin tosses have different results. Since the neural
network and the probabilistic models do not directly work with a symbolic
representation, heads and tails are encoded as 1 and 0, respectively. The
goal is thus to learn the XOR function. The neural network requires a hid-
den layer and a bias node to learn a non-linearly separable function, which
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different(C1, C2) :- heads(C1), not heads(C2).
different(C1, C2) :- not heads(C1), heads(C2).

(C) Logic Program

FIGURE 1.1: A comparison of 3 different models of the coin
toss problem

results in a complex architecture. A more elegant conditional probability
model can be constructed to learn the same task. In a logic program, XOR
has a trivial expression. However, introducing noise on the observation is
something that cannot be elegantly handled in a deterministic logic pro-
gram.

Combining logic-based learning and Bayesian statistics results in sym-
bolic models that can cope with uncertainty, benefiting from both higher ac-
curacy and easy interpretation. Such models are generally encoded as prob-
abilistic logic programs, which, similarly to logic programs, define a set of
clauses. However, some of their clauses or literals are linked to probability
distributions, which allows them to express a probability distribution over
interpretations. Logic-based learning models augmented with probabilistic
elements are better at handling noisy and uncertain data than deterministic
logic-based models. They are able to express common probabilistic models
such as Bayesian Networks or Markov Random Fields, which means their
expressive power is comparable to probabilistic models with discrete ran-
dom variables. In addition, they are able to include prior knowledge in the
form of first-order logic rules. As a result of this, Probabilistic Logic-based
learning models can, in theory, achieve high accuracy on datasets while still
being easy to interpret.

In this project, we aim to develop a new PILP method by combining to-
gether two different areas of research: abduction-driven logic based learn-
ing and statistical abduction. The ultimate goal is to define a new notion of
Probabilistic Hybrid Abductive-Inductive Learning, that is able to learn a
probability distribution of hypotheses and allows users to comprehend the
significance of specific clauses in logic-based models.

This report is split in two parts. First, we define a Probabilistic Logic
Programming Language, which we call Annotated Literal Programs and
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in which every literal is associated with a probability. We argue that this
language is equally expressive to other contemporary PLP languages. We
then show that learning the best parameters of a given program from inter-
pretations can be expressed as a statistical abduction task. For this reason,
we consider input programs for Peircebayes[38], a language for statistical
abduction, and the performance implications of switching from Prolog to
an Answer Set Program representation. Whilst Prolog programs and An-
swer Set programs use similar syntax to describe logic programs, the in-
herent difference between them lies in the fact that Prolog uses top-down
SLDNF resolution to perform deduction/abduction, whereas answer set
solvers (e.g. clingo) use a bottom-up approach in search for stable sets.
Some problems that are inefficiently expressed in Prolog can be more natu-
rally and efficiently described in a bottom-up manner. We are able to show
a performance improvement in some tasks, particularly in seeded LDA. As
a more practical consequence, Peircebayes parameter learning can be inte-
grated with XHAIL[26], an ILP method whose implementation is based on
ASP and abduction-driven search.

As a second main contribution to this project, we investigate how to
use statistical abduction to produce an algorithm for learning annotated lit-
eral programs. The resulting algorithm, named PROBXHAIL, is a modified
version of XHAIL in which the hypothesis compression abductive task is
generalized to statistical abduction. Whilst previous PILP algorithms such
as [3] have used most specific clauses for examples to restrict the hypothe-
sis search space, PROBXHAIL takes this one step further by using the most
specific hypothesis as a basis for the probabilistic model itself. The most-
specific hypothesis is rewritten in the PLP language described in the first
part and a parameter learning algorithm is used to learn the parameters as-
sociated with each literal. In XHAIL, abduction is used to search for a most
compressed hypothesis, whereas PROBXHAIL uses statistical abduction to
weigh the significance of clauses. In this report, we describe the PILP task
that PROBXHAIL attempts to solve and argue that the proposed algorithm
and its implementation correctly computes it. Then, we evaluate the model
runtime and error on a synthetic dataset.
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Chapter 2

Background

2.1 Clause Theory Semantics

The report assumes that the reader is familiar with first-order logic and Pro-
log’s SLDNF procedure.

Literals are atoms or negated atoms. A clause is a disjunction of literals.
A Horn clause consists at most one positive literal. A definite clause con-
sists of exactly one positive literal, called the head, and 0 or more literals,
called body literals. A definite logic program is a set of definite clauses,
whereas a normal program is a set of rules of the form A← B1, B2 . . . ...Bn
where Bk is either an atom or an atom preceded by not, which denotes
Negation as Failure.[35]

The set of ground atoms of the language of a logic program P is called
the Herbrand base of P . A Herbrand interpretation maps the Herbrand base
to truth values. It is also commonly written as the subset of the Herbrand
base that is true according to the interpretation. A Herbrand interpretation
of a definite/normal logic program is supported if, for every true ground
atom in the Herbrand base, there is a clause whose body predicates are all
true. A Herbrand model is a Herbrand interpretation in which every for-
mula of P is true. A formula α is entailed by a program P when α is true in
every model of P . This is denoted by P � α. A Herbrand model is minimal
if it is a subset of all Herbrand models of a program P . A minimal Her-
brand model is least if it is a strict subset of all other Hebrand models of P .
For definite logic programs, the least Herbrand model exists and is always
supported. The least Herbrand model of a program, if it exists, is denoted
by M(P ). A logic program’s semantics can be defined by its minimal sup-
ported Herbrand models.

The immediate consequence operator TP of a program P maps between
sets of ground atoms of P . It is defined as the set of heads of all clauses
in P whose bodies are a subset of the given set. Hence, for a Herbrand
interpretation XP of definite program P , XP is a Herbrand model of P iff
TP (XP ) ⊆ XP , and is supported iff XP ⊆ TP (XP ). So, the supported He-
brand models are fixpoints of TP and the least fixpoint of TP is the least
Herbrand model of P . By Knaster-Tarski lemma, the least Herbrand model
of a definite logic program can be computed by fixpoint iteration on the
empty set[35].
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Stable models provide an intuitive semantics for normal logic programs.
A reduct PX of a normal logic program P for a given set X removes all
clauses from the program that contain body literals not B such that B ∈
X . It also removes all other negated literals from the bodies of the other
clauses. Note that the reduct of a normal logic program is a definite logic
program. A set is said to be a stable model (or an answer set) of a normal
logic program P iff X = M(PX)[36].

2.2 BDDs

As explained in [27], Binary Decision Diagram is a rooted directed acyclic
graph that is used to represent a boolean function. It consists of nodes rep-
resenting boolean variables/constants and edges which represent assign-
ments.

• An terminal node represents either truth or falsity. It does not have
any outgoing edges.

• A variable node represents a boolean variable. There is always a path
from a variable node to a terminal node. An outgoing edge could be
labelled with either 0 or 1. A 0/1 edge represents an assignment of
the variable to false/true, respectively.

The boolean function represented by the BDD can be evaluated for a given
assignment by starting at the root node, looking up the assignment of the
variable of the current node and following the corresponding edge until a
terminal node is reached. The value of the terminal node is the value of the
function for the given assignment.

Any propositional formula can be represented as a BDD. The way the
BDD can be built for a formula F is by the following procedure.

1. If the formula consists of only > and ⊥, then evaluate it and return a
corresponding terminal node. This is the root of the BDD.

2. Otherwise, choose an atom b from F and construct a variable node
with b as a label. This is the root of the BDD.

3. Obtain F+ and F− by substituting b in F with > and ⊥, respectively.

4. Construct the BDDs of F+ and F− and connect the variable node to
the root of the BDDs of F+ and F− with a 1-edge and a 0-edge, respec-
tively.

If the order of atom choices is fixed for the BDD, it is said to be ordered.
Note that the size of the BDD depends on the ordering of the variables.
The size of the BDD constructed above can be minimized by having nodes
share subtrees and removing nodes whose 0 and 1 edge point to the same
node. BDDs minimized in such a way with a fixed ordering are known as
Reduced Ordered BDDs (ROBDDs). For example, three different BDDs for
(a → b) ∧ (a → c) are shown in 2.1. Solid arrows represent 1-edges and
dotted arrows represent 0-edges. The ordering is is a < b < c. Only 5 nodes
are needed to represent the ROBDD, whereas the original BDD requires 9.
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FIGURE 2.1: A BDD for (a → b) ∧ (a → c) and its ordered
and reduced equivalent

�

different(X, Y). heads(Z).

different(X, Y).

heads(Z).
heads(coin1).different(X, X). different(X, Y) :- heads(Z).

different(X, Y) :- heads(X). different(X, Y) :- heads(Y).

different(X, Y) :- heads(X), heads(Y).

FIGURE 2.2: A partial expansion of a search lattice on
Shapiro’s[37] ρ refinement operator for the machine learn-

ing task depicted in Figure 1.1c

Note that ROBDDs are canonical, in a sense that equivalent propositional
formulas translate to the same ROBDDs (for a fixed order of the variables).
The rest of the report assumes that all BDDs are reduced and ordered.

2.3 Inductive Logic Programming

Inductive Logic Programming, as defined in [33], is a machine learning task
commonly used for logic-based learning. Given a set of positive and nega-
tive examples, we are able to evaluate whether a given hypothesis (typically
expressed in first-order logic) implies as many of the positive examples and
as few of the negative examples as possible. Formally, given observations
in a language LE , partitioned in a set of positive examples E+ and a set of
negative examples E−, background knowledge B, a hypothesis language
LH and a coverage criterion covers(B,H, e) , the goal of an ILP task is
to find a theory H in LH that satisfies both ∀e ∈ E+.covers(B,H, e) and
∀e ∈ E−.¬covers(B,H, e). In Learning from Entailment, the coverage crite-
rion is the classical logic entailment and the task is to find a theory H in LH
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such that ∀e ∈ E+.B,H |= e and ∀e ∈ E−.B,H 6|= e. Note that in Learning
from Entailment, the generality relation can be exploited to define refine-
ment operators (as in FOIL[28], MIS[37]) and structure the search space as
a lattice such as the one shown in Figure 2.2. The search could then proceed
top-down or bottom-up using a preferred search algorithm and termination
conditions.

Note that the search space described by such a refinement operator is
infinite and grows combinatorially with the number of possible literals and
so it is necessary to prune/prioritize the search based on some bias. This
can be done in an intuitive manner using mode declarations, which deter-
mine what atoms and type of terms can appear in the head and the body of
clauses and how many times they can be used.

Example: The lattice structure described in Figure 2.2 could have been
generated using the following bias:

modeh(different(coin, coin)).
modeh(heads(-coin)).
modeh(heads(\#coin)).
modeb(heads(+coin).
modeb(heads(-coin)).
determination(different/2, heads/1).

Note that the syntax in this example is representative of real ILP algorithms
and is based on the syntax defined in HYPER[6]. modeh and modeb state-
ments are used to declare that the specified predicate can be used in the
head/body of a clause, respectively. The declarations include type infor-
mation for the terms associated with each predicate. The +, - and # signs
prepended to the term type specify that the term must be an input variable
(matched with a previous variable), output variable (newly declared), and
a constant, respectively. A determination specifies that the second predicate
can be used in the body of a clause which has the first predicate as its head.

2.3.1 Inverse entailment and Bottom Generalization

An advantage of such a bias definition is that, given the examples and the
background knowledge, a compact most specific hypothesis can be com-
puted and used to bound the search lattice from the bottom. In order to
formalize this, Muggleton[25] defines the concept of Inverse Entailment.
The task of searching for a hypothesis in a search space, typically expressed
as finding H such that B∪H |= E, can be redefined equivalently as finding
H for which B ∪ Ē |= H̄ where H̄ and Ē are the first-order logic comple-
ments ofH andE, respectively. Reformulating the task in this way is useful
because it suggests a deductive method for computing a most specific hy-
pothesis. If we know for a specific hypothesis Hbot that B ∪ Ē |= Hbot |= H̄
for every H that is consistent with B and E, then we can conclude that
H |= Hbot, hence that Hbot is at least as specific as any other compatible hy-
pothesis. This means thatHbot can be computed by deducing every possible
ground literal from B ∪ ē for every example and then taking the comple-
ment. A generalization of this hypothesis can then be chosen as the actual
model. This procedure is known as Bottom Generalization and is first used
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in Progol[25].

2.3.2 (Extended) Hybrid Abductive Inductive Learning

Bottom Generalization can be extended to a procedure named Kernel Set
Subsumption[29]. This involves searching for hypotheses that are more
general than a so called Kernel Set K. This is defined for any example e
and background B representable as a Horn clause and a Horn theory, re-
spectively:

K(B, e) =





α1 ← δ11 , . . . , δ
m(1)
1

...
αi ← δ1i , . . . , δ

m(i)
i

...
αn ← δ1n, . . . , δ

m(n)
n





where B ∪⋃
i
αi∈[1,n] |= e and B |= ⋃

i∈[1,n],j∈[1,m(i)]

δji . Thus we can compute

the Kernel set for any example in the following way:

1. Find all α values, the heads of the Kernel Set, by abduction with goal
e and background B. Use the bias to determine the abducibles: all the
predicates in head mode declarations should be considered.

2. Compute the body of the Kernel Set. For every clause in the Kernel
Set, deduce everything from B that agrees with the body mode decla-
rations and the corresponding head predicate α.

Then, similarly to Bottom Generalization, a search for a hypothesis that
subsumes the Kernel Set can proceed. This is exactly how HAIL[29] works:
While there are uncovered examples, the algorithm picks an example, com-
putes the Kernel Set and picks the smallest hypothesis from the ones that
subsume it and cover the maximum number of other examples. Then the
computed hypothesis is added to B and the process is repeated for the un-
covered examples.
Note that the iterative procedure in HAIL only works with monotonic theo-
ries. XHAIL[26] rectifies this by attempting to generate a Kernel Set1 for an
appropriately clustered set of examples. The algorithm also solves the in-
ductive task, searching for the most appropriate hypothesis that subsumes
the Kernel set, using abduction. The way the task is defined is by asso-
ciating an abducible with every literal in the Kernel Set, which is called
use_clause_literal(i,j) for βji and use_clause_literal(i,0)
for αi. Background knowledge for the abductive task is generated from the
Kernel Set. For each clause i in the Kernel Set, a rule is constructed start-
ing which has the same head and cointains use_clause_literal(i,0)
in the body. In addition, the rule contains a try(i,j,X1,...XN) for ev-
ery literal βij in the original clause, where each X1,...XN are the variables
in the original literal. Moreover, the background knowledge contains two
clauses are added for each body literal βij :

1The concept of Kernel Set in XHAIL is slightly modified from the original definition.
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try(i,j,X1,...XN) :- not use_clause_literal(i, j).
try(i,j,X1,...XN) :- beta, use_clause_literal(i, j),

t1(X1)...tn(XN).

where beta is βij and ti is the type predicate for variable Xi. The body lit-
eral is appended to the body of the second clause.
Example: Given bias declarations that associate each variable with an ap-
propriate type and given a Kernel Set:

different(X,Y) :- heads(X), heads(Y).
different(X,Y) :- different(X, mycoin),

different(mycoin, Y).

The following abductive task can be constructed (assuming clause number-
ing starts with 0):

different(X, Y) :- use_clause_literal(0,0),
try(0,1,X), try(0,2,Y).

try(0,1,X) :-
not use_clause_literal(0,1).

try(0,1,X) :-
use_clause_literal(0,1), heads(X), coin(X).

try(0,2,Y) :-
not use_clause_literal(0,2).

try(0,2,Y) :-
use_clause_literal(0,2), heads(Y), coin(Y).

different(X, Y) :- use_clause_literal(1,0),
try(1,1,X), try(1,2,Y).

try(1,1,X) :-
not use_clause_literal(1,1).

try(1,1,X) :-
use_clause_literal(1,1), different(X,mycoin), coin(X).

try(1,2,Y) :-
not use_clause_literal(1,2).

try(1,2,Y) :-
use_clause_literal(1,2), different(mycoin,Y), coin(Y).

2.4 Probability Theory

2.4.1 Bayes Theorem

Bayes’ Theorem is used for inference in probabilistic models. Given ran-
dom variables A and B, a conditional probability P (A|B), and a probability
distribution P (B), the conditional probability P (B|A) can be computed:

P (B|A) =
P (A|B)P (B)

P (A)
where P (A) =

∫
P (A|B)P (B)dB

This formula is called Bayes’ Theorem[15]. Note that the computation of
P (A) can be avoided if P (A|B)P (B) can be normalized. In the formula
above, P (B) is known as the prior, P (B|A) is known as the posterior and
P (A|B) is known as the likelihood. Whenever the distribution family of
P (B|A) ends up being the same as the distribution family of P (B), the dis-
tribution of the prior P (B) is said to be a conjugate prior for the distribution
of the likelihood P (A|B).
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FIGURE 2.3: Basic Generative Probabilistic Model

2.4.2 Categorical Distribution

P (x = i|p) = pi where p ∈ RC and |p| = 1

The categorical distribution can be seen as a probability distribution on the
outcomes of an event with C possible outcomes. A categorical distribution
with 2 possible outcomes is also known as a Bernoulli distribution.

2.4.3 Dirichlet Distribution

P (p;α) =
1

B(α)

K∏

i=1

pαi−1
i with B(α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1αi)
and Γ(n) = (n− 1)!

A Dirichlet distribution[17] can be seen as a distribution of distributions.
An intuitive way to think of the Dirichlet distribution is that we have sam-
pled several times from a categorical distribution and recorded the num-
ber of occurrences of each class in α. The Dirichlet distribution establishes
which are the likely probabilities, p, of the categorical distribution that we
sampled from. A useful property of the Dirichlet distribution is that it is
the conjugate prior for the categorical distribution. A Dirichlet distribution
for 2 classes is also called a Beta distribution and the associated α vector is
denoted as a pair (α, β).

2.4.4 Generative Probabilistic Models and Plate notation

Generative Probabilistic Models are models that describe the generation
of observable variables. In this report we consider Bayesian Networks[4],
Probabilistic Models in which the relationship between the variables is de-
scribed using conditional probabilities.
Example: The following example describes a basic generative model for di-
agnosing illnesses. A graphical representation of the model is presented in
Figure 2.3a. Labelled circles represent random variables and coloured la-
belled circles represent observed variables. An arrow from variable B to A
implies that variable A is defined by the conditional probability P (A|B).
The model considers 2 people, 3 diseases and 5 symptoms.

1. For each person, the occurrence of each disease is represented by a bi-
nary variable D ∼ Bernoulli(p) for some constant p, suggesting that
the occurrence of each disease is equally likely. It is also independent
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from the occurrence of the other diseases and from the disease pat-
terns of the other person.

2. The occurrence of symptoms is represented by conditional variables
S that depend on D. We use a matrix to describe the probability dis-
tribution of the binary variable conditioned on each joint state of the
diseases. We again assume that Symptoms are i.i.d.

P (Si|D1&D2&D3) =

[
0.4 0.6 0.2 0.5 0.8 0.2 0.1 0.1
0.6 0.4 0.8 0.5 0.2 0.8 0.9 0.9

]

The value of these models stems from the existence of latent (hidden) vari-
ables. Given a large number of observations, methods such as Bayes’ theo-
rem can be used to infer the the probability distributions of the latent vari-
ables. If the underlying model is an appropriate approximation of the real
world problem, these values can be used to accurately predict the future
observables. In the example provided, we can compute the posterior distri-
bution of latent variables D, the probabilities of various illnesses given the
data. The inferred probabilities can be used to predict symptoms in new
observations, in this case new people.

It is important to note that models often make simplifying indepen-
dence assumptions in order to make computations on the model tractable.
Even when incorrect, some simplifications can still produce a model with
useful predictive power, which should be verified empirically. In the dis-
ease occurrence model, it is assumed that people have independent disease
patterns, which is clearly incorrect for transmittable diseases.

Plate notation is a way to represent repetition in graphical descriptions
of generative probabilistic models. Plate notation can be used to produce
clear and concise models when used judiciously. Uncircled symbols repre-
sent hyperparameters, circled symbols represent random variables, coloured
circles represent observed variables, arrows between variables represent a
conditional dependency from one variable to the other. Rectangles drawn
around sets of random variables represent repetition, with the number of
repetitions written in the lower right corner. As an example, the model de-
scribed in this section is depicted in Figure 2.3b.

Note that the dependence between random variables in these models
can be expressed in first-order logic as a set of clauses, resulting in an intu-
itive representation of the model. This justifies augmenting logic theories
with probabilities to produce Probabilistic Logic Programming Languages.
Example: A deterministic logic program that could represent the genera-
tive story of the illness occurrence model is:

nausea :- flu.
nausea :- poisoning.

runny_nose :- flu.
runny_nose :- allergy.
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Note that this deterministic logic-based model does not possess any no-
tion of randomness. In order for it to be useful, it needs to be somehow
associated with the statistical model described in this section. This moti-
vates the use of Probabilistic Logic Programs (see Section 2.5).

2.4.5 LDA

Latent Dirichlet Allocation[5] is a generative probabilistic model, a popu-
lar application of which is the inference of topic-document and word-topic
categorical distributions with Dirichlet priors. This report uses a simplified
version of the model in the original paper. An intuitive way to understand
this model is by the following generative story, repeating it for each of the
N words of a given document.

1. We sample a topic t from the topic-document µd distribution of the
current document, d.

2. We sample a word w from the word-topic distribution φt of the sam-
pled topic.

There are variations to this model that incorporate additional prior knowl-
edge, such as seeded LDA.

2.4.6 Expectation-Maximization

As described in [8], common problem in statistics is inferring the param-
eters θ of a probability distribution P (X|θ) given samples X . A standard
way to solve this problem is to use the Maximum Likelihood Estimate (MLE),
i.e. to pick the parameters θ̂ which best explain the samples:

θ̂ = arg max
θ

P (X|θ)

This can then be solved with an optimization method.

Consider a more general probabilistic model P (X,Y |θ), which consists of
observed variables X and latent variables Y . We can still attempt to use
MLE to infer the parameters. Since we do not know the values of the latent
variables, we have to marginalize over them:

θ̂ = arg max
θ

P (X|θ) = arg max
θ

∫
P (X,Y |θ)dY

A computational problem arises: the size of the domain of Y could be large
which renders marginalization intractable. The Expectation-Maximization
Algorithm (ME) can be used to approximate the MLE in this case.

The algorithm consists of two phases:

• In the Expectation (E) step, the expectation of the log likelihood func-
tion is computed with respect to the latent variables for a fixed esti-
mate of θ:

Q(θ) := EY [logP (X,Y |θ)]
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• In the Maximization (M) step, the θ value is computed that maxi-
mizes the previously estimated Log Likelihood function:

θ := arg max
θ

Q(θ)

Note that the algorithm does not guarantee convergence towards the max-
imum likelihood estimate in the general case. Thus, additional domain-
specific measures may need to be taken to ensure that the computation does
not get stuck in a local maximum.

2.4.7 Markov Chain Monte Carlo (MCMC) Methods

In this report, we use MCMC methods to address the problem of estimating
intractable probability distributions. Consider calculating the joint proba-
bility in a generative probabilistic model with latent variables Y andZ and
observationsX .

P (X,Y ,Z) =

∫∫
P (X|Y ,Z)P (Y |Z)P (Z)dY dZ

Note that this computation can be intractable whenever the domain of Y
orZ is large. So an empirical approximation can be constructed using sam-
pling. Random Walk Markov Chain Monte Carlo methods perform sam-
pling by building a Markov Chain on the sample space and then traversing
non-deterministic paths in it, sampling the last element of each path. When
appropriate transition probabilities are chosen, it can be guaranteed that
the probability of sampling a specific element from the Markov chain con-
verges to the target probability as the length of the path tends to infinity[4].

One MCMC method tailored for approximating joint probabilities is
Gibbs Sampling. It assumes that sampling from the conditional probabil-
ities P (X|Y ,Z), P (Y |X,Z) and P (Z|X,Y ) is efficient. The algorithm
starts out with an arbitrary sample (X(0),Y(0),Z(0)). Then each variable
is sampled in a fixed order using the appropriate conditional probability,
given the latest sampled values for the other variables. So, in this example,
we sample X(1) with probability P (X(1)|Y(0),Z(0)), then Y(1) with prob-
ability P (Y(1)|X(1),Z(0)) and Z(1) with probability P (Z(1)|X(1),Y(1)). This
procedure is repeated until enough examples are obtained to produce a suf-
ficiently representative empirical distribution.[4]

Several things should be noted about this procedure. First, it is common
to disregard some of the initial samples obtained as they are less likely to
be representative of the target probability distribution. Moreover, the ac-
curacy of the method could be increased by only considering every N th
sample for the empirical distribution and discarding all others. This is sim-
ilar to increasing the length of the path that is traversed in the underlying
Markov Chain, which would reduce the dependency between the samples
and potentially increase the sampling accuracy.

Gibbs sampling can also be collapsed: rather than conditioning on all
the sampled variables usingP (X|Y ,Z), the conditional probabilityP (X|Z)
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can be used by marginalizing on the given variable (if tractable).

2.5 Probabilistic Logic Programs

Probabilistic logic programming languages are used to describe rule sets
with uncertainty. Sato[34] points out that augmenting symbolic computa-
tion with probabilistic elements results in useful models, such as Hidden
Markov Models or Bayesian Networks. This section introduces a seman-
tics for Probabilistic Logic Programs and describes programming languages
that are based on it.

2.5.1 Distribution Semantics

Sato’s distribution semantics[34] provides a definition of Probabilistic Logic
Programs. Programs consist of a set of ground probabilistic facts F and a
set of ground definite clauses R whose heads are not predicates in F .

A probability measure on the interpretations of F can be extended to pro-
duce a probability measure on the least models of F ′ ∪ R for any F ′ ⊆ F .
For any interpretation of F , a least model of F ′ ∪ R can be derived (where
F ′ is the subset of all true facts in the interpretation) by iteratively apply-
ing the immediate consequence operator TF ′∪R on F ′. This works because
F ′ ∪ R is a definite clause theory. Then, the probability of least model M
can be defined as the sum of the probabilities of all interpretations whose
derived least model is M .

More formally, let ΩF be the set of all interpretations of F . For an in-
terpretation of F , ω, define Fω ⊆ F as the subset of all true facts in F
according to ω and Mω as the unique minimal model of Fω ∪ R deriv-
able from ω. Then, define for any possible subset of literals in F ∪ R,
[`1, `2 . . . `n]F = {ω ∈ ΩF |Mω � `1 ∧ `2 ∧ . . . ∧ `n}. Given a probability mea-
sure on the set of all interpretations of F , PF , we can define PR∪F (M) =
{∑ω∈[{a|a∈head(R)∧M�a}]F PF (ω)}.

Example:

F1 = {weather(cloudy), forecast(rain)}
R1 = {bring(umbrella)← weather(cloudy),

bring(umbrella)← forecast(rain)}

Provided in Figure 2.4a is a probability distribution on the interpretations
in F1. Based on that, the probability distribution of least models based on
R1 and subsets of F1 is calculated in Figure 2.4b.

Note that the original definition of distribution semantics describes a
distribution on definite programs and least models. The PLP languages
described in this section are based on a notion similar to distribution se-
mantics (as argued in [32]), with the caveat that they generalize the concept
to normal logic programs. Later works attempt to generalize the original
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Interpretation of F Probability
∅ 0.4

{weather(cloudy)} 0.3

{forecast(rain)} 0.1

F 0.2

(A) Pω on interpretations of F

Least Models of ∀F ′ ⊆ F.P ∪ F ′ Probability
∅ 0.4

{weather(cloudy), bring(umbrella)} 0.3

{forecast(rain), bring(umbrella)} 0.1

F ∪ {bring(umbrella)} 0.2

(B) PM on least models

FIGURE 2.4: Probability distributions on the program

formal definition of distribution semantics, culminating in [30], which at-
tempts to redefine distribution semantics for arbitrary normal programs.

Sato also considers the problem of learning the program’s probability
distributions based on observations of clause heads of R. Sato proposes
using an EM algorithm to find the pair of distributions that maximizes the
likelihood of the observations given the distributions.

2.5.2 ProbLog

ProbLog [10] is a probabilistic logic programming language which is based
on Prolog’s syntax and SLDNF semantics. ProbLog programs consists of
probability-clause pairs {p1 : C1, p2 : C2 . . . pn : Cn}. This induces a dis-
tribution on deterministic logic programs whose clauses are subsets of the
clauses of the ProbLog program. The deterministic program is generated
by considering each clause Ci independently and including it in the pro-
gram with probability pi.

The notion of query success in Prolog is generalized in ProbLog. Here we
consider the probability that a query is successful. That is simply the sum of
the probabilities of all deterministic programs in which the query succeeds.
Query success in deterministic programs is determined in the same way as
in Prolog: using the SLDNF proof procedure.

Example:

0.3::weather(cloudy).
0.1::forecast(rain).
0.9::bring(umbrella) :- weather(cloudy).
bring(umbrella) :- forecast(rain).

Note that when a probability of a clause is not included, it is assumed to
be 1. In this example, a query ?- bring(umbrella). would result in a
probability of 0.343, since there are 5 deterministic programs with non-zero



2.5. Probabilistic Logic Programs 17

Program Probability

forecast(rainy).
bring(umbrella) :- forecast(rainy).

0.7× 0.1× 0.1× 1.0 = 0.007

weather(cloudy).
forecast(rainy).
bring(umbrella) :- forecast(rainy).

0.3× 0.1× 0.1× 1.0 = 0.003

forecast(rainy).
bring(umbrella) :- weather(cloudy).
bring(umbrella) :- forecast(rainy).

0.7× 0.1× 0.9× 1.0 = 0.063

weather(cloudy).
bring(umbrella) :- weather(cloudy).
bring(umbrella) :- forecast(rainy).

0.3× 0.9× 0.9× 1.0 = 0.243

weather(cloudy).
forecast(rainy).
bring(umbrella) :- weather(cloudy).
bring(umbrella) :- forecast(rainy).

0.3× 0.1× 0.9× 1.0 = 0.027

Total: 0.343

FIGURE 2.5: The probability of query bring(umbrella).

probability in which this query succeeds (as shown in Figure 2.5).

Note that the naive approach of computing query probability by con-
sidering every possible deterministic program separately is exponential in
time complexity on the number of clauses, which is not practically efficient.
In [10], a more efficient implementation is described which relies on the fact
that each possible way to prove a query uses a set of clauses and the product
of the probabilities of these clauses is equal to the sum of the probabilities
of every deterministic program that includes these clauses. Query success
can be expressed as a DNF formula on atoms bi where bi is true if and only
if the clause Ci needs to be in the deterministic program for the query to
succeed. The formula is a disjunction of all possible SLDNF proofs of the
query, and each proof can be expressed as a conjunction of bi atoms for ev-
ery clause Ci necessary for the proof to succeed. Given the probabilities
of bi, the probability of the DNF formula being true can be efficiently com-
puted by mapping the formula to a Binary Decision Diagram. A probability
function can be recursively defined where the positive and negative termi-
nal node have probabilities 1 and 0, respectively. The backward probability
of internal node bi can be computed using the recursive relation:

probability(bi) = pi ∗ probability(bi+) + (1− pi) ∗ probability(bi−)

where pi is the probability of including clause Ci in the program, and bi+
and bi− denote the positive and negative child of node bi, respectively.

Instead of doing the BDD computation after the SLDNF procedure has
completed, an upper and a lower boundary on the probability can be com-
puted by performing iterative deepening on SLDNF resolution. This means
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that a reasonable approximation of the query probability can be computed
without building the complete BDD. The approximation relies on the mono-
tonicity of DNF formulas.

2.5.3 Logic Programs with Annotated Disjunctions and EMBLEM

Logic Programs with Annotated Disjunctions[39] (LPADs) are a probabilis-
tic generalization of disjunctive logic programs. Clauses have deterministic
bodies and a head which is a disjunction of atoms with a probability, all
summing to one2. A deterministic normal logic program can be produced
by grounding the clauses and independently choosing an atom for every
head according to the probability of the heads. The probabilities of the
heads induce a probability distribution on the deterministic programs that
can be generated by the LPAD. The probability of a query is the sum of
the probabilities of the deterministic programs whose total well-founded
model entail the query.

Example:

1.0::bring(umbrella).
0.3::weather(cloudy), 0.1::forecast(rain) :- bring(umbrella).

The probability of the query ?- weather(cloudy). is 1.0×0.3 = 0.3
since the only deterministic program whose well-founded model implies
the query is:

bring(umbrella).
weather(cloudy) :- bring(umbrella).

Note that this is subtly different from the example in Section 2.5.2, since
weather(cloudy) and forecast(rain) are both (mutually exclusive)
possible heads of the second clause.

The EMBLEM[1] algorithm performs parametric learning - it is able to
infer the probabilities of the heads of the clauses given observations by ex-
pressing all possible explanations as a boolean formula and converting it
to a BDD (more precisely, to an Multiple Decision Tree, which can be rede-
fined as a Binary Decision Tree) and then performing EM using the BDD to
find the values of the parameters that maximize the likelihood of the data.

2.6 Statistical Abduction

Abduction is the task of inferring one or more explanations given back-
ground knowledge and some observations. In a deterministic logic pro-
gramming paradigm, the Background Knowledge (BK) and Observations
(O) are typically represented as clausal theories, whereas the explanations
ε are represented as a subset of a set E of ground atoms, which are called
abducibles. The computational task is to find one (or all) ε ⊆ E such that

2Riguzzi also considers heads whose probabilities sum to less than one. In that case,
an implicit null head is inserted in the distribution. Intuitively speaking, choosing the null
head means that the clause is discarded.
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B ∪ ε � O.

Statistical abduction is a probabilistic generalization of the abduction
task which introduces reasoning about the likelihood of explanations. Sato
and Ishihata[18] provide a detailed description of the computational task in
the context of PLP and an efficient MCMC inference methodology. Statis-
tical abduction becomes the task of inferring a probability distribution on
explanations.

2.6.1 Peircebayes and Latent Dirichlet Analysis

Peircebayes[38] extends the probabilistic abductive procedure in [18] by
supporting overlapping abductive explanations when assuming that all pos-
sible explanations can be enumerated. It is based on the following genera-
tive probabilistic model:

1. We start with a vectorα of Dirichlet priors to categorical distributions.
Each element in this vector, αi, is a vector of ai values.

2. For each Dirichlet prior, we sample Ia many θai values, the probabili-
ties of a categorical distribution.

θai|αa ∼ Dirichlet(αa)

3. For each of the N observations, we sample a from the categorical dis-
tributions.

xnai|θai ∼ Categorical(θai)

4. We can represent the value of the latent variables x by a set of condi-
tionally independent boolean variables vnaij .

5. For the current observation, we take a boolean function f of all the bits
of the categorical distributions of that observation. And we say that
this explains our observation so, the resulting fn is always observed
as a 1.

Peircebayes programs are based on the aforementioned semantics and ex-
tend Asystem abductive logic programs in the following way:

1. All categorical distributions and their corresponding Dirichlet priors
are described using the fact pb_dirichlet(Alpha, PredicateName,
L, A). This implies the existence of A categorical distributions with
L categories named PredicateName, sampled from a Dirichlet dis-
tribution with parameters Alpha. The predicate PredicateName(Category,
DistributionNumber) is true iff sample with Categorywas drawn
from the categorical distribution identified by PredicateName and
DistributionNumber.

2. A pb_plate(OuterQuery,Count, InnerQuery). predicate which
iterates through the observations using the list OuterQuery as a SLDNF
goal, and using InnerQuery as a goal of an abductive task, which
represents the "generative story" of the given model.
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generate(Word, Document) :-
Topic in 1..10, mu(Topic, Document), phi(Word, Topic).

pb_dirichlet(1.0, mu, 10, 5).
pb_dirichlet(1.0, phi, 4, 10).

pb_plate([observe(word(Word), document(Document), count(Count))]),
Count, [generate(Word, Document)]).

% Example observation:
observe(word(8), document(9), count(3)).

FIGURE 2.6: Latent Dirichlet Allocation in Peircebayes

Peircebayes allows us to write generative stories in an intuitive way. For
instance, we can describe all the explanations of observing a word under
an LDA model with 5 documents, 10 topics and a 4 word vocabulary using
the Peircebayes program in Figure 2.6. The program assumes a symmetric
Dirichlet prior of 1 for all categorical distributions.

The main task of Peircebayes is to determine a distribution of most
likely explanations, i.e. to infer P (θ|α). Since the prior distribution is
conveniently chosen to be a Dirichlet distribution, the prior conjugate of
the categorical distribution, this task is equivalent to finding posterior val-
ues of α. [38] describes using Gibbs sampling along θ and x to achieve
that. The Peircebayes implementation can also use collapsed Gibbs sam-
pling P (xn|α,x − {xn}) by integrating out θ for efficiency reasons. Sam-
pling from the conditional probabilities used by Gibbs sampling is done by
converting the observations to DNF formulas of conditionally independent
boolean variables and then sampling from the resulting Binary Decision
Diagram.
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Chapter 3

Annotated Literal Programs

In this chapter, we define Annotated Literal Programs (ALP), a new type
of probabilistic logic programs in which every literal of a normal logic pro-
gram is associated with a Bernoulli or a Beta distribution. The reason why
we defined this new language is that it is very intuitive to extend the XHAIL
algorithm to perform structural and parameter learning on it. However, it
turns out that an extra benefit of Annotated Logic Programs is that they
have certain properties that could conceivably make them preferable to
other state-of-the-art PLP languages:

• ALP uses stable set semantics which, compared to SLDNF semantics,
allows for more expressive programs which can handle a large num-
ber of constraints.

• ALP can define more expressive probability distributions than a large
number of existing PLP languages with the use of a Beta distribution.

In this chapter, we provide a formal definition of Annotated Literal Pro-
grams. First, we describe the syntax of the language. Then, we present two
probabilistic models that define the probability of a query and thus repre-
sent the formal semantics of the language. We compare the expressiveness
of this new language to the languages defined in Section 2.5.

3.1 Syntax

The PLP language has a syntax similar to ASP. A program T =< TB, TPROB >
consists of two parts: Background Knowledge TB and probabilistic theory
TPROB . Background knowledge uses the input syntax of clingo 3[14]. We
propose two types of programs depending on the probability distribution
in TPROB .

3.1.1 Unpriored Model

Informally, if TPROB is defined without a prior, it can be written as a se-
quence of clauses whose literals are annotated with probabilities. Each
probability is a parameter for a Bernoulli trial:

A : θ0 ← B1 : θ1, B2 : θ2 . . . Bn : θn

where A is a positive literal, {B} are literals, and {θ} are rational values
between 0 and 1.
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Example: An example PLP model for the machine learning task in Figure
1.1 is the program T 1 =< T 1

B, T
1
PROB > such that:

T 1
B =





1{heads(X), tails(X)}1← coin(X).
coin(realcoin).
coin(biasedcoin).





T 1
PROB =





heads(realcoin) : 0.5
tails(biasedcoin) : 0.9
different(X,Y )← heads(X), tails(Y ).
different(X,Y )← tails(X), heads(Y ).





Missing probabilities in TPROB are assumed to equal 1.0.

3.1.2 Priored Model

Alternatively, every literal can be annotated with a pair of positive rational
numbers that represent a Beta Distribution :

A : (α0, β0)← B1 : (α1, β1), B2 : (α2, β2) . . . Bn : (αn, βn)

where A is a positive literal, {B} are literals, and {(α, β)} are pairs of non-
negative rational values.
Example: An example PLP model for the machine learning task in Figure
1.1 is the program T 2 =< T 2

B, T
2
PROB > such that:

T 2
B =





1{heads(X), tails(X)}1← coin(X).
coin(realcoin).
coin(biasedcoin).





T 2
PROB =





heads(realcoin) : (5, 5)
tails(biasedcoin) : (90, 10)
different(X,Y ) : (101, 1)← heads(X) : (101, 1), tails(Y ) : (101, 1).
different(X,Y ) : (101, 1)← tails(X) : (101, 1), heads(Y ) : (101, 1).





3.2 Formal Definition

Formally, we define the concept of clause sequences and probabilistic anno-
tations. An ordered clause is defined as an extended definite clause, in which
the body is a sequence, rather than a set, of literals. If S is an ordered clause
sequence, Si is defined as the ith clause in the sequence and Sij is defined
as the jth body literal in the ith clause. Si0 is defined as the head of the ith
clause. Let head(c) be the head of ordered clause c, and let body(c) be the
sequence of body literals of clause c. |S| is the number of clauses in ordered
clause sequence S and |body(c)| is the number of body literals in clause c.

Probabilistic annotations map literals to parameters of probability distri-
butions. We define two types of probabilistic annotations: Bernoulli anno-
tations and Beta annotations. A Bernoulli annotation θ is a binary relation
(N × N ,Q) that maps pairs of integers to rational numbers in the range
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[0, 1]. A Beta annotation τ is a binary relation (N ×N , (Q×Q)) that maps
pairs of integers to pairs of positive real numbers.

A probabilistic annotation ω is said to be compatible with a clause se-
quence S if and only if the domain of ω is equal to {(i, j)|i ∈ [1, |S|], j ∈
[0, |body(Si)|]} and the mapping is one-to-one, i.e. every literal in S is asso-
ciated with exactly one set of parameters.

Formally, an Annotated Literal Program TPROB can be defined as a pair
< S,ω > where S is an ordered clause sequence, and ω is a probabilistic
annotation that is compatible with S. The unpriored model uses a Bernoulli
annotation, whereas the priored model uses a Beta annotation.

Example: The formal way to write programs T 1
PROB and T 2

PROB is:

T 1
PROB = < S,θ >

T 2
PROB = < S, τ >

S1 = heads(realcoin)

S2 = tails(biasedcoin)

S3 = different(X,Y )← heads(X), tails(Y )

S4 = different(X,Y )← tails(X), heads(Y )

θ = {((0, 0), 0.5),

((1, 0), 0.9),

((2, 0), 1), ((2, 1), 1), ((2, 2), 1),

((3, 0), 1), ((3, 1), 1), ((3, 2), 1), }
τ = {((0, 0), (5, 5)),

((1, 0), (90, 10)),

((2, 0), (101, 1)), ((2, 1), (101, 1)), ((2, 2), (101, 1)),

((3, 0), (101, 1)), ((3, 1), (101, 1)), ((3, 2), (101, 1)), }

3.3 Semantics

Annotated logic programs describe a probability distribution of answer set
programs. In order to make it easier to contrast ALP to languages with
SLDNF semantics, the language doesn’t define a probability distribution on
answer sets. Brave entailment is used for query semantics, meaning that,
for a given answer set program, a query is successful if it is true in at least
one answer set of a program.

In order to formally define the semantics of the program, some addi-
tional notation is needed. We consider sequences with empty elements ∅.
An ordered clause with empty elements can be interpreted as an extended
definite clause whose body consists of all non-empty elements. Similarly,
a clause sequence can be interpreted as a program by ignoring empty ele-
ments.
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FIGURE 3.1: Generative model for PT

Formally, a program T defines a probability distribution over clause se-
quences L ∈ LT . The probability of a query q is the sum of the probabilities
of all clause sequences that bravely entail it together with the background
knowledge TB :

P (q|T ) =
∑

L∈LT

p(q, L|T ) =
∑

L∈LT

P (q|L, T )P (L|T )

p(q|L, T ) =

{
1 if L ∪ TB |=b q

0 otherwise

where |=b denotes brave entailment.

We propose two different probabilistic models for the distribution of
answer set programs based on TPROB , P (L|T ) = P (L|TPROB).

3.3.1 Unpriored Model

Intuitively, each ALP defines a distribution over clause sequences with empty
elements. The generative story for a single clause sequence given the pro-
gram is described by the following sequence of steps:

1. Include each clause with probability θi0, the probability of the head
literal.

2. In each included clause, the head is always included. If the clause is
included, consider the sequence of body literals independently and
include each with its corresponding probability θij .

3. The generative story outputs a boolean variable which is true if the
generated hypothesis is equal to the expected clause sequence.

The purpose for generating a boolean variable in the end is to make the
model comparable to the priored model, which needs to be compatible with
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peircebayes for parameter learning. Formally1, we define the probabilistic
model for a program < S,θ >:

1. For each i ∈ [1, |S|] and each j ∈ [0, |body(S)|], sample xij ∼ Bernoulli(θij).

2. Then, we sample a clause sequence with empty elements:

P (f |x) =

{
1 if fS(X) = L

0 otherwise

where:

fS(X) = {Li}|S|i=1

Li =

{
∅ if xi0
clause < head(Si), {Bi

j}
|body(S)|
j=1 > if ¬xi0

Bi
j =

{
∅ if xij
Sij if ¬xij

This is equivalent to:

P (L|TPROB =< S,θ >) =

|S|∏

i=1

P (Li| < S,θ >)

P (Li| < S,θ >) =





1− θi0 if Li = ∅
θi0 ×

∏|body(Lj)|
j=1 P (Lij | < S,θ >) ifhead(Li) = head(Si)

0 otherwise

P (Lij | < S,θ >) =





θij if Lij = Sij
1− θij if Lij = ∅
0 otherwise

The probability distribution is depicted in Plate notation in Figure 3.1a.

3.3.2 Priored Model

The priored model is similar to the unpriored one, except θ values are not
explicitly used as input, but are sampled from a Beta distribution with pa-
rameters (α, β):

1. For every literal, sample a Bernoulli parameter θji ∼ Beta(αij , β
i
j)

2. Include each clause with probability θi0, the probability of the head
literal.

3. For each included clause the head is always included. Consider the
sequence of body literals independently and include each with its cor-
responding probability θij .

4. The generative story outputs a boolean variable which is true if the
generated hypothesis is equal to the expected clause sequence.

1We use θij to refer to θ(i, j)
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The purpose of generating a boolean variable in the end of the generative
story is to make the model compatible with peircebayes, a statistical ab-
duction model where the boolean variable determines whether the obser-
vation has been explained by the abducibles. We later show that modifying
the boolean variable to return true whenever a partial interpretation is ex-
plained by the hypothesis corresponding to the x values will result in a
statistical abduction model that can be used for parameter learning.
Formally:

1. For each i ∈ [1, |S|] and each j ∈ [0, |body(S)|], sample θij ∼ Beta(αij , β
i
j).

2. For each i ∈ [1, |S|] and each j ∈ [0, |body(S)|], sample xij ∼ Bernoulli(θij).

3. Then, we sample a clause sequence with empty elements:

P (f |x) =

{
1 if fS(X) = L

0 otherwise

where:

fS(X) = {Li}|S|i=1

Li =

{
∅ if xi0
clause < head(Si), {Bi

j}
|body(S)|
j=1 > if ¬xi0

Bi
j =

{
∅ if xij
Sij if ¬xij

Note that Figure 3.1b has a set of v variables between x and f . The value
sampled from v is always the same as the value sampled from x. The pur-
pose of this redundant variable is to make the generative model compatible
with peircebayes, where v is necessary to represent the x variable as a set
of independent binary variables, as x might have more than 2 states in the
general case. However, to keep probability calculations simpler, this vari-
able is ignored in the rest of the report.

3.4 Comparison to Distribution Semantics

Comparing ALP to the languages described in Section 2.5 is difficult for
several reasons. A notable difference between Annotated Literal programs
and other PLPs is that entailment is not based on SLD semantics. ALP
is based on Stable Set Semantics. Moreover, the original paper on distri-
bution semantics[34] considers definite programs, whereas modern PLP
languages define probability distributions on normal logic programs in-
stead. For this reason, rather than relating the expressive power of anno-
tated logic programs to any definition of distribution semantics, we com-
pare it to ProbLog, a PLP language that has been proven equivalent to oth-
ers[32].

3.4.1 Unpriored Model

For the unpriored model, we attempt to prove that annotated literal pro-
grams are equivalent to ProbLog programs for which stable semantics agrees
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with SLDNF resolution. We do this by describing methods to translate be-
tween both languages.

Translation from ProbLog

A program is translated from Problog to annotated literal programs by sim-
ply using the clause probability as the head probability and setting all body
probabilities to 1. Consider a ProbLog program TProblog = {c1 : θ1, c2 :
θ2 . . . cn : θn} = {(θi, Ai ← Bi

1, B
i
2 . . . B

i
n(i))|i ∈ [1..n]} where n(i) is the

number of body literals in clause i and n are the number of clauses. Then,
consider the program T with TB = ∅ and TPROB = {Ac : θc ← Bc

1 : 1.0, Bc
2 :

1.0 . . . Bc
n(c)|c ∈ TProblog}. These two programs describe the same distribu-

tions of hypotheses. ALP considers a subset of the full clauses (all the body
literal probabilities are 1.0). Moreover, the probabilities of all deterministic
programs are the same for both models: In T , the probability of each pro-
gram can also be computed by considering each clause independently and
adding it to the deterministic program with probability.
Example: The Problog program described in Section 2.5.2 is equivalent to
the program (almost no transfomation is necessary):

TB =∅

TPROB =





weather(cloudy) : 0.3.
forecast(rain) : 0.1.
bring(umbrella) : 0.9← weather(cloudy) : 1.0.
bring(umbrella) : 1.0← forecast(rain) : 1.0.





Theorem: Given a clause sequence S and a sequence of probabilites {pi}|S|i=1,
and a ProbLog program TProblog = {Si : pi}|S|i=1, we can construct an anno-
tated literal program T such that P (q|T ) = P (q|TProblog) for any query q.
Proof: We consider the probability of a query in the ProbLog program[10],
which by definition is:

P (q|TProblog) =
∑

L⊆TProblog

p(q, L|TProblog)

=
∑

L⊆TProblog

P (q|L, TProblog)P (L|TProblog)

P (q|L, TProblog) =

{
1 if L |= q

0 otherwise

P (L|TProblog) =
∏

c∈L
P (c)

∏

c∈S−L
(1− P (c))
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where L is a set of clauses. If we redefine L as a clause sequence with empty
elements, the expression for P (L|TProblog) can be rewritten as:

P (L|TProblog) =

|S|∏

i=1

p(Li)

p(Li) =





θi if Li = Si

1− θi if Li = ∅
0 otherwise

Now consider a program T =< TB, TPROB > with TB = ∅ and TPROB =<
S,θ > such that ∀i ∈ [1, |S|].θi0 = pi and ∀i ∈ [1, |S|].∀j ∈ [1, |body(Si)|]θij =
1. θ is compatible with S which means that T is a valid ALP program. We
see that P (q|TPROB) = P (q|TProblog) and P (q|L, TPROB) = P (q|L, TProblog)
if we assume that we only consider programs where brave entailment and
SLDNF resolution produce are equivalent (e.g. in definite programs, strati-
fied normal programs). We need to show that P (L|TPROB) = P (L|TProblog).
We have that:

P (L|TPROB =< S,θ >) =

|S|∏

i=1

P (Li| < S,θ >)

P (Li| < S,θ >) =





1− θi0 if Li = ∅
θi0 if head(Li) = head(Si) ∧ body(Li) = body(Si)

0 otherwise

Thus, P (L|TPROB) = P (L|TProblog) and so P (q|T ) = P (q|TProblog).
ProbLog and this PLP language use a different notion of entailment. ProbLog
entailment is defined operationally by the SLDNF procedure, whereas ALP
semantics is based on brave entailment of answer set programs. In order to
prove that both probabilistic languages are equivalent, we have to restrict
ourselves to PLPs which describe a distribution over programs for which
T |=b q ⇐⇒ T |= q. In the general case, query success is not equivalent
in SLDNF and stable set semantics, which means that the languages have a
different expressive power.

Translation to ProbLog

Now, we show how to use ProbLog to define the same probability distri-
butions on queries as annotated literal programs. The way to generate a
ProbLog program TProblog is to encode the clauses of TPROB in the same
way as the Kernel Set in XHAIL during the inductive stage, as described
in Section 2.3.2. The clauses of the XHAIL task should be deterministically
entailed by TProblog, i.e. each of the clauses should have probability 1. Then,
each use_clause_literal(i,j) atom should be a separate fact in the
program with probability θij . This probabilistic set of clauses is essentially
a way to represent the x variables in the probabilistic model of annotated
literal programs. This should result in the same probability distribution for
queries as the one described by the unpriored model.
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Example: The example program in Section 3.1.1 can be rewritten in ProbLog
as:

%%%%%%%%%%%%%%%%%%%%%%
% Probabilistic part %
%%%%%%%%%%%%%%%%%%%%%%

% head(realcoin):0.5.
0.5::use_clause_literal(0,0).

heads(realcoin) :- use_clause_literal(0,0).

% tails(biasedcoin):0.9.
0.9::use_clause_literal(1,0).

tails(biasedcoin) :- use_clause_literal(1,0).

% different(X, Y) :- heads(X), tails(Y).
1.0::use_clause_literal(2, 0).
1.0::use_clause_literal(2, 1) :- use_clause_literal(2, 0).
1.0::use_clause_literal(2, 2) :- use_clause_literal(2, 0).

different(X, Y) :-
use_clause_literal(2, 0),
try(2, 1, X),
try(2, 2, Y).

try(2, 1, X) :- \+ use_clause_literal(2, 1).
try(2, 1, X) :- coin(X), heads(X), use_clause_literal(2, 1).

try(2, 2, Y) :- \+ use_clause_literal(2, 2).
try(2, 2, Y) :- coin(Y), tails(Y), use_clause_literal(2, 2).

% different(X, Y) :- tails(X), tails(Y).
1.0::use_clause_literal(3, 0).
1.0::use_clause_literal(3, 1) :- use_clause_literal(3, 0).
1.0::use_clause_literal(3, 2) :- use_clause_literal(3, 0).

different(X, Y) :-
use_clause_literal(3, 0),
try(3, 1, X),
try(3, 2, Y).

try(3, 1, X) :- \+ use_clause_literal(3, 1).
try(3, 1, X) :- coin(X), tails(X), use_clause_literal(3, 1).

try(3, 2, Y) :- \+ use_clause_literal(3, 2).
try(3, 2, Y) :- coin(Y), heads(Y), use_clause_literal(3, 2).

%%%%%%%%%%%%%%
% Background %
%%%%%%%%%%%%%%

% We need to redefine the choice rule in a Prolog-friendly
% way. And we need to be careful to avoid infinite loops.
% Which is why we need to ground them.
head(biasedcoin) :- \+ tails(biasedcoin).
tails(realcoin) :- \+ heads(realcoin).

coin(realcoin).
coin(biasedcoin).
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Note that some changes were made to the original program since ProbLog
can’t do ASP-style choice rules. Overall, annotated literal programs ap-
pears to be better at dealing at dealing with constraints than SLDNF-based
languages. If we restrict ourselves to programs with a single finite model,
we still obtain equivalent programs.

An informal proof of this equivalence is that the ProbLog program de-
fines a probability distribution on the use_clause_literal predicate in
this program and this distribution is the same as the one defined by the pri-
ored model.

Theorem: Given an ALP Program T =< TB, TPROB > with TB = ∅ and
TPROB =< S,θ >, we can construct a ProbLog program TProblog such that
P (q|T ) = P (q|TProblog).
Proof: We assume the existence of predicates ucl/2 (short for use clause
literal) and try/varlength that are not used in any clauses in S to define
the following program:

TProblog = TUCL ∪ TXHAIL
TUCL = {ucl(i, j) : θij}i≤|S|,j≤|body(S

i)|
i=1,j=0

TXHAIL = Tclause ∪ Ttry

Tclause =

{
Si0 ← ucl(i, 0), {try(i, j, vars(Sij)) : 1}|body(S

i)|
j=1

}|S|

i=1

Ttry =

{
try(i, j, vars(Sij))← /+ ucl(i, j). : 1

}i≤|S|,j≤|body(Si)|

i=1,j=1

∪
{
try(i, j, vars(Sij))← Sij , ucl(i, j). : 1

}i≤|S|,j≤|body(Si)|

i=1,j=1

where const(L) denotes the constants of a literal L. Informally, the way to
prove that this program is equivalent to TPROB is to realize that the ucl
predicates and its clause probabilities in ProbLog have an equivalent func-
tion to the random variables x and θ in ALP. So we can associate each con-
figuration of x with a subsequence of TUCL such that xij ⇐⇒ ucl(i, j).
Then, in both cases, the probability of drawing a hypothesis from the model
is the probability that each literal in the hypothesis is included.

3.4.2 Priored model

The priored model is more general than PLPs based on distribution seman-
tics. By associating a Dirichlet prior with each literal, the priored model
is essentially defining a probability distribution on unpriored models with
an identical structure and varying parameters. Equivalently, the priored
model is defining a probability distribution on ProbLog programs which
have the same clauses but different parameters.



31

Chapter 4

ASP input programs in
Peircebayes

It can be shown that parameter learning on annotated literal programs can
be done using Peircebayes. However, the syntax of Peircebayes is based on
Prolog, and hence Peircebayes is restricted to performing statistical abduc-
tion on Prolog programs. Annotated literal programs are based on stable
set semantics and are evaluated with clingo. For this reason, we modify
Peircebayes to accept answer set input programs.

We note that we gain an extra benefit of defining ASP programs for
Peircebayes. Constraints can be efficiently expressed in answer set pro-
grams, as opposed to programs using SLDNF semantics. For this reason,
we redefine other Peircebayes tasks in ASP and compare their runtime to
their original Prolog-style definitions.

4.1 Brave abduction in ASP

In order to use ASP programs with Peircebayes, we need to modify the
logical stage of the program. For SLDNF programs, top-down abduction is
executed during that step in order to enumerate all possible ways in which
Peircebayes’ probabilistic predicates can explain the observations. Thus,
we need a way to compute the abductive stage of Peircebayes in ASP. We
can express an abductive task in ASP in the following way[22]:

• The set of abducibles is put in a choice rule with no body and no
restriction on count.

• The knowledge base and integrity constraints are used as is.

• The goal is represented by a clause with head goal and contains the
set of observed ground instances in its body. In addition, an extra
constraint :- not goal. is added.

This is basically a generate-and-test approach to abduction, however ASP
solvers are often able to optimize the typically intractable search for solu-
tions implicitly.
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Example:

KB =





wobblyWheel← brokenSpokes.
wobblyWheel← flatTyre.
flatTyre← leakyV alve.

flatTyre← puncturedTube.← puncturedTube, leakyV alve.





O ={wobblyWheel}
Ab ={brokenSpokes, puncturedTube, leakyV alve}

The task can be translated as:

PASP = KB ∪





0{brokenSpokes, puncturedTube, leakyV alve}3.
goal← wobblyWheel.

← not goal.





4.2 Automatic translation of Peircebayes input programs

In order to compare the runtime of various Peircebayes tasks in Prolog and
ASP, we need to rewrite them. This needs to be done carefully, as certain
Prolog programs that rely on the top-down SLDNF are very inefficient to
compute bottom-up since they result in very large groundings. In this sec-
tion, we consider several steps that can be taken to automatically convert a
Peircebayes input program to ASP. For every grounding, we generate one
ASP program that contains a single grounding of outer_query. For each
outer query grounding, we have a single ASP whose answer sets represent
different solutions to the abductive task inside. Then, we construct the rest
of the ASP program as an abductive task with inner_query as the goal
and each Dirichlet predicate as the abducibles.

1. Copy in the background knowledge and the grounding of a single
outer query.

2. Copy in the inner query from the Peircebayes input program and con-
vert it to a clause with head inner_query and an unground literal
outer_query in the body.

3. Add the inner query as a goal:

goal :- inner_query.
:- not goal.

4. For every distribution, generate:

0 {distribution_name(K, I) : distribution_name_category(K) } 1
:- distribution_name_sample_number(I).

where distribution_name is the name of the probabilistic literal.

5. Generate a minimization statement that weighs any distribution pred-
icate equally.

As previously noted, the transformation above may often result in huge
groundings as the original Prolog programs are optimized for top-down
computation.
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Task Prolog ASP-Parallel ASP-Serial
fast LDA 1.152s 0.495s 0.942s

slow LDA 0.588s 1.207s
seeded LDA 2057.388s 307.474s 454.830s

RIM 9.830s 3.051s 6.982s

FIGURE 4.1: Comparison of Peircebayes tasks in Prolog and
ASP

Note that these steps only work with programs which are purely declar-
ative. Prolog programs have procedural semantics, which cannot be au-
tomatically captured in ASP. For example, cutting is a meaningless op-
eration in bottom-up semantics where the order of body literals is irrele-
vant. Moreover, Prolog programs have richer library support than modern
ASP solvers. To complicate the problem further, the lack of support for
some libraries in ASP can be justified by the lack of efficient ways to imple-
ment them. For example, implementing Prolog’s list interface (append/3,
member/2, etc) would require an intractably large grounding in clingo.

It is, however, possible to modify part of the query to avoid redundant
groundings of the abducibles. Currently, there are no restrictions on ab-
ducibles, so any subset of them is eligible for generate-and-test (subject to
ASP solver optimizations). The order of body predicates in Prolog is signifi-
cant and body predicates used before abducibles in bodies of Prolog clauses
can be used to reduce the grounding in bottom up computation. For exam-
ple, a clause a(X)← b(X,Y ), c(Y,Z), abducible(Z) can be rephrased during
abduction with goal a in bottom-up as:

{abducible(Z) : typeOfZ(Z)} ← a(X), b(X,Y ), c(Y,Z).

An example of these techniques can be seen in the reimplementation of the
LDA algorithm in Section 4.3.1.

4.3 Evaluation

In this section, we consider implementations of several Peircebayes prob-
lems in ASP, compare logical inference runtime to Prolog programs. The
tests are executed on a 4GB machine with an Intel(R) Core(TM) i7-4980HQ
CPU @ 2.80GHz processor. The execution time reported is an average of 10
executions times for each task. We use datasets that Peircebayes has previ-
ously been evaluated on. The results are summarized in Figure 4.1 and are
explained in the rest of this section.

It is important to note that, for abduction in ASP, we split the obser-
vations into several parts and run these on different processes. Answer set
program execution time does not scale linearly with the number of observa-
tions so the observations have to be split into several answer set programs.
We haven’t split the observations in such a way for the Prolog implemen-
tation. So we show the runtime for Peircebayes, for serial execution of the
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partitioned abductive task, and for a parallel implementation that uses a
process pool.

4.3.1 LDA and CLDA

We attempted to automatically translate LDA using the techniques described
in Section 4.2. The original program is:

pb_dirichlet(1.0, mu, 10, 1000).
pb_dirichlet(1.0, phi, 25, 10).

generate(Doc, Token) :-
Topic in 1..10,
mu(Topic,Doc),
phi(Token,Topic).

pb_plate(
[observe(doc(Doc), TokenList),

member((word(Token), count(Count)), TokenList)],
Count,
[generate(Doc, Token)]

).

observe(doc(1), [(word(1), count(1)),(word(3), count(5)),...).
...

The pb_dirichlet facts identify the abducible predicates as mu and phi.
The pb_plate facts define the abductive goals of the program. First, the
query in the first argument (known as the outer query) is executed and
the variable grounding is used to define an observation. This grounding
method is a feature of Peircebayes that allows for several observations to
share the same BDD. For each grounding of the variables in the outer query,
top-down minimizing abduction is executed, in which the goal is to explain
the observation, the third argument of pb_plate grounded with the given
outer query results.

An initial hurdle is circumventing the use of Prolog lists. Unfortunately,
this cannot be done automatically, however it is straightforward to circum-
vent manually. Each observe fact can be transformed from a fact that
maps a document to the list of all word-frequency pairs associated with it
to a set of facts that contain a document-word-frequency) tuple.

Then, we can consider automatic translation techniques. First, we use
the background in order to ground the outer query:

% Clingo directives to output only outer_query groundings.
#hide.
#show outer_query/3.

% Outer query.
outer_query(Doc, Token, Count) :-

observe(doc(Doc),
word(Token),
count(Count)).

% Background knowelge.



4.3. Evaluation 35

topic(1..10).
generate(Doc, Token) :-

topic(Topic),
mu(Topic,Doc),
phi(Token,Topic).

observe(doc(1), word(1), count(1)).
observe(doc(1), word(3), count(5)).

Each grounding of the outer query is used to ground the inner query. So
we repeatedly assert each grounding and perform the abductive task:

%Asserting a single grounding of the outer query.
outer_query(1, 1, 1).

%Abductive task.
%%%%%%%%%%%%%%%

% Whitelist predicates we output in answer set.
#hide.

%Abducibles
#show mu/2.
mu_sample_number(1..1000).
mu_category(1..10).
0 {mu(K, I) : mu_category(K) } 1 :- mu_sample_number(I).

#show phi/2.
phi_sample_number(1..10).
phi_category(1..25).
0 {phi(K, I) : phi_category(K) } 1 :- phi_sample_number(I).

% Abductive goal is to explain inner_query.
inner_query :- outer_query(Doc, Token, Count), generate(Doc, Token).
goal :- inner_query.
:- not goal.

% We want minimizing abduction, i.e. to minimize the number of
% abducibles in each explanation.
#minimize{ mu(K, I) : mu_category(K) : mu_sample_number(I),
phi(K, I) : phi_category(K) : phi_sample_number(I)}.

% Background knowledge
topic(1..10).

generate(Doc, Token) :-
topic(Topic),
mu(Topic,Doc),
phi(Token,Topic).

observe(doc(1), word(1), count(1)).
observe(doc(1), word(3), count(5)).

Note that this generates a very big grounding and a very slow ASP op-
timization task. The number of abducibles generated is very large which
results in a exceedingly large grounding. However, we can reduce the num-
ber of abducibles by inverting the inner query, as described in Section 4.2.
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%Asserting a single grounding of the outer query.
outer_query(1, 1, 1).

%Abductive task.
%%%%%%%%%%%%%%%

% Whitelist predicates we output in answer set.
#hide.

%Abducibles
#show mu/2.
mu_sample_number(1..1000).
mu_category(1..10).
0 {mu(Topic, Doc) : mu_category(Topic) } 1 :-

mu_sample_number(Doc),
outer_query(Doc, Token, Count),
topic(Topic).

#show phi/2.
phi_sample_number(1..10).
phi_category(1..25).
0 {phi(Token, Topic) : phi_category(Token) } 1 :-

phi_sample_number(Topic),
outer_query(Doc, Token, Count),
topic(Topic),
mu(Topic, Doc).

% Abductive goal is to explain inner_query.
inner_query :-

outer_query(Doc, Token, Count),
generate(Doc, Token).

goal :- inner_query.
:- not goal.

% We want minimizing abduction, i.e. to minimize the number of
% abducibles in each explanation.
#minimize{ mu(K, I) : mu_category(K) : mu_sample_number(I),
phi(K, I) : phi_category(K) : phi_sample_number(I)}.

% Background knowledge
topic(1..10).

generate(Doc, Token) :-
topic(Topic),
mu(Topic,Doc),
phi(Token,Topic).

observe(doc(1), word(1), count(1)).
observe(doc(1), word(3), count(5)).

This results in a significantly faster implementation that takes roughly 0.20
seconds to execute for the two observations given. Note that all predicates
in the inner query that precede the abducibles in the body of the Prolog
clause are used to restrict their grounding. Doing this in an automatic man-
ner, however, does not seem achievable in non-trivial situations.

We compare the performance of LDA logic inference on a synthetic
dataset with 100 documents, 10 topics and a vocabulary of 25 words (the
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data has been generated according to the generative story described in Sec-
tion 2.4.5). For the ASP representation, we split the observations in 75 par-
titions. Then we record average runtime over 10 executions for both Prolog
and ASP tasks. We notice that the execution time for both tasks is com-
parable when ASP is executed serially. Unsurprisingly, the parallel ASP
implementation is faster than the serial one and, hence, than the Prolog im-
plementation.

In Appendix A we show a manually written Answer Set program that
produces equivalent answer sets to the original one, however it does not
explicitly define a generate-and-test minimal abductive task. In fact, the
answer set program does not feature any minimization statements. After
measuring the runtime on the same dataset, it can be concluded that the
serially executed manual implementation is roughly 15% faster than the
Prolog implementation for the given input size. In addition, the parallel
manual implementation is faster than the parallel abductive one.

An extension of this task, called seeded LDA[19] (also shown in Ap-
pendix A), applies lexical priors to the models. This is done by a seed pred-
icate which associates words with specific topics. Our evaluation on part
of the 20 newsgroups dataset[21] suggests that a manually written ASP im-
plementation is significantly faster than a Prolog implementation. We have
not identified why that is the case.

4.3.2 RIM

RIM[13] is a probabilistic model for ranking preferences. This task had to
be completely redesigned in order to benefit from bottom-up computation.
We also show a significant speed up of the computation. The task is exe-
cuted on the Sushi[20] dataset. The code for the implementation is available
in Appendix A. We note an improvement in performance for the ASP im-
plementation, as opposed to the Prolog one.
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Chapter 5

Parameter Learning

In this chapter, we discuss the procedure used to do parameter learning in
Annotated Literal Programs. The way this is achieved is by transforming
ALP programs in a different PLP language and using previously developed
BDD algorithms to learn the parameters for APL programs.

5.1 Partial Interpretations

First, we formalize the concept of partial interpretations as in [23]:
A partial interpretation E =< E+, E− > consists of two sets of ground
atoms, such that all atoms inE+ are true in the interpretation, and all atoms
in E− are false. An interpretation I is said to extend a partial interpretation
E if E+ ⊆ I and E− ∩ I = ∅.

5.2 Priored Model

The parameter learning task that we aim at solve is to evaluate the poste-
rior distribution of θ. In particular, given a set of observations O, which
are represented by partial interpretations, we want to find the posterior ex-
pectation of the Bernoulli parameters EP (θ|O,τ ){θ} and the Beta parameters
EP (α|O,τ ){α} and EP (β|O,τ ){β}.

If we observe the probabilistic model defined by the priored ALP (shown
in Figure 3.1b), we can see that it is expressible in Peircebayes. Thus, we can
compute the posterior expectation of the parameters of an annotated literal
program by using the statistical abduction procedure in Peircebayes.

We can adapt the ProbLog transformation described in Section 3.4.1 in
order to learn a probability distribution on the abducibles. We can write an
ASP abductive task in Peircebayes as described in Section 4.1.

In the parameter learning program, we associate each ucl with a cate-
gorical variable with a Dirichlet prior with the specified hyperparameters
and encode the abductive solutions in a format understandable by Peirce-
bayes.
Formally, for a program T =< TB, < S,θ >>, the statistical abduction task
can be specified as:
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• Background T :

T =Tclause ∪ Ttry

Tclause =

{
Si0 ← ucl(i, 0), {try(i, j, vars(Sij)) : 1}|body(S

i)|
j=1

}|S|

i=1

Ttry =

{
try(i, j, vars(Sij))← notucl(i, j).

}i≤|S|,j≤|body(Si)|

i=1,j=1

∪
{
try(i, j, vars(Sij))← Sij , ucl(i, j).

}i≤|S|,j≤|body(Si)|

i=1,j=1

where vars(L) represents all the variables in literal L

• Each observation O ∈ O, one per abductive task.

← goal.

goal← O+
1 , ...O

+
n , notO

−
1 , ...notO

−
m.

where
< {O+

1 , ...O
+
n }, {O−1 , ...O−m} >∈ O

• Abducibles ucl for every literal in the clause sequence.

Example: The clause sequence in Section 3.1.1 can be rewritten as1:

goal :- heads(biasedcoin), heads(realcoin),
not different(realcoin, biasedcoin).

:- goal.

{ucl(i,j)} :- literal(i, j).
literal(0,0).
literal(1,0).
literal(2,0).
literal(2,1).
literal(2,2).
literal(3,0).
literal(3,1).
literal(3,2).

heads(realcoin) :- ucl(0,0).

tails(biasedcoin) :- ucl(1,0).

different(X,Y) :- ucl(2,0), try(2,1,X), try(2,2,Y).
try(2,1,X) :- not ucl(2,1), coin(X).
try(2,1,X) :- heads(X), ucl(2,1), coin(X).
try(2,2,Y) :- not ucl(2,2), coin(Y).
try(2,2,Y) :- tails(Y), ucl(2,2), coin(Y).

different(X,Y) :- ucl(3,0), try(3,1,X), try(3,2,Y).
try(3,1,X) :- not ucl(3,1), coin(X).
try(3,1,X) :- heads(X), ucl(3,1), coin(X).
try(3,2,Y) :- not ucl(3,2), coin(Y).
try(3,2,Y) :- tails(Y), ucl(3,2), coin(Y).

1We use a slightly more complicated abductive task that does type matching
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Note that we can reduce the grounding of the ASP program by only adding
variables to try predicates that are used by more than 1 literal. This has
been implemented in our parameter learning program.

Here we note an additional advantage of using ASP for abduction is that
we are able to perform complete abduction to compute any hypothesis that
is consistent with the observations, rather than minimal abduction which
only computes the minimal hypotheses that do so, a property of Prolog
style abduction.

5.3 Unpriored model

We use EMBLEM[1] in order to perform parameter learning on the unpri-
ored model. Note that EMBLEM works on LPADs rather than on programs
in our PLP. In order to avoid the problem of supporting LPADs in ASP, we
perform deterministic abduction of the ASP program in Section 3.4.1 and
then use the abductive solutions to construct an LPAD, for which the pa-
rameters learned will be equivalent to the MLE parameters of a program
based on the unpriored model.
In order to do this, we do the following:

• Define an abductive task on the background program for each ob-
servation, as defined in 3.4.1, with the observation as a goal and all
ground atoms use_clause_literal as abducibles.

• A separate LPAD clause is generated for each use_clause_literal
with some initial θ probability.

• In the background, each observation is associated with a set of clauses,
one for each abductive solution. In every clause, the set of abducibles
used are put in the body predicate. The head is an atom named
observation(id).

• Each query/interpretation is a single literal, observation(id).

Example: For some sequence S and observations O, we have run ab-
duction in ASP and we have figured out that the first observation can be
explained by 1 hypothesis, and the second observation can be explained by
2 hypotheses. We produce the following program.

:- begin_in.
ucl(0,0):0.5.
ucl(0,1):0.5.
ucl(1,0):0.5.
ucl(1,1):0.5.
:- end_in.

% Ways to generate observation
observation(1) :- ucl(0,0), ucl(0,1), ucl(1,0), ucl(1,1).

observation(2) :- ucl(0,0).
observation(2) :- ucl(1,0).

%observations
begin(model(m1)).
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observation(1).
end(model(m1)).

begin(model(m2)).
observation(2).
end(model(m2)).



43

Chapter 6

PILP with PROBXHAIL

6.1 PILP Learning task

6.1.1 Unpriored model

For the unpriored model, we attempt to find a hypothesis that maximizes
the likelihood of the problem given the data. Formally, we are given:

• A bag E of partial interpretations E.

• A bias M , consisting of mode declarations and determinations.

• Background knowledge B in ASP

The goal is to compute a hypothesis H which abides to bias M such that:

H = arg max
H

p(E|H)

6.1.2 Priored model

Point Estimate

We are given:

• A bag E of partial interpretations E.

• A bias M , consisting of mode declarations and determinations.

• Background knowledge B in ASP

We assume that the probability distribution is generated from the unprior
model and we want to find the values of θ that were used in a process.The
goal is to compute a hypothesis H which abides to bias M such that:

< S∗,θ∗ >= arg max
<S∗,θ∗>

∑
(θij − θ∗ij )2.

Note that the Bayesian estimator of that value for a compatible sequence S
is the posterior expectation Ep(θ|E,S){θ}[7].

Bayesian Method

A more Bayesian approach to consider is to obtain the posterior expectation
of the Beta parameters, Ep(α|E,S){α} and Ep(β|E,S){β}. Then we can use this
to evaluate the probability of a new example given previous data:

p(Enew|E) =

∫
P (Enew|θ)P (θ|α,β)P (α,β|E)dθ
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However, note that we don’t actually do PILP with PROBXHAIL based on
this technique since cannot justify the use of a most specific hypothesis in
this method.

6.2 Algorithm

6.2.1 Input

The input of the program is:

• A bag E of partial interpretations E.

• A biasM , consisting of mode declarations, determinations, and clause
and literal repetition count limits

• Background knowledge B, written in ASP.

• A list of input and output predicates. Output predicates can be used
in the constructed ALP and are abductive goals for parameter learn-
ing. Input predicates are not used to construct the ALP. Ground input
facts are added in E to assign types to constant terms.

6.2.2 Description

The algorithm consists of two stages: structural learning and parameter
learning. During the structural learning stage, the algorithm computes a
clause sequence that is able to entail any possible hypothesis (subject to the
mode declarations). In the parameter learning stage, a set of parameters is
learned that attempt to complete one of the learning tasks defined in Section
6.1.

6.2.3 Structure Learning

In PROBXHAIL, the structural learning stage is guided solely by the bias
and the mode declarations. Note that in Chapter 9, we discuss how to use
a HAIL style Kernel Set for structural learning, so that the data can be used
to construct a smaller most-specific hypothesis.

The algorithm first uses the mode declarations to construct a hypothesis
consisting of ground literals. Then, the hypothesis is "lifted", i.e. constant
terms are replaced with variables to match the requirements of the mode
declarations.

1. Using all predicates in the head mode, we build a bag Θ of ground
atoms of the predicates which, in order to be grounded with the right
types of terms, use the type information in E . Note that the type in-
formation is represented by atoms of input predicates and it is per ob-
servation. While the type information could have equivalently been
specified separately and not per-observation, we use this so that the
algorithm can be more easily extended.

2. For every atom α ∈ Θ, we consider every predicate in a body mode
declaration that is allowed by the determination statements, and use
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them, along with the type information in E , in order to construct a bag
of all ground atoms ∆ that match the bias of the body. This results in
a clause α ← ∆, and all such rules are joined in the clause sequence
H⊥ in some arbitrary order.

3. "Lift" the hypothesisH⊥ and produceH>. For every literal, consider a
mode declaration that is compatible with it and substitute terms with
variables in accordance to the mode declaration.

4. Remove repetition of clauses/literals in a mode-compliant way

Example: Given:

• Example Set

E =

{
< {heads(biasedcoin), tails(realcoin), coin(biasedcoin),

coin(realcoin), different(realcoin, biasedcoin)}, {} >;

< {heads(biasedcoin), tails(realcoin), coin(biasedcoin),

coin(realcoin)}, {different(realcoin, biasedcoin)} >
}

• Bias

M =
{
modeh(∗, different(+coin,+coin)),

modeh(∗, heads(#coin)),

modeb(∗, heads(+coin)),

modeb(∗, tails(+coin)),

determination(different/2, heads/1),

determination(different/2, tails/1),

Max repetition of body literals : 2

Max repetition of clauses : 2
}

• Empty background B

• Input predicate coin and output predicates heads, tails and different

We proceed with the algorithm:

1. We obtain the set of clause heads:

Θ = {heads(realcoin), heads(biasedcoin),

different(realcoin, biasedcoin), different(biasedcoin, realcoin)}

2. We obtain the set of body literals and construct a ground hypothesis
H⊥:

heads(biasedcoin).
heads(realcoin).
different(realcoin, biasedcoin) :-

heads(realcoin), tails(realcoin),
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heads(fakecoin), tails(fakecoin).
different(biasedcoin, realcoin) :-

heads(realcoin), tails(realcoin),
heads(fakecoin), tails(fakecoin).

3. We unground the hypothesis in order to produce H>:

heads(biasedcoin).
heads(realcoin).
different(X, Y) :-

heads(X), tails(X),
heads(Y), tails(Y).

different(X, Y) :-
heads(X), tails(X),
heads(Y), tails(Y).

4. Clause and literal repetition is already compliant with mode declara-
tion, so the result of structure learning is H>.

6.2.4 Parameter Learning

Parameter Learning for the unpriored and priored model then occurs as
in Section 5.3 and 5.2, respectively. Note that the parameter learning tasks
optimizes the objective function of the corresponding PILP task for a fixed
hypothesis. To be more specific, given a clause sequence S, unpriored pa-
rameter learning computes a Bernoulli annotation such that:

θ = arg max
θ

p(E| < S,θ >)

In addition, given a priored annotated logic program < S, τ >, priored
parameter learning computes a Bernoulli annotation which is a Bayes Esti-
mator for the least squared error.

6.3 Proof of correctness

6.3.1 Unpriored model

The way to prove correctness is to prove that the most specific PLP program
is able to express the probability distribution of every most specific hypoth-
esis and hence we can find a probabilistic annotation θ that subsumes it.

We define the subset relation for two clause sequences: S1 ⊆ S2 if and
only if every clause in S1 is a subsequence of the corresponding clause in
S2. An ordered clause c1 is a subsequence of c2 if and only if they have the
same head and the body of c1 is a subsequence of the body in c2.

First, we consider the following lemma.

Lemma: For every pair of clause sequences S1 ⊆ S2 and probabilistic
annotation θ1 compatible with S1, there exists a probabilistic annotation θ2
compatible with S2 such that for any query q, P (q| < S1,θ1 >) = P (q| <
S2,θ2 >).

Proof: Choose θ2 such that ∀(i, j) ∈ dom(S1).θ2(i, j) = θ1(i, j) and
∀(i, j) ∈ dom(S2) − dom(S1).θ2(i, j) = 0. This is basically sets the prob-
abilities of all literals that are in S2 but not in S1 to 0, which means that S2
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induces the exact same probability distribution as S1.

Now, note that the most-specific sequence Sbot constructed in the second
part of PROBXHAIL is a supersequence of every other sequence that can be
defined given the bias. Hence, the most-specific sequence can describe any
probability distribution of hypothesis that the bias allows. Hence, there
exists a set of parameters θbot that are compatible with Sbot such that:

< Sbot,θbot >= arg max
H

p(E|H)

6.3.2 Priored model

Similarly to the unpriored model, we can argue that the most specific clause
sequence is able to induce any probability distribution that a subsequence
can induce. Hence, after parameter learning we have a clause sequence
with a probabilistic annotation that is optimized for the learning task.
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Chapter 7

PILP Evaluation

7.1 Synthetic data experiment - Ground Kernel

To assess scalability, we measure the parameter learning error and run time
for a very basic example. The example consists of a single clause and a set of
facts. The body of the clause contains all of the literals that are ascertained
by the facts. The head of the clause is a unique literal. As an example, 4
body literals result in a theory of:

h :- p1, p2, p3, p4.
p1.
p2.
p3.
p4.

We associate a probability with each literal in the theory and generate hy-
potheses with accordance to the probabilistic model. This means that we
generate each fact independently with the supplied probabilities. Then, we
consider the head probability of the clause and start generating the clause
with that probability. If we decide to generate the clause, we generate each
body predicate independently with the provided probability. Then, we de-
duce the unique Herbrand interpretation of the hypothesis. In this case, the
interpretation contains all of the generated facts. In addition, it contains
the head of the clause iff every body predicate has been generated together
with the corresponding fact. We then plot the results for varying probabil-
ities, number of BDD Samples and number of interpretation samples, we
also consider uncollapsed and collapsed Gibbs sampling.

7.1.1 EMBLEM

We measure the runtime for increasingly larger sizes of the program. The
results are shown in Figure 7.1. We run this program with 10 random

Number of Facts EMBLEM runtime Full runtime MSE Score
1 0.95 4.61 0.0035 -1.68
3 3.17 15.49 0.0630 -3.01
4 5.74 29.23 0.119 -3.70
5 17.37 58.30 0.09 -4.66
6 22.58 58.09 0.09 -5.56

FIGURE 7.1: EMBLEM runtime and score
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FIGURE 7.2: Convergence rate of parameter learning for a
fixed program with varying probability distribution

restarts, ε = 0.000011 and an initial state of θij = 0.5 for all literal indices.
Then we compare probabilistic inference execution time, execution time of
logic and probabilistic inference, mean square error and score (which is
based on log likelihood). The error of learned θ values increases quickly
and in a hypothesis with 5 facts it is already the case that the EM compu-
tation gets stuck in the initial state. The method is overall not particularly
scalable.

7.1.2 Peircebayes

Log Likelihood and Mean Square Error against probabilities

For the first experiment, we create a Kernel Set with 1 fact. This means that
we need to specify three probabilities: the probability of the head and the
body literal of the clause, and the probability of the fact. Using uncollapsed
Gibbs sampling, 100000 observation samples from the kernel set and 200
BDD samples, we choose a value and set all that probabilities to that given
value. For this experiment, we consider 0.05, 0.1, 0.2, 0.4 and 0.8 as literal
probabilities, respectively. The Log Likelihood and Mean Root Error of the
parameters are depicted in Figure 7.2a and 7.2b, respectively.

A conclusion we can draw from this is that the choice of probabilities
affects the number of BDD samples necessary for convergence. In this sit-
uation, lowering the probabilities results in certain observations becoming
highly unlikely. Accurately learning hypothesis distributions from unlikely
observations requires a larger number of samples.

Log Likelihood and Mean Square Error against number of literals

In this experiment, we consider a kernel set in which all the probabilities
have a value of 0.8. Using uncollapsed Gibbs sampling, 100 BDD samples
and 100000 observation samples from the kernel set, we attempt varying
the number of facts in the kernel set. For every added fact, it is necessary
to learn an extra pair of probabilities, the probability of the fact itself and

1δ is a parameter used in the termination condition
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FIGURE 7.3: Convergence rate of parameter learning for a
program with increasing number of literals

Number of Predicates Avg Runtime (secs)
1 1.74
3 3.89
5 9.79
7 38.022
8 81.35

FIGURE 7.4: Average runtime vs number of predicates

the probability of the predicate contributing to the clause as a body literal.
The log Likelihood and the mean square error of the parameters is shown
in Figure 7.3a and Figure 7.3b, respectively.

From these figures, we can draw the conclusion that larger programs
generally take slightly longer to converge (for these probabilities). It is cu-
rious to notice that the program with 5 facts does not have parameter error
converging to 0 like the others.

Note that the runtime (shown in Figure 7.4) increases exponentially with
the number of predicates. The main reason for this is the fact that the
number of possible observations doubles for every added head fact (ev-
ery clause in the general case) and the majority of the runtime is consumed
by logical abduction for this input size.

Overall, when compared to EMBLEM parameter learning, Peircebayes
parameter learning results in faster computation and more accurate para-
maters.

7.2 Synthetic data - Ambiguous dataset

In this section, we consider learning a program (along with a mode decla-
ration that allows PROBXHAIL to learn this structure):

a:0.8 :- b:0.9.
b:0.7 :- a:0.6.
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Note that there are several deterministic answer set programs which pro-
duce the exact same answer sets {a, b} that can be generated from it: H1 =
{a ← b; b ← a}, H2 = {a ← b; b}, H3 = {a; b ← a} and H4 = {a; b}.
We can observe several possible hypothesis for ∅. In fact, if we attempt to
analytically calculate the probability of each predicate from the observation
probabilities given the hypothesis, we will find that the system of equations
has an infinite number of solutions.

7.2.1 EMBLEM

EMBLEM doesn’t converge to a specific value but converges to a different
set of parameters every time. The parameters always induce a probability
distribution on the observations that is close to the expected value. This is
expected of EM, which will converge to a random (potentially local) maxi-
mum, depending on the initial state of the algorithm.

7.2.2 Peircebayes

Peircebayes isn’t able to learn this probability distribution exactly, output-
ing the following hypothesis for a 1.0 symmetric Dirichlet Prior, 10000 BDD
Samples and 10000000 kernel set samples:

a:0.9 :- b:0.8.
b:0.87 :- a:0.35.

Peircebayes calculates the expectation of the posterior value of θ, a value
that can be uniquely inferred from the observation distribution, which means
that the result doesn’t change with different executions of the program.
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Chapter 8

Related Work

PILP introduces the concept of rule learning in a probabilistic setting. In this
chapter, we consider other PILP algorithms and how they relate to PROBX-
HAIL. The choice of languages in this paper is largely based on previous
overviews of Probabilistic Logic Programming[31][9].
A common pattern in the following approaches is the iteration of structure
and parameter learning, whereby one continuously repeats fixing the struc-
ture of the program and optimizes the probabilistic parameters to match
the example set, followed by a choice of structure change. This is where
PROBXHAIL differs from other languages, as parameter learning is com-
pletely separated procedure that is executed after structure learning is com-
pleted.

8.1 ProbFOIL and ProbFOIL+

ProbFOIL[11] and ProbFOIL+[12] are PILP algorithms that attempt to learn
ProbLog programs.

8.1.1 PILP task

In the PILP task for ProbFOIL and ProbFOIL+, each example is a ground
literal labelled with a probability. The goal is to find a ProbLog hypothesis
which induces a probability distribution on the examples that is as close as
possible to the target distribution (as described by the example probabili-
ties). This is formalized by the concept of a loss function which is used to
quantify the discrepancy between the hypothesis distribution and the tar-
get one. For ProbFOIL and ProbFOIL+, the loss function chosen is the sum
of the absolute differences between query and label probability of each ex-
ample.

8.1.2 Algorithm

ProbFOIL and ProbFOIL+ are a generalization FOIL[28], a deterministic
ILP algorithm for Prolog programs that performs a top-down heuristic greedy
search on a refinement tree similar to Figure 2.2.

ProbFOIL is initialized with the target predicate in the head and it greed-
ily adds body literals and clauses based on a monotonic refinement oper-
ator. The progress of the algorithm is ensured by the fact that each clause
added to the hypothesis increases the "number of true positives", a notion
generalized from FOIL: Hypotheses can cover a fraction of a probabilistic
example.
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Note that ProbFOIL only learns deterministic rules. ProbFOIL+[12] im-
proves on ProbFOIL by learning probabilistic rules. It is able to learn the
probabilities of the candidate clauses by assuming the hypothesis consists
of the given clause, and then varies the clauses parameter in order to opti-
mize a local scoring function. After each possible refinement of the clause
is considered, the clause with the highest possible scoring function is cho-
sen. In addition, the ProbFOIL+ algorithm uses beam search rather than
the simplified greedy search approach of ProbFOIL.

8.2 SLIPCASE and SLIPCOVER

SLIPCASE[2] and SLIPCOVER[3] are a family of PILP algorithms for LPADs.

8.2.1 PILP task

SLIPCASE and SLIPCOVER use an EM algorithm to do parameter learning.
Similarly to the unpriored PROBXHAIL learning algorithm, the task is to
choose a compact hypothesis for which the likelihood of the data given the
hypothesis is as high as possible.

8.2.2 Algorithm

SLIPCASE learns LPADs and uses a beam search on a refinement operator
to find the optimal hypothesis. For each candidate hypothesis, EMBLEM[1]
is used to calculate the parameters of the theory. Then, the beam search is
restricted based on the log likelihood of the hypotheses. SLIPCOVER is an
efficiency improvement on SLIPCASE since it uses Muggleton’s inverse en-
tailment[25] to guide the beam search. SLIPCOVER uses the bottom clause
as the initial hypothesis and then attempts to generalize it.
Unlike SLIPCOVER, PROBXHAIL doesn’t use a most-specific clause to bind
the search space, the most-specific clause itself is the basis of the algorithm.
In this respect, PROBXHAIL is a less scalable algorithm since it produces a
larger logic program.

8.3 Sem CP-Logic

SEM CP logic[24] converts CP theories (which are very similar to LPADs) to
Bayesian Networks and then uses Bayesian Network Learning techniques
to learn new hypotheses. The Bayesian Network consists of atom variables
and clause variables. Atom variables represent an assignment and clause
variables represent a probability distribution of the heads of the given rule.
Parameter learning is done by instantiating the atoms in the Bayesian net-
work to the values of the example and then using the Bayesian Network to
infer the head probabilities of rules. Then, structure learning can be done
by adding variables to the Bayesian Network using a refinement operator
in a way that ensures that the resulting Bayesian Network represents a valid
CP-Theory. Parameter learning is done on the resulting theories. Then, the-
ories with high log likelihood of the data are considered.
Treating the probabilistic rule set as a Bayesian network inspires an exten-
sion to PROBXHAIL. The probabilistic language is currently the most basic
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dependency model between the literals. Introducing an extra literal in the
network can be beneficial.
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Chapter 9

Conclusion and Future Work

9.1 Achievements

Overall, the outcomes of this project include:

• The implementation of answer set program input in Peircebayes

• The implementation of answer set programs for several statistical ab-
duction tasks which are faster than their Prolog counterparts

• The definition of annotated literal programs, a new type of probabilis-
tic logic program that is arguably more expressive than some modern
PLP languages, due to it utilizing both Beta priors and stable set se-
mantics

• The definition and implementation of several parameter learning tasks
for annotated literal programs: a Peircebayes statistical abduction task
and an LPAD parameter learning task

• The development of PROBXHAIL, a structural learning algorithm for
annotated literal programs and a probabilistic generalization of the
XHAIL algorithm

• The introduction of inductive-abductive learning in the context of
PILP

9.2 Potential Extensions

9.2.1 Data-driven most specific hypothesis

One of the main issues of PROBXHAIL is its low scalability. For this rea-
son, it is important to keep the most specific hypothesis as small as pos-
sible. Doing that in a bias-driven approach to structure learning requires
very specific mode declarations and, hence, a lot of user interaction. A sig-
nificant improvement of this algorithm would be to use the data to generate
the most specific hypothesis in a manner similar to algorithms based on In-
verse Entailment.
XHAIL already features a modification of Kernel Set Subsumption (as de-
fined in HAIL) to perform data-driven computation of a most-specific hy-
pothesis. However, XHAIL is restricted to learning data from a single in-
terpretation, whereas the PILP tasks defined in this report require the con-
struction of a probabilistic hypothesis which is able to explain several po-
tentially mutually inconsistent interpretations.
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In order to tackle this problem, we propose a different data-driven ap-
proach that generalizes the structural learning procedure in XHAIL:

1. For each interpretation construct the ground kernel set as in XHAIL,
with one major difference: whenever there are multiple solutions to
the abductive stage of XHAIL, construct a separate kernel set from
every possible set of heads, rather than choosing an arbitrary solution
to the abductive task and discarding others.

2. "Merge" the ground kernel sets: group all clauses in the kernel sets
by their ground head and merge each group in a single clause by pre-
serving the head and taking the union of all body literals.

3. Lift the kernel and trim the kernel set according to the bias, as de-
scribed in Chapter 6.

This approach should result in a probabilistic hypothesis that is able to ex-
plain every interpretation, while remaining more compact than the most
specific hypothesis generated from a broad bias. Whether this algorithm
targets the PILP task defined in this report is an open question.

9.2.2 Probabilistic model extension

A potential way to produce more accurate programs is to modify the prob-
abilistic model. Techniques borrowed from Bayesian Network structural
learning could be used to construct a more realistic probabilistic model[16].

An example of this would be to remove the independency assumption
between certain body literals. Currently, body literals in each clause of
an annotated literal program are considered independently for inclusion.
However, certain body literals may occur much more often together than
they would separately. For example, the predicate teaches might almost
never occur without the predicate teacher in the same clause of a hypoth-
esis, as the concept of teaching is associated with a teacher. In this situa-
tion, using an independent inclusion variable per literal in the probabilistic
model is inadequate, as the inclusion of one literal depends on the inclusion
of the other.
The way to implement this is to generalize the PLP model to associate
groups of body literals with a single categorical variable that differentiates
between all joint states.

Example: Parameter learning for such a program can be done using
Peircebayes. We associate a group of N variables with a single ucl predi-
cate that can have 2N values. So the clause:

advisedby(stan, T )← teacher(T ), teaches(T,C), level(C, graduate)

can be rewritten in the abductive program as (assuming a model with a
joint random variable for the literals teacher(T ) and teaches(T,C)):

advisedby(stan,T) :- ucl(0,0), try_multi(0,1,T,C), try(2,0,C).

try_multi(0,1,T,C) :- not teacher(T), not teaches(T,C),
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ucl_multi(0,1,none).
try_multi(0,1,T,C) :- teacher(T), not teaches(T,C),

ucl_multi(0,1,onlyfirst).
try_multi(0,1,T,C) :- not teacher(T), teaches(T,C),

ucl_multi(0,1,onlysecond).
try_multi(0,1,T,C) :- teacher(T), teaches(T,C),

ucl_multi(0,1,both).

try(0,2,C) :- not ucl(0,2).
try(0,2,C) :- level(C, graduate), ucl(0,2).

Similarly, in EMBLEM we can have an LPAD that learns a distribution on
the joint states of the literals:

ucl_multi(0,1,both):0.25, ucl_multi(0,1,onlyfirst):0.25,
ucl_multi(0,1,onlysecond):0.25.

Note that the joint exclusion of literals is modelled implicitly in the LPAD
by the empty head probability.

A different change to the probability distribution is to attempt omitting
body literals in the most-specific hypothesis. This could potentially increase
the accuracy of an overfit model. This can be done randomly, or, similarly
to SLIPCOVER, with respect to a scoring function.

An additional topic for research would be to investigate the use of a
noise variable in the probabilistic model. The current PLP language is not
able to handle inconsistencies within the interpretations themselves, even
though it is able to handle uncertainty of the occurrence of a specific inter-
pretation.

9.2.3 Potential applications

Another important task to research is to evaluate the practical value of this
algorithm. This algorithm has only been evaluated on synthetic datasets
that aim to show that PROBXHAIL correctly optimizes the parameters to
complete the learning task. We’ve made an unsuccessful attempt on get-
ting the algorithm to work on a large dataset.

Using Beta priors is a mathematically well-defined way of incorporating
prior knowledge in a model. It can be considered a more elegant approach
of initializing a model than using an initial state in an EM algorithm. In EM,
the initial parameters determine whether the MLE computation would get
stuck in a local maximum or not. However, we haven’t investigated how
practically useful it is to incorporate the Beta priors in the bias. Perhaps it
would be meaningful to annotate each mode declaration with the number
of times the literal is expected to appear in a hypothesis and the number of
times it wouldn’t.
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9.3 Concluding Remarks

As large relational datasets become more prevalent, extracting patterns from
data in the form of human comprehensible rule sets becomes increasingly
valuable. Introducing uncertainty in logic-based models extends the their
usefulness in domains for which modelling error and randomness is a core
concept, such as computational biology. This project is novel in its attempt
to introduce abductive-inductive learning in the context of PILP. In addi-
tion, it introduces a set of expressive probabilistic logic programming lan-
guages that uses both stable set semantics and a prior distribution for pa-
rameter learning. The most apparent issue that impacts the practical usabil-
ity of the model is its scalability. Indeed, combining logic-based learning
and statistical distributions in the same model introduces two sources of
intractable problems. Logic satisfiability and the evaluation of probabilistic
models with intractably large latent spaces are both problems that need to
be solved in probabilistic logic programs. For this reason, improving scal-
ability and parallelism in such systems could produce machine learning
models of great value.
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Appendix A

Peircebayes task
implementations

A.1 RIM

A.1.1 Prolog implementation

This Prolog implementation was originally defined in [38]

% prob distribs
pb_dirichlet(8.33333333333, pi, 6, 1).
pb_dirichlet(0.1, p2, 2, 6).
pb_dirichlet(0.1, p3, 3, 6).
pb_dirichlet(0.1, p4, 4, 6).
pb_dirichlet(0.1, p5, 5, 6).
pb_dirichlet(0.1, p6, 6, 6).
pb_dirichlet(0.1, p7, 7, 6).
pb_dirichlet(0.1, p8, 8, 6).
pb_dirichlet(0.1, p9, 9, 6).
pb_dirichlet(0.1, p10, 10, 6).

% plate
pb_plate(

[observe(Sample)],
1,
[generate([0,1,2,3,4,5,6,7,8,9], Sample)]

).

insert_rim([], ToIns, Ins,
Pos, Ins1) :-
append(Ins, [ToIns], Ins1),
length(Ins1, Pos).

insert_rim([H|_T], ToIns, Ins,
Pos, Ins1) :-
nth1(Pos, Ins, H),
nth1(Pos, Ins1, ToIns, Ins).

insert_rim([H|T] , ToIns, Ins,
Pos, Ins1) :-
\+member(H, Ins),
insert_rim(T, ToIns, Ins,

Pos, Ins1).

generate([H|T], Sample):-
K in 1..6,
pi(K,1),
generate(T, Sample, [H], 2, K).

generate([], Sample, Sample, _Idx, _K).
generate([ToIns|T], Sample, Ins, Idx, K) :-
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% insert next element at Pos
% yielding a new list Ins1
append(_, [ToIns|Rest], Sample),
insert_rim(Rest, ToIns, Ins,

Pos, Ins1),
% build prob predicate in Pred
number_chars(Idx, LIdx),
append([’p’], LIdx, LF),
atom_chars(F, LF),
Pred =.. [F, Pos, K],
% call prob predicate
pb_call(Pred),
Idx1 is Idx+1,
% recurse
generate(T, Sample, Ins1, Idx1, K).

A.1.2 ASP implementation

Outer Query Grounding

% NUMIDS is the number of possible examples.
1 { outer_query(1..NUMIDS) } 1.

% An example observation:
% Ranking consists of several steps of inserting elements into
% the model. Each ranking(Step, Item, Position) atom signifies
% that that in step Step, item Item is in position Position.
10 { ranking(9, 5, 1),

ranking(9, 0, 2),
ranking(9, 3, 3),
ranking(9, 4, 4),
ranking(9, 6, 5),
ranking(9, 9, 6),
ranking(9, 8, 7),
ranking(9, 1, 8),
ranking(9, 7, 9),
ranking(9, 2, 10) } 10 :- outer_query(1).

Abductive Task

% Type information.
#hide step/1.
#hide elem/1.
#hide pos/1.
step(0..9).
elem(0..9).
pos(1..10).

% Each pi represents a choice of a different ranking function.
1 {pi(1..6)} 1.
#hide ranking/3.
%#hide outer_query/1.

% Generates previous step of RIM by "removing" an element
% out of its position.
ranking(I, Elem, Pos) :-
step(I), elem(Elem), pos(Pos),
ranking(I+1, I+1, PosNextElem),
ranking(I+1, Elem, Pos),
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PosNextElem > Pos.

ranking(I, Elem, Pos) :-
step(I), elem(Elem), pos(Pos),
ranking(I+1, I+1, PosNextElem),
ranking(I+1, Elem, Pos+1),
PosNextElem < Pos + 1.

% At step i we use pi to choose a new position to
% insert the new element.
p2(Pos, K) :- pi(K), ranking(1, 1, Pos).
p3(Pos, K) :- pi(K), ranking(2, 2, Pos).
p4(Pos, K) :- pi(K), ranking(3, 3, Pos).
p5(Pos, K) :- pi(K), ranking(4, 4, Pos).
p6(Pos, K) :- pi(K), ranking(5, 5, Pos).
p7(Pos, K) :- pi(K), ranking(6, 6, Pos).
p8(Pos, K) :- pi(K), ranking(7, 7, Pos).
p9(Pos, K) :- pi(K), ranking(8, 8, Pos).
p10(Pos, K) :- pi(K), ranking(9, 9, Pos).

A.2 Seeded LDA

A.2.1 Prolog

This Prolog implementation was originally defined in [38]

seed_naf(Token) :- seed(Token, _).

seed(9503, [1]).
seed(13296, [1]).

% prob distribs
pb_dirichlet(2.5, theta, 20, 4767).
pb_dirichlet(0.01, phi, 27485, 20).

% plate
pb_plate(

[observe(d(Doc), TokenList),
member((w(Token), Count), TokenList),
\+ seed_naf(Token)],

Count,
[Topic in 1..20,
theta(Topic,Doc),
phi(Token,Topic)]

).

pb_plate(
[observe(d(Doc), TokenList),
member((w(Token), Count), TokenList),
seed_naf(Token)],

Count,
[seed(Token, TopicList),
member(Topic, TopicList),
theta(Topic,Doc),
phi(Token,Topic)]

).

%example observations
observe(d(1), [(w(20791),1),(w(4045),1),(w(20022),1)].
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A.2.2 ASP representation

This model consists of 2 queries, which we consider as 2 separate abductive
tasks.

Outer Queries

First query:

#hide.
#show outer_query/3.

1 { outer_query(Doc, Token, Count) :
observe(d(Doc), (w(Token), Count)) } 1.

:- outer_query(_, Token, _), seed_naf(Token).

count(Count) :- outer_query(_, _, Count).

%example observation
observe(d(1), (w(20601),1)).

%example lexical prior
seed_naf(Token) :- seed(Token, _).
seed(9399, 1).
seed(13168, 1).

Second query:

#hide.
#show outer_query/3.

1 { outer_query(Doc, Token, Count)
: outer_q(Doc, Token, Count)} 1.

outer_q(Doc, Token, Count) :-
observe(d(Doc), (w(Token), Count)), seed_naf(Token).

count(Count) :- outer_query(_, _, Count).

%example observation
observe(d(1), (w(20601),1)).

%example lexical prior
seed_naf(Token) :- seed(Token, _).
seed(9399, 1).
seed(13168, 1).

Inner Queries

First query:

#show theta/2.
#show phi/2.

inner_query(Doc, Token, Count) :- outer_query(Doc, Token, Count).

1{ topic(1..20) } 1 :- inner_query(_, _, _).
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1{ theta(Topic, Doc) } 1 :- topic(Topic),
inner_query(Doc, Token, Count).

1{ phi(Token, Topic) } 1 :- topic(Topic),
theta(Topic, Doc),
inner_query(Doc, Token, _).

Second query:

#show theta/2.
#show phi/2.

inner_query(Doc, Token, Count) :- outer_query(Doc, Token, Count).

1{ theta(Topic, Doc) } 1 :-
seed(Token, Topic),
inner_query(Doc, Token, _).

1{ phi(Token, Topic) } 1 :-
seed(Token, Topic),
theta(Topic, Doc),
inner_query(Doc, Token, _).

A.3 Fast LDA

This describes a manual implementation of LDA that is faster than the orig-
inal definitions in Chapter 4.

A.3.1 Outer Query

#hide.
#show outer_query/3.
1 { outer_query(Doc, Token, Count)

: observe(d(Doc), (w(Token), Count)) } 1.

count(Count) :- outer_query(_, _, Count).

%example observation
observe(d(1), (w(3), 3)).

A.3.2 Inner Query

#show theta/2.
#show phi/2.

inner_query(Doc, Token, Count) :- outer_query(Doc, Token, Count).

1{ topic(1..10) } 1 :- inner_query(_, _, _).
1{ theta(Topic, Doc) } 1 :-

topic(Topic),
inner_query(Doc, Token, Count).

1{ phi(Token, Topic) } 1 :-
topic(Topic),
theta(Topic, Doc),
inner_query(Doc, Token, _).
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