
Gitlab-CI: Setting up Continuous Integration for a
Gitlab Project

Including Creating a Runner

Duncan C. White,
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

1st Feb 2016

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 1 / 15

What is Gitlab-CI?

Gitlab-CI is a new Gitlab feature, enabling you to setup
automatic actions (eg testing, integration with other
components, package building etc) on your Gitlab projects, that
run every time you push changes up.

You can add CI to an existing Gitlab project, but this tutorial
creates a new Gitlab project, containing a simplified version of a
C-based program that flattens nested mailing lists.

Log in to the gitlab.doc.ic.ac.uk web interface and create a
new project called mini-list-flattening.

Then populate it as follows:
pushd /tmp

wget http://www.doc.ic.ac.uk/~dcw/mini-list-flattening.tgz

tar xzf mini-list-flattening.tgz

cd mini-list-flattening

Then follow the ”Existing folder” instructions on the newly
created Gitlab project page. For me, these were:
git init

git remote add origin git@gitlab.doc.ic.ac.uk:dcw/mini-list-flattening.git

git add .

git commit -m "first commit"

git push -u origin master

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 2 / 15

What is Gitlab-CI?

Gitlab-CI is a new Gitlab feature, enabling you to setup
automatic actions (eg testing, integration with other
components, package building etc) on your Gitlab projects, that
run every time you push changes up.

You can add CI to an existing Gitlab project, but this tutorial
creates a new Gitlab project, containing a simplified version of a
C-based program that flattens nested mailing lists.

Log in to the gitlab.doc.ic.ac.uk web interface and create a
new project called mini-list-flattening.

Then populate it as follows:
pushd /tmp

wget http://www.doc.ic.ac.uk/~dcw/mini-list-flattening.tgz

tar xzf mini-list-flattening.tgz

cd mini-list-flattening

Then follow the ”Existing folder” instructions on the newly
created Gitlab project page. For me, these were:
git init

git remote add origin git@gitlab.doc.ic.ac.uk:dcw/mini-list-flattening.git

git add .

git commit -m "first commit"

git push -u origin master

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 2 / 15

What is Gitlab-CI?

Gitlab-CI is a new Gitlab feature, enabling you to setup
automatic actions (eg testing, integration with other
components, package building etc) on your Gitlab projects, that
run every time you push changes up.

You can add CI to an existing Gitlab project, but this tutorial
creates a new Gitlab project, containing a simplified version of a
C-based program that flattens nested mailing lists.

Log in to the gitlab.doc.ic.ac.uk web interface and create a
new project called mini-list-flattening.

Then populate it as follows:
pushd /tmp

wget http://www.doc.ic.ac.uk/~dcw/mini-list-flattening.tgz

tar xzf mini-list-flattening.tgz

cd mini-list-flattening

Then follow the ”Existing folder” instructions on the newly
created Gitlab project page. For me, these were:
git init

git remote add origin git@gitlab.doc.ic.ac.uk:dcw/mini-list-flattening.git

git add .

git commit -m "first commit"

git push -u origin master

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 2 / 15

What is Gitlab-CI?

Gitlab-CI is a new Gitlab feature, enabling you to setup
automatic actions (eg testing, integration with other
components, package building etc) on your Gitlab projects, that
run every time you push changes up.

You can add CI to an existing Gitlab project, but this tutorial
creates a new Gitlab project, containing a simplified version of a
C-based program that flattens nested mailing lists.

Log in to the gitlab.doc.ic.ac.uk web interface and create a
new project called mini-list-flattening.

Then populate it as follows:
pushd /tmp

wget http://www.doc.ic.ac.uk/~dcw/mini-list-flattening.tgz

tar xzf mini-list-flattening.tgz

cd mini-list-flattening

Then follow the ”Existing folder” instructions on the newly
created Gitlab project page. For me, these were:
git init

git remote add origin git@gitlab.doc.ic.ac.uk:dcw/mini-list-flattening.git

git add .

git commit -m "first commit"

git push -u origin master

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 2 / 15

Setting up the .gitlab-ci.yml file

In Gitlab, click again on the Project button and you should see
the results of the first commit. On Project Settings, check that
the Builds feature is enabled, and, further down, that your
project has a CI Token. You’ll need to copy this token later.

In your new mini-list-flattening repo directory, look around and
see what the code does. In particular, read the README and do
what it says to compile and run the test program.

No Gitlab project will use CI unless you set up a YAML file called
.gitlab-ci.yml defining the actions to run. You will spend a lot of
time editing/committing/pushing this file, until it works.
After a lot of failures, the first roughly correct version read:
before_script:

- sudo apt-get update -qq && sudo apt-get install -y -qq gcc make

- which gcc

runtests:

script:

compile it up

- export TOOLDIR=$HOME/c-tools

- export ARCH=x86_64

- make

and run the tests..

- make test

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 3 / 15

Setting up the .gitlab-ci.yml file

In Gitlab, click again on the Project button and you should see
the results of the first commit. On Project Settings, check that
the Builds feature is enabled, and, further down, that your
project has a CI Token. You’ll need to copy this token later.

In your new mini-list-flattening repo directory, look around and
see what the code does. In particular, read the README and do
what it says to compile and run the test program.

No Gitlab project will use CI unless you set up a YAML file called
.gitlab-ci.yml defining the actions to run. You will spend a lot of
time editing/committing/pushing this file, until it works.
After a lot of failures, the first roughly correct version read:
before_script:

- sudo apt-get update -qq && sudo apt-get install -y -qq gcc make

- which gcc

runtests:

script:

compile it up

- export TOOLDIR=$HOME/c-tools

- export ARCH=x86_64

- make

and run the tests..

- make test

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 3 / 15

Setting up the .gitlab-ci.yml file

In Gitlab, click again on the Project button and you should see
the results of the first commit. On Project Settings, check that
the Builds feature is enabled, and, further down, that your
project has a CI Token. You’ll need to copy this token later.

In your new mini-list-flattening repo directory, look around and
see what the code does. In particular, read the README and do
what it says to compile and run the test program.

No Gitlab project will use CI unless you set up a YAML file called
.gitlab-ci.yml defining the actions to run. You will spend a lot of
time editing/committing/pushing this file, until it works.

After a lot of failures, the first roughly correct version read:
before_script:

- sudo apt-get update -qq && sudo apt-get install -y -qq gcc make

- which gcc

runtests:

script:

compile it up

- export TOOLDIR=$HOME/c-tools

- export ARCH=x86_64

- make

and run the tests..

- make test

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 3 / 15

Setting up the .gitlab-ci.yml file

In Gitlab, click again on the Project button and you should see
the results of the first commit. On Project Settings, check that
the Builds feature is enabled, and, further down, that your
project has a CI Token. You’ll need to copy this token later.

In your new mini-list-flattening repo directory, look around and
see what the code does. In particular, read the README and do
what it says to compile and run the test program.

No Gitlab project will use CI unless you set up a YAML file called
.gitlab-ci.yml defining the actions to run. You will spend a lot of
time editing/committing/pushing this file, until it works.
After a lot of failures, the first roughly correct version read:
before_script:

- sudo apt-get update -qq && sudo apt-get install -y -qq gcc make

- which gcc

runtests:

script:

compile it up

- export TOOLDIR=$HOME/c-tools

- export ARCH=x86_64

- make

and run the tests..

- make test

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 3 / 15

Setting up the .gitlab-ci.yml file

In the YML file, there can be any number of sections. The
before script section is special, and means do each command in
the list at the beginning of every test build.

The second section can be named whatever you like, here
runtests was my choice. The script tag means run a sequence of
commands: first we compile the software, then we test it:
runtests:

script:

compile it up

- export TOOLDIR=$HOME/c-tools

- export ARCH=x86_64

- make

and run the tests..

- make test

The commands are exactly those (bash syntax) commands that
the README file told us to use to build the program and run the
tests. They assume that a $HOME/c-tools directory exists,
containing a few useful modules that I use in most C projects.

Create yourself a .gitlab-ci.yml file with the full contents from
page 3, then git add it, git commit it and git push it up.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 4 / 15

Setting up the .gitlab-ci.yml file

In the YML file, there can be any number of sections. The
before script section is special, and means do each command in
the list at the beginning of every test build.

The second section can be named whatever you like, here
runtests was my choice. The script tag means run a sequence of
commands: first we compile the software, then we test it:
runtests:

script:

compile it up

- export TOOLDIR=$HOME/c-tools

- export ARCH=x86_64

- make

and run the tests..

- make test

The commands are exactly those (bash syntax) commands that
the README file told us to use to build the program and run the
tests. They assume that a $HOME/c-tools directory exists,
containing a few useful modules that I use in most C projects.

Create yourself a .gitlab-ci.yml file with the full contents from
page 3, then git add it, git commit it and git push it up.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 4 / 15

Setting up the .gitlab-ci.yml file

When you push this file up to your remote repo on Gitlab, Gitlab
will automatically enable CI facilities on the project.

In the Gitlab UI, there’s a Builds menu item, click on it and you
will see that it attempted to run a build, initially this will be
marked as Pending.

Click on the Pending Build and you’ll see that it’s Pending
because you haven’t yet created and registered a Runner.

A Runner is a special test machine, belonging to you and
running special software, that Gitlab-CI will use to run your
actions. We’ll see how to set up and customize the Runner later
in this tutorial. In particular, we’ll need to ensure that the
$HOME/c-tools directory exists with the right contents.

Note: If you see the Build marked as Failed, not Pending, at this
stage, it probably means there are syntax errors in the YML file -
these are displayed on the Build page. Fix the YML file, commit
it and push it up and check the Build status again.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 5 / 15

Setting up the .gitlab-ci.yml file

When you push this file up to your remote repo on Gitlab, Gitlab
will automatically enable CI facilities on the project.

In the Gitlab UI, there’s a Builds menu item, click on it and you
will see that it attempted to run a build, initially this will be
marked as Pending.

Click on the Pending Build and you’ll see that it’s Pending
because you haven’t yet created and registered a Runner.

A Runner is a special test machine, belonging to you and
running special software, that Gitlab-CI will use to run your
actions. We’ll see how to set up and customize the Runner later
in this tutorial. In particular, we’ll need to ensure that the
$HOME/c-tools directory exists with the right contents.

Note: If you see the Build marked as Failed, not Pending, at this
stage, it probably means there are syntax errors in the YML file -
these are displayed on the Build page. Fix the YML file, commit
it and push it up and check the Build status again.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 5 / 15

Creating the Runner VM

The Runner machine could be a physical machine, or a VM, or a
docker container. We’re going to create a VM on the DoC
private cloud.

To create the Runner VM, log onto the
runner-creator.doc.ic.ac.uk web interface and create a
new VM based on the Featured Non-CSG Ubuntu 14.04 30GB
disk template, which comes with college authentication and local
root console access, but which does not mount DoC/College
home dirs, or run the CSG maintenance system.

All you need to do is enter your DoC login, password, and a short
vm name. Please note, the vm name is only a name in cloudstack
and on the vm (/etc/hosts and /etc/hostname). The name is
not registered in the DNS database, and so will not resolve.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 6 / 15

Creating the Runner VM

There is quite a bit of asynchronous communication happening in
the background. If you get a 502 NGINX Bad Gateway error,
please check cloudstack (https://cloudstack.doc.ic.ac.uk). There
is a good chance that the front end timed out before the
application was completed. Your vm was probably created.

You can ssh into the vm either by it’s IP address, or by going to
cloud-vm-〈subnet〉-〈last byte〉 where subnet is the third byte, and
last byte is the fourth byte of the address.
Example, 146.169.46.65 would be cloud-vm-46-65.

Check that you have sudo access:

id

You should see a reference to the sudo group.
Then you can become su:

sudo -s

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 7 / 15

Creating the Runner VM

Do the rest of the setup as root via the ssh session.
The package gitlab-ci-multi-runner is installed in the template.
To connect Gitlab and our new runner VM together, register the
runner:
gitlab-ci-multi-runner register

This asks us a few questions, first we enter the name of our
Gitlab server’s CI endpoint: https://gitlab.doc.ic.ac.uk/ci

Then we copy and paste in our repo’s Gitlab CI token (from the
Gitlab Project Settings page).

Then we enter a name for the runner - I chose
my-gitlab-ci-runner-ubuntu14.04-cvm - and enter zero or
more symbolic tags - I entered none.

Finally we choose the Shell Executor - I entered shell.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 8 / 15

Creating the Runner VM

Do the rest of the setup as root via the ssh session.
The package gitlab-ci-multi-runner is installed in the template.
To connect Gitlab and our new runner VM together, register the
runner:
gitlab-ci-multi-runner register

This asks us a few questions, first we enter the name of our
Gitlab server’s CI endpoint: https://gitlab.doc.ic.ac.uk/ci

Then we copy and paste in our repo’s Gitlab CI token (from the
Gitlab Project Settings page).

Then we enter a name for the runner - I chose
my-gitlab-ci-runner-ubuntu14.04-cvm - and enter zero or
more symbolic tags - I entered none.

Finally we choose the Shell Executor - I entered shell.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 8 / 15

After Runner Registration.. Build status changes

As soon as we have finished registering the multi-runner, go back
to the Gitlab web interface, and check the Build status.
Remember, up to now, the Build status has been Pending,
because with no runner Gitlab can’t run any tests.

But now, the Build status should change in a few seconds from
Pending to Failed, and the log panel (black background) should
show the commands it ran and the results.

You should see the Build successfully clone the repo on the
runner VM, then fail at the first sudo apt-get command.

Why? After some investigation, I realised that the build runs as a
local gitlab-runner user on the runner VM, and that user cannot
use sudo by default. To discover this, I added whoami as an extra
command in the before script section in the YML file, then
re-committed and re-pushed it:

vi .gitlab-ci.yml [added "- whoami" as 1st command in before_script list]

git commit .gitlab-ci.yml

git push

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 9 / 15

After Runner Registration.. Build status changes

As soon as we have finished registering the multi-runner, go back
to the Gitlab web interface, and check the Build status.
Remember, up to now, the Build status has been Pending,
because with no runner Gitlab can’t run any tests.

But now, the Build status should change in a few seconds from
Pending to Failed, and the log panel (black background) should
show the commands it ran and the results.

You should see the Build successfully clone the repo on the
runner VM, then fail at the first sudo apt-get command.

Why? After some investigation, I realised that the build runs as a
local gitlab-runner user on the runner VM, and that user cannot
use sudo by default. To discover this, I added whoami as an extra
command in the before script section in the YML file, then
re-committed and re-pushed it:

vi .gitlab-ci.yml [added "- whoami" as 1st command in before_script list]

git commit .gitlab-ci.yml

git push

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 9 / 15

After Runner Registration.. Build status changes

As soon as we have finished registering the multi-runner, go back
to the Gitlab web interface, and check the Build status.
Remember, up to now, the Build status has been Pending,
because with no runner Gitlab can’t run any tests.

But now, the Build status should change in a few seconds from
Pending to Failed, and the log panel (black background) should
show the commands it ran and the results.

You should see the Build successfully clone the repo on the
runner VM, then fail at the first sudo apt-get command.

Why? After some investigation, I realised that the build runs as a
local gitlab-runner user on the runner VM, and that user cannot
use sudo by default. To discover this, I added whoami as an extra
command in the before script section in the YML file, then
re-committed and re-pushed it:

vi .gitlab-ci.yml [added "- whoami" as 1st command in before_script list]

git commit .gitlab-ci.yml

git push

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 9 / 15

Retry the Build

So, to allow our runner to use sudo, add the gitlab-runner user
to the sudo group, in the root ssh session:

usermod -G sudo gitlab-runner

Now, click Retry Build. If you got it right, you should see that
the runner VM installs gcc and make, as the before script
section told it to.

Of course, every change made to the runner VM - either by the
before script section, or done manually as root on the VM,
persists forever. Hence, once we’ve successfully installed gcc and
make, we probably don’t want to leave the apt-get commands
live, because they run every time and slow things down. So
comment most of the before script section out (by another vi;
commit and push sequence):
before_script:

#- whoami

#- sudo apt-get update -qq && sudo apt-get install -y -qq gcc make

- which gcc

Of course, we could have avoided the before script section, and
run the apt-get commands manually in the root ssh shell.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 10 / 15

Retry the Build

So, to allow our runner to use sudo, add the gitlab-runner user
to the sudo group, in the root ssh session:

usermod -G sudo gitlab-runner

Now, click Retry Build. If you got it right, you should see that
the runner VM installs gcc and make, as the before script
section told it to.

Of course, every change made to the runner VM - either by the
before script section, or done manually as root on the VM,
persists forever. Hence, once we’ve successfully installed gcc and
make, we probably don’t want to leave the apt-get commands
live, because they run every time and slow things down. So
comment most of the before script section out (by another vi;
commit and push sequence):
before_script:

#- whoami

#- sudo apt-get update -qq && sudo apt-get install -y -qq gcc make

- which gcc

Of course, we could have avoided the before script section, and
run the apt-get commands manually in the root ssh shell.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 10 / 15

The Build attempts runtests

After completing the before script section, the build process
attempted the runtests section, which reads:
runtests:

script:

compile it up

- export TOOLDIR=$HOME/c-tools

- export ARCH=x86_64

- make

and run the tests..

- make test

When I did this, the Build process cd’d into the correct directory,
set the above environment variables, and then ran make.

At this point, of course, $HOME/c-tools did not exist on the
runner VM, so the make failed to find mem.h anywhere.

We could add rules to the before script section to fetch a
c-tools tarball from somewhere and extract it, but it’s simpler to
do this from the root ssh session.

First, as you on a DoC workstation, build a c-tools.tgz tarball
containing your ~/c-tools directory:
cd

tar czf /tmp/c-tools.tgz c-tools

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 11 / 15

The Build attempts runtests

After completing the before script section, the build process
attempted the runtests section, which reads:
runtests:

script:

compile it up

- export TOOLDIR=$HOME/c-tools

- export ARCH=x86_64

- make

and run the tests..

- make test

When I did this, the Build process cd’d into the correct directory,
set the above environment variables, and then ran make.

At this point, of course, $HOME/c-tools did not exist on the
runner VM, so the make failed to find mem.h anywhere.

We could add rules to the before script section to fetch a
c-tools tarball from somewhere and extract it, but it’s simpler to
do this from the root ssh session.

First, as you on a DoC workstation, build a c-tools.tgz tarball
containing your ~/c-tools directory:
cd

tar czf /tmp/c-tools.tgz c-tools

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 11 / 15

The Build attempts runtests

After completing the before script section, the build process
attempted the runtests section, which reads:
runtests:

script:

compile it up

- export TOOLDIR=$HOME/c-tools

- export ARCH=x86_64

- make

and run the tests..

- make test

When I did this, the Build process cd’d into the correct directory,
set the above environment variables, and then ran make.

At this point, of course, $HOME/c-tools did not exist on the
runner VM, so the make failed to find mem.h anywhere.

We could add rules to the before script section to fetch a
c-tools tarball from somewhere and extract it, but it’s simpler to
do this from the root ssh session.

First, as you on a DoC workstation, build a c-tools.tgz tarball
containing your ~/c-tools directory:
cd

tar czf /tmp/c-tools.tgz c-tools

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 11 / 15

Making persistent changes to images

Then copy the tarball to the runner VM. I did:
scp /tmp/c-tools.tgz cloud-vm-46-64:/tmp

Then, in the runner VM root session:
cd /home/gitlab-runner

tar xf /tmp/c-tools.tgz

Now, click Retry Build - you should see that the runner VM
successfully compiles and links testmld, and then runs it,
producing the output:
basic members: { a,b,c,d,e,ldk,dcw,gnb, }

lists initially:

two: basic: { a,d,ldk,dcw, }

one: basic: { b,c, }, non-basic: { two, }

three: basic: { e, }, non-basic: { two,one, }

T allbasic(one: b,c, nonbasic two,): is false: ok

T allbasic(two: a,d,ldk,dcw,): is true: ok

T allbasic(three: e, nonbasic two,one,): is false: ok

...

T allbasic(one: a,b,c,d,ldk,dcw,): is true: ok

T allbasic(two: a,d,ldk,dcw,): is true: ok

T allbasic(three: a,b,c,d,e,ldk,dcw,): is true: ok

Build succeeded.

Note that the Build process fetches the output from the runner
and presents it to us unaltered, recording it for posterity.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 12 / 15

Making persistent changes to images

Then copy the tarball to the runner VM. I did:
scp /tmp/c-tools.tgz cloud-vm-46-64:/tmp

Then, in the runner VM root session:
cd /home/gitlab-runner

tar xf /tmp/c-tools.tgz

Now, click Retry Build - you should see that the runner VM
successfully compiles and links testmld, and then runs it,
producing the output:
basic members: { a,b,c,d,e,ldk,dcw,gnb, }

lists initially:

two: basic: { a,d,ldk,dcw, }

one: basic: { b,c, }, non-basic: { two, }

three: basic: { e, }, non-basic: { two,one, }

T allbasic(one: b,c, nonbasic two,): is false: ok

T allbasic(two: a,d,ldk,dcw,): is true: ok

T allbasic(three: e, nonbasic two,one,): is false: ok

...

T allbasic(one: a,b,c,d,ldk,dcw,): is true: ok

T allbasic(two: a,d,ldk,dcw,): is true: ok

T allbasic(three: a,b,c,d,e,ldk,dcw,): is true: ok

Build succeeded.

Note that the Build process fetches the output from the runner
and presents it to us unaltered, recording it for posterity.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 12 / 15

Our First Successful Build

Our Build is now - for the first time - successful. Clicking back
on Gitlab’s Builds menu item shows the whole Build history,
many failures plus one successful build.

Now, every time you make any change to your repo, and push it
up to Gitlab, another Build will automatically happen, and a few
seconds later Gitlab’s Builds section will show whether the new
version ran the tests successfully - try this a few times.

You may well want to invest a little time wrapping your test runs
in some small test harness that summarises (as Perl’s prove
does) your test runs, in order to make it clearer how many tests
there were, and how many failed.

Some languages will have their own test framework you should
use, but in our case you will notice that the output comprises
informational messages interleaved with test success/failure
messages, the latter marked with a “T ” prefix.

As a first step, change the Makefile test invocation to:
test: testmld

./testmld | grep ’^T ’

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 13 / 15

Our First Successful Build

Then git commit Makefile and git push the change up. In a
few seconds, the latest Build output will only show:
T allbasic(one: b,c, nonbasic two,): is false: ok

T allbasic(two: a,d,ldk,dcw,): is true: ok

T allbasic(three: e, nonbasic two,one,): is false: ok

T allbasic(one: a,b,c,d,ldk,dcw,): is true: ok

T allbasic(two: a,d,ldk,dcw,): is true: ok

T allbasic(three: e, nonbasic two,one,): is false: ok

T allbasic(one: a,b,c,d,ldk,dcw,): is true: ok

T allbasic(two: a,d,ldk,dcw,): is true: ok

T allbasic(three: a,d,e,ldk,dcw, nonbasic one,): is false: ok

T allbasic(one: a,b,c,d,ldk,dcw,): is true: ok

T allbasic(two: a,d,ldk,dcw,): is true: ok

T allbasic(three: a,b,c,d,e,ldk,dcw,): is true: ok

A simple Perl script can be used to produce more prove like
output; I’ve provided one for you - see the summarisetests script
already present in mini-list-flattener. To use it, change the
Makefile invocation of testmld to read:
test: testmld

./testmld | ./summarisetests

Test it yourself via make test to familiarise yourself with the
summarised output.

Then git commit Makefile and git push the change up.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 14 / 15

Conclusion

In a few seconds, the latest Build output will be summarised to:
12 tests: all 12 pass

passes:

allbasic(one: b,c, nonbasic two,): is false

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: e, nonbasic two,one,): is false

allbasic(one: a,b,c,d,ldk,dcw,): is true

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: e, nonbasic two,one,): is false

allbasic(one: a,b,c,d,ldk,dcw,): is true

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: a,d,e,ldk,dcw, nonbasic one,): is false

allbasic(one: a,b,c,d,ldk,dcw,): is true

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: a,b,c,d,e,ldk,dcw,): is true

Build succeeded.

That’s enough for now. In these notes, you’ve seen how to set up
a fresh Gitlab project repository to use Gitlab-CI to do
automatic testing.

Note that gitlab-ci-multi-runner can be used for testing several
of your Gitlab projects. Set up Gitlab-CI for a second Gitlab
project repo (as before) and then, on your existing runner VM,
just rerun the registration - using the second project’s CI Token.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 15 / 15

Conclusion

In a few seconds, the latest Build output will be summarised to:
12 tests: all 12 pass

passes:

allbasic(one: b,c, nonbasic two,): is false

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: e, nonbasic two,one,): is false

allbasic(one: a,b,c,d,ldk,dcw,): is true

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: e, nonbasic two,one,): is false

allbasic(one: a,b,c,d,ldk,dcw,): is true

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: a,d,e,ldk,dcw, nonbasic one,): is false

allbasic(one: a,b,c,d,ldk,dcw,): is true

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: a,b,c,d,e,ldk,dcw,): is true

Build succeeded.

That’s enough for now. In these notes, you’ve seen how to set up
a fresh Gitlab project repository to use Gitlab-CI to do
automatic testing.

Note that gitlab-ci-multi-runner can be used for testing several
of your Gitlab projects. Set up Gitlab-CI for a second Gitlab
project repo (as before) and then, on your existing runner VM,
just rerun the registration - using the second project’s CI Token.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 15 / 15

Conclusion

In a few seconds, the latest Build output will be summarised to:
12 tests: all 12 pass

passes:

allbasic(one: b,c, nonbasic two,): is false

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: e, nonbasic two,one,): is false

allbasic(one: a,b,c,d,ldk,dcw,): is true

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: e, nonbasic two,one,): is false

allbasic(one: a,b,c,d,ldk,dcw,): is true

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: a,d,e,ldk,dcw, nonbasic one,): is false

allbasic(one: a,b,c,d,ldk,dcw,): is true

allbasic(two: a,d,ldk,dcw,): is true

allbasic(three: a,b,c,d,e,ldk,dcw,): is true

Build succeeded.

That’s enough for now. In these notes, you’ve seen how to set up
a fresh Gitlab project repository to use Gitlab-CI to do
automatic testing.

Note that gitlab-ci-multi-runner can be used for testing several
of your Gitlab projects. Set up Gitlab-CI for a second Gitlab
project repo (as before) and then, on your existing runner VM,
just rerun the registration - using the second project’s CI Token.

Duncan White (Imperial) Gitlab-CI: Setting up Continuous Integration for a Gitlab Project1st Feb 2016 15 / 15

	What is Gitlab-CI?
	Setting up the .gitlab-ci.yml file
	Creating the Runner VM
	After Runner Registration.. Build status changes
	Retry the Build
	The Build attempts runtests
	Making persistent changes to images
	Our First Successful Build
	Our First Successful Build
	Conclusion

