
A Logic for Proving Total Correctness of

Blocking Algorithms

Conrad Watt

Abstract

We present Blocking-Total TaDA (B-TT), the first program logic able to

prove total correctness of general blocking operations in a module-client

setting.

Formal verification has enjoyed something of a renaissance recently

with the advent of new logics capable of reasoning about fine-grained

concurrency with an exactness not previously possible. In particular, new

techniques which can abstract concurrent heap state mutation into trans-

formations over discrete state systems have finally allowed us to realise a

paradigm of “modular” concurrent proofs, where implementation details

of operations such as counter increments can be fully abstracted into

logical assertions for use in building proofs of more complex programs.

However, such program logics are normally concerned with only partial

correctness of concurrent programs, a property which does not guarantee

termination. Furthermore, where termination is considered, it is less

common still that “blocking” programs, where threads may not termi-

nate in isolation, are handled.

We examine the best contributions to reasoning about the total correct-

ness of blocking programs, and, finding them inadequate, extend Total

TaDA, an existing logic for total correctness of non-blocking programs,

so that it can reason about blocking.

Acknowledgements

A heartfelt thanks to Philippa Gardner and Julian Sutherland for their

enthusiastic support throughout every stage of this project. Thanks

also to Mark Wheelhouse for his input during the early stages, and my

flatmates Alberto and Kacper for their companionship during the final

stretch.

Contents

1 Introduction 11

1.1 Contributions . 11

2 Background 12

2.1 Hoare logic . 12

2.2 Separation logic . 12

2.3 Proof notation . 13

2.4 Modular verification . 13

2.5 Predicates . 14

2.6 Historical attempts at concurrency 15

2.6.1 Owicki-Gries . 16

2.6.2 Rely/guarantee . 17

2.7 Separation Logic . 17

2.7.1 Concurrent separation logic 17

2.7.2 CAP . 18

2.7.3 Linearisability . 22

2.7.4 Abstraction and abstract atomicity 22

2.8 TaDA . 24

2.8.1 Formalising an atomic update 25

2.8.2 Make atomic . 27

2.8.3 The full TaDA triple . 28

2.8.4 The non-atomic triple 29

2.8.5 Update region . 29

2.8.6 Proving a client . 30

2.8.7 A sequential client . 32

2.8.8 A concurrent client . 33

2.9 Total correctness . 34

2.9.1 Loop variants . 35

2.10 Total TaDA . 36

2.10.1 Termination of increment 37

2.11 Total correctness: blocking algorithms 41

2.11.1 Maximal vs minimal progress 41

2.11.2 Blocking vs non-blocking 41

2.11.3 A periodic table of programs 42

2.12 LiLi . 43

2.12.1 Definite actions . 44

2.12.2 Unblocking conditions 44

2.12.3 Limitations . 44

2.12.4 Lessons . 45

2.13 Boström and Müller . 46

2.13.1 Lessons . 46

3 B-TT: extending Total TaDA 46

3.1 Rules . 49

3.1.1 While rules . 50

3.2 Termination . 52

3.2.1 Minimal actions . 52

3.3 The terminates rule . 53

3.3.1 The necessary consistency side-condition 53

3.3.2 Relation to histories and linearisability 54

3.4 Example: spin lock . 55

3.4.1 Module specification . 55

3.4.2 A sequential client . 56

3.4.3 A concurrent client . 58

3.4.4 Failure to prove a deadlocking client 59

3.4.5 A final concurrent client 60

4 Further Improvements 60

4.1 More general modules . 60

4.1.1 Even more general modules 62

4.1.2 Most general modules 63

4.2 Improving loops . 64

4.2.1 If branching . 65

5 The model 65

6 Soundness 70

6.0.1 Proof of while2 . 70

6.0.2 Proof of while3 . 72

6.0.3 Proof of make atomic . 74

6.0.4 Proof of terminates . 76

7 Final evaluation 77

7.1 Comparison with existing work 78

8 Closing thoughts and future work 79

9 Bibliography 79

A Encoding nec-consist as a logic program 82

B The model of TaDA 86

B.1 Operational Semantics . 86

B.2 Model . 86

B.2.1 Semantic Judgements . 94

C Proofs involving the general region 98

1 Introduction

For years, formal verification languished in the uncomfortable position of being

almost unable to tractably extract interesting results about the behaviour of low-

level, heap manipulating languages in a concurrent setting. Instead of retreating

to a world of expressive type systems and higher level synchronisation primitives,

a few brave souls ploughed ahead, steadily iterating program logics describing

pointer arithmetic and direct heap meddling in a concurrent world. It is only

within the last few years that these efforts can be considered to have truly borne

fruit, in the form of the first program logics capable of reasoning expressively

about programs exhibiting low-level, fine-grained concurrency.

Over the course of this report, we will follow one thread of this journey,

beginning with the original work of Tony Hoare, before tackling the next

challenge; proving termination of fine-grained concurrent programs.

The halting problem casts a long shadow over logics attempting to decide

termination, and many program logics (concurrent or otherwise) only attempt

to prove “partial correctness”. A partial correctness result involves proving

properties of a program on the assumption that it terminates, and makes no

guarantees on its behaviour if this assumption proves to be incorrect.

For logics dealing with low-level, fine-grained concurrency, even interesting

partial correctness results have been hard-won. Only a small number of logics

attempt to go futher, into the realm of “total correctness”, guaranteeing

termination. These logics suffer from several limitations, and we show in this

project that it is possible to do better.

1.1 Contributions

We present Blocking-Total TaDA (B-TT), a new program logic capable of

proving termination of concurrent module-client programs in an abstract and

compositional way. We will motivate the logic’s expressive power with respect

to other logics in the same space, and give a full formal model and partial proof

of soundness.

11

{
P
}
C1

{
Q
} {

Q
}
C2

{
R
}{

P
}
C1;C2

{
R
} Sequence

Figure 1: An example derivation rule in Hoare logic. Establishing the triples
above the bar allows us to derive the triple below.

2 Background

2.1 Hoare logic

Hoare logic [1] is one of the original systems designed to facilitate formal

reasoning about computer programs. Specifying a program C in Hoare logic

involves the derivation of “Hoare triples” of the form
{
P
}
C
{
Q
}

, where P

and Q are logical assertions about program state. A Hoare triple of this form

can be intuitively understood as meaning “if P holds, executing C to completion

will establish Q”.

Hoare’s original proof system for establishing these triples made no guarantees

about the termination of C; this is “partial correctness”, the caveat being

that nothing is asserted about the program’s behaviour if it fails to terminate.

In addition, the original language over which Hoare triples were established

was exceedingly primitive; its “heap” consisted of only variables with integer

values, and the only operations allowed over them were non-side-effecting

arithmetic expressions and simple assignment. Attempts to extend the proof

system to richer languages, especially ones allowing heap manipulation (for

example, through pointers) met with considerable difficulty, since operations

that touched memory could potentially reach any point of the heap through

arbitrary pointers, and aliasing could mean that previous assertions about parts

of the heap might not be preserved.

2.2 Separation logic

Separation logic [2] is a relatively recent development in reasoning about heap-

manipulating programs. The assertion logic of Hoare triples is extended with

operators for describing heaps, the most important of which are “points to”,

written 7→ and “separating conjunction”, written ∗. The assertion x 7→ v

describes a heap containing (just!) the value v at address x. The assertion

12

P ∗ Q describes a heap which can be split into two disjoint subheaps, one

satisfying P and the other satisfying Q. Therefore the assertion x 7→ 1 ∗
y 7→ 2 describes a heap containing the values 1 and 2 at addresses x and y

respectively.

The key power of separation logic is that it intuitively describes local heap

update; the “frame” inference rule allows us to take any heap-modifying

command and infer that it also works when the original heap is extended

arbitrarily with unrelated content using ∗. In particular, due to the definition

of ∗, we know that the frame is a disjoint area of memory, something which

was not scalably expressible before.

{
P
}
C
{
Q
}

free(R) ∪modset(C) = ∅{
P ∗R

}
C
{
Q ∗R

} Frame

Figure 2: The frame rule of separation logic. The side condition (often elided)
constricts the frame R to reference no variable modified by C.

2.3 Proof notation

Systems based in Hoare logic often have their proof rules presented in a natural

deduction style, with preconditions of a derived triple forming a tree structure.

However, the typeography of such proofs breaks down with programs of more

than a few lines. It is therefore customary to present program proof examples as

“sketches”, which share some similarities to the Fitch style of natural deduction.

An example is shown in figure 3. Compare the (mostly) full proof tree to

the two sketch style proofs. In both, applications of the sequence rule are

shown in-line, and the names of axioms are elided. In the more detailed sketch,

applications of the frame rule are shown explicitly, with the proof indented to

the right of the frame bar forming the antecedent of the frame rule.

2.4 Modular verification

An ideal (Hoare triple based) proof system should be one which facilitates

the following arrangement; a library or module creator proves specifications

(establishes triples) for each of their functions, and any later user (or “client”)

of the module wishing to prove their own code may take the behaviour of a

13

{
emp

}
x := new(1)

{
x 7→

} new

{
emp

}
y := new(1)

{
y 7→

} new

{
x 7→

}
y := new(1)

{
x 7→ ∗ y 7→

} frame

{
emp

}
x := new(1); y := new(1)

{
x 7→ ∗ y 7→

} sequence

{
x 7→

}
[x] := 4

{
x 7→ 4

} mutate

{
x 7→ ∗ y 7→

}
[x] := 4

{
x 7→ 4 ∗ y 7→

} frame{
emp

}
x := new(1); y := new(1); [x] := 4

{
x 7→ 4 ∗ y 7→

} sequence

{
emp

}
[x] := new(1);{
x 7→

}
fr

am
e

{
emp

}
[y] := new(1);{
y 7→

}{
x 7→ ∗ y 7→

}

fr
am

e

{
x 7→

}
[x] := 4{
x 7→ 4

}{
x 7→ 4 ∗ y 7→

}

{
emp

}
[x] := new(1);{
x 7→

}
[y] := new(1);{
x 7→ ∗ y 7→

}
[x] := 4{
x 7→ 4 ∗ y 7→

}

Figure 3: Three representations of the same separation logic proof (using
slightly simplified rules).

call to a module function as axiomatic. In this way, only the client’s own code

must be proven. See Fig. 4 for an example. The proofs for a module containing

the functions oneGreater and twoGreater are given, and then a client using

this module uses the only the resulting specifications to prove threeGreater.

A “proof sketch” style is used to outline the derivation steps. Each internal

assertion corresponds to a mid-condition involved in sequential composition

(see fig. 1). Notice that twoGreater could be implemented directly instead of

relying on oneGreater, without affecting the client’s proof of threeGreater.

The only thing that is exposed to the client is the specification of the two

module functions.

2.5 Predicates

The pre and post conditions of Hoare triples must often encode information

about the state of objects in memory. For example code to append an item

to a list needs a precondition asserting that such a list is allocated and has

the appropriate structure. The formal details of how various logics define such

14

module implementation:{
x = n

}
function oneGreater(x) {{

x = n
}

y := x + 1;{
y = n+ 1

}
return y;
}{
ret = n+ 1

}
{
x = n

}
function twoGreater(x) {{

x = n
}

y := oneGreater(x);{
y = n+ 1

}
z := oneGreater(y);{
z = (n+ 1) + 1

}
return z;
}{
ret = n+ 2

}

module specification:{
x = n

}
oneGreater

{
ret = n+ 1

}{
x = n

}
twoGreater

{
ret = n+ 2

}
client implementation:{

x = n
}

function threeGreater(x) {{
x = n

}
y := twoGreater(x);{
y = n+ 2

}
z := oneGreater(y);{
z = (n+ 2) + 1

}
return z;
}{
ret = n+ 3

}

Figure 4: oneGreater and twoGreater used to prove threeGreater.

object assertions vary, but they generally share a similar notation.

Lock(x, s) , x 7→ s ∧ (s = 0 ∨ s = 1)

List(y, α) , (y 7→ null ∧ α = []) ∨ (∃z, a, α′. α = a : α′ ∧ y 7→ z ∗ List(z, α′))

Above are two example predicates, describing a lock at location x with state s,

and a list at y containing the elements α, as well as potential definitions in basic

separation logic. Note that List’s definition is inductive if α is non-empty,

and also that under these definitions the assertion {Lock(x, 0) ∗ List(x, [0, 1])},
describing a lock and list with the same address x, would be equivalent to ⊥
since ∗ enforces that both predicates must describe entirely disjoint heaps.

2.6 Historical attempts at concurrency

Hoare logic and separation logic were designed to deal with sequential programs

which executed on the assumption that they had exclusive rights to the memory

15

they touched. Many of the derivation rules of both systems are unsound if this

assumption is broken. For example, the sequential composition rule of figure 1

is not correct if other code can modify the heap (potentially invalidating Q)

in between the execution of C1 and C2. Several attempts have been made to

extend Hoare logic for concurrency, and several of these extensions have been

ported to separation logic, with mixed success.

2.6.1 Owicki-Gries

The prototypical proof technique for concurrent programs is the Owicki-Gries

method [3]. Building on top of the initial Hoare system, the semantics of the

language are extended with parallel composition, denoting two code fragments

executing in parallel, written C1 || C2. The two sequential code fragments

undergoing parallel composition are commonly referred to as threads in the

literature. A triple for each thread is independently derived under the old,

sequential rules. Then, a triple for the parallel composed code can be derived

using the parallel composition rule (fig. 5).

The non-interference side condition here is onerous. Recall the composition

rule of figure 1. Ordinary sequential composition can be thought of as proving

the “extended triple” {P} C1 {Q} C2 {R}, and then eliding Q to produce

{P} C1;C2 {R}. An individual thread will be made up of several such sequen-

tial compositions; {P1} C1 {P2} C2 {P3}...Cn {Pn} for a straight line program,

but potentially with a more complex structure in the case of branching exe-

cution paths e.g. due to the if statement. The mid-conditions of each thread

are P2 to Pn−1. The non-interference side condition mandates that, given two

threads, C1 and C2, for each mid-condition Pk of either thread, for every atomic

C ′k anywhere in the other thread, {Pk} C ′k {P ′k} implies that P ′k ⇒ Pk.

Intuitively, this can be understood as encoding that there is nothing the either

thread can do to invalidate the other thread’s reasoning; each of their inference

steps are invariant against every command any other thread could run at any

time. Obviously there is a combinatorial explosion when composing more than

two threads at once. Additionally, this scheme requires that it is possible to

break the operations of a thread into atomic Cks. A program which only knows

the functions it calls by their specifications would be unable to do this, and

hence such a proof system does not satisfy the ideals of modular verification.

16

{
P1

}
C1

{
Q1

} {
P2

}
C2

{
Q2

}
non-interference{

P1 ∧ P2

}
C1 || C2

{
Q1 ∧Q2

} Parallel

Figure 5: The parallel rule of Owicki-Gries

2.6.2 Rely/guarantee

The often intractable task of verifying the Owicki-Gries non-interference side

condition could be made easier by describing interference in a more local

manner. In this paradigm, every derivation
{
P
}
C
{
Q
}

is paired with two

additional components; its “rely” (the environmental interference the proof is

robust with respect to), and its “guarantee” (which circumscribes the effect C
itself is allowed to have on other threads) [4].

A proof of a thread C1 conducted under a particular rely R still holds true if

C1 is composed with any thread C2, the guarantee of which is a subset of R.

This approach allows easy composition of threads in a way that Owicki-Gries

cannot.

R ∪G2, G1 `
{
P1

}
C1

{
Q1

}
R ∪G1, G2 `

{
P2

}
C2

{
Q2

}
R,G1 ∪G2 `

{
P1 ∧ P2

}
C1 || C2

{
Q1 ∧Q2

} Parallel

Figure 6: A parallel rule in the rely-guarantee style

2.7 Separation Logic

2.7.1 Concurrent separation logic

Concurrent separation logic [5] extends separation logic with a parallel rule

which is analogous to the parallel rule of previous systems, but takes advantage

of the ability of separation logic assertions to neatly express disjointness using

∗.

It is possible to interpret separation logic assertions as not just describing heap

state, but also encoding an idea of “abstract ownership”. For example, the

assertion {Lock(x, 1)} describes that x points to a lock heap object with state

1 (locked). However, it can also be interpreted as “I (the current thread) own

17

{
P1

}
C1

{
Q1

} {
P2

}
C2

{
Q2

}{
P1 ∗ P2

}
C1 || C2

{
Q1 ∗Q2

} Parallel

Figure 7: The disjoint parallel rule of concurrent separation logic

the lock”. Under this view, where threads can only modify resources they own,

the parallel rule encodes that if each thread owns only disjoint resources, their

actions will never interfere with each other.

This system therefore treats ownership as an all or nothing proposition. However,

this does not accurately describe many of the programming idioms we would

expect to use in a concurrent setting, where multiple threads can act together

to update a shared data structure, This situation is improved on in future

extensions.

2.7.2 CAP

CAP [6] (Concurrent Abstract Predicates) is a development from separation

logic which introduces new mechanisms for splitting access to shared resources

between different threads. The “concurrent counter” is a common motivating

example, and a portion of it is reproduced here from a turorial paper [7].

Imagine a counter module, with three operations, read(x), incr(x), and

wkincr(x), and the following example implementation (the details of the con-

structor are elided).

function read(x) {
r := [x];

return r;

}

function incr(x) {
b := 0

while (b = 0) {
r := [x];

b := CAS(x, r, r + 1);

}
return r;

}

function wkincr(x) {
r := [x];

[x] := r + 1;

}

All module operations take as their sole argument a counter object at x with

value n which may naively be represented with the predicate C(x, n). read(x)

simply returns the current value of the counter without modification. wkincr(x)

increments the value by 1, and returns the old value, but is not robust against

18

other threads changing the value of the counter (since another thread could

update the counter in between the read and the write, a classic race condition).

incr(x) is a version of wkincr suitable for concurrent use.

The CAS operation is atomic Compare-And-Swap. The value at x is compared

with the value of r. If they match, x is updated to r + 1, and the return

value is 1. Otherwise, no update takes place and the return value is 0. The

whole operation is considered an atomic action. Intuitively, incr avoids race

conditions by backing off every time it detects that someone else is incrementing

the counter, and tries again.

The question is therefore to determine how to specify these operations. Let us

consider naive specifications, as follows.{
C(x, n)

}
read(x)

{
C(x, n) ∧ ret = n

} {
C(x, n)

}
incr(x)

{
C(x, n+ 1) ∧ ret = n

}
{
C(x, n)

}
wkincr(x)

{
C(x, n+ 1) ∧ ret = n

}
While this seems to capture the sequential behaviour of the functions, these

specifications give us no hope for proving concurrent clients. Even the following

simple example cannot be proven with what we have seen so far, since we

cannot split the counter into disjoint subheaps for each thread.{
C(x, 0)

}{
C(x, 0) ∗ ???

}{
C(x, 0)

}
incr(x){

C(x, 1)
}

{
???
}

incr(x){
???
}{

C(x, 1) ∗ ???
}{

C(x, 2)
}

One intuition about the unsatisfactory nature of these specifications is that

wkincr and incr have been given identical specifications. Clearly there is

something missing that captures the ability of other threads to access the

counter concurrently with the operation’s execution.

Here we turn to our earlier intuition, that predicates do not merely encode

state, but also permission/ownership. What does it mean for a thread to share

ownership of a predicate? Clearly it is not true in this case that the threads

19

operate over disjoint heap locations. However, there is a sense in which their

contributions are disjoint. Each thread increments the counter by 1, and we

wish to conclude that the final value of the counter is the sum of their increments.

Similarly, we still want to be able to express that a thread lacks ownership

of the counter, i.e. does not contain the counter predicate in its precondition,

while still allowing multiple threads to make these contributions.

Consider an augmentation of the logic where we allow the following implication

to hold; C(x, n) ⇒ C(x, n) ∗ C(x, n). Clearly under a naive interpretation of

the predicate as a direct description of the heap state, this is ridiculous. If

we however start to consider predicates as encoding ownership, this starts to

make sense, as it allows a thread owning the counter to share this ownership

amongst any parallel threads it spawns. However, this rule would mean that a

thread holding C(x, n) could no longer be sure that it has exclusive access; the

predicate could have been split off from the one held by a parent thread. Under

this interpretation, we could not prove the specifications we proposed above

since holding the predicate would not prevent other threads from modifying

the counter.

The solution is to extend the predicate to also encode a permission fraction

π; C(x, n, π), 0 < π ≤ 1. A thread holding a particular permission may split

it as follows; C(x, n, π1 + π2)⇔ C(x, n, π1) ∗ C(x, n, π2). Threads holding “full

permission” (1) have exclusive access to the counter, while a thread holding

“fractional permission” must conduct its proof under the assumption that other

threads may hold the rest of the fraction.

We can prove the following specifications for the counter module functions:{
C(x, n, π)

}
read(x)

{
C(x, n, π) ∧ ret = n

} {
C(x, n, 1)

}
incr(x)

{
C(x, n+ 1, 1) ∧ ret = n

}
{
C(x, n, 1)

}
wkincr(x)

{
C(x, n+ 1, 1) ∧ ret = n

}
This is better, but still not good enough! The only operation this specification

allows us to parallelise is read. We still cannot handle the example with two

incr operations in parallel. We can attempt to specify incr with only a π

permission in the precondition. Unfortunately, it would be impossible to prove

that the final value of the counter would be n+ 1, since other threads could

increment the counter between entering the function and reading the initial

20

value. read is similarly affected, so the best we can do is the following:{
C(x, n, π)

}
read(x)

{
∃n′ ≥ n, n′′ ≥ n′. C(x, n′′, π) ∧ ret = n′

}{
C(x, n, π)

}
incr(x)

{
∃n′ ≥ n, n′′ > n′. C(x, n′′, π) ∧ ret = n′

}{
C(x, n, 1)

}
wkincr(x)

{
C(x, n+ 1, 1) ∧ ret = n

}
But now read and incr have almost the same spec, and we are still no closer

to proving that two parallel increments in fact increase the counter’s value by

exactly two.

Now we can introduce the final piece of the puzzle. As mentioned before,

there is a sense in which each thread’s contribution to the counter is disjoint.

We can interpret the counter predicate as tracking only the current thread’s

contribution. In the case that we hold full permission, we have the “true”

value of the counter. Now, threads must split their permission in the following

fashion; C(x, n+m,π1 + π2)⇔ C(x, n, π1) ∗ C(x,m, π2). Finally, we can prove

a better specification for incr, and the parallel increment example.{
C(x, n, π)

}
incr(x)

{
C(x, n+ 1, π) ∧ ret ≥ n

}
{

C(x, 0, 1)
}{

C(x, 0, 1
2
) ∗ C(x, 0, 1

2
)
}{

C(x, 0, 1
2
)
}

incr(x){
C(x, 1, 1

2
)
}

{
C(x, 0, 1

2
)
}

incr(x){
C(x, 1, 1

2
)
}{

C(x, 1, 1
2
) ∗ C(x, 1, 1

2
)
}{

C(x, 2, 1)
}

The concept of abstract resource ownership is a powerful tool in program

verification, but the techniques described above still have significant limitations.

A hint of this can be seen in the above specification for incr. Because the

true value of the counter may be higher than the tracked contribution, we

can only conclude that the return value must be ≥ n. Subsequent systems

have incorporated various notions of auxiliary “ghost” state, higher order

specification, and linearisability to boost proof power. In particular, the

concept of “abstract atomicity” has become central to systems wishing to

enable the derivation of expressive concurrent specifications.

21

object op thread
p lock() A
p RET A
p unlock() A
p lock() B
p RET B
p RET A

Figure 8: An example history involving two threads.

2.7.3 Linearisability

Linearisability [8] is a property of certain modules that allows concurrent use

of the module functions to be reduced to a sequential application of the same

operations. This allows complicated assertions and proofs about concurrent

programs to be reduced to ones about their sequential equivalents. Intuitively, a

module with the linearisability property guarantees that none of its operations

will expose “in progress” state to other threads observing the module.

The original formal definition of linearisability is given in terms of a “history”

H. A history describes the execution of a piece of code in terms of a sequence

of call and return events in different threads. Note that a call may take effect

before its return event is registered. For example, fig.8 describes an execution

of a program where thread A locks and unlocks the lock p but B is able to lock

the lock before A returns, but presumably after A’s unlock has changed the

lock’s state. A history is “sequential” if it begins with a call, and every call is

immediately followed by its response without anything in between. Fig.8 is an

example of a “concurrent” history, where this condition is not met.

Herlihy uses linearisability to describe a correctness condition for modules which

may be used in a concurrent setting. Roughly, a module is “correct” if every

possible history made up of its operations is linearisable. This is equivalent to

proving that every module operation has exactly one distict atomic time point

at which it appears to take effect, its “linearisation point”. [9]

2.7.4 Abstraction and abstract atomicity

Whether or not we consider an operation on a module to be atomic can depend

on the granularity at which threads observe the module’s state changes [10].

We can give a specification for a module in terms of a state transition system.

22

For example, a lock could be described by the set of states {0, 1}. The lock

operation could be described by the transition 0 1 and the unlock operation

could be described by the transition 1 0. Roughly, if we can show that

an implementation of either of these operations has a unique time point (the

linearisation point) at which its transition occurs, we can treat this operation

as atomic, since threads inspecting the state of the lock can only see the state

before or after the transition (there is no intermediate or “working” state).

Consider the counter module described previously. Naively, its set of states

is N, the set of natural numbers. Its incr operation embodies the transition

n n + 1 for some n that is related to the value of the counter at the time

the function is called (this is an awkward caveat, but one we will do away with

later). Consider an extension of the counter with the operation incrTwo, which

we implement by calling incr twice sequentially. Under the current setup, we

cannot consider incrTwo an atomic operation; other threads inspecting the

value of the counter will see multiple states depending on how far incrTwo has

executed. There is no simple “before” and “after” point that the operation can

be described in terms of.

Now, we will perform the crucial trick. We can wrap the counter in another

level of abstraction. Let us define another module, “outerCounter”. The

outerCounter module has two states: (0) and (> 0), which can be read as “the

counter is equal to 0” and “the counter is greater than 0”. The incr operation

for the counter module is also an operation over the outerCounter module. It

will perform one of the two transitions

(0) (> 0) (> 0) (> 0)

but crucially, it will perform exactly one (if it terminates), and therefore we

can still treat incr as atomic. The (> 0) (> 0) transition, which does not

change the state, is what is known as an “abstract skip”. Any thread inspecting

the state of outerCounter will not be affected as a result of the abstract skip

occurring, so we can always choose whether or not to count it as a linearisation

point.

What about incrTwo? The first incr operation will perform one of the two

transitions above, however the second incr will always be an abstract skip.

Therefore we can consider the incrTwo operation as performing exactly one

transition, and therefore it is an atomic operation for the outerCounter mod-

ule.

23

incr(x);
incr(x);
v := read(x);
if (v > 1) {
critical
}

Figure 9: A trivial program that must execute critical.

There are a few important points to make here. Any code that can be proven

to implement the original counter module can also be proven to implement

the outerCounter module. However, the discussed implementation of the

incrTwo operation can only be considered atomic so long we only reason

about the behaviour of every thread in terms of the outerCounter state system.

This is important since proving that all the operations of a module behave

atomically gives us the linearisablity correctness result as discussed above. For

a counter module with incrTwo implemented as two incr calls, we can either

give incrTwo a non-atomic specification, and break the linearisablity of the

whole module, or we can abstract our view of the state system to the point

that incrTwo appears linearisable. Obviously for this contrived example, the

abstraction is hideously inexpressive (since incr would only guarantee to take

the state of the module to (> 0), we could not even prove that the code of fig.

9 executes critical), but it does motivate that different levels of abstraction

give us different guarantees about the atomicity of operations.

Many modern program logics provide ways of encoding the abstract atomicity

of an operation. However, there are several different approaches. Iris [11]

can reason about the abstract atomicity of an operation using higher order

specifications. A history-based approach [12] proves abstract atomicity by

reasoning about “subjective” histories. We will concentrate on a system

which gives a direct, first-order specification for abstractly atomic operations;

TaDA.

2.8 TaDA

TaDA (Time and Data Abstraction) [13] is a program logic which combines

the expressive assertions of separation logic with notions of abstract atomicity,

in order to prove “atomic specifications”. An operation with an atomic specifi-

cation can be treated as though it executes in a single “step”. This is like the

24

linearisability previously discussed.

Atomic specifications are expressed using “atomic triples”. In its simplest form,

the atomic triple is written `

A

x ∈ X.
〈
P (x)

〉
C
〈
Q(x)

〉
. The meaning of the

triple is most intuitively explained using the following diagram.

start

P P

linearisation point

Q

terminates

To explain, an atomic triple expresses that C contains exactly one linearisation

point. P and Q are assertions about the state of shared memory. The

precondition P expresses that P will hold from when C begins execution until

its linearisation point. P is parameterised by x, which may vary within the set

X up until the linearisation point. The pseudo-quantifier (or “funny for-all”)

to the left of the assertion is the syntax for this. When the linearisation point

occurs, C will atomically update from P to Q, and Q can use x to refer the the

value of x immediately before the linearisation point. After the linearisation

point, C guarantees not to alter shared state any more, but makes no guarantees

that Q will remain true (other threads could invalidate it). P may describe a

set of possible states, either because it directly describes a disjunction of several

potential states, or because of the pseudo-quantified x. The environment is

free to alter the shared memory described by P so long as it remains within

the set. For now, since we are describing partial correctness, all bets are off if

C fails to terminate.

It important to stress that property embodied here is abstract atomicity. It

is possible to describe updates to shared memory at various levels of granu-

larity, only some of which may appear to be abstractly atomic. It will now

be shown how TaDA formalises atomic update and these different levels of

abstraction.

2.8.1 Formalising an atomic update

TaDA owes much to the formalism of CAP, using predicates to abstract owner-

ship (and more generally, the existence) of particular resources. For example, a

lock may be described by the abstract predicate L(r, x, s), with s ∈ {>,⊥}. x
is, again, the memory location of the lock. r is a parameter which uniquely

identifies certain internal components of the module. In some older papers it

25

was elided, making the logic subtly unsound. A simple atomic specification for

unlock might look something like the following.

`
〈

L(r, x,>)
〉
unlock

〈
L(r, x,⊥)

〉
Such a specification is only possible due to the unique guarantees of the atomic

triple. A non-atomic specification could not have this post-condition, as it

would have to account of the possibility of the lock being re-locked before

unlock function returns.

The atomic specification for lock is more complicated, and makes use of the

pseudo-quantifier.

`

A

l ∈ B.
〈

L(r, x, l)
〉
lock(x)

〈
L(r, x,>) ∧ ¬l

〉
B is the set of booleans. Because of the pseudo-quantifier, we have encoded

that the environment is allowed to arbitrarily lock and unlock the lock until

the linearisation point occurs. The ¬l condition in the post-condition enforces

that the lock must have been unlocked immediately before the linearisation

point (which is when lock actually locks the lock).

To prove these specifications against an implementation, it is necessary to

provide an interpretation (, definition) for the abstract predicate. This is done

in terms of “regions” and “guards”, which further abstract the shared memory

underlying the predicate. A region describing the memory of a lock might look

something like Lock(x, s) with s ∈ {0, 1}. Regions are associated with a set of

states, and a state transition system that defines the atomic updates that can

be made. Here the set of states for Lock are {0, 1}, and the transition system

is as follows.

G : 0 1 G : 1 0

The gist here is that to prove an atomic specification for an implementation

of unlock, we must show that its code makes exactly one of the transitions

here across the entire execution of the function. The G parameterisation of the

state transition is the “guard”. A transition is only allowed if the correct guard

is held in the precondition. We will see the power of this later, but for Lock,

every transition will be guarded by the same guard, G. The interpretation of L

in terms of Lock is close to trivial here, but this is not always the case. It is

provided in fig. 10. Since multiple regions of the same type may be present, the

region and its associated guard are given a unique “region identifier” a. The

26

L(a, x,⊥) , Locka(x, 0) ∗ [G]a
L(a, x,>) , Locka(x, 1) ∗ [G]a

Figure 10: Interpretation of L(a, x, s).

guard is included in the interpretation to encode that holding the predicate

means that the thread has permission to perform the region’s transitions. In

general this is not always the case.

Proving that a specific line of code executes an action in a region’s transition

system involves the use of two rules which can be considered the powerhouses

of TaDA; “make atomic” and “update region”.

2.8.2 Make atomic

The TaDA paper initially explains the make atomic rule using a simpler variant

which is reproduced in fig. 11. This rule is TaDA’s instrument for proving

that a block of code can be considered abstractly atomic. We are allowed to

conclude that C can be described by an atomic triple updating , if we are able

to prove the following;:

• C performs exactly one update to the region ta(x).

• The local thread holds the correct guards for this action.

. The first restriction is enforced by the unfulfilled “atomicity tracking com-

ponent” a Z⇒ �. The state of a region with region id a may only be altered

locally by non-atomic code through the “update region” rule, which requires

an unfulfilled atomicity tracking component in the precondition, and produces

a “fulfilled” atomicity tracking component which records the transition. Since

these tokens are only generated once within a make atomic, we can be sure

that only one update has occurred.

The second restriction is enforced by the top antecedent. Tt(G) defines the

set of transitions allowed by the guards G. We pick a subset of these allowed

transitions and stick them on the left hand side of the turnstile in a place

known as the “atomicity context”. The update region rule will only allow a

transition that is contained in the atomicity context. Let us consider the proof

of a simple implementation of unlock given in fig. 12, given in an elaborated

sketch style. The “abstract; quantify a” line unwraps the abstract predicate

into its interpretation. The make atomic rule prepares the unfulfilled atomicity

27

{(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

a : x ∈ X Q(x) `
{
∃x ∈ X. ta(x)
∗ a Z⇒ �

}
C
{
∃x ∈ X, y ∈ Q(x).

a Z⇒ (x, y)

}
`

A

x ∈ X.
〈
ta(x) ∗ [G]a

〉
C
〈
ta(Q(x)) ∗ [G]a

〉
Figure 11: Simplified make atomic.〈

L(a, x,>)
〉

ab
st

ra
ct

〈
Locka(x, 1) ∗ [G]a

〉
m

ak
e

at
om

ic
a : 1 0 `{

Locka(x, 1) ∗ a Z⇒ �
}

u
p

d
at

e
re

gi
on 〈

x 7→ 1
〉

[x] := 0;〈
x 7→ 0

〉
{
a Z⇒ (1, 0)

}〈
Locka(x, 0) ∗ [G]a

〉〈
L(a, x,⊥)

〉
Figure 12: Proof of unlock(x).

tracking component, and adds the action to be fulfilled to the atomicity context.

Executing the line “[x] := 0;” satisfies the action and therefore fulfills the

atomicity tracking component. The make atomic rule can now update the region

since we have concluded with a fulfilled atomicity tracking component.

2.8.3 The full TaDA triple

The generalised form of the TaDA atomic triple contains not just information

about the state of shared memory, but also “private state” assertions.

`

A

x ∈ X.
〈
pp

∣∣∣P (x)
〉
C

E

y ∈ Y.
〈
qp(x,y)

∣∣∣Q(x,y)
〉

Here is a visual representation of the transformation of the private state over

the course of the execution of C.

The private and public parts of the assertions are separated by a vertical

bar. The right hand side is the old assertion we discussed before. The left

28

pp
start

P

p′p

P

linearisation point

Q

p′′p
qp

terminates

hand side of the assertion is called the “private” part. Its meaning is slightly

different. Assertions may only be put on the private side if they are stable

against anything the environment may do. This is defined by the transition

system of the various regions. If the local thread does not have exclusive

permission to perform actions on the region it is making an assertion over (for

example if the region’s actions are predicated by guards that other thread’s

might hold) then the private state cannot contain any assertion that could be

invalidated by this action taking place. In the lock example, other threads

can possibly hold the guard G, so the private side of an assertion could never

contain the assertion Lock(x, 0), since another thread could lock the lock and

invalidate this.

2.8.4 The non-atomic triple

In TaDA, triples of the form {P} C {Q}, which specify the execution of a non-

atomic C, are purely syntactic sugar for the atomic triple 〈P | >〉 C 〈Q | >〉.
The assertion effectively states that we have no information at all about

linearisation points that occur during the execution of C, and that the assertions

P and Q, being in the private side, must be fully stable against any possible

region updates. This mirrors a rely-guarantee style stability condition, except

the actions the assertions must be stable with respect to are determined by

which guards are held locally and the transition systems of the regions.

2.8.5 Update region

The final question is how TaDA ensures that a piece of code satisfies the

atomicity tracking component. To fully explain this, we must introduce the

concept of “region interpretations”. Like an abstract predicate, a region can

be “opened up” to reveal a lower level representation. However, this is done in

a far more restricted fashion. A region may only be opened for a single atomic

update, after which it is closed again. This ensures that other threads with

access to the region will never observe it in the middle of an update. See fig. 13

for an example. Several rules will reference the region interpretation function

29

I(Locka(x, 1)) , x 7→ 1 I(Locka(x, 0)) , x 7→ 0

Figure 13: Example region interpretation.

λ,A `

A

x ∈ X.
〈
pp

∣∣∣∣ I(tλa(x)) ∗ p(x)

〉
C

E

y ∈ Y.
〈
qp(x, y)

∣∣∣∣ ∃z ∈ Q(x). I(tλa(z)) ∗ q1(x, y, z)
∨ I(tλa(x)) ∗ q2(x, y)

〉

λ+ 1, a : x∈X Q(x),A `

A

x ∈ X.
〈
pp
∣∣ tλ+1

a (x) ∗ p(x) ∗ a Z⇒ �
〉

C

E

y∈Y.
〈
qp(x, y)

∣∣∣∣ ∃z ∈ Q(x). tλ+1
a (z) ∗ q1(x, y, z) ∗ a Z⇒ (x, z)

∨ tλ+1
a (x) ∗ q2(x, y) ∗ a Z⇒ �

〉

Figure 14: The update region rule.

I, which need only needs to be defined if the region is opened directly in the

proof. The full update region rule is give in fig. 14. This also introduces the

last annotation to the left hand side of the turnstile: the “level”. A region can

only be opened (via the region interpretation function) if the proof is at the

same level of the region (tλa(x) where λ is the region’s level). The proof’s level

then decreases by one. This ensures that regions defined in terms of each other

cannot be opened in an infinite loop, which would be unsound. In many proof

sketches the level will be elided, since it is only important if the proof contains

a recursively defined region.

Note that update region must be able to handle both the case where the

linearisation point occurs, and the case where it does not. This is represented

by the disjunction in both the antecedent and consequent of the update region

rule. In the case where the update is a simple memory cell mutation, the

“didn’t happen” case is trivially false. However this is not the case when the

update is a CAS, as can be seen in the lock proof of fig. 15. Notice how the two

cases of the CAS neatly mirror the two cases of the update region rule. Once

the loop terminates, we know that the CAS has succeeded, and therefore that

the region has been updated and the linearisation point has occurred.

2.8.6 Proving a client

TaDA’s expressivity comes from its ability to layer abstractions. Interpretations

of regions and abstract predicates are permitted to contain further regions and

abstract predicates which represent memory at a lower level. In this way, the

30

A

l ∈ B.〈
L(a, x, l)

〉

ab
st

ra
ct

;
y

:=
if
l

th
en

1
el

se
0

A

y ∈ {0, 1} .〈
Locka(x, y) ∗ [G]a

〉
m

ak
e

at
om

ic

a : y ∈ {0, 1} 1 ∧ y = 0 `{
∃y ∈ {0, 1} .Locka(x, y) ∗ a Z⇒ �

}
do {{
∃y ∈ {0, 1} .Locka(x, y) ∗ a Z⇒ �

}
u
p

d
at

e
re

gi
on

A

n ∈ {0, 1} .〈
x 7→ n

〉
b := CAS(x, 0, 1);〈

(x 7→ 1 ∧ n = 0 ∧ b = 1) ∨
(x 7→ n ∧ n 6= 0 ∧ b = 0)

〉
{
∃y ∈ {0, 1} .Locka(x, y) ∗
(a Z⇒ (0, 1) ∧ b = 1 ∨ a Z⇒ � ∧ b = 0)

}
} while (b = 0);{
a Z⇒ (0, 1) ∧ b = 1

}〈
Locka(x, 1) ∗ [G]a ∧ y = 0

〉〈
L(a, x,>) ∧ ¬l

〉
Figure 15: Proof of lock(x)

state space of a higher level region can offer an abstracted or subsetted view of

the behaviour of a lower one.

Let us look at a concrete example, which will also serve to illustrate TaDA’s

weakening rules for using atomic code as part of a non-atomic program. The

TaDA style specification for a counter module is given below. Note that the

client does not need to know about the interpretations used to prove the counter

implementation.

`

A

n ∈ N.
〈
C(a, x, n)

〉
read(x)

〈
C(a, x, n) ∧ ret = n

〉
`

A

n ∈ N.
〈
C(a, x, n)

〉
incr(x)

〈
C(a, x, n+ 1) ∧ ret = n

〉
`
〈
C(a, x, n)

〉
wkincr(x)

〈
C(a, x, n+ 1) ∧ ret = n

〉
Note that for wkincr, the lack of pseudoquantifier indicates that this specifica-

tion will only hold when the operation is executed in an environment where

the value of the counter does not vary, i.e. where there are no concurrent

increments occurring.

31

We will prove that the following clients both increment an initially zero-valued

counter to exactly two.

2.8.7 A sequential client

incr(x);

incr(x);

We will define a thin wrapping region for C in the client, the only effect of

which will be to encode that no other thread has permission to increment the

counter. Let us call this region CCounter. The transition system and guard

algebra for the client is as follows:

∀n ∈ N. H : n n+ 1 H •H = ⊥

The equivalence H • H = ⊥ encodes that if one thread holds H, no other

thread can, since their composition is equal to ⊥. A consequence of this is that

the guard cannot be split; H⇒ H ∗H does not hold. This means that if we

hold [H] in a non-atomic assertion, we do not need to worry about stability

with respect to transitions guarded by [H], since no other thread can make

them.

The region interpretation of CCounter is as follows:

I(CCountera(r, x, n)) , C(r, x, n)

We define an abstract predicate to represent the client at the counter level, CC.

Its only effect is to encode the client’s view of its exclusive permission to the

counter. The interpretation of CC is as follows:

CC(a, r, x, n) , CCountera(r, x, n) ∗ [H]a

Now we can proceed with the proof, which can be found in fig. 16. Note that if

[H] could be held by another thread, the non-atomic line {CCountera(r, x, 1) ∗ [H]a}
would not be stable since other regions could increment the counter, and would

have to be weakened to {∃n ≥ 1.CCountera(r, x, n) ∗ [H]a}, destroying the

proof.

32

{
CC(a, r, x, 0)

}

ab
st

ra
ct

{
CCountera(r, x, 0) ∗ [H]a

}

w
ea

ke
n

〈
CCountera(r, x, 0) ∗ [H]a

〉

u
se

at
om

ic 〈
C(r, x, 0)

〉
incr(x);〈

C(r, x, 1)
〉

〈
CCountera(r, x, 1) ∗ [H]a

〉{
CCountera(r, x, 1) ∗ [H]a

}
w

ea
ke

n
〈
CCountera(r, x, 1) ∗ [H]a

〉
u
se

at
om

ic 〈
C(r, x, 1)

〉
incr(x);〈

C(r, x, 2)
〉

〈
CCountera(r, x, 2) ∗ [H]a

〉{
CCountera(r, x, 2) ∗ [H]a

}{
CC(a, r, x, 2)

}
Figure 16: Sequential counter client proof

2.8.8 A concurrent client

incr(x); incr(x);

We will define a client region CCounter’ which tracks the updates of each

branch separately. Its states will be tuples of (n1, n2). The state transition

system and guard algebra are as follows.

∀n, n′ ∈ N. J : (n, n′) (n+1, n′) ∀n, n′ ∈ N. K : (n, n′) (n, n′+1)

H = J •K J • J = ⊥ K •K = ⊥

This guard algebra encodes that each branch will take exclusive permission for

updating one half of the “counter”. The region interpretation of CCounter’

is as follows.

I(CCounter′a(r, x, n, n
′)) , C(r, x, n+ n′)

The client’s abstract predicate CC′ will be as interpreted as follows:

CC′(a, r, x, n+ n′) , CCounter′a(r, x, n, n
′) ∗ [H]a

33

{
CC′(a, r, x, 0)

}
ab

st
ra

ct

{
CCounter′a(r, x, 0, 0) ∗ [H]a

}{
CCounter′a(r, x, 0, 0) ∗CCounter′a(r, x, 0, 0) ∗ [J]a ∗ [K]a

}{
∃n′.CCounter′a(r, x, 0, n

′) ∗ [J]a
}

w
ea

ke
n

A

n′ ∈ N.〈
CCounter′a(r, x, 0, n

′) ∗ [J]a
〉

u
se

at
om

ic 〈
C(r, x, n′)

〉
incr(x);〈

C(r, x, n′ + 1)
〉

〈
CCounter′a(r, x, 1, n

′) ∗ [J]a
〉{

∃n′.CCounter′a(r, x, 1, n
′) ∗ [J]a

}

{
∃n.CCounter′a(r, x, n, 0) ∗ [K]a

}

w
ea

ke
n

A

n ∈ N.〈
CCounter′a(r, x, n, 0) ∗ [K]a

〉

u
se

at
om

ic 〈
C(r, x, n)

〉
incr(x);〈

C(r, x, n+ 1)
〉

〈
CCounter′a(r, x, n, 1) ∗ [K]a

〉{
∃n.CCounter′a(r, x, n, 1) ∗ [K]a

}{
∃n, n′.CCounter′a(r, x, n, 1) ∗CCounter′a(r, x, 1, n

′) ∗ [J]a ∗ [K]a
}{

CCounter′a(r, x, 1, 1) ∗ [H]a
}{

CC′(a, r, x, 2)
}

Figure 17: Parallel counter client proof

The proof of the concurrent client can be count in fig. 17. Notice how each

individual thread loses information about the other thread’s contribution when

it only holds its own guard. The region assertions maybe be split freely as seen

in the non-atomic lines immediately before the parallel rule, since holding one

does not give permission to modify it; this is the job of the guard. After the

parallel rule, we know that there is only one possible state of the CCounter’

region given each thread’s knowledge and the guards we hold.

While the client region defined here is very targetted towards proving this

example, note that we are still able to use the general form of the module’s

specification. This is a key power of TaDA. By layering regions and predicates

on top of each other, “gimmicky” formalisms may augment more general

ones precisely where they are needed by a client’s proof, instead of having to

introduce them at the level of the module specification.

2.9 Total correctness

As stressed previously, all of the systems described so far only prove partial

correctness with respect to a specification. The program the proof is conducted

over may loop or recurse infinitely, and in this case the proof makes no guarantees

about its behaviour. Termination is a useful property, so it makes sense to

34

x := 10;
while (x > 0) {
x := x− 1;
}

x := 10;
while (1) {
x := x− 1;
}

Figure 18: Two trivial while programs. The first program can be proven to
terminate.

try and prove it! Of course trying to build a proof system that decides the

halting problem is doomed to failure (leaving aside that partial correctness is

also undecidable in general!), so existing systems severely restrict the space of

provable programs.

2.9.1 Loop variants

Take a trivial while programming language with no recursion or parallelism.

Now the only way a program can fail to terminate is if a loop never has its

condition falsified. Our aim is therefore to find a variant for every while loop;

a value on a finite decreasing chain that decreases with each loop iteration

[14]. If such a value is found, then the loop must terminate, since the value

cannot decrease infinitely. See fig. 18 for examples. In the first example, v

forms a variant for the while loop, since v ≥ 0 is an invariant of the loop and v

decreases each iteration. In the second example, even though v decreases each

iteration it is not a variant since it will not decrease finitely. This system is

very neat, but clearly restricting ourselves to such a language is not satisfactory.

35

∀γ ≤ α. λ;A `τ
{
P (γ) ∧ B

}
C
{
∃β. P (β) ∧ β < α

}
λ;A `τ

{
P (α)

}
while (B) C

{
∃β. P (β) ∧ α ≥ β ∧ ¬B

}
Figure 19: The while rule of Total TaDA

Loop :

∀γ ≤ 10. `τ
{
x = γ

}
x := x− 1

{
x = γ − 1

} assign

∀γ ≤ 10. `τ
{

0 < x ≤ 10 ∧ x = γ
}
x := x− 1

{
∃β. 0 ≤ x ≤ 10 ∧ x = β ∧ β < γ

} frame, cons

`τ
{

0 ≤ x ≤ 10 ∧ x = 10
}
while (x > 0) x := x− 1

{
∃β. 0 ≤ x ≤ 10 ∧ x = β ∧ 10 ≥ β ∧ x ≤ 0

} while

`τ
{
emp

}
x := 10

{
x = 0 ∧ 0 < x ≤ 10

} assign, cons
Loop

`τ
{
emp

}
x := 10; while (x > 0) {x := x− 1}

{
x = 0

} sequence, cons

Figure 20: An instance of the while rule with an instantiated (in)variant.

2.10 Total TaDA

The notion of loop variants can be extended into the concurrent language of

TaDA. Total TaDA [15] is an extension to TaDA which proves total correctness.

A triple in the Total TaDA system has the same meaning as in TaDA, with the

added guarantee that C will terminate. There are two ways in which a statement

in the language of TaDA can fail to terminate; bottomless recursion, and while

loops which never have their condition invalidated. The added complication

is that, since TaDA is a concurrent language, a while loop condition may be

affected by the actions of other threads. In some circumstances, it is still

possible to determine a variant for the loop, except now other threads may be

the ones causing it to decrement.

The Total TaDA while rule is given in fig. 19. The P (γ) assertion describes a

loop invariant P which is parameterised by a variant γ which decreases each

time the body is executed. A proof of the termination of a simple while loop

program is given in tree style in fig. 20. Notice that the invariant contains the

assertion x = γ, which forms the variant for the loop. The initial value of the

variant, α, is set to 10. Now we will look at a more complicated example, where

the variant of the loop is decreased as a result of actions by the environment,

not just the local thread.

36

2.10.1 Termination of increment

Consider the counter example described previously. For convenience, the incr

function is reproduced below.

function incr(x) {
b := 0

while (b = 0) {
r := [x];

b := CAS(x, r, r + 1);

}
return r;

}

We previously discussed a (partial) specification for this function in TaDA;

incr would be `

A

n ∈ N.
〈

C(r, x, n)
〉
incr(x)

〈
C(r, x, n+ 1) ∧ ret = n

〉
. To

prove that the above implementation satisfies this specification, we must give

an interpretation of the abstract predicate where the states of the counter are

the natural numbers, and incr embodies the transition n n+ 1.

Now we must consider total correctness. Intuitively, what is the termination

condition for the loop? So long as only a finite number of increments run in

parallel, eventually the CAS will succeed and the loop will terminate. This is

because the CAS will only fail if at least one of the incr calls succeeded in

modifying the counter, thus terminating. Eventually either our local CAS will

succeed, or every other incr call will succeed first, but then we are guaranteed

to succeed immediately after.

This arrangement can be thought of in terms of a “global variant” across the

entire counter module. Call the number of n n + 1 operations allowed to

occur α. Each time we iterate around the loop, there are two possibilities.

Either we succeed, decreasing α by 1, or our CAS fails, which means another

n n + 1 operation has occurred since our last loop iteration, and α must

have decreased by 1. Clearly there cannot be an infinite number of increments

in parallel, since we would run out of α.

We can encode this intuition into our abstract predicate and counter region.

Now the counter predicate will be parameterised by an ordinal number which,

as long as it is greater than 0, provides permission to increment the counter.

This is enforced by the underlying region’s transition system.

37

The interpretation of the counter predicate C is as follows:

C(r, x, n, α) , Counterr(x, n, α) ∗ [G]r

The region’s transition system is defined as follows:

∀n,m ∈ N, α > β. G : (n, α) (n+m,β)

This forces any action incrementing the counter to decrease the ordinal.

The region interpretation is defined as follows:

I(Counterr(x, n, α)) , x 7→ n

38

∀β.

A

n ∈ N, α〈
C(r, x, n, α) ∧ α > β(n, α)

〉
ab

st
ra

ct

〈
Counterr(x, n, α) ∗ [G]r ∧ α > β(n, α)

〉
m

ak
e

at
om

ic

r : (n, α) ∧ n ∈ N ∧ α > β(n, α) (n+ 1, β(n, α)) `τ{
∃n, α. Counterr(x, n, α) ∗ r Z⇒ � ∧ α > β(n, α)

}
b := 0;{
∃n, α. Counterr(x, n, α) ∗ r Z⇒ � ∧ b = 0 ∧ α > β(n, α)

}
while (b = 0) {
∀γ{
∃n, α. Counterr(x, n, α) ∗ r Z⇒ � ∧ γ ≥ α > β(n, α)

}

op
en

re
gi

on 〈
x 7→ n ∧ γ ≥ α > β(n, α)

〉
v := [x];〈
x 7→ n ∧ v = n ∧ γ ≥ α > β(n, α) ∧ (n > v⇒ γ > α)

〉
{
∃n, α. Counterr(x, n, α) ∗ r Z⇒ � ∧ γ ≥ α > β(n, α) ∧ (n > v⇒ γ > α)

}

u
p

d
at

e
re

gi
on

A

n ∈ N〈
x 7→ n ∧ γ ≥ α > β(n, α) ∧ (n > v⇒ γ > α)

〉
b := CAS(x, v, v + 1);〈
α > β(n, α) ∧ if b = 0 then γ > α ∧ x 7→ n

else γ > α ∧ x 7→ n+ 1 ∧ v = n

〉
{
∃n, α. γ ≥ α > β(n, α) ∧ if b = 0 then Counterr(x, n, α) ∗ r Z⇒ � ∧ γ > α)

else r Z⇒ (v, α), (v + 1, β(n, α))

}
}{
∃n, α. r Z⇒ (n, α), (n+ 1, β(n, α)) ∧ v = n

}
return v;{
∃n, α. r Z⇒ (n, α), (n+ 1, β(n, α)) ∧ ret = n

}〈
Counterr(x, n+ 1, β(n, α)) ∗ [G]r ∧ ret = n

〉〈
C(r, x, n+ 1, β(n, α)) ∧ ret = n

〉
Figure 21: Total correctness of incr.

Now, we can proceed with the proof of termination. It is given in fig 21. The

line v := [x]; allows us to establish a known value for the ordinal. We can

relate this value to the value of the ordinal at the point of the CAS. If the

CAS fails, we know that a further increment operation must have occurred in

the environment since the read. This means we have proven that the ordinal

decreases, even if we do not succeed in the update on this iteration. The reason

we prove the specification for all functions β with α > β(n, α) is so that the

client calling incr can choose how much to decrement the ordinal by. The

39

x := makeCounter();
m := random();
while (m > 0) {
incr(x);
m := m− 1;
}

Figure 22: A non-deterministic number of increments.

client can only perform a finite number of increments, since they are forced to

strictly decrease α every update.

The reason ordinal numbers are used, rather than merely the natural numbers,

is because this allows to handle non-deterministic numbers of calls. For ex-

ample, the environment could execute a non-deterministic but finite number

of increment actions, and incr would still guarantee to terminate. The Total

TaDA paper gives the example of a loop which executes a random number of

iterations which is reproduced in fig. 22. Since the value of the the abstract

predicate’s ordinal must be chosen at the point of the object’s creation, there

is no natural number we can pick which would allow us to fulfil our proof

obligations that we always have enough “fuel” left to execute the increment

inside the loop.

The correct solution is to choose the initial value of the counter’s ordinal to be

ω, the “first uncountable ordinal”. The proof rule of fig. 19 requires us to prove

the body ∀γ (where γ will be an ordinal related to the variable m, our variant).

Our specification for incr allows us to choose any β we want to decrement the

ordinal, i.e. the client has complete control over how much the ordinal should

be decremented. In the case that the counter ordinal is equal to ω, it can be

decremented to m− 1 as a result of the call. Otherwise, it can be decremented

by 1, since every ordinal number less than ω is a natural number.

Total TaDA is a surprisingly neat and compact extension to TaDA which can

prove total correctness. However it must restrict itself to a certain subclass of

concurrent programs, namely those which are “lock-free”. It is arguable that

the programs for which a termination result would be most valuable lie outside

this class.

40

2.11 Total correctness: blocking algorithms

Herlihy characterises concurrent programs according to their termination con-

ditions [16]. Each condition forms an axis along which the space of concurrent

programs may be subdivided.

A concurrent program or algorithm is one that executes across multiple threads

simultaneously. Herlihy gives formal classification of the progress of these

threads in terms of histories (as mentioned previously). Since the details of

his formalisation are orthogonal to those of TaDA, his classifications will be

explained intuitively.

2.11.1 Maximal vs minimal progress

If at least one thread of a concurrent program is guaranteed to be “working”

at any time, the program is characterised as making “minimal progress”.

If no thread can be indefinitely prevented from working, this is “maximal

progress”. An (extreme) example of a program characterised by maximal

progress would be one where no threads access shared memory, and only

perform local calculations which terminate. An example of minimal progress is

the concurrent incr implementation used as an example in previous sections.

At least one concurrent call to incr is guaranteed to succeed, but this may

cause other threads to experience delay as they may have to execute an extra

loop iteration in their own calls.

In the setting of Total TaDA, where we have a local proof and a stability condi-

tion abstracting all other threads as a nebulous “environment”, we characterise

operations as causing delay if they decrease the ordinal of their region, since this

is our way of enforcing that such delay must be finite. incr causes delay, but

read does not. In the Herlihy setting, this means that a concurrent program

with multiple increments in parallel only guarantees minimal progress.

2.11.2 Blocking vs non-blocking

A blocking algorithm is one in which some thread may be unable to execute

until another thread makes an “unblocking action”. In particular, it may be

the case that the thread would not terminate if it were executed in isolation. If

no thread can experience this, the algorithm is “non-blocking”.

41

function lock(x) {
b := 0;
while (b = 0) {
b := CAS(x, 0, 1);
}
}

function unlock(x) {
[x] := 0;
}

Figure 23: A spin lock implementation.

function lock(x) {
t := incr(x.next);
v := 0;
while (v < t) {
v := read(x.owner);
}
}

function unlock(x) {
incr(x.owner);
}

Figure 24: A ticket lock implementation.

Total TaDA has no mechanism for modelling blocking actions/threads/algorithms.

Any operation that can be proven to terminate in Total TaDA is necessarily

non-blocking.

2.11.3 A periodic table of programs

Herlihey gives classifications to algorithms based on which combination of the

previous attributes they exhibit (his original paper defines a class in between

blocking and non-blocking, but this is uninteresting to us since it depends on

properties of the OS scheduler, which is not modelled in TaDA).

non-blocking blocking

maximal wait-free starvation-free

minimal lock-free deadlock-free

Program classes which guarantee minimal progress are a superset of their

maximal progress equivalents. From this we can see that Total TaDA handles

the lock-free class of concurrent program.

A deadlock-free module operation only guarantees termination if the environ-

ment guarantees to only perform a finite number of operations during its local

execution. Otherwise, the environment could continue to do work infinitely,

satisfying the definition of minimal progress without the local operation ever

42

[v] := 0;
b := 0;
while (b = 0) {
lock(x);
unlock(x);
b := [v];
}

lock(x);
unlock(x);
[v] := 1;

Figure 25: Terminates if lock is starvation free.

finishing. Furthermore, since it is blocking, the environment must terminate

in an “unblocked state” which allows the operation to finish if it has not

already.

Spinlock is an example of a deadlock-free module. A possible implementation is

given in fig. 23. We can see that if the local thread is running lock, it will only

terminate if the environment only performs a finite number of lock operations

itself, since otherwise the local thread’s CAS could fail forever. Furthermore,

the environment must eventually leave the lock in an unlocked state.

Ticket lock is an example of a starvation-free module (assuming the counters

it uses are wait-free). An implementation is given in fig. 24. Even if the

environment is running an infinite number of lock-unlocks, eventually owner

will increment to the value of next that was read at the start of the local

thread’s lock operation. The environment still needs to guarantee it will always

release a held lock, however.

Fig. 25 is an example of a client program that guarantees to terminate using

ticket lock, but not with spinlock.

The aim of this project is to extend Total TaDA to handle programs from the

deadlock-free class. We will first examine arguably the two most prominent

logics that reason about the termination of deadlock-free programs, and discuss

both the lessons that can be learned from them, and the significant compromises

made by the existing work.

2.12 LiLi

Lili [17] is a rely guarantee style system which incorporates the separating

conjunction of separation logic, and certain aspects of linearisability from

43

Herlihy’s work to prove termination of module operations. There are a few key

concepts in LiLi that are relevant to our proposed extension.

2.12.1 Definite actions

LiLi judgements enforce that a thread will carry out a set of “definite actions”

as part of its execution. In turn, it relies on the environment carrying out a

set of definite actions in order to guarantee its own termination. For example,

a thread may be required to fulfill the definite action (L 7→ 1) (L 7→ 0)

which encodes that if it ever locks the lock L, it must release it. Unfortunately,

LiLi’s reasoning requires that the exact thread ID currently holding the lock is

encoded somewhere inside the resource’s state, so in a real proof the definite

action might look something more like (L 7→ t) (L 7→ 0) where t is a thread

id. This means that LiLi can only abstract the environment in a limited way

since the number of threads must be fixed in advance of the proof.

2.12.2 Unblocking conditions

A loop inside a blocking program will not have a variant. For instance, this is

the loop of a spin lock implementation (with the lock at location x).

b := 0

while (b = 0) {
b := CAS(x, 0, 1);

}

If the lock is locked, the CAS will never succeed, and therefore the loop will

never terminate. However, if the lock is unlocked, the loop is guaranteed

to terminate. We can say that L 7→ 0 is the “unblocking condition” of the

loop. The loop is guaranteed to terminate if this condition is established and

preserved. Since the local thread knows the actions any other threads are

guaranteed to make (via the definite actions) it is possible to reason that the

unblocking condition is inevitably established.

2.12.3 Limitations

As mentioned, LiLi’s assertions about the actions of the environment are

explicitly parameterised by thread IDs. This is anathema to TaDA’s more

44

abstracted view of the environment. It seems intuitive that we must have

some sort of formalisation of what the environment must do to guarantee

local termination, as opposed to just what it may do. However, LiLi solves

this problem by reasoning about a ordered, finite queue of actions by each

thread.

There are more fundamental mismatches between the goals of LiLi and Total

TaDA. LiLi aims to solve a far simpler problem - namely that the operations

of a module terminate and appear linearisable. In this way, LiLi’s correctness

condition is much like Herlihy’s original linearisability condition. LiLi cannot

provide a lock specification that a client can use to reason about its own

termination, since it provides no mechanism for a client to verify that it satisfies

the lock operation’s required definite actions. In fact, the language of LiLi

does not include function calls at all! Even within a module operation proof,

references to lock and unlock calls are merely typographical shorthand for an

inlined loop or similar series of statements which functions as a lock.

Furthermore, LiLi’s style of reasoning scales poorly if the operations of a module

do not all perform the same blocking actions. Every substantial proof in the

paper is of a module embodying some variation of a counter increment or

list push/pop, which is implemented as a critical section surrounded by some

flavour of lock-unlock. This is a very local style of blocking, since no module

operation can terminate without unblocking every other operation. We will see

in general that this is not the case.

2.12.4 Lessons

The way the language of Total TaDA blocks is similar to the way LiLi blocks

- a while loop condition which relies on another thread/the environment per-

forming an update. It seems intuitive that we will have to determine the loop’s

unblocking condition, and guarantee that the environment performs actions

that eventually satisfy and preserve it.

However, LiLi’s formalism offers us no help in doing this, since the sacrifices

they have made to ensure their rules are sound (no clients, no thread forking,

no function calls, poor non-local blocking) constrict their expressivity to the

point that porting their restrictions into the world of TaDA would leave us

with almost no logic at all, due to the way TaDA is built to facilitate modular

proofs.

45

2.13 Boström and Müller

This work [18] offers a far more complete logic with fewer odd restrictions.

However, their memory model is based on message passing, and does not

include a shared heap. This means that all inter-thread blocking is mediated

by language primitives. The only way for any thread to wait on the update of

another is through the lock, (channel) receive and (thread) join operations,

which are given as part of the semantics of the language and not as module

specifications. In this way, it is impossible for a thread to experience arbitrary

blocking that is not mediated through one of these constructs. Because of

this, it is possible to build a bespoke “token language” for each construct. For

example, a lock operation produces a “releases” obligation token that must be

consumed by a corresponding unlock, while a receive operation on a channel

must either consume a “sends” credit token produced by an earlier send to the

channel, or produce a sends obligation token, representing that it is blocking

on a send that may not have occurred yet.

2.13.1 Lessons

Separation logic in general is based on a model with a shared heap, so any

module can potentially block in a way that is not possible with a message

passing setup. The equivalent to their approach in Total TaDA would be that

specifying a module for use by a client also means specifying a token language

to go with it, which describes exactly how it blocks (in some way this would be

analogous to the existing guard tokens, which abstract both the thread’s and

the environment’s permission to update the region). However, the fundamental

nature of Total TaDA’s assertions means that this technique would almost

certainly be unsound, since P ∗Q⇒ P is always sound; i.e. we could forget

tokens whenever we want, even if they denote an obligation to unblock.

3 B-TT: extending Total TaDA

We want to show that every possible execution of a blocking program terminates.

We can view each execution as a trace of updates to shared state, but in

particular we only care about updates to module instances which might be

46

involved in blocking. Take the following code as an example:

α1 lock(x);

α2 lock(x); unlock(x); β

α3 unlock(x);

Every real execution of this code can be characterised by some sequence of the

timestamps marked in red. Indeed, because of the way lock blocks, there is

only one possible sequence: α1 → β → α2 → α3.

We can view any program as inducing a set of all possible traces of its blocking

actions. We give proof rules that allow us to soundly determine a superset of

these possible traces. If we can show that this superset terminates, we know

that the real program will terminate. Ideally, we want this superset to be as

close to the real set of possible traces as possible.

We define our set of possible traces using two restrictions. The first is the

sequential ordering of the code. That is, two operations appearing one after

the other in the code must necessarily happen one after the other in any

trace. The second is the consistency of state transitions. For example, a lock

operation will only take effect if it makes a transition from state 0 to state

1, so no trace will have two locks on the same lock immediately in sequence.

Linearisability allows us to determine the existence of the atomic timepoints at

which operations appear to take effect.

We give rules for deriving and resolving these restrictions. What follows is the

formalisation of what has been intuitively described above.

We give an extension to the Total TaDA system, named B-TT. The while (now

“while1”), parallel, sequence, make atomic, and if rules have been modified.

New rules “while2”, “while3”, and “prefix” have been added. All other proof

rules remain the same, except for the addition of the “action ordering context”,

which is written π on the left hand side of the turnstile.

The system will be concerned with the deriving of actions of the form (a,X,Q, α),

where a uniquely identifies the region being updated, X denotes the possible

states consistent with the update, α is an “abstract timestamp” uniquely identi-

fying when the action takes place, and Q is a “transition function”. Q is already

used in the make atomic rule of TaDA to denote what behaviour is possible

when performing an atomic update. Now we extract additional information

from it; transitions which are not possible. Combining the information from X

and Q allows us to describe an operation’s unblocking condition.

47

Initially, a special case of the rules will be presented, followed by a discussion

of various possible extensions.

Total TaDA assumes the existence of a set of “region type names” (the t of

tλa(x)) named ARType. B-TT further assumes the existence of a set ABRType

the “blocking region type names” which is a subset of ARType. The predicate

blocking(a) takes a region ID and returns true if the region referred to by the

region ID has a blocking type. blocking(a) is true for every a which is a region

ID in AProgram. This is enforced by the proof rules. “Blocking actions” are

atomic updates which take place over a blocking region.

We define the action ordering context as follows:

AProgram , P(ActionO)×WFPOrderO

That is, the action context is a tuple containing both a set of blocking ac-

tions ActionO, and a well-founded ordering WFPOrderO over their “abstract

timestamps”. A blocking action is defined as:

ActionO ,
∐
a∈RId

P(RStatea)× (RStatea → P(RStatea))×O

This denotes a 4-tuple where the types of the latter three values are parame-

terised by the value of the first. The first element is the RId, the region ID over

which the action is being performed (as a of tλa(x)). The second element is a

set of the states of region a, denoting the set of possible states from which the

action can take place. The third element is the state transformation function

(as Q of a : x ∈ X Q(x) in the atomicity context). The fourth element is

the abstract timestamp, which is guaranteed by the proof rules to be unique

across all the actions in the action ordering context.

The ordering over the abstract timestamps is simply defined as

WFPOrderO ,
{
< | < ⊂ O2, < well-founded

}
We will use ∅ as syntactic sugar for (∅, ∅) ∈ AProgram

The triple

π;λ;A `

A

x ∈ X.
〈
pp

∣∣∣ p(x)
〉
C

E

y ∈ Y (x).
〈
qp(x, y)

∣∣∣ q(x, y)
〉

Can be intuitively understood as meaning that C will terminate if and only if it

48

carries out all actions in π in an order consistent with the timestamp ordering.

Furthermore, the environment is assumed to eventually unblock all actions in

A before they occur. We will define this more precisely later.

We define sequence and union over APrograms π1, π2 to represent the effects

of executing the programs represented by them sequentially, or in parallel,

respectively.

union:

(A1, <1) ∪ (A2, <2) = (A1 ∪ A2, <1 ∪ <2)

sequence:

(A1, <1); (A2, <2) = (A1∪A2, <1 ∪ <2 ∪{(a1, a2)|(, , , a2) ∈ A2, (, , , a1) ∈ A1})

That is, if π2 is executed after π1, the ordering relation will enforce that the

abstract timestamps of π1 are all less than those of π2.

Each modified or additional proof rule will be explained in turn to informally

motivate their correctness. Where it is non-trivial, a more rigorous proof will

be given later.

3.1 Rules

π1;λ;A `
{
P1

}
C1

{
Q1

}
π2;λ;A `

{
P2

}
C2

{
Q2

}
distinctO(π1, π2)

π1 ∪ π2;λ;A `
{
P1 ∗ P2

}
C1 ‖ C2

{
Q1 ∗Q2

} Parallel

π1;λ;A `
{
P
}
C1

{
R
}

π2;λ;A `
{
R
}
C2

{
Q
}

distinctO(π1, π2)

(π1; π2);λ;A `
{
P
}
C1;C2

{
Q
} Sequence

These are simply the old parallel and sequence rule, additionally enforcing the

relations on blocking actions. The side condition enforces that the timestamps

of both Cs are entirely distinct.

π;λ;A `
{
P ∧ B

}
C1

{
Q
}

π;λ;A `
{
P ∧ ¬B

}
C2

{
Q
}

π;λ;A `
{
P
}
if (B) C1 else C2

{
Q
} If

This is the almost the same as the old if rule, except it enforces that both

branches must carry out the same blocking actions. This is a slightly unsat-

isfactory restriction, but a potential improvement will be discussed in a later

49

section.

3.1.1 While rules

The while rules of the system are crucial, as they are how we describe blocking.

We will give a more restricted case of the rules here and describe how they can

be broadened later.

∀γ ≤ α. ∅;λ;A `
{
P (γ)

}
C
{
∃β. P (β) ∧ β < α

}
∅;λ;A `

{
P (α)

}
while (B) C

{
∃β. P (β) ∧ α ≥ β ∧ ¬B

} While1

This is the former while rule of Total TaDA. For now, we enforce that no blocking

actions take place within its body. We will lift this restriction later.

T = X \Q−1(∅) A = a : x ∈ X Q(x),A′ blocking(a)

∀γ ≤ α. ∅;λ′;A `

{
∃x ∈ X.P (x, γ) ∗

tλa(x) ∗ a Z⇒ � ∧ B

}
C

{
∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ a Z⇒ � ∧ γ ≥ β

}

∀γ ≤ α. ∅;λ′;A `

{
∃x ∈ T. P (t, γ) ∗

tλa(t) ∗ a Z⇒ � ∧ B

}
C

{
∃x ∈ T, β. P (t, β) ∗

tλa(t) ∗ a Z⇒ � ∧ γ > β

}

∅;λ′;A `

{
∃x ∈ X.P (x, α) ∗

tλa(x) ∗ a Z⇒ �

}
while (B) C

{
∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ a Z⇒ � ∧ α ≥ β ∧ ¬B

} While2

This rule is the first which reasons that a loop can terminate in the presence of

blocking. An existing function of the atomicity tracking component a Z⇒ � is to

restrict the interference the environment is allowed to cause to the set X. We

now interpret the atomicity tracking component as not only constraining the

environment’s interference to X, but also guaranteeing the environment will

unblock the Q part of the transition a : x ∈ X Q(x), since the transition

cannot occur when Q(x) = ∅. The set of states in which Q is unblocked is

given by T in the first antecedent.

We know that the environment will eventually constrain the state of the region

to T (in a finite amount of time), and we also know that because the atomicity

tracking component remains unfulfilled, the local thread does not affect the state

of the region. If the loop has not terminated by the point the environment does

this, we will begin executing the case in the third antecedent, where we have

proven that an ordinal constantly decreases. Thus the proof of termination is

50

analogous to the lock-free case, except we must wait to be unblocked first.

A = a : x ∈ X Q(x),A′ blocking(a)

T = X \Q−1(∅) ∀a ∈ dom(A′).¬blocking(a) T ⊆ X ′ ⊆ X

∅;λ;A `

∃x ∈ X.P (x) ∗ tλa(x) ∗ a Z⇒ � ∧ B

 C

(∃x ∈ X.P (x) ∗ tλa(x) ∗ a Z⇒ � ∧ B) ∨(
∃x ∈ X ′,∃y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

)
∅;λ;A `

{
∃x ∈ T. P (x) ∗ tλa(x) ∗ a Z⇒ � ∧ B

}
C

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}

∅;λ;A `

{
∃x ∈ X.P (x) ∗ tλa(x) ∗ a Z⇒ � ∧ B

}
while (B) C

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

} While3

This rule allows a blocking action to talk place inside a loop that is blocking

on the same region. It also enforces that the loop will terminate after the

linearisation point has taken place. In the case that the environment has

not constrained the interference, we may or may not terminate. However,

once the environment has constrained the interference, we guarantee that the

linearisation point will occur.

This rule could be formulated in terms of decreasing ordinals, but in practice

we found it severely complicated client proofs for little expressive benefit.

π;λ;A `
{
P
}
C
{
∃x ∈ X.Q(x) ∗ tλa(x)

}
((π; {(a, {G}, λx.X, α)} , ∅));λ;A `

{
P
}
C
{
∃x ∈ X.Q(x) ∗ tλa(x)

} Prefix

This rule allows us to generate an action for a blocking region which is newly

created, allowing us to keep track of its initial state in the list of blocking

actions. Since this action is modeled as taking place after all existing ones, the

rule cannot be used to “fake” the creation of a module at an inappropriate

time. G is the “start unit”, which all ordinary Qs implicitly map to ∅.

51

a /∈ A X ′ ⊆ X {(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

if blocking(t) then π = ({(a,X ′, Q, α)} , ∅) ∪ π′ else π = π′

π′;λ′; a : x ∈ X Q(x),A `

{
pp ∗ ∃x ∈ X. tλa(x) ∗ a Z⇒ �

}
C

{∃x ∈ X ′, y ∈ Q(x). qp(x, y) ∗ a Z⇒ (x, y)}

π;λ′;A `

A

x ∈ X.
〈
pp

∣∣∣ tλa(x) ∗ [G]a

〉
C

E

y ∈ Q(x).
〈
qp(x, y)

∣∣∣ tλa(y) ∗ [G]a

〉 Makeatomic

Now we come to the revised make atomic rule. This is nearly the same as

before, except that if the atomic update is to a blocking region, we update the

action ordering context to keep track of the new action. Note that we do not

know for sure when this action takes place in relation to others in the code, so

it is not ordered with respect to them.

3.2 Termination

As previously mentioned, establishing a triple of the form

π;λ;A `

A

x ∈ X.
〈
pp

∣∣∣ p(x)
〉
C

E

y ∈ Y (x).
〈
qp(x, y)

∣∣∣ q(x, y)
〉

guarantees (roughly) that C will terminate if and only if it performs all the

blocking actions in π. This is not yet a guarantee of termination! We must

first enumerate another guarantee made by the triple, and show how this is

used to establish termination.

3.2.1 Minimal actions

For a given π, a blocking action act ∈ π is “minimal” if ¬∃act′.∈ π s.t. p4(act′) <π p4(act)

where p4 is the fourth projection. Intuitively, there is no action in π known to

definitely occur before it.

An action (a,X,Q, α) ∈ π is considered unblocked if the state of the region a,

given by x, has Q(x) 6= ∅.

Let min(π) denote the set of minimal actions for π.

The semantics of the triple above guarantee that if C is run for a sufficient

amount of time, maintaining the same set of minimal unblocked actions, one of

them will eventually occur.

52

Of course, since the environment can alter the state of the regions, we cannot

guarantee that the minimal unblocked actions will not change as execution

progresses. To guarantee termination in isolation, we must ask the question

“if the environment never changes the states of the blocking regions, is C
guaranteed to terminate?”. This is the function of the terminates rule.

3.3 The terminates rule

π;λ;A `

A

x ∈ X.
〈
pp

∣∣∣ p(x)
〉
C

E

y ∈ Y (x).
〈
qp(x, y)

∣∣∣ q(x, y)
〉

nec-consist(π)

π;λ;A `term

A

x ∈ X.
〈
pp

∣∣∣ p(x)
〉
C

E

y ∈ Y (x).
〈
qp(x, y)

∣∣∣ q(x, y)
〉 terminates

The semantics of the `term triple really do guarantee that C terminates, as-

suming π provides a complete account of every transition the blocking regions

will undergo. Note that we can freely turn a `term triple back into an ordinary

Total TaDA triple if we wish to continue the proof or use it as part of a larger

one.

3.3.1 The necessary consistency side-condition

This side condition on π enforces that, given the ordering of actions enforced

by <π and assuming that the blocking region states are never changed by the

environment, no matter which minimal actions occur in which order, every

execution described by π will eventually carry out all actions.

Intuitively, the action ordering context induces a set of traces of linearisation

points such that every execution of the program is guaranteed to fulfil one

of them. These traces are analogous to a linearisable history in the Herlihy

sense. The condition encodes that every possible trace executes all actions,

and therefore the program must terminate. Formal definition of a special case

of the condition that is sufficient for the next few examples will be given here.

We will see later how it can be generalised.

Take the set of abstract timestamps of π, Oπ. Consider a finite sequence sπ of

abstract timestamps such that every timestamp is in Oπ, and no timestamp

appears more than once. We refer to the action associated with a timestamp α

as actα.

Define the region trace sπ|r as the subsequence of sπ containing exactly the α

s.t. p1(actα) = r.

53

We define the “consistency” of a region trace. For now, we will define a special

case of consistency. We assume that for all act ∈ p1(π), taking Q = p3(act),

for all x ∈ p2(act), Q(x) maps to the same (non-empty) set (for convenience,

we will refer to this set of states, as YQ). We will motivate later that such

a restriction defines the class of regions that can be simulated by a “general

region” defined within the programming language of TaDA, and show how it

can be relaxed.

A region trace is consistent if (sπ|r)0 =G and, for all α1, α2,

succsπ(α1) = α2 ⇒ Yp3(actα1) ⊆ p2(actα2)

That is, the state transitions of the actions in sequence match up with each

other.

We say sπ is an “abstract trace” of π if it is a maximal sequence such that the

following conditions are met:

• α1 <sπ α2 ⇒ ¬(α2 <π α1)

• succsπ(α1) = α2 ⇒ (∀α3 6= α1. (α3 <π α2)⇒ (α3 <sπ α1))

• for all a, sπ|a is consistent.

nec-consist(π) holds iff every abstract trace sπ of π contains all timestamps in

Oπ.

We give an equivalent formulation, and encode it as a logic program, in appendix

A.

3.3.2 Relation to histories and linearisability

It has long been understood that Herlihy’s module linearisability implies the

existence of a linearisation point for each module opearation. TaDA offers

a more nuanced notion of “conditional” linearisability; a specification may,

through the pseudoquantifier, enforce additional restrictions on the environment

that are needed for the operation to appear to have a linearisation point.

A linearisable history (in the Herlihy sense) can always be equivalently viewed

as a series of linearisation points executing one after another. Similarly, any

execution of a program for which a TaDA triple can be proven can be viewed

as executing a series of linearisation points, since we have proven that every

use of each module operation necessarily respects the conditions for them to

appear linearisable.

54

Herlihy’s correctness condition views a module implementation as the set of

all histories describing the possible interleavings of its operations. Calculating

the abstract traces of π for nec-consist(π) can be thought of as constructing a

Herlihy style implementation description of the code.

Herlihy also requires his histories to be “legal”, that is, for each object mentioned

in the history, the subhistory of just the operations on that object lies within

its implementation. This is equivalent to our consistency check on all region

traces sπ|a.

3.4 Example: spin lock

3.4.1 Module specification

We can, for the first time, prove a specification for spin lock such that we can

prove the termination of several interesting clients.

function lock(x) {
b := 0;

while (b = 0) {
b := CAS(x, 0, 1);

}
}

function unlock(x) {
[x] := 0;

}

The proof of lock is given by fig. 26. The proof of unlock is given by fig. 27.

The interpretations remain identical to the TaDA proof seen earlier, except

now the Lock region has a blocking type. The following specifications are

proven:

(a, {0}, B, α), ∅ `

A

l ∈ B.
〈

L(a, x, l)
〉
lock(x)

〈
L(a, x,>) ∧ ¬l

〉
(a, {1}, U, α′), ∅ `

〈
L(a, x,>)

〉
unlock

〈
L(a, x,⊥)

〉
with B(0) = {1}, B(1) = {}, U(0) = {0}, U(1) = {0}.

55

(a, {0}, Q, α) `
with Q(0) = {1}, Q(1) = {}

A

l ∈ B.〈
L(a, x, l)

〉
ab

st
ra

ct
;

q
u
an

ti
fy
a
;
y

:=
if
l

th
en

1
el

se
0

A

y ∈ {0, 1} .〈
Locka(x, y) ∗ [G]a

〉

m
ak

e
at

om
ic

a : y ∈ {0, 1} Q(y) `{
∃y ∈ {0, 1} .Locka(x, y) ∗ a Z⇒ �

}
b := 0;{
∃y ∈ {0, 1} .Locka(x, y) ∗
(a Z⇒ (0, 1) ∧ b = 1 ∨ a Z⇒ � ∧ b = 0)

}
while (b = 0) {

w
h
il
e3

with T = {0}{
∃y ∈ {0, 1} / {0} .Locka(x, y) ∗ a Z⇒ �

}

u
p

d
at

e
re

gi
on

A

n ∈ {0, 1} / {0} .〈
x 7→ n

〉
b := CAS(x, 0, 1);〈

(x 7→ 1 ∧ n = 0 ∧ b = 1) ∨
(x 7→ n ∧ n 6= 0 ∧ b = 0)

〉
/
〈
(x 7→ 1 ∧ n = 0 ∧ b = 1)

〉
{
∃y ∈ {0, 1} .Locka(x, y) ∗
(a Z⇒ (0, 1) ∧ b = 1 ∨ a Z⇒ � ∧ b = 0)

}
/
{

(a Z⇒ (0, 1) ∧ b = 1
}

}{
∃y ∈ {0} , z ∈ Q(y). a Z⇒ (y, z) ∧ b = 1

}〈
Locka(x, 1) ∗ [G]a ∧ y = 0

〉〈
L(a, x,>) ∧ ¬l

〉
Figure 26: Proof of lock(x). The red assertions represent the proof of the loop
body under the subsetted interference.

3.4.2 A sequential client

Consider the simple client given by

lock(x);

unlock(x);

We can easily prove that this client terminates. We will use the IsLock, Locked,

and CAPLock abstractions of the TaDA paper: that is, we define abstract

56

(a, {1}, Q′, α′) `
with Q′(0) = {0}, Q′(1) = {0}〈

L(a, x,>)
〉

ab
st

ra
ct

;
q
u
an

ti
fy
a

〈
Locka(x, 1) ∗ [G]a

〉

m
ak

e
at

om
ic

a : 1 0 `{
Locka(x, 1) ∗ a Z⇒ �

}

u
p

d
at

e
re

gi
on 〈

x 7→ 1
〉

[x] := 0;〈
x 7→ 0

〉
{
a Z⇒ (1, 0)

}{
∃y ∈ {1} , z ∈ Q′(y). a Z⇒ (y, z)

}〈
Locka(x, 0) ∗ [G]a

〉〈
L(a, x,⊥)

〉
Figure 27: Proof of unlock(x).

predicates IsLock, Locked and a region CAPLock such that

isLock(a, x) , ∃s ∈ {⊥,>} .CAPLocka(x, s)

Locked(a, x) , CAPLocka(x,>) ∗ [K]a
I(CAPLocka(x, s)) , L(x, s)

with the transition system of CAPLock defined as

0 : 0 1 G : 1 0 G •G = ⊥

where 0 is the “empty guard”, held by all threads.

A proof of the triple

π `
{
isLock(a, x)

}
lock(x); unlock(x)

{
isLock(a, x)

}
where π = {(a, {}, λx. {0}, α), (a, {0}, B, α′), (a, {1}, U, α′′)}, (α < α′ < α′′) is

given in fig. 28

To show π `term
{
isLock(a, x)

}
lock(x); unlock(x)

{
isLock(a, x)

}
, we can

observe that only one sequence satisfies the definition of an abstract trace;

α→ α′ → α′′ and that this sequence contains all timestamps.

57

π `{
IsLock(a, x)

}

ab
st

ra
ct

(a, {}, λx. {0}, α), ∅ `
(a, {0}, B, α′), ∅ `{
∃s ∈ {⊥,>} .CAPLocka(x, s)

}

w
ea

ke
n

A

s ∈ {⊥,>}〈
CAPLocka(x, s)

〉

u
se

at
om

ic 〈
L(x, s)

〉
lock(x);〈

L(x,>)
〉

〈
CAPLocka(x,>) ∗ [K]a

〉
(a, {1}, U, α′′), ∅ `{
CAPLocka(x,>) ∗ [K]a

}

w
ea

ke
n

〈
CAPLocka(x,>) ∗ [K]a

〉

u
se

at
om

ic 〈
L(x,>)

〉
unlock(x);〈

L(x,⊥)
〉

〈
CAPLocka(x,⊥)

〉{
∃s ∈ {⊥,>} .CCountera(x, s)

}{
IsLock(a, x)

}
Figure 28: Proof of simple sequential client. Note that we apply the prefix rule
across an implicit “skip” statement at the head of the program.

3.4.3 A concurrent client

lock(x);

unlock(x);

lock(x);

unlock(x);

Note that with the thread-compositionality of our approach, we can use the

specification of the previously proven sequential client to immediately deduce

the specification of this client. The proof is given in fig. 29.

π ∪ π′ expanded is

{(a, {}, λx. {0}, α), (a, {0}, B, α′), (a, {1}, U, α′′),
(a, {0}, B, β), (a, {1}, U, β′)},
(α < α′ < α′′, β < β′).

There are two possible abstract traces: α→ α′ → α′′ → β → β′ or

α→ β → β′ → α′ → α′′. Both contain all timestamps.

58

π ∪ π′ `{
IsLock(a, x)

}
π `{

IsLock(a, x)
}

lock(x);
unlock(x);{

IsLock(a, x)
}

π′ `{
IsLock(a, x)

}
lock(x);
unlock(x);{

IsLock(a, x)
}{

IsLock(a, x)
}

Figure 29: Concurrent client proof. π′ is π with fresh timestamps and the
initialisation event removed (which is always sound to do).

π ∪ π′ `{
IsLock(a, x) ∗ IsLock(b, y)

}
π `{

IsLock(a, x) ∗ IsLock(b, y)
}

lock(x);
lock(y);
unlock(y);
unlock(x);{

IsLock(a, x) ∗ IsLock(b, y)
}

π′ `{
IsLock(a, x) ∗ IsLock(b, y)

}
lock(y);
lock(x);
unlock(x);
unlock(y);{

IsLock(a, x) ∗ IsLock(b, y)
}{

IsLock(a, x) ∗ IsLock(b, y)
}

Figure 30: A very high level sketch of the triple proof for the deadlock example.

3.4.4 Failure to prove a deadlocking client

lock(x);

lock(y);

unlock(y);

unlock(x);

lock(y);

lock(x);

unlock(x);

unlock(y);

Above is the canonical deadlocking example. Each thread acquires the locks

in a different order. If the left thread executes lock(x), then the right thread

executes lock(y), the program will fail to terminate. If the logic is sound, we

expect to fail to prove this code terminates. A proof of the non-terminating

triple is given in fig. 30.

π in this case could be

{(a, {}, λx. {0}, α1), (a, {0}, B, α2), (b, {0}, B, α3), (b, {1}, U, α4), (a, {1}, U, α5)},
(α1 < α2 < α3 < α4 < α5) (depending on where we arbitrarily choose to invoke

the prefix rule to get the initial state of the lock)

59

π′ could be

{(b, {}, λx. {0}, β1), (b, {0}, B, β2), (a, {0}, B, β3), (a, {1}, U, β4), (b, {1}, U, β5)},
(β1 < β2 < β3 < β4 < β5)

Here, α1 → β1 → α2 → β2 is a possible abstract trace. Since this does

not contain all abstract timestamps, we cannot prove `term. This example is

encoded in the logic program in appendix A.

3.4.5 A final concurrent client

α prefix

α1 lock(x);

α2 lock(x); unlock(x); β

α3 unlock(x);

Without explicitly laying out the proof, we annotate the program with abstract

timestamps for each operation. The only abstract trace is α → α1 → β →
α2 → α3. Note that α1 → α2 is not permitted since the region trace for a must

be consistent.

An example giving a more explicit description of the trace process can be found

in appendix C.

4 Further Improvements

The initial logic showcased above preserves much of the modularity and proof

style of the preceding TaDA based systems. However, it has several unsatis-

factory limitations which limit the programs it is able to reason about. The

following sections will highlight possible extensions which improve its expres-

sivity. Many of these are orthogonal to the majority of the proof of soundness,

but add significant computational complexity to the nec-consist check. It is

likely that in order to tackle hard programs that require these extensions, the

check will need to be mechanised.

4.1 More general modules

“We assume that for all act ∈ p1(π), taking Q = p3(act), for all x ∈ p2(act),

Q(x) maps to the same set (for convenience, we will refer to this set of states,

as YQ).”

60

The previously discussed special case of region trace consistency bounds the

considered modules to those which can be simulated by a “general region”

defined as follows.

The general region GRegion’s states are the natural numbers, and its state

transition system is defined as follows:

∀n,m ∈ N. 0 : n m

We define the operations across GRegion as NtoM where N and M are sets. For

each N, M, the semantics of NtoM(x) is as follows: “block until the GRegion

at x enters a state in N, then atomically and nondeterministically update the

state of GRegion to one of the states in M.”

For any program satisfying our special case which we can prove a non-terminating

triple for, we can replace calls to operations on blocking modules with their

equivalent NtoM function(s), assuming the states of the original regions are no

more than countably infinite and return values are not checked. The resulting

program can be proven to terminate iff the original one can.

Motivation: Any module function f(x) over blocking regions satisfying our

special case will perform one or more actions of the form (r, X, Y, α). Sim-

ply replacing the function call with XtoY(x) for each action will generate an

equivalent action ordering context for the whole program.

For example, {0}to{1}(x) and {0, 1}to{0}(x) together simulate a spin lock.

We can therefore directly consider clients calling NtoM functions as a way of

motivating the expressivity of our logic. For example, we can prove the client

given by
α1 0to1(x);

α2 2to1(x);

1to2(x); β1

1to0(x); β2

terminates.

What about functions that do not fit this special case? The simplest example

is the counter module. We can trivially extend it to be blocking by adding

the function waitFor2(x), which blocks until the value of the counter is at

least 2. We must make the counter region a blocking one in order to handle

the unblocking condition. Now the ordinary incr operation must produce

actions, since it is updating a blocking region. These actions will be of the

form (a,N, Q, α) but Q(n) = {n+ 1} for all n, which does not fit our special

case (for reference, the actions generated by waitFor2 would be of the form

61

(a,N ≥ 10, id, α)).

We can relax our special case restriction on Q, but this will require us to redefine

the consistency of a region trace to something that is harder to calculate.

For a general Q, the definition of consistency of a region trace is as follows:

Define Xn = p2(act(sπ |r)n), that is, Xn is the X set of the nth timestamped

action in the region trace.

Define Qn = p3(act(sπ |r)n), that is, Qn is the Q function of the nth timestamped

action in the region trace.

A region trace is consistent if X0 =G and

∀y0 ∈ Q0(G). Q1(y0) 6= ∅ ∧X1 ⊆ y0

∀y1 ∈ Q1(y0). Q2(y1) 6= ∅ ∧X2 ⊆ y1 ∧
...

∀yn−1 ∈ Qn−1(yn−2). Qn(yn−1) 6= ∅ ∧Xn ⊆ yn−1

This is not the easiest condition to calculate, but it does allow us to handle

more interesting modules.

4.1.1 Even more general modules

For more generality, we must handle the possibility of the linearisation point of

a module operation depending on the value of its arguments.

Consider the example above, where we extended a counter module with

waitFor2(x) in order to make it blocking. Suppose instead that we extend it

with the function waitFor(x, n), which blocks until the program counter is at

least n. Such a function could be implemented as follows:

function waitFor(x, n) {
v := [x];

while (v < n) {
v := [x];

}
}

The linearisation point of this function is at the point the loop exits. An action

must be generated to encode the unblocking condition.

62

For a general action (r,X,Q, α), X is the set of possible values of the region

immediately before the linearisation point. However, this now varies depend-

ing on the value of n. So in general X must be a function of the program

arguments.

We can define X(n) as N ≥ n and then give rules for binding the value of

n to the set of possible values of the argument at the call site (call this Z)

by making each Action a 5-tuple of (r,X,Q, Z, α). The definition of region

trace consistency (assuming Zn can refer to nth Z set in sequence) would then

be
∀z0 ∈ Z0, z1 ∈ Z1...zn−1 ∈ Zn−1, zn ∈ Zn.
∀y0 ∈ Q0(G). Q1(y0) 6= ∅ ∧X1(z1) ⊆ y0 ∧
∀y1 ∈ Q1(y0). Q2(y1) 6= ∅ ∧X2(z2) ⊆ y1 ∧
...

∀yn−1 ∈ Qn−1(yn−2). Qn(yn−1) 6= ∅ ∧Xn(zn) ⊆ yn−1

4.1.2 Most general modules

For ultimate generality, we must handle the case where the unblocking condition

of a module operation depends on the value of its arguments. A sketch of an

extension to do so is given.

Consider the following very silly extension to the counter module:

function hangIfLess(x, n) {
v := [x];

while (v < n) {}
}

Now Q must not only depend on the state of the counter, also on the value of

n. We can define Q(s, n) as

id if s ≥ n

∅ otherwise

Obviously the proof rules would have to be updated to deal with the new arity

of Q. For example, the definition of region trace consistency would need to be

63

extended as follows:

∀z0 ∈ Z0, z1 ∈ Z1...zn−1 ∈ Zn−1, zn ∈ Zn.
∀y0 ∈ Q0(G, z0). Q1(y0, z1) 6= ∅ ∧X1(z1) ⊆ y0 ∧
∀y1 ∈ Q1(y0, z1). Q2(y1, z2) 6= ∅ ∧X2(z2) ⊆ y1 ∧
...

∀yn−1 ∈ Qn−1(yn−2, zn−1). Qn(yn−1, zn) 6= ∅ ∧Xn(zn) ⊆ yn−1

4.2 Improving loops

As previously mentioned, the current proof rules do not allow the bodies of

while loops to have non-empty action ordering contexts. Consider the following

program.
v := 10;

while (v > 0) {
lock(x);

unlock(x);

v := v− 1;

}

lock(x);

unlock(x);

We cannot prove that this program terminates without re-writing the left thread

by unrolling the loop. The reason we have this restriction is that we have no

ability to encode actions as an invariant; we must be able to exactly enumerate

the updates to blocking regions that occur.

Note that this is only a restriction on blocking regions, we can still conduct

every proof in the extended system that was possible in the original Total

TaDA, by making every region have a non-blocking type.

One solution to this problem is to extend our action ordering contexts to

contain something like a fixpoint. For example, we could have the following

alternative while1 rule:

∀γ ≤ α. π;λ;A `
{
P (γ)

}
C
{
∃β. P (β) ∧ β < α

}
fix(π);λ;A `

{
P (α)

}
while (B) C

{
∃β. P (β) ∧ α ≥ β ∧ ¬B

} While1

where fix(π) encodes that π will be executed a finite but arbitrary (possibly

0) number of times sequentially. To prove nec-consist(fix(π)), a requirement

for termination, we would have to perform an induction to show that for each

64

possible number of executions n, nec-consist(pi; pi...) holds.

To improve the computability of the check, we can observe that the number

of iterations is bounded by α. Encoding this bound, i.e. fixα(π), would allow

us to avoid the induction, since we now simply encode a case analysis of every

possible unrolling up to α.

This extension is sufficient to prove the termination of the code above, however

nested fixα(π)s in the program ordering context would result in a blow-up

during the unrolling, analogous to the issues encountered in bounded model

checking of nested loops.

4.2.1 If branching

Similarly, the addition of a bounded fix allows us to relax our restriction on

the branches of if statements. If we extend the syntax of fix to explicitly track

its unrolled value e.g. fixn≤α, we can model the actions π occurring in the if

and else branch as fixn≤1(π) and fix1−n(π) respectively. A more general if rule

might be

b = P ⇒ ¬B ? 0 : 1 b′ = P ⇒ B ? 0 : 1

π;λ;A `
{
P ∧ B

}
C1

{
Q
}

π′;λ;A `
{
P ∧ ¬B

}
C2

{
Q
}

fixn≤b(π) ∪ fix(1−n)∧b′(π);λ;A `
{
P
}
if (B) C1 else C2

{
Q
} If

5 The model

See appendix B for a full description of the original model of TaDA, reproduced

from the technical report [19]. The model of B-TT is presented in terms of

modifications to this existing model.

We give a full formalisation for the original, restricted rules, although this is

more for brevity than because of any greater difficulty. Proving the version of

our rules allowing extended model behaviour would require trivial modifications

to the definition of happens and privative atomic satisfaction. Introducing fix

for more general loops would leave the model almost unchanged, but would

add tedious housekeeping to the proof of soundness for little benefit.

The a Z⇒ � assertion in the syntactic proof is taken as shorthand for ∃n. a Z⇒
�n

65

We define the timestamp valuation context O → N+, written at, which maps

abstract timestamps to the concrete amount of time remaining before they

must occur. We say consist(π, at) if (α, β) ∈ p2(π)⇒ at(α) < at(β).

The atomic tracking separation algebra is redefined to be

(AState× AState)]
⋃
n∈N

{�n}] {♦}

The rely relation is redefined to be

g # g′ (s, s′) ∈ Tt(n)(g
′)∗

(d(a) ∈ {�n,♦} ⇒ s′ ∈ dom(A(a)))

(d(a) = �0 ∧ blocking(a)⇒ A(a)[s′] 6= ∅)
(r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s], d) RA (r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s′], d)

(s, s′) ∈ A(a)

(r[a 7→ n], h, b, γ, ρ[a 7→ s], d[a 7→ ♦]) RA (r[a 7→ n], h, b, γ, ρ[a 7→ s′], d[a 7→ (s, s′)])

The second rule is identical to TaDA. The first rule encodes that, in addition

to the usual meaning in TaDA, holding �0 guarantees that the environment

will not cause the local thread to block.

The guarantee relation is redefined to be

ϕ Gλ;A ϕ
′ def⇐⇒ ∀a. (∃λ′ ≥ λ. rϕ(a) = (λ′,−,−)) =⇒ ρϕ(a) = ρϕ′(a) ∧

∀a ∈ domA.

(
dϕ(a) = dϕ′(a) ∧ dϕ(a) 6= �>0 ∧

ρϕ(a) = ρϕ′(a)

)
∨(

dϕ(a) = �n ∧ dϕ′(a) = �n′ ∧
0 ≤ n′ < n ∧ ρϕ(a) = ρϕ′(a)

)
∨(

dϕ(a) = �n ∧ dϕ′(a) = (ρϕ(a), ρϕ′(a))

∧ (ρϕ(a), ρϕ′(a)) ∈ A(a)

)

This modification is crucial to several soundness proofs. It guarantees that

every world-to-world step the local thread makes will strictly decrease the

values of any �n held towards �0. This means that after enough execution,

every �n will become �0. Holding �0 gives us extra information about the

stability and state of the associated region.

66

The primitive atomic satisfaction judgement is redefined to be

λ;A � 〈p〉a〈q〉 def⇐⇒
∀r ∈ ViewA.∀ϕ ∈ p ∗ r.∀h ∈ bϕcλ.∀h′ ∈ JaK(h).

∃ϕ′. ϕ Gλ;A ϕ
′ ∧ h′ ∈ bϕ′cλ ∧

∀ϕ′′. ϕ′Envϕ′′ ⇒ ϕ′′ ∈ q ∗ r.

where Env is defined as

ϕEnvϕ′
def⇐⇒ ϕ = (r, h1, b1, γ1, ρ) ∧ ϕ′ = (r, h1, b1, γ1, ρ

′) ∧
∀a. (∃λ′ ≥ λ. rϕ(a) = (λ′,−,−)) =⇒ ρ(a) = ρ′(a) ∧
∀a /∈ domA. ρ(a) = ρ′(a) ∧

∀a ∈ domA.

(
dϕ(a) = �0 ∧

blocking(a)

)
⇒

(
A(a)[ρ(a)] 6= ∅ ∧

ρ(a) = ρ′(a)

)
∨(

A(a)[ρ′(a)] 6= ∅
)

∧

dϕ(a) 6= �0 ∨ ¬blocking(a)⇒
(
ρ(a) = ρ′(a)

)

That is, if we are at a world with �0, the environment will atomically unblock

the associated region.

We define (k-step execution),
[a]k−−→k as

〈C, s〉 [a]k−−→k 〈C′, s′〉
def⇐⇒ ∃k′ ≤ k,C1...Ck′−1, s1...sk′−1.

[a]k = [α1...αk′] ∧ 〈C, s〉
α1−→ 〈C1, s1〉...〈Ck′−1, sk′−1〉

αk′−−→ 〈C′, s′〉
∧ C′ 6= skip⇒ k′ = k

We define the relation happens : ViewA × ViewA × P(ActionO) as

happens(p, q, actO)
def⇐⇒ ∀r ∈ ViewA, ϕ ∈ p ∗ r, ϕ′ ∈ q ∗ r.

∀(a,X, YQ,) ∈ actO. ρϕ(a) ∈ X ∧ ρϕ′(a) ∈ Y ∧
a /∈ dom dϕ′

happens keeps track of the updates between two worlds that are not in the

atomic tracking components of the worlds.

67

We define the relation agree : AProgram× AProgram× P(ActionO) as

agree(π, π′, actO)
def⇐⇒ ∀(a,X, Y) ∈ actO.

∃α. (a,X, Y, α) ∈ min(π) ∧ (a,X, Y, α) /∈ π′∧
∀β 6= α. ∃X ′, Y ′. (a,X ′, Y ′, β) ∈ π ⇒ (a,X ′, Y ′, β) ∈ π′

This encodes that the actions that are removed between π and π′ are a superset

of actO.

Semantic judgements are defined as follows

The semantic judgement

at; π;λ;A; Ω �

A

x ∈ X. 〈pp | p(x)〉 C

E

y ∈ Y. 〈qp(x,y) | q(x,y)〉

where

• π ∈ AProgram is an action ordering context;

• at is a timestamp valuation context such that consist(π, at);

• λ ∈ Level is a level strictly greater than that of any region that will be

affected by the program;

• A ∈ AContext is the atomicity context, which constrains updates to

regions on which an abstractly atomic update is to be performed;

• Ω ∈ X × Y → Val→ ViewdomA is the postcondition on return, which is

parametrised by the value returned;

• pp ∈ Store → ViewdomA is the private part of the precondition, which

does not correspond to resources in some opened shared region, and is

parametrised by the valuation of program variables;

• p ∈ X → ViewdomA is the public part of the precondition, which may cor-

respond to resources from some opened shared regions, and is parametrised

by x ∈ X that tracks the precondition at the linearisation point;

• C ∈ Command is the program under consideration;

• qp ∈ X × Y → Store → ViewdomA is the private part of the postcondi-

tion, which is parametrised by x ∈ X that tracks the precondition at

the linearisation point, by y ∈ Y that tracks the postcondition at the

linearisation point, and by the valuation of program variables;

68

• q ∈ X × Y → ViewdomA is the public part of the postcondition, which is

similarly parametrised by x ∈ X and y ∈ Y ,

is defined to be the least-general judgement that holds when the following

conditions hold:

• For all s, s′ ∈ Store, C′ ∈ Command, a ∈ AAction with 〈C, s〉 a−→ 〈C′, s′〉,
for all x ∈ X, there exist p′p ∈ Store→ ViewdomA, p′′p ∈ X×Y → Store→
ViewdomA, π

′, π′′ ∈ AProgram such that

λ;A �
〈
pp(s) ∗ p(x)

〉
a
〈
p′p(s

′) ∗ p(x) ∨ ∃y ∈ Q(x). p′′p(x,y, s
′) ∗ q(x,y)

〉
at′; π′;λ;A; Ω �

A

x ∈ X. 〈p′p|p(x)〉 C′

E

y ∈ Y. 〈qp(x,y)|q(x,y)〉,

and for all y ∈ Q(x), at′′; π′′;λ;A; Ω(x,y) �
{
p′′p(x,y)

}
C′
{
qp(x,y)

}
.

Furthermore, π′, π′′ ⊆ π and for all actO, act
′
O such that

happens(pp(s) ∗ p(x), p′p(s
′) ∗ p(x), actO),

happens(pp(s) ∗ p(x),∃y ∈ Q(x). p′′p(x,y, s
′) ∗ q(x,y), act′O)

we have agree(π, π′, actO) and agree(π, π′′, act′O)

In addition, for all (a,X, YQ, α) ∈ p1(π) such that at(α) = 1, (a,X, YQ, α) /∈
p1(π′) ∪ p1(π′′)

Finally, if C′ = skip, π′ = π′′ = ∅.

at′ is defined as ∀(a,X, YQ, α) ∈ p1(π′). at′(α) = at(α)− 1

at′′ is defined as ∀(a,X, YQ, α) ∈ p1(π′′). at′′(α) = at(α)− 1

• If C = skip then, for all s ∈ Store, x ∈ X, there exists y ∈ Y such that

λ;A � 〈pp(s) | p(x)〉 id 〈false | −〉+ 〈qp(x,y, s) | q(x,y)〉.

• If C = return E;C′ then, for all s ∈ Store, x ∈ X, there exists y ∈ Y
such that

λ;A � 〈pp(s) | p(x)〉 id 〈false | −〉+ 〈Ω(x,y, EJEKs) | q(x,y)〉.

Here, we adopt the syntax λ;A; Ω �
{
p
}
C
{
q
}

as shorthand for λ;A; Ω �

A

x ∈ 1. 〈p|true〉 C

E

y ∈ 1. 〈q|true〉.

69

6 Soundness

The non-trivial rule proofs follow:

6.0.1 Proof of while2

Let α be an ordinal. Assume:

T = X \Q−1(∅) A = a : x ∈ X Q(x),A′ blocking(a)

∀γ ≤ α. ∅;λ′;A �

{
∃x ∈ X.P (x, γ) ∗

tλa(x) ∗ ∃n. a Z⇒ �n ∧ B

}
C

{
∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧ γ ≥ β

}
(1)

∀γ ≤ α. ∅;λ′;A �

{
∃x ∈ T. P (t, γ) ∗

tλa(t) ∗ ∃n. a Z⇒ �n ∧ B

}
C

{
∃x ∈ T, β. P (t, β) ∗

tλa(t) ∗ ∃n′. a Z⇒ �n′ ∧ γ > β

}
(2)

We must prove

∅;λ′;A �

{
∃x ∈ X.P (x, α) ∗

tλa(x) ∗ ∃n. a Z⇒ �n

}
while (B) C

{
∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧ α ≥ β ∧ ¬B

}

It is sufficient to show

∅;λ′;A �

 ∃x ∈ X.P (x, α) ∗
tλa(x) ∗ ∃n. a Z⇒ �n

∧ B

 C; while (B) C

∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧
α ≥ β ∧ ¬B

 (3)

∅;λ′;A �

{
∃x ∈ X.P (x, α) ∗

tλa(x) ∗ ∃n. a Z⇒ �n
∧ ¬B

}
skip

{
∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧ α ≥ β ∧ ¬B

}
(4)

since these are the two reduction cases in the small-step semantics. Clearly the

second case is trivially true.

For the first case, we will prove that after enough executions of the body, we

can show that the loop terminates via trans-finite induction.

By (1) and the sequencing lemma, we have

∅;λ′;A �

 ∃x ∈ X, β. P (x, β) ∗
tλa(x) ∗ ∃n′′. a Z⇒ �′′n ∧ α ≥ β

 while (B) C

∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧
α ≥ β ∧ ¬B

 (5)

Furthermore, from the definition of the guarantee relation, we know n = n′′ = 0 ∨ n > n′′.

70

Again, we know (5) will expand in one of two ways:

∅;λ′;A �

 ∃x ∈ X, β. P (x, β) ∗
tλa(x) ∗ ∃n′′. a Z⇒ �′′n ∧ α ≥ β

 C; while (B) C

∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧
α ≥ β ∧ ¬B

 (6)

∅;λ′;A �

{
∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′′. a Z⇒ �′′n ∧ α ≥ β

}
skip

{
∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧ α ≥ β ∧ ¬B

}
(7)

(7) is again trivial. For (8), take the case where n′′ > 0. We can “run” the

body again via (1) and the sequencing rule, giving us the same assertion as (5)

except with some n′′′ < n′′. We can continue doing this until we reach 0. So let

us assume that n′′ = 0, since we can just run until it becomes 0 otherwise.

By expanding (5) to (6), we are implicitly making the argument against the

small step semantics and the definition of the primitive atomic satisfaction

judgement. Since we have

λ′;A �

〈 ∃x ∈ X, β. P (x, β) ∗
tλa(x) ∗ ∃n′′. a Z⇒ �′′n ∧

α ≥ β

〉
skip

〈 ∃x ∈ X, β. P (x, β) ∗
tλa(x) ∗ ∃n′′. a Z⇒ �′′n ∧

α ≥ β

〉

we have

∅;λ′;A �

 ∃x ∈ X, β. P (x, β) ∗
tλa(x) ∗ ∃n′′. a Z⇒ �′′n ∧ α ≥ β

 C; while (B) C

∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧
α ≥ β ∧ ¬B

However, in the case that n′′ = 0, the following judgement holds:

λ′;A �

〈 ∃x ∈ X, β. P (x, β) ∗
tλa(x) ∗ a Z⇒ �0 ∧

α ≥ β

〉
skip

〈 ∃x ∈ T, β. P (x, β) ∗
tλa(x) ∗ a Z⇒ �0 ∧

α ≥ β

〉

and therefore we have

∅;λ′;A �

 ∃x ∈ T, β. P (x, β) ∗
tλa(x) ∗ a Z⇒ �0 ∧ α ≥ β

 C; while (B) C

∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧
α ≥ β ∧ ¬B

(8)

Now we can perform a trans-finite induction. We can assume the following

71

holds for all γ < α:

∅;λ′;A �

{
∃x ∈ X.P (x, γ) ∗

tλa(x) ∗ ∃n. a Z⇒ �n

}
while (B) C

{
∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧ γ ≥ β ∧ ¬B

}

By applying the the sequencing lemma and (2) to (8), we get

∅;λ′;A �

 ∃x ∈ T, β
′. P (x, β′) ∗

tλa(t) ∗ ∃n′. a Z⇒ �n′ ∧ β > β′

 while (B) C

∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧
α ≥ β ∧ ¬B

Now, since T ⊆ X, we can apply the consequence lemma, to obtain

∅;λ′;A �

 ∃x ∈ X, β. P (x, β) ∗
tλa(t) ∗ ∃n′. a Z⇒ �n′ ∧ α > β

 while (B) C

∃x ∈ X, β. P (x, β) ∗

tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧
α ≥ β ∧ ¬B

This holds by the inductive hypothesis. Therefore we have succeeded.

6.0.2 Proof of while3

Assume

A = a : x ∈ X Q(x),A′ blocking(a)

T = X \Q−1(∅) ∀a ∈ dom(A′).¬blocking(a) T ⊆ X ′ ⊆ X

∅;λ;A �

 ∃x ∈ X.P (x) ∗ tλa(x) ∗
∃n. a Z⇒ �n ∧ B

 C

(∃x ∈ X.PP (x) ∗ tλa(x) ∗ ∃n′. a Z⇒ �n′ ∧ B) ∨(
∃x ∈ X ′,∃y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

) (9)

∅;λ;A �

{
∃x ∈ T. P (x) ∗ tλa(x) ∗ a Z⇒ � ∧ B

}
C

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}
(10)

We must prove

∅;λ;A �

{
∃x ∈ X.P (x) ∗ tλa(x) ∗
∃n. a Z⇒ �n ∧ B

}
while (B) C

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}
(11)

It is sufficient to show

∅;λ;A `

{
∃x ∈ X.P (x) ∗ tλa(x) ∗
∃n. a Z⇒ �n ∧ B

}
C; while (B) C

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}
(12)

72

since the other expansion case holds trivially.

We can apply the sequencing lemma and (9) to (12) to get

∅;λ;A �

(
∃x ∈ X.P (x) ∗ tλa(x) ∗
∃n′. a Z⇒ �n′ ∧ B

)
∨(

∃x ∈ X ′, ∃y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

)
 while (B) C

∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

 (13)

Unrolling and applying the consequence lemma gives us two cases (again, by

the definition of the guarantee relation, n′ < n):

∅;λ′;A �

{
∃x ∈ X.P ∗ tλa(x) ∗
∃n′. a Z⇒ �n′ ∧ B

}
C; while (B) C

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}
(14)

∅;λ′;A �

{
∃x ∈ X ′,∃y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}
skip

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}
(15)

Clearly (15) holds trivially. For (14), which we can see is the same as (12),

we can again inductively argue that, by continually applying the sequencing

lemma and (9), we either reach the (15) case, or n′ will reach 0.

If n′ reaches 0, we have

λ′;A �

〈
∃x ∈ X.P (x) ∗ tλa(x) ∗
a Z⇒ �0 ∧ B

〉
skip

〈
∃x ∈ T. P (x) ∗ tλa(x) ∗
a Z⇒ �0 ∧ B

〉

And therefore we have

∅;λ;A �

{
∃x ∈ T. P (x) ∗ tλa(x) ∗
a Z⇒ �0 ∧ B

}
C; while (B) C

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}
(16)

Applying the sequencing lemma and (10), we have

∅;λ;A �

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}
while (B) C

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}

73

Unrolling and applying the consequence lemma gives us

ffl

ffl

∅;λ′;A �

{
⊥

}
C; while (B) C

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}

∅;λ′;A �

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}
skip

{
∃x ∈ X ′, y ∈ Q(x).

R(x, y) ∗ a Z⇒ (x, y) ∧ ¬B

}

Both of these cases hold trivially. Therefore we have succeeded.

6.0.3 Proof of make atomic

Lemma 1. If, for p ∈ Viewdom(A), q, ω ∈
∐

x∈X Q(x) → Viewdom(A), x ∈ X,

y ∈ Q(x)

act; π;λ; a : x ∈ X Q(x),A;∃x, y. ω(x, y)∗a Z⇒ (x, y) �τ

{p ∗ a Z⇒ (x, y)}
C

{∃x, y. q(x, y) ∗ a Z⇒ (x, y)}

then

act; π;λ;A;ω(x, y) �τ {p} C {q(x, y)}

This lemma is stated without proof in the original TaDA paper.

Lemma 2. If, for p ∈ Viewdom(A), q, ω ∈
∐

x∈X Q(x) → Viewdom(A), x ∈ X,

y ∈ Q(x)

act′; π′;λ; a : x ∈ X Q(x),A;∃x, y. ω(x, y)∗a Z⇒ (x, y) �τ

{p ∗ a Z⇒ �}
C

{∃x, y. q(x, y) ∗ a Z⇒ (x, y)}

then

∃act. act; π;λ;A;ω(x, y) �τ {p} C {q(x, y)}

where π = π′ ∪ (a,X,Q, α)

This lemma follows necessarily from the definition of a world with atomicity

tracking and happens. The consequent represents the view in which the region

is updated in the world instead of in the atomicity tracking. Since one fewer

action is registered in the atomicity tracking component, one more action must

be registered in π. Due to time constraints, a fully detailed proof of this lemma

was not completed.

74

Assume

a /∈ A X ′ ⊆ X {(x, y) | x ∈ X, y ∈ Q(x)} ⊆ Tt(G)∗

if blocking(t) then π = ({(a,X ′, Q, α)} , ∅) ∪ π′ else π = π′

∃act′. act′; π′;λ′;A `

{
pp ∗ ∃x ∈ X. tλa(x) ∗ a Z⇒ �

}
C

{∃x ∈ X ′, y ∈ Q(x). qp(x, y) ∗ a Z⇒ (x, y)}

Where a : x ∈ X Q(x),A = A′

We must prove

∃act. act; π;λ′;A′ `

A

x ∈ X.
〈
pp

∣∣∣ tλa(x) ∗ [G]a

〉
C

E

y ∈ Q(x).
〈
qp(x, y)

∣∣∣ tλa(y) ∗ [G]a

〉
The majority of the proof is identical to the original TaDA proof, and so for

the most part this proof is reproduced from the paper. Our new obligation

is to show that act and π satisfy the obligations on them laid out in the

semantics.

Consider the case where C performs an action. Suppose that 〈C, s〉 a−→ 〈C′, s′〉
where a ∈ AAction. By the premiss, there must be some p′p with

λ;A �
〈
pp(s) ∗ ∃x ∈ X. tλ

′

a (x) ∗ a Z⇒ �
〉
a
〈
p′p(s

′)
〉

(1)

act′′; π′′;λ;A; Ω �τ
{
p′p
}
C′
{
∃x ∈ X, y ∈ Q(x). qp(x, y) ∗ a Z⇒ (x, y)

}
. (2)

Fix x ∈ X. Fix r ∈ ViewA′ . Fix ϕ ∈ pp(s) ∗ tλ
′
a (x) ∗ [G]a ∗ r.

Let p′p = λs.
{
ϕ ∈ AWorlddomA′

∣∣ ϕ • a Z⇒ � ∈ p′p(s)}.

Let p′′p(x, y) = λs.
{
ϕ ∈ AWorlddomA′

∣∣ ϕ • a Z⇒ (x, y) ∈ p′p(s)
}

.

Let r = r ∗ [G]a ∗ a Z⇒ −. (r is stable with respect to A since the additional

interference will be a : x ∈ X Q(x), and the subset of r that is compatible

with [G]a must be closed under this.) Let ϕ = ϕ • a Z⇒ �. By construction,

bϕcλ = bϕcλ. We have that ϕ ∈ (pp(s) ∗ ∃x ∈ X. tλa(x) ∗ a Z⇒ �) ∗ r.

By (1) there exists ϕ′ with a) ϕ Gλ;A ϕ′, b) h′ ∈ bw′cλ, and c) ϕ′ ∈ p′p(s′) ∗
r.

From a) we can be sure that dϕ′ 6= ♦. Indeed, since dϕ = � and ρϕ = x, it

must be that either dϕ′ = � or dϕ = (x, y) for some y ∈ Q(x).

75

Let ϕ′ be such that ϕ ∈ ϕ′ ∗ a Z⇒ −. Now

ϕ′ ∈ p′p(s′) ∗ tλ
′

a (x) ∗ [G]a ∨ ∃y ∈ Q(x). p′′p(x, y, s
′) ∗ tλ

′

a (y)

since ϕ′ ∈ p′p(s′) ∗ r (by c). By a) and definitions, we get ϕ Gλ;A ϕ
′. By con-

struction bϕ′cλ = bϕ′cλ so h′ ∈ bϕ′cλ by b). Hence, we have established

λ;A �
〈
pp(s) ∗ tλ

′

a (x) ∗ [G]a

〉
a
〈
p′p(s

′) ∗ tλ
′

a (x) ∗ [G]a ∨ ∃y ∈ Q(x). p′′p(x, y, s
′) ∗ tλ

′

a (y)
〉

.

We have that p′p ∗ ∃x ∈ X. tλ
′
a (x) ∗ a Z⇒ � �τ p′p and is stable with respect to

A. From (2), by left consequence, lemma 2, and the inductive hypothesis, we

have

∃act. act, π, λ;A; Ω �τ

A

x ∈ X. 〈p′p|tλ
′

a (x)∗[G]a〉 C′

E

y ∈ Y. 〈qp(x, y)|tλ′a (y)∗[G]a〉

Finally, from (2) and lemma 1, we have, for all y ∈ Q(x)

act′′, π′′, λ;A′;ω �τ
{
p′′p(x, y)

}
C′
{
qp(x, y)

}
.

The remaining cases are simpler, or follow similar reasoning.

6.0.4 Proof of terminates

Due to time constraints, we do not attempt a full formal proof of the correctness

of our procedure to check the allowed abstract traces. We give a sketch of how

such a proof might be carried out.

Given a C with an associated π under our model, we know that, since the

environment unblocks us finitely, we will have a k-step execution to skip for

some k, which will always carry out every action in π.

We know, because of the nec-consist side condition, that every abstract trace

of C is consistent with respect to every region’s transition system and total

over the set of π’s abstract timestamps.

This should be enough to show that after every transition, we are inevitably

left in exactly the correct state for the next transition to happen, without

needing special action from the environment. We do this by matching up

the next blocking action made by C with a subset of the traces identified by

76

nec-consist, and showing that subsequent actions conform to these traces by

induction.

7 Final evaluation

The objective of this project was to extend Total TaDA to prove the termination

of blocking algorithms without losing the properties of TaDA that make it a

useful logic; i.e. modularity and abstraction. This core objective was met, with

some caveats. The initial extension proposed has several flaws; it restricts both

the permitted region state transitions, and how module operations may be used

(e.g. in loops). We presented and commented on extensions that incrementally

relax these restrictions.

Arguably, some of these extensions introduce checks which are not tractable

for humans to verify, but this is already an existing trend in separation logic as

researchers continue to push the envelope in facilitating expressive proofs about

concurrent programs. TaDA already suffers from this, with complex proof rules

and subtle arguments about stability that leave a lot of room for human error.

Through the logic program encoding in appendix A, we sketch how some of

the more onerous checks of our system may be mechanised.

Considering our proof system with all extensions, the biggest remaining flaw is

that we cannot reason about potentially infinite traces of actions. Guaranteeing

that only finite actions are performed by each thread is a necessary condition

for proving termination of deadlock-free operations anyway, but is stronger

than necessary for starvation-free ones. For example, we cannot prove that the

code of fig. 31 terminates (only) with a starvation-free lock. In the final section,

we will discuss further work which could allow us to reason about infinite traces,

and thus take advantage of the weaker restrictions starvation-free operations

place on the environment.

For the most part, we maintain abstraction of the internal implementation

of modules. TaDA itself breaks abstraction in a minor way since abstract

predicates must expose the IDs of their internal regions. Our action system

relies on this to uniquely identify actions, ingraining this further into the logic.

Furthermore, if we have nesting blocking regions, each must generate its own

action, since in general the inner regions could also be referenced by a different

region.

Aside from this, the logic maintains most of the proof style of TaDA. We

77

[v] := 0;
b := 0;
while (b = 0) {
lock(x);
unlock(x);
b := [v];
}

lock(x);
unlock(x);
[v] := 1;

Figure 31: Terminates if lock is starvation free.

maintain the thread modularity and compositionality that make TaDA an

attractive, powerful system. We allow blocking regions to be layered freely

with other regions and abstract predicates.

7.1 Comparison with existing work

Even with the caveats and restrictions we have laid out, in many ways this

system represents a significant step forward from previous work on blocking

termination. No other logic exists which can prove termination of blocking

algorithms in the client-module paradigm while maintaining abstraction.

Earlier, we discussed the limiting assumptions made by each of the two most

prominent blocking termination logics. LiLi assumes a fixed number of threads,

cannot prove clients, and cannot easily prove module operations that leave

the module in a blocked state. Our new system does not have any of these

issues. Due to the last limitation mentioned, LiLi would certainly struggle to

prove even an implementation of the “general region” that characterises the

module space of our logic without extensions. We give such a proof in appendix

C.

Müller’s work does not handle the specification of arbitrarily blocking module

functions. We can, and furthermore we do so for a language that allows arbitrary

manipulation of shared memory, instead of restricting the language to message

passing in order to manage the interference of concurrent threads.

78

8 Closing thoughts and future work

As previously mentioned, this project is able to reason about the total cor-

rectness of modules that no other existing logic can, in a way that preserves

compositionality, modularity, and abstraction.

TaDA, the logic on which Total TaDA, and thus B-TT, is based, has the

fundamental limitation that it is unable to prove programs that involve helping,

where another thread may complete the local thread’s state transition on its

behalf. An extension to TaDA is in development which extends TaDA to handle

helping, and when it is complete it would be valuable to investigate if the

extensions of B-TT could be ported onto it.

There is still work to be done in lifting some of the remaining restrictions on

the expressivity of the logic. In the extended logic for more general regions, the

chain of Q state transformation functions which are built up from the initial

state can effectively be thought of as a continuation structure. It is possible

that reformulating the action ordering context into an explicit continuation

would allow us to express non-determinism, iteration, and infinite traces more

neatly.

In closing, B-TT opens up a wider class of terminating program for consideration

than any previous logic is able to handle. We fully intend to continue work on

it to deliver a conference-worthy contribution.

9 Bibliography

References

[1] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun.

ACM, vol. 12, pp. 576–580, Oct. 1969.

[2] J. C. Reynolds, “Separation logic: A logic for shared mutable data struc-

tures,” in Proceedings of the 17th Annual IEEE Symposium on Logic in

Computer Science, LICS ’02, (Washington, DC, USA), pp. 55–74, IEEE

Computer Society, 2002.

[3] S. Owicki and D. Gries, “Verifying properties of parallel programs: An

axiomatic approach,” Commun. ACM, vol. 19, pp. 279–285, May 1976.

79

[4] C. B. Jones, “Specification and design of (parallel) programs,” in IFIP,

1983.

[5] P. W. OHearn, “Resources, concurrency, and local reasoning,” Theor.

Comput. Sci., vol. 375, pp. 271–307, Apr. 2007.

[6] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and

V. Vafeiadis, “Concurrent abstract predicates,” in Proceedings of the

24th European Conference on Object-oriented Programming, ECOOP’10,

(Berlin, Heidelberg), pp. 504–528, Springer-Verlag, 2010.

[7] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner, “Steps in modular

specifications for concurrent modules (invited tutorial paper),” Electronic

Notes in Theoretical Computer Science, vol. 319, pp. 3 – 18, 2015. The 31st

Conference on the Mathematical Foundations of Programming Semantics

(MFPS XXXI).

[8] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for

concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, pp. 463–

492, July 1990.

[9] V. Vafeiadis, “Automatically proving linearizability,” in Proceedings of the

22Nd International Conference on Computer Aided Verification, CAV’10,

(Berlin, Heidelberg), pp. 450–464, Springer-Verlag, 2010.

[10] G. Boudol and I. Castellani, “Concurrency and atomicity,” Theor. Comput.

Sci., vol. 59, pp. 25–84, July 1988.

[11] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,

and D. Dreyer, “Iris: Monoids and invariants as an orthogonal basis for

concurrent reasoning,” in Proceedings of the 42Nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’15,

(New York, NY, USA), pp. 637–650, ACM, 2015.

[12] I. Sergey, A. Nanevski, and A. Banerjee, “Specifying and verifying concur-

rent algorithms with histories and subjectivity,” in Proceedings of the 24th

European Symposium on Programming on Programming Languages and

Systems - Volume 9032, (New York, NY, USA), pp. 333–358, Springer-

Verlag New York, Inc., 2015.

[13] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner, TaDA: A Logic

for Time and Data Abstraction, pp. 207–231. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2014.

80

[14] R. Floyd, “Assigning meanings to programs,” in Proceedings of the Ameri-

can Mathematical Society Symposia on Applied Mathematics 19, pp. 19–31,

1967.

[15] P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner, and J. Suther-

land, “Modular termination verification for non-blocking concurrency,”

in ECOOP, 2015.

[16] M. Herlihy and N. Shavit, “On the nature of progress,” in Proceedings of

the 15th International Conference on Principles of Distributed Systems,

OPODIS’11, (Berlin, Heidelberg), pp. 313–328, Springer-Verlag, 2011.

[17] H. Liang and X. Feng, “A program logic for concurrent objects under fair

scheduling,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2016, (New

York, NY, USA), pp. 385–399, ACM, 2016.

[18] P. Boström and P. Müller, “Modular verification of finite blocking in

non-terminating programs,” in ECOOP, 2015.

[19] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner, “Tada: A logic

for time and data abstraction. tech. rep., imperial college london (2014).”

[20] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang,

“Views: compositional reasoning for concurrent programs,” in POPL,

pp. 287–300, 2013.

[21] K. Svendsen and L. Birkedal, “Impredicative concurrent abstract predi-

cates.” Submitted for publication, 2013.

81

Appendices

A Encoding nec-consist as a logic program

We give an equivalent condition to the previously defined one which is more

amenable to encoding.

Take the set of abstract timestamps of π, Oπ. Assert: for all α ∈ Oπ there is

exactly one act ∈ p1(π) with p4(act) = α. We refer to this action as actα.

Consider an asymmetric, deterministic binary relation oπ across (Oπ]{start, end})2.

Take the transitive closure of oπ, written as o∗π. We define oπ|a the “region

trace” for region id a as follows:

{(α1, α2) | o∗π(α1, α2) ∧ sameregion(α1, α1, α2) ∧ (¬∃α3. o
∗
π(α1, α3) ∧ o∗π(α3, α2)

∧ sameregion(α1, α3, α2))}

where sameregion(α1, α2, α3) , α1 = start∨α3 = end∨p1(actα1) = p1(actα2) =

p1(actα3) = a.

Assert: oπ|a is asymmetric and antitransitive.

We define the “consistency” of a region trace. We assume that for all act ∈ p1(π),

taking Q = p3(act), for all x ∈ p2(act), Q(x) maps to the same set (for

convenience, we will refer to this set of states, as YQ).

A region trace oπ|a is consistent if oπ|a(α1, α2) implies that for all α1, α2,

Yp3(actα1) ⊆ p2(actα2) ∨ (α1 = start ∧ p2(actα2) =G) ∨ α2 = end.

We say oπ is an “abstract trace” of π if it is a maximal relation such that the

following conditions are met:

• oπ(α1, α2)⇒ o∗π(start, α1) ∨ α1 = start

• o∗π(α1, α2)⇒ ¬(α2 <π α1)

• oπ(α1, α2)⇒ (∀α3 6= α1. (α3 <π α2)⇒ o∗π(α3, α1))

• for all a, oπ|a is consistent.

. nec-consist(π) holds iff every abstract trace oπ of π has o∗π(start, end).

The logic program encoding of this condition is as follows. Each answer set of

the program represents a possible counterexample. The condition is proven if

the program has no answer sets.

82

time(start).

time(end).

gt(A, C) :- time(A), time(B), time(C), gt(A, B), gt(B, C).

sameRegion(A, B):- region(R), time(A), time(B),

action(R, _, _, A), action(R, _, _, B).

% o relation must be asymmetric and deterministic

incon(A, B) :- time(A), time(B), A = B.

incon(A, B) :- time(A), time(B), time(C), o(A, C), C != B.

incon(A, B) :- time(A), time(B), time(C), o(C, B), C != A.

% ordering conditions

incon(A, B) :- time(A), time(B), gt(B, A).

incon(A, B) :- time(A), time(C), gt(C, B), not reachable(C, A).

% check consistency of region traces (calculated dynamically)

incon(A, B) :- sameRegion(B, L), lastUpdate(R, A, L),

not consistSequence(L, B).

% dynamically check that this addition to the region trace is

% consistent

consistSequence(A, B) :- action(R, SA1, SA2, A),

action(R, SB1, SB2, B),

#subList(SA2, SB1).

% helper predicates to calculate region trace

lastUpdate(R, A, L) :- reachable(L, A), action(R, _, _, L),

not updateBetween(L, A).

updateBetween(Ut, T) :- sameRegion(Ut, Other), Ut != Other,

reachable(Ut, Other), reachable(Other, T).

o(A, B):- time(A), time(B), reachable(start, A),

not incon(A, B).

% transitive relation (reflexive for convenience)

reachable(A, B) :- time(A), time(B), A = B.

reachable(A, B) :- o(A, C), reachable(C, B).

83

% attempt to find a deadlocking example - failure indicates

% termination

:- reachable(start, end).

% sanity check user hypothesis

badAction :- Action(R, S1, S2, A), stateList(R, Ss),

not #subList(S1, Ss).

badAction :- Action(R, S1, S2, A), stateList(R, Ss),

not #subList(S2, Ss).

:- badAction.

% --

% encoding the 2-lock deadlock example as a hypothesis

% should find two deadlocking counterexamples

region(lockA).

region(lockB).

time(a1).

time(a2).

time(a3).

time(a4).

time(b1).

time(b2).

time(b3).

time(b4).

gt(start, a1).

gt(a1, a2).

gt(a2, a3).

gt(a3, a4).

gt(a4, end).

gt(start, b1).

gt(b1, b2).

gt(b2, b3).

84

gt(b3, b4).

gt(b4, end).

stateList(lockA, [0, 1]).

stateList(lockB, [0, 1]).

action(lockA, [0], [1], a1).

action(lockB, [0], [1], a2).

action(lockB, [1], [0], a3).

action(lockA, [1], [0], a4).

action(lockB, [0], [1], b1).

action(lockA, [0], [1], b2).

action(lockA, [1], [0], b3).

action(lockB, [1], [0], b4).

85

B The model of TaDA

What follows is the original definition of TaDA’s model as it appears in the

technical report [19].

B.1 Operational Semantics

The operational semantics of our language are given in Fig. 32 and Fig. 33.

B.2 Model

Guards and Guard Algebras. We assume a set Guard that will contain

all guards that we might wish to use. A guard algebra ζ = (G, •,0,1) consists

of:

• a carrier set G ⊆ Guard,

• an associative, commutative partial binary operator • : G × G ⇀ G,

• an identity element 0 ∈ G, with 0 • g = g for all g ∈ G, and

• a maximal element 1 ∈ G, with x ≤ 1 for all g ∈ G,

where

x ≤ y
def⇐⇒ ∃z. x • z = y.

We denote by GAlg the set of all guard algebras.

Note that a guard algebra is a separation algebra (in the sense of [20]) with a

single unit, 0.

Abstract States and Transition Systems. We assume a set AState that

will contain all abstract region states that we might wish to use. For a given

guard algebra ζ, a guard-labelled transition system T : Gζ →mon P(AState× AState)

is a mapping from guards to relations. The mapping is monotone with respect

to the resource ordering (≤ζ) and subset ordering (⊆), meaning that having

more guard resource permits more transitions. Although we make no restriction

on the transition relation, in general, we shall use the reflexive-transitive closure

T (g)∗. We denote by ASTSζ the set of all ζ-labelled transition systems.

86

〈s,C1〉
a−→ 〈s′,C′1〉

〈s,C1;C2〉
a−→ 〈s′,C′1;C2〉 〈s, skip;C〉 id−→ 〈s,C〉

BJBKs
〈s, if (B) C1 else C2〉

id−→ 〈s,C1〉

¬BJBKs
〈s, if (B) C1 else C2〉

id−→ 〈s,C2〉

BJBKs
〈s, while (B) C〉 id−→ 〈s,C; while (B) C〉

¬BJBKs
〈s, while (B) C〉 id−→ 〈s, skip〉

EJ
−→
E Ks = s′(vars(γ(f)))

〈s, x := f(
−→
E)〉 id−→ 〈s, x := 〈s′, code(γ(f))〉〉

τ
a−→ τ ′

〈s, x := τ〉 a−→ 〈s, x := τ ′〉

〈s, x := 〈s′, return E;C〉〉 id−→ 〈s[x 7→ EJEKs′], skip〉

〈s, x := E〉 id−→ 〈s[x 7→ EJEKs], skip〉

〈s, x := [E]]〉 read(EJEKs,v)−−−−−−−→ 〈s[x 7→ v], skip〉

〈s, [E1] := E2〉
write(EJE1Ks,EJE2Ks)−−−−−−−−−−−→ 〈s, skip〉

〈s, x := CAS(E1,E2,E3)〉 cas(EJE1Ks,EJE2Ks,EJE3Ks,v)−−−−−−−−−−−−−−−−→ 〈s[x 7→ v], skip〉

〈s, x := alloc(E)〉 alloc(EJEKs,v)−−−−−−−→ 〈s[x 7→ v], skip〉

〈s, fork f(
−→
E)〉 spawn(f,EJ

−→
E Ks)−−−−−−−−−→ 〈s, skip〉

Figure 32: Small-step operational semantics for threads,
a−→γ . The parameter γ

is fixed, and not shown.

87

T ‖ 〈s, skip〉 id−→ T T ‖ 〈s, return E;C〉 id−→ T

τ
spawn(f,−→v)−−−−−−→ τ ′ s(vars(γ(f))) = −→v

T ‖ τ id−→ T ‖ τ ′ ‖ 〈s, code(γ(f))〉

τ
a−→ τ ′ a /∈ {spawn(f,−→v) | f,−→v }

T ‖ τ a−→ T ‖ τ ′

Figure 33: Small-step operational semantics for thread pools,
a−→γ.

Abstract Region Types. We assume a set RTName of region type names.

An abstract region typing

t ∈ ARType
def
= RTName→

∐
ζ∈GAlg

ASTSζ

maps region type names to pairs of guard algebras and guard-labelled transition

systems.

Heaps. We assume a set Val of program values, which includes a set Loc ⊆ Val

of program locations. A heap h ∈ Heap
def
= Loc ⇀fin Val is a finite partial

function from locations to values. Heaps form a separation algebra (Heap,], ∅),
where] is the disjoint union of partial functions, and ∅ is the partial function

with the empty domain. Heaps are ordered by resource ordering: h1 ≤ h2
def⇐⇒

∃h3. h1] h3 = h2.

Abstract Predicates. We assume a set APName of abstract predicate names.

An abstract predicate a ∈ APName × Val∗ consists of an abstract predicate

name and a list of parameters. An abstract predicate bag b ∈ APBag
def
=

Mfin(APName× Val∗) is a finite multiset of abstract predicates. Abstract

predicate bags form a separation algebra (APBag,∪, ∅), where ∪ is multiset

union, and ∅ is the empty multiset. Abstract predicate bags are ordered by the

usual subset order ⊆, which corresponds to the resource order.

Levels. A level λ ∈ Level
def
= N is simply a natural number. Levels are ordered

by the usual well-founded ordering on natural numbers.

88

Region Assignments. We assume a (countably infinite) set of region iden-

tifiers, RId. A region assignment r ∈ RAss
def
= RId ⇀fin Level× RTName× Val∗

is a finite partial function from region identifiers to levels and parametrised

region type names. Region assignments are ordered by extension ordering:

r1 ≤ r2
def⇐⇒ ∀a ∈ dom(r1). r2(a) = r1(a).

For the following semantic definitions, we assume a fixed abstract region typing

t ∈ ARType.

Guard Assignments. Given a region assignment, r, a guard assignment

γ ∈ GAssr
def
=

∏
a∈dom(r)

Gζ(t(r(a)))

is a mapping from the regions declared in r to guards of the appropriate type for

each region. Guard assignments form a separation algebra (GAssr, •, λa.0ζ(t(r(a))))

where • is the pointwise lift of the guard combination operators:

γ1 • γ2
def
= λa. γ1(a) • γ2(a)

For γ1 ∈ GAssr1 , γ2 ∈ GAssr2 with r1 ≤ r2, guards assignments are ordered

pointwise-extensionally:

γ1 ≤ γ2
def⇐⇒ ∀a ∈ dom(γ1). γ1(a) ≤ γ2(a).

Region States. Given a region assignment, r, a region state

ρ ∈ RStater
def
= dom(r)→ AState

is a mapping from the regions declared in r to abstract states. For ρ1 ∈
RStater1 , ρ2 ∈ RStater2 with r1 ≤ r2, region states are ordered extensionally:

ρ1 ≤ ρ2
def⇐⇒ ∀a ∈ dom(ρ1). ρ1(a) = ρ2(a).

Worlds. A world

w ∈ World
def
=

∐
r∈RAss

(Heap× APBag × GAssr × RStater)

consists of a region assignment, a heap, an abstract predicate bag, a guard

assignment and a region state.

89

Worlds can be combined, provided they agree on the region assignment and

region state, by combining the remaining components in the appropriate

separation algebras. Thus, worlds form a (multi-unit) separation algebra

(World, ·, emp) where

(r, h1, b1, γ1, ρ) · (r, h2, b2, γ2, ρ)
def
= (r, h1] h2, b1 ∪ b2, γ1 • γ2, ρ)

emp
def
=
{

(r, ∅, ∅, λa.0ζ(t(r(a))), ρ)
∣∣ r ∈ RAss, ρ ∈ RStater

}
Worlds are also ordered by the product order. If w1 ≤ w2, then w2 may be

obtained from w1 by introducing new regions (with arbitary associated type

name and state) and adding heap, abstract-predicate and guard resources.

World Predicates. A world predicate p ∈ WPred
def
= P↑(World) is a set of

worlds that is upwards closed with respect to the world ordering. That is, if

w ∈ p and w ≤ w′ then w′ ∈ p.

The composition operator on worlds is lifted to world predicates:

p1 ∗ p2
def
= {w | ∃w1 ∈ p1, w2 ∈ p2. w = w1 • w2}

(That the results is upwards closed is not difficult to check: any extension to

the composition of two worlds can be tracked back and applied to one of the

components.) The ∗ operator is associative and commutative with identity

World. To denote ∗ iterated over a finite set X, we write �x∈X p(x).

Worlds with Atomic Tracking. The atomic tracking separation algebra is

defined to be ((AState× AState)] {�,♦} , •, (AState× AState) ∪ {♦}), where

• is defined by

� • ♦ = � = ♦ • �
♦ • ♦ = ♦

(x, y) • (x, y) = (x, y)

and undefined in all other cases. The resource ordering on this separation

algebra is characterised by the two rules: k ≤ k (for all k ∈ (AState×AState)]
{�,♦}) and ♦ ≤ �.

Given a finite set of region identifiers R ⊆fin RId, a world with atomic tracking

ϕ ∈ AWorldR
def
= World× (R → (AState× AState)] {�,♦}) consists of a world

90

together with a mapping that associates atomic tracking resources with each

region in R. The mapping records if an atomic update has taken place on

a region, and, if so, what state change the region underwent in the update.

Specifically, ♦ and � record that the atomic update has not yet happened,

while (x, y) records that the update has happened, and it entailed updating the

abstract state from x to y. The difference between ♦ and � is that � embodies

a right to perform the update, while ♦ does not.

By lifting • to maps, the maps form a separation algebra. Consequently,

by combining the operators of its components, AWorldR is also an ordered

separation algebra.

We consider that World = AWorld∅.

As with worlds, we consider predicates over worlds with atomic tracking

p ∈ AWPredR
def
= P↑(AWorldR) to be upwards-closed sets. These predicates

similarly have a ∗ operator.

Atomicity Context. An atomicity context A ∈ AContext
def
= RId ⇀fin

AState ⇀ P(AState) is a (finite) partial mapping from region identifiers to

partial, non-deterministic abstract state transformers. In the context of prov-

ing that an operation is abstractly atomic, the atomicity context records the

abstract operation to be performed. This has implications in terms of both

how the thread performing the operation and the environment can update the

region mentioned in the context.

Rely Relation. Interference by the environment is abstracted by the rely

relation. For a given atomicity context A ∈ AContext, with R = dom(A),

the rely relation RA ⊆ AWorldR × AWorldR is the smallest reflexive-transitive

relation that satisfies the following rules:

g # g′ (s, s′) ∈ Tt(n)(g
′)∗ (d(a) ∈ {�,♦} ⇒ s′ ∈ dom(A(a)))

(r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s], d) RA (r[a 7→ n], h, b, γ[a 7→ g], ρ[a 7→ s′], d)

(s, s′) ∈ A(a)

(r[a 7→ n], h, b, γ, ρ[a 7→ s], d[a 7→ ♦]) RA (r[a 7→ n], h, b, γ, ρ[a 7→ s′], d[a 7→ (s, s′)])

The first rule expresses that the environment may make any update to a region

for which it can have a guard that permits it in the corresponding transition

system. (It can only have such a guard if it is compatible with the guard held

by the thread, expressed as g # g′.) The exception to this is that, if an atomic

91

update is pending then the environment must not take the state outside of

those on which the atomic operation is set to perform.

The second rule expresses that having the � entitles one to perform an update

corresponding to that expressed in the atomicity context.

Note that interference is explicitly confined to the shared regions and atomic

tracking resources. Furthermore, extending the atomicity context decreases the

possible interference of the environment.

Stable Predicates. Given an atomicity context A ∈ AContext, the stable

predicates are those which are closed under the associated rely relation. That

is, we define the stability judgement as follows:

A � p stable
def⇐⇒ RA (p) ⊆ p.

We call the stable predicates views (as in [20]) and denote the set of views

(in atomicity context A) by ViewA. We drop the subscript when the empty

atomicity context is intended.

If A′ is an extension of A, we have a coercion from ViewA to ViewA′ by extending

the atomicity tracking component for the additional regions in every possible

way.

Stable predicates are closed under ∗. That is

A � p stable ∧ A � q stable =⇒ A � p ∗ q stable

Region Interpretation. A region interpretation I ∈ RInterp
def
= Level ×

RTName × Val∗ × RId × AState → View associates a view with each abstract

state of each parametrised region type. The parameters are used to specify,

for example, the address of a datastructure contained in the region. The

region identifier is often a necessary parameter as it is common for a region

interpretation to refer to guards for the region.1

Abstract Predicate Interpretation. An abstract predicate interpretation

ι ∈ APInterp
def
= APName× Val∗ → View associates a view with each abstract

1Here, we have avoided having region interpretations directly referring to region interpre-
tations. Impredicative CAP [21] does support this by constructing the relevant domains in
the topos of trees. We opt for a simpler, if less powerful, alternative: breaking self-reference
by indirection through region type names.

92

predicate.

For the following, assume a fixed region interpretation I and abstract predicate

interpretation ι.

Region Collapse. Given a level λ ∈ Level, the region collapse of a world

ϕ ∈ AWorldR′ is a set of worlds given by:

ϕ↓λ
def
=

{
ϕ · (w′, ∅)

∣∣∣∣ w′ ∈ �
{a | ∃λ′<λ.rϕ(a)=(λ′,−,−)}

I(rϕ(a), a, ρϕ(a))

}

This operation is lifted to predicates in a straightforward manner: p↓λ
def
=⋃

ϕ∈p ϕ↓λ.

Abstract Predicate Collapse. The one-step abstract predicate collapse of

a world is a set of worlds given by:

(r, h, b, γ, ρ, d)�1
def
=

{
(r, h, ∅, γ, ρ, d) · (w, ∅)

∣∣∣∣ w ∈�
a∈b

ι(a)

}

This is lifted to predicates: p�1
def
=
⋃
ϕ∈p ϕ�1. The one-step collapse is iterated

to give the multi-step collapse: p�n+1
def
= (p�n)�1.

The abstract predicate collapse of a predicate applies the multi-step collapse to

collapse all abstract predicates:

p�
def
= {ϕ | ∃n. ϕ ∈ p�n ∧ bϕ = ∅}

Note. This approach to interpreting abstract predicates is different from the

usual one. It effectively gives a step-indexed interpretation to the predicates:

the concrete interpretation is given by the finite unfoldings. If a predicate

cannot be made fully concrete by finite unfolding, then its semantics will be

false.

Reification. The reification operation on worlds collapses the regions and

the abstract predicates, and then considers only the heap portion:

bϕcλ
def
= {hϕ′ | ϕ′ ∈ ϕ↓λ�}

This operation is lifted to predicates in the usual manner.

93

Guarantee Relation. Given a level λ ∈ Level, and atomicity context A ∈
AContext, the guarantee relation Gλ;A ⊆ AWorldR′ × AWorldR′ is defined

as:

ϕ Gλ;A ϕ
′ def⇐⇒ ∀a. (∃λ′ ≥ λ. rϕ(a) = (λ′,−,−)) =⇒ ρϕ(a) = ρϕ′(a) ∧

∀a ∈ domA.

 (dϕ(a) = dϕ′(a) ∧ ρϕ(a) = ρϕ′(a)) ∨(
dϕ(a) = � ∧ dϕ′(a) = (ρϕ(a), ρϕ′(a))

∧ (ρϕ(a), ρϕ′(a)) ∈ A(a)

)
The guarantee relation enforces that regions with level λ or higher cannot be

modified. It also enforces that regions mentioned in the atomicity context can

only be updated using the atomicity context.

Note. It will be necessary to enforce that each execution step preserves regions

above a certain level, because these regions will simply be dropped by the

reification. If we didn’t constrain them in this way, a thread could change them

as it liked (resources permitting) without even making a concrete update!

B.2.1 Semantic Judgements

In the Views Framework [20], primitive atomic actions are abstracted to relations

on views by means of an atomic satisfaction judgement. Here, we have an

analogous judgement, but which is more complex as it expresses the role of

an action in performing an abstractly-atomic operation. To express this role,

we conceptually divide the view into a private and a public part. A thread is

at liberty to do as it pleases with the private part (subject to preserving all

stable frames). The public part, however, must be maintained invariant by the

thread until it performs its abstract atomic action, at which point it updates

the public part accordingly and thereafter loses access to it. The primitive

atomic satisfaction judgement therefore incorporates five assertions: pp, the

precondition for the private part; p, the precondition for the public part; p′p, the

postcondition for the private part where the atomic update does not happen;

q, the postcondition for the public part (when an atomic update does happen

— otherwise p plays the role); and qp, the postcondition for the private part

where the atomic update does happen.

Definition 1 (Primitive Atomic Satisfaction Judgement). The primitive atomic

satisfaction judgement λ;A � 〈pp | p〉 a 〈p′p | −〉 + 〈qp | q〉, where λ ∈ Level,

94

A ∈ AContext, a ∈ AAction and pp, p, p
′
p, q, qp ∈ ViewdomA, is defined as:

λ;A � 〈pp | p〉 a 〈p′p | −〉+ 〈qp | q〉
def⇐⇒

∀r ∈ ViewA.∀ϕ ∈ pp ∗ p ∗ r.∀h ∈ bϕcλ.∀h′ ∈ JaK(h).

∃ϕ′. ϕ Gλ;A ϕ
′ ∧ h′ ∈ bϕ′cλ ∧ ϕ′ ∈ (p′p ∗ p ∗ r) ∪ (qp ∗ q ∗ r)

Definition 2 (Primitive Atomic Satisfaction Judgement).

λ;A � 〈p〉a〈q〉 def⇐⇒
∀r ∈ ViewA. ∀ϕ ∈ p ∗ r.∀h ∈ bϕcλ.∀h′ ∈ JaK(h).

∃ϕ′. ϕ Gλ;A ϕ
′ ∧ h′ ∈ bϕ′cλ ∧ ϕ′ ∈ q ∗ r.

Definition 3 (Semantic Judgement). The semantic judgement

λ;A; Ω �

A

x ∈ X. 〈pp | p(x)〉 C

E

y ∈ Y. 〈qp(x,y) | q(x,y)〉

where

• λ ∈ Level is a level strictly greater than that of any region that will be

affected by the program;

• A ∈ AContext is the atomicity context, which constrains updates to

regions on which an abstractly atomic update is to be performed;

• Ω ∈ X × Y → Val→ ViewdomA is the postcondition on return, which is

parametrised by the value returned;

• pp ∈ Store → ViewdomA is the private part of the precondition, which

does not correspond to resources in some opened shared region, and is

parametrised by the valuation of program variables;

• p ∈ X → ViewdomA is the public part of the precondition, which may cor-

respond to resources from some opened shared regions, and is parametrised

by x ∈ X that tracks the precondition at the linearisation point;

• C ∈ Command is the program under consideration;

• qp ∈ X × Y → Store → ViewdomA is the private part of the postcondi-

tion, which is parametrised by x ∈ X that tracks the precondition at

the linearisation point, by y ∈ Y that tracks the postcondition at the

linearisation point, and by the valuation of program variables;

• q ∈ X × Y → ViewdomA is the public part of the postcondition, which is

95

similarly parametrised by x ∈ X and y ∈ Y ,

is defined to be the least-general judgement that holds when the following

conditions hold:

• For all s, s′ ∈ Store, C′ ∈ Command, a ∈ AAction with 〈C, s〉 a−→ 〈C′, s′〉,
for all x ∈ X, there exist p′p ∈ Store→ ViewdomA, p′′p ∈ X×Y → Store→
ViewdomA such that

λ;A �
〈
pp(s) ∗ p(x)

〉
a
〈
p′p(s

′) ∗ p(x) ∨ ∃y ∈ Q(x). p′′p(x,y, s
′) ∗ q(x,y)

〉
λ;A; Ω �

A

x ∈ X. 〈p′p|p(x)〉 C′

E

y ∈ Y. 〈qp(x,y)|q(x,y)〉,

and for all y ∈ Q(x), λ;A; Ω(x,y) �
{
p′′p(x,y)

}
C′
{
qp(x,y)

}
.

• For all s, s′ ∈ Store, C′ ∈ Command, f , −→v with 〈C, s〉 fork(f,−→v)−−−−−→ 〈C′, s′〉,
for all x ∈ X, there exist p′p ∈ Store → ViewdomA, p′′p ∈ X × Y →
Store → ViewdomA and pf ∈ Store → View such that for all sf ∈ Store

with sf (vars(γ(f))) = −→v ,

λ;A �
〈
pp(s) ∗ p(x)

〉
id
〈
p′p(s

′) ∗ pf (sf) ∗ p(x) ∨ ∃y ∈ Q(x). p′′p(s
′) ∗ pf (sf) ∗ q(x,y)

〉
,

λ;A; Ω �
A

x ∈ X. 〈p′p|p(x)〉 C′
E

y ∈ Y. 〈qp(x,y)|q(x,y)〉,

for all y ∈ Q(x), λ;A; Ω(x,y) �
{
p′′p(x,y)

}
C′
{
qp(x,y)

}
,

and λ; ∅; true �
{
pf

}
code(γ(f))

{
true

}
.

• If C = skip then, for all s ∈ Store, x ∈ X, there exists y ∈ Y such that

λ;A � 〈pp(s) | p(x)〉 id 〈false | −〉+ 〈qp(x,y, s) | q(x,y)〉.

• If C = return E;C′ then, for all s ∈ Store, x ∈ X, there exists y ∈ Y
such that

λ;A � 〈pp(s) | p(x)〉 id 〈false | −〉+ 〈Ω(x,y, EJEKs) | q(x,y)〉.

Here, we adopt the syntax λ;A; Ω �
{
p
}
C
{
q
}

as shorthand for λ;A; Ω �

A

x ∈ 1. 〈p|true〉 C

E

y ∈ 1. 〈q|true〉.

The semantic judgement breaks down into four mutually-exclusive cases: two

progressing and two terminating. The first case covers normal progress, where

the thread performs some atomic action (possibly id). The action may or

96

may not perform the linearisation point: the two new private views express

the outcome of each case. In the case where the linearisation point is not

performed, the continuation takes up this obligation. In the case where the

linearisation point is performed, the continuation loses responsibility for the

public part.

The second case covers forking a new thread. This is just like the first case,

taking the action id, but with an additional obligation on the semantics of the

new thread: we must split the private part to give a precondition for both the

continuation and the newly-forked thread. Since it is not possible to explicitly

join on forked threads, we take their postcondition to be simply true. Note

that the forked thread does not participate in the atomic action of the original

thread.

The third case covers ordinary termination. In this case, the atomic action

must be performed by the id action (since the thread is not going to perform

any further actions).

The fourth case covers termination by return. This is similar to the previous

case, except that the return postcondition, Ω, is used.

97

C Proofs involving the general region

We conduct the proof with a simple interpretation of the region as a single

memory cell.

(a, {1}, Q, α) `
with Q(1) = {2}, otherwise Q(n) = {}

A

y ∈ N.〈
GRegiona(x, y)

〉

m
ak

e
at

om
ic

a : y ∈ N Q(y) `{
∃y ∈ N.GRegiona(x, y) ∗ a Z⇒ �

}
b := 0;{
∃y ∈ N.GRegiona(x, y) ∗
(a Z⇒ (1, 2) ∧ b = 1 ∨ a Z⇒ � ∧ b = 0)

}
while (b = 0) {

w
h
il
e3

with T = {1}{
∃y ∈ N/ {1} .GRegiona(x, y) ∗ a Z⇒ �

}

u
p

d
at

e
re

gi
on

A

n ∈ N/ {1} .〈
x 7→ n

〉
b := CAS(x, 1, 2);〈

(x 7→ 2 ∧ n = 1 ∧ b = 1) ∨
(x 7→ n ∧ n 6= 1 ∧ b = 0)

〉
/
〈
(x 7→ 2 ∧ n = 1 ∧ b = 1)

〉
{
∃y ∈ N.GRegiona(x, y) ∗
(a Z⇒ (1, 2) ∧ b = 1 ∨ a Z⇒ � ∧ b = 0)

}
/
{

(a Z⇒ (1, 2) ∧ b = 1
}

}{
∃y ∈ {1} , z ∈ Q(y). a Z⇒ (y, z) ∧ b = 1

}〈
GRegiona(x, 2)

〉
Figure 34: Proof of an example general region operations, 1to2(x).

For a client proof, we can prove termination without caring particularly about

a tight specification. Assuming that the value of the region is initially 0,

98

π `{
GRegiona(0)

}
/
{
∃n ∈ N.GRegiona(n)

}
π′ `{

∃n ∈ N.GRegiona(n)
}

α1 0to1(x);{
∃n ∈ N.GRegiona(n)

}
α2 2to1(x);{

∃n ∈ N.GRegiona(n)
}

π′′ `{
∃n ∈ N.GRegiona(n)

}
1to2(x); β1{

∃n ∈ N.GRegiona(n)
}

1to0(x); β2{
∃n ∈ N.GRegiona(n)

}{
∃n ∈ N.GRegiona(n)

}
Figure 35: Proof of an example general region client.

with actions are α (the prefix action), α1, α2, β1, β2, π will be{
(a, {G}, λx. {0}, α), (a, {0}, Q0to1, α1), (a, {2}, Q2to1, α2),
(a, {1}, Q1to2, β1), (a, {1}, Q1to0, β2)

}
,

α < α1 < α2, α < β1 < β2

There are 325 sequences containing the timestamps no more than once. We
can reduce this by only considering the ones with consistent region traces.
The sequences with consistent region traces are as follows:

α
α→ α1

α→ α1 → α2

α→ α1 → α2 → β1

α→ α1 → α2 → β1 → β2

only α→ α1 → α2 → β1 → β2 is a maximal sequence, and it contains all actions,
so we have proven that the program terminates.
Now let us conduct the proof without assuming that the initial state of the
region is 0. The only difference will be the precondition, and thus the state
encoded in the prefix action. π will be{

(a, {G}, λx.N, α), (a, {0}, Q0to1, α1), (a, {2}, Q2to1, α2),
(a, {1}, Q1to2, β1), (a, {1}, Q1to0, β2)

}
,

α < α1 < α2, α < β1 < β2

Now we have a counter example trace - α→ β1 is a maximal trace which
respects all our restrictions but does not contain all actions. Therefore we
cannot prove that the program terminates. Note that this is not the same as
proving that it does not terminate.

99

	Introduction
	Contributions

	Background
	Hoare logic
	Separation logic
	Proof notation
	Modular verification
	Predicates
	Historical attempts at concurrency
	Owicki-Gries
	Rely/guarantee

	Separation Logic
	Concurrent separation logic
	CAP
	Linearisability
	Abstraction and abstract atomicity

	TaDA
	Formalising an atomic update
	Make atomic
	The full TaDA triple
	The non-atomic triple
	Update region
	Proving a client
	A sequential client
	A concurrent client

	Total correctness
	Loop variants

	Total TaDA
	Termination of increment

	Total correctness: blocking algorithms
	Maximal vs minimal progress
	Blocking vs non-blocking
	A periodic table of programs

	LiLi
	Definite actions
	Unblocking conditions
	Limitations
	Lessons

	Boström and Müller
	Lessons

	B-TT: extending Total TaDA
	Rules
	While rules

	Termination
	Minimal actions

	The terminates rule
	The necessary consistency side-condition
	Relation to histories and linearisability

	Example: spin lock
	Module specification
	A sequential client
	A concurrent client
	Failure to prove a deadlocking client
	A final concurrent client

	Further Improvements
	More general modules
	Even more general modules
	Most general modules

	Improving loops
	If branching

	The model
	Soundness
	Proof of while2
	Proof of while3
	Proof of make atomic
	Proof of terminates

	Final evaluation
	Comparison with existing work

	Closing thoughts and future work
	Bibliography
	Encoding nec-consist as a logic program
	The model of TaDA
	Operational Semantics
	Model
	Semantic Judgements

	Proofs involving the general region

