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Abstract

Individuals connect in social and information networks connect more frequently when they
share similar characteristics - this is known as homophily, or more commonly “birds of a feather
flock together”. As a result of homophily people form communities, a group of people that have
a particular characteristic in common. As a result, characteristics can be infered by discovering
communities. Early approaches to community detection assumed non-overlapping communi-
ties. However as humans often demonstrate multiple affiliations, overlapping community struc-
ture is more appropriate for modelling social networks. The study of overlapping community
structures in social networks allows us to understand an individual’s multiple traits from their
connections with other individuals, leading to applications in finance, marketing and social
science research. In this report, we investigate the generation of networks with overlapping
communities and the detection of overlapping communities within.

Several graph generative models (e.g. Erdős and Rényi (1959) [16], Watts and Strogatz
(1998) [48], Barabási and Albert (1999) [5], Holland et al. (1983) [25], Yang and Leskovec
(2012) [53]) were proposed for real networks, yet they all lack the seemingly invariant prop-
erties: an overlapping community structure and the scale-free property (i.e. power-law dis-
tributed node degrees). Based on our observation that individuals who are more influential,
engaged and participate more gain more connections within a community, we propose a new
overlapping community-based graph generative model. We show our model, one of the first
ever proposed, is capable of generating graphs with the scale-free property based on overlap-
ping communities with power-law distributed sizes.

We then apply our graph generative process to extending the verification framework for the
Cluster Affiliation Model for Big Networks (BigClam) proposed by Yang and Leskovec (2013) [54],
a popular overlapping community detection algorithm. The framework accounts for extra net-
work characteristics (e.g. the degree of overlap between communities, dispersion of community
sizes), and can be applied to other overlapping community detection algorithms as is. We iden-
tify the three stages of BigClam and obtain their apparent runtime complexity. We also notice
the final stage dominates BigClam’s runtime for networks with a large number of communities,
yet its computation is not parallelised across CPU threads. By parallelising the stage’s computa-
tion, we speed up runtime by as much as 430%.
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• Dr Luis Muñoz González for his input during the initial stage of the project,

• Staff and students I have met during the past four years - I am afraid I am unable to thank
each and every of them individually here, as it would probably add another 40 pages to
the report,

• My sister, Nicole, for upholding the rules and constructs of the English Language in my
report, and finally,

• My father, mother, and grandmother for their continuous love and support throughout the
years, even though we are thousands of miles apart.

iii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Community Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Overlapping Communities . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 A graph generative model based on overlapping communities . . . . . . . 5
1.2.2 Existence of a good community model and detection algorithm . . . . . . 5

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Graph and Network Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Power Law Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Pareto Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Poisson’s Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Mixed Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Welch’s t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Normal Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Convex Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Related Work 19
3.1 Graph & Network Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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Chapter 1

Introduction

“Communities: A group of people living in the same place or having a particular char-
acteristic in common.” (Oxford English Dictionary, 2016) [41]

This project aims to present techniques to overcome challenges in extracting information from
social and information networks with an overlapping community structure. More specifically,
we attempt to address the question, “Given interactions between individuals within a network,
can we locate all (possibly overlapping) communities and their members in a better way?”

1.1 Motivation

Interactions between individuals, objects, and concepts have been observed since antiquity.
They are generally studied via networks (graphs), where different entities are represented as
nodes and interactions between entities are represented as edges (figure 1.1 provides an illus-
tration of a social network featuring individual-individual interaction), with modern research
into social networks beginning as early as the 1930s (Freeman, 2004) [18].

1.1.1 Community Detection

Networks representing real, complex systems demonstrate a few common characteristics, one
being the community structure in networks as identified by Girvan and Newman (2002) [20].
The study of communities within networks remains a young research field, have only gained
popularity in the past ten to fifteen years.

One of the main research areas on networks centres on community detection: given a network,
are we able to locate communities within, and infer characteristics of an individual based on
their community affiliations? The research problem is made more difficult as Fortunato (2010)
points out that there is no universally accepted definition of a community [17]. A general
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1.1. MOTIVATION

Figure 1.1: Illustration of a social network (individual-individual interaction).

guideline provided by Whang et al. (2013) defines community in the graph context as “a set
of cohesive vertices that have more connections inside the set than outside” [50], though a
wide range of interpretations of a community in a social context exist - it can be a user-created
group on social networks (Yang and Leskovec, 2012) [53], or individuals separated by race or
geographical location (Gleiser and Danon, 2003) [22].

We are interested in community detection due to its wide-range application and impact:

• Finance: Positive correlations are found between prices of different energy stocks

• Biomedical research: Interaction between proteins is more prominent in the same func-
tional module

• Social networks: People are more likely to make friends with people in the same institu-
tion than those outside

• Recommender systems: Customers are likely to purchase goods from the same group of
products

If stocks, proteins, people and goods are treated as entities and industries, functional modules,
institutions and groups of products are treated as communities, a good solution for community
detection can allow one to gain in financial markets, cure diseases, understand friendships, and
increase sales simultaneously.

Relationship with Clustering

Cohen et al. (1997) showed that all finite graphs can be embedded in a three-dimentional
Euclidean space R3 [13]. This implies detecting communities within a graph is equivalent to

2



Chapter 1. Introduction

detecting clusters within a Euclidean space, and thus advances in community detection can be
easily translated to solutions to clustering problems and vice versa.

1.1.2 Overlapping Communities

We then consider the notion of overlapping communities, under which an entity is allowed, and
usually assumed, to have multiple community affiliations. A university student may be affili-
ated to academics-based communities (e.g. the groups of Mathematics and Computer Science
students), interest-based communities (e.g. a symphony orchestra, a cycling team, a London
transport meetup group), and culture-based communities all at the same time.

Furthermore, Yang and Leskovec (2013) summarised observations on positive correlations be-
tween individual-individual interactions and community membership of said individuals:

“[N]odes in the overlaps will have higher chance of being connected because they
belong to multiple communities. [...] For example, people sharing multiple hob-
bies or belonging to several common institutions have a higher chance of becoming
friends, researchers with many common interests are more likely to work together,
and proteins involved in multiple common functional modules are more likely to
interact.” [54]

The empirical observations lead to in-depth study of overlapping community models and detec-
tion algorithms, with various approaches proposed (see Fortunato (2010) [17], who dedicated
a section solely to overlapping community detection algorithms).

Ability to recover overlapping communities would allow one to gain more in-depth knowledge
of each entity, having obtained all their community affiliations instead of one (possibly the most
prominent) affiliation. However, overlapping community detection is considered more difficult
than non-overlapping community detection, as one is required to infer multiple community
affiliations for every individual with satisfactory accuracy.

Relationship with Feature Allocation

Recently Broderick et al. (2013) generalised the clustering problem, allowing each data point
to be allocated an arbitrary number of features - groups that demonstrate common character-
istics [9]. Combining the generalisation with the result on graph embedding by Cohen et al.
(1997) (see section 1.1.1), we observe the strong link between the fields of overlapping com-
munity detection and feature allocation - with suitable adaptation, problems in both fields are
equivalent.

We will focus on overlapping community detection throughout the work, and briefly discuss
how we can apply techniques developed in solving feature allocation problems at the end of
this project.

3



1.1. MOTIVATION

Figure 1.2: Illustration of the relationship between (overlapping) community-based graph genera-
tive models and (overlapping) community detection, both of which are the reverse process for the
each other.

1.1.3 Graph Generation

We also approach the problem from the opposite direction, asking the question, “Given a set of
overlapping communities and their members, can we generate interactions between individuals
that resemble what is observed in real networks?”

The ability to generate real-like networks allows us to understand the underlying mechanism of
society - how society works behind the scenes. Just like how models in physics try to replicate
everyday life phenomena, if we are able to replicate features of real networks, we are one step
closer to understanding motivating factors behind individual interactions. Moreover, developing
a graph generative model can lead to the learning of latent features in a graph via Bayesian
inference methods, which is equivalent to our original problem (see figure 1.2).

Network generation has fascinated generations of researchers, with one of the first contempo-
rary models proposed by Erdős and Rényi (1959) [16]. The problem has been attempted by
researchers including (but not limited to) Watts and Strogatz (1998) [48], Barabási and Albert
(1999) [5], Holland et al. (1983) [25], and Yang and Leskovec (2012) [53]. Each of their work
chip away less desirable properties in the models proposed by their predecessors, address extra
features found in networks, and sometimes open up a new branch of study.

4



Chapter 1. Introduction

1.2 Objectives

The projects aims to obtain insights into some or all of the following open academic and com-
mercial research problems on network generation and overlapping community detection:

1.2.1 A graph generative model based on overlapping communities

The ability to generate graphs that resemble real networks allows us to understand social dy-
namics and inherent properties of society, and to quantitatively evaluate network-related algo-
rithms.

We aim to locate and/or develop a good graph generative model which is capable of generating
graphs with the following characteristics:

• Scale-free property: node degrees following a power-law distribution

• Overlapping community structure

1.2.2 Existence of a good community model and detection algorithm

We interpret a good community model and detection algorithm to be that satisfying the follow-
ing three properties:

• Able to detect overlapping communities accurately

• Able to scale with increasing network size

• Easy to interpret and be explained to laymen

Most of the state-of-the-art community detection algorithms satisfy only two out of three prop-
erties above, which is not ideal. We aim to locate and/or develop a good community model and
detection algorithm, and evaluate the model and algorithm’s fitness by applying it to real and
synthetic networks.

1.3 Contribution

We summarise our contribution through this investigation. In the field of network generation,
we:

• Showed the Community-Affiliation Graph Model (AGM) [53] exhibits properties consid-
ered undesirable for real networks

• Observed influential, engaged individuals with a high participation rate gain more con-
nections within their communities

5



1.3. CONTRIBUTION

• Developed an overlapping community-based graph generative model, which accommo-
dates both an overlapping community structure and the scale-free property (node degrees
following a power-law distribution)

In the field of overlapping community detection, we:

• Extended the verification framework for the accuracy and scalability of the Cluster Affilia-
tion Model for Big Networks (BigClam), and overlapping community detection algorithms
in general, taking various network characteristics into account

• Obtained the apparent runtime complexity for BigClam with the verification framework

• Sped up the dominating stage of BigClam by up to 430% and the overall runtime by 150%,
hence saving hours of time spent waiting for results

6



Chapter 2

Background

We include a set of required preliminary knowledge and notation/nomenclature used through-
out the investigation. We assume readers are familiar with basic concepts in linear algebra and
statistics.

The chapter is organised as follows. Section 2.1 defines the extensions on basic concepts in
vectors and matrices. We introduce concepts related to and nomenclature used in graph and
network theory in section 2.2. Less common probability distributions used throughout the
investigation are outlined in section 2.3, and an overview of a t-test and normal linear models
are detailed in sections 2.4 and 2.5 respectively. We conclude the chapter with concepts related
to computational optimisation in section 2.6.

2.1 Vectors and Matrices

We first introduce the notion of non-negative vectors and matrices, which are used to model the
strength of an individual’s affiliation to a community in chapters 4 and 5.

Definition 2.1. (Non-negative vectors and matrices)

A vector v = (vi) ∈ Rn is non-negative if all entries of v are non-negative.
(i.e. vi ≥ 0 ∀ i ∈ {1, ..., n})

Similarly, A matrix F = (Fij) ∈ Rn×m is non-negative if all entries of A are non-negative.
(i.e. Aij ≥ 0 ∀ i ∈ {1, ..., n}, j ∈ {1, ...,m})

2.2 Graph and Network Theory

We then give a few definitions on graph and network theory used throughout our investigation.

7



2.2. GRAPH AND NETWORK THEORY

Definition 2.2. (Adjacency matrix for an undirected graph)

Let G = G(V,E) be an undirected graph, a matrix A = (Aij) ∈ R|V |×|V | (i, j ∈ V ) is called an
adjacency matrix with respect to G if

Aij =

{
1 If (i, j) ∈ E
0 Otherwise

(2.1)

Definition 2.3. (Conductance of a subset of nodes for an undirected graph)

Let G = G(V,E) be an undirected graph, A = (Aij) be an adjacency matrix with respect to G.
Moreover let S ⊆ V be a subset of nodes in the graph, and S̄ = V \ S be all other nodes in the
graph.

The conductance of S is

ϕ(S) =

∑
i∈S,j 6∈S Aij

min(A(S), A(S̄))
(2.2)

where A(S) =
∑

i∈S
∑

j∈V Aij

In general, ϕ(S) could be interpreted as the proportion of (undirected) edges from nodes within
S to nodes outside S.

Definition 2.4. (Neighbours, neighbourhood and locally minimal neighbourhood)

Let G = G(V,E) be a graph.

The neighbours N (u) of node u ∈ V is the set of nodes which shares an edge with u under G
(i.e. N (u) = {v : v ∈ V, (u, v) ∈ E}).

A neighbourhood N(u) of node u ∈ V is the set containing u and u’s immediate neighbours in
G (i.e. N(u) = {u} ∪ N (u), see definition 3.12).

A neighbourhood N(u) is said to be locally minimal if it has lower conductance than all N(v),
v ∈ N (u) (i.e. ϕ(N(u)) ≤ ϕ(N(v)) ∀ v ∈ N (u)).

Definition 2.5. (Nomenclature on “network”)

A network is a collection of the following:

• The set of individuals (denoted V )

• The set of communities (denoted C)

• The set of community memberships/ individual affiliations between individuals and com-
munities (denoted M)

8



Chapter 2. Background

• The set of connections between individuals (edges) (denoted E)

and any attributes or information associated with, or derivable from any combination of the
sets above.

In graph theory terms, a network is a collection of the visible units, the latent (hidden) units,
the latent-visible links, and the visible-visible links on a graph, plus any information derivable
from the units and connections. Figure 2.1 shows a small network with four individuals (visible
units), two communities (hidden units), six memberships/ affiliations (latent-visible links), and
five edges between individuals (visible-visible link).

Figure 2.1: A small network with four individuals (white circles), two communities (grey circles),
six memberships/ affiliations (dashed lines), and five edges between individuals (solid lines).

2.3 Probability Distributions

The investigation also relies on the following distributional results. They include power-law
distributions, the Pareto-family distributions, the Poisson’s binomial distribution, and the mixed
Poisson distribution.

2.3.1 Power Law Distribution

Definition 2.6. (Power law distributions)

Let X be a random variable with positive real number support. X is said to follow a power
law distribution with shape parameter α if the probability density function (pdf) (or probability
mass function (pmf) for discrete X) satisfies the following:

fX(x) ∝ x−α, x ∈ R+ . (2.3)

Furthermore, we say X asymptotically follows a power law distribution with shape parameter

9



2.3. PROBABILITY DISTRIBUTIONS

α if its pdf/ pmf satisfies the following:

fX(x) ∝ L(x)x−α , (2.4)

where L is some slowly varying function (i.e. limx→∞
L(cx)
L(x) = 1 ∀c > 0).

Theorem 2.7. (Scale-invariant property of power law distributions)

Power law distributions are scale invariant - the shape of the associated probability density function
(pdf) remains unchanged upon scaling the argument by a constant factor.

Proof. Given a power law-distributed random variable X, with associated pdf fX(x) ∝ x−α. A
scalar transformation on the pdf’s argument x 7→ cx yields:

fX(cx) ∝ (cx)−α = c−αx−α ∝ x−α , (2.5)

which is a power law distribution with the same shape parameter.

For a asymptotically power law-distributed random variable X with associated pdf fX(x) ∝
L(x)x−α. A scalar transformation on the pdf’s argument x 7→ cx yields:

fX(cx) ∝ L(cx)(cx)−α → L(x)c−αx−α ∝ L(x)x−α, x→∞ , (2.6)

which is asymptotically power law-distributed with the same shape parameter.

Example 2.8. (Scale-free network)

A scale-free network is a network in which the degree of each node, K, follows a power law
distribution:

Pr(K = k) =
k−s

ζ(s)
, k ∈ Z+ = {1, 2, ..., } , (2.7)

where ζ(s) =
∑∞

k=1 k
−s is the Riemann zeta function.

2.3.2 Pareto Distributions

Pareto Distribution (more unambiguously Type I Pareto Distribution according to Arnold (2014)
[4]) is a continuous distribution which follows the power law. It can be generalised to a hierar-
chy of Pareto models to improve fitting of data, especially towards the tail end of the distribu-
tion. We focus on two types of Pareto distributions in this chapter.

Definition 2.9. (Type I Pareto Distribution)

10



Chapter 2. Background

A random variable X follows Type I Pareto Distribution if it follows the following cumulative
distribution function (cdf) and probability distribution function (pdf):

FX(x) = Pr(X ≤ x) = 1−
(x
σ

)−α
, x > σ , (2.8)

fX(x) = ασαx−(α+1) ∝ x−(α+1), x > σ , (2.9)

where σ > 0 is the scale parameter and α > 0 is the shape parameter. We denote X ∼
Pareto(I)(σ, α) if X satisfies the above.

Remark. Type I Pareto Distribution is also known as the classical Pareto model. Note σ de-
termines both the scale and location (minimum attainable value) of a Type I Pareto random
variable.

Definition 2.10. (Type II Pareto Distribution)

A random variable X follows Type II Pareto Distribution if it follows the following cdf and pdf:

FX(x) = 1−
(

1 +
x− µ
σ

)−α
, x > µ , (2.10)

fX(x) =
α

σ

(
1 +

x− µ
σ

)−(α+1)

, x > µ , (2.11)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter and α > 0 is the shape
parameter. We denote X ∼ Pareto(II)(µ, σ, α) if a random variable X satisfies the above.

Remark. Unlike Type I Pareto distribution, in which the minimum attainable value of the distri-
bution is fixed after the degree of scaling is determined (or vice versa), Type II Pareto distribu-
tion separates the role of scale and location parameters, and hence is more flexible as it allows
one to specify both the minimum attainable value and the degree of scaling.

Type II Pareto distribution demonstrates the following property:

Theorem 2.11. Type II Pareto Distribution asymptotically follows the power law.

Proof. Notice the pdf of Type II Pareto can be expressed as:

fX(x) =
α

σ

(
1 +

x− µ
σ

)−(α+1)

=
α

σ

[x
σ

(σ
x

+ 1− µ

x

)]−(α+1)

=
α

σ

(x
σ

)−(α+1)
(
σ − µ
x

+ 1

)−(α+1)

∝
(
σ − µ
x

+ 1

)−(α+1)

︸ ︷︷ ︸
L(x)

x−(α+1) , (2.12)
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where L(x) is a slowly varying function:

lim
x→∞

L(cx)

L(x)
= lim

x→∞

(σ−µ
cx + 1

)−(α+1)(σ−µ
x + 1

)−(α+1)
=

(0 + 1)−(α+1)

(0 + 1)−(α+1)
= 1 . (2.13)

By definition 2.6, Type II Pareto distribution follows the power law asymptotically.

We also explore the relationship between Types I and II Pareto distributions:

Theorem 2.12. (Transformation of Pareto random variables)

Let X ∼ Pareto(I)(σ, α) be a Type I Pareto random variable, the transformed random variable
Y = σ′

σ (X − σ) + µ′ follows a Type II Pareto distribution (i.e. Y ∼ Pareto(II)(µ′, σ′, α)):

Proof. The cdf for Y is

FY (y) = Pr(Y ≤ y) = Pr

(
σ′

σ
(X − σ) + µ′ ≤ y

)
= Pr

(
X ≤ σ

σ′
(y − µ′) + σ

)
= FX

( σ
σ′

(y − µ′) + σ
)

= 1−
( σ
σ′ (y − µ

′) + σ

σ

)−α
= 1−

(
1 +

y − µ′

σ′

)−α
, (2.14)

which, by equation 2.10, shows Y ∼ Pareto(II)(µ′, σ′, α).

We will use Type II Pareto distribution (with rounding to give a discrete distribution) to describe
the distribution of the number of members in a community for communities in a network.

We finally define a Type IV Pareto distribution for completeness.

Definition 2.13. (Type IV Pareto Distribution)

A random variable X follows Type IV Pareto Distribution if it follows the following cdf:

FX(x) = 1−

(
1 +

(
x− µ
σ

) 1
γ

)−α
, x > µ , (2.15)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter, γ > 0 is the inequality pa-
rameter and α > 0 is the shape parameter. We denote X ∼ Pareto(IV )(µ, σ, γ, α) if a random
variable X satisfies the above.

12



Chapter 2. Background

Remark. A Type III Pareto distribution is a Type IV Pareto distribution with α fixed at one, i.e.
Pareto(III)(µ, σ, γ) ≡ Pareto(IV )(µ, σ, γ, 1)

2.3.3 Poisson’s Binomial Distribution

The Poisson’s binomial distribution (Poisson binomial distribution, or Poisson-binomial distri-
bution in some literature) is an extension of the binomial distribution. According to Wang
(1993), it was first considered by Siméon Poisson [47], and models the probability of achieving
k successes in n independent trials with different success probabilities.

The distribution is mathematically defined by Wang (1993) [47] as follows.

Definition 2.14. Let n ∈ Z+ and k ∈ {0, 1, ..., n}, the set Ak is defined as:

Ak = {A| A ⊆ {1, ..., n}, |A| = k} , (2.16)

where | · | denotes the cardinality function.

Remark. In other words, Ak is the subset of the power set of {1, ..., n} with cardinality k. We can
interpret an element of Ak as the possible indices of success events which lead to k successes in
total.

Definition 2.15. (PDF of Poisson’s binomial distribution)

A random variable X follows the Poisson’s binomial distribution with n trials and success prob-
abilities p1, p2, ..., pn if it follows the following probability density function (pdf):

P(X = k) =
∑
A∈Ak

∏
i∈A

pi
∏
j∈Ac

(1− pj) , (2.17)

where Ak is that defined in definition 2.14, and Ac = {1, 2, ..., n} \A.

The probability can be interpreted as follows. Given k successes, we consider all possible com-
binations of k event indices (Ak). For each possible combination, we multiply the success prob-
ability of events with indices included in the combination with the failure probability of events
with indices not included in the combination, which is possible due to independence between
trials. We then sum up the probability of all possible combinations to obtain the probability of
k successes by the law of total probability.

Remark. If pi = p ∀i, thenX follows a standard binomial distribution: P(X = k) =
(
n
k

)
pk(1− p)n−k.
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2.3.4 Mixed Poisson Distribution

The mixed Poisson distribution is the resultant distribution of a mixture of Poisson distributions
with different rate parameters λi.

For a finite number of mixture components with parameters λ1, λ2, ..., λn, the distribution is
defined as follows:

Definition 2.16. (PMF of mixed Poisson distribution with finite mixture components)

LetX be a random variable, X is said to follow the mixed Poisson distribution with a finite num-
ber of mixture components (with parameters λ1, λ2, ..., λn) if it follows the following probability
mass function (PMF):

P(X = x) =
1

n

(
e−λ1λ1

x

x!
+
e−λ2λ2

x

x!
+ ...+

e−λnλn
x

x!

)
(2.18)

Remark. The probability mass of the mixed Poisson distribution at x is the sum of the probabil-
ity mass of the first, second, ..., nth mixture component at x, normalised by 1

n as each mixture
component is a probability distribution and hence sums to one.

In the case where the number of mixture components is infinite, and their corresponding param-
eter follows a probability distribution, Karlis and Xekalaki (2005) give the following probability
mass function for the mixed Poisson distribution.

Definition 2.17. (PMF of mixed Poisson distribution with infinite mixture components)

Let g(λ) be a probability density function (PDF), and X be a random variable. X is said to
follow a mixed Poisson distribution with infinite mixture components, with mixture component
parameters λ following the distribution characterised by the PDF g(λ), if it follows the following
probability mass function (PMF):

P(X = x) =

∫ ∞
0

e−λλx

x!
g(λ) dλ (2.19)

Remark. The PMF is already normalised as g(λ) is a PDF, and hence integrates to one.

2.4 Welch’s t-test

We introduce the Welch’s t-test, proposed by Welch (1947) as a more robust alternative to the
Student’s t-test under two groups of samples with different variances and sample sizes [49]. It
is the default t-test used by the statistical package R.
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The test is based on the Welch’s t-statistic defined as follows.

Definition 2.18. (Welch’s t-statistic)

Given two independent groups of samples, the first (second) group with sample mean X̄1 (X̄2),
sample variance s21 (s22), and sample size N1 (N2) respectively. The Welch’s t-statistic is defined
as:

t =
X̄1 − X̄2√
s21
N1

+
s22
N2

. (2.20)

Theorem 2.19. t defined in definition 2.18 follows a Student’s t-distribution, i.e.

t ∼ tν , (2.21)

ν ≈

(
s21
N1

+
s22
N2

)2
s41

N2
1 (N1−1)

+
s42

N2
2 (N2−1)

, (2.22)

where ν denotes the degrees of freedom associated with the t-distribution.

Proof. See Welch (1947) [49].

The Welch’s t-statistic motivates a hypothesis test to see if the underlying true mean of the two
groups are equal. If the corresponding p-value for the calculated Welch’s t-statistic is lower
than α, then we reject the null hypothesis at a α significance level, and accept the alternate hy-
pothesis (that the true difference in mean is not equal to zero in a two-tailed test, or greater/less
than zero in a one-tailed test).

2.5 Normal Linear Models

Consider a dataset with n data points, in which data point i contains a random, observed result
of interest Yi, and p deterministic, observed covariates xij , j ∈ {1, ..., n}. According to Lau
(2016) [30], the value of Yi can be modelled as a linear combination of xij and a set of un-
known constant parameters, plus a stochastic error:

Definition 2.20. (Normal Linear Models)

A linear model is defined as:

Y = Xβ + ε (2.23)

⇐⇒ Yi = xi1β1 + xi2β2 + ...+ xipβp + εi ∀i ∈ {1, ..., n} (2.24)
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where

• Y = (Y1, ..., Yn)T ∈ Rn is the random vector of observations, called the response.

• X = (xij) ∈ Rn×p is the design matrix (known) which contains the covariates (predic-
tors). Let r := rank(X).

• β = (β1, ..., βp)
T ∈ Rp is the unknown parameter vector.

• ε = (ε1, ..., εn)T ∈ Rn is the unobserved error vector such that E(ε) = 0.

Furthermore, if ε ∼ N(0, σ2In) for some σ2 > 0 (i.e. observation errors are uncorrelated and
have the same variance), then the linear model is normal. The normal linear model can be
written as

Y ∼ N(Xβ, σ2In) , (2.25)

where In is the n× n identity matrix.

We present below some key results and their preliminaries in normal linear models, which will
be used throughout our investigation. The results are drawn and adapted from the lectures
given by Lau (2016) [30]. Proofs for cited results are omitted here, and can be found in most
of the textbooks on normal linear models.

Theorem 2.21. (Maximum likelihood estimator for unknown parameter vector)

Assume full rank for X ∈ Rp (i.e. rank(X) = p), The maximum likelihood/ least squares estimator
for the unknown parameter vector β in the model defined in definition 2.20 is given by

β̂ = (XTX)−1XTY . (2.26)

Definition 2.22. (Fitted values) The vector of fitted value is given as Ŷ = Xβ̂ , where β̂ is that
introduced in theorem 2.21.

Definition 2.23. (Residuals) The vector of residuals is given as e = Y − Ŷ .

Definition 2.24. (Residual sum of squares) The residual sum of squares is defined as RSS =

eTe, where e is that defined in definition 2.23.

Theorem 2.25. (Distribution of least square linear estimator)

Assume a linear model setting as defined in definition 2.20, and full rank for X. For any c ∈ Rp:

cT β̂ − cTβ√
cT (XTX)−1cRSSn−p

∼ tn−p , (2.27)

16



Chapter 2. Background

the student-t distribution with n− p degrees of freedom.

Remark. The result allows construction of hypothesis tests to determine if a component of the
least squares estimator β̂ should be zero.

Theorem 2.26. (Distribution of residual sum of squares under different linear models)

Let X ∈ Rn×r and X0 ∈ Rn×s, p > s be two design matrices such that span(X0) ⊂ span(X), and
assume two linear models, Y = Xβ + ε and Y = X0β + ε (i.e. the latter is a sub-model of the
former). Let RSS be the residual sum of squares in the full model, and RSS0 be the residual sum of
squares in the sub-model. Then

RSS0 − RSS
RSS

n− r
r − s

∼ Fr−s,n−r , (2.28)

the F -distribution with degrees of freedom r − s and n− r.

Remark. The result allows construction of hypothesis tests to determine if the full model would
bring significant improvements in RSS compared to a sub-model.

2.6 Optimisation

We conclude by including some topics in computational optimisation, including convex optimi-
sation problems and associated results in optimality, as well as the Newton’s Method of finding
the optimal point/root of a function.

2.6.1 Convex Optimisation

Consider the following convex optimisation problem (a subset of optimisation problem):

min
x

f(x) (2.29)

s.t. x ∈ S , (2.30)

where f is a convex function on S defined in definition 2.28, and S is a convex (constraint) set
defined in definition 2.27.

Definition 2.27. (Convex set)

A set S ⊂ Rn is said to be convex if every point on the line connecting any two points x, y ∈ S
is itself in S, i.e.

x, y ∈ S =⇒ αx+ (1− α)y ∈ S ∀α ∈ [0, 1] . (2.31)
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Definition 2.28. (Convex function)

Let f : S → R be a function defined on a convex set S ⊂ Rn, then f is convex on S if the line
segment connecting f(x) and f(y) at any two points x, y ∈ S lies above the function between x
and y, i.e.

f(αx+ (1− α)y) ≤ αf(x) + (1− α)y ∀α ∈ [0, 1] . (2.32)

Chong and Zak (2013) showed any local minimiser of the convex optimisation problem is a
global minimiser of the convex optimisation.

2.6.2 Newton’s Method

Newton’s Method (also known as the Newton-Raphson Method) is a iterative method for finding
good approximations of a maximum/minimum of a function. It has since been adapted to find
the root of a function.

Chong and Żak (2013) [12] listed the iterative formula to find the optimum arg min f(x)/arg max f(x):

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
, k ≥ 0 , (2.33)

where f ′ and f ′′ is the first and second derivatives of f ∈ C2, a function which is at least
twice-differentiable, respectively.

Equation 2.33 motivates the use of Newton’s algorithm to find the root of a function. Notice
a necessary condition for f to attain a (local) maximum/minimum is f ′(x) = 0. Hence the
equation can be used to find the root of g if we let g = f ′ and use the following iterative
formula:

x(k+1) = x(k) − g(x(k))

g′(x(k))
, k ≥ 0 , (2.34)

where g′ is the derivative of g ∈ C1, a function which is at least once-differentiable, and x(0) is
the initial point for Newton’s Method.

As discussed by Chong and Żak (2013) [12], Misener (2016) [36] and Parpas (2016) [42],
Newton’s method may not converge (it might diverge or cycle), though for functions which are
convex/concave in its domain, or initial points sufficiently close to the solution, the method
converges quickly at a quadratic rate.
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Chapter 3

Related Work

In this chapter we present a number of established work/state-of-the-art in the fields of graph
generation and community detection. We describe four graph generative models and outline
some of their properties in section 3.1. This is followed by a description of a number of com-
munity detection algorithms in section 3.2, some of which are studied in depth.

3.1 Graph & Network Generation

We first present four graph generative models: the Erdős–Rényi model, the Watts–Strogatz
model, the Barabási–Albert model, and the Stochastic Block Model. For each model, we give the
model definition, describe the edge generation process, and state properties shown by others.

3.1.1 Erdős–Rényi model

First introduced by Gilbert (1959) [19], and also independently by Erdős and Rényi (1959)
[16], the Erdős–Rényi model is one of the first contemporary attempts in modelling a network
with a random graph. The model has two common variants, which are defined as follow.

Definition 3.1. (Erdős and Rényi (1959) - Graph selection variant of Erdős–Rényi model)

The graph selection variant of Erdős–Rényi model generates a graph GER(n,M) by choosing
uniformly at random from the collection of all graphs with n nodes and M edges.

Remark. The collection of all graphs with n nodes and M edges has cardinality
(n(n−1)/2

M

)
, as

one have that many ways to place the M edges amongst n(n−1)
2 possible edges.

Definition 3.2. (Gilbert (1959) - Edge formation variant of Erdős–Rényi model)
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The edge formation variant of Erdős–Rényi model, generates a graph GER(n, p) by forming an
edge between any two nodes with probability p, independent of other edges.

Remark. Graphs generated under the definition will haveM edges with probability pM (1− p)(
n
2)−M .

Figure 3.1 shows two graphs generated from the GER(n, p) model with different connection
probabilities p.

(a) p = 0.2 (b) p = 0.4

Figure 3.1: Sample graphs from GER(n = 10, p), the edge formation variant of Erdős–Rényi model.
Notice a higher p leads to more edges in the graph in general, and it is not a requirement for a
GER(n, p) graph to have exactly

(
n
2

)
p edges as each edge is formed independently.

We will show from first principles that the node degrees of a GER(n, p) graph follows the bi-
nomial distribution, and hence can be approximated by a Poisson distribution for large n and
small p. The result is also shown by Newman (2001) [37].

We can link the two variants of the model by observing p ≈ M/
(
n
2

)
. Edalat (2016) has shown

assuming M is fixed, the clustering coefficient (the average probability for two neighbours of
a node to connect themselves across all nodes) is p, which tends to zero for large n [15]. This
is considered a undesirable property when modelling a real network, as real network usually
demonstrates clustering behaviour.

3.1.2 Watts–Strogatz model

The Watts-Strogatz model is proposed by Watts and Strogatz (1998) to address the low clus-
tering coefficient and lack of triadic closure (closed triangle between an three nodes) in the
Erdős–Rényi model. The model constructs a graph by first forming a regular lattice and con-
duct probabilistic edge rewiring, defined as follows and illustrated in figure 3.2.

Definition 3.3. (Regular lattice)
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A regular ring lattice (with periodic boundary condition) with n nodes and number of neigh-
bours k � n is a graph with the following adjacency matrix:

Aij =

{
1 if |i− j| mod

(
n− 1− k

2

)
≤ k

2

0 otherwise
, i, j ∈ {1, ..., n} (3.1)

In other words, a regular ring lattice is a graph with nodes arranged in a ring, and each node
connecting with the immediate k/2 neighbours on each side.

Definition 3.4. (Watts and Strogatz (1998) - Watts-Strogatz model)

The Watts-Strogatz model generates a graph with n nodes and average node degree k, denoted
GWS(n, k), via the following procedures:

1. Generate a regular ring lattice with n nodes and k neighbours as defined in definition 3.3

2. For each edge (i, j) in the regular ring lattice, remove one end of the edge (say node j)
and reconnect to a node (say node k) with probability p. The node which the edge is being
rewired to, k, is uniformly selected at random, subject to k 6= i (no self-loop) and k 6= k′

where the edge (i, k′) exists before rewiring (no duplicated edge).

Figure 3.2: Watts and Strogatz (1998) - Probalistic edge rewiring for interpolating between a reg-
ular ring lattice and a random network. [48]

Watts and Strogatz showed that for p in and around [0.01, 0.1] , the resultant graph gives a
high clustering coefficient and low average path length (the average length of the shortest path
between a pair of nodes), collectively known as the small-world properties and found in real
networks.

The Watts-Strogatz model does not demonstrate the scale-free property, which node degrees
follow a power-law distribution. Under a GWS(n, k) graph, the majority of nodes will still
have around k connections after probabilistic rewiring. This is in contravention of the node
degree distribution for real network, where the majority of the population have only a handful
of connections, and a handful of individuals have the majority of connections.
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3.1.3 Barabási–Albert model

The Barabási-Albert model, proposed by Barabási and Albert (1999), originates from the study
of links between web pages on the world wide web. It describes a growing network (increas-
ing number of nodes over time) where nodes gain edges by preferential attachment - the more
connections you have, the more likely you will get new connections, or more formally:

Definition 3.5. (Barabási and Albert (1999) - Barabási-Albert model) The Barabási-Albert
model generates a growing graph with n0 initial nodes, denoted GBA(n0), via the following
procedures:

1. Initialise a connected network with n0 nodes

2. For each new node being added to the network already with n nodes, connect the new
node n+ 1 with an existing node i ≤ n with probability:

pi =
ki∑
j kj

, (3.2)

where ki is the degree for node i just before the new node is added to the network

The following properties make the Barabási-Albert model more desirable in modelling real net-
works when compared to random graphs. Barabási and Albert (1999) has shown the node
degree of the Barabási-Albert model follows a power-law distribution:

P(Node degree = k) ∼ k−3 . (3.3)

Furthermore, it has been shown by Albert and Barabási (2002) that the average path length of
graphs generated by the Barabási-Albert model is lower than that generated by the Erdős–Rényi
model [2]. Klemm and Egúıluz (2002) has also obtained the clustering coefficient which is
higher than the Erdős–Rényi model [28].

However, while the Barabási-Albert model demonstrates a “hub” behaviour - nodes which pos-
sess the highest numbers of connections, it does not account for any community structure,
which is common in real networks.

3.1.4 Stochastic Block Model

First developed by Holland et al. (1983) [25], the Stochastic Block Model divide nodes into dis-
joint sets (known as communities) and specify the connection probability of two nodes based
on which community they belonged to. More formally:

Definition 3.6. (Stochastic Block Model)

Given the number of nodes n, the set of r communities {Ci}i∈{1,...,r} which partitions the nodes
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Figure 3.3: A growing network generated by the specification of the Barabási-Albert model with
two initial nodes (coloured in grey). The timeline is shown left-right top-down, where a new node
(labelled “n”) is added at each instance. Notice the “hub” behaviour demonstrated by the left ini-
tial node - it gains more connections than other nodes due to the large number of connections it
possesses at all times.

(i.e. Ci ∩ Cj = ∅ ∀ i 6= j,
⋃r
i=1Ci = {1, ..., n}), and the inter-community connection prob-

ability matrix P = (Pij) ∈ Rr×r, the Stochastic Block Model generates a graph, denoted as
GSBM (n, {Ci}, P ), with the following edge formation probability between nodes u and v, u 6= v:

P((u, v)|u ∈ Ci, v ∈ Cj) = Pij , (3.4)
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where (u, v) denotes the edge between nodes u and v.

Stochastic Block Model is one of the few graph generative models which takes the community
structure into account (see figure 3.4), albeit it does not consider overlapping communities.

Figure 3.4: A 16-node network generated by the Stochastic Block model with 4 blocks (coloured
rectangles) and its associated inter-community connection probability matrix (not shown in figure).

3.2 Community Detection

We also outline existing work on community detection in networks. Communities to be detected
can be overlapping or non-overlapping under different models.

3.2.1 Community-Affiliation Graph Model (AGM)

Based on “[t]he observation that community overlaps are more densely connected than the
non-overlapping parts”, Yang and Leskovec (2012) introduced the Community-Affiliation Graph
Model (AGM) for overlapping network community detection. We summarise the model defini-
tion and working mechanisms below.

Model Definition

Yang and Leskovec define the underlying model of AGM as a bipartite community affiliation,
denoted B(V,C,M) and illustrated in figure 3.5:
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Figure 3.5: A bipartite community affiliation graph representing a network with 2 communities
(square nodes, ci ∈ C) and 7 individuals (circle nodes, vi ∈ V ). Each edge between a square node
and a circle node represents a membership/affiliation between a community and an individual.

V : Individuals The set of individuals within a social network, corresponding to the vertices
in the social network’s graph representation.

C: Communities The set of underlying communities within a social network. The communi-
ties are the hidden nodes in the social network’s graph representation, which we are interested
in uncovering given any social network graphs.

The model also assigns a parameter pc to each community c ∈ C, which denotes the probability
for two individuals in the same community c to connect with each other. We collate the proba-
bilities via the following definition:

Definition 3.7. (Intra-community connection probabilities)

A non-negative vector p = (pc)c∈C , where pc denotes the intra-community connection connec-
tion probability for community c, is referred as the intra-community connection probabilities
vector.

M : Membership/ Affiliation The set of undirected edges {(v, c) : v ∈ V, c ∈ C} between
individuals and communities, representing an individual’s affiliation towards a community, or
equivalently a community membership of an individual. There are no edges between two indi-
viduals, nor edges between two communities.

Graph Generation with AGM

Given a bipartite community affiliation model with intra-community connection probabilities,
Yang and Leskovec generate a network G(V,E) using the following definition.
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Definition 3.8. Given a bipartite community affiliation modelB(V,C,M), and the intra-community
connection probabilities p, AGM generates an edge (u, v) ∈ E between two individual nodes
u, v ∈ V with probability:

p(u, v) = 1−
∏

k∈Cuv

(1− pk) , (3.5)

where Cuv ⊆ C is the set of communities which u and v are both members of.

Definition 3.8 allows two individuals u and v to have an independent chance to connect for
each shared affiliation, with probability determined by the community in question. This results
in a higher probability for individuals with larger number of mutual community memberships
to connect.

We will show in section 4.4 that the generative process in definition 3.8 would not yield node
degrees following a power-law distribution, which is often observed in real networks.

ε-community Under Definition 3.8, it is impossible for two individuals u, v ∈ V with no mu-
tual community affiliation to connect with each other in the generated network (as Fuc Fvc =

0 ∀c ∈ C). To preserve the possibility of two individuals connecting at random without sharing
any communities, the graph generative method assumes an extra ε-community, which connects
any two nodes with probability ε = 2|E|

|V |(|V |−1) , which is the probability of an edge forming in a
random network.

Community Detection with AGM

We then briefly discuss the reverse process - given a social network graph G(V,E), how do
Yang and Leskovec uncover the bipartite community affiliation model B(V,C,M) and the intra-
community connection probabilities p. The resultant optimisation problem, as discussed by
Yang and Leskovec (2013), is “a combinatorial optimisation problem that is hard to solve” [54].
Hence methods in finding a global optimum is less likely to be scalable and possess less value
to be discussed thoroughly.

Yang and Leskovec employed a Gibb’s sampling-like approach in approximating B(V,C,M) and
p which achieves the highest likelihood:

arg max
B,p

L(B,p) =
∏

(u,v)∈E

p(u, v)
∏

(u,v)6∈E

(1− p(u, v)) , (3.6)

where B is the short-hand for B(V,C,M), and E is the set of edges in the given network. They
alternate between keeping B(V,C,M) fixed and update p, and keeping p fixed and update
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B(V,C,M). They update p by reformulating the log-likelihood as a convex function, which
enables use of gradient ascent or Newton’s method to obtain a global optimum for p within
the stage. Updating of B is done by using the Metropolis-Hastings algorithm with stochastic
affiliation addition/deletion/rewiring.

3.2.2 Cluster Affiliation Model for Big Networks (BigClam)

Yang and Leskovec (2013) also introduced the Cluster Affiliation Model for Big Networks (Big-
Clam), “an overlapping community detection method that scales to large networks of millions
of nodes and edges” [54]. The model is largely similar the AGM, though with the introduction
of an affiliation-dependent weight and a new energy function for edge formation, BigClam is
capable of capturing community affiliation in greater detail, and is easier to be scaled.

Model Definition

The underlying model for BigClam is largely identical to that used in AGM - a bipartite com-
munity affiliation, denoted B(V,C,M) (see figure 3.5). Though unlike AGM, BigClam does
not feature a intra-community connection probability, but a weight associated to each member-
ship/affiliation. The model assigns a non-negative weight Fvc (v ∈ V, c ∈ C) to each edge of the
bipartite graph (see figure 3.6) to denote the strength of membership/ affiliation between an
individual and a community - the higher the weight the stronger the membership/ affiliation.
The given individual and community are unaffiliated if the edge between has a weight of zero.

We can represent affiliation weights between every individual and community by non-negative
matrices and vectors as defined below.

Definition 3.9. (Community affiliation weights matrix and vector)

A non-negative matrix F = (Fvc) ∈ R|V |×|C| representing affiliation weights between individuals
and communities is referred to as the community affiliation affiliation weights matrix (affiliation
weights matrix in short).

A non-negative row vector Fu = (Fuc) ∈ R|C| representing affiliation weights between the indi-
vidual u and all communities is referred to as the community affiliation affiliation weights vec-
tor associated with individual node u. If u is unspecified, Fu is referred to as a node-associated
community affiliation affiliation weights vector (affiliation weights vector (for u) in short).

Graph Generation with BigClam

Given a bipartite community affiliation model B(V,C,M) with its associated non-negative af-
filiation weights matrix F , we can generate a network G(V,E) using the following definition.
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Figure 3.6: Every edge between an individual v ∈ V and a community c ∈ C is given a weight
Fvc ≥ 0 under the community affiliation model

Definition 3.10. Given a bipartite community affiliation modelB(V,C,M), an affiliation weights
matrix F = (Fvc) , v ∈ V, c ∈ C, and the affiliation weights vector for u ∈ V , Fv = (Fvci) , ci ∈
C. BigClam generates an edge (u, v) ∈ E between two individual nodes u, v ∈ V with probabil-
ity:

p(u, v) = 1− exp
(
−FuFvT

)
= 1− exp

(
−
∑
c∈C

Fuc Fvc

)
. (3.7)

This is based on the assumption that each mutual community membership between two in-
dividuals will gain the individuals an independent, non-zero chance of a connection. Hence
the connection probability is strictly increasing with respect to the increasing number of mu-
tual communities. Moreover, stronger affiliations between said individuals and their mutual
community(ies) (higher edge weight between) result in a higher probability of the individuals
connecting.

Similar to AGM, BigClam preserves the possibility of two individuals connecting at random
without sharing any communities by creating an ε-community, where edges connect with prob-
ability ε.

Community Detection with BigClam

In the presence of a network G(V,E) and absence of knowledge on true community affili-
ations, we are interested in finding the most likely community affiliations, represented by a
non-negative affiliation weights matrix F̂ . Yang and Leskovec (2013) proposed the following
non-negative matrix factorisation-like approach in obtaining F̂ . Note the sections below only
provide a general overview and cover key mathematical derivations of the community detec-
tion algorithm (the algorithm in short) proposed by Yang and Leskovec - further implementation
details can be found in [54].
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Log-likelihood maximisation Given a network G(V,E), F̂ is the matrix which maximises the
likelihood/ log-likelihood function defined as follows.

Definition 3.11. (Likelihood and log-likelihood of an affiliation weights matrix under a known
network)

Let G = G(V,E) be a network with all vertices and edges known, and F = (Fvc) ∈ R|V |×K (v ∈
V, c ∈ C) be an affiliation weights matrix (where K is the number of communities we attempt
to detect).

The likelihood for F under G is

L(F ) = Pr(G|F ) = 1
2

∏
u,v∈V, u6=v

{
p(u, v) if (u, v) ∈ E
1− p(u, v) otherwise

=
∏

(u,v)∈E p(u, v)
∏

(u,v)6∈E (1− p(u, v))

=
∏

(u,v)∈E (1− exp(−FuFvT ))
∏

(u,v)6∈E exp(−FuFvT )

. (3.8)

The log-likelihood for F under G is

l(F ) = logL(F ) =
∑

(u,v)∈E

log(1− exp(−FuFvT ))−
∑

(u,v)6∈E

(FuFv
T ) . (3.9)

In other words, the most likely community affiliation is given by

F̂ = arg max
F≥0

L(F ) = arg max
F≥0

l(F ) . (3.10)

We generally work with log-likelihood functions as they involve sums of smaller components,
instead of a large product.

Maximisation as convex optimisation problem The general optimisation problem (equation
3.10) can be broken down into one sub-problem per u ∈ V - finding the most likely affiliation
weights vector for u ∈ V , while fixing all other affiliation weights vectors Fv ∈ V , v 6= u:

F̂u = arg max
Fuc≥0, c∈C

l(Fu) . (3.11)

Definition 3.12. (Log-likelihood of an affiliation weights vector under a known network and
its gradient)

Let G = G(V,E) be a network with all vertices and edges known, and Fu = (Fuc) ∈ RK (u ∈
V, c ∈ C) be an affiliation weights vector for u ∈ V (where K is the number of communities we
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attempt to detect).

The log-likelihood for Fu under G is

l(Fu) =
∑

v∈N (u)

log
(
1− exp(−FuFvT )

)
−

∑
v 6∈N (u)

FuFv
T , (3.12)

where N (u) is the set of neighbours of u under G (see definition 2.4).

The gradient of log-likelihood for Fu is

Ol(Fu) =
∑

v∈N (u)

Fv
exp(−FuFvT )

1− exp(−FuFvT )
−

∑
v 6∈N (u)

Fv . (3.13)

The sub-problem (equation 3.11) can then be tackled using a gradient ascent approach, with
the gradient defined above and a learning-rate parameter α:

l′(Fu) = l(Fu) + αOl(Fu) . (3.14)

It can be shown l(Fu) is a convex function, and hence the sub-problem is a convex optimisation
problem: any local maximum found will be the global maximum.

Complexity reduction Naive implementations of equation 3.13 will scale along O(|V |), as
each computation of Ol(Fu) requires obtaining Fv ∀v ∈ V . Though it is observed that:

∑
v∈N (u)

Fv =

(∑
v

Fv

)
− Fu −

 ∑
v∈N (u)

Fv

 (3.15)

By pre-fetching
∑

v Fv ∀v ∈ V once and retaining its value, and only calculating
∑

v∈N (u) Fv

at run-time, the time complexity is reduced to O(|N (u)|) (with a O(|V ||C|) storage overhead).
The sparsity of a real network implies |N (u)| � |V |, and hence optimisations based on equation
3.15 would give a massive performance speed boost in theory.

Miscellaneous Implementation Details

Initial condition The initial affiliation weights matrix is determined with a conductance test
on all nodes to locate locally minimal neighbourhoods.

Definition 3.13. (Initialisation of affiliation weights matrix)
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Let F be an affiliation weights matrix. The algorithm initialises F as follows:

F(u′)(N(u)) =

{
1 if u′ ∈ N(u) and N(u) is a locally minimal neighbourhood of u
0 otherwise

, (3.16)

where N(u) is that defined in definition 2.4.

In other words, the algorithm utilises the set of locally minimal neighbourhoods as the seed set
of communities. Yang and Leskovec did not specify in their paper which locally minimal neigh-
bourhoods are included in the seed set if the size of the set of locally minimal neighbourhoods
differs from the number of communities we would like to detect.

We may want to modify the initial condition to detect members of known communities, and/or
pivot on known member(s) of a community.

Stopping condition The algorithm iteratively updates Fu ∀u ∈ V , and terminates by the con-
dition described as follows.

Definition 3.14. (Termination of the community detection algorithm)

Let l(Fu) be the log-likelihood of the affiliation weights vector for u, and l′(Fu) be the log-
likelihood of the affiliation weights vector for u after the update by gradient ascent (equation
3.14). The iterative gradient ascent process terminates if:

l′(Fu)− l(Fu)

l(Fu)
< 0.00001 ∀u ∈ V , (3.17)

i.e. the log-likelihood increases by less than 0.001% ∀u ∈ V .

Remark. As the log-likelihood function l(Fu) is convex, the gradient ascent approach is guar-
anteed to reach the global optimum. The terminating condition would lead to a solution suffi-
ciently close to the global optimum within a reasonable time.

Determining community affiliations Upon termination, the algorithm determines the exis-
tence of an individual’s affiliation/ a community membership as follows.

Definition 3.15. (Determining existence of affiliation/ membership)

Let G = G(V,E) be a network, F be the most likely affiliation weights matrix under G, and
ε = 2|E|

|V |(|V |−1) be the background probability for a random edge to form in G.

The algorithm regards u ∈ V as a member of c ∈ C if Fuc ≥ δ =
√
− log(1− ε).
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Any two affiliation weights higher than δ between two individuals u, v ∈ V and a commu-
nity will result in the probability of forming an edge (u, v) being higher than the background
probability, a possibility introduced by the ε-community.

Determining number of communities In section 3.2.2, we implicitly assumed the number of
communities K is given. Yang and Leskovec outlined the following method to obtain the most
likely number of communities K̂.

1. Select 20% of node pairs at random as hold out set H

2. For every K as a candidate on number of communities:

(a) Run the community detection algorithm, with K as the number of communities we
intend to detect, on the remaining 80% of node pairs

(b) Evaluate the likelihood of affiliation weights with respect to H, lK(FH)

3. Obtain the most likely number of communities K̂ as the candidate K which has achieved
the highest likelihood with respect to H (i.e. K̂ = arg max

K
lK(FH)).

A full, working software implementation on BigClam can be found in the Stanford Network
Analysis Project (SNAP) library, created and maintained by Leskovec and Sosič (2014) [34].

3.2.3 Other Community Detection Methods

We also list and briefly discuss some other community detection methods available. Interested
readers can also refer to the survey paper by Fortunato (2010), where a large number of com-
munity detection algorithms of different genres are discussed [17].

Non-negative Matrix Factorisation (NMF) Non-negative Matrix Factorisation (NMF) is a
class of methods which aims to reduce the dimension of a given dataset by performing a matrix
decomposition. Given a non-negative data matrix A, NMF finds two non-negative matrices B
and C such that A ≈ BC. Hoyer (2004) has discussed methods to factorise a sparse matrix
[26], opening up the opportunity for one to detect communities by factorising the adjacency
matrix into a lower dimension matrix, which may be interpreted as the community affiliation
matrix. Yang and Leskovec’s (2013) work on BigClam is heavily motivated by this class of
methods.

Louvain Method Proposed by Blondel et al. (2008), the Louvain Method obtain a set of
hierarchical communities (disjoint across the same level) by optimising the modularity of a
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partition of the network. The modularity of a partition is defined as

# Edges in the partition
# Edges in the network

− Expected # edges in the partition if randomly distributed
# Edges in the network

. (3.18)

The method starts from node level and finds groups of nodes (“local communities”) that opti-
mises the modularity locally. It then finds groups of local communities that further optimises
the modularity, and so on until the global optimum in modularity is reached. This results in
a hierarchical community structure being detected, though the communities at the same level
are not overlapping. With the Louvain method, Blondel et al. (2008) managed to solve a 118
million-node network in less than 3 hours [7].
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Chapter 4

Graph Generative Process for
Overlapping Communities

The ability to generate real-like graphs is powerful: it allows us to discover latent features of
a social network (e.g. community structure), and hence understand social dynamics and in-
herent properties of society as discussed in section 1.1.1. It also provides the opportunity to
quantitatively evaluate network-related algorithms. However, current graph generative models
struggle to create graphs with all the properties of real networks, including overlapping com-
munity structure and power-law distributed node degrees. This means the graphs generated by
those models carry less value for further study.

In this chapter, we propose a new generative model for large interaction networks with over-
lapping communities and power-law distributed node degrees. The model consists of two sub-
models: an overlapping community generative model, and a graph generative model based on
overlapping communities, which features a measurement of influence, a possible explanation of
why individuals connect with each other. We show our generative model is capable of gener-
ating communities with power-law distributed membership counts, individuals with affiliation
count following a distribution with exponential decay, and graphs with power-law distributed
node degrees under some common conditions. The work also opens up discussion on the num-
ber of communities a network can support, and motivates evaluation of overlapping community
detection algorithms, a study of which can be found in section 5.1.

We organise the chapter as follows. Section 4.1 covers a more in-depth exploration on real net-
works and the need for a graph generative process for overlapping communities and power-law
distributed degrees. We proceed to outline the specification for our synthesised (overlapping)
communities and graphs in section 4.2, and detail our community and graph generative pro-
cesses in sections 4.3 and 4.5 respectively. The result of our generative processes is available in
section 4.6, with our evaluation and discussion in section 4.7 and possible work the generative
processes has opened up in section 4.8.
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4.1 Motivation

We begin by outlining our observations on real networks, and why it motivates the need of a
new graph generative process which takes an overlapping community structure and power-law
distributed node degrees into account.

4.1.1 Power Law in Node Degree Distribution

Interaction networks with node degrees following a power law distribution, also known as scale-
free networks, were studied since as early as 1965, when Price (1965) published his findings
on citation networks.

A large number of networks are scale-free, with node degree following a power-law distribution.
Newman (2005) has included the node degree distribution for the AT&T telephone call network,
amongst others, as examples which power law is evident. Moreover, we observe node degree
distribution in networks maintained by Leskovec and Krevl (2014) [33] appears asymptotically
linear on a log-log plot (see figure 4.1), suggesting the node degrees for the networks are
power-law distributed.

4.1.2 Distributional Result in Membership/Affiliation Counts

We also observe the number of members in a communities appears to follow the power law. This
is shown in figures 4.2a and 4.2b, where the membership distribution appears linear on the log-
log plot. The phenomenon is also discussed by Newman (2005), who investigated power laws
in the number of species in a genus, city size, and book sales [38]. If we treat genera, cities and
individuals who have bought the same books as communities, then their size (i.e. number of
membership) is power-law distributed.

On the other hand, the number of affiliations for an individual does not follow the power law
- the associated probability density function decays exponentially. Broderick et al. (2012)
have proved the number of features demonstrated by a feature point under a Beta Process do
not follow the power law, but decays exponentially [8]. By the equivalence of features and
overlapping communities as discussed in section 1.1.2, we can adapt the result from Broderick
et al. to establish the said statement on community affiliation distribution. The exponential
decay can be visualised in figures 4.3a and 4.3b, where the affiliation distributions (on the left)
do not appear linear on the log-log plot.

4.1.3 Need for An Overlapping Community-Based Graph Generative Process

Based on the observations and related work discussed above, it is clear a graph generative pro-
cess that involves overlapping communities and is capable of generating power-law distributed
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(b) DBLP scientific collaboration network
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(c) LiveJournal blogging community
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(d) Youtube social network

Figure 4.1: Log-log plots on node degree distribution for the networks with ground-truth commu-
nities. The plots suggest node degree are asymptotically power law-distributed, as marked by the
straight line in each plot.

node degrees is required.

Current state-of-the-art methods usually satisfy some but not all of the requirements: The
Erdős–Rényi model (see section 3.1.1) and the Watts–Strogatz model (see section 3.1.2) do not
generate scale free networks (i.e. with power-law distributed node degrees), the Barabási–Albert
model (see section 3.1.3) does not involve any community structure1, and the Stochastic Block
Model (see section 3.1.4) assumes non-overlapping communities. This motivates our work in
developing a generative model which resultant graphs satisfy all the said properties.

1Though the essence of the model - “the rich gets richer” - inspired our development on the influence measure
(see section 4.5.1).

37



4.2. SPECIFICATION

1
10

10
0

10
00

10
00

0

Membership

C
ou

nt

10 100 1000 10000

(a) Amazon

Membership

C
ou

nt

10 102 103 104 105

1
10

10
2

10
3

10
4

10
5

(b) LiveJournal

Figure 4.2: Log-log plots for distribution on number of community memberships in the Amazon
product co-purchase network (left) and the LiveJournal social network (right). The distributions
appears asymptotically linear (denoted by the red lines), suggesting they follow the power law.

4.2 Specification

Our new community and graph generative process will produce networks with the following
characteristics:

• Containing |V | individuals

• Containing |C| communities

• Having in total |M | = |V | × r affiliations (where r denotes the average number of af-
filiations per individual, and measures the degree of overlap between communities - see
figure 4.4)

• Having the number of members in a community following a power law distribution with
shape parameter αc.

• Having the minimum number of members in a community, mmin, as three (see sec-
tion 4.2.1)

• Having in total |E| ≈ |V | × |Ê||V | edges (where |Ê||V | denotes the target average node degree
- number of connections an individual has in the network)

All parameters above, apart from |M | (which could be easily inferred from |V | and r), are
specified.
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Figure 4.3: Log-log plots for distribution on number of individual affiliations in the Amazon product
co-purchase network (left) and the LiveJournal social network (right). The distributions does not
appear to follow the power law.

4.2.1 Minimum number of members for a community

We also assume a community has at least three members. The assumption excludes the possibil-
ity of one-person communities, which is equivalent to the individual node itself, and two-person
communities from existing. The latter motivates a circular definition - individuals connect with
each other because they are affiliated with the same community, which (in two-person com-
munity cases) arises because the two individuals are connected to each other - and should
be avoided. The assumption is also used in BigClam’s implementation by Yang and Leskovec
(2012) [54].

The corresponding constant (minimum number of members per community) is denoted:

mmin = min
C,M

{
|M |
|C|

}
= 3 , (4.1)

where C is the set of all communities, M is the set of memberships/affiliations, and | · | is the
cardinality function. Note mmin could be an integer greater than three if we are interested in
larger communities, and hence ignoring communities with few members.

4.3 Community Generation

Our community generation method assumes the existence of |V | individuals and |C| (empty)
communities within a network, and generates the membership/ affiliation link between individ-
uals and communities. Note we do not generate the edges between individuals in this method.
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(a) Disjoint communities (i.e.
clusters) (r = 1)

(b) Lightly overlapping communi-
ties (r = 1.33)

(c) More densely-overlapping
communities (r = 1.87)

Figure 4.4: Three 15-node networks with different underlying 4-community (denoted in red, yellow,
green and purple ellipses) arrangements. Each community arrangement features a different degree
of overlapping, measured by average number of community affiliations for each individual node (r).

4.3.1 Obtaining number of members for each community

We first recall the requirements on number of members for each community. Let Ci ∈ C, i ∈
{1, ..., |C|} be community i within the network, and |Ci| be the size (number of members) of
the community. The sequence {|Ci|}i∈{1,...,|C|} should satisfy the following properties:

1. The value of each element is greater or equal to mmin (see section 4.2.1)

2. The values asymptotically follow a power law distribution with shape parameter αc (see
section 4.1.2)

3. The values sum up to the total number of memberships/ affiliations |M |

We notice any random sequence yi following Type II Pareto distribution with location parame-
ter µ = mmin and shape parameter αc, satisfies properties 1 and 2 after rounding. Choosing an
appropriate σ, which may vary from one sequence to another, will also satisfy property 3. We
start with a random sequence:

xi
iid∼ Pareto(I)(σ = 1, αc) , (4.2)

which follows Type I Pareto distribution, and perform the transformation yi = σ′(xi− 1) +mmin

to obtain:

yi
iid∼ Pareto(II)(µ = mmin, σ

′, αc) , (4.3)

a Type II Pareto distribution (see theorem 2.12). We tentatively set σ′ = |M |∑|C|
i=1(xi−1)

to en-

able development of our method, recognising it does not satisfy property 3 at this stage - the
transformed sequence sums to |M |+ |C| ×mmin.
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4.3.2 Membership/ affiliation generation

Having obtained the number of members for each community, we generate the membership/
affiliation (links between individuals and communities) via the following two-stage process,
which is also illustrated in figure 4.5:

Figure 4.5: Illustration on generating membership/ affiliation for a network with two communities
and eight individuals. Communities are denoted in squares, with the number within being the num-
ber of members. Individuals are denoted in circles in grey for individuals without an affiliation, and
in white for individuals with affiliation(s). Updates at each stage (including individual-community
link generation and changes in member count) are marked with solid red arrows, with the direction
denoting from whose perspective the membership/ affiliation generation is done.

Stage I: Member selection For each community i, the number of members in the community
is given as yi, and we uniformly choose yi individuals to be members of the community.

Stage II: Community Allocation We then randomly allocate individuals who failed to gain an
affiliation in stage I to community i with probability proportional to the community’s size after
stage I (i.e. yi/

∑
yi). By doing so, we scale up the community sizes proportionally, maintaining

the power law distribution.
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4.3.3 Discount factor

Recall we did not maintain property 3. Ideally, we should downside the number of members
admitted for all communities in stage I such that the total number of links satisfies the property.
We calculate the discount factor d ∈ (0, 1] based on the observations that our previous choice
of σ′ gives |C| ×mmin memberships in excess, and on average |V |(1− 1/|V |)|M |+|C|×mmin indi-
viduals are not affiliated to a community after stage I and require an affiliation.2 Hence we find
d which satisfies the following equation:

|M | × d+ |C| ×mmin︸ ︷︷ ︸
Stage I

+ |V |
(

1− 1

|V |

)|M |×d+|C|×mmin

︸ ︷︷ ︸
Stage II

= |M | , (4.4)

which can be approximated quickly with Newton’s method as there are no analytical solutions.

We finally assemble the pieces to obtain the method which generates a set of communities
satisfying all three properties:

1. Generate a random sequence {xi} ∼ Pareto(I)(1, αc)

2. Perform an affine transformation yi = σc(xi − 1) +mmin, where σc = σ′d = |M |d∑
(xi−1) , and

round the result to obtain the number of members for each community (in stage I)

3. Uniformly select yi members from all individuals into community i

4. Allocate individuals without an affiliation to community i with probability yi/
∑

i∈C yi

Note step 4 increases the number of members of all communities by 1
1−q times, where q =(

1− 1
|V |

)|M |×d+|C|×mmin

is the proportion of individuals who did not secure an affiliation in
state I of membership/affiliation generation.

4.4 Graph Generation: First Attempt (AGM)

Having obtained the set of community memberships/affiliations, we can generate a network
graph based on a community-based graph generative algorithm. We attempted to combine
our overlapping community generative model with Yang and Leskovec’s (2012) Community-
Affiliation Graph Model (AGM), yet find it generate graphs with undesirable properties.

In this section we will show why the AGM is not an ideal candidate for generating real net-
works based on communities obtained in section ??. We observe an AGM graph is a mixture of
Erdős–Rényi graphs, and show the node degree distribution of an AGM graph follows a mixed

2This is an overestimate: it assumes drawing with replacement in every stage I membership draw, yet the process
we propose draws without replacement within a community, and with replacement between communities. The esti-
mation error is small for large |V | and small |M |/|C| . Better estimates may become infeasible with the introduction
of d.
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Poisson distribution, with a finite number of samples from the underlying distribution for mix-
ture component parameters. The node degree distribution demonstrates exponential decay
towards infinity, multimodality, and low probability mass near zero, which does not resemble
the node degree distribution of real networks (e.g. that in figure 4.1). We also discuss the
limiting behaviour for the mixed Poisson distribution with a Type IV Pareto distribution as its
underlying mixing distribution on an AGM graph with an infinite number of communities.

4.4.1 Erdős–Rényi graph mixture and mixed Poisson distribution

To begin, we observe the AGM is a collection of Erdős–Rényi graphs. As discussed in section
3.2.1, individuals within the same community Ci ∈ C connect with probability pCi ∈ [0, 1] under
the AGM, and each pair of individuals gains an independent chance to connect for each of their
shared communities. This is equivalent to saying the AGM creates an independent Erdős–Rényi
graph - GER(|Ci|, pCi) - for each community Ci ∈ C, where |Ci| is the number of nodes, and
pCi is the connection probability.

The node degree of Erdős–Rényi graphs follow the binomial distribution by lemma 4.1, which
could be approximated by a Poisson distribution for large, sparse networks (i.e. large number
of nodes n→∞ and small connection probability p→ 0) by Poisson limit theorem.

Lemma 4.1. The node degree of a Erdős–Rényi graph GER(n, p), where n is the number of
nodes and p is the probability for two nodes to connect (independent of other connections), fol-
lows Bin(n− 1, p) - the binomial distribution with n − 1 (independent) trials and probability of
success p.

Proof. Fix a node in GER(n, p), the node has n− 1 potential neighbours in the graph. For each
potential neighbour, the node has probability p to connect independent of other connections/non-
connections.

Hence the node will have
(
n−1
k

)
ways to obtain k connections, each with probability pk(1− p)k.

In other words,

P(Node degree = k) =

(
n− 1

k

)
pk(1− p)k , k ∈ {0, 1, ..., n− 1} (4.5)

This is by definition the binomial distribution Bin(n− 1, p).

The observation leads to the conclusion that the node degree of an AGM graph follows a mixed
Poisson distribution. Since the AGM is a mixture of overlapping Erdős–Rényi graphs, the node
distribution of an AGM graph can be approximated by a mixed Poisson distribution: the nor-
malised sum of Poisson distributions (with parameters λi following a mixing distribution) aris-
ing from different community-induced Erdős–Rényi graphs. This is evident in figure 4.6a, where
each hump in the histogram represents a mixture component.

43



4.4. GRAPH GENERATION: FIRST ATTEMPT (AGM)

We will use the terms “node degree distribution of an AGM graph”, and “mixed Poisson Distri-
bution” interchangeably throughout the section.
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Figure 4.6: Degree distribution of a network generated by the AGM, in which underlying commu-
nity affiliations are generated via our community generative model. The normal plot demonstrates
“humps” in the degree distribution, which indicates the AGM generates networks with node degree
following a mixture of Poisson distributions. The log-log plot shows the lack of individuals with a
low degree, and an exponential decay in the number of individuals along increasing degree.

4.4.2 Properties of mixed Poisson distribution under finite mixture component
parameters

Theorems 4.2 and 4.3 show a mixed Poisson distribution with finite mixture components is
bounded by (a multiple of) the rightmost mixture component. Note theorem 4.3 makes stronger
assumptions on the value of mixture component parameters, yet gives a stronger upper bound
on the tail end of the mixed Poisson distribution.

Theorem 4.2. Let X be a random variable under a mixed Poisson distribution with finite mixture
components, each with parameter 0 < λ1 ≤ λ2 ≤ ... ≤ λn. Then the probability density function
(PDF) of X is bounded by the unnormalised probability density function of the rightmost mixture
component, i.e.:

fX(x) = P(X = x) ≤ λn
x

x!
, ∀x ∈ N . (4.6)

Proof. The PDF of X is bounded by:

fX(x) = P(X = x)
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=
1

n

[
e−λ1λ1

x

x!
+
e−λ2λ2

x

x!
+ ...+

e−λnλn
x

x!

]
=

1

nx!

[
e−λ1ex log λ1 + e−λ2ex log λ2 + ...+ e−λnex log λn

]
≤ 1

nx!

[
e0ex log λ1 + e0ex log λ2 + ...+ e0ex log λn

]
≤ e0

nx!

[
ex log λn + ex log λn + ...+ ex log λn

]
=

n

nx!

[
ex log λn

]
=
λn

x

x!
. (4.7)

Theorem 4.3. Let X be a random variable under a mixed Poisson distribution with finite mixture
components, each with parameter 0 < λ1 ≤ λ2 ≤ ... < λn. Then for x > λn, the probability
density function (PDF) of X is strictly bounded by the (normalised) probability density function of
the rightmost mixture component, i.e.:

fX(x) = P(X = x) <
e−λnλn

x

x!
, ∀x > λn, x ∈ N . (4.8)

We first prove the following lemma:

Lemma 4.4. Let λ∗ > 0, then x > λ∗ =⇒ x log λ∗ − λ∗ > x log λ− λ ∀ 0 < λ < λ∗ .

Proof. We first let

f(λ) =
λ∗ − λ

log λ∗ − log λ
(4.9)

=⇒ f ′(λ) =
1

(log λ∗ − log λ)2

[
1 +

λ∗

λ
− log

λ∗

λ

]
≥ 0 ∀ 0 < λ < λ∗ . (4.10)

This means f is increasing for 0 < λ < λ∗, i.e. f(λ) < “f(λ∗)” ∀ 0 < λ < λ∗. Since f(λ∗) is
undefined, we take limδ→0 f(λ∗ + δ) as the upper bound instead:

lim
δ→0

f(λ∗ + δ) = lim
δ→0

λ∗ − (λ∗ + δ)

log( λ∗

λ∗+δ )
= lim

δ→0

−δ
log(1− δ

λ∗+δ )

= lim
δ→0

−δ

− δ
λ∗+δ −O

(
( δ
λ∗+δ )2

)
=

1
1
λ∗

= λ∗ . (4.11)
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Hence λ∗ >
λ∗ − λ

log λ∗ − log λ
∀ 0 < λ < λ∗, and:

x > λ∗ =⇒ x >
λ∗ − λ

log λ∗ − log λ
⇐⇒ x log λ∗ − λ∗ > x log λ− λ ∀ 0 < λ < λ∗ (4.12)

Proof of theorem 4.3. The PDF of X for x > λn, x ∈ N is given as:

fX(x) = P(X = x)

=
1

n

[
e−λ1λ1

x

x!
+
e−λ2λ2

x

x!
+ ...+

e−λnλn
x

x!

]
=

1

nx!

[
ex log λ1−λ1 + ex log λ2−λ2 + ...+ ex log λn−λn

]
<

1

nx!

[
ex log λn−λn + ex log λn−λn + ...+ ex log λn−λn

]
(by lemma 4.4 , x > λn)

=
1

x!

[
ex log λn−λn

]
=
e−λnλn

x

x!
(4.13)

Since a Poisson distribution decays exponentially at the tail end, theorems 4.2 and 4.3 imply the
mixed Poisson distribution also decays exponentially at the tail end (by the sandwich theorem).
The exponential decay can also be observed in figure 4.6b.

A mixed Poisson distribution with finite mixture components may also demonstrate multimodal-
ity. Multimodality arises when successive elements in a sorted mixture parameter sequence are
sufficiently apart, as illustrated in figure 4.7. This is in contravention of the degree distributions
in figure 4.1, which appear smooth.

We also investigate properties of a mixed Poisson distribution near zero with the following re-
sults:

Theorem 4.5. Let X be a random variable under a mixed Poisson distribution with finite mixture
components, each with parameter 0 < λ1, λ2, ..., λn. A sufficient condition for the probability mass
function to be increasing from zero to k ∈ N \ {0} is λi > k ∀ i ∈ {1, ..., n}.

We begin by proving a lemma:

Lemma 4.6. If λ > n, n ∈ N \ {0}, then
λn

n!
− λn−1

(n− 1)!
> 0 .
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Figure 4.7: Plot of probability mass functions (PMF) forX1 ∼ Po(4) (in light blue),X2 ∼ Po(12) (in
light purple), and XM = (X1+X2)/2 (in black), a mixed Poisson distribution with two components.
PMF for XM demonstrates multimodality, with one mode at x = 5 and another at x = 12.

Proof. Assume λ > n ⇐⇒ λ

n
> 1,

λn

n!
− λn−1

(n− 1)!
=

λ(λn−1)

n(n− 1)!
− λn−1

(n− 1)!
=

λn−1

(n− 1)!

[
λ

n
− 1

]
> 0 (4.14)

Proof of theorem 4.5. Assume λi > k ∀ i ∈ {1, ..., n}, consider the difference between P(X = k)

and P(X = k − 1):

P(X = k)− P(X = k − 1)

=
1

n

[
e−λ1λ1

k

k!
+
e−λ2λ2

k

k!
+ ...+

e−λnλn
k

k!

]
− 1

n

[
e−λ1λ1

k−1

(k − 1)!
+
e−λ2λ2

k−1

(k − 1)!
+ ...+

e−λnλn
k−1

(k − 1)!

]

=
1

n

[
e−λ1

(
λ1

k

k!
− λ1

k−1

(k − 1)!

)
+ e−λ2

(
λ2

k

k!
− λ2

k−1

(k − 1)!

)
+ ...+ e−λn

(
λn

k

k!
− λn

k−1

(k − 1)!

)]
(4.15)

> 0 (using lemma 4.6) (4.16)

Equivalently, P(X = k) > P(X = k − 1). In general, for j ∈ {0, 1, ..., k − 1}:

P(X = k − j)− P(X = k − (j + 1))

=
1

n

[
e−λ1

(
λ1

k−j

(k − j)!
− λ1

k−(j+1)

(k − (j + 1))!

)
+ e−λ2

(
λ2

k−j

(k − j)!
− λ2

k−(j+1)

(k − (j + 1))!

)
+ ...+

e−λn

(
λn

k−j

(k − j)!
− λn

k−(j+1)

(k − (j + 1))!

)]
(4.17)
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> 0 (as λi > k − j ∀ i ∈ {1, ..., n}, result follows by using lemma 4.6) (4.18)

Hence P(X = k − j) > P(X = k − (j + 1)) ∀ j ∈ {0, 1, ..., k − 1}, and we conclude fX(x) =

P(X = x) is a increasing function from zero to k.

Corollary 4.7. Let X be that in theorem 4.5, then the probability mass function (PMF) of X is
increasing from zero to bmin{λ1, λ2, ..., λn}c, where b.c denotes the floor function.

Proof. This follows from the fact that λi > bmin{λ1, λ2, ..., λn}c ∀ i ∈ {1, ..., n}, and the result
of theorem 4.5.

Remark. The PMF of X may still be increasing beyond bmin{λ1, λ2, ..., λn}c, though it is not
necessarily the case.

Theorem 4.5 and its corollary 4.7 show the node degree distribution of an AGM graph starts
from the bottom-left corner and has an initial increasing phase if bmin{λ1, λ2, ..., λn}c ≥ 1. The
condition is usually satisfied as an individual can expect to gain, on average, one or more con-
nections from each community affiliation. This is in contravention of the degree distributions
in figure 4.1, which starts from the top-left corner and appears decreasing.

4.4.3 Mixing distribution and limiting behaviour

To evaluate the full potential of the AGM as a generator of real networks, we also discuss the
underlying distribution for the parameters λi, and the limiting behaviour of the mixed Poisson
distribution (as if infinite samples are drawn from the mixing distribution).

We focus on the construction used in the implementation by Leskovec and Sosič (2014) [34],
where

pCi = σA|Ci|−αA , σA, αA > 0 (4.19)

=⇒ λi = |Ci|σA|Ci|−αA = σA|Ci|(1−αA), (4.20)

and show λi approximately follows a Type IV Pareto distribution:

Theorem 4.8. Under some regularity conditions, λi in equation 4.20 approximately follows a Type
IV Pareto Distribution.

We begin by establishing the following two lemmas:

Lemma 4.9. Let X ∼ Pareto(II)(µ, σ, α), then kX ∼ Pareto(II)(kµ, kσ, α) for constant k > 0.
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Proof. Consider the cumulative distribution function (CDF) for kX:

P(kX ≤ x) = P
(
X ≤ x

k

)
= 1−

(
1 +

x
k − µ
σ

)−α
= 1−

(
1 +

x− kµ
kσ

)−α
, (4.21)

which is the CDF for Pareto(II)(kµ, kσ, α).

Remark. This shows type II Pareto distribution is scale-invariant (see theorem 2.7).

Lemma 4.10. Let Y ∼ Pareto(II)(µ, σ, α), then Y 1−β approximately follows a Type IV Pareto
distribution under some regularity conditions.

Proof. Consider the cumulative distribution function (CDF) for Y 1−β:

P
(
Y (1−β) ≤ y

)
= P

(
Y ≤ y

1
1−β
)

= 1−

(
1 +

y
1

1−β − µ
σ

)−α

= 1−

1 +
y

1
1−β −

(
µ1−β

) 1
1−β

(σ1−β)
1

1−β

−α (4.22)

≈ 1−

1 +

(
y − µ1−β

) 1
1−β

(σ1−β)
1

1−β

−α

= 1−

(
1 +

(
y − µ1−β

σ1−β

) 1
1−β
)−α

, (4.23)

which is the CDF for Pareto(IV )(µ1−β, σ1−β, γ = 1− β, α).

Remark. The approximation in equation 4.23 works well if µ ≤ 1 and β is not too close to one
(a rule of thumb is β < 0.85).

Proof of theorem 4.8. Notice equation 4.20 can be rewritten as:

λi =

(
σ

1
1−αA
A |Ci|

)(1−αA)
. (4.24)

By construction, |Ci| ∼ Pareto(II)(µc, σc, αc).

lemma 4.9
=⇒ σ

1
1−αA
A |Ci| ∼ Pareto(II)

(
µc σ

1
1−αA
A , σc σ

1
1−αA
A , αc

)
.

lemma 4.10
=⇒ λi

approx∼ Pareto(IV )

((
µc σ

1
1−αA
A

)(1−αA)
,

(
σc σ

1
1−αA
A

)(1−αA)
, 1− αA, αc

)
⇐⇒ λi

approx∼ Pareto(IV )
(
µ
(1−αA)
c σA, σ

(1−αA)
c σA, 1− αA, αc

)
.
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Remark. The approximation works well if
(
µc σ

1
1−αA
A

)
≤ 1, and αA is not too close to one.

Theorem 4.8 implies the node degree distribution of an AGM graph demonstrates power-law
behaviour as the number of communities tends to infinity. Willmot (1990, 1993) has shown a
mixed Poisson distribution with mixture component parameters following a generalised Pareto
distribution (the mixing distribution) follows the power law at the tail end [51][52]. The result
follows from our ability to approximate the mixture component parameter as a Type IV Pareto
distribution, a member of the generalised Pareto family of distributions.

Furthermore, the node degree distribution of an AGM graph does not demonstrate multimodal-
ity as the number of communities tends to infinity. Holgate (1970) has shown that a mixed
Poisson distribution with mixture component parameters following a unimodal function is uni-
modal [24]. Moreover, Al-Zahrani and Sagor (2014) have shown a mixed Poisson distribution
with mixture component parameters following a Lomax distribution (a variant of the Type II
Pareto distribution) is either unimodal or decreasing, depending on the parameter values used
for the Lomax distribution [3]. We expect the result to be similar with mixture component
parameters approximately following a Type IV Pareto distribution, though we are unable to out-
line the exact conditions on distribution parameters that lead to a strictly decreasing probability
mass function.

4.5 Graph Generation: An Influence-based Model

We then propose our own graph generative model to overcome deficiencies in network graphs
generated by the AGM.

4.5.1 Affiliation Weights Matrix Generation

We base our model on the concept of influence, a relative measurement to gauge an individual’s
influence, engagement and participation within a network. We believe the higher an individ-
ual’s influence is on a community, the more likely it is for the individual to connect with other
individuals in the community. In the case of multiple affiliations, an individual can “split” their
influence over their affiliations. This reflects the observation that an individual can have differ-
ent degrees of participation in different affiliated communities: A researcher can work in the
intersection of Computer Science and Social Science, with a slant to the former.

Similar to the number of connections an individual has, the influence of an individual across
all their affiliation(s) resembles the 80-20 rule. Few individuals (e.g. Barack Obama, David
Beckham, Justin Bieber) have great influence overall, and the absolute majority have little
influence. Note a community can have zero or more individuals with high overall influence,
and high overall influence is not a prerequisite for an individual to gain connections within a
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community - the measure only governs how individual-centric the graph within the community
will be. To illustrate (see figure 4.8), connections between a group of schoolchildren with low
but comparable influence may resemble a random graph, whereas the existence of a “sports
star” or “popular kid” in school may draw attention and connections towards him/her. The
person may not have overall influence comparable to that of Barack Obama’s, though it would
be higher than other schoolchildren.

(a) Comparable influence between individuals (b) Unbalanced influence between individuals

Figure 4.8: Possible connections between a community of nine individuals under different influence
distributions. The size of the node is proportional to the influence of an individual, which controls
how many connections the individual obtains within the community. Note in the unbalanced influ-
ence distribution case, the centre node (with extremely high influence) gains a connection with all
other nodes.

We then link our concept of influence to Yang and Leskovec’s (2013) concept of affiliation
weights in BigClam by initialising the affiliation weights matrix F = (Fuc) used in BigClam
as follows. For each individual in the network, their total affiliation weight is sampled from a
different Pareto Type II distribution (i.e.

∑
c Fuc

iid∼ Pareto(II)(µw, σw, αw) for specified µw, σw
and αw). For each individual with multiple, say k, affiliations, we randomly partition their total
affiliation weight into k parts (of different sizes) and assign them to each affiliation (see figure
4.9). This is done by generating k − 1 ordered standard uniform (U(0, 1)) samples, and can be
made efficient by using the uniform spacing algorithm proposed by Schucany (1971) [44].

4.5.2 Edge Formation

We finally proceed with a variant of Yang and Leskovec’s (2013) BigClam generative model,
which states two nodes u, v connect with probability

p(u, v) = σe(1− exp(Fu
TFv)) + ε , (4.25)

where Fu =
∑

c Fuc, Fv =
∑

c Fvc are the affiliation weights vectors associated with individual
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Figure 4.9: A network with five individuals and three communities, featuring each individual’s total
affiliation weights (with magnitude denoted by length of the bars on the right) and how it is split
between their affiliation(s) (denoted by position of the markers).

u and v respectively, and σe is the scale factor governing the total number of edges being
generated. There is a small chance of two nodes connecting “at random”, reflected by the ε > 0

in equation 4.25.

Yang and Leskovec (2013) have also offered an alternate construction, stating a pair of nodes
(u, v) have multiple independent chances (1− exp(Fuc × Fvc)) for each common community c)
of connecting if both nodes are affiliated to more than one community. In other words:

p(u, v) = σe

(
1−

∏
c∈C∗

(1− (1− exp(Fuc × Fvc)︸ ︷︷ ︸
Prob. u, v connects via c

)

︸ ︷︷ ︸
Prob. u, v does not connect ∀c

)
+ ε , (4.26)

where C∗ is the set of communities with both u and v as members, and ε is a small quantity.

This leads to an implementation which need not consider all possible node pairs, but only node
pairs within each community. All node pairs without common communities can only connect “at
random” from the construction above, and hence can be ignored when we generate community-
motivated connections. It can be shown that the alternate construction (equation 4.26) will
achieve a |C|

2

r2
times speed-up compared to the initial construction (equation 4.25), where |C|

is the number of communities and r is the average number of affiliations per individual.
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4.6 Analysis and Experimental Results

We show our community and community-based graph generation processes are capable of pro-
ducing networks with desirable properties. This is done by proving our community generation
process generates communities with the number of members following the power law, and in-
dividuals with exponential decay in number of affiliations. Moreover, we present experimental
results which demonstrate our community-based graph generation process can generate graphs
with node degree distribution following the power law.

4.6.1 Distribution of Number of Community Membership

By construction, the number of memberships follows a Type II Pareto distribution:

Theorem 4.11. Under our community generative model, the number of memberships for commu-
nity i, |Ci|, is distributed as:

|Ci| ∼ Pareto(II)

(
1

1− q
mmin,

1

1− q
σc, αc

)
, (4.27)

where q =

(
1− 1

|V |

)|M |×d+|C|×mmin

is the proportion of individuals who did not secure an affili-

ation in stage I of membership/affiliation generation.

Proof. Recall the community generative model determines the number of memberships by first
generating xi ∼ Pareto(I)(1, αc).

By theorem 2.12, yi = σc(xi − 1) +mmin =⇒ yi ∼ Pareto(II)(mmin, σc, αc).

By lemma 4.9, |Ci| =
1

1− q
yi =⇒ |Ci| ∼ Pareto(II)

(
1

1− q
mmin,

1

1− q
σc, αc

)
.

Together with the result of theorem 2.11, we conclude the number of membership asymptot-
ically follows the power law. This can be visualised in figure 4.10b, where the number of
communities with a certain size shows a linear relationship with the size on a log-log plot.

4.6.2 Distribution of Number of Individual Affiliations

The number of affiliations of an individual follows a Modified Poisson’s Binomial distribution
defined as follows:

Definition 4.12. (Modified Poisson’s Binomial Distribution)
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Let X be a Poisson’s Binomial random variable as defined in section 2.3.3, then Y is a Modified
Poisson’s Binomial Distribution (with support {1, 2, ...}) if:

P(Y = y) =


P(X = 0) + P(X = 1) y = 1

P(X = y) y ∈ {2, 3, ...}
0 otherwise

(4.28)

The distribution arises from how individuals are affiliated in our community generation process
(see section 4.3.2). In our membership/affiliation generation process, each community Ci ∈
C independently, uniformly selects |Ci| individuals from V (the set of all individuals) as its
members. From an individual’s perspective, the process means the individual has a independent
probability of |Ci|/|V | of being affiliated to community i. If we treat forming an affiliation as a
“success” for the individual, the total number of “successes” (i.e. number of affiliations) for the
individual follows the standard Poisson’s Binomial distribution. Providing individuals without
any affiliations an affiliation results in the modified Poisson’s Binomial distribution.

Poisson’s Binomial distribution decays exponentially towards the tail end. This results from
Wang’s (1993) work on Poisson’s Binomial distribution being bounded above by a Poisson dis-
tribution [47], and Poisson distribution decays exponentially at the tail end. The exponential
decay is shown in figure 4.10a, which we are unable to establish a linear relationship in the
log-log plot.
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Figure 4.10: Aggregated affiliation/ membership distribution for 100 synthesised networks with
100,000 individuals and 500 communities. The log-log plots shows an exponential decay in distri-
bution of number of affiliations, and number of members being asymptotically power-law distributed
(denoted by the red line on the right).
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4.6.3 Node Degree Distribution

We also study the node degree distribution of the graphs generated by our graph generative
process, which shows promising results - most of the degree distribution appears asymptotically
linear under a log-log plot, suggesting it follows the power law.

We further conduct an in-depth study on the effect of varying numbers of communities on
node degree distribution. We generate medium-sized networks with 500,000 individuals with
varying numbers of communities, in which communities have a moderate degree of overlapping
(with r, the average number of affiliations per individual, as 1.5) and size disparity (with αc ,
the shape parameter of membership distribution, as 3). The node degree distribution for each
synthesised network is shown in figure 4.11.

The node degree distributions demonstrate different characteristics under different numbers
of communities, suggesting there might be an optimal range on the number of communities a
network can support. For a low number of communities, the node degree distribution (figures
4.11a, 4.11b) appears to decay exponentially. The “concavity” of the node degree distribu-
tion on a log-log plot decreases with an increasing number of communities (figure 4.11c), and
demonstrates asymptotic linearity when the number of communities is between 15,000 and
40,000 (figures 4.11d, 4.11e, 4.11f). Further increasing the number of communities leads to
irregular behaviour in node degree distribution under the mentioned parameters. On a log-
log plot the distribution appears linear in the middle part, with a “bulge” towards the (right)
tail of the distribution (figures 4.11g, 4.11h). The irregular behaviour is further discussed in
section 4.7.3.

4.7 Evaluation and Discussion

In this section we provide an in-depth evaluation on the strengths and weaknesses of our graph
generative process. We also discuss some implications arising from our model.

4.7.1 Contribution and Impact

Our overlapping community-based graph generative process is one of the first models which
accommodates both overlapping community structures and power-law distributed node degrees
- Todeschini and Caron (2016) have independently come up with the idea of generating graphs
with power-law distributed node degrees during the course of this project, using the Generalised
Gamma Process to generate the affiliation weights matrix [45]. Graphs generated under our
graph generative process carry a higher value in being studied compared to other models due
to their higher resemblance in node degree distribution and overlapping community structures
to real networks. Table 4.1 summarises the capabilities of different models.
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Figure 4.11: Node degree distribution for networks synthesised by our overlapping community-
based generative process. The networks have 500,000 individuals and varying numbers of commu-
nities, with moderate community overlap (r = 1.5) and community size disparity (α = 3).

We also offered an explanation of why individuals connect with each other throughout our
model construction. Our observation - influential and engaged individuals tend to obtain more
connections within their communities - brings a flavour of the Barabási–Albert Model to an
overlapping community setting. This results in our model demonstrating both an overlapping
community structure and the scale-free property in generated graphs.
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Community
structure

Overlapping
community
structure

Scale-free

Erdős–Rényi Model 7 7 7

Watts–Strogatz Model 7 7 7

Barabási–Albert Model 7 7 3

Stochastic Block Model 3 7 ?

Our overlapping community +
AGM graph gen. model

3 3 7

Our overlapping community +
influence-based graph gen. model

3 3 3

Table 4.1: Comparison of our overlapping community-based graph generative model with models
studied in section 3.1, based on their capability of accommodating a(n) (overlapping) community
structure and the scale-free property (i.e. node degree following a power law distribution).

Furthermore, the ability of our graph generative model to generate real network-like graphs
opens up the opportunity for us to quantitatively evaluate overlapping community detection
algorithms. Researchers no longer need to depend solely on real datasets, which are limited
in number and require significant effort in compiling community affiliations, to tell the quality
of their algorithm(s). We took advantage of such abilities to evaluate, and ultimately enhance,
Yang and Leskovec’s (2013) BigClam community detection algorithm in chapter 5.1.

4.7.2 Limitations

Our graph generative model is originally designed to evaluate the accuracy and scalability of
overlapping community detection algorithms (e.g. BigClam, AGM). As a result, we made a few
assumptions and design choices that is now considered restrictive. These include the assump-
tion that every individual should have at least one community affiliation, the “requirement” that
the actual number of edges and membership/affiliation generated should be as close as possible
to that specified by the parameters.

The assumptions and design choices lead to two classes of restrictions - a relatively narrow,
albeit common, range of parameter values for our graph generative process to work properly,
and the difficulty in carrying out inferences based on our graph generative process.

Some parameter combinations will create graphs that do not match our specifications in sec-
tion 4.2. For example if |M | = |V | × r < |C| × mmin

3, then the algorithm will generate
|C| ×mmin, instead of |M | memberships/affiliations. This happens as the rule on the minimum
number of members in a community takes precedence in implementation. Likewise, it may not
be possible to generate networks with |E| edges if |C| is too large, where the network becomes
too sparse for a sufficient number of edges to form (see section 4.7.3 for further discussion).

3Where |M | is the number of memberships, |V | is the number of individuals, r is the average number of individual
affiliations, |C| is the number of communities, and mmin is the minimum number of members in a community.
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The design choices motivate the need to scale quantities based on samples drawn from a distri-
bution, which makes inference difficult. Recall our scaling parameter in overlapping community
generation (see section 4.3), σc = |M |d∑

(xi−1) (where |M | is the (specified) number of member-
ships, and d is the discount factor introduced in section 4.3.3), depends on xi, samples gener-
ated from a Type I Pareto distribution. As the samples are random in nature, but not random
variables following some probability distributions themselves, the learning problem “Given the
community memberships/affiliations, what should the specified parameters (e.g. σc) be” will
not have tractable solutions - we can only obtain crude estimates for the parameters.

Further work is required to remove said restrictions. We discuss some of the possible approaches
in section 4.8.1. This may lead to us losing control of fine structural details, but a simpler and
more flexible model.

4.7.3 Implied Limit on Community Structure

From section 4.6.3, we see for large numbers of communities, the node degree distribution gives
a “bulge” at its tail end. We also observe the graph generative process is unable to generate the
specified number of edges if the number of communities is too large.

We believe this implies a limit on real networks’ community structure, more specifically the
number of communities a network can support given the degree of overlap. Further increasing
the number of communities in a network will lead to smaller communities - a greater number
of communities leads to a greater sum of Type I Pareto samples introduced in equation 4.2
(
∑|C|

i=1 xi), which leads to a smaller scale parameter for the distribution of the number of com-
munity memberships σc = |M |d∑

(xi−1) . Hence individuals, regardless of their influence value, have
a limited number of potential neighbours to connect with within a large number of communi-
ties, as an individual is only likely to connect with individuals who share the same community
affiliation(s) under our graph generative process. This means the number of possible edges
is limited, and even a graph with fully connected communities may have its edge count not
meeting the specified target |E| (see figure 4.12).

We also provide the missing link between excessively large number of communities and the
irregularities in node degree distribution (see section 4.6.3). The graph generative process at-
tempts to increase the connection probability if the number of edges present is less than the
target count. This is done by increasing the scale parameter for edge generation σg, expecting
more edges to be formed. For σg � 1, the probability of any individual connecting with indi-
viduals who share the same community affiliation will be one or close to one, and hence the
node degree distribution now depends on the size of each community. Notice in this degenerate
case, larger communities have more members, and each member has a larger chance of con-
necting with a large number of individuals compared to their counterparts affiliated to smaller
communities. This results in a surge in the node degree distribution at the tail end, explaining
the “bulge” seen in figure 4.11h.
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Figure 4.12: Two 15-node graphs with different numbers of underlying communities (in coloured
ellipses). The network on the left has two larger communities, and hence allows more edges (37 in
this graph) to be formed under our graph generative process. The network on the right has more
(five) but smaller communities, and while it is maximal within each community, it only features 23
edges.

A simple workaround to the problem is to increase the degree of overlap (indicated by the
average number of affiliations per individual, r) between communities. Increasing the degree of
overlapping allows us to admit more communities, and further explore hierarchical community
structures (sub-communities within a community) within social networks. On the other hand,
it also means more complex edge generation and community detection (due to a more complex
community structure), and a balance should be struck in between when deciding how many
communities we would like to admit in our model.

4.8 Future work

We conclude by outlining possible work opened up by our overlapping community-based graph
generative process.
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4.8.1 Relaxing Assumptions on Distributions and Their Parameters

Our overlapping community-based graph generative model involves specifying ten distinct pa-
rameters (including the five specified in section 4.2, and the location, scale and shape parame-
ters used in sections 4.3 and 4.5), and can be simplified.

We look at the possibility of relaxing assumptions on distributions and their parameters via
the use of non-parametric models and inference methods. Non-parametric models learn the
parameters from data, and hence less parameters are required to be specified. The models also
remove the need for sample-dependent discount factor(s), which prevent one from carrying out
inference. Possible candidates for generating the affiliation weights matrix include the Indian
Buffet Process (IBP) outlined by Griffiths and Ghahramani (2011) [23], which is capable of
generating binary random matrices representing existence of memberships/affiliations between
individuals and communities.

The Generalised Gamma Process (GGP) outlined by Caron and Fox (2014) [10] has been used
by Todeschini and Caron (2016) to generate random matrices for affiliation weights [45]. Fur-
ther work is required to verify if the properties of GGP is sound.

4.8.2 Generating Other Types of Networks

We also seek the possibility of extending our graph generative process to accommodate other
types of graphs. Examples include, in increasing perceived difficulty, weighted, directed, and
temporal graphs.

Weighted networks (see figure 4.13a) allow one to specify the interaction strength between
individuals. A possible approach to generating weighted networks is to modify the edge gen-
eration process - instead of generating an edge with probability p, we generate the edge with
weight p if p is higher than some threshold. We have to be careful as this process may result in
dense graphs (graphs having too many edges), which is considered an undesirable property in
graph-generative models by Todeschini and Caron (2016) [45].

Directed networks (see figure 4.13b) support asymmetrical connections. For example, in the
Twitter social network, following another account and being followed by another account are
two distinct concepts. Similarly, in a telephone call network, an outgoing call would almost
certainly not be matched by an incoming call; yet most of the methods continue to model
individual-individual connections as an undirected graph (e.g. Blondel et al. (2008) [7], Yang
and Leskovec (2012, 2013) [53] [54]). A model that can explain individuals with a large
number of incoming and/or outgoing edges is preferred. This may be done by introducing two
sets of influence/participation measurements, one for incoming connections (highly influential
individuals attract connections from others) and the other for outgoing connections (heavily
engaged individuals connect with a large number of other individuals).
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(a) Weighted graph (b) Directed graph

Figure 4.13: Illustration of a weighted graph (left) and a directed graph (right). The number beside
a weighted graph edge shows the weight of the edge, which can be interpreted as the interaction
strength between two individuals. The arrows in the directed graph show the edge directions, which
can be interpreted as asymmetrical connections. Nodes with significantly more incoming edges in
the directed graph are coloured in black, and nodes with significantly more outgoing edges in the
directed graph are coloured in grey.

Temporal networks take dynamics between individuals across time into account. It is almost
certain that any influential individuals will have a diminished influence measurement given
sufficient time, due to reasons such end-of-office, retirement, and death. Individuals can also
experience changes in affiliations (e.g. interest, country/area of residence, school), and their
influence, hence connections may also change accordingly. Hence the ability to generate tem-
poral networks will enable the study of changes to an individual’s surroundings and social
interactions. An interesting application would be the detection of social withdrawal, which
with appropriate intervention could potentially save lives. Further work is required to study
temporal dynamics within social networks before any feasible models can be proposed.
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Chapter 5

BigClam: Verification Framework
Extension and Runtime Reduction

We turn our attention to the Cluster Affiliation Model for Big Networks (BigClam), a popular
overlapping community detection algorithm proposed by Yang and Leskovec (2013) [54].

In their paper, Yang and Leskovec (2013) conducted some experiments on BigClam’s prediction
accuracy and runtime, though the technical details are largely omitted, presumably for brevity.
We are interested in verifying the experiments, and further expand the verification framework
for BigClam to explore the community detection algorithm’s behaviour under different network
characteristics. As such, we learn from experiment results that BigClam achieve a higher pre-
diction accuracy on networks with less overlap and large communities. Furthermore, we are
able to give the runtime complexity of the BigClam community detection algorithm, which is
divided into three stages: the initialisation/conductance test stage, the gradient ascent stage,
and the community association stage.

We also notice from experiment results that the implementation of the BigClam community
detection algorithm spends majority of its runtime in the community association stage when
solving networks with a large number of communities, and yet computation is not parallelised
across CPU threads. This results in lengthened runtime and waste of available hardware re-
sources. We parallelise the community association stage with OpenMP, and show the paral-
lelisation achieves as much as 5.3 times speed up and saves as much as 12.8 hours in the
community association stage when solving networks by Leskovec and Krevl (2014) [33].

We organise the chapter as follows. Section 5.1 covers our work on extending the verification
framework for overlapping community detection algorithms, and analysing BigClam’s accuracy
and runtime under different network parametrisations. Section 5.2 outlines our work on speed-
ing up BigClam, and comparison of our work with Leskovec and Sosič’s (2014) implementation
on Stanford Network Analysis Platform (SNAP) [34]. We finally evaluate and discuss the impact
of our work and future work this has opened up in section 5.3.
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5.1 Verification Framework Extension

5.1.1 Motivation

Yang and Leskovec (2013) conducted a series of experiments on BigClam’s predictive ability in
their paper [54], though they did not explain the experiments to the full details. One of the
experiments involved generating synthetic networks under the AGM generative model (see sec-
tion 3.2.1), fitting the generated networks with the BigClam community detection algorithms to
obtain predicted networks, and comparing the predicted networks with the generated networks
to infer BigClam’s ability to recover community affiliations: the more similarities between the
predicted and generated networks, the better BigClam is. We observed Yang and Leskovec did
not specify any details on the synthetic networks, or their underlying community structure used
in their experiment, to reach the conclusion that the BigClam community detection algorithm
achieves a high prediction accuracy.

A similar lack of details can be observed when Yang and Leskovec evaluate the runtime of Big-
Clam. Yang and Leskovec compared the runtime for BigClam against the runtime for other
community detection algorithms on synthetic networks of different sizes, yet details of the syn-
thetic networks, apart from the number of nodes in the networks, are not reported. Moreover,
we observed when Yang and Leskovec commented on applying BigClam on real ground-truth
networks, they focused on its improvement in prediction accuracy compared with other commu-
nity detection methods, with very little detail on BigClam’s runtime on the mentioned networks.

The observations above open up the following opportunities:

Verification of Experiments by Yang and Leskovec (2013) [54] We would like to verify if
BigClam is the overlapping community detection algorithm we are looking for as claimed by
Yang and Leskovec (2013) [54] - if it produces accurate community predictions and scales.
By attempting to reproduce the experiments (filling in assumptions left blank by Yang and
Leskovec), we may be able to verify Yang and Leskovec’s claim or identify opportunities to
further improve current work.

A Verification Framework for Overlapping Community Detection Algorithms An extended
verification framework, which takes a few network characteristics into account, can be used
to evaluate BigClam’s performace under various networks. It allows us to explore the effect
of overlapping between communities and discrepancy between community sizes on BigClam’s
prediction accuracy, and the number of nodes, edges and communities present in the network on
BigClam’s runtime. Ideally the verification framework can be used to evaluate any overlapping
community detection algorithms as is.

64



Chapter 5. BigClam: Verification Framework Extension and Runtime Reduction

Figure 5.1: Method of verifying Yang and Leskovec’s experiment on BigClam: (a) accuracy in
detecting overlapping communities and (b) scalability on large networks.

5.1.2 Methodology

Broadly speaking, our verification of BigClam involves synthesising a set of (overlapping) com-
munities with our community generative process and a graph with out graph generative process
outlined in chapter 4, and obtaining a predicted set of communities with BigClam community
detection algorithm (see section 3.2.2) from the graph.

We obtain the following metrics throughout. We measure the accuracy of the BigClam com-
munity detection method by various similarity measures between the synthesised and predicted
communities, while inferring the scalability of the method by retrieving the time taken to obtain
the predicted communities from the graph. Figure 5.1 illustrates our verification process, which
details are available in sections below.

Test Parameters

We are interested in the effect of the parameters below on the accuracy and scalability of Big-
Clam. All parameters below are featured and used in chapter 4.

• Number of individuals (|V |):
It is used by Yang and Leskovec as a controlled parameter to compare runtime between
BigClam and other community detection methods. We are interested in finding out if this
is the sole factor affecting runtime.

• Number of communities (|C|):
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It determines the size of the underlying affiliation weights matrix under a BigClam model
(jointly with |V |). We suspect a large |C| might lead to an increased, possibly a pro-
hibitively large, runtime.

• Average number of edges per individual ( |Ê||V |):
Also known as the average degree per node on a graph setting, it approximates the number
of edges required to be processed by the BigClam community detection method. We are
interested in finding out if large |Ê||V | would lead to prohibitively large runtime.

• Average number of community affiliation for each individual (r):
It approximates the degree of overlap between communities - a small r yields a set of
near-disjoint (non-overlapping) communities, whereas a large r yields a set of densely
overlapping communities (see figure 4.4). We are interested in finding out if increased
overlap between communities will affect the community detection method’s accuracy.

• Power law distribution parameter on community size distribution (α):
It determines the distribution of the number of members for each community - a small
α will lead to a wider range of member numbers, whereas a large α will lead to a more
consistent community size. We are interested in BigClam’s ability to detect both massive
and tiny communities.

Run Procedure

We run the following procedures for each combination of test parameters listed above. The test
parameters is sampled from the space of possible values.

1. Synthetic community generation:

We first generate a set of communities using our community generative process as out-
lined in section 4.3. The communities are represented in a SNAP library-compatible [34]
format, such that it can be used by the library functions.

2. Graph generation:

We generate a graph based on the set of communities obtained in step 1 using our
influence-based graph generative process in section 4.5.1

3. Community detection with BigClam:

We then run the SNAP implementation of BigClam community detection method (BigClam)
on the generated network to obtain a set of predicted communities. We also obtain some
time metrics throughout stages of the method to infer its scalability, details of which can
be found below.

1While Yang and Leskovec generated a number of synthetic networks with the Affiliation Graph Model (AGM)
generative method, we have shown in section 4.4 that the method yields undesirable properties - the node degree
distribution of an AGM graph shows exponential decay at the tail end, multimodality, and low probability mass at
low values, and hence results based on AGM should be treated cautiously.
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4. Synthetic/ predicted communities comparison:

Finally we compare the synthetic communities generated in step 1 with the predicted
communities obtained in step 3, and compute similarity measures as appropriate. We also
collect some communities statistics of the two networks, details of which, together with
similarity measures of the networks, are discussed below.

Metrics of Interest

Throughout every run with the procedures outlined above, we collect the following metrics
to determine the community detection method (hereafter the method)’s accuracy and infer its
scalability:

• Community statistics:

We are interested in some general properties of the generated and predicted networks:
the number of individuals and communities in each network, as well as extremity and
centrality of numbers of membership/affiliation for each community/individual.

Statistics for synthetic communities ensure our pre-defined parameters remain accurate
throughout each run, while statistics for predicted communities allow us to uncover im-
plicit assumptions of the method on community structure, membership distribution, etc.

• Graph statistics:

As edge generation is probabilistic, we cannot guarantee the number of edges generated
by our graph generation process is exactly |Ê| = |Ê|

|V | × |V |. We collect the number of
nodes and edges in the graph obtained from our graph generation method, so we can
better explore the number of edges’ effect on the method’s accuracy and scalability.

• Similarity measures:

A higher similarity between the networks indicates a higher accuracy for the method. The
measures currently consist two versions of F1-score between the synthesised and predicted
communities: an unweighted average and a weighted-by-community-size average of F1-
score for all synthesised communities. We will formally define the similarity measures and
their interpretation in section 5.1.3.

While each F1-score is by itself indicative of accuracy of the method, by comparing two
versions of F1-score, we may gain an understanding on the strengths and weaknesses of
the method of detecting communities with different sizes.

• Run time:

Used to infer the scalability of the method, we are interested in the time taken for the
method to initialise (i.e. perform a conductance test), run the gradient ascent iterations
to obtain a good approximation of the affiliation weights matrix, and determine commu-
nity affiliations from the affiliation weights matrix respectively (see section 5.1.4 for an
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overview of different stages in BigClam community detection algorithm) under different
test parameters.

We take the time to carry out the operations above in both wall clock time and CPU time
- the later offers a much higher resolution on the time taken to run a procedure, yet CPU
timers suffer from integer overflow within 32 minutes under 32-bit architectures, making
it only useful for programs with a short runtime.

5.1.3 Convergence of BigClam in Synthetic Communities and Networks

Similarity Measures

5.1.4 Scalability of BigClam in Synthetic and Real Networks

We evaluate if the BigClam community detection algorithm is scalable by identifying the three
main stages of the algorithm and give their runtime complexity in terms of the test parameters
in section 5.1.2. This allows us to identify cases where the parameters lead to a prohibitively
large runtime.

Three Stages of Then BigClam Community Detection Algorithm

We observe the BigClam community detection algorithm has three prominent stages: the ini-
tialisation/conductance test (CT) stage, the gradient ascent (GA) stage, and the community
association (CA) stage. Recall the operation carried out in the three stages, as stated by the
definitions in section 3.2.2:

• The initialisation/conductance test stage:

Definition 3.13. (Initialisation of affiliation weights matrix)

Let F be an affiliation weights matrix. The algorithm initialises F as follows:

F(u′)(N(u)) =

{
1 if u′ ∈ N(u) and N(u) is a locally minimal neighbourhood of u
0 otherwise

,

(3.16)

where N(u) is that defined in definition 2.4.

• The gradient ascent stage, which terminates if the following condition is met:
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Definition 3.14. (Termination of the community detection algorithm)

Let l(Fu) be the log-likelihood of the affiliation weights vector for u, and l′(Fu) be the
log-likelihood of the affiliation weights vector for u after the update by gradient ascent
(equation 3.14). The iterative gradient ascent process terminates if:

l′(Fu)− l(Fu)

l(Fu)
< 0.00001 ∀u ∈ V , (3.17)

i.e. the log-likelihood increases by less than 0.001% ∀u ∈ V .

• The community association stage:

Definition 3.15. (Determining existence of affiliation/ membership)

Let G = G(V,E) be a network, F be the most likely affiliation weights matrix under G,
and ε = 2|E|

|V |(|V |−1) be the background probability for a random edge to form in G.

The algorithm regards u ∈ V as a member of c ∈ C if Fuc ≥ δ =
√
− log(1− ε).

Runtime Complexity

Due to the variety of operations involved in each of the stages, it is difficult to obtain the
runtime complexity via a program analysis approach. We instead perform a series of tests, each
with different numbers of individuals (|V |), communities (|C|) and average node degree ( |Ê||V |)
(keeping other parameters fixed), and record the time taken to run each stage. The runtime
complexity is then obtained by fitting three normal linear models of the form:

log10(Ts) = β0 + β1 log10(|V |) + β2 log10(|C|) + β3 log10

(
|Ê|
|V |

)
, (5.1)

where Ts is the time taken to run stage s ∈ {CT,GA,CA}, and βi is the (unknown) linear model
parameters. Notice equation 5.1 is equivalent to the following:

Ts = 10β0 |V |β1 |C|β2
(
|Ê|
|V |

)β3
, (5.2)

which is not linear on βi, and hence forbids the formulation of a linear model.
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5.1.5 Evaluation

5.2 Speeding Up BigClam

We then discuss how to reduce the runtime for BigClam by parallelising the computation for the
community association stage, a dominating stage in runtime (for networks with a large number
of communities) which has yet to be parallelised.

5.2.1 Motivation

Networks with a fairly large number of communities are common, as real networks often
demonstrate rich overlapping community structures. To illustrate, nearly all networks with
ground-truth communities featured in Leskovec and Krevl (2014) have a large number of com-
munities recorded [33], as shown in table 5.1.

Number of
individuals

Number of
communities

LiveJournal online social network 4M 288k
Friendster online social network 66M 957k
Orkut online social network 3M 6M
Youtube online social network 1M 8k
DBLP collaboration network 317k 13k
Amazon product co-purchase network 335k 75k

Table 5.1: Number of communities recorded in the networks by Leskovec and Krevl (2014) [33].
The figures are rounded to the nearest million (denoted M) or thousand (denoted k). Note not every
individual has a community affiliation.

We notice the community association stage dominates the runtime for the BigClam community
detection algorithm for networks with a large number of communities. Figure 5.2 shows a plot
on the proportion of time spent in different stages of the algorithm on a number of networks
with ground-truth communities featured in Leskovec and Krevl (2014) [33]. While the time
spent on the conductance test stage is negligible, the time spent on the community association
stage generally accounts for more than half of the entire algorithm’s runtime.

However, unlike the gradient ascent stage, in which computation is parallelised over multiple
CPU threads, the community association stage is not parallelised. This means the majority of
CPU resources and man-time is wasted on idle “mode”. Parallelised computation in the commu-
nity association stage will better utilise available resources, and hence improve the scalability
of the BigClam community detection algorithm.

70



Chapter 5. BigClam: Verification Framework Extension and Runtime Reduction

amazon

dblp

lj

youtube

0% 25% 50% 75% 100%

Proportion of time spent in stage

D
at

as
et

Stage Conductance Test Gradient Ascent Community Association

Figure 5.2: Average proportion of time spent on the three stages of the BigClam community detec-
tion algorithm (from left to right: Conductance Test, Gradient Ascent, and Community Association)
for four networks with ground-truth communities (from top to bottom: Youtube social network,
LiveJournal online social network, DBLP collaboration network, Amazon product co-purchase net-
work) in Leskovec and Sosič’s (2014) implementation. The implementation is tested on an eight-
thread machine, with the number of communities to detect for each dataset set to the number of
communities recorded by Leskovec and Krevl (2014) (see table 5.1).

5.2.2 Methodology

We parallelise the community association stage with OpenMP, a specification for high-level
parallelism in C++ programs. More information on OpenMP is available in appendix B.

Overview of Implementation

To enable parallelisation for the computation of the community association stage, we outline
the program flow of the C++ method corresponding to the community association stage. The
method takes a reference to the collection of community memberships, the lower affiliation
weight threshold for an individual to be considered a member of a community and the minimum
size of a community, and overwrites the collection with community memberships/affiliations
obtained from the gradient ascent stage. The collection of community memberships is imple-
mented as a vector of vectors - the nested vector with index i records the ID of community i’s
members.

Recall from section 3.2.2, given an affiliation weights matrix F , we consider an individual u
to be a member of community c if Fuc is greater than the lower affiliation weight threshold.
This is achieved in the implementation by scanning the affiliation weights matrix generated
in the gradient ascent stage top-down, left-right. For each scan along the same column (i.e.
community), a vector (local in scope) is used to keep track of members already associated to
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the community, and added to the collection of community memberships when the scan along
the column is completed.

The setting above allows us to spread the tasks of scanning a particular column between mul-
tiple threads. Figure 5.3 shows an illustration on how parallelised operation can reduce time
taken to scan all matrix columns.

Figure 5.3: Scanning matrix columns under unparallelised (left) and parallelised (right) operations.
Each colour represents operations completed (thin-lined arrow) or in progress (thick-lined arrow)
by a particular thread. Assume it takes roughly the same time to scan any given column, parallelised
operations reduce the time taken to scan the entire matrix.

Parallelisation with OpenMP

To prevent race conditions yet maintain the highest level of parallelism possible, we declare all
operations that involve any objects shared between threads that may be overwritten critical. It is
safe to parallelise operations that involve only objects used by that particular thread (i.e. private
objects/variables) and read-only objects that are shared between threads. In our case, the only
object which is shared between threads, and may involve write operations is the collection of
community memberships. All other objects are either shared and read-only, or private to a
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thread:

• The affiliation weights matrix is read-only by all threads

• The lower affiliation weight threshold and minimum community size are constants, and
hence are read-only

• The vector used to keep track of current community memberships is local in scope, and
hence is private to a thread by OpenMP construction.

We hence declare the only operation on the collection of community memberships (i.e. the
operation to add the vector used to keep track of community memberships processed by the
current thread to the collection of community memberships) as critical, and parallelise all other
operations whilst scanning a column across multiple threads.

5.2.3 Result and Evaluation

We proceed to show parallelising the community association stage actually reduces the runtime
for both the community association stage and the entire BigClam community detection algo-
rithm, and perhaps more importantly, it produces the same community memberships/affiliations
prediction.

Runtime Reduction

We verify our parallelisation achieves runtime reduction with the procedures as follow. We run
both the unparallelised and parallelised versions of BigClam implementation on multiple ma-
chines with the same specification (Intel i7-4790 CPU @ 3.60 GHz with eight threads). At any
given instant the machines will run either the unparellelised or the parallelised version to en-
sure all CPU threads are utilised for one task. We automate the process by using Condor, which
allows us to submit, and schedule batch jobs to be run on machines within our department’s
network (see appendix A for more details on Condor). For each run, the program is instructed
to find the communities in one of the following four networks: Amazon product co-purchase
network, DBLP collaboration network, LiveJournal online social network, and Youtube online
social network, and is told the number of communities to detect is that listed in table 5.1. Sim-
ilar to what is done in section 5.1.2, we measure the runtime for each stage of the BigClam
community detection algorithm in both the parallelised and unparllelised versions.

The result on runtime is encouraging - runtime data, which average values are listed in table 5.2
and quartiles plotted in figure 5.4, shows a runtime reduction in the parallelised community
association stage. In fact, we can show the difference in runtime is statistically significant
by performing a Welch’s t-test, an adaptation on Student’s t-test which accounts for unequal
variance and unequal sample size (both observed in our dataset), at 5% significance level.
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Average runtime
Unparallelised Parallelised

Amazon product co-purchase network
CA stage 1077.58 203.74
Overall 1505.38 610.23

DBLP collaboration network
CA stage 160.39 30.00
Overall 312.47 180.69

LiveJournal online social network
CA stage 55363.22 9233.02
Overall 100146.81 55259.48

Youtube online social network
CA stage 213.62 43.07
Overall 2965.12 2717.85

Table 5.2: Average time taken, in seconds, to run a) the community association (CA) stage b)
the entire BigClam community detection algorithm, without and with parallelisation on the com-
munity association. The implementations are tested on eight-thread machines with the same CPU
specification (Intel i7-4790 CPU @ 3.60 GHz).

We also put the numbers in context. With an eight-thread machine, we achieve a 430% times
speed up in the community association stage for Amazon product co-purchase network, and
subsequently achieve a 150% times speed up in the overall BigClam community detection al-
gorithm. Moreover, we manage to, on average, shave off 46,130 seconds (or 12.8 hours) from
the runtime of the community association stage, and hence the BigClam community detection
algorithm on LiveJournal online social network. This leads to a significant runtime reduction:
Yang and Leskovec (2013) has mentioned in their paper “[w]ith 20 threads, it takes about one
day to fit BigClam to the LiveJournal network” [54] - we manage to do the same with roughly
half of their computation power in less than 16 hours.

On the other hand, parallelising the community association stage does not bring significant
improvement in runtime on networks with lower numbers of communities. While being statis-
tically significant, we only manage to speed up the overall execution time on Youtube online
social network by 10% despite achieving 395% times speed up on the community association
stage. The speedup is not apparent under such cases as the runtime for BigClam community
detection algorithm on networks with a small number of communities is dominated by the gra-
dient ascent stage, and parallelising the computation in the community association stage would
not bring significant improvement.

Program Correctness

We also show the parallelisation produces the same set of predictions in community member-
ship/affiliation. Treating a community as a set of individuals, we consider the set of communi-
ties predicted by the unparallelised version to be the same as that of the parallelised version if
they are the same set of sets of individuals.

As OpenMP does not necessarily assign tasks to threads in the original order, the output may be
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Figure 5.4: Box plot of the time taken, in seconds, to run the community association stage on
different networks with ground-truth communities, without and with parallelisation on the stage.

shuffled in both versions. The community with index i in the output of the parallelised version
may not be equal to the community with the same index, but a community with a different index
in the output of the unparallelised version. Likewise, the order which community membership
is “confirmed” on an individual may change from a program run to another. This poses a
problem as common approaches in comparing program output (e.g. comparing the community
membership dump using diff, using MD5 check sum) will indicate failure, even if two sets of
communities are the same. Thus we ensure the two sets of communities are the same by sorting
the individual IDs in a community and the communities in lexicographical order in the program
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output before finding discrepancies within.

Our utility does not report any discrepancies between the post-processed program outputs,
hence we conclude our parallelisation in the community association stage produces the same
output in a shorter period.

5.3 Discussion

We conclude the chapter by discussing our contribution in the understanding of BigClam, the
impact of speeding up BigClam’s implementation, and future work our investigation has opened
up.

5.3.1 Contribution and Impact

We devised a new verification framework on the accuracy and scalability of BigClam and any
other overlapping community detection algorithms. The framework considers more aspects
in a network with overlapping communities (e.g. degree of overlap between communities,
dispersion between community sizes, number of communities, number of nodes and edges),
and hence offer a more comprehensive review on overlapping community detection algorithms.
We will be unable to understand the runtime complexity of all three stages of the BigClam
community detection algorithm without this verification framework.

We sped up BigClam, a popular overlapping community detection algorithm, and submitted our
code user for the parallelised operations to the Stanford Network Analysis Platform (SNAP) for
review. Parallelising the community association stage easily cut the runtime in half (or more) for
BigClam to produce predictions in community memberships/affiliations. It allows researchers
and analysts who rely on the algorithm to obtain community memberships/affiliations, and
hence insight on their respective field, to be able to do so within a shorter time frame. This
leads to a improved research output - both quality-wise and quantity-wise, as less time is wasted
in waiting for results. As SNAP is a open source network analysis platform used by a number
of researchers and analysts, our code contribution would have benefitted others by reasons
discussed above.

5.3.2 Future Work

Throughout the chapter, we assumed the number of communities are known, which is not nec-
essarily the case in real-life applications. Yang and Leskovec (2013) has proposed a mechanism
in determining the number of communities by performing some sort of cross-validation and
locate the most likely number of communities (see the paragraph titled ”Determining num-
ber of communities” approaching the end of section 3.2.2). Unforunately we do not have the
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chance to evaluate if the mechanism is of acceptable standard - if it could recover the number
of communities we have specified while running the community generative process. The ability
to verify such mechanisms can allow us to better understand the resolution of an overlapping
community detection algorithm (i.e. how deep down in a hierarchical community structure can
the community detection algorithm uncover, see figure 5.5 for an illustration).

(a) Top level communities (b) Sub-communities (c) Sub-sub-communities

Figure 5.5: Three 22-node networks with different “resolution” in overlapping community struc-
ture. The network on the left features two communities (in red ellipses), the network on the middle
a number of sub-communities within the communities (in green ellipses), and the network on the
right features a number of sub-sub-communities within the sub-communities (in blue ellipses). Con-
nections between individual nodes are omitted for clarity.
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Chapter 6

Conclusion

We conclude our work by summarising our contributions and outlining a number of open prob-
lems in the general field of community detection.

6.1 Contribution

Our work’s contribution lies in two domains: graph generation and community detection.

We developed an overlapping community-based graph generative model. The model is one of
the first developed which features both an overlapping community structure and the scale-free
property. The model is based on our novel observation that individuals who are more influen-
tial, engaged and participate more gain more connections within a community. We have also
discovered during our first attempts that the Community-Affiliation Graph Model (AGM) pro-
posed by Yang and Leskovec (2012) [53] does not generate scale-free networks, and formalised
the distributional result.

Furthermore, we extended the verification framework for the Cluster Affiliation Model for Big
Networks (BigClam) proposed by Yang and Leskovec (2013) [54]. The framework accom-
modates extra network characteristics, and allows us to establish the correlation between the
degree of community overlap, the dispersion of community sizes, and BigClam’s prediction
accuracy. We identified the three stages of BigClam and obtained their apparent runtime com-
plexity.

Our final contribution involves speeding up BigClam. We observed the community association
stage for BigClam dominates the runtime under networks with a large number of communi-
ties, yet its computation is not parallelised. We sped up the runtime by as much as 430% by
parallelising the stage’s computation.
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6.2 Future Work

On top of the future work proposed in chapters 4 and 5, including:

• The use of non-parametric models and inference methods for graph generation (see sec-
tion 4.8.1),

• Generation of weighted/directed/temporal graphs (see section 4.8.2), and

• Evaluation of BigClam’s mechanism in finding the optimal number of communities (see
section 5.3.2),

we believe the following problems in the general domain of community detection in networks
are worth looking into further. For each problem, we give a brief motivation, provide the
statement of the problem, and outline any existing work done and/or possible approaches to
the problem.

6.2.1 Pivoting and Membership Constraints

Usually, we possess knowledge of some individuals within a network. These individuals may
provide their affiliations (e.g. hometown, current region of residence, current place of study/work).
They may also have their affiliations tagged by others or inferred, in the case of famous stars.
We regard such individuals as the gateway to their communities.

We are interested in the answer to the following problem: Given the knowledge of the indi-
viduals acting as the gateway, is it possible to “pivot” on them to increase the accuracy and
interpretability of a community detection algorithm (say BigClam)?

Current work has proposed seed set expansion approaches to detect overlapping communities,
in which knowledge of a small number of community members (e.g. gateway individuals) and
their connections is utilised to discover additional members of the community quickly. These
approaches are better suited for local community detection problems (given some individuals
of interest, identify communities concentrated around the individuals locally (Kloumann and
Kleinberg, 2014) [29]). However, we can combine the approaches with BigClam-like algo-
rithms by seeding the initial communities with the gateway individuals and seeing how the
communities detected evolve around the individuals.

We can further strengthen our assumptions. Instead of pivoting on certain individuals for a
community and end up not having the said individuals in the final community predictions, we
seek the possibility of imposing membership constraints. Under membership constraints certain
individuals must be affiliated with some pre-determined, labelled communities. Success in
doing so could make overlapping community models more interpretable, for example explaining
the existence of fan clubs for stars or supporters in different football teams, simply with some
extra information on the star or leader node.
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6.2.2 Scaling a global community detection algorithm to a massive network

We are interested in developing and/or implementing an overlapping community detection
algorithm which could resolve communities from massive networks quickly and accurately. One
example would be an overall user graph of Twitter, with at least 320M monthly active users as
nodes (Twitter Inc., 2016) [46].

No experiments on overlapping community detection at the mentioned scale have been done
to date. The largest experiments on overlapping community detection involved a network with
4.8 million nodes and 42.8 million edges (Gleich and Seshadhri, 2012) [21]. Blondel et al.
(2008) experimented with a 118 million-node, 1 billion-edge network [7], though their study
centered around a non-overlapping community detection algorithm.

Given sufficient computing resources, techniques in identifying and resolving potential bottle-
necks (see sections 5.1.4 and 5.2), it should be possible to scale a good community detection
model and algorithm to the entire Twitter network. Solving for communities in the Twitter
network, and possibly other massive networks, could set a new benchmark for community de-
tection in terms of speed and scale.
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Appendix A

Using Condor for Running Experiments
In Parallel

“Condor is an open-source, high-throughput batch-processing system developed by the
University of Wisconsin[-Madison] . [... It] is useful for running large numbers of in-
dependent, CPU-intensive jobs in an automated, reliable fashion.” (Computing Support
Group, Imperial College London, 2016) [14]

We observed experiments outlined in sections 5.1 and 5.2 involve executing the same program
thousands of times with different parameters. Each executable run is independent of each other,
does not require inter-processes communication, is CPU-intensive (usually taking all CPU cores
available in a machine), and time-consuming.

As it is time-infeasible to run the executables sequentially on one machine, we take advantage
of the existing Condor system to manage and run our experiments on around 360 machines
available in Department of Computing, Imperial College London, all running with 8-thread
Intel CPUs.

The general workflow with Condor used in our experiments are as follows (also illustrated in
figure A.1):

Create Job Specification Condor requires a job specification for each executable run. The
job specification contains details on which execution mode to be adopted, path to executable,
program arguments, and paths to output and log files (a guide is available from the Computing
Support Group, Imperial College London [14]). For this project, the job specification files are
generated dynamically with bash scripts code/condor *.sh, and they should remain until their
associated executable run completes.

89



Figure A.1: Illustration of Condor workflow used in experiments.

Submit Job To Condor Job Pool We then submit the completed job specifications to the
job pool of Condor (for this project, the procedure is done automatically by the bash scripts
mentioned above). Jobs submitted are picked up by an idle machine managed by Condor
without the need of user intervention.

Executables Being Run in Machines The machine then automatically runs the executable
with specified parameters referenced by the job specification it picked up. Condor at the De-
partment of Computing, Imperial College London is configured under “cycle-stealing” mode:
regular snapshots are taken of the machines’ state, and executables on one machine may be
suspended or moved to another machine if processes with a high priority (e.g. interactive ses-
sions for users physically in front of a machine) require CPU usage. The use of snapshots allows
the execution to be accurately timed, as time spent by executable in suspended state is ignored.

Results Stored in Specified Location The programs in the project are written such that ex-
ecutables will write resultant data in specified directories. To prevent race conditions, each
executable run will write data to a separate file. We then aggregate data in resultant files using
utilities such as cat.
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Appendix B

Using OpenMP for Parallelised
Computation

“OpenMP is a specification for a set of compiler directives, library routines, and en-
vironment variables that can be used to specify high-level parallelism in [..] C++
programs.” (OpenMP ARB Corporation, 2013) [40]

Unlike Condor, which distributes independent program executions on multiple machines, OpenMP
allows one to parallelise their program onto multiple CPU cores/threads to achieve execution
speedup on a single machine. It is used throughout BigClam’s code implementation in the Stan-
ford Network Analysis Project (Yang & Leskovec (2012), Leskovec & Sosič (2014)) [53][34], as
well as our work to further speed up BigClam in section 5.2.

B.1 OpenMP constructs

OpenMP features the following constructs (as far as this project requires, further information is
available from OpenMP ARB Corporation (2013) [40]), also illustrated in figure B.1:

Parallel Control & Work Sharing OpenMP supports loop-level parallelism, which allows in-
structions in different iterations of a loop to be executed by multiple threads in parallel. It
operates under the “fork-join” model (Barney, 2015) [6]: upon encountering a parallelised loop
(e.g. one preceded with declaration #pragma omp parallel for), the current thread (master)
will spawn a number of new threads (workers), and assign iterations of the loop to the workers.
Loop iterations are assigned in a “first come first served” fashion and not necessarily in order:
in the case of a for-loop, a worker might be assigned to work with a loop body associated with
the 1st, 42nd, 378th, 5691st, 163rd... iterations until all loop iterations are dealt with. Each
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B.1. OPENMP CONSTRUCTS

Figure B.1: Illustration of loop-level parallelism and synchronisation in OpenMP.

thread, upon being assigned work, will work independently on the loop body in parallel, subject
to constraints on the data environment and synchronisation (see below).

Data Environment OpenMP introduces two types of variables:

• Private variables: Each thread spawned (including the master thread) will have its own
set of private variables. Private variables usually include the loop counter, variables de-
clared within the loop’s scope, and other variables which are explicitly declared private.
These variables are immune from race conditions, as threads are unable to access private
variables owned by another thread.

• Shared variables: All other variables which are in-scope when the loop begins but not
private, for example variables declared outside a loop which are not explicitly declared
private, are shared between all threads. These variables are vulnerable to race conditions,
and require synchronisation constructs to avoid garbled results.

Synchronisation OpenMP offers a number of standards to synchronise work between threads,
including the #pragma omp critical declarative which marks a critical section, allowing only
one thread to execute instructions within the section at a time to prevent race condition.
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Appendix B. Using OpenMP for Parallelised Computation

B.2 OpenMP Use In This Project

Based on the idea on introducing locks on shared objects in concurrent executions discussed by
Magee and Kramer (2006) [35], we mark sections involving read/write operations on shared
variables which may be altered throughout execution critical. In other words, we parallelise all
operations that involve private variables and shared variables which are read-only throughout
the entire program. This allows for maximal parallelism while preventing incorrect results or
memory corruption due to race conditions between different threads.
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