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Abstract

Opinion dynamics is a rapidly growing sub-field of computational social science that studies the
dynamics of opinion evolution and diffusion in agent networks. This research domain is inher-
ently interdisciplinary, integrating behavioural insights from psychology and social sciences with
the rigour of mathematical and physical modelling. State-of-the-art models are parameterised by
abstract constructs (i.e., beliefs or influence) that cannot be theoretically derived nor physically
determined. Instead, researchers utilise a wide range of calibration tools whereby model parame-
ters are empirically fit to a relevant dataset. Common drawbacks of these techniques include high
computational requirements and the absence of guaranteed convergence.

In this study, we successfully apply a neural network (NN) parameter calibration scheme to a
co-evolving latent space network with attractors (CLSNA) opinion dynamics model originally pro-
posed in 2022. This model was initially optimised with Monte Carlo Markov Chain (MCMC),
which, despite providing valuable behavioural insight, was computationally expensive, with cali-
bration converging in approximately 4 hours. An alternative calibration method using Stochastic
Gradient Descent (SGD) was introduced in March 2024, boasting significantly faster convergence
and comparable point/variance estimates. We demonstrate that neural calibration, a machine-
learning-based method of approximating parameter probability densities, is suitable for this opin-
ion dynamics model, reporting up to 93% latency reduction compared to baseline and produc-
ing promising evaluation results across a range of different machine learning architectures (fully-
connected, convolutional, and graph NNs). We then conduct a comprehensive sensitivity analysis
using the Morris Method, Sobol Indices, and multi-objective optimisation, observing a persistent
relationship between neural calibration variance estimation and parameter significance.

Further contributions are made by reformulating neural parameter calibration as a variational
auto-encoder. We show that under this Bayesian framework, neural calibration is a tool to update
prior beliefs on the underlying system dynamics. We finally adapt the alternative formulation
to the CLSNA model as a proof-of-concept, highlighting the key benefits and limitations of the
approach in our discussion.
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Chapter 1

Introduction

Opinion dynamics, an active area of research in computational social science, bridges mathemat-
ical modelling and behavioural analysis. The field aims to understand individual and collective
mechanisms that govern social behaviour ‘with the quantitative rigour of applied mathematics and
physics’ [1]. The motivation for investigating such models is self-evident: opinions are pervasive.
In social networks, political discourse, or daily interaction, our opinions are constantly changing
[2]. Ultimately, opinions drive action, so analysing how they form and evolve has prompted the
development of many different models.

Due to their nondeterministic nature, opinions are ambiguously defined mathematical objects
in literature [1], rendering opinion dynamics a highly subjective domain. This implies that the
primary focus of prevalent model archetypes is to understand macro-trends in multi-agent opinion
evolution (see Figure 1.1). Researchers have the onus of distinguishing meaningful patterns from
noise in observed data when analysing results [3]. Such patterns include clustering activity (flock-
ing, polarisation, etc.) and rates of opinion convergence.

Figure 1.1: Flocking of agent class 1 in a two-dimensional latent opinion space at selected
discrete time steps (T = 1, 5, 10)

A recent model, proposed by Pan et al., was designed to disentangle inter- and intra-political
party behaviour between Democrats and Republicans from 2010 to 2020 [4]. This model is a
coevolving latent space network with attractors (CLSNA) and is fitted using X (formerly Twit-
ter) data. The study quantifies positive and negative polarisation in US politics. As with many
computational models, the proposed CLSNA has free parameters that cannot be derived theoret-
ically and instead are inferred from data. Originally, the authors calibrated the parameters using
Monte Carlo Markov Chain (MCMC), but at the cost of significant computational demands. In
an updated approach [5], the team observed comparable partisan behaviour using a faster and
more efficient stochastic gradient descent (SGD) algorithm, reducing model calibration time from
1 hour to less than 5 minutes on a standard CPU.

Sophisticated calibration tools for multi-agent models have been investigated in literature. These
include MCMC and SGD inference optimisation, martingale estimators [6], regression-based meth-
ods, etc. In February 2023, an artificial neural network computational scheme was proposed by
Gaskin et al. [7], linking classical numerical methods and machine learning (ML). Since its intro-
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duction, the neural parameter calibration approach has been applied to the diffusive Susceptible,
Infectious, or Recovered (SIR) model for epidemics [7], the non-convex Harris-Wilson model of
economic activity [8], and line failure inference of the British power grid [9]. There has yet to be
an application to opinion dynamics models.

In this report, we look to adopt the neural calibration methodology to the state-of-the-art CLSNA
dynamics model. We extend the calibration tool from a bare-bones multi-layer perception to more
elaborate ML architectures specific to the CLSNA case. Furthermore, we propose a novel repa-
rameterisation of the calibration approach as a variational auto-encoder (VAE) and demonstrate
successful training regimes under this paradigm.

Due to the model-agnostic nature of neural parameter calibration, we anticipate that future re-
search in opinion dynamics will incorporate the methodology of this work to allow for efficient and
accurate parameter probability density estimation.

1.1 Contributions
This project makes the following key contributions:

1. We successfully implement the neural parameter calibration technique on the CLSNA model
proposed by Pan et al., utilising various ML architectures including Multi-Layer Perceptrons
(MLP), Convolutional Neural Networks (CNN), and Graph Neural Networks (GNN).1

2. We reinterpret Gaskin et al.’s calibration scheme within a VAE framework and demonstrate
the proof-of-concept for the CLSNA. This includes the integration and validation of a Vari-
ational Graph Auto-Encoder (VGAE).

3. We use sensitivity analysis (SA) techniques to evaluate model outputs, providing an effective
tool for comparing calibration techniques. In doing so, we (1) identify significant CLSNA pa-
rameters and (2) empirically show that probability density estimates from neural calibration
can be used as a confidence-interval SA tool.

1.2 Ethical Considerations
This project has a few relevant ethical considerations: proper data handling and preventing misuse
of research findings.

1.2.1 Data Handling
The data used in this project is collected from tweets from every US congressman active on the
social media platform X from 2010 to 2020. The format of the collated data is time-indexed binary
adjacency matrices where rows and columns are user handles. This means the congressmen are
identifiable from the matrices. According to the X developer agreement [10], usage of the tweet
data is justified for non-commercial research affiliated with an institution. In compliance with the
General Data Protection Regulation (GDPR), the data collected for this project does not serve
to profile or identify individual users. It is used exclusively to analyse the general topological
properties of network structures within the dataset. We therefore adhere to the GDPR’s principles
of data minimisation and purpose limitation, ensuring that data processing is appropriate and
limited strictly to the research’s specified and legitimate purposes [11].

1.2.2 Preventing Misuse of Research Findings
While researchers in opinion dynamics often adopt a scientific "view from nowhere", analysing
agents ‘solely through quantitative and computational lenses’ [12], it is crucial to recognise that the
field is not devoid of societal implications. The influence that large corporations and government
agencies wield through media channels is well-documented, and the potential for the malicious use
of model simulations presents a significant ethical risk. The usage and further development of the
methodologies presented must be monitored from a moral standpoint.

1NeuralCLSNA GitLab Repository: https://gitlab.doc.ic.ac.uk/og519/nerualclsna
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Chapter 2

Background

This chapter presents academic literature on opinion dynamics models and existing parameter cal-
ibration techniques for multi-agent models. We begin by tracing the evolution of opinion dynamics
models, from basic linear models to advanced non-linear formulations, concluding with the state-
of-the-art CLSNA model. We then compare various parameter calibration methods, discussing
their advantages and limitations as alternatives to the neural calibration method.

2.1 Evolution of Agent-Based Opinion Dynamics Models
Agent-based models (ABMs) are dynamical systems that simulate interactions of autonomous
agents, thereby producing collective phenomena. They have been successful in capturing ‘macro-
level implications of micro-level assumptions’ [13]. The ABMs for opinion dynamics have evolved
significantly from their inception to the present day, introducing increasingly complex dynamics
and latent parameters to simulate social behaviours more precisely [14]. These models initially
focused on linear interactions but have progressed to incorporate non-linear dynamics, reflecting
deeper insights into social influence and decision-making processes. In these models, opinions are
represented in two ways: as discrete or continuous random variables.

Discrete representations often model opinions as n-ary outcomes, i.e. [0,1, ...,n]
d, where d in-

dicates the dimension of the opinion space. In this setting, opinions can be akin to "yes" or "no"
responses in a referendum. This type of modelling is useful in scenarios where decisions are precise,
mirroring situations where individuals must choose between two clear-cut options.

On the other hand, continuous representations treat opinions as variables along a continuum,
denoted as Rd. This approach is analogous to how political views lie on a spectrum without
distinct boundaries. Such modelling is advantageous for complex dynamics models that require
gradient calculations, such as those found in partial differential equations used to study instanta-
neous or iterative changes in opinions. For the remainder of this report, the focus will be primarily
on continuous opinion representation.

2.1.1 Foundations of Linear Models: General Model
The most basic, tractable models are discrete-time linear models. All are based on the general
model (GM), and prominent variants include the DeGroot model (DG), social network Degroot
Model(s) (SNDGs), and the Friedkin and Johnson (FJ) model [15], among others.

Consider the set {xi(t)}i=1,...,N ∈ Rd at time t for each of the N agents. For simplicity, we
focus on the case where d = 1, although generalisations to higher dimensions are straightforward.
In these discrete-time models, time t is an element of a countable set T (i.e., N). We define
x(t) = {x1(t), x2(t), ..., xN (t)} as the opinion profile at time t. The general model assumes that
‘an agent will neither share nor strictly disregard the opinion of any other agent but will take into
account the opinions of others to a certain extent’ [15]. To model this, there is an assignment of
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different non-negative weights, aij(t), representing the weight that agent i assigns to the opinions
of agent j at time t. These weights are constrained to be a convex combination, allowing us to
succinctly express them in the stochastic matrix A(t, x(t)) = (aij) ∈ RN×N , which reflects each
agent’s degree of openness to other opinions in the network. It is important to note that while
these weights generally depend on both time t and the current opinion profile x(t), this dependency
introduces non-linearity, which we will revisit in subsequent sections. Based on these definitions,
the opinion formation of our agents is given by the iterative averaging equation:

x(t+ 1) = A(t, x(t))x(t) (GM)

We will now examine variants of GM that exhibit complex long-term behaviours.

2.1.2 DeGroot, SNDG, and FJ Models
The DG is the simplest such variant. In this model, the weight matrix is constant, i.e. A(t, x(t)) =
A, from which we see the for an arbitrary time t:

x(t) = Atx(0)

As a result, the analysis of this model reduces to powers of the matrix A – i.e. the distribution of
the opinion landscape is a Markov process. The DG model was one of the earliest proposed models,
but of course, this is far too simple to describe opinion evolution, so a widely used variation of DG
is known as the Friedkin-Johnson (FJ) model.

The FJ model assumes that each agent i has a predetermined "self-confidence" βi ∈ (0, 1) [16].
With these beta parameters defined, we modify each step of opinion updating in the following way:

xi(t+ 1) = βixi(t) +

∑
j ̸=i aijxj(t)

1− βi

This beta parameter measures agent free will or "novelty" in opinion formation, a notion heavily
debated in philosophical literature. It is important to note that by incorporating β to the update
rule, we introduce N new parameters that must be fit. A natural question arises: How are these
parameters determined? As we transition to more complicated models, the number of parameters
will grow and this question becomes pertinent.

Another variation of DG is the social network DeGroot model (SNDG) developed by Ding et
al. [17]. This model focuses on the role that agent leadership plays in opinion dynamics. Instead
of adding more parameters to the DG model, this model makes a pivotal structural assumption:
that at least one agent, the "leader", has a nonzero influence on all others, formalised by the
condition:

∃i ∈ T | aji > 0∀j ̸= i

This means at least one column of the weight matrix, excluding diagonal entries, is nonzero, en-
suring that the leader’s opinion significantly impacts the group’s consensus process. Adding this
assumption and defining this new type of agent, the "leader", it is shown to be necessary and
sufficient to reach consensus among all agents [17].

The introduction of such basic yet structurally distinct variants of the general model highlights
that complex models rely heavily on empirically fitted parameters, influenced by prior belief and
not theoretical derivation.

2.1.3 Transition to Non-linear Models
The shift from linear to non-linear models marks a critical evolution in modelling opinion dynamics,
accommodating non-linear dependencies and feedback loops inherent in real-world social processes.
These models are often simulated due to their complex nature.
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Bounded Confidence Model

The bounded confidence model (BCM), also known as the Hegselmann-Krause model, is a pivotal
non-linear model that incorporates the idea of confidence bounds within which agents influence
each other [15]. This model introduces the concept of bounded confidence through the formula:

xi(t+ 1) =
1

|I(i, x(t))|
∑

j∈I(i,x(t))

xj(t) (2.1)

where I(i, x(t)) is the set of agents whose opinions are within an ϵi-neighbourhood of agent i’s
opinion at time t. The introduction of confidence levels as parameters reflects the selective exposure
in opinion formation, fundamental to observing polarisation phenomena in social networks. Figure
2.1 depicts a polarisation regime under the BC model.

Figure 2.1: Bi-polarisation of uniformly distributed opinions in BC model. Figure from
Hegselmann and Krause [15]

In summary, the developments in opinion ABMs outlined in Section 2.1 highlight an increasing em-
phasis on latent-variable parameterisation, like ϵ confidence neighbourhoods, to introduce complex
dynamics regimes.

2.2 CLSNA: Positive and Negative Partisanship Model
The Coevolving Latent Space Network with Attractors (CLSNA) was first presented by Zhu et
al. in August 2022 [4] and later refined earlier this year [5] to allow for a dynamic number of
agents. The goal of the model is to disentangle positive and negative partisanship observed from
congressmen’s social media behaviour. Negative partisanship, originally defined in multiparty vot-
ing studies, is the negative evaluation of the opposing out-group party, as opposed to a positive
assessment of one’s party. The rise of negative partisanship in US politics is well documented,
where approval ratings for the country’s president from opposing parties have seen an average
decrease surpassing 20% since the turn of the century [18]. Zhu and colleagues quantified this
observed trend in their findings.

Latent variables are unobserved and typically arise in social science where concepts are mere
constructs rather than directly measurable variables [19]. This makes them apt for opinion mod-
elling where the latent variables constitute a simplified topology of the opinion landscape. It has
been shown that the co-evolution of opinion and network dynamics in agent-based network models
govern the appearance of realistic emerging structures [14]. The CLSNA model will be defined gen-
erally in the following subsections, but it is important to note that the original paper specifically
investigated the polarisation between Republicans and Democrats from 2010 to 2020.

2.2.1 Assumptions
The positive and negative partisanship CLSNA model makes four critical assumptions:

8



1. The nodes exist and evolve in an abstract latent space. By definition, a latent space is an
embedding of a set of items in an abstract multi-dimensional space. In this case, the latent
space is Rd.

2. Each node is classified into one of two distinct groups, with labels π(i) ∈ {1, 2} for node i.
These map bijectively with either Democrat or Republican.

3. Attractors are incorporated at the latent level to represent the attractive and repulsive forces
between nodes.

4. Edges between nodes are represented by binary adjacency matrices at each time t, where
yt ∈ {0, 1}NxN , for N the number of nodes. This is the only observed data in the model.

2.2.2 Model Definition
We now provide a detailed presentation of the dynamic node model. To ensure consistency, we
adopt the notation from Zhu et al. [4] and Pan et al. [5], and we fully acknowledge their contribu-
tions to the development of the model. In what follows, capitalised letters denote random variables
and lowercase variables represent realisations.

Let Gt = (Vt, Et) represent a graph network that evolves in discrete time. The number of nodes at
time t is given by the cardinality of Vt. Let Yt be the random adjacency at time t corresponding
to Gt. Data comes in the form of a time series of {yt : t = 1, ..., T} where yt,ij = 1 if an edge exists
between node i and node j at time t and 0 otherwise. Let zi(t) ∈ Rd be the time-indexed latent
position for node i at time t. The model is defined as follows:

Yt,ij | pt,ij ∼ Bernoulli(pt,ij) (2.2)

where at time t = 1,

logit(pt,ij) = α− s(zt,i, zt,j), (2.3)

Zt,i ∼ Normal(0, τ2Ip) (2.4)

and at time t > 1, if node i is absent at time t− 1,

logit(pt,ij) = α+ δYt−1,ij − s(zt,i, zt,j) (2.5)

Zt,i ∼ Normal(µt,i, ϕ
2Ip), (2.6)

µt,i = z̄
π(i)
t−1,i (2.7)

or else at time t ≥ 2, if node i is present at time t− 1,

logit(pt,ij) = α− s(zt,i, zt,j) (2.8)

Zt,i | Zt−1,i = zt−1,i ∼ Normal(µt,i, σ
2Ip) (2.9)

µt,i = zt−1,i + γw
π(i)A

w
i (zt−1, Yt−1) + γb

π(i)A
b
i (zt−1, Yt−1) (2.10)

In equations (2.3), (2.5), and (2.8), s(·, ·) represents a similarity function for p-dimensional vectors
(L2 distance, for example), logit: (0, 1)→ R is defined as

logit(x) = ln(
x

1− x
)

and A
p/n
i are positive and negative attractors for node i in Yt−1, defined as follows:

Ap
i (zt−1, Yt−1) = z̄1t−1,i − zt−1,i, z̄1t−1,i =

1

|S(i)
1 |

∑
j∈S

(i)
1

zt−1,j (2.11)

An
i (zt−1, Yt−1) = z̄2t−1,i − zt−1,i, z̄2t−1,i =

1

|S(i)
2 |

∑
j∈S

(i)
2

zt−1,j (2.12)
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The sets S
(i)
1 , S(i)

2 represent the local neighbourhood of node i defined as follows:

S
(i)
1 = {j ̸= i | Yij = 1, π(i) = π(j)} (2.13)

S
(i)
2 = {j ̸= i | Yij = 1, π(i) ̸= π(j)} (2.14)

The novelty of this model is the idea of a coevolving network. In traditional latent-space models,
the latent representations update according to a Markov process, but in the positive and negative
partisanship model the temporal evolution of yt+1 is a function of both the current opinion land-
scape and latent space, i.e. zt+1 = f(yt, zt) as in Figure 2.2.

Note: The original fixed node formulation is ecovered when Vt = V is held constant. Doing so
makes (2.5-2.7) redundant.

Figure 2.2: Directed graphical model of CLSNA depicting dependence of Yt+1 on Zt and Yt

2.2.3 Interpreting Model Parameters
In defining this model multiple unit-less parameters were introduced that have semantic interpre-
tation. Namely, the dimension p for the latent opinion landscape, baseline connectivity (α), edge
persistence (δ), positive-partisanship node attraction (γp

1,2), negative-partisanship node attraction
(γn), and standard deviation measures (τ , σ, and ϕ). By simply tuning these parameters, we can
observe a rich set of behaviours.

The end goal of the CLSNA model is to empirically determine both the sign and magnitude
of the attraction parameters: γp

1 , γ
p
2 and γn. Different configurations of these parameters yield

vastly different opinion evolution. For example, when both γp
1 and γp

2 are positive values and γn

is negative, we observe the nodes drift in expectation towards the opinions of other nodes in their
same classification and away from nodes of opposite classification, i.e. polarisation. On the other
hand, if γp

1 , γ
p
2 , γ

n > 0, flocking is observed. The magnitude of these parameters represents the
degree of inter-/intra- party attraction/repulsion, strongly linked with the rate of latent position
convergence or divergence. Another parameter of interest is δ, corresponding to edge persistence.
One may expect a priori the presence of opinion "inertia" in which connections or lack thereof in
observed data {yt} tend to remain.

2.2.4 Metropolis Hasting MCMC
The value of Zhu et al.’s work primarily stems from the semantic interpretation of the fitted
parameters, and meticulous calibration of parameters is crucial to realising the model’s poten-
tial. The parameters for the model in the original paper are set by Bayesian inference using a
Metropolis-Hastings (MH) within the Gibbs MCMC framework. In the first paper [4], the team
utilised Bayesian inference to estimate model parameters by using the Metropolis-Hastings (MH)
algorithm within a Gibbs sampling Markov Chain Monte Carlo (MCMC) framework.

At its core, the MH algorithm constructs a Markov chain that has the target distribution as
its equilibrium distribution, thus ensuring that as the number of iterations increases, the distribu-
tion of the chain’s states converges to the target distribution [20]. One of the primary challenges in
implementing the MH algorithm is the selection of an appropriate proposal distribution, but Zhu et
al. derived an identifiable posterior distribution in the appendix of [4]. This required a prior on the
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parameters λ, and were chosen to be α, δ ∼ N(0, 100), γw
1 , γ

w
2 ∼ N(0.5, 100), γb ∼ N(−0.5, 100),

where N() is a normal distribution. The ability of this calibration to converge with high prior vari-
ance is a major benefit of this approach as it allows for efficient traversal of the parameter space.
However, a significant drawback is the considerable computational demand limiting its scalability.

2.2.5 SGD Variational Inference
In March of 2024, Pan et al. presented a novel stochastic Gradient Descent (SGD) based variational
inference method for the CLSNA model. This method significantly enhanced the scalability and
computational speed of the preceding MCMC. The approach utilises a two-stage algorithm that
first employs SGD to compute initial point estimates for model parameters. Then it refines the
estimates by calculating marginal posterior standard deviations using quadratic approximations of
the log-posterior density.

The main advantage of this method lies in its ability to transform variance estimation into an
optimisation problem of the posterior log-likelihood. Concretely, to calculate point estimates, the
algorithm starts by initialising parameter set λ, then progresses by randomly selecting indices
of simpler summands from the log-posterior distribution and updates the parameters in an SGD
step. This approach trades a small amount of precision in the posterior calculation for signifi-
cantly reduced computation. Variance inference is similarly computed with SGD by employing
an approximate Bayesian inference method grounded in Laplace’s approximation, which is further
detailed in [4].

2.3 Neural Parameter Calibration
Gaskin et al.’s neural parameter calibration technique presents a novel approach to recovering
probability densities from noisy time-series data as summarised in Figure 2.3. Conceptually, the
method trains a neural network to determine a set of parameters λ̂ that best reproduces observed
time series data T = (ϕ1, . . . , ϕL). The loss values obtained at different training epochs ei, Jei , are
then used to define joint and marginal empirical parameter density functions.

Figure 2.3: Neural parameter calibration pipeline. Diagram by Gaskin et al. [7].

2.3.1 Methodology
Neural parameter calibration starts with defining a neural network as the function µθ : RN×q → Rp

where θ are the learned NN parameters, N is the number of observed input samples, q ≥ 1 is the

11



number of input time-steps, and p the number of parameters calibrated. The output of this neural
network are the estimated parameters λ̂ = µθ̂(X). At each training epoch, the output gets passed
into the numerical ABM solver parameterised by λ to produce an estimated time-series output
T̂ (λ̂) = (ϕ̂k, . . . , ϕ̂k+B). These estimations serve as a basis for training the neural network’s in-
ternal parameters Θ, which include learnable weights and biases. This is accomplished through a
user-defined loss objective function J(T̂ , T ) to guide the optimisation of Θ.

Calculating the gradient of the loss function ∇ΘJ is a chain rule operation, first differentiating the
predicted time series T̂ and subsequently, the system equations concerning λ. This differentiation
is integral as it incorporates the dynamics of the model into the training regime. The optimisation
of Θ employs back-propagation and may utilise various optimisation algorithms (SGD, Adam, etc.).

Once the ground-truth data are re-inputted into the model, a new set of parameter estimates
λ̂ is generated, beginning the iterative process again. Given the complexity of general numerical
solvers, the differentiation details are managed by the autodifferentiation engines of ML libraries.
The stochastic nature of the CLSNA simulation is handled by treating random vectors as constants
in gradient calculation.

The optimisation process is further extended to inferential statistics. While this optimisation does
not yield confidence intervals directly, it facilitates the generation of probability densities through
the computation of loss values across the parameter space Rp. Specifically, each loss estimates Ĵ
contributes to constructing an approximation of the observed data distribution. By Bayes formula
we know the parameter posterior is proportional to the prior multiplied by the distribution of the
observed data, expressed as:

π(λ̂|T ) ≈ exp(−J(T̂ , T ))π0(λ̂), (2.15)

where π0(λ̂) denotes the prior distribution. The marginal densities of the parameters are subse-
quently proportional to the integral of the exponential loss, given by:

ρ(λi) ∼
∫

exp(−J)dλ−i, (2.16)

with λ−i indicating integration over all parameters except λi.

The quality of the density estimation approximation improves as the dimension of the parame-
ter space increases and the coverage of the parameter space increases. This framework benefits
from the ability to aggregate stored loss values across numerous random parameter initialisations
followed by their associated training phases. Applying parallel processing to this method signifi-
cantly bolsters the robustness and precision of the confidence intervals obtained from the density
estimates.

The calibration framework serves a dual purpose: optimising model parameters and providing
a statistical framework for inference; the empirical parameter densities generate meaningful confi-
dence intervals that reflect the uncertainty inherent in real-world data modelling.

2.4 Benefits of the Neural Calibration Approach
The neural parameter calibration scheme boasts a series of benefits. Perhaps the most signifi-
cant is its model of agnosticism. This feature ensures the method is adaptable to stochastic and
non-stochastic multi-agent models. Users only need to define a loss functional particular to the
numerical solver, embedding specific calibration objectives in the process. Such flexibility allows
for broader application to scientific and engineering fields.

Additionally, the neural network component can be easily replaced with more sophisticated deep-
learning architectures tailored to specific cases. This adaptability enhances the model’s perfor-
mance and ensures that it keeps up with advancements in ML technologies. Unlike conventional
ML methods that frequently encounter issues with generalisability due to overfitting or underfit-
ting, the neural calibration method inherently focuses on the non-traditional setting of parameter

12



calibration. Depending on the use case of the ABM being fit (CLSNA, for ex.), having high pre-
dictive power on unseen data is not necessarily the goal. There are examples of ML methods
deployed in literature where minimising training loss is strictly prioritised over model robustness,
like Burgette and Reiter on multiple imputation in missing data via sequential regression trees [21]
and Brookhart et al. performing variable selection in propensity score models [22]. The challenges
of neural calibration mainly lie in ensuring that number parameters remain tractable and compu-
tations are expedient. The neural method has shown to calibrate models orders of magnitude more
accurately than classical techniques while still running between ‘195 and 390 times faster’ [7].

Functionally, the method operates similarly to an encoder-decoder model. It encodes the input
data into a parameter space and decodes it to update prior beliefs about parameter estimates. This
mechanism is crucial for continuously refining the model’s accuracy and reliability, especially in
dynamic environments where the underlying data patterns fluctuate frequently. Reparametrising
this method in a formal VAE setting is the core of Chapter 5.

2.5 Concluding Remarks
In this chapter, we explored the evolution of agent-based models (ABMs) for opinion dynamics,
emphasising an observed correlation between model parameterisation and the complexity of dy-
namics regimes. We then formally presented the CLSNA positive and negative partisanship model,
stating the pros and cons of the calibration methods used thus far. The limitations of computa-
tional overhead and the requirement of calculating explicit formulations of log-likelihood posteriors
motivate applying the neural calibration approach to the CLSNA model for two main reasons:

1. Successful adaptation of the neural calibration approach serves as a proof-of-concept for the
viability of the methodology in social sciences settings.

2. Neural calibration circumvents the need for computing log-likelihood posteriors by utilising
empirical loss density approximations instead. Evaluating this effect on both computational
efficiency and quality of parameter estimation is of interest.
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Chapter 3

Preliminaries

This chapter introduces the fundamental concepts that underpin the work in subsequent chapters.
We present preliminaries on ML architectures and activation functions, evaluation metrics, and
modern methods for sensitivity analysis.

3.1 Machine Learning Architectures
The neural parameter calibration technique defined in 2.3 requires defining an artificial neural
network with learnable parameters θ to minimise a loss objective. Although all applications of this
approach up to writing have defined this network as an MLP, it is easily extensible to arbitrary
architectures. In this section, we outline the architectures used in 4 and 5.

3.1.1 Multi-Layer Perceptron and Backpropagation
A multi-layer perceptron (MLP) is a fundamental component of a basic neural network, consisting
of several layers of nodes: an input layer, one or more hidden layers, and an output layer. In
each layer, every node is fully connected to all nodes in the preceding layer, performing a linear
combination per node that aggregates inputs using adjustable weights and biases. This is then
crucially followed by applying a nonlinear activation function to produce the output. Figure 3.1
illustrates a single perceptron node. The forward propagation process in an MLP and is given by:

z(1) = W(1)x+ b(1)

a(1) = σ(z(1))

z(2) = W(2)a(1) + b(2)

a(2) = σ(z(2))

...

z(L) = W(L)a(L−1) + b(L)

y = σ(z(L))

where x is the input vector, W(l) and b(l) are the weights and biases of the l-th layer respectively,
z(l) is the weighted sum of inputs to the l-th layer, a(l) is the activation of the l-th layer, and σ is
the activation function applied element-wise. MLPs build complexity through layer composition
and can universally approximate unknown continuous functions of the form f : Rdin → Rdout

arbitrarily well [23].

Rumelhart et al. (1986) presented the backpropagation algorithm as a fundamental iterative
technique for learning the weights and biases of MLPs [25]. At its core, backpropagation involves
the computation of the gradient of a cost objective function concerning the network’s learnable
parameters. This gradient, which indicates the direction in which the weights adjust to minimise
error, is calculated in a single backward pass from the output layer to the input layer. This pass
uses the chain rule of calculus to flow loss error gradients back through the network, thus enabling
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Figure 3.1: Perceptron with learnable weights w1, w2, w3, b and non-linear activation σ.
Diagram inspired by Minsky and Papert [24]

the updating of weights not directly connected to the output. The backpropagation algorithm is
expressed as follows:

Output error: δ(L) = ∇aC ⊙ σ′(z(L))

Backpropagated error: δ(l) = ((w(l+1))T δ(l+1))⊙ σ′(z(l))

Gradient of the cost w.r.t. biases:
∂C

∂b
(l)
j

= δ
(l)
j

Gradient of the cost w.r.t. weights:
∂C

∂w
(l)
jk

= a
(l−1)
k δ

(l)
j

where C is the cost function, σ′ is the derivative of the activation function, z(l) is the input
to layer l after applying weights, and a(l) is the output from the activation function at layer l.
Autodifferentiation engines built into libraries like torch.autograd abstract away long gradient
computation chains [26].

3.1.2 Convolutional Neural Network (CNN)

Figure 3.2: CNN with input tensor (11, 207, 207), four convolutional layers, and a
fully-connected linear layer. Each convolutional layer has a (3,3) kernel and bias parameter.

CNNs were first introduced by LeCun et al. in the breakthrough paper "Handwritten Digit Recog-
nition with a Back-Propagation Network" [27]. MLPs suffer from the curse of dimensionality where
the number of parameters explodes due to the fully connected layer connections between nodes;
this increases gradient computation exponentially and limits the ability to generalise to unseen
input in image recognition tasks. CNNs offer a viable alternative that employs a restricted con-
nection scheme whereby tensor model inputs are convolved with fixed-sized feature maps (i.e. 3x3
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kernels) to generate output maps. As with the MLP, non-linear activation functions are applied
to the outputs to allow for universal function approximation.

A by-product of the convolution operation is a notion of weight-sharing where the number of
network parameters is a function of convolution kernel dimension and not of input dimension.
Figure 3.2 is an example of a CNN used in this project. Although originally devised for image
recognition, CNNs, also known as space-invariant artificial neural networks (SIANN), have proven
to be effective in a larger subset of deep learning tasks that require topological feature extraction
due to their capacity to extract spatial patterns from input tensors [28].

The three main building blocks of CNNs are convolution, pooling/aggregation, and fully connected
layers. By composing convolutional layers, CNNs automatically and adaptively learn low and high-
level spatial hierarchies. The learning process for CNNs is equivalent to an MLP where gradients
for kernel parameters/biases are calculated by backpropagation during SGD optimisation.

3.1.3 Graph Convolutional Network (GCN)
Graph Convolutional Networks (GCNs) have become a leading framework in deep learning for
learning graph representations, achieving high performance across various applications [29]. First
introduced by Kipf and Welling [30], GCNs are designed to integrate topological information
through the underlying adjacency matrix. The core idea is to perform convolution operations on
the graph, restricting feature aggregation to only neighbouring nodes. The forward pass of a GCN
layer is formulated as follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
where:

• H(l) is the feature matrix at layer l, with H(0) = X ∈ Rn×d, the input feature matrix where
the columns of X represent the d features.

• Ã = A+ I is the adjacency matrix with added self-loops (1’s along the diagonal introduced
by identity matrix I).

• D̃ is the degree matrix of Ã.

• W(l) is the trainable weight matrix of layer l.

• σ is a non-linear activation function.

This formulation is derived as a first-order approximation of spectral graph convolutions, ensuring
that the feature transformation and propagation steps are intertwined. This allows the model to
capture both node features and graph structure effectively. The degree matrix D̃ is employed
to normalise the influence of each node’s neighbours, preventing potential issues with unevenly
distributed node degrees. GCNs are particularly ‘powerful in the setting where the adjacency
matrix contains information to present in the model input X’ [30], and it is this core idea that
motivates their use in the CLSNA model.

3.2 Activation Function Saturation
Activation functions (AFs) introduce non-linearity into ML architectures, enabling them to learn
complex, non-convex patterns. However, when the inputs to these functions fall into extreme ranges
(i.e. the input signal maps to an asymptotic value), the derivatives of the activation functions
approach zero, leading to a phenomenon known as saturation or vanishing gradient where the
gradient does not flow backwards [31]. The property of function saturation is expressed as:

lim
|v|→∞

|∇f(v)| = 0.

Saturation impedes the training of deep networks, as the gradients become too small to effect
meaningful weight updates in update steps. This makes achieving model convergence in training
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a delicate matter, sensitive to weight initialisation, learning rate, and optimiser strategy. This
challenge is particularly acute in deep networks where multiple layers exacerbate the issue, leading
to slow or failed convergence.

Rakitianskaia and Engelbrecht [32] propose a novel simple measure for quantifying saturation
levels of arbitrary bounded functions, which we employ when considering the CLSNA numerical
solver as an activation function in 5. This metric is calculated from the frequency distribution (like
in Figure 3.3) of the activation function outputs, g(net), over a valid input domain.

Figure 3.3: Frequency histogram of a positively-skewed, bounded, and saturated NN unit

The measure is defined as follows. First, the average output signal value for each bin b is calculated
as follows:

ḡb =

{ ∑fb
k=1 g(netk)

fb
if fb > 0

0 otherwise

In this equation, fb denotes the count of output signals g(net) falling into bin b. When the values
of g are centred around zero, the absolute average ḡb tends to be higher for bins nearer to the
asymptotic values and lower for bins closer to the midpoint. If g spans the range [gL, gU ], the value
ḡb can be normalized to the interval [−1, 1] using the following transformation:

g̃′b =
2(ḡb − gL)

gU − gL
− 1

We then compute a non-negative weighted mean of absolute |g̃′b|:

φB =

∑B
b=1 |g̃′b|fb∑B

b=1 fb

where B is the total number of bins, and fb assigns a probability weight of each bin. This measure
φB serves as an indicator of saturation, with values approaching 1 indicating high saturation and
values nearing zero indicating low saturation.

3.3 Loss Functions and Evaluation Metrics

3.3.1 Binary Cross-Entropy (BCE) and Weighted BCE
Binary Cross-Entropy (BCE) is a standard metric in information theory, used to quantify the
difference between two probability distributions. In machine learning, particularly for binary clas-
sification tasks, it is the primary loss function to compare the ground truth labels with the predicted
probabilities. The average BCE loss for a dataset containing N instances is calculated as follows
[33]:

BCEavg = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

where:
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• yi is the true binary label (0 or 1) for instance i.

• ŷi is the predicted probability of instance i being in class 1.

In many real-world datasets, class imbalances are common, where one class is significantly more
frequent than the other. This imbalance can cause the standard BCE loss to be biased towards
the majority class and lead to degenerate behaviour [34]. To address this issue, we use a weighted
version of BCE. The Weighted BCE loss introduces a weight for each class, allowing higher penal-
isation for misclassification of the less sampled class, thereby encouraging the model to learn both
classes in a more balanced manner. The weighted BCE loss is given by [33]:

Weighted BCEavg = − 1

N

N∑
i=1

[w1yi log(ŷi) + w0(1− yi) log(1− ŷi)]

where w1 is the weight for the positive class (class 1) and w0 is the weight of the negative class
(class 0). Choosing appropriate weights w1 and w0 can help mitigate the effect of class imbalance,
ensuring that the loss function gives equal importance to both classes. A common approach to
choosing these weights is inversely proportional to the class frequencies:

w1 =
N

2N1
, w0 =

N

2N0

where N1 are the counts of class 1 and 2 instances, respectively. Using Weighted BCE helps in
scenarios where the data is highly imbalanced by ensuring that the minority class contributes more
significantly to the loss, leading to better performance in classification tasks.

Precision measures the proportion of correctly identified positive cases out of all instances that
were predicted as positive. It is given by:

Precision =
TP

TP + FP

where TP (True Positives) is the count of correctly predicted positive cases, and FP (False Posi-
tives) is the count of negative instances incorrectly predicted as positive.

Recall (also known as Sensitivity) is the ratio of actual positive cases correctly identified by
the model. It is defined as:

Recall =
TP

TP + FN

where FN (False Negatives) is the count of incorrectly classified positive instances.

F1 Score is the harmonic mean of Precision and Recall, providing a single metric that balances
precision and recall. It is given by:

F1 Score = 2 · Precision · Recall
Precision + Recall

3.3.2 Topological Graph Metrics
For the CLSNA model and similar matrix prediction tasks, graph metrics can provide deeper
insights by analysing the structural properties of graphs. This section presents the measures used
in Sections 4 and 5.

Clustering Coefficient

The clustering coefficient quantifies the tendency of nodes in a graph to cluster together, reflecting
the presence of tightly knit sub-groups. This is both a local node and a general graph metric. For
a given node v, the local clustering coefficient is the ratio of the number of triangles (closed triplets
of nodes) to the number of potential triangles through that node:

Cv =
2∆v

kv(kv − 1)
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where ∆v represents the number of triangles through node v, and kv is the degree of node v
(number of neighbours). For graphs with weighted edges, the clustering coefficient can modified
to consider non-binary edge weights [35].

Degree Centrality

Degree centrality is a basic measure of a node’s importance in a graph, defined by the number of
connections (edges) a node has. For a node v, the degree centrality D(v) is expressed as:

D(v) = kv

where kv is the degree of node v. In normalized form, degree centrality is given by:

D(v) =
kv

N − 1

where N is the total number of nodes in the graph.

Closeness Centrality

Closeness centrality is a distance metric that measures how near a node is to all other nodes in a
graph, summarising the node’s efficiency in disseminating information to others and is frequently
used for identifying influential nodes in social networks [36]. The closeness centrality C(v) of a
node v is the inverse of the sum of the shortest path distances from v to all other nodes:

C(v) =
N − 1∑

u∈V d(v, u)

where N is the number of nodes in the graph, V denotes the set of all nodes, and d(v, u) is the
shortest path distance between nodes v and u.

3.4 Sensitivity Analysis (SA)
In Saltelli et al.’s book "Sensitivity Analysis in Practice", SA is defined as ‘the study of how the
uncertainty in the output of a model (numerical or otherwise) is apportioned to different sources
of uncertainty in the model input’ [37]. This definition shifts the focus on SA as a local measure
of effects on given inputs on given outputs (i.e. with partial derivatives) to a global notion that
incorporates higher-order parameter interactions. These techniques are extensively employed in
the scientific literature for higher-level model evaluations that include validation, optimisation, and
decision-making processes.

The properties of an ideal sensitivity analysis method are [37]:

• Ability to handle the influence of model scale and shape when producing analysis metrics.

• Inclusion of multidimensional averaging to evaluate interactions between model parameters.

• Model agnosticism.

• Ability to group parameters and evaluate them as individual factors.

3.4.1 Morris Method
The Morris Method (MM) or Elementary Effects Method is a screening technique designed to
pinpoint the parameters that significantly impact model outputs. This method focuses on local
sensitivity by computing approximations of output f partial derivatives at different points in the
parameter space.

The three primary steps of the Morris Method are detailed below [38]:

• Discretising the Input Space: The input sense must be sensibly chosen to lie in a realistic
subset within the parameter space to limit wasted computation and yield the best results.
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• Sampling the input space: The One-At-a-Time (OAT) sampling strategy is used. Starting
from an initial randomly chosen point in the input space, one input parameter is changed to
the next "level" up or down in the grid while holding all other parameters constant, generating
a new point in the input space. This process is sequentially repeated for each input parameter,
resulting in trajectories through the input space that explores one dimension at a time.

• Elementary Effect (EE) Calculation: The EE of an input parameter is calculated as the
change in the model’s output divided by the change in the input parameter. This is done for
each step in the trajectory. Mathematically:

EEi =
f(x+

i )− f(x)
∆

where x = (x1, x2, ..., xk) is an arbitrary point in input space such that x+
i := x+ei∆ is still

in input space. ∆ is the change in the input parameter.

The mean of the absolute values of the elementary effects (µ∗
|EEi|) indicates the overall impact of

an input parameter on the output. Larger µEE values suggest that the parameter has a significant
influence on the output. The standard deviation of the elementary effects (σEE) reflects the non-
linearity and interaction effects with other parameters; a high value indicates that the parameter’s
effect varies greatly under different conditions and strongly interacts with other parameters.

The Morris Method is useful for a specific sensitivity analysis task known as factor fixing (FF). In
this paradigm, the objective is to identify a subset of factors λ′ ⊂ λ that can be fixed at any value
over a range of uncertainty without significantly affecting the output variance.

3.4.2 Variance-Based Methods: Sobol Indices
Variance-based methods decompose the model variance into components attributable to differ-
ent inputs, helping to pinpoint which parameters significantly impact output uncertainty. These
methods are advantageous because they consider higher-order interactions. Two factors are said to
interact when their combined effect on the output cannot be linearly decomposed to single effects
on output [37]. Formally, the interaction effect between two factors, Xi and Xr, on the output Y
is defined by the conditional expectation variance:

Vir = V (E(Y | Xi, Xr))− V (E(Y | Xi))− V (E(Y | Xr)). (3.1)

Here, V (E(Y | Xi, Xr)) represents the joint effect of the factors Xi and Xr on Y . Equation 3.1 is
known as a second-order effect. Analogous formulae are derived for higher orders.

The goal in this context is to rank the factors based on how much of the output variance is elimi-
nated when the true value of a particular input factor Xi is known. To do this, factors are ranked
according to V (Y | Xi = x∗

i ), which is the variance when Xi is fixed at its true, but unknown,
value x∗

i . Since x∗
i is unknown, we use empirical averages over all possible values x∗

i of Xi, that is,
E(V (Y | Xi)). Given that V (Y ) is constant and V (Y ) = V (E(Y | Xi)) +E(V (Y | Xi)), minimiz-
ing E(V (Y | Xi)) is equivalent to maximizing V (E(Y | Xi)), which is what we aim to compute [37].

One common approach is the Sobol method, which calculates the total variance of the output
and partitions it into fractions that is attributed to individual inputs or combinations of inputs
using Monte Carlo estimates [39]. The Sobol indices (first and higher-order are defined as follows):

Sir =
Vir

V (Y )

where Sir is Sobol’ sensitivity index for the i, r-th input factor. Finally, the total-effect index
STi for each factor Xi includes all variance contributions involving Xi, making it a comprehensive
measure of the input factor’s influence. This is used when the number of parameters is large, say
d, because calculating all higher-order indices would require 2d − 1 computations.
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3.4.3 Multi-Objective Optimisation (MOO) and NSGA-II
Multi-Objective Optimisation (MOO) is a branch of optimisation that simultaneously minimises
(or maximises) multiple objective functions to be optimised. Unlike single-objective optimisation
which looks for a single best solution, MOO results in a set of solutions that balance trade-
offs between competing objectives, known as Pareto optimal solutions. Mathematically, MOO is
formalised as:

min f(x) = (f1(x), f2(x), . . . , fk(x))

subject to x ∈ Ω

where f(x) is a vector of objective functions, and Ω represents the feasible region defined by
the constraints [40]. The Pareto front, or boundary, is the set of non-dominated solutions in the
objective space. A solution is non-dominated if no other solution can improve one objective without
performing worse in at least one other objective:

Pareto Front = {f(x) | y ∈ Ω such that f(y) ⪯ f(x) ∧ f(y) ̸= f(x)}

where ⪯ denotes the component-wise comparison for dominance.

In traditional optimisation, multiple objectives aggregate into a single objective, typically through
convex combinations in a process known as objective weighting (OW) or through min-max for-
mulations aimed at minimising the maximum deviation from the optimal value of each objective.
The most significant drawback of these approaches is the requirement of thorough prior knowledge
regarding the different objectives (i.e. to determine weights in OW) [41]. Recent alternatives use
non-dominated, sorting-based evolutionary algorithms (MOEAs) such as NSGA-II [42]. In this
method, a population of solutions evolves over multiple generations to approximate the Pareto
front. The NSGA-II algorithm preserves a diverse set of solutions by combining non-dominated
sorting with a crowding distance mechanism, ensuring genetic diversity among the solutions.

The genetic algorithm in NSGA-II involves several steps:

• Initialisation: A population of potential solutions is randomly generated.

• Selection: The existing population is divided into different fronts based on Pareto domi-
nance, with solutions in the first front being non-dominated. Being on a higher front ensures
a higher probability of survival for the next generation.

• Crossover and Mutation: The Genetic operators of crossover and mutation are applied
to selected solutions to produce new offspring. During crossover, components of 2 parent
solutions combined to create new solutions. Mutation involves random modifications to
individuals to ensure genetic diversity is maintained.

• Elitism: NSGA-II uses an elitist strategy where the best solutions (based on Pareto domi-
nance and crowding distance) carry over to the next generation.
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Chapter 4

CLSNA Neural Calibration

In this chapter, we outline the implementation details and evaluate the results of neural parameter
calibration on the CLSNA opinion dynamics model. Concretely, the problem statement is to
learn empirical probability density functions for the five model parameters λ = {α, δ, γ1

w, γ
2
w, γb}.

The three variance parameters of CLSNA are fixed (σ2 = 1, τ2 = 10, ϕ2 = 10) and the latent space
dimension (d) is set to 2 to facilitate fair results comparison between our solution and Zhu et al.’s
work.

Important Note: Throughout this chapter, we discuss the implementation of neural parame-
ter calibration on two versions of the CLSNA model: Zhu et al.’s fixed node formulation [4] and
Pan et al.’s dynamic node model [5]. The differences are outlined in Section 2.2. In what follows,
the fixed node variant will be referred to as the 207 model and the dynamic node variant the 616
model for reasons made clear in Section 4.1.

4.1 Dataset(s): Tweet Hashtag Network
The data was provided by Zhu et al. [4] and Pan et al. [5]. In this section, we formally present
the structure of this data and perform preliminary exploratory analysis.

4.1.1 Structure

(a) 207 Model Adjacency Matrix at t = 10 (b) 616 Model Adjacency Matrix at t = 10

Figure 4.1: Adjacency matrices at t = 10 for the 207 model and 616 model. In both matrices,
black corresponds to a 0 entry. See Appendix B.1 for full dataset plots.
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For both the 207 and 616 implementations, the dataset comprises of tweets posted by each US
member of Congress (MOC) with a valid handle from 2010 to 2020, resulting in 796 accounts,
843,907 tweets, and 1,252,455 instances of hashtag sharing (after excluding retweets and tweets
without hashtags). Then we created time-indexed binary symmetric adjacency matrices for each
year, where t ∈ T := {0, . . . , 11} and each Yt ∈ {0, 1}Nt×Nt for Nt nodes at time t. Additionally,
for each time index t, a binary list Pt was generated that maps each node index to a political party
(1 for Democrat, 0 for Republican). Consequently, for each time index t, we obtain a tuple con-
sisting of a matrix and a party list (Yt, Pt). The nodes in these matrices represent sitting members
of Congress, and edges denote that the number of common hashtags tweeted by both members of
Congress that year was above the network average. The rationale behind using hashtag sharing is
to measure polarisation in terms of indirect engagement, where a connection signifies participation
in similar topics [4].

For the fixed node dataset, we filtered the members of Congress to include only those in office
throughout the 10-year period. This filtering reduced the dataset to 207x207 adjacency matrices,
with 131 Democrats and 76 Republicans. Meanwhile, the 616 model has a varying number of
nodes per time index, with a maximum Nt of 616, which occurred in the year 2019 (t = 9). Due
to the dynamic nature of the adjacency matrices, the dataset also includes user-handle dictionar-
ies that map index to handle. This information is strictly necessary for the implementation of
simulate_clsna_dynamic algorithm (see Appendix A).

4.1.2 Exploratory Analysis
The focus of this exploratory analysis is on the topological structure of the 207 and 616 datasets.
In Figure 4.7, we notice that in both datasets, graph sparsity starts very high (nearing 1.0) and
soon stabilises to equilibrium; in fact, the evolution of sparsity is strikingly similar. The reason
for high initial sparsity is unclear as we do not expect vastly different platform behaviour ceteris
paribus in earlier and later years. In the 207 case, we see a stable matrix sparsity of 0.67, calculated
as the average sparsity over the final 5 adjacency matrices. In the 616 dataset, the stable sparsity
is exactly equal to the former (calculated the same way) and is in line with the intuition that with
a relatively large number of nodes, we expect convergent behaviour. Due to the sparse nature of
the dataset and the fact that the ML task at hand is the binary classification of the adjacency
matrices, there is a clear class imbalance that we must consider when designing an architectural
solution.

(a) 207 Model Data Sparsity (b) 616 Model Data Sparsity

Figure 4.2

Furthermore, the average clustering coefficient over the 11 207x207 adjacency matrices in the fixed
node dataset is 0.42, jumping to 0.657 when only considering the final five data entries. This clus-
tering coefficient is significant and implies that the dataset exhibits small-world characteristics.
Namely, the short mean path length amongst connected components and clustering coefficient is
greater than 0.6. In the 616 dataset, we observe a similar structure with an average clustering
coefficient of 0.468 that rises to 0.667 over the final five matrices.

Clearly, from both the high clustering coefficient(s) and horizontal and vertical patterns visu-
ally apparent in the matrices of Figure 4.1, a significant spatial component exists in the dataset(s)
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along with the assumed temporal relationship; incorporating this information into our solution
would allow us to capture more semantically meaningful parameter calibrations. An initial hy-
pothesis is that the datasets follow the universal power law described in Barabasi and Albert’s
influential paper "Emergence of Scaling in Random Networks" [43]. The Barabasi-Albert model
states that the probability P (k) of a node in the network having k connections follows a power
law distribution, P (k) ∼ k−γ , where γ is typically between 2 and 3. However, upon analysing our
datasets, it became clear that the Barabasi-Albert model was not suitable because many nodes
had a high degree, suggesting that additional factors affect the network structure.

One such factor is the selection bias inherent in our dataset, as it includes members of Congress
whose digital behaviour is governed by political agendas and public responsibility. This bias im-
pacts the network’s structure, making it crucial to consider the political context of connections.
Instead of a universal power law, the connection patterns are better understood by distinguishing
between inter-party and intra-party connections. Figure 4.3 shows a (207,207) binary matrix where
a value of 1 for index (i, j) indicates party of Ni and Nj is equal and 0 otherwise. We can see
coarse visual patterns in line with what is observed in the ground truth data.

Figure 4.3: Political Party Adjacency Matrix in 207 dataset

4.2 Implementation Overview
In this section, we present the implementation of neural parameter calibration for both the 207
and 616 datasets. Our approach follows a systematic approach aligned with the neural parameter
calibration methodology. The main steps of the implementation are as follows:

1. Define the model architectures: We define the architectures of the calibration models,
specifically detailing the layers and components used to capture the spatial and temporal
dynamics of the networks.

2. Define the numerical solver: We implement the algorithm that takes λ̂ as input and
outputs predicted adjacency matrices {Yt : t ∈ T } governed by dynamics of CLSNA. This
can be used in downstream tasks (i.e., calculating loss function). Albeit a challenging task,
the implementation details are not directly relevant to neural calibration and thus are detailed
in Appendix A.

3. Define the loss Function: We outline the loss functions used to train the models, moti-
vating the use of various regularisation techniques to guide training.

4. Establish a training procedure: We describe the training process, including the optimi-
sation techniques, hyperparameter tuning, and the training function.
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5. Define performance Metrics: We establish the metrics used to evaluate the models’
performance, ensuring a comprehensive assessment of their effectiveness.

6. Evaluate Results: We analyse the results obtained from the models, comparing their
performance and discussing the insights gained from the evaluation.

Throughout the subsequent sections, we will clearly outline any differences in implementation
between the 207 and 616 models. Efforts have been made to abstract these differences whenever
possible, ensuring the implementation is modular and extensible. 1

4.3 Model Architectures
The first step of neural calibration is defining the ML architectures that take as input the observed,
ground-truth data Yt and output predicted parameters λ̂.

4.3.1 207 Dataset
For the 207 dataset, we have implemented three different architectures: a basic NN, a CNN, and
a GNN. The fixed number of nodes allows us to reshape the input into a (11, 207, 207) tensor,
making it feasible to apply convolutional operations for the latter architectures.

Basic Neural Network

The NN architecture is fully connected, taking as input the concatenation of Yt with shape
(234531,). As Yt is symmetric, we only vectorise the upper triangular representations of U(Yt)
to minimise latency overhead. The NN is (hyper-) parameterised as follows:

• Number of Layers: 5

• Nodes per Layer: 96

• Activation Functions: Sigmoid for hidden layers, linear (id) for the last layer

• Dropout Rate: 0.163256

• Learning Rate: 0.0002

• Optimiser: RMSProp [44] with weight decay 0.011258

The determination of these values is discussed in Section 4.5. Additionally, we define an auxiliary
lightweight NN that initialises the main model’s outputs to normal priors with a mean of 0.0 and
a standard deviation of 0.5. This NN trains quickly (17.3 ± 1.6s) and assumes white-noise inputs.
The inspiration for this type of weight initialisation is from Gaskin et al.’s NeuralABM GitHub
repository [45]. This model has 22,552,320 parameters and a storage requirement of 21.508MB.
Compared to traditional NNs, this is a larger model with high capacity. Due to reasons outlined in
Section 2.4, we do not mind the high parameter count as long as execution time is kept low (i.e.,
with GPU parallelisation).

Convolutional Neural Network

The convolutional neural network (CNN) architecture incorporates spatial and temporal structure
information of the adjacency matrices by applying a series of 3x3 convolutions over input/hidden
tensor maps. The CNN is (hyper-) parameterised as follows:

• Input Channels: 11

• Number of Convolutional Layers: 5

• Kernel Shape: (3, 3)

• Convolution Stride: 2
1NeuralCLSNA GitLab Repository: https://gitlab.doc.ic.ac.uk/og519/nerualclsna
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• Hidden Dimension0: 32, which duplicates in each subsequent layer

• Activation Function: ReLU for hidden layers, linear for output

• Learning Rate: 1e-5

• Optimiser: Adam [46]

In this architecture, we excluded pooling layers between convolutional layers as it worsened the
predictive power of the trained models; instead, a stride of 2 allows for height and width tensor
downsampling when encoding input to parameter values. Intuitively, this model resembles the first
half of the widely recognised U-net architecture commonly used in graph-reconstruction tasks [47].
This CNN model has 2,003,525 parameters and a storage requirement of 1.911MB. Compared
with the previously defined NN, it has 91.12% fewer parameters and a 91.149% lower storage
requirement due to weight-sharing.

Graph Neural Network

The graph neural network (GNN) architecture builds off the key insight from the exploratory
analysis (Section 4.1.2) that the spatial patterns observed in the data roughly mirror the partisan
relationships between nodes. We concretise this notion by defining Aparty as a binary adjacency
matrix of dimension 207× 207 where:

Aparty(i, j) =

{
1 if party(i) = party(j)
0 otherwise

(4.1)

By enforcing the ML model training regime to diffuse information through K-neighbourhoods built
from prior knowledge Aparty, we expect improved performance compared to the learned relation-
ships of the CNN.

Figure 4.4: 6 Node CLSNA where nodes in class 1 are blue and in class 2 are red. The
(unweighted) edges are present when nodes belong to the same class. Each node has a node

embedding in {0, 1}11×207.

For the GNN implementation, we reshape the (11, 207, 207) ground-truth tensor into a (207, 11 *
207) 2D tensor using a vectorisation operation. This transformation is identical to the one used in
Isallari and Rekik’s brain-graph super-resolution architecture [48] that assigns each node a node-
embedding in {0, 1}11×207. By doing this, we enable matrix multiplication with the (207, 207)
normalised adjacency matrix Ã in the graph convolutional network (GCN) layers. This approach
encodes temporal (11-time steps) and spatial information into node features, meaning that even
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with an unweighted Ã ∈ {0, 1}N×N , each node can still incorporate information from all nodes,
not just from those within the same political party. The adjacency matrix enforces a topological
structure that dictates how graph information diffuses across node neighbourhoods. Figure 4.4 is
a toy-example of the CLSNA G with six nodes.

The GNN is (hyper-) parameterised as follows:

• Input Channels: 11 * 207

• Number of Layers: 3 GCN layers

• Hidden Dimension: 128

• Activation Function: ReLU for hidden layers, linear for output

• Learning Rate: 1e-5

• Optimiser: Adam

The convolution operation in the GCN layers is defined as:

ReLU(Ã ·H ·W ) (4.2)

where Ã is the normalised adjacency matrix, H is the input feature matrix, and W represents the
learnable weights. The output of the final GCN layer is then averaged across the node dimension
to produce the final output in the desired form λ̂. This averaging operation ensures that the output
captures the aggregated information from all 207 nodes. This GNN model has 308,480 parameters
and a storage requirement of 0.294MB. This is by far the most lightweight of the three presented,
with orders of magnitude lower resource demands compared to the vanilla NN and CNN.

4.3.2 616 Dataset
For the 616 model, the only viable implementation was a basic NN because at each time index,
there is a variable number of nodes, making convolutional operations impractical. The traditional
workarounds of zero-padding resizing [49], interpolation scale-up or cropping is more applicable in
computer vision tasks like image segmentation or classification but less so when the entire graph
topology needs consideration. The network takes as input the concatenation of Yt with a shape of
(1382495,). The NN is (hyper-) parameterised as follows:

• Number of Layers: 5

• Nodes per Layer: 32

• Activation Functions: Sigmoid for hidden layers, linear (id) for the last layer

• Dropout Rate: 0.163256

• Learning Rate: 1e-4

• Optimiser: Adam with weight decay 0.011258

Similar to the vanilla NN implementation for the 207 model, we define an auxiliary lightweight
NN to initialise the main model’s outputs to normal priors with a mean of 0.0 and a standard
deviation of 0.5. However, this NN does not train as quickly as the fixed-node counterpart, taking
approximately 43.2± 3.4 seconds. This model has 44,244,096 parameters and a storage require-
ment of 42.194MB. This highlights a significant issue with the basic NN approach: scalability.

Consider an input size of N . In a fully connected network, the input vector must be 1D, causing
the number of input nodes to grow linearly with N . Consequently, the number of model parameters
becomes dominated by the first layer weights that connect all input nodes to a hidden dimension,
which scales as O(N2). In the hyperparameter sweep conducted to optimise the 616 model, the
search space extended up to 128 nodes per layer, resulting in models with 177,025,536 parame-
ters! Unlike fully connected NNs, CNNs and GNNs do not suffer from a parameter dependency
on input size. Transforming the 616 data into a semantically meaningful format compatible with
these architectures remains an area for future work.
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4.4 Loss Function
The primary loss function is the weighted mean BCE loss, accounting for class imbalance:

LBCE = − 1

N

N∑
n=1

wn [yn log xn + (1− yn) log(1− xn)] (4.3)

where yn is the target, xn is the predicted probability, N is the number of samples, and wn is the
weight set to 3.0. Additionally, we define two regularisation terms:

1. L2 prior regularisation term inspired by the work of Zhu et al., which represents belief a
priori regarding the underlying system dynamics. In this case the priors were 0.0 for both {α, δ},
0.5 for {γ1

w, γ
2
w}, and -0.5 for γb. Formally:

L2 =
∑
i

(
(λi − λprior[i])

2

2

)
(4.4)

2. A regularisation term that emphasises the persistence of 1s or 0s in the adjacency matrix
over time, maintaining correlations from time t to t+ 1:

L3 =
1

N2T

T−1∑
t=1

XOR(Yt, Yt+1) (4.5)

where XOR is the logical XOR operation. The total loss is a weighted sum of the BCE loss and
the regularisation terms:

Ltotal = LBCE + γL2 + βL3 (4.6)

where γ and β are coefficients for the regularisation terms. In our implementation, we set γ = 1.0
and β = 1.5, determined by hyperparameter sweep. This loss function ensures that the neural
parameter calibration not only fits the observed data but also maintains temporal consistency and
updates prior beliefs.

4.5 Training Procedure
The training of our neural parameter calibration model is unique due to the nature of the data
available. We only have one realisation of a 10-year time-series {Yt}, which requires injection
of regularisation noise during training to assure convergence. Fortunately, the CLSNA model is
probabilistic, sampling from a Bernoulli distribution for each element Yt,ij , thereby inherently
propagating noise in the backpropagation gradient flow. In addition, we also have employed tradi-
tional ML regularisation techniques such as weight decay and node dropout.

Weight decay, also known as L2 regularisation, is a technique that penalises large node weights
by incorporating an additional term into the loss function that is proportional to the sum of the
squared weights. This helps prevent overfitting by discouraging the model from becoming too
complex and sensitive to the training data [50]. Node dropout is another regularisation technique
where, during training, a random subset of nodes are ignored or shut off. This forces the network
to learn redundant representations, which improves generalisation by preventing the model from
relying too heavily on any particular node [51].

Lastly, for the training of the CNN and GNN in the 207 model, we have applied gradient clipping
to control and smoothen our model’s traversal of the parameter space. This was similarly done by
Pan et al. in their SGD calibration approach [5] where the gradient descent update rule is:

θ(k+1) = θ(k) − Cρ sign

(
∂ log πSGD(θ

(k), Z
(k)
1:T | Y1:T )

∂θ

)
(4.7)

where ρ is the learning rate and C clipping constant is set to 0.25. This adjustment is employed
because the magnitude and variance of the related gradient terms are much larger than the mag-
nitude and variance of the gradients of the latent positions.
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Formally, Algorithm 1 outlines the key steps of the training procedure. After execution of the
training loop, the ML model (NN, CNN, or GNN) fθ will have updated parameter weights and
bias state. In practice, we additionally store and return the loss values calculated at each epoch
to perform density estimation as outlined in Section 2.3.1.

Algorithm 1 Training Loop
Input: Network time-series Y1:T . Initial value θ0 of ML model, fθ. M: Number of epochs.

λprior: Prior values for L2 λ-regularisation. ρ: Learning Rate.
Output: Parameter estimates λ̂ := (α̂, δ̂, γ̂1

w, γ̂
2
w, γ̂b).

1: for k ← 0 to M do
2: λ̂k ← fθ(Y1:T )

3: ( ˆY1:T , ˆP1:T )← simulate_clsna(λ̂k) ▷ Or simulate_clsna_dynamic for 616 model
4: Calculate Ltotal ← L1 + γ × L2 + β × L3 ▷ Ltotal function of ( ˆY1:T , ˆP1:T )
5: Calculate gradient ∇θLtotal

6: Take an optimiser step:

θ(k+1) = θ(k) − ρ

(
∂ log πSGD(θ(k),Z

(k)
1:T |Y1:T )

∂θ

) ▷ Apply gradient clipping [Eqn. 4.7] for
CNN/GNN fθ

7: end for
8: Predict Final λ estimate: λ̂M ← fθ(Y1:T )

9: return λ̂M

Training the models with the simulate_clsna numerical solver proved to be extremely sensi-
tive to weight initialisation (θ0). As outlined in the basic NN model architecture (Section 4.3.1),
the auxiliary NN that was trained to map random white-noise model inputs to initial param-
eter priors had to be configured to mean µλ0

= (0.0, 0.0, 0.0, 0.0, 0.0) and standard deviation
σλ0

= (0.5, 0.5, 0.5, 0.5, 0.5) to avoid degenerate training behaviour. If the standard deviation was
increased to 1.0, divergent behaviour was observed in 8

30 training instances and for values greater
than 2.0, we saw divergence frequency greater than 0.5.

The reason for this can be traced back to a key observation made by Zhu et al. who in their CLSNA
simulations saw that setting γ1

w, γ
2
w too large often did lead to divergent behaviour, indicating ‘an

interesting balancing relation between different parameters of the model’ [4]. The fact that our
neural calibration was so sensitive to initial prior variance is in contrast to the original MCMC
calibration model used by Zhu et al. where they report consistent calibration convergence with
priors of N (0, 100) for α, δ, N (0.5, 100) for γ1

w, γ
2
w, and N (−0.5, 100) for γb. Keeping the variances

high means they could keep the prior beliefs uninformative – a desirable property in objective
Bayesian statistics to enforce minimal influence on the posterior [52]. Determining the root cause
of this divergent behaviour and mitigation solutions is left for further research.

As shown in Figure 4.5, the loss curves for both the 207 and 616 models are akin to typical
ML loss curves. The parameter evolution plots indicate that the parameters tend to stabilise as
training progresses, and their trends are relatively consistent across different training instances.
More plots for all model architectures can be found in Appendix B.2.

4.5.1 Obtaining Density Estimates
Density estimations can be obtained by running multiple training instances in parallel, storing loss
and parameter values over epochs in each training run. Once complete, we compute the parameter
density marginals by solving the discrete integral given by Equation 2.16. The quality of these
density estimations inevitably improves with the number of trained models because of increased
parameter space coverage. Therefore, there is a clear engineering trade-off between computational
cost and estimation quality. In this report, all PDFs are computed from 30 training instances.
This number was practical and yielded valid results.

The marginal densities in Figure 4.6 are smoothed with a 1D Gaussian kernel. We note that the
modes correspond to the unique value of the parameter that minimises the loss when integrating
out the other parameters. The mean is interpreted as the parameter value that, when considered
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(a) Training Loss Curve for 207 Model (b) Parameter Evolution in 207 training instance

(c) Training Loss Curve for 616 Model (d) Parameter Evolution in 616 training instance

Figure 4.5: Single Training Instances of NN for both the 207 dataset (a,b) and 616 dataset (c,
d). Darker lines correspond to moving averages.

(a) γ1
w Estimate (b) γ2

w Estimate (c) γb Estimate

(d) α Estimate (e) δ Estimate

Figure 4.6: Parameter PDF estimates for 207 GNN model over 30 training instances. See
Appendix B.3 for all model PDF estimates.

in conjunction with the other parameter means, yields a lower loss in expectation. Different pa-
rameter interactions will be investigated in Section 4.7.

Additionally, we observe a peculiar difference in distribution shape between the three parame-
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ters {γ1
w, γ2

w, γb} and {α, δ}. The variance of the latter two parameters is much higher than that
of the first three. This will be investigated further in the sensitivity analysis conducted in Section
4.8. A higher variance can indicate that those parameters are not as influential in contributing to
the loss value calculation. This difference in shape is consistent in both the 207 and 616 solutions
and among all the model architectures implemented.

4.5.2 Bayesian Optimisation (HEBO)
In this section, we outline the hyperparameter sweep conducted using the Heteroscedastic Evolu-
tionary Bayesian optimisation (HEBO) algorithm for Bayesian optimisation [53]. Detailed informa-
tion about the HEBO algorithm can be found in Appendix C. We choose Bayesian optimisatio over
grid search for hyperparameter tuning due to its efficiency in exploring the parameter space. Unlike
grid search, which exhaustively evaluates all possible combinations of hyperparameters, Bayesian
optimisation constructs a probabilistic model (in HEBO, a Gaussian process) of the objective
function and uses it to select the most promising hyperparameters to evaluate. This approach is
beneficial as training each model (particularly for the 616 dataset) involves expensive function
evaluations, and Bayesian optimisation requires fewer iterations to find optimal or near-optimal
hyperparameters.

A significant benefit of using HEBO is its capability for multi-objective optimisation, where the
objective functions need not be differentiable. This is advantageous for our models as we optimise
based on multiple criteria: BCE loss and F1 score to emphasise recall, and topology regularisation.
The topology regularisation considers the absolute difference between the clustering coefficient and
the number of edges in the ground truth versus the predicted adjacency matrices. Concretely, the
composite loss function used in the HEBO optimisation is given by:

Lcomposite = LBCE × (1− F1) + ω × LTOP (4.8)

where LBCE is the weighted BCE loss as in 4.3. The topology regularisation term is:

LTOP = |Cavg( ˆY1:T )− Cavg(YGT)|+
|E( ˆY1:T )− E(YGT)|

E(YGT)
(4.9)

where Cavg denotes the average clustering coefficient and E denotes the number of edges, both
computed for the predicted adjacency matrix Y1:T and the ground truth YGT.

Hyperparameter Type Range
num_layers Integer [3,5]
hidden_size Integer [16,128]

LR Float [1e-5,1e-3]
dropout_rate Float [0.0,0.5]

activation Categorical [Relu, Tanh, Sigmoid]
optimiser Categorical [SGD, Adam, RMSprop]

bce_weight Float [2.0,4.5]
weight_decay Float [1e-4,1e-1]

gamma Float [0.0,2.0]
beta Float [0.5,2.5]

Table 4.1: Parameter space configuration for HEBO search.

Due to the high computational cost, we only performed Bayesian optimisation for the basic NN
models of both datasets. The hyperparameters for the CNN and GNN models were inferred based
on the results from the 207 NN model. We executed the hyperparameter sweep on a Google Colab
Tesla T4 GPU and took 4.23 hours for the 207 case, while the 616 NN HEBO took around
23.055 hours.
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(a) HEBO Evaluations 207 (b) HEBO Evaluations 616

Figure 4.7: HEBO Evaluation Single-objective Pareto-Front for both 207 and 616 Datasets

4.6 Results

4.6.1 Parameter Estimates
Table 4.2 presents the parameter calibration point and variance estimates for various models ap-
plied to the 207 dataset. Specifically, the table includes results for the SGD and MCMC models
from [4, 5] and the neural calibration NN, CNN, and GNN models. We obtain a few insights from
the table which are elaborated on in Section 4.7.

The neural calibration methods (NN, CNN, GNN) exhibit higher variance than MCMC. While
the SDs for the inter- (γ1

w) and intra-party (γ2
w) variables are similar between SGD and neural

calibration, they are significantly larger for α and δ compared to SGD. This increased variability
can be attributed to the indirect update mechanism in neural calibration, where model parameters
θ of fθ are updated instead of the estimates λ̂. The flexibility of NNs to capture diverse behaviours
in data also contributes to this variability.

Model α̂ δ̂ γ̂1
w γ̂2

w γ̂b

SGD2[5] 2.241 1.464 0.075 0.406 -0.182
(0.158) (0.156) (0.174) (0.206) (0.127)

MCMC3[4] 2.809 1.500 0.493 0.105 -0.155
(0.022) (0.018) (0.026) (0.025) (0.014)

NN 2.011 -0.093 0.627 0.594 -0.172
(0.820) (0.791) (0.335) (0.231) (0.250)

CNN 1.672 0.013 0.612 0.705 -0.018
(0.742) (0.256) (0.137) (0.138) (0.131)

GNN 1.823 0.194 0.607 0.707 -0.075
(0.811) (0.392) (0.244) (0.187) (0.183)

Table 4.2: Parameter estimates and standard deviations (SD) for the 207 dataset.

The γb parameter for all three neural calibration models (NN, CNN, GNN) is negative, consistent
with the SGD and MCMC models. This reflects a polarisation trend observed between 2010-2020
among the Democratic and Republican parties. For neural calibration models, γ1

w and γ2
w are

much larger and similar in magnitude, unlike SGD and MCMC, which show different behaviours
between parties. This uniformity in neural models may indicate a more consistent capture of inter-
and intra-party dynamics. A significant difference is present with the δ parameter estimates. The
δ parameter, representing edge persistence, is calibrated to small or even negative values in neural
models compared to SGD and MCMC. Neural calibration appears to enforce defined behaviour in

2Trained for a total of 59K epochs (12K for point estimate calibrations 1 and 2, and 35K for variance estimation
350K MCMC Iterations, burn-in of 15K samples
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the latent space, reducing the need for edge persistence captured by δ. NNs may inherently capture
higher-order interactions and temporal dynamics, relying less on the persistence parameter.

Model α̂ δ̂ γ̂1
w γ̂2

w γ̂b

SGD4[5] 3.223 1.085 -0.113 0.328 -0.214
(0.104) (0.101) (0.115) (0.138) (0.091)

NN 2.113 2.421 0.647 0.569 -0.152
(0.743) (1.091) (0.252) (0.238) (0.254)

Table 4.3: Parameter estimates and standard deviations (SD) for the 616 dataset.

Table 4.3 presents the parameter calibration results for the 616 dataset. Notably, the δ̂ parameter
is much larger for the NN model than SGD, indicating a stronger emphasis on edge persistence.
Unlike the SGD model, which has a negative γ̂1

w value, the NN model exhibits positive inter-group
(γ̂1

w) and negative intra-group (γ̂2
w) parameters, aligning with a true flocking behaviour.

4.6.2 Execution Time
One of the major benefits of neural calibration was achieving orders of magnitude faster calibration,
which we observed in our results. During implementation, great care was taken to parallelise
operations by executing them on GPU, often offering 7-10x latency reductions. In Table 5.3, we
present the execution times for different models on the 207 dataset on both a Tesla T4 GPU
available on Google Colab and a 2 GHz Quad-Core Intel Core i5 CPU. From the results, it is
clear that neural calibration methods (NN, CNN, GNN) achieve 2-3 orders of magnitude latency
improvements compared to the original MCMC and a 1 order of magnitude reduction compared
to SGD. For instance, while the MCMC model takes approximately 240 minutes on the CPU, the
NN model completes the task in 7.95 minutes on the CPU for the 207 dataset; similarly, the CNN
model achieves an average execution time of 0.896 minutes on the GPU compared to SGD’s ≈
10-minute latency.

Dataset Model GPU CPU

207

SGD <10 42.92
(1.208)

MCMC N/A ≈ 240

NN 1.173 7.95
(0.109) (0.233)

CNN 0.896 2.72
(0.093) (0.106)

GNN 1.205 2.63
(0.098) (0.160)

616
SGD <20 78.89

(1.452)

NN 3.665 42.79
(0.138) (0.528)

Table 4.4: Execution times reported in minutes. Standard deviations (SD), when available, are
listed in parentheses. Blue highlights the best GPU training time in each dataset, respectively.

4.6.3 Evaluation Metrics
Table 4.5 presents the performance metrics and standard deviations (SD) for various models on
the 207 dataset. The ∆ metrics are the differences from ground truth values over the last five
timesteps. For instance, ∆ clustering coefficient represents the difference in average clustering
coefficient between the ground truth and predicted values for the last five timesteps.

4Trained for a total of 16K epochs (3K for point estimate calibrations 1 and 2, and 10K for variance estimation
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Metric MCMC SGD NN CNN GNN

Weighted BCEℓ
1.441 1.017 0.719 0.634 0.647

(0.058) (0.043) (0.043) (0.020) (0.026)

Precisionh
0.190 0.271 0.252 0.261 0.265

(0.006) (0.015) (0.014) (0.006) (0.008)

Recallh
0.209 0.256 0.272 0.357 0.359

(0.013) (0.028) (0.029) (0.015) (0.019)

F1h
0.199 0.263 0.261 0.301 0.304

(0.007) (0.021) (0.010) (0.006) (0.007)

AUCh
0.433 0.509 0.576 0.610 0.613

(0.010) (0.018) (0.023) (0.009) (0.013)

∆ Clustering Coeff ℓ
0.117 0.195 0.253 0.203 0.199
(0.013) (0.017) (0.018) (0.012) (0.021)

∆ Degree Centralityℓ
0.235 0.247 0.125 0.107 0.097

(0.026) (0.036) (0.065) (0.034) (0.047)

∆ Closeness Centralityℓ
0.045 0.037 0.134 0.188 0.183
(0.009) (0.009) (0.022) (0.010) (0.016)

Table 4.5: Performance metrics and standard deviations (SD) for the 207 dataset. Values were
calculated from 100 independent simulations. Superscripts h and ℓ indicate whether higher or
lower values are better for the metric. The best and second-best performances are in bold and

italics, respectively.

Since the model is sampling-based and co-evolves with the latent space, traditional binary classi-
fication metrics like precision, recall, F1, and AUC are uncharacteristically low (reaching a max
AUC of 0.613, which is marginally better than guessing). These numbers should be used relatively
and not as absolute quality benchmarks. Our end goal is to understand behaviour from data and
not necessarily infer node connections. Therefore, the metrics we are more interested in are the last
three, which measure the topological structure of the matrices and general relationships between
nodes.

Metric SGD NN

Weighted BCEℓ
1.354 0.750

(0.029) (0.014)

Precisionh
0.327 0.367

(0.007) (0.004)

Recallh
0.242 0.507

(0.010) (0.016)

F1h
0.278 0.426

(0.008) (0.006)

AUCh
0.556 0.667

(0.007) (0.007)

∆ Clustering Coeff.ℓ
0.315 0.033

(0.009) (0.014)

∆ Degree Centralityℓ
0.295 0.257

(0.037) (0.036)

∆ Closeness Centralityℓ
0.016 0.120
(0.008) (0.010)

Table 4.6: Performance metrics and standard deviations (SD) for the 616 dataset. Values
computed from 100 independent simulations. Superscripts h and ℓ indicate whether higher or

lower values are better for the metric. The better metric values are in bold.

Neural calibration models perform significantly better on BCE and traditional classification metrics
due to the training loss function. For instance, CNN and GNN models exhibit superior perfor-
mance on these metrics, indicating their effectiveness in capturing the underlying data distribution.
Regarding the last three metrics, which measure topological structure, the performance of MCMC,
SGD, NN, CNN, and GNN is comparable. For example, the clustering coefficient is marginally
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better for SGD (0.195) than GNN (0.199). Under the null hypothesis that these means are equal,
the t-statistic p-value is 0.140, thus we don’t have sufficient evidence to reject at even the 10%-level.
We observe statistically significant improvement in ∆ closeness centrality between MCMC/SGD
and neural calibration models.

Table 4.6 presents the same performance metrics for the 616 dataset. The NN neural calibra-
tion model shows superior performance across almost all metrics compared to the SGD model,
except ∆ closeness centrality. Importantly, the NN model significantly outperforms SGD in ∆
clustering coefficient, in contrast to the smaller dataset case. This improvement is statistically
significant with a t-statistic p-value < 0.001. Highlighting that in the 616 calibration, the NN
model predicted a δ point estimate of 2.421, this may indicate a relationship between mirroring
ground truth topological structure and having high edge-persistence. This was not learned in the
lower-capacity 207 neural architectures.

4.6.4 Latent Space Behaviour

Figure 4.8: Latent space evolution at time steps T = {1, 5, 10} for MCMC (Row 1), SGD (Row
2), and NN (Row 3) for 207 dataset. See Appendix B.4 for additional latent space plots.

Figure 4.8 shows the latent space evolution at 3 discrete time steps T = {1, 5, 10} for MCMC,
SGD, and NN on the 207 dataset. In the neural calibration implementation discussed in Section
4.4, there is no explicit regularisation of the latent space; instead, it is given free rein to evolve. In
contrast, the SGD and MCMC models have regularisation terms in their loss functions to guide the
latent space evolution. For example, in the SGD approach, the loss function penalises the distance
of node latent positions from the mean position of their party members over all time steps t > 1 ∈ T .
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Examining the results, we observe that in the MCMC and SGD models, there is clear consen-
sus formation within a single party, while the other party retains a persistent noisy latent space
representation. In contrast, the NN method exhibits clear consensus formation within both parties,
with a distinct two-group clustering by time step 10.

4.7 Discussion
Neural calibration proved to be a significantly faster calibration method, capable of producing
parameter estimates with promising evaluation metric results. It is important to note that the
evaluation metrics were not used for training (except for weighted BCE in {NN, CNN, and GNN})
and provide a fair basis for model comparison.

For the 207 dataset, the neural calibration methods, including the GNN, were not as effective
in capturing topological structure as the MCMC model, although they were similar to the SGD
model. There are several explanations for this. First, the architectures may have limited capacity
due to lower parameter counts than the 616 NN counterpart. Second, the dataset itself is limited
in size, providing fewer data points for the models to learn from. Lastly, the objective function
we used was engineered, not theoretically derived. Although we incorporated L2 and persistence
regularisation, that weighted BCE loss may have had a disproportionately large influence. It is
clear that the neural calibration models are learning what we teach them, and thus tweaking the
loss has a high potential to yield the topological behaviour we expect.

The principal reasons topological measures were not directly incorporated into the loss function
are non-differentiability and high computational cost that would slow down training substan-
tially. For example, the state-of-the-art average clustering coefficient algorithm has complexity
O(N × d2max) ⊆ O(N3) where dmax is the vertex of the graph with the longest adjacency list [54].
For the 207 dataset, calculating the clustering coefficient takes around 2 seconds for the five last
timestamp matrices and shoots up to 35 seconds for the 616 graphs. This adds too much overhead
to justify incorporation into the loss function.

In the 616 dataset, the results were promising. The NN model outperformed the SGD model
in all metrics and demonstrated significantly better performance on the ∆ clustering coefficient
metric, all the while calibrating approximately six times faster than the SGD counterpart. Given
the observed trend of improvement from NN to GNN in the 207 dataset, developing a sophisticated
ML model that incorporates the adjacency matrix to variable-node tensors could yield even better
outcomes.

4.7.1 Model Output Evaluation

Dataset Model Average Sparsity (%) Sparsity Last 5 (%)

207
GT Truth 78.82 67.15

SGD 83.38 83.87
GNN 73.32 67.22

616
GT 76.56 66.65
SGD 80.02 81.46
NN 62.84 53.97

Table 4.7: Sparsity statistics of predicted adjacency matrices for different models and both datasets.

Figure 4.9 shows the final adjacency matrices at time step t = 10 for both datasets. The ground
truth matrices display distinct horizontal and vertical patterns, indicating structured relationships
between nodes. These patterns are crucial to replicate for accurate modelling. Table 4.7 sum-
marises the sparsity information for the 207 and 616 datasets.

For the 207 dataset, the GNN model output appears noisy with only faint horizontal and ver-
tical striations upon close inspection. In contrast, the SGD matrix, although more sparse, shows
patterns similar to the ground truth. However, the SGD matrix is excessively zeroed out with an
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Figure 4.9: 207 (Row 1) and 616 (Row 2) Adjacency Matrix heat-maps for Ground Truth, SGD,
and GNN/NN at timestep t = 10 .

average sparsity of 83.38% over all time steps and 83.87% over the last five time steps, compared
to the ground truth’s 78.82% and 67.15%, respectively. The GNN model, with 73.32% average
sparsity over all time steps and 67.22% over the last 5, aligns more closely with the observed data.

In the 616 dataset, the NN matrix exhibits clear horizontal and vertical lines similar to the ground
truth, reflected in the metrics in Table 4.6. However, the sparsity behaviour is less ideal. The
ground truth shows an average sparsity of 76.56% over all time steps, dropping to 66.65% for the
final five matrices. The SGD model has an overall average sparsity of 80.02%, increasing to 81.46%
over the last 5, while the NN model predicts far too many connections between nodes in the final
time steps.

4.8 CLSNA Sensitivity Analysis
The objective of this section is to identify the parameters of CLSNA that contribute significantly
to simulation metrics performance and relate these insights to what was observed in Section 4.6
(Results). To do so, three methods of SA are employed: Morris method, Sobol’s Indices method,
and MOO NSGA-II (see Section 3.4 for details). It is important to note that SA is model-agnostic
as it only examines CLSNA simulations for a given parameter configuration input, and thus serves
as a macro-analysis tool we can use to comment on all the models discussed thus far.

In regards to implementation, we utilised the SALib library [55, 56] and the cuDF RAPIDS Python
GPU library [57]. RAPIDS enabled the parallelisation of NetworkX topological metric calculations
(i.e. closeness centrality), substantially reducing computation time. For instance, the variance-
based method executed in roughly 6 hours for the 616 dataset, compared to over 30 hours using
an i5 CPU.
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4.8.1 Objective Function
The key steps of performing an SA are (1) formulating an objective function that evaluates the
model for each input and (2) defining a parameter search space. As with HEBO hyperparameter
sweeps (4.5.2), the objective does not need to be differentiable. The function we used for the SA
is defined as follows:

Ocomposite = OBCE + κ×Ocentrality + β ×Orow_sum (4.10)

where OBCE is the weighted BCE loss, Ocenrality the difference in average between centrality
between predicted output and ground-truth, and Orowsum formally defined as:

Orow_sum =

∣∣∣∣∣15
T∑

t=T−4

(
1T Ŷt − 1TYGT,t

)∣∣∣∣∣ (4.11)

where 1 is a column vector of ones, Ŷt is the predicted adjacency matrix at time t, and YGT,t is
the ground truth adjacency matrix at time t. This was included to capture topological patterns
in ground truth (GT) data. The coefficients κ = 5 and β = 0.03 were determined by preliminary
experiments to ensure equal contribution of each component of 4.10 to Ocomposite.

The parameter range for each parameter, λi, was defined as λR
i = (µ̂λi

− 5σ̂λi
, µ̂λi

+ 5σ̂λi
) where

(µ̂λi
, σ̂λi

) were parameter and variance estimates from the 207 NN model (see Table 4.2), but this
choice was arbitrary. Any reasonable range of parameters suffices.

4.8.2 Results: 207
Morris and Sobol Method

Figure 4.10 shows the results of the sensitivity analysis for the 207 dataset using the Morris and
Sobol methods. The graph on the left is a classical Morris method plot, which indicates the mean
of the absolute elementary effects (µ∗) on the x-axis and the standard deviation (σ) on the y-axis.
The plot clearly highlights γb and γ2

w as the most influential parameters, given their high µ∗ and
σ values.

The graph on the right presents the Sobol indices, with the first-order effects shown in blue and
the total effects (including interactions) shown in red. The Sobol analysis confirms the findings
from the Morris method, showing that γb and γ2

w are the most influential parameters in terms of
first-order effects. Interestingly, the Sobol indices also reveal that α has a significant impact when
considering higher-order interactions, suggesting its influence is nuanced.

(a) Mean of Absolute EEs (b) Sobol Indices

Figure 4.10: Morris and Sobol Sensitivity Analysis for 207 dataset

The key insight the figures in 4.10 provide is when they are analysed in conjunction with the PDF
parameter estimates the neural calibration method gives us. Figure 4.11 plots the PDFs of γ2

w and
γb for the basic 207 NN model. The shape of these distributions is unimodal, slightly skewed, and
tight around the mode (i.e. low SD).
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(a) γ2
w Estimate (b) γb Estimate

‘

Figure 4.11: Parameter PDF estimates for γ2
w and γb in 207 NN model.

When contrasted with the PDFs of Figure 4.12 for the remaining three parameters, they have larger
variances and do not necessarily exhibit unimodality. In essence, the SA and neural calibration
PDFs convey similar information by providing a relationship between low-density variance and
high Morris/first-order Sobol significance.

The logical conclusion would be to consider neural calibration as a general framework for sen-
sitivity analysis (SA); in reality, neural calibration follows many of the steps of a traditional SA
in that it evaluates a loss function at (ideally) multiple values of the underlying parameter space.
The rigorous justification of neural calibration as an SA tool is not explored further in this project
and is left for future work.

The PDF shapes we see for the 207 NN model are consistent across all the PDF neural cali-
brations produced for all the different models. The only exception is the PDF estimates of γ1

w in
the CNN model, where we obtain a strikingly similar density shape to γ2

w. Of course, observing
these 1D marginals individually does not allow us to verify the higher-order interaction significance
of α identified by the Sobol indices in Figure 4.10, so we consider an alternative approach.

(a) γ1
w Estimate (b) α Estimate (c) δ Estimate

Figure 4.12: Parameter PDF estimates for γ2
w and γb in the 207 NN model.

One way to quantify the higher-order interactions of α is to assess 2D parameter joint distributions,
plotted in Figure 4.13. These are obtained in a similar way to the 1D marginals. As a 2D analogue
of standard deviation, the weighted Standard Distance Deviation (SDD) quantifies the dispersion
of these joint distributions by calculating an unbiased SD estimator of the Euclidean distance from
each point to the probability-weighted mean centre [58]. Formally, for parameters X and Y:

SDDXY (J ) =

√∑
J (X,Y )id2imc

(
∑
J (X,Y )i − 2

(4.12)

where J is the joint distribution of (X,Y ) and dimc is the distance from the point to the weighted
mean centre. Both summations are over all points of J .
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(a) (δ, α) (b) (γ1
w, α) (c) (γ2

w, α) (d) (γb, α)

Figure 4.13: 2D Joint Density estimates for all combinations of α in the 207 NN model. See
Appendix B.5 for plots on the 207 dataset.

For the joint densities in Figure 4.13, the weighted SDDs for (α, δ) = 1.153, (α, γ1
w) = 0.814,

(α, γ2
w) = 0.806, and (α, γb) = 0.784. These values suggest that the interactions between α and the

three inter-/intra-party parameters are similarly co-significant. This indicates that both α and γ1
w

may be more important than the first-order Sobol indices suggest when considered jointly.

MOO and Pareto Front

The motivation for implementing MOO with NSGA-II is the observation that during the training
of the neural calibration models, there was constantly a trade-off between competing objectives
of minimising BCE and aligning the topological structure of simulation output and ground truth.
Constructing a Pareto front of non-dominated solutions was deemed a satisfactory solution to visu-
alise this trade-off and propose a family of model calibration solutions. In effect, this SA framework
also provides an alternative approach to the central task at hand: parameter estimation. For this
task, the objective function was modified slightly to separate the topological and BCE components
of the single-valued evaluation function 4.10. No other modification was made.

Figure 4.14 is a plot of the Pareto front, where the optimal solution is the point with the shortest
Euclidean distance to the origin. The total execution time for the NSGA-II MOO was approx-
imately 5 hours on a Tesla T4 GPU with optimised matrix operations. In other words, this is
quite a computationally intensive and unrealistic alternative to neural calibration. Nevertheless,
we compute similar evaluation metrics to compare with the results in Section 4.6.

Figure 4.14: MOO Pareto Front using NSGA-II on 207 dataset

Model α̂ δ̂ γ̂1
w γ̂2

w γ̂b
NSGA-II5 2.492 0.160 0.264 1.253 -0.057

Table 4.8: Parameter Configuration for Optimal Solution in Pareto Front for the 207 dataset.

5Evolutionary Algorithm ran for 100 iterations with 10 offspring per generation.
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Metric NSGA-II Best Value

Weighted BCEℓ
0.778 0.634

(0.019) (0.020)

Precisionh
0.271 0.271
(0.006) (0.015)

Recallh
0.485 0.359
(0.017) (0.019)

F1h
0.347 0.304
(0.005) (0.007)

AUCh
0.620 0.613
(0.008) (0.013)

∆ Clustering Coeff.ℓ
0.085 0.117
(0.013) (0.013)

∆ Degree Centralityℓ
0.178 0.097

(0.055) (0.047)

∆ Closeness Centralityℓ
0.197 0.037

(0.018) (0.009)

Table 4.9: Performance metrics and standard deviations (SD) for the NSGA-II model compared
to the best values from other models. Superscripts h and ℓ indicate whether higher or lower

values are better for the metric.

From the estimates in Table 4.8, we observe, yet again, polarisation behaviour given by positive
inter-group {γ1

w, γ
2
w} values and negative γb. Additionally, we note that as in the SGD model,

γ2
w > γ1

w suggests that both parties have exhibited distinct online behaviour from the data; this
contrasts with the estimates from neural calibration. Regarding the evaluation metrics, Table
4.9 demonstrates that the NSGA-II model is effective. A new best is achieved in 5

8 metrics and
importantly reduces the ∆ Clustering coefficient. Despite these results, the sheer computational
cost of running a MOO NSGA-II outweighs any potential benefit from improved performance.

4.8.3 Results: 616

(a) Mean of Absolute EEs (b) Sobol Indices

Figure 4.15: Morris and Sobol Sensitivity Analysis for 616 dataset

In (a) of Figure 4.15 we see that the same parameters {γ2
w, γb} are deemed significant; however, in

contrast to the 207 dataset, we also observe that alpha has high absolute EE variance. Figure (b)
tells a slightly different story, where γb has a much larger first and higher-order Sobol index value.
Curiously, γ2

w has a lower first-order Sobol index than γ1
w, albeit having the second largest upper

bound total effects index. Overall, the Morris and Sobol methods inform us that γb is significant
when modelling the 616 dataset.
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(a) (γb, α) (b) (γb, δ) (c) (γb, γ
1
w) (d) (γb, γ

2
w)

Figure 4.16: 2D Joint Density estimates for all combinations of γb in 616 NN model.

Due to the large total effects index of γb, we assess the 2D joint distributions of γb to understand
how this parameter interacts with other parameters in the dynamical system. Visually, we observe
that the joint distributions (γb, γ

1
w) and (γb, γ

2
w) exhibit a ’tight’ dispersion property. Concretely,

the weighted SDD for (γb, α) = 0.784, (γb, δ) = 1.010, (γb, γ1
w) = 0.342, and (γb, γ

2
w) = 0.342. From

this, we determine that the co-interactions of γb with the inter-group parameters induce a higher
variance of model output than with α and δ. Moreover, the SDD(γb, α) < SDD(γb, δ), reflecting
what we observe in (b) of Figure 4.15 where α has a non-negligible interaction index. For the 616
dataset, we do not conduct a MOO NSGA-II due to computational limitations.

4.9 Concluding Remarks
In this chapter, we have discussed the various components of a successful neural parameter cali-
bration for the CLSNA model. Additionally, we have presented results for many ML architectures
trained on the 207 and 616 datasets, concluding that the neural calibration methods are sig-
nificantly quicker to calibrate than their MCMC and SGD counterparts, all the while providing
comparable results when evaluated on various classification and topological metrics. The neural
calibration models performed especially well in the variable node (616) case.

We have made the critical observation that despite the number of learnable parameters grow-
ing by input_size2 in the NN case, this did not massively impact training time. The bottleneck
in the calibration scheme was predominately in the numerical solver code. With our CNN and
GNN implementations, we eliminate the parameter dependency on input size by leveraging the
weight-sharing property these architectures have.

In our SA, we have identified γ2
w and γb as significant parameters to output variance and highlight

a neat equivalence observed between Morris/Sobol significance and variance estimates we obtained
for parameter PDFs with neural calibration. Computing the Morris, Sobol, and MOO analysis
proved a computationally expensive task, so determining parameter significance with a confidence-
interval approach we get for free as a by-product of neural calibration could be considered an
expedient alternative.
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Chapter 5

Neural Calibration as a VAE

In this chapter, we present a reinterpretation of neural calibration as a variational auto-encoder
(VAE). Under this Bayesian framework, we consider neural calibration as a tool for updating prior
beliefs on system dynamics with observed data. By implementing it in this way, the machine learn-
ing model outputs both point and variance estimates, opposed to approximating it empirically with
loss values as previously done.

The rest of this section is structured as follows: We start with the motivation for reparameterising
neural calibration models, including a detailed discussion on activation function saturation. Next,
we provide the mathematical preliminaries on probabilistic models, directed graphical models,
and VAEs. Finally, we present a proof-of-concept by applying neural calibration to CLSNA and
compare the results with those obtained in Chapter 4.

5.1 Motivation
The initial motivation for reformulating the VAE came from challenges we faced training the neural
calibration models. These challenges are common to VAE tuning [59, 60]. Specifically, we observed
the following issues:

• Vanishing Gradient Problem: While training the neural calibration models, the gradients
often diminished, leading to slow convergence and, in some cases, failure to converge. This
issue was particularly notorious in the NN trained on the 616 dataset.

• High Sensitivity to Parameter Initialisation: The models exhibited significant sensitiv-
ity to the initialisation of parameters. When the prior values of the auxiliary neural network
had a variance greater than 2, model divergence was more frequent than convergence. This
high sensitivity ultimately made the training process unstable and difficult to reproduce.

• Low Learning Rate Requirement: Ensuring stable training required a very low learning
rate (1e-5 for CNN/GNN) to avoid pathological solutions. Consequently, this made conver-
gence slower as more epochs were necessary.

• Degenerate Solutions: Without introducing L2 regularisation with parameter priors, the
ML models often resorted to the degenerate solution of predicting predominately 0’s for
the adjacency matrices. This minimised the average BCE loss due to the sparsity of the
observed Y1:T . Incorporating prior beliefs avoided posterior collapse – the phenomenon where
uninformative or non-existent priors [61].

These challenges are typical of the complexities involved in VAE implementations. Additionally,
we made a key insight that by uncoiling the circular calibration method diagram in Figure 2.3,
we effectively encode the observed data into a high-dimensional parameter space, which is passed
into a non-convex numerical solver. By conceptualising this solver as a decoder with no learnable
parameters, we essentially construct a VAE.

43



5.2 Preliminaries
In what follows, we present the mathematical theory for VAEs inspired by Kingma and Wellings’s
seminal article "An Introduction to Variational Autoencoders" [62]. In parallel to the derivations,
we will repeatedly connect the material to the specific implementation of the CLSNA model.

5.2.1 Unsupervised Representation Learning
When performing parameter calibration and engaging in generative machine learning tasks, one is
interested in learning probabilistic models from data, a task known as unsupervised representation
learning.

Defining x to be a vector of observed variables, our goal is to learn its joint distribution by
obtaining ‘disentangled, semantically independent and causal factors of variation in data’ [63].
The core assumption is that the dataset x represents a sample from an underlying process whose
distribution, p∗(x), is unknown. Our goal is to approximate the latent process with a model pθ(x,
parametrised by the set θ, such that p∗(x) ≈ pθ(x). For CLSNA, x corresponds to the observed
time-series adjacency matrices Y1:T . As the distribution p∗(x) is unknown, approximating it be-
comes an engineering task that presents a trade-off: maximising the discriminative power of the
model pθ(x) to match the data and incorporation of prior beliefs on the distribution p∗.

5.2.2 Directed Latent Variable Models (DLVM)

Figure 5.1: Latent directed graphical model (DGM) of CLSNA model. The latent variables learnt
by VAE are depicted in the grey rectangles.

Directed Graphical Models (DGMs), also known as Bayesian networks, are probabilistic models
that use directed acyclic graphs (DAGs) to represent conditional dependencies between variables
[64]. Each node in a DGM represents a random variable, and each directed edge introduces a
directed dependency between the nodes. The joint probability distribution of the variables is fac-
torised according to the graph structure.

Specific to the VAE framework, we will work with directed latent variable probabilistic models
(DLVMs). Defining the set of latent variables to be z, our joint distribution model is of the form
pθ(x, z). Conceptually, DLVMs are ‘probabilistic models where all the variables are organised into
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a directed acyclic graph’ [62] whose distributions are parameterised by machine learning archi-
tectures (i.e. NNs). More concretely, for x := {x1, . . . , xT } and z := {z1, . . . , zM}, pθ(x, z) is
factorised as follows:

pθ(x, z) =
T∏

j=1

pθ(xj |Pa(xj))×
M∏
k=1

pθ(zj |Pa(zk))

where Pa(xj) and Pa(zk) are the sets of parent variables for variables xj and zk. With DLVMs,
these conditional distributions are given by:

ζ = MLModel(Pa(m))

pθ(m|Pa(m)) = pθ(m|ζ)

where m ∈ {x1, . . . , xT , z1, . . . , zM}. In the CLSNA case, z = λ = {α, δ, γ1
w, γ

2
w, γb} , i.e. the

parameters we aim to estimate. It is important to note that the opinion latent space is not con-
sidered part of the set z because we consider it as part of the simulate_clsna dynamics. Figure
5.1 is the CLSNA DGM, from which we can immediately see that all the latent variables in z are
parent nodes and hence have empty parent sets.

Remembering our goal of approximating the marginal distribution of x with pθ(x), we note:

pθ(x) =
∫

pθ(x, z)dz (5.1)

where we are integrating over the entire latent space. It is in the computation of the integral where
issues arise. Given a dataset D, performing maximum likelihood learning is typically intractable.
This is because the posterior pθ(z|x) requires computing pθ(x, z) for every single configuration of z
within the support of the priors on the latent space pθ(z), which are typically uncountable spaces
(i.e. z ∈ RM ).

5.2.3 VAE
Variational Autoencoders (VAEs) can be viewed as two coupled models: an encoder or recognition
model, denoted qϕ(z|x), and a decoder or generative model, pθ(x|z). The encoder and decoder are
independently parameterised and are jointly optimised using gradient-descent optimisation. Under
Bayes’ rule, these models are interpreted as inverses of one another, where we transform observed
data x to a simple and typically lower-dimensional latent space and back during reconstruction.

The purpose of introducing the coupled model framework is to make the integral of the DLVM
posterior in equation 5.1 tractable. The recognition model is introduced as qϕ(z|x) where ϕ de-
notes the set of learnable parameters. Like a DLVM, qϕ is parameterised using deep ML networks.
Moreover, when defining qϕ, we must decide on the form of the posterior distribution, which in
most use cases is a multivariate Gaussian. This is a rather strong constraint and will be addressed
in the evaluation of the CLSNA VAE.

For the CLSNA model, we use factorised Gaussian posteriors, and our recognition model is there-
fore qϕ(z|Y1:T) = N (z;µ,diag(σ2)) with:

(µ, logσ) = EncoderMLModelϕ(Y1:T) (5.2)

qϕ(z|Y1:T) =
∏
i

qϕ(zi|Y1:T) =
∏
i

N (zi;µi, σ
2
i ) (5.3)

where we explore three different models in our implementation (NN, CNN, GNN). The CLSNA
generative model, pΦ(Y1:T, z), is unique in that it has no learnable parameters (i.e., Φ = ∅) and
is just the numerical solver: simulate_clsna. This implies that VAE learning is restricted to
updating the encoder parameters.

A crucial aspect of VAEs is the prior distribution pθ(z) over the latent variables. In general
VAEs, this prior is often chosen to be a simple distribution such as a standard Gaussian, which
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acts as a regulariser and ensures tractability of the objective function. For the CLSNA model,
we use independent Gaussian priors with means [2.5, 1.0, 0.5, 0.5,−1.0] and standard deviations of
approximately 1/4, inspired by results of Chapter 4.

Figure 5.2 is a diagram of the CLSNA VAE with a fully connected NN encoder. The modular
VAE framework allows for swapping the NN architecture for any other ML model. The exact
details of the encoder and decoder architectures are specified in Sections 5.4 and 5.5.

Figure 5.2: CLSNA VAE with vanilla NN encoder and simulate_clsna decoder for the 207
dataset. When training on the 616 dataset, the only change is using simulate_clsna_dynamic

numerical solver.

5.2.4 VGAE
Similarly as the GNN neural calibration implementation of Section 4.3, we aim to leverage the
topology induced by the partisan adjacency matrix to guide the training of our VAE. Variational
Graph auto-encoders, or VGAEs, allow us to do so. Originally developed by Kipf and Welling,
VGAEs are ‘capable of learning interpretable latent representations for undirected graphs’ [65]
by parametrising the encoder model qϕ) with a GNN composed of deep GCN layers. For the
CLSNA implementation, this implies the recognition model remains of the form qϕ(z|Y1:T) =
N (z;µ, diag(σ2)) with:

(µ, logσ) = GNNϕ(Y1:T, Ã) (5.4)

qϕ(z|Y1:T) =
∏
i

qϕ(zi|Y1:T) =
∏
i

N (zi;µi, σ
2
i ) (5.5)

where Ã is a {0, 1}N×N unweighted adjacency matrix defined identically as in 4.1.

5.2.5 ELBO and VAE Optimisation
Standard variational inference theory provides an evidence lower-bound, or ELBO, as an approx-
imation to the log-likelihood of pθ(x). For any recognition model qϕ(z|x) satisfying qϕ(z|x) > 0
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whenever pθ(z|x) > 0:

log pθ(x) = Eqϕ(z|x) [log pθ(x)] (5.6)

= Eqϕ(z|x)

[
log

[
pθ(x, z)

pθ(z|x)

]]
(5.7)

= Eqϕ(z|x)

[
log

[
pθ(x, z)qϕ(z|x)
qϕ(z|x)pθ(z|x)

]]
(5.8)

= Eqϕ(z|x)

[
log

[
pθ(x, z)

qϕ(z|x)

]]
+ Eqϕ(z|x)

[
log

[
qϕ(z|x)
pθ(z|x)

]]
(5.9)

where the first term of (5.9) is the ELBO Lθ,ϕ(x) and the second is the non-negative KL-divergence
between qϕ(z|x) and the true posterior pθ(z|x), which is zero if and only if the distributions are
equal. An immediate consequence of (5.9) is that the KL-divergence determines how tight the
lower bound is, as it measures the gap between Lθ,ϕ(x) and log pθ(x) [46]. Another consequence
is that optimisation of Lθ,ϕ(x) concerning the parameter sets θ and ϕ will both maximise the
log-likelihood log pθ(x) and minimise the KL divergence between the recognition model and the
true posterior. The latter minimisation is of sole interest in the CLSNA case, as we are performing
parameter calibration where the distributions of the latent space will ultimately determine the
method’s evaluation. As previously mentioned, our decoder is not learnable, and we use the re-
construction loss of the ELBO as a proxy for KL minimisation.

To optimise (5.9), we will apply SGD and thus require calculation of ∇θ,ϕLθ,ϕ(x) = ∇ϕLϕ(x)
(as decoder not learnable). As Lθ,ϕ(x) is an expectation, the exact computation of the gradient is
intractable. Instead, we introduced an unbiased estimator based on the reparametrisation of z [63].

The reparameterisation trick allows us to express the sampling of latent variables z ∼ qϕ(z|x).
Specifically, we reparameterise z as:

z = g(ϵ, ϕ,x) = µ(x) + σ(x)⊙ ϵ, ϵ ∼ N (0, I) (5.10)

where g(ϵ, ϕ,x) is a differentiable and invertible function, µ(x) and σ(x) are the outputs of the
encoder network, and ϵ is an auxiliary variable sampled from a standard normal distribution.
This reparameterisation makes the latent variable z a differentiable function of x and ϵ, making
expectation and gradient operators commutative from which we can use a simple Monte Carlo
estimator:

∇ϕLϕ(x) = Eϵ∼N (0,I)

[
∇ϕ log

pθ(x, z(x, ϵ))

qϕ(z(x, ϵ)|x)

]
(5.11)

≈ ∇ϕ log
pθ(x, zϵ)

qϕ(zϵ|x)
(5.12)

where zϵ = g(ϵ, ϕ,x) for a noise sample ϵ ∼ N (0, I). The Monte Carlo estimates (5.12) are easily
obtained, and auto-differentiation libraries facilitate using backpropagation.

5.3 Implementation Overview
In this section, we outline the key steps for implementing VAEs for CLSNA. As the core principles
of neural calibration remain the same, we follow a similar procedure as in Chapter 4:

1. Define Encoder Architectures: We define the architectures of the calibration VAE mod-
els. In this report, we implement NN-VAE, CNN-VAE, and VGAE for the 207 dataset and
NN-VAE for the 616 dataset.

2. Define simulate_clsna Decoder: We will explore the interpretation of simulate_clsna as
a non-convex activation function, relating its high saturation property to weight initialisation
sensitivity.

3. Establish a training procedure: We present the loss function, analytic formulae for f
assuming Gaussian priors and posteriors, and adaptation of classical VAE training techniques.
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5.4 Encoder Architectures
The first step of neural calibration is defining the VAE architectures that take as input the ob-
served, ground-truth data Yt and output (µ, log(σ2)) ∈ (R5,R5) corresponding to the means and
log-variances of each parameter’s Gaussian posterior distribution. For all the encoders, the hyper-
parameters were drawn from the NN models of Chapter 4 and empirical training trials.

5.4.1 207 Dataset
Neural Network VAE (NN-VAE)

The NN-VAE encoder architecture is a fully connected NN, taking as input the vectorised upper-
triangular Y1:T with shape (234531,). The NN is (hyper-) parameterised as follows:

• Number of Layers: 5

• Nodes per Layer: 96

• Activation Functions: Tanh for hidden layers, linear for the last layer

• Learning Rate: 5× 10−4

• Optimiser: Adam with weight decay 0.011258

This model has 22,543,978 parameters and a storage requirement of 21.50MB.

CNN-VAE

The CNN-VAE encoder architecture incorporates spatial and temporal structure information of
the adjacency matrices by applying a series of 3x3 convolutions over input/hidden tensor maps.
The CNN takes as input the (11, 207, 207) observed Y1:T and is (hyper-) parametrised as follows:

• Input Channels: 11

• Number of Convolutional Layers: 5, and one fully-connected linear layer for output

• Kernel Shape: (3, 3)

• Stride: (2, 2)

• Padding: (1, 1)

• Hidden Dimension0: 32, which duplicates in each subsequent layer

• Activation Function: ReLU for hidden layers, linear for output

• Learning Rate: 1e-5

• Optimiser: Adam with weight decay 0.011258

This CNN model has 2,436,170 parameters and a storage requirement of 2.32MB, an 89.19%
reduction in both parameters and memory usage compared to NN-VAE.

VGAE

The graph neural network (GNN) encoder architecture is (hyper-) parametrised as follows:

• Input Channels: 11 × 207

• Hidden Dimension: 128

• Number of GCN Layers: 4

• Activation Function: ReLU for hidden layers, linear for output

• Learning Rate: 10−5

• Optimiser: Adam with weight decay 0.011258

The GNN model has 325,504 parameters and a storage requirement of 0.31MB (86.64% less
than CNN-VAE and negligible compared to NN-VAE).
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5.4.2 616 Dataset
NN-VAE

For the 616 models, the only viable implementation was a basic NN because, at each time index,
there is a variable number of nodes. The network takes as input the concatenation of Yt with a
shape of (1382495,). The NN encoder is (hyper-) parametrised as follows:

• Number of Layers: 5

• Nodes per Layer: 48

• Activation Functions: Tanh for hidden layers, linear for the last layer

• Learning Rate: 5× 10−4

• Optimiser: Adam with weight decay 0.011258

This model has 66,367,354 parameters and a memory usage of 63.293MB. When we compare all
VAE architectures with their corresponding standard neural calibration models we observe similar
parameter and storage requirements, as expected.

5.5 simulate_clsna and simulate_clsna_variable Decoder

Figure 5.3: simulate_clsna output histograms at time steps T = {1, 5, 10} showing high
activation saturation. Similar plots for simulate_clsna_dynamic in Appendix D.1.

As stated in Section 5.2.3, the decoder for CLSNA VAE has no learnable parameters and can be
viewed as a neural network with 0 hidden layers, and where the numerical solvers, simulate_clsna
for 207 and simulate_clsna_variable for 616, act as non-convex activation functions. When
viewed in this light, the properties of the numerical solvers become directly relevant to under-
standing the behaviour of the VAE during training. We will consider these functions as black-box
mappings f : Z → X , where Z and X are the latent variable and observed data spaces, respectively.

The property of interest is saturation, which will be quantified using the metric introduced in
Section 3.2. High saturation levels in a function hinder a network’s learning capability due to the
vanishing gradient problem. In such cases, only inputs within the function’s active range produce
gradients with sufficient magnitude to propagate through multi-layer deep networks.

In our evaluations, we observed significant saturation levels in both fixed and variable node
simulate_clsna. For simulate_clsna, the saturation values ranged from 0.506 to 0.933 with
a combined average of 0.851, while for simulate_clsna_dynamic, the values ranged from 0.507
to 0.906 with a combined average of 0.864. Figure 5.3 shows the output histograms over a range
of inputs at discrete timestamps; in particular, we can see low saturation only at timestamp 1.
These values are higher than those seen with the Sigmoid and TanH functions in Rakitianskia and
Engelbrecht’s study [32], where both standard activation functions had values of approximately
0.7. The high saturation we measured indicates a tendency for gradients to diminish, thereby
explaining the sensitivity we have observed to initial conditions and parameter initialisation in our
training process.
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5.6 Training Procedure
The training procedure for all models is standard and identical across each implementation. In
each epoch, we perform the following steps:

1. Feed forward through our ML architecture and decoder.

2. Calculate the loss function explicitly.

3. Backpropagate the loss to update the model parameters.

5.6.1 Analytic Form of Loss Function
An analytic form is available because we assumed factored Gaussian priors and posteriors. From
Equation 5.11, we see that the Monte Carlo unbiased estimate of the ELBO is given by:

L̃θ,ϕ(x) = log pθ(x, z)− log qϕ(z|x) (5.13)
= log pθ(x|z) + log pθ(z)− log qϕ(z|x) (5.14)

= log pθ(x|z) + log pθ(z)− (log pθ(ϵ)− log

∣∣∣∣∂z∂ϵ
∣∣∣∣) (5.15)

where in (5.14) we have used the law of conditional probability, and in (5.15) we have used the
log-determinant of the transformation from ϵ to z [46]. We immediately recognise that the first
term of (5.15) is the binary cross entropy reconstruction loss, and we can split the loss function
into three terms:

L = Lrecon + Lprior + Lpost (5.16)
Given that we assume Gaussian priors for our five parameter estimates,

log pθ(z) = log
∏
i

N (zi;µ
prior
i , σprior

i ) (5.17)

This is expanded to:

log pθ(z) =

5∑
i=1

log

[
1

√
2πσprior

i

exp

(
− (zi − µprior

i )2

2(σprior
i )2

)]
(5.18)

=

5∑
i=1

[
−1

2
log(2π)− log σprior

i − (zi − µprior
i )2

2(σprior
i )2

]
(5.19)

= −5

2
log(2π)−

5∑
i=1

log σprior
i −

5∑
i=1

(zi − µprior
i )2

2(σprior
i )2

(5.20)

Similarly, as we have assumed factorised Gaussian priors, calculation of log qϕ(z|x) follows similarly:

log qϕ(z|x) = log
∏
i

N (ϵi; 0, I) +
∑
i

log σi (5.21)

= −5

2
log(2π)−

5∑
i=1

ϵ2i
2

+

5∑
i=1

log σi (5.22)

Therefore, the analytic form of the loss function, combining the reconstruction loss and the KL
divergence, is derived as follows:

Lrecon = log pθ(x|z) (5.23)

Lprior = −
5

2
log(2π)−

5∑
i=1

log σprior
i −

5∑
i=1

(zi − µprior
i )2

2(σprior
i )2

(5.24)

Lpost = −
5

2
log(2π)−

5∑
i=1

ϵ2i
2

+

5∑
i=1

log σi (5.25)
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5.6.2 KL Annealing and Gradient Clipping

(a) Annealed KL Divergence Loss (b) Grouped KL and Reconstruction Losses

Figure 5.4: KL Annealing effects on training loss of NN-VAE on 616 datasets. See Appendix D.3
for similar plots on other architectures.

To ensure model convergence, we employed two standard techniques used in VAE training: KL
annealing and gradient clipping. KL annealing was introduced by Bowman et al. in the paper
"Generating Sentences from a Continuous Space" [66]. The primary purpose of KL annealing is to
(1) allow the reconstruction losses to be minimised initially and (2) then adapt the model to the
posteriors in the latter epochs. This is accomplished by gradually increasing the weight of the KL
divergence factor in the loss function over successive training epochs. By introducing a coefficient
of Lpost we deviate from the theoretical loss of Equation (5.16), but this has shown to be effective
in practice.

In Figure 5.4(a), we observe the controlled decrease of the KL divergence loss as the KL annealing
coefficient increases. This coefficient follows the formula:

KL_weight(epoch) =
1

1 + exp(−k(epoch− x0))
(5.26)

The hyperparameters k = 0.003 and x0 = 1250 were chosen to exhibit this behavior. On the right,
Figure 5.4(b) shows the grouped KL and reconstruction losses, which decrease steadily over the
training epochs. This demonstrates the effectiveness of KL annealing in balancing the different
components of the loss function. Additionally, as done in the training of the standard neural
calibration models, gradient clipping was employed to prevent the gradients from exploding, a
by-product of highly saturated activation functions like simulate_clsna.

Figure 5.5 shows the total, reconstruction, and KL losses over epochs for the VGAE trained on
the 207 datasets, where the dark-blue moving averages exhibit a decreasing trend over epochs.

5.7 Results

5.7.1 Parameter Estimates
Table 5.1 shows the parameter estimates and their standard deviations (SD) for NN-VAE, CNN-
VAE, and VGAE models trained on the 207 dataset. We include SGD and MCMC for comparison.
We observe the consistent negative value for γb across all models, indicating a tendency towards
network polarisation. Compared to SGD, the magnitude of γ1

w is significantly larger in the VAE
models, suggesting stronger within-group interactions. However, the relationship γ1

w < γ2
w is

maintained, reflecting that the influence within groups (indexed by γ1
w) is less than that across

different groups (γ2
w). Another key observation is that the SDs are much larger than MCMC for

all VAE models, and comparable to SGD for the inter-/intra- coefficients. We do see lower SDs for
γ1
w, γ2

w, γb than α, δ inline with the SA relationship we identified between low SDs and parameter
significance. Table 5.2 shows similar patterns for NN-VAE trained on 616 datasets.
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Figure 5.5: Total, Reconstruction, and KL Loss Curves for VGAE trained on 207 datasets. See
Appendix D.2 for a full set of loss curves across architectures.

Model α̂ δ̂ γ̂1
w γ̂2

w γ̂b

SGD[5] 2.241 1.464 0.075 0.406 -0.182
(0.158) (0.156) (0.174) (0.206) (0.127)

MCMC[4] 2.809 1.500 0.493 0.105 -0.155
(0.022) (0.018) (0.026) (0.025) (0.014)

NN-VAE 2.287 0.857 0.476 0.613 -0.211
(0.378) (0.400) (0.360) (0.299) (0.268)

CNN-VAE 2.223 0.834 0.478 0.631 -0.199
(0.348) (0.369) (0.314) (0.266) (0.224)

VGAE 1.789 0.983 0.604 0.688 -0.163
(0.379) (0.392) (0.360) (0.305) (0.331)

Table 5.1: Parameter estimates and standard deviations (SD) for NN-VAE, CNN-VAE, and
VGAE models trained on the 207 dataset. MCMC and SGD are included for comparison.

Model α̂ δ̂ γ̂1
w γ̂2

w γ̂b

SGD[5] 3.223 1.085 -0.113 0.328 -0.214
(0.104) (0.101) (0.115) (0.138) (0.091)

NN-VAE 1.789 0.983 0.604 0.688 -0.163
(0.380) (0.387) (0.389) (0.363) (0.345)

Table 5.2: Parameter estimates and standard deviations (SD) for NN-VAE trained on the 616
dataset. SGD is included for comparison.
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Dataset Model GPU CPU

207

SGD <10 42.92
(1.208)

MCMC N/A ≈ 240

NN-VAE 1.759 6.067
(0.033) (0.301)

CNN-VAE 1.991 3.74
(0.024) (0.107)

VGAE 2.095 3.298
(0.031) (0.156)

616
SGD <20 78.89

(1.452)

NN-VAE 3.460 11.82
(0.194) (0.421)

Table 5.3: Execution times reported in minutes. Standard deviations (SD), when available, are
listed in parentheses. Blue highlights the best GPU (Tesla T4) training time in each dataset,

respectively.

5.7.2 Execution Time
Table 5.3 presents the execution times for training the VAE models on the 207 and 616 datasets,
reporting GPU and CPU times in minutes. As expected, we see significant improvements from
baseline SGD and MCMC. Comparing the VAE models (NN-VAE, CNN-VAE, VGAE) to standard
neural calibration models (NN, CNN, GNN), we note the following key insights:

• The analysis shows that neural calibration models generally perform better. For example,
the standard CNN model is approximately 55.00% faster than the CNN-VAE model on GPU
(0.896 minutes vs. 1.991 minutes).

• A counterintuitive result is observed with NN-VAE on the 616 dataset, where the NN-VAE
GPU training time is around 5.5% faster than the standard NN model (3.46 minutes vs.
3.67 minutes). This could be because with larger node systems, gradient calculation becomes
more of a bottleneck than simulate_clsna, explaining this behaviour.

The last bullet point highlights a major pro of neural calibration: scalability. Although the number
of parameters in NN-VAE grows proportionally to input_size2, the architecture is still capable of
learning quickly.

5.7.3 Evaluation Metrics
Table 5.4 presents the performance metrics and standard deviations (SD) for various models on
the 207 dataset.

We note that VAE implementations exhibit better performance on traditional classification metrics
(Precision, Recall, F1, and AUC) compared to standard neural calibration. For instance, on the
207 dataset, the CNN-VAE and VGAE models achieve superior precision and recall values. The
AUC for VGAE (0.614) is marginally higher than other models, indicating better discriminative
power.

There is significantly improved performance in terms of the (∆ Clustering Coefficient for the VAEs.
The VAE values lie between those of MCMC and SGD, demonstrating the VAE models’ ability
to capture the topological structure of the graph more effectively. This is crucial for our use case
where understanding behavioural trends is the main focus. Figure 5.6 illustrates this improvement,
where the horizontal and vertical patterns present in the ground truth are more evident in the VAE
reconstructions.

For the 616 dataset, the NN-VAE model is promising, outperforming SGD in all metrics except for
∆ closeness centrality. The improvement in ∆ clustering coefficient is notable, with the NN-VAE
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Metric MCMC SGD NNVAE CNNVAE VGAE

Weighted BCEℓ
1.441 1.017 0.795 0.772 0.722

(0.058) (0.043) (0.040) (0.039) (0.033)

Precisionh
0.190 0.271 0.279 0.283 0.279

(0.006) (0.015) (0.019) (0.017) (0.015)

Recallh
0.209 0.256 0.358 0.360 0.347

(0.013) (0.028) (0.036) (0.034) (0.029)

F1h
0.199 0.263 0.313 0.316 0.309

(0.007) (0.021) (0.023) (0.020) (0.018)

AUCh
0.433 0.509 0.604 0.611 0.614

(0.010) (0.018) (0.025) (0.021) (0.018)

∆ Clustering Coeff ℓ
0.117 0.195 0.146 0.145 0.178
(0.013) (0.017) (0.022) (0.019) (0.020)

∆ Degree Centralityℓ
0.235 0.247 0.074 0.063 0.078

(0.026) (0.036) (0.056) (0.035) (0.040)

∆ Closeness Centralityℓ
0.045 0.037 0.131 0.140 0.156
(0.009) (0.009) (0.031) (0.026) (0.025)

Table 5.4: Performance metrics and standard deviations (SD) for the 207 dataset. MCMC and
SGD are included for comparison. Values computed from 100 independent simulations.

Superscripts h and ℓ indicate whether higher or lower values are better for the metric. The best
and second-best performances are in bold and italics, respectively.

Figure 5.6: 207 Adjacency Matrix heat-maps for Ground Truth, SGD, and NN-VAE at timestep
t = 10.

showing a significant reduction from SGD.

Comparing the performance of the VAE models with the standard neural calibration models on
both datasets, we generally observe decreased classification metric performance but improved
topological metrics performance, highly influenced by our priors. This observation motivates the
potential use of both methods in conjunction - first applying standard neural calibration with
non-informative priors and subsequently using VAEs to update the posteriors of the parameter
distributions. Although this would explicitly constrain the parameter PDFs to factorised Gaus-
sians, we may obtain better results. The latency of a combined approach is not a concern as it
would still be substantially lower than SGD.

5.8 Discussion
The performance of the NN-VAEs is at the very least competitive with standard neural calibra-
tion, if not better, particularly in capturing the topological structure of adjacency matrices. This
discussion focuses on the benefits and drawbacks of the VAE neural calibration interpretation.
VAEs have successfully served to update prior beliefs to posteriors. In Figure 5.7, we present the
evolution of parameter posteriors over training epochs. In the early epochs, such as epoch 150 (blue
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Metric SGD NNVAE

Weighted BCEℓ
1.354 0.760

(0.029) (0.020)

Precisionh
0.327 0.337

(0.007) (0.005)

Recallh
0.242 0.339

(0.010) (0.014)

F1h
0.278 0.338

(0.008) (0.007)

AUCh
0.556 0.607

(0.007) (0.006)

∆ Clustering Coeff.ℓ
0.315 0.158

(0.009) (0.018)

∆ Degree Centralityℓ
0.295 0.045

(0.037) (0.048)

∆ Closeness Centralityℓ
0.016 0.072
(0.008) (0.009)

Table 5.5: Performance metrics and standard deviations (SD) for the 616 dataset. SGD is
included for comparison. Values computed from 100 independent simulations. Superscripts h and
ℓ indicate whether higher or lower values are better for the metric. The better metric values are

in bold.

Figure 5.7: Posterior updates of {γ1
w, γ

2
w, γb α, δ} parameters in CNN-VAE trained on 207

dataset. See Appendix D.4 for additional posterior plots.

curve), the distributions flatten out as we are still exploring the hyperparameter space, potentially
aided by KL annealing. In later epochs (green and red curves), the distributions become more
defined, indicating exploitation and concretisation of the distributions.

However, achieving the best results with VAE neural calibration requires thorough prior knowledge
of the system dynamics, which was only available to us from MCMC, SGD, and NN/CNN/GNN
neural calibration. This is problematic for general purposes, but in the specific context of opinion
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dynamics, it is not unreasonable to assume some prior beliefs or intuitions. Opinion dynamics
models are intentionally developed to capture macrosocial behaviour trends from different inter-
disciplinary fields (i.e., economics, history, and marketing).

Additionally, VAEs require much more tuning than standard neural calibration, with additional
considerations such as KL annealing and harsh constraints on priors/posteriors. It is noted in the
literature that generative models tend to make stronger assumptions on the data than discrimina-
tor ML architectures, often leading to higher asymptotic bias [67]. This is the case for the VAE
neural calibration interpretation.

Lastly, we can gain intuition on differences between standard neural calibration and the VAE
models by visually comparing the density estimates, as shown in Figure 5.8. While the mean
and mode estimates are relatively consistent across γ1

w, γ
2
w, γb, the variances do not align. This is

because the VAE SD estimates are heavily influenced by the priors. Unlike point estimates for
the parameters, having prior intuition for SDs is not reasonable. A potential solution could be
concatenating standard neural calibration and VAE, as suggested at the end of 5.7.3. This way,
we can establish priors with neural calibration and update them with VAEs.

Figure 5.8: Marginals for parameters λ = {γ1
w, γ

2
w, γb, α, δ} for both CNN-VAE calibration with

factorised Gaussian posteriors (red, left side) and NN neural calibration (blue, right side) on 207
datasets. Black dots correspond to distribution modes and grey dots to means. See Appendix

D.5 for a complete set of marginal density plots.
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Chapter 6

Conclusion

In this work, we successfully implemented neural calibration for the CLSNA opinion dynamics
model. In doing so, we extended Gaskin et al.’s scheme beyond fully connected neural networks
to convolutional and graph architectures. We demonstrated that neural calibration is significantly
faster than the baseline MCMC and SGD algorithms, converging in approximately 80% less time
for both fixed and variable node CLSNA while producing promising evaluation results. Regarding
the parameter estimates, we observed polarisation in the hashtag networks between the Democrat
and Republican political parties, in line with results published by Zhu et al. [4] and Pan et al. [5].
Among the NN, CNN, and GNN models on the 207 dataset, we highlighted that the GNN was
superior, performing the best on average across five classifications and three topological evaluation
metrics.

We then conducted a sensitivity analysis using the neural calibration parameter probability den-
sity functions to quantitatively determine which parameters in λ := {α, δ, γ1

w, γ
2
w, γb} contribute

the most to CLSNA output variance. The SA included the Morris and Sobol methods, as well as
constructing a Pareto front with the NSGA-II evolutionary algorithm. We identified a clear rela-
tionship between low neural calibration standard deviation estimates and parameter significance,
suggesting the viable use of neural calibration as an SA tool.

Building on these findings and addressing the challenges in training NN/CNN/GNNs, we explored
the Bayesian interpretation of neural calibration as a VAE. To this end, we used CLSNA calibration
to update prior beliefs using SGD and obtain robust parameter posteriors. We implemented three
encoder architectures, and presented the calibration results for NN-VAE, CNN-VAE, and GNN-
VAE, demonstrating their enhanced ability to identify topological structures in the observed data.
Notably, the CNN-VAE obtained a ∆ Clustering Coefficient value of 0.145, marginally worse than
MCMC (0.117) but a marked improvement over the GNN trained with standard neural calibration
(0.199). Despite the refined pattern recognition, the VAEs also had various drawbacks, includ-
ing the necessity of a thorough understanding of CLSNA dynamics a priori and the constraint of
Gaussian priors and posteriors.

6.1 Future Work
To further advance this research, future work should focus on two main avenues: (1) enhancing
the neural calibration scheme itself and (2) improving the performance of neural calibration for
the CLSNA application. The former is geared towards generalising many of the key insights made
in the execution of this report while the latter addresses the limitations of the solutions presented
in Chapters 4 and 5.

Concerning the standard and VAE neural calibration implementation for CLSNA, we hereby sug-
gest:

• Addressing Data Limitations.
The hashtag datasets used for both the fixed and dynamic node CLSNA variants represent
a single time-series realisation of behaviour from 2010-2020; that is to say, we have limited
data that the ML models can learn from. This is a common problem in time-series analysis,
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and a few exciting solutions have been proposed for similar use cases.

For example, Gao et al., in the paper titled "Stochastic Graph Neural Networks", intro-
duce controlled perturbations of input graph data to simulate topological randomness [68].
At its core, the stochastic GNN generates a family of random graphs Gk = (V, Ek) from
G = (V, E) by. Additionally, MarkovGNNs use a dynamic adjacency matrix that updates at
each convolutional layer via a predefined Markov process [69]. This would promote a stochas-
tic diffusion of information among graph nodes that may model social media behaviour more
realistically. We believe incorporating principles from these recent developments could have
a notable impact on the quality of the parameter estimations.

• Employing Sophisticated Architectures to 616 Dataset.
We have only used basic NN models for the vectorised 616 dataset due to the presence of
nodes entering and exiting the system. Ideally, we would use a convolutional architecture
(CNN/GNN) that allows for spatial and temporal recognition.

A potential solution would be transforming the 616 dataset to define a larger Gtot = (Vtot, Etot)
that has a fixed Vtot containing the union of nodes observed at all time steps. Upon doing
this, implementing either CNNs or GNNs would follow the same procedure of Sections 4.3
and 5.4. This data transformation is non-trivial, as it is equivalent to a feature-embedding
imputation task. To this end, we propose integrating You et al.’s GRAPE framework [70] or
Isallari and Rekik’s super-resolution methodology [48].

Concerning the robustness and performance of the neural calibration scheme, we put forth the
following ideas:

• Formalising Neural Calibration for SA.
In Section 4.8 we provided a relationship between estimated parameter variance and sig-
nificance. We believe exploring the viability of neural calibration as an SA methodology,
either through theoretical derivations or by showing similar patterns empirically in other
applications (i.e. the SIR model), is a worthwhile venture.

• Going Beyond Non-Gaussian VAE Priors/Posteriors.
We used Gaussian priors and posteriors in the VAE implementation due to the convenience of
closed-form loss function derivation and the simplicity of distribution interpretation. How-
ever, this constraint might be too restrictive. Considering non-Gaussian posteriors could
enhance the flexibility of the inference model qθ(z|x), thereby tightening the ELBO bound.
Two general techniques, as presented by Kingma and Welling [62], are worth considering.

The first technique involves incorporating auxiliary latent variables u to the qθ, i.e., qθ(z|x) =∫
qθ(u, z|x) du. This approach may initially worsen the bound due to errors in the integral

approximation, but the increased flexibility could potentially outweigh this cost. The second
technique is the Inverse Autoregressive Flow (IAF). This method involves a chain of trans-
formations from a basic initial distribution using an Autoregressive Neural Network (ANN).
This way, we do not have to modify the encoder architectures and instead train the ANN to
transform Gaussian posteriors into a complex set of distributions.

• 2-Step Neural Calibration.
In the concluding remarks of Chapter 5 we proposed a 2-Step calibration scheme that com-
poses a standard neural calibration and a VAE implementation. In this way, we address the
limitation of VAEs requiring prior information by first generating empirical PDFs for the
parameters and using these as the VAE’s latent variable priors. This methodology aligns
well with the previous suggestion of transitioning to a more generic Bayesian framework.
A thorough analysis of this 2-step calibration would be a valuable extension of the current
work.

We leave these extensions as opportunities to catalyse the usage of neural calibration as a fast
and accurate tool across various fields of mathematics, computer science, and interdisciplinary
research. By significantly reducing operational costs and risks — key inhibitors in the uptake of
new technologies — we believe neural calibration can become widely adopted.
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Appendix A

CLSNA Numerical Solver

A core component of neural parameter calibration is the numerical solver that abstractly takes
parameter inputs and outputs simulation results. Efficiently implementing the simulate_clsna
and simulate_clsna_dynamic numerical solvers that correspond to the 207 and 616 datasets
proved to be both a conceptual and code-bug prone challenge – especially the latter. We will
now present the data processing and pseudo code1 for both solvers, commenting on operations
that were parallelised to minimise latency and prevent the solver being a calibration bottleneck.
The methodology for this section involves a series of incremental modifications (specifically for
simulate_clsna_dynamic) to the CLSNA solver implementations originally developed by Zhu et
al.2. Full credit for the foundational work is attributed to their research team.

In A.1 and A.2, ⊙ represents element-wise operation application and s the L2 euclidean norm.

A.1 simulate_clsna

The implementation of simulate_clsna is relatively straightforward. The key insights made
by Zhu et al. were in how to parallelise the operations, specifically by using np.outer and
torch.nn.functional.laplacian to calculate matrices where each entry corresponds to the inter-
party and intra-party attractor values, Aw/b(zt, Yt−1).

Algorithm 2 simulate_clsna
Assumes: σ2 = 1, τ2 = 10 fixed constants.
Input: N: Fixed number of nodes. M: Binary list mapping node index to political party.

D: Dim of latent space. T: Number of time steps. λ = (α, δ, γ1
w, γ

2
w, γb) model params.

Output: ( ˆz1:T , ˆY1:T , ˆP1:T ): Latent position, adjacency matrices, probability matrices estimates
respectively.

1: z0 ← Z0 ∈ RN×D ∼ N (0, τ2)
2: logit(p0,ij)← α− s(z0,i, z0,j) ▷ Optimised with torch’s pdist pairwise distance.
3: Y0 ← Binomial⊙ (P0)
4: for t = 1 to T do
5: z̄1t,i ← 1

|Si
1|
∑

j∈Si
1
zt−1,j ▷ Vectorized using scipy and sklearn’s normalised Laplacian.

6: z̄2t,i ← 1
|Si

2|
∑

j∈Si
2
zt−1,j

7: Aw
i (zt−1, Yt−1)← z̄1t,i − zt−1,i

8: Ab
i (zt−1, Yt−1)← z̄2t,i − zt−1,i

9: µt ← zt + γ1
w ×Aw

i (zt−1, Yt−1) + γ2
w ×Ab

i (zt−1, Yt−1) + γb × (Ab
i (zt−1, Yt−1))

10: zt ← µt +N (0, σ2)
11: end for
12: Return: z1:T , Y1:T , P1:T

1All code can be found in /clsna_model/clsna_model.py of the NeuralCLSNA GitLab Repository:
https://gitlab.doc.ic.ac.uk/og519/nerualclsna

2https://github.com/KolaczykResearch/SGD4CLSNA
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A.2 simulate_clsna_dynamic

The key challenge in implementing the variable-node CLSNA solver is keeping track of node indices;
more specifically, mapping persistent node indices at time t to t+1, discarding nodes that exist the
system, and adding in new agents. To achieve this, using the approach of Zhu et al., we constructed
four key data structures during data prepocessing: prev_at_t, new_at_t, ar_pairs and persist.
prev_at_t and new_at_t are both time-indexed lists where each entry at index t is a subset of
nodes N ′ ⊆ Ntotal that are either present or absent in system. Ntotal represents the union of
all participating agents in the dataset. ar_pairs is also a time-indexed list, containing tuples of
where persistent node indices are in subsequent times, i.e. pairs of the form (ixn,t,ixn,t+1). Lastly,
persist contains sub-adjacency matrices Y

′

t ⊆ Yt for edge-persistence.

Algorithm 3 simulate_clsna_variable
Assumes: σ2 = 1, τ2 = 10, ϕ2 = 10 fixed constants.
Input: nnodes: Array of node counts at each time step.

M : Binary list mapping node index to political party.
D: Dim of latent space. T : Number of time steps.
λ = (α, δ, γ1

w, γ
2
w, γb): Model parameters.

ar_pairs: Array of pairs of nodes that persist.
prev_at_t: Array of dictionaries of persistent nodes per party.
new_at_t: Array of dictionaries of new nodes per party.
persist: Array of persistent adjacency matrices.

Output: ( ˆz1:T , ˆY1:T , ˆP1:T ): Latent position, adjacency matrices, probability matrices estimates
respectively.

1: z0 ← Z0 ∈ RN0×D ∼ N (0, τ2)
2: logit(p0,ij)← α− s(z0,i, z0,j) ▷ Optimised with torch’s pdist pairwise distance.
3: Y0 ← Binomial⊙ (P0)
4: Z ← [z0], P ← [p0], Y ← [Y0]
5: for t = 1 to T do
6: prev_t← prev_at_t[t]
7: new_t← new_at_t[t]
8: persist_t← persist[t]
9: z̄1t,i ← 1

|Si
1|
∑

j∈Si
1
zt−1,j ▷ Vectorized using scipy and sklearn’s normalised Laplacian.

10: z̄2t,i ← 1
|Si

2|
∑

j∈Si
2
zt−1,j

11: Aw
i (zt−1, Yt−1)← z̄1t,i − zt−1,i

12: Ab
i (zt−1, Yt−1)← z̄2t,i − zt−1,i

13: µt ← zt + γ1
w ×Aw

i (zt−1, Yt−1) + γ2
w ×Ab

i (zt−1, Yt−1) + γb × (Ab
i (zt−1, Yt−1))

14: zt ← µt +N (0, σ2)
15: ▷ Latent positions for incoming nodes
16: new_s1_zt← z̄1t,i +N (0, ϕ2)

17: new_s2_zt← z̄2t,i +N (0, ϕ2)
18: ▷ Map zt to correct indices from previous and new nodes
19: zt ← zeros([nnodes[t], D])
20: for (i, j) ∈ ar_pairs[t− 1] do
21: zt[j]← zt[i]
22: end for
23: zt[new_t[0]]← new_s1_zt
24: zt[new_t[1]]← new_s2_zt
25: ▷ Calculate pt,ij probabilities for new and previous nodes
26: logit(pt,ij)← α− s(zt,i, zt,j) + δ × persist_t
27: Yt ← Binomial⊙ (Pt)
28: Z ∪ [zt], P ∪ [pt], Y ∪ [Yt]
29: end for
30: Return: z1:T , Y1:T , P1:T
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Appendix B

CLSNA Neural Calibration:
Auxiliary Plots

The main report only includes representative figures (i.e. for only one type of architecture) sufficient
to guide the reader through the analysis and discussion. In this appendix we present the full set
of relevant plots.

B.1 Full X (Twitter) Dataset Adjacency Matrices

Figure B.1: 207 Dataset
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Figure B.2: 616 Dataset

B.2 Neural Calibration Training Loss Curves
Figure 4.5 contains the loss curves and parameter evolutions for the NN model trained on both
the 207 and 616 datasets. Here we provide the loss curves for the CNN and GNN models trained
on the 207 dataset.

Note: The parameter evolution plots for both CNN and GNN are smoother than for NN be-
cause of the use of an Adam optimiser for the former and RMSProp for the latter.

(a) Training Loss Curve for 207 Model (b) Parameter Evolution in 207 training instance

Figure B.3: Single Training Instances of CNN for the 207 Model. Darker lines corresponding to
moving averages.
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(a) Training Loss Curve for 207 Model (b) Parameter Evolution in 207 training instance

Figure B.4: Single Training Instances of GNN for the 207 Model. Darker lines corresponding to
moving averages.

B.3 Density Estimations
In Section 4.5.1 we plot the 5 PDF estimates for the 207 GNN model over 30 training instances.
We now provide the remaining PDF estimates for the 207 NN and CNN models as well as the 616
NN model.

(a) γ1
w Estimate (b) γ2

w Estimate (c) γb Estimate

(d) α Estimate (e) δ Estimate

Figure B.5: Parameter PDF estimates for 207 NN model over 30 training instances.

63



(a) γ1
w Estimate (b) γ2

w Estimate (c) γb Estimate

(d) α Estimate (e) δ Estimate

Figure B.6: Parameter PDF estimates for 207 CNN model over 30 training instances.

(a) γ1
w Estimate (b) γ2

w Estimate (c) γb Estimate

(d) α Estimate (e) δ Estimate

Figure B.7: Parameter PDF estimates for 616 NN model over 30 training instances.
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B.4 Latent Position Evolution
Figure 4.8 presents the latent space at discrete time steps for the MCMC, SGD, and NN models
on the 207 dataset. In this section we provide the remaining 207 plots for CNN and GNN as well
as SGD/NN plots for the 616 dataset.

Figure B.8: Latent space evolution at time steps T = {1, 5, 10} for CNN (Row 1) and GNN
(Row 2) for 207 dataset.

Figure B.9: Latent space evolution at time steps T = {1, 5, 10} for SGD (Row 1) and NN (Row
2) for 616 dataset.
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B.5 Joint 2D Densities
To finish this chapter, we provide a full set of 2D joint density estimates for the CNN and GNN
models trained on the 207 dataset.

(a) (δ, α) (b) (γ1
w, α) (c) (γ2

w, α) (d) (γb, α)

(e) (α, γb) (f) (δ, γb) (g) (γ1
w, γb) (h) (γ2

w, γb)

Figure B.10: 2D Joint Density estimates for all combinations of α and γb in 207 CNN model.

(a) (δ, α) (b) (γ1
w, α) (c) (γ2

w, α) (d) (γb, α)

(e) (α, γb) (f) (δ, γb) (g) (γ1
w, γb) (h) (γ2

w, γb)

Figure B.11: 2D Joint Density estimates for all combinations of α and γb in 207 GNN model.
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Appendix C

HEBO: Heteroscedastic Evolutionary
Bayesian Optimisation

A key component in any data science project is identifying a configuration of case-specific hyper-
parameters that produce the best results. Approaches to do this are widely studied in literature,
ranging from simple hyperspace grid searches to sophisticated Bayesian optimisation solutions. In
this section, we present in detail HEBO or Heteroscedastic Evolutionary Bayesian Optimisation
[53], which we used to perform the hyperparameter search for the neural calibration models trained
on both the 207 and 616 datasets.

In Bayesian Optimisation (BO), the goal is to find x∗ = argmax f(x) without any prior knowledge
of both the smooth function f(x) and the optimal x∗. Algorithms must balance the trade-off
between exploiting regions of the hyperparameter space that have been previously evaluated and
exploring new, unevaluated regions. Typically, BO methods comprise two main elements: a prob-
abilistic surrogate model, which incorporates priors derived from existing observations, and an
acquisition function, which directs the selection of new points for evaluation.

Because of idealised assumptions about the nature of f , many algorithms struggle to handle noisy
surrogates and may become trapped in local minima due to a singular acquisition objective. To
overcome these challenges, HEBO introduced a surrogate model that employs warping and trans-
formation in the input space, enhancing the model’s adaptability and resistance to noise. HEBO’s
surrogate model is a Gaussian process with input warping and transformations applied post hoc,
represented by g(x) = h(f(x)), where h is a transformation applied to the original function f .
This transformation enables the surrogate model to capture heteroscedasticity (situations where
the variance of the residuals varies) present in the data. The transformed surrogate model is sub-
sequently used to predict the mean and variance of the objective function at new points, which are
crucial for the acquisition function.

For exploring new solutions, HEBO conducts multi-objective optimisation over the Pareto front of
solutions, integrating three standard acquisition functions: Expected Improvement (EI), Probabil-
ity of Improvement (PI), and Upper Confidence Bound (UCB). This multi-objective strategy uses
the NSGA-II algorithm (the same algorithm applied for the MOO in the SA of neural calibration
models).
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Appendix D

Neural Calibration as a VAE:
Auxiliary Plots

D.1 simulate_clsna_dynamic Saturation

Figure D.1: simulate_clsna_dynamic output histograms at time steps T = {1, 5, 10}

D.2 VAE Loss Curves
Figure 5.5 presents the total, reconstruction, and KL losses of the VGAE trained on the 207
dataset. Here we provide the same plots for (NN-VAE/CNN-VAE)207 and NN-VAE616.
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Figure D.2: Total, Reconstruction, and KL Loss Curves for NN-VAE on 207 dataset.

Figure D.3: Total, Reconstruction, and KL Loss Curves for CNN-VAE on 207 dataset.
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Figure D.4: Total, Reconstruction, and KL Loss Curves for NN-VAE on 616 dataset.

D.3 KL Annealing and Deconstructed VAE Loss

(a) Annealed KL Divergence Loss (b) Grouped KL and Reconstruction Losses

Figure D.5: KL Annealing effects on training loss of NN-VAE on 207 dataset.

(a) Annealed KL Divergence Loss (b) Grouped KL and Reconstruction Losses

Figure D.6: KL Annealing effects on training loss of CNN-VAE on 207 dataset.
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(a) Annealed KL Divergence Loss (b) Grouped KL and Reconstruction Losses

Figure D.7: KL Annealing effects on training loss of VGAE on 207 dataset.

D.4 Posterior Updates

Figure D.8: Posterior updates of parameters in NN-VAE trained on 207 dataset.

71



Figure D.9: Posterior updates of parameters in VGAE trained on 207 dataset.

Figure D.10: Posterior updates of parameters in NN-VAE trained on 616 dataset.

D.5 VAE and Neural Calibration Distribution Comparisons
The full-set of figures comparing NN/CNN VAE and VGAE to all neural calibration models would
consist of 10 pairs. Figure 5.8 plots CNN-VAE and basic NN neural calibration. In this section
we will plot only three more cases of interest: (VGAE, GNN)207, (NN-VAE, NN)207, and lastly
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(VAE, NN)616.

Figure D.11: Marginals for parameters λ = {γ1
w, γ

2
w, γb, α, δ} for both VGAE calibration with

factorised Gaussian posteriors (red, left side) and GNN neural calibration (blue, right side) on
207 dataset. Black dots correspond to distribution modes and grey dots to means.
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Figure D.12: Marginals for parameters λ = {γ1
w, γ

2
w, γb, α, δ} for both NN-VAE calibration with

factorised Gaussian posteriors (red, left side) and NN neural calibration (blue, right side) on 207
dataset. Black dots correspond to distribution modes and grey dots to means.
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Figure D.13: Marginals for parameters λ = {γ1
w, γ

2
w, γb, α, δ} for both NN-VAE calibration with

factorised Gaussian posteriors (red, left side) and NN neural calibration (blue, right side) on 616
dataset. Black dots correspond to distribution modes and grey dots to means.
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