
MASTER THESIS

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

IL2Coq: Automatic Translation of
WebAssembly Specification To Coq

Author:
Diego Cupello

Supervisor:
Prof. Philippa Gardner

June 17, 2024

Submitted in partial fulfillment of the requirements for the Meng Computing of
Imperial College London

Abstract

WebAssembly is a low-level bytecode language introduced in 2017 by Andreas Hoss-
berg as a compilation target for low-level languages such as C/C++ and Rust [1].
One aspect of WebAssembly that sets it apart from other programming languages is
that it boasts an incredibly formal and complete specification for all of its versions.

Writing formal specifications for each new version can be considered tedious and
error-prone. It also limits the amount of people who are able to edit the specifica-
tion. As such, Wasm Spectec was created to host a domain-specific language that,
with the specification written in that language, is able to produce the Latex, prose,
tests and even an interpreter. It acts as a single source of truth.

The problem with the Wasm Spectec toolchain is that it does not produce mechanized-
ready inductive definitions. In the past, mechanizations of Webassembly have shown
various issues with the specification itself and has made the specification more ro-
bust. IL2Coq acts as a proof of concept solution to this problem, giving a translation
process between the intermediate language of the Wasm Spectec toolchain and Coq.

The IL2Coq solution was able to successfully produce the inductive definitions for
specifically the WebAssembly 1.0 specification. With these definitions, a proof result
of type preservation was given as evidence of the effectiveness of the translated
inductive definitions.

Acknowledgments

I would first like to thank my supervisor, Prof. Philippa Gardner, for giving me an in-
credible amount of support and advice throughout the entire duration of the project.
Thank you for keeping me in the correct path! It was a pleasure to work with you!

I would also like to thank the PhD student, Xiaojia Rao, who provided me with great
advice and feedback while developing the solution and even through the proof. It
was through your guidance that this project came to be!

I also would like to thank my friends and family, who gave me the guidance and per-
severance to keep moving forward. Thank you for helping me through this project!

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

2 Background 3
2.1 Language Standardization and Mechanisation 3

2.1.1 Language Standardization and Validation 3
2.1.2 Mechanization Definition . 3
2.1.3 Coq . 4

2.2 WebAssembly . 5
2.2.1 Concepts . 6
2.2.2 Validation . 8
2.2.3 Instantiation . 10
2.2.4 Run-time Semantics . 10
2.2.5 Binary Format . 11

2.3 WasmCert . 12
2.3.1 DataTypes . 12
2.3.2 Typing . 13
2.3.3 Reduction . 14
2.3.4 Type Soundness . 14

3 Wasm Spectec 16
3.1 Wasm Spectec Toolchain . 16
3.2 Internal Language Core Features . 17

3.2.1 Annotations (Hints)* . 17
3.2.2 Atoms and Mixops . 19
3.2.3 Bindings, Arguments, and Parameters* 19
3.2.4 Basic Types and Iterations* 20
3.2.5 User-defined types . 20
3.2.6 Family types . 22
3.2.7 Expressions . 22
3.2.8 Definitions and Relations . 24
3.2.9 Premises . 26
3.2.10 Transformations* . 27

iii

CONTENTS CONTENTS

4 IL2Coq 28
4.1 IL2Coq Workflow . 28

4.1.1 Structure . 28
4.1.2 Restrictions Imposed in the DSL Source 29

4.2 Coq Transform and Printing . 30
4.2.1 Motivation for CoqIL . 30
4.2.2 Translation Approach . 30
4.2.3 Exported Code . 31
4.2.4 User-defined Types, Relations and Definitions 32
4.2.5 Transformation and Printing of Basic Types and Expressions . 36

4.3 Auxiliary Passes . 38
4.3.1 Generating the Environment 38
4.3.2 Creating Subtype Coercions 38
4.3.3 Else Removal Pass . 39

5 Type Preservation Proof 41
5.1 DSL Source Extension . 41

5.1.1 Store Validity . 41
5.1.2 Thread Validity . 42
5.1.3 Configuration Validity . 42
5.1.4 Store Extension . 43

5.2 Proof Structure . 43
5.3 WasmCert Comparison . 46

6 Evaluation 49
6.1 Evaluating IL2Coq: the Translation Process 49

6.1.1 Evaluating the Validity of the Translated Definitions 49
6.1.2 Evaluating the Potential for Expansion of the Translation Pro-

cess and IL . 50
6.2 Evaluating the DSL Source Extension 51
6.3 Evaluating the Preservation Proof . 52

7 Conclusion and Future Work 53
7.1 Future Work . 53
7.2 Ethical Considerations . 54

Appendices

A Generated Latex from Soundness DSL Source

B Full Proof of Lemmas in Section 5.3

0

Chapter 1

Introduction

1.1 Motivation

WebAssembly is a low-level bytecode language introduced in 2017 by Andreas Hoss-
berg as a compilation target for low-level languages such as C/C++ and Rust [1].
The goal was to make a safe, portable and efficient language for the Web, that en-
ables high performance applications. Safety is absolutely essential as it is expected
to be sent through the Web through different streams and as such it can easily be
exploited if not designed correctly. It must also be portable as being part of the Web
ecosystem means that it must be able to support many different types of hardware
and systems. It should be able to be agnostic to these changes in order to succeed. It
must also be efficient, both in time taken and space used, as current expectations of
the Web is that any application should have low load times, and have as low band-
width as possible through the network. WebAssembly at its current moment has met
these goals, being accepted in the Web community and even has been supported by
all the major Web browsers [2], having the official standard W3C be published in
2019 [3].

One unusual aspect of WebAssembly is that, before release, it had defined the for-
mal semantics of the language fully. This enables complete mechanisation of the
semantics, providing verification that the implementation is sound, and even be able
extract a complete interpreter that functions as a source for correctness. In Watt and
Rao’s paper, they provide a mechanisation in two different proof assistants, Coq and
Isabelle, for WebAssembly 1.0 [2].

However, while this may have been a good mechanisation for WebAssembly 1.0, in
2023, WebAssembly 2.0 has come out with new changes to the specification [4].
This would mean that the mechanisation would have to be adapted. The mecha-
nization is done by hand and as such, this task involves modifying a large codebase,
becoming increasingly more error-prone as versions keep getting added. To makes
matters worse, this also applies to the reference interpreter and the specification it-
self, as they are largely done manually.

1

1.2. CONTRIBUTIONS Chapter 1. Introduction

In order to resolve this problem, the WebAssembly community presented the idea
of a WebAssembly domain-specific language, named Wasm SpecTec, officially pre-
sented in [5] (repository in [6]). The motivation of such a language is to have a
single source of information and also allow anyone with sufficient knowledge of
the domain-specific language to modify the WebAssembly language given new re-
quirements. The information that it generates would be the latex, prose, tests and
the interpreter. It had been recently implemented and has been able to successfully
produce the expected artifacts and the interpreter has passed all of the original appli-
cable tests [5]. It has also been tested with new implementations that are currently
experimental, such as the addition of garbage collection [7] and threads [8].

The main problem at hand is that mechanisation ready definitions is not generated
by Wasm Spectec yet. There is some initial work to use the internal representation
of the domain-specific language and make several passes to it in order to transform
it into a more proof-friendly way.

The main scope of the project is to translate the internal language of the DSL to
inductive definitions and relations that define the WebAseembly language in the
proof assistant Coq (targeting specifically WebAssembly 1.0), and then provide a
manually written proof in Coq.

1.2 Contributions

This project makes the following contributions:

• Translate the Webassembly 1.0 DSL spec to Coq definitions: the Webassembly
1.0 spec written in Wasm Spectec has been automatically translated to com-
pletely compiled Coq inductive definitions and relations ready to be used for
mechanisation. More specifically, the datatypes, typing rules and reduction
rules are successfully translated to Coq. The translation process is described in
section 4.

• Extend Wasm Spectec source: the Webassembly 1.0 spec was extended to in-
clude the soundness relations, in order to allow the support of proving type
soundness. The extension is described in section 5.

• Type Preservation Proof: with the automatically generated definitions, type
preservation has been shown to be true for all configurations defined in the
Webassembly 1.0 spec. The proof is described in section 5.

The project can be found as a fork of the Wasm Spectec Github, made publicly avail-
able for anyone to see.

2

https://github.com/DCupello1/spectec/tree/coq-il-generation/spectec/src

Chapter 2

Background

2.1 Language Standardization and Mechanisation

2.1.1 Language Standardization and Validation

Language standardization, in the context of programming languages, is the process
of documenting the syntax and semantics of a certain language in a precise manner.
It allows compilers to adhere to a single source of truth and build upon it. Types
of language standardizations include: EMCAscript[9] for javascript, ANSI/ISO stan-
dard for C[10] and C++[11], and the formal semantics of WebAssembly seen in the
specification[3].

Language standardization allow for syntax and semantics to be validated in a grand-
scale, affecting all implementations of the languages such as compilers and inter-
preters. Validation in this case refers to the correctness of the syntax and semantics
of a language, and the certainty that undefined behaviour is not possible. This can
be done through test suites and unit testing which are easier to implement, but cor-
rectness properties such as type soundness like you can find in WebAssembly (i.e.
the full mechanization in [2]) are often what is necessary to get guaranteed safety.

Validation is starting to become more important as there is a growing need for
memory-safe languages and formal methods for all of our software, especially for
correctness properties, as noted in a White house paper [12].

2.1.2 Mechanization Definition

Mechanisation, in the context of software verification, is the process of converting
proof-checking by hand into one that can be run by the computer. When proving
that a given piece of software or specification is correct, the proofs can start getting
really large, up to the point that it is no longer sustainable to do by hand. As such,
proof assistants were made.

A proof assistant, also known as interactive theorem provers (ITP), is regarded as a

3

2.1. LANGUAGE STANDARDIZATION AND MECHANISATIONChapter 2. Background

formal proof management system that enables development of large-scale proofs. It
involves human collaboration to guide the computer to reach a certain proof goal,
making sure that every step of the proof is indeed valid. These are some known
proof assistants and large-scale language specification proofs done in them:

• Coq[13]: software toolchain for the verification of C programs known as CompCert[14],
mechanized specification of Javascript known as JSCert[15], and also the full
mechanization of WebAssembly semantics, known as WasmCert-coq [2].

• Isabelle[16]: Formalization of C (C11)[17], formal verification of Java compiler[18],
and also full mechanization of WebAssembly semantics, known as WasmCert-
Isabelle[2].

• Lean[19]: mainly used for mathematical proofs.

This project focuses on automated mechanization of WebAssembly. Since there was
already work done in Coq for WebAssembly (WasmCert-coq), we chose it to be the
target for the automated inductive definitions.

2.1.3 Coq

Coq is a widely recognized proof assistant that has been used for many large-scale
proofs. The main features of Coq include: defining and stating functions and math-
ematical definitions, interactively develop proofs through these theorems, perform
machine checking of these proofs [13]. This section will give a small overview of the
functionalities of Coq, and later on we will address some more technicalities when
needed.

Figure 2.1 gives an inductive structure corresponding to a list. Inductive structures
give certain conditions for how a certain type can be constructed. For example, A
list can either be nil or cons an element to another list. It has to be the case that the
list always ends at nil, or else it would just be an infinite chain of the constructor
cons, which is never really the case for finite structures. Inductive types are the main
essence of Coq, and all of the type utilized adhere to this, even numbers, as shown
in the figure 2.1. Inductive types can also be dependent types, which means it has a
certain type it depends on. A notable example is the list inductive type, which has X
as a type it depends on.

Then, with these inductive types, it is possible to define function definitions, as
shown with the length function by going through the entire structure and pattern
matching for each case.

Finally, with these structures in mind, one can also produce lemmas, theorems, corol-
laries, like the lemma app length, which basically states that the length of the con-
catenation of two lists is the same as the length of one list plus the other. Each proof
step uses a proof command known as a tactic. The main ones used here are pretty
straightforward: intros introduces all of the variables and hypotheses to the premise,

4

Chapter 2. Background 2.2. WEBASSEMBLY

simpl simplifies the LHS and RHS of the goal, rewrite modifies the given side of the
goal using a hypothesis or already proven fact, and induction goes through all of
the cases for the structure, giving inductive hypotheses for the inductive cases (in
this case, it was nil for the base case and cons for the inductive case). There are a
vast number of tactics that are useful and are widely used (in fact one could define
their own tactic), but these are out of the scope for this paper. These examples were
adopted by the software foundations book as a guiding example [20].

Inductive list (X:Type) : Type :=

| nil

| cons (x : X) (l : list X)

Inductive nat : Type :=

| zero

| succ (n : nat)

Fixpoint length {X : Type} (xs : list X) : nat :=

match xs with

| nil => 0

| cons x xs' => 1 + my_length xs'
end.

Lemma app_length : forall (X:Type) (l1 l2 : list X),

length (l1 ++ l2) = length l1 + length l2.

Proof.

intros x l1 l2. induction l1 as [| x1 l1' IH].

(*nil base case*)

- simpl. reflexivity.

(*inductive case l1 = cons x1 l1' *)

- simpl. rewrite -> IH. reflexivity.

Qed.

Figure 2.1: Coq Example

2.2 WebAssembly

The following sections will give an overview on the core concepts of WebAssembly, as
well as go through the compilation phases: Validation, Instantiation and Execution.
During the Execution section, it will mainly go through the run-time semantics that
WebAssembly inhibits. Finally, this will end with a brief look on how the syntax
of WebAssembly is turned into bytecode in the binary format section. This section
mainly goes through version 1.0 of WebAssembly, but the differences in versions are
not too big. Most of the information is gotten from the current specification itself
[3]. The binary format and instantiation sections are not very important for the
translation process, and as such will only be discussed briefly.

5

2.2. WEBASSEMBLY Chapter 2. Background

2.2.1 Concepts

Webassembly is revolved around the following concepts [3]:

• Values: In WebAssembly, program number values are of type integer i32, i64
and float f32, f64. At all points of the execution of a WebAssembly program,
the semantics expect any of these types in the stack. In addition to this, there
is also a vector type v128 that represents many packed types. Finally, there is
also opaque reference types which are not observable unlike the other types.
We will omit v128 and the corresponding SIMD instructions as they are not
necessary for the scope of the paper. The values are representated as follows
in the abstract syntax:

(value types) t ::= i32 | i64 | f32 | f64
(function types) ft ::= t∗ → t∗

• Stack: WebAssembly is a stack-based language. This means that during the
execution of the program, there is an implicit stack that holds an arbitrary
amount of values. Instructions push and pop from the stack as needed for the
operation to happen. There is no separate representation of the stack apart
from the instruction sequence. As an example, the instruction t.add would pop
two operands of value type t and push a new value of type t to the stack. The
stack should be statically known from all program points. Figure 2.2 shows
how the stack would be reduced during program execution. Each binary op-
eration takes the previous operands, consumes them and pushes the expected
value.

i32.const 5
i32.const 10
i32.const 3
i32.mul
i32.add

i32.const 5
i32.const 30
i32.add

i32.const 35

Figure 2.2: WebAssembly Stack Reduction

• Control Flow: WebAssembly follows a different approach to control flow as
other stack-based languages. Normally what would be seen is the possibility
of unconditional jumps or condition jumps, such as branching to any sort of
label. This is risky and complicates control flow. WebAssembly provides a
structured control flow, which restricts the program in the following ways: the
instructions if, block, and loop must have an end label, and branches behave
as a standard break seen in the C programming language when in an if or block
sequence, and as a continue in the loop sequence. This gives Webassembly the
property of being validated and compiled in a single pass. It also makes the
program easier to read. Figure 2.3 shows how the if instruction would be used.
It gets converted into a block statement once it has been decided what path to

6

Chapter 2. Background 2.2. WEBASSEMBLY

take. Then the block gets reduced to a label statement, which gives a target
for any branch instruction to index to. Then, the label statement reduces to
the constant.

i32.const 1
if < i32 >
i32.const 10
i32.const 3
i32.mul
else
i32.const 10
end

block < i32 >
i32.const 10
i32.const 3
i32.mul
end

label < c >
i32.const 10
i32.const 3
i32.mul
end

label < c >
i32.const 30
end

i32.const 30

Figure 2.3: Control Flow Example

• Memory, Tables, and Globals: WebAssembly modules data consist of the global
values, linear memory and function tables. Global values can be either muta-
ble or immutable and accessed by any of the functions defined in the module.
It can be statically instantiated. Memory is a linear stream of bytes, which can
be imported. Programs can either load or store from this memory, and can
dynamically grow the memory (with the memory.grow instruction) and can
check the size of the memory at any moment (with the memory.size. Memory
must specify a minimum size and can optionally have a maximum size. Func-
tion tables represent an opaque table of function pointers that can be used with
dynamic dispatch to give the functionality of function pointers. The abstract
syntax of all three is shown below, where n, m represent the minimum and
maximum starting size, mut the mutability of the global value, t the value type
and e the expression that the global value results to.

(globals) gb ::= gbmut t e

(memories) mem ::= memnm

(tables) tab ::= tabnm

• Modules: WebAssembly is packaged in the form of a module, which consists
of function types, definitions of functions, global values, tables and memories.
It also consists of other concepts like elem and data, which represent static
value instantiations of tables and memories, and also imports and exports,
which specify what gets imported/exported in the module. These definitions
can either be imported, which would specify the name and implementation,
or exported, so it can be used outside of WebAssembly. The abstract syntax of
a module is shown below. It is represented as a record of all the definitions
described above. The term vec(t) stands for a vec of term t.

module ::= {types :: vec(ft), funcdefs :: vec(func), globals ::
vec(gb),memories :: vec(mem), tables :: vec(tab), data :: vec(data), elem ::

vec(elem), imports :: vec(import), exports :: vec(exports)}

7

2.2. WEBASSEMBLY Chapter 2. Background

• Traps: Whenever the program is executing and for some instructions, if some
conditions fail to be met, then the program will produce a trap and it will be
propagated outward until the final result is a trap. WebAssembly programs
cannot handle a trap and must be handled by the outside environment. For
example, when accessing the memory, if the instruction t.unop, which repre-
sents all unary operations for value type t, does not return a defined value, the
semantics state that it should return a trap. [3]

With these concepts, it is starting to show how the abstract syntax of WebAssembly
is shaped. Figure 2.4 shows the syntax of all the concepts outlined above, and some
instructions for brevity. Some of the instructions that were not mentioned above but
still interesting to note are nop, which does nothing and leaves the stack unmod-
ified, unreachable which produces an unconditional trap, and drop which drops
an operand from the stack [3]. These are special instructions that are necessary to
produce specific control scenarios that ensure soundness.

(value types) t ::= i32 | i64 | f32 | f64
(packed types) tp ::= i8 | i16 | i32
(function types) ft ::= t∗ → t∗

(instructions) e ::= t.const c | t.unop | t.binop | loop ft e∗ | if ft e∗ | block ft e∗ |
nop | unreachable | drop | local.get i | local.set i | memory.size | memory.grow |
br i | br if i | br table i+ | global.get i | global.set i | t.loadmem info |
t.storemem info | ...
(globals) gb ::= gbmut t e
(memories) mem ::= mem n m
(tables) tab ::= tab n m
(modules) module ::= {types :: vec(ft), funcdefs :: vec(func), globals ::
vec(gb),memories :: vec(mem), tables :: vec(tab), data :: vec(data), elem ::
vec(elem), imports :: vec(import), exports :: vec(exports)}

Figure 2.4: Abstract Syntax

2.2.2 Validation

For a WebAssembly module to be instantiated, it must first be validated. For it to be
validated, a type system of the abstract syntax of a module is formed. The typing
system revolves around building a valid typing judgement of shape C ⊢ e∗ : ft
where C is the typing context. The context is a record of all of the typing entries of
all entities that are accessible at that given point of the program [1]. For this reason,
the context should have information on all functions types in the module, the global
types, the local types (that are defined at that program point), memory types, table
types, block label types, and return types. With the context, it should be enough to
prove that a given instruction sequence e has type ft. Figure 2.5 showcases some of
the typing rules that are in the specification of WebAssembly, to illustrate how the
type system is formed. They have the following behaviour:

8

Chapter 2. Background 2.2. WEBASSEMBLY

• nop: This instruction simply takes no operands from the stack and outputs
nothing. This is reflected by the empty brackets [].

• t.unop: Unary operations must syntactically have a type t that must correspond
to the input operand type and output operand type. Crucially, the typing rule
states that it must only consume one operand from the stack.

• i32.add: This specific binary operation already has a specific value type (i32),
so it must have two input operands from the stack of that type, and it will
output i32 to the stack.

• local.get: This local variable instruction first has the precondition that the
context must have C.locals[x] = t defined, as in, the function body must have
a local value accessed by index x with type t. This precondition implicitly
implies that the index is bound. We then have the type consist of consuming
no operands and outputting the same type t.

• drop: This parametric instruction just simply removes an operand from the
stack. As there is no indication of what the type t should be, this instruction
is value-polymorphic, which means that one or more of the stack operands is
unconstrained. The type can either be chosen arbitrarily during type-checking,
as long as it fits with the entire static checking process [3].

• func: This typing rule is not an instruction, but a set up of the module, specif-
ically for the function definitions. The first precondition consists of requiring
the context to have the type accessed by index x (provided by the syntax), and
have the corresponding function type. The next precondition then appends all
of the corresponding types to their respective places to the context, having lo-
cals have the parameters and local variables types, labels have the result type
of the function (as labels are represented by their result type), and return also
have the result type. With this new context, it must be the case that expr can be
proven to have the result type of the function. With these preconditions true,
then the entire function definition definable with context C must then have the
correct type.

NOP
C ⊢ nop : [] → []

UNOP
C ⊢ t.unop : [t] → [t]

ADD
C ⊢ i32.add : [i32 i32] → [i32]

LOCAL.GET
C.locals[x] = t

C ⊢ local.get x : [] → [t]
DROP

C ⊢ drop : [t] → []

FUNC
C.types[x] = [t∗1] → [t∗2] C, locals t∗1 t

∗, labels [t∗2], return [t∗2] ⊢ expr : [t∗2]

C ⊢ {type x, locals t∗, body expr} : [t∗1] → [t∗2]

Figure 2.5: Typing Rules

9

2.2. WEBASSEMBLY Chapter 2. Background

With figure 2.5 in mind, it should be clear now that the WebAssembly type system is
simple enough to be able to go through a single pass during type checking.

2.2.3 Instantiation

Once a module has been validated, the module can be instantiated. Instantiation
refers to the phase before type-checking and execution that creates the WebAssembly
module dynamically, creating a store that is the old store of module defined states,
appended with all of the new instances [3]. It also initializes the memory, globals
and tables. More importantly, it also checks the module imports are satisfied by
checking that the types declarations make sense.
The store refers to the representation of all the instances of functions, tables, mem-
ories, globals, data segments and elem segments. Each one of these have their own
grammar and intricacies that can be seen clearly in the specification. I will go briefly
over functions to give an example.

Function instances are effectively represented as closures of the actual function. It
contains its function type, the module instance to be able to resolve references from
other parts of the module (for the function call instruction) and then the actual
function. Additionally, one can also represent host functions by having its type and
then the actual representation of the host function. It is represented mathematically
as follows [3]:

funcinst ::= {type functype,modulemoduleinst, code func}

| {type functype, hostcode hostfunc}

2.2.4 Run-time Semantics

Once the WebAssembly module has been validated and the module has been instan-
tiated, it can then be executed. The specification utilizes operational semantics to
specify the runtime execution of a WebAssembly module. Its behaviour is modelled
in terms of an abstract machine which models the program state. The state consists
of the implicit stack, the abstract store containing the global state of the machine [3].

The global state of the machine, more known as its configuration, more concretely
refers to the store mentioned in the instantiation section, the call frame of the cur-
rent function, and the current instruction sequence. Frames (known as activation
frames), refer to a structure that gets put on the stack that contains the information
of the local values and the module instance. This is done in order to for function
calls to be able to return to the original state after the function returns. This config-
uration is normally represented as a tuple (S;F ; e∗)).

As stated above, the runtime semantics are based on operational semantics. The
reduction rules are in terms of small-step reduction, which are based on small, com-
pact rules that clearly state what the instruction does in a single step [1]. The stack

10

Chapter 2. Background 2.2. WEBASSEMBLY

is not explicitly shown in the reduction rules, but instead is shown in the format of
t.const rules [2], as shown in the following mul example:

(i32.const i)(i32.const j) i32.mul ↪→ (i32.const k) (if k ∈ muli32(i, j))

(i32.const i)(i32.const j) i32.mul ↪→ trap (if muli32(i, j) = {})

This reduction rule consumes the constants i and j and then returns k as long as it
is defined, which in this case it will most likely be the case. If not, then it would
produce a trap. The following example is a more complicated reduction, showing
how the if instruction would get reduced:

(i32.const i) if tn instrs∗1 else instrs
∗
2 end ↪→ block tn instrs∗1 end (if i ̸= 0)

The If rule consumes the constant i, checks that it is not equal to zero, and if so, it
reduces the whole if statement of type tn to the first instruction sequence instrs∗1,
wrapped in a block of the same type.

Another aspect of the run-time semantics worth mentioning is the usage of admin-
istrative instructions. These instructions are an extension to the original instruction
set to aid with the reduction of calls, control and traps. One worth mentioning is the
label instruction which was shown before for control instructions. It represents the
label that it is implicitly on the stack [3]. It has a nesting structure that allows the
preservation of the original structured flow.

The last aspect worth mentioning of the run-time semantics is Numerics. The way
that numbers are represented are in their usual binary representation. Integers are
represented as unsigned binary numbers, having mathematical operators use signed
conversion to convert it to its signed format for the calculation and then returned
back to its original representation. Floating-point numbers are represented by the
IEEE-754 [21] representation. The bits are stored generally as little endian.

2.2.5 Binary Format

I will briefly go over the binary format of a WebAssembly module. It is encoded as its
abstract syntax shown above, in a linear fashion. It is defined by an attribute gram-
mar and it is also considered a well-formed encoding if and only if it is described by
the grammar [3].

To give some examples of the grammar, figure 2.6 shows how it would be encoded
and decoded as. The example for the block instruction shows how to utilize the
grammar in its recursive nature. It also makes use of an explicit opcode (0x0B)
which represents the term end. The example also shows us the one guiding prin-
ciple in this grammar, which is that each grammar rule only produces exactly one
synthesized attribute. This would be the byte sequence that is shown in the left hand
side of the rule. This makes it quite simple to be able to decode[3].

11

2.3. WASMCERT Chapter 2. Background

It is also worth noting how modules are represented. The entire WebAssembly mod-
ule is separated into different individual sections that match the structure of the
module record shown in the abstract syntax. The only separation made is for func-
tion definitions which separates the type declarations and the actual implementation
[3].

numtype ::= 0x7F ⇒ i32 | 0x7E ⇒ i64 | 0x7D ⇒ f32 | 0x7C ⇒ f64
instr ::= 0x00 ⇒ unreachable
| 0x01 ⇒ nop
| 0x02 bt : blocktype (in : instr)∗ 0x0B ⇒ block bt in∗ end
| 0x0C l : labelidx ⇒ br l
| 0x6A ⇒ i32.add

Figure 2.6: Selected Grammar rules

2.3 WasmCert

With WebAssembly having its semantics formally specified, it would simply make
sense for its specification to be completely mechanized. With this in mind, there are
already complete mechanisations done in this language, shown in the paper done
by Watt and Rao in ”Two Mechanisations of WebAssembly 1.0” [2]. In fact, Watt
had already done some part of the mechanisation in 2018 in his paper ”Mechanising
and Verifying the WebAssembly Specification” [22]. At the moment, the focus is on
WasmCert, which came from Watt and Rao’s paper, but more specifically the Coq
version of it, as it is more relevant to the scope of the paper. It closely follows the
Isabelle version so it should be sufficient. When saying WasmCert from know on, it
means the WasmCert-coq version of it, repository in [23].

2.3.1 DataTypes

The Coq mechanisation starts with declaring the abstract syntax of WebAssembly. It
does so by creating many inductive types for each part of the module. Figure 2.7
shows how the instructions are implemented in Coq [2]. For some of the instruc-
tions, not much is needed besides a good name to indicate which one it is, as this
is only the syntax. As shown in the Coq section, we can prove results with proof
by induction with later it will prove useful. It is good to note the BI loop example
as it shows that it requires a function type, a list of instructions and it returns an
instruction.

With all of these definitions well-formed, you can start to reason through these
and derive some results, in which ultimately they reach the soundness result that
is required in the WebAssembly specification. These definitions can be found in the
datatypes.v file in WasmCert [2].

12

Chapter 2. Background 2.3. WASMCERT

Inductive basic_instruction : Type := (* be *)

| BI_unreachable

| BI_nop

| BI_drop

| BI_select

| BI_block : function_type -> list basic_instruction -> basic_instruction

| BI_loop : function_type -> list basic_instruction -> basic_instruction

| BI_br : immediate -> basic_instruction

| BI_current_memory

| BI_grow_memory

| BI_const : value -> basic_instruction

Figure 2.7: Basic Instructions

2.3.2 Typing

For the typing rules, there is an induction definition which encompasses all of the
typing rules for the instructions. Not only that, but there are additional rules that
serve as wrappers for the store and frame typing, as well as useful functions for
checking if the types agree with each other. The typing context was defined in the
datatype part as a Coq record, which is a data structure that allows for static storage
of many different types [13]. As a typing context has many components, it is rather
the correct structure to use.

Figure 2.8 shows how many of the instruction rules would be written to give an ex-
ample. The inductive definition be typing takes a typing context, a sequence a basic
instructions and a function type to return a proposition. Looking at the example of
bet get local, it assumes that i, being the index to the associated type in the local
values of the typing context, is smaller than the size of the context, and it also as-
sumes it can find some type t. As you can see, these mimics the typing precondition
of get local seen in the Validation section. If both of those are true, then it must be
the case that we have a the correct typing with the instruction being [::BI get local
i], where BI get local is the constructor for the instruction local.get i, and the type
being (Tf [::] [::t]), where Tf is the constructor for function types. Clearly this rep-
resents C ⊢ local.get i : [] → [t].

Another thing to note about the typing rules is the extension of the typing judge-
ments in order to satisfy type soundness. In Watt and Rao’s paper [2], they present
some additional judgements in efforts of better defining type soundness. Figure 2.9
shows configuration validity, which defines the typing judgement for type sound-
ness in the highest level. The precondition ⊢s S : ok means that the store has to
be well-formed in terms of the size of the memories and tables, and the types have
to agree with each other. The precondition S; ϵ ⊢loc F ; e∗ : [t∗] defines the type of
the instructions under the given function frame [2]. This judgement, named local

13

2.3. WASMCERT Chapter 2. Background

Inductive be_typing : t_context -> seq basic_instruction

-> function_type -> Prop :=

| bet_const : forall C v, be_typing C [::BI_const v] (Tf [::] [::typeof v])

| bet_unop : forall C t op,

unop_type_agree t op -> be_typing C [::BI_unop t op] (Tf [::t] [::t])

| bet_binop : forall C t op,

binop_type_agree t op -> be_typing C [::BI_binop t op] (Tf [::t; t] [::t])

| bet_get_local : forall C i t,

i < length (tc_local C) ->

List.nth_error (tc_local C) i = Some t ->

be_typing C [::BI_get_local i] (Tf [::] [::t])

Figure 2.8: Basic Typing

validity, is given in more detail in WasmCert. These judgements are necessary as
they enforce that the given store, function frame, and instances are valid over the
enclosing instruction sequence.

⊢s S : ok S; ϵ ⊢loc F ; e∗ : [t∗]

⊢c S;F ; e∗ : [t∗]

Figure 2.9: Configuration Validity

2.3.3 Reduction

Reduction rules can now be defined. It follows the same format as the operational
small-step semantics shown in section 2.2.4. It is separated into two different induc-
tive types, reduce simple and reduce, where reduce simple do not need reference to
the store, frame and host state. Figure 2.10 shows how reduce simple is defined for
the binary operations case as a small example. The inductive structure takes in the
previous sequence of instructions and the next one and returns a proposition. The
first case depicts a success case where it uses a helper function app binop, (which
makes use of Coq’s option type to represent possibly undefined values) to check that
it is defined in order to create the full reduction. If it is ill-defined it will make the
failure case true. These rules can be found in the opsem.v file in WasmCert [2].

2.3.4 Type Soundness

Now that we have the building blocks of the WebAssembly specification defined (and
some additional utility definitions/theorems to make the proof work which we omit
for brevity), it is possible to prove type soundness.

14

Chapter 2. Background 2.3. WASMCERT

Inductive reduce_simple : seq administrative_instruction

-> seq administrative_instruction -> Prop :=

(** binop **)

| rs_binop_success : forall v1 v2 v op t,

app_binop op v1 v2 = Some v ->

reduce_simple [::AI_basic (BI_const v1); AI_basic (BI_const v2);

AI_basic (BI_binop t op)] [::AI_basic (BI_const v)]

| rs_binop_failure : forall v1 v2 op t,

app_binop op v1 v2 = None ->

reduce_simple [::AI_basic (BI_const v1); AI_basic (BI_const v2);

AI_basic (BI_binop t op)] [::AI_trap]

Figure 2.10: Reduction defined in Coq

Type soundness represents two properties: preservation and progress. Preservation
in terms of type theory means that if a certain program has a specific type and it
can be reduced to a different program, then the resulting program will preserve the
original type. This is an important property to have as it enables us to determine the
resulting type of the whole program while being reduced, without doing any reduc-
tion ourselves. As such, we can statically type check the program. More formally,
preservation is given as follows:

If ⊢c S;F ; e∗ : [t∗] and S;F ; e∗ ↪→ S ′;F ′; e′∗, then ⊢c S
′;F ′; e′∗ : [t∗] and S ≺s S

′

The property has been lifted to all for tracking of the store and frame which is as-
sumed to be potentially modified during a reduction. The relation S ≺s S

′ refers to
a restriction on the store for WebAssembly programs that state that the store can not
be decrease in size. It also ensures that it preserves the original parts of the store [2].

The progress property is defined as a certain program always being able to make
some sort of progress in the reduction. As in, it either ends up in a terminal state or
it is able to be reduced further into a new state, provided it has a well-defined type.
More formally, progress is given as follows:

If ⊢c S;F ; e∗ : [t∗], then is-terminal(e∗) ∨∃S ′F ′e′∗. S;F ; e∗ ↪→ S;F ; e′∗

15

Chapter 3

Wasm Spectec

The following sections will give an overview on the WasmSpectec toolchain, as well
as the internal language (IL) core features.

3.1 Wasm Spectec Toolchain

Spectec files
(DSL Source)

External
Language (EL)

Internal
Language (IL)

Latex

Algorithmic
Language (AL)

Prose and
Interpreter

ITP Definitions

Parse

Elaboration

Latex
Backend

Animate

Prover
Backends

Transforms

Project Focus

Figure 3.1: WasmSpectec Toolchain inspired by [24]

Figure 3.1 shows the overall tool chain for the DSL. The toolchain gives the ability to
produce multiple backends from the input, also known as the DSL source [6]. The
toolchain is written in Ocaml, a multi-paradigm, but mainly functional programming
language [25]. The workflow starts with the parsing of the DSL, turning it into an
abstract syntax tree known as the external language (EL). The EL can then be trans-
formed into the internal language (IL). The IL is merely the EL with some additional
information inferred such as the bindings of variables in definitions and rules.

16

Chapter 3. Wasm Spectec 3.2. INTERNAL LANGUAGE CORE FEATURES

Then, with the IL, one can either specify to generate ITP definitions, or transform
the IL to a more algorithmic representation of the DSL source, known as Algorithmic
Language (AL). AL is a more restricted version of the IL that enforces and algorithmic
order of evaluation [24]. The AL is out the scope of the project, so only a high-level
description is provided.

The toolchain then can use all of these languages to generate the following[24]:

• Latex: The latex backend translates the EL to the latex representation similar
to the already established formal specification noted in [3]. This only gives the
rules and definitions without the actual explanation of such rules.

• Prose: The prose backend provides the pseudo-algorithms for the reduction
rules using directly the AL.

• Interpreter: The Interpreter backend interprets the AL which represents the
Webassembly semantics.

• Prover Backends: The Prover backends transform the IL to inductive definitions
and relations in ITPs that can later be used for mechanization.

The main focus of the project is to create a Prover backend for Coq for the Wasm-
spectec toolchain. As such, the EL and AL are not going to be discussed in detail, as
well as the other backends. However, the IL and its transformations will be discussed
in the next section. All of the information derived from the IL comes from the code
given in the repository: [6].

3.2 Internal Language Core Features

The main aim of this section is to give a thorough overview of the IL AST. The reason
for this is because the documentation of the IL is not complete yet, and as such one
would need to resort to the code to understand the IL. Furthermore, almost all parts
of the IL are utilized in the translation process.

Figure 3.2 shows the AST for the IL language, based on the print output given in
the Wasm Spectec toolchain (this is not a backend output). This gives the com-
plete picture of how the IL is constructed. The only portion that is hidden is the
annotations inside inductive types, definitions and relations, as they are not printed.
The following subsections it will attempt to go through all of these components and
explain them in more detail. Some of the sections are not absolutely necessary to
understand the translation process. As such, I marked the optional sections with an
asterisk at the end.

3.2.1 Annotations (Hints)*

Most of the Wasm Spectec toolchain operates with an AST which for the most part
gives sufficient information for the given problem at hand. However, some infor-

17

3.2. INTERNAL LANGUAGE CORE FEATURES Chapter 3. Wasm Spectec

(variable id) id ::= lower-case-identifier

(atoms) atom ::= upper-case-identifier | -> | | | ... (mixops) mixop ::= atom∗∗

(iteration) iter ::= ? | ∗ | + | ^exp
(annotations) hint ::= {id, exp∗}
(binds) bind ::= id : typ | syntax id
(number types) numtyp ::= nat | int | rat | real
(types) typ ::= bool | numtyp | text | id(arg∗) | typ1 ∗ typ2 ∗ ...typn | typiter

(user-defined types) deftyp ::=
(Type Alias) typ |
(Inductive) (| mixop{bind∗}(typ1, typ2, ..., typn) --prem∗)∗ |
(Record) {(atom{bind∗} typ --prem∗,)∗}
(unary operators) unop ::= ∼| − | + | +− | −+
(binary operators) binop ::= ∧ | ∨ | => | <=> | + | − | / | \ | ^ |=|≠| < | > | <= | >=
(expressions) exp ::= id | bool | nat | text | unop exp | exp binop exp | (exp∗) | exp.i |
mixop exp | (exp)? | (exp)! | {(atom exp)∗} | exp.atom | exp ++ exp | [exp1...expn] |
|exp| | exp :: exp | exp[expidx] | exp[expi :expj] | exp[path = expval] | exp[path =
.. expval] | id(arg∗) | (exp)iter {(id : typ)∗} | exp : typ1 <: typ2
(paths) path ::= path[expidx] | path[expi : expj] | path.atom
(premises) prem ::= if (exp) | otherwise | (prem)iter{(id : typ)∗} | id : mixop(exp)
(args) arg ::= exp | syntax typ
(params) param ::= id:typ | syntax id
(Instance of type definition) inst ::= syntax id{bind∗}(arg∗) = deftyp
(Inductive Relation Rules) rule ::= rule id{bind∗} : mixop exp --prem∗

(Auxiliary Definition Clauses)
clause ::= def $id{bind∗}(arg1, ..., argn) = exp --prem∗

(High-level definitions) def :=
(Defining Single Type) inst | (Defining Family Type) syntax id(param∗) inst∗ |
(Inductive Relations) relation id : mixop(typ 1, ..., typ n) rule∗ |
(Auxiliary Definitions) def $id(param1, ..., paramn) : typ clause∗ |
(Recursive High-level defs) rec {def ∗}

Figure 3.2: IL AST

mation such as descriptions of certain types, and partial functions, doesn’t really fit
neatly into the AST. As such, the hint command is given to users to supply the infor-
mation when needed.

Hints are defined as a record of two elements: the id, which represents the specific
command you want for a certain element in the AST, and expressions, which are
given as strings to be parsed later when needed. Figure 3.3 shows how the partial
command may be used to represent partial functions. The IL representation after
the totalize transform utilizes the partial keyword to transform partial functions into
total functions using the optional iteration. Iteration and transforms are discussed
later in the chapter.

18

Chapter 3. Wasm Spectec 3.2. INTERNAL LANGUAGE CORE FEATURES

def $ s i g n i f (N) : nat h in t (p a r t i a l)
def $ s i g n i f (32) = 23
def $ s i g n i f (64) = 52

def $ s i g n i f (N : N) : nat ?
def $ s i g n i f (32) = ?(23)
def $ s i g n i f (64) = ?(52)
def $ s i g n i f {x0 : N}(x0) = ?()

Figure 3.3: The partial annotation and IL representation (after totalize)

3.2.2 Atoms and Mixops

The IL allows support for special kinds of identifiers known as atoms and mixops.
Atoms are represented as upper-case identifiers or special identifiers such as bottom
(|), representing falsity, or arrow (->), which is used a lot to represent a function
type in a convenient manner).

Mixops are a list of a list of atoms, where each separation of the list of atoms denotes
where a variable is placed in the DSL source. In the printing of the IL, these locations
where variables are meant to be placed are denoted by the special character ’%’.
Figure 3.4 gives an example of how mixops are used to give the user freedom to
represent certain identifiers in a expressive manner. The top identifier is how the
IFELSE instruction is written in the DSL source for Webassembly 1.0 and the bottom
is the IL representation (spaces were added between % and atoms for clarity, and
variable bindings were omitted).

IF b locktype i n s t r * ELSE i n s t r * =>

` IF % % ELSE %`(b locktype : blocktype , i n s t r * : i n s t r * , i n s t r *)

Figure 3.4: Mixops represented in DSL Source and IL

3.2.3 Bindings, Arguments, and Parameters*

In the IL, variables are placed in three different categories. Each category has a
expression variant (which is either a normal variable or expression) and a generic
type variant (indicated by the word syntax). The three categories are:

• Bindings in the form bind ::= id : typ | syntax id : this structure was added
to the IL to give extra information on all variables that are utilized in the
inner-portions of the AST, including free variables that do not appear in match
arguments and parameters, but do appear in the premises.

19

3.2. INTERNAL LANGUAGE CORE FEATURES Chapter 3. Wasm Spectec

• Arguments in the form arg ::= exp | syntax typ: these mainly represent val-
ues and variables that are allowed to also be expressions. As an example, in
the case of matching, they can be match patterns instead of a simple identi-
fier (such as list cons X :: XS). Another example would be dependent type
arguments.

• Parameters in the form param ::= id:typ | syntax id: this is mainly used in
high-level definitions declarations (such as function definition type declaration
and relation type declaration), that do not allow any expression, and as such
these parameters must be identifiers.

3.2.4 Basic Types and Iterations*

The IL provides support for various primitive types: different number types (inte-
gers (int), natural numbers (nat), rational numbers (rat) and real numbers (real)),
booleans (bool) and strings and characters (text).
With these primitive types and user-defined types, the IL also supports n-ary tuple
types of the form (typ 1 ∗ ... ∗ typ n) and iteration types of the form typiter. Iterations
can be of four different forms:

• optional type of the form ?.

• any list of the form *.

• non-empty list of the form +.

• list of a specified size of the form ˆexp.

These iterations all have an implicit subtyping in the straightforward way, such as
optional being a subtype of all of the other lists, and the non-empty list being a sub-
type of the any list iteration.

3.2.5 User-defined types

Along with the basic types, The IL allows extensive support for three different types
that users are allowed to define: inductive types, type aliases and record types. These
can be of a single instance or a family type. User-defined types, when defined, can
be specified in the form id(arg∗) where id is the name given through the definition,
and arg∗ is a list of type arguments for dependent types. We will go through how
the three different types can be defined.

All of the three types are defined with an identifier representing its name and ar-
guments representing the dependent type arguments. Then, each version has their
own construction.

20

Chapter 3. Wasm Spectec 3.2. INTERNAL LANGUAGE CORE FEATURES

Inductive types are defined in the form of a list of constructors, with each of the
entries having a mixop representing its name, a tuple type, a list of variable bindings
utilized in the tuple type, premises constraining the constructor, and a list of hints.
Premises are discussed later in section 3.2.9. Inductive types in the IL also allow pa-
rameters to the base type, allowing for dependent types to be constructed. Inductive
types are also allowed to form recursive structures, and even have mutual recursion
with other inductive types. Figure 3.5 gives an example of how the byte type is rep-
resented for Webassembly, the external type, and how lists are represented. The type
byte has only one single constructor, and a natural value i which is constrained to be
within the bounds of a byte. Externtype shows an example of multiple constructors.
The list type gives an example of a dependent type argument X, which is utilized to
represent the generic type of the elements of a list.

syntax byte =
| `%`{ i : nat }(i : nat)

−− i f ((i >= 0) /\ (i <= 255))
syntax externtype =

| FUNC{ functype : functype }(functype : functype)
| GLOBAL{ g loba l t ype : g loba l t ype }(g loba l t ype : g loba l t ype)
| TABLE{ t ab l e t ype : t ab l e t ype }(t ab l e t ype : t ab l e t ype)
| MEM{memtype : memtype}(memtype : memtype)

syntax l i s t { syntax X}(syntax X) =
| `%`{X* : X*}(X*{X : X} : X*)

−− i f (|X*{X : X} | < (2 ˆ 32))

Figure 3.5: Example of inductive types as represented in the IL

Type aliases are defined as simply a type it is an alias of. Figure 3.6 presents how
result types would be represented in Webassembly 1.0, noting the restriction of the
result always being an optional value instead of a list, a form utilized in the next
versions of Webassembly.

syntax r e s u l t t y p e = va l t ype ?

Figure 3.6: Simple example of a Type Alias

Record types are defined as a list of fields, with each field having a single atom as its
name, variable bindings, a type, a list of premises and a list of hints. These records
are interpreted similarly to other programming languages: as tuples of fields that
can be accessed through dot notation. For example, figure 3.7 depicts how store
would be represented for Webassembly 1.0.

21

3.2. INTERNAL LANGUAGE CORE FEATURES Chapter 3. Wasm Spectec

syntax s t o r e =
{

FUNCS{ f u n c i n s t * : f u n c i n s t *} f u n c i n s t * ,
GLOBALS{ g l o b a l i n s t * : g l o b a l i n s t *} g l o b a l i n s t * ,
TABLES{ t a b l e i n s t * : t a b l e i n s t *} t a b l e i n s t * ,
MEMS{meminst* : meminst*} meminst*

}

Figure 3.7: IL representation of the run-time representation of store record type

syntax unop (va l t ype : va l t ype)
syntax unop { inn : inn }(INN valtype (inn)) =

| CLZ | CTZ | POPCNT
syntax unop { fnn : fnn }(FNN valtype (fnn)) =

| ABS | NEG | SQRT | CEIL | FLOOR | TRUNC | NEAREST

Figure 3.8: Example of family type IL representation

3.2.6 Family types

One last special case of user-defined types is the case of family types. Any of the
previously mentioned user-defined types can come in groups, utilizing dependent
types to differentiate between them and create a more general type.

Family types are formally defined as a tuple of: id representing its name, parameters
representing the terms in which the base type depends on, and a list of user-defined
types. The list of user-defined types would then have as their parameter the terms
the base type depends on, but as a pattern to match to.

One notable example is the unop type in Webassembly, representing its unary op-
erations. Since unop can be broken down into integer and float unary operations.
Figure 3.8 shows this exact type expressed in the IL. It is clear that it is a family of
inductive types, having valtype as the type to differentiate them. This gives the IL
(and Wasm Spectec toolchain) even more expressive power as such a structure is
convenient when handling a general type such as unop.

3.2.7 Expressions

Basic operations similar to what you would find in a programming language are pro-
vided as usual: unary operations such as not (∼) and negation (-), binary operations
such as basic arithmetic operations, logical operations, including equivalence (<=>)
and implication (=>), and numerical comparison operations. Each numerical oper-
ation has their corresponding numerical type in order to differentiate between, for
example, integer and real computation.

22

Chapter 3. Wasm Spectec 3.2. INTERNAL LANGUAGE CORE FEATURES

Primitive expressions are also supported such as variables, boolean, naturals, and
strings. One thing to note is that there are only natural numbers as expressions sup-
ported at the moment, even if there are other numerical types.

Collection expressions are also supported:

• Tuple literals of the form (exp1 exp2 ... expn)

• List concatenation of the form exp1 :: exp2. This expression is overloaded with
list cons, used extensively for matching.

• List literals of the form [exp1 exp2 ... expn] with [] as empty.

• Option literal of the form (exp)? with ()? as empty.

• List lookup of the form exp[expidx] or exp.i where i is the index.

• List slicing of the form exp[expi : expj] where expj is not included.

• List length of the form |exp|

• List and option map of the form (exp)∗{id : typ} and (exp)?{id : typ} where id
is the variable representing the entry of list id∗ or option id?.

• List and option zip of the form (exp)∗{id1 : typ1, id2 : typ2} and (exp)?{id1 :
typ1, id2 : typ2} where each id represents their entry of their corresponding
list/option.

• Option conversion to normal type of the form (exp)!. This asserts that the
optional type now must be required.

• Record literals of the form {atom1 exp1 , atom2 exp2, ... , atomn expn} where
atomi is the field name.

• Record access of the from exp.atom where exp must evaluate to a variable
representing a record.

• Record composition of the from expr1 @ expr2 where expr1 and expr2 must be
records. This expression handles the concatenation, if possible, of records.
This is mainly used when all of the fields of a records are collections, such as
the typing context.

• Record/list update of the form expr[path = expval] where expr must be a record
or list, path resembles a list of operations involving record accesses, list lookup
and slice lookup. Paths are their own inductive structure and the start of the
path indicates what exactly gets updated in the top-level, while the end of
the path indicates specifically what part of the structure gets updated. For
example, figure 3.9 shows two different updates. The first one updates the
runtime representation of the frame, specifically the local value at index x.
Since the path ended with a list lookup, it ends up being a list update at the

23

3.2. INTERNAL LANGUAGE CORE FEATURES Chapter 3. Wasm Spectec

end of the record path. The second one is more complex, having the runtime
representation of the store be updated, specifically its lists of global instances
is getting, at index idx, its record field VALUE globalinst updated. Here idx
was simplified for clarity.

• Record/list extend of the form expr[path = .. expval]. Similar to Record/list
update, but instead of updating it extends the collection at the end of the path.

f [LOCALS frame [x] = v]
s [GLOBALS store [idx] . VALUE global ins t = v]

Figure 3.9: Record/list update example

It is good to note that the map and zip operations are the simple cases of that spe-
cific expression. In the general case, any number of lists/options are allowed, though
they are largely unused due to their sheer complexity.

There are certain special expressions, namely the call expression, case expression
and the sub expression. The call expression is of the usual form id(arg1 arg2 ... argn),
where id must be a definition.

The case expression is defined in the form mixop exp where the mixop represents
the name of a constructor of an inductive type, while exp is the arguments that the
constructor takes.

The subtyping expression is defined of the form (exp : typ1 <: typ2), where typ1 is
the type the expression exp has, while typ2 is the type the expression should convert
into. The subyping expression is produced by the IL in order to explicitly state cer-
tain subtyping castings that occur while writing the DSL source. To ensure that these
types can be casted, they must have the same atom identifier, and same typing. One
notable example in the Webassembly 1.0 spec is the subtyping between instructions
and Administrative instructions. Figure 3.10 shows this specific example, where it is
clearly shown that instr is a subtype of admininstr, as they have the same construc-
tors (i.e. CALL, CONST, CALL INDIRECT, RETURN, etc.), but admininstr has more
cases. Variable bindings are omitted in this figure for clarity.

3.2.8 Definitions and Relations

Along with types, users can define auxiliary definitions to simplify the specification,
and inductive relations that represent the shape a certain judgement can form, such
as reduction rules [6].

Definitions are defined in the IL as a tuple of: an identifier representing its name,
a list of parameters (which could be either a variable of a certain type, or a generic

24

Chapter 3. Wasm Spectec 3.2. INTERNAL LANGUAGE CORE FEATURES

syntax i n s t r =
. . .
| CALL(func idx : func idx)
| CALL INDIRECT(type idx : type idx)
| RETURN
| CONST(va l t ype : va l type , v a l : v a l (va l t ype))

syntax admininst r =
. . .

| CALL(func idx : func idx)
| CALL INDIRECT(type idx : type idx)
| RETURN
| CONST(va l t ype : va l type , v a l : v a l (va l t ype))
| CALL ADDR(funcaddr : funcaddr)
| `LABEL %{%}%`(n : n , i n s t r * : i n s t r * , admininst r * : admininst r *)
| `FRAME %{%}%`(n : n , frame : frame , admininstr * : admininst r *)
| TRAP

Figure 3.10: Example of subtyping

type), its return type, and a list of clauses. The name, list of parameters and re-
turn type are known as the type declaration and the list of clauses are the actual
definition. Each clause consists of variable bindings, a list of arguments represent-
ing the patterns their respective types match to, the resulting expression, and a list
of premises. If the list of premises does not hold, then the pattern matching fails.
Definitions are allowed to be self-recursive. To give a simple example, figure 3.11
shows how the function min would be represented in the IL. It can be clearly seen
that the definition is recursive, however the IL makes this even more explicit and
unambiguous by putting the rec keyword.

rec {
def $min(nat : nat , nat : nat) : nat

def $min{ j : nat }(0 , j) = 0
def $min{ i : nat }(i , 0) = 0
def $min{ i : nat , j : nat }((i + 1) , (j + 1)) = $min(i , j)

}

Figure 3.11: Simple Definition example

Inductive relations are defined in the IL as a tuple of: an identifier representing its
name, a mixop representing the structure of such relation, a tuple type of arguments
that the inductive relation can take, and a list of rules. The name, mixop and tu-
ple type are known as the relation declaration, and the list of rules are the actual
inductive rules encompassing the declaration. Each rule consists of an id, variable

25

3.2. INTERNAL LANGUAGE CORE FEATURES Chapter 3. Wasm Spectec

bindings used in the premises and final expression, a list of premises, and the final
expression. Premises are covered in section 3.2.9. The final expression represents
the form the relation should take if all of the premises are fulfilled. Inductive rela-
tions are allowed to be self and mutually recursive with other inductive relations.

To give a simple example, figure 3.12 shows the inductive relation Instr ok which
represents the typing rules for single instructions. Rule nop has only the binding
context, and its final expression is only the instruction NOP instr and the empty
function type. This means that when reasoning about Instr ok, if the conclusion of
a certain argument (say, in a proof), has the form given in the final expression, then
one can reason that it is valid. Here the mixop (‘%|−%:%‘) represents the standard
structure of typing judgements used in Webassembly, as discussed in section 2.2.2.
Rule br shows a more complex example, where even if the conclusion is in the right
form to apply the rule, the premises also need to be true.

r e l a t i o n I n s t r o k : `%|−%:%`(context , i n s t r , functype)
ru l e nop{C : contex t } :

`%|−%:%`(C , NOP instr , `%−>%` func type ([] , []))

ru l e unreachable {C : context , t 1 * : va l t ype * , t 2 * : va l t ype *} :
`%|−%:%`(C , UNREACHABLE instr ,
`%−>%` func type (t 1 *{ t 1 : va l t ype } , t 2 *{ t 2 : va l t ype }))

ru l e br{C : context , l : l abe l i dx , t 1 * : va l t ype * ,
t ? : va l t ype ? , t 2 * : va l t ype *} :
`%|−%:%`(C , BR in s t r (l) ,
`%−>%` func type (t 1 *{ t 1 : va l t ype } : : t ?{ t : va l t ype } ,
t 2 *{ t 2 : va l t ype }))

−− i f (l < |C . LABELS context |)
−− i f (C . LABELS context [l] = t ?{ t : va l t ype })

Figure 3.12: Inductive relations example

3.2.9 Premises

The IL supports a wide range of premises (The let premise is omitted as it is unused
and undocumented):

• Rule premise of the form (id : mixop(exp)): this premise constrains the given
relation by stating that a specific rule of a different relation must also be true.
The id represents the rule name, mixop the structure and the exp is the final
expression noted in section 3.2.8.

• If premise of the form (if exp): this states that a specific expression exp must
be true.

26

Chapter 3. Wasm Spectec 3.2. INTERNAL LANGUAGE CORE FEATURES

• Else premise of the form (otherwise): this states that any of the previous rules/-
clauses premises must be false.

• Single iteration premise of the form ((prem)iter {(id : typ)}): this states that
for a given iteration of variable id, the premise must be true for each element
of the iteration.

• Double iteration premise of the form ((prem)iter iteration {(id1 : typ1), (id2 :
typ2)}): this states that for a given iterations of two variables id1 and id2, the
premise must be true for each zipped element of the two iterations. This means
that the two iterations must be of the same size.

As it was the case for mapping and zipping, the iteration premise also allows for
any number of iterations, but is unused for the most part except for the single and
double case.

3.2.10 Transformations*

After the EL gets transformed into the IL, it is possible to run a few passes on the IL,
transforming it and making more information available for the backends. The trans-
formations used for the translation solution are: totalize, wild and sideconditions.
Totalize looks for the keyword partial when going through all definitions and at-
tempts to convert the definition into a total function by making the result type into
the option iteration, and adding an additional case where the general pattern is
given as the arguments, and the empty option literal as the resulting expression.
Figure 3.3 presents a simple example of how it may transform the function signif
(representing the size of the significand of a floating point number). Totalize also
changes any function call expression of this definition to assert that the value must
be required through the option conversion expression (exp!).

Wild transforms the IL by attempting to remove wildcards from the syntax. It cur-
rently detects optional single constructor inductive types and empty option literals.
This is motivated as many of the DSL source syntax has expressions be acutal re-
lations which are allowed to fail and have multiple values, while theorem provers
must denote exactly one value given another value and all free variables [6].

Sideconditions attempts to transform premises and final expressions in inductive
relations to have explicit conditions. Some examples include: list access, which if
the premise is true, then it must be the case that the index is smaller than the list;
double iteration, which if the premise is true then it must be the case that the two
iterations are of the same size.

27

Chapter 4

IL2Coq

4.1 IL2Coq Workflow

4.1.1 Structure

Internal
Representation

(IL)

Generate
Environment

Sub pass

Coq Transform Else Removal

PrintCoqIL Coq Definitions

Env

IL
CoqIL

Figure 4.1: Design of Il2Coq

Figure 4.1 depicts the structure for the translation process between IL and Coq
(IL2Coq). It is, as the Wasm spectec toolchain, written in Ocaml. This is a par-
ticularily good advantage as Ocaml syntax is similar to Coq syntax, making it easier
to translate.

Coq Transform is the main core of the IL2Coq workflow, as it attempts to convert all
of the IL to an AST that resembles the inner syntax of Coq more, named CoqIL. It at-
tempts to disambiguate even more the information gathered from the IL, and make
a more restrictive version, in order to comply with the Coq compilation process. This
is discussed more in detail in section 4.2.

IL2Coq has three auxiliary passes. The first one is to generating an environment by
going through the IL and gathering information on certain typings. It is then utilized
in the transformation process to turn the IL to CoqIL. The second pass is known as
the sub pass, which creates explicit subtyping conversion functions and sets up im-
plicit coercion in Coq. The final pass is done after the CoqIL is created, known as

28

Chapter 4. IL2Coq 4.1. IL2COQ WORKFLOW

”else removal”, which is done in order to remove the ”otherwise” premise that Coq
cannot handle. These three passes with be discussed more in detail in section 4.3.

After all of the passes and transformations are done, the last thing left to do is to
print the CoqIL by traversing the AST. This is discussed more in detail in conjunction
with IL2Coq as their design are tightly coupled.

All of these workflows can be found in the github repository linked at the start, in
the folder backend coq.

4.1.2 Restrictions Imposed in the DSL Source

The DSL source, at the current moment, is very expressive and gives the user a large
amount of freedom to write their definitions and rules. In order to simplify the trans-
lation process, some restrictions are applied to the writing of the DSL source.

The first restriction is in regards to family types. Any parameter used in the base type
of a family type must have explicit structure. This means that if there is any subtyp-
ing between types in the list of user-defined types, it is made more explicit through
inductive structures. One notable example can be seen in figure 3.8, which makes
sure that the user-defined types inside the family type utilizes valtypes structure to
differentiate them, instead of having inn be a subtype of valtype (which is the orig-
inal version of the spec). This was done as Coq does not support subtyping (except
for explicit conversions made beforehand, which is what sub pass does), and there
is no possible way of going from the general type to the subtype besides matching.
Since it is not possible to match in an inductive structure, then there is no easy way
of allowing sub expressions to occur in this case.

The second restriction is to definitions and inductive types with premises. Any def-
inition that has clauses with premises will be removed and treated as an axiom. In
the case for the type preservation proof, some of these definitions were needed, and
as such they were rewritten as relations in the DSL source. This is due to the fact
that Coq does not handle conditional definitions well, and the DSL source expects for
some of the variables to be quantified universally, which is simply not possible for ex-
ecutable definitions in Coq. Inductive types are kept intact but without the premises.
These premises make types much more complicated to handle in proofs. In addition,
when used in case expressions, the premise would then need to be shown to be true,
making the expression much more messy.

The third restriction is to iterations. Option and general list are kept as usual, but
the other types of lists have been degenerated to the general list type. This is simply
due to the fact that it is much easier to just use a single type of list, as the others are
not implemented in Coq.

The final restriction has to do with user-defined number types. Since most of the

29

4.2. COQ TRANSFORM AND PRINTING Chapter 4. IL2Coq

number types are dependent types with premises, must of the information is lost
through the translation process. Hence it is much simpler to ignore them for now,
as they aren’t useful in the type safety proofs anyways, and they need to be handled
with extra care to get the right meaning across.

4.2 Coq Transform and Printing

This section will talk about the design process of the core algorithm of IL2Coq: the
transformation process from IL to CoqIL. It will go through firstly the motivation for
having the CoqIL, a brief overview of the CoqIL, the transformation approach, and
the transformation and printing of types and expressions.

4.2.1 Motivation for CoqIL

The CoqIL is a different AST generated from the IL that acts as a clean version of
the DSL source that can be immediately represented in Coq. In earlier versions of
IL2Coq, we did a direct translation (with passes) from the IL to Coq (following as
inspiration earlier work done in [6]), but this lead to the code being much more
complex and harder to work with. With the Coq Transform being only the transfor-
mation process, we were able to separate the complexity between different passes
more effectively.

In addition, there are certain blocks of the IL AST that do not have enough infor-
mation for Coq to handle correctly. For example, the else removal pass requires the
negation premise that the IL simply does not have. Since the CoqIL is isolated from
the other parts of the toolchain, it allows easier modification to the AST that would
make the structure suit Coq better. It is also possible to add even more passes that
are only needed for Coq.

4.2.2 Translation Approach

The guiding principle to constructing this translation between the IL and Coq was
to mainly focus on targeting a specific version of WebAssembly. This would mean
that the overall solution would be more of a proof of concept rather than a general
solution that works on all inputs. That being said, while constructing the solution,
most of the components have been made to be transformed in a general sense, but
some parts are left out that could easily be extended if necessary. A notable example
is inductive relations, which have a good clean translation between IL to Coq for all
inputs, not only WebAssembly 1.0. The only exception to this is family types and
dependent types in general, which require some modification of the IL to make them
work better. This will be discussed more in detail in the evaluation.

30

Chapter 4. IL2Coq 4.2. COQ TRANSFORM AND PRINTING

4.2.3 Exported Code

In order to fully be able to translate most of the features given in the IL specification,
we need to be able to extend our Coq environment.

The Coq environment first has to establish some type classes. Type classes are types
that Coq can infer automatically through instances defined by the user [13]. With
type classes, we can define a certain group of types that exhibit a specific behaviour.
In this case, we want our types to have a default value. As such, the inhabited type
class is created as shown in figure 4.4. This effectively makes it so any type T defined
through Instance keyword can use the functions lookup total (used for list lookup ex-
pression) and the (used for option conversion expression). With this setup, now any
inductive type and record type created only needs to define their own instance.

To give a simple example of why the inhabited type class is necessary, figure 4.2
shows the typing rule for the call instruction. Its premise makes sure that the func-
tion type at address x is the same type as the call instruction. List Lookups in We-
bAssembly implicitly state that x is bound [3]. In the IL representation, due to the
side conditions pass, this is added explicitly to help Coq in its proofs. However, Coq
needs more information to deal with list lookups. Namely, it either must return an
option (List.nth error [13]), or the resulting type of the lookup must have a default
value (as seen in figure 4.4 with lookup total). The default value method is gener-
ally more favorable as the option case would make every lookup access have to be
transformed to an option and it would have to be propagated further to the entire
AST, making it a non-trivial problem. As such, the inhabited type class provides a
simple solution that does not require modification of the expression.

ru l e I n s t r o k / c a l l :
C |− CALL x : t 1 * −> t 2 ?
−− i f C .FUNCS[x] = t 1 * −> t 2 ?

Figure 4.2: Call Typing Rule in the DSL Source

The other type class needed is the Append type class which attempts to facilitate
record composition. Since records can be made of multiple different types, in order
to be able to append two records of the same type, we would need each field to also
be appendable. The type class Append exists for this reason, so it is possible to easily
append field types. We defined some instances beforehand, such as list and option,
as these are used extensively in records. For fields that are of type user-generated
inductive types and primitive types (such as booleans), we consider them as non-
appendable and for the moment only take the first value and ignore the second one.

Functions that resemble the collection expressions behaviour are also made, such
as list slice, option map, etc. We also made an option to list conversion function,
to mimic the implicit subtyping of iterations that is utilized in the IL. To make this
much simpler rather than having to add the function to all the cases where a list is

31

4.2. COQ TRANSFORM AND PRINTING Chapter 4. IL2Coq

needed rather than an option, we utilize a feature known as coercion. The coercion
keyword in Coq indicates an inheritance mechanism between types that doesn’t re-
ally increase the expressive power of the language, but it instead offers convenience
[13]. Figure 4.3 shows how it would be constructed, with the function name being
the conversion function, type 1 is the actual type, and type 2 is the type it is convert-
ing into. Whenever Coq encounters the second type required but only the first type
is given, then the conversion function is applied automatically. This is really useful
and the basis of how the sub pass is constructed.

Coercion function_name: type_1 >-> type_2

Figure 4.3: Type Coercion in Coq

Class Inhabited (T: Type) := { default_val : T }.

Class Append (A: Type) := _append : A -> A -> A.

Definition lookup_total {T: Type} {_: Inhabited T} (l: list T) (n: nat) : T :=

List.nth n l default_val.

Definition the {T : Type} {_ : Inhabited T} (arg : option T) : T :=

match arg with

| None => default_val

| Some v => v

end.

Definition option_append {A: Type} (x y: option A) : option A :=

match x with

| Some _ => x

| None => y

end.

Global Instance Inh_nat : Inhabited nat := { default_val := O }.

Global Instance Inh_list {T: Type} : Inhabited (list T) :=

{ default_val := nil }.

Global Instance Append_List_ {A: Type}: Append (list A) :=

{ _append l1 l2 := List.app l1 l2 }.

Global Instance Append_Option {A: Type}: Append (option A) :=

{ _append o1 o2 := option_append o1 o2 }.

Figure 4.4: Type classes used and its corresponding functions

4.2.4 User-defined Types, Relations and Definitions

Inductive Types

Coq Inductive types are a reduced version of the IL version, defined in the form:
name, list of arguments (if it is a dependent type), and a list of constructors.

32

Chapter 4. IL2Coq 4.2. COQ TRANSFORM AND PRINTING

Constructor names for Coq have to be unique in a Coq module, and as such the
name of the base type is prepended to all constructors. Inductive types are also
given a defined instance of the Inhabited type class, with the default val being the
first constructor (with all of the argument types for a constructor taking their default
value as well).

Record Types

Coq record types behave similar to the IL record type. In the CoqIL they are defined
as an identifier representing its name and a list of record fields, each containing an
identifier representing field name and a coq term as its type (it also has struct type
but that is for the auxiliary pass).

Some restrictions and extensions are made when constructing a record type. Firstly,
a restriction for Coq record types is that field names for a record type must be unique
in the Coq module. This means that if a field name is reused in a different record,
this would not be valid. This is due to the fact that projections (functions that allow
access to a specific field) are made for each field and having the same name would
clash the function name [13]. In order to overcome this, field names are extended
to also include the record name, making it effectively unique. This can be seen in
figure 4.5, with the fields being prepended with the name ”store”.

Secondly, records have to be extended to allow record composition and default
records. With the aid of the type class Append created beforehand, we are able
to define Append store which goes inside the record and recursively calls the ap-
pend function to effectively go inside the structure. A default record is also made
through the Inhabited class, allowing lookup and option conversion capabilities.

Finally, records have to be extended to allow for automatically updating record
fields. With the help of the external library for automating record updates (repos-
itory in [26]), we can facilitate the process in a generic manner. To set it up, we
need to define the instance for the type class Settable, which takes the constructor
made at the start (in the case of figure 4.5, it would be mkstore, the constructor
that creates a record), and all of the field names, to set up and automatically infer
what needs to be modified in the record. The notation of how to actually define the
specific updates will be described in section 4.2.5.

Family Types

With the restrictions applied on family types, they can now simply be defined in the
CoqIL as a tuple of a name and a list of either a coq term for type alias group or a list
of constructors for an inductive types group. In order to make this work for inductive
types, we take the type that the base type depends on, and use its name to create
a new inductive type. In this case, we take the constructor valtype INN(inn)from
figure 3.8 and utilize its inner type inn to form unop inn. This only works because
valtype was constructed in the specific way discussed in section 4.1.2. We then use

33

4.2. COQ TRANSFORM AND PRINTING Chapter 4. IL2Coq

Record store := mkstore

{ store__FUNCS : (list funcinst) ; store__GLOBALS : (list globalinst)

; store__TABLES : (list tableinst); store__MEMS : (list meminst)

}.

Global Instance Inhabited_store : Inhabited store :=

{default_val := {| store__FUNCS := default_val; store__GLOBALS := default_val;

store__TABLES := default_val; store__MEMS := default_val|} }.

Definition _append_store (arg1 arg2 : store) :=

{|

store__FUNCS := append_ arg1.(store__FUNCS) arg2.(store__FUNCS);

store__GLOBALS := append_ arg1.(store__GLOBALS) arg2.(store__GLOBALS);

store__TABLES := append_ arg1.(store__TABLES) arg2.(store__TABLES);

store__MEMS := append_ arg1.(store__MEMS) arg2.(store__MEMS);

|}.

Global Instance Append_store : Append store :=

{ _append arg1 arg2 := _append_store arg1 arg2 }.

#[export] Instance eta__store : Settable _ :=

settable! mkstore <store__FUNCS;store__GLOBALS;store__TABLES;store__MEMS>.

Figure 4.5: Full translation of a Record Type from input figure 3.7

these new inductive types created to make the base family type as an inductive type,
having each constructor take each of the new inductive type and appending the word
”entry” to make the constructor unique. We also do not include the type it depends
on, as this would make it much harder to deal with later if we keep it. This is seen
clearly in the figure 4.6, having unop have two entries, each having an arg of type
unop inn and unop fnn respectively.

For a type alias family, it would instead just make a constructor for each entry of
the family, having the constructor take the type of the type alias. We also erase the
dependent type in this family. For type aliases, we make sure that the type of any
entry of the group respects subtyping coercions by making the constructor be the
conversion function (this could also be done for inductive types, but is unnecessary
for WebAssembly 1.0).

Figure 4.6 shows the inductive type val , which is a family type alias, and iN and
fN are what the resulting type the DSL wants val to convert into. val inn entry
would be the conversion function between iN to val .

Since we erase the dependent type, for any match statement in a definition, we need
to infer the dependent type through the other match arguments. The IL makes sure
that there needs to be the dependent type in the matching in order for this to work,
so all we need to do is find the type it refers to. Figure 4.7 shows this specific ex-
ample, where in order to add unop inn entry, we need to find the first arguments
type and get that it matches to inn.

34

Chapter 4. IL2Coq 4.2. COQ TRANSFORM AND PRINTING

Inductive unop___inn : Type :=

| unop___inn__CLZ : unop___inn | unop___inn__CTZ : unop___inn

| unop___inn__POPCNT : unop___inn .

Inductive unop___fnn : Type :=

| unop___fnn__ABS : unop___fnn | unop___fnn__NEG : unop___fnn

| unop___fnn__SQRT : unop___fnn | unop___fnn__CEIL : unop___fnn

| unop___fnn__FLOOR : unop___fnn | unop___fnn__TRUNC : unop___fnn

| unop___fnn__NEAREST : unop___fnn .

Inductive unop_ : Type :=

| unop___inn__entry (arg : unop___inn) : unop_

| unop___fnn__entry (arg : unop___fnn) : unop_ .

Inductive val_: Type :=

| val___inn__entry : iN -> val_

| val___fnn__entry : fN -> val_.

Coercion val___inn__entry : iN >-> val_.

Figure 4.6: Inductive Family Type unop as Figure 3.8, and Family Type Alias val

In addition, when a specific dependent type argument is already a concrete case
(such as inn i32), we rewrite it to be the sub-type. As an example, we would
convert the IL representation val (inn I32) into simply iN. This is simply to mimic
the sub-typing structure that the IL creates for family types.

Definition fun_unop (v_valtype_0 : valtype) (v_unop__1 : unop_)

(v_val__2 : val_) : list__val_ :=

match (v_valtype_0, v_unop__1, v_val__2) with

| ((valtype__INN v_inn), (unop___inn__entry (unop___inn__CLZ)),

(val___inn__entry v_iN)) =>

[((fun_iclz (fun_size (valtype__INN v_inn)) v_iN) : val_)]

Figure 4.7: Inferring the Constructor for Family Types

Inductive Relations

Inductive relations in the CoqIL are the only high-level structure that mirror well
what is depicted in the IL. It is defined in the form of a name, inductive relation argu-
ments, and a list of rules. These rules are an extension of the inductive constructors,
having also a list of premises and the end expression. Each of the arguments for the
rules behave as universally quantified variables. Just like inductive types, the base
name is prepended to all of the rule names to make them unique.

To give a small example of how inductive relations are translated, figure 4.8 shows
how figure 3.12 is translated to Coq. Instr ok is a relation that takes a context, in-

35

4.2. COQ TRANSFORM AND PRINTING Chapter 4. IL2Coq

struction and functype and returns a proposition, allowing the use of such structure
for proof handling.

Inductive Instr_ok: context -> instr -> functype -> Prop :=

| Instr_ok__nop : forall (v_C : context),

Instr_ok v_C (instr__NOP) (functype__ [] [])

| Instr_ok__unreachable : forall (v_C : context)

(v_t_1 : (list valtype))

(v_t_2 : (list valtype)),

Instr_ok v_C (instr__UNREACHABLE) (functype__ v_t_1 v_t_2)

| Instr_ok__br : forall (v_C : context) (v_l : labelidx)

(v_t_1 : (list valtype)) (v_t : (option valtype))

(v_t_2 : (list valtype)), (v_l < (List.length (context__LABELS v_C)))

/\ ((lookup_total (context__LABELS v_C) v_l) = v_t)

-> Instr_ok v_C (instr__BR v_l) (functype__ (@app _ v_t_1 v_t) v_t_2)

Figure 4.8: Translated Inductive Relation Example

Definitions

Definitions in the CoqIL are a restrictive version of the IL, defined in the form of a
tuple of name, list of arguments, return type and list of match clauses. There are
no indication of premises in the CoqIL, as such it has lost information of the func-
tion definition itself. For match expressions, there are specific cases that make sure
that matching is well defined. For example, list concatenation is overloaded with list
cons, and as such when encountered in matching, we transform it to list cons in the
CoqIL.

If the list of match clauses are empty, that means that there is only a definition
declaration, and as such, the function definition is transformed into an axiom. Figure
4.9 shows an example of an axiom that appears in the WebAssembly 1.0 spec (due
to numeric operations not being implemented yet). Axioms in Coq are just treated
to hold for any input and output and as such is rather useful format for something
that is not implemented yet [13].

Axiom fun_fabs : forall (v_reserved__N_0 : reserved__N) (v_fN_1 : fN), fN.

Figure 4.9: Axiom example

4.2.5 Transformation and Printing of Basic Types and Expres-
sions

Most of the basic types and expressions shown in section 3.2.4 and 3.2.7 are trans-
lated in the straightforward way, as Coq already has builtin support for them.

36

Chapter 4. IL2Coq 4.2. COQ TRANSFORM AND PRINTING

One of the few exceptions is when, in a definition, a variable of type nat gets matched
with n + 1. Coq, when matching, only considers constructors of inductive types as
valid, and the plus operator is considered a notation for the function ”add.” As such,
whenever a plus operation is encountered in a match statement, we replace it with
the successor term in the CoqIL (”S”) with as many as the value of the second term
(in this case, one). Figure 4.10 shows how the min function given in figure 3.11 is
translated to Coq. The successor term resembles the successor constructor for the
inductive structure of natural numbers in Coq, and as such it succeeds in the match.

Fixpoint fun_min (v_reserved__nat_0 : nat) (v_reserved__nat_1 : nat) : nat :=

match (v_reserved__nat_0, v_reserved__nat_1) with

| (0, v_j) => 0

| (v_i, 0) => 0

| ((S v_i), (S v_j)) => (fun_min v_i v_j)

end.

Figure 4.10: Translated min example, from input of figure 3.11

One of the notable modifications made were to list/record updates. The CoqIL at-
tempts to keep the same structure of a path, however it makes it more compact by
merging dot accesses together. In order to represent record updates and list up-
dates, we make use of an external library named coq-record-update (repository in
[26]), to facilitate updates. In order to represent a specific record access, figure 4.11
shows the notation made for updating records and an example seen in translated
WebAssembly 1.0 spec (the same IL examples seen in figure ??). In the example, we
can see v f, which is of record type frame, is getting its field frame LOCALS updated
through list update. In order to apply dot accesses together, we can simply put a
semicolon. In the notation this simply means it is going to pipeline the accesses in
order to get the right field to update.

The record update gets more complicated with many interleaving list accesses and
record accesses. For every interleaving, we need to have create another record up-
date notation. For list lookup, we need to utilize the predefined function list update func
which instead of updating the list to a specific value, we apply a function to the value
found in the list. This allows us to stack as many interleaving record and list accesses
as we need. The second example in figure 4.11 shows exactly this.

(record name) <| (record field) := (value) |>

(v_f <|frame__LOCALS := (list_update (frame__LOCALS v_f) (v_x) (v_v))|>)

(v_s <|store__GLOBALS := (list_update_func (store__GLOBALS v_s) v_idx

((fun v_1 => v_1 <|globalinst__VALUE := v_v|>)

Figure 4.11: Translated record updates as example 3.9

37

4.3. AUXILIARY PASSES Chapter 4. IL2Coq

4.3 Auxiliary Passes

4.3.1 Generating the Environment

In order to fulfill some of the translation goals of the sub pass and the Coq transform,
we need to generate some mappings that give extra information of the types defined
by the user.

We first need to know whether a specific type is either a type alias, inductive type,
or record. This is because record types need to know whether a certain type is ap-
pendable, in order to define the instance. If that certain type is an inductive type,
then it is considered not appendable.

Then, we need to also know the name of the variable type that the type alias struc-
ture aliases to, and the number of arguments. This is needed for case expressions,
since there are cases where we only have the type alias name, but we actually need
the inductive type name in order to prepend to the case. The number of arguments
is needed to put holes, if the type alias definition is a dependent type. Holes are used
so that Coq is able to automatically infer their value (if possible).

The final information needed is a mapping between the name of an inductive type
and its constructors. This is used extensively in the sub pass in order to be able to
match correctly between sub-type and super-type.

The structure of the environment is two mappings. The first one is a map between
an identifier of any user-defined type and a tuple of the next identifier, number of
arguments and structure type. The second one is a mapping of inductive type iden-
tifier to a list of constructors. Figure 4.12 shows the definition of the environment
and structure type.

type struct_type = | Record | Inductive | TypeAlias | Terminal

module Env : Map.S

type var_typ = id * int * struct_type

type sub_typ = (id * mixop * typ) list

type env = { mutable vars : var_typ Env.t; mutable subs : sub_typ Env.t }

Figure 4.12: Definition of Environment in Ocaml

4.3.2 Creating Subtype Coercions

The sub pass is an intermediate stage between the IL and CoqIL in which attempts
to look at any inductive relation (could be extended to other high-level structures)
and find all sub-typing expressions. Then, we go through each sub-typing expression
and go through the following procedure:

38

Chapter 4. IL2Coq 4.3. AUXILIARY PASSES

1. Find the constructors for the sub-type and the super-type. For this, we utilize
the environment’s map of id to list of constructors.

2. For each constructor in the sub-type, we go through all constructors of the
super-type and check if they are the same. In order to be the same, the con-
structor name must match and each type inside the tuple type must be the
same (this could be extended to also include sub-types instead of being strictly
the same).

3. After the constructors are matched correctly, we create a CoqIL function defini-
tion, having each match clause be the constructors of the sub-type and super-
type matched.

4. With the function definition, we create a coercion between the two types uti-
lizing the function definition as the conversion function.

These are all created before the relation is created, and they are immediately made
into CoqIL high-level structures. This is because coercions do not exist in the IL.
Figure 4.13 shows this exact creation for the sub-type instruction and super-type ad-
ministrative instruction.

With this in place, the sub expression then becomes simple: in the CoqIL it is of the
form (exp : typ2) where typ2 is a super-type. This forces Coq to convert the expres-
sion exp into the super-type, which then it implicitly adds the conversion function.

Definition fun_coec_instr__admininstr (v_instr : instr) : admininstr :=

match (v_instr) with

| (instr__NOP) => (admininstr__NOP)

| (instr__UNREACHABLE) => (admininstr__UNREACHABLE)

| (instr__CALL v_0) => (admininstr__CALL v_0)

| (instr__CALL_INDIRECT v_0) => (admininstr__CALL_INDIRECT v_0)

| (instr__RETURN) => (admininstr__RETURN)

| (instr__CONST v_0 v_1) => (admininstr__CONST v_0 v_1)

...

end.

Coercion fun_coec_instr__admininstr : instr >-> admininstr.

Figure 4.13: Conversion Function between Instructions and Admin Instructions as ex-
ample 3.10

4.3.3 Else Removal Pass

The else removal pass is a transformation that takes in the CoqIL and returns an
extended version of the CoqIL. It is adapted from earlier work done in the Wasm
Spectec repository [6], but modified a good amount to fit the CoqIL instead of the
IL. It attempts to find an otherwise premise in an inductive relation and transform it

39

4.3. AUXILIARY PASSES Chapter 4. IL2Coq

as the negation of all the rules that are similar enough to the rule where the premise
is. For now it only works for binary relation (such as the reduction rules).

The procedure is as follows:

1. Go through all inductive relations and filter the binary relations.

2. For a rule, if we encounter an otherwise, then we take all of the previous rules,
and apply a filtering process: we unarize the binary rule (taking the LHS), then
we check that the previous LHS is the same as the current LHS.

3. We then take all of the filtered previous rules and form a new relation that has
the previous rules as its own rules. The name is adjusted to make sure it is
considered unique.

4. With this new relation, we put it before the normal relation and then continue
for all the other rules. For the specific rule, we negate the new relation in place
of where the otherwise premise was.

Figure 4.14 shows an example of how the otherwise premise found on the step
reduction rule of call indirect trap is translated to Coq.

Inductive Step_read_before_Step_read__call_indirect_trap: config -> Prop :=

| Step_read__call_indirect_call_neg : forall (v_z : state)

(v_i : nat) (v_x : idx) (v_a : addr),

(v_i < (List.length (tableinst__REFS (fun_table v_z 0))))

/\ (v_a < (List.length (fun_funcinst v_z)))

/\ ((lookup_total (tableinst__REFS (fun_table v_z 0)) v_i) = (Some v_a))

/\ ((fun_type v_z v_x) = (funcinst__TYPE (lookup_total (fun_funcinst v_z) v_a)))

-> Step_read_before_Step_read__call_indirect_trap

(config__ v_z [(admininstr__CONST (valtype__INN (inn__I32)) (v_i : val_));

(admininstr__CALL_INDIRECT v_x)]).

Inductive Step_read: config -> (list admininstr) -> Prop :=

| Step_read__call_indirect_trap : forall (v_z : state) (v_i : nat) (v_x : idx),

(~(Step_read_before_Step_read__call_indirect_trap

(config__ v_z [(admininstr__CONST (valtype__INN (inn__I32)) (v_i : val_));

(admininstr__CALL_INDIRECT v_x)])))

-> Step_read

(config__ v_z [(admininstr__CONST (valtype__INN (inn__I32)) (v_i : val_));

(admininstr__CALL_INDIRECT v_x)]) [(admininstr__TRAP)]

Figure 4.14: Example of generated relation for the Otherwise Premise

40

Chapter 5

Type Preservation Proof

The following sections will present the result of the type preservation proof, giving
a small overview of how the proof was constructed, and the DSL Extension made to
have all of the definitions required for soundness. The proof and generated defini-
tions can be found in the file proofscoqil.v.

5.1 DSL Source Extension

The current Wasm Spectec repository contains the specification for Webassembly
1.0, which includes the syntax, typing rules, instantiation, numerics and reduction
rules. However, these typing rules are generally insufficient to prove soundness. As
shown in WasmCert and in section 2.3.2, we need a notion of what it means for the
runtime configuration, and its components, to be justified in a typing judgement. As
such, I extended the DSL source to include these typing judgements specifically for
type preservation.

All of these extensions were made to reflect exactly the same as the specification
behaviour depicts. Most of the definitions can be found in the WebAssembly 1.0 spec,
under the section appendix ”A.5 soundness” [3]. We will go through some of the
new additions, and give their translated versions as example. These definitions can
be found in the folder spec/wasm-1.0-test, with the file named A-soundness.watsup.

5.1.1 Store Validity

For a store to be considered valid, we need each instance found in the store to also
be valid. This means that each element of the lists of function, global, table, and
memory instances must be valid. Figure 5.1 shows how store validity would then be
implemented in the DSL source.

For brevity, we will only go through function instance validity. For a function instance
to be valid, we need each part of the instance to be valid. This means that the module
instance must be valid with the type being a typing context, and with such a context

41

5.1. DSL SOURCE EXTENSION Chapter 5. Type Preservation Proof

then the core body of the function must be valid with the same functype described
in the function instance. Function validity is seen in figure 5.1 as the first example.

ru l e Func t ion in s tance ok :
S |− { TYPE functype , MODULE moduleinst , CODE func } : functype
−− Functype ok : |− functype : OK
−− Module instance ok : S |− moduleinst : C
−− Func ok : C |− func : functype

ru l e Store ok :
|− S : OK
−− i f S = {FUNCS f u n c i n s t * , GLOBALS g l o b a l i n s t * , TABLES
t a b l e i n s t * , MEMS meminst*}

−− (Func t ion in s tance ok : S |− f u n c i n s t : functype)*
−− (Globa l in s t ance ok : S |− g l o b a l i n s t : g loba l t ype)*
−− (Tab le in s t ance ok : S |− t a b l e i n s t : t ab l e t ype)*
−− (Memory instance ok : S |− meminst : memtype)*

Figure 5.1: Store and function instance validity

5.1.2 Thread Validity

For a thread to be valid, its frame and instruction sequence must be valid. The
instruction sequence takes the return value that is given in the configuration to be
preprended to the context, along with the store, to show the the instruction sequence
has function type eps − > t?. This is the main core of the preservation proof, as we
can go through each instruction typing rule to show preservation.

A frame is known to be valid when its local values are valid with type t, along with
the module instance being valid with context C. Then, with these both true, the
frame instance has type C preprended with the local types t∗. This is necessary for
the proof as there are some cases when the frame is modified (such as local get) and
having these typing judgements provide aid to prove such cases. Figure 5.2 shows
how both of these validities are depicted in the DSL source.

5.1.3 Configuration Validity

In section 2.3.2, we went through the typing judgement of the highest level of the
WebAssembly structure: the run-time configuration. For the configuration to be
valid, its store, frame and instruction sequence need to be valid.

Figure 2.9 depicts how configuration validity is supposed to behave. Figure 5.3
shows how this would be written in the DSL source.

42

Chapter 5. Type Preservation Proof 5.2. PROOF STRUCTURE

ru l e Frame ok :
S |− { LOCALS va l * , MODULE moduleinst } : C , LOCALS t *
−− Module instance ok : S |− moduleinst : C
−− (Val ok : |− val : t)*

ru l e Thread ok :
S ; r t ? |− F ; admininst r * : t ?
−− Frame ok : S |− F : C
−− Admin ins t r s ok : S ; $($(C , RETURN r t ?))

|− admininst r * : eps −> t ?

Figure 5.2: Thread and Frame Validity

ru l e Conf ig ok :
|− (S ; F) ; admininst r * : t ?
−− Store ok : |− S : OK
−− Thread ok : S ; eps |− F ; admininst r * : t ?

Figure 5.3: Configuration Validity

5.1.4 Store Extension

Along with the validities, for preservation one must also prove that through a reduc-
tion of a run-time configuration, the new store is an extension of the old store. To
achieve this, we need each component of the old store, say for example the function
instances, to be an extension of a portion equal in length of the new store. Figure
5.4 shows this exact behaviour (other components are omitted for simplicity), hav-
ing funcinst 1’*, a portion of store 2, be an extension of funcinst 1*, the function
instance list of store 1.

ru l e S to re ex t ens ion :
|− s t o r e 1 : s t o r e 2
−− i f s t o r e 1 .FUNCS = f u n c i n s t 1 *
−− i f s t o r e 2 .FUNCS = func in s t 1 ' * f u n c i n s t 2 *
−− (Func extens ion : |− f u n c i n s t 1 : func in s t 1 ') *

Figure 5.4: Store Extension represented in the DSL source

5.2 Proof Structure

In order to show preservation, we follow the main structure of the proof found in
WasmCert [2]. We will show all the type preservation theorem and the correspond-
ing top-level lemmas needed to prove it. The proof along with the automatically

43

5.2. PROOF STRUCTURE Chapter 5. Type Preservation Proof

translated definitions can be found in the file proofsCoqIL.v.

Figure 5.5 shows how the preservation theorem would be represented with the auto-
matic definitions. It takes as an assumption the reduction between c1 and c2 (both
being universally quantified configurations), and configuration validity of c1 with
type ts. The conclusion would then be that c2 is valid with type ts, so c1 and c2 have
exactly the same result type.

Theorem t_preservation: forall c1 ts c2,

Step c1 c2 -> Config_ok c1 ts ->

Config_ok c2 ts.

Figure 5.5: Main Theorem

To start this proof, we would apply backwards reasoning and attempt to show store
validity. However, to show store validity, we need to also show store extension at the
same time. Figure 5.6 shows how the lemma would be represented. We would use
the fact that the module instance, store and instruction instance is valid through our
assumption that the configuration c1 is valid.

Lemma store_extension_reduce: forall s f ais s' f' ais' C tf loc lab ret,

Step (config__ (state__ s f) ais) (config__ (state__ s' f') ais') ->

Module_instance_ok s (frame__MODULE f) C ->

Admin_instrs_ok s (upd_label (upd_local_return C loc ret) lab) ais tf ->

Store_ok s ->

Store_extension s s' /\ Store_ok s'.

Figure 5.6: Lemma to show Store Extension and Store validity

Now that we have store extension and store validity, we can go deeper into the
configuration validity and attempt to prove thread validity. For the thread to be
valid, we need the frame to be valid. Figure 5.7 and 5.8 shows the lemmas needed to
show frame validity. The first lemma tells us that if we are given store extension and
module instance validity of the old store, then we can prove module instance validity
of the new store. We have already both store extension and module instance validity
(through configuration validity of c1), and we know that the module instance does
not change as it remains static throughout all execution. The second lemma is to
prove that the list of local values in the frame are all valid with the same typing as
the old list of local values.

Lemma module_inst_typing_extension: forall v_S v_S' v_i v_C,

Store_extension v_S v_S' -> Module_instance_ok v_S v_i v_C ->

Module_instance_ok v_S' v_i v_C.

Figure 5.7: Lemma to Show Module Instance Validity

44

Chapter 5. Type Preservation Proof 5.2. PROOF STRUCTURE

Lemma t_preservation_vs_type: forall s f ais s' f' ais'
C C' v_t1 lab ret t1s t2s,

Step (config__ (state__ s f) ais) (config__ (state__ s' f') ais') ->

Store_ok s ->

Store_ok s' ->

Module_instance_ok s (frame__MODULE f) C ->

Module_instance_ok s' (frame__MODULE f') C' ->

v_t1 = (context__LOCALS (upd_label

(upd_local_return C (v_t1 ++ (context__LOCALS C)) ret) lab)) ->

Forall2 (fun v_t v_val => Val_ok v_val v_t) v_t1 (frame__LOCALS f) ->

Admin_instrs_ok s (upd_label (upd_local_return C

(v_t1 ++ (context__LOCALS C)) ret) lab) ais (functype__ t1s t2s) ->

Forall2 (fun v_t v_val0 => Val_ok v_val0 v_t) v_t1 (frame__LOCALS f')
/\ length v_t1 = length (frame__LOCALS f').

Figure 5.8: Lemma to show Local Values Validity

With everything else now proven, the only thing left is to prove that the instruction
sequence preserves the same type as the old instruction sequence. To prove this, we
must go through each reduction rule in this case and prove this fact. Figure 5.9 gives
the top-level lemma to prove instruction sequence type preservation.

Lemma t_preservation_type: forall v_s v_f v_ais v_s' v_f'
v_ais' v_C v_t1 t1s t2s lab ret,

Step (config__ (state__ v_s v_f) v_ais)

(config__ (state__ v_s' v_f') v_ais') ->

Store_ok v_s -> Store_ok v_s' ->

Store_extension v_s v_s' ->

Module_instance_ok v_s (frame__MODULE v_f) v_C ->

Module_instance_ok v_s' (frame__MODULE v_f) v_C ->

Forall2 (fun v_t v_val => Val_ok v_val v_t) v_t1 (frame__LOCALS v_f) ->

Admin_instrs_ok v_s (upd_label (upd_local_return v_C

(v_t1 ++ context__LOCALS v_C) ret) lab) v_ais (functype__ t1s t2s) ->

Admin_instrs_ok v_s' (upd_label (upd_local_return v_C

(v_t1 ++ context__LOCALS v_C) ret) lab) v_ais' (functype__ t1s t2s).

Figure 5.9: Lemma to show Instruction validity

We will give a small example of a specific instruction preservation lemma and its DSL
source version typing rules and reduction rules. Figure 5.10 gives the DSL typing and
reduction rules for drop, to show how it is portrayed by the manually written lemmas
for drop. Drop typing attempts to extract the typing rule for drop, making sure that
the input type must be the result type plus the type that is dropped. The preservation
lemma shows that, given the instruction type validity of the instruction sequence
before the reduction rule and the reduction itself, it maintains the instruction type

45

5.3. WASMCERT COMPARISON Chapter 5. Type Preservation Proof

validity with the exact same type, showing preservation.

ru l e I n s t r o k /drop :
C |− DROP : t −> eps

ru l e Step pure /drop :
va l DROP ˜> eps

(* Lemma to extract the typing rule of drop *)

Lemma Drop_typing: forall v_S v_C t1s t2s,

Admin_instr_ok v_S v_C (admininstr__DROP) (functype__ t1s t2s) ->

exists t, t1s = t2s ++ [t].

(* Preservation Lemma *)

Lemma Step_pure__drop_preserves : forall v_S v_C (v_val : val) v_func_type,

Admin_instrs_ok v_S v_C [v_val;(admininstr__DROP)] v_func_type ->

Step_pure [v_val;(admininstr__DROP)] [] ->

Admin_instrs_ok v_S v_C [] v_func_type.

Figure 5.10: DSL Typing and Reduction Rules, and Preservation Lemma for Drop

5.3 WasmCert Comparison

The main goal of the preservation proof is to show how similar the automated in-
ductive definitions are compared to the manually designed inductive definitions of
WasmCert. As noted in section 5.2, the main proof structure follows the main proof
structure of WasmCert. Following the same proof structure allowed for parts of the
WasmCert proof to be copied and adapted slightly to this form of the proof. We
were even able to adapt some of the user-defined tactics used in WasmCert for this
proof. To give a simple but notable example, figure 5.11 shows the comparison be-
tween both versions in abstracting certain type properties from the binop typing rule.
Clearly, both of these lemmas resemble a good amount, and even the proof follows
a similar direction, but it is omitted for brevity (if curious, the proof can be found in
appendix B).

Lemma Binop_typing: forall v_S v_C v_t v_op t1s t2s,

Admin_instr_ok v_S v_C (admininstr__BINOP v_t v_op) (functype__ t1s t2s) ->

t1s = t2s ++ [v_t] /\ exists ts, t2s = ts ++ [v_t].

Lemma Binop_typing: forall C t op t1s t2s,

be_typing C [::BI_binop t op] (Tf t1s t2s) ->

t1s = t2s ++ [::t] /\ exists ts, t2s = ts ++ [::t].

Figure 5.11: Binop Typing in Translation Definitions Version (above) and WasmCert
(below)

46

Chapter 5. Type Preservation Proof 5.3. WASMCERT COMPARISON

Similarities like these happen a large amount of the time, as the typing rules and
reduction rules for the most part match the ones in WasmCert. However, there are
some major differences that the proofs could not simply just be adapted and had to
be altered in a significant way. This is mainly due to either: the way the DSL source
is written doesn’t match exactly the intentions of WasmCert, or the builtin relation-
s/types used in the translation don’t necessarily match the ones in WasmCert. For
instance, some instructions such as branching and call address (known as invoke in
WasmCert), and some higher-level structures such as store validity, store extension
and local validity.

The branch instruction, in the current WebAssembly specification, utilizes the con-
cept of block context to specify the recursive reduction of branches. WasmCert fol-
lows this faithfully by following this inductive structure, and performing induction
on it to proof lemmas on branches. The existing DSL source takes a different ap-
proach which is to separate the two cases of the block context to different reduction
rules. This actually makes the proof simpler as there is no unnecessary induction
involved. Figure 5.12 shows this difference in lemmas (the translation version was
modified to be clearer).

Lemma Step_pure__br_zero_preserves : forall v_S v_C v_n

v_instr' v_val' v_val v_instr v_func_type,

Admin_instrs_ok v_S v_C [(admininstr__LABEL_ v_n v_instr'
(v_val' ++ v_val ++ [(admininstr__BR 0)] ++ v_instr))] v_func_type ->

((List.length v_val) = v_n) ->

Admin_instrs_ok v_S v_C (v_val ++ v_instr') v_func_type.

Lemma Lfilled_break_typing: forall n m k

(lh: lholed n) vs LI ts s C t2s tss,

e_typing s (upd_label C (tss ++ [::ts] ++ tc_label C)) LI (Tf [::] t2s) ->

const_list vs -> length ts = length vs -> lfill lh (vs ++ [::AI_basic (BI_br m)]) = LI -> length tss = k -> n + k = m ->

e_typing s C vs (Tf [::] ts).

Figure 5.12: Branch Preservation in Translation Definitions Version (above) and Wasm-
Cert (below)

The translated version attempts to be as faithful as possible to the current specifi-
cation. For store validity, this would mean that we have four different typing rules
for each list of instances (function, tables, memories and globals). WasmCert takes
a different approach and removes the check for global instances. This can be seen in
figure 5.13, which shows the differences in the definition of store validity (the top
inductive definition has some premises omitted for clarity. It is the translated version
of figure 5.1). Mem agree and table agree behave similarly to Table instance ok and
Memory instance ok, and cl type check agree has Function instance ok along with
extra information not yet in the DSL source (host functions). Thus, there is no refer-
ence to global instances. As such, when proving store validity, extra work had to be

47

5.3. WASMCERT COMPARISON Chapter 5. Type Preservation Proof

done to prove this fact. In addition, the translated version utilizes Forall2 with the
type being any type corresponding to the instance, which is vastly different to the
WasmCert version, making it more complicated to prove.

Overall, the main preservation lemmas follow the same structure as WasmCert, and
even the instruction preservation lemmas are very similar, both in lemma and proof.
However, there are some exceptions that are mainly due to WasmCert taking a differ-
ent approach from the current specification, which is reasonable as it still retains the
same essence of WebAssembly while making it simpler. Nevertheless, the translated
version still does a good job on providing similar definitions all things considered.

Inductive Store_ok: store -> Prop :=

| Store_ok__OK : forall v_S v_funcinst v_globalinst v_tableinst

v_meminst v_functype v_globaltype v_tabletype v_memtype,

List.Forall2 (fun v_funcinst v_functype => (Function_instance_ok

v_S v_funcinst v_functype)) (v_funcinst) (v_functype) /\

List.Forall2 (fun v_globalinst v_globaltype => (Global_instance_ok

v_S v_globalinst v_globaltype)) (v_globalinst) (v_globaltype) /\

List.Forall2 (fun v_tableinst v_tabletype => (Table_instance_ok

v_S v_tableinst v_tabletype)) (v_tableinst) (v_tabletype) /\

List.Forall2 (fun v_meminst v_memtype => (Memory_instance_ok v_S

v_meminst v_memtype)) (v_meminst) (v_memtype) -> Store_ok v_S.

Definition store_typing (s : store_record) : Prop :=

match s with

| Build_store_record fs tclss mss gs =>

List.Forall (cl_type_check_single s) fs /\

List.Forall (tab_agree s) tclss /\ List.Forall mem_agree mss

end.

Figure 5.13: Comparions Between Translated Version of store validity (above) and
WasmCert Version (below)

48

Chapter 6

Evaluation

The following sections will evaluate the three main contributions, presenting and at
the same time answering a few research questions for each.

6.1 Evaluating IL2Coq: the Translation Process

6.1.1 Evaluating the Validity of the Translated Definitions

Chapter 4 gives an overview of the technicalities of the main solution of the project:
the automatic translation of the DSL source to Coq. This presents us with a core re-
search question: to what extent are the translated definitions a valid representation
of the specification?

In section 4.1.2, we go through some restrictions that were imposed on the DSL
source. While this made the translation simpler and able to be able to completed
in time, this makes the translation process be an incomplete conversion. Having re-
moved numerics and replaced them with a builtin number type removes some of the
knowledge needed to construct an accurate representation of a reference interpreter.
Additionally, inductive types and function definitions with premises lose information
of their behaviour, ultimately being incorrect on the Coq side.

On the other hand, these inductive types with premises can be altered to only have
the inductive type and have the premises be pushed to inductive relations where the
types are used. As such, these can be alleviated by just restricting the expressiveness
of the DSL source. This is a reasonable compromise as having targeting automated
theorem provers already makes most of the language have to be restricted anyways.
For numerics and function definitions with premises, they were removed simply to
limit the scope of the project, as the main target is to prove that the typing rules
and reduction rules of the WebAssembly specification behave well. Some function
definitions can even be converted to inductive relations, allowing their use for the
preservation proof. An example of this is the function grow memory found in the
file 5-runtime-aux.watsup.

49

6.1. EVALUATING IL2COQ: THE TRANSLATION PROCESS Chapter 6. Evaluation

The main evidence of the automated definitions being an accurate representation
of the DSL source stems from the preservation proof being correct. Since the proof
follows closely the work done from WasmCert (as described in 5.3), it is reasonable
to conclude that at the very least the typing rules, datatypes used in the typing rules,
and reduction rules strongly resemble the formal specification.

6.1.2 Evaluating the Potential for Expansion of the Translation
Process and IL

As noted in section 4.2.2, the main focus of the translation was to specifically target
WebAssembly 1.0. This is simply done to again limit the scope of the project and give
a starting point for the creation of translation processes from IL to other interactive
theorem provers. Thus, naturally the question comes to mind: to what extent can
the current translation from IL to Coq be extended to handle arbitrary input (i.e.
WebAssembly 2.0 spec or any proposal)?

Currently, some of the main high-level structures such as record types and induc-
tive relations have a good representation in Coq and do not need to be modified.
However, inductive types with arguments (known as dependent types) and family
types need to be either fundamentally changed in the translation process or in the IL.
This is due to the restrictions imposed in the DSL source, while being mainly good
enough for WebAssembly 1.0, are not exactly good enough for arbitrary input. Also,
most of the parts in the translation process were left to be extended to other cases
when they become necessary for other specifications.

These problems mainly stem from dependent types just being too complex to handle
in an automatic fashion, and even in proofs. After discussing this with active mem-
bers of the WebAssembly community, it is possible to solve this problem through
making a pass between the IL and CoqIL and remove the dependent types through
a process called monomorphization. Monomorphization is defined to be the spe-
cialization of polymorphic functions (or dependent types) with respect to the type
arguments that are actually used [27]. This will effectively remove the type argu-
ment and only supply instances of the type with concrete type arguments.

In addition, as future work it is also possible to use the CoqIL to extend the work to
other interactive theorem provers. Since the CoqIL was made to be a separate ab-
stract syntax tree decoupled from the IL, then it is indeed possible to make a general
IL for interactive theorem provers, and have CoqIL connect to that one. This would
make it possible to make passes that work for all interactive theorem provers.

To conclude, the CoqIL, while not fundamentally able yet to handle constrained ar-
bitrary input such as other WebAssembly specifications, can be extended to other
theorem provers and even has the potential to solve its problem through monomor-
phization.

50

Chapter 6. Evaluation 6.2. EVALUATING THE DSL SOURCE EXTENSION

6.2 Evaluating the DSL Source Extension

Having written the DSL source for the soundness typing judgements as noted in sec-
tion 5.1, this main question is presented: how accurate is the DSL source extension
compared to the formal WebAssembly specification?

One way to answer this question is to compare the latex generated from the latex
backend with the formal specification, and check that they match. This is a reason-
able approach and has been checked for all of the new additions to make sure it
mostly has close resemblance to the formal specification. Appendix A has the gener-
ated latex of the soundness DSL source file, mainly put for curiosity.

The other conclusive evidence is the result of the preservation proof. Since the
preservation proof was able to resemble WasmCert a large amount of the structure
and be shown to be correct for the automated inductive definitions, it is mainly safe
to say that the soundness extension closely resembles the formal specification.

There are some exceptions to this resemblance that have to do with the inconsisten-
cies of the WebAssembly 1.0 formal specification. One notable example is the typing
judgement for the Administrate instruction label validity, which can be seen in figure
6.1. This is automatically generated from the DSL source utilizing the latex backend.
The main issue with this definition is that the result type t?1 is actually supposed to
be tn1 as in the WebAssembly specification [3]. The reason it is unable to be like
this is because WebAssembly 1.0 restricts result types to be an option type, however
in the formal specification it allows it to be of size n. This inconsistency is not re-
ally allowed in the wasm Spectec toolchain, which means that an extra premise was
applied to the rule to have the size of result type t?1 be of same size as n.

C ⊢ instr ∗ : t?1 → t?2 S;C, labels (t?1) ⊢ instr ∗ : ϵ → t?2 n = optionSize(t?1)

S;C ⊢ labeln{instr ∗} instr ∗ : ϵ → t?2
[ADMIN INSTR OK-LABEL]

Figure 6.1: Typing rule of Label Generated from Latex Backend

Another more serious example stems from how the external instances inside a mod-
ule instance are valid in a typing judgement. For the formal specification version
seen in figure 6.2, we can see that the minimum and maximum values of its table
type must be the same as the one found in the store. However, if we have store
extension and need to prove module instance validity, then it is not enough for the
minimum value n to be exactly the same, as store extension only tells us that for
tables, the minimum value n must not shrink. The generated version then instead
makes it so that the external value only needs to be a limit sub of the one found in
the store. This is the current definition found in WasmCert [23], and as such it has
been kept that way in order for the type preservation proof to work.

51

6.3. EVALUATING THE PRESERVATION PROOF Chapter 6. Evaluation

S.tables[a] = {type tt ′, refs fa?∗} ⊢ tt ′ ≤ tt

S ⊢ table a : table tt
[EXTERNVALS OK-TABLE]

S.tables[a] = {max m?, refs fa?n}
S ⊢ table a : table {min n,max m?} funcref

[EXTERNVALS OK-TABLE]

Figure 6.2: Typing rule for External Table Values, generated example (above) and for-
mal specification (below)

6.3 Evaluating the Preservation Proof

As noted in section 6.1.1, the results from the proof show that the translated defi-
nitions at the very least strongly resemble the formal specification. However, while
constructing the proofs, some parts of not only the translated definitions, but the
existing DSL source were shown to be inconsistent. Two examples of this seem to
be typos, but due to these mistakes, the result has a completely different behaviour
and thus preservation is not achieved. Both examples can be seen in figure 6.3. The
first example states that the input should be of type t∗1 t

?, however, if we look at the
reduction rule, the argument taken before the br table instruction is a constant value
of type I32. As such, the typing rule must be amended to have that that the end of
the input (i.e t∗1 t? I32) which is precisely what is seen in the formal specification
[3]. The second example is more serious, as it makes instr 1 the single instruction
instead of instr 2, which is again what how it is in the formal specification. In other
words, the sequence rule in the DSL source goes recursively to the right instead of
going to the left. This has some issues with the preservation proof and as such as
been made to be of the other form. Also, the asterisk indicating it is a list is missing
in the second premise, making it a singleton list in the IL.

ru l e I n s t r o k / b r t a b l e :
C |− BR TABLE l * l ' : t 1 * t ? −> t 2 *
−− i f t ? = C . LABELS[l ']
−− i f (t ? = C . LABELS[l])*

ru l e I n s t r s o k / seq :
C |− i n s t r 1 i n s t r 2 * : t 1 * −> t 3 *
−− I n s t r o k : C |− i n s t r 1 : t 1 * −> t 2 *
−− I n s t r s o k : C |− i n s t r 2 : t 2 * −> t 3 *

Figure 6.3: Issues with DSL source

Through the result of the proof, these typos have been found and corrected. This
clearly shows that the proof not only gave us the certainty that type preservation
holds for the inductive definitions, but that the DSL source now has certainty that it
adheres to type preservation just as the formal specification does.

52

Chapter 7

Conclusion and Future Work

In this project, we have presented IL2Coq, a proof of concept to the existing prob-
lem of automatically generating inductive definitions for mechanization. We firstly
restricted the DSL source to simplify the translation process. Then, with various
passes and transformations, we translate the intermediate language of the Wasm
Spectec toolchain into a brand new AST, named CoqIL. With the additional flexibil-
ity of the new AST, we made some more passes to it and finally printed the result.

IL2Coq was mainly targeted to WebAssembly 1.0 specification, and has been suc-
cessfully and completely compiled into Coq. With these definitions, in order to show
their effectiveness, we extended the DSL source to include soundness inductive defi-
nitions, and then we presented a type preservation proof result with these automat-
ically translated definitions.

From the exploration and evaluation of the entire project, we have effectively shown
how much the IL2Coq solution covers the entire problem space and how much po-
tential it has for future work. In addition, we have shown how effective the result of
the proof and the DSL extension is, by showing how it revealed some inconsistencies
in the DSL source and even inconsistencies in the formal specification itself.

In conclusion, IL2Coq serves as an effective starting point to the creation and realiza-
tion of inductive definitions translated from the DSL source to interactive theorem
provers. It can soon become part of the single source of truth that the Wasm Spectec
toolchain is trying to achieve through the DSL source.

7.1 Future Work

As IL2Coq is mainly just a proof of concept and a starting ground for future interac-
tive theorem provers translations, it has a lot of room for growth and improvement.
Some of these are:

• Removing dependent types: as discussed in the evaluation section 6.1.2, there
is a possibility to apply monomorphization to make the dependent type prob-
lem found in the IL2Coq solution much easier to solve.

53

7.2. ETHICAL CONSIDERATIONS Chapter 7. Conclusion and Future Work

• Making a more general interactive theorem prover IL: with the existence of the
CoqIL, one could abstract portions of the AST and make a more general version
that would suit all interactive theorem provers. CoqIL would connect to it so
there would need to be a transformation from the ITP IL to the CoqIL. This
would enable certain passes that would work for all ITPs instead of having the
same pass applied to many different ILs.

• Finish extending all of the final cases: IL2Coq’s translation approach was to
target WebAssembly 1.0. As such, most portions of the transformation process
were left not done, as they were unnecessary for the proof of concept. These
cases should not be too hard to extend to, but they were out of the scope of
the project.

• Improve family type handling: the current version of IL2Coq handles family
types in a very restricted manner. In section 4.1.2, we stated all of these re-
strictions, but they should eventually be either fundamentally modified in the
CoqIL, or the IL should change how the family types work in order for Coq to
be able to handle it properly.

• Automated lemma generation: after we made the CoqIL, we utilized the infor-
mation of the DSL source to automatically generate some of the preservation
lemmas. This can be found in the same folder as IL2Coq (named Lemma-
Gen.ml). However, the solution relied too much on specific information of
the DSL source, and could not be made into a general solution at the mo-
ment. In the future, the toolchain and languages could be extended to allow
for lemma templates, which would behave as an inductive rule, where we have
some given premises and an end result. An annotation can be added to specify
which is the general premise which will be going through induction. In the
case of instruction preservation, this would be the induction relation Step. An-
other alternative solution is to add annotations to tell the CoqIL which are the
important inductive relations for preservation, and which type must be pre-
served. This would allow the existing lemma generation to be more general
and with minimal changes to the DSL source.

7.2 Ethical Considerations

This project’s ethical considerations can be considered negligible, as the main work
involves handling data that have no direct impact on any users. No collection of user
data or any processing has been done. The only aspect of ethical consideration of
this project is through the inconsistencies found on the WebAssembly 1.0 spec. If any
of these inconsistencies lead to bigger problems that can be found in WebAssembly
compilers, then it could pose an issue. However, the inconsistencies found have
already been discussed with people who are working in WebAssembly specification
and no issues have been found.

54

Bibliography

[1] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Hol-
man, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the
web up to speed with webassembly. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2017, page 185–200, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450349888. doi: 10.1145/3062341.3062363. URL
https://doi.org/10.1145/3062341.3062363. pages

[2] Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa
Gardner. Two Mechanisations of WebAssembly 1.0. In FM 2021 - Formal Meth-
ods, pages 1–19, Beijing, China, November 2021. URL https://hal.science/

hal-03353748. pages

[3] Webassembly core specification, 2019. URL https://www.w3.org/TR/

wasm-core-1/. pages

[4] WebAssembly Core Specification, 2022. URL https://www.w3.org/TR/

wasm-core-2/. https://webassembly.github.io/spec/core/ download/WebAssembly.pdf.
pages

[5] Dongjun Youn, Wonho Shin, Jaehyun Lee, Sukyoung Ryu, Joachim Breitner,
Philippa Gardner, Sam Lindley, Matija Pretnar, Xiaojia Rao, Conrad Watt, and
Andreas Rossberg. Bringing the webassembly standard up to speed with
spectec. Proceedings of the ACM on Programming Languages, 8 (PLDI), April
2024. ISSN 2475-1421. 45th ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (PLDI), PLDI 2024 ; Confer-
ence date: 24-06-2024 Through 28-06-2024. pages

[6] Wasm Spectec, 2024. URL https://github.com/Wasm-DSL/spectec/tree/

main/spectec. pages

[7] WebAssembly Community Group. GarbageCollection, 2023. URL https://

github.com/WebAssembly/gc. pages

[8] WebAssembly Community Group. 2023. Thread, 2023. URL https://github.

com/WebAssembly/threads. pages

[9] ECMA Ecma. 262: Ecmascript language specification. ECMA (European Associ-
ation for Standardizing Information and Communication Systems), pub-ECMA:
adr,, 1999. pages

55

https://doi.org/10.1145/3062341.3062363
https://hal.science/hal-03353748
https://hal.science/hal-03353748
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-2/
https://www.w3.org/TR/wasm-core-2/
https://github.com/Wasm-DSL/spectec/tree/main/spectec
https://github.com/Wasm-DSL/spectec/tree/main/spectec
https://github.com/WebAssembly/gc
https://github.com/WebAssembly/gc
https://github.com/WebAssembly/threads
https://github.com/WebAssembly/threads

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Herbert Schildt. The Annotated ANSI C Standard: American National Standard
for Programming Languages: C. 1990. ISBN 0-07-881952-0. pages

[11] ISO. ISO/IEC 14882:1998: Programming languages — C++. pub-ISO,
pub-ISO:adr, September 1998. URL http://www.iso.ch/cate/d25845.html;

https://webstore.ansi.org/. pages

[12] Mar 2024. URL https://www.whitehouse.gov/oncd/briefing-room/2024/

02/26/press-release-technical-report/. pages

[13] The Coq Development Team. The coq proof assistant, jul 2023. URL https:

//doi.org/10.5281/zenodo.8161141. pages

[14] Xavier Leroy. Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant. In 33rd ACM symposium on Princi-
ples of Programming Languages, pages 42–54. ACM Press, 2006. URL http:

//xavierleroy.org/publi/compiler-certif.pdf. pages

[15] Philippa Gardner, Gareth Smith, Conrad Watt, and Thomas Wood. A Trusted
Mechanised Specification of JavaScript: One Year On. In Daniel Kroen-
ing and Corina S. Pasareanu, editors, Proceedings of the 27th International
Conference on Computer Aided Verification (CAV’15), volume 9206 of Lec-
ture Notes in Computer Science, pages 3–10. Springer, 2015. doi: 10.1007/
978-3-319-21690-4 1. pages

[16] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof
assistant for higher-order logic, volume 2283. Springer Science & Business Me-
dia, 2002. pages

[17] Frédéric Tuong and Burkhart Wolff. Isabelle/c. Archive of Formal Proofs, Oc-
tober 2019. ISSN 2150-914x. https://isa-afp.org/entries/Isabelle_C.

html, Formal proof development. pages

[18] Martin Strecker. Formal verification of a java compiler in isabelle. In Andrei
Voronkov, editor, Automated Deduction—CADE-18, pages 63–77, Berlin, Hei-
delberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-45620-9. pages

[19] Clara Löh. The Lean Proof Assistant, pages 7–20. Springer Interna-
tional Publishing, Cham, 2022. ISBN 978-3-031-14649-7. doi: 10.1007/
978-3-031-14649-7 1. URL https://doi.org/10.1007/978-3-031-14649-7_

1. pages

[20] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco
Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent
Yorgey. Logical Foundations, volume 1 of Software Foundations. Electronic
textbook, 2023. pages

[21] Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE
754-2008), pages 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229. pages

56

http://www.iso.ch/cate/d25845.html; https://webstore.ansi.org/
http://www.iso.ch/cate/d25845.html; https://webstore.ansi.org/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
http://xavierleroy.org/publi/compiler-certif.pdf
http://xavierleroy.org/publi/compiler-certif.pdf
https://isa-afp.org/entries/Isabelle_C.html
https://isa-afp.org/entries/Isabelle_C.html
https://doi.org/10.1007/978-3-031-14649-7_1
https://doi.org/10.1007/978-3-031-14649-7_1

BIBLIOGRAPHY BIBLIOGRAPHY

[22] Conrad Watt. Mechanising and verifying the webassembly specification. In Pro-
ceedings of the 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2018, page 53–65, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450355865. doi: 10.1145/3167082. URL
https://doi.org/10.1145/3167082. pages

[23] M. Bodin, P. Gardner, J. Pichon, C. Watt, and X. Rao. WasmCert-
Coq, 2019-2024. URL https://github.com/WasmCert/WasmCert-Coq/tree/

master. pages

[24] Joachim Breitner, Philippa Gardner, Jaehyun Lee, Sam Lindley, Matija Pretnar,
Xiaojia Rao, Andreas Rossberg, Sukyoung Ryu, Wonho Shin, Conrad Watt, and
Dongjun Youn. Wasm spectec: Engineering a formal language standard, 2023.
pages

[25] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The ocaml system: Documentation and user’s manual.
pages

[26] Tej Chajed. Coq Record Update, 2024. URL https://github.com/tchajed/

coq-record-update/tree/master. pages

[27] Akira Tanaka, Reynald Affeldt, and Jacques Garrigue. Safe low-level code gen-
eration in coq using monomorphization and monadification. Journal of Infor-
mation Processing, 26:54–72, 2018. doi: 10.2197/ipsjjip.26.54. pages

https://doi.org/10.1145/3167082
https://github.com/WasmCert/WasmCert-Coq/tree/master
https://github.com/WasmCert/WasmCert-Coq/tree/master
https://github.com/tchajed/coq-record-update/tree/master
https://github.com/tchajed/coq-record-update/tree/master

Appendices

Appendix A

Generated Latex from Soundness DSL
Source

Some typing judgements were removed as they were too long and not handled well:

• Store ok

• Module instance ok

• Store extension

⊢ val : valtype

⊢ t.const ct : t
[VAL OK]

⊢ result : valtype∗

(⊢ v : t)∗

⊢ v∗ : t∗
[RESULT OK-RESULT]

⊢ trap : t∗
[RESULT OK-TRAP]

store ⊢ externval : externtype

S.funcs[a] = {type ext , module minst , code code func}
S ⊢ func a : func ext

[EXTERNVALS OK-FUNC]

S.tables[a] = {type tt ′, refs fa?∗} ⊢ tt ′ ≤ tt

S ⊢ table a : table tt
[EXTERNVALS OK-TABLE]

S.mems[a] = {type mt ′, bytes b∗} ⊢ mt ′ ≤ mt

S ⊢ mem a : mem mt
[EXTERNVALS OK-MEM]

S.globals[a] = {type (mut valtype), value (valtype.const val)}
S ⊢ global a : global (mut valtype)

[EXTERNVALS OK-GLOBAL]

Chapter A. Generated Latex from Soundness DSL Source

store ⊢ meminst : memtype

mt = [n..m] ⊢ mt : ok

S ⊢ {type mt , bytes b∗} : mt
[MEMORY INSTANCE OK]

store ⊢ tableinst : tabletype

tt = [n..m] (S ⊢ func fa : func functype)?
∗ ⊢ tt : ok

S ⊢ {type tt , refs (fa?)∗} : tt
[TABLE INSTANCE OK]

store ⊢ globalinst : globaltype

gt = mut vt ⊢ gt : ok ⊢ v : vt

S ⊢ {type gt , value v} : gt
[GLOBAL INSTANCE OK]

store ⊢ exportinst : ok

S ⊢ eval : ext

S ⊢ {name name, value eval} : ok
[EXPORT INSTANCE OK]

store ⊢ funcinst : functype

⊢ functype : ok S ⊢ moduleinst : C C ⊢ func : functype

S ⊢ {type functype, module moduleinst , code func} : functype
[FUNCTION INSTANCE OK]

store; context ⊢ instr : functype

store; context ⊢ instr ∗ : functype

store; resulttype ⊢ frame; instr ∗ : resulttype

S;C ⊢ ϵ : ϵ → ϵ
[ADMIN INSTRS OK-EMPTY]

S;C ⊢ instr ∗1 : t
∗
1 → t∗2 S;C ⊢ instr 2 : t

∗
2 → t∗3

S;C ⊢ instr ∗1 instr 2 : t
∗
1 → t∗3

[ADMIN INSTRS OK-SEQ]

S;C ⊢ instr ∗ : t∗1 → t∗2
S;C ⊢ instr ∗ : t∗ t∗1 → t∗ t∗2

[ADMIN INSTRS OK-FRAME]

C ⊢ instr ∗ : functype

S;C ⊢ instr ∗ : functype
[ADMIN INSTRS OK-INSTRS]

C ⊢ instr : functype

S;C ⊢ instr : functype
[ADMIN INSTR OK-INSTR]

S;C ⊢ trap : t∗1 → t∗2
[ADMIN INSTR OK-TRAP]

Chapter A. Generated Latex from Soundness DSL Source

S ⊢ func funcaddr : func (t∗1 → t∗2)

S;C ⊢ call funcaddr : t∗1 → t∗2
[ADMIN INSTR OK-CALL ADDR]

C ⊢ instr ∗ : t?1 → t?2 S;C, labels (t?1) ⊢ instr ∗ : ϵ → t?2 n = optionSize(t?1)

S;C ⊢ labeln{instr ∗} instr ∗ : ϵ → t?2
[ADMIN INSTR OK-LABEL]

S; t? ⊢ F ; instr ∗ : t? n = optionSize(t?)

S;C ⊢ framen{F} instr ∗ : ϵ → t?
[ADMIN INSTR OK-FRAME]

S;C ⊢ instr : t∗1 → t∗2
S;C ⊢ instr : t∗ t∗1 → t∗ t∗2

[ADMIN INSTR OK-WEAKENING]

store ⊢ frame : context

S ⊢ moduleinst : C (⊢ val : t)∗

S ⊢ {locals val∗, module moduleinst} : C, locals t∗
[FRAME OK]

S ⊢ F : C S;C, return rt? ⊢ instr ∗ : ϵ → t?

S; rt? ⊢ F ; instr ∗ : t?
[THREAD OK]

⊢ config : resulttype

⊢ S : ok S; ϵ ⊢ F ; instr ∗ : t?

⊢ (S;F); instr ∗ : t?
[CONFIG OK]

⊢ funcinst : funcinst

⊢ tableinst : tableinst

⊢ meminst : meminst

⊢ globalinst : globalinst

⊢ store : store

⊢ funcinst : funcinst
[FUNC EXTENSION]

n1 ≤ n2

⊢ {type [n1 ..m], refs (fa?
1)

∗} : {type [n2 ..m], refs (fa?
2)

∗}
[TABLE EXTENSION]

n1 ≤ n2

⊢ {type [n1 ..m], bytes b∗1} : {type [n2 ..m], bytes b∗2}
[MEM EXTENSION]

(mut = mut) ∨ c1 = c2

⊢ {type (mut t2), value (t2 .const c1)} : {type (mut t2), value (t2 .const c2)}
[GLOBAL EXTENSION]

Appendix B

Full Proof of Lemmas in Section 5.3

Lemma Binop_typing: forall v_S v_C v_t v_op t1s t2s,

Admin_instr_ok v_S v_C (admininstr__BINOP v_t v_op) (functype__ t1s t2s) ->

t1s = t2s ++ [v_t] /\ exists ts, t2s = ts ++ [v_t].

Proof.

move => v_S v_C v_t v_op t1s t2s HType.

gen_ind_subst HType.

- (* Binop *) inversion H; subst; try discriminate.

injection H3 as H1; subst.

split => //. exists []. eauto.

- (* Weakening *) edestruct IHHType as [? [??]] => //=; subst.

split.

- repeat rewrite <- app_assoc. reflexivity.

- exists (v_t ++ x). by rewrite <- app_assoc.

Qed.

Lemma Binop_typing: forall C t op t1s t2s,

be_typing C [::BI_binop t op] (Tf t1s t2s) ->

t1s = t2s ++ [::t] /\ exists ts, t2s = ts ++ [::t].

Proof.

move => C t op t1s t2s HType.

gen_ind_subst HType.

- split => //=. by exists [::].

- by resolve_compose Econs HType1 IHHType2.

- edestruct IHHType as [?[??]] => //=; subst.

repeat rewrite -cat_app; repeat rewrite catA.

split => //=.

by eexists.

Qed.

Figure B.1: Full proof of Binop Typing in the translation version (above) and WasmCert
version (below)

	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Language Standardization and Mechanisation
	2.1.1 Language Standardization and Validation
	2.1.2 Mechanization Definition
	2.1.3 Coq

	2.2 WebAssembly
	2.2.1 Concepts
	2.2.2 Validation
	2.2.3 Instantiation
	2.2.4 Run-time Semantics
	2.2.5 Binary Format

	2.3 WasmCert
	2.3.1 DataTypes
	2.3.2 Typing
	2.3.3 Reduction
	2.3.4 Type Soundness

	3 Wasm Spectec
	3.1 Wasm Spectec Toolchain
	3.2 Internal Language Core Features
	3.2.1 Annotations (Hints)*
	3.2.2 Atoms and Mixops
	3.2.3 Bindings, Arguments, and Parameters*
	3.2.4 Basic Types and Iterations*
	3.2.5 User-defined types
	3.2.6 Family types
	3.2.7 Expressions
	3.2.8 Definitions and Relations
	3.2.9 Premises
	3.2.10 Transformations*

	4 IL2Coq
	4.1 IL2Coq Workflow
	4.1.1 Structure
	4.1.2 Restrictions Imposed in the DSL Source

	4.2 Coq Transform and Printing
	4.2.1 Motivation for CoqIL
	4.2.2 Translation Approach
	4.2.3 Exported Code
	4.2.4 User-defined Types, Relations and Definitions
	4.2.5 Transformation and Printing of Basic Types and Expressions

	4.3 Auxiliary Passes
	4.3.1 Generating the Environment
	4.3.2 Creating Subtype Coercions
	4.3.3 Else Removal Pass

	5 Type Preservation Proof
	5.1 DSL Source Extension
	5.1.1 Store Validity
	5.1.2 Thread Validity
	5.1.3 Configuration Validity
	5.1.4 Store Extension

	5.2 Proof Structure
	5.3 WasmCert Comparison

	6 Evaluation
	6.1 Evaluating IL2Coq: the Translation Process
	6.1.1 Evaluating the Validity of the Translated Definitions
	6.1.2 Evaluating the Potential for Expansion of the Translation Process and IL

	6.2 Evaluating the DSL Source Extension
	6.3 Evaluating the Preservation Proof

	7 Conclusion and Future Work
	7.1 Future Work
	7.2 Ethical Considerations

	Appendices
	A Generated Latex from Soundness DSL Source
	B Full Proof of Lemmas in Section 5.3

