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Abstract

This project focuses on the concept of synergy, a key component of the Partial Information Decom-
position framework, which captures the information generated collectively by a system, but not
contained in any individual component.

To address the current limitations of our understanding of synergy, this project pursues two
primary objectives: improving the computational efficiency of existing synergy calculation tools
for discrete systems and extending the concept of synergy to continuous distributions. Our contri-
butions include the development of dccp-syndisc, an algorithm that utilizes disciplined convex-
concave programming to extend the scalability of synergy computations. This method allows for
the analysis of systems up to twice the size previously supported, enabling the exploration of larger
and more complex datasets. Through detailed case studies, we demonstrate the utility of our com-
putational improvements. These applications validate our approach and highlight the potential of
synergy measures to offer insights into the interactions of complex systems.

Additionally, we extend the theoretical framework of synergy to continuous distributions, by
leveraging results from copula theory. This project provides a mathematical basis for quantifying
dependency among continuous variables, as well as numerical methods and software that enable
practical synergy calculations in continuous distributions.
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Chapter 1

Introduction

1.1 Motivation

In a world increasingly driven by data, understanding the nuances of how information is structured
and communicated within complex systems is essential. Originating from the idea that a general
theory for transmitting information can be formulated, Information Theory began as a way to
optimise communication in noisy channels. It has since expanded into a broad framework for
measuring information content in different systems, and the results in this field can now be used
to gain insights from raw data in a systematic way [1].

While traditional information theory provides essential tools for the study of bivariate systems,
the real-world complexity often involves interactions across multiple variables or behaviours that
cannot be addressed by simple pairwise analysis. Therefore, extending the notion beyond a system
with two components is a natural problem to consider. There have been a number of attempts to
generalise the basic building blocks of information theory, trying to formalise abstract notions like
the total dependency within a system [2] or the information embedded in various combinations of
a set of variables [3].

One conceptual framework that offers an elegant way of describing information interactions
is the Partial Information Decomposition (PID) framework [4]. This framework divides the con-
tributions of information within a system into three types of atoms: redundant information that
is contained in multiple components, unique information that belongs to exactly one individual
component, and synergistic information that emerges collectively but cannot be attributed to any
single component. This framework has been proven to be essential for understanding complex
dependencies in fields such as neuroscience, where it can be used to explain neural interdepen-
dencies [5], machine learning, for better understanding the learning process [6], and data privacy,
for assessing the security implications of information sharing [7].

Synergy is a fundamental concept of the PID framework, and captures the idea that the collec-
tive behaviour of a system can account to more than simply the sum of individual parts. To build
intuition behind this concept, consider the phenomenon of depth perception: to perceive depth
accurately, input from both eyes is required. If either eye’s input is obstructed or lost, the majority
of depth information is compromised, illustrating how the combined inputs produce a value (depth
perception) that neither can fully achieve independently. This raises an intriguing question about
the origin of the additional information that appears in the system.

While informal descriptions of synergy are insightful, they do not have operational utility on
their own. Therefore, in this project, we use a formal definition of synergy [8], and build the re-
search on a robust mathematical foundation, focusing on the probability distributions that generate
data in a complex system.

In the case of discrete distributions, [8] provides a clear method for computing synergy as-
sociated with a system, and the companion software package syndisc provides functionality for
practical applications. However, these tools are limited by computational inefficiencies that restrict
their applicability to larger systems. This means synergy cannot be used yet as a way of extracting
insights from medium and large-scale systems.

In the case of continuous distributions, there is currently no formal way to extend [8] to de-
scribe a synergy-centered information decomposition. For the completeness of this approach, in-
troducing a continuous extension of the discrete measure would be an ideal enhancement.
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1.2 Objectives

This project is driven by two primary objectives aimed at addressing the gaps in current methods
of quantifying synergy. Therefore, the project can be divided into two parts, focusing on computa-
tional improvements and extensions of theoretical work:

1. Computational improvements: In this first part of the project, the main objective is to
improve the scalability of algorithms used for computing synergy in discrete distributions.
The current algorithms can only be used for small systems, and in order to use synergy to
analyse real-world datasets, a more efficient way of computing synergy is required.

2. Extension to continuous distributions: The main objective for the second part of the project
is to explore the extensions of synergy to continuous distributions. The formal definition of
synergy can be extended naturally to continuous distributions, but the algorithms used in [8]
cannot be applied in this case. Therefore, the main goals are to improve the understanding
of synergy in continuous distributions and to offer a method for measuring this property in
such cases.

1.3 Contributions

With this project, we aim to provide a deeper understanding of synergy-centered measures, and
add improvements from both a computational and theoretical point of view. To this end, the
contributions can be structured in the following way:

• Computational optimisations in syndisc: Leveraging convex optimization techniques, we
have developed dccp-syndisc1, an optimized version of the original synergy measurement
algorithm. This optimisation improves the scalability of our computational tools significantly,
allowing us to handle systems of up to twice the size previously manageable. We also provide
a thorough evaluation of the performance, and discuss various trade-offs between accuracy
and execution time.

• Extending the synergy measure to continuous distributions: Starting from the definition
of synergy in [8], we provide a natural extension to real-valued continuous distributions. Us-
ing results from copula theory, we derive a formal way of expressing synergy. Additionally, we
introduce approximations of these theoretical constructs, which enable practical, numerical
estimation of synergy across diverse systems. Our study also includes numerical simulations
that show the connections between synergy in discrete and continuous distributions.

• Real-World Applications and Case Studies: The improved scalability of dccp-syndisc al-
lows us to explore and analyze synergy in much larger systems than were previously acces-
sible. We apply this algorithm to a variety of real-world datasets, particularly those derived
from neuroscience studies, to uncover and quantify complex interactions within these sys-
tems. Through detailed case studies, we use hypothesis testing to validate the presence of
synergy in certain systems. These applications not only demonstrate the practical utility of
our contributions, but also highlight the potential of using synergy measures in data analysis
to provide deeper insights into the interactions in these systems.

1Implementation available at https://github.com/vladcoroian/dccp-syndisc.
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Chapter 2

Background

2.1 Fundamentals of Information Theory

The field of Information Theory was developed with the aims of optimizing communication meth-
ods and solving the problem of reliable data transmission. Since its initial development, Infor-
mation Theory has proved to be an essential tool to analyze a broad range of systems, extending
its applications far beyond the study of communication channels. One of its fundamental con-
tributions lies in quantifying information content and providing a mathematical framework for
measuring the amount of uncertainty or surprise associated with a particular event. This section
gives a brief overview of the fundamental measures of this field, as presented in [1].

2.1.1 Central measures of Information Theory

For the following definitions, consider X,Y, Z discrete random variables, with countable alpha-
bets X ,Y,Z respectively, and probability mass functions pX(x) = Pr{X = x},∀x ∈ X , pY (y) =
Pr{Y = y},∀y ∈ Y, pZ(z) = Pr{Z = z},∀z ∈ Z.

Definition 2.1.1 (Shannon information content). The Shannon information content (or surprisal)
of an outcome x ∈ X is defined to be

h(x) =
1

pX(x)
.

Definition 2.1.2 (Entropy). The entropy associated with the random variable X is defined as the
average Shannon information content:

H(X) = E[h(X)] =
∑
x∈X

pX(x) log
1

pX(x)
,

with the convention that for pX(x) = 0, 0× log 1/0 = 0. For convenience, H(X) may also be written
as H(p), where p = (p1, p2, . . . , pI) is a probability vector.

Intuitively, entropy represents the uncertainty in the outcome of a given random variable, the
expected surprise given a distribution.

The choice of the base of the logarithm determines the unit of measure for entropy. In this
project, the entropy will be measured in bits, using logarithm of base 2 (with log being a shorthand
notation for log2).

Definition 2.1.3 (Joint Entropy). The joint entropy of two discrete random variables X,Y is defined
to be:

H(X,Y ) =
∑

x,y∈X×Y
p(x, y) log

1

p(x, y)
,

where p(x, y) is the probability mass function corresponding to the joint distribution (X,Y ).
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Definition 2.1.4 (Conditional Entropy). The conditional entropy of X conditioned on Y is given by:

H(X|Y ) =
∑
y∈Y

pY (y)H(X|Y = y),

where H(X|Y = y) = −
∑

x∈X pX(x|y) log pX(x|y).

Observing the definitions above, one can note that H(X,Y ) = H(X|Y )+H(Y ), which is called
the chain rule for entropy.

Definition 2.1.5 (Mutual Information). The mutual information between X and Y is given by

I(X;Y ) =
∑

x,y∈X×Y
p(x, y) log

p(x, y)

p(x)p(y)
.

Mutual information is a fundamental quantity in Information Theory, which quantifies how
much information is shared between two variables. By computation, one observes that I(X;Y ) =
H(X) + H(Y ) − H(X,Y ) = H(X) − H(X|Y ). Intuitively, I(X;Y ) describes the reduction of
uncertainty in X after knowing Y (or vice-versa, as mutual information is symmetric).

Definition 2.1.6 (Conditional Mutual Information). The mutual information between X and Y
given Z is defined as

I(X;Y |Z) =
∑

x,y,z∈X×Y×Z
p(x, y, z) log

p(x, y|z)
p(x|z)p(y|z)

.

Below the KL-divergence, a key concept in Information Theory, is introduced. Roughly, KL-
divergence is type of statistical distance, and signals difference between two probability distri-
butions. While not a distance, KL-divergence can also be used to compute projections from a
distribution to a statistical manifold.

Definition 2.1.7 (KL-divergence). The relative entropy or the Kullback-Leibler divergence between
two probability distributions P(x) and Q(x) (defined over the same alphabet) is:

DKL(P∥Q) =
∑
x

P (x) log
P (x)

Q(x)
.

2.1.2 Extending to continuous variables

These definitions can naturally be extended to continuous random variables, but one has to be
cautious in order to preserve the key properties of these measures. The key idea behind extending
the measures for continuous random variables X involves discretizing the state space in bins of
equal width ∆x and taking the limit as ∆x → 0. As mutual information is the key information-
theoretic measure used in this project, the definition is shown below, while the rest can be extended
similarly.

Definition 2.1.8 (Mutual Information in continuous variables). Let X and Y be continuous random
variables with pdfs fX(x) and fY (y) respectively. The mutual information between X and Y is defined
as:

I(X;Y ) =

∫
x,y∈X×Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy.

It is important to note that in both the discrete and the continuous case, mutual information
shared between two variables is a non-negative quantity.

As a final result, the following statement introduces an inequality between mutual information
terms in a Markov chain.

Theorem 2.1.1 (Data Processing Inequality). Let X,Y, Z be random variables forming a Markov
chain X − Y − Z. Then, the following inequality between the mutual information between X and Y
and the mutual information between X and Z holds:

I(X;Y ) ≥ I(X;Z).
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2.1.3 Partial Information Decomposition

In this section, the Partial Information Decomposition (PID) framework [4] is introduced, which
extends the notion of mutual information beyond the bivariate case, and proposes a way of de-
composing information into a series of interpretable, non-negative terms.

Let W be a target random variable, and X = {X1, X2, . . . Xn} a set of n random variables
denoted by sources. The goal of PID is to decompose I(W ; (X1, X2, . . . Xn)) in terms of the partial
information contributed by various subsets of X. This decomposition contains three types of terms:

• Unique information that is provided by only one of the sources.

• Redundant information that is provided in each individual source.

• Synergistic information that is information the sources provide jointly, and not individually.

Consider the simplest case of such a system, composed of three random variables, target vari-
able W and sources X1, X2. The following relations between the quantities described above hold:

I(W ;X1) = Red(W ;X1, X2) + Un(W ;X1)

I(W ;X2) = Red(W ;X1, X2) + Un(W ;X2)

I(W ;X1, X2) = Red(W ;X1, X2) + Un(W ;X1) + Un(W ;X2) + Syn(W ;X1, X2)

(2.1)

The Partial Information Decomposition can be visualised by considering an analogy to set theory
and matching the quantities that the different regions represent to PID terms as in the diagram
below.

I(W ;X1, X2)

Syn(W ;X1, X2)

Un(W ;X1) Un(W ;X2)

I(W ;X1) I(W ;X2)

Red(W ;X1, X2)

Figure 2.1: Structure of multivariate information for 3 variables [4]

The terms on the left-hand side in Eq. (2.1) can be easily computed using the standard defini-
tion of mutual information. This leaves four terms to be computed, representing the atoms giving
the structure of multivariate information. On its own, PID simply describes the formal relation-
ship between the basic building blocks of information, without providing further details on how to
compute these terms. This makes the system above underdetermined, as there are four unknowns
and just three equations.

The underdetermined nature of the system indicates that an extra concept is necessary to fully
understand the decomposition of multivariate information. Providing a method to compute one
of the terms involved implies that the other terms can be derived by solving the above system of
equations. Thus, for this decomposition to be practical and useful, it is essential to have a method
for calculating at least one of the terms.

Depending on the method used to transition to a determined system, the estimations of the
atoms can vary, and the focus can shift to a specific block in the decomposition. Several methods
to tackle the decomposition have been proposed, by providing methods to compute one of the
terms (redundancy [4], synergy [9], unique information [10]), or alternative methods, such as
those inspired from information geometry [11]. However, there is no consensus on a universally
accepted method for quantifying these terms.

In this project, not all terms in the decomposition are studied, and the focus of the project is
solely on the synergy term. The project uses a synergy-first approach, and a concrete, operational
meaning of synergy is used. Related work is reviewed in the next section.
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2.2 Synergy in discrete random variables

In this section, the main starting point for this project, a synergy-centered information decomposi-
tion, rooted in data privacy field [12] is introduced. Through this approach, synergistic information
is viewed as the information that can be disclosed about a system without revealing the state of
any of its individual components. The focus is on this approach specifically, as it offers a way of
operating with synergy and using it as a measure for analysing the efficiency of systems. Next, a
brief overview of the scenario and the main results presented in [8, 12] are presented.

2.2.1 Initial scenario

Suppose that we are provided with a dataset X = {X1, X2, . . . Xn} which should be kept private,
and a variable of interest W correlated with the dataset, that a user wishes to share. For ex-
ample, X may represent sensitive measurements of a patient’s vital signals, while W may be a
unique health indicator. Although it is ideal for the patient to disclose W for emergency alerts,
the actual data samples should remain confidential to prevent unintentional disclosure of personal
information.

The privacy framework designed to prevent inference attacks proposes to share another vari-
able Y, obtained through a mapping of X. It is also essential to maintain perfect sample privacy,
meaning that Y should not provide any information that enables statistical inference on individual
components Xi,∀i. Hence, we require that for all i, Xi ⊥⊥ Y (Xi and Y are statistically indepen-
dent), as well as W − X − Y forming a Markov chain (given dataset X, W and Y need to be
independent). A natural measure for the quality of the estimation Y provides for W is the mutual
information shared between Y and W , I(Y ;W ) [12].

Note that while Y is independent of any individual component, it might still be globally inter-
dependent of the rest of the system.

Example 2.2.1 (Exclusive OR). Let X = (X1, X2) be two independent fair coins. Then, the random
variable Y = X1 ⊕X2 (XOR operation), given by

X1 ⊕X2 =

{
0 if X1 = X2

1 if X1 ̸= X2
,

is independent of each of them, while I(Y ;X1, X2) > 0. Therefore, Y reveals a collective property
(whether entries are equal or not), while not revealing any information about X1 or X2.

Notation and preliminaries

Throughout the project, the notation from [12, 8] is used, and it is described here again, for
convenience.

Capital letters denote random variables, lower case letters denote the realisation of these ran-
dom variables, and capital letters in calligraphic font denote the alphabets of random variables.
Matrices and vectors are denoted by letters in bold (capital for matrices and lower case for vectors).

"For integers m ≤ n, we define the discrete interval [m : n] ≜ {m,m+ 1, . . . , n}. For an integer
n ≥ 1,1n denotes an n-dimensional all-one column vector. For a random variable X ∈ X , with
finite |X |, the probability simplex P(X ) is the standard (|X | − 1)−simplex given by

P(X ) = { v ∈ R|X | | 1T
|X | · v = 1, vi ≥ 0,∀i ∈ [1 : |X |] }.

To each probability mass function (pmf) on X, denoted by pX(·) (or written simply pX), corre-
sponds a probability vector pX ∈ P(X ), whose i-th element is pX(xi) (i ∈ [1 : |X |]). Likewise, for
a pair of random variables (X,Y ) with joint pmf pX,Y , the probability vector pX|y corresponds to
the conditional pmf pX|Y (·|y),∀y ∈ Y, and PX|Y is an |X |× |Y| matrix with columns pX|y,∀y ∈ Y"
[12].

Consider W,X1, . . . , Xn discrete random variables (with finite alphabets) and a given joint
distribution pW,X1,...,Xn . Let X ≜ (X1, . . . , Xn), and consider the alphabet X given by:

X = { (x1, . . . , xn) ∈
n∏

i=1

Xi | pX(x1, . . . xn) > 0 }.
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The set of admissible stochastic mappings from the dataset X to Y can be defined as

AX = { pY |X | Y ⊥⊥ Xi,∀i ∈ [1 : n] }.

The quantity needed to be maximised is the information that is shared between W and Y ,
under perfect sample privacy. This can be formalised through the private disclosure capacity, which
is defined as

Is ≜ max
pY |X∈AX

W−X−Y

I(W ;Y ).

A random variable Y satisfying the constraints pY |X ∈ AX and W−X−Y Markov chain is called
a private disclosure channel. The probability distribution pY |X which maximises the expression
above is denoted by p∗Y |X .

The binary matrix P is also defined as: P =

PX1|X
...

PXn|X


G×|X|

, where G ≜
∑n

i=1 |Xi|. Note that

the probabilities in P are either 0 or 1, as Xi is uniquely defined by X.

2.2.2 Extending the notion of synergy

In the previous sections, through the disclosed variable Y , the privacy of the individual compo-
nents of the system is maintained. This notion can be extended to preserve the privacy of specific
subsystems of the initial dataset X. In [8], an extension of this approach is presented, where the
private channel is chosen such that a specific partition of the system remains private.

A subsystem of X is represented as α = {n1, . . . nk} ⊂ [n] and corresponds to the set of compo-
nents Xα = (Xn1 , Xn2 , . . . Xnk

). Similar to the previous definition of a private disclosure channel,
a synergistic channel with respect to a subsystem {α1, . . . , αL} is given by pY |X , where Y is chosen
such that Y ⊥⊥ Xαi ,∀i ∈ [L].

2.2.3 Finding the optimal mapping

This section is an overview of the main results in [12], and describes a practical method for com-
puting the optimal mapping under perfect sample privacy.

The following theorem represents the key starting point for this project, as it provides a concrete
algorithm for computing the optimal mapping and proves its correctness.

Theorem 2.2.1. The maximizer for the private disclosure capacity can be obtained as a solution to a
standard linear program.

Sketch of proof. Consider the singular value decomposition of P, which gives P = UΣVT . Here, V is
the matrix of right eigenvectors v1, v2, . . . , v|X | (where only the first rank(P) correspond to positive
eigenvalues). Define A ≜ [v1, v2, . . . , vrank(P)]

T and the convex polytope in P(X ),

S ≜ { t ∈ R|X | | At = ApX , t ≥ 0 }.

Since Null(A) = Null(P) and W −X − Y is a Markov chain, the following property which links
elements of AX to elements of S holds:

W −X − Y, pY |X ∈ AX ⇐⇒ pX|y ∈ S,∀y ∈ Y.

Using the property above, Is can be rewritten as

Is = H(W )− min
pY |X∈AX

W−X−Y

H(W |Y )

= H(W )− min
pY (·),pX|y∈S,∀y∈Y∑

y pY (y)pX|y=pX

∑
y

pY (y)H(PW |XpX|y).
(2.2)

This property rephrases the original minimisation problem over all targets Y (so on AX) to a
minimisation on elements of S, where the geometrical aspects of the problem can be exploited.
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By noticing that every point in S can be written as a linear combination of the extreme points of
the convex polytope and using the concavity of entropy, it is sufficient to consider only the extreme
points in the minimisation.

The problem is now equivalent to a standard LP:

Is = H(W )−min
u≥0

[H(PW |Xp1) . . . H(PW |XpK)] · u

subject to [p1 p2 . . . pK ] · u = pX ,
(2.3)

where u is a K−dimensional weight vector, and p1,p2 . . . ,pK are the extreme points of S. Note
that the elements of u correspond to the coefficients in the linear combination based on the extreme
points, and the constraint 1T

K ·u = 1 is implicitly satisfied if the constraint in the LP is satisfied.

2.2.4 Algorithm

Using the theorem above, the problem can be solved in a two-step algorithm. First the extreme
points of S are computed, then linear programming is used to obtain the optimal mapping. The
following algorithms are taken from [13] and can be used to obtain the optimal mapping:

Algorithm 1: Finding the extreme points of S
1 function FindExtremePoints(pX):
2 P = BuildBinaryMatrix (pX)
3 U,Σ, [v1, . . . , v|X |]

T = SVD (P)
4 A = [v1, . . . , vrank(Σ)]

T

5 b = ApX

6 K = 0
7 B1, . . .BJ = All subsets of {1, . . . , |X |} with rank(Σ) elements
8 for j = 1 . . . J do

/* Let AB be a rank(P)× rank(P) matrix whose columns are the columns
of A indexed by the indices in B */

9 if A−1
Bj

b ≥ 0 then
10 K = K + 1
11 pK = [A−1

Bj
b,0nul(P)]

T

12 end
13 end
14 return p1, . . .pK

Using the algorithm for finding extreme points in the polytope, the initial problem can be
turned into a standard linear program, which can be easily solved using traditional optimisation
techniques.

Algorithm 2: Computing the optimal disclosure mapping p∗Y |X .

1 function FindOptimalDisclosureMapping(PW |X ,pX):
2 p1, . . .pK = FindExtremePoints (pX)
3 Find u∗ = argmin

∑K
k=1 ukH(PW |Xpk) subject to [p1 p2 . . . pK ] · u = pX

4 pY = [ui1 , . . . uiL ]
/* where i1, . . . , iL are the indices of the nonzero elements of u */

5 PX|Y = [pX|Y=i1
pX|Y=i2

. . . pX|Y=iL
]

6 PY |X = diag(pY )P
T
X|Y diag(pX)−1

7 return PY |X

The Python package syndisc is the companion software of [8]. The package provides utility
functions that can be used to compute synergy in discrete distributions based on the algorithm
presented above. While useful in the analysis of modest systems of random variables, the com-
plexity of the computations makes the package impractical for extracting insights from medium
and large-scale systems. More precisely, it cannot provide insights for setups that use 6 or more
sources, such as X = (X1, . . . , X6), where each Xi represents an independent fair coin, and the

target variable is W = f(X1, . . . X6) (for instance, W =
6∧

i=1

Xi). The computational complexity

involved makes it challenging to handle these kinds of scenarios effectively.
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Note that even though the algorithms above can be used to compute the optimal mapping, the
complexity of the computations required grows very quickly as the dataset X increases in size. The
main bottleneck in the computation is the search over all subsets of columns of A which is needed
for computing the extreme points in S. This is one of the main issues the project tries to address.

Remark 2.2.1. It is important to recognize that the task of identifying synergy within a system funda-
mentally involves an optimization problem. This is due to the definition of Is, the synergy of a system,
which is calculated as the supremum over the set of private disclosure channels, which represents the
feasible set. Additionally, the structure of the objective function is favorable, as this consists of smooth
functions with known convexity. Hence, this scenario is well-suited for the application of optimization
principles, particularly the methods of convex optimization.

2.3 Convex Optimisation

Convex optimisation studies the problem of minimising convex functions subject to a set of equality
and inequality constraints and maintains many of the useful theoretical properties of predecessors,
such as linear programming. Many optimisation problems can be formulated or approximated
using convex programs, making this method suitable for a broad range of problems.

In this section, some of the main numerical algorithms used for solving convex optimisation
models are introduced, as well as a methodology that can be used to construct models which allow
much of the work to be automated.

With these methods, the aim is to formulate the problem of computing discrete synergy as a
convex optimisation problem and then use one of the efficient numerical algorithms (implemented
in commercial solvers such as GUROBI [14]) to approximate the private disclosure capacity and
find appropriate mappings pY |X .

The basics of convex optimisation are reviewed below, as presented in [15].

2.3.1 Convex programming

Definition 2.3.1 (Convex Set). A set C is convex if the line segment between any two points in C lies
in C, i.e., if for any x1, x2 ∈ C and any θ ∈ [0, 1], θx1 + (1− θ)x2 ∈ C.

Definition 2.3.2 (Convex function). A function f : Rn → R is convex if dom f is a convex set and if
∀x, y ∈ dom f , and θ ∈ [0, 1], f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

A function f is strictly convex if strict inequality holds in whenever x ̸= y and θ ∈ (0, 1). The
function f is concave if −f is convex, and strictly concave if −f is strictly convex.

A convex program is an optimisation problem of the following form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . .m,

hj(x) = 0, j = 1, . . . p,

(2.4)

where x ∈ Rn. The variable x is called the optimisation variable, f0 : Rn → R is called objective
function, f1, . . . fm are inequality constraints and h1 . . . hp are the equality constraints. A point x is
called feasible if it satisfies all the equality and inequality constraints. The problem is a convex opti-
misation problem if f0, f1, . . . fm are convex and h0, . . . hp are affine (linear function plus constant)
[15].

2.3.2 Numerical algorithms

Numerical algorithms designed to solve convex optimisation problems often use various transfor-
mations to reduce the initial problem to an equivalent problem suitable for finding a numerical
solution.
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Interior-point methods

Interior-point methods remove the inequality constraints, by adding another term in the objective
function which penalizes constraint violations. More precisely, this method involves substituting
the set of inequality constraints S ≜ {x ∈ Rn | fi(x) ≤ 0, i = 1, . . .m } with a twice differentiable
convex barrier function ϕ : Rn → R, with domϕ = IntS. This transformation results in a modified
optimisation problem:

minimize f0(x) + tϕ(x)

subject to hj(x) = 0, j = 1, . . . p.

As t → 0, the solution for this adjusted problem converges to the solution of the original
problem (under mild conditions). Each iteration performs a Newton minimisation step and reduces
the value of t [16]. A variant of this algorithm called "primal-dual interior-point method" is used
in many commercial solvers such as GUROBI.

First-order methods

First-order methods are iterative optimisation methods that use only first-order information about
the objective function (gradients, subgradients and function value). This restriction allows them
to have a small cost per iteration and they scale well to large problems.

Consider now the equality-constrained convex optimisation problem with the following form:

minimize f(x)

subject to Ax = b
(2.5)

where x ∈ Rn, A ∈ Rm×n and f : Rn → R is convex. The dual ascent method is an iterative
method that takes advantage of the fact that the Lagrange dual problem is always convex and uses
gradient ascent on the dual variable to find the optimal value of problem (2.5).

Starting from an initial guess, at every iteration it takes a small step in the direction of the
gradient and then repeats the process. As long as the step size is chosen appropriately and some
assumptions on the structure of the problem hold (KKT conditions), the algorithm converges to an
optimal point.

2.3.3 Disciplined convex-concave programming

Convex optimization provides a powerful set of algorithms that can be used to optimise a certain
class of functions. To implement these techniques programmatically and carry out numerical op-
timization, using a commercial solver is the ideal choice, due to the superior performance these
tools have. However, these solvers often require framing the problem in a specific format dictated
by the solver, which can be challenging.

Moreover, these optimization methods might not be directly applicable if the function lacks the
necessary curvature. However, when dealing with sufficiently well-behaved objective functions,
there are still strategies available to appropriately reformulate the problem, and take advantage of
the convex optimisation techniques.

In this section, the CVXPY modeling language and disciplined convex-concave programming are
introduced, which can be used to overcome these challenges encountered in convex optimisation.

Disciplined convex programming and CVXPY

CVXPY [17] is a Python-Embedded modeling language for convex optimisation. Phrasing the prob-
lem in the restrictive language imposed by certain solvers is challenging, and CVXPY allows the user
to express the problem in a natural syntax and automates the process of translation. Moreover, if
a problem is written in the CVXPY format many useful properties can be automatically verified.
CVXPY uses a simple, readable syntax and greatly simplifies the process of preparing a problem for
optimisation using a commercial solver.
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Example 2.3.1 (Solving a system of equations [17]). Given A ∈ Rm×n and b ∈ Rm, the system of
equations Ax = b can be formulated in CVXPY as:

# Construct the problem.
x = Variable(n)
objective = Minimize(sum_squares(A*x - b))
constraints = [0 <= x, x <= 1]
prob = Problem(objective, constraints)

# Solve the problem.
result = prob.solve()

# Output the optimal value.
print(x.value)

A restriction of CVXPY is that, in its initial form, CVXPY uses disciplined convex programming
(DCP) to verify problem convexity. This means that in order to verify convexity of the problem,
CVXPY uses a fixed set of functions for which the convexity (constant, affine, convex or concave)
and monotonicity is known, which are then combined to produce new expressions. To allow the
automation process of rewriting the problem, DCP does not support all convex optimisation prob-
lems. DCP allows constructing expressions where checking the curvature is fairly straightforward
(e.g. sum of convex functions or composition between increasing functions and convex functions).
Notably, a limitation of DCP is the "No-product rule", as it cannot accurately check the convexity of
products of expressions. Also, the only problem types supported by DCP are: minimising a con-
vex objective (with zero or more convex constraints), maximising a concave objective (with zero
or more convex constraints) and feasibility problems with no objective and one or more convex
constraints [16].

Convex-concave procedure

The convex-concave procedure (CCP) [18] is a heuristic that can be used to find local optimal
points for difference of convex (DC) problems. DC problems are problems of the form:

minimize f0(x)− g0(x)

subject to fi(x)− gi(x) ≤ 0, i = 1 . . .m
(2.6)

where x ∈ Rn is the optimization variable, and the functions fi, gi : Rn → R are convex. This
heuristic finds a local minimum by replacing the concave terms with a convex upper bound and
solving the associated convex optimisation problem (which is a restriction of the original problem).
By including both fi(x) − gi(x) ≤ 0 and gi(x) − fi(x) ≤ 0 as constraints, these problems can also
model equality constraints. Note that the problem (2.6) becomes a convex optimization problem
in the case where when gi are all affine [18].

Note that CCP is a heuristic method, and the solutions obtained through this approach are local
optimal points, but they may be far from the global optimal point.

Disciplined convex-concave programming

Disciplined convex-concave programming (DCCP) [19] combines concepts from DCP with the CCP
heuristic, and offers a structured way to express a large range of optimisation problems that do not
fit in the category of problems supported through DCP. In addition to the problems DCP supported,
DCCP adds support for difference of convex problems. In particular, DCCP makes it possible to try
to solve programmatically the following set of problems:

minimize/maximize o(x)

subject to li(x) ∼ ri(x), i = 1 . . .m

where o, li, and ri are functions of x with curvature that can be verified by the DCP rules, and
the operator ∼ denotes a comparison operator (=,≤,≥).
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The methods proposed in [19] have been implemented as a Python package DCCP, which ex-
tends CVXPY. When solve is used with parameter method=’dccp’, DCCP first verifies that all func-
tions involved satisfy the DCP rules and then transforms the problem into an equivalent DCP
problem, which is subsequently translated by CVXPY, and sent to the commercial solver for optimi-
sation.

In particular, DCCP supports optimisation problems that look to minimise a concave function
over a convex set. Therefore, these optimisation technique seems to be a promising avenue to
explore further. The function needed to be optimized in the case of synergy is a concave function,
and minimizing this kind of functions is supported by commercial solvers through DCCP.
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Chapter 3

Scaling synergy in discrete
distribution

In this chapter, we focus on the synergy in discrete distributions and we present the extensions
added to the algorithm described in [12] for finding the optimal disclosure mapping. By taking
advantage of convex optimisation techniques, the optimised software provides useful estimations
for much larger systems. We also evaluate the optimised algorithm on a range of synthetic and
real-world data and present various applications in analysing neuroscience datasets.

3.1 Formulating the optimisation problem

Throughout this chapter, we will be working with the system presented in section 2.2.1. The setup
consists of a set of discrete random variables: the sources X = {X1, X2, . . . Xn} and a variable
of interest W . The goal is to share another discrete random variable Y , obtained as a map of
the dataset X, which shares as much information about W as possible, while keeping the dataset
private.

Formally, the aim is to maximise the mutual information between W and Y , where Y is an
admissible stochastic mapping of the dataset X and the Markov condition W −X − Y is satisfied.
Considering the equivalent formulation of Eq. (2.2), the expression for computing the optimal
mapping in the discrete case can be reduced to the following optimisation problem:

minimise
∑
y∈Y

pY (y)H(PW |XpX|y)

subject to pY (·) - probability distribution,

∀y ∈ Y, pX|y ∈ S,
∑
y∈Y

pY (y)pX|y = pX

(3.1)

In the rephrasing above, the objective function
∑

y∈Y pY (y)H(PW |XpX|y) is optimised over the
set of probability distributions pY and the set of extreme points of the polytope S. Note that this
optimisation problem also involves setting the optimal alphabet Y.

The optimal disclosure mapping to be computed is pY |X , and this can easily be constructed
starting from the optimal solution of problem (3.1) using Bayes’ rule. The variable Y that min-
imizes the optimization problem above, also maximizes the mutual information I(W ;Y ), and is
the optimal disclosure mapping. Therefore, solving the optimisation problem above also gives the
optimal disclosure mapping.

3.2 Two step optimisation algorithm

3.2.1 Challenges with brute force optimisation

Formulating the optimisation problem as above provides a great advantage, as it becomes well
suited for convex optimisation methods. These methods are known to be reliable and efficient, so
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this approach can provide scaling opportunities without compromising on accuracy. The problem
can now be expressed in a convenient way to allow convex optimisation solvers to apply various
techniques programmatically and optimise the objective very efficiently.

However, one of the main challenges involved when using such a solver is the restrictive lan-
guage required by the program. Before giving the problem as input data for a solver, problem (3.1)
needs to be modelled in a more specific way. In particular, we wish to make the problem compatible
with the disciplined convex-concave programming framework.

Note that the problem is not convex if taken in this initial form, since the products of variables
in the last constraint break the convexity of the feasible set. As much more efficient methods exist
for solving convex optimisation problems, it can be useful to rephrase the problem in a way that
allows the solution to be found through these methods.

A numerical example is provided below and shows that the problem is not convex in its initial
form.

Example 3.2.1. Consider two independent fair coins X1, X2, and target W = X1∧X2. Formally, the
system is comprised of two binary random variables and pX = [0.25, 0.25, 0.25, 0.25]T . The associated
matrix A can be computed and is equal to:

A =

−0.5 −0.5 −0.5 −0.5
0.71 0. 0. −0.71
0. 0.71 −0.71 0.

 .

For pY (·) a vector with three elements, the following two points (pY , {pX|y, y ∈ Y}) are in the
feasible set of the optimization problem:

p1 =
(
[0.5, 0.5, 0] ,

(
[0, 0.5, 0.5, 0]T , [0.5, 0, 0, 0.5]T , [0, 0.5, 0.5, 0]T

))
p2 =

(
[0.5, 0, 0.5] ,

(
[0, 0.5, 0.5, 0]T , [0.5, 0, 0, 0.5]T , [0.5, 0, 0, 0.5]T

))
.

However, the linear combination λp1 + (1− λ)p2 for λ = 0.5 gives the point:(
[0.5, 0.25, 0.25] ,

(
[0, 0.5, 0.5, 0]T , [0.5, 0, 0, 0.5]T , [0.25, 0.25, 0.25, 0.25]T

))
,

which is not in the feasible set, as it gives

3∑
i=1

pY (yi)pX|yi
= [0.1875, 0.3125, 0.3125, 0.1875]T ̸= pX.

The example illustrates that the product of variables in the consistency condition, given by the
sum of the conditional distributions

∑
y∈Y pY (y)pX|y = pX , can break the convexity of the feasible

set. Thus, it is necessary to find a strategy to linearize the constraints and eliminate the variable
products in the constraints.

3.2.2 Making the problem convex

In problem (3.1), the optimization variables can be categorized into two distinct groups: the
elements of the probability distribution pY and the probability distributions pX|y, which represent
extreme points in the polytope S. The challenge regarding the convexity of problem (3.1) arises
from the presence of product terms in both the objective function and the constraints. However,
we observe that these products exclusively involve variables from these two separate sets.

The observation above motivates using a coordinate descent [20] algorithm for tackling the
optimisation problem: we can sequentially optimize over one set of variables while keeping the
other fixed. By fixing one set of variables, the problem simplifies into a convex form and can be
naturally formulated in DCCP format.

We note that the difference in size between the sets is significant and grows linearly with the
size of states of the source set. For a fixed Y, pY has |Y| elements, while the extreme points
in the polytope contain a total of |X | · |Y| variables. Consequently, fixing pY in the first step
will likely have less influence on the optimal solution, given its smaller size relative to the set of
extreme points, so we decided to fix this one first. Initially, lacking additional information about
the optimal solution, the assigned values for pY may be arbitrary. However, they should form a
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valid probability distribution, so that the optimal values obtained for {pX|y | y ∈ Y } together with
pY form a feasible solution.

Two simplified versions of the optimisation problem (3.1) are considered, in which the optimi-
sation over the two sets of variables happens in turns.

Polytope optimisation step

Note that in the equation below, the optimisation is done only on points in the polytope S, and pY
represents a fixed set of coefficients.

minimise
pX|y

∑
y∈Y

pY (y)H(PW |XpX|y)

subject to ∀y ∈ Y, pX|y ∈ S,
∑
y∈Y

pY (y)pX|y = pX

(3.2)

The objective in problem (3.2) is a concave function. Also, S = { t ∈ R|X | | At = ApX , t ≥ 0 }
is defined as the set of points satisfying a linear constraint and the last equality is linear, so all the
constraints are affine. This means the curvature of the objective and constraints can be verified by
the DCP rules and the problem is compatible with DCCP.

Distribution optimisation step

The next step in the optimisation is finding the optimal distribution pY . For this step, the optimi-
sation is done only on terms pY (y), y ∈ Y. The terms pX|y are fixed for all y ∈ Y, so the terms of
the form H(PW |XpX|y) in the objective function are fixed and can be computed beforehand.

minimise
pY (y)

∑
y∈Y

pY (y)H(PW |XpX|y)

subject to pY (·) - probability distribution,∑
y∈Y

pY (y)pX|y = pX

(3.3)

The objective and constraints in the equation above are linear in pY , so problem (3.3) becomes
a standard linear program [15].

Splitting the initial optimisation in two subproblems, problem (3.2) and problem (3.3), makes
the scenario suitable for the convex optimisation techniques described in section 2.3. Specifically,
DCCP methods can be applied to solve the convex-concave problem (3.2), while problem (3.3) can
be solved using standard optimisation techniques.

3.2.3 Iterative algorithm

We can now describe the iterative algorithm used to find the optimal disclosure mapping.

One iteration algorithm

The algorithm below describes one iteration of the optimisation using DCCP. In the two simplified
versions of the main optimisation problem, we build a list of constraints corresponding to each
problem and then minimise the objective function using disciplined convex-concave programming.
Leveraging the techniques used for convex optimisation, this technique is able to effectively find lo-
cal optimum points, which can be considered lower bounds for the optimal value of problem (3.1)
(as these are feasible solutions). As we present later in the evaluation section, this method often
achieves good estimates of the maximal mutual information available.

The functions DccpOptimise and LinearProgramOptimise represent calls to CVXPY, that trans-
late the problem and give it as input to the commercial solver GUROBI [14]. The return values
from these functions are considered to be the optimal solutions to the problem.
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Algorithm 3: One iteration algorithm

1 function OptimisePolytope(pX , pY ,PW |X ,A):
/* Prepare constraints for the polytope optimisation step */

2 cons = []
3 for i = 1 . . . |Y| do

/* Ensure pX|yi
is a valid pmf and inside S (ApX|yi

= ApX) */
4 cons.append(BuildConstraints (pX|yi

,A,pX))
5 end

/* Add consistency check for conditional distributions pX|y */
6 cons.append(

∑
y∈Y pY (y)pX|y = pX)

7 objective =
∑

y∈Y pY (y)H(PW |XpX|y)

8 PX|Y = DccpOptimise (minimize(objective), cons, variables={pX|yi
| i = 1, |Y| })

9 return PX|Y
10 function OptimiseDistribution(pX ,PX|Y ):

/* Prepare constraints list for the distribution optimisation step */
11 cons = [

∑
y∈Y py = 1, pY ≥ 0]

12 objective =
∑

y∈Y pY (y)H(PW |XpX|y) /* where H(PW |XpX|y) are precomputed */
13 pY = LinearProgramOptimise (minimize(objective), cons, variables=pY )
14 return pY
15 function DccpIteration(PW |X ,pX , |Y|):
16 P = BuildBinaryMatrix (pX)
17 U,Σ, [v1, . . . , v|X |]

T = SVD (P)
18 A = [v1, . . . , vrank(Σ)]

T

19 rand_p_Y = RandomDistribution (|Y|)
20 PX|Y = OptimisePolytope (pX , rand_p_Y, A)
21 pY = OptimiseDistribution (pX ,PX|Y )
22 pY |X = BayesRule (PX|Y ,pX , pY )
23 synergy = MI (PW |X ,pY |X ,pX)
24 return synergy, pY |X

Given the nature of the CCP heursitic that DCCP is based on, the one iteration algorithm above
can potentially be stuck in a local optimum which is far from the global optimum solution. There-
fore, this motivates an extension that considers multiple runs of the single iteration algorithm, as
the optimisation can explore the space more thoroughly and potentially find better solutions to the
optimisation problem.

Extension and final algorithm

We introduce below the optimised algorithm for computing the optimal disclosure mapping, which
we call dccp-syndisc.

Algorithm 4: Multiple iteration algorithm - dccp-syndisc

1 function FindOptimalDisclosureMapping(PW |X ,pX , |Y|, iterations):
/* Initialise optimal solution */

2 best_synergy, p∗
Y |X = 0, None

/* Run multiple iterations of DCCP optimisation */
3 for i = 1 . . . iterations do
4 curr_synergy,pY |X = DccpIteration (PW |X ,pX , |Y|)

/* If solution is better than the optimal found so far and is precise
enough, update optimal solution */

5 if curr_synergy > best_synergy and ConstraintChecking (pY |X ,pX ,PW |X , ϵ) then
6 best_synergy, p∗

Y |X = curr_synergy,pY |X
7 end
8 end
9 return best_synergy, p∗

Y |X
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Note that this can offer better estimations than the alternative algorithm, which again considers
multiple iterations of DccpOptimisation, but continues with the optimisation of the initial solution
obtained by a single run of the one iteration algorithm. This is because DCCP is very effective at
finding local optimum points, so it can be confidently concluded that any solution obtained from
one iteration of DCCP cannot be further optimised by considering the same region of the feasible
set. However, the estimations of the optimal disclosure can potentially be much better when
starting from new distributions pY and exploring other regions in the feasible set.

3.2.4 Choosing the starting parameters

Note that, compared to the initial version of syndisc in Algorithm 2, Algorithm 4, presented in the
previous section, requires two more parameters (|Y| and iterations) that can heavily influence
the efficiency of the estimation.

Choosing alphabet Y

Considering theorem 2.2.1, we recall that the optimal disclosure channel is a point inside the
convex polytope S. This theorem shows that the optimal disclosure channel can be written as a
linear combination of the extreme points in the polytope and it can be determined by solving the
linear program in Eq. (2.3). Therefore, the alphabet Y describes how fine-grained the distribution
pY needs to be in the optimal case and how many extreme points need to be considered for the
optimal mapping pX|Y (which is then used to compute pY |X).

One of the advantages of the original syndisc algorithm is that it does not require setting Y
beforehand. To achieve this, the complete set of extreme points is computed beforehand. This is
useful, as the optimisation can consider all these points and decide which ones to use for the global
optimum, but finding the extreme points is a very expensive operation from a computational point
of view.

To avoid the expensive computation of the extreme points, Algorithm 4 requires a specific size
of Y to be set. Therefore, fixing a Y that is too small might restrict the capacity of the disclosure
channel to a point where it becomes very difficult to accurately estimate the optimal disclosure
capacity. Conversely, opting for a very large Y can lead to computational challenges due to the
problem’s linear increase with Y size and memory constraints during optimization.

Through our experiments, we have observed that the best trade-off between computational
efficiency and accuracy of estimation is achieved when |Y| is set to a moderately sized range (e.g.
10-20 elements), and estimation gains are marginal when increasing Y beyond that range. This
observation is supported by comparing it with the optimal solutions achievable using the original
syndisc, which are often within this range.

Choosing the number of iterations

As presented in the previous section, the Algorithm 4 is based on the CCP heuristic, which finds
local optimal points that form lower bounds for the optimal disclosure. Due to the nature of
the heuristic, doing multiple runs of DccpIteration allows the program to explore the space more
thoroughly and can potentially lead to finding higher lower bounds. Naturally, increasing the num-
ber of runs will lead to better estimations, but this also increases the run time linearly. Throughout
our experiments, we have observed that a fairly small number of iterations is enough to achieve
good estimates, and we have decided to set the number of iterations for further experiments to 20.

3.3 Evaluation

Algorithm 4 presents a potential improvement to the original syndisc algorithm. It aims to pro-
vide accurate estimations of the optimal disclosure capacity given probability distributions pX and
PW |X , while offering improved scalability compared to the previous version. However, due to its
heuristic nature, it is essential to thoroughly evaluate its practical utility. To achieve this, we uti-
lize a combination of synthetic test data representing systems of various sizes and real-world data
sourced from neuroscience studies.
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3.3.1 Evaluation Metrics

When assessing the synergy computation’s performance, we will focus on two key metrics for the
evaluation:

• Disclosure efficiency: This metric represents the proportion of synergy identified by the
optimized algorithm in comparison to the optimal synergy.

• Scalability: This metric measures the practical performance of the algorithm. Given the
computational complexity of syndisc, the original package struggles to provide insights for
systems with more than 5 sources. Thus, our objective is to surpass this limitation and explore
larger systems.

A key property of a synergistic channel is keeping the set of sources private when sharing
information with an outside source. Therefore, it is essential for Algorithm 4 to prioritise obtaining
a channel pY |X that satisfies with great precision the constraints. Therefore, all the results shown
below are obtained for channels which satisfy the constraints within 10−10 precision. While these
optimised channels give valid channels Y , and offer a useful lower bound for synergy, they may
not necessarily provide the optimal disclosure.

3.3.2 Synthetic data experiments

Example 3.3.1 (Correlated AND gate). As a first example, an experiment from [8] is reproduced,
where the authors consider a correlated AND gate with two sources. Take X to be a system with
two binary sources, and the target W = X1 ∧ X2. Below, we compare ground truth results with the
estimates of dccp-syndisc:

Figure 3.1: Correlated AND gate

The estimates obtained from the optimised software are precise, and the curve obtained from
dccp-syndisc is the same as the one obtained from the initial algorithm.

The results in the experiment above are promising, as it shows that for simple scenarios,
dccp-syndisc achieves optimal performance. In the following section, a more thorough evalu-
ation is presented.

Small-system testing

The original syndisc algorithm only supports relatively small systems, so comparisons with ground
truth values can only be made for such systems. In practice, it struggles to compute the optimal
disclosure mapping for systems with more than 5 binary sources and 1 target. Hence, initial tests
involve selecting random distributions of a small number of sources, pX , and considering targets
W, given by PW |X .

Systems of various size are considered for the evaluation process. The evaluation results from
100 runs of the described algorithms are presented below, and the outcomes of dccp-syndisc are
compared to the ground truth values derived from syndisc.
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Table 3.1: Evaluation results on small systems

n Efficiency (Mean ± Std. Dev.) Worst case efficiency syndisc time dccp-syndisc time

2 99.93% ± 0.65% 93.48% 0.0038s 2.4506s
3 98.59% ± 4.61% 69.54% 0.015s 3.7448s
4 96.04% ± 5.86% 68.65% 0.035s 4.2869s
5 95.57% ± 3.92% 81.66% 1.092s 5.3975s

The results above show that dccp-syndisc achieves on average very high efficiency, with all
mean efficiency values above 95%. Also, the execution time of the original syndisc, while very
short for small systems, increases quickly, which is particularly clear in the case of n = 5, and
is unable to finish the computation for n ≥ 6. In contrast, the execution time for dccp-syndisc
increases more gradually as n increases, suggesting its potential for more efficient scalability in
larger systems.

Despite the generally strong performance, it is important to discuss the variation in minimum
efficiencies, which can drop as low as 68%. This highlights the heuristic nature of the DCCP
approach, indicating that while most estimates are above 85% accuracy, there can be significant
deviations in some cases.

(a) 2 sources (b) 3 sources

(c) 4 sources (d) 5 sources

Figure 3.2: Efficiency distribution for small systems. Boxes and whiskers contain most of the test
data, while outliers are represented as dots. As number of iterations increases, the performance
increases and becomes more stable.

In the plots above, it can be observed how increasing the number of iterations affects the
performance of the algorithm. While all four variants of the algorithm achieve good average
results, increasing the number of iterations significantly affects the variance of these estimations.
However, the execution time increases linearly with the number of iterations. Therefore, we have
considered 20 iterations to be a good trade-off between accuracy and execution speed for general
tasks, but this parameter can be changed depending on the restrictions of the problem.

The efficiency of the estimations is also influenced by the chosen size of the private disclosure
channel’s alphabet. The table below shows how performance is affected by this parameter.
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Table 3.2: Efficiency for different sizes of Y in systems with 4 sources

Alphabet size Efficiency (Mean ± Std. Dev.) Mean runtime

|Y| = 5 79.76% ± 20.87% 2.4865s
|Y| = 10 97.02% ± 4.07% 4.1432s
|Y| = 15 99.52% ± 1.5% 5.9490s
|Y| = 20 99.71% ± 1.87% 13.6866s
|Y| = 25 99.89% ± 0.085% 16.6089s
|Y| = 30 99.98% ± 0.012% 19.9190s

Similarly to the number of iterations, this parameter can be varied to provide more precision.
However, note that after a certain threshold, the performance gains obtained for this parameter
are marginal, but the execution time increases quickly. We have decided to use moderately sized
alphabets (between 10 and 20 elements), as these offer a good overall performance, while still
finding the optimal value relatively quickly.

Stress testing

The next step in the evaluation process is testing the scalability of Algorithm 4, by considering an
increasingly larger sets of sources. Experiments revealed that the algorithm efficiently computes
synergy in systems containing up to 13 binary sources. However, extending beyond this threshold
is constrained by memory limitations due to the need for loading the entire system into memory
before applying convex optimization techniques.

Ideally, as the size of the system increases, the disclosure efficiency of the algorithm is con-
tinuously assessed and compared to ground truth values. However, given the limits of syndisc,
ground truth values cannot be computed for systems this large. To circumvent this limitation, the
following testing strategy is proposed:

1. Generate a random distribution of sources pX and target PW |X for a small system (n ≤ 5).

2. Extend the distribution to a larger system (n ≤ 11), by adding duplicates of some of the
sources in the system.

3. As synergy in this system will not change when adding the duplicates, synergy in the small
system can be computed using syndisc, and then compared with the output of the optimised
algorithm when given the large system.

Table 3.3: Evaluation results on large systems

n Efficiency (Mean ± Std. Dev.) Worst case efficiency dccp-syndisc time syndisc time 1

6 96.57% ± 5.38% 67.04% 8.6553s > 6h
7 94.48% ± 8.21% 60.57% 13.6003s > 6h
8 96.71% ± 4.15% 80.16% 24.8697s > 6h
9 97.01% ± 3.97% 70.70% 55.0243s > 6h

10 96.04% ± 4.79% 76.17% 137.8581s > 6h
11 97.84% ± 4.05% 83.00% 436.6510s > 6h
12 97.97% ± 5.35% 70.90% 951.7550s > 6h
13 98.14% ± 3.21% 84.57% 2158.4898s > 6h

From the table above, it can be observed that the performance of dccp-syndisc remains rela-
tively stable in larger systems and the size of the system does not influence the performance of the
optimisation.

In the figures below, the performance of the multiple iteration algorithm is assessed once again.
The results are consistent with the results obtained in the case of small systems. In particular, note

1In all cases, when attempting to run syndisc with large systems as input, the computation ran for this amount of time
without finishing.
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that the algorithm using 20 iterations of the optimisation has a much smaller variance compared
to the other strategies. This shows that the estimations from dccp-syndisc are robust, and the
algorithm becomes suitable for practical applications.

(a) 6 sources (b) 7 sources (c) 8 sources

(d) 9 sources (e) 10 sources (f) 11 sources

(g) 12 sources (h) 13 sources

Figure 3.3: Efficiency distribution for large systems

3.3.3 Summary of systems supported

The complexity in the systems considered can either come from the number of sources in the
system, or from the number of states each component has. Summarising the results of this evalua-
tions, the following set of pairs of system size n and source alphabet X that are supported by each
algorithm:

Table 3.4: Supported systems by syndisc

n
|X |

2 3 4 5 6 7

n = 2 ✓ ✓ ✓ ✗ ✗ ✗

n = 3 ✓ ✓ ✗ ✗ ✗ ✗

n = 4 ✓ ✗ ✗ ✗ ✗ ✗

n = 5 ✓ ✗ ✗ ✗ ✗ ✗

n ≥ 6 ✗ ✗ ✗ ✗ ✗ ✗

Table 3.5: Supported systems by dccp-syndisc

n
|X |

2 3 4 5 6 7

n = 2 ✓ ✓ ✓ ✓ ✓ ✓

n = 3 ✓ ✓ ✓ ✓ ✓ ✓

n = 4 ✓ ✓ ✓ ✓ ✓ ✗

n = 5 ✓ ✓ ✓ ✓ ✗ ✗

n = 6 ✓ ✓ ✓ ✗ ✗ ✗

n = 7 ✓ ✓ ✓ ✗ ✗ ✗

n = 8 ✓ ✓ ✗ ✗ ✗ ✗

n = 9 ✓ ✗ ✗ ✗ ✗ ✗

n = 10 ✓ ✗ ✗ ✗ ✗ ✗

n = 11 ✓ ✗ ✗ ✗ ✗ ✗

n = 12 ✓ ✗ ✗ ✗ ✗ ✗

n = 13 ✓ ✗ ✗ ✗ ✗ ✗
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3.4 Applications to real-world data

Synergistic relationships are present in a wide range of systems, and these can be used in discover-
ing and quantifying complex interactions between components. Hence, when developing methods
to measure synergy, we should always consider the real-world applications these have. While the
previous version of syndisc was useful for analyzing small systems, it is not appropriate for real-
world datasets that typically involve larger distributions. In contrast, the optimised dccp-syndisc
extension discussed earlier offers significantly better scalability, making it highly promising for
practical applications.

Nervous systems are a prime example of systems that can potentially exhibit synergistic re-
lationships, and in this section we present a few potential applications of dccp-syndisc in this
context. We describe the methodology that can be used when analysing a real-world dataset, and
we also briefly discuss the results obtained when working with some of these datasets.

3.4.1 Experiment setup

In the experiments using real-world data, the aim is to evaluate the significance of discovered
synergy among n sources X1, X2, . . . , Xn and one target W , based on data samples obtained from
the joint distribution.

The synergy measure is based on discrete distributions, so the first step is pre-processing the
data, so that the set of values is discrete. The experiments use multiple modalities for the distri-
butions, by converting the data to discrete form, using bins corresponding to different percentiles.
For each modality, a one-sided hypothesis test is used to determine if the system is synergistic.
Based on multiple permutations of the data, it is decided whether the null hypothesis can be re-
jected. Note that the spatial correlation is important in the case of data related to the structure
of the brain. Therefore, the permutations need to preserve this property, and to achieve this, spin
tests are used, as described in [21]. In these, the brain data is projected on a sphere, which is then
rotated to preserve spatial relations between the measurements.

Another important observation is that the experiment can be heavily influenced by the estima-
tion process for the joint distribution, and the number of bins used for the quantization of the data
is a critical parameter in this context. The domain of the data is continuous, so a lot of informa-
tion can potentially be lost in the quantization process. This is especially relevant given that the
number of bins supported by the algorithms for measuring synergy is still fairly small. It is also
important to consider that given the quick growth in the number of states relative to number of
bins, the number of data samples might not be enough to accurately estimate the joint distribution
(especially when basic methods such as plug-in estimators are used).

3.4.2 Dataset description

Brain data: Neuromaps experiments

The brain data used in this study is sourced from the neuromaps project [22]. This dataset in-
cludes multiple high-resolution brain maps that capture brain activity across specific regions. The
neuromaps dataset provides detailed brain maps that illustrate the spatial distribution of neural
activity and connectivity patterns.

The neuromaps project offers a good environment for dccp-syndisc to be evaluated, because
the diverse brain maps can be used to create systems with various number of sources. In our ex-
periments, we aim to observe the synergistic relationships that emerge when considering groups
of annotations from the same type as sources (such as Microstructure, Metabolism, or Electro-
physiology) and the functional gradient as the target. The functional gradient is an ideal target
because it captures gradual changes in functional connectivity and activity patterns across different
brain regions, reflecting the brain’s underlying organizational principles. By examining multiple
sources from the same type of annotation together, we can evaluate their effectiveness in predicting
changes in the gradient.

The following sets of annotations are used in the experiments:

1. Microstructure: There are two microstructure maps, corresponding to T1w/T2w ratio and
cortical thickness, which are used as sources. These are derived from magnetic resonance
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imaging (MRI) data, provided by the Human Connectome Project (HCP). The annotations
show measurements of relative cortical myelin content and cortical thickness [23].

2. Metabolism: This setup contains four sources, corresponding to Cerebral Blood Flow (CBF),
Cerebral Blood Volume (CBV), Oxygen metabolism (CMRO2), and Glucose metabolism (CM-
RGlu) [24].

3. Electrophysiology: This experiment uses MEG (Magnetoencephalography) power distribu-
tions from the Human Connectome Project, and contains five sources, corresponding to Delta,
Theta, Alpha, Beta and Gamma powers. Neural communication in the brain is typically esti-
mated through analysis of electromagnetic time-series, so this set of sources can potentially
offer insights in the functional connectivity patterns in the brain [25].

Gene data: Enigma Toolbox

Another potential application for the synergy measure is in genetic data, where synergy can be
used to observe interactions between genes and associated behaviors. For these experiments, we
utilized data from the ENIGMA Toolbox [26], which offers a wide range of information useful for
studying the genetic basis of various neurological disorders.

The ENIGMA toolbox provides curated datasets of genes that have been statistically associated
with specific disorders. The toolbox also includes detailed data for these conditions, such as mea-
surements of cortical thickness between case and control subjects. Therefore, this toolbox provides
a good setting to apply dccp-syndisc. In the context of synergy, we wish to examine whether by
considering sets of such genes, we can observe synergistic systems when the target represents the
cortical thickness data associated with the disorder.

3.4.3 Experiment results: Neuromaps

Consistency check with syndisc

Lastly, a consistency check is performed, to assess once again the performance of dccp-syndisc.
With 4 bins or less, the experiment setup can be used to compare the estimations with the ground
truth. Therefore, the same experiment is run using both versions of the software and the results
are then compared. The histograms for two bins match exactly, whereas those for three and four
bins show highly similar values. This analysis confirms the strong performance of dccp-syndisc
and the precise estimates of synergy it can achieve.

(a) Bins = 2 (b) Bins = 3

(c) Bins = 4

Figure 3.4: Histograms comparing the results from syndisc (orange) and dccp-syndisc (blue).
The histograms are very similar in all cases. For 3 and 4 bins, the original algorithm reports slightly
higher synergy values.
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Microstructure

Given that the system comprises only two sources, dccp-syndisc is flexible enough to support
distributions with an increased number of bins. Therefore, this scenario allows us to explore how
the level of quantization impacts the results of the experiment.

We expect that using only very few bins, such as converting the data into a binary format,
will result in substantial information loss and might even obscure any synergistic results. Indeed,
observations confirm that with two or three bins, the experimental results are not significant, and
we fail to reject the null hypothesis. However, when more than three bins are used, the evidence
of synergy in the system becomes significant (at 5% level) and the null hypothesis is rejected.

Sources Target

(a) T1w/T2w ratio (b) Cortical Thickness (c) Functional Gradient

(d) Bins = 2 (e) Bins = 3

(f) Bins = 4 (g) Bins = 5

(h) Bins = 6 (i) Bins = 7

Figure 3.5: Experiment results for Microstructure annotation maps. In the fist two histograms, we
fail to reject the null hypothesis, while in the last four, the null hypothesis is rejected at 5% level.
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Metabolism

Similar to the previous scenario, the number of sources allow us to experiment with multiple
levels of quantization, so the experiment is repeated with 4, 5, and 6 bins. However, in all cases,
the experiment results are not significant at 5% level, and we fail to reject the null hypothesis.

Sources Target

(a) Cerebral Blood Flow (b) Cerebral Blood Volume

(c) Functional Gradient

(d) Oxygen metabolism (e) Glucose metabolism

(f) Bins = 4 (g) Bins = 5

(h) Bins = 6

Figure 3.6: Experiment results for Metabolism annotation maps. In all cases, the results are not
significant, and we fail to reject the null hypothesis.
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Electrophysiology

In this scenario, the number of sources allows dccp-syndisc to consider up to 5 bins for the
quantization process. Again, as in the experiments for metabolism maps, the data does not have
significant traces of synergy.

Sources Target

(a) Delta power (b) Alpha power (c) Beta power

(d) Gamma power (e) Theta power

(f) Functional Gradient

(g) Bins = 2 (h) Bins = 3

(i) Bins = 4 (j) Bins = 5

Figure 3.7: Experiment results with Electrophysiology annotation maps. In all cases, the results
are not significant, and we fail to reject the null hypothesis.
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3.4.4 Experiment results: Enigma Toolbox

A potentially interesting application of dccp-syndisc is determining how common synergistic sub-
sets are in real-world datasets. The large number of genes related to epilepsy makes the data
available through the Enigma Toolbox appropriate for such an experiment.

The Enigma Toolbox reports 8 risk genes associated with the epilepsy disorder, and considering
these as sources creates a large system, and truly shows the potential of dccp-syndisc. The
Cohen’s d-values available in this toolbox are used as target. These represent changes in cortical
thickness for brain regions in studies comparing subjects with and without the disorder. Given the
large number of null values in this distribution (corresponding to no change between case and
control datasets), this dataset was converted to binary format.

The experiment setup involves evaluating multiple gene subsets for synergy to uncover poten-
tial links between genes and neurological disorders, specifically epilepsy. For a comprehensive
experiment, three sets of genetic data for the subsets are used:

1. Related Genes: We consider each subset of related genes as a potential source set. Following
a spin test for each subset, we determine if there are significant indications of synergy.

2. Unrelated Genes: From the large number of genes considered unrelated, we select random
subsets of varying sizes and reproduce the previous experiment.

3. Control dataset (Shuffled, random genetic data): To establish a control standard for the
synergy tests, we consider a strategy that breaks all dependencies within the data. This
involves using data from genes not associated with epilepsy and randomly shuffling all se-
lected gene data. We then repeat the previous spin tests. This dataset serves as a baseline to
estimate the lower bound of the expected number of synergistic subsets.

Sources Target

Figure 3.8: System used in experiments using genetic data. The sources represent the 8 risk genes
linked to epilepsy (as reported by Enigma Toolbox), while the target represents the binarised
Cohen’s d-values between case and control datasets.

In the plot below, we show the results for the experiment described above. The plot represents
the fraction of subsets that resulted in significant synergy at the 5% level. The x-axis indicates
the size of each subset, with corresponding values for fractions of related genes subsets, unrelated
genes subsets, and control subsets.

Firstly, one key observation from these results is that a significant number of both related and
unrelated genes subsets exhibit synergy. This suggests that synergy is a fairly common characteris-
tic in datasets sourced from neuroscience studies, indicating promising potential for its application
in various real-world scenarios.

We now continue with a thorough analysis of the results. As expected, given that the signif-
icance level we considered is 5%, the control data shows a constant 5% fraction of synergistic
subsets. This sets a baseline for interpreting results from both related and unrelated genetic data.
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Figure 3.9: Fraction of subsets synergistic with epilepsy data. Related genes exhibit the highest
fraction of synergistic subsets, while the unrelated genes show lower values. The control dataset
is around 5% for all subset sizes.

A substantial fraction of related genes subsets show significant traces of synergy. This is a
somewhat expected result, as these genes have been selected as a result of statistical analysis
on their presence in different regions of the brain. However, it is worth exploring further which
particular sets of related genes are synergistic and to investigate the common characteristics of the
genes that frequently appear in these synergistic groups. Also note that, as the size of the gene
subsets increases, the presence of synergy decreases, and when considering subsets of 7 genes, or
the whole set of related genes, there are no significant traces of synergy.

The synergistic subsets of unrelated genes also offer an interesting hypothesis. Although these
subsets show lower synergy compared to those of related genes, a notable number of gene subsets,
traditionally not associated with epilepsy, showed significant synergy. This finding could suggest
previously unrecognized interactions between genes and disorders like epilepsy, presenting a new
way for data analysis in this field.

3.5 Discussion and interim conclusion

Throughout this chapter, we have explored the scalability and efficiency of dccp-syndisc, a novel
extension of the synergy calculation software syndisc. This tool uses disciplined convex-concave
programming (DCCP) to optimize the synergy calculation process for systems containing discrete
random variables. We have highlighted both the mathematical foundations of the approach and its
practical implementation, presenting extensive evaluation results on both synthetic and real-world
data.

We summarise here the key findings of this section:

1. Scalability and Performance: Our evaluations demonstrate that dccp-syndisc offers a sig-
nificant improvement in scalability compared to its predecessor. It manages to compute
synergy efficiently for systems with up to 13 binary sources, a considerable advancement
over the five-source limit of the original syndisc algorithm. This capability makes it a more
viable tool for analyzing complex real-world systems where large datasets are common.

2. Efficiency of Estimation: The method consistently achieves high efficiency in synergy esti-
mation across various system sizes and conditions. While there are occasional deviations due
to the heuristic nature of the DCCP approach, the average performance remains robust. This
reliability supports the utility of dccp-syndisc in both academic research and potentially
clinical applications where accurate measurement of data interaction is crucial.

3. Real-World Application: The application of dccp-syndisc to neuroscience and genetic data
illustrates its potential in discovering complex synergistic relationships in high-dimensional
data. For instance, the analysis of brain mapping data from the neuromaps project and gene
association data from the Enigma Toolbox has shown that dccp-syndisc can identify signifi-
cant synergy patterns that may be vital for understanding underlying biological mechanisms.

31



Chapter 4

Synergy in continuous distributions

In this chapter, we extend the notion of synergy, initially defined only on discrete probability
distributions in [12], to continuous distributions. By taking advantage of results from copula
theory, we present a method for computing the synergy in this case.

4.1 Copula theory

Copulas are multivariate cumulative distribution functions for which the marginal probability dis-
tribution of each variable is uniform on the interval [0, 1]. These functions simplify the analysis
of joint probability distributions by abstracting the marginal distributions of the random variables
and capturing the dependencies between them. In this section, we cover the fundamentals of
copula theory as outlined in [27], along with advanced topics such as pair-copulas and vine tree
decompositions [28], and checkerboard copulas [29, 30].

4.1.1 Fundamental properties of copulas

In this section, the concept of copula is introduced, along with its fundamental properties, as
presented in [27].

Definition 4.1.1. A copula is a multivariate distribution function C : [0, 1]n → [0, 1] with uniform
marginals on the interval [0, 1]. Specifically, C satisfies the following properties:

• For every u ∈ [0, 1]n, C(u1, . . . , un) is d-non-decreasing (the volume in each hyperrectangle is
non-negative)

• C(u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0, the copula is zero if any one of the arguments is zero

• C(1, . . . , 1, u, 1, . . . , 1) = u, the copula is equal to u if one argument is u and all others 1.

Theorem 4.1.1 (Sklar’s Theorem). Let H be a joint distribution function with marginals F1, . . . , Fn.
Then there exists a copula C such that for all x1, . . . , xn ∈ R,

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

If F1, . . . , Fn are continuous, then the copula C is unique. Conversely, if C is a copula and
F1, . . . , Fn are distribution functions, then H defined above is a joint distribution function with
marginal probability distributions F1, . . . , Fn.

The copula function above can be seen as a multivariate probability distribution. Based on this,
the corresponding copula density can be derived:

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1 . . . ∂un
.

The copula density provides a useful relationship between the pdfs of the marginals and the
joint distribution, as by taking partial derivatives in all directions, Sklar’s Theorem becomes:

h(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))

n∏
i=1

pi(xi),
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where p1, . . . , pn, h are the probability density functions for X1, . . . , Xn, (X1, . . . , Xn) respectively.
A few important properties of copulas are introduced below.

Theorem 4.1.2. Let X1, X2, . . . Xn be continuous random variables, with copula C. Then X1, . . . , Xn

are independent if and only if C is the independence copula Πn(u1, u2 . . . , un) = u1u2 . . . un.

In this case, c(u1, u2 . . . , un) = 1,∀u1 . . . un ∈ [0, 1], where c(u1, u2 . . . , un) is the copula density.

Theorem 4.1.3 (Fréchet–Hoeffding copula bounds). For any copula C and any u, v ∈ [0, 1], the
following bounds hold:

W (u, v) ≤ C(u, v) ≤ M(u, v),

where W (u, v) = max(u + v − 1, 0) is the Fréchet–Hoeffding lower bound and M(u, v) = min(u, v)
is the Fréchet–Hoeffding upper bound. The copula W corresponds to the case of countermonotonicity,
and the copula M corresponds to comonotonicity.

Remark 4.1.1. Note that the copula density associated to the comonotonicity copula is similar in
nature to the Dirac-delta function, and has the following form:

c(u, v) =

{
∞ if u = v,

0 otherwise.

Definition 4.1.2 (Total correlation). [2] The total correlation of the set composed of random vari-
ables {X1, X2, . . . , Xn} is defined as:

C(X1, X2, . . . , Xn) = DKL [p(X1, . . . , Xn)∥p(X1)p(X2) · · · p(Xn)]

=

n∑
i=1

H(Xi)−H(X1, X2, . . . , Xn)

where DKL represents the Kullback-Leibler divergence, H(Xi) denotes the entropy of the random
variable Xi, and H(X1, X2, . . . , Xn) is the joint entropy of all the random variables. This measure
quantifies the total amount of mutual information shared among the variables, reflecting their joint
statistical dependence.

The following theorem provides an alternative way of expressing total correlation of random
variables based on the copula of the joint distribution.

Theorem 4.1.4 (Copula Entropy and Total correlation). [31] Let X = {X1, X2, . . . Xn} be random
variables with marginal distribution functions u = [F1, . . . , Fn] and copula density c(u). The copula
entropy of X1, X2, . . . Xn is defined as Hc(X) = −

∫
u
c(u) log c(u) du.

The total correlation of the random variables is then equivalent to the negative of their copula
entropy:

C(X1, X2, . . . , Xn) =

∫
X
p(x1, . . . , xn) log

p(x1, . . . , xn)∏n
i=1 p(xi)

dX = −Hc(X).

Two useful examples of families of copula distribution functions in the bivariate case are intro-
duced below, as shown in [32]. These definitions can also be extended to multiple dimensions.

Definition 4.1.3 (Gaussian Copula). Given a bivariate random vector (X1, X2) ∼ N2(0,Σ) where Σ
is the 2× 2 correlation matrix of X, the Gaussian copula CGauss

Σ is defined as:

CGauss
Σ (u1, u2) ≜ Φ2(Φ

−1(u1),Φ
−1(u2); Σ),

where Φ(·) denotes the standard univariate normal CDF and Φ2(·, ·; Σ) denotes the bivariate normal
CDF with correlation matrix Σ. The density of the copula is given by:

c(u1, u2) =
1√

1− ρ212
exp

(
−ρ212(x

2
1 + x2

2)− 2ρ12x1x2

2(1− ρ212)

)
,

where ρ12 is the correlation between X1 and X2, x1 = Φ−1(u1), and x2 = Φ−1(u2).
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This copula can be visualised in the figure below, which also highlights the uniform marginal
property of copulas by projecting the samples on the axes.

(a) ρ = 0.2 (b) ρ = 0.5 (c) ρ = 0.7

Figure 4.1: Gaussian copula simulation with different correlations, using 50000 samples of
(X1, X2)− bivariate normal distribution. Projecting the marginals on the axes shows that this
density has uniform marginals.

Definition 4.1.4 (Gumbel Copula). The bivariate Gumbel copula, parameterized by θ ≥ 1, is defined
as:

CGum
θ (u1, u2) ≜ exp

(
−
(
(− log u1)

θ
+ (− log u2)

θ
)1/θ)

.

For θ = 1, the copula represents independence, and as θ → ∞, it approaches the comonotonicity
copula.

4.1.2 Checkerboard copulas

Checkerboard copulas are a special type of copula constructed by partitioning the unit cube into
smaller, non-overlapping cubes. This partitioning allows for a flexible method to approximate any
continuous copula distribution. The main motivation behind using checkerboard copulas is that
besides their computational simplicity, these offer a useful connection between the case of discrete
synergy and the continuous extension. This section introduces the formal definition, as well as a
set of useful results concerning checkerboard copulas.

Consider In = {0, 1
n ,

2
n , . . . ,

n−1
n , 1},∀n ∈ N. Also, recall the notation [m : n] = {m,m+1, ..., n}.

Definition 4.1.5 (Discrete copula). [29] A discrete copula is a function Cn,m : In× Im → [0, 1] with
the following properties:

• Cn,m( i
n , 0) = Cn,m(0, j

m ) = 0,∀i ∈ [0 : n], j ∈ [0 : m]

• Cn,m( i
n , 1) =

i
n , Cn,m(1, j

m ) = j
m ,∀i ∈ [0 : n], j ∈ [0 : m]

• Cn,m( i
n ,

j
m ) + Cn,m( i−1

n , j−1
m ) ≥ Cn,m( i−1

n , j
m ) + Cn,m( i

n ,
j−1
m ),∀i ∈ [1 : n], j ∈ [1 : m].

Remark 4.1.2. [29] The discrete function Cn,m : In × Im → [0, 1] can be extended to a valid copula
distribution on [0, 1]2. The associated copula distribution function (called checkerboard copula) is
piecewise constant on each rectangle of the partition of [0, 1]2.

Denote by DCn the set of checkerboard copulas of size n.

Remark 4.1.3. The definition above can be naturally extended to a d-dimensional definition of a
discrete copula on the cube [0, 1]d. The first two properties are formulated equivalently by taking
all but one argument to be either all 0 or all 1, while the last property is extended to an inequality
ensuring that the volume of the unit hyperrectangle is non-negative. In this section we focus on the
two dimensional case for clarity, but all concepts can be extended to high-dimensional spaces.

Definition 4.1.6. [29] A n× n matrix A = (aij)
n
i,j=1 is called doubly stochastic if:

• All its elements are non-negative, i.e. aij ≥ 0 for all i, j.

• Each row and each column sums to 1, i.e.
∑n

j=1 aij = 1 for all i and
∑n

i=1 aij = 1 for all j.
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Proposition 4.1.1. [29] For a function Cn,n : I2n → [0, 1] the following statements are equivalent:

1. Cn,n is a discrete copula;

2. there is a doubly stochastic matrix A = (aij)
n
i,j=1 such that for i, j ∈ {0, 1, 2, . . . , n}

Cn,n

(
i

n
,
j

n

)
=

1

n

i∑
k=1

j∑
m=1

akm.

Remark 4.1.4. Note that the doubly stochastic matrix in the previous proposition represents the scaled
copula density of the associated checkerboard copula. This is because the doubly stochastic matrix can
be identified with the probability mass that the probability measure assigns to each unit square. The
copula density matrix can be obtained by considering the matrix (cij)

n
i,j=1, where cij = n · aij .

Example 4.1.1. Let A be the doubly-stochastic matrix:

A =

1/7 3/7 3/7
2/7 1/7 4/7
4/7 3/7 0

 .

By applying the transformation from proposition 4.1.1, we obtain the discrete copula C associated
with A

C =


0 0 0 0
0 1/21 4/21 1/3
0 3/21 7/21 2/3
0 1/3 2/3 1

 .

By scaling A, the copula density c can be obtained, and the piecewise constant property of the
copula density can be visualised in the following figure:

Figure 4.2: Corresponding copula density. The copula density c is constant on squares of area 1
32 .

The following results link the discrete copulas with some known combinatorial results, and are
discussed in [30].

Theorem 4.1.5. The set of discrete copulas is convex. That is, if C1 and C2 are discrete copulas and
t ∈ [0, 1], then tC1 + (1− t)C2 is also a discrete copula.

Theorem 4.1.6 (Birkhoff-von Neumann). The extreme points of the polytope representing the set of
n×n doubly stochastic matrices are the n×n permutation matrices. That is, n×n matrices such that
each row and each column has exactly one entry equal to 1 and all other entries equal to 0.

Remark 4.1.5. Birkhoff-von Neumann Theorem gives a characterisation of the extreme points of the
discrete copula polytope on a grid of size n. By Remark 4.1.4, the copula density for a discrete copula
can be obtained through a scaling of a doubly stochastic matrix with a factor of n. The extreme points
are therefore matrices such that each row and each column has exactly one entry equal to n and all
other entries equal to 0.

Theorem 4.1.7. [33] For every copula distribution C, there exists a sequence of checkerboard copulas
(Ĉn)

∞
n=0 that converge to C uniformly. In particular, the sequence (Ĉn)

∞
n=0 can be chosen such that

Ĉn is a checkerboard copula on a grid of size n and:

sup
(x,y)∈[0,1]2

|C(x, y)− Ĉn(x, y)| ≤
2

n
,∀n ∈ N.

The theorem above shows that by considering checkerboard copulas on grids of increasing
granularity, any copula can be uniformly approximated.
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4.1.3 Pair-copula Constructions

Pair-copula constructions are a powerful method for building flexible multivariate distributions by
decomposing complex dependencies into simpler, bivariate copulas. This section introduces the
fundamental concepts behind these constructions.

The key idea behind pair-copula constructions is that a high-dimensional probability distri-
bution can be decomposed by successively rewriting joint distributions in terms of conditional
distributions.

Pair-copula decomposition

In this section, the pair-copula constructions used in decomposing high-dimensional distributions
are introduced, as presented in [28]. Consider X1, X2, . . . Xd continuous (real-valued) random
variables. In the derivations below, F (·) and p(·) denote conditional cdf’s and probability density
functions, respectively. Throughout this chapter, the full expression of a conditional copula and its
abbreviation are used interchangeably:

ci,j|i1,...,ik ≜ ci,j|i1,...,ik(F (xi | xi1 , . . . , xik), F (xj | xi1 , . . . , xik)),

for distinct indices i, j, i1, . . . , ik with i < j and i1 < · · · < ik.
Consider the following decomposition using conditional pdfs:

p(x1, . . . , xd) = p(xd | x1, . . . , xd−1)p(x1, . . . , xd−1)

= · · · =
d∏

t=2

p(xt | x1, . . . , xt−1)p(x1). (4.1)

Sklar’s theorem for dimension d = 2 gives p(x1, x2) = c12(F1(x1), F2(x2))p1(x1)p2(x2), where
c12(·, ·) is an arbitrary bivariate copula density. Using Eq. (4.1), the conditional density of X1 given
X2 can be expressed as

p(x1 | x2) = c12(F1(x1), F2(x2))p1(x1). (4.2)

Using Eq. (4.2), the pdf p(xt | x1, . . . , xt−1) can now be expressed recursively as

p(xt | x1, . . . , xt−1) = c1,t|2,...,t−1 · p(xt | x2, . . . , xt−1)

=

[
t−2∏
s=1

cs,t|s+1,...,t−1

]
· c(t−1),t · pt(xt). (4.3)

Using Eq. (4.3) in Eq. (4.1) and taking s = i, t = i+ j gives:

p(x1, . . . , xd) =

[
d∏

t=2

t−2∏
s=1

cs,t|s+1,...,t−1

][
d∏

t=2

c(t−1),t

][
d∏

k=1

pk(xk)

]

=

d−1∏
j=1

d−j∏
i=1

c(i,(i+j))|(i+1),...,(i+j−1)

[ d∏
k=1

pk(xk)

]
. (4.4)

The decomposition above is called a pair-copula decomposition, and this decomposition allows
any high-dimensional decomposition to be written only in terms of pair-wise interactions (through
the bivariate copulas) and the marginal distributions.

Regular vine decomposition

According to [28], Bedford and Cooke [34] observed that pair-copula decompositions above can
be represented graphically as vine trees, a sequence of nested trees with undirected edges, where
edges denote indices used for the conditional copula densities. A regular vine on d variables
consists of connected trees T1, . . . , Td−1 with nodes Ni and edges Ei for i = 1, . . . , d−1, satisfying:
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1. T1 has nodes N1 = {1, . . . , d} and edges E1.

2. For i = 2, . . . , d− 1, tree Ti has nodes Ni = Ei−1.

3. Two edges in Ti are joined in Ti+1 if they share a common node in Ti.

Edges in Ti are denoted by jk|D, where j < k and D is the conditioning set. If D is empty, the
edge is denoted jk. Consider two edges a = j(a), k(a)|D(a) and b = j(b), k(b)|D(b) in Ti−1 that
share a node. Nodes corresponding to a and b are then joined in Ti by edge e = j(e), k(e)|D(e),
where D(e) are the random variables that appear in both a and b, while j(e) and k(e) represent
the components that appear only in a or b, respectively.

Regular tree sequences can therefore help visualise the interactions between random variables
of a system and these can give multiple equivalent decompositions for the same joint probability
distribution.

A regular vine tree is called

• drawable vine tree (D-vine tree) if each node in the sequence (Ti)
d−1
i=1 has at most 2 edges

• canonical vine tree (C-vine tree) if each tree Ti has a node with degree d− i.

Therefore, a D-vine tree is fully specified by the initial tree T1, while the C-vine tree is fully
specified by the root nodes in each Ti.

4.2 Formulate extension of synergy to continuous distributions

The synergy measure described in [12, 8] is originally defined for discrete probability distribu-
tions, but it can be directly extended to continuous probability distributions. The key idea behind
discrete private disclosure capacity is to construct a discrete random variable that remains private
with respect to all sources while sharing as much information as possible about the target vari-
able. Therefore, the scenario can be kept identical to the discrete case, but with discrete random
variables replaced by continuous ones. The setup is described again for clarity.

Scenario

Consider W,X1, . . . , Xn continuous random variables with continuous domains W,X1, . . .Xn, and
a given joint probability density function pW,X1,...,Xn . By considering the same definitions for the
set of admissible stochastic mappings AX = { pY |X | Y ⊥⊥ Xi,∀i ∈ [1 : n] }, the definition for the
private disclosure capacity remains the same:

Is ≜ max
pY |X∈AX

W−X−Y

I(W ;Y ). (4.5)

This chapter focuses on two cases of synergy in continuous distributions. We begin by exploring
the case of self-disclosure, when the target variable is the system itself, and then proceed to the
case of synergy with an arbitrary target, where all random variables in the system are real-valued.
In both cases, to build intuition, we begin by examining the simpler case of two sources, and then
prove generalisations of the results for an arbitrary number of sources.

4.3 Self-disclosure

We start by presenting a particular case of the formal definition of synergy introduced in the pre-
vious section, by focusing on the amount of information that a system can disclose about itself. In
this section, we introduce the notion of self-disclosure and discuss some properties of this measure.

Definition 4.3.1. The self-disclosure of X = {X1, X2, . . . , Xn} is defined as the disclosure capacity
when the target is given by W = X in Eq. (4.5). Formally, this is defined as:

Is ≜ max
pY |X∈AX

I(X;Y ).

37



We initially focus on the special case of just two sources, as the insights gained from this case
help in understanding self-disclosure involving multiple sources. In this case, the definition above
becomes:

Is = max
Y⊥⊥X1,Y⊥⊥X2

I(X1, X2;Y ).

4.3.1 Modelling constraints through copulas

Lemma 4.3.1. For any private disclosure channel Y (pY |X ∈ AX), the joint probability distribution
p(y, x1, x2) can be written using pair copula constructions as:

p(y, x1, x2) = p(y)p(x1)p(x2)c12|θ(uy)(u1, u2),

where c12|θ(uy) represents the conditional copula of (X1, X2) given Y (where (X1, X2)|Y depends on
Y only through the parametrisation function θ(uy)).

Proof. Consider the following D-vine sequence of trees (Ti)
2
i=1 :

T1

x1 y x2
yx2x1y

T2

yx2 x1y
x1x2 | y

Figure 4.3: D-vine tree decomposition for the joint distribution (Y,X1, X2).

By the pair-copula construction Eq. (4.4) for d = 3, for any joint distribution (Y,X1, X2), the
following relation holds:

p(y, x1, x2) = p(y)p(x1)p(x2)c12|y(u1|y, u2|y)c(uy, u1)c(uy, u2).

By pY |X ∈ AX , we also have that Y ⊥⊥ X1 and Y ⊥⊥ X2, so ∀uy, u1, u2 ∈ [0, 1], c(uy, u1) =
c(uy, u2) = 1, and u1|y = FX1|Y (x1|y) = FX1|Y (x1) = u1, u2|y = FX2|Y (x2|y) = FX2|Y (x2) = u2.
Substituting these in the relation above, we obtain the decomposition.

A similar expression for the decomposition above was given in [35]. Here, we apply it to the
synergy measure we work with, and we also provide a complete proof of the decomposition.

This gives the following parametrisation of the space AX :

Lemma 4.3.2. The copula density c12|y, together with p(y), parametrise the feasible set AX .

Proof. Consider Y ∈ AX . This is specified by the conditional pY |X (given for each y ∈ Y, (x1, x2) ∈
X 2). This is equivalent to specifying the joint pdf p(y, x1, x2). By the previous proposition, this
is given by p(y)p(x1)p(x2)c12|θ(uy)(u1, u2). Therefore, as p(x1), p(x2) are known, the private dis-
closure channels are fully specified by the pair (p(y), c12|y) (where p(y) is obtained from pY |X
and pX). Conversely, for a given pair (p(y), c12|y), the joint pdf p(y, x1, x2) is uniquely defined by
setting the copulas c(uy, u1) and c(uy, u2) to be independence copulas.

Proposition 4.3.1. Self-disclosure Is in the special case of n = 2 has the following form:

Is = max
θ(·)

∫
[0,1]3

duydu1du2c12|θ(uy)(u1, u2) log
c12|θ(uy)(u1, u2)

c(u1, u2)
.

Proof. In the self-disclosure case W = (X1, X2), and Is = maxY ∈AX
I(W ;Y ) Take Y ∈ AX ,

arbitrarily chosen. The mutual information chain rule gives I(W ;Y ) = I(X2;Y ) + I(X1;Y |X2).
Since Y is independent of X2, I(X2;Y ) = 0, so I(W ;Y ) = I(X1;Y |X2). By the definition of
mutual information:

I(X1;Y |X2) =

∫
dydx1dx2p(y, x1, x2) log

p(y, x1|x2)

p(y|x2)p(x1|x2)

=

∫
dydx1dx2p(y)p(x1)p(x2)c(uy, u1, u2) log

p(y)p(x1)p(x2)c(uy, u1, u2)

p(y)p(x1)p(x2)c(u1, u2)

=

∫
[0,1]3

duydu1du2c(uy, u1, u2) log
c(uy, u1, u2)

c(u1, u2)
,
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where the last equality follows by the changes of variables p(y)dy = duy, p(x1)dx1 = du1, p(x2)dx2 =
du2.

Considering the decomposition in lemma 4.3.1, c(uy, u1, u2) = c12|θ(uy)(u1, u2). By lemma 4.3.2,
Is is obtained by maximising over the all parametrisation functions θ(·):

Is = max
Y ∈AX

∫
[0,1]3

duydu1du2c(uy, u1, u2) log
c(uy, u1, u2)

c(u1, u2)

= max
θ(·)

∫
[0,1]3

duydu1du2c12|θ(uy)(u1, u2) log
c12|θ(uy)(u1, u2)

c(u1, u2)
.

The property above shows that when constructing the optimal private disclosure channel, the
constraints can be separated from the optimisation problem. The random variable Y is constructed
through the joint pdf p(y, x1, x2), and through 4.3.1 we can set copula terms individually to recon-
struct the joint distribution. More precisely, the two joint copulas c(uy, u1) and c(uy, u2) are set to
the independence copulas, and the copula c12|θ can be set to an arbitrary copula which models the
interaction between X1 and X2 when conditioned on Y .

The next property shows that, assuming regularity conditions regarding continuity, in the op-
timal case the parametrisation θ(·) does not depend on the argument, and θ(·) can be set to a
constant value over the entire domain.

Proposition 4.3.2. Self-disclosure Is, in the case of n = 2, is maximised for a constant parametrisa-
tion function θ(uy) = θ∗.

The self-disclosure then becomes:

Is =

∫
[0,1]2

du1du2c12|θ∗(u1, u2) log
c12|θ∗(u1, u2)

c(u1, u2)
.

Proof. Take θ(·) a parametrisation function, with domain [0, 1]. Now consider the function Sθ(·) :
[0, 1] → R,

Sθ(·)(uy) =

∫
[0,1]2

du1du2c12|θ(uy)(u1, u2) log
c12|θ(uy)(u1, u2)

c(u1, u2)
.

The function Sθ(·) is a continuous function defined on the compact interval [0, 1], and therefore
attains its maximal value in a point θ∗ ∈ [0, 1]. By definition of θ∗, we get the point-wise inequality:∫

[0,1]2
c12|θ(uy)(u1, u2) log

c12|θ(uy)(u1, u2)

c(u1, u2)
≤
∫
[0,1]2

c12|θ∗(u1, u2) log
c12|θ∗(u1, u2)

c(u1, u2)
,∀uy ∈ [0, 1].

By integrating in [0, 1] :∫
[0,1]3

duydu1du2c12|θ(uy)(u1, u2) log
c12|θ(uy)(u1, u2)

c(u1, u2)
≤

≤
∫
[0,1]2

du1du2c12|θ∗(u1, u2) log
c12|θ∗(u1, u2)

c(u1, u2)
.

Therefore, by defining another parametrisation function θ2(uy) = θ∗ we obtain a larger disclosure,
so Is is achieved for a constant parametrisation function.

Without the continuity of S(·) in the result above, we can assume simplification of the problem
which considers a constant parametrisation θ(·) = θ∗. In [36], the authors examine whether such
a parametrisation is general enough, and claim that this restriction is not too severe.

Note that in the expression for Is above, any parametrisation c12|θ leads to a valid private
disclosure channel. Therefore, there are no other constraints on the conditional copula, and the
maximisation of Is happens over the entire copula set.

Proposition 4.3.3. The function S : C → [0,∞], defined on the set of bivariate copulas, with S(V ) =∫
[0,1]2

v(u1, u2) log
v(u1,u2)
c(u1,u2)

du1du2 is convex, the supremum is achieved and lies on the boundary of the
set of copulas.
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Proof. Take V1, V2 ∈ C arbitrary bivariate copulas with v1, v2 the respective copula densities. The
set of copulas is convex, so for any λ ∈ [0, 1], V = λV1+(1−λ)V2 is a bivariate copula, with density
v = λv1 + (1− λ)v2. Since x 7→ x log x

c is convex for any c > 0, from Jensen’s inequality we have:

v(u1, u2) log
v(u1, u2)

c(u1, u2)
≤ λv1(u1, u2) log

v1(u1, u2)

c(u1, u2)
+ (1− λ)v2(u1, u2) log

v2(u1, u2)

c(u1, u2)
,

for u1, u2 ∈ [0, 1] fixed. Since for points where c(u1, u2) = 0, both sides are ∞, by integrating in
[0, 1]2 we get the following inequality:

∫
[0,1]2

v(u1, u2) log
v(u1, u2)

c(u1, u2)
≤ λ

∫
[0,1]2

v1(u1, u2) log
v1(u1, u2)

c(u1, u2)
+(1−λ)

∫
[0,1]2

v2(u1, u2) log
v2(u1, u2)

c(u1, u2)
,

which shows S(V ) ≤ λS(V1) + λS(V2), so S is convex. As the domain of S is convex, we get
that S achieves its maximum value on the boundary of the domain (the set of bivariate copulas is
compact, so the set is closed and bounded, and the maximum value of S is achieved).

The proposition above shows that since the optimisation of Is happens over a convex set, the
optimal value is achieved for an extreme copula. In order to find this optimal value, we now
consider a discretised version of the optimisation problem, and through the use of checkerboard
copulas defined in the previous section, we show that the optimal disclosure is unbounded.

4.3.2 Approximation with checkerboard copula

In this section, we consider the same scenario of self-disclosure in the case of two sources, with
X = {X1, X2} a system of continuous random variables with copula density c(u1, u2). We also
consider Vn a checkerboard copula defined on a grid of size n for some n ∈ N, with copula density
vij ,∀i, j ∈ [1 : n] (the value of the copula density in the rectangle [ i−1

n , i
n ]× [ j−1

n , j
n ]).

Let (cij)
n
i,j=0 be the mean of logarithm of the copula density of (X1, X2) in the rectangle

[ i−1
n , i

n ]× [ j−1
n , j

n ] :

cij = n2

∫
[ i−1

n , i
n ]×[ j−1

n , j
n ]

log c(u1, u2)du1du2.

The self-disclosure capacity of Vn is equal to:

S(Vn) =

∫
[0,1]2

v(u1, u2) log
v(u1, u2)

c(u1, u2)
du1du2

=

n∑
i,j=1

∫
[ i−1

n , i
n ]×[ j−1

n , j
n ]

v(u1, u2) log
v(u1, u2)

c(u1, u2)
du1du2

=

n∑
i,j=1

∫
[ i−1

n , i
n ]×[ j−1

n , j
n ]

vij log
vij

c(u1, u2)
du1du2

=

n∑
i,j=1

1

n2
vij(log vij − cij) =

1

n2

n∑
i,j=1

vij(log vij − cij).

The set of discrete copulas of size n is a convex polytope, and it can be shown that S(Vn) is
a convex function on the set of discrete copulas of size n (using similar arguments to proposi-
tion 4.3.3). The maximum value of S(Vn) is therefore achieved when Vn is on the boundary of the
feasible set, and corresponds to an extreme point in the polytope of discrete copulas of size n. By
4.1.6, the extreme points of this convex polytope correspond to the extreme points of Birkhoff’s
polytope, and represent permutations of nIn, where In is the identity matrix of size n.

For a fine enough grid, we can assume c(u1, u2) is constant in the square [ i−1
n , i

n ] × [ j−1
n , j

n ]
(with value cij). With this assumption, S(Vn) can be simplified, and we will use the following
expression throughout this section:

S(Vn) =
1

n2

n∑
i,j=1

vij log
vij
cij

. (4.6)
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Proposition 4.3.4. For any extreme point Vn of DCn,
∑n

i,j=1 vij log vij = n2 log n.

Proof. By 4.1.6, the extreme points of the convex polytope DCn are permutations of nIn. Consid-
ering the convention 0× log 0 = 0, we have exactly n elements in the sum that are equal to n log n,
while the rest are equal to 0. Therefore,

∑n
i,j=1 vij log vij = n2 log n, for any extreme point Vn.

Proposition 4.3.5. There exists a permutation (vij)
n
i,j=1 of nIn such that

∑n
i,j=1 vij log cij ≤ 0.

Proof. The function above is linear in (vij)
n
i,j=1, so the minimal value is achieved for an extreme

point of the polytope DCn. By Birkhoff-von Neumann theorem 4.1.6, this is achieved for a permu-
tation of nIn. Let the minimal value be n

∑n
i=1 log ciπ(i) = n log

∏n
i=1 ciπ(i), for some permutation

π : [1 : n] → [1 : n].
As (cij)

n
i,j=0 corresponds to the copula density of (X1, X2), we have cij ≥ 0 and

∑n
i=0 cij =∑n

j=0 cij = n.

By the inequality between arithmetic mean and geometric mean, we get

n2

√√√√ n∏
i,j=1

cij ≤
∑n

i,j=1 cij

n2
= 1 =⇒

n∏
i,j=1

cij ≤ 1.

There exists a permutation π such that
∏n

i=1 ciπ(i) ≤ 1, as otherwise the product above is > 1,
leading to a contradiction with the copula density constraints on c(u1, u2). Therefore, there exists
a permutation such that n

∑n
i=1 log ciπ(i) ≤ 0.

Theorem 4.3.1. The self-disclosure capacity in a system with two sources is unbounded.

Proof. Combining the two propositions above shows that for all n ∈ N, there exists an extreme
discrete copula V ∗

n ∈ DCn such that S(V ∗
n ) ≥ 1

n2 · n2 log n + 0 = log n. Since any discrete copula
Vn is a valid copula distribution (with piecewise constant copula density on squares of area 1

n2 ),
S(V ∗

n ) provides a lower bound for Is, and since S(V ∗
n ) → ∞ as n → ∞, the self-disclosure for a

system with two sources is unbounded.

Remark 4.3.1. This result agrees with [13], where the authors also prove that the disclosure is
unbounded in the case of W = (X1, X2). However, the results are only shown for the case of two
sources. In the following section, we show that the results derived through the use of pair-copula
decompositions can be extended to arbitrary number of sources, and later on, to the general case of
synergy.

4.3.3 Associated optimisation problem

The optimisation of S(Vn) for Vn a discrete copula can be seen as an optimisation problem, where
S(Vn) is the objective function and the conditions Vn needs to satisfy to be a discrete copula are
the constraints of the problem. Therefore, the associated optimisation problem is:

maximise
1

n2

n∑
i,j=1

vij log
vij
cij

subject to ∀i, j ∈ [1 : n] vij ≥ 0,

∀i ∈ [1 : n]
1

n

n∑
j=1

vij = 1, ∀j ∈ [1 : n]
1

n

n∑
i=1

vij = 1.

(4.7)

Note that in the optimisation problem above, (cij)ni,j=0 are fixed coefficients. Therefore, the
optimal solution of this problem is at the boundary of the feasible set. This is confirmed numeri-
cally, as the problem is a convex-concave optimisation problem (the objective of the maximisation
problem is convex), and the problem can be expressed as a DCCP program. Hence, the solution can
be computed by a solver programmatically, for a given set of coefficients representing the initial
copula c(u1, u2).
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4.3.4 Self-disclosure in systems with arbitrary number of sources

Lemma 4.3.3. For any private disclosure channel Y (pY |X ∈ AX), the joint probability distribution
p(y, x1, . . . , xd) can be written using pair-copula constructions as:

p(y, x1, . . . , xd) = p(y)

d∏
i=1

p(xi)c12...d|θ(uy)(u1, . . . , ud),

where c12...d|θ(uy) represents the conditional copula of (X1, . . . , Xd) given Y.

Proof. Using Sklar’s Theorem applied to the joint distribution (X1|Y, . . . ,Xd|Y ), we get:

p(y, x1, . . . , xd) = p(x1, . . . , xd|y)p(y)

= p(y)

d∏
i=1

p(xi)c1...d|y(u1|y, u2|y, . . . , ud|y)

= p(y)

d∏
i=1

p(xi)c1...d|y(u1, . . . , ud),

where the last equality follows from the fact that Y ⊥⊥ Xi,∀i ∈ [1 : d].

By assuming either a constant parametrisation function θ(uy) = θ∗ or the continuity of the
disclosure as a function of uy, a similar derivation holds for arbitrary sources as well. Using the
previous lemma 4.3.3, the self-disclosure capacity Is becomes:

Is =

∫
[0,1]d

c12...d|θ∗(u1, . . . , ud) log
c12...d|θ∗(u1, . . . , ud)

c(u1, . . . , ud)
du1 . . . dud.

This expression can be similarly approximated using checkerboard copulas, leading to an anal-
ogous optimisation problem:

maximise
1

nd

n∑
i1,...id=1

vi1...id log
vi1...id
ci1...id

subject to ∀i1 . . . id ∈ [1 : n] vi1...id ≥ 0,

∀k ∈[1 : d], i ∈ [1 : n]
1

nd−1

n∑
i1,...ik−1,ik+1,...id=1

vi1,...ik−1,i,ik+1,...id = 1.

Note that the computational complexity of the associated optimisation problem increases very
quickly with the number of sources d. This is because the optimisation in this case happens over a
grid in d dimensions, so the number of variables for a grid size of n is nd.

Theorem 4.3.2. The self-disclosure capacity in a system with an arbitrary number of sources is un-
bounded.

Sketch of proof. We can prove in a similar way that the disclosure is unbounded in this case. As
the function we wish to maximise is convex, the optimal solution is in one of the extreme points of
the polytope of checkerboard copulas in d dimensions.

Consider the points corresponding to permutations of the identity tensor in d dimensions. These
represent the extreme points of the polytope [37]. For these points,

1

nd

n∑
i1,...id=1

vi1...id log vi1...id =
1

nd
· n · nd−1 log(nd−1) = log nd−1 → ∞, as n → ∞.

For the other term, we can similarly apply the AM-GM inequality to get that there exists a
permutation of the identity tensor in d dimensions π (which we represent as ϵ : [1 : n]d →
{0, 1}, where ϵ takes the value 1 for elements in the permutation, and 0 otherwise) for which∑n

i1,...id=1 π(i1, . . . , id) log ci1...id ≤ 0. This permutation corresponds to an extreme point, and by
taking this extreme point we get that the disclosure is unbounded.
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4.3.5 Numerical Simulations

The associated optimisation problem can be solved for a given grid size n, so we can formulate
the problem using CVXPY, and use a solver such as GUROBI to analyse numerically the optimal
values. We present below the numerical simulations in the case of two sources, for multiple initial
copulas c(u1, u2). As an example for the applications of checkerboard copulas approximations, in
the simulations below we use a grid of size 10.

Impact of grid size

In this case, we consider independent sources and we have c(u1, u2) = 1,∀u1, u2 ∈ [0, 1]. Therefore,
S(Vn) = 1

n2

∑n
i,j=1 vij log vij for all Vn ∈ DCn. Therefore, based on proposition 4.3.4, we expect

to have S(Vn) = log n for any extreme point of DCn. Indeed, this is confirmed numerically, as the
optimal value for a grid of size n is always achieved for a permutation of nIn and is equal to log n.

Figure 4.4: Self-disclosure with independent sources. The synergy grows with finer grids, and the
optimal value is always the synergy lower bound log n.

Gaussian copula

A potentially interesting application of self-disclosure is in Gaussian systems. Here, we now con-

sider (X1, X2) ∼ N
([

0
0

]
,

[
1 ρ
ρ 1

])
. We want to observe how self-disclosure is influenced by the

correlation between the components in the system. We expect that the lowest value to be achieved
for independent sources, where the self-disclosure is exactly log n, and as the variables become
more correlated, we expect the synergy to grow, as the contributions of

∑n
i,j=1 vij log cij become

more meaningful.

Figure 4.5: Self-disclosure in systems with Gaussian copula. The synergy grows as the sources
become more correlated, and is always greater than the synergy lower bound log n (represented
by the dashed, red line).
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Gumbel copula

Another common choice for modelling dependence between random variables is the Gumbel cop-
ula. Note that when θ = 1, the Gumbel copula is the independence copula, and when θ → ∞, the
Gumbel copula converges to the comonotonicity copula. Therefore, we expect the self-disclosure
to be equal to log n for θ = 1, and we expect it to grow quickly with the value of θ.

Figure 4.6: Self-disclosure in systems with Gumbel copula. The synergy grows as θ increases, and
is always greater than the synergy lower bound log n (represented by the dashed, red line).

4.4 Synergy with arbitrary target

In this section, we shift our attention back to the general case of synergy, and we offer a method
that can be used to compute the synergistic disclosure with an arbitrary (real-valued) target. As
in the previous section, we focus on the case where all the random variables involved are one-
dimensional.

Let X = {X1, X2, . . . , Xn} be the set of sources consisting of continuous random variables, and
W the continuous target variable. Using the equivalence between total correlation and copula
entropy from Theorem 4.1.4, for any Y ∈ AX , we can write:

I(W ;Y ) = −Hc(W ;Y ) =

∫
[0,1]2

c(uw, uy) log c(uw, uy) duwduy. (4.8)

To find the Y that maximises the quantity above, we can take advantage of copula theory described
in the previous section. In particular, pair-copula constructions allow the decoupling of interactions
within components in the system, making it significantly easier to satisfy the constraints.

4.4.1 Synergy in systems with two sources

As a first step, we consider systems with two sources. We begin by constructing a convenient
representation of the joint distribution (Y,W,X1, X2) through a pair-copula decomposition.

Lemma 4.4.1. For any private disclosure channel Y (pY |X ∈ AX , W −X − Y Markov chain), the
joint probability distribution p(y, w, x1, x2) can be written using pair-copula constructions as:

p(y, w, x1, x2) = p(y)p(w)p(x1)p(x2)c12|θ(uy)(u1, u2)
c(u1, u2, uw)

c(u1, u2)
,

where c12|θ(uy) represents the conditional copula of (X1, X2) given Y (where (X1, X2)|Y depends on
Y only through the parametrisation function θ(uy)).

Proof. Take the following D-vine tree decomposition for the joint distribution (Y,W,X1, X2) :

44



T1

x1 x2

y w

x1x2

x1y x2w

T2

x1x2 x1y

x2w

x2y | x1

x1w | x2

T3

x2y | x1 x1w | x2

yw | x1x2

Figure 4.7: D-vine tree decomposition for the joint distribution (Y,W,X1, X2).

Based on this decomposition, the joint distribution can be written as:

p(y, w, x1, x2) = p(y)p(w)p(x1)p(x2)cx1y(u1, uy)cx1x2
(u1, u2)cx2w(u2, uw)·

· cyx2|x1
(uy|1, u2|1)cx1w|x2

(u1|2, uw|2)cyw|x1x2
(uy|x1x2

, uw|x1x2
).

Since W−X−Y form a Markov Chain, Y and W are independent given (X1, X2), so cyw|x1x2
=

1. From lemma 4.3.1, by symmetry, we also have that cyx1x2 = cyx1cyx2cx1x2|y = cyx1cx1x2cyx2|x1
.

As Y ∈ AX , we have that cyx1
and cyx2

are independence copulas. Therefore, by setting these
terms to 1, we get cx1x2|y = cx1x2

cyx2|x1
. Substituting in the relation above, the joint distribution

can be expressed as:

p(y, w, x1, x2) = p(y)p(w)p(x1)p(x2)cx1x2|ycx2wcx1w|x2
.

Now, note that lemma 4.3.1 can also be applied to the joint distribution (W,X1, X2), which
gives:

c(u1, u2, uw) = cx1x2
cx2wcx1w|x2

.

Therefore, we get that cx2wcx1w|x2
= c(u1,u2,uw)

c(u1,u2)
, so the distribution can be written as:

p(y, w, x1, x2) = p(y)p(w)p(x1)p(x2)cx1x2|y(u1|y, u2|y)
c(u1, u2, uw)

c(u1, u2)
.

In the equality above, u1|y = u1 and u2|y = u2, due to the independence constraints. Also,
cx1x2|y is copula density of (X1, X2) given Y , and is given through a parametrisation θ(uy),

and c(u1,u2,uw)
c(u1,u2)

is a quantity which can be computed from the initial data, as the distribution of
(W,X1, X2) is known.

In the previous proof, we have assumed that divisions with quantities involving copulas are
always possible.

Similar to the self-disclosure case, this decomposition shows that the private disclosure channel
is uniquely recovered by the marginal distribution p(y) and the copula c12|y, giving the following
parametrisation lemma:

Lemma 4.4.2. The copula density c12|y, together with p(y), parametrise the feasible set AX .

Proof. Consider Y ∈ AX . Due to the Markov condition W−X−Y and the independence conditions
Y ⊥⊥ X1, Y ⊥⊥ X2, the joint pdf of (Y,W,X1, X2) is given by lemma 4.4.1:

p(y, w, x1, x2) = p(y)p(w)p(x1)p(x2)c12|y(u1, u2)
c(u1, u2, uw)

c(u1, u2)
.

As the marginal probability distribution functions p(w), p(x1), p(x2) and the copula densities
c(u1, u2, uw), c(u1, u2) are known, the marginal p(y) and the conditional copula c12|y uniquely de-
termine the joint distribution, parametrising the space of private disclosure channels. Conversely,
given p(y) and copula density c12|y, a private disclosure channel can be uniquely constructed based
on the parametrisation above. Note that this parametrisation ensures constraints are satisfied by
default, through the properties of the pair-copula decomposition.
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Proposition 4.4.1. The disclosure of a system with sources X1, X2 and target W can be expressed as:

Is = max
θ(·)

∫
[0,1]2

duwduy

∫
[0,1]2

du1du2 c12|θ(uy)(u1, u2)
c(u1, u2, uw)

c(u1, u2)

· log

(∫
[0,1]2

du1du2 c12|θ(uy)(u1, u2)
c(u1, u2, uw)

c(u1, u2)

)
.

Proof. Since copulas have uniform marginals, we get the following:

c(uw, uy) =

∫
[0,1]2

c(uw, uy, u1, u2)du1du2.

Substituting this in the expression for synergistic disclosure, Eq. (4.8) gives:

I(W ;Y ) =

∫
[0,1]2

(∫
[0,1]2

c(uw, uy, u1, u2)du1du2

)
log

(∫
[0,1]2

c(uw, uy, u1, u2)du1du2

)
duwduy.

By lemma 4.4.1, for any Y ∈ AX , the following holds:

c(uw, uy, u1, u2) = c12|y(u1, u2)
c(u1, u2, uw)

c(u1, u2)
,∀uw, uy, u1, u2 ∈ [0, 1].

By lemma 4.4.2, the space is parametrised by the conditional copula c12|y and p(y). As p(y) does
not appear in the expression of I(W ;Y ), the value of the disclosure associated with a private
channel only depends on c12|y. Combining the relations above gives:

I(W ;Y ) =

∫
[0,1]2

duwduy

∫
[0,1]2

du1du2 c12|y(u1, u2)
c(u1, u2, uw)

c(u1, u2)

· log

(∫
[0,1]2

du1du2 c12|y(u1, u2)
c(u1, u2, uw)

c(u1, u2)

)
.

Now, maximising over the set of copulas c12|y (which is equivalent to maximising over the
parametrisations θ(·)) gives the expression needed.

We assume again that the conditional copula c12|y(u1|y, u2|y) only depends on Y through the
arguments, and not through the intrinsic shape of the copula at particular points. This assump-
tion can also be replaced with an assumption on the continuity of the integrand in the previous
expression. Therefore, similarly to the self-disclosure case, the optimal disclosure becomes:

Is =

∫
[0,1]

duw

∫
[0,1]2

du1du2c12|θ∗(u1, u2)
c(u1, u2, uw)

c(u1, u2)

· log

(∫
[0,1]2

du1du2c12|θ∗(u1, u2)
c(u1, u2, uw)

c(u1, u2)

)
.

(4.9)

Expression Eq. (4.9) highlights that in order to find the optimal synergy, it is enough to find θ∗.
The synergy Is depends on the private disclosure channel solely through the conditional copula
c12|θ(uy), and this copula can be used to obtain c(u1, u2, uy), from which the joint distribution can
be constructed.

Proposition 4.4.2. The function S : C → [0,∞], defined on the set of bivariate copulas, with

S(v) =

∫
[0,1]

duw

∫
[0,1]2

du1du2v(u1, u2)
c(u1, u2, uw)

c(u1, u2)

· log

(∫
[0,1]2

du1du2v(u1, u2)
c(u1, u2, uw)

c(u1, u2)

)

is convex, the supremum is achieved and lies on the boundary of the set of copulas.
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Proof. Take V1, V2 ∈ C arbitrary bivariate copulas with v1, v2 the respective copula densities. The
set of copulas is convex, so for any λ ∈ [0, 1], V = λV1+(1−λ)V2 is a bivariate copula, with density
v = λv1 + (1− λ)v2. By linearity, we have

v(u1, u2)
c(u1, u2, uw)

c(u1, u2)
= λv1(u1, u2)

c(u1, u2, uw)

c(u1, u2)
+ (1− λ)v2(u1, u2)

c(u1, u2, uw)

c(u1, u2)
.

Let J(v, uw) =
∫
[0,1]2

du1du2v(u1, u2)
c(u1,u2,uw)
c(u1,u2)

. By integrating the equality above in [0, 1]2, we
get:

J(v, uw) = λJ(v1, uw) + (1− λ)J(v2, uw).

The function x 7→ x log x is convex, so by Jensen’s inequality, for any uw ∈ [0, 1] for which
J(v, uw), J(v1, uw), J(v2, uw) < ∞, we get:

J(v, uw) log J(v, uw) = (λJ(v1, uw) + (1− λ)J(v2, uw)) log (λJ(v1, uw) + (1− λ)J(v2, uw))

≤ λJ(v1, uw) log J(v1, uw) + (1− λ)J(v2, uw) log J(v2, uw).

Also, note that if the J(v, uw) = ∞, the right hand side of the inequality is also ∞, so the
inequality holds ∀uw ∈ [0, 1]. By integrating uw in [0, 1], we get:

S(v) ≤ λS(v1) + (1− λ)S(v2).

Therefore, S is a convex function defined on a convex, compact set. Similar to the self-
disclosure case, this means that the optimal value is achieved for V a copula on the boundary
of the copula set.

4.4.2 Approximation with checkerboard copulas

By the previous proposition, we have that the maximal value is achieved on the boundary of the
copula set. To approximate the optimal disclosure, we will now consider a discretised version of
the problem, and we will use a similar strategy as in the case of self-disclosure.

Let Vn a checkerboard copula defined on a grid of size n for some n ∈ N, with copula density
vij ,∀i, j ∈ [1 : n]. The synergy associated to Vn is

S(Vn) =
1

n3

n∑
w=1

 n∑
i,j=1

vijcijw

 log

 1

n2

n∑
i,j=1

vijcijw

 .

This can be shown by direct computation and using the fact that the copula density of Vn is
constant on squares of area 1

n2 . For fine enough grids, we can consider the copula of (X1, X2,W ) to
be constant in cubes of the form [w−1

n , w
n ]× [ i−1

n , i
n ]× [ j−1

n , j
n ]. We define (cijw)

n
i,j,w=0 to represent

the constant coefficients the copula values determine on cubes [w−1
n , w

n ]× [ i−1
n , i

n ]× [ j−1
n , j

n ].

For uw ∈ [w−1
n , w

n ], w ∈ [1 : n], we set c(u1,u2,uw)
c(u1,u2)

= cijw, and get:

∫
[0,1]2

du1du2v(u1, u2)
c(u1, u2, uw)

c(u1, u2)
=

n∑
i,j=1

∫
[ i−1

n , i
n ]×[ j−1

n , j
n ]

vij
c(u1, u2, uw)

c(u1, u2)
du1du2

=

n∑
i,j=1

vij

∫
[ i−1

n , i
n ]×[ j−1

n , j
n ]

c(u1, u2, uw)

c(u1, u2)
du1du2

=
1

n2

n∑
i,j=1

vijcijw.

The relation above can be used in the expression of S(Vn) to get:
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S(Vn) =

∫
[0,1]

duw

∫
[0,1]2

du1du2v(u1, u2)
c(u1, u2, uw)

c(u1, u2)
log

(∫
[0,1]2

du1du2v(u1, u2)
c(u1, u2, uw)

c(u1, u2)

)

=

n∑
w=1

∫
[w−1

n ,wn ]

duw

 1

n2

n∑
i,j=1

vijcijw

 log

 1

n2

n∑
i,j=1

vijcijw


=

1

n3

n∑
w=1

 n∑
i,j=1

vijcijw

 log

 1

n2

n∑
i,j=1

vijcijw

 .

Similar to the case of self-disclosure, S(Vn) is a convex function defined on the convex set DCn.
Hence, the optimal in the case of general synergy on discrete copulas of size n is also achieved for
an extreme point in this polytope.

4.4.3 Associated optimisation problem

Similar to the self-disclosure case, the optimisation of S for discrete copulas can be seen as an
optimisation problem. The objective function is now the discrete representation of general disclo-
sure from previous section, and the initial coefficients (cijw)nijw=1 represent the ratio of the copulas
c(u1, u2, uw) and c(u1, u2). The optimisation problem can therefore be formulated as:

maximise
1

n3

n∑
w=1

 n∑
i,j=1

vijcijw

 log

 1

n2

n∑
i,j=1

vijcijw


subject to ∀i, j ∈ [1 : n] vij ≥ 0,

∀i ∈ [1 : n]
1

n

n∑
j=1

vij = 1, ∀j ∈ [1 : n]
1

n

n∑
i=1

vij = 1.

(4.10)

4.4.4 Synergy in systems with arbitrary number of sources

The results from the previous section can be generalised in a straightforward way to systems of
an arbitrary number of sources. Similarly to the case of two sources, a rephrasing of the problem
using d−dimensional copulas is considered, and an associated discrete optimisation problem is
built for the problem on the continuous domain.

In this section, a system of d sources X = {X1, X2, . . . , Xd} is used.

Lemma 4.4.3. For any private disclosure channel Y (pY |X ∈ AX , W −X − Y Markov chain), the
joint probability distribution p(y, w, x1, . . . , xd) can be written using pair-copula constructions as:

p(y, w, x1, . . . , xd) = p(y)p(w)

d∏
i=1

p(xi)c12...d|θ(uy)(u1, . . . , ud)
c(u1, . . . ud, uw)

c(u1, . . . , ud)
,

where c12...d|θ(uy) represents the conditional copula of (X1, . . . , Xd) given Y.

Proof. Take Y ∈ AX , arbitrarily chosen. By applying Eq. (4.3) for the distribution (Y,X1, . . . , Xn,W ),
the following decomposition can be obtained:

p(y | w, x1, . . . , xd) = cyw|1,...,d · p(y | x1, . . . , xd). (4.11)

From lemma 4.3.3:

p(y, x1, . . . , xd) = p(y)

d∏
i=1

p(xi)c12...d|θ(uy)(u1, . . . , ud).
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Combining the relation above with Sklar’s Theorem we get:

p(y | x1, . . . , xd) =
p(y, x1, . . . , xd)

p(x1, . . . , xd)

=
p(y)

∏d
i=1 p(xi)c12...d|θ(uy)(u1, . . . , ud)∏d
i=1 p(xi)c12...d(u1, . . . , ud)

=
p(y)c12...d|θ(uy)(u1, . . . , ud)

c12...d(u1, . . . , ud)
.

Using this in Eq. (4.11) gives:

p(y, w, x1, . . . , xd) = p(y | w, x1, . . . , xd)p(w, x1, . . . , xd)

= cyw|1,...,d
p(y)c12...d|θ(uy)(u1, . . . , ud)

c12...d(u1, . . . , ud)
p(w, x1, . . . , xd)

= cyw|1,...,d
p(y)c12...d|θ(uy)(u1, . . . , ud)

c12...d(u1, . . . , ud)
p(w)

d∏
i=1

p(xi)c(u1, . . . ud, uw)

= 1 · p(y)p(w)
d∏

i=1

p(xi)
c12...d|θ(uy)(u1, . . . , ud)

c12...d(u1, . . . , ud)
c12...dw(u1, . . . , ud, uw)

= p(y)p(w)

d∏
i=1

p(xi)c12...d|θ(uy)(u1, . . . , ud)
c(u1, . . . ud, uw)

c(u1, . . . , ud)
.

In the derivation above, the fact that W − X − Y is a Markov chain is also used, through
cyw|1,...,d = 1 (which holds by the independence property).

Using an analogous derivation to the case of two sources, the mutual information I(W ;Y ) de-
pends on Y only through the copula c12...n|θ(uy), and it can be shown that the optimal parametrisa-
tion function θ(·) is the constant function θ(uy) = θ∗, where θ∗ is similarly defined. The disclosure
capacity Is then becomes:

Is =

∫
[0,1]

duw

∫
[0,1]d

du1 . . . dudc12...d|θ∗(u1, . . . , ud)
c(u1, . . . , ud, uw)

c(u1, . . . , ud)

· log

(∫
[0,1]d

du1 . . . dudc12...n|θ∗(u1, . . . , ud)
c(u1, . . . , ud, uw)

c(u1, . . . , ud)

)
.

By considering a d−dimensional discrete copula Vn on a grid of size n, the problem can be
reduced to finding the optimal value of:

S(Vn) =
1

nd+1

n∑
w=1

 n∑
i1,...id=1

vi1...idci1...idw

 log

 1

nd

n∑
i1,...id=1

vi1...idci1...idw

 .

The DCCP optimisation problem has nd variables, and can be formulated as:

maximise
1

nd+1

n∑
w=1

 n∑
i1,...id=1

vi1...idci1...idw

 log

 1

nd

n∑
i1,...id=1

vi1...idci1...idw


subject to ∀i1 . . . id ∈ [1 : n] vi1...id ≥ 0,

∀k ∈[1 : d], i ∈ [1 : n]
1

n

n∑
i1,...ik−1,ik+1,...id=1

vi1,...ik−1,i,ik+1,...id = 1.

(4.12)

The challenges arise, however, due to the increased complexity of the computation. In the case
of two sources, the discrete optimisation happens over a two-dimensional grid of varying resolu-
tion. However, the size of the grid increases quickly with the number of sources in the system, as
for d sources, the associated optimisation problem contains an d−dimensional conditional copula,
for which the domain is the unit hypercube in d−dimensions.
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4.4.5 Convergence to the true optimal value

In this section, we present a final result which ensures the checkerboard copula approach gives
a useful approximation. We show the sequence of approximations given by the the optimisation
problem (4.12) convergences to the optimal disclosure Is.

Theorem 4.4.1. There exists a sequence of solutions to the optimisation problem (4.12) that converge
to the maximal disclosure Is.

Proof. By proposition 4.4.2, the maximum value of S(·), corresponding to Is, is achieved for some
copula C∗. The copula C∗ determines a random variable Y ∗ for which I(Y ∗;W ) = Is (by setting
C∗ to be the conditional copula C12|y).

By theorem 4.1.7, there exists a sequence of increasingly finer checkerboard copulas (Ĉk)
∞
k=1

that converge to C∗ uniformly. Let (Ŷk)
∞
k=1 be a sequence of random variables, such that Ŷk is

determined by Ĉk,∀k ∈ N. Therefore, by the definition of mutual information and the dominated
convergence theorem, we get that:

I(Ŷk;W ) → I(Y ∗;W ) = Is. (4.13)

Now, let (nk)
∞
k=1 be an unbounded, increasing sequence of positive integers, such that Ĉk is a

checkerboard copula defined on a grid of size nk,∀k ∈ N. Let (Vk)
∞
k=1 be a sequence of solutions

to the optimisation problem (4.12). By considering the structure of the optimisation problem, for
each k, Vk ∈ DCnk

and Vk is an extreme checkerboard copula. Let (Yk)
∞
k=1 be the sequence of

random variables determined by this sequence of checkerboard copulas. By definition, note that
for all k, I(Yk;W ) = S(Vk).

Since, Vk is the solution to the optimisation problem on the polytope DCnk
and Ĉk ∈ DCnk

, we
get S(Vk) ≥ S(Ĉk),∀k ∈ N. Hence, considering the corresponding random variables determined
by these copulas, we get:

∀k ∈ N, I(Yk;W ) ≥ I(Ŷk;W ). (4.14)

Now, by Eq. (4.13) and taking the limit as k → ∞ in Eq. (4.14), we get that limk→∞ I(Yk;W ) ≥
Is. Considering the maximality of Is over the set of copulas, and that Vk is a valid copula distribu-
tion for all values of k, we also get ∀k ∈ N, I(Yk;W ) ≤ Is. Combining these inequalities, we get
limk→∞ I(Yk;W ) = Is, so the sequence of solutions converges to the global optimum Is.

Remark 4.4.1. Note that, unlike the self-disclosure which is infinite, by the Data Processing Inequality
2.1.1, the synergy with an arbitrary target is bounded by the mutual information I(X;W ) (as W −
X − Y is a Markov chain). This shows that Is is finite when I(X;W ) is finite.

4.4.6 Numerical Simulations

As an example for the results in the previous section, we consider the case of two sources. Phrasing
the optimisation problem as above makes the scenario suitable for CVXPY and DCCP. The problem
can then be solved using a commercial solver such as GUROBI, and we can analyse numerically the
optimal values. In this section, we have chosen (X1, X2,W ) to follow a multivariate normal distri-
bution, which is characterised by ρ12, ρ13, ρ23, the pairwise correlations between the components.
The system can be visualised in the figure below:

X1 X2

W

ρ12

ρ13 ρ23

Figure 4.8: The system (X1, X2,W ) follows a multivariate normal distribution. The sources X1, X2

are connected through correlation ρ12, and they are linked to the target W through correlations
ρ13 and ρ23, respectively.
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Impact of grid size

In this first example, we want to see the influence of finer grids on the optimal solution. Based
on approximation theorem 4.1.7, we expect that the values converge as we consider finer grids.
Indeed, we notice that initially the synergy increases quickly, and as n increases the values seem to
converge. Synergy has largest values for independent sources, as in this case there is no overlap in
the information provided by the sources. We also note that in the case where sources are not well
correlated with the target, but highly correlated between them, the synergy is close to 0.

Figure 4.9: Influence of the grid size on the optimal disclosure estimated. As grid size increases,
the estimated values of synergy start to converge.

Independent sources

We consider independent random variables X1 and X2 (ρ12 = 0). We will vary the correlation
each of these have with the target and see how this affects synergy values.

Figure 4.10: Synergy with independent sources. Sources that are better correlated with the target
become better predictors, so synergy increases.

In the diagram presented, the correlation between sources and the target is in the range [0.15,
0.65]. The results are consistent with the intuition built for the notion of synergy, and the results
from the numerical simulations in the discrete case. When the sources have a strong correlation
with the target, the level of disclosure tends to increase. This is because Y is derived from X1 and
X2, and as these sources correlate more closely with the target, they can more effectively predict
W . Conversely, when the sources are not correlated with the target, the synergy is very close to 0.
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Varying correlation between sources.

We now consider fixed correlations ρ13 = ρ23, and vary the correlation ρ12 in the interval [0, 0.9].
As expected, the synergy contained in the system seems to decrease as the correlation increases,
as there is less information in the system that can be used to predict the target. The synergy has
the highest value when the sources are independent, and when the correlation is close to 1, the
synergy in the system is close to 0.

Figure 4.11: Varying correlation between the sources. As sources become more correlated, the
synergy in the systems decreases, and the system contains a lot of redundant information.

4.4.7 Applications to real-world data

In this section, we apply the synergy measure to continuous distributions in real-world datasets.
We will again use data sourced from the neuromaps project [22], and we consider an identical
experiment setup.

The previous sections derived an expression for the synergy in continuous distributions and
showed that checkerboard copulas are useful approximations to consider in this case. Numerical
simulations also confirmed the intuition built for this notion. Building on these, an example ap-
plying synergy to continuous, real-world data is presented in this section. The experiment setup is
identical to the experiments on discrete datasets.

Sources Target

(a) T1w/T2w ratio (b) Cortical Thickness (c) Functional Gradient

(d) Synergy measured on the continuous distribution.

Figure 4.12: Experiment results with Microstructure annotation maps. Results are not significant
and we fail to reject the null hypothesis.
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One challenge noted in earlier experiments with the neuromaps datasets is the necessity to dis-
cretise the data with multiple bins. In this analysis, we work with the original, continuous datasets
to estimate the copulas. These estimations were conducted using the pyvinecopulib Python li-
brary [38]. This package considers the decomposition of the three-dimensional copula into pair
copulas, and estimates each pair copula. As the neuromaps package provides many datapoints for
these annotation maps (32000 datapoints), the estimation is difficult and the package cannot use
any standard bivariate copula families in the process (the copulas are therefore obtained using a
form of kernel density estimation).

After the copula density is estimated, we use Monte-Carlo integration [39] to approximate the
values of the coefficients in the optimisation problem (4.10). The problem is then solved through
DCCP optimisation.

In the figure above, the experiment results of 1000 spin tests are shown. Unlike the discrete
case, the results are not significant, and we fail to reject the null hypothesis.

This variation in results could also be attributed to several factors related to our methodology.
The process of fitting a copula without additional information about the shape of the distribution
may lack precision. Also, we consider the copula to be constant on unit squares in the grid, and
the reliability of these estimations is heavily dependent on the resolution of the grids used in the
optimisation problem. A finer grid is desired, but also requires more computational resources and
can introduce its own set of challenges regarding DCCP optimisation.

The above experiment demonstrates how the synergy measure can be applied to analyse data
derived from continuous distributions. While the limited scalability of the estimation algorithms
might obscure the true statistical outcomes, this example nonetheless illustrates a valuable applica-
tion of the synergy concept, and shows that the theory derived in this chapter can have meaningful
applications in real-world datasets.
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Chapter 5

Conclusion and Future Work

Throughout this project, we have explored the notion of synergy in the context of the Partial
Information Decomposition framework and approached the problem of measuring synergy from
both a computational and theoretical point of view. We have improved the scalability and efficiency
of synergy computation software in the case of discrete probability distributions, and we have
developed a natural extension of the notion of synergy from discrete probability distributions to
continuous, real-valued distributions.

5.1 Key Findings and Contributions

We briefly revisit the main contributions of the project:

• Scalable and efficient dccp-syndisc1: We have developed a novel extension of the synergy
calculation software, syndisc. Through the use of disciplined convex-concave programming
(DCCP), this software more than doubles the previous limits in synergy calculations, sup-
porting systems of up to 13 discrete random variable sources, compared to the previous limit
of 5 sources. After extensive evaluations, we conclude that the method consistently achieves
high efficiency in synergy estimation in a variety of systems.

• Real-world applications: By addressing the computational challenges associated with previ-
ous methods and extending the application scope to real-world datasets, dccp-syndisc offers
a valuable tool for understanding the complexities of system interactions. We presented a
series of initial results that show the potential impact of the optimised software in real-world
settings. These results also offer a new perspective for analysing dependencies in complex
systems, suggesting that an analysis of the collective behaviors for different components can
provide new information.

• Generalization to continuous distributions: We successfully extended the concept of syn-
ergy to continuous distributions by leveraging the properties of copulas. This generalization
allows us to capture the interdependencies between continuous random variables. The intro-
duction of checkerboard copulas and the formulation of the associated optimization problems
are particularly important, as they provide practical tools for estimating synergy in complex
systems. Finally, the convergence of the checkerboard copulas towards the true optimal dis-
closure validates our approach, illustrating the robustness of the estimations.

5.2 Outlook and Future work

The positive results in this project have several implications for future research in information
theory and data analysis. Potential improvements can be viewed from two perspectives: theoretical
advancements based on the findings of this project, and practical applications of synergy measures
in real-world datasets.

From a theoretical point of view, the results presented face two main limitations:

1Implementation available at https://github.com/vladcoroian/dccp-syndisc.
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• Theoretical guarantees of dccp-syndisc: As with any heuristic method, there is a risk of
convergence to local optima rather than the global optimum. This issue highlights the need
for developing strategies to ensure enough sampling guarantees a certain level of perfor-
mance or at least ensure that the local solutions are sufficiently close to the global optimum.
The performance of dccp-syndisc is sensitive to the choice of parameters such as the size of
the alphabet Y and the number of iterations. While we have provided guidelines for choosing
these parameters, further research could automate these choices or make the algorithm less
sensitive to them.

• Interpretability in continuous distributions: The checkerboard copula approximation pro-
vides valuable estimates of synergy in continuous systems. Additionally, the convexity of the
synergy function shows that a maximally synergistic variable exists. However, a theoretical
link to construct the optimal disclosure channel, based on the approximations remains un-
established. The checkerboard copula approximations do not necessarily form a convergent
sequence in the set of copulas. Therefore, there is currently no systematic approach to derive
the optimal disclosure channel in the case continuous distributions.

• Other methods for parametrisation of copulas: While checkerboard copulas offer use-
ful approximations when grids are sufficiently fine, the computational complexity of this
approach increases quickly with the number of sources and the granularity of the grid.
Other types of copula parametrisations, such as using neural networks to capture the de-
pendency structure [40, 41], could provide flexible and potentially more powerful methods
of parametrisation, which might overcome the limitations of the current grid-based approach.

The methods developed in this project and the initial results obtained by applying this measure
to real-world data are promising. Further work can focus on applying the theoretical insights and
companion software developed to practical scenarios:

• Broader applications to real-world data: The application of synergy measurements can
extend beyond the realms of neuroscience and genetics. Information theory and the PID
framework in particular have applications in a diverse range of fields. This motivates the po-
tential use of synergy computation software in various collections of real-world data, where
understanding complex interactions can provide useful insights.

• Scalability of synergy in continuous distributions: One of the limitations in the estimation
of synergy in continuous distributions is the scalability issues with the number of sources.
The number of variables in the associated optimisation problem increases exponentially with
the number of sources. This makes estimations very challenging for large systems. To make
synergy computation practical for real-world applications, the computation software must be
optimized to efficiently handle larger systems.

5.3 Concluding remarks

In this project, we focused on synergy, a concept that beautifully explains the complex interactions
of large systems. Through synergy, we can explain how information emerges from these systems
collectively, offering deeper insights into their complexity.

The results in this project are both theoretical and practical, and lay a solid foundation for
future research in this field. The work on synergistic relations within continuous distributions has
significantly sharpened our understanding of this nuanced concept. On the other hand, the compu-
tational improvements to the algorithms measuring synergy in discrete distributions demonstrate
the remarkable potential of synergy in data analysis.

Looking ahead, these developments promise to broaden the use of synergy measures. The
key results in this project pave the way for applications that could offer new perspectives on the
analysis of complex interactions.
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Chapter 6

Ethical considerations

We believe that the research in this project is exempt from ethical approval, as the analysis is based
on secondary data, which is already freely accessible online. Also, no additional personal data is
collected as part of the project.

The utilisation of real-world datasets happens only in the evaluation phase of the project, where
the data is sourced from public repositories like the Enigma Toolbox and the Neuromaps project.
Given the nature of the data and the methodology employed, we believe that our research does
not need additional ethical analysis or approval.

The datasets utilised in our research have been publicly released and are readily available,
eliminating the need for explicit consent from individual participants involved in the study. Fur-
thermore, the data has been anonymised to a degree where there is no risk of identification. Also,
the collection of the original data adhered to the ethical standards outlined by the respective
projects.

It is important to emphasize that our research does not involve direct interaction with human
subjects, and our analysis is centered around anonymised data. As we solely rely on secondary
data that has already undergone ethical considerations by the original data collectors, our work is
within established ethical boundaries.
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[37] Li X., Mikusiński P., Sherwood H., and Taylor M. D. In quest of Birkhoff’s theorem in higher
dimensions. Lecture Notes-Monograph Series, 28:187–197, 1996. ISSN 07492170. URL http:
//www.jstor.org/stable/4355892.

[38] Vatter T. and Nagler T. Pyvinecopulib 0.6.4, 2022. URL https://vinecopulib.github.io/
pyvinecopulib/. Accessed: 2024-06-14.

[39] Robert C. P. and Casella G. Monte Carlo Statistical Methods. Springer, New York, NY, USA, 2
edition, 2004. ISBN 978-1-4419-1939-7.

[40] Zeng Z. and Wang T. Neural copula: A unified framework for estimating generic high-
dimensional copula functions. 05 2022. doi: 10.48550/arXiv.2205.15031.

[41] Letizia N. and Tonello A. Copula density neural estimation. 11 2022. doi: 10.48550/arXiv.
2211.15353.

59

https://www.sciencedirect.com/science/article/pii/S0167668707000194
https://www.sciencedirect.com/science/article/pii/S0167668707000194
https://www.sciencedirect.com/science/article/pii/S0022247X98960565
https://www.sciencedirect.com/science/article/pii/S0022247X98960565
https://doi.org/10.1214/aos/1031689016
https://api.semanticscholar.org/CorpusID:231741184
https://api.semanticscholar.org/CorpusID:231741184
http://www.jstor.org/stable/4355892
http://www.jstor.org/stable/4355892
https://vinecopulib.github.io/pyvinecopulib/
https://vinecopulib.github.io/pyvinecopulib/

	Introduction
	Motivation
	Objectives
	Contributions

	Background
	Fundamentals of Information Theory
	Central measures of Information Theory
	Extending to continuous variables
	Partial Information Decomposition

	Synergy in discrete random variables
	Initial scenario
	Extending the notion of synergy
	Finding the optimal mapping
	Algorithm

	Convex Optimisation
	Convex programming
	Numerical algorithms
	Disciplined convex-concave programming


	Scaling synergy in discrete distribution
	Formulating the optimisation problem
	Two step optimisation algorithm
	Challenges with brute force optimisation
	Making the problem convex
	Iterative algorithm
	Choosing the starting parameters

	Evaluation
	Evaluation Metrics
	Synthetic data experiments
	Summary of systems supported

	Applications to real-world data
	Experiment setup
	Dataset description
	Experiment results: Neuromaps
	Experiment results: Enigma Toolbox

	Discussion and interim conclusion

	Synergy in continuous distributions
	Copula theory
	Fundamental properties of copulas
	Checkerboard copulas
	Pair-copula Constructions

	Formulate extension of synergy to continuous distributions
	Self-disclosure
	Modelling constraints through copulas
	Approximation with checkerboard copula
	Associated optimisation problem
	Self-disclosure in systems with arbitrary number of sources
	Numerical Simulations

	Synergy with arbitrary target
	Synergy in systems with two sources
	Approximation with checkerboard copulas
	Associated optimisation problem
	Synergy in systems with arbitrary number of sources
	Convergence to the true optimal value
	Numerical Simulations
	Applications to real-world data


	Conclusion and Future Work
	Key Findings and Contributions
	Outlook and Future work
	Concluding remarks

	Ethical considerations

