
MEng Individual Project

Imperial College London

Department of Computing

Learning Dynamics of Linear Neural
Networks

Author:
Nicolas Anguita

Supervisor:
Dr. Pedro Mediano

Second Marker:
Dr. Tolga Birdal

June 19, 2024

Abstract

In Machine Learning, the full extent of how weight initialization and network structure influence
the network’s learning properties is still not fully understood. We aim to advance this understand-
ing by enhancing the knowledge of learning dynamics in linear neural networks, with a particular
focus on λ-Balanced networks. We derive exact solutions for both aligned and unaligned λ-balanced
networks that are interpretable and numerically stable. Our findings demonstrate the equivalence
of deep λ-balanced network dynamics to shallow network dynamics for large values of |λ|. Further-
more, our results show that large values of |λ| lead the network to learn in the Lazy Regime, while
low values of |λ| correspond to the Rich Learning Regime. This work also extends the applications
of these analytical dynamics to continual learning, deriving an exact expression for the forgetting
rate of a λ-balanced network.

This research is significant because it provides a deeper theoretical understanding of the rela-
tionship between weight initialization, network structure, and a network’s learning regime. The
exact solutions offered in this study allow us to determine the analytical dynamics of the network’s
representations and the network’s Neural Tangent Kernel, furthering our understanding of Rich
and Lazy Learning. Additionally, the insights gained from this study can inform the design of
better weight initialization methods, ultimately leading to improved performance and reliability of
neural networks in practical settings. Understanding the transition between Rich and Lazy Learn-
ing Regimes can help enhance neural network training, making this research relevant for advancing
both theoretical and applied aspects of Machine Learning.

2

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Pedro Mediano, for his invaluable
guidance, encouragement, and insightful feedback throughout the course of this research. His
expertise and support have been instrumental in the successful completion of this work. I am
especially grateful to him for allowing me to self-propose the topic, which provided me with the
opportunity to explore my interests in depth.

I am also deeply grateful to Clemenine Dominé from the Gatsby Computational Neuroscience
Unit for her collaboration and support in this thesis. Her insights and feedback have significantly
enriched this work.

Additionally, I would like to thank Alexandra Proca for providing feedback on my thesis and
her overall assistance and collaboration. Her contributions and suggestions have been greatly ap-
preciated.

Finally, I would like to express my heartfelt appreciation to my parents for their unwavering sup-
port, understanding, and encouragement throughout my academic journey. I am deeply grateful
for everything they have done for me.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Contributions . 4

2 Background 6
2.1 Theoretical Background . 6

2.1.1 A review of Singular Value Decomposition (SVD) 6
2.2 Previous Work on Linear Network Dynamics . 7

2.2.1 Experimental Setup . 7
2.2.2 Gradient Flow . 8
2.2.3 Balanced Condition . 9
2.2.4 Existing Analytical Solutions for Network Dynamics 9

2.3 Existing Applications of this Work . 12
2.3.1 The Neural Tangent Kernel (NTK) . 12
2.3.2 Expressing NTK in and Network Representational Similarity Matrices in

terms of Network Representations . 13
2.3.3 Feature Learning and Rich and Lazy Learning 13
2.3.4 Continual Learning . 14

3 Exact Solutions for Learning Dynamics 15
3.1 Random Weight Initialisations and λ-Balanced Property 15
3.2 Exact Solutions for Aligned λ-Balanced Network 21
3.3 Exact Solutions for Unaligned λ-Balanced Network of Equal Dimensions 25
3.4 Progress in Exact Solutions for Unaligned λ-Balanced Network of Unequal Dimensions 34

4 Applications 39
4.1 λ and the Transition from the Lazy to the Rich Regime 39
4.2 λ and the Transition to Shallow Learning Dynamics 42
4.3 Illustrative Example . 44
4.4 Continual Learning . 47
4.5 Extensions to the Non-Linear Case . 50

5 Ethical Considerations 53
5.1 Ethical Considerations . 53

6 Conclusion 54
6.1 Limitations of this Work . 54
6.2 Summary of Results and Future Directions . 54

2

Chapter 1

Introduction

1.1 Motivation

Deep Learning Theory has become crucial in advancing Artificial Intelligence (AI) by providing
deeper insights into neural network mechanisms and guiding the development of more effective
models. Understanding these foundations is vital as AI increasingly integrates into various do-
mains, necessitating robust, efficient, and explainable systems.

Mathematical approaches to AI offer rigorous frameworks for analyzing and understanding mod-
els, enabling predictions about behavior under various conditions and ensuring desired outcomes.
However, these models can be complex and computationally challenging, often relying on sim-
plifying assumptions that may not apply in real-world scenarios. On the other hand, engineering
approaches focus on practical implementation, leading to adaptable and effective solutions through
empirical performance and real-world feedback. Combining the strengths of both approaches, Deep
Learning Theory has significantly improved AI model performance and explainability, fostering the
development of trustworthy AI systems ([27]).

Deep Learning Theory has notably enhanced model performance by providing a structured un-
derstanding of neural networks, influencing the creation of better training algorithms and archi-
tectures. Insights into network architecture and optimization techniques have led to more efficient
training processes and improved generalization to unseen data. For example, viewing neural net-
work training through dynamical systems and optimal control perspectives has improved hyperpa-
rameter tuning and training efficiency. Understanding stochastic dynamics has facilitated implicit
regularization, enhancing model performance ([28]).

In terms of explainability and safety, Deep Learning Theory has developed methods to inter-
pret decisions made by deep learning models, contributing to their trustworthiness and widespread
adoption. The Information Bottleneck Theory ([41]), for example, offers insights into how infor-
mation is processed through network layers, aiding in understanding decision-making processes.
Additionally, theoretical foundations have informed strategies to enhance robustness against ad-
versarial attacks, ensuring the reliability and safety of AI systems in high-stakes applications ([7]).

In recent years, mechanistic interpretability has emerged as a key area of research within AI,
aiming to elucidate how and why neural networks make decisions. This field intersects with AI
safety, emphasizing the need to develop models that are not only powerful but also transparent
and aligned with human values. Mechanistic interpretability efforts strive to decode the inner
workings of AI systems, ensuring they operate reliably and predictably, which is essential for their
safe deployment in critical applications ([32]).

Additionally, research has explored biologically plausible neural networks, which aim to mimic
the learning processes observed in biological systems. A significant finding in this area is that dif-
ferent neural systems, whether biological or artificial, can converge to learn similar representations
when exposed to comparable stimuli. This convergence is a topic of great interest in neuroscience
and AI, as discussed in the NeurIPS 2023 workshop "UniReps: Unifying Representations in Neural

3

Models",([1]) which examines how similar representations arise and the implications for model fu-
sion and reuse. Furthermore, research ([39]) has shown that biologically plausible neural networks
can achieve comparable performance to traditional models, suggesting that understanding these
similarities can lead to more robust and efficient AI systems.

Bridging AI with neuroscience, artificial neural networks (ANNs) draw inspiration from the brain’s
hierarchical information processing. Research has shown parallels between deep learning architec-
tures and brain functions, such as the similarity between convolutional neural networks (CNNs)
and the visual cortex’s processing stages ([19]). This intersection extends to cognitive processes,
with deep learning models simulating decision-making, memory, and learning, reflecting efficient
human learning and adaptation ([25]).

The integration of AI and neuroscience reveals profound insights into how neural mechanisms
can inform AI design and vice versa. For instance, ([34]) discusses how neuroscience findings guide
the development of AI systems and highlights the bidirectional benefits of this interplay. Addi-
tionally, ([14]) emphasizes that while AI has historically been inspired by brain function, recent
advances in AI are now offering new hypotheses and tools for understanding the brain, showcasing
a symbiotic relationship between the fields . Furthermore, comprehensive reviews underscore that
neural dynamics, learning algorithms, and computational models derived from brain studies are
crucial for advancing AI technologies ([37]).

Recent advances have further integrated neuroscience principles into deep learning, enhancing
AI capabilities and understanding brain functions. Developments in biologically plausible learning
algorithms, such as unsupervised Hebbian learning, provide insights into brain representation for-
mation ([30]). Neuro-inspired AI models, using naturalistic sensory signals, have solved complex
real-world problems, highlighting the close relationship between AI and human cognition ([34]).

Feature learning remains a critical area in deep learning, enabling models to process complex
data effectively. However, the exact mechanisms are not fully understood, with factors like net-
work architecture and training regimen playing significant roles ([43]). Understanding Rich and
Lazy Learning regimes, where networks undergo significant or minimal parameter changes respec-
tively, is essential for optimizing feature learning and enhancing neural network performance ([6]).

Studying analytical solutions, particularly in linear neural networks, provides valuable insights
into learning dynamics, enhancing model interpretability and guiding efficient training algorithm
development ([27]).Linear networks, despite their simplicity, offer a tractable model for deriving
exact solutions, informing the design of more complex architectures ([36]). These insights bridge
the gap between empirical success and theoretical understanding, advancing both artificial and
biological neural system comprehension.

1.2 Contributions

This research primarily builds upon and aims to extend the findings of two papers ([5], [23]) which
broadly investigate the effects of network structure and weight initialisation on the learning regimes
and learning dynamics of (linear [5]) neural networks.

Specifically, this research focuses on deriving exact solutions for learning dynamics in a more gen-
eral setting and exploring their applications to continual learning. The code used in this project
is available upon request. Below is a detailed outline of the contributions:

1. Exact Solutions for Learning Dynamics

• Aligned λ-Balanced Networks:

– Derived exact solutions for the dynamics of aligned λ-Balanced networks.

• Unaligned λ-Balanced Networks of Equal Dimensions:

4

– Provided numerically stable, interpretable solutions for learning and representation dy-
namics of unaligned λ-Balanced networks with equal input-output dimensions.

– These solutions can be utilised to study the effect of network structure and weight
initialisation to neural network training in a number of ways, including: alignment
dynamics, gating , and continual learning ([5], [37])

• Progress in Solutions for Unequal Dimensions:

– Made advancements towards exact solutions for unaligned λ-Balanced networks with
unequal input-output dimensions.

Applications
• Transition from Rich to Lazy Learning Regimes:

– Analyzed the effect of λ on the network’s transition between Rich and Lazy learning
regimes. Concluded that a larger magnitude of λ moves the network into the Lazy
learning regime.

• Impact of Initial Weight Configurations:

– Identified the influence of λ on the convergence and representational similarity matrices
of a λ-Balanced network and concluded that a larger magnitude of λ increases speed of
learning and makes a deep (3 layer) network behave increasingly more like a shallow (2
layer) network.

• Continual Learning:

– Developed a framework for applying derived solutions to continual learning tasks, vali-
dated through simulations. Derived an expression for the rate of forgetting of a linear
network, proposed next steps.

• Preliminary Investigations into Non-Linear Networks:

– Conducted preliminary investigations into generalizing the derived solutions to ReLU
and Tanh networks.

– Showed that the approximation of the Balanced Coefficient λ∗ of a ReLU network’s
weights is preserved through training.

5

Chapter 2

Background

2.1 Theoretical Background

2.1.1 A review of Singular Value Decomposition (SVD)
Singular Value Decomposition (SVD) is a fundamental theorem in linear algebra with numerous
applications in data analysis, signal processing, and more. The SVD of a matrix X ∈ Rn1×n2 is
given by:

X = USVT (2.1)

Where:

• U ∈ Rn1×n1 is an orthonormal matrix;

• S ∈ Rn1×n2 is a diagonal matrix with non-negative real numbers on the diagonal;

• V ∈ Rn2×n2 is an orthonormal matrix.

In another form, the SVD can be written as:

• U ∈ Rn1×n1 is an orthonormal matrix,

• S ∈ Rn1×n2 is a diagonal matrix with non-negative real numbers on the diagonal,

• V ∈ Rn2×n2 is an orthonormal matrix.

Where sα are the singular values, and uα and vα are the left and right singular vectors respectively.

The Singular Value Decomposition can be visualized as a transformation that decomposes the
original matrix X into three simpler matrices that capture the essential features of the data. The
process can be described as follows:

1. VT : Rotates the data to align with the principal axes.

2. S: Scales the data along the principal axes.

3. U: Rotates the scaled data back to the original coordinate system.

The SVD thus provides a way to understand the structure of the data, identify patterns, and
reduce dimensionality while preserving essential information.

We say the matrices X, Y are aligned if they have the same singular vectors, i.e., X = USXVT ,
Y = USY V

T .

Suppose XY = USVT is the Singular Value Decomposition of the product of two matrices X, Y.
Then there exists an orthonormal matrix R such that:

X = USRT , Y = RSVT (2.2)

6

Figure 2.1: Singular Value Decomposition (SVD) Process ([18]). The figure shows how a matrix
X is decomposed into three matrices U, S, and V T , capturing the essential features of the data
through rotation, scaling, and another rotation.

Suppose n1 > n2. Then we can write U := (Ũ Ũ⊥) with Ũ ∈ Rn2×n2 and Ũ⊥) consists of
the remaining singular vectors to complete the basis. In addition, we write V := (Ṽ Ṽ⊥) with
Ṽ ∈ Rn2×n2 and Ṽ⊥) is a matrix of zeros.

Suppose n1 < n2. Then we can write U := (Ũ Ũ⊥) with Ũ ∈ Rn1×n1 and Ũ⊥) is a matrix
of zeros. In addition, we write V := (Ṽ Ṽ⊥) with Ṽ ∈ Rn2×n2 and Ṽ⊥) consists of the remaining
singular vectors to complete the basis.

2.2 Previous Work on Linear Network Dynamics

2.2.1 Experimental Setup

The experimental setup detailed in this section is inspired by the ones in ([36], [5]). We consider
a supervised learning regression task containing P training pairs {(xn,yn)}n=1...P . Our aim is to
predict the output vectors yn ∈ Rno from the input vectors xn ∈ Rni by the use of an n-layer
linear neural network, where the output Y is expressed as:

Y = Wn−1Wn−2 . . .W1X

The neural network will be trained using full batch gradient descent utilizing a learning rate η (or
equivalently, a time constant τ = 1/η) on the Mean Squared Error (MSE) loss.

L(Ŷ ,Y) =
1

2P

∥∥∥Ŷ − Y
∥∥∥2
F

(2.3)

=
1

2P
∥W n−1W n−2 · · ·W 1X − Y ∥2F (2.4)

The input and output correlation matrices of the dataset are defined as:

Σ̃
xx

=
1

P

P∑
n=1

x̄nx̄
T
n ∈ RNi×Ni and Σ̃

yx
=

1

P

P∑
n=1

ȳnx̄
T
n ∈ RNo×Ni (2.5)

In this text, we will assume whitened inputs, that is:

Σ̃
xx

= I (2.6)

7

It has been shown ([36]) that under these conditions the network will converge to the global
minimum, characterised by (Wn−1Wn−2 . . .W1) = Σyx. However, our research interest extends
beyond mere convergence; it encompasses the dynamics of the learning process as well as the
internal representations formed within the network during training. To gain a comprehensive un-
derstanding, we examine two distinct scenarios: a three-layer (deep) neural network represented
by Y = W2W1X and a two-layer (shallow) neural network represented by Y = WX.

It is important to note the dimensions of each of the weight matrices: W1 ∈ Rnh×Ni and
W2 ∈ Rno×nh , W ∈ Rno×ni where Nh is the number of neurons in the hidden layer. The gradient
descent process commences with initial weights represented by W2(0) and W1(0), W(0).

x ∈
Rni

h ∈
Rnh

W1

y ∈
Rno

W2

Figure 2.2: Diagram of a 3-layer (Deep) neu-
ral network.

x ∈
Rni

y ∈
Rno

W

Figure 2.3: Diagram of a 2-layer (Shallow)
neural network.

2.2.2 Gradient Flow
The gradient descent update equations are given by ([35], [36]):

W1
(i+1) ←W1

(i) − η(W2
(i))T (W2

(i)W1
(i)X − Y)XT (2.7)

W2
(i+1) ←W2

(i) − η(W2
(i)W1

(i)X − Y)XT (W1
(i))T (2.8)

Hence

1

η
(W1

(i+1) −W1
(i)) = −(W2

(i))T (W2
(i)W1

(i)X − Y)XT (2.9)

1

η
(W2

(i+1) −W2
(i)) = −(W2

(i)W1
(i)X − Y)XT (W1

(i))T (2.10)

As the learning rate η → 0 these difference equations approach the following differential equations
([35], [36]):

τ
d

dt
W1 = (W2)

T
(
Σ̃

yx −W2W1Σ̃
xx
)
, (2.11)

τ
d

dt
W2 =

(
Σ̃

yx −W2W1Σ̃
xx
)
(W1)

T , (2.12)

When the learning rate is sufficiently small, the differential equations above are a reasonable
approximation for the real dynamics of the weights through learning in the neural network. Since
in practice a very small learning rate is used, we are interested in finding the exact solutions to the
dynamics of these differential equations. Gradient flow is a useful approximation for understanding

8

neural network learning dynamics, as it allows us to express the gradient descent process as a set
of differential equations ([36])

2.2.3 Balanced Condition

Definition 2.2.1 (Definition of λ-Balanced property ([36], [31])) The weights W1,W2 are
λ-Balanced if and only if there exists a Balanced Coefficient λ ∈ R such that:

B(W1,W2) = W2
TW2 −W1W1

T = λI (2.13)

where B is called the Balanced Computation. For λ = 0 we have Zero Balanced.

Theorem 2.2.1 (Balance Condition Persists Through Training) Suppose at Initialisation

W2(0)
T
W2(0)−W1(0)W1(0)

T
= λI (2.14)

Then for all t ≥ 0

W2(t)
T
W2(t)−W1(t)W1(t)

T
= λI (2.15)

Proof 1 (Proof of 2.2.1 ([36])) Consider:

τ
d

dt

[
W2(t)W2(t)

T −W1(t)W1(t)
T
]
=

(
τ
d

dt
W2(t)

)
W2(t)

T +W2(t)

(
τ
d

dt
W2(t)

)T

−
(
τ
d

dt
W1(t)

)
W1(t)

T −W1(t)

(
τ
d

dt
W1(t)

)T

= W1(t)
(
Σ̃

yx −W2(t)W1(t)Σ̃
xx
)T

W2(t)W2(t)

+W2(t)
(
Σ̃

yx −W2(t)W1(t)Σ̃
xx
)
W1(t)W1(t)

T

−W2(t)
T
(
Σ̃

yx −W2(t)W1(t)Σ̃
xx
)
W1(t)

−W1(t)
(
Σ̃

yx −W2(t)W1(t)Σ̃
xx
)T

W2(t)

= 0

Definition 2.2.2 (Aligned Weights) Let Y = W 2(t)W 1(t)X be a three-layer linear network.
We say the initial weights W 2(t)W 1(t) are aligned if they share the same singular vectors as the
task Σyx.

i

Definition 2.2.3 (Input and Output Network Representations ([5])) Let Y = W 2(t)W 1(t)X
be a three layer linear network. We define the Input Network Representations at time-step t as
W 1(t)

TW 1(t). We define the Output Network Representations as time-step t as W 2(t)W 2(t)
T

2.2.4 Existing Analytical Solutions for Network Dynamics

Linear network learning dynamics have been shown to qualitatively resemble those in the nonlinear
case ([36]). Previous research by ([36])has derived analytical solutions for the learning dynamics
of aligned, zero-Balanced networks of arbitrary depth.
Additionally, there is a substantial body of work that provides analytical solutions for the learning
dynamics of more complex networks with a single output ([24]). While this research significantly
contributes to the field, it does not fully address the complexities inherent in networks with mul-
tiple outputs.
More recently, ([5]) have derived analytical solutions for the learning and representation dynamics
of unaligned, zero-Balanced three-layer networks with unequal input-output dimensions. These
analytical results are particularly valuable for studying the network’s learning regime and under-
standing its behavior in various contexts.

9

0-Balanced λ-Balanced
Aligned Unequal input/output: [38] Unequal input/output: This Thesis
Not aligned Equal input/output: [12] Equal input/output: This Thesis

Unequal input/output: [5]

Table 2.1: Summary of alignment and balance conditions

Below is a table visualising results in the area of analytical learning dynamics of neural networks:
We present the derivation for the learning dynamics of an Aligned 0-Balanced Network together
with the main result for didactic purposes:

Theorem 2.2.2 [Dynamics of Aligned 0-Balanced Network]
To solve for the dynamics of W 1,W 2 over time, we decompose the input-output correlations
through the singular value decomposition (SVD) (this proof is paraphrased from [38]),

Σ̃
yx

= USV T =

N1∑
α=1

sαū
α(v̄α)T , (2.16)

and then change variables to W 1,W 2 where W 1 = RW 1V
T and W 2 = UW 2R

T

τ
d

dt
(RW 1V

T) = RW 2U
T (Σ̃

yx −UW 2W 1V
T Σ̃

xx
), (2.17)

τ
d

dt
W 1 = W 2U

T (USV T −UW 2W 1V
T)V (2.18)

= W2(S −W2W1), (2.19)

τ
d

dt
(UW 2R

T) = (Σ̃
yx −UW 2W 1V

T Σ̃
xx
)V TW 1R

T , (2.20)

Here we use the whitened inputs assumption:

τ
d

dt
W 2 = UT (USV T −UW 2W 1V

T)V W
T

1 (2.21)

= (S −W 2W 1)W
T

1 , (2.22)

Consider cα = W1αα and dα = W
αα

2 as the αth diagonal elements of the first and second matri-
ces. These elements represent the strength of mode α transmitted through the input-to-hidden and
hidden-to-output weights, respectively. The scalar dynamics are given by

τ
d

dt
cα = dα(sα − cαdα), (2.23)

τ
d

dt
dα = cα(sα − cαdα) (2.24)

τ
d

dt
aα = (c2α + d2α)(s− aα) (2.25)

τ
d

dt
aα = (2aα)(s− aα) (2.26)

t =
τ

2

∫ af

a0

da

a(s− a)
=

τ

2s
ln

af (s− a0)

a0(s− af)
(2.27)

The complete learning trajectory can be determined by solving for af , resulting in

aα(t) =
sαe

2sαt/τ

e2sαt/τ − 1 + sα/a0α
. (2.28)

W2(t)W1(t) = UW2(t)W1(t)V
T = UA(t)V T . (2.29)

10

This result implies that an Aligned 0-Balanced Network remains aligned through training, and the
singular values are independently of each other (as the differential equation is decoupled). These
two properties hold for learning dynamics of Aligned Networks of any depth ([36]).

Note that both alignement and λ remain constant through training in Linear Networks. Hence
we introduce the terms λ-Balanced Network and Aligned λ-Balanced Network to signify networks
with λ-Balanced weights and Aligned λ-Balanced weights respectively.

Solution for Shallow Not Aligned Network

Theorem 2.2.3 (Gradient Flow Dynamics of a 2 Layer (Shallow) Linear Network) Consider
the 2 layer linear network Y = WX. The gradient flow equation for W is given by:

W (t) = Σ̃
yx

+ (W (0)− Σ̃
yx
)e−

t
τ

This result was established in ([36]). We omit the proof.

Solution for Not Aligned 0-Balanced Network

Theorem 2.2.4 [Gradient Flow Dynamics as a Matrix Riccati equation with known
solution]

Define

Q(t) =

[
W T

1 (t)
W 2(t)

]
Let F be an (nh + no)× (nh + ni) matrix such that:

τ
d

dt
(QQT) = FQQT +QQTF − (QQT)2.

For all t and some τ ∈ R
The equation above is a Matrix Riccati equation. Assuming further that Q(0) has full rank, the
equation has unique solution given by:

QQT (t) = eF
t
τ Q(0)

[
I +

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ − F−1

)
Q(0)

]−1

Q(0)T eF
t
τ

Let Ũ S̃Ṽ
T
= Σyx, USV T = W 2(0)W 1(0) be the Singular Value Decomposition of the task and

initial weights Respectively.

We define the following assumptions ([5]):

Assumption 2.2.1 Define B = UT Ũ + V T Ṽ and C = UT Ũ − V T Ṽ . B is non-singular.

Assumption 2.2.2 The input data is whitened, that is Σ̃xx = I

Assumption 2.2.3 The network’s weight matrices are zero-Balanced at the beginning of training.

Assumption 2.2.4 The input-output correlation of the task and the initial state of the network
function have full rank, that is rank(Σ̃xy) = rank(W2(0)W1(0)) = Ni = No. This implies that
the network is not bottlenecked, i.e. Nh ≥ min(Ni, No)

Theorem 2.2.5 (Numerically stable Fukumizu equation) Theorem 3.1 Under the assump-
tions of whitened inputs, zero-Balanced weights, full rank, and B non-singular 3.1, the temporal
dynamics of QQT are

QQT (t) = Z
[
4e−S̃ t

τ B−1S−1(BT)−1e−S̃ t
τ +

(
I − e−2S̃ t

τ

)
S̃

−1
(2.30)

−e−S̃ t
τ B−1C

(
e−S̃ t

τ − I
)
S̃

−1
CT (BT)−1e−S̃ t

τ

11

+
t

τ
e−S̃ t

τ B−1
(
V T Ṽ ⊥Ṽ

T

⊥V +UT
⊥Ũ

T

⊥U
)
(BT)−1e−S̃ t

τ ZT

+4e−S̃ t
τ B−1

(
V T Ṽ ⊥Ṽ

T

⊥V +UT
⊥Ũ

T

⊥U
)
(BT)−1e−S̃ t

τ S̃
−1

ZT

with

Z =

Ṽ (I − e−S̃ t
τ CT (BT)−1e−S̃ t

τ

)
+ 2Ṽ ⊥Ṽ

T

⊥V (BT)−1e−S̃ t
τ

Ũ
(
I + e−S̃ t

τ CT (BT)−1e−S̃ t
τ

)
+ 2Ũ⊥Ũ

T

⊥U(BT)−1e−S̃ t
τ

 . (2.31)

During the rest of the report, we will continue to assume assumptions (2.2.1, 2.2.4). Assumption
2.2.2 will also be maintained in some cases.

2.3 Existing Applications of this Work

2.3.1 The Neural Tangent Kernel (NTK)

The Neural Tangent Kernel (NTK) ([17]) is a concept that has garnered significant attention in
the field of deep learning. It provides a new perspective on understanding the behavior of neural
networks, particularly in the regime of wide networks. The NTK framework allows us to analyze
how neural networks learn by studying the dynamics of the training process through the lens of
kernel methods.The sturcutre of this section is inspired by ([42]).

Consider a neural network f(x; θ) where x ∈ Rn represents the input and θ represents the pa-
rameters of the network. The Jacobian matrix J of the network is defined as:

J =
∂f

∂x
∈ Rm×n (2.32)

where m is the output dimension. The gradient of the function with respect to the parameters θ
can be expressed as:

∇θf = J⊤ ∈ Rn×m (2.33)

The NTK, K, is defined as a kernel function K : Rn × Rn → R which measures the similarity
between the gradients of the neural network with respect to its parameters:

K(x,x′; θ) = ∇θf(x; θ)
⊤∇θf(x

′; θ) (2.34)

During training, the parameters θ of the neural network are updated using gradient descent. The
update rule can be written as:

dθ

dt
= −∇θL(θ) (2.35)

where L(θ) is the loss function. Using the NTK, the evolution of the function f(x; θ) during
training can be described by the differential equation:

df(x; θ)

dt
= −K(x,x; θ)∇θL(θ) (2.36)

For an infinitely wide neural network, the NTK K remains constant during training. This leads
to a linearization of the training dynamics, allowing for a more tractable analysis.

The NTK framework reveals that, under certain conditions, wide neural networks can be ap-
proximated by kernel methods. This insight bridges the gap between neural networks and classical
machine learning algorithms, providing a theoretical foundation for understanding why deep net-
works perform well in practice.

Moreover, the NTK can be used to analyze the generalization capabilities of neural networks.
By studying the properties of the kernel, researchers can gain insights into how well the network
will perform on unseen data.

12

2.3.2 Expressing NTK in and Network Representational Similarity Ma-
trices in terms of Network Representations

We define task-relevant representational similarity matrices (RSM) ([21]), which are the kernel
matrix ϕ(x)Tϕ(x′), of the neural representations within the hidden layer ([5])([21]) as:

RSMI = XTWT
1 W1(t)X,

RSMO = YT
(
W2W

T
2 (t)

)+
Y,

In [5] the authors show that the NTK of a Linear Neural Network can be expressed in the following
form:

NTK = INo
⊗XTWT

1 W1(t)X+W2W
T
2 (t)⊗XTX (2.37)

2.3.3 Feature Learning and Rich and Lazy Learning
Feature Learning and Learning Regimes in Neural Networks and the Brain

Feature learning is the backbone of deep learning, enabling models to understand and process com-
plex data. Features are representations or patterns extracted from raw data during the learning
process, ranging from low-level edges in images to high-level abstract concepts. The automatic
learning and extraction of useful features is a key factor in the success of deep learning, allowing
for complex tasks such as image recognition, natural language processing, and speech recognition
to be performed more effectively than traditional machine learning methods reliant on manually
crafted features ([4]).

Despite this success, the exact mechanisms by which features are learned remain an active area of
research ([3]). Feature learning involves adjusting network weights during training, but the specific
processes through which certain patterns are identified and enhanced while others are suppressed
are not fully understood. Multiple mechanisms, including alignment, disalignment, and rescaling
within network layers, influence this process and are affected by factors such as network architec-
ture, data nature, and learning regimes ([43]).

The concepts of Rich and Lazy learning regimes are crucial for understanding feature learning in
neural networks. In the Rich (feature learning) regime, significant changes occur during training,
allowing the network to learn complex, high-dimensional features. This regime involves dynamic
parameter evolution and the development of intricate internal representations. In contrast, the
Lazy (kernel learning) regime, associated with the Neural Tangent Kernel (NTK) ([17], [13]), in-
volves minimal parameter changes, with the network acting more like a fixed feature extractor
where weights are only slightly adjusted, and learning dynamics are largely linear ([6]).

Understanding the relationship between network structure, weight initialization, and these learning
regimes is essential for advancing knowledge of feature learning. The transition between Rich and
Lazy regimes depends on factors such as network width, learning rates, and initialization scale.
Analytical frameworks, such as those provided in ([43]), help study these transitions in minimal
finite-width models, showing that feature learning mechanisms like alignment are present only in
the Rich phase and absent in the Lazy phase.

In the brain, both Rich and Lazy learning strategies are likely utilized depending on the task
and the region involved. Early sensory areas may adopt Lazy learning to maintain flexibility, while
higher-order areas may employ Rich learning to optimize for specific tasks. This balance allows the
brain to process a wide range of information efficiently while developing specialized capabilities for
critical functions. Studies modeling brain learning processes with artificial neural networks provide
insights into how different brain regions balance these strategies, with higher-order cortical areas
adapting to task demands and early sensory areas maintaining general representations ([8], [10],
[9], [11]).

Understanding these dynamics informs both artificial neural network design and the functioning
of biological neural circuits, leading to more efficient learning algorithms and enhanced compre-
hension of brain function and adaptability. The study of Rich and Lazy learning regimes offers
valuable insights into developing more effective and interpretable deep learning models.

13

2.3.4 Continual Learning
We can formally establish the context of continual learning in a three-layer (deep) linear network
as outlined in existing literature ([5]):

Consider the scenario of training a two-layer deep linear network on a sequence of tasks Ta, Tb, Tc, . . .,
each with corresponding correlation functions Ta = Σ̃

yx

a , Tb = Σ̃
yx

b . Subsequently, the full batch
loss of the i-th task at any training time point i

Li =
1

2P
∥W2W1Xi −Yi∥2F

After completing the training process until convergence for task Tj , we understand that the net-
work function is W2W1 = ŨS̃ṼT = Σ̃

yx

j .

Utilizing the assumption of whitened inputs, the entire batch loss for the ith task is

Li (Tj) =
1

2P

∥∥∥Σ̃yx

j Xi −Yi

∥∥∥2
F

=
1

2P
Tr

((
Σ̃

yx

j Xi −Yi |
)(

Σ̃
yx

j Xi −Yi |
)T)

=
1

2P
Tr

(
Σ̃

yx

j XiX
T
i Σ̃

yxT

j

)
− 1

P
Tr
(
Σ̃

yx

j XiY
T
i

)
+

1

2P
Tr
(
YiY

T
i

)
=

1

2
Tr

(
Σ̃

yx

j Σ̃
yxT

j

)
− Tr

(
Σ̃

yx

j Σ̃
yxT

i

)
+

1

2
Tr
(
Σ̃

yy

i

)
=

1

2
Tr

((
Σ̃

yx

j − Σ̃
yx

i

)(
Σ̃

yx

j − Σ̃
yx

i

)T
− Σ̃

yx

i Σ̃
yxT

i

)
+

1

2

(
Σ̃

yy

i

)
=

1

2

∥∥∥Σ̃yx

j − Σ̃
yx

i

∥∥∥2
F
−1

2
Tr

(
Σ̃

yx

i Σ̃
yxT

i

)
+

1

2

(
Σ̃

yy

i

)
︸ ︷︷ ︸

c

.

Hence, the extent of forgetting, denoted as F for task Ti during training on task Tk subsequent to
training the network on task Tj , specifically, the relative change in loss, is entirely dictated by the
similarity structure among tasks.

Fi (Tj , Tk) = Li (Tk)− Li (Tj)

=
1

2

∥∥∥Σ̃yx

k − Σ̃
yx

i

∥∥∥2
F
+ c− 1

2

∥∥∥Σ̃yx

j − Σ̃
yx

i

∥∥∥2
F
− c

=
1

2

(∥∥∥Σ̃yx

k − Σ̃
yx

i

∥∥∥2
F
−
∥∥∥Σ̃yx

j − Σ̃
yx

i

∥∥∥2
F

)
.

It is important to note that the amount of forgetting is a function of the weight trajectories, finding
analytical solutions for the weight trajectories will enable us to solve for trajectories of forgetting
as well.

14

Chapter 3

Exact Solutions for Learning
Dynamics

3.1 Random Weight Initialisations and λ-Balanced Property

Throughout this work, we assume that initial weights are λ-Balanced. However, in practice, weights
are not initialized with that goal in mind. Usually, a weight matrix W is initialized with some
random distribution centered around 0, with variance inversely proportional to the number of lay-
ers on which W has a direct effect ([15], [26], [16]). In this section, we show that many common
initialization techniques lead to λ-Balanced weights in expectation. Furthermore, as the size of a
network tends to infinity, these random weights are λ-Balanced in probability.

We do this by first finding the expectation and variance of the balance computation for two
adjacent weight matrices, Wi+1 and Wi, initialized under a normal distribution with zero mean.
Subsequently, we describe how network structure and size can impact the expectation and variance
of the balance computation.

Theorem 3.1.1 [Random Weight Initialization Leads to Balanced Condition]
Consider a fully connected neural network with L layers. Each layer has ni neurons, and the
weights of each layer Wi is a matrix of dimension (ni, ni+1). The matrix Wi = (wi

n,m) where
wi

n,m ∼ N (0, σ2
i) where σ2

i is decided based on the initialization technique. Then the following
follow for all i ∈ [1, L− 1]:

1. E [W T
i+1Wi+1 − WiW

T
i] = (ni+2σ

2
i+1 − niσ

2
i)I

2. Var
[
W T

i+1Wi+1 − WiW
T
i

]
= (ni+2σ

4
i+1 + niσ

4
i)B, where B is a square matrix with fours

across the diagonal and ones everywhere else.

Proof 2 (Proof of Theorem 3.1.1)

Let Wi+1 =


w1,1 w1,2 · · · w1,ni+2

w2,1 w2,2 · · · w2,ni+2

...
...

. . .
...

wni+1,1 wni+1,2 · · · wni+1,ni+2


=
(
w1 w2 . . . wni+2

)
(3.1)

with wj = (w1,j , w2,j , . . . , wni+1,j)
T .

15

Then,

W T
i+1Wi+1 =


wT

1

wT
2
...

wT
ni+2

(w1 w2 · · · wni+2

)

=


⟨w1, w1⟩ ⟨w1, w2⟩ · · · ⟨w1, wni+2⟩
⟨w2, w1⟩ ⟨w2, w2⟩ · · · ⟨w2, wni+2⟩

...
...

. . .
...

⟨wni+2 , w1⟩ ⟨wni+2 , w2⟩ · · · ⟨wni+2 , wni+2⟩



Now, consider ⟨wi, wj⟩ with i ̸= j,

⟨wi, wj⟩ =
ni+2∑
k=1

wk,iwk,j

E [⟨wi, wj⟩] = E

[
ni+2∑
k=1

wk,iwk,j

]

=

ni+2∑
k=1

E[wk,iwk,j]

=

ni+2∑
k=1

E[wk,i]E[wk,j] = 0 (by independence)

Var [⟨wi, wj⟩] = E
[
⟨wi, wj⟩2

]
− [E [⟨wi, wj⟩]]2

= E

(ni+2∑
k=1

wk,iwk,j

)2


= E

[
ni+2∑
k=1

w2
k,iw

2
k,j + 2

ni+2∑
k=1

∑
l>k

wk,iwk,jwl,iwl,j

]

=

ni+2∑
k=1

E[w2
k,iw

2
k,j] + 2

ni+2∑
k=1

∑
l>k

E[wk,i]E[wk,j]E[wl,i]E[wl,j]

=

ni+2∑
k=1

E[w2
k,i]E[w2

k,j]

= (ni+2)σ
4
i+1

Similarly, consider ⟨wi, wi⟩:

16

⟨wi, wi⟩ =
ni+2∑
k=1

w2
k,i

E [⟨wi, wi⟩] = E

[
ni+2∑
k=1

w2
k,i

]
= ni+2E

[
w2

k,i

]
= ni+2σ

2
ni+1

Var [⟨wi, wi⟩] = E
[
(⟨wi, wi⟩)2

]
− E [⟨wi, wi⟩]2

= E

(ni+2∑
k=1

w2
k,i

)2
− n2

i+2σ
4
ni+1

= E

(ni+2∑
k=1

w2
k,i

)2
− n2

i+2σ
4
ni+1

= E

[
ni+2∑
k=1

w4
k,i + 2

ni+2∑
k=1

ni+2∑
l=k+1

w2
k,iw

2
l,i

]
− n2

i+2σ
4
ni+1

=

ni+2∑
k=1

E
[
w4

k,i

]
+ 2

ni+2∑
k=1

ni+2∑
l=k+1

E
[
w2

k,i

]
E
[
w2

l,i

]
− n2

i+2σ
4
ni+1

= ni+2(3σ
4
ni+1

) + (n2
i+2 − ni+2)σ

4
ni+1
− n2

i+2σ
4
ni+1

= 4ni+2σ
4
ni+1

Hence
E
[
W T

i+1Wi+1

]
=
(
ni+2σ

2
i+1

)
I

Var
[
W T

i+1Wi+1

]
= 4 (ni+2)σ

4
i+1B

For the case for Wi, notice we can express WiW
T
i as (W T

i)T (W T
i). Hence we can use the proof

above, with W ′
i+1 = W T

i . In this case the matrix W ′
i+1 has shape (ni, ni+1), and each element of

the matrix has variance σ2
i . We have:

E
[
WiW

T
i

]
= niσ

2
i I

Var
[
WiW

T
i

]
= niσ

4
i B

By assumption, Wi,Wi+1 are independent. Hence Cov(Wi,Wi+1) = 0. We can use this property
together with linearity of expectation:

E
[
W T

i+1Wi+1 − W T
i Wi

]
=
(
ni+2σ

2
i+1 − niσ

2
i

)
I

Var
[
W T

i+1Wi+1 − W T
i Wi

]
=
(
ni+2σ

4
i+1 + niσ

4
i

)
B

This completes the proof.

In neural network training, proper weight initialization is crucial for ensuring stable gradients
during backpropagation, which helps to avoid issues such as vanishing and exploding gradients.
The goal of weight scaling is to maintain appropriate variance across layers, enabling efficient and
effective learning ([15]). The weights are typically initialized to be random and centered around 0
to break symmetry and ensure that different neurons learn different features.

Some of the most commonly used initialization methods are detailed below:

• LeCun Initialization ([26]): Weights are initialized using a normal distribution with a
mean of 0 and a variance of 1

ni
, where ni is the number of input units in the layer. Mathe-

matically, the weights w are drawn from N (0, 1
ni
).

17

• Glorot Initialization ([15]): Weights are initialized using a normal distribution with a
mean of 0 and a variance of 2

ni+ni+1
, where ni is the number of input units and ni+1 is the

number of output units. This method balances the variance between layers with different
widths. Mathematically, the weights w are drawn from N (0, 2

ni+ni+1
).

• He Initialization ([16]): Weights are initialized using a normal distribution with a mean
of 0 and a variance of 2

ni
, where ni is the number of input units in the layer. This method

is particularly suited for layers with ReLU activation functions. Mathematically, the weights
w are drawn from N (0, 2

ni
).

• Scaled Initialization ([33]): Weights are initialized using a normal distribution with a
mean of 0 and a variance of αi

ni
, where ni is the number of input units in the layer and αi is

a parameter specific to each layer. Mathematically, the weights w are drawn from N (0, αi

ni
).

These initialization methods help ensure that the network starts with weights that facilitate stable
and efficient learning, avoiding the common pitfalls of poorly initialized neural networks.

Using (3.1.1), we can calculate the respective Expectations and Variances of the Balanced Com-
putation under the different initialisations:

Initialization Var(wi+1
n,m) Var(wi

n,m) E[W T
i+1W i+1 −W iW

T
i] Var[W T

i+1W i+1 −W iW
T
i]

LeCun 1
ni+1

1
ni

(
ni+2

ni+1
− 1
)
I

(
ni+2

n2
i+1

+ 1
ni

)
B

Glorot 2
ni+1+ni+2

2
ni+1+ni

2
(

ni+2

ni+1+ni+2
− ni

ni+1+ni

)
I (ni+2

(
2

ni+1+ni+2

)2
+ ni

(
2

ni+ni+1

)2
)B

He 2
ni+1

2
ni

2
(

ni+2

ni+1
− 1
)
I 4

(
ni+2

n2
i+1

+ 1
ni

)
B

Scaled α2
i+1

ni+1

α2
i

ni

(
ni+2

ni+1
α2
i+1 − α2

i

)
I (ni+2

(
α2

i+1

ni+1

)2
+ ni

(
α2

i

ni

)2
)B

Table 3.1: Comparison of Variance and Expectation of Balanced Computation for Different Weight
Initializations

(Table 3.1) shows that for the above initialisations the Balanced Computation of the weight pair
will result in λ-Balanced weights for some λ. The table also details how network structure will
influence the value of λ for different initialisation techniques.

The figure below shows a numerical example of how the Balanced computation would like like
for initialising weights with LeCun, He, Scaled and Glorot initialisations using ni = 40, ni+1 =
200, ni+2 = 80. With these numbers of nodes in each layer one can appreciate how the Balanced
Computation on the weights is visually similar to a scaled identity matrix.

18

Figure 3.1: Figure 3.1: Balanced computation for different weight initializations. The figure
compares LeCun, He, Scaled, and Glorot initializations, showing how the balanced computation
on the weights visually resembles a scaled identity matrix.

State of the art models such as ([22], [29]) use more than 10,000 nodes in each hidden layer. This
implies that if we wished to perform some mathematical analysis on these models, assuming the
initial random weights are λ-Balanced would be a very close depiction to reality. In addition,
these models often have a different number of nodes per layer so understanding the effect of the
relationship between ni, ni+1 and ni+2 is crucial.

Specifically, we aim to understand how changes in the relative width of layers i, i + 1, i + 2 af-
fect the Balanced Computation: suppose ni+1 = kni for some k ∈ R+ and ni+2 = rni for some
r ∈ R+. Then we can express above table in terms of k, r and , ni only:

Initialization Var(wi+1
n,m) Var(wi

n,m) E[W T
i+1W i+1 −W iW

T
i] Var[W T

i+1W i+1 −W iW
T
i]

LeCun 1
kni

1
ni

(
r
k − 1

)
I 1

ni

(
r
k2 + 1

)
B

Glorot 2
ni(k+r)

2
ni(k+1) 2

(
r

k+r −
1

k+1

)
I 4

ni

(
r

(r+k)2 + 1
(k+1)2

)
B

He 2
kni

2
ni

2
(
r
k − 1

)
I 4

ni

(
r
k2 + 1

)
B

Scaled α2
i+1

kni

α2
i

ni

(
r
kα

2
i+1 − α2

i

)
I 1

ni

(
rα2

i+1

k2 + α2
i

)
B

Table 3.2: Comparison of Variance and Expectation for Different Initializations

From (Table 3.2) we can observe that as the number of nodes in each layer tends to infinity,while
the ratios between the number of nodes in each layer (r, k) are maintained, the variance of the

19

Balanced Computation tends to zero. Hence the Balanced Computation converges in probability
to λ-Balanced weights.

Further, (Table 3.2) shows that we a larger value of r will lead to a higher value of λ in ev-
ery one of the initialisations displayed. Moreover, a larger k has the opposite effect. In addition,
we can observe that in some initialisations there are limits as to what value λ can take (such as in
LeCun λ ≥ 0).

Some special cases of r and k are interesting to consider to gain an intuition of how changing
these values influences the Balancedness of the Weights. In the table below, we consider the cases:

1. r = k: the three layers of the network have the same number of nodes.

2. r → 0, k fixed: ni >> ni+2, ni+1, the first of the three layers is much larger than the other
two layers .

3. r →∞, k fixed: ni+2 >> ni, ni+1, the last of the three layers is much larger than the other
two layers (k is fixed).

4. k → 0, r fixed: the middle layer is exceedingly small, ni+1 << ni, ni+2

5. k →∞, r fixed: the middle layer is much bigger than the other two layers, ni+1 >> ni, ni+2

6. r =
α2

i

α2
i+1

: the inner and outer layers have a ratio proportional to the scale factors of each
weight layer. This case is important for Scaled initialisation.

Initialization r = k r → 0 r →∞ k →∞ k → 0 r =
α2

i

α2
i+1

k

LeCun 0 −I r
k I −I r

k I -

Glorot 0 2I 2I 0 − 2
k+1 I -

He 0 −2I 2
(
r
k

)
I −2I 2

(
r
k

)
I -

Scaled (α2
i+1 − α2

i)I −α2
i I r

kα
2
i+1I −α2

i I r
kα

2
i+1I 0

Table 3.3: Comparison of Variance and Expectation under Different Conditions

From the table above one can appreciate the impact network structure can have on the Balanced
Computation of the weights of each layer. One can also see that there are many cases when the
Balanced computation does not equal 0, both in the limit of r, k and not in the limit.

We have showed that although the Balanced property is only preserved in Linear Networks, it
occurs at initialisation for large networks which utilise some of the most common weight initiali-
sation techniques.

These findings provide motivation to better understand the relation between the Balanced Compu-
tation of a Network, its structure and the regime it will learn in. If we are able to understand the
relation between λ-Balanced weights and Rich and Lazy Learning in Linear Networks, one might
be able to approximate these results to the nonlinear case.

A possible future application might be the ability to heavily influence a network’s learning regime
by altering the relative width of its layers, its activation functions or weight initialisation tech-
niques used for each layer.

In order to better understand the effects of λ on the learning dynamics and learning regime of
the network, we first study aligned λ-Balanced networks.

20

3.2 Exact Solutions for Aligned λ-Balanced Network

In this section we consider a Linear Network with λ-Balanced initial weights, which are aligned
to the task. Previous work ([38]) has shown that weights will remain aligned during training, and
each singular value of the task will be learned independently.

Thus the aligned case is a good opportunity to gain intuition on the effect of λ on learning.
There has been previous work ([40]) which has derived equivalent dynamics as the ones shown in
this report. However these results where arrived to independently, and they are used in a novel
way to better understand the impact of λ on learning dynamics.

Theorem 3.2.1 [Dynamics of output in Aligned λ-Balanced Linear Network] Consider
a three layer linear network with starting weights which are aligned to the dataset and λ-Balanced
with non-zero λ. We perform gradient descent with learning rate 1

τ Let aα(t) be the dynamics of
the α singular value of the matrix W2(t)W1(t), where the singular values are sorted in descending
order. Then:

aα(t) =
λ

K(C0,αeK
t
τ −1)−λ(C0,αeK

t
τ +1)

2s(C0,αeK
t
τ +1)

1− (
K(C0,αeK

t
τ −1)−λ(C0,αeK

t
τ +1)

2s(C0,αeK
t
τ +1)

)2
(3.2)

With

K =
√
λ2 + 4s2α

C0,α =
K + λ+ 4aα(0)s sgn(λ)√

λ2+4aα(0)2+λ

K − λ− 4aα(0)s sgn(λ)√
λ2+4aα(0)2+λ

Proof 3 (Proof of 3.2.1) We start with the differential equation describing the evolution of the
singular values of each weight from ([36]).

Our starting point stems from ([36]), where the authors derive exact dynamics for aligned 0-
Balanced weights.

τ
d

dt
cα = dα(sα − cαdα),

τ
d

dt
dα = cα(sα − cαdα)

τ
d

dt
aα = (c2α + d2α)(s− aα)

In ([36]) the authors assume 0-Balanced weights, that is d2α− c2α = 0. Here we assume λ-Balanced
weights, that is d2α − c2α = λ.

τ
d

dt
cα = dα(sα − cαdα),

τ
d

dt
dα = cα(sα − cαdα),

τ
d

dt
aα = (c2α + d2α)(s− aα),

21

d2α − c2α = λ,

(d2α + c2α) = (d2α − c2α) + 4d2αc
2
α,

(d2α + c2α)
2 = (d2α − c2α)

2 + 4d2αc
2
α,

= (d2α − c2α)
2 + 4a2α,

= λ2 + 4a2α.

We can substitute this result into (3.4) to obtain:

τ
daα(t)

dt
=
√

λ2 + 4aα(t)2 (s− aα(t)) (3.3)

d2α − c2α = λ (3.4)

(d2α + c2α) = (d2α − c2α) + 4d2αc
2
α (3.5)

(d2α + c2α)
2 = (d2α − c2α)

2 + 4d2αc
2
α (3.6)

= (d2α − c2α)
2 + 4a2α (3.7)

= λ2 + 4a2α (3.8)

We can substitute this result into (3.4) to obtain:

τ
daα(t)

dt
=
√

λ2 + 4aα(t)2 (s− aα(t)) (3.9)

Assume λ ̸= 0. Then we can make the substitution

aα(t) :=
λ

2
sinh(θ) (3.10)

τ
d

dt

[
λ

2
sinh(θ)

]
=

√
λ2 + 4

(
λ

2
sinh(θ)

)2(
s− λ

2
sinh(θ)

)

τ
λ

2
cosh(θ)

dθ

dt
= |λ| cosh(θ)

(
s− λ

2
sinh(θ)

)

τ
dθ

dt
= sgn(λ) (2s− λ sinh(θ)) (3.11)

∫ θt

θ0

dθ

2s− λ sinh(θ)
=

∫ t

0

sgn(λ) dt′

τ

2 tanh−1
(

1+2s tanh(θ
2)√

λ2+4s2

)
√
λ2 + 4s2

θt

θ0

=
sgn(λ) t

τ

With θt = θ(t), θ0 = θ(0). Using the fact that

22

tanh−1(x) =
1

2
ln

(
1 + x

1− x

)
(3.12)

1√
λ2 + 4s2

[
ln

(√
λ2 + 4s2 + λ+ 2s tanh

(
θ
2

)
√
λ2 + 4s2 − λ− 2s tanh

(
θ
2

))]θt
θ0

=
sgn(λ)t

τ

1√
λ2 + 4s2

[
ln

(√
λ2 + 4s2 + λ+ 2s tanh

(
θt
2

)
√
λ2 + 4s2 − λ− 2s tanh

(
θt
2

))− ln

(√
λ2 + 4s2 + λ+ 2s tanh

(
θ0
2

)
√
λ2 + 4s2 − λ− 2s tanh

(
θ0
2

))] =
sgn(λ)t

τ

Let

K =
√
λ2 + 4s2, C =

K + λ+ 2s tanh
(
θ0
2

)
K − λ− 2s tanh

(
θ0
2

) (3.13)

1

K

[
ln

(
K + λ+ 2s tanh

(
θt
2

)
K − λ− 2s tanh

(
θt
2

))− ln(C)

]
=

sgn(λ)t
τ

K + λ+ 2s tanh
(
θt
2

)
K − λ− 2s tanh

(
θt
2

) = Ce
sgn(λ)Kt

τ (3.14)

K + λ+ 2s tanh

(
θt
2

)
=

(
K − λ− 2s tanh

(
θt
2

))
Ce

sgn(λ)Kt
τ

2s tanh

(
θt
2

)(
1 + Ce

sgn(λ)Kt
τ

)
= K

(
Ce

sgn(λ)Kt
τ − 1

)
− λ

(
Ce

sgn(λ)Kt
τ + 1

)

tanh

(
θt
2

)
=

K
(
Ce

sgn(λ)Kt
τ − 1

)
− λ

(
Ce

sgn(λ)Kt
τ + 1

)
2s
(
1 + Ce

sgn(λ)Kt
τ

)

θ = 2 tanh−1

K
(
Ce

sgn(λ)Kt
τ − 1

)
− λ

(
Ce

sgn(λ)Kt
τ + 1

)
2s
(
1 + Ce

sgn(λ)Kt
τ

)
 (3.15)

Since a = λ
2 sinh(θ), we can use the identity sinh

(
2 tanh−1(x)

)
= 2x

1−x2 .

at =
λ

2
sinh

2 tanh−1

K
(
Ce

sgn(λ)Kt
τ − 1

)
− λ

(
Ce

sgn(λ)Kt
τ + 1

)
2s
(
1 + Ce

sgn(λ)Kt
τ

)
 (3.16)

at = λ



K

(
Ce

sgn(λ)Kt
τ −1

)
−λ

(
Ce

sgn(λ)Kt
τ +1

)
2s

(
1+Ce

sgn(λ)Kt
τ

)


1−

K

(
Ce

sgn(λ)Kt
τ −1

)
−λ

(
Ce

sgn(λ)Kt
τ +1

)
2s

(
1+Ce

sgn(λ)Kt
τ

)
2


(3.17)

Further, since

θ = sinh−1

(
2a

λ

)

23

Using the identity

tanh

(
1

2
sinh−1(x)

)
=

x√
1 + x2 + 1

(3.18)

we have

tanh

(
θ

2

)
=

2a
λ√

1 +
(
2a
λ

)2
+ 1

Simplifying,

tanh

(
θ

2

)
=

2a sgn(λ)√
λ2 + 4a2 + λ

So,

C =
K + λ+ 4a0s sgn(λ)√

λ2+4a2
0+λ

K − λ− 4a0s sgn(λ)√
λ2+4a2

0+λ

(3.19)

The derived equation above describes the evolution of the singular values of the weights W2(t)W1(t).
By ([36]) the weights remain alighed through training. Hence we have a complete description of
the evolution of the output of the network through training. The equation can be applied to equal
input output dimensions as well as unequal input output dimensions by performing the compact
Singular Value Decomposition of the data.

Below is an example of the empirical and analytical dynamics plotted against each other for
λ = 0.5. From (Figure 3.2) we can observe that for a small value of λ each singular value
can have very different dynamics. However, the dynamics of each singular value are completely
captured by our analytical solution.

Figure 3.2: Empirical and analytical dynamics plotted against each other for λ = 0.5. The figure
demonstrates how the dynamics of each singular value are captured by the analytical solution

From (Equation 3.2) one can observe that aα(t) evolves with the curve eKt, with K =
√
λ2 + 4s2α.

Consequently, as the magnitude of λ increases, the rate of learning will increase as well. For large
values of |λ| it can be shown that K ≈ |λ|. Hence, for large values of |λ| aα(t) evolves with the
curve e|λ|t

Additionally, the equation for λ-Balanced weights can be complex and difficult to interpret. To

24

develop an intuitive understanding of the impact of λ on learning, we will examine two specific
cases: λ = 0 and the limit as |λ| → ∞.

Theorem 3.2.2 [Rate of Learning of Aligned λ Balanced Weights for extreme values
of λ] For λ = 0, the singular values are learned according to sigmoidal dynamics. However, as
|λ| → ∞ the singular values are learned according to exponential dynamics.

Proof 4 (Proof of Theorem 3.2.2) For λ = 0:

τ
d

dt
aα = 2aα(t) (sα − aα(t))

From [38], this has the solution

aα(t) =
sαe

2sαt
τ

e
2sαt

τ − 1 + sα
aα(0)

.

which clearly depicts a sigmoidal trajectory.
On the other hand, as |λ| → ∞:

τ
d

dt
aα =

√
λ2 + 4aα(t)2 (sα − aα(t)) ,

τ
d

dt
aα ≈ |λ| (sα − aα(t)) ,

aα(t) = sα + (aα(0)− sα)e
−|λ|t/τ ,

which clearly follows an exponential trajectory.

From ([38]), in a shallow network the singular values of the task are learned according to the
equation:

bα(t) = sα + (bα(0)− sα)e
− t

τ (3.20)

If we perform the substitution u = |λ|t one can observe that the dynamics of aα(u) are the same
as the ones of bα(t): aα(t) is a horizontal compression by |λ| of the dynamics of bα(t). The more
λ increases in magnitude, the more a deep network behaves like a shallow network in terms of
learning dynamics. We have shown that modifying initial weights can have a similar effect on
network learning dynamics as removing the network’s hidden layer. One might ask the question
if this similarity also holds in the case of internal representations and learning regimes. We will
answer this question later on in the text.

The expression derived above offers valuable insights into the unaligned case and the impact of λ
on learning dynamics. However, this solution leaves several important questions unanswered: How
does the value of λ influence the alignment process of the weights in a linear network? How do
internal representations evolve with varying λ in a linear network? Can we identify task-agnostic
weight initializations that affect a network’s learning regime? Addressing these questions is crucial
for a comprehensive understanding of the role of λ in learning dynamics.

To answer these questions we must derive an analytical solution for the outputs and represen-
tations of an unaligned λ-Balanced network.

3.3 Exact Solutions for Unaligned λ-Balanced Network of
Equal Dimensions

We have seen that the aligned setting can provide a number of insights into the impact of weight
initialisation on Neural Networks.

Previous work has shown that small random weights undergo a "Silent Alignment Process" ([2])
in which during the first steps of training, the weights become fully aligned to the task. Hence

25

the dynamics outlined in the previous section are a good approximation for small random weights.
However, we desire an expression that allows us to study how the weights of a network become
aligned, as well as a solution that also works for large weights.

To gain further insight into the learning paradigms of these networks, it is necessary to derive
a solution for the unaligned case. We aim for a solution that is numerically stable so that it can
closely resemble empirical dynamics even for large values of t and λ. The solution must also be in-
terpretable so that we can easily understand how the network learns in terms of the Singular Value
Decomposition of the data, therefore better understanding the alignment process of the weights.

The solution provided below builds on previous work from ([5]) which derived exact solutions
for unequal input output zero-Balanced network. The first step of the proof was derived indepen-
dently, but ([40]) shows an equivalent result with different notation.

Theorem 3.3.1 [QQt(t) dynamics for λ-Balanced weights for ni = no]
Let

Q(t) =

[
W T

1 (t)
W 2(t)

]
With W 1(t),W 2(t) λ-Balanced weights. Then:

1. The matrix

F =

[
−λ

2 I Σ̃
yxT

Σ̃
yx λ

2 I

]

Satisfies Fukumizu’s condition and hence the Fukumizu Matrix Riccatti equation for QQT (t)
has a unique solution given in (2.2.4).

2. We can diagonalize F as

F =
1

2

(
Ṽ (A−XA) Ṽ (XA+A)

Ũ(A−XA) −Ũ(A+XA)

)√S̃
2
+ λ2

4 I 0

0 −
√

S̃
2
+ λ2

4 I

(Ṽ (A−XA) Ṽ (XA+A)

Ũ(A−XA) −Ũ(A+XA)

)T

, where Ũ S̃Ṽ T = Σ̃yx and

X =

√
λ2I+ 4S̃

2 − 2S̃

λ

A =
1√

1 +X2

are diagonal matrices.

3. We can rewrite the Fukumizu Matrix Riccatti equation for QQT (t) as:

QQT (t) = Z[4e−
√

S̃
2
+λ2

4 I t
τ B−1

(
BT
)−1

e−
√

S̃
2
+λ2

4 I t
τ +

(
I− e−2

√
S̃

2
+λ2

4 I t
τ

)√
S̃

2
+

λ2

4
I
−1

− e−
√

S̃
2
+λ2

4 I t
τ B−1C

(
e−2

√
S̃

2
+λ2

4
t
τ − I

)√
S̃

2
+

λ2

4
I
−1

CT
(
BT
)−1

e−
√

S̃
2
+λ2

4 I t
τ]ZT

with

Z =

Ṽ
(
(A−XA)− (A+XA)e−

√
S̃

2
+λ2

4 I t
τ CT (BT)−1e−

√
S̃

2
+λ2

4 I t
τ

)
Ũ

(
(A+XA) + (A−XA)e−

√
S̃

2
+λ2

4 I t
τ CT (BT)−1e−

√
S̃

2
+λ2

4 I t
τ

)


26

B = S2U
T Ũ(A+XA) + S1V

T Ṽ (A−XA)

C = S2U
T Ũ(A−XA)− S1V

T Ṽ (A+XA)

W 2(0) = US2R
T , W 1(0) = RS1V

T , Σyx = Ũ S̃Ṽ
T

Note that QQT (t) is calculated using Cholesky decomposition.

Proof 5 (Proof of 3.3.1) 1. Proof of First Statement:

We introduce the variables

Q =

[
WT

1

W2

]
and QQT =

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]
. (3.21)

We compute the time derivative

τ
d

dt
(QQT) = τ

[
dWT

1

dt W1 +WT
1

dW1

dt
dWT

1

dt W2 +WT
1

dW2

dt
dW2

dt W1 +W2
dW1

dt
dWT

2

dt W2 +WT
2

dW2

dt

]
. (3.22)

Using equations 18 and 19, we compute the four quadrants separately giving

τ

(
dWT

1

dt
W1 +WT

1

dW1

dt

)
= (3.23)

= (Σyx −W2W1)
TW2W1 +WT

1 W
T
2 (Σ

yx −W2W1) (3.24)

= (Σyx)TW2W1 +WT
1 W

T
2 Σ

yx −WT
1 W

T
2 W2W1 − (W2W1)

TW2W1 (3.25)

= (Σyx)TW2W1 +WT
1 W

T
2 Σ

yx −WT
1 W

T
2 W2W1 −WT

1 W1W
T
1 W1 − λWT

1 W1, (3.26)

τ

(
dWT

1

dt
WT

2 +WT
1

dWT
2

dt

)
= (3.27)

= (Σyx −W2W1)
TW2W

T
2 +WT

1 W1(Σ
yx −W2W1)

T (3.28)

= (Σyx)TW2W
T
2 +WT

1 W1(Σ
yx)T −WT

1 W1W
T
1 W

T
2 −WT

1 W
T
2 W2W

T
2 , (3.29)

τ

(
dW2

dt
W1 +W2

dW1

dt

)
= (3.30)

= (Σyx −W2W1)W
T
1 W1 +W2W

T
2 (Σ

yx −W2W1) (3.31)

= ΣyxWT
1 W1 +W2W

T
2 Σ

yx −W2W
T
2 W2W1 −W2W1W

T
1 W1, (3.32)

τ

(
dW2

dt
WT

2 +W2
dWT

2

dt

)
= (3.33)

(Σ̃yx −W2W1)W
T
1 W

T
2 +W2W1(Σ̃

yx −W2W1)
T (3.34)

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W1(W2W1)

T (3.35)

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W1W

T
1 W

T
2 (3.36)

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W

T
2 W2W

T
2 + λW2W

T
2 . (3.37)

Defining

F =

[
−λ

2 I (Σ̃yx)T

Σ̃yx λ
2 I

]
, (3.38)

27

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati equation

τ
d

dt
(QQT) = FQQT +QQTF− (QQT)2. (3.39)

We write τ d
dt (QQT) for completeness

τ
d

dt
(QQT) =

[
−λ

2 (Σ̃yx)T

Σ̃yx λ
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]
+

[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]T [−λ
2 (Σ̃yx)T

Σ̃yx λ
2

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]2
(3.40)

=

[
−λ

2 (Σ̃yx)T

Σ̃yx λ
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]
+

[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]T [−λ
2 (Σ̃yx)T

Σ̃yx λ
2

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] (3.41)

=

[
−λ

2W
T
1 W1 + (Σ̃yx)TW2W1 −λ

2W
T
1 W2 + (Σ̃yx)TW2W

T
2

Σ̃yxWT
1 W1 +

λ
2W2W1 Σ̃yxWT

1 W
T
2 + λ

2W2W
T
2

]
+

[
−λ

2W
T
1 W1 +WT

1 W1(Σ̃
yx)T λ

2W
T
1 W2 +WT

1 W2(Σ̃
yx)T

−λ
2W

T
2 W1 +W2W1(Σ̃

yx)T λ
2W2W

T
2 +W2W

T
2 (Σ̃

yx)T

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] (3.42)

=

[
−λ

2W
T
1 W1 + (Σ̃yx)TW2W1 −λ

2W
T
1 W2 + (Σ̃yx)TW2W

T
2

Σ̃yxWT
1 W1 +

λ
2W2W1 Σ̃yxWT

1 W
T
2 + λ

2W2W
T
2

]
+

[
−λ

2W
T
1 W1 +WT

1 W1(Σ̃
yx)T λ

2W
T
1 W2 +WT

1 W2(Σ̃
yx)T

−λ
2W

T
2 W1 +W2W1(Σ̃

yx)T λ
2W2W

T
2 +W2W

T
2 (Σ̃

yx)T

]
−
[
WT

1 W1W
T
1 W1 +WT

1 W2W
T
2 W1 WT

1 W1W
T
1 W2 +WT

1 W2W
T
2 W2

W2W1W
T
1 W1 +W2W

T
2 W2W1 W2W1W

T
1 W2 +W2W

T
2 W2W

T
2

] (45)

The four quadrants of 3.39 are equivalent to equations 3.26, 3.29, 3.32, and 3.37 respectively.

Assuming that Q(0) is full rank, the continuous differential equation (41) has a unique solu-
tion for all t ≥ 0

QQT (t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ − F−1

)
Q(0)

]−1

Q(0)T eF
t
τ . (3.43)

2. Proof of second statement:

F =

(
−λ

2 I (Σ̃
yx
)T

Σ̃
yx λ

2 I

)
(3.44)

F =
1

2

(
Ṽ Ṽ

Ũ −Ũ

)(
S̃ λ

2 I
λ
2 I −S̃

)(
Ṽ Ṽ

Ũ −Ũ

)T

(3.45)

Since S̃, λ
2 I are diagonal matrices, we can diagonalize the block diagonal matrix(

S̃ λ
2 I

λ
2 I −S̃

)
(3.46)

as if it were a 2× 2 matrix.

28

First, we diagonalize the 2× 2 matrix:

(
s̃ λ

2
λ
2 −s̃

)
=

(
a xa
−xa a

)√s̃2 + λ2

4 0

0 −
√
s̃2 + λ2

4

(a xa
−xa a

)T

(3.47)

with x =
√
λ2+4s̃2−2s̃

λ , a = 1√
1+x2

.

We then generalize this result to 2× 2 block diagonal matrices:

(
S̃ λ

2 I
λ
2 I −S̃

)
=

(
A XA
−XA A

)√S̃
2
+ λ2

4 I 0

0 −
√
S̃

2
+ λ2

4 I

(A XA
−XA A

)T

(3.48)

With X̃ a diagonal matrix:

X̃ =

√
λ2

4 I+ S̃
2 − S̃

λ
, A =

1√
1 +X2

(3.49)

Hence

F =
1

2

(
Ṽ Ṽ

Ũ −Ũ

)(
A XA
−XA A

)√S̃
2
+ λ2

4 I 0

0 −
√

S̃
2
+ λ2

4 I

(A XA
−XA A

)(
Ṽ Ṽ

Ũ −Ũ

)T

(3.50)

F = OΛOT (3.51)

O =
1√
2

(
Ṽ (A−XA) Ṽ (A+XA)

Ũ(A+XA) −Ũ(A−XA)

)
(3.52)

Λ =

√S̃
2
+ λ2

4 I 0

0 −
√
S̃

2
+ λ2

4 I

 (3.53)

This completes the proof.

3. Proof of third statement:

OTQ(0) =
1√
2

(
Ṽ (A−XA) Ṽ (A+XA)

Ũ(A+XA) −Ũ(A−XA)

)T (
W T

1

W 2

)
(3.54)

=
1√
2

(
Ṽ (A−XA) Ṽ (A+XA)

Ũ(A+XA) −Ũ(A−XA)

)T (
V S1R

T

US2R
T

)
(3.55)

=
1√
2

(
(A−XA)Ṽ

T
V S1R

T + (A+XA)Ũ
T
US2R

T

(A+XA)Ṽ
T
V S1R

T − (A−XA)Ũ
T
US2R

T

)
(3.56)

=
1√
2

(
(A−XA)Ṽ

T
V S1 + (A+XA)Ũ

T
US2

(A+XA)Ṽ
T
V S1 − (A−XA)Ũ

T
US2

)
RT (3.57)

OeΛt/τ =
1√
2

(
Ṽ (A−XA) Ṽ (A+XA)

Ũ(A+XA) −Ũ(A−XA)

)e

√
S̃

2
+λ2

4 I t
τ 0

0 e−
√

S̃
2
+λ2

4 I t
τ

 (3.58)

29

=
1√
2

Ṽ (A−XA)e

√
S̃

2
+λ2

4 I t
τ Ṽ (A+XA)e−

√
S̃

2
+λ2

4 I t
τ

Ũ(A+XA)e

√
S̃

2
+λ2

4 I t
τ −Ũ(A−XA)e−

√
S̃

2
+λ2

4 I t
τ

 (3.59)

Let
B = S2Ũ

T
Ũ(A+XA) + S1V

T Ṽ (A−XA) (3.60)

C = S2Ũ
T
Ũ(A−XA)− S1V

T Ṽ (A+XA) (3.61)

OTQ(0) =
1√
2

(
BT

−CT

)
RT (3.62)

=
1

2

Ṽ (A−XA)e

√
S̃

2
+λ2

4 I t
τ Ṽ (A+XA)e−

√
S̃

2
+λ2

4 I t
τ

Ũ(A+XA)e

√
S̃

2
+λ2

4 I t
τ −Ũ(A−XA)e−

√
S̃

2
+λ2

4 I t
τ

(BT

−CT

)
RT (3.63)

=
1

2

Ṽ (A−XA)e

√
S̃

2
+λ2

4 I t
τ BT − Ṽ (A+XA)e−

√
S̃

2
+λ2

4 I t
τ CT

Ũ(A+XA)e

√
S̃

2
+λ2

4 I t
τ BT + Ũ(A−XA)e−

√
S̃

2
+λ2

4 I t
τ CT

RT (3.64)

=
1

2

Ṽ

[
(A−XA)− (A+XA)e−

√
S̃

2
+λ2

4 I t
τ CTB−T e−

√
S̃

2
+λ2

4 I t
τ

]
Ũ

[
(A+XA) + (A−XA)e−

√
S̃

2
+λ2

4 I t
τ CTB−T e−

√
S̃

2
+λ2

4 I t
τ

]
BT e

√
S̃

2
+λ2

4 I t
τ RT

(3.65)

Now, [
I +

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ − F−1

)
Q(0)

]−1

(3.66)

=

[
I +

1

2
Q(0)T

(
OeΛ

t
τ Λ−1OT −OΛ−1OT

)
Q(0)

]−1

(3.67)

=

[
I +

1

2
Q(0)TO

(
eΛ

t
τ Λ−1 −Λ−1

)
OTQ(0)

]−1(3.68)

[
I +

1

2
Q(0)TO

(
eΛ

t
τ Λ−1 − I

)
Λ−1OTQ(0)

]−1(3.69)

=

[
I +

1

2
Q(0)TOeΛ

t
τ Λ−1OTQ(0)− 1

2
Q(0)TOΛ−1OTQ(0)

]−1(3.70)

=

I +
1

4
[B −C]

e

√
S̃

2
+λ2

4
t
τ 0

0 e−
√

S̃
2
+λ2

4
t
τ

(BT

−CT

)−1

(3.71)

=

I +
1

4
[B −C]

e

√
S̃

2
+λ2

4
t
τ 0

0 e−
√

S̃
2
+λ2

4
t
τ

(BT

−CT

)−1

(3.72)

=

I +
1

4
[B −C]

e

√
S̃

2
+λ2

4
t
τ 0

0 e−
√

S̃
2
+λ2

4
t
τ

(BT

−CT

)−1

(3.73)

30

=

I +
1

4
[B −C]

e

√
S̃

2
+λ2

4
t
τ 0

0 e−
√

S̃
2
+λ2

4
t
τ

(BT

−CT

)−1

(3.74)

=

[
I +

1

4

(
Be

√
S̃

2
+λ2

4
t
τ (

√
S̃

2
+

λ2

4
)−1BT −Ce−

√
S̃

2
+λ2

4
t
τ (

√
S̃

2
+

λ2

4
)−1CT

)

−

(
B(

√
S̃

2
+

λ2

4
)−1BT +C(

√
S̃

2
+

λ2

4
)−1CT

)]−1 (3.75)

=

[
I +

1

4

(
B

(
e

√
S̃

2
+λ2

4
t
τ − I

)
(

√
S̃

2
+

λ2

4
)−1BT −C

(
e−

√
S̃

2
+λ2

4
t
τ − I

)
(

√
S̃

2
+

λ2

4
)−1CT

)]−1

(3.76)

So, Final form:

[
Ṽ (A−XA)− (XA+A)e

√
S̃

2
+λ2

4
t
τ CBT e−

√
S̃

2
+λ2

4
t
τ

Ũ(XA+A)− (A−XA)e

√
S̃

2
+λ2

4
t
τ CBT e−

√
S̃

2
+λ2

4
t
τ

]
[
4e

√
S̃

2
+λ2

4
t
τ BTA(0)Be−

√
S̃

2
+λ2

4
t
τ

+

(
I − e−

√
S̃

2
+λ2

4
t
τ

)(√
S̃

2
+

λ2

4

)−1

CBT

(
e−

√
S̃

2
+λ2

4
t
τ − I

)(√
S̃

2
+

λ2

4

)−1
−1

[
Ṽ (A−XA)− (XA+A)e−

√
S̃

2
+λ2

4
t
τ CBT e−

√
S̃

2
+λ2

4
t
τ

Ũ(XA+A)− (A−XA)e−
√

S̃
2
+λ2

4
t
τ CBT e−

√
S̃

2
+λ2

4
t
τ

]T
(3.77)

This completes the proof.

We have hence derived an expression for the dynamics of the QQT (t) matrix which is numerically
stable and in terms of the Singular Value Decomposition of the initial weights and the data. This
expression is a generalisation of ([38])’s expression for an aligned zero-Balanced network, ([5])’s
expression for an unaligned zero-Balanced network and the previous expression for an aligned λ-
Balanced network.

It is important to notice that as λ → 0 A → I and XA → 0, and S1 = S2 =
√
S, so we are

left with the exact expression given in ([5]) paper.

This expression is very powerful because it gives access to exact dynamics of the Loss, Network
Output, Internal Representations and Neural Tangent Kernel of the network, among other quan-
tities. An example of these exact dynamics is shown below:

31

Figure 3.3: Comparison of analytical and empirical dynamics for varying values of λ. The figure
shows that the analytical solution matches empirical results for both large positive and negative
values of λ, as well as values close to 0.

(Figure 3.3) shows that the analytical solution matches empirical results for both large negative
and positive values of λ as well as λ close to 0. Note that at λ = 0 the expression is not defined.
However in the limit as λ → 0 our expression matches the one from ([5]). It is important to
note that for a large negative λ the input representations (W 1(t)

TW 1(t)) remain almost constant.
In addition, the output representations (W 2(t)W 2(t)

T) are much smaller in magnitude than the
corresponding output representations for λ ≈ 0. Similarly, for large positive λ the output repre-
sentations remain almost constant and the input representations are smaller in magnitude than
the corresponding input representations for λ ≈ 0. In addition, the NTK remains almost constant
for |λ| large. In later chapters we will develop a theory to explain these results.

All the derivations for exact dynamics in this report make the gradient flow assumption: the
network’s learning rate is infinitesimally small. As mentioned in the background, the gradient flow
assumption is extremely useful for understanding network dynamics. However, as the learning rate
of our model increases, we will expect the model to behave less closely to our analytical solution.
We are interested in how the accuracy of our expression changes as the learning rate increases. We
are also interested in how the accuracy of the analytical solution changes with network size.

To answer this question an experiment was designed with the following setup: networks of sizes
5, 10, 15 and 25, a constant λ value of 3 and learning rates logarithmically spaced from 10−4 to 10−2

are initialised. Each network is trained for 200 steps, and at each step, the difference between the
relative deviation of the analytical loss from the empirical loss is calculated. These deviations are
then averaged to obtain an Average Deviation value for this trial. For each (Network Size, Learn-
ing Rate) combination the same trial is done 40 times, obtaining random λ-Balanced weights and
training data each time. The Average Deviations of each trial are then Averaged again, grouped
by Network Size.

Below (Figure 3.4) is a graph with the results of the experiment. We notice that the aver-
age deviation of the network increases with learning rate but remains below 0.05 for learning rates
below 0.01.

As the learning rate increases the average deviation does so as well. This corresponds to our
intuition of the analytical solution being more and more precise as the empirical setup is closer
to the gradient flow assumption. In addition, the average deviation is larger for larger networks.
This is due to the fact that the error of the (lack of) gradient flow is amplified in large networks,
as there are many more computations being performed.

32

Figure 3.4: Graph showing the accuracy of the analytical solution for varying learning rates with
λ fixed. The average deviation increases with the learning rate, indicating the precision of the
analytical solution decreases as the empirical setup deviates from the gradient flow assumption.

From (3.3.1), note that the analytical solution makes use of e−K t
τ , with K =

√
S̃2 + λ2

4 . As λ

increases in magnitude, K is closer and closer to |λ|/2. Hence the exponential resembles the shape
e−(

|λ|
τ)t = e−

t
τ′ with τ ′ = τ

λ . Define η′ 1
τ ′ to be the "Real Learning Rate" of the network. We can

see that increasing the magnitude of λ increases the Real Learning Rate of the network.

Hence we would expect that for a fixed learning rate, increasing λ will increase the Real Learning
Rate and hence make our empirical network farther away from the gradient flow assumption, hence
the analytical and empirical dynamics will yield different results. A similar experiment was run to
confirm this property, this time varying Network Size and λ while keeping a fixed learning rate.

Figure 3.5: Graph showing the accuracy of the analytical solution for varying λ values with the
learning rate fixed. The figure highlights how increasing λ affects the empirical network’s deviation
from the gradient flow assumption.

Following this idea, we can see that the quantity that truly controls the gradient flow assumption
is the Real Learning Rate η′ = λ

τ . According to this theory, if the Real Learning Rate is kept

33

constant, the analytical and empirical dynamics should not diverge for different combinations of λ
and τ . A similar experiment as previously outlined was performed to confirm this hypothesis:

Figure 3.6: Analytical and empirical dynamics for varying λ values with a constant ratio of λ
to learning rate. The figure demonstrates that keeping the real learning rate constant results in
similar dynamics across different λ and τ combinations.

Various observations can be made from (Figure 3.6): Firstly, as we keep the Real Learning Rate
constant while varying λ and τ , the average deviation remains almost constant across different val-
ues. For larger networks, the error slightly decreases as λ increases. Additionally, the variability of
the average deviation across trials is lower for networks of higher dimensions, although the average
deviation itself is higher. This aligns with the intuition about the variance of large sample averages:
larger networks imply more computations (samples), so the average error will have a lower variance.

Below is a summary o the key findings and limitations of the work shown in this section.

1. We have reformulated a solution to Fukumizu’s equation in the λ-Balanced equal input output
case in terms of singular values of the data and initial weights.

2. The solution is extremely accurate for small learning rates relative to λ.

3. With this solution we can obtain dynamics of output, internal representations and NTK
throughout training.

4. By taking the limit t → ∞, one can derive the output at convergence of the network very
intuitively due to the vanishing exponentials, as well as the representations and NTK at
convergence and how this depends on λ.

5. The equation shows how singular values and singular vectors are learned, which can be used
for further study in the alignment process of linear neural networks.

6. However, this equation only works for equal input output dimensions. In order to gain a better
understanding of how the relationship between network structure and λ affects dynamics we
must derive an equation for unequal input output dimensions.

3.4 Progress in Exact Solutions for Unaligned λ-Balanced
Network of Unequal Dimensions

In this section, we explore the advancements in deriving exact solutions for unaligned λ-Balanced
networks with unequal input and output dimensions. The idea is to develop an analytical solution

34

that works just as well as the one given in (3.3.1) but for unequal input output dimensions.

We begin by presenting some theorems setting some restrictions on the possible combinations
of network dimensions and λ values. Next, we show a diagonalisation for the F matrix with
unequal input outputs.

Theorem 3.4.1 [Relationship between λ and network dimensions] Let W 2,W 1 be λ-
Balanced weights of dimensions (no, nh) and (nh, ni) respectively with λ ̸= 0. Then:

1. min (ni, no) ≤ nh ≤ max (ni, no)

2. no > ni =⇒ λ > 0, no < ni =⇒ λ < 0

Proof 6 (Proof of Theorem 3.4.1) We have nh ≥ min(ni, no) by assumption since the network
is not bottlenecked.
Suppose nh > min(ni, no). Let USV T = W 1.
We can write W 2 = U2S2R

T , W 1 = RS1V
T
1 with S2,S1 of dimensions (no, nh) and (nh, ni)

respectively. Since nh > max(no, ni):

S2 =
(
S′

2 0
)

where S′
2 is a diagonal matrix of size (no, no).

S1 =

(
S′

1

0

)
where S′

1 is a diagonal matrix of size (ni, ni).
We know:

W T
2 W 2 −W 1W

T
1 = λI

RST
2 S2R

T −RS1S
T
1 R

T = λI

ST
2 S2 − S1S

T
1 = λI

(
S′2

2 0
0 0

)
−
(
S′2

1 0
0 0

)
= λI

The left-hand side of the equation will have zeros on the diagonal, so λ = 0. We have a contradiction
so (1) must be true.
Now suppose min(ni, no) ≤ nh ≤ max(ni, no).
Suppose no > ni

Similarly, we can write:

S2 =

(
S′

2

0

)
with S′

2 a diagonal matrix of shape (nh, nh).

S1 =
(
S′

1 0
)

with S′
1 a diagonal matrix of shape (ni, ni).

ST
2 S2 − S1S

T
1 = λI

S′2
2 −

(
S′2

1 0
0 0

)
= λI

Since some elements of the diagonal will contain only squared terms from S′2
2 and not S′2

1 , they
will be non-negative. Since λ ̸= 0, λ > 0.
Suppose ni > no.

35

S2 =
(
S′

2 0
)

with S′
2 a diagonal matrix of shape (no, no).

S1 =

(
S′

1

0

)
with S′

1 a diagonal matrix of shape (ni, ni).

ST
2 S2 − S1S

T
1 = λI

(
S′2

2 0
0 0

)
− S′2

1 = λI

Since some elements of the diagonal will contain only terms from −S′2
1 and not S′2

2 , they will be
negative. Since λ ̸= 0, λ < 0.

Proof 7

In order to produce a numerically stable version of Fukumizu’s equation, we must first diagonalise
F in terms of the singular value decomposition of the task (as in [5]) and λ. As expected, the first
singular values of F are the same as when F has equal input output dimensions, but there are some
extra singular values corresponding to λ.

Theorem 3.4.2 [Diagonalisation of F for unequal input-output dimensions]
Let

F =

[
−λ

2 I Σ̃
yxT

Σ̃
yx λ

2 I

]
(3.78)

Then

F =
(
O M

)
√
S̃

2
+ λ2

4 I 0 0

0 −
√
S̃

2
+ λ2

4 I 0

0 0 sgn(no − ni)
λ
2

(OT

MT

)
(3.79)

With

O =
1√
2

(
Ṽ (A−XA) Ṽ (A+XA)

Ũ(A+XA) −Ũ(A−XA)

)
, and

M =

(
Ṽ ⊥
Ũ⊥

) (3.80)

Proof 8 (Proof Sketch of 3.4.2) We offer a proof sketch of the theorem.
As in [5], it is clear that OM = 0. Suppose no > ni (the proof for ni > no is similar in

nature). Then Ṽ ⊥ ̸= 0, Ũ⊥ = 0.
Now, we can write

F =

(
−λ

2 I (Ṽ Ṽ ⊥)S̃Ũ
T

Ũ S̃(Ṽ Ṽ ⊥)
T λ

2 I

)
=

(
F ′ Ṽ ⊥S̃Ũ

T

Ũ S̃Ṽ
T

⊥
λ
2 I

)
(3.81)

With

F ′ =

(
−λ

2 I Ṽ S̃Ũ
T

Ũ S̃Ṽ
T λ

2 I

)
(3.82)

Hence (
OT

MT

)
F
(
O M

)
=

(
OT

MT

)(
F ′ Ṽ ⊥S̃Ũ

T

Ũ S̃Ṽ
T

⊥
λ
2 I

)(
O M

)
(3.83)

36

=

(
OF ′OT 0

0 λ
2 I

)
=

(
Λ 0
0 λ

2 I

)
(3.84)

Which is a diagonal matrix as required.
Now suppose no < ni. Then Ṽ ⊥ = 0, Ũ⊥ ̸= 0.

F =

(
−λ

2 I Ṽ S̃(Ũ Ũ⊥)
T

(Ũ Ũ⊥)S̃Ṽ T λ
2 I

)
=

(
−λ

2 I Ṽ ⊥S̃Ũ
T

Ũ S̃Ṽ
T

⊥ F ′

)
(3.85)

Hence (
OT

MT

)
F
(
O M

)
=

(
OT

MT

)(
−λ

2 I Ṽ ⊥S̃Ũ
T

Ũ S̃Ṽ
T

⊥ F ′

)(
O M

)
(3.86)

=

(
−λ

2 I 0

0 OF ′OT

)
=

(
−λ

2 I 0
0 Λ

)
(3.87)

Which is a diagonal matrix as specificed. This comlpetes the proof.

To better test different potential numerically stable analytical solutions we developed functions to
generate λ-Balanced aligned and unaligned weights using (4.1.1, covered later in the text). This
are shown on the next page (Algorithm 1, Algorithm 2)
Future work involves producing a derivation to ([5]) in order to produce an expression with negative
exponential. This will equation will be a powerful tool to understanding the relation between
network structure, λ, and the network’s dynamics and learning regime.

37

Algorithm 1 Get λ-Balanced

1: function get_lambda_balanced(λ, in_dim, hidden_dim, out_dim, σ = 1)
2: if out_dim > in_dim and λ < 0 then
3: raise Exception(’Lambda must be positive if out_dim > in_dim’)
4: end if
5: if in_dim > out_dim and λ > 0 then
6: raise Exception(’Lambda must be positive if in_dim > out_dim’)
7: end if
8: if hidden_dim < min(in_dim, out_dim) then
9: raise Exception(’Network cannot be bottlenecked’)

10: end if
11: if hidden_dim > max(in_dim, out_dim) and λ ̸= 0 then
12: raise Exception(’hidden_dim cannot be the largest dimension if lambda is not 0’)
13: end if
14: W1 ← σ · random normal matrix(hidden_dim, in_dim)
15: W2 ← σ · random normal matrix(out_dim, hidden_dim)
16: [U, S, V t]← SVD(W2 ·W1)
17: R← random orthonormal matrix(hidden_dim)

18: S2equal_dim ←
√(√

λ2 + 4 · S2 + λ
)
/2

19: S1equal_dim ←
√(√

λ2 + 4 · S2 − λ
)
/2

20: if out_dim > in_dim then

21: S2←
[
S2equal_dim 0

0
√
λ · Ihidden_dim−in_dim

]
22: S1←

[
S1equal_dim 0

0 0

]
23: else if in_dim > out_dim then

24: S1←
[
S1equal_dim 0

0
√
−λ · Ihidden_dim−out_dim

]
25: S2←

[
S2equal_dim 0

0 0

]
26: end if
27: init_W2 ← U · S2 ·RT

28: init_W1 ← R · S1 · V t
29: return (init_W1, init_W2)
30: end function

Algorithm 2 Get λ-Balanced Aligned

1: function get_lambda_balanced_aligned(λ, in_dim, hidden_dim, out_dim, X, Y ,
σ = 1)

2: [U,_, V t]← SVD(Y ·XT)
3: [W1,W2]← get_lambda_balanced(λ, in_dim, hidden_dim, out_dim)
4: [U_,_, V t_]← SVD(W2 ·W1)
5: init_W2 ← U · U_T ·W2

6: init_W1 ←W1 · V t_T · V t
7: return (init_W1, init_W2)
8: end function

38

Chapter 4

Applications

4.1 λ and the Transition from the Lazy to the Rich Regime

The Lazy and Rich regimes are defined by the dynamics of the Neural Tangent Kernel of the
network. Lazy learning occurs when the NTK is constant, Rich learning occurs when it is not.
([8])

The NTK intuitively measures the movement of the network representations through training.
As shown in ([5]), in specific experimental setup, we can calculate the NTK of the network in
terms of the internal representations in a straightforward way:

NTK = INo
⊗XTWT

1 W1(t)X+W2W
T
2 (t)⊗XTX (4.1)

In order to better understand the effect of λ on NTK dynamics, we first prove some theorems
involving the Singular Values of the λ-Balanced weights, and the representations of a λ-Balanced
network.

Theorem 4.1.1 [Relationship between λ and Singular Values of weights]
Let W 2,W 1 be λ-Balanced weights, W 2W 1 = USV T .
We can write W 2 = US2R

T , W 1 = RS1V
T with

S2 =


(√

λ2I+4S2+λI
2

) 1
2

0

0
√
|λ|Imax(0,no−ni)

 , S1 =


(√

λ2I+4S2−λI
2

) 1
2

0

0 −
√
|λ|Imax(0,no−ni)


(4.2)

R is an orthonormal matrix.

Proof 9 (Proof of 4.1.1) We prove the case ni ≤ no. The proof for no ≤ ni follows the same
structure. Let USV T = W 2(t)W 1(t) be the Singular Value Decomposition of the product of the
weights at training step t. We will use W 2 = W 2(t),W 1 = W 1(t) as a shorthand.

By properties of Singular Value Decomposition, we can write W 2 = US2R
T ,W 1 = RS1V

T ,
where R is an orthonormal matrix and S2,S1 are diagonal (possibly rectangular) matrices.

The Balanced property states that W T
2 W 2 −W 1W

T
1 = λI. We know this holds for any t since

this is a conserved quantity in linear networks.

Hence

RST
2 S2R

T −RS1S1R
T = λI (4.3)

ST
2 S2 − S1S1 = λI (4.4)

39

The matrices S2,S1 have shapes (no, nh), (nh, ni) respectively. We introduce the diagonal
matrices Ŝ2, Ŝ1 of shape (ni, ni) and S∗

2 of shape (no − ni, no − ni) such that:

S1 =

(
Ŝ1

0

)
, S2 =

Ŝ2 0
0 S∗

2

0 0

 (4.5)

Hence (
Ŝ

2

2 0

0 S∗2
2

)
−

(
Ŝ

2

1 0
0 0

)
= λI (4.6)

From the equation above and the fact that Ŝ1Ŝ2 = S we derive that:

Ŝ2 =

(√
λ2I+ 4S2 + λI

2

) 1
2

, Ŝ1 =

(√
λ2I+ 4S2 − λI

2

) 1
2

, S∗
2 =
√
λI (4.7)

Hence

W 2 = U


(√

λ2I+4S2+λI
2

) 1
2

0

0
√
λImax(0,no−ni)

RT , W 1 = R

(√λ2I+4S2−λI
2

) 1
2

0

0 −
√
−λImax(0,no−ni)

V T

(4.8)
As required.

We have thus shown that we can completely determine the singular values of the λ-Balanced
weights W 2,W 1 and the singular values of their product at any point in training. This is
a very important result since it allows us to reason about the effect of λ on representations and
consequently the Neural Tangent Kernel of the network. From (4.1.1) the relationship between λ
and Network Representations is clear:

Theorem 4.1.2 [Relationship between λ and Network Representations]
Consider a λ-Balanced network training on data Σyx = Ũ S̃Ṽ

T
.

1. After convergence, the internal representations will be

W 2W
T
2 = Ũ

(√
λ2I+4S2+λI

2 0
0 λImax(no,ni)

)
Ũ

T
, W T

1 W 1 = Ṽ

(√
λ2I+4S2−λI

2 0
0 −λImax(ni,no)

)
Ṽ

T

2. Further, as λ→∞
W 2W

T
2 = λI, W T

1 W 1 =
1

λ
Ṽ S̃

2
Ṽ

T

As λ→ −∞
W 2W

T
2 = − 1

λ
Ũ S̃

2
Ũ

T
, W T

1 W 1 = −λI

It is important to note that if we let Û ŜV̂ TW 2(t)W 1(t) be the Singular Value Decomposition of
the product of the weights at training step t, we can apply the same logic substituting Û ŜV̂ T for
Ũ S̃Ṽ T .

Proof 10 (Proof of (4.1.2)) (1) is clear from (4.1.1).
For (2) we use the Taylor expansion of f(x) =

√
1 + x2:

√
λ2I+ 4S̃

2
+ λI

2
=
|λ|
√
1 +

(
2S̃
λ

)2
+ λI

2
(4.9)

=
|λ|
(
1 +

(
2S
λ

)2
+O(λ−4)

)
+ λI

2
=
|λ|+ λ

2
+

S2

|λ|
+O(λ−3) (4.10)

40

Hence

lim
λ→∞

√
λ2I+ 4S̃

2
+ λI

2
= λI, lim

λ→−∞

√
λ2I+ 4S̃

2
+ λI

2
=

S2

|λ|
= −S2

λ
(4.11)

Similarly, √
λ2I+ 4S̃

2 − λI
2

=
|λ| − λ

2
+

S2

|λ|
+O(λ−3) (4.12)

lim
λ→∞

√
λ2I+ 4S̃

2 − λI
2

=
S2

λ
, lim

λ→−∞

√
λ2I+ 4S̃

2 − λI
2

=
S2

|λ|
= −λI (4.13)

Since Ũ , Ṽ are independent of λ:

lim
λ→±∞

W 2W
T
2 = Ũ

(
lim

λ→±∞
S2

)
Ũ

T
(4.14)

lim
λ→±∞

W T
1 W 1 = Ṽ

(
lim

λ→±∞
S1

)
Ṽ

T
(4.15)

Substituting in the limit expressions for S1,S2, we can see that the results for (2) follow.
This completes the proof.

The fact that as |λ| → ∞ one of the network representation converges to a scaled identity matrix,
while the other converges to zero, is a very interesting result. Intuitively, this implies that the
representations move increasingly less as λ grows in magnitude. Hence we would expect the Neural
Tangent Kernel of the network to vary increasingly less as we increase |λ|. One might wonder if
the NTK would even converge to zero. This is in fact the case and it is shown in the next theorem.
We can use (4.1.2) to derive some results for the dynamics of the NTK of a λ-Balanced Network:

Theorem 4.1.3 [Relationship between λ and the Neural Tangent Kernel of the network]
Consider a linear network training on data Σyx = Ũ S̃Ṽ

T
, with initial weights W 2(0),W 1(0) such

that W 2(0)W 1(0) = USV T and W 2(0),W 1(0) are λ-Balanced (S does not depend on λ).
Let t ≥ 0 be an arbitrary point in training. At this point let W 2(t)W 1(t) = U∗S∗V ∗T . Then

1. For any λ ∈ R:

NTK(0) = Ino
⊗XTV

(√
λ2I+4S∗2−λI

2 0
0 −λImax(ni,no)

)
V TX

+U

(√
λ2I+4S∗2+λI

2 0
0 λImax(no,ni)

)
UT ⊗XTX

(4.16)

NTK(t) = Ino ⊗XTV ∗

(√
λ2I+4S∗2−λI

2 0
0 −λImax(ni,no)

)
V ∗T

+U∗

(√
λ2I+4S∗2+λI

2 0
0 λImax(no,ni)

)
U∗T ⊗XTX

(4.17)

2. As λ→∞:

NTK(t)−NTK(0)→ 1

λ

(
Ino
⊗XTV ∗S∗2

2 V ∗TX − Ino
⊗XTV S2

2V
TX

)
→ 0 (4.18)

3. As λ→ −∞:

NTK(t)−NTK(0)→ 1

λ

(
US2

2U
T ⊗XTX −U∗S∗2

2 U∗T ⊗XTX
)
→ 0 (4.19)

41

Proof 11 (Proof of 4.1.3) (1) Follows by substituting the expressions for the network represen-
tations in terms of λ derived in (4.1.2) from ([5])’s expression for the NTK of a linear network.

Similarly, (2) follows from substituting the limit expressions for the network representations and
the fact that the Kronecker product is linear in both arguments.

The theorem above demonstrates that as |λ| → ∞, the Neural Tangent Kernel (NTK) of a λ-
Balanced Network remains constant. This indicates that the network operates in the Lazy
regime throughout all training steps.

This finding is significant as it highlights the impact of weight initialization on learning regimes.
Specifically, initializing a Linear Network with a high |λ| will result in Lazy Learning. We have thus
discovered a method to exert complete control over the Learning Regime of the Linear Network.
Depending on the application, either Lazy Learning (e.g., when the task benefits from a more
stable and less adaptive model) or Rich Learning (e.g., when the task requires the model to adapt
and learn complex patterns) might be preferred. The ability to dictate the learning regime purely
based on initialising weights in a specific task agnostic manner is a powerful tool for optimizing
neural network performance.

4.2 λ and the Transition to Shallow Learning Dynamics
In theorem (3.2.2) we noted that as |λ| → ∞ a λ-Balanced aligned deep network behaves like
a shallow network in terms of its learning dynamics. In this section we generalise these results
to λ-Balanced unaligned networks, both in terms of learning dynamics and network representations.

To compare network representations, we must first define network representations for a shallow
network:

Theorem 4.2.1 [Expression for Representations in a Shallow Network at Convergence]
The representations of a shallow network at convergence are given by:

W TW = Ṽ S̃Ṽ
T
, WW T = Ũ S̃Ũ

T
(4.20)

Proof 12 (Proof of 4.2.1) By ([38]), this network converges to the global minimum, given by
W = Y XT (X is whitened). Hence W = Ũ S̃Ṽ

T
.

We can see that the representations of a shallow network are task specific. In addition, we can
observe that the representations are constantly changing. Consequently, one can reason that the
network’s NTK will change through training so the network learns in the Rich Regime.

We further investigate the similarities between λ-Balanced deep networks for |λ| large and shallow
networks by deriving their learning dynamics:

Theorem 4.2.2 [Gradient Flow Dynamics of a Shallow Linear Network]

Consider a shallow linear network Y = WX with whitened inputs and Mean Squared Error Loss.
The gradient flow dynamics of W (t) can be expressed as:

W (t) = Σ̃
yx

+ (W (0)− Σ̃
yx
)e−

t
τ (4.21)

Proof 13 (Proof of 4.2.2) From previous work ([36]), the gradient flow differential equation for
the weights of a shallow network is given by:

τ
d

dt
W (t) = Σ̃

yx −W (t) (4.22)

Define X(t) = Σ̃
yx −W (t). Then

τ
d

dt
X(t) = −X(t),

X(t) = X(0)e−
t
τ

(4.23)

42

Hence:

Σ̃
yx −W (t) = (Σ̃

yx −W (0))e−
t
τ (4.24)

W (t) = Σ̃
yx

+ (W (0)− Σ̃
yx
)e−

t
τ (4.25)

As required.

We have shown that unaligned shallow networks evolve exponentially. Interestingly, there is no
alignment phase when the network first rotates its weights so that it can then learn singular values
independently. Instead both the singular values and singular vectors are learned at the same time
(as t increases, the exponential becomes closer to 0, taking W (t) closer to Σ̃

yx
).

Next, we derive an expression for the dynamics of the output of a λ-Balanced network for large
|λ|:

Theorem 4.2.3 [Gradient Flow Dynamics of a Deep Network for Extreme λ Resemble
Shallow Network Dynamics]

Consider a λ-Balanced Deep Linear Network Y = W 2W 1X. As λ → ±∞, the dynamics of
the output W 2(t)W 1(t) are given by:

W 2(t)W 1(t) = Σ̃
yx

+ (W 2(0)W 1(0)− Σ̃
yx
)e−|λ| t

τ (4.26)

Proof 14 (Proof of 4.2.3) By the product rule of differentiation:

τ
d

dt
(W 2(t)W 1(t)) = τ

d

dt
(W 2(t))W 1(t) +W 2(t)τ

d

dt
(W 1(t)) (4.27)

We can substitute the expressions for gradient flow for W 2(t),W 1(t) from ([36]):

τ
d

dt
(W 2(t)W 1(t)) = (Σ̃

yx −W 2(t)W 1(t))(W 1(t))
TW 1(t)

+W 2(t)(W 2(t))
T (Σ̃

yx −W 2(t)W 1(t))

(4.28)

We have previously shown that as λ→∞:

W 1(t)
TW 1(t) ∈ O

(
1

λ

)
→ 0,

W 2(t)W 2(t)
T → |λ|I

(4.29)

In addition, as λ→ −∞:

W 2(t)W 2(t)
T ∈ O

(
1

λ

)
→ 0,

W 1(t)
TW 1(t)→ |λ|I

(4.30)

Substituting these results into the previous equation:

lim
|λ|→∞

τ
d

dt
(W 2(t)W 1(t)) = |λ|(Σ̃

yx −W 2(t)W 1(t)) (4.31)

This differential equation is equivalent to the gradient flow for the weights of a shallow network,
and has a known solution:

W 2(t)W 1(t) = Σ̃
yx

+ (W 2(0)W 1(0)− Σ̃
yx
)e−|λ| t

τ (4.32)

As required.

43

As in the aligned case, we have shown that or large values of |λ| the dynamics of the output
W2(t)W1(t) of a λ-Balanced Deep Network are equivalent to the dynamics of the output W (t) of
a shallow network, compressed horizontally by a factor of λ.

In addition, we have also shown that for large λ→∞ the expression W1(t)
TW1(t) corresponds to a

scaled version of the internal representation of the shallow network W (t)W (t)T while W2(t)W2(t)
T

remains fixed. As λ → ∞ the expression W2(t)W2(t)
T corresponds to a scaled version of the in-

ternal representation of the shallow network W (t)TW (t) while W1(t)
TW1(t) remains fixed.

However, in the previous section we have proved that a λ-Balanced (|λ| large) deep network will
learn in the Lazy regime. This is an insightful example of when two networks can have similar
representations, similar dynamics but still learn in completely different regimes. Crucially, the
Deep Network contains two representations, only one of which is task specific. Intuitively, this
task specific representation tends to 0 as λ → ∞, so in the limit this representation will not be
task specific but instead consist of only 0s and not evolve through training.

4.3 Illustrative Example
To showcase some for the results proven so far, we examine the same semantic learning task as
in ([5]) where a set of living organisms must be linked to their positions within a hierarchical
framework. Below is a description of the task which is paraphrased from this paper:

The representational similarity of the task’s input (Ṽ S̃Ṽ T) exposes its underlying structure. For
instance, the representations of two fish are most alike, somewhat similar to birds, and least similar
to plants. Similarly, the representational similarity of the task’s target values (Ũ S̃ŨT) highlights
the main categories into which items are organized.

Consequently, one can deduce that a fish is an animal and a plant is not a bird. Reflecting
these structural relationships in internal representations enables the rich regime to generalize in
ways that the Lazy regime cannot. Importantly, QQT (t) captures the temporal dynamics of the
weights’ representational similarity, making it possible to analyze whether a network adopts a Rich
or Lazy solution.

It is important to note that this task is a regression task in which the network learns the
correlation structure in the ecosystem. It is inspired by ([36]) where the authors show that both
linear networks and more complex networks experience hierarchical differentiation. They first
learn the difference between a plant and an animal, and progressively learn finer structures.

Figure 4.1: Semantic Learning Task (Figure from [5])

(Figure 4.1) shows the QQT (t) matrices at convergence for different weight initialisations. One
can see that the network function in all of these cases is identical (lower left quadrant in each

44

heat-map) but both the input and the output network representations of the Networks vary with
initialisation (top left and bottom right quadrants of each heat-map).

Figure 4.2: QQT(t) matrices at convergence for Gaussian Small, Gaussian Large, 0-Balanced, 10-
Balanced, and -10-Balanced initial weights. The figure shows how different initial weights affect
the network’s input and output representations and their alignment with task structure.

(Figure 4.2) shows the QQT (t) matrices at convergence for Gaussian Small, Gaussian Large,
0-Balanced, 10-Balanced and -10-Balanced initial weights. We can observe (also shown in [5]) that
when training with Gaussian Small or 0 Balanced initial weights the weights’ input and output
network representations and the task’s structure are identical at convergence. Intuitively this is
because small weights are approximately 0-Balanced so they have similar behavior ([36]) In con-
trast when training with Gaussian Large weights the network has converged to a Lazy solution
(the input and output network representations are not task specific).

The cases of λ-Balanced weights for λ = 10,−10 have a different behavior. The singular val-
ues of the task are sufficiently small for us to observe limit properties for these values of λ. We
can see that in the case for λ = 10 the output network representation resembles |λ|I, while in the
case λ = −10 the input network representation resembles |λ|I.

For the case λ = 10 the input network representation is task specific as shown earlier in the
text (1

λ Ṽ S̃Ṽ T) but the fact that it is scaled by |λ| makes all of the values very close to 0. An
analogous case occurs for λ = −10, where the output network representation is task specific but
very close to 0 due to its scaling by λ.

Crucially, only one of the two network representations is a task specific representation of the
data, and as |λ| → ∞ none of the network representations will have be task specific. We will then
have a Lazy solution to the task.

Hence, we can think about the parameter λ as a way to determine the richness of
the solution by controlling how task the network’s input and output network representations
evolve and what value they converge to. We also wish to understand how λ affects loss dynamics
and speed of convergence in this setting.

Figure 4.3: Log loss trajectories for different initializations in the semantic learning task. The
figure highlights that higher values of |λ| lead to faster convergence and that for high |λ| values,
the log loss trajectories follow a linear pattern until convergence.

45

(Figure 4.3) shows a graph of the Log Loss trajectories for different initialisations. Two insights
can be gained from this graph:

1. Higher values of |λ| lead to faster convergence of the Loss function. This agrees with the
theory of rate of learning governed by the quantity r = |λ|

τ for large |λ|.

2. For high values of |λ| the graph of the log Loss trajectories is a line with constant gradient
until convergence. This confirms the theory that for large |λ| the network follows exponential
dynamics.

To further illustrate the relation between λ and speed of convergence, we plot the number of
training iterations for a λ-Balanced network to converge when training in the semantic learning
task. We are able to fit an exponential curve through the data for high values of λ (|λ| > 5),
confirming again that the output trajectories λ-Balanced unaligned case are exponential for large
|λ| and qualitatively similar to the trajectories of a shallow network. For small values of λ the
behavior of the network is not exponential but more complex, so the fitted exponential curve shown
does not approximate these values correctly (as expected).

Figure 4.4: Graph showing the number of training steps to convergence for varying λ values in
the semantic learning task. The figure illustrates how increasing λreduces the number of iterations
needed for convergence, fitting an exponential curve for high λ values.

(Figure 4.4) Shows gives some intuition about another interpretation of the λ coefficient: in-
creasing λ coefficient between the weights of two adjacent layers increases their rate
of convergence during training.

We wish to show how λ affects the degree to which network representations are specific to the
task. Previous results ([5]) have shown that when λ = 0 both network representations will be task
specific. We have previously shown that in the limit |λ| → ∞ one of the two representations will
be task specific while the other one will not. Also, from (4.1.2) we can reason that if λ is close to
the singular values of the task, neither of the representations will depict the task as clearly as for
λ→ 0,±∞.

To visualise this relation, we created a measure of how task specific a representation is. Intu-
itively, the input representation will be task specific if it is a simple relation of Ṽ , S̃. Similarly,
the output representation will be task specific if it can be expressed simply in terms of Ũ , S̃. In
this graph we are not interested in the dampening factor λ that affects λ-Balanced representations.
Consequently, we use the cosine similarity metric to assign a Task Specific score to representations.
The Task Specific Score TSC of input and output representations is defined as:

46

TSC(W T
1 W 1) = max(f(W T

1 W 1, Ṽ S̃Ṽ
T
), f(W T

1 W 1, Ṽ S̃
2
Ṽ

T
)) (4.33)

TSC(W 2W
T
2) = max(f(W 2W

T
2 , Ũ S̃Ũ

T
), f(W T

2 W 2, Ũ S̃
2
Ũ

T
)) (4.34)

Where f(A,B) is defined as the cosine similarity between matrices A and B

(Figure 4.5 below) is a graph plotting a measure of the Task Specific Score of each network
representation is with varying λ. This graph fits our mathematical theory: both curves peak at
λ = 0. As λ→∞ the Task Specific Score of the input representation tends to its maximum while
the Task Specific Score of the output representation tends to its minimum. On the contrary, as
λ→ −∞ the Task Specific Score of the input representation tends to its minimum while the Task
Specific Score of the output representation tends to its maximum.

Figure 4.5: Task Specific Score of Network Representations for Varying λ

Examining this semantic learning task is useful for building intuition on the role of λ in λ-Balanced
Networks: by increasing |λ| we will make the network converge at an exponentially faster rate with
the cost of our learning regime and representations becoming lazier. In addition, the sign of λ
determines which of the network representations will cease to be a task specific representation. For
large |λ|, λ > 0 means the output network representation will be less task specific, while λ < 0 will
mean that the input network representation will be less task specific for large λ.

4.4 Continual Learning

Continual Learning and Catastrophic Forgetting have long been an important topic in the field of
Artificial Intelligence ([20]). Continual Learning focuses on enabling models to learn continuously
form an ongoing stream of data. The primary goal is to integrate new knowledge seamlessly while
preserving previously acquired information. The opposite case, when the model significantly losses
previously acquired knowledge upon learning new information, is refereed to as Catastrophic For-
getting.

Deriving analytical solutions for dynamics in a continual learning setting for linear networks can
provide insights into how to best initialise models in order to diminish forgetting, as well as aid
the search of metrics that aid in determining optimal stopping times.

47

The paper ([5]) shows that since the Balanced Property is conserved through training the ana-
lytical solution will remain being correct in a continual learning setting for 0 Balanced Networks.
This is also true for λ-Balanced Networks. Below is an example of the empirical and analytical
dynamics of a λ-Balanced network in a continual learning setting.

Since the Balanced Property is preserved through training in linear networks, once a λ-Balanced
network learns a task its trained weights will also be λ-Balanced. Hence its starting weights for
the second task will be λ-Balanced and so will its trained weights. We can see by induction how
the network will remain λ-Balanced in a continual learning setting. Since the λ-Balanced assump-
tion always holds, the analytical solutions developed in (2.2.1) can be used for the whole learning
process:

Figure 4.6: Graph showing analytical solutions in a continual learning task. The figure demon-
strates how the rate of forgetting and loss are expressed in terms of input-output correlations and
network weights, providing insights into optimal stopping strategies.

As described in the background of this report (Continual Learning section) it is possible to ex-
press the loss function of a linear network in terms of input output correlations and the network’s
weights. Since the Forgetting metric is defined as the difference of two loss functions, it is can
also be defined in terms of input output correlations and the network’s weights, thus making these
formulae more interpretable.

A possible next step in this approach is to derive analytical expressions for the rate of loss and rate

48

of forgetting of a network. If we can express these in terms of the the input output correlations of
different tasks and the network’s weights, we will be able to find minimum in the forgetting func-
tion and devise optimal stopping strategies based on analytical results. We derive an expression
for the rate of forgetting in the next theorem.

Theorem 4.4.1 [Expression for Rate of Forgetting in a Network with λ-Balanced initial
weights]
Consider a λ-Balanced linear network. Let Li,k(t) be the loss on task i when training on task k,
and F i,j,k(t) be the Forgetting on task i when training on task k having just trained on task j.

1. The rate of Loss and the rate of Forgetting in the network are the same for all t.

d

dt
Li,k(t) =

d

dt
F i,j,k(t) (4.35)

2. We can express the rate of Loss as:

d

dt
Li(t) = Tr

(
d

dt
(W 2(t)W 1(t)) (W 2(t)W 1(t))

T − Σ̃
yxT

)
(4.36)

Proof 15 (Proof of 4.4.1) Proof of (1):

F i,j,k(t) = Li(W 2W 1(t))−Li(T j) (4.37)

= Li,k(t)−Li(T j) (4.38)

d

dt
F i,j,k(t) =

d

dt
Li,k(t) (4.39)

As required.
Proof of (2):
From [5] we know that

Li(t) =
1

2
Tr[(W 2(t)W 1(t))(W 2(t)W 1(t))

T]− Tr[W 2(t)W 1(t)Σ̃
yxT

] +
1

P
Tr[Y Y T] (4.40)

Hence

d

dt
Li(t) = Tr

[
d

dt
(W 2(t)W 1(t))(W 2(t)W 1(t))

T

]
− Tr

[
d

dt
(W 2(t)W 1(t))Σ̃

yxT
]

(4.41)

d

dt
Li(t) = Tr

[
d

dt
(W 2(t)W 1(t))

(
(W 2(t)W 1(t))

T − Σ̃
yxT

)]
(4.42)

As required.

This formulation or the rate of Forgetting is useful since we already posses analytical equations
for the rate of change of the weights as well as the weights o the network. We can substitute these
expressions in and observe hoe λ influences the rate of loss for example.Below is a graph showing
the analytical expression for rate of loss matches the empirical. Note that the rate of loss converges
at 0. This is expected since the linear network is known to converge to the global minimum during
full batch gradient descent. ([36])

49

Figure 4.7: Analytical and Empirical Rate of Loss Match Exactly for λ = 5

4.5 Extensions to the Non-Linear Case
The solutions derived in this text apply only to Linear Networks. Although linear networks’
dynamics qualitatively resemble non-linear networks’ dynamics ([38]), linear networks ultimately
perform linear regression only. Non linear networks possess a much higher amount of expressive
power, as they are able to capture complex nonlinear relationships in the data ([4]). Therefore, we
are interested in ways to generalise these results to the Non Linear case.

Theorem 4.5.1 [Optimal λ∗ for given weights]
Let W 2,W 1 be the weights of a network. The optimization problem:

min
λ∈R

∥∥∥(W T
2 W 2 −W 1W

T
1)− λI

∥∥∥2
F

has the solution λ∗ = Tr(W T
2 W 2 −W 1W

T
1).

Proof 16 (Proof of 4.5.1) Since λI is a diagonal matrix, the optimization problem is equivalent
to minimizing f(λ) with

f(λ) =
∥∥∥diag(W T

2 W 2 −W 1W
T
1)− λI

∥∥∥2
F

(4.43)

Let diag(W T
2 W 2 −W 1W

T
1) = diag(a1, a2, . . . , an). Then

f(λ) =

n∑
i=1

(ai − λ)2 (4.44)

50

We can calculate the derivative of f(λ) and find when it is equal to 0:

f ′(λ) = 2

n∑
i=1

(ai − λ) (4.45)

f ′(λ∗) = 0⇔ λ∗ =
1

n

n∑
i=1

(ai) =
1

n
Tr(W T

2 W 2 −W 1W
T
1) (4.46)

This concludes the proof.

It has been shown in ([31], [24]) that the quantity Diag(W T
2 W 2 −W 1W

T
1) is invariant through

training in a network composed of solely ReLU functions. Hence the quantity Tr(W T
2 W 2 −

W 1W
T
1) will also remain invariant. In addition, a network with both ReLU and Linear activa-

tions will also have Tr(W T
2 W 2 −W 1W

T
1) as an invariant quantity

We know that the quantity λ∗ such that λ∗I is closest to WT
2 W2 −W1W

T
1 will remain constant

through training on a ReLU network. However we are also interested in how this distance changes
through training and if there is a way to bound this distance. If there happens to be one, for large
|λ∗| this distance will become negligible relative to ||λ∗I|| and hence we will be able to assume that
the Balanced property holds through training.

To better understand λ∗ and the distance of the Balanced Computation to λ∗I, we conducted
some preliminary investigations. An experiment was conducted using two random datasets in a
continual learning framework. Initially, Balanced weights λ were set up. A ReLU network and a
Tanh network were trained sequentially on the two tasks for 2000 iterations or until convergence.
After each task reached convergence, λ∗ and the distance to λ∗I were calculated. This procedure
was repeated 50 times, with results averaged and the variance shown as an error bound. The
experiment was conducted for three different values of λ: 10, 0.1, and -10.

Figure 4.8: Deviation from Balanced Property in ReLU and Tanh Networks

51

(Figure 4.8) both confirms existing theory and suggest possible directions of further research.
First of all, the fitted Balanced Coefficient is preserved through training for bot ReLU and Linear
networks. In addition, λ∗ matches exactly the Balanced Computation of the weights for a linear
network. For Tanh network the fitted Balanced coefficient decreases through training. For both
ReLU and Tanh networks, the difference between the fitted Balanced coefficient and the Balanced
Computation increases after each subsequent task. However, it increases at a lower rate for ReLU
networks. It would be interesting to investigate whether the fitted Balanced coefficient converges to
some value for Tanh networks or whether it keeps monotonically decreasing without convergence.
In addition, a possible stream of investigation would be bounding the distance from the fitted λ∗.
If this bound is independent λ∗, we could possible utilise the Balanced Weights assumption if the
initial λ is large and if we wish to understand network behavior for limited training steps.

52

Chapter 5

Ethical Considerations

5.1 Ethical Considerations
This research project is exempt from ethical approval for the following reasons: the analysis does
not involve human participants, the data is randomly generated so there are no privacy concerns.
Additionally, the analysis does not involve animals. The project is very abstract and does not
involve developing countries.

One possible environmental harm is consuming a lot of energy when training the models, but
the neural networks we are training are small so will not require much energy to train. Therefore
the project does not involve elements that may cause harm to the environment, plants and animals.

This project involves the explainability of neural networks, so I do not foresee any connection
to military applications. I also do not see any potential for malevolent abuse from the findings of
the project.

The software used in the project is open source, ensuring compliance with legal requirements.

53

Chapter 6

Conclusion

6.1 Limitations of this Work
While this research advances the understanding of learning dynamics in linear neural networks, it
has several limitations. Firstly, it could be argued that the experimental setup is too simplistic.
The study primarily focuses on linear neural networks, which, although insightful, do not capture
the full complexity of non-liner models commonly used in practice. Another limitation is the
assumption of gradient flow. Many machine learning models used in practice utilise adaptive
learning rates ([4]). The gradient flow assumption does not suffice to understand the behavior
of these models. Furthermore, the study only considers linear networks of at most three layers.
to better understand the impact of network structure to learning regimes, we must generalise
this theory to deeper networks. In addition, the applications to continual learning are yet to be
extended. Although the author believes this is a promising direction, no significant results have
been drawn regarding optimal stopping strategies to minimise forgetting.

6.2 Summary of Results and Future Directions
In summary, this research has made significant contributions to the understanding of learning
dynamics in neural networks, particularly in the context of Rich and Lazy learning regimes. We
derived exact solutions for both aligned and unaligned λ-balanced networks, which are interpretable
and numerically stable. Notably, we demonstrated the equivalence of deep λ-balanced network dy-
namics to shallow network dynamics for large |λ|. Our study thoroughly analyzed feature learning
mechanisms, highlighting the conditions under which a network transitions between Rich and Lazy
learning regimes. Specifically, we identified that increasing |λ| moves the network into the Lazy
learning regime. Additionally, we explored applications of these analytical dynamics in continual
learning, deriving an exact expression for the forgetting rate of a λ-balanced linear network.

Looking ahead, several future directions are proposed to build upon this work. One primary
direction is extending the derived solutions to non-linear neural networks, which would bridge the
gap between theoretical analysis and practical deep learning models. Given that the fitted λ∗ is a
conserved quantity for ReLU networks, they present a straightforward extension of this work. We
propose deriving analytical solutions for the learning dynamics of ReLU networks, which would
hold with some degree of error decreasing with λ∗. Another promising research avenue involves
developing analytical solutions for deeper networks. While there has been progress for aligned
networks ([36]), an analytical solution for deep unaligned networks with more than one output
neuron remains elusive (see [24] for the case of one output neuron).

Furthermore, developing robust weight initialization methods that ensure λ-balanced weights across
various architectures and datasets would significantly enhance the practical applicability of our the-
oretical findings. An empirical study could be conducted to initialize a deep linear network with
λ-balanced weights, using different λ values for each weight pair. The effect of these varying λ
values on the convergence rate of each weight pair during gradient descent could then be measured.

Another promising research direction involves investigating whether similar learning dynamics

54

and representations to those outlined in this report occur in biological brains. This would entail
examining if neural activity patterns in the brain, during various learning tasks, exhibit behaviors
analogous to the Rich and Lazy learning regimes observed in artificial neural networks. Under-
standing these similarities would significantly advance the field of computational neuroscience, as it
would allow for the testing of theories about biological networks using artificial networks, providing
access to precise dynamics with relatively low experimental cost. This cross-disciplinary approach
could reveal fundamental principles of learning that are shared between artificial and biological
systems, potentially leading to improved neural network designs and deeper insights into brain
function.

By addressing these limitations and pursuing the suggested future directions, we can further char-
acterize Rich and Lazy learning and contribute to the development of the theory of feature learning
in neural networks. This work ultimately aims to bridge the gap between theoretical insights and
practical applications in neural network learning dynamics, enhancing our understanding and ca-
pabilities in this field.

55

Bibliography

[1] Unireps: Unifying representations in neural models, 09 2023.

[2] Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learn-
ers: The silent alignment effect, 10 2021.

[3] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to
understand kernel learning, 07 2018.

[4] Yoshua Bengio. Learning deep architectures for ai. Foundations and Trends® in Machine
Learning, 2:1–127, 2009.

[5] Lukas Braun, Clémentine Dominé, James Fitzgerald, and Andrew Saxe. Exact learning dy-
namics of deep linear networks with prior knowledge. Advances in Neural Information Pro-
cessing Systems, 35:6615–6629, 12 2022.

[6] Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Unbalanced
optimal transport: Dynamic and kantorovich formulations. Journal of Functional Analysis,
274:3090–3123, 06 2018.

[7] Jeremy Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient
descent on neural networks typically occurs at the edge of stability, 10 2020.

[8] Matthew Farrell, Stefano Recanatesi, and Eric Shea[U+2010]Brown. From lazy to rich to
exclusive task representations in neural networks and neural codes. Current Opinion in Neu-
robiology, 83:102780–102780, 12 2023.

[9] Timo Flesch, Jan Balaguer, Ronald Dekker, Hamed Nili, and Christopher Summerfield. Com-
paring continual task learning in minds and machines. Proceedings of the National Academy
of Sciences, 115:E10313–E10322, 10 2018.

[10] Timo Flesch, Keno Juechems, Tsvetomira Dumbalska, Andrew Saxe, and Christopher Sum-
merfield. Orthogonal representations for robust context-dependent task performance in brains
and neural networks. Neuron, 110:4212–4219, 12 2022.

[11] Timo Flesch, Andrew Saxe, and Christopher Summerfield. Continual task learning in natural
and artificial agents. 10 2022.

[12] Kenji Fukumizu. Statistical active learning in multilayer perceptrons. volume 11, pages 17–26,
2000.

[13] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature
and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and
Experiment, 2020:113301, 11 2020.

[14] Samuel J Gershman. What have we learned about artificial intelligence from studying the
brain? Biological cybernetics, 118, 02 2024.

[15] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. page 249–256. proceedings.mlr.press, JMLR Workshop and Conference Pro-
ceedings, 03 2010.

56

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. 2015 IEEE International
Conference on Computer Vision (ICCV), 12 2015.

[17] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. volume 31. Neural Information Processing Systems, Curran
Associates, Inc., 2018.

[18] Georg Johann. Singular value decomposition, 12 2020.

[19] Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not un-
supervised, models may explain it cortical representation. PLoS Computational Biology,
10:e1003915, 11 2014.

[20] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwińska,
et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526, 2017.

[21] Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity
analysis - connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience,
2, 2008.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60:84–90, 05 2012.

[23] Daniel Kunin, Allan Raventós, Clémentine Dominé, Feng Chen, David Klindt, Andrew Saxe,
and Surya Ganguli. Get rich quick: exact solutions reveal how unbalanced initializations
promote rapid feature learning, 06 2024.

[24] Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel L. K. Yamins, and Hidenori
Tanaka. Neural mechanics: Symmetry and broken conservation laws in deep learning dynam-
ics, 03 2021.

[25] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Build-
ing machines that learn and think like people. Behavioral and Brain Sciences, 40, 11 2016.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[27] Xuhong Li, Haoyi Xiong, Xingjian Li, Xuanyu Wu, Xiao Zhang, Ji Liu, Jiang Bian, and
Dejing Dou. Interpretable deep learning: interpretation, interpretability, trustworthiness, and
beyond. Knowledge and Information Systems, 64:3197–3234, 09 2022.

[28] Guan-Horng Liu and Evangelos A. Theodorou. Deep learning theory review: An optimal
control and dynamical systems perspective, 09 2019.

[29] Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hongping
He, Antong Li, Mengshen He, Zhengliang Liu, Zihao Wu, Dajiang Zhu, Xiang Li, Qiang
Niu, Dingang Shen, Tianming Liu, and Bao Ge. Summary of chatgpt-related research and
perspective towards the future of large language models. Meta-Radiology, 1, 04 2023.

[30] Adam H. Marblestone, Greg Wayne, and Konrad P. Kording. Toward an integration of deep
learning and neuroscience, 09 2016.

[31] Sibylle Marcotte, Remi Gribonval, and Gabriel Peyré. Abide by the law and follow the flow:
conservation laws for gradient flows, 12 2023.

[32] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill,
2017. https://distill.pub/2017/feature-visualization.

[33] Shahryar Rahnamayan and Gary Wang. Toward effective initialization for large-scale search
spaces. 01 2009.

57

[34] Blake A. Richards, Timothy P. Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz,
Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli,
Colleen J. Gillon, Danijar Hafner, Adam Kepecs, Nikolaus Kriegeskorte, Peter Latham,
Grace W. Lindsay, Kenneth D. Miller, Richard Naud, Christopher C. Pack, Panayiota Poirazi,
Pieter Roelfsema, João Sacramento, Andrew Saxe, Benjamin Scellier, Anna C. Schapiro, Wal-
ter Senn, Greg Wayne, Daniel Yamins, Friedemann Zenke, Joel Zylberberg, Denis Therien,
and Konrad P. Kording. A deep learning framework for neuroscience. Nature Neuroscience,
22:1761–1770, 10 2019.

[35] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 323:533–536, 10 1986.

[36] Andrew Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. openreview.net, 12 2013.

[37] Andrew Saxe, Stephanie Nelli, and Christopher Summerfield. If deep learning is the answer,
then what is the question? arXiv:2004.07580 [q-bio], 04 2020.

[38] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of seman-
tic development in deep neural networks. Proceedings of the National Academy of Sciences,
116:11537–11546, 05 2019.

[39] Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B.
Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn Schmidt,
Daniel L. K. Yamins, and James J. DiCarlo. Brain-score: Which artificial neural network for
object recognition is most brain-like? 09 2018.

[40] Salma Tarmoun, Guilherme Franca, Benjamin D. Haeffele, and Rene Vidal. Understanding
the dynamics of gradient flow in overparameterized linear models. page 10153–10161, 07 2021.

[41] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle.

[42] Lilian Weng. Some math behind neural tangent kernel. Lil’Log, Sep 2022.

[43] Xiangxiang Xu and Lizhong Zheng. Neural feature learning in function space *. Journal of
Machine Learning Research, 25:1–76, 2024.

58

	Introduction
	Motivation
	Contributions

	Background
	Theoretical Background
	A review of Singular Value Decomposition (SVD)

	Previous Work on Linear Network Dynamics
	Experimental Setup
	Gradient Flow
	Balanced Condition
	Existing Analytical Solutions for Network Dynamics

	Existing Applications of this Work
	The Neural Tangent Kernel (NTK)
	Expressing NTK in and Network Representational Similarity Matrices in terms of Network Representations
	Feature Learning and Rich and Lazy Learning
	Continual Learning

	Exact Solutions for Learning Dynamics
	Random Weight Initialisations and -Balanced Property
	Exact Solutions for Aligned -Balanced Network
	Exact Solutions for Unaligned -Balanced Network of Equal Dimensions
	Progress in Exact Solutions for Unaligned -Balanced Network of Unequal Dimensions

	Applications
	 and the Transition from the Lazy to the Rich Regime
	 and the Transition to Shallow Learning Dynamics
	Illustrative Example
	Continual Learning
	Extensions to the Non-Linear Case

	Ethical Considerations
	Ethical Considerations

	Conclusion
	Limitations of this Work
	Summary of Results and Future Directions

