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Abstract

This project extends Gillian, a multi-language program analysis tool parametric in the memory
model of the target language, built by the Verified Software research group at Imperial College
London, with support for shared memory concurrency. Used, among others, as a verification tool,
Gillian was only able to verify purely sequential code prior to this project. Building on previous
research in the theory of software verification, this project enriches Gillian with the ability to verify
concurrent programs, by implementing the model of fractional permissions. The work presented
here focuses on extending WISL, a while-like language used as a didactic tool in the Scalable
Software Verification course at Imperial College London, with fractional permissions, in the shape
of a new target language, called WISLFP. This constitutes a foundational work in the process of
providing support for concurrency to Gillian, in an attempt to make it competitive alongside other
academic or industrial verification tools.
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Chapter 1

Introduction

1.1 Towards a world of verified software
In the context of the world we live in today, technological advancements have been at the centre of
making people’s lives easier. We have come a long way from the very first computer machines ever
built, which Alan Turing famously used to decypher secret Nazi messages in the Second World
War, to the omnipresent microchips we interact with on a daily basis. Every part of our life, from
our weekly shopping, to our holiday plans and travelling, our health system, financial situation,
forms of getting information, entertainment or completing routine activities like merely turning a
lamp on or off, all of them have been slowly but steadily taken over by innovative use of software
in an attempt to facilitate comfort. The amount of code we interact with on a daily basis is in the
order of billions of lines.

It is becoming obvious that, as the modern world is getting increasingly dominated by software,
ensuring reliability of said software is an imperious challenge. It has been shown before that human
errors in the code written for mission critical software has incurred enormous financial damage [1, 2]
and even cost lives [3]. Testing production code extensively is an attempt at preventing some of
the bugs that would otherwise occur in untested software. However, tests are often not exhaustive
of the entire set of possible behaviours a program could exhibit, and most of the times can carry
the programmer’s own biases about what they think the code they wrote should do. In the words
of Edsger W. Dijkstra, testing can prove the presence, not the absence of bugs.

It seems that more complex software reliability techniques are needed to prevent tragedies
similar to that of Therac-25 from happening again. Indeed, software verification tools based on
symbolic execution [4, 5] are being developed and used on industry scale code. We mention VeriFast
[6, 7], an academic tool for semi-automated verification of Java and C, used on verification of
FreeRTOS and AWS code, and Infer [8, 9], which successfully verified millions of lines of Java and
C/C++ production code as part of Meta’s code review pipeline.

Gillian [10, 11, 12, 13] is another such semi-automatic verification tool, which brings together the
exhaustive nature of symbolic testing with the power of separation logic (Section 2.2). Developed
internally at Imperial College London by the Verified Software Group, Gillian has already been able
to verify and find bugs in a deserialising SDK used within the core of the client-server interaction
code in AWS. The advantage of Gillian over other symbolic execution tools is that it is parametric
in the memory model. That is, one can provide a (concrete or symbolic) memory model of any
target language, which would in turn be used as a compiler from the target language to GIL, a small
goto language used by Gillian internally. Gillian has currently been instantiated to JavaScript, C
and WISL (Section 2.5.1) and ongoing efforts are in place for a novel Rust instantiation.

1.2 The importance of concurrency
For decades, software performance has been primarily influenced by technological advancements
in the design and manufacturing of processing units. Getting increasingly smaller and fitting more
transistors per unit of space, CPUs guaranteed an approximate doubling of performance every 18
months, as observed empirically in Moore’s Law with Dennard scaling. Unfortunately, physical
limitations have been at the root of an observed rapid flattening in CPU performance over the last
decade, despite the number of transistors still being on the rise (Figure 1.1). With this in mind,

4



all CPU designers and manufacturers have decided to use the ever-growing number of transistors
by separating a processing unit into different CPU cores, producing the multicore architectures of
today. However, the implication this has for software developers is crucial: in order to extract the
performance benefits of the latest processors, they have to make explicit use of parallelism in their
code. This comes with obvious challenges such as preventing different threads of execution from
accessing certain parts of the code at the same time if this would lead to corruption of the system
state (data races), ensuring consistency across different memory models, ensuring freedom from
starvation for any thread of execution in a program etc.

In fact, operating systems have been the heaviest users of concurrency paradigms since their
incipient stages. Since an OS has to be able to run multiple processes simultaneously in order
ensure a good overall user experience by giving the illusion of parallelism (between device drivers
responsible for processing network packets or user input, user space applications like compilers,
browsers etc.), ensuring correct concurrent execution has been at the core of OS kernel development
even before multicore architectures.

Figure 1.1: The end of Moore’s Law with Dennard scaling. From [14].

1.3 Objectives
The C standard defines data races as undefined behaviour, meaning that, should such behaviour
occur, no resulting outcome is excluded. This fact is very dangerous when unwrapping carefully,
because it means the compiler can produce code that can affect the system in any way possible: it
can crash, it can corrupt the memory, produce the wrong result or even execute as intended, but,
crucially, it will behave non-deterministically, in this case meaning we might see the same
code behaving differently across different executions. This makes debugging concurrent code an
enormous challenge: how can we find out where the problem is if we cannot even reproduce the
problem? However, we still want our software to behave correctly before anything, so as to avoid
catastrophic outcomes. It should be obvious that ensuring correctness of essentially concurrent
software is a crucial and far from mundane task.

So far, due to the way it has been essentially designed, Gillian has only been able to verify
sequential code. This is an obvious limitation that this project attempts to rectify. Previous work
has been done to come up with a complete semantics for verifying correctness of concurrent code
(Section 2.3). Fractional permission concurrency has emerged as a clear, flexible and intuitive
candidate for specifying concurrency.

The objective of this project is to enrich Gillian with support for shared memory concurrency,
by extending Gillian’s WISL instantiation with fractional permissions and successfully verifying
useful concurrent algorithms, in the form of binary tree traversals and lambda term substitution.
Although shared memory concurrency is not a new concept in the world of verification, as several
other tools already support it [6, 15], we claim to have successfully added this support for Gillian
and thus make the first step towards bridging the gap to the competition. This work is an initial
effort in supporting concurrency paradigms for our tool and its purpose is to provide a proof of
concept and lay the foundations for future development in concurrent program verification.
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Chapter 2

Background

2.1 Hoare Logic

In 1969, Tony Hoare proposed Hoare Logic [16] as a way to specify imperative programs. Hoare
Logic is based on so-called "Hoare triples" which encompass the following semantics: given a
state that satisfies the pre-condition P, if the code fragment C terminates, it will produce a state
satisfying the post-condition Q.

⊢ {P}C {Q}

P and Q are first-order logic assertions. Hoare logic also provides inference rules in order to
ensure compositionality of derivations. That is, using certain axioms that we can prove as they are,
we can derive facts about a command based on previously derived facts about that same command
(or a subcommand, should the original one be a sequence of several different commands). For
example, here is the assignment rule:

⊢ {P}x := E {P [E/x]}

Using this axiom, we can create more complicated proofs, combining several applications of
this (or other axioms). For example, using the rule of composition:

{P}C {Q}, {Q}C ′ {T}
⊢ {P}C;C ′ {T}

We can prove the following very simple specification. Starting from a state where both variables
a and b have value 0, after performing the 2 assignments, we get to a state where a has value 1
and b has value 2.

{a = 0, b = 0} a := 1; b := 2 {a = 1, b = 0}, {a = 1, b = 0} b := 2 {a = 1, b = 2}
⊢ {a = 0, b = 0} a := 1; b := 2 {a = 1, b = 2}

In this example, we have only looked at stack variables as possible targets for side-effecting
commands. We can, however, model the heap as well, using the binary cell predicate x ↪→ a, z,
which describes a set of heaps containing only the value a at address x, and the value z at address
x + 1. We use x ↪→ − as a shortcut for ∃z.x ↪→ z Using this, we can construct predicates that
describe real data structures. Take, for example, the list predicate

List(x)
def
= ∃z.x ↪→ −, z ∧ List(z)

This predicate says that address x holds a number, the first element of the linked list, and
address x + 1 holds a pointer to the next element of the list. Using this predicate, we might
express pre-conditions like List(x) ∧ List(y), which intuitively should tell us that there are 2
different (disjoint) lists, one at address x, and the other at address y [17]. However, first-order
logic does not forbid x and y from being equal to each other or having common elements (one
being a sublist of the other). In order to prevent this from happening, we would have to define a
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Figure 2.1: Illustration of the frame rule. From [20].

predicate like reach(x, u)
def
= x = u ∨ (∃z.x ↪→ −, z ∧ reach(z, u)), and then our predicate would

look like following:

List(x) ∧ List(y) ∧ (∀u.reach(x, u) ∧ reach(y, u) =⇒ u = null)

If we were to do the same for three lists instead of two, we would have to restrict each pair of
lists to be disjoint. We can quickly see that this implies an exponential growth in the number of
references to the reach predicate, so it clearly does not scale. In fact, it took researchers 30 years to
find a fix to this problem, to come up with a scalable form of logic for reasoning about programs.

2.2 Separation Logic
Separation Logic was introduced in 2001 by Peter O’Hearn, John Reynolds and Hongseok Yang
[18] as a solution to the limitations exposed by Hoare Logic. The assertion language works with
partial instead of complete heaps, based on the work of O’Hearn and Pym on bunched implications
[19]. Similar to the way we did before in Hoare Logic, we define the binary cell predicate x 7→ a, y
to describe the singleton set containing the heap with only the binary cell with value a at address
x and value y at address x + 1. Like before, we write x 7→ −, y to mean ∃a.x 7→ a, y.

The breakthrough consists in the appearance of the separating conjunction operator, *, which
combines two disjoint heaps, h1 with property P1 and h2 with property P2, to obtain a bigger
heap h. We denote with e the logical environment containing logical variables (different from
program variables, as they do not appear in the code) used inside assertions, the current state of
the program with s, and the set of all heaps as Heap. We write h1⊎h2 to mean the disjoint union
of heaps h1 and h2 [17].

e, s, h ⊨ P1 ∗ P2 ⇐⇒ ∃h1, h2 ∈ Heap.h = h1 ⊎ h2 ∧ e, s, h1 ⊨ P1 ∧ e, s, h2 ⊨ P2

We can therefore write a 7→ 1∗b 7→ 2 for the heap containing exactly two cells, the cell at address
a containing 1, and the cell at address b containing 2. We write emp for the empty heap and put
a dot symbol across any operator to denote "and the heap is empty" (eg. a

.
= 1 ⇐⇒ a = 1∧ emp).

Just like previously in Hoare Logic, we have axioms that help us prove pre- and post-conditions
about programs, making use of the same Hoare triple notation. Particularly of interest is the frame
rule, which says that if I can prove a certain post-condition Q for program C starting from P, then
I can also show Q * R starting from P * R, assuming the program does not interfere with any free
variables in assertion R.

{P}C {Q},mod(C) ∩ pv(R) = ∅
{P ∗R}C {Q ∗R}

frame

It is now obvious how we can prove the very simple example above using the frame rule.

{a .
= 0} a := 1 {a .

= 1}
assign

{a .
= 0 ∗ b .

= 0} a := 1 {a .
= 1 ∗ b .

= 0}
frame

,

{b .
= 0} b := 2 {b .

= 2}
assign

{a .
= 1 ∗ b .

= 0} b := 2 {a .
= 1 ∗ b .

= 2}
frame

{a .
= 0 ∗ b .

= 0} a := 1; b := 2 {a .
= 1 ∗ b .

= 2}
seq

Notice how we completely framed off the part of the heap we were not interested in for each
one of the two assignments. In the case when dealing with heap addresses and not stack variables,
as was the previous example, the semantics of the separating conjunction actually forbids us from
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duplicating a resource, since it operates only on disjoint heaps. This is where the breakthrough
manifests: we can now write List(x) ∗ List(y) and it would mean that the two lists at addresses
x and y respectively are disjoint, since any duplicate element between the 2 would break the
assumption of the disjointness of the 2 partial heaps. We have effectively reduced the mundane
task of ensuring the two lists do not overlap by writing exponentially many pair-wise assertions to
a very simple and elegant use of the * operator.

Separation logic as presented in its current form is already powerful enough to express many
complex predicates and fully specify interesting data structures, such as circular doubly-linked lists
or binary search trees. In fact, the current version of Gillian (Section 2.5) implements this original
form of separation logic, and has proved effective at finding real bugs in production software [11].
However, this only deals with purely sequential programs. In order to extend this reasoning to
concurrent programs, which is the main focus of this project, we have to look further at several
proposed extensions to separation logic which can handle parallel composition of programs operat-
ing on disjoint resources (Section 2.3) and account for access to shared resources between threads
(Section 2.4.2).

2.3 Concurrent Separation Logic
In 2007, Peter O’Hearn showed how separation logic can be used in a concurrent context to reason
about the usage of resources [21]. Resources in a system can be anything from memory to CPU time,
network bandwitdth and so on, but henceforth we will refer to parts of program state as resources.
O’Hearn speculated that the spatial separation offered by separation logic through the frame rule
might suit itself well to reason modularly about parallel processes with access to shared variables.
He started from the early work of C.A. Hoare, "Towards a Theory of Parallel Programming"
[22], where formal proof rules for shared variable concurrency were achieved through syntactic
enforcement of separation. He proceeded to add the separating conjunction into the extensions of
these formal proof rules, proposed by Owicki and Gries [23]. However, the rules were proved to be
unsound by John Reynolds, unless certain restrictions to the types of assertions we can formulate
are met: namely, assertions have to be "precise", meaning they can be satisfied by precisely one
subpart of the heap, and not multiple. Brookes showed that restricting the proof rules to using
only precise assertions guarantees soundness [24].

2.3.1 Fundamentals

Before we dive deeper into proving specifications of concurrent programs, we quickly mention some
fundamental terms and concepts that will be prevalent across the following sections.

We denote the parallel execution of two commands through the intuitive ∥ symbol. Our goal
is to be able to prove Hoare triples of the form {P}C1 ∥ C2 {Q}.

As per usual, programs running in concurrent settings can race with each other. Formally, a
program is defined to be racy if two concurrent processes attempt to access the same portion of the
state at the same time. Otherwise, the program is race-free. An example of a racy program is the
following, where not only the interleaving of the 2 threads, but also the granularity of operations
can lead to the program producing different results. We can imagine an addition being split into
multiple load operations followed by adding the operands, the atomicity of which is dependent on
the memory model implemented by the underlying architecture.

x := x+ y ∥ x := x ∗ z

O’Hearn also goes on to differentiate between cautious and daring concurrency [21]:
A program is cautious if, whenever concurrent processes access the same piece
of state, they do so only within commands from the same mutual exclusion
group. Otherwise, the program is daring.

By mutual exclusion group we mean a group of commands that must never overlap in execution.
When programming with semaphores, a mutual exclusion group is determined by the calls to the
P and V operations, whereas in [22], such a group is determined by a conditional critical region of
the form with r when B do C, where r is the name of a shared resource.

Particularly of interest is that programs such as x := x + 1;x := x + 1 and x := x + 2 are no
longer guaranteed to be equivalent under interleaving semantics. It is obvious that our inability to
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reliably verify such a program is rooted in its inherent raciness. Therefore, we aim to formalise the
verification of programs which restrict access to shared mutable state through language enforced
separation (critical sections).

Some crucial concepts, particularly for shared resources concurrency, are those of ownership
and separation. O’Hearn defines the two in the following way [21]:

Ownership Hypothesis. A code fragment can access only those portions of state
that it owns.
Separation Property. At any time, the state can be partitioned into that owned
by each process and each grouping of mutual exclusion.

What these two properties combined mean is that different code fragments (perhaps processes
or threads of execution) cannot interfere with each other’s local portion of the state, but can
transfer these portions between each other, for the purpose of collaboration (message passing,
shared variables etc.). This fact is of great significance, as it properly enables us to reason about
separate processes in isolation, and thus still preserve desirable equivalences like x := x = 1;x :=
x+ 1 and x := x+ 2 so long as they operate solely on local state.

2.3.2 Disjoint Concurrency
Before we talk about shared variable concurrency, it is worth exploring the simpler case of disjoint
concurrency and its applications. The rule of disjoint concurrency is presented below.

{P}C {Q} {P ′}C ′ {Q′}
{P ∗ P ′}C ∥ C ′ {Q ∗Q′}

It is easy to see that the semantics of the separating conjunction forbid the access of two
different threads of the same program to the same piece of state, and thus rule out any possible
races. In particular, we cannot prove a program such as {10 7→ −} [10] := 1 ∥ [10] := 2 {? ? ? }
(where [x] := y means modifying the heap at address x to take value y), since that would need
splitting the heap into two sub-heaps of the form 10 7→ −, and so the initial precondition must
be of the form 10 7→ − ∗ 10 7→ −, which is unsatisfiable. We can however prove potentially racy
programs, as long as the race is discounted by the semantics of the separating conjunction. Take,
for example, the proof below, where x and y are known to be different from the precondition.

{x 7→ 3} [x] := 4 {x 7→ 4} {y 7→ 3} [y] := 5 {y 7→ 5}
{x 7→ 3 ∗ y 7→ 3} [x] := 4 ∥ [y] := 5 {x 7→ 4 ∗ y 7→ 5}

One might think that the disjoint concurrency paradigm is not very expressive and, indeed,
it does not allow us to specify any concurrency paradigms involving sharing of resources between
threads, such as readers and writers or producers and consumers. However, it does appear to
be particularly suitable to embarassingly parallelisable algorithms, such as the ones exploiting a
divide and conquer strategy. Consider the following example of merge-sort, where the predicate
array(a, i, j) describes a contiguous block of memory in the heap, from address a + i to address a
+ j, and the predicate sorted(a, i, j) means that segment is sorted.

{array(a, i, j)}
procedure ms(a, i, j)
newvar m := (i+ j)/2;
if i < j then

(ms(a, i,m) ∥ ms(a,m+ 1, j));
merge(a, i,m+ 1, j);

{sorted(a, i, j)}
Assuming the pre and post condition of the function as hypotheses, as per usual, we can prove

the body of the if statement in the following way, by splitting the heap into two sub-heaps, each
one containing the portion of the array to be passed to the recursive call of the function.

{array(a, i, m) * array(a, m + 1, j)}
{array(a, i, m)} {array(a, m + 1, j)}
ms(a, i, m) ms(a, m + 1, j)

{sorted(a, i, m)} {sorted(a, m + 1, j)}
{sorted(a, i, m) * sorted(a, m + 1, j)}
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2.3.3 Shared resources concurrency

We saw how concurrent separation logic enables us to reason in isolation about threads of execution
that access disjoint portions of state. This subsection will showcase how CSL can be used to verify
specifications of programs making use of shared resource concurrency.

For this part of our presentation, notions described in Fundamentals (Section 2.3.1), namely the
Ownership and Separation Properties, will be of great importance. In particular, the Ownership
hypothesis materialises in that shared resources can only be accessed by their resource owners at
that specific moment in time. Resource owners can be threads, but also synchronisation primitives
implementing mutual exclusion groups, such as semaphores (we will give an example that illustrates
this in the current section).

To ensure that threads do not interfere with each other’s state in a shared variable concurrency
paradigm, O’Hearn enforces the following restrictions for program well-formedness [21]:

• a variable must belong to at most one resource

• if a variable x belongs to resource r, then it cannot appear in a parallel process except in a
critical region for r.

• if a variable x is changed in one process, it cannot appear in another unless it belongs to a
resource.

In this sense, all variables that are shared between threads must belong to a resource, access
to which is protected by critical sections that are executed with mutual exclusion. In particular,
racy programs like

x := 3 ∥ x := x+ 1

and
x := 3 ∥ with r when true do x := x+ 1.
are excluded by the first two restrictions, while the third condition ensures that threads cannot

interfere with each other’s local variables. Notice however, that the current restrictions do not
prevent race conditions in programs with pointers, such as the following, in the case that x and y
are equal:

[x] := 3 ∥ [y] := 4

or even more obvious data-races, such as:
[10] := 3 ∥ [10] := 4

O’Hearn however ensures proper avoidance of interference at the level of heap cells in the proof
rules by use of the separating conjunction.

Figure 2.2 presents a very simplified example of a producer-consumer paradigm through mes-
sage passing implemented using semaphores and intuitively explain the reasoning behind resource
ownership transfer. Once again, the semaphores are resource owners, meaning portions of the state
(in this case the heap cell at location 10) are attached to sempahores. Ownership can be transferred
from the semaphore to the thread and viceversa, and only when the thread acquires ownership
of the resource can it make use of it (through assignment or reading). We assume that the free
semaphore is initialised with 1 and the busy semaphore is initialised with 0, therefore free is the
sole ownership of the heap cell. In fact, both semaphores respect the following invariant: either
they are set to 1 and they own the heap cell 10, or they are set to 0 and they own nothing. The left
hand side thread executes first, decreasing the semaphore’s internal value to 0, and the semaphore
releases ownership of the cell into the code. From there, the thread can modify the cell and place
the message m in it. Once it calls V on the busy semaphore, the thread transfers ownership of the
cell to the semaphore, which increments its value to 1. The second threads then executes P on
the busy semaphore and acquires ownership of cell 10 from the semaphore, which decrements its
value to 0. The thread reads the message at cell 10 and finally calls V on the free semaphore to
transfer ownership back to it and reset for a potential new message transfer.

The proof rules as highlighted by O’Hearn in hus paper are presented below. In order to prove
the specification of a program of the form

init;
resource r1(variable list), ..., rm(variable list)
C1 ∥ ... ∥ Cn
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... ...
{emp} {emp}

P (free); P (busy);
{10 7→ −} {10 7→ −}
[10] := m; n := [10];
{10 7→ −} {10 7→ −}
V (busy); V (free);
{emp} {emp}
... ...

Figure 2.2: Producer-consumer message passing

a resource invariant RIri must be defined for each resource ri that satisfies that any command
x = ... which modifies a variable x that is free in RIri must occur within a critical region for
ri. Resource invariants are also required to be precise, as per Brooks [24]. The inference rule is
presented below:

{P} init {RIr1 ∗ ... ∗RIrm ∗ P ′} {P ′}C1 ∥ ... ∥ Cn {Q}
{P}init; resource r1(variable list), ..., rm(variable list)C1 ∥ ... ∥ Cn{RIr1 ∗ ... ∗RIrm ∗Q}

We observe here that the resource invariants are established by the initialisation sequence,
together with a portion of state to be accessed locally by the processes, and then re-established
by the conclusion. The inference rule for parallel composition is the same as the rule for disjoint
concurrency, except the triples establishing the reasoning for sequential processes {Pi}Ci {Qi} use
the resource invariants RIri in the context.

{P1}C1 {Q1} ... {Pn}Cn {Qn}
{P1 ∗ ... ∗ Pn}C1 ∥ ... ∥ Cn {Q1 ∗ ... ∗Qn}

This additional contextual information becomes useful in the rule for conditional conditional
critical regions:

{(P ∗RIr) ∧B}C {Q ∗RIr}
{P} with r when B do C endwith {Q}

Below we show how we can implement semaphores in terms of conditional critical regions.
Note that this implementation is just an aid for ease of reasoning: one would actually prefer
implementing semaphores in terms of CCRs in practice.

P(s) = with s when s > 0 do s := s− 1 endwith
V(s) = with s when true do s := s+ 1 endwith

Now we have reached a point where we can prove the specification of the producer-consumer
paradigm using semaphores described above. First, we establish the resource invariants, which for
both the free and busy semaphores are as follows:

RIs = (s = 0 ∧ emp) ∨ (s = 1 ∧ 10 7→ −)

Then we can prove the triples for the semaphore operations using rules derived from the CCR
proof rules:

{(A ∗RIs) ∧ s > 0} s := s− 1 {A′ ∗RIs}
{A}P (s) {A′}

{A ∗RIs} s := s+ 1 {A′ ∗RIs}
{A}V (s) {A′}

Here is how we can obtain the triple {emp}V (free) {10 7→ −}. Notice how after the effects of
the command are propagated to the post condition, we have to re-establish the resource invariant.
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{10 7→ − ∗ ((free = 0 ∧ emp) ∨ (free = 1 ∧ 10 7→ −)}
{10 7→ − ∗ (free = 0 ∧ emp)}
free := free+ 1
{10 7→ − ∗ (free = 1 ∧ emp)}
{emp ∗ (free = 1 ∧ 10 7→ −)}
{emp ∗ ((free = 0 ∧ emp) ∨ (free = 1 ∧ 10 7→ −))}

and similarly we can prove it for the P operation. In order to combine the two sequential
processes together using the concurrency rule, we have to wrap them around while loops, assuming
there would always be messages to be generated by the left process (and to be consumed by the
right process). Below is a proof sketch of the overall program:

{10 7→ −}
free := 1, busy := 0;

{(free = 1 ∧ 10 7→ −) ∗ (busy = 0 ∧ emp)}
{RIfree ∗RIbusy ∗ emp ∗ emp}

resource free(free), busy(busy);
{emp ∗ emp}

{emp} {emp}
while true do while true do
{emp ∧ true} {emp ∧ true}

{emp} {emp}
produce m P(busy);
{emp} {10 7→ −}
P(free); n := [10];
{10 7→ −} {10 7→ −}
[10] := m; V(free);
{10 7→ −} {emp}
V(busy); consume n
{emp} {emp}

{emp ∧ true} {emp ∧ ¬true}
{false} {false}

{false ∗ false}
{RIfree ∗RIbusy∗ false}

{false}

More complex examples of daring concurrent programs can be correctly verified using the
mechanism we just described. O’Hearn goes on to show how we can apply the same reasoning to
pointer-transferring buffers and memory managers, which are clear examples of daring concurrency,
since the shared bits of state will be accessed from several different critical regions. Transferring
complete ownership of a resource between resource owners and restricting processes to only ac-
cessing resources they own ensures safety properties ensured by the lack of data-races implied by
the ownership and separation properties. However, a data-race is defined to be multiple unordered
accesses to a shared state by two concurrent processes, at least one of which is a write. Clearly,
multiple reads of the same resource should be allowed, since they do not constitute a data-race
and therefore do not carry the risk of state corruption or wrong behaviour. There are many ex-
amples of useful concurrent programing paradigms where concurrent read-only access to a piece of
state can achieve higher performance than complete mutual exclusion. One such example is the
readers and writers paradigm, where multiple readers are allowed to access the same portion of
state, provided nobody is trying to write to it at the same time, in which case only the writer has
access to that resource. Our current reasoning model does not encapsulate this notion of passivity.
We will see in the next section how introducing different types of permissions and splitting them
between processes can correctly model this behaviour and thus enable verifications of programs
such as readers and writers.

2.4 Permissions

We have seen in the previous section how separation logic can describe ownership transfer of re-
sources between processes. Heap cells are passed around between resource owners (in our examples
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before processes and semaphores) and the ownership and separation properties guarantee that each
process will only access the resources it owns. This, however, is not enough to express several types
of concurrent programs, in particular those that make use of different processes reading shared data
concurrently. Consider this very simple example in a loosely specified pseudocode language with
pointers, slightly different from our While language we have discussed before [25]:

a := new; b := new; c := new; d = a;
*b += *a; *c += *d;

*a += *b + *c

In this program, we allocate three new heap cells and make d an alias of the first one. Then,
the parallel actions read the same heap cell pointed to by both a and d, but write to separate
locations. After the two forked processes are re-joined, the main process writes to the previously
shared location a. Clearly, the approach of complete ownership for the heap cell pointed to by a
and d is overly conservative, since the parallel processes only read that cell. However, we cannot
compose these 2 processes using the concurrency rule. The way this has been dealt with before was
to assign part of the state as immutable and the rest as mutable [26]. Only mutable state required
separation, while immutable state (here the cell pointed to by a and d) could be shared across
processes. However, state could move from the mutable to the immutable side, but not viceversa,
and so we could not express a temporary read access to a shared state and invalidate it later. It
seem that, since separation logic deals only with exclusivity, we have to find a new way to express
what having access to a resource means in a non-exclusive way.

We introduce permissions as a new mechanism to express the right of a process to "access"
a resource. The classic heap cell assertion from separation logic N 7→ E can be read both as
a predicate asserting the heap cell contains only one cell at location N, containing E, and as a
permission of the current process to read, write or dispose the cell. As the reader might expect,
the interpretation of the empty heap predicate emp is that the current process has no permissions
to access any cells.

If we see the concept of ownership described in the previous section as a total read/write/dispose
permission, it becomes apparent that permissions can be split into an unbounded number of read-
only permissions for any shared resource, thus ensuring passivity. Permissions can be split between
multiple processes as many times as needed (since a read-only resource can be read by an unbounded
number of processes). However, gathering the permissions back to reform the full ownership proves
to be tricky, since either the original resource owner has to know how many read permissions its
total permission has been split into, or the processes the permissions have been handed in to have
to make sure they regather the exact number of permissions they gave out in the first place, before
returning their full slice of the permission. This issue of permission accounting is discussed by
Bornat et al. [27] in their paper, and two alternative strategies emerged from their analysis, both
suitable to some but not all possible applications:

• Fractional permissions (Section 2.4.2) has emerged from the work of John Boyland in 2003
[28] who proposed a model where permissions could be represented as rational number z, with
0 < z ≤ 1. In his model, z = 1 would give exclusive ownership of the resource to the process,
while any other value of z would guarantee read-only access. He correctly pointed out that
separation logic could not support this at that moment, since the concurrency proof rule only
dealt with exclusive access. However, he did suggest CSL could be extended with a predicate
of the form P ⊨ ϵP ∗ (1 − ϵ)P , to allow for separate reasoning about the shared portions
of heap. Fractional permissions suit themselves well to divide and conquer algorithms and
symmetric data structures like binary trees, since permissions can be easily split off at each
level of the call stack/binary tree.

• Counting permissions (Section 2.4.1), proposed by Bornat et al. [27], is an alternative to the
fractional permissions model that suits better applications that have a count of the number
of permissions handed out, like the readers and writers problem. A source permission can
only be split off by the "permission authority" and is annotated with the number of (read)
permissions split off from it. The resulting read permissions cannot be split further, and only
the original source with no split off permissions gives complete ownership of the resource.

We will take a look at both counting and fractional permissions in the upcoming subsections
and will see that the two models are equivalent. However, their expressiveness makes them more
useful for certain applications than others, as we discussed above.
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2.4.1 Counting Permissions

In order to model counting permissions faithfully, we need to distinguish between the "source
permission" and read permissions that have been split off from it. We also have to differentiate
between the original, total permission, which guarantees complete ownership of the resource, and
a permission which lacks some split off parts.

A total permission is denoted by E
07−→ E′. The 0 signifies that no permissions have been

split off from it, making this the total permission. Intuitively, a source permission from which n
read permissions have been split is denoted by E

n7−→ E′. Conforming to our small algebra, a read
permission would then be denoted by E

−17−−→ E′, in order for the addition to model the re-gathering
correctly. However, Bornat et al. [27] choose to use the notation E ↣ E′, to simplify the proof
theory.

E
n7−→ E′ =⇒ n ≥ 0

E
n7−→ E′ ∧ n ≥ 0 ⇐⇒ E

n+17−−−→ E′ ∗ E ↣ E′

Notice how the equivalence on the second line describes the splitting of permissions into a new
read permission and the same source permission with an incremented number of split-offs. The
axioms for allocation, disposal, reading and assignment are as follows:

{emp}x := new(E) {x 07−→ E}

{E′ 07−→ −} dispose E′ {emp}

{E′ 07−→ −} [E′] := E {E′ 07−→ E}
{E′ ↣ E}x := [E′] {E′ ↣ E ∧ x = E}

We observe that only a total permission can write or dispose a cell, and creating a new cells
gives, as expected, total ownership of that cell, while reading a cell can be performed with just a
read permission.

We mentioned above the readers and writers program as a suitable example to illustrate count-
ing permissions. Here is a pseudocode implementation of this paradigm, using conditional critical
regions:

READERS WRITER

with read when true do
if count = 0 then P(write) else skip
count +:= 1

... reading happens here ...

with read when count > 0 do
count -:= 1
if count = 0 then V(write) else skip

P(write)

... writing happens here ...

V(write)

In order to prove this program, we first have to specify the resource invariants. Suppose the
shared resource is the heap cell pointed to by y. Then, the 2 semaphores have the following resource
invariants:

write: if write = 0 then emp else y
07−→ −

read: if count = 0 then emp else y
count7−−−→ −

Using these resource invariants just established, we can prove the pre-conditions and post-
conditions of the P and V operations.
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{emp}
P(write) :

{(emp ∗ if write = 0 then emp else y
07−→ − ∧ write = 1)}

{(emp ∗ y 07−→ −) ∧ write = 1}
write := 0
{y 07−→ − ∗ (emp ∧ write = 0)}
{y 07−→ − ∗ (if write = 0 then emp else y

07−→ − ∧ write = 0)}
{y 07−→ −}

{y 07−→ −}
V(write) :

{y 07−→ − ∗ if write = 0 then emp else y
07−→ −}

{y 07−→ − ∗ (emp ∧ write = 0}
write := 1
{emp− ∗(emp ∧ write = 1}
{emp ∗ (if write = 0 then emp else y

07−→ − ∧ write = 1)}
{emp}

Then the proof for that the readers prologue code releases a read permission inside the program
is as follows. The epilogue performs the opposite action, absorbing the read permission from the
code into the resource owner, with the additional requirement that count must be non-zero on
entry.

{emp}
with read when true do

{if count = 0 then emp else y
count7−−−→ − ∗ emp}

if count = 0 then
emp P(write){y 07−→ −}

else {y count7−−−→ −} skip {y count7−−−→ −}{y count7−−−→ −}
count +:= 1
{y count−17−−−−−→ −}
{y count7−−−→ − ∗ z ↣ −}

{z ↣ N}

{z ↣ N}
with read when count > 0 do

{if count = 0 then emp else y
count7−−−→ − ∗ z ↣ N ∧ count > 0}

count -:= 1
{if count + 1 = 0 then emp else y

count+17−−−−−→ − ∗ z ↣ N ∧ count+ 1 > 0}
{y count+17−−−−−→ − ∗ z ↣ N ∧ count ≥ 0}
if count = 0 then

{y 07−→}V(write){emp}
else {y count7−−−→ −} skip {y count7−−−→ −}
{if count = 0 then emp else y

count7−−−→ − ∗ emp}
{emp}

2.4.2 Fractional Permissions

We detail below the model of fractional permissions as presented by Bornat et al. [27], which is
in agreement with the numerical scheme presented by John Boyland [25]. We note that in his
paper, Boyland mentions a number of alternative models and goes in detail in his presentation of
more complex concepts like fraction multiplication and nested permissions. We see little benefit
in covering these concepts here, as the scope of the project is restricted to the implementation
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of fractional permissions (and perhaps counting permissions) models, and any possible extensions
would be decided at a later stage.

A permission is described by a rational number z, with 0 < z ≤ 1. z = 1 is a complete
permission, allowing read, write and dispose operations to the holder, while any number z < 1
denotes a read only permission. As in the counting permissions model, we model the heap cell
assertion with the level of permission it carries:

x
z7−→ E =⇒ 0 < z ≤ 1

Heaps can only be combined using their separating conjunction if the heap cells with matching
locations point to the same value and their permissions combine arithmetically (they yield a number
z’, with 0 < z′ ≤ 1). The reverse implication states that permissions can always be split in 2 read-
only permissions. Their exact arithmetic values do not aid in reasoning, since any fraction z < 1
represents a read-only permission. Note, however, that all permissions are restricted to positive
numbers, to avoid fractions that arithmetically combine to legal values but which do not possess
a meaningful semantics, such as z = 2, z′ = −1, z + z′ = 1.

x
z7−→ E ∗ x z′

7−→ E ⇐⇒ x
z+z′

7−−−→ E ∧ z > 0 ∧ z′ > 0

Below are the axioms for fractional permissions. Similarly to what we have already seen with
counting permissions, new, dispose and assignment need full permissions, while reading can operate
with any permission.

{emp}x := new() {x 17−→ −}

{E 17−→ −} dispose E {emp}

{x 17−→ −} [x] := E {x 17−→ E}

{E′ z7−→ E}x := [E′] {E′ z7−→ E ∧ x = E}

We can see below a very simple and intuitive example of how we can use fractional permissions
in our reasoning for an example similar to the pointer aliasing problem described above:

{emp}
x := new();

{x 17−→ −}
[x] := 7

{x 17−→ 7}
{x 0.57−−→ 7 ∗ x 0.57−−→ 7}

{x 0.57−−→ 7} {x 0.57−−→ 7}
y := [x]− 1; z := [x] + 1;

{x 0.57−−→ 7 ∧ y = 6} {x 0.57−−→ 7 ∧ z = 8}
{x 0.57−−→ 7 ∗ x 0.57−−→ 7 ∧ y = 6 ∧ z = 8}

{x 17−→ 7 ∧ y = 6 ∧ z = 8}
dispose x;

{emp ∧ y = 6 ∧ z = 8}

The example presented by Bornat et al [27] to illustrate the usefulness of the fractional permis-
sions model is the one of lambda term substitution. We remind the reader of the syntax of lambda
terms: T ::= Lam v T | App T T | Var v, and define substitution in the obvious way:

(Lam v′ β)[τ/v] =

{
Lam v′ (β[τ/v]) v ̸= v′

Lam v′ β v = v′

(App ϕ α)[τ/v] = App (ϕ[τ/v]) (α[τ/v])

(Var v′)[τ/v] =

{
Var v′ v ̸= v′

τ v = v′
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Following is a possible heap representation as an abstract syntax tree for a lambda term pointed
to by x with access permission z. The choice of the 0, 1 and 2 integers to differentiate between
types of nodes is arbitrary.

AST x (Lam v β) z = ∃b.(x z7−→ 0, v, b ∗AST b β z)

AST x (App ϕ α) z = ∃f, a.(x z7−→ 1, f, a ∗AST f ϕ z ∗AST a α z

AST x (Var v) z = x
z7−→ 2, v

The algorithm is presented in the snippet below. The copy function is specified by the triple
{AST y τ z} x := copy y {AST y τ z ∗ AST x τ 1}, while the substitution function has the
specification {AST x τ 1 ∗ AST y τ ′ z} z := subt x y v {AST z (τ [τ ′/v] 1 ∗ AST y τ ′ z)}.

subst x y v =
if [x] = 0 then

if [x + 1] != v then
[x + 2] := subst [x + 2] y v

else skip
x

elsif [x] = 1 then
([x + 1] := subst [x + 1] y v || [x + 2] := subst [x + 2] y v);
x

elsif [x + 1] = v then
dispose x; dispose(x + 1);
new(2, copy y)

else
x

The part of the proof that highlights the use of fractional permissions is the application case
([x] = 1), for which we should be able to prove the following triple:

{AST x (App ϕ α) 1 ∗AST y τ ′ z}
[x+1] := subst [x+1] y v ||

[x+2] := subst [x+2] y v

{AST x (App (ϕ[τ ′/v]) (α[τ ′/v])) 1 ∗AST y τ ′ z}

The proof requires the permission on the substituting lambda term to be split, in order for the
parallel composition to proceed. That is, we need an equivalence of the form AST y z (z+z′) ⇐⇒
AST y τ z ∗ AST y τ z′. Using the rule of consequence from Hoare logic with this equivalence
and after applying the frame rule once, we arrive at the following proof obligation:

{x 7→ 1, f, a ∗AST f ϕ 1 ∗AST y τ ′ (z/2) ∗AST a α 1 ∗AST y τ ′ (z/2)}
[x+1] := subst [x+1] y v ||

[x+2] := subst [x+2] y v

{x 7→ 1, f ′, a′ ∗AST f ′ (ϕ[τ ′/v]) 1 ∗AST y τ ′ (z/2) ∗AST a′ (α[τ ′/v]) 1 ∗AST y τ ′ (z/2)}

The proof of this triple is straightforward, but the important point to be evidenced is that,
because the proof uses fractions, we do not need to keep track of how many times each permission
has been split. Indeed, the algorithm is perfectly symmetrical, and each permission can be split
up further, as many times as needed. This showcases the clear advantages in elegance that the
fractional permissions model possesses over the counting permissions one in this particular example,
and illustrates how counting can suit some problems (eg. ones involving an authority keeping track
of the number of permissions given), whilst fractions can suit others, such as divide and conquer
algorithms and embarassingly parallelisable data structures.
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2.5 Gillian

Gillian [10, 11, 12, 13] is a program symbolic execution analysis tool based on separation logic,
developed at Imperial College London by the Verified Software Group. Implemented in OCaml,
Gillian brings to life the goal of verifying full specification of industry scale production code, as
was the case with the AWS SDK mentioned in Section 1.1. Unlike other similar tools, Gillian is
parametric in the memory model of the target language, meaning in order to instantiate Gillian to
a new language, all a developer has to do is:

• Provide a concrete and symbolic memory model for the target language of choice

• Implement a compiler from the target language to Gillian’s intermediate language, GIL.

Figure 2.3: Gillian architecture. From [12].

So far, as mentioned before, Gillian has been in-
stantiated to three target languages: C, JavaScript,
and WISL (While for Separation Logic), and on-
going efforts are in place for an instantiation to
Rust. Section Section 2.5.1 restricts our attention
to WISL, since it the choice of target language for
our project.

There are three modes of operation that Gillian
supports:

• whole-program symbolic testing, in which pro-
grammers write tests where they explicitly de-
clare certain variables as symbolic and use
first-order logic assertions that they want to
be verified. Gillian then attempts to find pro-
gram traces that invalidate those assertions
and report such traces and their constraints
to the programmer.

• verification, where programmers annotate
their functions with separation logic asser-
tions, loop invariants, pre-conditions and post-
conditions. In turn, Gillian verifies if these as-
sertions are satisfied by the body of the func-
tion.

• bi-abduction, in which the programmer pro-
vides a program with no annotations or unit
tests, and Gillian infers separation-logic assertions that the program satisfies, up to a certain
bound. If bugs are found in this process, Gillian generates a bug report for the programmers
to inspect.

The obvious limitation of Gillian that this project is trying to address is its ability to verify only
sequential programs. As the prevalence of programs making heavy use of concurrency paradigms
is increasing, the goal for Gillian is to become a more robust tool and provide a more complete
verification support to programmers. We trust the choice to implement such support for WISL
is apparent to the reader, given the innovative nature of the project, the simplicity of the target
language and the available time for the Master’s project.

2.5.1 WISL

Designed to be a simple while language for educational purposes, WISL is one of the three languages
to which Gillian was instantiated. Its memory model consists of contiguous blocks, uniquely
identified by a memory location, and contains two components: a list of consecutive cells mapping
each offset from the source memory location to a value (the "contents of the block") and a natural
number, identifying the bounds of the block.

We give an informal description of the WISL grammar below. Statements in can be one of:

18



• x := E, the assignment statement, which evaluates the expression E and assigns its result to
the variable x in the variable store,

• x := new(n), which allocates a new block of n contiguous cells, setting its bound to n,

• delete(x), which deallocates the block of memory pointed to by x if and only if x actually
points to the start of that memory block and the bounds are known,

• x := [E], the reading of a heap location pointed to by the value of the expression E. The
result of the reading operation is stored inside variable x,

• [E1] := E2, which writes the result of evaluating expression E2 to the heap cell pointed to
by E1,

• skip, which is the no-op of WISL, reducing just to itself,

• while (b) S, which executes statement S as long as condition b is true (just like while loops
in a regular iterative language)

• if (b) S1 else S2, the conditional statement, which executes statement S1 if and only if
the condition b evaluates to true, otherwise executes statement S2.

To illustrate the capabilities of WISL, we include below some short code snippets of examples
of WISL programs from inside the Gillian repository.

function llen(x) {
if (x = null) {

n := 0
} else {

t := [x+1];
n := llen(t);
n := n + 1

};
return n

}

Listing 2.1: List length in WISL

function tree_dispose(x) {
if (x != null) {

y := [x+1];
z := [x+2];
u := tree_dispose(y);
u := tree_dispose(z);
delete(x)

} else {
skip

};
return null

}

Listing 2.2: Binary tree dispose in WISL
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Chapter 3

The Current State of Gillian

Adding concurrency to Gillian did not require reworking the entire codebase from the core. The
onion-like structure of the codebase, due to the parameterisation in terms of the memory model,
meant that most of the work was centered around the wisl instantiation and kept local: extending
the language with a parallel composition operator, adding floating point arithmetics to operate
with fractional permissions, rewriting the memory actions to make correct use of the permissions
etc. However, the fact that concurrency is a completely new concept to the entirety of the Gillian
infrastructure meant that the core part of Gillian (working on the GIL intermediate language) did
not have support for concurrency, so new concepts had to be blended into the quite sizeable already
existing legacy codebase. Henceworth, an overview of the architecture of the tool from a software
engineering point of view should provide the reader a good understanding of the complexity of the
task at hand, and should make the engineering decisions and approach taken during implementation
apparent and natural. It was the complexity of the codebase, coupled with my unfamiliarity with
the Ocaml language, in which Gillian is written, that made the initial part of the project particularly
challenging, having spent around two weeks just scanning the code, gaining a reasonable level of
understanding of its structure and the interactions happening, taking notes and making plans
for how the new implementation would be written, what parts of the code had to be modified
or extended and how we could employ the best software engineering practices, to make the code
flexible for any future additions.

3.1 Folder Structure

Gillian has quite a simple folder structure for a tool of its complexity, which lies rather in the
level of abstraction at which it operates internally. Under the root folder, there is /GillianCore,
which contains the core functionality of the tool, running at the level of GIL code; the three folders
corresponding to the three instantiations of Gillian: /Gillian-C, /Gillian-JS and /wisl, the
/debugger-vscode-extension folder which contains the code of the Gillian debugger, developed
by Nat Karmios in a previous Master’s project, and a number of other folders used for automated
testing and CI/CD integration. We will restrict our attention to the /Gillian-Core and the /wisl
directories.

3.2 Gillian-Core

/Gillian-Core contains the engine that powers the verification process of our tool. Whether it
runs whole-program symbolic testing, verification or bi-abduction, the /engine sub-directory is
responsible for analysing the program by keeping and updating the state through symbolic exe-
cution, consuming preconditions of the functions being verified and unifying against the expected
post-conditions. In order for the tool to be parametric in the memory model of the target language,
all of this work is performed on the GIL intermediate language, so a GIL parser is invoked to build
an abstract syntax tree (henceforth AST) before symbolic execution begins. Adding concurrency
capabilities to Gillian meant adding a language construct to GIL that can express the semantics of
concurrent execution. Therefore, the parallel composition operator was first added to the syntax
of the language (under /GIL_Syntax) and then interpreted appropriately by the engine.
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3.2.1 General, Concrete and Symbolic Semantics

Figure 3.1: General, concrete and sym-
bolic semantics file structure.

The engine is, perhaps unintuitively, a very high-level
piece of code. Since we have multiple modes of execu-
tion, the semantics of the target language had to be gen-
eralised into a common interface that can be used by each
one of them, depending on the needs. As a result, the
general_semantics directory includes the common in-
terfaces for the memory state and the variable store, and
pieces of functionality that are common across all modes
of execution (call stack, responsible for recording func-
tion calls, substitution, used for replacing variables in-
side logical assertions when unifying against the program
state, val, which contains an interface of utility functions
used for manipulation of GIL values, g_interpreter, un-
der general, omitted here for brevity, which implements
the abstract interpreter for the GIL language), or that is
too tied to the engine itself to be extracted in a separate
package (recovery_tactic, used in bi-abduction). The
interfaces defined by the general semantics are then par-
ticularised by their counter-parts for concrete and sym-
bolic semantics. However, there are two interfaces that
are specific to the type of semantics and which are left
unimplemented: the concrete and symbolic memories. In
fact, these are used by their respective state implementa-
tions to execute memory actions. To instantiate Gillian
to a target language, the developer would then have to
implement both of these interfaces for the memory model
of their target language of choice.

The way in which the general semantics interfaces are
implemented by their concrete and symbolic counterparts
is comparable to how an interface is implemented by a
concrete class in a traditional object-oriented language.
OCaml uses modules and signatures to capture those con-
cepts. A module type S is most often a signature con-
sisting of function interfaces and nested signatures. A
module can then have type S, which places an obligation
on the programmer to implement the functions specified
in signature S. Like any class we could see in Java, Kotlin
or any other object-oriented language, a module can be
instantiated by providing instances of its dependencies,
in the same way as calling a constructor method of a
class, passing the required arguments. As an example, Listing A.1 and Listing A.2 highlight the
interface (signature) State, its extension for symbolic states (SState.ml) and the module im-
plementing that interface, intuitively named Make. We observe the dependency on a module of
type SMemory.S, meaning in order to build a symbolic state, we require a symbolic memory model
(i.e. a module that implements the SMemory.S interface. This is used inside the execute_action
function, which calls into the implementation of the symbolic memory model, passing along the
symbolic heap, path constraint and arguments. In fact, the implementation of this idea is exactly
what makes Gillian parametric in the memory model, as we shall see later.

There is one very important part of the engine that we have not yet mentioned, and can be
found under the Abstraction directory. It contains infrastructure that is used particularly for
verification, which is exactly the mode of execution this project is targeting. The verification
engine uses a unifier, which is responsible for unifying a separation logic assertion against the
program state. The predicate state (PState) is another implementation of the state signature,
which, as opposed to the other two, is designed for predicate abstraction (handling of user defined
predicates) compositionality (handling of core predicates such as a cell assertion and the unification
process, through the unifier). These are two very important properties that differentiate verification
from whole-program symbolic testing, since in the latter all function calls are inlined and executed
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symbolically without specification, with the purpose of invalidating assertions. In verification, we
are concerned with checking a function’s behaviour against its specification, written in terms of
separation logic assertions. The program state is the place where custom functionality will be added
for handling the parallel composition operator, by verifying the specifications of all the function
calls inside the par block. This will very much mirror the run_spec function, whose signature
is given in Listing A.43, which unifies the current state against the function’s pre-condition, and
produces the post-condition in the state framed off by the unifier. The challenge, however, will be
to perform the unification for multiple function calls and maintain the concurrency semantics (see
Section 4.3).

Finally, bi-abduction uses its own instance of the state signature interface, called BiState. We
will not talk further about bi-abduction, as the details of its working mechanisms fall outside the
scope of this project.

3.2.2 The GIL language

GIL is the intermediate language on which the core part of Gillian functions. Every target language
program gets compiled to an equivalent version of that program in GIL. The GIL code then gets
parsed and mapped to an AST structure, which is then interpreted by the symbolic execution
engine.

GIL is meant to be a lower level language than any target language we might instantiate Gillian
to, and for a very obvious reason. As developers of Gillian, we would want the tool to be capable of
verifying programs in as many target languages as possible, all of them with different particularities
and characteristics. For example, C has pointer arithmetics, which we cannot find in JavaScript. C
is a statically typed language, whereas JavaScript is dynamically typed. WISL itself allows direct
accesses on any heap memory location that has been allocated, similar to pointer dereference in
C, but with no correspondent in JavaScript. In order to maintain modularity, we would like the
core engine of Gillian to operate independently of what the target language is. As a solution, we
compile each target language to a less complex, more expressive language, somewhat similar to
assembly, capable of translating each describing each one of these particular idioms.

Another key requirement that GIL has to serve is the capability to run logic commands. As
function specifications are written in terms of separation logic assertions, these have to be expressed
at the level of the core language as well, in order to be unified against the state. In particular,
complex predicates might need to be unfolded before they can be used directly to check the validity
of executing a command in a particular context. For example, the list predicate below has two
clauses, one where variable x is null, corresponding to the empty list case, and one where variable
x holds a memory location pointing to the first element of the list and the pointer to the next,
recursively applying the list predicate. In symbolic execution, such a predicate would have to be
unfolded and both cases would be explored independently.

predicate list(+x, alpha) {
(x == null) * (alpha == nil);
(x -> #v, #z) * list(#z, #beta) * (alpha == #v::#beta)

}

Listing 3.1: List predicate in WISL

Conversely, the symbolic execution engine needs to be able to branch on logical formulae,
exploring both the true and the false cases of a formula, in the same way that an if-then-else
construct would be explored. Indeed, both of these cases are treated as Logic commands in GIL.

Finally, it is necessary to assume facts about the state of the program or the type of a variable,
and to assert that a condition holds at any moment of time. Listing 3.2 shows the full definition of
the logic command type. Folding and unfolding of predicates, loop invariants, lemmas and variable
binding (SepAssert) are dealt with using an SLCmd.t node (described in Listing 3.3) inside the SL
constructor. The FreshSVar command creates a new symbolic variable, and the Macro command
is analogous to C-like macros, and are of no further interest to this project.

type t = TypeDef__.lcmd =
| If of Expr.t * t list * t list (** If-then-else *)
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| Branch of Formula.t (** branching on a FO formula *)
| Macro of string * Expr.t list (** Macro *)
| Assert of Formula.t (** Assert *)
| Assume of Formula.t (** Assume *)
| AssumeType of Expr.t * Type.t (** Assume Type *)
| FreshSVar of string (** x := fresh_svar() *)
| SL of SLCmd.t

Listing 3.2: GIL logic commands

type t = TypeDef__.slcmd =
| Fold of string * Expr.t list * folding_info option (** Fold *)
| Unfold of string * Expr.t list * unfold_info option * bool (** Unfold *)
| GUnfold of string (** Global Unfold *)
| ApplyLem of string * Expr.t list * string list (** Apply lemma *)
| SepAssert of Asrt.t * string list (** Assert *)
| Invariant of Asrt.t * string list (** Invariant *)
| SymbExec

Listing 3.3: GIL Separation Logic (SL) commands

Perhaps the most important type of command is the local action (LAction). It is a command
that, when interpreted, calls the state to evaluate a certain action against it. What the action is
depends on the target language, therefore the programmer can manipulate the way in which their
target language is meant to be evaluated by defining types of local actions (i.e. define the memory
model of the language). In WISL, as we shall see later, these actions refer to the manipulation of
heap cells (get/set/remove), their allocation and disposal and their bounds.

Listing A.3 describes the type of GIL commands. This is the type we will need to extend with
the parallel composition operator to be able to interpret concurrent programs.

3.2.3 The GIL interpreter
The GIL interpreter is the central part of the core engine, responsible for walking the AST and
exploring all paths of the program through symbolic execution. Due to the requirement to support
multiple modes of execution (whole-program symbolic testing, verification and bi-abduction), it
is a heavily customised piece of code. The particularisation depending on the specific mode of
execution is performed not through the interpreter, but through the state. Thus, we use the
symbolic state for whole program symbolic testing, the predicate state for verification, and the
bi-state for bi-abduction, as mentioned in Section 3.2.1.

The part of interest in the interpreter is the Evaluate_cmd module, with an evaluation function
for each type of command. This is where we will add our eval_par_call method, which will handle
the evaluation of the new parallel composition operator. Function f then pattern matches on each
command based on its type and calls the appropriate handler. Below is a (simplified) code snippet,
to illustrate the idea.

module Evaluate_cmd = struct
let eval_assignment x e eval_state = ...
let eval_laction ~branch_path x a es eval_state
(* TODO: let eval_par_call functions eval_state = ... *)

let f (cmd : int Cmd.t) eval_state =
match cmd with

| Assignment (x, e) -> eval_assignment x e eval_state
| LAction (x, a, es) -> eval_laction ~branch_path x a es eval_state
(* TODO: | Par (functions) -> eval_par_call functions eval_state *)

end

Listing 3.4: Function f, pattern matching on the given command
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3.3 The WISL memory model

Figure 3.2: The wisl instantiation file
structure

The WISL instantiation is found under its own folder
called wisl, which contains the syntax of the language,
a WISL parser (written using the Menhir parser gener-
ator library for OCaml) and a compiler to GIL, and the
semantics of the language, implementing the SMemory sig-
nature interface mentioned in Section 3.2.1. This is where
the majority of the added code will find itself. Although
not reworked from scratch, a considerable percentage of
the code here had to be highly adapted and extended,
as WISL had a number of limitations that had to be
addressed in order to support concurrency and the frac-
tional permissions model:

• The local actions used for loading from and storing
to memory were the same as the producers and
consumers (see Section 3.3.1) used to manipulate
logic assertions.

• The current model of heap cells did not support
permissions (naturally, as there was no need for
them in purely sequential code).

• A boolean flag specifying the expected behaviour
during unification was not propagated through the
execution of some actions, which caused problems
when evaluating a parallel composition and check-
ing against a post-condition (variables were iden-
tified to be equal as part of the path constraint,
but this was not used when unifying the assertions,
causing unsound results).

• There was no support for floating point arithmetics,
which was crucial, as permissions were numbers be-
tween 0 and 1.

Each one of these limitations was addressed in turn, with the goal in mind of keeping the code
maintainable and flexible and applying good software engineering practices.

3.3.1 Producers and Consumers
As mentioned before, the essence of function verification in Gillian is symbolically executing the
function body assuming its pre-condition and, under all explored paths, reaching a state satisfying
the post-condition. This goal is achieved in Gillian through an infrastructure based on producers
and consumers. A producer of a logical assertion is a local action that will update the abstract state
in such a way that said assertion holds. A consumer removes (frames-off) the bits of the state that
form the logical assertions. These producers and consumers are what constitutes WISL’s memory
model and powers the verification of WISL programs.

Each core predicate of a target language (including WISL) has a corresponding producer and
consumer. Luckily, WISL has only two such core predicates:

• The cell predicate, corresponding directly to a cell assertion in separation logic. cell (loc,
ofs, val) is equivalent to the separation logic assertion (loc + ofs) 7→ val, meaning at
memory location loc there is a block, and inside that block, at offset ofs, is stored a value val.

• The bound predicate, bound (loc, b), which says that the block at location loc has bound
b (possibly None).

These two core predicates are compiled to GIL as GA assertions (GilAssertions), which are the
norm for representing core predicates in any target language. These assertions have in parameters,
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which are the parameters that are known when calling the predicate (marked with a + in WISL),
and out parameters, which are the ones we learn from the ins by unfolding the predicate. In
Listing 3.1, x is the in parameter and alpha is the out parameter we learn (it is the empty list if x
is null, and a list with the head v, when x points to v). Listing A.5 shows how the cell and bound
assertions are created. This code will need to be adapted to support permission argument for both
types of assertion. We leave the question of whether this new parameter will be an in or an out
unanswered for the time being.

Blocks and the SFVL

Blocks are represented by a very simple data type, allowing freed and allocated blocks, that are
made of a symbolic field-value list, or SFVL (similar to a contiguous array in a language like C,
except indexes and values are symbolic expressions) and an optional integer bound. The block
type and value type of the SFVL will have to be extended with a field to model permissions of the
bound assertion (in the case of the block) and of the cell assertion (for the SFVL).

type t = Freed | Allocated of { data : SFVL.t; bound : int option }

Listing 3.5: The type of blocks, pre-project

(* SFVL.ml *)
type field_name = Expr.t
type field_value = Expr.t

Listing 3.6: The key and value types of SFVL, pre-project

The SFVL is a very important data structure, because it contains all the cells that have been
allocated in that block, and their corresponding values. In order to access a cell in the heap, one
must first retrieve the block at the specified location, then check that the offset is in bounds and
index the SFVL structure at that offset to retrieve the symbolic value. Of course, during symbolic
execution, we might learn information about our symbolic variables that might impact the result
of insertion and retrieval operations into the SFVL. For this reason, the interface offers functions
that take equality tests, in order to retrieve / add the value at a key that is equal (as far as the
path constraint can determine) to the one passed by parameter (see Listing A.6).

Finally, during unification, it is possible that memory locations that were assumed to be different
(and thus hold different blocks in the heap) have now been discovered to be equal. If this happens,
the two blocks must be merged. In the current state of WISL, merging to SFVL blocks is equivalent
to choosing one of them, as they are guaranteed to be identical if their locations coincide (see
Listing A.7 for the implementation). However, this is no longer true when dealing with permissions,
as we shall see later.

Local Actions

Throughout the project, a constant fact of life that we had to work around, as in any software
engineering project, was working with legacy code. Adapting already existing code required deep
understanding of its mechanism, and, while this was needed and achieved through a combination
of mental analysis of the code and repeated trial and error, some particular details had to be
learned and accepted, as changing them would have diverted considerably from the ultimate goal
of the project. As a result, understanding the engineering aspects behind how the producers and
consumers worked were not only the starting point of the project, but also the source of particular
bugs we encountered along the way.

The WISL state consumer is split between two different local actions: get, which retrieves
the portion of the heap required by the assertion, and rem, which removes it from the state.
As mentioned, there is a consumer for both core predicates, so we have four local actions in
total: GetCell, RemCell, GetBound and RemBound. GetCell finds the block at the specified
memory location, failing with a MissingResource error, if the block does not exist, or with a
UseAfterFree error, if the block was previously freed. If the block exists, it checks for a possibly
out of bounds access, which happens if the offset is larger than the bound, and in that case returns
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an OutOfBounds error. Note that this is not a validity, but a satisfiability check that is delegated
to Gillian’s SAT solver, Z3. Since Gillian is over-approximating, we must fail if the access may
be out of bounds (if there is at least one symbolic execution trace leading to such an access). If
all these checks succeed, GetCell accesses the block and returns the location, offset and value
read from the heap, or a MissingResource error, if the cell is not there. RemCell also checks for
missing-resource and use-after-free errors, and if they do not happen, it removes the cell at the
specified offset and returns unit (note there is no need to check for an out-of-bounds access, as the
check was already performed by the getter). Prior to the project, GetCell was also used to handle
loading from the heap, as the two were functionally equivalent. Listing A.8 and Listing A.9 show
the handlers for these local actions before the project. These are part of the wislSHeap.ml file,
and they are called from the appropriate handlers inside the symbolic memory (wislSMemory.ml),
for better modularity and isolation. One particularity of the mechanisms in which GetCell and
RemCell are used that caused unfortunate bugs was that the values returned from GetCell must
be the exact parameters that RemCell expects, in that exact order, as they are passed directly from
one to the other. This invariant had to be kept along the development of the project. GetBound
and RemBound behave analogously, except they do not need to checks for out-of-bounds errors,
since they retrieve/remove the bounds from the block.

The producers for WISL core predicates are called SetCell and SetBound. They behave in
the exact same way as their corresponding get consumers, except instead of returning the value
in that specific cell (or, respectively, the bound of the specific block), they replace them with the
value passed as a parameter and return unit. Similarly to GetCell explained above, before the
project, SetCell was also used to handle stores to the heap, due to their equivalence with the cell
assertion producers. The code for SetCell prior to the project can be found in Listing A.10.

The core part of the project was extending these consumers and producers with fractional
permissions by first coming up with a correct semantics that would describe them in this context
and then implementing these semantics in Gillian. Separate local actions needed to be written
from scratch for load and store operations, as their semantics in the context of permissions differ
those of from state consumers and producers (see Section 4.1).

3.3.2 WISL to GIL compiler
The compiler from WISL to the intermediate language GIL is found in the wisl2gil.ml file. It
is merely a collection of functions compiling each type of WISL AST node in turn (expressions,
logical expressions, statements, loop invariants etc.). Special attention had to be given to the
compilation of statements: firstly, when reworking the local actions performed for loading and
storing and for adding permissions support for the "points to" assertion, including floating point
arithmetics, and secondly, when adding the parallel composition operator. These changes were
mostly straightforward, as the AST nodes would most often have direct correspondents in GIL (for
par and floating point operators), and the heavy lifting of permissions semantics was done inside
the symbolic memory. Short simplifications of the the logic that had to be extended for compiling
binary operators and statements can be found in Listing A.11 and Listing A.12.

3.4 Summary
This section has provided a quick overview of the current state of Gillian’s architecture. We
learned that Gillian is made of a core engine, responsible for running three modes of execution
(whole-program symbolic testing, verification and bi-abduction), and each mode of execution uses
a specific implementation of the State interface. We saw how the Gillian interpreter handles each
type of GIL command and calls into the state passed to its module to perform side-effects, which in
turn calls into the implementation of the memory model (in our case wislSMemory). Furthermore,
we learned that the predicate state (PState) is used for abstraction (handling of user defined
predicates) and compositionality (handling of core predicates), which is what verification of a
function’s pre- and post-condition is concerned with, and will therefore be the place to extend with
the implementation of the parallel composition operator. Finally, we understood how blocks of
data are represented, became familiar with producers and consumers of core assertions and shortly
explored the compilation of WISL nodes to GIL commands. The next chapter will use the expertise
summarised here and will fill in the gaps left in our current presentation, by implementing support
for shared memory concurrency in the form of fractional permissions.
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Chapter 4

Implementing Fractional Permissions

This chapter will explore the bulk of the work undergone during this Master’s project, which lead to
the achievement of building a verification tool capable of supporting shared memory concurrency.
We will explore all the steps we took throughout the time we had available, all the implementation
decisions that were made and their consequences, and bugs we had to overcome. We shall discuss
the relevant parts of the architecture that were modified, first from a theoretical point of view, in
order to understand the semantics of the new, extended WISL language, WISLFP and its memory
model, and then the technical details of implementing the theory of fractional permissions within
the tool.

Before we dive deep into the details of how WISLFP works, it is worth mentioning that the
new memory model was built entirely on the skeleton of the old one. In fact, under the root
directory of the Gillian codebase, there is now a folder called /wisflp, which was initially just a
copy of the original /wisl folder. As a result, a lot of code will be duplicated between the two
packages. The intent was for the new WISLFP implementation to replace the old WISL, but, for
administratory reasons, the Gillian development team decided to postpone this replacement and
have both variants of the language available in parallel.

4.1 Producers and Consumers

Section 3.3.1 introduced producers and consumers of core assertions in WISL and explained their
working mechanism. Now it is time to explore their new semantics in the context of fractional
permissions.

4.1.1 Theory

From a theoretical point of view, we can encompass the semantics of the new producers and con-
sumers with fractional permissions using Hoare triples. We will respect the notation of separation
logic cell assertions for their producers and consumers, with the intention that the reader under-
stands the absence of the offset variable in the GetCell, RemCell and SetCell as a way to simplify
the notation. We will, however, be loose with the expression of bound assertions, since they have
no correspondent in separation logic. We will also, perhaphs unintuitively, provide derivation rules
in erroneous cases. This is to highlight the type of error that the memory model would throw in
those specific circumstances. We consider the benefit of completeness and preciseness of the theo-
retical presentation before showcasing the implementation to outweigh the cost of a less standard
approach of representing errors as if they were valid heap states. We trust the reader understands
that, when such an error occurs in practice, there can be no talking of a valid heap state, and
execution would instead stop immediately.

As consumers in Gillian are split between get and rem operations, we treat each one individually.
Getcell takes as parameters the location in the heap we want to access (in practice, accompanied
by an offset) and the permission associated with the predicate it consumes (we call this the outer
permission). It has actually no effect on the state of the heap in the successful case. It exists
merely as a way to check for MissingResource (in the case the cell does not exist), UseAfterFree
and OutOfBounds errors, and to verify that the outer permission is always at most equal to the
permission inside the heap (henceforth we will call this the inner permission). We will delay

27



the presentation of the first three erroneous cases for Section 4.1.2, as they are more reliant on
the internal way of representing cells in Gillian, and there is no real value in expressing them
using Hoare triples. The successful case is actually just a logical equivalence between two heap
states, while the failure case throws a MissingResource error, with the missing permission as an
argument. It is worth mentioning that, in all future derivation rules, l 07−→ v is equivalent to emp.

q1 ≥ 0

{l q1+q27−−−−→ v} getcell(l, q2) {l q17−→ v ∗ l q27−→ v} (could also be written as an equivalence)

q2 > q1

{l q17−→ v} getcell(l, q2) {Error(MissingResource(q2 - q1))}

The second part of the consumer is RemCell. Semantically, its job is to remove the outer
permission of the cell from the heap, leaving the remaining permission there, if any (as before, we
treat a cell with 0 permission as the empty heap, and we will see the implementation does, too).
Note the way in which the heap in the pre-condition has been split, as per the equivalence in the
successful case of GetCell.

q1 ≥ 0

{l q17−→ v ∗ l q27−→ v} remcell(l, q2) {l q17−→ v}

The producer for the cell assertion, SetCell, works by adding the cell with its value and the
outer permission in the heap, if the cell was not already there, or if it was, add the outer and the
inner permissions together. In addition, we learn that the value in the heap and the one passed to
the producer are equal, and that the two permissions sum to a number at most equal to 1. The
use of the word learn will find its importance once we discuss the practical implementation.

{l q17−→ v} setcell(l, w, q2) {l q1+q27−−−−→ v ∗ (v .
= w) ∗ (q1 + q2 ≤ 1 ∧ emp)}

{emp} setcell(l, w, q) {l q7−→ w}

The consumers and producers for the bound core assertions behave in the exact same way, at
the theory level. Below are the derivation rules for them. Analogous to cell assertions, bound
assertions with a permission of 0 are equivalent to emp.

q1 ≥ 0

{bound(l, b, q1 + q2)} getbound(l, q2) {bound(l, b, q1) ∗ bound(l, b, q2)}

q2 ≥ q1

{bound(l, b, q1)} getbound(l, q2) {Error(MissingResource(q2 - q1))}

q1 ≥ 0

{bound(l, b, q1) ∗ bound(l, b, q2)} rembound(l, q2) {bound(l, b, q1)}

{bound(l, b1, q1)} setbound(l, b2, q2) {bound(l, b1, q1 + q2) ∗ (b1 .
= b2) ∗ (q1 + q2 ≤ 1 ∧ emp)}

{emp} setbound(l, b, q) {bound(l, b, q)}

Allocating and disposing of cells is performed in the intuitive way: newly allocated cells will
have full permission, whereas disposing of a block requires full permission on that block in the
heap and the bound to be known and have full permission as well (otherwise, some other thread
might be reading from a cell that we disposed of, resulting in a UseAfterFree error. We will use
a loose notation for a block of n cells, for the sake of brevity.

{emp} x := new(n) {(x+ i)
17−→ null(i ∈ 0, n− 1) ∗ bound(x, n, 1)}

{(x+ i)
17−→ mi(i ∈ 0, n− 1) ∗ bound(x, n, 1)} dispose(x) {emp}
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Finally, since loading and storing is no longer handled by consumers and producers of cell
assertions, we need separate local actions for both of them. The semantics are showcased below.
Unlike producers and consumers, loading and storing do not have an outer permission parameter,
as there is no logical assertion being produced or consumed that would contain such a permission.
Rather, these local actions are accessing the heap and reading from / writing to the location
specified. As a result, it is the inner permission which determines whether a load / store action
is valid, in the way one expects: we require full permission to write to a heap location, whereas
reading can be performed with a fractional one. This also means that loading can never fail
due to insufficient permissions, but only in the "traditional" way (i.e. with MissingResource,
UseAfterFree or OutOfBounds errors, which we are not interested in from a theoretical point of
view). Of course, a permission q of 0 is, as mentioned before, equivalent to the absence of the cell,
so we treat that case as an instance of the MissingResource error in the context of a missing cell.
The store, in addition to all the erroneous cases shared with load, can also fail due to insufficient
permission, if the permission of the heap cell assertion is less than 1. This corresponds to the
case where, presumably, another thread has acquired partial ownership of this resource and is
reading from it, so writing to that same location would induce a data race and trigger undefined
behaviour. This is the clear way in which concurrent separation logic with fractional permissions
ensures correctness of the program, by preventing data races from ever occurring.

q > 0

{l q7−→ v} n := load(l) {l q7−→ v ∗ (n .
= v)}

{l 17−→ v} store(x, w) {l 17−→ w}

q < 1

{l q7−→ v} store(x, w) {Error(MissingResource(1 - q))}

4.1.2 Implementation

The new WISL memory model (WISLFP) was built on the foundation of the old model, making
adaptations when necessary or writing new functionality from scratch, as was the case for the
load and store local actions. We will restrict our attention for now only to the implementation
of memory blocks and local actions, spread across different files in the semantics directory inside
wislfp, the most notable being wislSMemory.ml and wislSHeap.ml.

Blocks and the SFVL

Firstly, we needed a new way to model memory blocks, since now the bound assertion of the block
and every cell the block contains have a permission associated with them. As a result, our new type
for representing blocks has an optional pair of an integer parameter (the bound) and an expression
parameter (the permission on the bound assertion).

type t =
| Freed
| Allocated of { data : SFVL.t; bound : (int * Expr.t) option }

Listing 4.1: The type of blocks, after the project

The SFVL now has to keep a value and a permission in each cell, so we changed the field_value
type accordingly.

type field_name = Expr.t
type field_value = { value : Expr.t; permission : Expr.t }

Listing 4.2: The key and value types of SFVL, after the project
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The union of two blocks corresponding to the same location now has a different semantics.
In the context of permissions, when the symbolic execution engine discovers that two memory
locations are equal and has to unify the memory blocks associated with them, the cells in those
blocks might each hold a fraction of the full permission. In order to recreate the original heap, we
cannot choose either of the two blocks anymore. Instead, we have to add the permissions of the
cells in the two blocks and produce a block with cells holding the original value (which is still the
same in both blocks) and the sum of the permissions. The algorithm can be found in Listing A.13.

To imagine this scenario happening, take function f written below that consumes half of the
cell at a specific memory location. The notation #x -> (0.5: #v) means #x points to a cell
containing the value #v with a permission of 0.5. (note that variables with names starting with
a # character are logical, whereas all others are program variables). When the function call is
interpreted, the consumer of the function’s pre-condition will remove half the permission on that
cell. As a result, the cell in the heap is left with a permission of 0.5. The function will not leak
resources and thus include the same cell with the 0.5 permission in the post-condition as well. The
producer of the post-condition will produce the cell assertion with the 0.5 permission, hopefully
also finding the partial ownership of that cell that was left in the heap and adding them together,
to re-establish the full permission.

{ (x == #x) * (#x -> (0.5: #v) }
function f(x) {
...
}
{ (#x -> (0.5: #v) }

Listing 4.3: Function f, using partial ownership of a resource

However, in Gillian, the unification process against the pre- or post-condition of a function
is performed according to the unification plan of that pre- or post-condition. Unification plans
are created before symbolic execution starts, so are fixed during execution. Since the unification
plans for the pre- and post-conditions of the same function are independent, Gillian does not use
the same logical variables to describe the same resources across them. Instead, it will create new
logical variables and rely on the Unifier to apply the correct substitution to the state, once it
discovers their equality. For this exact reason, #x will be assigned two different logical variables in
the internal representation of the state, one for the pre-condition, and one for the post-condition.
Observe the log below, which assigns {{ _$l_1, 0i }} (the object containing a pointer to memory
location _$l_1, offset 0, also equivalent to {{ #wisl__0, #wisl__1 }}, as per the substitution) to
#x in the pre-condition (hence why it is part of the original substitution), while the unification plan
of the post-condition produces another #x, holding an object defined by 2 new logical variables:
#wisl__2 and #wisl__3. Notice how _$l_1 still holds half a full permission in the heap.

Produce assertion: types(#wisl__2 : Obj, #wisl__3 : Int) *
(#v == null) *
<cell>(#wisl__2, #wisl__3, #p; #v) *
(#x == {{ #wisl__2, #wisl__3 }})

-------------------------
Produce simple assertion: types(#wisl__2 : Obj)
With subst: [ (p: 0.5),

(x: {{ _$l_1, 0i }}),
(#p: 0.5),
(#v: null),
(#wisl__0: _$l_1),
(#wisl__1: 0i),
(#x: {{ _$l_1, 0i }})]

-------------------------
STATE: SPEC VARS:
STORE:

(p: Lit 0.5)
(x: {{ ALoc _$l_1, Lit 0i }})
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MEMORY:
_$l_1 -> BOUND: Some (1, 1.)

{0i: null [0.5]}

Listing 4.4: Logs of producing post-condition of function f

The consequence is that a new cell holding the value #v with permission 0.5 will be produced
at a different location, _$l_3. The unifier will then use the path constraint that holds the equality
between the two different locations and merge the corresponding blocks.

STATE BEFORE SIMPLIFICATIONS:
SPEC VARS:
STORE:

(gvar0: {{ ALoc _$l_1, Lit 0i }})
(u: LVar _lvar_3)
(x: {{ ALoc _$l_1, Lit 0i }})

MEMORY:
_$l_3 -> BOUND: None

{_lvar_5: null [0.5]}
_$l_1 -> BOUND: Some (1, 1.)

{0i: null [0.5]}
PURE FORMULAE:

(_lvar_3 == 0i)
(_$l_3 == _lvar_4)
((_$l_1 == _lvar_4) /\
(0i == _lvar_5))

TYPING ENVIRONMENT:
(_lvar_3: Int)
(_lvar_4: Obj)
(_lvar_5: Int)
-----------------------------------
Filtered and fixed subst, to be applied to memory:

[ (_lvar_3: 0i),
(_lvar_4: _$l_1),
(_lvar_5: 0i),
(_$l_3: _$l_1) ]

WARNING: SFVL.union: merging with field in both lists (0i: null [0.5] and null [0.5]),
adding permissions.

Listing 4.5: Producing cells at two different locations and merging the blocks

Once merging is performed, we end up with the state holding our cell with full permission, just
as before the function call was executed.

STATE BEFORE SIMPLIFICATIONS:
SPEC VARS:
STORE:

(u: LVar _lvar_3)
(x: {{ ALoc _$l_1, Lit 0i }})

MEMORY:
_$l_1 -> BOUND: Some (1, 1.)

{0i: null [1.]}
PURE FORMULAE:

(_lvar_3 == 0i)
(_$l_1 == _lvar_4)

Listing 4.6: Final state
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In and out parameters

In Section 3.3.1 we mentioned that we would have to add a new parameter to the cell and bound
assertions constructors to represent the permission. We did not, however, specify whether this
would be an in or an out parameter.

The reader might (and rightfully so) believe that the permission should be an out parameter.
The thought process might be: using the location and the offset, we retrieve the cell at that location
and find both the value it holds and its permission. Unfortunately, things are not that simple.

In the theoretical presentation of our derivation rules for producers and consumers (Sec-
tion 4.1.1) we made a distinction between the permission of the resource held by the heap (the
inner permission) and the one coming from a local action like GetCell (the outer permission). It is
true that in some circumstances it would be necessary to infer the inner permission of a cell, such
as when including a cell assertion as part of a predicate, which itself might be a part of a more
complex specification of a function that should work with any permission parameter, and so does
not require one passed as an argument. Nevertheless, producing a cell assertion requires us to know
the outer permission parameter beforehand, so that it can be added to the inner permission or, if
the cell does not already exist in the heap, a new cell can be created with the outer permission.
Similarly, consuming a cell assertion demands that we check the owner does not "ask for too much"
(i.e. the outer permission parameter is not greater than the inner permission). These use cases
clearly indicate a need for the permission to act as an in-parameter.

It appears as if adding support for permissions would require us to define a new type of param-
eter, that can act both as an in and an out. However, this approach would have involved significant
research without the guarantee of a viable solution and, in the fortunate case, deep reworking of
the Gillian architecture, which was not sustainable in the time available for this project. So, how
did we solve this issue?

The answer came as the need for this dual behaviour showed up, quite late in the project.
Clearly, the permission needed to work as an in parameter to get even the most basic programs to
verify correctly, and this was, indeed, the path we chose to follow for both cell and bound assertions
(see Listing A.14). However, having permissions as out parameters only showed up during the
evaluation process, when writing more complex predicates and functions that, as mentioned above,
were meant to verify correctly without passing a permission explicitly. The way to do it was through
specification targets, a feature of the core of Gillian that had almost no use case prior to this project.

When functions are compiled to the GIL intermediate language, their specifications are also
compiled to their corresponding GIL syntax. However, specifications can be parameterised too.
Consider the specification of the function below, which calculates the height of a binary tree.

spec height(t)
<height_spec: #p>
[[ (t == #t) * binary_tree(#t, #tree, #p) ]]
[[ tree_height(#t, ret, #p) ]]
normal

proc height(t) {
...

lh := "height"(lt) use_subst [height_spec - #p: #p]
...
};

Listing 4.7: Parameterised specification, taking a parameter #p

This function’s specification describes that logical variable #t is a binary tree and that the
return value holds the height of that tree (assuming a correct implementation of the binary_tree
and tree_height predicates). Since permissions need to work as in parameters for cell assertions,
they also have to be in parameters of any predicate that uses them. But we still want to be able to
call the function with any permission, since finding the height of a binary tree requires read-only
access, so any non-zero permission would be suitable. Normally, we would achieve this by adding
another parameter to the procedure that would hold the value of the logical variable #p. However,
the specification target <height_spec: #p> says that this specification takes #p as a parameter,
so we can use this instead and pass this parameter to our predicates, without needing to know its
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true value or taking on an extra argument to the function. We get a cleaner, more elegant function
from a programming point of view, and simpler specifications that manipulate fewer variables. The
function calls itself recursively, to showcase the syntax of instantiating its specification.

However, we are still not saved from dealing with what is, after all, purely logical boilerplate
for the verification tool, which the programmer might have no willingness or time to learn about.
The long term goal is for Gillian to be able to infer the correct value for #p during the compilation
process, so that all calls to the height procedure can be made with the right amount of permission
to instantiate its specification (which will always be either full permission, #p = 1.0 or anything
less than that, 0.0 < #p < 1.0). We leave this as opportunity for future development, as the
time constraints of the project did not allow for the research process needed to explore this idea.
What we provide, however, is an extension to the WISL language that compiles exactly to the
GIL code above. In our new WISLFP, we can write the height function with the specification
parameter needed for it to be used more flexibly, without needing separate predicates that specify
a permission parameter suitable for read-only access.

[ spec height_spec: #p ]
{ (t == #t) * binary_tree(#t, #tree, #p) }
function height(t) {
...
}
{ tree_height(#t, ret, #p) }

Listing 4.8: Parameterised specification in WISLFP

Local Actions

The implementation of the local actions closely follows the rules described in the Section 4.1.1. For
the sake of brevity, we will only explicitly include listings where important behaviour not deducible
from the theoretical description is present.

We will start with the consumers. These have been smartly engineered and separated into
multiple functions that perform functionality common across different local actions. For example,
GetCell simply creates the permission check for the cell as a separate function which, given a
parameter q (which would be the inner permission), checks that the expression q < out_perm is
unsatisfiable. If this is not the case, it returns the missing permission required for the action to
succeed. The . after the operators signifies that we are using the floating point equivalents of
these operators. This uncovered another previously unknown bug, in that some of the comparison
operators (such as <=.) were being compiled to the their integer GIL counterparts, instead of the
float ones. After these checks are done, GetCell just calls into a separate higher-order function,
called access_cell, which is shared with the Load local action, passing in the permission check
as a parameter (see Listing A.15 for the implementation of Load).

let get_cell ~unification ~pfs ~gamma heap loc ofs out_perm =
let fl q = Formula.Infix.(q#<.out_perm) in
let permission_check q =

if Solver.check_satisfiability ~unification (fl q :: PFS.to_list pfs) gamma
then Some Expr.Infix.(out_perm -. q)
else None

in access_cell ~unification ~pfs ~gamma heap loc ofs permission_check

Listing 4.9: Implementation of GetCell, after the project

The access_cell function is the one that performs all the heavy-lifting common for the
GetCell and Load actions. It firsts finds the block pointed to by the location passed as a pa-
rameter. If no such block is found, we return a MissingResource error with the missing cell. If
the block exists, but has been freed, we have encountered a UseAfterFree error. Otherwise, the
block must be allocated, so we have a data SFVL and a bound. We then perform the bounds
check: if the bound is non-existent, we cannot have an OutOfBounds error, but if the bound exists,
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we check that the offset is not greater than the bound, returning the error in case this is satis-
fiable (remember, all sanity checks have to be satisfiability checks, since we are operating in an
over-approximating setting). If everything worked until now, we index the SFVL data structure
and retrieve the corresponding cell, through the check_sfvl function, described in Listing A.16.
Here we will only define what we shall do in case the retrieval returns a None or a Some. If we
get a None, it means the cell is not present, so again, we return a MissingResource error. Oth-
erwise, the check_sfvl function will call the success case passing in the offset (which might be
a different variable from our given offset, but should always be equal to it, due to unification),
the value read from the cell and the inner permission. The success case only takes the inner
permission and performs the permission check that it has been passed as a parameter, returning
a MissingResource error with the missing permission, in case of failure, as per the theoretical
semantics, or the location, offset and value (mind the order in which they are returned!), in case
of success, which is equivalent to splitting the cell in two, but not framing it off yet, as described
in Section 4.1.1. We can easily see how this function can handle both the GetCell local action,
when the permission check is a meaningful one, and the Load, when the permission check will be
a dummy function always returning None (and the load will then discard the location and offset
received from access_cell and just return the value).

let access_cell ~unification ~pfs ~gamma heap loc ofs permission_check =
match Hashtbl.find_opt heap loc with
| None -> Error (MissingResource (Cell, loc, Some ofs))
| Some Block.Freed -> Error (UseAfterFree loc)
| Some (Allocated { data; bound }) ->

let open Syntaxes.Result in let* () = match bound with
| None -> Ok ()
| Some (n, _) -> let expr_n = Expr.int n in

let open Formula.Infix in
if Solver.sat ~unification ~pfs ~gamma expr_n #<= ofs then

Error (OutOfBounds (Some n, loc, ofs))
else Ok ()

in let none_case () = Error (MissingResource (Cell, loc, Some ofs)) in
let success_case ofs value permission = match permission_check permission with

| Some missing_perm -> Error (MissingResource (Cell, loc, Some missing_perm))
| None -> Ok (loc, ofs, value)

in check_sfvl ~pfs ~gamma ofs data none_case success_case

Listing 4.10: Implementation of RemCell, after the project

In case of Load, this is the end of the story. The value is returned and handled by the assignment
in the GIL interpreter. However, as it stands, due to legacy implementation, the consumer has a
second half, called RemCell, which takes the parameters in the exact order they are returned
from GetCell (this was the source of painful debugging which led to the discovery that the two
producers did not agree on the order in which the parameters were passed). RemCell performs
the same sanity checks as GetCell (as it has before the project) and, in the case the block is
allocated, we first retrieve the cell from the block (note, there is no need to check that the cell
exists anymore or that we have enough permission, since this was done by GetCell), and then
calculate the new permission by subtracting the outer permission from the inner. If the resulting
permission is 0, we completely remove the cell from the heap, otherwise we add the cell with the
new permission back into the block. Finally, we return an Ok() to the interpreter, signalling the
action was successful and there is no interesting information to return (since its whole purpose was
to remove the cell from the heap). The implementations of GetBound and SetBound are analogous
to their cell counterparts, and thus we leave them out of discussion for brevity. The interested
reader can find their implementations in Listing A.17 and Listing A.18.

let rem_cell ~pfs ~gamma heap loc offset out_perm =
match Hashtbl.find_opt heap loc with
| None -> Error (MissingResource (Cell, loc, Some offset))
| Some Block.Freed -> Error (UseAfterFree loc)
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| Some (Allocated { data; bound }) -> (
match SFVL.get offset data with
| None -> (* Should not happen if get_cell is correct *)

failwith "Called rem_cell with an offset that is not in the data SFVL!"
| Some SFVL.{ value; permission } ->

let data = SFVL.remove offset data in
let new_perm = Expr.Infix.(permission -. out_perm) in
let data =

if Solver.is_equal ~pfs ~gamma new_perm (Expr.num 0.0) then data
else SFVL.add offset SFVL.{ value; permission = new_perm } data

in let () = Hashtbl.replace heap loc (Allocated { data; bound }) in Ok ())

Listing 4.11: Implementation of RemCell, after the project

We move on to the producers. Similarly to what we did with consumers, we extracted common
functionality of SetCell and Store into a separate higher-order function, called overwrite_cell,
which the reader can find in Listing A.19. What it does is it first tries to find the block at the
specified location. In case it fails, we call a missing_block procedure, which will be specialised by
the two usecases: in the case of SetCell, we have to create this block from scratch, so we create
the SFVL with the given value and outer permission and add them to the heap at the specified
location, whereas for Store, we have to return a MissingResource error. If the block is freed, we
return a UseAfterFree error, as per usual. If we find an allocated block, we perform a bounds
check (in case the bound exists) and execute an in_bounds procedure passed to us as a parameter,
which should define the way the function behaves if the bound check succeeds. Again, this is
particularised by the two usecases. SetCell, given below, checks the data block and, in case the
cell is not found, it extends the block to contain this new cell (the details of the extend_block
function can be found in Listing A.20). In the case it is found, we have to learn the equality of
the value inside the heap and the one passed as a parameter and add the outer and the inner
permissions, also learning that their sum is less than the full permission, so we return the list of
learned formulas as part of the Ok result. In the case of storing (see Listing A.21), the none case
will lead to a MissingResource error (since a missing cell translates to an illegal access), while
the permission check has to verify that the inner permission of that cell is not less than the full
permission, in order for the store to be valid.

let set_cell ~unification ~pfs ~gamma heap loc_name ofs v out_perm =
let block_missing () =

let data =
SFVL.add ofs SFVL.{ value = v; permission = out_perm } SFVL.empty in

let bound = None in
let () = Hashtbl.replace heap loc_name (Block.Allocated { data; bound })
in Ok []

in let in_bounds data bound =
let full_perm = Expr.num 1.0 in
let none_case () =

extend_block ~pfs ~gamma heap loc_name ofs v data bound out_perm
in let some_case _ value permission =

let eq = Formula.Infix.(value #== v) in
let new_perm = Expr.Infix.(permission +. out_perm) in
let fl = Formula.Infix.(new_perm#<=.full_perm) in
let () = Hashtbl.replace heap loc_name (Block.Allocated { data; bound })
in Ok [ eq; fl ]

in check_sfvl ~pfs ~gamma ofs data none_case some_case
in overwrite_cell ~unification ~pfs ~gamma heap loc_name ofs

block_missing in_bounds

Listing 4.12: Implementation of SetCell, after the project

Allocating and disposing of blocks work very intuitively. Alloc sequentially creates the cells con-
taining the null values and a full permission and, in the end, creates the block holding the resulting
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SFVL and the given bound, again with full permission (see Listing A.22). During development,
we discovered a a bug that had been present in the codebase for 4 years without the knowledge of
the development team. When calling the alloc function from the handler in wislSMemory.ml, we
were creating a literal made of the given location, instead of an abstract location type, causing the
unifier to fail in comparing memory locations that should be equal, and thus failing in merging the
SFVL blocks, as described above (see Listing A.23 and Listing A.24 for a description of the bug).
Dispose performs the required sanity checks (checking that the block exists, is not freed and has a
known bound with permission 1), and returns the appropriate types of errors if any of those checks
fail. If these checks succeed, dispose checks the permission of each individual cell in the block and,
if any of them can be less than 1, returns the appropriate MissingResource error. Otherwise,
we set the entire block to freed and return an Ok() result, signalling the success of the operation
(see Listing A.25).

4.2 Parsing, Compilation and Floating Point Arithmetic
As always, every interesting project has some rather mundane but crucial tasks that need to be
done. In our case, adding concurrency and fractional permissions to WISL required a way of
expressing these constructs in the language. We have created our own, new language, capable of
running multiple threads in parallel and writing function specifications that attach permissions to
cells. Working with fractional permissions meant that we needed to model floating point numbers in
WISL and perhaps provide some basic arithmetic for them, in order to manipulate these parameters
in our specifications. As mentioned in Section 3.3, these features were not supported by the
language, so we had to come up with a syntax to express them in WISL, then write parsers that
would understand that syntax and correctly map it to AST nodes, and finally, extend the WISL to
GIL compiler to treat the newly created types of nodes and translate them into GIL AST nodes.

The parser was written using Menhir [29], a parser generator library for OCaml. The lexer
used in combination with Menhir was Ocamllex. They proved to be very easy to use and intuitive,
which was very useful for developing features on the fly, as the need arose (such as for specification
targets). Parsing of floating point numbers can be done as easily as using regular expression
matching, while new keywords were created by giving a name and a string representation that
would be matched on from the current buffer (see Listing A.26).

Parsing rules were just as easy to create. Fully compositional, Menhir allowed for easy manipu-
lation of simpler constructs in the parsing rules of more complex ones, provided great out-of-the-box
support for commonly required structures (lists, optionals) and the integration with the AST nodes
written in OCaml was seamless (see Listing A.27).

We chose to keep the intuitive syntax of cell assertions and include the permission parameter
next to each pointed to value. Before the project, an assertion like x -> v, w would read as
"x points to v and x + 1 points to w". Now, in WISLFP, we can write assertions of the form
x -> (p1: v), (p2: w), meaning "x points to v with permission p1, and x + 1 points to w
with permission p2". Compiling the points-to assertion was as easy as adjusting the cell and bound
constructors (see Listing A.28 and Listing A.29 for the compilation before and after the project).

Adding the parallel composition operator was a challenging piece of work and a crucial part of
the entire project. The parts that are concerned with the underlying support in the core engine
are discussed in Section 4.3. Here, we will focus on the WISL syntax and the compilation to GIL.

A par block contains any non zero number of function calls, with their return values assigned
to local variables. Those variables can be used after assignment outside of the par block, as per
normal. We do not allow nested par blocks, since a par block does not constitute a function call,
so there can be no par block inside another one. Listing A.30 contains an example of a function
that reads two disjoint memory locations in parallel and then swaps them around.

We enforced the restriction to function calls inside a par block as a syntactic, rather than
semantic rule (the parser would return an error if anything other than a function call was found
inside a par block). The AST nodes do not convey this information. We could have extracted
the function call as a different type of node and specialise the new Par node to take a list of
function calls, but we decided that would complicate the structure of the statement AST node too
much, so we opted for simplicity (aside, this is where object oriented features would have proved
helpful, in conjunction with the functional paradigm, like Scala provides). A par node takes a
list of statements that are pattern matched inside the WISL to GIL compiler. If anything other
than a function call is found in the list of nodes passed inside par, the compiler will fail with a
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suggestive message. However, when it came down to adding the new par AST node for GIL, we
decided having a clean structure was a priority. Since the representation of GIL is part of the
core engine, making a poor engineering choice would impact future scalability of the code, should
support for parallel computations be added to other Gillian instantiations. Listing A.31 contains
the WStmt.ml node extended with the par operator, and its compilation to GIL can be found in
Listing A.32.

In terms of floating point arithmetic, there were 2 options: overloading the already existing
operators, or writing specific ones from scratch. We chose the latter, much because of the added
complexity of overloading the integer arithmetic, which would have required heavier reworking of
the WISL type system, interference with internal functions written by hand in GIL, and more com-
plicated compilation when choosing between the underlying integer or floating point GIL operators
(eg. do both operands of an addition have the same type? If not, which operator do we choose?).
By restricting floats to their own set of arithmetic operators, we saved important development (and
possibly painful debugging) time, and made the best use of the underlying support of the Gillian
core engine.

Even though manipulating permissions in WISL would probably only require a division operator
(eg. when splitting a permission in half, as we shall see in the evaluation section), adding just one
operator seemed unintuitive. Instead, we chose to implement a full floating point arithmetic and
let future users of WISL enjoy the benefits of this bi-product. Now we can perform all types of
operations with floats, and we can even store them inside heap cells. All operators are the same
as their integer correspondents, except they are preceded by an ’f’ (see Listing A.33).

Finally, thanks to the already existing support for floats in GIL, originating from the JavaScript
instantiation, compilation was an easy process (see Listing A.34).

4.3 Parallel Composition

Implementing the parallel composition operator was perhaps the most challenging part of the
project. It required deep understanding not only of theoretical semantics, but also of the internals
of the core engine of Gillian, as well as careful and ingenious software engineering design. It took
almost an entire week to reach a working implementation, and the many hours spent on debugging
proved to be a very enriching and fascinating experience.

Before discussing the implementation of parallel composition, we will look at its theoretical
semantics and get a solid understanding of what verifying functions inside a par block entails.

4.3.1 Theory

Performing a function call during verification is a simple process: the pre-condition of the function
has to be consumed from the state, and its post-condition is produced. But how do we deal with
multiple function calls operating in parallel? The first idea is to generalise the same process to
n functions: we consume the pre-condition of the first function and produce its post-condition,
and repeat for the next one. However, doing this is incorrect from a semantic point of view: it
is equivalent to performing sequential function calls. A sequence of the form a := f(x); b :=
g(y) would be verified in this exact manner: the pre-condition of f would be consumed and its
post-condition would be produced, and only then, the same thing would happen for g.

So how can we express the concept of concurrent function calls semantically in our verifier?
Intuitively, we want to create the illusion of incomplete execution of one function at the same time
as executing the other. If we considered concurrent execution outside of a verification setting, we
could theoretically interrupt the process and see an intermediate state, where both function calls
would have started executing but neither would have finished. This is precisely the idea that we
will use in verification too.

Evaluating a parallel composition of two (or any number of) functions is performed by first
consuming the pre-conditions of all functions in the par block. This ensures that the state right
before the par block is valid for a concurrent execution of all of these functions: they can all operate
in parallel and consume bits of the same state, without interfering with each other. The second
step is to produce the post-conditions of all function calls, equivalent to waiting until all threads
have reached completion to resume the execution of the main thread. The specifications can be
consumed or produced in any order, as the functions are completely independent from each other.
Even though they might operate on shared resources, they do so by acquiring partial permissions
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on those resources, effectively consuming disjoint portions of state. To make the idea more clear,
consider that functions f and g in the previous example both consumed a permission of 0.3 of
the same cell. The order in which the pre-conditions are consumed has no implications on the
outcome: the same cell will lose 0.3 of its permission twice, giving them off to the functions, and
leaving a permission of 0.4 in the heap. Whether the first 0.3 belongs to f or g is irrelevant. In this
sense, the portions of the heap consumed by the functions are disjoint, because they are expressed
as subdivisions of the full permission.

Below is the derivation rule for the parallel composition operator, for 2 function calls. Γ is the
function specification context, and γ is the function domain, while f(

→
x) signifies the application

of function f with all its required parameters. The rule states that if functions f and g have the
required specifications in the specification context, then we can execute them in parallel, provided
we start from a state from which both pre-conditions P and P ′ can be consumed. If this is the
case, we end up producing the post-conditions Q and Q′, with the assignment variable (a and b,
respectively) in place of the return variable.

{P} f(→x) {Q} ∈ Γ, {P ′} g(→x) {Q′} ∈ Γ

(γ,Γ) ⊢ {P ∗ P ′} par {a := f(→x); b := g(→x)} {Q[ret/a] ∗Q′[ret/b]}

The rule generalises very easily to any number of function calls, as long as the function specifi-
cations are included in the specification context and that all the pre-conditions can be consumed
from the original state (see below, where ⊛1≤i≤n is the aggregation of n separating conjunctions).

{P1} f1(
→
x) {Q1} ∈ Γ, ... {Pn} fn(

→
x) {Qn} ∈ Γ

(γ,Γ) ⊢ {⊛1≤i≤nPi} par {a1 := f1(→x); ... an := fn(→x)} {⊛1≤i≤nQi[ret/ai]}

4.3.2 Implementation

The implementation of the parallel composition operator was very much a process of generalising
the evaluation of function calls. Following the already existing code in the g_interpreter.ml and
the PState.ml files was an easy process. However, generalising the implementation to n function
calls proved to be difficult, as previous assumptions hardcoded in the single function call evaluation
no longer served our needs.

The following presentation will guide the reader through the engineering process of imple-
menting parallel composition, discussing all the relevant procedures in comparison to their single
function call counterparts, starting with the match on the type of GIL command (Listing A.35).

The eval_par_call function (Listing A.36) extracts the assignment variable, procedure iden-
tifier, list of arguments and logical bindings from the program state, for each function in the block,
in the same manner eval_call (Listing A.37) does for a single function.

Evaluating the procedure call references a specific function in the Eval_proc_call module,
written in isolation, but still as part of g_interpreter.ml. Its purpose, in the case of a single
function call (see Listing A.38), is to extract the specification of the function, if one exists, and
execute it accordingly (with specification, i.e. consume the pre-condition and produce the post-
condition, or without specification, i.e. symbolically execute the procedure), also depending on
the mode of operation used (special processing of the call stack is necessary for bi-abduction). In
the case of parallel composition, having a function without a specification is illegal, and there is
no support for bi-abduction, which simplifies the implementation (see Listing A.39).

Executing the parallel call with specifications is effectively just a mapping of its single function
call counterpart over the list of functions. The bindings are evaluated and converted to a final
substitution that will be used by the PState when running the specification. The results are
counted and then processed accordingly (inside process_ret), by updating the state, call stack,
and yielding execution back to the interpreter in case of success, or reporting failure. Listing A.40
shows the implementation for par, while the single function version can be found in Listing A.41.

Finally, the most challenging part of the implementation is the run_par_spec function (see
Listing A.42), inside PState.ml. This procedure is, once again, a generalisation of its single
function call version, run_spec (see Listing A.43), excluding the additional processing for exact
verification, as parallel composition is supported only for the classic, over-approximating verifi-
cation mode. The reader will be able to observe the structural similarities of the two functions,
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as run_par_spec applies mostly the same operations as run_spec: initialising the new store by
copying in the actual parameters, combining the existential (i.e logical variable) bindings and the
store bindings in a full substitution, unifying the state with the pre-condition and returning a list
of possible states after producing the post-condition. The only major difference is run_par_spec
recurses into the tail of the list of functions passed as parameters, whereas run_spec naturally
only deals with one function (hence why its arguments were separated instead of combined in a
tuple, like in the case of run_par_spec).

Understanding the mechanism of this recursive algorithm was not an easy task. The fact that
a successful unification might return multiple states was the first obstacle, as the post-processing
code had to be mapped over the entire list of states (here performed through the let++ operator,
equivalent to concat_map). For a single function call, states can be returned in any order and
treated independently by the interpreter. For a par block, states returned by producing the post-
condition of a function have to be re-used and extended when producing the post-condition of the
next. This is due to the principle of framing: the first function call will consume its pre-condition,
leaving behind a frame state from which the next function call will consume its pre-condition. The
final frame is the heap state after all function calls have consumed their pre-conditions. From
there, the post-conditions produced by the functions are sequentially added to the frame state,
constructing the final state at the exit of the par block. When there are multiple such frame
states, the growth is exponential, as all states produced by the post-condition of the first function
have to be crossed with all the states produced by the previous one.

Furthermore, these states will contain the variable stores with all the local variables of the
respective function. The local variables of a function must not be kept in the state when producing
the post-condition of the next, as aliasing might occur due to name clashes and the state can be
corrupted. Since the unifier copies the store of the caller after producing the post-condition, we had
to ensure that every function call would consume its pre-condition from a state with the store of
the main (caller) thread, even though the heap has to be the frame of the previous unification. This
resulted in the copying of the old store into the frame state before consuming the pre-condition,
and the new store back into the frame state before consuming the post-condition.

This approach worked very well to prevent name aliasing and it would have been a good (albeit
complicated) solution. There is, however, one caveat: the return variable, which is the only variable
in the local store of a function that has to be persisted into the caller store. There would be as
many such return variables as there are function calls. The problem with the algorithm above
is that the return variable of the function call processed previously was always lost, and, as a
result, only the first function call would have its return variable preserved, due to the reverse order
processing of the functions (similar to a call stack). The solution to this problem can be considered
"hacky", but it is actually quite elegant: we extract the return variable from the local store after
producing the post-condition, then copy the old store (the one of the caller) back into the state and
extend it with the return variable. The only caveat is that par blocks containing function calls that
assign to the same variable will only observe the effects of the first function call. We considered
this limitation to be acceptable, as any useful application of parallel composition that needs the
return values of the functions outside the par block would assign them to separate variables.

4.4 Summary
This chapter provided a complete presentation of the process of implementing the fractional per-
mission memory model in a new instantiation of Gillian, WISLFP. We built on the foundation on
Chapter 3 and filled in the gaps to complete the goal of the project: supporting verification of shared
memory concurrency in Gillian. We took a look at both the theory and the implementation behind
the producers and consumers of core assertions, exploring the representation of blocks through the
SFVL data structure and how unification of memory locations is performed, and we saw the engine
in action consuming and producing fractional bits of heap cells. We also implemented specialised
support for the load and store operations, and came up with a modular implementation using
common software engineering practices. We discussed parsing with the Menhir parser generator
library and the choices made to support floating point arithmetics and specification parameters,
and we touched upon the small tweaks needed in the WISL to GIL compiler. Finally, we went in
detail through the theory and implementation of the parallel composition operator and the changes
made in the internals of the Gillian engine, namely the GIL interpreter and the predicate state.
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Chapter 5

Evaluation

The project’s merits are considerable with respect to the lifetime and evolution of the Gillian
tool. We have successfully extended the tool with support for verification of programs making
use of shared memory concurrency, implementing the model of fractional permissions. In this
chapter, we will show the full power of the new WISLFP language and prove some idiomatic
concurrent algorithms, from both the category of cautious and daring concurrency, with little to
no performance overhead. The fact that Gillian can successfully verify such programs is a clear
advancement towards its goal of becoming a robust and complete verification tool that anyone can
use. Even though the project focused on extending the WISL toy programming language, all of
the concepts implemented by the WISFLP memory model can be applied to real world languages,
like C and JavaScript. Moreover, the support for parallel composition of function calls has been
implemented in the core of the Gillian engine, thus future efforts towards adding capabilities of
concurrency verification in any other instantiation of Gillian can make use of this common trunk.

An important fact to mention is that we do not claim that this work is the first instance of
concurrent code verification ever performed. In fact, there are several tools in the academic world,
such as VeriFast [6, 7] and VerCors [15, 30] that have made use of the exact same ideas presented
in this project (concurrent separation logic with fractional permissions). However, Gillian is very
much in its infancy as far as concurrency is concerned, and therefore we consider comparisons
with these much more developed tools, in which years of research and continuous efforts have been
invested, to be unfair. We will still compare our performance results from testing to those of
VeriFast, with the disclaimer that we can justify any performance benefits in favour of Gillian by
considering the much more covering support that VeriFast offers in terms of target languages and
programming constructs (locks, atomics etc.) and the complexity of the implementation associated
with it.

5.1 Test Suite

Coming up with an extensive test suite that would not only exercise numerous types of behaviours
in concurrent programming, but also show real value through their complexity and importance
in showcasing fundamental programming concepts, has been a great challenge and a fulfilling
experience. Not only did we implement perhaps the most difficult program ever written in WISL, in
the form of concurrent lambda term substitution, but doing so required understanding of features
of Gillian that had previously been unknown to us, such as lemmas and manual application of
logical actions. Learning about these features and using them in our programs uncovered old bugs
that had been lurking for years, undiscovered by the Gillian development team, some of which
were mentioned in Chapter 4. Therefore, we consider this experience a very rewarding one for
both parties: firstly, as a successful and complete individual effort for the student, with numerous
learning opportunities, and secondly, in the form of new well tested features for Gillian and the
bi-products of bug discovery and fixing.

5.1.1 Floating point arithmetic

We mentioned before that supporting fractional permissions gave rise to the obvious need of sup-
porting floating point numbers and arithmetic, in order to operate with fractions. As this realisation

40



came to mind, we decided to implement full support for floating point numbers and arithmetic
in WISL, even though we will only require floating point division in the context of dividing the
permission of a shared resource across multiple threads, as we shall see in one of our examples.
Nevertheless, we have written a simple test suite meant to exercise all aspects of floating point op-
erations in WISL, so as to make sure that our work with permissions (and any future development
reliant on floating point arithmetic) would not be interrupted by tangential issues. Section 4.2
showed an example from our test suite, using floats inside a predicate as typed logical variables,
and inside a function as program variables, showcasing both arithmetical and logical binary oper-
ators working on floats. The example in Listing A.44 tests all implemented operators and storing
of floats inside heap cells.

5.1.2 Simple Concurrency

As mentioned before, correctness was the primary factor considered when testing our implemen-
tation, as it is a crucial aspect of any verification tool that we want to label as reliable. The
first thing to test in terms of concurrency were some very simple functions accessing shared heap
resources. Simple as they were, these examples exercised all the basic functionality needed in or-
der to prove much more complicated examples: producers and consumers for cell assertions with
permissions (making sure the removal mechanism of permissions worked correctly and owners can
only retrieve a fraction from the heap as long as the heap holds at least that amount of permission,
and then producing the cell assertion adds that permission to what the heap already contains),
the unification of pre- and post-conditions in a par block, loading with any non zero permission
and storing with full permission only.

First and foremost, we wrote two basic read and write functions. The read function works with
any permission and returns 1 if the value pointed to by x is 0, and 0 otherwise. This is captured
by the is_zero predicate. The write function requires full access to the cell, and writes value v to
it. A write function whose specification does not enforce that the permission is equal to 1.0 fails
with a missing resource error.

//should fail
[spec incorrect_write: #p]
{ (x == #x) * (v == #v) * (#p f<=# 1.0) * (#x -> (#p: #v))}
function incorrect_write(x, v) {

[x] := v;
return 0

}
{ (ret == 0) * (#x -> #v) }

Listing 5.1: Incorrect write function

Verifying one spec of procedure incorrect_write... FAILURE: Action store failed
with: [Missing Resource]

Listing 5.2: Output of the failure in the terminal

{ (x == #x) * (v == #v) * (#x -> (1.0: #y))}
function write(x, v) {

[x] := v;
return 0

}
{ (ret == 0) * (#x -> #v) }

Listing 5.3: Correct specification of write function

predicate is_zero(+x, y) {
(x == 0) * (y == 1);
(! (x == 0)) * (y == 0)

}
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{ (x == #x) * (p == #p) * (#p f<=# 1.0) * (#x -> (#p: #v)) }
function read(x, p) {

n := [x];
if (n = 0) {

r := 1
} else {

r := 0
};
return r

}
{ is_zero(#v, ret) * (#x -> (#p: #v)) }

Listing 5.4: Basic read function and predicate

We can now include these functions within par blocks and check that the producers and con-
sumers work as expected. Firstly, reading and writing to disjoint locations should have no problem
in reaching the correct post-condition, since the two threads do not interfere with each other. Any
bugs we would find here would be caused solely by an incorrect implementation of the parallel
composition interpreter. For the sake of brevity, we will only go through concurrent disjoint reads
in detail. The implementation of concurrent disjoint writes and the corresponding logs can be
found in Appendix A, Listing A.45 to Listing A.53.

{ emp }
function conc_disjoint_reads() {

x := new(2);
[x] := 0; [x + 1] := 0;
par {

fst := read(x, 0.5);
snd := read(x + 1, 0.5)

};
[x] := fst; [x + 1] := snd;
return x

}
{ ret -> 1, 1 }

Listing 5.5: Concurrent reads on disjoint locations

The following logs highlight all the intermediate states we are interested in seeing. We can
see the correct behaviour being logged by Gillian: initially, memory location _$l_12 contains two
cells with full permission. We unify against the pre-condition of the first function call, resulting
in a state where the first cell has half a permission left in the heap. Then, we unify against the
pre-condition of the second function call and we remove half a permission from the second cell, as
expected.

CMD: par [fst := "read"(x, 0.5); snd := "read"(gvar3, 0.5)]
PROCS: [conc_disjoint_reads]
STORE:

(gvar0: {{ }})
(gvar1: {{ ALoc _$l_12, Lit 1i }})
(gvar2: {{ }})
(gvar3: {{ ALoc _$l_12, Lit 1i }})
(x: {{ ALoc _$l_12, Lit 0i }})

MEMORY:
_$l_12 -> BOUND: Some (2, 1.)

{0i: 0i [1.]
1i: 0i [1.]}

Listing 5.6: State before executing par
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Unifier.unify: Success
STATE:

MEMORY:
_$l_12 -> BOUND: Some (2, 1.)

{0i: 0i [0.5]
1i: 0i [1.]}

Listing 5.7: State after unifying the pre-condition of the first function

Unifier.unify: Success
STATE:

MEMORY:
_$l_12 -> BOUND: Some (2, 1.)

{0i: 0i [0.5]
1i: 0i [0.5]}

Listing 5.8: State after unifying the pre-condition of the second function

Remember, unification of states inside a par block works similarly to a call stack, so the post-
conditions will be produced in reverse order. When unifying against the post-condition of the
second function, we can observe the behaviour described in Section 4.1.2 when explaining the
merging of SFVL blocks: a memory location described by a new logical variable is produced
initially, and later, the two logical variables are discovered to be equal through a substitution, so
the two blocks are merged, adding the permission and recreating the full cell. The same behaviour
is observed when unifying against the post-condition of the first function call. Notice here how
the return variables of both function calls are still present in the store, a behaviour which was
particularly challenging to implement correctly, as described in Section 4.3.

STATE BEFORE SIMPLIFICATIONS:
STORE:

(snd: LVar _lvar_18)
(x: {{ ALoc _$l_12, Lit 0i }})

MEMORY:
_$l_12 -> BOUND: Some (2, 1.)

{0i: 0i [0.5]
1i: 0i [0.5]}

_$l_13 -> BOUND: None
{_lvar_20: 0i [0.5]}

Filtered and fixed subst, to be applied to memory:
[ (_lvar_18: 1i),

(_lvar_19: _$l_12),
(_lvar_20: 1i),
(_$l_13: _$l_12) ]

WARNING: SFVL.union: merging with field in both lists (1i: 0i [0.5] and 0i [0.5]),
adding permissions.

Listing 5.9: State when unifying the post-condition of the second function

STATE BEFORE SIMPLIFICATIONS:
STORE:

(fst: LVar _lvar_24)
(snd: Lit 1i)
(x: {{ ALoc _$l_12, Lit 0i }})

MEMORY:
_$l_12 -> BOUND: Some (2, 1.)

{0i: 0i [0.5]
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1i: 0i [1.]}
_$l_15 -> BOUND: None

{_lvar_26: 0i [0.5]}

Filtered and fixed subst, to be applied to memory:
[ (_lvar_24: 1i),

(_lvar_25: _$l_12),
(_lvar_26: 0i),
(_$l_15: _$l_12) ]

WARNING: SFVL.union: merging with field in both lists (0i: 0i [0.5] and 0i [0.5]),
adding permissions.

Listing 5.10: State when unifying the post-condition of the first function

The final state shows the heap cells containing full permissions, identical to the state before
the par block (except, of course, for the return variables in the store).

STATE AFTER SIMPLIFICATIONS:
STORE:

(fst: Lit 1i)
(snd: Lit 1i)
(x: {{ ALoc _$l_12, Lit 0i }})

MEMORY:
_$l_12 -> BOUND: Some (2, 1.)

{0i: 0i [1.]
1i: 0i [1.]}

Listing 5.11: Final state

Having checked this correct behaviour in the case of disjoint operations, it is time to do the
same thing for shared resources, which was the big goal of this project since the beginning. Below
are two functions that perform reads and writes to the same location. The read_and_add function
reads the value in cell pointed to by x and returns the sum of that value and the third parameter,
w (see Listing A.54). We can see that half a permission to access x is passed to each function call
inside the par block in the case of concurrent reads. This will verify correctly, since reading can
be performed with an arbitrary permission. However, writing requires full permission to the cell,
so concurrent writes to the same location should fail.

{ (x == #x) * (#x -> #v) * is_int(#v) }
function conc_reads_same_loc(x) {

y := new(2);
par {

fst := read_and_add(x, 0.5, 5);
snd := read_and_add(x, 0.5, 10)

};
[y] := fst; [y + 1] := snd;
return y

}
{ (#x -> #v) * ret -> #v + 5, #v + 10}

Listing 5.12: Concurrent reads to the same location - succeeds

{ emp }
function conc_writes_same_loc() {

x := new(1);
par {

u := write(x, 2);
u := write(x, 3)

};
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return x
}
{ ret == 2 \/ ret == 3 }

Listing 5.13: Concurrent writes to the same location - fails due to insufficient permission

We will focus on the reads first. Similarly to the case of disjoint reads, we are expecting the
cell to be consumed from the heap when unifying the pre-conditions of the function calls, except
this time, there will be the same cell being consumed, each time with 0.5 permission, resulting in
its disappearance from the heap. The logs shown in Listing A.55, Listing A.56 and Listing A.57
showcase precisely this behaviour.

When it comes to producing the post-conditions, we expect, again, the same behaviour: the
cells will be reproduced, in order, with 0.5 permissions in turn, potentially requiring merging of
heap blocks due to unification of logical variables. We can see below that, indeed, the cell at
location _$l_6 gets produced with 0.5 permission and then that location gets unified with _$l_1.
The same thing happens for _$l_7, except in this case, when unifying the two locations, there are
cells in both of them at offset 0, so the blocks have to be merged, adding the permissions. This
results in the final state, where the full permission on the cell has been re-established.

STATE BEFORE SIMPLIFICATIONS:
SPEC VARS: #v, #wisl__0, #wisl__1, #x
STORE:

(snd: LVar _lvar_8)
(x: LVar #x)
(y: {{ ALoc _$l_5, Lit 0i }})

MEMORY:
_$l_5 -> BOUND: Some (2, 1.)

{0i: null [1.]
1i: null [1.]}

_$l_1 -> BOUND: None
{}

_$l_6 -> BOUND: None
{_lvar_7: #v [0.5]}

Filtered and fixed subst, to be applied to memory:
[ (_lvar_6: _$l_1),

(_lvar_7: #wisl__1),
(_lvar_8: (10i i+ #v)),
(_$l_6: _$l_1) ]

Listing 5.14: State after unifying the post-condition of the second function

STATE BEFORE SIMPLIFICATIONS:
SPEC VARS: #v, #wisl__0, #wisl__1, #x
STORE:

(fst: LVar _lvar_11)
(snd: (Lit 10i i+ LVar #v))
(x: LVar #x)
(y: {{ ALoc _$l_5, Lit 0i }})

MEMORY:
_$l_5 -> BOUND: Some (2, 1.)

{0i: null [1.]
1i: null [1.]}

_$l_7 -> BOUND: None
{_lvar_10: #v [0.5]}

_$l_1 -> BOUND: None
{#wisl__1: #v [0.5]}

Filtered and fixed subst, to be applied to memory:
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[ (_lvar_10: #wisl__1),
(_lvar_11: (5i i+ #v)),
(_lvar_9: _$l_1),
(_$l_7: _$l_1) ]

WARNING: SFVL.union: merging with field in both lists (#wisl__1: #v [0.5] and #v [0.5]),
adding permissions.

Listing 5.15: State after unifying the post-condition of the first function

STATE AFTER SIMPLIFICATIONS:
STORE:

(fst: (Lit 5i i+ LVar #v))
(snd: (Lit 10i i+ LVar #v))
(x: LVar #x)
(y: {{ ALoc _$l_5, Lit 0i }})

MEMORY:
_$l_5 -> BOUND: Some (2, 1.)

{0i: null [1.]
1i: null [1.]}

_$l_1 -> BOUND: None
{#wisl__1: #v [1.]}

Listing 5.16: Final state

In the case of concurrent writes, things fail due to insufficient permissions. When consuming
the pre-condition of the first function call, the cell gets removed from the heap entirely, since
the specification of write requires a permission of 1. Therefore, when trying to consume the pre-
condition of the second function call inside the par block, we will find that there is no cell at
that offset anymore, and thus fail with a MissingResource error. This is precisely the correct
behaviour, as explained in Section 4.1.1.

--conc_writes_same_loc: 1--
CMD: par [u := "write"(x, 2i); u := "write"(x, 3i)]

STORE:
(x: {{ ALoc _$l_17, Lit 0i }})

MEMORY:
_$l_17 -> BOUND: Some (1, 1.)

{0i: null [1.]}

Listing 5.17: Initial state - concurrent writes to the same location

Unifier.unify: Success
STATE:

STORE:
(v: Lit 3i)
(x: {{ ALoc _$l_17, Lit 0i }})

MEMORY:
_$l_17 -> BOUND: Some (1, 1.)

{}

Listing 5.18: State after consuming pre-condition of first function call

Unify assertion: (<cell>(_$l_0, #wisl__1, 1.; #y), (#y, 0))
Subst:
[ (v: 3i),

(x: {{ _$l_17, 0i }}),
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(#v: 3i),
(#wisl__0: l-nth({{ _$l_17, 0i }}, 0i)),
(#wisl__1: l-nth({{ _$l_17, 0i }}, 1i)),
(#x: {{ _$l_17, 0i }}),
(_$l_0: l-nth({{ _$l_17, 0i }}, 0i)) ]

STATE:
SPEC VARS:
STORE:

(v: Lit 3i)
(x: {{ ALoc _$l_17, Lit 0i }})

MEMORY:
_$l_17 -> BOUND: Some (1, 1.)

{}

Action getcell resulted in [(WislSHeap.MissingResource
(WislLActions.Cell, "_$l_17", (Some 0i)))]

WARNING: Unify Assertion Failed: (<cell>(_$l_0, #wisl__1, 1.; #y), (#y, 0))

Listing 5.19: Error when trying to consume pre-condition of second function call

With these simple examples covered, we have a good degree of confidence in the correctness
of our implementation and can proceed to writing more complicated programs and show the full
power of the model of fractional permissions.

5.1.3 Concurrent Binary Trees

The first application we will look at are binary trees, a well known data structure consisting
of a node that can be either a leaf (here encoded by null), or a parent of two other subtrees.
Algorithms working on binary trees are classic examples of divide and conquer problems, which
are very suitable for concurrent implementations, since they are embarassingly parallelisable (we
can spawn a thread for each independent sub-problem, in this case, each one of the two subtrees).
Proving specifications of important algorithms operating on binary trees shows the true potential
of WISLFP and the value of our project, as no previous sequential WISL program had been written
using this type of data structure, let alone a concurrent implementation of such a program.

We will represent (logical) binary trees as lists, using their pre-order traversal, while the rep-
resentation in memory will be the intuitive one: a pointer x will either be null, or point to a cell
containing a value and two pointers to independent subtrees. Below is a representation of the
binary tree predicate in WISLFP. We will enforce that the same permission value will be present
across all nodes in the tree, and this will be represented by the p parameter. The need for this
parameter to be passed into the predicate is evident: we want to be able to reuse the predicate for
functions that can take any amount of permission on a binary tree, not just the full permission.
Notice how both the pointer x and the permission p are in parameters (marked by the character +),
since the cell assertion needs both the location and the permission to determine its out parameters.
The list representation of the tree will be the learned out parameter in this case.

predicate binary_tree(+x, tree, +p: Float) {
(x == null) * (tree == nil);
(x -> (p: #a), (p: #l), (p: #r)) * binary_tree(#l, #left, p) *

binary_tree(#r, #right, p) * (tree == #a::(#left @ #right))
}

Listing 5.20: Predicate representing binary trees in WISLFP

The first algorithm we implemented is calculating the height of a binary tree. The function
implementation is very simple. A leaf node will always have height 0, while in the case of a parent
node, all we need to do is recurse into the two subtrees. We can do this inside a par block, since
the two subtrees are disjoint (there share no resources between each other). Having calculated the
height of both subtrees, we just select the greater of the two and increment it by 1. Notice the use
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of the permission parameter #p as a specification parameter. As calculating the height requires
read-only access to the nodes of the tree, any (positive) permission parameter is enough to satisfy
the function’s specification. We do not need to split the permission here, as both parallel function
calls operate on different portions of the heap, so they can both use the entire #p we are given
from the pre-condition.

predicate tree_height(+x, h: Int, +p: Float) {
(x == null) * (h == 0);
(x -> (p: #a), (p: #l), (p: #r)) * tree_height(#l, #hl, p)

* tree_height(#r, #hr, p) * (#hl >=# #hr) * (h == #hl + 1);
(x -> (p: #a), (p: #l), (p: #r)) * tree_height(#l, #hl, p)

* tree_height(#r, #hr, p) * (#hl <# #hr) * (h == #hr + 1)
}

[ spec height_spec: #p ]
{ (t == #t) * binary_tree(#t, #tree, #p) }
function height(t) {

if (t = null) {
r := 0

} else {
lt := [t + 1];
rt := [t + 2];
par {

lh := height(lt) [height_spec: (#p: #p)];
rh := height(rt) [height_spec: (#p: #p)]

};
r := max(lh, rh);
r := r + 1

};
return r

}
{ tree_height(#t, ret, #p) }

Listing 5.21: A function that calculates the height of a binary tree

The more interesting problem we had to solve with this function (and, in general, with all
binary tree and, later, lambda term algorithms) was expressing the goal that the function should
achieve as its post-condition. Here, this takes the form of the tree_height predicate. The body
of this predicate mirrors the one of the lambda_term predicate: we have a base case for the leaf
node, when the height is 0, and for the parent node, we select the greater of the heights of its left
and right subtrees and add 1 to it. WISL predicates support disjunction in the form of multiple
clauses, so, unfortunately, a big part of the second clause had to be duplicated between the two
recursive cases.

Next, we will implement a find function. Given a binary tree and a given integer value, the
function returns true if the value is an element of the tree (in its flattened, list representation)
and false otherwise. To express list membership, a simple list_member predicate was used from
a previous WISL implementation of singly-linked lists. The rather interesting aspect about this
function is the need to apply logic commands. This was a great learning experience for us when
testing, as we had the opportunity to learn previously unexplored parts of the WISL language,
how manual folding and unfolding works, how we can write our own lemmas and apply them.
In this case, we do not claim authorship of the list_member_concat lemma, which was, again,
copied from an implementation of singly-linked lists, but it served as a great example for writing
and proving other lemmas that we needed in more complicated algorithms. The list membership
predicate and the concatenation lemma can be found in Listing A.58.

Once again, the implementation is straightforward. In the case of a leaf node, we clearly cannot
find the desired element. For parent nodes, we first look into the current node, to see if the element
in the root of the tree is the one we are looking for. If so, we return true, otherwise, we spawn
two threads to recurse in parallel into the two subtrees, and return the disjunction of their results.
Once again, the embarassingly parallelisable nature of this data structure makes the application
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of the parallel composition rule straightforward. The more challenging part of the function was
applying the logical commands. Since we have to produce the list_member predicate in the post-
condition, we need a way to combine the two instances of this predicate for the left and right
subtree. This is where the concatenation lemma comes into play, but before we can apply it, we
need to successfully bind the list representations of the left and right subtrees to logical variables
that can then be passed as parameters to the lemma. Note that we can only bind out parameters
of a predicate, which is an obstacle that required ingeniousity in overcoming in other examples.
Once we have applied the lemma, we have list_member(left right, #v, r) in our state, so we
can cons x in front of the concatenation of the left and right subtrees and fold the list membership
predicate to successfully produce the postcondition.

[ spec find_spec: #p ]
{ (t == #t) * (v == #v) * binary_tree(#t, #tree, #p) }
function find(t, v) {

if (t = null) {
r := false

} else {
x := [t];
if (x = v) {

r := true
} else {

lt := [t + 1];
rt := [t + 2];
par {

is_in_left := find(lt, v) [ find_spec: (#p: #p) ];
is_in_right := find(rt, v) [ find_spec: (#p: #p) ]

};
r := is_in_left || is_in_right;
[[assert {bind: #left, #right} binary_tree(lt, #left, #p)

* binary_tree(rt, #right, #p)]];
[[apply list_member_concat(#left, #right, #v)]];
[[fold list_member(x :: (#left @ #right), #v, r)]]

}
};
return r

}
{ binary_tree(#t, #tree, #p) * list_member(#tree, #v, ret) }

Listing 5.22: A function that finds element v in binary tree t

Our last binary tree algorithm replaces every occurrence of element v in binary tree t by w (see
Listing A.59 for the implementation). Once again, the algorithm implementation is straightforward
and very much mimics the structure of the find procedure, except instead of returning a boolean
value, we modify the tree in place. Observe that, since we need to modify the contents of the tree,
we require full permission on the binary_tree predicate. The more interesting parts to talk about
are the replaced predicate used in the post-condition, and the application of logical commands.

The code of the replaced predicate and its corresponding concatenation are ommitted for
brevity and can be found in Listing A.60. The predicate takes two lists (flattened representations
of binary trees) and the v and w values and checks that every occurrence of v has been replaced by
w. The empty lists case is obvious, whereas in the non-empty case, we have to make sure that if
the head of the list is v in the first list, it has been replaced by w in the second, and that otherwise
it remained unchanged. This is a very good example of how apparently complicated relations can
be expressed very elegantly through WISL predicates. The concatenation lemma was written from
scratch, and states that if every occurrence of v has been replaced with w in two lists, then we
can say the same about their concatenation. The proof works by unfolding the predicate for one
of the two pairs of lists and binding the head and tail variables in the non-empty cases. Since
both non-empty cases recursively call the predicate into the tails of the two lists, we can apply
the lemma on the bound tail lists and the second pair passed as parameter to the lemma. Thus,
assuming the contract of the lemma holds, in the same way that recursively calling a function
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produces its post-condition, we can deduce that the predicate holds for the concatenation of the
tails with vs2 and ws2. From there, the interpreter can automatically fold back the predicate by
adding the heads to the two concatenated lists, and thus obtain the desired result.

To see where this lemma becomes useful, we have to consider the state after the par block exe-
cutes. We have produced the post-condition of the replace function for the left and right subtrees,
but we do not have an obvious way of folding the replaced predicate for the full tree. Similarly to
what we did in the find function, we can bind the two resulting subtrees that correspond to the
original subtrees where every v has been replaced with w. However, all parameters of the replaced
predicate are ins, and, as we mentioned before, only outs can be bound. The way to navigate this
is to use the binary_tree predicate instead to bind the original subtrees (before the par block)
and the replaced subtrees (after the par block), since the list representation of the tree is an out
parameter in that predicate. As we know the post-condition of the function, we know the state
will also contain an instance of the replaced predicate with the variables we just bound, so we can
simply apply the lemma, passing them as arguments. The core engine then takes care of folding
the predicates by cons-ing the root of the tree back onto the concatenation of the subtrees.

So far we have seen how we can verify parallel implementations of some fundamental and
commonly-used algorithms on binary trees. While very exciting and evidently powerful in terms of
expressiveness, these algorithms have not yet illustrated the most crucial phenomenon in the model
of fractional permissions: permission splitting. As binary trees were embarassingly parallelisable
data structures, all our parallel composition calls were operating on disjoint portions of the heap,
so there was no need in splitting permissions of shared resources between threads. They could
have exclusive access if needed (as was the case for replace). In the next section, however, we will
address this limitation and show the full potential of fractional permissions.

5.1.4 Lambda Terms
Lambda term substitution is mentioned by Bornat et al. in [27] as the most conclusive application
illustrating the usage and expressiveness of the model of fractional permissions. Our evaluation
would be incomplete had we not included this famous example, so this section will discuss it in
detail.

Section 2.4.2 describes the grammar of the lambda calculus and explains the process of divid-
ing the permission of the substituted term in the algorithm. Here, we will focus on the WISL
implementation of lambda terms.

Quite similarly to binary trees, we will represent lambda terms as pointers to a natural number
between 0 and 2 (referred to as the type of the term, 0 for abstractions, 1 for applications, 2 for
variables), and depending on the type, either one or two more values, representing the variable v (in
the case of variables and abstractions) and the subterm(s) that this term is made of (one subterm
for abstractions, two for applications). As before, we enforce that the entire tree construction of
the lambda term has the same permission parameter p. The predicate is given below. The choice
to pass v, as well as t1 and t2, even though at most two of these three will be set is to do with
convenience. We can see that in the cases where there is no (second) subterm, that corresponding
variable is marked as null. In the application case, we have no variable v, so it is marked as 0
(conventional value, it will not be used by any program logic). We can discover what variables will
be set to their correct values by accessing the type parameter and using the variables according to
the structure of the term.

predicate lambda_term(+x, v, t1, t2, type: Int, +p: Float) {
(x -> (p: 0), (p: v), (p: t1)) * (type == 0) * (t2 == null)

* lambda_term(t1, #v1, #t11, #t12, #type1, p);
(x -> (p: 1), (p: t1), (p: t2)) * (type == 1) * (v == 0)

* lambda_term(t1, #v1, #t11, #t12, #type1, p)
* lambda_term(t2, #v2, #t21, #t22, #type2, p);

(x -> (p: 2), (p: v)) * (type == 2) * (t1 == null) * (t2 == null)
}

Listing 5.23: The predicate representing lambda terms in WISLFP

We will first focus on the copy function. It takes a lambda term with any given permission and
creates a copy of that term in memory (which will have full permission, since it is made of newly
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created heap cells). The implementation is given in Listing A.61.
Once again, the difficult part lies not in the code, but in expressing the post-condition. In

terms of the algorithm, we have three cases, corresponding to the three types of lambda terms:
in the case of a variable v, our new term will contain just two cells, with v at offset 1 (offset 0 is
reserved for the type, assigned at the end, irrespective of the number of cells the term will contain).
Otherwise, we are dealing with either an abstraction or an application, which both require three
cells to represent in heap. In the case of an application, we can easily read the subterms at offsets
1 and 2 and recursively call copy on each one of them in parallel, in much the same way we did
with the left and right subtrees of a binary tree (since they are disjoint, the entire #p available can
be given to both subterms). The two copies are thus created and put in place of our new term.
The abstraction case is merely a combination of the previous two cases, with the variable being
assigned to offset 1 and a copy of the subterm at offset 2.

The is_copy predicate looks quite complicated at first. It has 8 parameters, the first 4 describ-
ing the pointers to the two terms and their respective permissions, and the rest being the learned
out parameters of the lambda term in the pre-condition. The philosophical reason for why the
latter are kept in the predicate is to ensure that the term we copied is indeed the same term we
received in the pre-condition (otherwise, we could have modified t and the post-condition would
still hold as long as the returned term is a copy of the "new" t). However, since this function’s spec-
ification is parameterised in terms of the permission, we cannot modify the term (the permission is
not guaranteed to be 1). There is a practical reason as well behind this choice, which will become
apparent when we discuss substitution. For now, we need to express the is_copy predicate in a
way that ensures both memory locations are included (so as to not leak resources). The predicate
is given below. As we can see, it completely mirrors the structure of the lambda_term predicate
in terms of the three clauses and the recursive calls. This is a major advantage, as the similar
structure makes the engine capable of folding the predicate to establish the post-condition without
any manual help from lemmas (as we had in the case of binary trees).

predicate is_copy(+x, +y, +p1: Float, +p2: Float, v, t1, t2, type: Int) {
(x -> (p1: 0), (p1: v), (p1: t1)) * (y -> (p2: 0), (p2: v), (p2: #t2))

* (type == 0) * (t2 == null)
* is_copy(t1, #t2, p1, p2, #v, #t11, #t12, #type);

(x -> (p1: 1), (p1: t1), (p1: t2)) * (y -> (p2: 1), (p2: #t21), (p2: #t22))
* (type == 1) * (v == 0)
* is_copy(t1, #t21, p1, p2, #v1, #t11, #t12, #type1)
* is_copy(t2, #t22, p1, p2, #v2, #t_21, #t_22, #type2);

(x -> (p1: 2), (p1: v)) * (y -> (p2: 2), (p2: v)) * (type == 2)
* (t1 == null) * (t2 == null)

}

Listing 5.24: The is_copy predicate

Copying a lambda term is quite intuitive and brings nothing new to the table. We had already
seen examples of disjoint concurrency working perfectly for binary trees. However, we need this
function in order to perform lambda term substitution, which, as we shall see, does not enjoy this
property of disjointness anymore.

We start by describing the substituted predicate, shown in Listing 5.25, which states that
t_out is the same as t_in, except every occurrence of v has been replaced with t. The permission
parameters are p1 for t_in, p2 for t_out, and pt for t. All parameters of the predicate are in
parameters, as learning t_out would have meant duplicating the resource of the entire resulting
lambda term, and thus we would have needed to compare that with the returned term using the
is_copy predicate. This version of the predicate allows to check that the term we produced is
indeed a substitution of the original term.

One important aspect we had to take into account was writing a post-condition for the function
that would not leak resources (would describe all the cells present in the heap). This is particularly
difficult in the case of the substituted predicate. This is because in some cases we have to perform
the substitution, such as in the application case, and other times, we need to keep the term intact,
such as for an abstraction where the bound variable is the same as v. We cannot simply copy the
#t term referenced by t_in to t_out, as that would create aliasing. Instead, we have to create
a new subterm #t2 for t_out and ensure that this is an exact copy of #t. Extra care is needed
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when using the is_copy predicate, since its definition contains cell assertions, and duplicating any
of them would make the predicate equivalent to false, as the * operator describes disjoint portions
of the heap. For this exact reason, we have to specifically include the t lambda term (through the
is_copy or lambda_term predicates) in the cases where it is not substituted, in order to not leak
those portions of the heap. Particularly interesting is the application case, where we divide the
permission on the term t in half when recursing, as both subterms need to substitute t. Eventually,
those two subterms would reach their base cases of the predicate (where no more substitutions are
applied), and they would produce the cell assertions for the term t. Each occurrence of t, whether
it is through the lambda_term predicate in the first and last clauses, or through the is_copy
predicate for the case where we replace variable v with t (the fourth clause), so t_out becomes
a copy of t itself, will have a permission of pt / 2^(num_splittings), where the number of
splittings is equal to the number of application subterms encountered on the path to that base
case. We trust the reader can observe that there will be exactly 2^(num_splittings) such cell
assertions, and their permissions would sum up to the entire pt, making the term fully contained
inside the definition of the predicate.

predicate substituted(+t_in, +t, +v, +p1: Float, +p2: Float, +pt: Float, +t_out) {
(t_in -> (p1: 0), (p1: v), (p1: #t)) * (t_out -> (p2: 0), (p2: v), (p2: #t2))

* is_copy(#t, #t2, p1, p2, #tv, #tt1, #tt2, #type1)
* lambda_term(t, #w, #t11, #t12, #type2, pt);

(t_in -> (p1: 0), (p1: #v), (p1: #t)) * (! (#v == v))
* (t_out -> (p2: 0), (p2: #v), (p2: #t_out))
* substituted(#t, t, v, p1, p2, pt, #t_out);

(t_in -> (p1: 1), (p1: #t1), (p1: #t2))
* (t_out -> (p2: 1), (p2: #t1_out), (p2: #t2_out))
* substituted(#t1, t, v, p1, p2, pt f/ 2.0, #t1_out)
* substituted(#t2, t, v, p1, p2, pt f/ 2.0, #t2_out);

(t_in -> (p1: 2), (p1: v)) * is_copy(t, t_out, pt, p2, #v, #t1, #t2, #type);
(t_in -> (p1: 2), (p1: #v)) * (! (v == #v)) * (t_out -> (p2: 2), (p2: #v))

* lambda_term(t, #w, #t1, #t2, #type, pt)
}

Listing 5.25: The substituted predicate

The implementation of the substitution function is given below. Unlike the example presented
by Bornat et al. in their paper, we will not be modifying the lambda term in place, since it
would be impossible to derive a post-condition that would correctly express a correct substitution.
As a result, we take any permission parameter for the x lambda term, as well as for the y (in
accordance to the paper in the case of the latter). Following the structure of the predicate, if
the term is a variable w, we replace it by (a copy of) y if w is equal to the variable v we want
to substitute, otherwise we simply copy the entire term. Notice the need to manually unfold
the is_copy predicate in the second case. This is because of the structure of the substituted
predicate, which contains the two cell assertions for t_in and t_out explicitly unfolded, as well as
the lambda_term predicate for t. By unfolding is_copy, we obtain precisely these separation logic
assertions in our state, after which the folding of substituted can be done automatically. The
same unfolding is not needed in the v = w case, as the substituted predicate actually contains
an instance of is_copy parameterised with t and t_out, so the folding of the post-condition can
be done with no need for manual help.

We will discuss the (slightly simpler) abstraction case, before we get to the substitution. In
the case x is an abstraction, we have to check the bound variable w. If it is the same as v, then
we must not substitute it in the subterm, so instead, we just copy the subterm and attach it to
our result. If however, w is different from v, we have to perform the substitution. Once again,
the post-conditions of copy and subst produced in these cases match exactly the corresponding
clauses of the substituted predicate we need to fold, so the verification is simple.

Finally, in the application case, we have to substitute the variable inside both subterms. Since
they are different subterms, we can do this in parallel with no problem. However, we need to pass
the same term y to both recursive calls. What can we do in this case? The answer is the one we
have been waiting for: we split the permission on y in halves. Each recursive call to subst will
instantiate its post-condition with half of our current permission on y in the place of #py. Notice

52



the need to bind this new logical variable in an assertion in order to use it later, and the usecase
of the floating-point division that justified implementing the arithmetic. However, we are not able
to unify against the pre-condition of the subst function, because the lambda_term predicate for
y is instantiated with the full #py permission. Our engine is not smart enough to deduce that
the predicate can be split into two identical parts with permissions summing up to #py. Thus, we
need to apply a lemma that can do this for us. The splitting permission lemma can be found in
Listing A.62, which states that if we have an instance of a lambda term with permission p, we can
split it into 2 different instances of the same term with permissions p1 and p2, as long as p1 + p2
= p. Its proof is not at all complicated. It works by first unfolding the lambda_term predicate,
and, since we need only treat the recursive cases (as the engine can automatically infer the property
for the non-recursive one, by checking that the cell assertions combine to the full permission), we
follow the structure of those clauses. We bind the logical variables found in each recursive call to
the predicate (which will contain the full permission p), and recursively apply the lemma on those
instances, with the same p1 and p2 that we are given as parameters to the lemma.

[spec subst_spec: #px, #py]
{ (x == #x) * (y == #y) * (v == #v) * lambda_term(#x, #vx, #tx1, #tx2, #type_x, #px)

* lambda_term(#y, #vy, #ty1, #ty2, #type_y, #py) }
function subst(x, y, v) {

type := [x];
if (type = 2) {

w := [x + 1];
if (v = w) {

r := copy(y)[copy_spec: (#p: #py)]
} else {

r := copy(x)[copy_spec: (#p: #px)];
[[unfold is_copy(#x, r, #px, 1.0, #vx, #tx1, #tx2, #type_x)]]

}
} else {

r := new(3);
[r] := type;
if (type = 1) {

t1 := [x + 1]; t2 := [x + 2];
[[assert {bind: #py_half} (#py_half == #py f/ 2.0)]];
[[apply split_lambda_term_permission(#y, #vy, #ty1, #ty2, #type_y,

#py, #py_half, #py_half)]];
par {

ct1 := subst(t1, y, v)[subst_spec: (#px: #px), (#py: #py_half)];
ct2 := subst(t2, y, v)[subst_spec: (#px: #px), (#py: #py_half)]

};
[r + 1] := ct1; [r + 2] := ct2

} else {
w := [x + 1];
t := [x + 2];
if (v = w) {

ct := copy(t)[copy_spec: (#p: #px)]
} else {

ct := subst(t, y, v)[subst_spec: (#px: #px), (#py: #py)]
};
[r + 1] := w;
[r + 2] := ct

}
};
return r

}
{ substituted(#x, #y, #v, #px, 1.0, #py, ret) }

Listing 5.26: Implementation of lambda term substitution in WISLFP
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Now we can apply our lemma to split the lambda_term predicate on y into two different
instances, each with #py_half permission. This makes the unification of the pre-conditions inside
the par call a formality. Finally, the post-conditions produced perfectly mirror the structure of
the application case in the substituted predicate, so the folding is performed by the engine
automatically.

With this famous example, we have seen a truly remarkable way in which fractional permissions
can be applied to verification of concurrent programs with ease and elegance. We believe we have
undergone a thorough and complete testing process, which not only uncovered bugs in legacy
code that were fixed as a result, but also showed how solutions to famous, complex programming
problems can be fully verified. This demonstrates the significant value of our contributions to the
Gillian ecosystem, as the tool suddenly moved away from purely didactic examples to algorithms
that can be applied in real-world, complex applications. Of course, the current work represents
only the initial step towards this goal, as the choice of the target language is, clearly, unusable in
production. Rather, the importance of our achievements is in providing a proof of concept in the
area of concurrent program verification and making the initial effort towards putting Gillian at the
same level with its competitors, through the simplest gateway first, in the form of WISL, hoping
that similar efforts will be undergone for the other target languages in the near future.

5.2 Performance Testing

An important way to estimate the value that this project brings to the Gillian ecosystem is rooted in
performance. Are the new provided features forming a good trade-off with the incurred performance
overhead? Can the tool still be used within what is deemed acceptable in terms of time of execution
and latency? This section will explore the process of performance testing that was performed on
the new instantiation of Gillian, and compare the observed elapsed times with the ones that
the old WISL instantiation on some previously-existing regression test suites, and also measure
the performance of the new features demonstrated through the examples showed in the previous
section.

5.2.1 Comparison with the Old Version on Regression Test Suites

The old WISL instantiation had a number of test programs used for didactic purposes (some of them
to showcase the tool and its debugger extension during the Scalable Software Verification Course
offered to Computing students at Imperial College London). They are mostly centered around the
singly-linked list data structure. In fact, the list_member predicate used in the previous section
was part of this test suite.

The SLL_ex_complete.wisl file, under debugger-vscode-extension/sampleWorkspace, con-
tains an extensive set of both recursive and iterative implementations of functions operating on
singly-linked lists, together with the predicates and lemmas used to prove their specifications.
There are 18 functions in this file, exercising all aspects of the core engine and the memory model,
from recursion, while loops and invariants, to loading and storing to memory, producing and con-
suming complex predicates, performing logical actions etc. Listing A.63 provides a short example
of one of the functions in SLL_ex_complete.wisl, in both its iterative and recursive implementa-
tions. Throughout development, this file was used as a regression test suite, to test the correctness
of our implementation against the old version of WISL, in order to ascertain soundness was pre-
served. We will use this file to compare the performance of the old WISL instantiation to the new
one, WISLFP.

In many projects, performance testing is a difficult matter. Accurate benchmarks have to be
acquired and tested on different machines multiple times, so as to ensure statistical consistency
and eliminate bias. This would have been a difficult and long process, especially for a tool that is
not deployed on the cloud, with limited relevant benchmarks to choose from. Luckily for us, the
Gillian CLI outputs the elapsed time at the beginning and the end of the verification process. We
will use this as the measure of our performance, running SLL_ex_complete.wisl file 10 times and
averaging the results. The machine used for testing is a modern Dell XPS 15, with an Intel Core i7
11-th generation containing 8 cores running at 4.9 GHz, and 32 GB of RAM. Listing A.64 presents
a shortened example of the outputs that the Gillian CLI prints when running esy x wisl verify
./debugger-vscode-extension/sampleWorkspace/SLL_ex_complete.wisl, which is the com-
mand to execute Gillian with the esy building tool, in the verification mode, using the WISL
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memory model, feeding the SLL_ex_complete.wisl file as input for verification.
The results of verifying the SLL_ex_complete.wisl file using the old WISL memory model,

show an average time of 0.4448277 seconds across 10 iterations. In fact, the time taken by the
console to print the output might be longer than the actual measured execution time of the engine.
There are 25 procedures: 10 recursive functions, 7 recursive functions, each with their own while
loop that Gillian verifies as a separate procedure, and 1 function that contains neither recursive
calls nor while loops. This is clearly an impressive result that we would like to match.

To accurately measure the time elapsed for the WISLFP instantiation, we switch from the
master branch that these results were obtained on, and checkout the fractional_permissions
branch, on which this work was performed (and not merged into master, for logistics reasons).
Executing the same command, replacing wisl with wislfp, signalling Gillian to use the WISLFP
instantiation, we obtain an average time of 0.4583692, across 10 iterations. This is within 1.5
hundreths of a second of the original implementation, a clearly negligible amount. We can conclude
that the newly added support for concurrency does not impact performance on verification of the
average, sequential program of WISL, and that the user experience remains virtually unchanged.

5.2.2 Performance of Concurrent Program Verification

The next thing that this project attempts to prove is that verification of concurrent programs
can be done efficiently, with basically no impact to the user experience and negligible latencies.
In order to do so, we will analyse the three concurrent test suites presented in Section 5.1 and
measure their performance. We will use the same environment mentioned in the previous section
and, as before, we will average out the times across 10 iterations.

The simple_concurrency.wisl file contains 8 functions, 2 of which fail (as expected) under
verification. Running the WISLFP instantiation of Gillian on this file, we obtain an average time
of 0.0399565 seconds. That is less than 4 hundreths of a second, equivalent to less than half a
hundreth for one function. This is remarkably fast, albeit for a very simple test suite.

The concurrent_binary_tree.wisl file contains 4 functions (the height, find, replace seen
before and a simple max function) and 2 lemmas. These functions are considerably more complex
than the ones in simple_concurrency.wisl, both in terms of their body of code and behaviours
exercised, and in terms of their specifications. Despite all this, the average measured time is
0.1376696, which is a little over a tenth of a second. This shows that users can verify complex
specifications of concurrent programs (also containing logical actions) almost instantaneously.

Finally, lambda_terms.wisl contains 2 functions (copy and subst), 1 lemma and the most
complex set of predicates in our test suite. On top of this, the substitution function exercises the
splitting of permissions in half in the application case. Therefore, this would, in theory, achieve
higher coverage of our tool, which is useful not only in correctness testing methods like fuzzing,
but also in performance testing, as a slow path might be triggered in a small percentage of cases.
Regardless, for 10 runs of this benchmark, Gillian still achieves a remarkable average execution
time of 0.3192437 seconds. If we exclude the lemma, we obtain an overestimate of approximately
1.5 tenths of a second per function. Even though such experiments never scale exactly linearly, we
could theoretically consider the implementation of an entire concurrent library, that can contain
an approximate number of 100 very diverse functions, not all of which will have the complexity of
subst, to verify in approximately 15 seconds. This is more than enough for a classic performance
SLA that would enable us to include Gillian as part of a more complex CI/CD architecture in
production. We have thus shown that adding support for concurrency to Gillian not only did not
impact the baseline performance of existing benchmarks, but also provided valuable functionality
at minimal costs of latency.

5.3 Comparison to Other Tools

It is somewhat unfair to compare Gillian, a tool still very much in its infancy, to any other much
bigger projects in which there have been invested much more resources, both in terms of finances,
time, and sustained development. Tools such as Verifast and VerCors are available to the general
public and are capable of verifying complex programming constructs (including concurrency) in
established languages, such as Java and C. While Gillian does have a C instantiation that has been
used to verify industry code, its support is nowhere near as complete as that of its competitors.
For instance, it does not support any concepts related to concurrency and multi-threading. In
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comparison, VerCors and Verifast have programs in their test suites making use of constructs such
as atomics, locks, monitors, p_threads, fork-join concurrency etc. This project is the first step
towards adding support for any form of concurrency to Gillian, in a purely didactic language.
Comparing the newly added support in terms of complexity to the capabilities of VerCors and
Verifast would obviously suggest a significant advantage in the favour of the latter two. However,
the goal of our project was more related to improving the current Gillian architecture and making
a first step to bridge the gap to its rivals.

A significant comparison that we can make to the other tools is in terms of performance. Is
Gillian behaving better or worse on average than its competitors, in terms of the time of execution?

We downloaded the Verifast repository [7] on the same machine used to benchmark Gillian
and ran their test-suite. The results on their example programs exercising concurrency concepts
vary from 0.03 seconds up to 23.86 seconds on a particularly slow example (see Listing A.65).
The average was still under 1 second, which is comparable to the time obtained by Gillian on
its most complex benchmark (lambda terms). We can safely assume that Verifast’s test suite is
more complex than ours, but showing results comparable to real world standards, even for simpler
examples, is encouraging. This shows the value of our work in comparison to more advanced
academic tools and highlights the potential room for growth and improvement in the same direction.

5.4 Limitations
While this project successfully achieves its main goal in providing a mechanism to verify shared
memory concurrency in Gillian, there are a number of limitations that we would have liked to
address, in a less time-restricted scenario.

Inferring permission parameters automatically. While support for fractional permissions
was successfully added to the tool, they are not automatically inferred. As mentioned in Sec-
tion 4.1.2, permissions are either passed as program arguments to the function or as specification
parameters, which places an extra responsibility on the programmers to be aware of the concept
of permissions and express it explicitly in their code. We would like to automate this process
and make the tool capable of automatically inferring the permission value needed for a concurrent
function and liberate programmers from the burden of writing verifier-related boilerplate code.

Other permission models. This project only implements the model of fractional permissions
in WISL, which, while useful for several interesting examples, as we have seen, it is not omnipotent.
Several concurrency idioms like readers and writers cannot be expressed with the help of fractional
permissions. If time allowed, we would have liked to implement the counting permission model in
Gillian, which would have enabled us to verify other types of concurrent programs, such as the
readers and writers problem (provided some extensions to the language are made, with respect to
critical sections), and would have made for a more expressive and powerful tool.

5.5 Reflection
The project was a very rewarding experience, both in terms of engineering and programming skills
exercised, but also in terms of the practical research opportunity it provided. Being able to work
in a niche area of Computing in the form of software verification unveiled the true potential of
combining knowledge and passion. The results were a successful, novel implementation, which
constitutes a significant advantage to a sizeable software artefact, and a memorable journey for
the student, where working felt relaxing and joyful.

Despite having a slow start to the project, when significant time was spent becoming familiar
with the codebase, we believe that the available time was spent wisely. Early conversations with
Sacha proved crucial to understanding the internals of the tool, and his mentoring, patience, and
guidance throughout the process of discovering the hidden details of Gillian made development a
much more straightforward and pleasant experience. From the moment the first contributions to
the codebase were pushed to Gillian’s Github repository, development progressed steadily, with a
healthy plan in mind, that ensured the project’s goals would be realised with plenty of time left in
hand. If this project were repeated with the gift of hindsight, research of the internals of Gillian
would be performed sooner, to allow for even faster development and enough time for an extension,
such as the counting permissions model.
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Chapter 6

Conclusion and Next Steps

This project was a successful attempt at providing the very first, fundamental support for verifica-
tion of concurrent programs to the Gillian verifier. Chapter 2 provided the theoretical foundations
required for our project, starting from basic Hoare Logic, continuing with Concurrent Separation
Logic and finishing with permission models. In Chapter 3, we became familiar with the architec-
ture of our tool and its working mechanisms and gave the reader an insight into the engineering
additions required to implement the model of fractional permissions. Chapter 4 detailed the im-
plementation, showing how the new WISL memory model was written, how the language was
reshaped into the new, extended WISLFP, and how parallel composition was added to the core
engine to support not only its WISLFP equivalent, but also any future work in concurrency for
any other target language. To showcase the value of our contributions, in Chapter 5, we verified
parallel implementations of fundamental algorithms operating on an even more important data
structure, in the form of binary trees, and demonstrated how fractional permissions can be used
to elegantly prove specifications for lambda term substitution.

This project’s objective was to provide a foundational work in the development of concurrent
program verification for Gillian, through the path of least resistance (in the form of WISL). As
always, there are numerous extensions that can be attempted to build on or accompany our work:

• Inferring permissions. As mentioned in Chapter 5, inferring the required values for the
permission parameters automatically would be a challenging, but valuable piece of research
that would enable the programmers to focus entirely on their code, without thinking about
the verification tool and permission models.

• Synchronisation. A lot of useful, industry-like concurrent code contains synchronisa-
tion mechanisms and algorithms relying on language primitives, such as atomics, locks,
semaphores and monitors. WISLFP currently has no support for synchronisation primi-
tives, which limits the spectrum of programs available for verification. Adding such support
to WISLFP would enable us to implement complex thread-safe data structures (lists, binary
search trees, red-black trees etc.), which would make a significant difference to the expres-
siveness of the language.

• More complex concurrency concepts. There is limitless room for improvement in terms
of concurrency capabilities. Things like thread pools, fork-join concurrency, the Linux wait
system call will always enrich the set of concurrent behaviours we are able to express.

• Real world target languages. The majority of the concepts mentioned above would prove
much more valuable if implemented in a language like C, as it would automatically open the
door to verifying complex real world code, as opposed to (still) toy, didactic examples like
those we saw in WISL.

We leave all of these are suggestions and opportunities for future development of Gillian and
hope that our project will open the door to exciting advancements in the world of verification and
in the development of our tool.
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Chapter 7

Ethical issues

Gillian is a program analysis tool that can verify correctness of programs and identify potential
problems (bugs) of said programs, should these exist. Gillian has already been able to find 5
bugs in production JavaScript and C code within AWS [11]. Out of these, 2 were classified as
security vulnerabilities. This consitutues a proof for the capability of Gillian to find vulnerabilities
in software systems used by millions of users. The focus of this project is on verifying concurrent
code, which would extend the area of programs that can be verified and of identifiable bugs.
Concurrency bugs are arguably more obscure and harder to exploit as security vulnerabilities than
regular programmer mistakes like accessing a buffer out of bounds, which immediately highlights
a risk for data theft. However, denial of service attacks by effectively writing a concurrency stress
tests which increase the chances of manifesting potential concurrency bugs (data-races that can
crash the system, livelocks that prevent the application from making any progress etc.) identified
through verification are still possible. It appears that the new support for fractional permission
concurrency within Gillian would make it more attractive to malicious users. However, there are
a number of very practical arguments which make the use of our tool for illegal purposes highly
improbable:

• Attackers rarely have access to the source code of the target system. In order to find potential
vulnerabilities, the source code has to be accessible for Gillian to analyse and verify. In order
to get into such a situation, the attacker would have to circumvent all the existing security
measures in place, which brings us to the next point.

• Most companies have serious counter-measures in place to prevent attacks on security critical
parts of their infrastructure. The difficulty an attacker would have to face in order to get
full access to the source code defeats the purpose of any possible damage that could be done
through a denial of service attack. Furthermore, it is to be expected that any secrets a
possible exploit could leak would probably already be available to the attacker once access
to the source code (arguably higher privilege) is obtained.

• It is expected that developers would verify security critical code with our tool and fix any
vulnerabilities it would highlight before an attacker has the opportunity to exploit them.
The open-source nature of the project should make this task that much easier, eliminating
bureaucratic or financial reasons for which this would not happen.

We conclude that the existent risk for our tool to be misused is just as small as the risk of
any software being misused. That is, there are no special security considerations that would make
us think our tool can be found at the root of a cyber security attack. Similar tools exist in the
industry, as mentioned before, such as Meta’s Infer, and up to now there have been no reported
security issues arising from the use of such verification tools.
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Appendix A

Listings

(* state.ml *)

module type S = sig
(** Type of GIL values *)
type vt [@@deriving yojson, show]

(** Type of GIL general states *)
type t [@@deriving yojson]

(** Type of GIL substitutions *)
type st

(** Type of GIL stores *)
type store_t

(** Type of GIL stores *)
type heap_t

...
end

Listing A.1: Interface for GIL General States

(* SState.ml *)

module type S = sig
include State.S

val make_s :
init_data:init_data ->
store:store_t ->
pfs:PFS.t ->
gamma:Type_env.t ->
spec_vars:SS.t ->
t

...
end

module Make (SMemory : SMemory.S) :
S

with type st = SVal.SESubst.t
and type vt = SVal.M.t
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and type store_t = SStore.t
and type heap_t = SMemory.t
and type m_err_t = SMemory.err_t
and type init_data = SMemory.init_data = struct

type vt = SVal.M.t [@@deriving yojson, show]
type st = SVal.M.et
type heap_t = SMemory.t [@@deriving yojson]
type store_t = SStore.t [@@deriving yojson]
...

let execute_action
?(unification = false)
(action : string)
(state : t)
(args : vt list) : action_ret =

let open Syntaxes.List in
let heap, store, pfs, gamma, vars = state in
let pc = Gpc.make ~unification ~pfs ~gamma () in
let+ Gbranch.{ value; pc } = SMemory.execute_action action heap pc args in
match value with
| Ok (new_heap, vs) ->

let store = SStore.copy store in
let new_state = (new_heap, store, pc.pfs, pc.gamma, vars) in
Ok (new_state, vs)

| Error err -> Error (StateErr.EMem err)

end

Listing A.2: Implementation of Symbolic States, parametric in the Symbolic Memory Model

type 'label t = 'label TypeDef__.cmd =
| Skip (** Skip *)
| Assignment of string * Expr.t (** Assignment *)
| LAction of string * string * Expr.t list (** Local Actions *)
| Logic of LCmd.t (** GIL Logic commands *)
| Goto of 'label (** Unconditional goto *)
| GuardedGoto of Expr.t * 'label * 'label (** Conditional goto *)
| Call of

string * Expr.t * Expr.t list * 'label option * logic_bindings_t option
(** Procedure call *)

| ECall of string * Expr.t * Expr.t list * 'label option
(** External Procedure call *)

| Apply of string * Expr.t * 'label option
(** Application-style procedure call *)

| Arguments of string (** Arguments of the current function *)
| PhiAssignment of (string * Expr.t list) list (** PHI assignment *)
| ReturnNormal (** Normal return *)
| ReturnError (** Error return *)
| Fail of string * Expr.t list (** Failure *)

Listing A.3: Type of GIL commands, pre-project

let run_spec
(* logical bindings of variables *)
?(existential_bindings : (string * vt) list option)
(name : string) (* function identifier *)
(params : string list) (* the name of function parameters *)
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(up : UP.t) (* unification plan *)
(astate : t) (* the abstract state *)
(x : string option) (* the variable to which the return value is assigned *)
(args : vt list) (* actual parameter values *)
: ((t * Flag.t) list, SUnifier.err_t list) result

Listing A.4: run_spec, which runs the specification of a function when called

let cell ~loc ~offset ~value =
let cell = str_ga Cell in
Asrt.GA (cell, [ loc; offset ], [ value ])

let bound ~loc ~bound =
let bound_ga = str_ga Bound in
let bound = Expr.int bound in
Asrt.GA (bound_ga, [ loc ], [ bound ])

Listing A.5: Cell and Bound assertions, pre-project

(** Gets a first key-value pair that satisfies a predicate *)
let get_first (f : field_name -> bool) (sfvl : t) :

(field_name * field_value) option

(** Adds by testing something equal is not already there *)
let add_with_test

~(equality_test : field_name -> field_name -> bool)
(ofs : field_name)
(new_val : field_value)
(sfvl : t)

Listing A.6: Retrieval and insertion of symbolic values in the SFVL

let union =
Expr.Map.union (fun k fvl fvr ->

L.(
verbose (fun m ->

m
"WARNING: SFVL.union: merging with field in both lists (%s: %s \
and %s), choosing left."

((Fmt.to_to_string Expr.pp) k)
((Fmt.to_to_string Expr.pp) fvl)
((Fmt.to_to_string Expr.pp) fvr)));

Some fvl)

Listing A.7: Retrieval and insertion of symbolic values in the SFVL, pre-project

let get_cell ~pfs ~gamma heap loc ofs =
match Hashtbl.find_opt heap loc with
| None -> Error (MissingResource (Cell, loc, Some ofs))
| Some Block.Freed -> Error (UseAfterFree loc)
| Some (Allocated { data; bound }) -> (

let maybe_out_of_bound =
match bound with
| None -> false
| Some n ->
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let n = Expr.int n in
let open Formula.Infix in
Solver.sat ~unification:false ~pfs ~gamma n #<= ofs

in
if maybe_out_of_bound then Error (OutOfBounds (bound, loc, ofs))
else

match SFVL.get ofs data with
| Some v -> Ok (loc, ofs, v)
| None -> (

match
SFVL.get_first

(fun name -> Solver.is_equal ~pfs ~gamma name ofs)
data

with
| Some (o, v) -> Ok (loc, o, v)
| None -> Error (MissingResource (Cell, loc, Some ofs))))

Listing A.8: The handler for GetCell, prior to the project

let rem_cell heap loc offset =
match Hashtbl.find_opt heap loc with
| None -> Error (MissingResource (Cell, loc, Some offset))
| Some Block.Freed -> Error (UseAfterFree loc)
| Some (Allocated { bound; data }) ->

let data = SFVL.remove offset data in
let () = Hashtbl.replace heap loc (Allocated { bound; data }) in
Ok ()

Listing A.9: The handler for RemCell, prior to the project

let set_cell ~pfs ~gamma heap loc_name ofs v =
match Hashtbl.find_opt heap loc_name with
| None ->

let data = SFVL.add ofs v SFVL.empty in
let bound = None in
let () = Hashtbl.replace heap loc_name (Allocated { data; bound }) in
Ok ()

| Some Block.Freed -> Error (UseAfterFree loc_name)
| Some (Allocated { data; bound }) ->

let maybe_out_of_bound =
match bound with
| None -> false
| Some n ->

let n = Expr.int n in
let open Formula.Infix in
Solver.sat ~unification:false ~pfs ~gamma n #<= ofs

in
if maybe_out_of_bound then Error (UseAfterFree loc_name)
else

let equality_test = Solver.is_equal ~pfs ~gamma in
let data = SFVL.add_with_test ~equality_test ofs v data in
let () = Hashtbl.replace heap loc_name (Allocated { data; bound }) in
Ok ()

Listing A.10: The handler for SetCell, prior to the project
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let compile_binop b =
WBinOp.(

match b with
| EQUAL -> BinOp.Equal
| LESSTHAN -> BinOp.ILessThan
| LESSEQUAL -> BinOp.ILessThanEqual
| PLUS -> BinOp.IPlus
| MINUS -> BinOp.IMinus
| TIMES -> BinOp.ITimes
| DIV -> BinOp.IDiv
| MOD -> BinOp.IMod
(* TODO: Add FPLUS, FMINUS, FTIMES, FDIV, FMOD *)
| AND -> BinOp.BAnd
| OR -> BinOp.BOr
| LSTNTH -> BinOp.LstNth
(* operators that do not exist in gil are compiled separately *)
| _ ->

failwith
(Format.asprintf "compile_binop should not be used to compile %a" pp b))

Listing A.11: Compiling binary operators, pre-project

let rec compile_stmt_list ?(fname = "main") ?(is_loop_prefix = false) stmtl =
match stmtl with
| { snode = Logic invariant; _ } :: while_stmt :: rest -> ...
| { snode = While (e, sl); sid = sid_while; sloc } :: rest -> ...
| { snode = VarAssign (v, e); sid; sloc } :: rest ->
(* TODO: { snode = Par funcs; sid; sloc } :: rest -> ... *)
...

Listing A.12: Compiling a list of statements, pre-project

let union =
Expr.Map.union (fun k (fvl : field_value) (fvr : field_value) ->

L.(
verbose (fun m ->

m
"WARNING: SFVL.union: merging with field in both lists (%s: %s \
and %s), adding permissions."

((Fmt.to_to_string Expr.pp) k)
((Fmt.to_to_string fv_pp) fvl)
((Fmt.to_to_string fv_pp) fvr)));

let { value; permission = lperm } = fvl in
let { permission = rperm; _ } = fvr in
Some { value; permission = Expr.Infix.(lperm +. rperm) })

Listing A.13: Merging of SFVLs, after the project

let cell ~loc ~offset ~value ~permission =
let cell = str_ga Cell in
Asrt.GA (cell, [ loc; offset; permission ], [ value ])

let bound ~loc ~bound ~permission =
let bound_ga = str_ga Bound in
let bound = Expr.int bound in
Asrt.GA (bound_ga, [ loc; permission ], [ bound ])
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Listing A.14: Cell and Bound assertions, after the project

let load ~pfs ~gamma heap loc ofs =
let open Syntaxes.Result in
let+ _, _, v =

access_cell ~unification:false ~pfs ~gamma heap loc ofs (fun _ -> None)
in
v

Listing A.15: Implementation of the Load local action

(* Helper function: Checks if the offset exists in the SFVL first by performing a performance efficient check
and then using the solver. If an entry is found, it applies the success_case function, otherwise the none_case *)

let check_sfvl ~pfs ~gamma ofs data none_case success_case =
let none =

match
SFVL.get_first (fun name -> Solver.is_equal ~pfs ~gamma name ofs) data

with
| None -> none_case ()
| Some (o, SFVL.{ value; permission }) -> success_case o value permission

in
let some SFVL.{ value; permission } = success_case ofs value permission in
Option.fold ~none ~some (SFVL.get ofs data)

Listing A.16: The check_sfvl function

let get_bound ~unification ~pfs ~gamma heap loc out_perm =
match Hashtbl.find_opt heap loc with
| Some Block.Freed -> Error (UseAfterFree loc)
| None -> Error (MissingResource (Cell, loc, None))
| Some (Allocated { bound = None; _ }) ->

Error (MissingResource (Bound, loc, None))
| Some (Allocated { bound = Some bound; _ }) ->

let _, q = bound in
let fl = Formula.Infix.(q#<.out_perm) in
let has_less_perm =

Solver.check_satisfiability ~unification (fl :: PFS.to_list pfs) gamma
in
if has_less_perm then

let missing_permission = Expr.Infix.(out_perm -. q) in
Error (MissingResource (Bound, loc, Some missing_permission))

else Ok bound

Listing A.17: The implementation of GetBound, after the project

let rem_bound ~pfs ~gamma heap loc out_perm =
match Hashtbl.find_opt heap loc with
| Some Block.Freed -> Error (UseAfterFree loc)
| None -> Error (MissingResource (Cell, loc, None))
| Some (Allocated { bound = None; _ }) ->

Error (MissingResource (Bound, loc, None))
| Some (Allocated { data; bound = Some (n, q) }) ->

let new_perm = Expr.Infix.(q -. out_perm) in
let bound =
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if Solver.is_equal ~pfs ~gamma new_perm (Expr.num 0.0) then None
else Some (n, new_perm)

in
let () = Hashtbl.replace heap loc (Allocated { data; bound }) in
Ok ()

Listing A.18: The implementation of RemBound, after the project

(* Helper function: Performs the preliminary checks common to the set_cell and store
operations and applies the "block_missing" operation if the block cannot be found
in the heap "in_bounds" operation if the access to the allocated cell is within bounds *)

let overwrite_cell ~unification ~pfs ~gamma heap loc_name ofs block_missing in_bounds =
match Hashtbl.find_opt heap loc_name with
| None -> block_missing ()
| Some Block.Freed -> Error (UseAfterFree loc_name)
| Some (Allocated { data; bound }) -> (

match bound with
| None -> in_bounds data None
| Some (n, perm) ->

let expr_n = Expr.int n in
let open Formula.Infix in
if Solver.sat ~unification ~pfs ~gamma expr_n #<= ofs then

Error (MissingResource (Bound, loc_name, Some ofs))
else in_bounds data (Some (n, perm)))

Listing A.19: The overwrite_cell helper function

(* Helper function: Extends the block data with a new cell at offset ofs with the value v. *)
let extend_block ~pfs ~gamma heap loc_name ofs value data bound permission =

let equality_test = Solver.is_equal ~pfs ~gamma in
let data =

SFVL.add_with_test ~equality_test ofs SFVL.{ value; permission } data
in
let () = Hashtbl.replace heap loc_name (Block.Allocated { data; bound }) in
let fl = Formula.Infix.(permission #>. (Expr.num 0.0)) in
Ok [ fl ]

Listing A.20: The extend_block helper function

let store ~pfs ~gamma heap loc_name ofs v =
let block_missing () = Error (MissingResource (Cell, loc_name, Some ofs)) in
let in_bounds (data : SFVL.t) bound =

let full_perm = Expr.num 1.0 in
let fl q = Formula.Infix.(q#<.full_perm) in
let can_be_less q =

Solver.check_satisfiability (fl q :: PFS.to_list pfs) gamma
in
let none_case () = Error (MissingResource (Cell, loc_name, Some ofs)) in
let some_case ofs _ permission =

if can_be_less permission then
let missing_permission = Expr.Infix.(full_perm -. permission) in
Error (MissingResource (Cell, loc_name, Some missing_permission))

else extend_block ~pfs ~gamma heap loc_name ofs v data bound permission
in
check_sfvl ~pfs ~gamma ofs data none_case some_case

in
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match
overwrite_cell ~unification:false ~pfs ~gamma heap loc_name ofs

block_missing in_bounds
with
| Error e -> Error e
| Ok _ -> Ok ()

Listing A.21: Implementation of the Store local action

let alloc (heap : t) size =
let loc = ALoc.alloc () in
let rec get_list current_offset =

if current_offset < 0 then []
else

( Expr.int current_offset,
SFVL.{ value = Expr.Lit Literal.Null; permission = Lit (Num 1.0) } )

:: get_list (current_offset - 1)
in
let l = get_list (size - 1) in
let sfvl = SFVL.of_list l in
let block =

Block.Allocated { data = sfvl; bound = Some (size, Lit (Num 1.0)) }
in
let () = Hashtbl.replace heap loc block in
loc

Listing A.22: Alloc implementation

let alloc heap _pfs _gamma (size : int) =
let loc = WislSHeap.alloc heap size in
Ok [ (heap, [ Expr.Lit (Literal.Loc loc); Expr.Lit (Literal.Int Z.zero) ], [], []) ]

Listing A.23: Alloc handler, pre-project

let alloc heap _pfs _gamma (size : int) =
let loc = WislSHeap.alloc heap size in
Ok [ (heap, [ Expr.ALoc loc; Expr.Lit (Literal.Int Z.zero) ], [], []) ]

Listing A.24: Alloc handler, after the project

let dispose ~unification ~pfs ~gamma (heap : t) loc =
match Hashtbl.find_opt heap loc with
| None -> Error (MissingResource (Cell, loc, None))
| Some Freed -> Error (DoubleFree loc)
| Some (Allocated { data = _; bound = None; _ }) ->

Error (MissingResource (Bound, loc, None))
| Some (Allocated { data; bound = Some (i, perm) }) ->

let full_perm = Expr.num 1.0 in
let fl q = Formula.Infix.(q#<.full_perm) in
let can_be_less q =

Solver.check_satisfiability ~unification (fl q :: PFS.to_list pfs) gamma
in
if can_be_less perm then Error (MissingResource (Bound, loc, None))
else

let open Syntaxes.Result in
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let check_entry ac i =
let* () = ac in
match SFVL.get (Expr.int i) data with
| None -> Error (MissingResource (Bound, loc, None))
| Some { permission = q; _ } ->

if can_be_less q then
let missing_permission = Expr.Infix.(full_perm -. q) in
Error (MissingResource (Cell, loc, Some missing_permission))

else Ok ()
in
let+ () = Seq.init i Fun.id |> Seq.fold_left check_entry (Ok ()) in
set_freed_with_logging heap loc

Listing A.25: Dispose implementation

let float = digit* '.' digit*
rule read =

parse
| "spec" { SPEC (curr lexbuf) }
| "Float" { TFLOAT (curr lexbuf) }
| ">#" { LGREATER }
| "f>#" { FLGREATER }
...

Listing A.26: Lexing with Ocamllex

function_call_list:
sl = separated_nonempty_list(SEMICOLON, function_call) { sl }

statement:
...
| lstart = PAR; LCBRACE; fs = function_call_list; lend = RCBRACE;

{
let bare_stmt = WStmt.Par (fs) in
let loc = CodeLoc.merge lstart lend in
WStmt.make bare_stmt loc

}

Listing A.27: Parsing with Menhir

let compile_pointsto =
(* A lot of details that we will omit *)

let eloc, eoffs = (Expr.LVar loc, gil_add expr_offset curr) in
let bound =

if start && block then [ Constr.bound ~loc:eloc ~bound:(List.length lle) ]
else []

in
match lle with
| [] -> failwith "Error"
| le :: r ->

let e2 = compile_lexpr le in
(Constr.cell ~loc:eloc ~offset:eoffs ~value:e2)

Listing A.28: Compiling points-to, pre-project
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let compile_pointsto =
(* A lot of details that we will omit *)

let eloc, eoffs = (Expr.LVar loc, gil_add expr_offset curr) in
let bound =

if start && block then
[

Constr.bound ~loc:eloc ~bound:(List.length lle)
~permission:(Expr.num 1.0);

]
else []

in
match lle with
| [] -> failwith "Error"
| le :: r ->

let perm, le = le in
let e2 = compile_lexpr le in
let e3 = compile_lexpr perm in
(Constr.cell ~loc:eloc ~offset:eoffs ~value:e2 ~permission:e3)

Listing A.29: Compiling points-to, after the project

{ (x == #x) * (p == #p) * (#p f<=# 1.0) * (#x -> (#p: #v)) }
function read(x, p) {
...
}
{ (#x -> (#p: #v)) * (ret == #v) }

function swap() {
[x] := 0;
[x + 1] := 1;
par {

fst := read(x, 0.5);
snd := read(x + 1, 0.5)

};
[x] := snd;
[x + 1] := fst;

}

Listing A.30: Example of a parallel composition block

type tt =
| Skip
| VarAssign of string * WExpr.t
| New of string * int
| Dispose of WExpr.t
| Lookup of string * WExpr.t (* x := [e] *)
| Update of WExpr.t * WExpr.t (* [e] := [e] *)
| FunCall of string * string * WExpr.t list

* (string * (string * WLExpr.t) list) option
(* The last bit is only for internal use *)

| While of WExpr.t * t list
| If of WExpr.t * t list * t list
| Par of t list
| Logic of WLCmd.t

and t = { sid : int; sloc : CodeLoc.t; snode : tt }

Listing A.31: The new WStmt.ml node

68



| { snode = Par funcs; sid; sloc } :: rest ->
let lambda f =

match f with
| { snode = FunCall (x, fn, el, to_bind); _ } ->

let var_name, fct_name, args, bindings, cmdles =
create_func_call x fn el to_bind

in
(Cmd.{ var_name; fct_name; args; err_lab = None; bindings }, cmdles)

| _ ->
failwith

"Parallel composition called with a node different from FunCall!"
in
let zipped = List.map lambda funcs in
let fcs = List.map (fun (f, _) -> f) zipped in
let cmdles = List.concat @@ List.map (fun (_, s) -> s) zipped in
let cmd = Cmd.Par fcs in
let annot =

WAnnot.make ~origin_id:sid ~origin_loc:(CodeLoc.to_location sloc) ()
in
let comp_rest, new_functions = compile_list rest in
(List.concat cmdles @ [ (annot, None, cmd) ] @ comp_rest, new_functions)

Listing A.32: Compiling a par block

predicate points_to_sub(+x, +a: Float, +b: Float) {
(a f>=# b) * (#v == a f- b) * (x -> #v);
(a f<# b) * (#v == b f- a) * (x -> #v)

}

{ (x == #x) * (y == #y) }
function floating_subtraction(x, y) {

r := new(1);
if (x f< y) {

z := y f- x
} else {

z := x f- y
};
[r] := z;
return r

}
{ points_to_sub(ret, #x, #y) }

Listing A.33: Example of a function and a predicate manipulating floats

let compile_binop b = match b with
| PLUS -> BinOp.IPlus
| FPLUS -> BinOp.FPlus

let compile_val v = match v with
| Int n -> Literal.Int (Z.of_int n)
| Float x -> Literal.Num x
...

Listing A.34: Compiling floating point numbers and operators
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match cmd with
| Call { var_name; fct_name; args; err_lab; bindings } ->

eval_call var_name fct_name args err_lab bindings eval_state
| Par fcs -> eval_par_call fcs eval_state

Listing A.35: Matching for parallel composition and function calls in the GIL interpreter

let eval_par_call fcs eval_state =
let { eval_expr; _ } = eval_state in
let lambda Cmd.{ var_name; fct_name; args; bindings; _ } =

let pid = eval_expr fct_name in
let v_args = List.map eval_expr args in
(var_name, pid, v_args, bindings)

in eval_par_proc_call (List.map lambda fcs) eval_state

Listing A.36: Extracting the assignment variable, pid, args and bindings of functions in a par block

let eval_call x e args j subst eval_state =
let { eval_expr; _ } = eval_state in
DL.log (fun m -> m "Call");
let pid = eval_expr e in
let v_args = List.map eval_expr args in
let result = eval_proc_call x pid v_args j subst eval_state in
result

Listing A.37: Extracting the procedure identifier and arguments for a function call

let f x pid v_args j subst eval_state =
let { prog; cs; state; _ } = eval_state in
let pid = get_pid_or_error pid state in
let spec, params = get_spec_and_params prog pid state in
let caller = Call_stack.get_cur_proc_id cs in
let () = CallGraph.add_proc_call call_graph caller pid in
let args = build_args v_args params in
let is_internal_proc proc_name =

(Prog.get_proc_exn prog.prog proc_name).proc_internal
in
let symb_exec_proc =

symb_exec_proc x pid v_args j params args eval_state
in
let spec_exec_proc () =

match spec with
| Some spec ->

exec_with_spec spec x j args pid subst symb_exec_proc eval_state
| None -> exec_without_spec pid symb_exec_proc eval_state

in
match Exec_mode.biabduction_exec !Config.current_exec_mode with
| true -> (

match
( pid = caller,

is_internal_proc pid,
Call_stack.recursive_depth cs pid >= !Config.bi_unroll_depth

)
with
(* In bi-abduction, reached max depth of recursive calls *)
| _, _, true -> []
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(* In bi-abduction, recursive call *)
| true, false, _ -> symb_exec_proc ()

| true, false, false
when List.length

(List.filter is_internal_proc (Call_stack.get_cur_procs cs))
< !Config.bi_no_spec_depth -> symb_exec_proc () *)

| _ -> spec_exec_proc ())
| false -> spec_exec_proc ()

Listing A.38: Extracting the procedure identifier and arguments for a function call

let par_f fcs eval_state =
let { prog; state; _ } = eval_state in
let fcs = List.map (fun (var_name, pid, v_args, bindings) ->

let pid = get_pid_or_error pid state in
let spec, params = get_spec_and_params prog pid state in
let args = build_args v_args params in
match spec with
| Some spec -> (spec, var_name, pid, args, bindings)
| None -> failwith "Found function without specification in a parallel call")
fcs

in exec_par_with_spec fcs eval_state

Listing A.39: eval_par_proc_call calls par_f, which extracts the specification

let exec_par_with_spec fcs eval_state =
let { state; i; b_counter; cs; branch_path; _ } = eval_state in
let process_ret = process_ret "par" None eval_state in
let fcs = List.map (fun (spec, x, pid, args, subst) ->

let subst = eval_subst_list state subst in
L.verbose (fun fmt -> fmt "ABOUT TO USE THE SPEC OF %s" pid);
(spec, x, args, subst)) fcs

in let rets : ((State.t * Flag.t) list, state_err_t list) result =
State.run_par_spec fcs state

in match rets with
| Ok rets -> ( L.verbose (fun fmt ->

fmt "Run_par_spec returned %d Results" (List.length rets));
let b_counter = if List.length rets > 1 then b_counter + 1 else b_counter
in match rets with
| (ret_state, fl) :: rest_rets ->

let others = List.map (fun (ret_state, fl) ->
process_ret false ret_state fl b_counter None) rest_rets
in process_ret true ret_state fl b_counter (Some others) :: others

| _ -> L.fail (Format.asprintf "ERROR: Unable to use specification of a \
function in parallel composition"))

| Error errors -> let errors = errors |> List.map (fun e -> Exec_err.ESt e) in
[ CConf.ConfErr { cs; proc_idx = i; state; errors; branch_path} ]

Listing A.40: exec_par_with_spec runs the specification in the PState and processes the results

let exec_with_spec spec x j args pid subst symb_exec_proc eval_state =
let { state; i; b_counter; cs; branch_path; _ } = eval_state in
let process_ret = process_ret pid j eval_state in
match !symb_exec_next with
| true ->

symb_exec_next := false;
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symb_exec_proc ()
| false -> (

let subst = eval_subst_list state subst in
L.verbose (fun fmt -> fmt "ABOUT TO USE THE SPEC OF %s" pid);
let rets : ((State.t * Flag.t) list, state_err_t list) result =

State.run_spec spec state x args subst
in match rets with
| Ok rets -> ( L.verbose (fun fmt ->

fmt "Run_spec returned %d Results" (List.length rets));
let b_counter = if List.length rets > 1 then b_counter + 1 else b_counter
in match rets with
| (ret_state, fl) :: rest_rets ->

let others = List.map (fun (ret_state, fl) ->
process_ret false ret_state fl b_counter None) rest_rets

in process_ret true ret_state fl b_counter (Some others) :: others
(* Run spec returned no results *)
| _ -> (

match spec.data.spec_incomplete with
| true -> L.normal (fun fmt -> fmt "Proceeding with symbolic execution.");

symb_exec_proc ()
| false -> L.fail (Format.asprintf "ERROR: Unable to use specification of \

function %s" spec.data.spec_name)))
| Error errors ->

let errors = errors |> List.map (fun e -> Exec_err.ESt e) in
[ ConfErr { callstack = cs; proc_idx = i; error_state = state; errors; branch_path } ])

Listing A.41: Executing a single function call with specifications

let rec run_par_spec_aux fcs astate =
match fcs with

| [] -> Ok []
| (existential_bindings, name, params, up, x, args) :: rest -> (

L.verbose (fun m -> m "INSIDE RUN spec of %s with the following UP:@\n%a@\n"
name UP.pp up);

let old_store = get_store astate in
let new_store = try Store.init (List.combine params args)

with Invalid_argument _ ->
let message = Fmt.str "Running spec of %s which takes %i parameters \

with the following %i arguments : %a" name (List.length params)
(List.length args) (Fmt.Dump.list Val.pp) args

in raise (Invalid_argument message)
in
let astate' = set_store astate new_store in
let existential_bindings = Option.value ~default:[] existential_bindings
in
let existential_bindings =

List.map (fun (x, v) -> (Expr.LVar x, v)) existential_bindings
in
let store_bindings = Store.bindings new_store in
let store_bindings = List.map (fun (x, v) -> (Expr.PVar x, v)) store_bindings
in
let subst = ESubst.init (existential_bindings @ store_bindings) in
L.verbose (fun m -> m "About to use the spec of %s with the following \

UP:@\n%a@\n" name UP.pp up);
match SUnifier.unify astate' subst up FunctionCall with
| Ok rets ->

let open Syntaxes.Result in
let ( let++ ) x f = List.concat_map f x in
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let lambda acc (frame_state, subst, posts) =
let* acc = acc in
let frame_state = set_store frame_state (Store.copy old_store) in
let* rets = run_par_spec_aux rest frame_state in
let frames =

match rets with
| [] -> [ frame_state ]
| l -> List.map fst l

in
L.verbose (fun m -> m "Returned from recursive call with length %s"

(string_of_int @@ List.length rets));
let fl, posts =

match posts with
| Some (fl, posts) -> (fl, posts)
| _ -> let msg = Printf.sprintf "SYNTAX ERROR: Spec of %s \

does not have a postcondition" name
in
L.normal (fun m -> m "%s" msg);
raise (Failure msg)

in
(* OK FOR DELAY ENTAILMENT *)
let res =

let++ frame_state = frames in
let frame_store = get_store frame_state in
let frame_state =

set_store frame_state (Store.copy new_store)
in
let++ final_state =

SUnifier.produce_posts frame_state subst posts
in
let final_store = get_store final_state in
let v_ret = Store.get final_store Names.return_variable in
let final_state =

set_store final_state (Store.copy frame_store)
in
let v_ret = Option.value

~default:(Option.get (Val.from_expr (Lit Undefined)))
v_ret

in
let final_state = update_store final_state x v_ret in
let _, final_states = simplify ~unification:true final_state in
List.map

(fun final_state ->
( snd

(Option.get
(SUnifier.unfold_concrete_preds final_state)),

fl ))
final_states

in Ok (acc @ res)
in List.fold_left lambda (Ok []) rets

| Error errs -> let msg = Fmt.str "WARNING: Failed to unify against \
the precondition of procedure %s" name

in
L.normal (fun m -> m "%s" msg);
Error errs)

Listing A.42: Running the specification for a par call
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let run_spec_aux
?(existential_bindings : (string * vt) list option)
(name : string)
(params : string list)
(up : UP.t)
(astate : t)
(x : string option)
(args : vt list) : ((t * Flag.t) list, SUnifier.err_t list) result =

L.verbose (fun m ->
m "INSIDE RUN spec of %s with the following UP:@\n%a@\n" name UP.pp up);

let old_store = get_store astate in
let new_store = try Store.init (List.combine params args)

with Invalid_argument _ -> let message = Fmt.str "Running spec of %s \
which takes %i parameters with the following %i arguments : %a"
name (List.length params) (List.length args) (Fmt.Dump.list Val.pp) args

in raise (Invalid_argument message)
in
let astate' = set_store astate new_store in
let existential_bindings = Option.value ~default:[] existential_bindings in
let existential_bindings =

List.map (fun (x, v) -> (Expr.LVar x, v)) existential_bindings
in
let store_bindings = Store.bindings new_store in
let store_bindings = List.map (fun (x, v) -> (Expr.PVar x, v)) store_bindings
in
let subst = ESubst.init (existential_bindings @ store_bindings) in
L.verbose (fun m -> m "About to use the spec of %s with the following

UP:@\n%a@\n" name UP.pp up);
match SUnifier.unify astate' subst up FunctionCall with
| Ok rets ->

let acceptable =
match !Config.Verification.exact with
| false -> true
| true -> let check_variant (state : t) (subst : st) =

let bstate, _, _, variants = state in
let variant = Hashtbl.find_opt variants name in
match variant with
| None -> true
| Some None -> failwith ("Error: " ^ name^ ": Recursive call in exact

verification without a variant")
| Some (Some variant) -> (

let new_variant = ESubst.subst_in_expr_opt subst variant in
let () = L.verbose (fun fmt -> fmt "New variant: %a"

(Fmt.Dump.option Expr.pp) new_variant)
in
match new_variant with
| None -> failwith ("ERROR: " ^ name ^ ": recursive call

variant substitution failure")
| Some new_variant -> (

let variant_check = Expr.UnOp
(UnOp.UNot, BinOp (new_variant, ILessThan, variant))

in
let variant_check = Val.from_expr variant_check in
match variant_check with
| None -> failwith ("ERROR: " ^ name ^ ": variant could

not be converted to a value")
| Some variant_check ->
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not (State.sat_check bstate variant_check)))
in List.for_all

(fun (state, subst, _) -> check_variant state subst)
rets

in
if acceptable then

Ok
((* Successful Unification *)
let ( let++ ) x f = List.concat_map f x in
let++ frame_state, subst, posts = rets in
let fl, posts =

match posts with
| Some (fl, posts) -> (fl, posts)
| _ -> let msg = Printf.sprintf "SYNTAX ERROR: Spec of %s does \

not have a postcondition" name
in
L.normal (fun m -> m "%s" msg);
raise (Failure msg)

in
(* OK FOR DELAY ENTAILMENT *)
let++ final_state =

SUnifier.produce_posts frame_state subst posts
in
let final_store = get_store final_state in
let v_ret = Store.get final_store Names.return_variable in
let final_state = set_store final_state (Store.copy old_store) in
let v_ret = Option.value

~default:(Option.get (Val.from_expr (Lit Undefined)))
v_ret

in
let final_state = update_store final_state x v_ret in
let _, final_states = simplify ~unification:true final_state in
List.map (fun final_state ->

( snd (Option.get (SUnifier.unfold_concrete_preds final_state)),
fl ))

final_states)
else

let err = [] in
Error err

| Error errs -> let msg = Fmt.str "WARNING: Failed to unify against \
the precondition of procedure %s" name

in
L.normal (fun m -> m "%s" msg);
Error errs

Listing A.43: Running the specification for a single function call

{ emp }
function use_float_ops() {

x := 5.5;
y := 2.0;

r := new(5);
[r] := x f+ y;
[r + 1] := x f- y;
[r + 2] := x f* y;
[r + 3] := x f/ y;
[r + 4] := x f% y;
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return r
}
{ ret -> 7.5, 3.5, 11.0, 2.75, 1.5 }

Listing A.44: Floating point operations in WISL

{ emp }
function conc_disjoint_writes() {

x := new(3);
par {

u := write(x, 1);
u := write(x + 1, 2);
u := write(x + 2, 3)

};
return x

}
{ ret -> 1, 2, 3 }

Listing A.45: Concurrent disjoint writes

CMD: par [u := "write"(x, 1i); u := "write"(gvar0, 2i); u := "write"(gvar1,
3i)]

LOC: ./wislfp/tests/simple_concurrency.wisl:64:4
PROCS: [conc_disjoint_writes]
LOOPS: [] ++ []
BRANCHING: 0

SPEC VARS:
STORE:

(gvar0: {{ ALoc _$l_8, Lit 1i }})
(gvar1: {{ ALoc _$l_8, Lit 2i }})
(x: {{ ALoc _$l_8, Lit 0i }})

MEMORY:
_$l_8 -> BOUND: Some (3, 1.)

{0i: null [1.]
1i: null [1.]
2i: null [1.]}

Listing A.46: Logs before executing par block

Unifier.unify: Success

STATE:
MEMORY:
_$l_8 -> BOUND: Some (3, 1.)

{1i: null [1.]
2i: null [1.]}

Listing A.47: State after unifying the pre-condition of the first function

Unifier.unify: Success

STATE:
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MEMORY:
_$l_8 -> BOUND: Some (3, 1.)

{2i: null [1.]}

Listing A.48: State after unifying the pre-condition of the second function

Unifier.unify: Success

STATE:
MEMORY:
_$l_8 -> BOUND: Some (3, 1.)

{}

Listing A.49: State after unifying the pre-condition of the third function

STATE BEFORE SIMPLIFICATIONS:
STORE:

(u: Lit 0i)
(x: {{ ALoc _$l_8, Lit 0i }})

MEMORY:
_$l_8 -> BOUND: Some (3, 1.)

{}

_$l_9 -> BOUND: None
{_lvar_13: 3i [1.]}

Filtered and fixed subst, to be applied to memory:
[ (_lvar_12: _$l_8),

(_lvar_13: 2i),
(_$l_9: _$l_8) ]

Listing A.50: State after unifying the post-condition of the third function

STATE BEFORE SIMPLIFICATIONS:
STORE:

(u: Lit 0i)
(x: {{ ALoc _$l_8, Lit 0i }})

MEMORY:
_$l_10 -> BOUND: None

{_lvar_15: 2i [1.]}

_$l_8 -> BOUND: Some (3, 1.)
{2i: 3i [1.]}

Filtered and fixed subst, to be applied to memory:
[ (_lvar_14: _$l_8),

(_lvar_15: 1i),
(_$l_10: _$l_8) ]

Listing A.51: State after unifying the post-condition of the second function

STATE BEFORE SIMPLIFICATIONS:
STORE:
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(u: Lit 0i)
(x: {{ ALoc _$l_8, Lit 0i }})

MEMORY:
_$l_8 -> BOUND: Some (3, 1.)

{1i: 2i [1.]
2i: 3i [1.]}

_$l_11 -> BOUND: None
{_lvar_17: 1i [1.]}

Filtered and fixed subst, to be applied to memory:
[ (_lvar_16: _$l_8),

(_lvar_17: 0i),
(_$l_11: _$l_8) ]

Listing A.52: State after unifying the post-condition of the first function

STATE AFTER SIMPLIFICATIONS:
STORE:

(gvar0: {{ ALoc _$l_8, Lit 1i }})
(gvar1: {{ ALoc _$l_8, Lit 2i }})
(u: Lit 0i)
(x: {{ ALoc _$l_8, Lit 0i }})

MEMORY:
_$l_8 -> BOUND: Some (3, 1.)

{0i: 1i [1.]
1i: 2i [1.]
2i: 3i [1.]}

Listing A.53: Final state

predicate is_int(+x: Int) {
emp

}

{ (x == #x) * (p == #p) * (w == #w) * is_int(#w) * is_int(#v)
* (#p f<=# 1.0) * (#x -> (#p: #v)) }

function read_and_add(x, p, w) {
n := [x];
m := n + w;
return m

}
{ (#x -> (#p: #v)) * (ret == #v + #w) }

Listing A.54: The specification of the read_and_add function

--conc_reads_same_loc: 1--
CMD: par [fst := "read_and_add"(x, 0.5, 5i); snd := "read_and_add"(x, 0.5, 10i)]

STORE:
(x: LVar #x)
(y: {{ ALoc _$l_5, Lit 0i }})

MEMORY:
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_$l_5 -> BOUND: Some (2, 1.)
{0i: null [1.]
1i: null [1.]}

_$l_1 -> BOUND: None
{#wisl__1: #v [1.]}

Listing A.55: State before the par call - concurrent reads on the same location

Unifier.unify: Success
STATE:

MEMORY:
_$l_5 -> BOUND: Some (2, 1.)

{0i: null [1.]
1i: null [1.]}

_$l_1 -> BOUND: None
{#wisl__1: #v [0.5]}

Listing A.56: State after unifying the pre-condition of the first function

Unifier.unify: Success
STATE:

MEMORY:
_$l_5 -> BOUND: Some (2, 1.)

{0i: null [1.]
1i: null [1.]}

_$l_1 -> BOUND: None
{}

Listing A.57: State after unifying the pre-condition of the second function

predicate list_member(+vs, +v, r : Bool){
(vs == []) * (r == false);
(vs == v :: #rest) * (r == true);
(vs == #v :: #rest) * (! (#v == v)) * list_member(#rest, v, r)

}
lemma list_member_concat {

statement:
forall vs1, vs2, v.

list_member(vs1, v, #r1) * list_member(vs2, v, #r2) |-
list_member(vs1 @ vs2, v, (#r1 || #r2))

proof:
unfold list_member(vs1, v, #r1);
if (not (vs1 = [])) {

if (hd vs1 = v) {
fold list_member(vs1 @ vs2, v, true)

} else {
assert {bind: #nv1, #nvs1, #nr1} (vs1 == #nv1 :: #nvs1)

* list_member(#nvs1, v, #nr1);
apply list_member_concat(#nvs1, vs2, v)

}
}

}
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Listing A.58: List membership predicate and concatenation lemma

{ (t == #t) * (v == #v) * (w == #w) * binary_tree(#t, #tree, 1.0) }
function replace(t, v, w) {

if (t = null) {
skip

} else {
x := [t];
if (x = v) {

[t] := w
} else {

skip
};
lt := [t + 1];
rt := [t + 2];
[[assert {bind: #left_tree, #right_tree} binary_tree(lt, #left_tree, 1.0)

* binary_tree(rt, #right_tree, 1.0)]];
par {

u := replace(lt, v, w);
u := replace(rt, v, w)

};
[[assert {bind: #left_r_tree, #right_r_tree} binary_tree(lt, #left_r_tree, 1.0)

* binary_tree(rt, #right_r_tree, 1.0)]];
[[apply replaced_concat(#left_tree, #left_r_tree,

#right_tree, #right_r_tree, #v, #w)]]
};
return 0

}
{ binary_tree(#t, #r_tree, 1.0) * replaced(#tree, #r_tree, #v, #w) }

Listing A.59: A function that replaces element v in binary tree t with w

predicate replaced(+vs, +ws, +v, +w) {
(vs == []) * (ws == []);
(vs == v :: #restvs) * (ws == w :: #restws)

* replaced(#restvs, #restws, v, w);
(vs == #v :: #restvs) * (ws == #v :: #restws) * (! (#v == v))

* replaced(#restvs, #restws, v, w)
}

lemma replaced_concat {
statement:

forall vs1, ws1, vs2, ws2, v, w.
replaced(vs1, ws1, v, w) * replaced(vs2, ws2, v, w) |-

replaced(vs1 @ vs2, ws1 @ ws2, v, w)

proof:
unfold replaced(vs1, ws1, v, w);
if (not (vs1 = [])) {

assert {bind: #nv, #nw, #nvs1, #nws1} (vs1 == #nv :: #nvs1)
* (ws1 == #nw :: #nws1) * replaced(#nvs1, #nws1, v, w);

apply replaced_concat(#nvs1, #nws1, vs2, ws2, v, w)
}

}

Listing A.60: The replaced predicate and its corresponding concatenation lemma
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[spec copy_spec: #p]
{ (x == #x) * lambda_term(#x, #v, #t1, #t2, #type, #p) }
function copy(x) {

type := [x];
if (type = 2) {

r := new(2);
v := [x + 1];
[r + 1] := v

} else {
r := new(3);
if (type = 1) {

t1 := [x + 1];
t2 := [x + 2];
par {

r1 := copy(t1) [copy_spec: (#p: #p)];
r2 := copy(t2) [copy_spec: (#p: #p)]

};
[r + 1] := r1;
[r + 2] := r2

} else {
v := [x + 1];
t1 := [x + 2];
[r + 1] := v;
r1 := copy(t1) [copy_spec: (#p: #p)];
[r + 2] := r1

}
};
[r] := type;
return r

}
{ is_copy(#x, ret, #p, 1.0, #v, #t1, #t2, #type) }

Listing A.61: Lambda term copying

lemma split_lambda_term_permission {
statement:

forall x, v, t1, t2, type, p, p1, p2.
(p == p1 f+ p2) * (p1 f># 0.0) * (p2 f># 0.0)

* lambda_term(x, v, t1, t2, type, p) |-
lambda_term(x, v, t1, t2, type, p1) * lambda_term(x, v, t1, t2, type, p2)

proof:
unfold lambda_term(x, v, t1, t2, type, p);
if (not (type = 2)) {

if (type = 1) {
assert {bind: #v1, #t11, #t12, #type1, #v2, #t21, #t22, #type2}

lambda_term(t1, #v1, #t11, #t12, #type1, p)
* lambda_term(t2, #v2, #t21, #t22, #type2, p);

apply split_lambda_term_permission(t1, #v1, #t11, #t12, #type1, p, p1, p2);
apply split_lambda_term_permission(t2, #v2, #t21, #t22, #type2, p, p1, p2)

} else {
assert {bind: #v1, #t11, #t12, #type1}

lambda_term(t1, #v1, #t11, #t12, #type1, p);
apply split_lambda_term_permission(t1, #v1, #t11, #t12, #type1, p, p1, p2)

};
fold lambda_term(x, v, t1, t2, type, p1);
fold lambda_term(x, v, t1, t2, type, p2)
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}
}

Listing A.62: Splitting permission lemma

predicate SLL(+x, vs) {
(x == null) * (vs == []);
(x -b> #v, #next) * SLL(#next, #vs) *
(vs == #v :: #vs)

}

// 06. Calculating the length of a given SLL
{ (x == #x) * SLL(#x, #vs) }
function SLL_length(x) {

n := 0;
if (x = null){

n := 0
} else {

t := [x + 1];
n := SLL_length(t);
n := 1 + n

};
return n

}
{ ret == len(#vs) }

// 06. Calculating the length of a given SLL
{ (x == #x) * SLL(x, #vx) }
function SLL_length_iter(x) {

y := x;
n := 0;
[[invariant {bind: n, y, #nvx, #nvy}

SLLseg(x, y, #nvx) * SLL(y, #nvy) *
(#vx == (#nvx@#nvy)) * (n == len #nvx) ]];

while (not (y = null)) {
[[ assert {bind: #y} y == #y ]];
[[ assert {bind: #v, #z} #y -b> #v, #z ]];
y := [y+1];
n := n+1;
[[ apply SSLseg_append(x, #nvx, #v, y) ]]

};
[[ unfold SLL(null, #nvy)]];
[[ apply SLLseg_to_SLL(x) ]];
return n

}
{ SLL(#x, #vx) * (ret == len(#vx)) }

Listing A.63: Extract of the SLL_ex_complete.wisl regression test suite

Obtained 30 symbolic tests in total
Running symbolic tests: 0.047551
Verifying lemma SLLseg_concat_SLL... Success
...
Verifying one spec of procedure SLL_concat_iter_loop0... s s Success
All specs succeeded: 0.439783

Listing A.64: Results of verifying SLL_ex_complete.wisl with the old WISL instantiation
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PASS: examples/busywaiting/clhlock$ verifast -c clhlock.c (0.11s)
PASS: examples/busywaiting/ioliveness$ verifast -c echo.c (0.03s)
PASS: examples/busywaiting/ioliveness$ verifast -c echo_live.c (0.03s)
PASS: examples/busywaiting/ioliveness$ verifast -c echo_live_mt.c (0.07s)
PASS: examples/busywaiting$ verifast -c await.c (0.05s)
PASS: examples/jayanti$ verifast threading.o popl20_prophecies.o atomics.c

jayanti.c client.c (23.86s)
PASS: examples/monitors$ verifast -prover z3v4.5 -disable_overflow_check -shared

ghost_counters.c (0.17s)
PASS: examples/monitors$ verifast -prover z3v4.5 -disable_overflow_check -shared

ghost_counters.c monitors.o queues.o buffer.c (0.32s)
PASS: examples/monitors$ verifast -prover z3v4.5 -disable_overflow_check -shared

ghost_counters.c monitors.o queues.o bounded_buffer.c (1.30s)
PASS: examples/monitors$ verifast -prover z3v4.5 -disable_overflow_check -shared

monitors.o barrier.c (0.13s)
PASS: examples/monitors$ verifast -prover z3v4.5 -disable_overflow_check -shared

ghost_counters.c monitors.o barbershop.c (1.49s)
PASS: examples/monitors$ verifast -prover z3v4.5 -disable_overflow_check -shared

ghost_counters.c monitors.o readers_writers.c (0.58s)

Listing A.65: Running part of the concurrency-related test-suite of Verifast
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