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Abstract

Conditional branches pose a challenge for code optimisation, particularly in low
latency settings. For better performance, processors leverage dedicated hardware to
predict the outcome of a branch and execute the following instructions speculatively,
a powerful optimisation. Modern branch predictors employ sophisticated algorithms
and heuristics that utilise historical data and patterns to make predictions, and often,
are extremely effective at doing so. Consequently, programmers may inadvertently
underestimate the cost of misprediction when benchmarking code with synthetic
data that is either too short or too predictable. While eliminating branches may not
always be feasible, C++20 introduced the [[likely]] and [[unlikely]] attributes that
enable the compiler to perform spot optimisations on assembly code associated with
likely execution paths. Can we do better than this?

This report presents the development of a novel language construct, referred to
as a semi-static condition, which enables programmers to dynamically modify the di-
rection of a branch at run-time by altering the assembly code within the underlying
executable. Subsequently, the report explores scenarios where the use of semi-static
conditions outperforms traditional conditional branching, highlighting their poten-
tial applications in real-time machine learning and high-frequency trading. Through-
out the development process, key considerations of performance, portability, syntax,
and security were taken into account. The resulting construct is open source and
can be accessed at https://github.com/maxlucuta/semi-static-conditions.

https://github.com/maxlucuta/semi-static-conditions
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Chapter 1

Introduction

1.1 Aims and Approach

The implementation of semi-static conditions, a language construct that can pro-
grammatically alter the direction of a branch at execution time, and the identifica-
tion of instances where it outperforms conditional branching constitute the primary
objectives of this project. To achieve this goal, there should be no runtime checks as-
sociated with branch-taking. A key challenge in the development process is to create
a language construct that mimics the behavior of direct method invocations while
simultaneously providing the ability for dynamic switching of branch directions, to
facilitate the desired behaviour.

The research contribution of this paper is structured into two stages. In the first
stage, the focus is on the development of the construct, with an emphasis on the
strategies employed to facilitate low-latency branch-taking through binary editing,
addressing the associated considerations of syntax, performance, and portability.
The second stage shifts the focus to exploring instances where semi-static conditions
out-perform conditional statements, whilst also investigating the implications of run-
time assembly modification on hardware behaviour. Additionally, a comprehensive
software archive showcasing examples of usage will be created and made readily
accessible.

1.2 Research Context

Current research in branch prediction optimization is predominantly concentrated
on hardware-based solutions that aim to enhance speculative efficiencies and over-
all performance of modern CPU’s. However, despite these efforts, the problem of
branch prediction remains unresolved, with limited attention given to software-
based optimizations [1]. For typical commercial applications, the pursuit of such
micro-optimizations is often unnecessary and may introduce additional complexity.
Nonetheless, in industries like High Frequency Trading (HFT), even slight improve-
ments in execution latencies on the clock cycle level are highly valued. Consequently,
these optimizations are highly sought-after and can provide significant competitive
advantages. Due to their crucial role in determining a firm’s profitability and success,
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1.3. REPORT OUTLINE Chapter 1. Introduction

cutting-edge research on software-based optimizations in such industries is typically
shrouded in secrecy.

Several books have attempted to bridge the divide between computational and
financial research, aiming to combine mathematical modeling and the development
of algorithmic trading strategies (e.g., [2, 3]). Additionally, numerous public con-
ferences are available, focusing on the development of low-latency execution sys-
tems (e.g., [4, 5, 6, 7]), emphasizing topics such as data structures, atomics, and
low-latency design patterns. Notably, there has been some emphasis on branchless
design, which showcases some common alternatives to conditional statements with
high misprediction rates [8]. However, the strategies employed in this context lack
flexibility and rely on the assumption that branches can be pre-computed without
incurring significant costs.

In contrast, there is a wealth of literature and extensively documented resources
available for C++ [9, 10], which is widely used as the primary language in the
development of low-latency trading systems. However, when it comes to the devel-
opment of semi-static conditions and strategies involving the modification of run-
ning executables using C++, the scope becomes more specialized. Nevertheless,
these techniques are well-documented and find applications in various areas such as
debuggers, profilers, hot patching software, and security tools (e.g., [11, 12, 13]).

There is a significant scarcity of ultra-low latency C++ tools, particularly those
specifically designed to address control flow problems, offering both rigorous ap-
plication verification and superior performance. While it is possible to come across
online posts outlining small-scale experiments that focus on minor branch optimiza-
tions in specific scenarios (as demonstrated in [8]), such micro-optimizations are of-
ten overlooked and left to the compiler and hardware to handle. Interestingly, exten-
sive research has been conducted on the true cost of branch misprediction [14, 15],
highlighting its significant contribution to performance bottlenecks in low-latency
systems. While these articles provide in-depth analysis of benchmark data and per-
formance penalties, the strategies proposed for preventing branch mispredictions
remain lackluster or non-existent.

In light of existing literature and its insights into software-based branch optimiza-
tion problems, it becomes apparent that a research gap exists, which this study aims
to fill. The motivation behind this research lies in providing solutions to the afore-
mentioned void and contributing to the understanding of software-based branch
optimization.

1.3 Report Outline

In Chapter 2, the literature review section of this report, the focus is on encap-
sulating and critically analyzing research pertaining to the problem at hand. The
section begins with an outline of modern CPU pipelined architectures and the im-
plications (and cost) of branched execution. Next, attention is shifted to advance-
ments in hardware-based solutions, outlining the strengths and weaknesses of var-
ious schemes when encountering branches of different predictability. The focus is
then redirected to software, providing an outline of C++ and its importance in
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Chapter 1. Introduction 1.4. SUMMARY OF ACHIEVEMENTS

the development of low-latency trading systems. Language features that exist ex-
clusively to optimize branch prediction are also discussed. Finally, discussions are
concluded with HFT, examining economic effects, known technical advancements
and the problems that remain to be solved in the industry.

Chapters 3 and 4 are dedicated to the research contribution of this report, which
can be conceptualized as consisting of two stages: the development of semi-static
conditions and data-backed applications. In the development stage (Chapter 3),
a sequential approach is adopted to identify the requirements and challenges as-
sociated with designing the language construct. The solution to the problem is
outlined and demonstrated, providing an overview of key theory with subsequent
design decisions and optimizations. The proceeding stage (Chapter 4) demonstrates
the instances where semi-static conditions offer superior performance compared to
conditional branching, accompanied by detailed analyses and supporting benchmark
data to substantiate the findings, alongside novel investigations into effects of binary
editing on modern hardware. Furthermore, discussions are conducted on how the
outlined scenarios can be incorporated into a commercial trading system, consider-
ing their suitability and practical implications.

In Chapter 5, the software contribution alongside the various experimental meth-
ods employed to benchmark semi-static checks are critically evaluated. Detailed
examples of usage are provided, along with recommendations for maximizing the
security and reliability of the language construct. Chapter 6 provides a brief discus-
sion of the ethical implications of this research, with concluding remarks in Chapter
7, discussing potential areas for further research and development.

1.4 Summary of Achievements

The project has achieved significant milestones across multiple dimensions. The re-
search contribution offers valuable insights and approaches for developing software-
based branch optimizations, with comprehensive and rigorous investigations into
the resulting hardware level behaviours, filling an important research gap in the
academe. By employing an unconventional yet effective binary editing strategy, the
project enables ultra-low latency branch execution through the decoupling of con-
dition evaluation logic and branch taking, controlled directly by the programmer.
Through extensive benchmarking and detailed performance analysis in pseudo real-
istic scenarios, the proof-of-concept semi-static checks demonstrate their real-world
applicability, particularly within real-time systems and high-frequency trading.

The research contribution is encapsulated within a open-source library that allows
programmers to utilize the language construct for both commercial and experimen-
tal purposes. With a focus on syntax, security, efficiency, and portability, semi-static
conditions can be seamlessly integrated into high-performance real-time systems,
as exemplified in domains such as high-frequency trading and real-time machine
learning. This report has since gained significant traction in the high-performance
computing space, being featured on the premier newsletter for performance tuning,
Easyperf, and considered for publishing by the prestigious Journal of Parallel and
Distributed Computing [16].
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Chapter 2

Background

2.1 Pipelining and Conditional Branches

The microprocessor is an integrated circuit responsible for executing arithmetic,
logic, control, and I/O operations in a digital system [17]. The early 1970’s saw
the emergence of the first commercially available microprocessor, the Intel 4004,
initially designed as a 4-bit 740 kHz central processing unit (CPU) for early print-
ing calculators [18, 19]. Over the past three decades, advancements in integrated
circuit technology driven by the exponential growth in transistor density have en-
abled microprocessor manufacturers to develop increasingly sophisticated CPU’s.
[20]. Alongside these developments, the introduction of modern instruction sets
and standardized operating systems have propelled the computational capabilities
of contemporary computers to unprecedented heights.

Modern CPU’s utilize pipelining as an implementation technique to exploit the
inherent parallelism in instruction execution to improve overall throughput [17].
Similar to cars on an assembly line, pipelining allows for the overlapping execution
of multiple instructions, with each step in the assembly line constituting a pipe stage
that represents a phase in the fetch-decode-execute cycle. If all stages take the same
amount of time, a pipeline with n stages will achieve a throughput n times greater
than an un-pipelined counterpart, with the bottleneck stage bounding the number
of processor cycles required for a single execution [17]. Whilst Figure 2.1 provides
a simplified schematic of instruction pipelining, it is important to note that modern
processors have vastly more complex pipelined architectures, often super-scalar with
varying instruction sets and addressing modes to prevent memory-access conflicts
in instruction/data memory, optimize register handling, and maximize instruction
level-parallelism [21].

Pipelining in CPU’s, while a powerful optimization technique, introduces hazards
that can impact overall performance. These hazards can be broadly categorized into
three types: structural hazards, data hazards, and control hazards [17]. (1) Struc-
tural hazards occur when hardware resources are incompatible with the sequence
of instructions leading to conflicts in resource allocation, resulting in pipeline stalls.
However, advancements in super-scalar technology and out-of-order instruction ex-
ecution have made structural hazards less prevalent to virtually non-existent [17].
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Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i + 1

Instruction i + 2

Instruction i + 3

Instruction i + 4

Instruction i + 5

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Figure 2.1: Simplified representation of 5 stage pipeline using a RISC instruction set.
On each clock cycle, a new instruction is fetched and all proceeding instructions progress
to a new pipe-stage in the fetch-decode-execute cycle, achieving a throughput fives times
greater than a non-pipelined counterpart. Instruction fetch (IF), instruction decode (ID),
execution (EX), memory access (MEM) and write back (WB). Table has been taken and
adapted from [17].

(2) Data hazards arise due to dependencies between instructions that have not fin-
ished executing, for example, relying on register data that preceding instructions
manipulate. These dependencies can cause conflicts and hinder parallel execution,
but are broadly mitigated through the use of virtual registers (register renaming)
[21]. (3) Control hazards are caused by branch instructions that change the pro-
gram counter. These instructions introduce uncertainty into the execution flow since
the branch target needs to be determined prior to the next instruction fetch [17].
Branches constitute around 12-30% of all instructions executed on modern instruc-
tion sets and are widely regarded as the most significant barrier to achieving single
cycle executions [22], and as a consequence, have become a large area of focus for
optimisations by hardware and software engineers.

Microprocessors employ various strategies to mitigate control hazards in the CPU
instruction pipeline. The simplest and most costly approach is a full pipeline stal-
l/freeze, where proceeding instructions after a change in PC are ignored until the
target of the branch is known, resulting in a fixed cycle penalty [17, 23]. Improving
upon this, processors can make static predictions about the branch target instead
of discarding subsequent instructions, maintaining sequential execution of instruc-
tions pertaining to either the taken or not-taken branches. By leveraging compiler
static analysis and optimizing likely paths of execution, static prediction becomes a
powerful optimization technique in pipelined processors, providing non-zero prob-
abilities of correctly predicted branch targets and thus minimising throughput loss
from flushes [22, 24]. Though an improvement, this approach is rather inflexible
particularly for branch targets that change. Static prediction schemes lack the ability
to adapt at runtime to changing patterns in branch target execution which is a com-
mon theme for the majority of conditional branches. With modern CPU’s employ-
ing increasingly more speculative architectures and deeper pipelines to maximise
instruction throughput [17], branch penalties become more significant and scale
monotonically with pipeline depth [25]. With this in account, it is clear that pro-
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Untaken branch instruction

Instruction i + 1

Instruction i + 2

Instruction i + 3

Taken branch instruction

Instruction i + 1

Branch target

Branch target + 1

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF idle idle idle idle

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Figure 2.2: Example of a five stage RISC pipeline when a branch instruction is cor-
rectly predicted to be not-taken (top), resulting in subsequent instructions to fall through
without hindering overall throughput. Branch target mispredictions (bottom) cause the
pipeline to be flushed resulting in idle cycles. Table has been taken and adapted from
[17].

cessors require even more aggressive optimisation techniques beyond simple static
analysis to minimise idle cycles from branch mispredictions.

The final mitigation technique utilised commonly on classical 5-stage MIPS ar-
chitectures, but are typically non-existent on modern processors, are branch delay
slots which interleave instructions independent to the branch prior to branch target
deduction at decode or execute time [26]. The concept is rooted in the observation
that not all instructions in a program depend on the outcome of a branch instruction,
thereby in theory, allowing the compiler to schedule instructions before the branch
is taken and hide some of the branches latency. However, on modern processors,
branch delay slots are generally avoided. Utilizing branch delay slots effectively re-
quires the compiler to identify and schedule instructions that can fill the slots, adding
complexity to the compiler design and optimization process. Compiler writers need
to analyze dependencies, identify independent instructions, and rearrange code to
take advantage of the delay slots. This additional burden makes it more challeng-
ing to generate efficient assembly and can increase compilation time [22, 26]. With
deeply intricate instruction pipelines on modern processors, the scheduling task be-
comes exponentially more complex and interferes with modern hardware solutions,
deeming the once performance-enhancing technique as a complication in modern
processors.

Whilst this section offers a fundamental overview of conditional branches and
their implications at the processor level, it is crucial to recognize the significance
of primitive branch penalty mitigation techniques. These early forms of mitigation
laid the groundwork for modern solutions discussed in subsequent sections, with the
evolution of speculative processors playing a pivotal role in driving the development
of powerful hardware-based branch predictors.
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Chapter 2. Background 2.2. DYNAMIC BRANCH PREDICTION

2.2 Dynamic Branch Prediction

The advancements of super-scalar technology have introduced increasingly specula-
tive architectures with deep instruction pipelines, effectively maximising throughput
to meet the performance requirements of contemporary computers. Consequently,
the issue of branch mispredictions have remained a significant impediment to se-
quential instruction execution [17, 25]. As briefly mentioned earlier, static branch
prediction techniques rely on predetermined rules or assumptions rather than lever-
aging runtime information. To enhance static prediction on modern architectures,
compilers play a vital role in making profile-guided decisions based on historical ex-
ecution patterns. Notably, the binomial distribution of simple branches renders static
prediction an effective strategy [17, 27]. Supporting this notion, Fisher and Freuden-
berger’s work demonstrates that applications with statically predictable branches ex-
hibit commendable performance under the current paradigm [28]. The overarching
limitation of the former schemes is the inability to adapt to runtime changes, varying
input conditions, or capture complex patterns in branch behavior. Whilst previous
execution patterns can be used as a proxy to determine the likelihood of a branch, in
a real time system with non-deterministic behaviour, solely relying on such a scheme
would likely lead to higher mispredictions rates and performance degradation. In
light of these issues, a plethora of dynamic branch predictors where developed with
the ability to adapt, leverage runtime information, and capture complex branch pat-
terns to improve prediction accuracy and overall performance.

Dynamic branch predictors (BP) can be broadly categorized into one-level local
BP’s and two-level global BP’s, with more modern BP schemes incorporating the
strengths of both. One-level BP’s typically utilize a one-dimensional branch predic-
tion buffer or branch history table, acting as a cache indexed by the lower bits of
the program counter associated with a branch instruction [17, 29]. 1-bit prediction
schemes have a single bit entry in the branch history table, indicating whether the
branch has recently been taken or not. In the event of a misprediction, the predic-
tion bit is inverted. While this scheme offers simplicity and low hardware overhead,
the limited historical information stored in a single bit often leads to frequent mis-
predictions [17]. To address this limitation, N-bit saturated counter schemes are
statically assigned to branches with distinct addresses. When a branch is about to
be taken, the counter value associated with the branch is used to select the branch
target based on a predetermined threshold [27]. The count is incremented if the
branch is taken, and vice versa. It may seem intuitive that increasing the number
of bits would improve prediction accuracy through capturing more historical infor-
mation, however Smith demonstrated that counter sizes larger than 2-bit schemes
do not consistently result in higher prediction accuracies [30]. For loop insensitive
programs with biased branches, 2-bit counter schemes have been found to be effec-
tive with branch misprediction rates averaging at 11%, but performance was found
to deteriorate with integer based programs with more complex branch dependencies
[17]. The limitations of one-level BP schemes are multifaceted. Relying on a single
branch history table restricts the ability to capture intricate patterns and dependen-
cies between branches, hampering the prediction accuracy of one-level BP’s [30].
Additionally, interference can occur with branch buffer accesses, as finite space ne-
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Branch A

Branch B

00010

00010

PHT
(2-bit counter)

Instruction
stream

Branch A’s

Branch B’s
index

index
11 10

01 00

Predict taken Predict taken

Predict not taken Predict not taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Figure 2.3: Diagrammatic representation of a one-level branch history table with alias-
ing interference between two branches, taken and adapted from [29] (left). State ma-
chine for 2-bit branch prediction, taken and adapted from [17] (right).

cessitates the use of hashing schemes to access the bit-counters for predictions. This
can lead to collisions, with negative aliasing occurring more prominently than posi-
tive aliasing [29].

In light of these limitations Yeh and Patt proposed the first two-level adaptive
branch prediction scheme, utilising a global branch history table that maintains a
shared history of branch outcomes, allowing it to capture patterns and dependencies
between branches [31]. Implementation wise, two level BP’s comprise of a branch
history register (BHR) which tracks recent outcomes of branches and a global pat-
tern history table (PHT) which stores patterns and outcomes associated with specific
branch instructions. In this scheme both the BHR and PHT work in collaborative
fashion; most recent branch results are shifted into the BHR with branch addresses
being used to index a BHR table, the content of the BHR is used to index the global
PHT for making predictions, with mispredictions updating both the PHT and BHR
[29, 31, 32]. Whilst the two-level adaptive predictor improves prediction accuracy
and captures branch dependencies, it still faces challenges related to aliasing con-
flicts similar to saturated counter-based branch predictors. Yeh and Patt explored
several alternative branch prediction schemes based on the original two-level ap-
proach, and whilst branch correlation algorithms could be improved it was found
that inherent trade-offs existed between efficient storage capacity, memory access
overhead and reduced interference, often bounded by physical constraints [32]. As
a consequence, current state-of-the-art BP research is focused primarily on the devel-
opment and optimisation of the prediction algorithms that build off the foundational
work originally done by [31, 32], and have been immensely successful at doing so
with the emergence of incredibly powerful BP’s such as the competition winning
TAGE-L with 3-4 mispredictions per 1000 instructions [33, 34].

Whilst the current state of modern BP’s are capable of predicting the majority of
branches to near perfect accuracy, there exists classes of branches that are inher-
ently hard to predict (HTP) even by TAGE-like predictors, and hence the problem of
branch prediction is still considered unsolved [1, 37]. The key weakness arise from
attempting to identify correlations between branches in a noisy global history, or
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Index Tag Index Tag Index Tag

Tag match? Tag match? Tag match?

hist[L1:0] hist[L2:0] hist[LN:0]

PC

Prediction

Figure 2.4: Organisation of the TAGE (Tagged Geometric) BP with n-tagged tables.
TAGE features a base 2-bit binomial predictor that provides a basic prediction, and a
number of partially tagged tables that store branch history information. At prediction
time, each of the tagged tables are indexed simultaneously using global and local branch
histories, with the longest tag match generally being chosen to make a prediction [35].
The TAGE-L predictor builds on this and uses a dynamic table organization with varying
numbers of tables and table lengths to better capture branch outcomes and histories
[36]. TAGE-SC-L further builds on this and incorporates a statistical correlator to further
refine predictions [33]. Figure taken and adapted from [35].

the branches themselves are uncorrelated and must rely solely on saturated counter
schemes to make predictions [34]. Fundamentally, noise caused by HTP branches
introduce a number of redundant patterns which pollute the global branch history
causing TAGE-like predictors to struggle, and with non-deterministic orderings of
historical patterns, more exotic perceptron based BP’s which rely on the position
of a branch in the global history also struggle [29, 34, 38]. Problematically, HTP
branches are common in most applications but have the more prevalent effects in
performance-critical fields such as games, streaming services, and HFT.

The weaknesses of modern BP’s stem from their need to be simple, computation-
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2.3. C++ AND COMPILER HINTS Chapter 2. Background

ally cheap and adaptive to execution phase behaviour [34]. The worst case storage
requirements for capturing branch patterns is O(2n), posing a physical constraint on
the predictive capabilities of modern BP’s. Whilst fundamental breakthroughs that
build off TAGE and perceptron-based BP’s have become rare, Zangeneh et al. pro-
posed a convolutional neural network (CNN) BP which can be trained offline [34].
Their work explored two CNN models, one of which was a pure software solution
and the second being a smaller hardware optimised version capable of being im-
plemented on chip, both of which showed vast reductions in MPKI on benchmarks
run on TAGE-SC-L [34]. Although prediction accuracy greatly improved for corre-
lated branches with noisy histories, BranchNet showed poor performance on data-
dependant branches and programs where mispredictions are spread across a number
of static branches. The reason for the former is that data dependant branches rely
on input data and program phase behaviour, meaning there is little to no branch his-
tory that can be correlated to data stored in memory, a problem for capturing training
data to make predictions [34]. In terms of mispredictions for static branches, this is a
problem regarding the sparse storage requirements for a practical CNN BP, though it
may be possible to implement larger models using proposed predictor virtualisation
techniques [39].

CNN based BP’s have the potential to be the next standard for hardware-based
BP’s, however there is still much work to be done before commercialisation. Whilst
the work done by Zangeneh et al. demonstrated MPKI reductions on several HTP
branches across a number of benchmarks, the first challenge of using such CNN’s
would be to achieve generalisation for commercial purposes. This would require a
substantially large model (or number of models), introducing additional administra-
tive overhead to the OS [34]. In addition, modern OS’s would need to be adapted to
load these CNN models on-chip prior to execution time and handle context switch-
ing (and its associated penalties) accordingly, in turn adding more complexity and
overhead.

At its current state research pertaining to novel hardware based BP’s have slowed
substantially, and it is likely that modern BP’s have reached an asymptotic state of
prediction accuracy versus complexity and implementation overhead. Whilst there
may be BP’s in the future that can have low misprediction rates on noisy or inherently
HTP branches, there will always exist some class of branches, especially in real-time
systems, that will always be completely non-deterministic and impossible to predict
through conventional methods. Whilst this likely can never be solved by hardware,
it may be possible that programmatic approaches exist that are able to tame these
impossible-to-predict branches.

2.3 C++ and Compiler Hints

High-frequency trading (HFT) demands ultra-low latency and exceptional perfor-
mance, necessitating the selection of a programming language that offers efficient
execution, deterministic behavior, and fine-grained control over hardware resources.
C++ has emerged as the primary language for developing critical path (path of or-
der action) components in automated trading systems, primarily due to its design
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philosophy. One fundamental axiom associated with C++ is the ”zero overhead
principle” [9, 10], which ensures that developers only pay for what they use, re-
sulting in a predictable and transparent performance model. For example, unlike
high-level languages that employ garbage collectors to manage memory, C++ uti-
lizes manual memory management. This approach avoids the unpredictable invo-
cation times and overhead associated with garbage collectors, which is critical in
low-latency applications that require deterministic performance. C++ provides de-
velopers with granular control over memory through abstractions such as pointers,
references, heap allocation operators, and standard library methods. However, the
trade-off for low-level memory access is increased complexity and the potential for
memory leaks and errors. Whilst uncommon, other languages that target the java
virtual machine (JVM), for example Java, have become more popular in the HFT
space using optimised garbage collection algorithms and compilation techniques to
minimise latency cost [40]. Notably, this has become popular with leading quantita-
tive trading firm and liquidity provider, Jane Street.

C++ features also support the shifting of execution time operations to compile
time, resulting in the deferral of computational costs and the reduction of runtime
latency when appropriately utilized. This capability proves to be a powerful tool
for applications with stringent requirements for low latency. Templates, as a Turing-
complete language feature, play a vital role in enabling this paradigm by provid-
ing type-safe parameterized blueprints, which allow the generation of specialized
code by the compiler for each type-specific instantiation. Consequently, compile-
time polymorphism can be achieved, albeit at the expense of flexibility and main-
tainability [41, 42]. Moreover, the template system can be further leveraged for
performing recursive instantiations and type deductions, thereby facilitating the ma-
nipulation of types and values and enabling the execution of complex computations
at compile time. It is important to note that this approach, known as ”template
meta-programming,” is extensively employed in low-latency settings such as High-
Frequency Trading [5, 43].

In the realm of optimizing branch prediction at the language level, specific ex-
tensions provided by compilers have long existed, allowing programmers to provide
hints for branch prediction. These hints enable targeted optimizations on antici-
pated execution paths. In GCC and Clang, this capability is manifested in the form
of the builtin expect attributes, which allow programmers to specify conditions
and associated probabilities (fixed as either 0 or 1) for condition evaluation at run-
time [44, 45]. It is worth noting that these so-called branch prediction hints do not
directly affect the hardware-based branch predictors and have been ineffective at
doing so since the release of Intel’s Pentium M and Core 2 processors [46]. Instead,
compiler built-ins optimize branch-taking by rearranging assembly code related to
branches to exploit processor static prediction schemes and instruction cache effects
for improved performance.

Modern processors enhance execution performance by prefetching instructions
sequentially from slower to faster memory storage, such as high-speed caches in
close proximity to the CPU. This prefetching is done to avoid high memory access
latencies during the fetch stages [47]. When executing a code segment containing
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i f ( cond i t ion ) 10 af : j e 10bd
func t i on 1 ( ) ; 10b1 : c a l l <funct ion 1>

else ( . . . )
func t i on 2 ( ) ; 10bd : c a l l <funct ion 2>

Figure 2.5: Comparison of C++ code without branch prediction hints (compiled with
GCC on x86-64). In this case the forward branch (else) is assumed not taken and the
backward branch (if) is assumed taken.

i f ( cond i t ion ) [[ u n l i k e l y ]] 10 af : j e 10bd
func t i on 1 ( ) ; 10b1 : c a l l <funct ion 2>

else ( . . . )
func t i on 2 ( ) ; 10bd : c a l l <funct ion 1>

Figure 2.6: Comparison of C++ code with branch prediction hints (compiled with GCC
on x86-64). Since the backward branch is now deemed as ”unlikely”, the compiler will
reorganise the ASM such that the backward branch is now the forward branch and vice
versa, in contrast to Figure 2.5.

conditional statements, blocks of sequential assembly instructions associated with
different branches are prefetched into the instruction cache, irrespective of how fre-
quently the branches are executed. However, prefetched code that remains infre-
quently accessed throughout the program’s lifespan can contaminate the instruction
cache and result in cache-line fragmentation of hot code segments that are frequently
executed. This can introduce jitter and latency costs [48, 49]. To optimize branch
prediction, the compiler reorganizes the underlying assembly code such that the
conditional jump occurs on the least likely path. This is because modern processors
initially assume that forward branches are never taken and, therefore, avoid mispre-
diction by fetching the likely branch to the branch target [46]. It is important to note
that such static-prediction schemes are employed when the BPU encounters a branch
that has not been previously visited. The dynamic prediction schemes outlined in the
previous sections will begin to dictate which blocks are speculatively fetched once a
branch pattern history has been established.

C++20 introduced the [[likely]] and [[unlikely]] attributes, which serve
as wrappers around the original builtin expect attributes and function in the
same manner as depicted in Figure 2.6. Apart from this, there have been no other
language features attempting to optimize branch prediction [50]. There is limited
formal research investigating the performance impact using different benchmarks.
However, some online blogs report performance gains (e.g., [48] reports a 15%
increase) primarily on branches specifically designed to be highly predictable for
demonstration purposes rather than from a research perspective. The fundamental
problem with these attributes is that they rely on the programmer’s predictive ability
of likely execution paths. While profiling and synthetic benchmark data may offer in-
sights into hot/cold branches, programmers tend to significantly underestimate the
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cost of misprediction when misusing these attributes (for example, a misprediction
is likely followed by a cache miss due to the infrequent execution of the unlikely
path) [15]. Furthermore, the capabilities of these attributes are confined to compile
time, rendering them inflexible to change during program execution. If a branch is
indeed more likely to be taken at runtime, the programmer will reap the benefit of
the discussed prediction and prefetching semantics. However, if the likelihood of
the branch changes during execution, the programmer would have no control over
it and would suffer from increased latency through assembly reordering schematics.
Real-time systems, which constantly need to react to live events and data, inherently
exhibit such variability. Consequently, static language features like these are inade-
quate as effective branch misprediction mitigators. This inadequacy forms the focus
of the research conducted in this report.

2.4 High Frequency Trading

The evolution of computer-based trading dates back several decades, starting with
the introduction of fully electronic trading by NASDAQ [2]. With the decrease in reg-
ulation and advancements in electronic exchanges and telecommunications infras-
tructure, high-frequency trading (HFT) has gained significant popularity, accounting
for over 50% of trading volume in equity markets [51]. Defining HFT itself poses
challenges. Haldane [52] emphasizes the use of sophisticated algorithms as its main
characteristic, while MacKenzie [53] and Arnoldi [54] highlight the importance of
speed in data processing and execution rather than the underlying strategies em-
ployed. This report primarily focuses on optimizations that target proprietary auto-
mated trading systems, and hence considers HFT as a form of algorithmic trading
who’s strategies rely on low order execution latencies to ensure profitability.

High-Frequency Trading (HFT) firms actively engage in generating trading sig-
nals, validating models, and executing trades in order to exploit inefficiencies in
market micro-structure within short time frames, with the ultimate goal of achiev-
ing profitability [2]. These firms employ diverse strategies to generate profits in
financial markets. One prevalent strategy is market-making, where HFT participants
continuously provide liquidity by simultaneously placing buy and sell orders, aiming
to profit from the bid-ask spread. Another strategy, known as statistical arbitrage,
involves capitalizing on transient deviations from fair value by identifying mispricing
opportunities. Additionally, event-driven trading strategies focus on leveraging in-
formational asymmetries that arise from significant market events [55]. While a sig-
nificant body of literature exists on the economic effects of HFT (e.g., [56, 57, 58]),
information pertaining to the engineering aspects of low-latency automated trading
systems is often concealed due to reasons discussed in Chapter 1. Nevertheless, some
online conferences vaguely present important features of HFT systems, such as the
networking stack, kernel bypass, custom hardware, and strategies for enhancing the
speed and efficiency of production code [4, 5]. An example of a typical HFT system
can be seen in Figure 2.7, outlining the relevant components and order flow.

While this report primarily addresses software-based optimizations for latency-
critical applications, it is crucial to underscore the significance of the hardware stack
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Figure 2.7: Simplified anatomy of a HFT system. Exchanges broadcast ticker data along
a 10 GiB Ethernet cable to the HFT system, where the networking stack receives and
processes packets in user space. Packets are typically compressed in a domain specific
format for bandwidth reasons, which are then parsed into meaningful market orders by
the financial protocol which are then ordered in the order book. The custom application
then issues the buy and sell orders back over the network, this is the area in which the
optimisations presented in this report pertain to. Figure taken and adapted from [59].

in HFT firms for trade execution. Simple trading strategies often rely heavily on
the networking stack, implemented entirely on custom firmware and Field Pro-
grammable Gate Arrays (FPGA) to achieve execution latencies in the nanosecond
range [60]. As proprietary software approaches a state of complete optimisation,
it is likely that the engineering focus will increasingly shift towards the hardware
stack, which is still in its early stages and has considerable room for growth.
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Chapter 3

Research and Development

3.1 Outline

This chapter is dedicated to the idea and development of semi-static conditions, out-
lining theory, design philosophy and optimisations that have been applied iteratively
over the development process. The majority of this chapter is focused on develop-
ing a prototype that emulates the behaviour of a simple if/else statements, with
some discussions given on generalisations to switch statements and non-static mem-
ber functions in later sections. Whilst discussions on portability are reserved for the
evaluation stage, there was an important decision to be made about the choice of de-
velopment environment for the prototype, more specifically the choice of operating
system, compiler and C++ version. Since the primary applications of this language
construct will find use in low-latency environments such as HFT systems, the choice
of development environment was curated to reflect an industry standard. In light
of this, development was done under a Linux OS (Ubuntu distribution) with GCC
13.1 and C++20. At certain stages of the development process, attention will be
brought on specific Linux system calls that involve manipulating page permissions
for running executables, however equivalent API’s exist in other OS’s that use paging
for virtual memory management.

3.2 Semi-static Conditions

Semi-static conditions can be defined as a language construct that emulate the
behaviour of conditional statements, but separates condition evaluation logic and
branch taking (the subsequent machine code executed on the pretext of the condi-
tion). At compile time, the underlying assembly of semi-static branch taking would
resemble that of a function call with no indirection, allowing for a deterministic flow
of execution with full support of compiler optimisations and hardware intrinsics. In
the context of conditional branching, semi-static conditions remove the runtime
check associated with branched execution, allowing for faster branch-taking in low-
latency settings. The semi part is associated with the polymorphic nature of the lan-
guage construct: the ability to programatically change the direction of the branch at
runtime, whilst maintaining the deterministic compile-time behaviour already men-
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tioned. With semi-static conditions, the lines between the compilation and execu-
tion phases of a program become blurred, and the nature of the executable shifts
from static to somewhat polymorphic or self-modifying. This behaviour manifests
itself within the branch-taking mechanism as a single/sequence of assembly instruc-
tions that redirect control flow to the respective if or else branches, controlled by
branch-switching logic that performs the modification.

In the context of branch optimisation, the philosophy behind the construct is sim-
ple. Semi-static conditions remove the runtime check from conditional branches and
defers this to an auxiliary method which is directly controlled by the programmer,
creating an important decoupling of relatively cheap (branch-taking) and expen-
sive (branch-changing) operations. Isolating branch-switching logic in less perfor-
mance critical code paths allow conditions (more specifically, those pertaining to
hard-to-predict branches) in performance-critical sections to be evaluated preemp-
tively without interference, bypassing the need for branch prediction and eliminating
misprediction penalties in the latency-critical path. When the hot-path is executed,
no conditional checks are needed and the branch is executed as if it where always
perfectly predicted. In instances where code paths are infrequently executed, but
contain branches that are often mispredicted, semi-static conditions show promise
for optimisations. In addition, the overall cheaper branch-taking that semi-static
checks offer show promise for more general use cases, even when branches are well
predicted.

In order to realise this language construct, some key challenges are addressed
in the development process, which can be broadly split into branch-changing and
branch-taking logic. Branch-changing logic needs to be able to find the address of the
assembly code instructions to edit in memory, and perform the editing in way that
calling the branch-taking method redirects program control flow to user-specified
regions based on a runtime condition. Branch-taking logic needs to ensure that con-
trol flow is redirected with minimal overhead, so it becomes comparable with the
execution latency of a perfectly predicted branch, or a direct function call. At a lan-
guage level, this is not only dependant upon the underlying assembly instructions
that are edited, but also being able to reap the full benefits of compiler optimisa-
tions without compromising the safety of the program. On the hardware level, it
is paramount that branch-taking code benefits from the same caching, instruction
pre-fetching and branch target resolution effects that regular function calls or un-
conditional jumps do to ensure deterministic and low-execution latencies. Whilst
it may be possible to achieve near-identical execution schematics to direct function
calls on a language level, the cost of cache incoherence and instruction pipeline
stalls can trump branch-misprediction penalties by orders of magnitude, making the
construct infeasible in low-latency settings. Therefore, it is crucial that semi-static
conditions are compatible in this way with modern hardware and processors. Lastly,
and more broadly, the language construct needs to be designed with ease of use in
mind. This includes simple and elegant syntax, flexibility and a design that allows it
to be easily portable across different architectures, compilers and operating systems.
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3.3 Prototype Development

The first step in the development process is to establish the desired syntax of the
core branch-switching and branch-taking functionality of the language construct. It
is likely that this will have a significant influence on the design of semi-static con-
ditions, so establishing how the end product is desired to look in the preliminary
stages gives a clear direction in development goals. After careful consideration of
simplicity and elegance, the desired usage can be seen below.

void func t i on 1 () { . . . }
void func t i on 2 () { . . . }
( . . . )
BranchChanger branch ( funct ion 1 , func t i on 2 ) ;
branch . s e t d i r e c t i o n ( cond i t ion ) ;
branch . branch ( ) ;

Semi-static conditions will manifest itself as the BranchChanger class which is in-
stantiated by taking the addresses of two functions as arguments. These functions
represent the if and else branches respectively, and their equivalent usage with
conditional statements can be seen below.

void func t i on 1 () { . . . }
void func t i on 2 () { . . . }
( . . . )
i f ( cond i t ion )

func t i on 1 ( ) ;
else

func t i on 2 ( ) ;

The set direction method will be responsible for controlling which of the branches
is executed based on a user specified runtime condition, whilst the branch method
will be responsible for executing the branch with minimal overhead. The signa-
ture of the branch method will always be identical to the functions passed as argu-
ments when the class is instantiated, serving as a single entry and exit point for both
branches.

Now that a clear high-level design has been established, the next course of action
is to implement the branch-taking functionality. Before delving into assembly in-
struction modification to facilitate the execution of the if and else branches, some
thought needs to be given in how the branch method can act as a single entry and
exit point for both branches. This method will not do any meaningful work, its sole
purpose is to behave as a trampoline to other areas of the code segment while still
being able to propagate return values and register data as if one of the branches
where called directly. Its first clear responsibility is to set up the call stack in the
exact way that the branches would as if they where called in isolation; since control
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flow will be redirected before the branch function has opportunity to manipulate the
stack, in theory the target branches will be able to use any caller-saved data as if it
where called directly. To test this theory, we can observe the disassembly for two
functions with identical signatures under -O0 optimisations so any calling behaviour
is not omitted.

in t add( in t a , in t b) { . . . }
in t branch ( in t a , in t b) { . . . }
( . . . )
mov es i , 2
mov edi , 1
c a l l add( int , in t )
( . . . )
mov es i , 2
mov edi , 1
c a l l branch ( int , in t )

As expected, both instances follow a standardised calling convention resulting in
identical caller behaviour: arguments are pushed from right to left (in this case
since there are less than 3 arguments, they are instead moved into registers as per
x86 calling conventions) before the subroutine is executed. While this may seem
trivial, the standardisation of calling conventions is an extremely important feature
of modern compilers that can be leveraged to generalise the branch method in a safe
and portable manner.

Now that it’s clear that functions with identical signatures observe identical caller
setup, and hence the assembly generated on the callee side will be tailored to reflect
this, the next course of action is to make the branch entry point mimic the identical
signature of the branches passed into the constructor. Using class template deduc-
tion, return types and arguments of the branches passed into the constructor can be
deduced at compile time and leveraged to generate the correct assembly code for
the branch method.

template <typename Ret , typename . . . Args>
c lass BranchChanger
{

using func = Ret (*) ( Args . . . ) ;
( . . . )
BranchChanger ( func i f b ranch , func e l se b ranch ) ;
( . . . )
Ret branch ( Args . . . a rgs ) ;

}

The templating splits the signature into arguments and return type, where the ar-
guments are represented by a variadic parameter pack deduced through the pointer
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types passed into the constructor (represented with the type alias func for read-
ability). These types are then used to declare the signature of the branch method,
ensuring that it is identical to the if and else branches. For implementation, vir-
tually anything can be placed inside branch and as long as the return type matches
the signature, it will compile. Here there are two main cases to distinguish between;
void and non-void return types. If the return type is non-void, returning a brace
initialised object of type Ret will suffice for compilation, whereas void return types
must be absent of non-void return values. Using std::is void v<Ret>, we can per-
form compile time type checking to circumvent this edge case and always ensure
compilation for both void and non-void return types.

Ret branch ( Args . . . a rgs )
{

i f constexpr ( ! s td : : i s v o i d v <Ret>)
{

return Ret {} ;
}

}

Now that the entry point is functional, we can double check the underlying assem-
bly to ensure it has identical caller behavior to the branches. For this example, the
branches used to instantiate the construct will be addition and subtraction functions
with two integer arguments and an integer return type.

lea rax , [ rbp−16]
mov edx , 2
mov esi , 1
mov rd i , rax
c a l l BranchChanger<int , int , int > : : branch ( int , in t )

From the demangled function call it appears that the correct template is generated,
however additional instructions have been added on the caller side. In addition to
the integer arguments, an effective address is computed based on an offset from
the frame pointer, which is moved into the rdi register after all previous arguments
have been set up. From first glance it may be unclear why this is occurring, however
when delving deeper into C++ calling conventions, what is happening is an implicit
this pointer belonging to the specific BranchChanger instance is being pushed onto
the stack [61]. If the branch member function utilised data members specific to the
parent instance then this would be necessary, however this not the case and all it
does is disrupt register offsets making trampolining to regular functions infeasible.
Whilst it may be possible to rectify this programmatically using inline assembly, a
safer and more portable solution would be to declare the branch method as static
since static member functions are not associated with any particular instance of a
class.
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mov esi , 2
mov edi , 1
c a l l BranchChanger<int , int , int > : : branch ( int , in t )

Static declarations allow the branch entry point to work seamlessly, however this
limits the number of BranchChanger constructs that can be instantiated per func-
tion signature. Template specialisation allows for the differentiation of static branch
entry points if the branches passed into the constructor have different signatures, al-
lowing for multiple instances of semi-static conditions in a single program. However
if more than one BranchChanger instance exists for a specific signature, this means
they will share a common entry point which is problematic: two instances will be
performing assembly modification on a single branch method which will have un-
defined behaviour. A way to circumvent is would be to alter the return types of the
branches with other built-in or custom types to ensure that different templates are
generated. Given these trade-offs, the priority for development is to work as much as
possible with the compiler to avoid writing inline assembly for safety and portability
reasons, and hence the final decision was to keep branch declarations as static.

Before moving onto implementing assembly modification, an important caveat
to consider is compiler optimisations. From the compilers perspective, the branch

method is a small function that does not produce any meaningful work making it
susceptible to inlining or dead code elimination [62]. Obviously, if this happens
then the construct will be unusable, but limiting its usage to programs that are in-
tended to be run on -O0 defeats the purpose of it being used in high performance
applications. The simplest solution would be to disable optimisations specifically on
the branch method, which can be achieved on GCC using pragma directives or more
elegantly using attributes.

a t t r i b u t e (( opt imize ( ”O0” ) ) )
s t a t i c Ret branch ( Args . . . a rgs )
{

i f constexpr ( ! s td : : i s v o i d v <Ret>)
{

return Ret {} ;
}

}

Assembly Editing Now that the entry point is fully functional, development can start
for the core assembly modification functionality. The target for this editing will the
prologue instructions of the branch method, specific to each instance produced by
template specialisation of the parent BranchChanger class.

The first course of action is identifying the addresses of the machine code instruc-
tions to edit. In terms of the virtual address space, the machine code instructions
of interest pertaining to the executable reside in the text segment, which itself is
mapped by pages with read-only and execute permissions. Before we can perform
any modifications, the page where the function prologue resides must be located
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Figure 3.1: Simplified representation of virtual address space segments, with lower
segments residing at lower memory addresses. Blue segment highlighted in executable
page represents an offset where a specific instruction can be found.

and its permissions must be changed to read/write, otherwise the processor will
raise a segmentation fault if any memory stores are attempted. Modern operat-
ing systems employ address space layout randomisation (ASLR) by randomising the
base address of the virtual address space to prevent attackers from exploiting known
memory addresses, so locating executable pages must be deferred to runtime [63].
Upon construct instantiation, we can generate a pointer to the template specialised
branch method which is essentially the logical address of the first instruction per-
taining to the function. To obtain the address of the page boundary in which the
function resides, we can compute the page offset through the modulo of the logical
address and the page size of the system (which can be obtained using the Linux spe-
cific getpagesize method), and then subtracting this offset from the original address
to align it with the lowest multiple of the page size. To change the page permissions,
we can use the mprotect system call to alter the flags of the VMA (virtual memory
area, a kernel data structure which describes a continuous section in the processes
memory) corresponding to the page address previously computed [64].

u in t64 t page s i ze = getpages i ze ( ) ;
address −= ( u in t64 t ) address % page s i ze ;
mprotect (

address , page s ize , PROT READ | PROT WRITE | PROT EXEC
) ;

Now that we have located the instructions in memory to edit (through the pointer to
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the branch function), and made this editing permissible through altering the page
permissions where the function resides, we can start adding instructions to redirect
control flow to the branches. With latency in mind, the scope of control flow instruc-
tions that can be used become limited to direct jumps or calls, which conventionally
cannot be polymorphic without employing assembly editing. On x86 architectures,
jumps and calls redirect control flow by supplying a relative 32-bit offset from the
current program counter, which is reduced to a simple signed displacement arith-
metic operation.

00000000000011a9 <foo>:
00000000000011a9 : f3 0 f 1e fa endbr64
00000000000011ad : 55 push rbp
00000000000011ae : 48 89 e5 mov rbp , rsp
( . . . )
00000000000011e3 : 55 push rbp
00000000000011e4 : 48 89 e5 mov rbp , rsp
00000000000011e7 : e8 bd f f f f f f c a l l 11a9 <foo>
00000000000011ec : b8 00 00 00 00 mov eax ,0 x0

Above is an example of the machine code generated for a call instruction (achieved
with objdump -d -M intel) along with the program counter (left) and equivalent
assembly (right). Focusing on the call instruction with opcode e8, we can see the
following 4-byte displacement encoded as a signed hexadecimal value in little en-
dian format (architecture specific). The signed 2’s compliment equivalent of this
displacement is -67 bytes, which is 5 bytes smaller than the displacement from the
PC of the call instruction (11e7) to the function entry point (11a9). The reason for
this is because the offset of relative jumps are computed from the last byte of the
instruction to the first byte of the target address, which can be formally described
with the equation:

Jump Offset = Target Address - Entry Point - Size of Instruction

Fundamentally, relative jumps are indeed branches and introduce control hazards
in pipelined processors, but have subtly different prediction schemes and penalties
on the micro-architectural level in comparison to conditional jumps and indirect
jumps (through register data). Prediction schemes for direct jumps occur relatively
early in the pipeline (processor front-end), whereas branches that have data depen-
dencies (such as indirect jumps/calls) or are conditional on FLAGS can get deep
in the pipeline (back-end) execute stages before mispredictions are discovered, and
hence incur a higher penalty when previous instructions need to be flushed. For rela-
tive jumps, the first line of prediction occurs in the branch target buffer (BTB) which
acts as a specialised cache to predict weather the PC resolves to a branching instruc-
tion, and if so, what block to fetch next [17]. This is especially important for specu-
lative prefetching: the instruction prefetcher needs to know in advance which blocks
to fetch next, so if the PC is a branch, it can can steer the prefetcher to the predicted
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Figure 3.2: Simplified representation of the interaction of caches and branch prediction
schemes on the instruction pipeline. Unconditional branch mispredictions are resolved
at the decode stage by the BAC, whereas conditional branches are resolved at the execute
stage. Information of retired predicted and mispredicted branches are fed into the BPU
to update the predictor.

branch target and begin bringing the associated instructions into lower level caches.
If predicted correctly then virtually no penalties are incurred as for conditional and
data dependant branches, however the distinction occurs at the pipeline stage where
mispredictions are detected and resolved. When an instruction reaches the decode
stage, more information is attained surrounding the nature of the instruction. The
branch address calculator (BAC) will ensure that the branches have the correct tar-
get by computing the absolute address of the PC and comparing it with the supplied
target. If a direct jump is mispredicted at this stage, this means that the supplied
branch target does not match the predicted, and proceeding instructions that have
been incorrectly fetched will be flushed and the prefetcher will be re-steered to the
correct branch target [65]. In regards to conditional branches, the same applies with
the BAC however mispredictions are ultimately detected later in the execute stages
which result in more severe pipeline stalls. On processors with branch order buffers
(BOB), the recovery process can start before the processor pipeline has been flushed,
but nevertheless the relative cost for mispredicted unconditional branches is much
lower than conditional branches [65].

It is clear that relative jump/calls provide the cheapest means of control flow al-
teration, providing that the size of the jump does not exceed 232 bytes. The question
that remains is which instruction would be most suitable from a latency and im-
plementation perspective. Call’s and jumps are very similar mechanically, with calls
being a two-part atomic operation which jumps to an offset while pushing the return
address onto the stack. From a latency perspective, while minimal, the additional use
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of the call stack pollutes data caches unnecessarily and the additional return instruc-
tion introduces more branching which is prone to mispredictions. However the main
challenge comes from a development perspective; after the call is complete (within
the branch method), the return address will be the proceeding instruction which
may involve manipulating data on the stack/registers which have already been dealt
with. Ensuring this does not occur for all possible signatures is tedious, and may
limit future optimisations on the language construct. Using a jump will be much
simpler; we can simply go straight to the branch without needing to ever complete
execution of the entry point, and when the branch has finished executing, control
flow will be redirected to the original calling site of the branch method (recall that
a ret instruction is a jmp [reg]).

To implement the jump, the first thing we do is alter the opcode of the first in-
struction pertaining to the branch method to e9 (jmp opcode on x86) through its
pointer, and then increment it. The following 4 bytes will be reserved for the rela-
tive offsets from the current program counter. To compute the offsets, we simply use
pointer arithmetic to compute the displacement in memory from the branch method
to the respective if/else branches, then subtracting the length of the instruction from
the offset as specified in the formula mentioned earlier. Next, the the integer offsets
are converted into 4-byte hexadecimal representation and stored in a two dimen-
sional member array (total of 8-bytes), accounting for architectural byte ordering.

unsigned char o f f s e t i n b y t e s [DWORD] = {
s t a t i c c a s t <unsigned char>( o f f s e t & 0 x f f ) ,
s t a t i c c a s t <unsigned char>(( o f f s e t >> 8) & 0 x f f ) ,
s t a t i c c a s t <unsigned char>(( o f f s e t >> 16) & 0 x f f ) ,
s t a t i c c a s t <unsigned char>(( o f f s e t >> 24) & 0 x f f )

} ;

#i f BYTE ORDER == ORDER BIG ENDIAN
change byte order ing ( o f f s e t i n b y t e s ) ;
#endif

s td : : memcpy( des t a r ray , o f f s e t i n b y t e s , DWORD) ;

Changing Branch Directions At this point the development of the construct is nearly
complete, leaving only the direction changing method for development. With the
offsets computed and stored in a class member array, setting the branch direction
would simply involve a memcpy of these bytes to the branch pointer as the desti-
nation address. Direction setting must be initially done upon instantiation, since
altering the first byte of the branch entry point will result in a jump to an undefined
location, likely causing a segmentation fault. The class was adapted to have an op-
tional parameter in the constructor to specify the initial direction of the branch, with
the default condition being true. This can be conceptualised as a similar scheme
to compiler branch prediction hints; the programmer can specify the likely direc-
tion which the branch would first be taken, but will still have the control to change
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this at any given time. The actual set direction method will use boolean indexing
(the boolean being the runtime condition passed to the method) to access the bytes
pertaining to the correct branch, which are copied into the 4 byte slot next to the
jmp opcode. The boolean indexing approach is simple, and allows for active cache
warming if desired.

void s e t D i r e c t i o n ( bool cond i t ion )
{

s td : : memcpy( dest , s r c [ cond i t ion ] , DWORD) ;
}

Concluding Remarks Upon testing, the semi-static conditions prototype appears to
work seamlessly for varying branch signatures on all optimisation levels. Whilst it is
not possible to observe the assembly editing in real time without specialised disas-
semblers (for example, objdump only shows the contents of the object file which is
not edited, rather the pages that are mapped by it), using perf record it is possible
to observe it indirectly through the percentage cycles spent in the branch method.

Percent |
| BranchChanger<in t , in t , in t > : : branch ( in t , i n t )

100.00 | push %rbp
| mov %rsp ,%rbp
| mov %edi ,−0x4(%rbp )
| mov %es i ,−0x8(%rbp )
| mov $0x0,%eax
| pop %rbp
| r e t

Above shows the disassembly of the branch method with the percentage cycles spent
on each instruction on the left hand side, obtained using perf record. The branches
used in this example are simple addition and subtraction functions. The data shows
that the first instruction within branch constitutes all the cycles spent in the func-
tion entirely; this is the instruction that is edited to a jump and hence it is expected
that this is the only instruction that executes for the duration of the program. The
branches themselves have a small percentage of cycles spent relative to all other
methods in the test program, which supports that the branches are in fact executed
and control flow is redirected accurately, this is also confirmed by simply printing
the return values to the standard output. All the above, along with correct program
behaviour, suggest that the language construct works as intended. Now the core
prototype is complete, thought can be given into optimisations for branch taking
and branch changing, as well as additional features that expand from this core con-
cept (switch statements, also class member functions which observe different calling
behaviour than conventional functions).
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3.4 Optimisations

So far, the prototype demonstrates a proof-of-concept, but not a final product. The
overarching goal of this language construct is to provide deterministic (low standard
deviation) and low latency branch taking in scenarios where misprediction rates are
high. Although mispredictions on the processor level are expensive, if the branch-
taking component does not perform at a similar level to perfectly predicted branches,
the construct will not find use in performance sensitive environments. Prior to run-
ning benchmarks, it is crucial that we level the playing field as much as possible to
make semi-static conditions competitive.

Branch Taking Optimisations Naturally the most obvious place to start is the branch-
taking method itself. In the development process, we ensured that the first instruc-
tion executed within branch is a jump that detours execution to one of the branches,
so the processor does not waste any time executing instructions it does not need
to. This is fine, however the glaring bottleneck arises from having to prevent all
compiler optimisations on the method, which was implemented as a one-hot fix to
prevent the function from being eliminated. Ideally, the entry point should benefit
from all optimisations that regular functions do, but have the minimum amount of
problematic optimisations disabled. The first obvious approach is do only disable
in-lining for the entry point; this is destructive as the compiler will place the body of
the function pre-editing within the calling site which essentially does nothing. Even
if it managed to inline the edited assembly, it will be completely infeasible to target
the in-lined instruction within the code segment. Replacing the compiler attribute
on branch with attribute ((noinline)) generated the following assembly un-
der -O3 optimisations.

000000000000118c : lea rdx , [ r ip+0x26d]
0000000000001193: lea rax , [ r ip+0x136]
000000000000119a : sub rax , rdx
000000000000119d : sub rax ,0 x1
00000000000011a1 : mov DWORD PTR [ r i p+0x25a ] , eax

Surprisingly, even with the noinline directive the compiler still reduced the branch

call to the lea instructions highlighted in bold. Upon further research into the effects
of GCC compiler attributes, what appears to be happening is that the inlining pre-
vention does in fact take place, but the compiler deems the function to have no side
effects and as a result optimises out the call completely. A simple way to control this
optimisation is by inlining assembly within the function body; inline assembly adds
uncertainty to the compilers optimiser as it cannot determine if it has side effects on
register or memory values. Adding a simple asm("") which does not produce any
meaningful work is sufficient to prevent optimising out the function call in addition
to using the noinline attribute.

Further testing revealed an interesting yet problematic optimisation, calls to the
original branch method where replaced with calls to a different branch method, of
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which the compiler duplicated and altered a number of instructions within the body.
Below is an example of both instances, with demangled function names simplified
for readability.

0000000000001280: < BranchChanger branch . cons tp rop .0 . i s ra .0>
0000000000001280: re t
0000000000001281: cs nop WORD PTR [ rax+rax*1+0x0]
0000000000001288: nop
000000000000128b : nop DWORD PTR [ rax+rax*1+0x0]
( . . . )
0000000000001290: < BranchChanger branch>
0000000000001290: endbr64
0000000000001294: xor eax , eax
0000000000001296: re t

The first example of the branch method represents the duplicated form which is
called, whereas the second example represents the method which is needed to be
called to allow semi-static conditions to work. Inspecting the demangled name of
the duplicated function reveals the optimisation that has been applied: interproce-
dual constant propagation (ICP) [66]. This optimisation is multifaceted; when the
compiler recognises that a function call has some arguments passed as constants, it
creates a spot-optimised clone of the function which can involve removing redun-
dant computations and memory accesses. This can be seen in the constprop ver-
sion; the primary instruction becomes a ret because the compiler can see that the
branch method does not produce any meaningful work, the remaining instructions
are included as padding to align the function on a 16-byte boundary. This padding is
important especially for procedural calls since most modern processors fetch instruc-
tions on aligned 16-32 byte boundaries; fetching code after after an unconditional
jump costs a few clock cycles however this delay is worsened if the branch target
does not lie on a 16-32 byte boundary [61]. Following this, an interesting observa-
tion can be made in regards to the original branch method. In many instances, the
function itself does not follow alignment and as a result the compiler seems to al-
ways place it at the bottom of the text segment to prevent misalignment of all other
procedures in the executable. Another interesting observation is that the constprop

version is often placed close to hot code paths in the text segment (often very close
to main), which can reduce instruction cache fragmentation by placing contiguous
subroutines relatively close to one another.

The issue of preventing constant propagation and function cloning can be eas-
ily solved by including the optimize("no-ipa-cp-clone") attribute in the function
header. However prior analysis into the effects of ICP and procedural reordering
opens some interesting avenues into possible improvements. Taking a page out of
the compilers book, the first observation of ICP was the reordering of instructions
such that the most important instructions reside at the function entry point with no
wasted work in between. In the improved branch method, the preliminary instruc-
tion is typically a 4-byte endbr64 on Intel CPU’s that employ control flow enforce-
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ment technology (present on Linux with GCC and Clang), which ensures that indirect
jumps/calls can only be made to functions which start in this instruction [67]. In
the case of semi-static conditions, it is highly unlikely that the branch method will
find use in indirect calls due to the associated costs with indirection in general, es-
pecially in low latency settings. Given this, overwriting this preliminary instruction
with a 5-byte jump was the direction taken in development, however a key thing to
note is that this editing overwrites more than one instruction owing to its greater
length. While it is unclear what ramifications this has on variable instruction length
pre-fetching, perhaps hard coding a 5-byte jump in the entry point (and editing will
not alter the length of the instruction) will be more ”friendly” towards hardware
semantics. In addition this may have positive implications on the BTB; from compile
time the PC associated with the preliminary instruction of the branch method will al-
ways be a jump, meaning that in theory the BTB should always predict that a control
flow instruction is present within branch which can save some cycles associated with
mispredictions from preliminary calls. Even if later benchmarks reveal there is no
observable performance gain from doing this, it does defer some work on construct
instantiation.

To ensure that a unconditional jump always resides at the branch entry point,
the endbr64 instruction will need to be omitted by the compiler which can be done
with the nocf check attribute. Since there is already an assembly instruction present
within branch to prevent the compiler from optimising out the call, this can be sim-
ply changed to asm("jmp 0x0") which hard-codes a jump to an arbitrary 4-byte
offset, this will be edited exclusively. Upon inspecting the disassembly, the branch

method starts to resemble its constprop counterpart even more:

0000000000001280: < BranchChanger branch>
0000000000001280: jmp 0 < a b i t a g −0x38c>
0000000000001285: xor eax , eax
0000000000001287: re t

Interestingly, this assembly ordering seems to be maintained regardless of the func-
tion signature; the compiler seems to understand to not optimise the function call
so there is full benefit of caller setup and teardown, but it also understands that the
function does no useful work and optimises accordingly. The only differences that
remain now between the ICP counterpart is 16-byte alignment and procedural re-
ordering. A simple way to ensure this is including the hot attribute which instructs
the compiler to optimise the function more aggressively and places it in a subsection
of the text segment where hot code lies. This is typically done automatically with
the –vprofile-use flag to which the compiler uses profile feedback from previous ex-
ecutions to determine which functions can benefit from reordering. A caveat with
using this approach is it relinquishes the programmers ability to decide which func-
tions should have priority in the hot text segment, which may decrease performance
depending on the application this is integrated in. However hot attributes are far
more common across compilers than byte-alignment directives, so from a portability
standpoint it would be easier to generate the desired assembly using this method.
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Given these alterations, the final disassembly can be seen below:

0000000000001170: < BranchChanger branch>
0000000000001170: jmp 0 < a b i t a g −0x38c>
0000000000001175: xor eax , eax
0000000000001177: re t
0000000000001178: nop DWORD PTR [ rax+rax*1+0x0]
000000000000117 f : nop

The altered version of the branch method, including the hot attribute is also shown
below. Note that the noinline attribute is omitted since no-ipa-cp-clone includes
this implicitly, and the function is always optimised on -O3 to ensure the preliminary
instruction is always a jump.

a t t r i b u t e
(( hot , nocf check , opt imize ( ”no−ipa−cp−clone ” , ”O3” ) ) )
s t a t i c Ret branch ( Args . . . a rgs )
{

asm ( jmp 0x0 ) ;
i f constexpr ( ! s td : : i s v o i d v <Ret>)
{

return Ret {} ;
}

}

The improved branch method was benchmarked against the prototype version un-
der various suites, broadly split into instruction-level benchmarks with inlined perf
and Intel cycle counters, as well as micro-benchmarks with google benchmark in-
volving measurements of more computationally expensive situations. More detailed
methodology is explained in later sections, the purpose of these preliminary bench-
marks is to ensure the proposed changes do not incur adverse effects on the language
construct. Broadly on the instruction level, the optimised version improved perfor-
mance by several cycles across different branches, with the most significant contribu-
tion coming from procedural reordering associated with the hot attribute. For higher
level measurements, some benchmarks showed performance gain by 5-10% whereas
others had identical execution times. On the instruction level it is difficult to spec-
ulate the source of this performance gain; at runtime both instances have identical
execution pathways in terms of instructions so a reasonable explanation would be
to improved locality between the entry point and branch targets. In larger systems
with increased cache contention, the effects of alignment and locality have more of
a prevalent effect on caching (branch method fits entirely in a single cache line) and
prefetching which is reflected in some of the larger micro-benchmarks. Given these
optimisations showed no adverse effects and showed marginal performance gain in
some scenarios, they where incorporated into the final artefact.
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Branch Changing Optimisations The current state of the direction changing method
is already in quite an optimised state. There is an implicit branch for accessing the
correct byte offset using a boolean index, however this is unavoidable. Fundamen-
tally the performance of branch changing is not as important as branch taking; the
whole reason for this separation is to isolate this more expensive operation from
performance critical code to facilitate condition evaluation preemptively.

3.5 Generalisations

The focus of development has primarily been on semi-static conditions that emu-
late the behaviour of two-way conditional statements for conventional functions and
static class member functions, and have been successful thus fair in exploiting calling
conventions to facilitate safe branch-taking. Nevertheless, the current prototype has
the capability to be further generalised to work for a larger scope of branches with-
out needing to alter the core branch-changing logic. Whilst these extensions may
not find as much use for the specialised case (branch optimisation in HFT environ-
ments), they will improve the flexibility of the language construct for more general
use cases outside the field of low-latency development.

Class Member Functions The current state of semi-static conditions rely on stan-
dardised calling conventions to facilitate stack setup/teardown and function argu-
ment passing by the compiler, without needing to write inline assembly code. Before
extending this to class member functions, one must examine the disassembly per-
taining to these invocations to understand the necessary changes that need to be
implemented.

0000000000002436: lea rax , [ rbp−0x60]
000000000000243a : mov rd i , rax
000000000000243d : c a l l 263a < ZN9SomeClass3fooEv>
0000000000002442: lea rax , [ rbp−0x60]
0000000000002446: mov rd i , rax
0000000000002449: c a l l 268a < ZN9SomeClass3barEv>

The underlying assembly shows similar behaviour encountered during the develop-
ment of the branch entry point; the effective addresses being computed (highlighted
in bold) represents an implicit this pointer to the parent instance which is the first
parameter moved onto the stack. In this example both member functions are be-
ing invoked from the same instance, hence the identical offsets represented in the
lea instruction. Propagating this behaviour to the entry point is simply the case of
altering the class template to deduce the member function pointer type, and then
updating the signature of the branch method to include the class instance within the
signature prior to the parameter pack that represents the functions arguments.
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template <typename Ret , typename Class , typename . . . Args>
c lass BranchChanger
{

using func = Ret ( C la s s : : * ) ( Args . . . ) ;
. . .

a t t r i b u t e
(( hot , nocf check , opt imize ( ”no−ipa−cp−clone ” , ”O3” ) ) )
s t a t i c Ret branch ( const Clas s& ins tance , Args . . . a rgs ) ;

}

These alterations are sufficient for making semi-static conditions work for non-static
member functions without needing to change any optimisations on branch or the
core assembly editing logic. This will become a reoccurring theme in further gener-
alisations. This extension is contrived to work only for member functions that belong
to the same class, which is expected considering the approach used to deduce the
class type through templating. Nevertheless multiple instances are able to share the
same entry point and have their member functions invoked through branch, with
support for derived class methods as long as they are not overloaded (if a derived
class overloads a method from the base class and the base class pointers are passed
to the constructor, only the base methods will be executed).

Switch Statements The design of the language construct make it seem that general-
isation to n-ary conditional statements would be simple; simply change the template
parameters and the offset storage array to reflect the number of branches. How-
ever the syntactic requirements complicate template deduction. If it was possible
to alias parameter packs directly, this would be a simple task of deducing the func-
tion pointer signature from a variadic pack of pointers, extracting the return types
and arguments externally and aliasing them from within the class. Unfortunately
C++20 does not support this directly, and trying to work around this by using con-
tainers such as std::tuple to hold the arguments is non-trivial, since there is also
the task of extracting these types and forwarding them to either a pointer or the
branch template declaration.

The solution to this is to break the BranchChanger class into a base class and
derived class. The base class will be partially specialised to extract the function
signature (as seen so far), with the sole purpose of generating the branch method
through template deduction and hence locating the bytes to edit.

template <typename T>
c lass branch changer aux {} ;

template <typename Ret , typename . . . Args>
c lass branch changer aux { . . . } ;

template <typename Class , typename Ret , typename . . . Args>
c lass branch changer aux { . . . } ;
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The derived class will be the actual BranchChanger which the programmer will in-
teract with. The class itself has variadic template parameters representing a number
of function pointers with identical signatures, these will be the branches which can
range from 2 to ∞. Using std::common type, we can deduce the actual function
signature type from the parameter pack which is used to instantiate the correct base
class through CRTP.

template <typename . . . Funcs>
BranchChanger : public branch changer aux
<typename s td : : common type<Funcs . . . > : : type> { . . . }

The only adaptation needed will be the constructor, which will need to expand the
parameter pack and iterate over all pointers passed to the constructor, computing
relative offsets and storing them element-wise. C++17 supports unpacking these
types into into a std::vector directly using brace-initialised fold expressions:

BranchChanger ( const Funcs . . . funcs )
{

using p t r t = typename s td : : common type<Funcs . . . > : : type
s td : : vector<p t r t > pack = { funcs . . . } ;
for ( in t i = 0; i < pack . s i z e ( ) ; i++) { . . . }
( . . . )

}

After a bit of hideous template meta-programming, the language construct becomes
fully generalised to work for any number of branches, and both regular and mem-
ber functions. Template deduction is completely abstracted from the programmer
without the need of manually writing out types, providing and elegant and affluent
interface for easy use and integration. This concludes the development of semi-static
conditions, the remainder of development time was focused on productionising the
construct into a library, with a focus on portability across different operating systems
and compilers. This stage is rather dull and not worth discussing, most of the com-
plexity arose from creating pre-processor macros to ensure different system calls and
optimisations are enabled based on the users platform.
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Benchmarks and Applications

4.1 Outline

This chapter is dedicated to benchmarking the core operations that comprise semi-
static conditions, exploring the effects self-modifying assembly instructions on per-
formance, and investigating applications in both HFT and more general use cases.
The experiments outlined will leverage a number of benchmarking suites ranging
from Google Benchmark to custom performance counters that offer the fine granu-
larity required to measure instruction level effects. The proceeding section is dedi-
cated to outlining the experimental methods employed in obtaining these results for
transparency and reproduciblity purposes. All measurements have been collected
on an Intel(R) Core(TM) i7-10700 CPU (2.90GHz) with 256-kilobyte L1 instruction
and data caches, 2-megabyte L2 caches and 16-megabyte L3 caches. Measurements
collected will be architecture specific but have nevertheless been tested on similar
architectures with Intel processors and have had consistent performance patterns
with varying numbers. Tests have primarily been focused on semi-static conditions
with regular or static member functions as branches given the large search space
that exists with these kind of experiments.

4.2 Experimental Method

Conventional microbenchmarking frameworks such as Google Benchmark are use-
ful for high level performance measurements where test cases are sufficiently long
enough to measure observable differences in latency. However they often fall short
for higher resolution measurements involving instruction level micro-benchmarks.
When expected differences in performance manifest at the cycle level, the overhead
associated with running these frameworks in conjunction with timer resolutions and
standard errors mean that any observable differences in latency are hidden by back-
ground noise, and often results become more influenced by the measurement taking
rather than the actual measurements. This section is dedicated to outlining the
experimental methods employed in capturing these sensitive measurements, based
heavily on work done by Agner Fog, Matt Godbolt, and Intel as part of their mi-
crobenchmarking guides for i7 processors [68, 69, 70].
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Clock Cycle Measurements Benchmarks for code comprised of small numbers of
assembly instructions where conducted using architecture specific timestamp coun-
ters, in this case RDTSC was used. Measurements are taken by reading the proces-
sors timestamp counter at two intervals with the code to benchmark in between, it is
important to note that RDTSC counts reference cycles rather than core clock cycles
due to CPU throttling effects. On super-scalar processors instructions are executed
out-of-order and in-parallel to optimise penalties associated with different instruc-
tion latencies. This is problematic for such measurements; there is no guarantee
that the RDTSC instruction is called in the precise temporal order that is specified
programtically, and measurements may include other assembly instructions that are
not intended to be measured. To resolve this, serialising instructions can be used
in conjunction with RDTSC to force the CPU to complete all preceding instructions
before continuing execution. Examples of serialising instructions are CPUID and
LFENCE, in all tests LFENCE is used as it has a lower overhead and does not clobber
the output registers of RDTSC. An example setup can be seen below, this snippet has
been adapted from the official Intel microbenchmarking guide for i7 processors [70].

mm lfence ( ) ;
u in t64 t s t a r t = r d t s c ( ) ;
mm lfence ( ) ;

code to measure ( ) ;

mm lfence ( ) ;
u in t64 t end = r d t s c ( ) ;
mm lfence ( ) ;

u in t64 t c y c l e s = end − s t a r t ;

Compiler optimisations often reorder assembly which complicates measurement tak-
ing. While there is no set way to ensure this, a trial and error approach was taken by
padding instructions before measurement taking and cross checking the disassembly
to see if the necessary code is placed between the RDTSC calls.

Measurement taking itself does incur some overhead. To account for this, prior to
benchmarking a background measurement is taken by running the above code with
no instructions in between the RDTSC calls for many iterations (often in the order
of 107), from which a mean latency is computed and subtracted from all proceeding
benchmarks (excluding outliers). The benchmarks themselves are also run for many
iterations since measurements tend to fluctuate around a mean value after sufficient
warm-up time (examples shown in Figure 4.1), due to variance in CPU frequency
and individual instruction latencies. Therefore, data collected for benchmarks are
processed as distributions rather than fixed computed values, which is beneficial
for reasoning about latency standard deviations (important for HFT) and observing
hardware level effects that contribute to this (e.g., branch mispredictions).

Profiling CPU performance counters are incredibly useful in identifying sources for
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(a) Measurement fluctuations (b) Sample distribution

Figure 4.1: CPU cycle measurements of RDTSC and LFENCE overhead.

particular hot-spots during program execution, and in the context of this research,
identifying granular hardware effects that contribute to observed latencies. Perf was
primarily used for performance profiling. A downside to this is that perf traditionally
profiles the entire executable, rather than small subsets of it, meaning that any small
observable changes in hardware counters that are expected become enveloped in
the overall noise of the system. Luckily, Linux offers a API to access a subset of perf
performance counters inside the executable using the perf event open system call,
allowing for small pieces of code to be profiled in isolation (similar to RDTSC) [71].
Events are set up using the following code:

s t ruc t p e r f e v e n t a t t r a t t r ;
a t t r . type = PERF TYPE HARDWARE;
a t t r . con f i g = PERF COUNT HW INSTRUCTIONS ;
a t t r . d i sab led = 0;
a t t r . exc lude kerne l = 1;
a t t r . e x c l u d e i d l e = 1;
a t t r . exc lude hv = 1;
a t t r . exc lude gues t = 1;

The type and config attributes are used to select the performance counters which
are generally the only parameters that are changed between tests. The remaining
attributes offer finer control over sampling and are configured to exclude external
noise from measurement taking. The actual profiling code can be shown below
which has been adapted from the Linux documentation of perf event [71]:

fd = per f event open (& a t t r , ge tp id ( ) , −1, −1, 0) ;
i o c t l ( fd , PERF EVENT IOC RESET , 0) ;
i o c t l ( fd , PERF EVENT IOC ENABLE , 0) ;
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c o d e t o p r o f i l e ( ) ;

i o c t l ( fd , PERF EVENT IOC DISABLE , 0) ;
rc = read ( fd , &count , s izeof ( count ) ) ;

Whilst this approach offers the best solution to granular profiling, the drawback is
that the perf event API only offers a small subset of performance counters that
perf offers. In experiments that utilise profiling, this inline approach is used when
applicable, whilst the command line approach is used when performance counters
that cannot be obtained using perf event are needed. In this case, code is often
kept to a minimum to reduce measurement noise and often run alongside a baseline
to extrapolate differences in performance counters.

Microbenchmarking Frameworks Where applicable, Google benchmark was used
to gather latency data for larger events. Google benchmark automatically configures
the number of iterations the benchmark is run to get a stable estimate [72].

4.3 Benchmarks

This section is dedicated to benchmarking the branch-changing (set direction)
and branch-taking (branch) methods of semi-static conditions, exploring the effects
of self-modifying code and deducing optimal usage. Often, measurement distribu-
tions do not follow standard distributions due to skewness, so non-parametric tests
are conducted on small subsets of the samples where applicable.

Branch-changing Benchmarks This set of tests is concerned with exploring the in-
stances where altering assembly instructions in memory cause performance degra-
dation and how they can be avoided.

The first test benchmarks the performance of set direction versus an equivalent
4-byte memcpy to non-executable memory. For fairness, a class was created with
identical data members to semi-static conditions which where initialised with ran-
dom bytes to represent some runtime deduced data. The set direction method in
the baseline class is identical to the one in BranchChanger.

c lass Base l ine
{
private :

unsigned char* bytecode ;
unsigned char bytes [2][DWORD] ;

public :
Base l ine ()
{
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(a) Baseline (M=9, SD=1) (b) BranchChanger (M=9, SD=1)

(c) Comparison (P>0.5)

Figure 4.2: Benchmark results in CPU cycles for branch-changing overhead versus an
equivalent 4-byte memcpy to non-executable memory.

bytecode = new unsigned char [DWORD] ;
random bytes ( by tes [ 0 ] ) ;
random bytes ( by tes [ 1 ] ) ;

}

void s e t d i r e c t i o n ( bool cond i t ion )
{

s td : : memcpy( bytecode , by tes [ cond i t ion ] , DWORD) ;
}

} ;

Interestingly, writing to executable memory on its own does not incur any additional
penalties with respect to the baseline, which is reflected by the near identical dis-
tributions in execution latencies shown in Figures 4.2(a)-(c). It is understood that
modern processors tolerate self-modifying code (SMC) but are in no way friendly to-
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(a) Execution latency (b) SMC machine clears count

Figure 4.3: Latency and SMC machine clear count measurements for branch-changing
followed by immediate branch-taking (labelled branch) using semi-static conditions.

wards it, often initiating full pipeline and trace cache clears which can cause penal-
ties in the hundreds of cycles [73]. The actual semantics of how processors detect
SMC is unclear, however the general consensus in architectural forums and patents
point towards a ”snooping” mechanism which is initiated by store instructions to
executable memory addresses. These snoops compare physical addresses of in-flight
store instructions with entries in instruction cache-lines to see if the store location
corresponds to instructions in executable memory. If there is an address match, the
SMC clear is initiated and new instructions are fetched from memory to lower level
instruction caches [74]. Understanding this the results make sense; since there is no
branch-taking occurring (where SMC is executed) there are no traces of the altered
instructions in instruction cache lines, pre-fetch queues, or the i-TLB and hence the
physical address check fails to initiate SMC clears.

Following these observations, the next test involved benchmarking the semi-static
conditions set direction method followed by branch-taking, with the baseline hav-
ing branch replaced with a direct call to one of the functions passed to the construc-
tor. The goal is to try and trigger SMC machine clears following previous discussions,
and measure their associated penalties.

a t t r i b u t e (( opt imize ( ”O0” ) ) )
void i f b r a n c h () { return ; }

a t t r i b u t e (( opt imize ( ”O0” ) ) )
void e l se b ranch () { return ; }
( . . . )
for ( in t i = 0; i < i t e r a t i o n s ; i++)
{

branch . s e t d i r e c t i o n ( cond i t ion ) ;
branch . branch ()

}
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(a) SMC penalty (M=111, SD=2) (b) Comparison

Figure 4.4: CPU cycle measurements for branch-changing with SMC machine clear
penalty.

As expected, the presence of branch-taking close to the branch-changing method
triggers large numbers of SMC machine clears. The penalty of this is quite severe;
extrapolating the execution latencies from Figure 4.3(a) reveal that SMC machine
clears multiply running times by 30-40x in this benchmark, with approximately 2
clears occurring per iteration on average (from Figure 4.3(b)). The additional over-
head of SMC machine clears seems to be approximately 100 cycles (Figures 4.4(a)-
(b)) which is consistent with approximations made by Agner and Intel, and are in
agreement with various benchmarks made on architectural forums [68]. Neverthe-
less the machine clear trigger seems to have deterministic behaviour; Figure 4.3(b)
shows that the number of SMC clears scale linearly with iterations, which is reflected
in the overall execution latency. It can be said for certain that executing modified as-
sembly instructions relatively soon after editing initiate these clears, which outlaws
the use of branch-changing inside tight loops when conditions change frequently.

Whilst the cost of such machine clears and their trigger are easy to reason about
and are deterministic, the actual segments of assembly where these penalties man-
ifest are not. This is problematic; the total cost of the branch-changing method is
potentially propagated to areas of code outside of itself in the form of SMC penal-
ties, which introduces uncertainty in execution latencies for code that may be per-
formance critical (such as branch!). Ideally, there should be some large enough
buffer within the branch-changing method to contain this cost exclusively within
set direction for more deterministic execution latencies.

An interesting observation is that there seems to a ”lag” period from when the
set direction method is executed to where the SMC cost starts to manifest, assum-
ing that instructions are executed in the temporal order in which they appear in the
disassembly. This is consistent with behaviour observed by Ragab et al.; the pro-
cess of initiating the pipeline snoop to triggering the SMC clear takes several cycles
since it involves instruction stream walks and i-TLB checks, resulting in a transient
execution window of stale instructions caused by the de-synchronisation of the store
buffer and instruction queue [75]. From a prevention standpoint, strong serialis-
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ing instructions such as CPUID and SERIALISE where inserted into set direction to
see if they where capable of preventing the SMC trigger, however this was not the
case. In previous discussions we established that SMC triggers are caused by compar-
isons of in-flight or executed store instructions with physical addresses in instruction
caches, so the ineffectiveness of serialising instructions is clear. Whilst CPUID and
SERIALISE force the processor to complete all previous instructions and even drain
the store buffer to prevent reordering, they do not have influence on instruction
caches from which SMC checks are conducted, further supporting the presence of
such ”snooping” mechanism.

It is possible to manually flush instruction cache lines pertaining to branch using
the mm clflush intrinsic which shows some promise in minimising SMC clears when
assembly modification is temporally closer to branch-taking, reducing such clears to
approximately one per edit. Locality in this sense is very important; the closer as-
sembly editing is to branch-taking, the more prominent the effect of SMC clears since
the stale instructions have now polluted the pipeline, caches and instruction queues
and thus require more machine clears to rectify. In the event that branch-changing
occurs right before branch-taking, cache flushes do not seem to have a net positive
effect which supports the notion that locality (in terms of instructions queued from
the point to modification to the point where the modified code is executed) of SMC
is the determining factor for the severity of associated penalties. Interestingly, Intel’s
optimization manuals do in fact recommend that SMC should not share the same 1-2
kilobyte sub-page for speculative prefetching and execution reasons, further support-
ing this notion [73]. To test this hypothesis further, an artificial buffer was created
which comprised of a cache flush followed by some computational work, acting as a
temporal barrier between assembly modification and branch taking.

a t t r i b u t e (( opt imize ( ”O0” ) ) )
void smc buf f e r ()
{

mm clf lush ( addres s o f b ranch ) ;
u in t64 t bu f f e r [DWORD * 4] ;
for ( in t i = 0; i < DWORD * 4; i++)

b u f f e r [ i ]++;
}

Executing the following code directly after assembly modification is indeed sufficient
in halving SMC clears, the same behaviour observed when adding cache flushes rel-
atively close to branch-taking. The cache flush prevents additional machine clears
due to physical address matches between store instructions and instruction cache
data, whilst the computational work provides a sufficient buffer within the instruc-
tion pipeline to prevent similar matches with in-flight instructions. Usage of such
a buffer will be optional to the programmer, but would also require some sort of
active cache warming with branch to ensure that memory access penalties do not
propagate to the hot-path. A simple optimisation to minimise clears would be to
conditionally check if condition passed to set direction is the same to the current
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direction already set; in the current state, assembly modification is performed even
when it isn’t needed and always initiates machine clears. As it is not possible to
completely remove SMC penalties, any overhead ought to be isolated within the
branch-changing method. This was achieved by forcing the execution of the ret

instruction within the branch method through casting the associated byte-code to a
void pointer and calling it within set direction. By executing part of the branch

method, the modified instructions are brought sufficiently close to the CPU such that
the snooping mechanism can quickly identify the modified instructions and initiate
the pipeline clears exclusively within set direction, offering a more deterministic
performance model.

Branch-taking Benchmarks This set of tests is concerned with comparing the ef-
ficiency of the branch-taking method with conventional direct function calls, and
exploring its implications on the BTB.

The first test investigated the overhead of branch versus a direct function call. The
function call latency served as the baseline and was the same function that was exe-
cuted through the branch entry point, so the branch direction was never changed.

a t t r i b u t e (( opt imize ( ”O0” ) ) )
void i f b r a n c h () { return ; }

a t t r i b u t e (( opt imize ( ”O0” ) ) )
void e l se b ranch () { return ; }

Measurements where taken in the following manner, repeated for 107 iterations.

void measurement ()
{

start measurement ( ) ;
branch . branch ( ) ;
stop measurement ( ) ;

}

Under the same conditions branch-taking has virtually identical overhead to a reg-
ular function call, with equal standard deviations in execution latency as seen in
Figures 4.5(a) and 4.5(b). The small difference in overhead may be attributed to
the additional jmp instruction that resides within the prologue of branch, which is
the only difference between the execution pathways of the baseline and semi-static
conditions. An experiment to measure the latency of a single relative jmp on this
specific architecture would validate the hypothesis, however this is tedious and un-
necessary. Using Agner’s instruction benchmarks for Intel and AMD CPU’s (note that
the CPU that the benchmarks where run on is part of the 10th generation Comet
Lake family, this was unavailable in Agner’s instruction tables so reference latencies
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(a) Baseline (M=9, SD=1) (b) BranchChanger (M=10, SD=1)

(c) Comparison (P<0.000001)

Figure 4.5: Benchmark results in CPU cycles for branch-taking overhead versus a con-
ventional direct function call.

from Ice Lake where used), the typical latency of a relative jump is 1-2 cycles which
falls within the range of the observed differences [76]. Given the large number
of iterations that the benchmark was run and that the branch direction was never
changed, it is likely that the instructions that where measured where hot in lower-
level caches with optimal usage of other hardware semantics, skewing the latency of
the additional jmp towards the minimum value, and thus supporting the hypothesis.

The implications of these results are multifaceted. The current implementation
of branch-taking seems to be optimised to the theoretical limit; the additional over-
head incurred seems to be caused exclusively by the additional control flow instruc-
tion that is inserted, which fulfills the overarching goal for its implementation. In
low-latency environments such as HFT, low standard deviations are important for
deterministic execution times and hence are a focus in development. The branch-
taking method has shown that it has virtually identical standard deviations in exe-
cution latency as an isolated function call, offering programmers the assurance of
determinism with respect to the current state-of-the-art.
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(a) BAC clears count (b) Overhead of BAC clears

Figure 4.6: BAC clear counters for continuously changing branch targets (branch) ver-
sus static branch targets (baseline, set direction is always true), total overhead is
calculated by subtracting the baseline latency from the benchmark. Branch (buffered)
in (a) represents some computational work between set direction and branch.

In the development portion of the report, we discussed the difference in predic-
tion schemes for conditional and unconditional branches. In theory, when the branch
direction is changed, the BTB entry corresponding the jump instruction within the
branch prologue becomes invalidated due to an incorrect branch target. Whilst the
BTB will still accurately predict if the PC is indeed a jump, the stale branch target
will likely be detected by the BAC which will initiate a pipeline flush and re-steer
the prefetcher. To observe this behavior, we run the following testing suite with perf
stat -e baclears.any:u which counts the number of BPU front-end re-steers initiated
by user-space code:

for ( in t i = 0; i < i t e r a t i o n s ; i++)
{

branch . s e t d i r e c t i o n ( cond i t ion ) ;
branch . branch ( ) ;
cond i t ion = ! cond i t ion ;

}

Similar to SMC machine clears, BAC corrections appear to increase linearly with
iterations when the branch direction is continuously changed in deterministic fash-
ion. An interesting observation in Figure 4.6(a) is that introducing a buffer of com-
putation between branch-changing and branch-taking calls halves the number of
corrections, averaging one clear per iteration. This suggests that Intel BTB’s are
updated atomically upon the retirement of branch macro-instructions; without the
buffer the measurement loop is sufficiently small in terms of computation such that
the modified jmp from the next iteration enters the pipeline before the current jmp
gets retired. Since the BAC does not update BTB entries, but rather re-steers the
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prefetcher to the correct branch target, it initiates two re-steers per iteration due
to stale BTB entries. The penalty of the correction also scales linearly, averaging
an additional 2.2 ns per iteration which equates to approximately 6 cycles (likely
overestimated) on this particular architecture, less than half the cost of a conditional
branch misprediction (presumed around 13 cycles on Skylake CPU’s) [76].

Though less severe, branch-taking using semi-static conditions can in-fact im-
pose minor misprediction penalties, however it can be mitigated from the hot-path.
The misprediction is essentially a one time cost when switching branch-directions;
once the BTB has been corrected with the updated branch target, all successive calls
branch will incur zero penalties and be executed with minimal latencies. This al-
lows programmer to do effective ’warming’ in the cold-path which is not possible
with conditional statements; branch prediction is facilitated through capturing his-
tories of branches based on their program counter and correlating them with global
patterns. Adding conditional statements in the cold path in an attempt to ’warm’ the
BPU for the identical hot-path code will likely have little effect since the BPU treats
both branches separately based on PC. Whilst it may capture some correlation, in-
troducing more branches pollutes the global history can also introduce more noise.
Conversely, calling branch in the cold path to warm the BTB works since control flow
is redirected to the PC with the stale jmp, facilitating the correction preemptively and
also brings the associated branch target (the functions being branched to) into lower
level instruction caches. Using HFT as an example, this can be realised by sending
’dummy orders’ through the branch method after the branch-direction has been set
to ensure warming occurs.

void co ld path ()
{

( . . . )
do some work ( ) ;
branch . s e t d i r e c t i o n ( cond i t ion ) ;
branch . branch (dummy order ) ;
do some more work ( ) ;
( . . . )

}

Interim conclusions Results obtained from the preceding test suite provide valu-
able insight into the implications of using semi-static conditions on the hardware
level, which in turn help deduce optimal usage. The majority of the cost with using
this language construct is manifested within the branch changer method in terms
of machine clears caused by self modifying code, whilst branch-taking (the latency
critical part) has extremely low overhead with deterministic execution latencies. In
the preliminary sections of the report, it was hypothesised that optimal usage would
involve separating branch-changing and branch-taking into cold and hot paths re-
spectively, providing a means for pre-empative condition evaluation and branch-
less execution. The benchmarking results validate this use case, showing immense
promise for branch optimisation in code paths that are infrequently executed, but
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contain branches that are poorly predicted. In addition, the tests brought novel in-
vestigations into modern Intel processor semantics, exploring behaviour relating to
SMC and branch-prediction pertaining to unconditional branches, which in turn can
help low-latency developers optimise their code paths respectively.

4.4 Applications

This section builds off the findings of Section 4.3, exploring the effect of removing
runtime checks through branch-taking with semi-static conditions and how its per-
formance compares to current state of the art: conditional statements with branch
prediction.

Hot-path optimisation in HFT In contrary to traditional engineering terminology,
the ”hot-path” in the context of HFT refers to a section of code which is executed
relatively infrequently, but when it is executed it needs to be extremely fast. This
is typically the time taken from receiving market data to sending an order, with the
whole process taking just several microseconds to execute. Lying at the heart of the
trading system, and probably the most critical piece of code in terms profitability, this
area is the target for most optimisation. Since it executed relatively infrequently, the
remainder of the trading system is often designed with cache warming measures that
keep data used in the critical path hot in low level caches to avoid memory access
penalties. However this poses a challenge for branch prediction; branches in the hot
path may have limited histories with complex patterns, resulting in mispredictions.
Here, semi-static conditions are applied to optimise branch-taking for this use case.

The test suite comprised of a tight measurement loop using RDTSC counters
where runtime conditions where randomly generated using the Mersenne Twister
Engine. For an infinite series of randomly generated booleans, it is expected that
roughly half will be true and false, however since measurements are finite there
will likely be skews towards one boolean in benchmarks. The choice of branches to
benchmark initially where 64 byte memory copies and bit flips to a volatile struct,
the scenario representing message passing to custom firmware (such as network
cards and FPGA’s) in a HFT system.

a t t r i b u t e (( no in l i ne ))
void send order ( unsigned char* message )
{

s td : : copy ( message , message + 64 , FPGA . payload ) ;
FPGA . f l a g = !FPGA . f l a g ;

}

Emulating the hot-path in terms of infrequent execution is especially challenging
from a benchmarking point of view. Percentage cycles spent in the measurement
zone (the hot-path) where used as a proxy, and this was minimised by adding com-
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(a) Conditional statements without
cache warming (M=75, SD=10)

(b) Semi-static conditions without cache
warming (M=63, SD=3)

(c) Conditional statements with cache
warming (M=68, SD=8)

(d) Semi-static conditions with cache
warming (M=62, SD=2)

(e) Comparison without cache warming (f) Comparison with cache warming

Figure 4.7: CPU cycle measurements of conditional branching (branch) versus semi-
static conditions (branchless) with and without cache warming.

46



Chapter 4. Benchmarks and Applications 4.4. APPLICATIONS

putational work in the form of randomly generating messages and running pricing
calculations outside the hot-path. The randomly generated messages where passed
to the branches in attempt to emulate real-time message passing, and measurements
where taken with and without cache warming.

The results shown in Figure 4.7 are quite remarkable. Across the board semi-
static conditions produce a tight uni-modal distribution with median latencies and
standard deviations much lower than conditional branching, an artefact of remov-
ing runtime checks when needing to execute the branch. In terms of conditional
branches, the sample densities elegantly model the latencies of predicted and mis-
predicted branches as a bimodal distribution which contribute to the larger median
and standard deviation in cycles. In tests without cache warming, both conditional
branching and semi-static conditions have a small distribution of measurements in
the 70-90 cycle range presumably due to cache effects caused by message passing,
which seems to disappear completely when cache warming is employed. Looking
closer at the bimodal nature of conditional statement execution latencies (M=65
SD=2, M=78 SD=2 without cache warming and M=64 SD=2, M=80 SD=2 with
cache warming respectively), the difference in median values between both distribu-
tions is 13-16 cycles which is in good agreement with misprediction penalty estima-
tions made by Agner for i7 processors [68]. Through using semi-static conditions, it
is clear that runtime checks are entirely removed during branch execution. Pro-
grammers gain the benefit of branch-taking latencies comparable (in this case even
slightly better) to perfectly predicted branches, saving 2-4 ns on average and up to 6
ns if the branch is always mispredicted, with more deterministic execution latencies
manifesting as low standard deviations.

Subsequent tests with other branches reveal the same behaviour for both condi-
tional statements and semi-static conditions; whilst the distributions where centred
around different medians due to the varying execution time of different branches,
the relative offsets between the distributions remained the same. Interestingly us-
age of the [[likely]] and [[unlikely]] branch prediction hints had no effect in
mitigating the misprediction rate for conditional branching. The reason for this is
clear; compiler hints simply reorganise the assembly code to aid the processors static
predictor in taking the more likely execution path, but since conditions are random
and neither path is more likely being taken it has no net positive effect. That being
said, it does seem that semi-static conditions are better than branch prediction hints
for this use case. Further tests added more computational work to the hot path to
observe this behaviour when branching is surrounded by more complex logic, an
example of the measuring suite for conditional branches is seen below.

void measure hot path ()
{

begin measurement ( ) ;
( . . . )
do some ca l cu la t ions ( ) ;
i f ( cond i t ion )

send order ( message ) ;
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(a) Conditional statements (M=120,
SD=10)

(b) Semi-static conditions (M=104,
SD=3)

(c) Comparison

Figure 4.8: CPU cycle measurements for conditional branching versus semi-static con-
ditions with updated hot-path.

else
a d j u s t o r d e r ( message ) ;

Or branch . branch ( message )
do some work ( ) ;
( . . . )
end measurement ( ) ;

}

Cycle distributions in Figure 4.8 seem to follow an identical pattern to Figure 4.7
regardless of the additional computational work. It seems that misprediction cost
for this case increased slightly for conditional branches to 18 cycles (M=108 SD=2
for predicted and M=126 SD=4 for mispredicted) which suggested that branch mis-
predictions can impact surrounding code resulting in higher penalties.

In the case of n-ary conditional statements in the form of if-else chains or switch
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(a) Switch statements (M=30, SD=8) (b) Semi-static conditions (M=8, SD=1)

(c) Comparison

Figure 4.9: CPU cycle measurements for a 5 case switch statement versus semi-static
conditions with unpredictable conditions in the hot-path. Empty functions are used as
branches for ease of testing.

statements, unpredictable conditions yield similar cycle distributions to the preced-
ing examples which can be seen in Figure 4.9. Using the current methodology where
random conditions are generated in the range of 0 to n − 1 where n is the number
of branches, as n → ∞ the misprediction rate tends to 1 and hence distributions
become uni-modal and skewed to higher cycle numbers. This is entirely expected;
if conditions are random and constantly changing, then the probability of predicting
the correct branch is inversely proportional to the number of branches, which tends
to zero as the number of branches tends to infinity. Typically on GCC, large if-else
chains or switch statements are optimised into jump tables which organise branches
at distinct memory locations in a particular structure (binary tree for example), and
utilise indirect jumps to computed offsets to facilitate branch taking. This additional
indirection does incur more significant penalties when mispredicted owing to the ad-
ditional data dependencies in the pipeline; extrapolating the median latencies from
the predicted (M=13, SD=2) and mispredicted (M=31, SD=3) branches in Figure
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(a) Conditional statements (M=64,
SD=3)

(b) Semi-static conditions (M=62,
SD=2)

(c) Comparison (P<0.000001)

Figure 4.10: CPU cycle measurements for conditional branching versus semi-static con-
ditions with predictable branching, conditions change every 1000 iterations.

4.9(a), the misprediction cost is estimated to be 18 cycles in this example!
It is clear that for this particular use case, semi-static conditions offer supe-

rior performance to conditional branching when misprediction rates are high and
branch-changing can be isolated in cold code paths. In the context of HFT, speed
is paramount, and shaving off several nanoseconds per branch in the critical path
offers an edge in order execution latency against competitors and can result in more
profitable trading.

General use cases Whilst hot-path optimisation of mispredicted branches is not
necessarily tied to HFT, but can be expanded to general performance critical sec-
tions of code in various applications (e.g., gaming, aerospace, infrastructure), an
interesting investigation would be for general use cases where branches are not nec-
essarily unpredictable (in terms of conditions). Earlier investigations revealed that
branch-taking has comparable latency with isolated function calls, and in compar-
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(a) Conditional statements

(b) Semi-static conditions

Figure 4.11: CPU cycle measurements per iteration for conditional branching and semi-
static conditions.

ison to conditional statements, have marginally less assembly to execute to facili-
tate branch taking since there are no runtime checks. The following investigations
outline instances where these subtle differences manifest in increased performance,
using the same methodology of separating branch-changing from hot-path measure-
ments. To simulate predictable branches, the same test suite used for specialised
applications can be adapted to changing the boolean conditions based on a regular
interval, rather than randomly generating them.

Figure 4.10 reveals that even when branches are predictable, semi-static condi-
tions are slightly more performant in terms of branch-taking. In contrast with earlier
tests, the latency of conditional statements form a uni-modal distribution since the
misprediction rate is close to zero, nevertheless the extension of the trend-line to the
80-85 ns region shows there are mispredictions, but are rare. What is fascinating
is that the core distribution of measurements for conditional branching is shifted to

51



4.4. APPLICATIONS Chapter 4. Benchmarks and Applications

higher latencies in comparison to semi-static conditions, when execution latencies
for predicted branches should be the same. The key questions that arise are what
is the cause of this shift, and how significant is the contribution of mispredictions
to the overall median latency at different switching intervals. To answer the for-
mer, a subset of measurements for both semi-static and conditional branches can be
extracted and plotted to visualise the execution latencies per iteration.

Figure 4.11(a) reveals some remarkable behaviour. Firstly, the misprediction
penalty can be seen distinctly by sharp increases in latency at regular 1000 iteration
intervals, this is indeed directly caused by changing the branch direction and seems
to be corrected relatively quickly, which is indicative of an n-bit prediction scheme.
Every time the branch direction changes, the median shifts by 2 or 3 cycles form-
ing the observed saw-tooth pattern. Upon inspection of the underlying assembly,
this behaviour is an artefact of the compiler reordering the conditional statement’s
assembly such that the backward branch (if) experiences slightly lower execution
latencies than the forward branch (else) due to additional jumps around the code
segment.

000000000000305c : mov rdi ,QWORD PTR [ r i p+0x42e5 ]
0000000000003063: sh l rdx ,0 x20
0000000000003067: mov r s i , rax
000000000000306a : or r s i , rdx
000000000000306d : cmp BYTE PTR [ r i p+0x42dc ] ,0 x0
0000000000003074: je 3090 < measure+0x40>
0000000000003076: c a l l 2c00 <send order>
( . . . )
0000000000003090: c a l l 2c40 < adjus t pr ic ing>
0000000000003095: jmp 307b < measure+0x2b>

These kind of assembly ordering semantics have even more prevalent effects for
switch statements (5-6 cycles faster!) which can be seen figure 4.9(c) by comparing
the distributions of semi-static conditions and predicted branches for switch state-
ments. This is mainly due to the additional assembly required perform the necessary
computations when preparing to traverse jump tables:

00000000000041 fd : sh l rdx ,0 x20
0000000000004201: mov rbx , rax
0000000000004204: or rbx , rdx
0000000000004207: cmp QWORD PTR [ r i p+0x5161 ] ,0 x4
000000000000420 f : ja 4235 < measure+0x45>
0000000000004211: mov rax ,QWORD PTR [ r i p+0x5158]
0000000000004218: l ea rdx , [ r i p+0x1e05 ]
000000000000421 f : mov rdi ,QWORD PTR [ r i p+0x5142]
0000000000004226: movsxd rax ,DWORD PTR [ rdx+rax *4]
000000000000422a : add rax , rdx
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000000000000422d: jmp *rax
0000000000004230: c a l l 3ed0 < send order 1>
( . . . )
0000000000004249: nop DWORD PTR [ rax+0x0]
0000000000004250: c a l l 3eb0 < send order n>
0000000000004255: jmp 4235 < measurev+0x45>
0000000000004257: nop WORD PTR [ rax+rax*1+0x0]
( . . . )

When comparing this to the underlying assembly generated for semi-static condi-
tions, it becomes apparent that the absence of runtime checks is the sole contributor
to the lower execution latencies observed.

000000000000309d : mov rdi ,QWORD PTR [ r i p+0x42a4 ]
00000000000030a4 : mov rbx , rax
00000000000030a7 : sh l rdx ,0 x20
00000000000030ab : or rbx , rdx
00000000000030ae : c a l l 2b00 < branch >

In the context of general usage for ’static branches’ (conditions that change infre-
quently), the results have several implications. The power of semi-static conditions
has always been the ability to change the direction of a branch programatically. At
compile time, the programmer has little influence over such re-orderings, and al-
though an informed prediction can be made about the more likely direction of the
branch (forward or backward), if this where to change at runtime, the programmer
will be paying at least 2-3 cycles per iteration which will start to add up. This allows
for the set direction method to be used more freely; rather than isolating it in the
cold path, if the branch direction is changed relatively infrequently then the cost of
code modification will amortise itself over many iterations of cheap branch taking.

In regards to contributions from branch mispredictions, the median latency and
standard deviations for conditional branching where measured for varying branch
changing frequencies (in terms of number of iterations passed before the condition
is changed), along with the associated misprediction rates which can be shown in
Figure 4.12. These results are quite unexpected; even for the branch changing every
every iteration one would expect the BPU to spot this relatively simple pattern of
taken not-taken, however this is not the case. Even when the conditions change at
regular intervals in a predictable manner, the organisation of where these instruc-
tions lie within the executable effect the BP’s ability to make predictions based on
history correlations. In these benchmarks, the actual ’path’ that is being measured
resides in a function to help maintain assembly ordering for fair and precise mea-
surements, which is called within a tight loop and performs a significant amount
of computation per iteration. This can add noise, however the more likely reason
is that the BP is unable to correlate the iteration count with the condition being
evaluated (at regular intervals). The actual predictive mechanism can be deduced
through the results; when branches are changed every iteration, misprediction rates
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(a) Latency (b) Misprediction rates

Figure 4.12: CPU cycle measurements and respective misprediction rates for conditional
branching at varying branch changing frequencies (number of iterations per condition
change).

are close to 100% which results in significantly higher latencies but tighter standard
distributions since all branches are mispredicted. As branch changing frequency
decreases, the misprediction rate follows as well as the median latency, but stan-
dard deviations increase since measurement distributions contain a mix of predicted
and mispredicted branches. From the data, it appears that there are 1.5-2 mispre-
dictions per condition change, which is synonymous with a 2-bit saturated counter
prediction scheme (hinting towards TAGE-like predictors used in modern Intel pro-
cessors)! When misprediction rates are high, the associated penalties are the major
contributor to increased latencies and standard deviations. When branches are bet-
ter predicted and conditions change relatively infrequently, differences in latency are
attributed to the underlying assembly generated by the compiler, resulting in more
subtle performance differences.

So far general application benchmarks have been conducted on the cycle level, an
interesting investigation is to see how they manifest in larger systems. The next test
involves a multi-threaded benchmark where branch-directions are changed at regu-
lar time intervals, the branches perform a relatively simple computation and store
the result in an array to prevent optimisation. Whilst the example is simplistic, it
represents a system that polls events on a worker thread and changes flags that are
evaluated in continuous loops, an example of such application is feature-flag selec-
tion for larger code-bases.

s t a t i c void benchmark ( benchmark : : S ta te& s )
{

in t r e s u l t s [2 ] ;
s td : : thread worker ( p o l l e v e n t s ) ;
for ( auto : s )
{

for ( in t i = 0; i < i t e r a t i o n s ; i++)
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(a) Without std::mutex (b) With std::mutex

Figure 4.13: Benchmark results for semi-static conditions versus conditional branching
in multi-threaded application where branches change at regular time intervals. Mutex’s
have been applied to semi-static conditions exclusively. Each simulation was run for 108

iterations.

{
i f ( cond i t ion )

r e s u l t s [ f l a g ] += ac t i on 1 ( ) ;
else

r e s u l t s [ f l a g ] += ac t i on 2 ( ) ;
}

}
worker . j o i n ( ) ;

}

Even though the observed changes are relatively small, occasionally they can mani-
fest as large performance gains which can be seen in Figure 4.13(a). When using the
language construct in a multi-threaded environment, there may be a chance that the
wrong branch is executed since the set direction method is not atomic (discussed
in more detail in Section 5.3). Using synchronisation will prevent this, however it
results in large performance degradation which can be seen in Figure 4.13(b). Re-
gardless, the proposed language construct shows immense promise in performance
optimisation in general settings; any places where misprediction rates cause per-
formance bottlenecks or branch-taking is slow due to surrounding code, semi-static
conditions offer a convenient alternative to more efficient branch-taking.

4.5 Summary of Conclusions

The foregoing investigations have not only provided a transparent performance anal-
ysis of the various methods that comprise semi-static conditions, but have been suc-
cessful identifying numerous use cases where mispredicted branches can be opti-
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mised heavily with the use of the language construct.
By employing a number of sophisticated testing suites adapted from architec-

tural forums and prior literature, section 4.3 effectively delved into the underlying
schematics that drive the performance of branch-changing and branch-taking meth-
ods. Concerning branch-changing, the minimal isolated cost of assembly editing
was evident; however, it was discovered that temporal locality of assembly edit-
ing, to when the edited instructions are executed, directly influenced the hardware
penalties associated with SMC clears. The mechanics behind this phenomenon are
well understood, and whilst SMC penalties where unavoidable due to architectural
constraints, they where able to be isolated within set direction exclusively. Lever-
aging preemptive conditional evaluation, the control over branch directions can be
guided away from performance-sensitive code sections. As for branch-taking, which
invariably exists within the critical path, performance was optimized to the theo-
retical limit. The only disparities observed where in additional instruction latencies
when compared to conventional calls. While there is a slight initial penalty for
branch-taking after assembly modification, it was discerned that this setback could
be mitigated through BTB warming, a possibility not readily achievable in the same
manner with conditional branch prediction.

Using these newfound insights, branch execution performance of semi-static con-
ditions where compared against conditional statements in two distinct scenarios;
when branches are poorly and well predicted. In the case of poorly predicted
branches, semi-static conditions optimise branch taking through avoiding the run-
time check, and hence avoid the associated misprediction penalties. The absence of
runtime checks also improves performance for well predicted branches owing to the
fewer assembly instructions that need to be executed, such effects where found to be
more prevalent in large switch statements that are converted into jump tables. The
former findings suggest that semi-static conditions have the potential to be used for
branch-optimisation in larger low-latency systems.
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Evaluation

This section will evaluate the software contribution based on the prototype devel-
oped in Chapter 3, along with the experimental methods employed to accurately
benchmark the efficiency of semi-static checks. Section 5.1 starts by evaluating the
overall approach taken to developing semi-static checks in comparison to alternative
viable solutions. Section 5.2 analyses the safety of the language construct through
a combination of static and runtime analysis approaches, these methods are also
employed in section 5.3 which focuses more on reliability in terms of behaviour and
synchronisation. Section 5.4 touches on portability to different architectures and
operating systems, and section 5.5 focuses on the experimental methods employed
for efficiency benchmarks and outlines more appropriate tests for industry settings.

5.1 Overall Approach

The goal of semi-static checks is to provide programmers control over conditional
branching; reaping the performance benefit of zero-runtime checks during branch-
taking, whilst being able to change the direction of a branch at runtime. This kind
of behaviour cannot be attained through conventional means available in the C++
standard; particular ”branches” can be generated at compile-time based on condi-
tions through template instantiation, but the ability to do this with runtime gen-
erated conditions is fundamentally impossible since templates are a compile-time
phenomenon. Mechanisms for switching between function calls exist without ex-
plicit conditional branching in the form virtual inheritance facilitated by virtual-table
look-ups and function pointer de-referencing. However in reality this is slower than
conditional branching in most scenarios even when branches are often mispredicted,
and in the case for virtual functions, a good optimiser will often speculatively de-
virtualise calls into conditionals. At the hardware level, these types of indirect calls
require not only predictions for conditions but also data in the form of memory
addresses (for example, a virtual-table lookup takes roughly 3 memory accesses be-
fore the call address is resolved), and as a result suffer from higher misprediction
penalties and are more vulnerable to adverse cache-related effects in oppose to reg-
ular conditional statements which have a smaller instruction cache footprint.
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Copy bytecode Process and
adjust offsets

Branches

Allocate
executable
memory

set direction

Write bytecode
to memory

branch

Execute
bytecode

Free memory

Figure 5.1: State diagram of semi-static conditions internals for both setup and execu-
tion using JIT-style runtime assembly generation.

This lack of flexibility meant that only assembly editing can facilitate the desired
behaviour: fast deterministic branch-taking controlled by the programmer through
a slower auxiliary interface. The reality of this is multifaceted. SMC is non-standard
compliant and is widely considered a poor programming practice owing to complex
maintenance, debugging and portability, despite it being used abundantly in debug-
gers and the Linux kernel. Given these concerns, the goal of development was to
minimise the assembly editing component whilst maximising the simplicity of de-
sign for maintenance and portability reasons. However this is not the only viable
approach.
Run-time code generation (JIT) An alternative approach to SMC facilitated branch-
changing is a just-in-time (JIT) approach, which has become popular in modern com-
pilers and interpreters. Whilst JIT is generally more widely accepted form of runtime
assembly manipulation, there are some inherent issues that make it inferior to our
approach. The first is complexity. Figure 5.1 shows the process of preparing the
byte-code associated with the branches to actually executing them, with the major-
ity of the complexity residing in the first two stages. Copying the byte-code is error
prone: whilst it is simple to find the preliminary instructions for the function, being
able to accurately determine when the function is ”finished” in memory requires ar-
chitecture specific complex logic. For example, using a ret opcode as a proxy would
not work as there can be multiple exit points, and differentiating an opcode from a
byte offset would require accounting for instruction length which introduces a sub-
stantial amount of administrative overhead. Then comes the challenge of adjusting
position dependant instructions within this byte-code to work, such as PC relative
instructions, which further increases development complexity. The best way to do
this would be to have an in house JIT compiler as part of the language construct,
which is impractical.

Even if hypothetically the former challenges where addressed, the eminent prob-
lem that would prevent JIT from being used in low-latency settings is the means of
which it can be executed in modern C++.
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void* new page = mmap( nu l l p t r , 4096 ,
PROT READ | PROT WRITE | PROT EXEC ,
MAP PRIVATE | MAP ANONYMOUS,

) ;
s td : : memcpy( new page , bytecode , s izeof ( bytecode ) ) ;
( . . . )
in t (*add )( int , in t ) = ( in t (*) ( int , in t )) new page ;
in t r e s u l t = add (5 , 3) ;

Above is a sample of two necessary components required required to facilitate JIT-
style assembly execution in C++: memory allocation and execution. From user
space, the only way to execute this newly generated byte-code is through casting
the address of the newly created executable page to a function pointer and de-
fencing it, which is much more expensive at runtime than conditional branching.
Whilst runtime code generation could offset SMC machine clears since instructions
are not being modified and executed, rather just generated, the overhead of pointer
de-referencing in latency critical paths defeats the whole purpose of the language
construct.

Assembly editing In comparison to JIT, the method used to develop semi-static con-
ditions has many advantages. The first is clearly simplicity as runtime assembly
editing using an intermediary trampoline function (branch method) is facilitated
through a 4-byte memcpy at runtime. The simplicity of the concept directly trans-
lates to simplicity in development which is reflected by the overall size of software
artefact. In terms of maintainability, which is important for a library which employs
architecture specific optimisations, a simple implementation will easier adapt to fu-
ture changes. From a low-latency application perspective, less code translates to less
assembly instructions which have smaller instruction cache footprints, a favourable
property for systems that prioritise keeping as much latency-critical code in lower
level caches. The second advantage is branch-taking speed; using the assembly edit-
ing approach the branch-taking overhead is simply the overhead of a relative jump,
which has superior prediction schemes from pointer de-referencing in JIT. A down-
side of the current approach is the SMC penalties incurred during branch direction
changing. Even in a hybrid approach where the trampoline can be hard-coded on
separate executable pages, editing existing assembly is unavoidable. Whilst avoid-
ing SMC penalties seems impossible using this scheme on modern architectures, it
does open some interesting investigations in mitigation schemes, but nevertheless
the trade-off for superior branch-taking ought to be favourable for these sorts of
applications.

5.2 Safety

Assembly editing gives rise to undefined behaviour with respect to the C++ stan-
dard, and can bring forth security vulnerabilities. The first issue that can arise is
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that one or more of the branches lie at a signed displacement greater than 232 bytes
from the jmp instruction within the branch method. In this instance the program
will redirect control flow to an area in the code segment which does not belong to
any of the branches, resulting in adverse behaviour. Instances like this ought to be
caught out as early as possible. To simulate this, two arbitrary function pointers
with a displacement greater than 232 are created and passed into the BranchChanger

constructor as such:

using p t r = in t (*) ( int , in t ) ;
p t r func 1 ;
p t r func 2 = re in terpre t cas t<ptr >(

re in terpre t cas t< i n t p t r t >( func 1 ) +
( s t a t i c c a s t < i n t p t r t >(1) << 34)

) ;
BranchChanger branch ( func 1 , func 2 ) ;

As a result the following runtime exception is raised upon instantiation:

terminate called after throwing an instance of ’branch changer error’

what(): Supplied branch targets (as function pointers) exceed a 4GiB displace-
ment from the entry point in the text segment, and cannot be reached with a
32-bit relative jump. Consider moving the entry point to different areas in the
text segment by altering hot/cold attributes.

Aborted (core dumped)

Another form of undefined behaviour stems from more than one instance of semi-
static conditions being present at any given time during program execution. In this
scenario, the conflicting instances of BranchChanger will share the same branch en-
try point due to template specialisation and compete for assembly editing of a single
jmp. As a result, branches that do not belong to the immediate BranchChanger in-
stance may be executed. When multiple instances do exist, the following error is
raised:

terminate called after throwing an instance of ’branch changer error’

what(): More than once instance for template specialised semi-static condi-
tions detected. Program terminated as multiple instances sharing the same en-
try point is dangerous and results in undefined behaviour (multiple instances
write to same function).
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Aborted (core dumped)

The former exception handling measures are effective at detecting the main be-
haviours associated with assembly editing that can result in detrimental effects later
on in program execution. This, along with other higher level behaviour exceptions,
have been integrated into a rigorous automated testing suite part of the library, al-
lowing programmers to test the build prior to usage for peace of mind.

In the context of security, the primary vulnerability that arises using semi-static
conditions is through changing executable page permissions to read/write/execute.
Often times during program execution, multiple pages and hence multiple address
ranges are vulnerable to memory modification from other processes, allowing at-
tackers to inject their own code, access sensitive data or tamper with sensitive in-
formation. From a mitigation standpoint, eliminating this vulnerability completely
is not possible, since page permissions need to be altered at least temporarily to fa-
cilitate assembly editing. What can be done is to minimise the transient window of
vulnerable address ranges by performing page permission modification and rever-
sion exclusively within the set direction method, which can be activated by the
programmer through compiler flags for example.

void s e t d i r e c t i o n ( bool cond i t ion )
{

i f ( cond i t ion != d i r e c t i o n )
{

change page per imis s ions ( bytecode ,
PROT READ | PROT WRITE | PROT EXEC

) ;
s td : : memcpy( src , des t [ cond i t ion ] , DWORD) ;
change page per imis s ions ( bytecode ,

PROT READ | PROT EXEC
) ;
d i r e c t i o n = cond i t ion ;

}
}

Using this method, programmers can be ensured that the risk of such exploits are
minimised. To ensure that safe-mode is respected throughout the program lifetime,
programmers can add the following flag upon compilation:

−DSAFE MODE

However this comes with a cost. In a low-latency setting, using the secure branch-
changing method introduces higher execution times and larger standard deviations
owing to the two system calls used to alter page permissions, in addition to increased

61



5.3. RELIABILITY Chapter 5. Evaluation

pressure on instruction-caches. When thinking of general cases as outlined in Sec-
tion 4.4, the more expensive cost of branch-changing has negative implications on
amortisation, and will likely limit the use in scenarios where branches are well pre-
dicted. This is the inherent trade off in low-latency settings; security versus speed.
In commercial software that is exposed directly to the user, such security ought to
be included, however in the case of secretive proprietary software (such as trading
systems) such security measures may not be necessary. In light of this, both API’s are
exposed to the programmer, whom can make an informed decision what to include.

5.3 Reliability

In terms of reliability, the main areas of focus in the context of semi-static conditions
are correctness and consistency of behaviour. From a high-level perspective, an ex-
haustive formal proof showing that semi-static conditions have equivalent behaviour
to conditional statements is unnecessary. In the context of semi-static conditions,
static analysis of program behaviour does not bear much meaning since the program
state itself is not static due to self-modifying assembly instructions! To evaluate cor-
rectness a test suite can be set up by running a tight loop that (1) changes the branch
direction and (2) takes the branch successively and see if the wrong branch is taken
based on the runtime condition.

while ( run )
{

branch . s e t d i r e c t i o n ( cond i t ion ) ;
branch . branch ( counter ) ;
cond i t ion = ! cond i t ion ;

}

Under these conditions, in a single threaded environment semi-static conditions will
always exhibit correct behaviour, however this may not always the case in multi-
threaded setting. In the development process it was mentioned that the branch

method is typically aligned on 16-byte boundaries and is sufficiently small to fit en-
tirely on a single cache line. Under the C++ standard, there are no guarantees that
stores to executable memory are thread safe (though this is not explicitly stated).
However at the architectural level, x86 guarantees writes to a single cache line to
be atomic [68]. Given the jump instruction being patched never crosses multiple
cache lines due to its size and the alignment of the parent sub-procedure, a single
4 byte mov operation followed by SMC clears is sufficient for ensuring synchroni-
sation across threads on a single core. Even if modification occurs from a different
core, cache coherency protocols will ensure consistency, meaning subsequent fetches
(which are atomic for instructions on 16 byte boundaries) will reflect the modified
code [68]. Nevertheless assembly modification using semi-static conditions mani-
fests as the set direction method which is not an atomic operation, but rather an
entire sub-procedure, so in theory the wrong branch could be executed solely due
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to instruction interleaving. However such effects where unable to be observed ex-
perimentally, and likely to be extremely rare and dependant upon the underlying
scheduling algorithms employed by the OS.

Although the overall focus in multi-threaded environments where limited, it would
be interesting to observe if serialising instructions such as lfence and mfence can be
used as a synchronisation mechanism unilaterally without compromising the perfor-
mance of branch-taking in future investigations.

5.4 Usage and Portability

The software artefact is packaged as a static library which can be incorporated into
project using the CMake build system. The decision to package semi-static checks as
a static library over a dynamic library is due to performance reasons; static libraries
present all code in the executable at compile time whereas dynamic libraries need
to be loaded by the OS at runtime. Using the dynamic library methods require an
extra layer of indirection through symbol table look-ups, and parts of the library
themselves are brought into memory on-demand which is prone to cache misses and
page faults, all of which contribute to jitter which is undesirable in low-latency set-
ting. The drawbacks of using static libraries are increased compilation times and
the size of the executable, which is made more prominent given the template-heavy
implementation of semi-static conditions.

Cross platform builds on C++ are notoriously messy. CMake abstracts the dif-
ferences between various build systems and compilers on different platforms which
simplifies development and usage greatly. From a portability standpoint, the CMake
pre-processor can be configured to selectively include architectural specific headers
into the final build which is extremely beneficial given the low-level nature of the
library. To begin the build (assuming the library is cloned into the same directory),
users simply first specify a build directory as such:

$ cmake -E make directory ”build”

Next, the build system files can be generated in the newly created directory with

$ cmake -E chdir ”build” cmake ../

Then finally built with

$ cmake –build ”build”

Subsequent tests can be run to validate the build system using
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Compiler
Windows MAC Linux

x86-64 ARM64 x86-64 ARM64 x86-64 ARM64

GCC ✗ ✗ ✓ ✓
MSVC ✓ ✓ ✗ ✗

Clang ✗ ✗ ✓ ✓

Table 5.1: Compatibility matrix for the semi-static conditions library. Ticks are given
to platforms where the library has been tested and is functional, and crosses are given
to untested platforms and/or no functionality. Empty cells represent when the platform
combination does not represent a native build.

$ cmake -E chdir ”build” ctest

To use the library, the generated archive must be compiled and linked against the
branch library (libbranch.a) as such

$ g++ mycode.cpp -std=c++17 -isystem semi-static-conditions/include -Lsemi-
static-conditions/build -lbranch -o mycode

This necessitates the entire setup required to use the library, the only requirements
being a relatively new version of CMake (version 3.2 and above) to facilitate the
building! The core BranchChanger construct can be used by including the following
header:

#inc lude <branch . hpp>

Portability was a challenge from a development perspective. The implementation of
semi-static checks utilises OS specific system calls, compiler specific attributes, in-
line assembly, and architecture specific offset computations which can all manifest
in different combinations depending on the users system configuration. In terms
of achieving the correct build, a dedicated single header file was utilized to define
the platform using a series of pre-processor directives. These directives are em-
ployed throughout the library to enable the incorporation of architecture-specific,
compiler-specific, and OS-specific code. It is possible to delegate this process entirely
to CMake, however such an approach would necessitate users to specify the platform
using a series of compiler flags which is rather tedious, and therefore avoided.

For this initial version, popular compilers and operating systems where targeted
for compatibility, on both x86-64 and ARM64 architectures. Builds where tested by
invoking the library using the CMake steps shown above on different systems, results
of the tests (including if the library was unable to tested) are shown in Table 5.1.
Unfortunately, semi-static conditions is not portable on Apple silicon owing to the
Hardened Runtime OS security feature which prevents page permissions from being
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changed to write/execute. Some of these security features can be disabled allowing
for binary editing of runtime-allocated pages using the JIT approach in Section 5.1,
however as discussed, does not meet the latency requirements for this construct.

5.5 Experimental Method

A great focus of this report was to evaluate the performance of semi-static condi-
tions against the current state of the art and rationalise any observed behaviours
and inefficiencies from a micro-architectural perspective. Due to the sensitivity of
the measurements, careful consideration was taken in developing a measuring suite
that prioritises the accuracy and reproducibility of results. The choice of measuring
instruments where sensible; reference cycle counters where sufficient in producing
accurate results allowing for the observation of subtle behaviours on the hardware
level. However a number of improvements can be made to the overall production
setup in the context of OS tuning and networking.

Given the primary objective of this report which centers around exploring inno-
vative branch optimization techniques for HFT, it becomes imperative that the OS
chosen for conducting performance benchmarks mirrors an industrial setup to the
greatest extent possible. The selection process for the system was driven by a prefer-
ence for a Linux-based High-Performance Computing (HPC) environment featuring
a Intel i7 processor. Additionally, a cloud-based Virtual Machine (VM) with an Intel
Xeon chip was utilized. It is, however, important to note that in both cases, complete
root privileges were not attainable. This limitation had significant implications, par-
ticularly in the domain of kernel tuning. Specific adjustments related to CPU scaling
and scheduling could not be replicated to the same extent as they would be in a
genuine HFT system. This discrepancy is noticeable in the variations and distribu-
tions observed in the recorded measurements. To address this challenge, a nuanced
approach was adopted. The measurement suite was meticulously tailored to ex-
ecute numerous iterations, allowing the CPU to stabilize at an optimal operating
frequency. This strategic approach effectively minimized measurement variance, en-
abling subsequent interpretation through statistical tests. While it remains true that
with meticulous kernel tuning, the necessity for extensive statistical treatment could
be substantially diminished, leading to clearer and more refined data, the outcomes
presented in the report successfully fulfilled the intended communication goals. De-
spite the existing constraints, the data provided within the report aptly conveyed the
essential insights and findings.

The second improvement is of a more comprehensive nature, and its attribution
extends to the entire system. An inherent limitation associated with microbench-
marking in isolation, particularly when examining minute differences at the low-
nanosecond scale, is that the tests themselves possess an artificial nature, deviating
from the essence of a genuine production environment. Despite the endeavors made
in Section 4.4 to craft test suites that emulate a pseudo-realistic production environ-
ment in terms of computational workload, the actual representation of behavioral
changes remains somewhat imprecise when contrasted with a fully functional HFT
system. Yet, it’s important to acknowledge the inherent limitations in addressing
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Figure 5.2: Ideal productionised setup of benchmarking suite for HFT applications. Left
server replays market data across a high speed ethernet cable, the switch in the middle
is equipped with high precision time-stamps, server on the right is the production system
to be measured, and server in the middle computes response times. Adapted from [5].

this issue. The proprietary nature of trading firms code renders it a closely guarded
trade secret, largely due to its direct influence on profitability. The epitome of an
ideal experimental arrangement is presented in Figure 5.2, a concept initially pro-
posed by Carl Cook as the most robust methodology for micro-benchmarking latency
enhancements within a trading system [5]. It’s worth noting, however, that such a
setup warrants its own comprehensive report and entails substantial complexity and
associated costs.
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Ethics

The development of software that is intended to be used in low-latency environments
to facilitate faster decision making has the propensity for adverse dual-usage. This
project has the potential for usage in military applications, particularly technologies
that require fast-decision making or response times, for example target tracking and
navigation systems. Usage in military applications should be in accordance with
domestic and international law, and should be evaluated and regulated accordingly.

The focus of developing novel low-latency optimisations for HFT raises its own
concerns. Whilst HFT provides liquidity and makes markets more efficient, the same
trading systems can be used for manipulation through order book spoofing and lay-
ering without following through on trades, creating an illusion of supply and de-
mand. In addition, HFT firms operate on superior technology and information ad-
vantages to retail investors making competition on the high-frequency scale virtually
impossible. Addressing these ethical concerns requires a combination of regulatory
oversight, industry self-regulation, transparency initiatives, and public awareness.
Striking a balance between technological innovation and ethical responsibility is es-
sential for ensuring the integrity and stability of financial markets in the era of HFT.
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Conclusions

This report has shown that software-level branch optimisation can be achieved us-
ing a novel language construct, semi-static conditions, offering superior execution
latencies to the current state of the art in both specialised and generalised scenar-
ios. There is no doubt that the methodologies applied to facilitate this optimisation
are unconventional. The use of assembly editing has long been shunned from a
software development and micro-architectural perspective, however it seems that
revisiting this old yet interesting nuance of low-level development has opened new
doors for low-latency optimisation.

The notion of semi-static checks is simple, remove runtime checks by separating
branch-taking from condition evaluation, however as we have seen throughout the
report this is quite a surface level interpretation. What really is happening is a trade
of branch-prediction schemes on the hardware level which is facilitated through
assembly editing. In semi-static checks, the conditional statement is re-engineered
as polymorphic relative jump instruction which can be controlled directly by the
programmer through an auxiliary interface. As an artefact of this modification, the
idea of execute-stage branch mispredictions are completely eliminated. The result?
A powerful decoupling that optimises branch-taking to the theoretical limit. Results
in Sections 4.3 and 4.4 showcased the superior performance of semi-static conditions
against conditional branching at high misprediction rates, saving anywhere from
6-18 cycles on average, a direct artefact of removing runtime conditional checks
from branch-taking. Even when branches are well predicted, semi-static conditions
exhibit faster branch-taking as a consequence of a cleaner control path and fewer
instructions on the machine code level, saving 2-6 cycles per execution, allowing the
expensive branch-changing method to be amortised in single and multi-threaded
scenarios.

The phenomenon of semi-static checks brings forth many avenues for further in-
vestigation, particularly around the application of self-modifying binaries for pro-
gram optimisation, and minimising any adverse hardware effects. Section 4.3 took
a detailed look at the behaviour of writing instructions into executable memory and
revealed that locality between assembly editing and the assembly being executed
results in severe processor penalties in the form of SMC machine clears. Though it
is understood that locality in terms of caching, prefetching and paging has a pro-
portional effect on the severity of SMC penalties, this investigation was unable to
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properly quantify the effect. Further investigations into this would allow the branch-
changing portion of the construct to be further optimised, in addition to providing
the foundational research necessary to fully understand the effects of SMC on the
micro-architectural level. In addition, the general idea of making targeted and gran-
ular changes in running executables to optimise various language level intrinsics
should be investigated more broadly. Perhaps the general idea of substituting more
BPU-friendly control flow instructions and modifying them can be applied to many
different types of branches, more specifically dynamic dispatch and any form of reg-
ister jumps.

In sum, the absence of language level-optimisations for hardware based branch
prediction has birthed a new toolkit in tackling optimisation problems in low-latency
setting. With this report pioneering the use of assembly editing for branch optimi-
sation, we hope it serves as a benchmark for future investigations that apply this
long-neglected and interesting programming practice to more complex problems
surrounding optimisation.
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