
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Explainable Optimal Scheduling for
Workforce Management using Argumentation

Author:
Jennifer Leigh

Supervisors:
Prof. Francesca Toni
Dr. Dimitrios Letsios

Mr. Lucio Machetti

Submitted in partial fulfilment of the requirements for the MSc Degree in Computing of
Imperial College London

September 2023

Abstract

This project explores the application of argumentation theory to schedul-
ing optimisation problems relating to workforce management. Motivated
by the need to enhance user workflow at Terranova, we extend existing
frameworks to address complex scheduling challenges, providing natural
language reasoning for scheduling decisions to improve transparency and
trust in AI systems.

We implement this extended theory in a proof-of-concept tool to
analyse and enhance scheduling processes. The tool significantly im-
proves user accuracy and efficiency, offering a valuable resource for users
seeking to enhance their schedules. This contributes to more efficient
and user-friendly scheduling solutions, with implications across various
industries.

Acknowledgements

I would like to thank Prof. Francesca Toni and Dr. Dimitrios Letsis for their support,
guidance and constructive feedback throughout my project. I’d also like to thank Mr. Lucio
Machetti and Dr. Alessandro Mella from Terranova for their support during the development
and deployment of the user study, as well as for providing valuable suggestions and feedback
during the building of my scheduling tool.

Lastly, I’d like to thank my friends and family who have aided me during my project,
particularly by allowing me to test my tool on their laptops (and occasionally reconfigure
their Windows environment to make my code run).

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Objectives . 5

2 Background 6
2.1 The Makespan Scheduling Problem . 6
2.2 Abstract Argumentation (AA) Framework . 7
2.3 Mapping A Schedule Using Argumentation . 8

2.3.1 Feasibility . 8
2.3.2 Efficiency . 9
2.3.3 Fixed Decisions . 10
2.3.4 Explanations . 11

2.4 Priority Scheduling Algorithms . 13
2.5 Travelling Salesman Problem . 13
2.6 Dataset . 15

3 Theory 17
3.1 Efficiency with Extended Cost . 17

3.1.1 Variable Processing Times . 18
3.1.2 Priority . 18
3.1.3 Optimising Individual Cost Scheduling 19

3.2 Schedule Order and Distance . 19
3.2.1 Distance . 20
3.2.2 Optimising Extended Cost Scheduling 21

3.3 Mapping Skill Constraints to Fixed Decisions 25
3.4 Individual Efficiency . 27
3.5 Instruments . 29

3.5.1 Job Instrument Constraints . 30
3.6 Summary . 32

4 Design and Implementation 33
4.1 Incorporating Schedule Order . 33
4.2 Weighted Variables . 33

4.2.1 Graphical Representations . 35
4.3 Instruments . 36
4.4 Limitations of Source Code . 36

2

CONTENTS CONTENTS

5 Evaluation 38
5.1 Comparison with Company-Provided Examples 38

5.1.1 City . 38
5.1.2 hpa . 40

5.2 User Study . 42
5.2.1 Outline of Questions . 42
5.2.2 Completion Times . 43
5.2.3 Accuracy . 45
5.2.4 Accuracy Breakdown & Format Comparisons 48

5.3 Qualitative Evaluation . 50

6 Further Theory 51
6.1 Time Constraints & Extended AFs . 51

6.1.1 Interval Scheduling . 52
6.1.2 Interval Scheduling with Distance . 54
6.1.3 Prerequisite Job Requirements . 55

6.2 Schedule-Dependant Individual Priority . 55
6.2.1 Variance of Priority . 56
6.2.2 Priority in Schedule Order . 56

7 Conclusions 57
7.1 Limitations of Argumentation in Scheduling 58
7.2 Future Work . 59
7.3 Summary . 60

Bibliography 62

A Terranova JSON Input Format 64

B Tool Outputs for Company-Provided Data 70
B.1 City . 70

B.1.1 Text Output . 70
B.1.2 Text Output for Priority Optimisation 71

B.2 hpa . 73
B.2.1 Text Output . 73

C User Study Data 83
C.1 User Study Layout . 83
C.2 Average Question Completion Time . 93

3

Chapter 1

Introduction

In the field of operational logistics and resource management, a central question arises:
when faced with a set of tasks and a group of machines, how can we optimise task assign-
ments to minimise the overall completion time? This inquiry has practical applications in
various domains, from creating school timetables to organising nurse schedules[1]. These
scheduling challenges can be formulated as optimisation problems, where the objective is to
minimise a cost function while adhering to constraints related to task-machine assignments.

Argumentation theory, initially introduced to formalise common-sense reasoning and
clarify the underlying logic in human conversations[2], has found relevance in address-
ing some aspects of such optimisation problems. It aids in understanding the relationship
between abduction (deducing the most likely conclusion from known facts) and logical
programming[3]. In the era of growing artificial intelligence and its opaque decision-making
processes, argumentation offers a means to provide natural language explanations for the
decisions that lead to specific outcomes.

1.1 Motivation

This project delves into the domain of scheduling optimisation, with a specific focus on ap-
plying argumentation theory using data from Terranova[4]. Frameworks and mapping pre-
viously defined by Čyras et al.[5] involve the allocation of jobs to machines while optimising
the makespan, considering fixed job-machine requirements. However, scheduling challenges
often extend beyond these boundaries, encompassing complexities such as varying task du-
rations, multiple optimisation criteria, spatial considerations, nuanced decision distinctions,
and temporal constraints.

In particular, consider the following motivation questions:

1. What if machines take different lengths of time to complete the same job?

2. What if there are multiple optimisation criteria that should be considered, rather than
just processing time/makespan?

3. Can we consider distance as an optimisation criterion?

4. What are these “fixed decisions”? What if we want to differentiate between them?

5. What if there are timing limitations on when jobs can be completed or during which
machines can work?

4

https://www.terranovasoftware.eu/en

Chapter 1. Introduction 1.2. OBJECTIVES

These are all questions that arise in the case of Terranova. Terranova develop software provid-
ing “end-to-end support for Smart Metering, Smart Grid and Smart Workforce management
processes and user workflow”[4].

In particular, there exists a pronounced demand for enhancing the transparency of solu-
tions in scheduling problems. The opaqueness inherent in optimality tools often leaves users
in the dark about the rationale behind the generated schedules, causing a lack of confidence
and understanding between users and their automated scheduling systems. Our objective
is to formulate comprehensive frameworks that offer users straightforward, easily compre-
hensible explanations and practical suggestions for enhancing scheduling outcomes. Impor-
tantly, this should be accomplished without necessitating a deep understanding of intricate
algorithms or unfamiliar notations.

Another compelling motivation for this project stems from the evolving needs of organi-
sations to adapt and make real-time adjustments to their schedules. Frequently, operational
conditions within work environments undergo modifications during scheduled activities, ne-
cessitating immediate alterations in job allocation and workforce management.

Our motivation is rooted in the practical needs of companies like Terranova, which grap-
ple with the computational complexity of finding optimal solutions to scheduling problems.
To enhance operational efficiency, such companies often resort to suboptimal algorithms.
While these algorithms yield reasonably efficient results, there is often room for improve-
ment, leaving users uncertain about the efficiency of potential enhancements.

1.2 Objectives

This project has two objectives: firstly, we aim to harness argumentation theory as a valu-
able tool to address a specific scheduling optimisation challenge, leveraging data from Terra-
nova. This optimisation problem involves a range of constraints and variables, extending the
frameworks and mappings presented by Čyras et al.[5]. Our aim is to provide comprehen-
sive answers to the questions raised in Section 1.1 while extending the framework to deliver
explanations in accessible, natural language (Chapters 3 and 6).

Secondly, we intend to enhance the original web application developed by Karamlou[6],
which served as a proof-of-concept for Čyras et al.’s work. Our goal is to adapt this tool
to be compatible with Terranova’s data, enabling it to provide insightful assessments of the
company’s schedules (Chapter 4). We aim to demonstrate that our extended theory and
proof-of-concept tool can genuinely improve the user experience, offering clear explana-
tions for suboptimal schedules and practical suggestions for enhancements (Chapter 5). Our
objective is to bridge the gap between computational efficiency and user-friendly decision
support.

By pursuing these objectives, we aim to contribute to the evolving field of scheduling
optimisation. Our work seeks to empower companies like Terranova with tools to improve
operational efficiency and provide users with transparent insights and sensible suggestions
for their scheduling challenges.

5

Chapter 2

Background

Previous endeavors have explored the provision of natural language explanations for plan-
ning problems. For instance, Vasileiou et al.[7] presented a logic-based framework con-
structed on a series of axioms and algorithms that assess the validity of a given query.
Sukkerd, Simmons, and Garlan[8] proposed an alternative framework based on a Markov
decision process, extending it to account for cost functions and identify Pareto-optimal plan-
ning solutions. Notably, their user studies demonstrated increased trust in the system due to
the explanations provided regarding trade-off rationale.

This project builds upon the work of previous research that explored explainable schedul-
ing using argumentation theory[5]. We commence by providing an overview of the schedul-
ing problem and its real-world applications. Subsequently, we delve into the background of
argumentation theory and the mapping from problem to framework.

2.1 The Makespan Scheduling Problem

The makespan scheduling problem is an optimisation problem for n independent jobs J :=
{1, 2, . . . , n} to be executed by m machines M := {1, 2, . . . ,m}. It aims to assign jobs to
machines in such a way that the total length of time to complete the jobs across all the
machines is minimised, as described by Graham[9] and originally implemented using the
example of nurse rostering by Warner and Prawda[1]. Each job may only be executed by
one machine, and any machine is capable of completing any job.

Definition 2.1. Consider a set of n independent jobs J := {1, 2, . . . , n} with associated pro-
cessing times p = {p1, p2, ..., pn}, to be completed by m machines M := {1, 2, . . . ,m}.

The optimisation problem for makespan scheduling is as follows:

min
Cmax,Ci,xi,j

Cmax (2.1)

Cmax ≥ Ci i ∈ M (2.2)

Ci =

n∑
j=1

xi,jpj i ∈ M (2.3)

m∑
i=1

xi,j = 1 j ∈ J (2.4)

xi,j ∈ {0, 1} i ∈ M, j ∈ J (2.5)

where Cmax = maxmi=1{Ci} is the makespan (the length of time needed to complete all jobs).

6

Chapter 2. Background 2.2. ABSTRACT ARGUMENTATION (AA) FRAMEWORK

A schedule S of (M,J) defines each xi,j where i ∈ M, j ∈ J , satisfying equation (2.5). In
this way, it can be seen as the m× n matrix S ∈ {0, 1}m×n

We take a schedule S in this case to be a potential solution (feasible or not, optimal or
not).

Definition 2.2. A schedule S is feasible iff it satisfies equations (2.2)-(2.4) in Definition 2.1.

Example 2.1. Consider 2 machines and 3 jobs, where p = {2, 3, 2} are the associated processing
times. Consider the following schedule S1:

x1,1 = x1,3 = x2,2 = 1

x1,2 = x2,1 = x2,3 = 0

This schedule is valid since it satisfies (2.5) of Definition 2.1. An alternate schedule S2 may
define xi,j as:

x1,1 = x1,3 = x2,3 = 1

x1,2 = x1,2 = x2,2 = 0

with the matrix forms of both schedules being

S1 =

(
1 0 1
0 1 0

)
, S2 =

(
1 0 1
0 0 1

)
.

Note S1 describes an optimal solution, where C1 = Cmax = 4, while S2 describes an infeasible
solution where both machines complete job 3 and no machine completes job 2.

2.2 Abstract Argumentation (AA) Framework

The origin of the abstract argumentation framework (AA) begins with Dung’s logical imple-
mentation of “attacking” arguments[10]. The argument for this framework comes from the
idea that the winner of a debate comes from the player who “has the last word”. In [10],
Dung introduces some key definitions used in this section. We use a graph notation to illus-
trate our argumentation framework, as in previous related work e.g. Garćıa et al.[11], Fan
and Toni[12].

Definition 2.3. An argumentation framework AF = (Args,⇝) is a directed graph where:

• Args is a set of arguments (vertices), and

• ⇝ is a binary “attack” relation on Args where a ⇝ b means that a attacks b. This is
represented on a graph as an edge from a to b. The negation of this, e.g. a��⇝b, indicates
that a does not attack b.

We can extend the definition of the attack relation. For a sets of arguments A:

• A⇝ b ⇐⇒ ∃a ∈ A : a⇝ b.

• b⇝ A ⇐⇒ ∃a ∈ A : b⇝ a.

It follows that for sets A,B, we have A⇝ B ⇐⇒ ∃a ∈ A, b ∈ B : a⇝ b.

7

2.3. MAPPING A SCHEDULE USING ARGUMENTATION Chapter 2. Background

Figure 2.1: A basic argumentation framework example, presented as a directed graph.

Figure 2.1 represents an argumentation framework where Args = {a, b, c} with attacks
a⇝ c, b⇝ a, b⇝ c.

Definition 2.4. An extension E of Args, E ⊆ Args, is

1. conflict-free iff E��⇝E,

2. a stable extension iff E conflict-free, E ⇝ a,∀a ∈ Args\E.

Example 2.2. Returning to our AF in Figure 2.1, suppose we have extension E1 = {b}. Clearly,
it is conflict-free since b does not attack itself. Since b attacks both a and c, E1 is also a stable
extension. Alternately, consider E2 = {a, c}. Since a ⇝ c, it is not conflict-free. Also, since
E2��⇝b, E2 is not stable.

In this paper, Dung[10] goes on to introduce the terms acceptable (A ∈ Args, for any
B ∈ Args : B ⇝ A =⇒ S ⇝ B, with respect to set of arguments S), admissible (conflict-
free S, all arguments in S acceptable with respect to S), preferred (extension which is the
maximal admissible set of AF) and grounded. Recent research has utilised and extended
such terms: Ulbricht and Wallner[13] extend the concept of extensions by introducing σ-
extensions, with their own set of properties and abilities to offer natural language descrip-
tions beyond extensions. In particular, there has been extensive development in argumenta-
tion and its links to artificial intelligence in recent decades[14].

2.3 Mapping A Schedule Using Argumentation

Here we summarise the work of Čyras et al.[5] to create a mapping between a scheduling
problem as defined in Section 2.1 and the AA framework defined in Section 2.2. The paper
focuses on 3 dimensions as routes of explanation: feasibility, efficiency and the ability to sat-
isfy predetermined fixed decisions within schedules. These 3 dimensions are all represented
by different AFs.

The definitions in this section are taken directly from Čyras et al.[5].

2.3.1 Feasibility

Feasibility enforces that each job must be assigned to exactly one machine. No machines can
be left unassigned or assigned multiple times.

Definition 2.5. The feasibility AF (ArgsF ,⇝F) is given by:

• ArgsF = {ai,j : i ∈ M, j ∈ J },

• ai,j ⇝F ak,l ⇐⇒ i ̸= k, j = l.

8

Chapter 2. Background 2.3. MAPPING A SCHEDULE USING ARGUMENTATION

Figure 2.2: Corresponding extensions for Example 2.1. Left: S1 (extension in blue); Right: S2

(extension in red).

In summary, all possible combinations of machine and job are represented by an argu-
ment, and any combination of distinct arguments (and such, machines) with the same job
must attack each other. The following mapping can now be defined:

Definition 2.6. Let (ArgsF ,⇝F) be the feasibility AF. A schedule S and extension E ⊆ ArgsF
are corresponding, S ≈ E iff

xi,j = 1 ⇐⇒ ai,j ∈ E.

Example 2.3. Consider Example 2.1. We can derive corresponding extensions for S1 and
S2, by the definition above. Indeed, we have S1 ≈ E1 := {a1,1, a1,3, a2,2} and S2 ≈ E2 :=
{a1,1, a1,3, a2,3}. The resulting extensions are shown in Figure 2.2.

The following important property of the above mapping comes from Čyras et al.[5].

Theorem 2.7 (Čyras et al.[5]). Let (ArgsF ,⇝F) be the feasibility AF. For any S ≈ E, S is
feasible ⇐⇒ E is stable.

We generalise the case of Example 2.3 to consider the construction and validation algo-
rithms for all feasibility AFs.

Lemma 2.8. The feasibility AF can be constructed in O(nm2) time. Verification of whether an
extension E ⊆ ArgsF is stable requires up to O(n2m2) time.

Proof. This proof is taken from Lemma 4.2, Čyras et al.[5].
A feasibility AF consists of O(mn) arguments. For each job n we have m(m − 1) attacks

by Definition 2.5, so construction takes O(nm2) time. For an extension E ⊆ ArgsF , we
must check for all i, i′, j, j′ where ai,j , ai′,j′ ∈ E, if ai,j ⇝F ai′,j′ . To iterate through all
(i, j) ∈ O ×A takes O(mn), so verification takes O(m2n2) time.

2.3.2 Efficiency

In the makespan problem, we want to minimise the maximum total processing time any
one machine takes to complete all their assigned paths. For example, if machine 1 takes 60
minutes and machine 2 takes 80 minutes, than our makespan is 80 minutes.

To decide whether one schedule is optimal compared to another, we must define a finite
set of properties by which we can improve a non-optimal schedule.

Definition 2.9. A critical job j ∈ J satisfies Ci = Cmax for i ∈ M : xi,j = 1.
We define the following properties for i ̸= i′:

1. Single Exchange Property (SEP): Ci − Ci′ ≤ pj;

2. Pairwise Exchange Property (PEP): ∀j′ ̸= j, xi′,j′ = 1 : pj > pj′ =⇒ Ci+pj′ ≤ Ci′+pj .

9

2.3. MAPPING A SCHEDULE USING ARGUMENTATION Chapter 2. Background

Figure 2.3: Example of optimality AF for schedule S : x1,1 = x2,2 = x2,3 = 1.

We say S is efficient iff S is feasible and satisfies both SEP and PEP.

Example 2.4. Consider 2 machines and 3 jobs, where p = [3, 5, 6]. Consider the optimal
schedule S with x1,1 = x1,2 = x2,3 = 1 and all other values 0. Since Cmax = 11 = C1, the
critical jobs in our problem are jobs 1 and 2. We have for SEP:

C1 − C2 = 2 ≤ 3 < 5

and for PEP:
6 > 5, 6 > 3

so both SEP and PEP are satisfied.

It can be shown that every efficient schedule satisfies SEP and PEP[5]. Note that efficient
does not imply optimal. For example, consider schedules which might be improved by a
three-way exchange, as opposed to a single or pairwise exchange.

Definition 2.10. For feasibility AF (ArgsF ,⇝F) and schedule S, the optimality AF (ArgsS ,⇝S

) is defined as:

• ArgsS = ArgsF ,

• ⇝S= (⇝F \{(ai,j , ai′,j′) : Ci = Cmax, xi,j = 1, Ci > Ci′ + pj}) ∪
{(ai′,j′ , ai,j) : Ci = Cmax, xi,j = 1, xi′,j′ = 1, i ̸= i′, j ̸= j′, pj > pj′ ,
Ci + pj′ > Ci′ + pj}

Example 2.5. Consider the problem as in Example 2.4, with schedule S such that x1,1 = x2,2 =
x2,3 = 1. Then Cmax = C2. The optimality AF for this schedule is show in Figure 2.3.

2.3.3 Fixed Decisions

Up until now, all assignments of jobs to any machine have been “legal”, even if they might
not be efficient schedules, so long as they fix the feasibility criteria (every job allocated to
exactly one machine). Consider the example of 2 machines and 3 jobs. Suppose job 1
cannot be allocated to machine 1 (maybe it doesn’t have the right parts to complete the job).
Alternatively, perhaps job 3 must be assigned to machine 2. These fixed decisions can also
be modelled as argumentation frameworks, allowing us to add additional constraints into
our problem.

Definition 2.11. Let the set of negative fixed decisions D− = M− × J ⊆ M×J satisfy

(i, j) ∈ D− =⇒ xi,j = 0,

and similarly, the set of positive fixed decisions D+ = M+ × J ⊆ M×J satisfy

(i, j) ∈ D+ =⇒ xi,j = 1.

10

Chapter 2. Background 2.3. MAPPING A SCHEDULE USING ARGUMENTATION

Figure 2.4: Example of fixed decision AF, with (1, 1) ∈ D−, (2, 3) ∈ D+.

Example 2.6. Consider a problem with 2 machines and 3 jobs. For our examples above (job
1 cannot be allocated to machine 1; job 3 must be allocated to machine 2), we have (1, 1) ∈
D−, (2, 3) ∈ D+.

With these sets formally defined, we now introduce the fixed decision AF:

Definition 2.12. For feasibility AF (ArgsF ,⇝F) and fixed decisions D = (D−, D+), the fixed
decision AF (ArgsD ,⇝D) is defined as:

• ArgsD = ArgsF ,

• ⇝D= (⇝F ∪{(ai,j , ai,j) : (i, j) ∈ D−})\
{(ak,l, ai,j) : (i, j) ∈ D+, (k, l) ∈ M×J}.

Example 2.7. Figure 2.4 shows a fixed decision AF corresponding to the problem in Exam-
ple 2.6. Note that a1,1 attacks itself, while attacks to a2,3 have been removed from its initial
feasibility AF.

Lemma 2.13 (Čyras et al.[5]). Given a schedule S, the fixed decision AF (ArgsD ,⇝D) can be
constructed in O(n2m2) time. Verification of whether an extension E ⊆ ArgsD is stable requires
up to O(n2m2) time.

2.3.4 Explanations

Using the 3 AFs defined so far in Section 2.3, Čyras et al.[5] go on to define a set of expla-
nations as to why a given schedule might be infeasible, inefficient or violate fixed decisions,
giving the specific edge responsible for the violation.

Definition 2.14. For a given schedule S and set of fixed decisions D, E ≈ S, (Args,⇝) ∈
{(ArgsF ,⇝F), (ArgsS ,⇝S), (ArgsD ,⇝D), for an attack a⇝ b, a, b ∈ E:

• (a, b) ∈⇝F =⇒ S not feasible,

• (a, b) ∈⇝S \⇝F =⇒ S not efficient,

• (a, b) ∈⇝D \⇝F =⇒ S violates fixed decisions.

For a non-attack E��⇝b, b /∈ E:

• ⇝=⇝F =⇒ S not feasible,

• ⇝=⇝S and b⇝S E =⇒ S not efficient,

• ⇝=⇝D, b unattacked =⇒ S violates fixed decisions.

11

2.3. MAPPING A SCHEDULE USING ARGUMENTATION Chapter 2. Background

Figure 2.5: Feasibility AF examples

Figure 2.6: Fixed decision AF examples

Example 2.8. Figures 2.5, 2.6, 2.7 gives the following explanations (the arguments correspond-
ing to the extension E ≈ S are highlighted in blue):

1. Feasibility AF (Figure 2.5):

(a) A feasible schedule.
(b) Not feasible since a1,2 ⇝ a2,2 where a1,2, a2,2 ∈ E.
(c) Not feasible since E��⇝a1,2, E��⇝a2,2.

2. Fixed Decision AF (Figure 2.6):

(a) Schedule satisfies fixed decisions.
(b) Positive fixed decision violated since E��⇝a2,1.
(c) Negative fixed decision violated since a1,2 ⇝ a1,2.

3. Optimality AF (Figure 2.7):

(a) Schedule is efficient.
(b) Inefficient schedule since a1,2 ⇝ a2,1 (schedule can be improved by swapping jobs 1

and 2).
(c) Inefficient schedule since E��⇝a2,1 (schedule can be improved by moving job 1 to

machine 2).

Note that while the feasibility and fixed decision AFs can be constructed independent of a
schedule, the optimality AF requires a given schedule S so it can test the relevant inequalities
for i such that Ci = Cmax.

In recent years, there have been various attempts to design user interfaces that are able
to offer natural language explanations for the scheduling decisions taken, but these generally
build on frameworks separate to that given above[15][16].

12

Chapter 2. Background 2.4. PRIORITY SCHEDULING ALGORITHMS

Figure 2.7: Optimality AF examples

2.4 Priority Scheduling Algorithms

Fixed-priority preemptive scheduling in real time-systems ensures that a processor exe-
cutes the highest priority task of those that are ready to be completed. As stated by Coff-
man and Denning[17]: “The basic objective of [makespan scheduling] algorithms is to
schedule task systems so that they execute in minimum time”. Importantly, the job-shop
scheduling algorithms do not accommodate the timing requirement of these more complex
problems[18][19]. For example, Liu and Layland[20] provide a scheduling algorithm, de-
pendent on 4 assumptions; namely, it is assumed that all processes have some common
“deadline” such that, after this, they are released.

Most priority-oriented scheduling attempts focus on the scheduling of jobs in an operat-
ing system, considering priority in terms of a time-sensitive deadline rather than a numerical
value. In the context of management systems, Jin and Yu[21] provide a scheduling algorithm
where each task has an associated priority value. Their algorithm can be seen in Figure 2.8.
At the time of this project, this appears to be the extent of research into numerical priority
values as a factor in optimal scheduling.

2.5 Travelling Salesman Problem

We include here some preliminary background on the travelling salesman problem (TSP),
which relates to our theory in later chapters regarding shortest routes between jobs. The
aim of the TSP is to find the shortest route for a travelling salesman who starts at a home
city, must visit a given set of other cities, then return home to the starting city.[22]

Definition 2.15. Consider a set of n distinct cities C := {C1, C2, . . . , Cn}, each characterised
by its geographical coordinates in a Euclidean space, denoted as pi = (xi, yi), where i ∈
{1, 2, . . . , n}. Then the Traveling Salesman Problem (TSP) can be formulated as the opti-
misation problem:

min
π

n−1∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (2.6)

subject to π is a permutation of {1, 2, . . . , n}, (2.7)

where π represents a permutation of the set {1, 2, . . . , n}, defining the order in which the cities
are visited in the tour.

It can be shown that the TSP is NP-hard. There are various ways the TSP can be written
in the form of an integer programming problem, as shown by Finke, Funn and Claus[23]

13

2.5. TRAVELLING SALESMAN PROBLEM Chapter 2. Background

Figure 2.8: High priority scheduling algorithm proposed by Jin and Yu[21]

and Padberg and Sung[24]. Lenstra and Rinnooy Kan[25] illustrate a number of scenarios,
including scheduling, which can be formatted as a travelling salesman problem. Some algo-
rithms, such at the branch-and-bound method[26], can be shown to give optimal solutions,
but may require infeasible running times. Alternatively, there are various computationally-
feasible, sub-optimal algorithmic solutions for the TSP. Lin[27] utilises the concept of λ-
optimality:

Definition 2.16. Consider a graph where every city is represented by a vertex. We define a link
as the edge connecting two cities.

A route is λ-optimal (or λ-opt) if, for any set of λ links, it is impossible to find a route with
smaller cost by replacing any links in the set with any other set of λ links.

Clearly all routes are 1-optimal, and it can be shown a route of n cities is optimal iff it
is n-optimal. Croes[28] initially proposed the 2-opt method as a sub-optimal solution to the
TSP, which takes a route that crosses over itself and reorder so it does not.

Theorem 2.17. The following are equivalent:

1. A route is 2-optimal.

2. A route is optimal relative to inversion (i.e. reversing the order of a set of neighbouring
cities in the route).

3. The route does not intersect itself.

Clearly, to check all pairs of links takes time O(n2). Lin[27] goes one step further in
suggesting 3-opt routes are the optimal value of λ to use for this sub-optimal approach, with
a significantly higher probability of finding an optimal solution than with 2-opt routes. The
time complexity of this is O(n3).

14

Chapter 2. Background 2.6. DATASET

Definition 2.18. A route is optimal relative to inversion and insertion if no k consecutive
cities on the original route can be removed and reinserted (as is or inverted) between any two
consecutive remaining cities to produce a tour of lesser cost, for any value of k.

Theorem 2.19 (Taken from Lin[27]). A route is optimal relative to inversion and insertion iff
it is 3-optimal.

2.6 Dataset

The dataset provided by Terranova forms the basis of our problem. The full description of
dataset properties can be seen in Appendix A. The route planning system takes 3 lists as
inputs: activities, operators and instruments, and outputs a list of activities with associated
operators, required instruments and a list of routes connecting the activities.

Activities for workforce management might involve maintenance at a specific practice
or an emergency callout. These activities might require specific skills or instruments to
complete the task; for example, a van might be needed (the instrument), along with the
corresponding skill of a driver’s license. These activities must be completed by operators
who are human workers completing a shift (usually 8:00-13:00 then 14:00-18:00).

Compare the Terranova case with the makespan scheduling problem as outlined in Sec-
tion 2.1: we can consider activities here in a similar way to jobs in the makespan problem
and operators in a similar way to machines – this provides us with a mapping from the Ter-
ranova dataset to a subset problem, explainable with argumentation. We can go one step
further to consider the similarities between fixed decisions and the constraints (skills, instru-
ments) outlined in the dataset; notably, these constraints act as a subset of negative fixed
decisions and can be mapped as such in our problem. This is discussed further and more
extensively in the next chapter.

Activities

Each activity has the following properties:

1. activity id is the unique identifier for a given activity.

2. Y, X, Z are the map co-ordinates where the activity takes place.

3. duration contains

(a) default, the default time in seconds needed for an operator to complete the
activity.

(b) specific contains a list of corresponding operator ids and their value i.e. the
time for this specific operator to complete the activity (in seconds).

4. start timestamp and end timestamp specific the date-times between which the activ-
ity must be completed.

5. priority from 1-5, with 1 assigned to tasks of the highest priority.

6. must start after gives the activity id of the activity that must be completed before
this can start (if any).

7. needed capacity of vehicle (in litres), if required. Vehicles are listed as instruments
with instrument type = "VE*".

15

https://www.terranovasoftware.eu/en

2.6. DATASET Chapter 2. Background

8. needed skills of operator completing activity (if any).

9. needed instruments by instrument type to complete activity (if any).

Operators

Each operator has the following properties:

1. operator id is the unique identifier for a given operator.

2. start position contains the initial Y, X, Z co-ordinates where the operator begins
its shift.

3. returning position contains the Y, X, Z co-ordinates where the operator must end
its shift.

4. List of skills the operator has (if any).

5. working shift gives a list of start timestamps and end timestamps (date-times)
where the operator is available to work.

Instruments

This additional set of inputs for this model contains the following properties:

1. instrument id is the unique identifier for a given instrument.

2. instrument type is a 3-character string specifying if any additional properties apply
to this instrument. Most importantly, "VE*" = Vehicle.

3. capacity in litres if instrument type = "VEH", and null otherwise.

4. List of needed skills operator must have to use the given instrument.

16

Chapter 3

Theory

The following chapter outlines the key theory which extends the framework from Section
2.3, in line with the additional information provided in Section 2.6.

We begin to adapt the model by finding a mapping which relates a simplified version of
our problem as closely as possible to the theory outlined in Section 2.3. To do this, we must
reformat our problem as a mixed integer linear programming formulation: let A be the set
of activities (identified by their activity id) and O the set of operators (identified by their
operator id), with xi,j = {0, 1} the binary decision variable denoting if operator i ∈ O
completes activity j ∈ A.

Notably, in line with the terms used in the dataset, we refer to all “machines” as “opera-
tors”, and use the terms “job” and “activity” interchangeably.

Definition 3.1. Let A be the set of all activities/jobs and O the set of all operators in our
problem. As such, we define the feasibility AF (in the context of our dataset) as:

• ArgsF = {ai,j : i ∈ O, j ∈ A},

• ai,j ⇝F ak,l ⇐⇒ i ̸= k, j = l.

Besides the renaming of sets, the mappings are identical from problem to feasibility AF
as in Definition 2.5 and, as such, Lemma 2.8 holds for this new definition.

3.1 Efficiency with Extended Cost

Recall the makespan scheduling problem as in Definition 2.1:

min
Cmax,Ci,xi,j

Cmax

Cmax ≥ Ci i ∈ M

Ci =
n∑

j=1

xi,jpj i ∈ M

m∑
i=1

xi,j = 1 j ∈ J

xi,j ∈ {0, 1} i ∈ M, j ∈ J

where Cmax = maxmi=1{Ci} is the makespan. Čyras et al.[5] only considered time within the
“cost” of the schedule for any one operator. However, the dataset in Section 2.6 lists many

17

3.1. EFFICIENCY WITH EXTENDED COST Chapter 3. Theory

other variables that may contribute to determining optimality, other than a simple processing
time. In particular, we look at extending the “cost” calculation to include more complex
processing times (variable between operators) and explore multiple variables contributing
to this cost (priorities).

3.1.1 Variable Processing Times

Not all operators may take the same time to complete a job. For example, suppose operator
2 is more skilled than operator 1, so can complete a given job in 40 minutes, compared to
operator 1 taking 60 minutes.

Definition 3.2. Let m := |O|, n := |A|. Then we define P ∈ Mm,n(R) to be the m× n matrix
representing the processing times for a set of jobs j ∈ A assigned to a set of operators i ∈ O.
pij is the time taken for operator i to complete a job j.

Example 3.1. For the example given above, P = (60, 40)T where the units are in minutes.

3.1.2 Priority

Not all jobs are of equal importance when it comes to scheduling. For the example of nurse
rostering, suppose you have 2 jobs: a time-critical operation and a routine check up on
another patient. It is more important to get the operation completed (and at that, as soon as
possible) than the check up.

Definition 3.3. Let n := |A|. Then we define q, |q| = n, the priority vector for a set of jobs,
such that qj denotes the priority of job j ∈ A.

Definition 3.4. The individual cost cP,qi,j (or shorthand ci,j) for a job j and operator i, with
processing times P and priority q,is defined as

cP,qi,j = αqj + βpi,j

where α+ β = 1.

Here, α and β represent the weighting towards priority and processing times respectively.
Adjusting the ratio of α to β then allows us to vary the influence certain variables carry when
calculating the final cost. Note that setting either α = 0 or β = 0 gives a problem similar to
that illustrated in Chapter 2.

Definition 3.5. Consider a set of n independent jobs A := {1, 2, . . . , n} with associated process-
ing time matrix P ∈ Mm,n(R) (where pi,j denotes the element in the ith row and jth column)
and priority vector q = {q1, q2, ..., qn}, to be completed by m operators O := {1, 2, . . . ,m}.

The optimisation problem for individual cost scheduling is as follows:

min
Cmax,Ci,xi,j

Cmax (3.1)

Cmax ≥ Ci i ∈ O (3.2)

Ci =
n∑

j=1

xi,jc
P,q
i,j i ∈ O (3.3)

m∑
i=1

xi,j = 1 j ∈ A (3.4)

xi,j ∈ {0, 1} i ∈ O, j ∈ A (3.5)

where Cmax = maxmi=1{Ci}.

18

Chapter 3. Theory 3.2. SCHEDULE ORDER AND DISTANCE

For clarity, we simply use ci,j to denote individual cost in the remainder of this report.

3.1.3 Optimising Individual Cost Scheduling

Now we have redefined our problem, we revise our definitions of SEP and PEP for the up-
dated “individual” cost variable.

Definition 3.6. For a critical job j ∈ A satisfying Ci = Cmax for i ∈ O : xi,j = 1, we define the
following properties for i ̸= i′, processing times P and priority q:

1. Single Exchange Property for Variable Processing Time and Priority (SEPVPTQ):
Ci − Ci′ ≤ ci′,j;

2. Pairwise Exchange Property for Variable Processing Time and Priority (PEPVPTQ):
∀j′ ̸= j, xi′,j′ = 1 : ci,j > ci,j′ =⇒ Ci + ci′,j′ ≤ Ci′ + ci′,j .

We say S is efficient in individual cost iff S is feasible and satisfies both SEPVPTQ and
PEPVPTQ.

It can be shown that every optimal schedule with respect to individual cost satisfies
SEPVPTQ and PEPVPTQ. To avoid repetition, we omit the proof here, but the method follows
that in Lemma 3.15, from which this result follows directly.

Example 3.2. Consider the following problem with 2 operators with

P =

5 3
2 6
3 3

T

, q = (2, 4, 1)

and schedule

S =

(
1 0 1
0 1 0

)
.

Let α = β = 0.5. Calculating the individual costs:

ci,j =
1

2
×
(
7 6 4
5 10 4

)
i,j

=

(
3.5 3 2
2.5 5 2

)
i,j

.

So C1 = 5.5 and C2 = 5.
Checking SEPVPTQ:

5.5− 5 ≤ 2, 2.5

so SEPVPTQ is satisfied for S. For PEPVPTQ:

3.5 > 3, 5.5 + 5 > 5 + 2.5

so PEPVPTQ is violated for S.

3.2 Schedule Order and Distance

One notable inclusion in the dataset in Section 2.6 is the addition of distance parameters.
Indeed, some jobs are based at different locations, with operators both having a fixed starting
and ending position for their shifts.

19

3.2. SCHEDULE ORDER AND DISTANCE Chapter 3. Theory

Definition 3.7. We define the schedule order for an operator i and schedule S as

σi = {j1, j2, ..., jNi} ⊆ J ,

where Ni is the number of jobs allocated to operator i in schedule S and jk = jk′ ⇐⇒ k = k′.

The schedule order allows us to track the order jobs are completed in S, since S is
essentially a boolean array that can only track assignment rather than order.

Definition 3.8. Consider a schedule S and operator i with schedule order σi, and |σi| = Ni.
Then we define the notation σi[k] = jk for 1 ≤ k ≤ Ni where jk is the kth entry in σi.

Example 3.3. Consider a schedule S where jobs 3, 1, 2 are allocated to operator 1 in this order.
So we have x1,3 = x1,1 = x1,2 = 1 and σ1 = {3, 1, 2}. Furthermore, we have σ1[1] = 3, σ1[2] = 1
and σi[3] = 2.

3.2.1 Distance

We define a metric to allow us to calculate distances between jobs, given the coordinates
information in Section 2.6.

Definition 3.9. For a job j ∈ A, we define its associated 3D coordinates as (jx, jy, jz) ∈ R3.
We define the distance metric δ:

δ : A×A −→ R (3.6)

j1, j2 7→
√
(j1x − j2x)

2 + (j1y − j2y)
2 + (j1z − j2z)

2 (3.7)

as the distance between 2 jobs, j1, j2 ∈ A.

We must also bear in mind that all operators have a specified starting and ending position,
at which they must begin/end their shifts.

Definition 3.10. Let i ∈ O be an operator with associated schedule order σi for a schedule S.
We define:

1. Start position si = (six , siy , siz) ∈ R3 where the operator must begin their shift.

2. Returning position fi = (fix , fiy , fiz) ∈ R3 where the operator must end their shift.

We also define two special cases of the distance metric δ : R3 ×A −→ R for an operator i ∈ O:

1. δ(si, j) :=
√
(six − jx)2 + (siy − jy)2 + (siz − jz)2;

2. δ(fi, j) :=
√

(fix − jx)2 + (fiy − jy)2 + (fiz − jz)2.

The special cases of δ allow us to calculate the distance between the starting and ending
positions of a given operator and the first/last job on their individual schedule σi.

Example 3.4. Consider an operator i with si = fi = (0, 0, 0). Let the location of j be (3, 4, 0).
Suppose we have a schedule S such that xi,j = 1 and xi,j′ = 0∀j′ ̸= j. Then δ(si, j) = δ(j, fi) =√
32 + 42 + 0 = 5.

20

Chapter 3. Theory 3.2. SCHEDULE ORDER AND DISTANCE

Definition 3.11. The extended cost Ci with schedule ordering σi for an operator i with
starting position si = (six , siy , siz) and returning position fi = (fix , fiy , fiz) is defined as

Ci =
N∑
j=1

xi,jci,j + γ

(
δ(si, σi[1]) + [

ki−1∑
k=1

δ(σi[k], σi[k + 1])] + δ(σi[ki], fi)

)

where ci,j is the individual cost for a job j and δ is the distance metric.

Example 3.5. Continuing from Example 3.4, let pi,j = 5 and qj = 2. Let α = β = 0.5 and
γ = 1. Then

Ci = 0.5(5 + 2) + 1(5 + 5) = 13.5.

Note that, unlike previous definitions of cost, extended cost relies on a given schedule
ordering to calculate the distance component for each operator.

Definition 3.12. Consider a set of n independent jobs A := {1, 2, . . . , n} with associated
processing time matrix P ∈ Mm,n(R) (where pi,j denotes the element in the ith row and
jth column) and priority vector q = {q1, q2, ..., qn}, to be completed by m operators O :=
{1, 2, . . . ,m}.

The optimisation problem for extended cost scheduling is as follows:

min
Cmax,Ci,xi,j

Cmax (3.8)

Cmax ≥ Ci (3.9)

Ci =

N∑
j=1

xi,jci,j + γ

(
δ(si, σi[1]) + [

ki−1∑
k=1

δ(σi[k], σi[k + 1])] + δ(σi[ki], fi)

)
(3.10)

m∑
i=1

xi,j = 1 (3.11)

ci,j = αqj + βpi,j (3.12)

xi,j ∈ {0, 1} (3.13)

i ∈ O, j ∈ A (3.14)

where Cmax = maxmi=1{Ci} and δ, si, fi, σi as defined in 3.11 and α, β, γ arbitrary values such
that α+ β = 1.

3.2.2 Optimising Extended Cost Scheduling

We define another set of notation related to σi, allowing us to easily access previous jobs and
next jobs in the schedule. This will aid us in upcoming proofs.

Definition 3.13. Let σa be a schedule order for an operator a. Suppose we have σa[b] = c for
some job c and some index b. Then we define c− := σa[b− 1], c+ := σa[b+ 1].

In other words j− and j+ are the jobs before and after j in an individual schedule σi
respectively. As in Section 3.1.3, we extend SEP to accommodate these new variables as
defined in the problem.

Definition 3.14. Let δ be the distance metric and σi the schedule order for a given schedule S
and operator i. For a critical job j ∈ A satisfying Ci = Cmax for i ∈ O : xi,j = 1, we define the
following properties for i ̸= i′ for all σi′ [z] = w:

21

3.2. SCHEDULE ORDER AND DISTANCE Chapter 3. Theory

1. Extended Single Exchange Property (SEP+): ∀w ̸= j, xi′,w = 1 : Ci − Ci′ ≤ ci′,j +
γ[δ(w, j) + δ(j, w+)]− γδ(w,w+)

2. Extended Pairwise Exchange Property (PEP+): ∀j′ ̸= j, xi′,j′ = 1 :

γ([δ(j−, j) + δ(j, j+)]− [δ(j−, j′) + δ(j′, j+)]) > [ci,j′ − ci,j]

=⇒ Ci − Ci′ ≤ [ci′,j − ci′,j′] + γ([δ(j′−, j) + δ(j, j′+)]− [δ(j′−, j′) + δ(j′, j′+)]).

We say S is extended cost efficient iff S is feasible and satisfies both SEP+ and PEP+.

Lemma 3.15. Every optimal schedule with respect to extended cost satisfies SEP+ and PEP+.

Proof. SEP+: Consider the schedule S obtained by moving job j from machine i to i′, placed
directly after a given job w ∈ σi′ , keeping the remaining job assignments and orders as in
S∗.

Then Ci(S) = Ci(S
∗) − ci,j − γ[δ(j−, j) + δ(j, j+)] + γδ(j−, j+) and Ci′(S) = Ci′(S

∗) +
ci′,j + γ[δ(w, j) + δ(j, w+)]− γδ(w,w+). Note Ci′′(S) = Ci′′(S

∗) for i′′ ̸= i, i′.
Since job j is critical, Ci(S

∗) ≥ Ci′(S
∗), and since S∗ is optimal, Ci′(S) ≥ Ci(S

∗) since S
cannot obtain a lower extended cost. Putting this together:

Ci′(S) ≥ Ci(S
∗)

=⇒ Ci′(S
∗) + ci′,j + γ[δ(w, j) + δ(j, w+)]− γδ(w,w+) ≥ Ci(S

∗)

=⇒ Ci(S
∗)− Ci′(S

∗) ≤ ci′,j + γ[δ(w, j) + δ(j, w+)]− γδ(w,w+)

PEP+: Consider the schedule S obtained by moving job j from machine i to i′, and job
j′ from i′ to i, maintaining the same positions in schedule orders σi and σi′ , with all order
job assignments and orders remaining the same. We have

Ci(S) = Ci(S
∗) + [ci,j′ − ci,j] + γ([δ(j−, j′) + δ(j′, j+)]− [δ(j−, j) + δ(j, j+)])

and

Ci′(S) = Ci′(S
∗) + [ci′,j − ci′,j′] + γ([δ(j′−, j) + δ(j, j′+)]− [δ(j′−, j′) + δ(j′, j′+)]).

As before, since job j is critical, Ci(S
∗) ≥ Ci′(S

∗), and since S∗ is optimal,

max{Ci(S), Ci′(S)} ≥ Ci(S
∗)

since S cannot obtain a lower extended cost.
If Ci(S) ≥ Ci(S

∗), then

[ci,j′ − ci,j] ≥ γ([δ(j−, j) + δ(j, j+)]− [δ(j−, j′) + δ(j′, j+)]).

Alternately, if Ci′(S) ≥ Ci(S
∗),

Ci′(S) ≥ Ci(S
∗)

=⇒ Ci′(S
∗) + [ci′,j − ci′,j′] + γ([δ(j′−, j) + δ(j, j′+)]−

[δ(j′−, j′) + δ(j′, j′+)]) ≥ Ci(S
∗)

=⇒ Ci(S
∗)− Ci′(S

∗) ≤ [ci′,j − ci′,j′] + γ([δ(j′−, j) + δ(j, j′+)]−
[δ(j′−, j′) + δ(j′, j′+)]).

22

Chapter 3. Theory 3.2. SCHEDULE ORDER AND DISTANCE

Corollary 3.16. Every optimal schedule with respect to individual cost satisfies SEPVPTQ and
PEPVPTQ.

Proof. As above, setting γ = 0.

We can now utilise the definitions in this section to define an updated “optimality” AF.
For the purposes of this report, we will refer to this as the efficiency AF, since the AF doesn’t
necessarily imply a fully optimal schedule.

Definition 3.17. For feasibility AF (ArgsF ,⇝F) and schedule S, the extended cost efficiency
AF (ArgsS+,⇝S+) is defined as:

• ArgsS+ = ArgsF ,

• ⇝S+=

(
⇝F \

{
(ai,j , ai′,j) : Ci = Cmax, xi,j = 1 : ∃w ̸= j, xi′,w = 1 :

Ci − Ci′ > ci′,j + γ[δ(w, j) + δ(j, w+)]− γδ(w,w+)
})⋃{

(ai′,j′ , ai,j) : Ci = Cmax, xi,j = 1, xi′,j′ = 1, i ̸= i′, j ̸= j′,

γ
(
[δ(j−, j) + δ(j, j+)]− [δ(j−, j′) + δ(j′, j+)]

)
> ci,j′ − ci,j ,

Ci − Ci′ > ci′,j − ci′,j′ + γ
(
[δ(j′−, j) + δ(j, j′+)]− [δ(j′−, j′) + δ(j′, j′+)]

)}
In other words:

1. If an argument ai,j ∈ E violates SEP+ due to ai′,j , remove any attacks from ai,j to ai′,j;

2. If arguments ai,j , ai′,j′ ∈ E cause a violation of PEP+, add an attack from ai′,j′ to ai,j .

As before, we refer to the extended cost efficiency AF as (ArgsS ,⇝S) for the remainder
of this section for ease.

Theorem 3.18. For feasibility AF (ArgsF ,⇝F), schedule S and S ≈ E, let (ArgsS ,⇝S) be the
efficiency AF for extended cost. Then E is stable in (ArgsS ,⇝S) iff S is feasible and satisfies
SEP+ and PEP+.

Proof. This proof is derived from Theorem 4.3 from Čyras et al.[5].
Let E be stable in (ArgsS+,⇝S+). We know E is conflict-free in (ArgsF ,⇝F) since attacks

removed for SEP+ only make asymmetric attacks symmetric and attacks added for PEP+ are
between arguments that do not already attack each other in (ArgsF ,⇝F) (since i ̸= i′). So
S is feasible by Theorem 2.7 (taken directly from[5]).

As E is stable for all j ∈ A, ai,j ∈ E, it follows that ai,j ⇝S+ ai′,j where i′ ̸= i. So we do
not need to remove attacks from⇝F to get to⇝S+, so

w ̸= j, xi,j = xi′,w = 1, Ci − Ci′ > ci′,j + γ[δ(w, j) + δ(j, w+)]− γδ(w,w+)

cannot hold for any (i, i′, j), leading to SEP+ being satisfied.
Similarly, since E is conflict-free we have j′ ̸= j, xi,j = xi′,j′ = 1,

γ([δ(j−, j) + δ(j, j+)]− [δ(j−, j′) + δ(j′, j+)]) > [ci,j′ − ci,j],

Ci − Ci′ > [ci′,j − ci′,j′] + γ([δ(j′−, j) + δ(j, j′+)]− [δ(j′−, j′) + δ(j′, j′+)])

23

3.2. SCHEDULE ORDER AND DISTANCE Chapter 3. Theory

cannot hold for any (i, i′, j, j′) so S satisfies PEP+.
As in Theorem 4.3 from Čyras et al.[5], since S is feasible, E is stable in (ArgsF ,⇝F).

S also satisfies SEP+ and PEP+ so ⇝S+=⇝F . So S feasible, satisfies SEP+, PEP+ =⇒ E
stable in (ArgsS+,⇝S+).

Corollary 3.19. Every makespan scheduling problem can be represented by an extended cost
scheduling problem.

Proof. Simply set α = γ = 0, β = 1.

Example 3.6. Consider the following problem, consisting of 3 jobs and 2 operators. For jobs
1-3, we have locations (3, 4, 0), (5, 12, 0), (5, 12, 0) respectively. Both operators begin and end
their shifts at the origin (0, 0, 0).

P =

120 120
60 60
30 60

T

, q = (1, 4, 3)

α = 0.9, β = 0.1, γ = 1. Consider the schedule

S =

(
1 0 1
0 1 0

)
.

Calculating our costs, we have

ci,j =

(
12.9 9.6 5.7
12.9 9.6 8.7

)
i,j

,

C1 = 12.9 + 5.7 + (5 +
√
68 + 13) ≈ 44.85, C2 = 9.6 + (13 + 13) = 35.6.

So Cmax = C1 ≈ 44.85. We can now do the following checks to build our efficiency AF:

• Move job 1 from operator 1 to 2 at start: C1 − C2 = 44.85− 35.6 = 9.25,

ci′,j + [δ(w, j) + δ(j, w+)]− γδ(w,w+) = 12.9 + [5 +
√
68]− 13 ≈ 13.15.

9.25 < 13.15 =⇒ satisfies SEP+.

• Move job 1 from operator 1 to 2 after job 2: same as above.

• Move job 3 from operator 1 to 2 at start: ci′,j + [δ(w, j) + δ(j, w+)] − γδ(w,w+) =
8.7 + [13 + 0]− 13 = 8.7.

C1 − C2 = 9.25 > 8.7 =⇒ violates SEP+.

• Swap jobs 1 and 2: ci,j′ − ci,j = 0,

γ([δ(j−, j) + δ(j, j+)]− [δ(j−, j′) + δ(j′, j+)]) = [5 +
√
68]− [13 + 0] ≈ 0.246 > 0,

Ci − Ci′ = 9.25,

ci′,j − ci′,j′ + γ
(
[δ(j′−, j) + δ(j, j′+)] − [δ(j′−, j′) + δ(j′, j′+)] = 12.9 − 9.6 + ([5 + 5] −

[13 + 13] = −12.7 < 9.25 =⇒ violates PEP+.

• Swap jobs 3 and 2: ci,j′ − ci,j = 9.6− 5.7 = 3.9,

γ([δ(j−, j)+ δ(j, j+)]− [δ(j−, j′)+ δ(j′, j+)]) = [
√
68+13]− [

√
68+13] = 0 < 3.9 =⇒

satisfies PEP+.

24

Chapter 3. Theory 3.3. MAPPING SKILL CONSTRAINTS TO FIXED DECISIONS

Figure 3.1: Example 3.6 efficiency AF

The corresponding efficiency AF is shown in Figure 3.6.

Lemma 3.20. Given a schedule S and schedule order σi for all operators i ∈ O, the extended
cost efficiency AF (ArgsS+,⇝S+) can be constructed in O(m2n2) time.

Verifying whether an extension E ⊆ ArgsS+ such that E ≈ S, is stable can be done in
O(m2n2) time.

Proof. Recall that there may be multiple i ∈ O that satisfy Cmax = Ci. Recall from Lemma
2.8, the construction of the feasibility AF takes O(nm2). To remove attacks, we must first
identify the critical operators, taking O(m) time. Then, for each critical operator (of which
there are a maximum of m), to iterate over (j, i′, w) ∈ A × O × A and check xi,j = 1, w ̸=
j, xi′,w = 1 takes O(mn2) times. For each of these, calculating the distance metrics and the
inequality comparisons take O(1). So, in total, removing attacks takes O(m2n2).

To add attacks, we iterate over (j, i′, j′) ∈ A×O×A for each critical operator and check
xi,j = 1, xi′,j′ = 1, i ̸= i′, j ̸= j′ which takes O(m2n2) time. Calculating distances (O(1)) and
checking inequalities (O(1)) means the addition of attacks also takes O(m2n2) time.

As with Lemma 2.8, we determine if E ⊆ ArgsS+ is stable by checking if E is conflict-
free, taking O(m2n2) time, and if E attacks every argument in ArgsS+\E, also taking
O(m2n2) time.

3.3 Mapping Skill Constraints to Fixed Decisions

Recall fixed decisions as in Subsection 2.3.3, allowing us to specify if jobs cannot/must be
completed by specific operators. We want to extend this to a specific case, where D− is
determined by further input information from the dataset (Section 2.6), specifically skill
constraints that operators must satisfy to carry out the corresponding job.

Definition 3.21. Let K be a set of skills, K = {k1, k2, ..., kτ} where |K| = K. Then we define:

• The set of skill prerequisites Kj ⊆ K for a job j ∈ A,

• The set of operator skills Ki ⊆ K for an operator i ∈ O.

By definition, any operator i assigned a job j must fulfill all skill criteria. In other words, a
feasible (with relation to fixed decisions) schedule S must satisfy Kj ⊆ Ki∀i ∈ O, j ∈ A.

Definition 3.22. The skill constraints AF (ArgsDS
,⇝DS

) is defined as:

• ArgsDS
= ArgsF ,

• ⇝DS
= (⇝F ∪{(ai,j , ai,j) : ∃k ∈ Kj , k /∈ Ki}).

25

3.3. MAPPING SKILL CONSTRAINTS TO FIXED DECISIONS Chapter 3. Theory

Figure 3.2: Example 3.7 skill requirement AF

Lemma 3.23. Violating skill requirements are negative fixed decisions. In other words:

∃k ∈ Kj : k /∈ Ki =⇒ (i, j) ∈ D−.

Proof. We will use the contrapositive. By definition, if (i, j) is not a negative fixed decision,
then it is a valid assignment within the schedule. By definition, we then must have Kj ⊆ Ki

if the skillsets are valid. The contrapositive of ∃k ∈ Kj : k /∈ Ki is ∀k ∈ Kj : k ∈ Ki ⇐⇒
Kj ⊆ Ki so the contrapositive holds.

So the skill requirements can directly determine D−, allowing us to use the previous
theory as in Subsection 2.3.3 to explain any schedule S.

Example 3.7. Consider a problem consisting of 3 operators and 3 jobs.

• Operator skills:

1. 001, 002, 003
2. 001, 003
3. 002, 003

• Job skill requirements:

1. 001
2. 002
3. 002, 003

So D− = {(2, 2), (2, 3), (3, 1)}. Figure 3.2 shows the corresponding skill requirements (fixed
decision) AF.

Lemma 3.24. Given a schedule S, a set of job skill prerequisites and a set of operator skills, the
skill constraints AF can be constructed in O(mnK + nm2) time.

Verifying whether an extension E ⊆ ArgsS such that E ≈ S, is stable can be done in
O(n2m2) time.

Proof. To get from skills to negative fixed decisions, we must iterate over each skill, job and
operator (k, j, i) ∈ K × A × O and check k ∈ Kj , k /∈ Ki, taking O(mnK) for K total skills.
There are no positive fixed decisions so we can ignore this array completely, or for every
(i, j) ∈ A×O set the fixed decision as false (taking O(mn) time).

By Lemma 2.13, we have that from these fixed decisions, the fixed decision AF can be
constructed in O(nm2) time. As such, we have the overall construction time is O(mnK +
nm2).

Verification follows trivially from Lemma 2.13.

26

Chapter 3. Theory 3.4. INDIVIDUAL EFFICIENCY

3.4 Individual Efficiency

Unlike the previous framework from Čyras et al.[5], which did not differentiate between the
order of jobs, the component of distance and travel means that each operator’s individual
schedule should also be optimised, beyond the assignment of jobs. Recall the travelling
salesman problem discussed in Section 2.5. Our individual schedule problem can be seen as
a direct application of the TSP.

In this section, we prove our hypothesis that there exists an extension of SEP/PEP that
allows us to utilise argumentation to solve this problem. Similarly to the TSP, we take
inspiration from λ-optimality, and apply the ideas of insertion and inversion from Definition
2.18 to adapt our previous optimality principles to construct an argumentation framework
in O(n2) (for fixed m).

Definition 3.25. Let δ be the distance metric and σi the schedule order for a given schedule S
and operator i. For i ∈ O, j ∈ A : xi,j = 1, we define the following properties for all σi[z] = w:

1. Individual Single Exchange Property (ISEP): ∀w ̸= j, xi,w = 1 : δ(w, j) + δ(j, w+) −
δ(w,w+) ≥ δ(j−, j) + δ(j, j+)− δ(j−, j+)

2. Individual Pairwise Exchange Property (IPEP): ∀j′ ̸= j, xi,j′ = 1 :

δ(j′−, j) + δ(j, j′+) + δ(j−, j′) + δ(j′, j+)

≥ δ(j′−, j′) + δ(j′, j′+) + δ(j−, j) + δ(j, j+).

We say S is individual cost efficient iff S is feasible and satisfies both ISEP and IPEP.

Lemma 3.26. Every optimal schedule with respect to individual cost satisfies ISEP and IPEP.

Proof. ISEP: Let Di(S) be the objective distance function for a schedule S, where

Di = δ(s, σi[1]) + [

ki−1∑
k=1

δ(σi[k], σi[k + 1])] + δ(σi[ki], f).

Let S* be an optimal schedule. If we move job j from its position between j− and j+ to a
new position between w and w+, we have

Di(S) = Di(S∗)− [δ(j−, j) + δ(j, j+)] + δ(j−, j+)

+[δ(w, j) + δ(j, w+)]− δ(w,w+).

Since S∗ is optimal, any other schedule route will be longer and such Di(S) ≥ Di(S∗). From
this we get ISEP.

IPEP: consider two jobs j, j′, both in optimal schedule S∗ where xi,j = xi,j′ = 1. Let job
j be between j− and j+, and similarly j′ between j′− and j′+. If we then have a schedule S
such that j and j′ swap positions in the order of jobs, we have:

Di(S) = Di(S∗)− [δ(j′−, j′) + δ(j′, j′+) + δ(j−, j) + δ(j, j+)]

+[δ(j′−, j) + δ(j, j′+) + δ(j−, j′) + δ(j′, j+)].

As with ISEP, we have by assumption Di(S) ≥ Di(S∗) from which we deduce IPEP.

Example 3.8. Consider an operator i with 3 jobs at the following locations:

27

3.4. INDIVIDUAL EFFICIENCY Chapter 3. Theory

1. (3, 4, 0)

2. (5, 12, 0)

3. (5, 12, 0)

and the operator beginning and ending its shift at (0, 0, 0). Suppose the individual schedule is
σi = {2, 1, 3}. We can then check the following (not a conclusive list):

• Move job 1 to start:

δ(w, j) + δ(j, w+)− δ(w,w+) = 5 +
√
68− 13 ≈ 0.246

δ(j−, j) + δ(j, j+)− δ(j−, j+) = 13 + 13− 0 = 26 > 0.246 =⇒ violates ISEP.

• Swap jobs 2 and 3 (j′ = 2, j = 3): δ(j′−, j) + δ(j, j′+) + δ(j−, j′) + δ(j′, j+) = 13 +√
68 +

√
68 + 13 ≈ 42.49

δ(j′−, j′)+ δ(j′, j′+)+ δ(j−, j)+ δ(j, j+) = 13+
√
68+

√
68+ 13 ≈ 42.49 =⇒ satisfied

IPEP.

• Swap jobs 1 and 3 (j′ = 1, j = 3): δ(j′−, j) + δ(j, j′+) + δ(j−, j′) + δ(j′, j+) = 0 + 0 +
0 + 5 = 5

δ(j′−, j′) + δ(j′, j′+) + δ(j−, j) + δ(j, j+) =
√
68 +

√
68 +

√
68 + 13 ≈ 37.74 > 5 =⇒

violates IPEP.

Recall our 2 options resulting in a violation of an argumentation framework:

1. An attack a⇝ b, a, b ∈ E.

2. A non-attack E��⇝b, b /∈ E.

If we are considering arguments within the same extension, the latter option is not possible.
Hence, we must find another way to map the SEP condition.

Definition 3.27. For feasibility AF (ArgsF ,⇝F) and schedule S, the extended cost efficiency
AF (ArgsIS ,⇝IS) is defined as:

• ArgsIS = ArgsF ,

• ⇝IS=⇝F
⋃{

(ai,j , ai,j) : ∃w ̸= j, xi,w = 1 :

δ(w, j) + δ(j, w+)− δ(w,w+) < δ(j−, j) + δ(j, j+)− δ(j−, j+)

}
⋃{

(ai,j′ , ai,j) : xi,j = xi,j′ = 1, j ̸= j′,

δ(j′−, j) + δ(j, j′+) + δ(j−, j′) + δ(j′, j+) < δ(j′−, j′) + δ(j′, j′+) + δ(j−, j) + δ(j, j+)

}
.

Example 3.9. Figure 3.3 gives the final AF for the problem described in Example 3.8.

In the individual efficiency AF, any violation of ISEP/IPEP will always be from an attack
within the extension. As such, despite both conditions now being reflected in the framework,
we should now find extra steps must be taken to discern which type of violation we have
(i.e. check whether a⇝ a attacks itself or not).

28

Chapter 3. Theory 3.5. INSTRUMENTS

Figure 3.3: Example 3.9 individual cost efficiency AF

Lemma 3.28. Given a schedule S and schedule order σi for all operators i ∈ O, the individual
cost efficiency AF (ArgsIS ,⇝IS) can be constructed in O(nm(n+m)) time.

Verifying whether an extension E ⊆ ArgsS such that E ≈ S, is stable can be done in
O(m2n2) time.

Proof. From Lemma 2.8, the construction of the feasibility AF takes O(nm2) for the first set
of attacks.

For the second set of attacks, every i ∈ O, we iterate over (j, w) ∈ A × A and check
w ̸= j, xi,w = 1 taking O(mn2) time each. The last inequality and distance metrics can be
calculated in O(1) so in total the addition of self-attacks takes O(mn2).

For the final set of attacks, we iterate over (j, j′) ∈ A × A for each critical operator and
check xi,j = 1, xi,j′ = 1, j ̸= j′ which takes O(mn2) time. Calculating distances (O(1)) and
checking inequalities (O(1)) means the addition of these attacks also takes O(mn2) time. In
total, we have O(nm2) +O(mn2) +O(mn2) = O(nm2 +mn2).

As with Lemma 2.8, we determine if E ⊆ ArgsS is stable by checking if E is conflict-
free (first checking for self-attacks and then regular conflicting attacks), taking O(m2n2)
time.

Definition 3.29. For a given schedule S and set of skills K, E ≈ S, (Args,⇝) ∈ {(ArgsF ,⇝F

), (ArgsS+,⇝S+), (ArgsDS
,⇝DS

), (ArgsIS ,⇝IS)}, for an attack a⇝ b, a, b ∈ E:

• (a, b) ∈⇝F =⇒ S not feasible,

• (a, b) ∈⇝S+ \⇝F =⇒ S not efficient,

• (a, b) ∈⇝DS
\⇝F =⇒ S violates skill requirements.

• (a, b) ∈⇝IS \⇝F =⇒ S not individual schedule efficient,

For a non-attack E��⇝b, b /∈ E:

• ⇝=⇝F =⇒ S not feasible,

• ⇝=⇝S+ and b⇝S+ E =⇒ S not efficient,

Note that non-attacks are not possible for (ArgsDS
,⇝DS

), (ArgsIS ,⇝IS) since neither AF have
attacks removed to get from (ArgsF ,⇝F) to their respective AFs.

3.5 Instruments

Instruments can be allocated to operators in a similar fashion to jobs. Unlike job allocation,
there is no efficiency component involved (instruments don’t carry some associated value)
and there is no ordering between instruments assigned to a specific operator.

29

3.5. INSTRUMENTS Chapter 3. Theory

Definition 3.30. I is defined as the set of instruments for a given problem. We define Kτ ⊆ K
as the set of skill requirements for instrument τ ∈ I.

Instrument allocation obeys the following rules:

1. All instruments must be allocated to exactly one operator.

2. Any skill constraints must be satisfied by the assigned operator for a given instrument.

Lemma 3.31. Instrument allocation can be modelled by argumentation for explainable scheduling[5],
without optimality/efficiency AF.

Proof. From Definition 3.30, rule 1 can be modelled by the feasibility AF by its definition.
Rule 2 can be modelled by mapping skill requirements to negative fixed decisions by Lemma
3.23.

Example 3.10. Consider 2 operators with the following skills:

1. A0D 4D7 E60

2. E60

and instruments I0− 3. Let I1 have skill requirements {A0D,E60}, and all other instruments
be requirement-free.

Then

SI =

(
1 1 0 0
0 0 1 1

)
is a feasible and valid instrument assignment, but

SI ′ =

(
1 0 0 0
0 1 1 1

)
is not since it violates the skill constraints for I1.

3.5.1 Job Instrument Constraints

As well as skill requirements, some jobs may also require specific instruments that the as-
signed operator must carry on their shift.

Definition 3.32. Ij ⊆ I is defined as the set of instrument requirements for job j ∈ A.

To define a framework to assess the relations between jobs and instruments, we should
first consider how this differs from job-operator and instrument-operator relations. Note
that both of these operate on a many-to-one basis, since multiple jobs/instruments can be
allocated to one operator, but only one operator is associated with each job/instrument. For
job-instrument relations, many jobs may require many instruments.

We will attempt to extend some aspects of the argumentation framework here to accom-
modate the many-to-many nature of the job-instrument relation. We do this by reversing the
roles that the assignments and fixed decisions play, constructing an AF from our job/instru-
ment allocations and comparing against the constraints.

Definition 3.33. Let n be the number of jobs and t the number of instruments in a problem.
We define ζ ∈ {0, 1}n×t as the job-instrument constraint matrix, such that

ζj,τ = 1

if instrument τ is a requirement for job j, and 0 otherwise.

30

Chapter 3. Theory 3.5. INSTRUMENTS

Figure 3.4: Example 3.11 job-instrument assignment AF

Definition 3.34. For n jobs and t instruments, consider job allocation schedule S and instru-
ment allocation schedule SI. We define Si and SIi as the set of jobs and instruments assigned
to operator i ∈ O respectively.

The job-instrument assignment AF (ArgsJI ,⇝JI) is defined as:

• ArgsJI = {aj,τ : j ∈ O, τ ∈ I},

• ⇝JI= {(aj,τ , aj,τ) : τ ∈ Si, j /∈ SIi, i ∈ O}.

We have now constructed an AF from our two schedules for job/instrument assignment,
which will allow us to check if a given set of instrument requirements would be violated by
these independent assignments. Our new “schedule” here will be our instrument require-
ments for each job.

Definition 3.35. For a given job-instrument constraint matrix ζ, E ≈ ζ, (Args,⇝) ∈ (ArgsJI ,⇝JI

), for an attack a⇝ a, a ∈ E:

• (a, a) ∈⇝JI =⇒ job-instrument requirements are violated.

Example 3.11. Continuing from Example 3.10, suppose we also have jobs 1-4 with the follow-
ing schedule assignment:

S =

(
1 0 0 1
0 1 1 0

)
and job-instrument constraint matrix:

ζ =


0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

Using SI from Example 3.10, Figure 3.4 shows the job-instrument assignment AF with ζ high-
lighted in blue where ζj,τ = 1. Here we can see there is a violation since a1,I2 ⇝ a1,I2; in
other words, I2 is an instrument requirement for job 1, however they are allocated to different
operators.

Lemma 3.36. Given job and instrument assignment schedules S, SI and job-instrument con-
straint ζ, the job-instrument constraint AF can be constructed in O(mnt) time, where t is the
number of instruments in the problem.

Verifying explanations can be done in O(nt) time (note E ≈ ζ is not stable since E does not
defend any argument of ArgsJI \E.

31

3.6. SUMMARY Chapter 3. Theory

Proof. The job-instrument constraint AF consists of O(nt) arguments. To add attacks, we
must iterate over Si and SIi for each i ∈ O, taking O(mnt).

To verify explanations, we only need to check for self-attacks, taking O(nt).

3.6 Summary

In this chapter, we have considered various aspects of the dataset in Section 2.6 and utilised
previous theory from Čyras et al.[5] to extend the mapping for this problem. In particular, we
have extended the efficiency AF to consider multiple cost variables of different weightings;
it is worth noting the assumptions that are taken into account and alternative cost formulae
that could be used instead, giving different results. For example, taking the product of the
cost variables, rather than the sum, would provide a different set of results when a combi-
nation of variables are considered. In particular, alternative formulae relating to priority can
be used to better model this optimality, as discussed in Chapter 6.

We’ve also considered previous theory on fixed decisions and applied this to real-world
problems: the requirement constraints created by skills and instruments. By dividing these
constraints into separate argumentation frameworks, we can easily identify which constraint
is violated for a given schedule. Note that we could combine all these constraints into a
single argumentation framework, akin to the fixed decision AF from Čyras et al., however
this would not offer as detailed explanations to the user.

We end this chapter by tying together all the argumentation frameworks we have ex-
plored thus far:

Theorem 3.37. Given O,A,K, I, schedules S, SI and job-instrument constraint ζ, the total
time taken to construct the argumentation frameworks for the problem is O(mn(mn+K + t)).

Verifying explanations for the relevant extensions can be done in O(m(mn2 + t)).

Proof. For S, Lemmas 2.8, 3.20, 3.24, 3.28 and 3.36 give all constructions/explanations re-
lating to job assignment. For SI, Lemma 2.8, 3.24, 3.36 give all constructions/explanations
relating to instrument assignment. Adding all these together gives the above results.

32

Chapter 4

Design and Implementation

In this chapter, we explore the implementation of the theory discussed in Chapter 3. As a ba-
sis for the tool, we use the proof-of-concept presented by Čyras et al.[29](the source code for
which can be found on GitHub[6]), as shown in Figure 4.1. The final tool is shown in Figure
4.2 and is accessible at https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp.

4.1 Incorporating Schedule Order

One key addition to the argumentation framework theory is the idea of schedule order. The
original interactive schedule explainer[6] takes an input S of type boolean NumPy array,
such that the i, jth element of S is true iff job j is assigned to operator i. In Section 3.2 we
define σi, the schedule order for an individual operator i ∈ O.

There are a few ideas that could be used to translate σi from a textual input into a form
our backend could interpret:

1. Taking a separate input σ into our model. σ gives the order of all jobs, which can then
be interpreted by the tool into its individual σi.

2. Revise the parsing function for schedule S to interpret the order that jobs appear within
the schedule input text, as in Figure 4.3.

Figure 4.4 shows the parsing and formatting functions which follows the latter method,
and saves the order of jobs in one variable σ. For example, in the case of Figure 4.3, we
would have σ = {D,C,B,A,E} since we have no way of knowing the true order of jobs
spread between operators. Namely, the user does not have to input the schedule more than
once, in different forms (reducing the risk of user errors). Similarly, any actions that update
the schedule S also update σ, such that format schedule with sigma will give the correct
updated schedule ordering.

4.2 Weighted Variables

In Section 3.2, we explore an extended cost function that accommodates a combination of
processing time, distance and priority when deciding whether or not a schedule is preferred
to another. We have the restriction that α+ β = 1; however, enforcing this restriction is not
intuitive for the user.

One potential approach for implementing this would be to include three text boxes for
α, β, γ values in the problem input section of the interface. However, this leads to infinite

33

https://github.com/AminKaramlou/AESWebApp
https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp

4.2. WEIGHTED VARIABLES Chapter 4. Design and Implementation

Figure 4.1: Original proof-of-concept tool[6]

Figure 4.2: Updated tool interface

Figure 4.3: Order-sensitive schedule input

34

Chapter 4. Design and Implementation 4.2. WEIGHTED VARIABLES

1 import numpy as np

2 import src.formatter as formatter

3

4 def parse_schedule(text , m, n):

5 indices = [[formatter.letters_to_number(cell) for cell in row]

6 for row in vectorise(text , int)]

7 m_sparse = len(indices)

8 m = max(m, m_sparse)

9 n = max([i for row in indices for i in row] + [-1, n - 1]) + 1

10 S = np.zeros ((m, n), dtype=bool)

11 for i in range(m_sparse):

12 for j in indices[i]:

13 S[i, j] = True

14 return S

15

16 def format_schedule_with_sigma(sigma , S):

17 m, _ = S.shape

18 return ’’.join(’{}: {}\n’.format(i + 1,’ ’.join(

19 [formatter.number_to_letters(j) for j in sigma if S[i, j]]

20)) for i in range(m))

21

Figure 4.4: parse schedule and format schedule with sigma for order-dependant schedule
implementation.

Figure 4.5: Weighted variables in tool interface

combinations and values of α, β, γ which, while valid in the context of the problem, is not
the most user-friendly approach. Figure 4.5 shows our implementation of sliders in the tool,
restricting the user to selecting an integer value between 0 and 10 for each cost variable of
processing time, priority and distance. This allows the user sufficient flexibility in selecting
ratios between the three cost variables, while keeping these possibilities finite. This also
makes the interface more readable in cases where there are already multiple text boxes in
the problem input section.

4.2.1 Graphical Representations

As we can see in Figure 4.1, the original tool from Karamlou[6] features a bar chart that
shows the jobs allocated to each schedule with their processing time. While this is intuitive
for a simple cost calculation like processing time, for a combined cost with multiple variables
(including distance which is not easily demonstrated by bar chart), this simplified graphical
representation provides limited useful information to the user.

The updated tool allows the user to switch between 3 different graphs, depending on
whether they want to view the priority, processing time or distance distribution between
operators. In particular, while the processing time and priority are represented by bar charts,

35

4.3. INSTRUMENTS Chapter 4. Design and Implementation

Figure 4.6: Distance graph output: operator 2 is allocated jobs C,A,D in that order, and opera-
tor 1 is allocated job B.

distance is plotted on a 2D axis (the z coordinates, assumed to be height, are ignored for
readability in the graph) with the path of each operator shown by a different colour, as in
Figure 4.6.

4.3 Instruments

Instrument assignment essentially requires adding another scheduling problem into the tool.
Since we are considering two argumentation frameworks simultaneously, we divide the
“Explanations” section into two for jobs and instruments. Selecting an actionable expla-
nation from either box gives suggestions as to how to improve the schedule using that ar-
gumentation framework; for example, consider Figure 4.7 which gives ’Instrument I4 is

required for job F" as an explanation for both frameworks. Here, our tool gives two
possible types of action, depending on which box the user clicks on:

1. For job assignment: "Move job F from operator 2 to ...";

2. For instrument assignment: "Move instrument I4 from operator to 2".

In other words, we can improve the overall assignment schedules by either updating the job
or the instrument assignment. The majority of the instrument implementation utilises the
original source code of Karamlou[6] as instrument allocation does not require additional
variables to be considered, such as schedule order.

4.4 Limitations of Source Code

As this tool is built upon the previous proof-of-concept tool by Karamlou[6], there are some
built-in features of the code that lead to limitations when extended to this much-broader use
case.

1. Feasibility AF: Since order is considered in our extended implementation, a schedule
which has a job j assigned to the same operator i twice – in different positions in the
schedule – is infeasible (in Karamlou’s tool this does not impact the model since the
schedule is independent of order; if the job is applied multiple times it will only be
counted once in the schedule).

36

Chapter 4. Design and Implementation 4.4. LIMITATIONS OF SOURCE CODE

Figure 4.7: Explanations and actions output

To counteract this, in our parsing checks we specifically test if any job is counted twice
within the same schedule. While this does not use an argumentation implementation,
it allows the other feasibility checks (a job appears twice under different operators) to
be tested by argumentation.

2. Optimality by Instrument Allocation: In theory, every AF is considered independently,
such that efficiency AFs may suggest improvements that then contradict fixed decisions.
To prevent this, the extended tool will only give efficiency improvement suggestions
if the improved schedule does not conflict with any fixed decisions – namely, job skill
requirements and job instrument requirements (there is no efficiency AF for instrument
allocation so instrument-skill requirements do not impact this).

In the case of job-instrument requirements, applying suggested actions will only im-
prove the schedule for the given instrument allocation. For example, consider a sched-
ule containing a job j and instrument I1. I1 is an instrument prerequisite for job j,
and these are both allocated to operator 3. However, suppose the processing time for
operator 3 is 10, compared to the processing time for operator 1 which is 2. It seems
preferable therefore to move instrument I1 and job j to operator 1 (assuming I1 is not
a prerequisite for any other jobs), however this suggestion will not be made by our tool
since it sees the position of I1 as fixed.

37

Chapter 5

Evaluation

In this chapter we evaluate our tool implementation with both quantitative and qualitative
tests. First, we use our tool to provide explanations for real data examples from Terra-
nova[4]. While not a perfect mapping (namely due to the lack of time component, as ex-
plored in Chapter 6), the tool provides a comparison with the real-examples generated by
Terranova using an optimisation software.

Secondly, we analyse a user study completed by Terranova, testing the tool and compar-
ing the efficiency and accuracy of improvements made by the tool vs by hand. As part of
this, we compare how users improve completing optimisation problems by hand as well as
with the tool, as the survey progresses.

5.1 Comparison with Company-Provided Examples

5.1.1 City

We first look at the data sample given in .json format and translated into the appropriate
.problem and .schedule files (see https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp/-
/tree/master/terranova sample data). This data sample contains 30 operators, 57 jobs and
0 instruments. We use default weightings (α, β, γ) = (0, 1, 1) to analyse the schedule.

Importantly, this schedule has no feasible solution (since some jobs have skill require-
ments which no operator satisfies), with the corresponding schedule for the data sample
simply omitting the infeasible jobs. Our implementation from Chapter 4 gives an error as
shown in Figure 5.1.

If we were to parse the original problem for jobs without feasible allocations, it would
take many comparisons to check which jobs’ skill requirements were not met by any operator.
In this case, since the tool gives the HEX code for each unfulfilled skill, we can easily go
through the list of job skill prerequisites and remove these to get the output seen in Figure
5.2. The full text output can be seen in Appendix B.1.1.

Unsurprisingly, the tool explains this schedule is not feasible, since 5 jobs are not allo-
cated to any operator; these are the same jobs that had infeasible skill requirements, and
such we can justify this explanation and don’t need to take further action. Notably, the
schedule passes all other efficiency criteria and fixed decision checks, suggesting our tool
and Terranova’s optimisation software are at least as good as each other. For any ratio of
processing time and distance weightings (including β = 0 or γ = 0), we get the same opti-
mal schedule result.

For priority weightings (any combination where α ̸= 0), we no longer have an optimal

38

https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp/-/tree/master/terranova_sample_data
https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp/-/tree/master/terranova_sample_data

Chapter 5. Evaluation 5.1. COMPARISON WITH COMPANY-PROVIDED EXAMPLES

Figure 5.1: Initial output for City data sample

Figure 5.2: Amended output for City data sample

Figure 5.3: Processing time output for City data sample

39

5.1. COMPARISON WITH COMPANY-PROVIDED EXAMPLES Chapter 5. Evaluation

Figure 5.4: Priority output for City data sample

schedule, as shown in Figure 5.4. The full output text can be found in Appendix B.1.2.
Considering the context of the problem and the low-emphasis on priority as an optimisation
criteria, the likely conclusion from these results is either that our version of priority mapping
is not sufficient for the given problem, or priority should not be weighted this heavily in the
optimisation.

5.1.2 hpa

Once again, the hpa data sample is given in .json format, and translated into a suitable
.problem and .schedule file for our tool to interpret. Larger than City, this data sample
contains 30 operators, 132 jobs and 0 instruments.

Using once again our default weighting (α, β, γ) = (0, 1, 1), the tool states that the sched-
ule is inefficient, as shown in Figure 5.5. The textual output is given in Appendix B.2.1.
However, if we set (α, β, γ) = (0, 1, 0) or (α, β, γ) = (0, 0, 1) (see Figure 5.6, for example),
we find that, similarly to City, our tool output states the schedule is optimal.

Our tool does give some unexpected results. For example, when processing time is the
only optimisation criteria, the maximum time taken for any operator is 19200 (minutes);
when we consider a dual cost involving distance and processing time (and follow the sug-
gested improvement actions), we are able to get this schedule down to 12000 (minutes).

This is because our tool will only suggest actions if this will lead to a reduction in the
overall maximum cost for any operator. Consider the example in Figure 5.7 where every
job takes 3 units of time for every operator (with no restrictions/fixed decisions, (α, β, γ) =
(0, 1, 0)). Clearly, the optimal solution is to assign one job per operator. However, since there
is not one move that will improve the schedule (the makespan will still be 6 regardless of
which job is moved), no suggestions for improved efficiency will be made.

Coming back to our data sample example, since there are 2 operators with the exact
same maximum total processing time, no actions are suggested to improve the schedule. On
the other hand, since adding a distance metric allows us to differentiate between these jobs,
our tool can now suggest actions with immediate cost improvements.

The reason for the tool otherwise giving improvements for this Terranova data example is

40

Chapter 5. Evaluation 5.1. COMPARISON WITH COMPANY-PROVIDED EXAMPLES

Figure 5.5: Initial output for hpa data sample

Figure 5.6: Distance output for hpa data sample

Figure 5.7: Toy example to demonstrate suboptimality

41

5.2. USER STUDY Chapter 5. Evaluation

Number of respondents
Half then half 1 7
Alternating 1 7
Half then half 2 3
Alternating 2 1

Table 5.1: Count of survey responses for each order type

likely due to the lack of time component, which forces jobs to be completed at specific times
in the schedule and thus limits both the order of jobs and which operators can complete the
job.

5.2 User Study

As part of the evaluation of our proof-of-concept tool, 18 employees from Terranova com-
pleted a study which compares the speed and accuracy of users problem solving using our
tool, compared to working by hand to solve the exercises.

The format for the user study consists of 2 sets of questions and 4 distinct question orders:

• Half then half 1 (question set 1 done by hand; tool introduced; question set 2 done
using tool),

• Half then half 2 (question set 2 done by hand; tool introduced; question set 1 done
using tool),

• Alternating 1 (alternating questions from both sets with tool introduced at start; set 1
done by hand, set 2 done using tool),

• Alternating 2 (alternating questions from both sets with tool introduced at start; set 2
done by hand, set 1 done using tool).

The list of questions and full breakdown of orderings can be found in the GitLab repository
for the project. The number of responses for each type are shown in Table 5.1.1

Questions in each set progressed in difficulty, in terms of optimisation criteria, choice of
numbers (e.g. for processing times, integer values where all operators had same processing
time for a given job; for distance, Pythagorean triples given) and additional constraints
(instrument and skill requirements).

5.2.1 Outline of Questions

Appendix C.1 gives an overview of the information provided for respondents during the user
study. Each question set contains 7 questions in the following order:

1. Distance (easy).

2. Time (easy).

1The survey order shown to each user was randomised upon refresh, set so each survey order was shown an
even number of times. Hence, every refresh or view of the survey incremented the counter (even if that survey
was not completed). For that reason, by randomisation, results are heavily weighted in favour of orders where
question set 1 was completed by hand, and question set 2 completed using the tool.

42

https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp/-/tree/master/user_study

Chapter 5. Evaluation 5.2. USER STUDY

• Scheduling with 4 jobs and some minor variation in processing time between
operators.

3. Time (medium).

• Compared to the previous time question, this question requires the respondent to
schedule 8-9 jobs with completely varying processing times across operators.

4. Choice of Schedule (medium).

• Respondents are given 3 schedules, only one of which is optimal, and must select
the optimal schedule from the non-optimal schedules.

5. Time with Skills (medium).

6. Distance with Instruments (medium).

7. Combined (hard).

• Respondents are asked to optimise the combined cost of distance and processing
time, set on a 1:1 ratio (so an increase of 3 units in processing time but decrease
in 3 distance units leads to no net different in cost).

All questions involved 4 operators. The questions were designed by amending randomly
generated problems from the tool (e.g. rounding floats to makes numbers easier to work
with). For ease, all z-coordinates for any locations were set to 0 to allow respondents to
visualise the problem more easily.

In particular, the order of questions was chosen to ensure problems became progressively
complex as the user became familiar with the tool and the layout of questions.

5.2.2 Completion Times

Figure 5.8 shows the average time users from each survey type spent on each question (the
colour blue here denotes the combined average of half-then-half 1 and alternating 1, while
blue denotes half-then-half 2 and alternating 2).2

The time taken to solve problems greatly fluctuates depending on the question (with
some weak correlation between sets), but we can make the following conclusions from Fig-
ure 5.8:

1. For both question sets, the first distance question (meant to be a simple route opti-
misation question) has a high average completion time. This is likely due to lack of
familiarity with the format of questions and/or the tool.

2. Time 1 & 2 are intended to be simple makespan problems, while Time 3 & 4 use
much larger examples (around double the number of jobs etc.). This is reflected in the
steep increase in completion time between Time 1 and 4, and Time 2 and 3, for their
respective question sets, particularly for those completing the problems by hand.

2For question set 2, there was only one response for alternating by hand, whom did not answer Q6 or Q7.
The recorded times the user spend on the page for each question were 7583.96 seconds (more than 2 hours)
and 2.25 seconds respectively. These data points are omitted as outliers in the above table.

43

5.2. USER STUDY Chapter 5. Evaluation

Figure 5.8: Average time taken (in seconds) for alternating (Alt) and half-then-half (HTH)
groups to complete each question set.

44

Chapter 5. Evaluation 5.2. USER STUDY

Average Accuracy
Alternating 1 68.2%
Half-then-half 1 65.1%
Alternating 2 36.0%
Half-then-half 2 81.2%
ALL RESPONDENTS 67.4%

Table 5.2: Accuracy of each survey group by proportion of questions correctly answered.

3. The remaining questions are intended as medium difficulty (but still challenging to
solve by hand). The one exception to this is Combined 1 & 2, which we see above
is particularly quickly solved by tool. This is likely due to users being particularly
familiar with the tool and survey format by this point, and the question containing no
constraints as in the previous 2 (skills and instruments), allowing for a faster use of
the interface.

On average, the time taken for users to complete questions by hand is more than 10 times
slower (1008%) than with aid of the tool for question set 1, and more than 8 times slower
(823%) for question set 2.

5.2.3 Accuracy

For each question, respondents are asked to provide an improved schedule for the problem
(or, for question 4, respondents should pick the optimal schedule from the options given).
For questions 1-3 and 5-6, respondents should additionally include the maximum distance
or makespan (depending on the question) for their optimised schedule. This is omitted from
question 4 for obvious reasons, and omitted from question 7 since it utilises a combination
of distance and time (making the question somewhat ambiguous).

The accuracy here is calculated as the number of correct responses out of all users
that give a response (i.e. any questions left blank are not included in this calculation). We
make the following assumptions for our accuracy calculations:

1. Schedules are counted as correct if the tool identifies them as feasible, efficient, indi-
vidually efficient and all fixed decisions (skill and instrument requirements) are met.

2. The maximum cost for any operator is correct (regardless of whether the tool says the
schedule given is efficient or not).

3. For questions involving instrument allocation, we assume (where not given) the re-
spondent found a correct instrument allocation, if one exists.

Note that, since our tool can only check single exchange and pairwise exchange properties,
some schedules may be recorded as correct, even if their cost values are not.

Table 5.2 shows the average accuracy for each survey group, across all answered schedule
questions (not maximum cost). The overall accuracy for all respondents is about two thirds.
In particular, the average accuracy for the two groups that answered question set 1 by hand
and question set 2 using the tool is 66.6%; in comparison, the average accuracy for the two
groups that answered question set 2 by hand and question set 1 using the tool is 69.9%.
We can deduce from this that the two question sets are roughly similar in terms of difficulty,
making them a suitable comparison for this user study. Note that the large variation between
“Alternating” and “Half-then-half” from the second set of user study versions is likely due to

45

5.2. USER STUDY Chapter 5. Evaluation

Figure 5.9: Accuracy range of respondents

the low response number distorting the results. For example, the single respondent for
“Alternating 2” had the lowest number of correct answers out of all survey respondents.

Figure 5.9 shows the range of accuracy across the respondents for each schedule. Note
that Half-then-half 2 and Alternating 2 contain the highest and lowest accuracy scores across
all the respondents, respectively. This leads to somewhat skewed results for the correspond-
ing question set by hand and by use of tool, compared to the other survey groups which are
reasonably consistent in median and range.

Schedule Accuracy

Figure 5.10 shows the proportion of correct answers for each schedule question, split into
respondents who answered by hand versus those who used the tool. We make the following
observations:

1. In general, respondents who used the tool were more likely to get a question correct.

2. The anomalies to the above were as follows:

(a) Q3 (both sets): Choice of Schedule. It is unclear why respondents struggled
to use the tool to answer this question – possibly, having multiple schedules to
download and compare may have caused some confusion. Indeed, in the case of
both questions, the answer was relatively easy to deduce by analysing the three
schedules (route optimisation/distance) visually.

(b) Q6 (question set 2): Distance with Instruments 1. This problem introduced in-
strument assignments and constraints. In particular, the provided problem led to
the tool creating a loop (job F required instruments I1 and I0, but these were
allocated to different operators, so moving the job did not help in solving the
problem). The correct answer here was to move one of two instruments, so that
both instrument requirements for job F were met, then optimise.
This was the worst answered question out of all those in the user study, with
just 31% of respondents giving a correct schedule and only one user providing
a corresponding instrument allocation (although this was not clearly specified in
the question).

46

Chapter 5. Evaluation 5.2. USER STUDY

Figure 5.10: Accuracy for surveys by question set (schedule answers)

47

5.2. USER STUDY Chapter 5. Evaluation

(c) Q7 (question set 2): Combined 1. It is worth noting that only 2 respondents
attempted this question by hand (despite both reaching a correct answer). Thus,
the 100% success rate for the question may not fully relay its complexity for those
completing the question by hand.

Value Accuracy

Figure 5.11 shows the proportion of correct answers for each question with numerical input
(max cost, for distance and processing time problems), split into respondents who answered
by hand versus by tool. Note that for these questions, we only accepted the true optimal
value (which we judged as a lowest max cost given, where the schedule answer provided
passed all tests by the tool and gave the same cost value).

We make the following observations:

1. Results are generally much more variable than the schedule questions. This is likely
due to the tool’s sub-optimal algorithm, meaning some solutions found by hand were
better than solutions immediately found by the tool.

2. Specific question anomalies:

(a) Q1 (question set 1): Distance 1. Despite the tool giving the KPIs, half of respon-
dents using the tool put “13” for the distance instead of “26” for the distance
travelled (essentially not counting the return journey). Regardless, these respon-
dents gave a correct schedule solution.

(b) Q5 (question set 1): Time with Skills 1. Despite many respondents getting this
question correct by hand as well as by tool, comparing to Figure 5.10, we see that
most of these respondents gave an incorrect schedule. In the majority of these
cases, the users ignored the skill requirements, thus invalidating their schedule
(even if the numerical makespan they provided was correct).

(c) Q3 (question set 2): Time 3. As discussed above, this is a question where the
tool recommends a schedule that is sub-optimal. It is worth noting that every
respondent here gave a makespan answer which is optimal by the tool’s standards.

(d) Q6 (question set 2): Distance with Instruments 1. As with the schedule response,
this question had a low success rate with the tool due to lack of understanding
applying changes to the instrument allocation.

3. Still, for the remaining questions, the accuracy rate using the tool was greater than
that completing the questions by hand.

5.2.4 Accuracy Breakdown & Format Comparisons

In this section, we define accuracy as the percentage of correct answers across the entire
survey; in other words, blank responses are counted as incorrect answers. Here, we only
include schedule answers as opposed to max cost answers.

Table 5.3 compares the accuracy of Half-then-half 1 and Alternating 1 (both contain 7
responses each). From this we deduce the following:

1. The success rate using the tool is more than 70% greater when using the tool, com-
pared to computing answers by hand.

48

Chapter 5. Evaluation 5.2. USER STUDY

Figure 5.11: Accuracy for surveys by question set (max cost answers)

Answers by hand Correct Answers Total Questions Success Rate
Half-then-half 19 42 45.2%
Alternating 22 42 52.4%
Total 41 84 48.8%

Answers by tool Correct Answers Total Questions Success Rate
Half-then-half 35 42 83.3%
Alternating 36 42 85.7%
Total 71 84 84.5%

Table 5.3: Comparison of alternating question vs half-then-half (all by hand, all by tool) survey
format.

49

5.3. QUALITATIVE EVALUATION Chapter 5. Evaluation

2. Performance is marginally (albeit not significantly) better when questions alternate be-
tween “by hand” and “by tool”, particularly for the former questions. This suggests that
using the tool may improve the respondents performance when answering questions
by hand.

When we include the results from the remaining survey groups, we find the average
accuracy across all respondents is 46.8% by hand and 73.8% when using the tool.
This is a clear indication that using the tool increases the accuracy of users when deciding
improvements in a given schedule.

5.3 Qualitative Evaluation

All respondents were asked for feedback on the usability of the tool at the end of the survey.
The results are summarised below:

1. Question: Now you have spent some time getting familiar with the tool, what features
do you like?

Top responses included:

• Explanations,

• Easy to apply suggested changes,

• Simple but clear visualisation/interface.

Other answers included the flexibility in variable control, and job locations.

2. Question: What would you improve about the tool or its interface?

The top response was to equalise the X-Y scale for the distance plot to improve read-
ability. Other responses included improving the look of the interface (more dynamic,
adding colour to highlight KPIs).

3. Question: Any other comments?

The majority of respondents left this question blank.

• One respondent noted that the tool did not always give the most optimal result.

• Another respondent stated that since the tool only considers the maximum cost
of any operator, other operators are sometimes left with too much free time.

50

Chapter 6

Further Theory

Due to time constraints for the project, certain attributes of the dataset in Section 2.6 could
not be implemented into the proof-of-concept tool.

We include here further theory on optimal scheduling using argumentation, which could
be used to extend the implementation in Chapter 4. In particular, this chapter discusses
adding a time component to the framework, offering another dimension of modelling to the
tool. We also present some novel alternative approaches to optimising a priority factor.

6.1 Time Constraints & Extended AFs

We consider an extension to the above framework that accommodates date-time restrictions
relating to both job constraints and operator shifts. For example, suppose operator 1 has a
scheduled shift from 9:00 to 18:00, but the total processing time of all jobs in its individual
schedule is 10 hours – how can we illustrate that this constraint is violated?

We assume in this section that a feasible schedule must exist (i.e. there is a schedule such
that all jobs can be completed within the shifts of all operators). Assuming otherwise would
impact the feasibility AF from previous chapters, which depends on all jobs being allocated
to exactly one operator.

Definition 6.1. We define λj and µj as the feasible lower and upper bounds for a job j ∈ A to
be completed.

Similarly, we define λi and µi as the start and end (date-)time for an operator i’s shift, for
i ∈ O.

Note this should not be confused with si and fi as defined in Definition 3.10, which refers
to the schedule order of jobs rather than job or operator constraints.

When accounting for the start time of jobs in our schedule, we must consider the follow-
ing:

1. Is it possible for the job to be completed within the operator’s shift time (say, a job
must begin at 10:00 but the operator’s shift only begins at 12:00)?

2. If the above is possible, then are the allocated start times for each job (and end times)
within the operator’s shift times?

3. Do any jobs overlap in the given schedule?

4. If jobs/operators are not located at the same location, is there sufficient time for the
operator to get between jobs and to the correct end location for its shift?

51

6.1. TIME CONSTRAINTS & EXTENDED AFS Chapter 6. Further Theory

Note that the first point implies the second, so we only need to worry about the last three
points.

6.1.1 Interval Scheduling

We first consider the case where there are no distance attributes associated with jobs (i.e.
they are all located in the same place and travel does not contribute to the overall time).

Definition 6.2. Consider a schedule S such that xi,j = 1. We define λ̃i,j as the time operator i
begins job j, according to schedule S.

Definition 6.3. The schedule bounds AF (ArgsDB
,⇝DB

) is defined as:

• ArgsDB
= ArgsF ,

• ⇝DB
= (⇝F ∪{(ai,j , ai,j) : λ̃i,j + pi,j > µi} ∪ {(ai,j , ai,j) : λ̃i,j < λi}

∪ {(ai,j , ai,j) : λ̃i,j < λj} ∪ {(ai,j , ai,j) : λ̃i,j + pi,j > µj}).

In other words, the schedule is violating if the assigned start time of a job is outside either
the job bounds or corresponding operator’s shift times.

Lemma 6.4. The following are subsets of D−:

1. {(i, j) ∈ O ×A : λ̃i,j + pi,j > µi},

2. {(i, j) ∈ O ×A : λ̃i,j < λi},

3. {(i, j) ∈ O ×A : λ̃i,j < λj},

4. {(i, j) ∈ O ×A : λ̃i,j + pi,j > µj}.

Proof. We omit this proof as it follows the same structure as 3.23.

Definition 6.5. For bounds λi, µi, λj , µj for each (i, j) ∈ O × A and schedule S with λ̃i,j for
xi,j = 1, (Args,⇝) ∈ {(ArgsF ,⇝F), (ArgsDB

,⇝DB
)}, for an attack a⇝ b, a, b ∈ E:

• (a, b) ∈⇝DB
\⇝F =⇒ S violates operator shifts and/or job bounds.

Example 6.1. Consider a problem consisting of 2 operators and 3 jobs. The processing time of
all jobs for each operator is 60 minutes. The shift for operator 1 is 12:00-17:00. The shift for
operator 2 is 9:00-14:00.

Job 1 can be completed at any time; 2 must be completed from 15:00-16:00 and 3 must be
completed from 12:00-13:00. Consider the schedule

S =

(
1 0 1
0 1 0

)
with ˜λ1,3 =12:00, ˜λ1,1 =13:30 and ˜λ2,2 =15:00.

Figure 6.1 shows the resulting argumentation framework. While job 2 fits within its job
bounds, its scheduled time is after operator 2’s shift has ended.

Lemma 6.6. Given a schedule S, the schedule bounds AF can be constructed in O(n2m2) time.
Verifying whether an extension E ⊆ ArgsS such that E ≈ S, is stable can be done in

O(n2m2) time.

52

Chapter 6. Further Theory 6.1. TIME CONSTRAINTS & EXTENDED AFS

Figure 6.1: Example 6.1 schedule bounds AF

Proof. To get from skills to negative fixed decisions, we must iterate over each job and op-
erator (j, i) ∈ A × O and check the 4 inequalities as in Definition 6.3. This takes O(mn).
There are no positive fixed decisions so we can ignore this array completely, or for every
(i, j) ∈ A×O set the fixed decision as false (taking O(mn) time).

By Lemma 2.13, we have that (from these fixed decisions) the fixed decision AF can be
constructed in O(n2m2) time. As such we have the overall construction time is O(n2m2).

Verification follows as in Lemma 3.24 from Lemma 2.13.

While the schedule bounds AF can give information as to if the job can be allocated to a
given operator or not, it is unable to check the overlap between jobs: e.g. what if operator 1
is assigned a 2-hour job at 15:00, but has another job allocated at 16:00?

Definition 6.7. Consider a schedule S with schedule order σi for each i ∈ O. Recall j+ as in
Definition 3.13.

The overlap bounds AF (ArgsDO
,⇝DO

) is defined as:

• ArgsDO
= ArgsF ,

• ⇝DO
= (⇝F ∪{(ai,j , ai,j+) : λ̃i,j + pi,j > ˜λi,j+}).

In other words, if the next job in an individual schedule order begins before the previous
ends, this violates our overlap constraint.

Lemma 6.8. {(i, j) ∈ O ×A : λ̃i,j + pi,j > ˜λi,j+} ⊆ D−

Proof. We omit this proof as it follows the same structure as 3.23.

Definition 6.9. For schedule S with schedule order σi, i ∈ O and λ̃i,j for each xi,j = 1, (Args,⇝
) ∈ {(ArgsF ,⇝F), (ArgsDB

,⇝DB
), (ArgsDO

,⇝DO
)}, for an attack a⇝ b, a, b ∈ E:

• (a, b) ∈⇝DO
\(⇝F ∪⇝DB

) =⇒ S has an overlap of jobs within the schedule.

We only consider set of attacks ⇝DO
\(⇝F ∪ ⇝DB

) since an overlap in jobs does not
make sense unless the start times of jobs are feasible within the individual operator sched-
ules (similarly to Section 2.3 when an inefficient schedule does not make sense unless the
schedule is at least feasible).

Lemma 6.10. Given a schedule S, the overlap bounds AF can be constructed in O(n2m2) time.
Verifying whether an extension E ⊆ ArgsS such that E ≈ S, is stable can be done in

O(n2m2) time.

Proof. As in Lemma 6.6.

53

6.1. TIME CONSTRAINTS & EXTENDED AFS Chapter 6. Further Theory

6.1.2 Interval Scheduling with Distance

Definition 6.11. We define v as the estimated speed of travel between jobs.

Here, v acts as a simple estimate in our model to translate distance metrics into time, for
the purpose of calculating the entire length of an operator’s shift. While it may be possible
to input real travel time data (indeed, this exists in Terranova[4] output schedules, shown in
Section 2.6), this would make any later checks impossible if we were to implement suggested
improvements to our schedule.

We update the AFs outlined in Subsection 6.1.1 to accommodate these distance parame-
ters.

Definition 6.12. The schedule bounds with distance AF (ArgsDB+
,⇝DB+

) is defined as:

• ArgsDB+
= ArgsF ,

• ⇝DB+
= (⇝F ∪{(ai,j , ai,j) : λ̃i,j + pi,j > µi − v × δ(j, fi)}

∪ {(ai,j , ai,j) : λ̃i,j < λi + v × δ(si, j)}
∪ {(ai,j , ai,j) : λ̃i,j < λj} ∪ {(ai,j , ai,j) : λ̃i,j + pi,j > µj}).

In other words, a job cannot be scheduled before the operator has sufficient time to travel
from its starting position, to where the job takes place (and similar for its finishing position).

Definition 6.13. The overlap bounds AF with distance (ArgsDO+
,⇝DO+

) is defined as:

• ArgsDO+
= ArgsF ,

• ⇝DO+
= (⇝F ∪{(ai,j , ai,j+) : λ̃i,j + pi,j + v × δ(j, j+) > ˜λi,j+}).

Lemma 6.4, 6.6, 6.8 and 6.10 can be extended similarly to accommodate for distance.
These are omitted here for conciseness but follow the same format and proof method.

Definition 6.14. For bounds λi, µi, λj , µj for each (i, j) ∈ O × A and schedule S with λ̃i,j

for xi,j = 1, (Args,⇝) ∈ {(ArgsF ,⇝F), (ArgsDB+
,⇝DB+

), (ArgsDO+
,⇝DO+

)}, for an attack
a⇝ b, a, b ∈ E:

• (a, b) ∈⇝DB+
\⇝F =⇒ S violates operator shifts and/or job bounds.

• (a, b) ∈⇝DO+
\(⇝F ∪ ⇝DB+

) =⇒ S has an overlap of jobs within the schedule
(including travel time).

Example 6.2. Continuing Example 6.1, suppose jobs 1− 3 are located at the following coordi-
nates:

1. (3, 4, 0)

2. (12, 5, 0)

3. (5, 12, 0)

with both operators beginning and ending their shifts at the origin (0, 0, 0). Setting v = 5
distance units/minute, our new schedule bounds with distance AF can be shown in Figure 6.2.

We have a2,2 ⇝DB+
a2,2 for the same reason as Example 6.2. Since we must now consider

the travel time for jobs, λ1,3 + 5 × δ(s1, 2) =12:00+1:05=13:05> ˜λ1,3 so a1,3 ⇝DB+
a1,3.

Similarly, the time between jobs 1 and 3 are no longer sufficient for travel, so we also get
a1,1 ⇝DB+

a1,1.

54

Chapter 6. Further Theory 6.2. SCHEDULE-DEPENDANT INDIVIDUAL PRIORITY

Figure 6.2: Example 6.2 schedule bounds with distance AF

6.1.3 Prerequisite Job Requirements

Suppose we have a job j′ which is a prerequisite to j, such that the start time of j must be
after the completion of j′, even if j and j′ are assigned to different operators.

Definition 6.15. We define Zj as the set of prerequisite jobs for a job j ∈ A.

Definition 6.16. The prerequisite job AF (ArgsDZ
,⇝DZ

) is defined as:

• ArgsDZ
= ArgsF ,

• ⇝DZ
= (⇝F ∪{(ai,j′ , ai,j) : λ̃i,j < ˜λi′,j′ + pi′,j′ , j

′ ∈ Zj}),

where xi,j = xi′,j′ = 1 and i, i′ may or may not be equal.

Note that the prerequisite job AF is independent of the distance between jobs, since j
and j′ may be completed by different operators.

Lemma 6.17. {(i, j) ∈ O ×A : λ̃i,j < ˜λi′,j′ + pi′,j′ , j
′ ∈ Zj} ⊆ D−

Proof. Again, we omit this proof as it follows the same structure as 3.23.

Definition 6.18. For schedule S and λ̃i,j for each xi,j = 1, (Args,⇝) ∈ {(ArgsF ,⇝F), (ArgsDZ
,⇝DZ

)}, for an attack a⇝ b, a, b ∈ E:

• (a, b) ∈⇝DZ
\⇝F =⇒ S violates prerequisite job requirements.

6.2 Schedule-Dependant Individual Priority

To round off our further theory in extending argumentation frameworks for optimal schedul-
ing, we return to the priority variable q, as introduced in Chapter 3. Recall that q is a vector
where qj = q ∈ {1, 2, 3, 4, 5}, representing the level of priority of job j (with 1 being highest
priority and 5 the least prioritised). As explored in Section 2.4, much of prior implementa-
tion of priority in scheduling algorithms have been related to a job completion deadline. We
focus on some novel explorations in this section as to how a numerical-value priority can
ultimately be interpreted by our argumentation framework.

Recall from Definition 3.4 that individual cost ci,j = αqj + βpi,j . Importantly, the indi-
vidual cost can be seen as the non-schedule-dependent part of the overall operator cost Ci.
However, when we consider how we prioritise tasks, often the assignment of jobs does play
a part; in this section, we look briefly at two different approaches to calculating priority, and
how this impacts the efficiency AF introduced in Definition 3.17.

55

6.2. SCHEDULE-DEPENDANT INDIVIDUAL PRIORITY Chapter 6. Further Theory

6.2.1 Variance of Priority

Suppose we wanted to ensure the jobs are evenly distributed, such that all operators are
assigned roughly an equal set of high priority and low priority. We can use the expected
value E to favour schedules with a more even distribution of prioritised jobs.

Definition 6.19. Let q̃ be the mean average for all jobs j ∈ A.
The extended cost Ci with priority variance and schedule ordering σi is defined as

Ci = α(Exi,j=1[qj]− q̃)2+β

N∑
j=1

xi,jpi,j+γ

(
δ(si, σi[1])+[

ki−1∑
k=1

δ(σi[k], σi[k+1])]+δ(σi[ki], fi)

)
where E is the mean average (or expected value) and δ is the distance metric.

The purpose of (Exi,j=1[qj]− q̃)2 is to calculate how far from the expected mean priority
each operator’s assigned set of jobs are. If we have a distribution of jobs such that multiple
low-priority jobs are assigned to one operator, and multiple high priority to another, then
this will be reflected with a higher value of (Exi,j=1[qj]− q̃)2.

Example 6.3. Consider 3 jobs with priorities 1, 3, 5 respectively. Hence q̃ = E[{1, 3, 5}] = 9/3 =
3. Suppose we have schedule

S =

(
1 1 0
0 0 1

)
.

Then for operator 1, (Ex1,j=1[qj]− q̃)2 = (2− 3)2 = 1 and for operator 2, (Ex2,j=1[qj]− q̃)2 =
(5− 3)2 = 4.

On the other hand, for

S′ =

(
1 0 1
0 1 0

)
,

we have (Ex1,j=1[qj]− q̃)2 = (Ex2,j=1[qj]− q̃)2 = (3− 3)2 = 0.

6.2.2 Priority in Schedule Order

An alternative approach to priority might be to penalise schedule orders that place high-
priority jobs later in the schedule.

Definition 6.20. The extended cost Ci with priority ordering and schedule ordering σi is
defined as

Ci = α

ki∑
k=1

k(6− qσ[k])+β

N∑
j=1

xi,jpi,j +γ

(
δ(si, σi[1])+ [

ki−1∑
k=1

δ(σi[k], σi[k+1])]+ δ(σi[ki], fi)

)
where qσ[k] is the priority for job σi[k] (i is omitted for tidiness) and δ is the distance metric. ki
is the number of jobs assigned to operator i in schedule S.

Note that since a lower priority is indicated by a higher value of q (and we want to
minimise the overall cost of the schedule), we transform q′j = 6 − qj so high priority jobs
are penalised more heavily for later scheduling. The individual order σi is crucial here in
calculating the priority cost value: the (transformed) priority of each job is multiplied by its
place in the operator i’s individual order.

Remark 6.21. For a heavier penalisation, consider instead the exponential penalty
ki∑
k=1

2k(6− qσ[k]).

56

Chapter 7

Conclusions

In this project, we have considered the current scope of optimisation problems and the sub-
optimal algorithms that are used to solve such problems (Chapter 2). We have utilised
previous argumentation applications and extended them to a more complex problem with
direct real-world applications provided by a company, theorising new argumentation frame-
works which allow us to model specific scenarios relating to route optimisation, broader
optimisation criteria and specific cases of fixed decisions (Chapters 3).

We then modelled a subset of this theory as a proof-of-concept tool, allowing us to test
this tool against both toy examples and real examples provided by the company (Chapter 4).
We evaluated the tool against these real examples and conducted a user study to obtain both
quantitative and qualitative results regarding the usability and accuracy of the tool (Chapter
5). Finally, we considered some further theory to fully model problems according to the
company ask (interval scheduling), along with considerations of some improvements to our
previously defined theory (priority variance) (Chapter 6).

Recall our objectives as outlined in Section 1.2 along with our corresponding contribu-
tions:

1. To extend the scheduling theory of Čyras et al.[5] for the problem case provided by
Terranova (Chapters 3 and 6):

• We provided extensive theory, new frameworks and time complexity proofs to
map the Terranova problem as closely as possible.

• Waste disposal variables (e.g. instrument capacity, compression ratio) were omit-
ted, due to the large difference between the workforce management problem and
the waste disposal/transport problem. Waste disposal was considered beyond the
scope of the project.

• Full theory was provided for all workforce management-specific aspects of the
problem.

2. To extend the original tool designed by Karamlou[6] to accommodate the extended
argumentation theory for our optimisation problem (accessible via GitLab, user guide
can be found here):

• All theory from Chapter 3 was implemented in the tool.
• The tool was tested by multiple users and described by user study respondents as

“easy to use”.
• Due to time constraints, theory from Chapter 6 (i.e. time components) was omit-

ted from the tool.

57

https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp
https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp/-/blob/master/README.md

7.1. LIMITATIONS OF ARGUMENTATION IN SCHEDULING Chapter 7. Conclusions

Figure 7.1: Properties for job scheduling and instrument allocation

3. To evaluate the overall improvement the tool can provide to users aiming to improve
a near-optimal schedule (Chapter 5):

• Using the tool was found to be (on average) 9 times faster than computing sched-
ule improvements by hand.

• The tool was found to improve accuracy of users’ response rate by 57% (see Sub-
section 5.2.4) when completing the user study.

7.1 Limitations of Argumentation in Scheduling

Figure 7.1 gives a visual representation of the framework developed in Chapter 3 and im-
plemented in Chapter 4. In particular, the constraint satisfaction for both job scheduling and
instrument allocation is made up of many argumentation frameworks, including an overlap
for job-instrument requirements.

It is worth noting that our tool links efficiency and the constraint satisfaction require-
ments (or fixed user decisions) by defining fixed-decision aware exchange properties. In
other words, the efficiency AF will not suggest any changes that violate fixed decisions.
While this is intuitive for most of these “hard” constraints, we ran into problems when we
have “soft” constraints like the job instrument allocation (where instruments can move in-
stead of jobs and vice versa). This meant our tool only finds efficient schedules for whatever
the current instrument allocation is.

A similar limitation is present when it comes to the efficiency and individual efficiency
argumentation frameworks: since we are limited to single and pairwise exchange checks,
our tool can only search for more optimal schedules in its local area. For example, consider
a problem with three jobs and 3 operators, with processing times as in Table 7.1. Suppose
we have schedule

S =

0 1 0
0 0 1
1 0 0


58

Chapter 7. Conclusions 7.2. FUTURE WORK

Operator 1 Operator 2 Operator 3
Job A 1 2 4
Job B 4 1 2
Job C 2 4 1

Table 7.1: Processing times for non-optimal schedule example

so every operator takes 2 units of time and our is 2. However, clearly the optimal schedule is

S′ =

1 0 0
0 1 0
0 0 1

 .

If we try to move a single job (single exchange), we will increase the makespan. Suppose
instead we try swapping a pair of jobs (pairwise exchange): if we want to assign job A to
operator 1, we can swap this with job C. However, moving job C to operator 2 gives a
processing time of 4, so this will also increase the makespan – this is the same for any swap.
As such, there are no possible single or pairwise exchange moves to improve the schedule,
so our tool cannot find the optimal solution.

This is a major limitation of the tool for schedules that are not close to an optimal so-
lution. However, providing a better optimality criteria is beyond the scope of the current
project. It is worth noting that there is currently no truly optimal algorithm to identify an
optimal schedule within reasonable computational means.

7.2 Future Work

In no particular order, we suggest possible avenues for future work on the topic:

• Implementation of interval scheduling (and remaining further theory) in tool:
We have shown that it is possible to apply abstract argumentation to explain interval
scheduling problems that enforce job completion at specific times or involve limita-
tions with operator shift lengths. Due to the time constraints of this project, we were
unable to implement the full extent of theory with sufficient time for user testing and
evaluation.

• Travelling salesman problem implementation using argumentation: As discussed
briefly in Sections 2.5 and 3.4, the idea of individual efficiency is largely linked to
TSP, another NP-hard optimisation problem. In this project, we have utilised ideas
from the efficiency AF discussed by Čyras et al.[5] and applied this for the specific
individual schedule case. However, this is not equivalent to the 2-opt theory as defined
in Definition 2.16.

The major limitation with current argumentation applications is the lack of order as-
sociated with the schedule S. In Definition 3.27 we avoid this problem by using self-
attacks to indicate if the individual position of arguments (and thus job assignments in
the schedule) is inefficient. However, in the case of a single exchange, this doesn’t tell
us where might be a more optimal position for the job, meaning we must recurse all
options again to check where exactly would be a preferable move for the job (thus the
argumentation framework isn’t necessarily enough to offer a suggested improvement).

59

7.3. SUMMARY Chapter 7. Conclusions

To be able to wholly map TSP to an argumentation framework, one would need to de-
sign a system such that the order is tracked and whole sets of arguments can be easily
swapped between operators (see Figure 7.2).

With various applications of TSP that require users to improve schedules and rout-
ing on the job, argumentation based on similar approaches to those explored in the
project should allow users sufficient flexibility to gain natural language explanations
and improvements in real time.

• Assumption based argumentation applications: Due to time constraints, this project
focuses wholly on applying abstract argumentation (AA) to solve the problem provided
by Terranova. However, due to the less constricted nature of the theory and bounded
nature of some constraints in the problem (particularly relating to time), parts of this
implementation may be more suited to an assumption-based argumentation (ABA)
application[29][30].

7.3 Summary

• Utilising our argumentation tool improves user accuracy by 57% and time efficiency
by more than 900%.

• It is possible to model complex, multi-variable optimisation problems using argumenta-
tion, however it may not be the best suited method of approach to maximise optimally,
nor compute results (time or space-)efficiently.

60

Chapter 7. Conclusions 7.3. SUMMARY

Figure 7.2: TSL swapping process illustrated with arguments and attacks

61

Bibliography

[1] Warner DM, Prawda J. A mathematical programming model for scheduling nursing
personnel in a hospital. Manage Sci. 1972;19:411-22.

[2] Lin F, Shoham Y. Argument systems: A uniform basis for nonmonotonic reasoning. 1st
International Conference on Knowledge Representation and Reasoning. 1989;89:245-
55.

[3] Dung PM. Negations as Hypotheses: An Abductive Foundation for Logic Programming.
In: 8th International Conference on Logic Programming; 1991. p. 3-17.

[4] Terranova. Terranova Smart Network. Terranova; 2023. Accessed 23/8/2023.
Available from: https://www.terranovasoftware.eu/en/solutions/

terranova-smart-network.

[5] Čyras K, Letsios D, Misener R, Toni F. Argumentation for explainable scheduling. In:
33rd AAAI Conference on Artificial Intelligence. vol. 33; 2019. p. 2752-9.

[6] Karamlou A. Interactive Schedule Explainer for Nurse Rostering. GitHub; 2020. https:
//github.com/AminKaramlou/AESWebApp.

[7] Vasileiou SL, Yeoh W, Son TC, Kumar A, Cashmore M, Magazzeni D. A logic-based
explanation generation framework for classical and hybrid planning problems. J Artif
Intell Res. 2022;73:1473-534.

[8] Sukkerd R, Simmons R, Garlan D. Tradeoff-Focused Contrastive Explanation for MDP
Planning. In: 29th IEEE International Conference on Robot and Human Interactive
Communication; 2020. p. 1041-8.

[9] Graham RL. Bounds on multiprocessing timing anomalies. SIAM J Appl Math.
1969;17(2):416-29.

[10] Dung PM. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif Intell. 1995;77(2):321-57.

[11] Garćıa AJ, Chesñevar CI, Rotstein ND, Simari GR. Formalizing dialectical explanation
support for argument-based reasoning in knowledge-based systems. Expert Syst Appl.
2013;40(8):3233-47.

[12] Fan X, Toni F. On computing explanations in argumentation. In: 29th AAAI Conference
on Artificial Intelligence; 2015. p. 1496-502.

[13] Ulbricht M, Wallner JP. Strong explanations in abstract argumentation. In: 35th AAAI
Conference on Artificial Intelligence; 2021. p. 6496-504.

62

https://www.terranovasoftware.eu/en/solutions/terranova-smart-network
https://www.terranovasoftware.eu/en/solutions/terranova-smart-network
https://github.com/AminKaramlou/AESWebApp
https://github.com/AminKaramlou/AESWebApp

BIBLIOGRAPHY BIBLIOGRAPHY

[14] Bench-Capon TJM, Dunne PE. Argumentation in artificial intelligence. Artif Intell.
2007;171(10):619-41.

[15] Ludwig J, Kalton A, Stottler R. Explaining Complex Scheduling Decisions. In: IUI
Workshops; 2018. .

[16] Gatta VL, Moscato V, Postiglione M, Sperl̀ı G. CASTLE: Cluster-aided space transforma-
tion for local explanations. Expert Syst Appl. 2021;179:115045.

[17] Coffman EG, Denning PJ. Operating Systems Theory. vol. 973. Prentice-Hall Engle-
wood Cliffs, NJ; 1973.

[18] Audsley NC, Burns A, Davis RI, Tindell KW, Wellings AJ. Fixed priority pre-emptive
scheduling: An historical perspective. Real-Time Syst. 1995;8(2-3):173-98.

[19] Pazzaglia P, Biondi A, Natale MD. Simple and General Methods for Fixed-Priority
Schedulability in Optimization Problems. In: International Conference on Design, Au-
tomation & Test in Europe; 2019. p. 1543-8.

[20] Liu C, Layland J. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment. J ACM. 1973;20(1):46-61.

[21] Jin X, Yu L. Research and implementation of high priority scheduling algorithm based
on intelligent storage of power materials. Energy Rep. 2022;8:398-405.

[22] Gutin G, Punnen AP. The traveling salesman problem and its variations. Kluwer Aca-
demic Publishers; 2002.

[23] Finke G, Claus A, Gunn E. A two-commodity network flow approach to the traveling
salesman problem. Congress Num. 1984 01;41:167-78.

[24] Padberg M, Sung TY. An analytical comparison of different formulations of the travel-
ling salesman problem. Math Program. 1991;52(1-3):315-57.

[25] Lenstra JK, Kan AHGR. Some Simple Applications of the Travelling Salesman Problem.
Oper Res Q. 1975;26(4):717-33.

[26] Little JDC, Murty KG, Sweeney DW, Karel C. An Algorithm for the Traveling Salesman
Problem. Oper Res. 1963;11(6):972-89.

[27] Lin S. Computer solutions of the traveling salesman problem. Bell Syst Tech J.
1965;44(10):2245-69.

[28] Croes GA. A Method for Solving Traveling-Salesman Problems. Oper Res.
1958;6(6):791-812.

[29] Čyras K, Letsios D, Misener R, Toni F. Explainable Interactive Scheduling via
Assumption-Based Argumentation with Preferences; N.D. Unpublished.

[30] Čyras K, Toni F. ABA : Assumption-Based Argumentation with Preferences. arXiv
preprint arXiv:161003024. 2016.

63

Appendix A

Terranova JSON Input Format

Below is the full content of JSON REQUEST DEF.json provided by Terranova, which illustrates
the format of their datasets.

1 {

2 "request_id ": 4269189 ,

3 "company_id ": "00E2",

4 "command ": "OPTIMIZE",

5 "application ": "WFM", /* Caller ID: WFM , AMBIENTE */

6 "algorithm_id ": "ALGCW", /* Algorithm to be used (ID) */

7 "startdate ": "2010 -07 -12" , /* Starting date for the scheduling

*/

8 "numdays ": 1, /* Days to schedule (for now always

set to 1) */

9 "back_to_deposit_period ": 1, /* Days before going back to deposit;

values between 1 and 5 (for now always set to 1) */

10 "include_routes ": 1, /* If 1 we need the detailed routing

*/

11 "distribution_type" : "uniform", /* "uniform" = equally distributes

the activities through the operators , "minimize" = minimise the number of

required operators */

12 "unbalance_parameters ": { /* Penalty parameters (used only in

distribution_type = uniform case) */

13 "distance ": null , /* 0 -100: how much we penalise long distances

(higher means more penalty) (for now always null)*/

14 "time": 20, /* 0 -100: how much we penalise the long tasks

for the operators (higher means more penalty) (for now always null) */

15 "priority ": { /* 0 -100: Regulate the proprity weights */

16 "1": 100,

17 "2": 75,

18 "3": 50,

19 "4": 25,

20 "5": 0

21 }

22 },

23 "locations ": [

24 {

25 "location_id ": "LOC0000001",

26 "location_type ": "DEP", /*DEP = Deposit , ULP =

Unloading point (only for AMBIENTE) */

27 "X": 11.1028363 , /* If SRID = WGS84 , X =

Longitude , Y = Latitude in degrees with up to 6 decimals */

28 "Y": 42.7856349 ,

29 "Z": null ,

30 "SRID": "WGS84",

64

https://www.terranovasoftware.eu/en

Chapter A. Terranova JSON Input Format

31 "capacity ": 999999999 , /* capacity in liters ,

null means NA */

32 "compression_ratio ": 0.01 /* (0-1] for example 0.3

means used capacity = capacity *0.3, null means NA */

33 },

34 {

35 "location_id ": "ULP0000001",

36 "location_type ": "ULP", /*DEP = Deposit , ULP =

Unloading point */

37 "X": 11.8856349 ,

38 "Y": 42.1038363 ,

39 "Z": null ,

40 "SRID": "WGS84",

41 "capacity ": 10000 , /* capacity in liters , null

otherwise */

42 "compression_ratio ": 0.5 /* (0-1] for example 0.3

means used capacity = capacity *0.3 */

43 },

44 {

45 "location_id ": "ULP0000002",

46 "location_type ": "ULP", /*DEP = Deposit , ULP =

Unloading point */

47 "X": 11.3856349 ,

48 "Y": 42.1128363 ,

49 "Z": null ,

50 "SRID": "WGS84",

51 "capacity ": 10000 , /* capacity in liters , null

otherwise */

52 "compression_ratio ": 0.5 /* (0-1] for example 0.3

means used capacity = capacity *0.3 */

53 }

54],

55 "activities ": [/* 1 or more items */

56 {

57 "activity_id ": "WFM00000001", /* external unique id */

58 "X": 11.7856349 ,

59 "Y": 42.1028363 ,

60 "Z": null ,

61 "SRID": "WGS84",

62 "duration ": {

63 "default ": 600, /* default duration (sec) that applies to the

operators not listed in "specific ". If null , all the operators must be

listed */

64 "specific ": [

65 {

66 "operator_id ": "00000123" ,

67 "value": 300 /* Specific duration related to the

operator */

68 },

69 {

70 "operator_id ": "00000323" ,

71 "value": 480

72 }

73]

74 },

75 "activity_type ": "MeterInstallation", /* string identifying

the activity type */

76 "start_timestamp" : "2010 -07 -12 08:30:00" , /* First possible

time (after ...) */

65

Chapter A. Terranova JSON Input Format

77 "end_timestamp" : "2010 -07 -12 08:50:00" , /* Last possible

time (before ...) */

78 "priority ": 3, /* [1 - 5], 1 =

max priority */

79 "must_start_after ": null , /* ID code of the

activity that is required before this one (if any) */

80 "needed_capacity ": 300, /* Possible

required capacity */

81 "needed_skills" : [/* 0 or more items */

82 "BLAB"

83],

84 "needed_instruments" : [/* 0 or more items */

85 "VEH",

86 "MAZ"

87]

88 },

89 {

90 "activity_id ": "WFM00000002", /* external unique id */

91 "X": 11.7856349 ,

92 "Y": 42.1028363 ,

93 "Z": null ,

94 "SRID": "WGS84",

95 "duration ": {

96 "default ": 300, /* default duration (sec) that applies to the

operators not listed in "specific ". If null , all the operators must be

listed */

97 "specific ": null

98 },

99 "activity_type ": "MeterReplacement", /* string identifying

the activity type */

100 "start_timestamp" : null , /* First possible

time (after ...) */

101 "end_timestamp" : null , /* Last possible time

(before ...) */

102 "priority ": 5, /* [1 - 5], 1 =

max priority */

103 "must_start_after ": "WFM00000001", /* ID code of the

activity that is required before this one (if any) */

104 "needed_capacity ": null , /* Possible

required capacity */

105 "needed_skills" : [/* 0 or more items */

106 "XFRE"

107],

108 "needed_instruments" : [/* 0 or more items */

109]

110 },

111 {

112 "activity_id ": "WFM00000003", /* external unique id */

113 "X": 11.7856349 ,

114 "Y": 42.1028363 ,

115 "Z": null ,

116 "SRID": "WGS84",

117 "duration ": {

118 "default ": 900, /* default duration (sec) that applies to the

operators not listed in "specific ". If null , all the operators must be

listed */

119 "specific ": [

120 {

121 "operator_id ": "00000123" ,

66

Chapter A. Terranova JSON Input Format

122 "value": 300 /* Specific duration related to the

operator */

123 }

124]

125 },

126 "activity_type ": "MeterDiagnosis", /* string identifying

the activity type */

127 "start_timestamp" : null , /* First possible time (

after ...) */

128 "end_timestamp" : null , /* Last possible time (

before ...) */

129 "priority ": 5, /* [1 - 5], 1 =

max priority */

130 "must_start_after ": null , /* ID code of the

activity that is required before this one (if any) */

131 "needed_capacity ": null , /* Possible

required capacity */

132 "needed_skills" : [/* 0 or more items */

133 "XMEN"

134],

135 "needed_instruments" : [/* 0 or more items */

136]

137 }

138],

139 "operators ": [/* 1 or more items */

140 {

141 "operator_id ": "00000123" ,

142 "start_position ": { /* Starting point (it can be

one of the locations listed or another place). It cannot be null */

143 "location_id ": "LOC0000001",

144 "X": null ,

145 "Y": null ,

146 "Z": null ,

147 "SRID": null

148 },

149 "returning_position ": { /* Ending point (it can be one of

the locations listed or another place). It cannot be null */

150 "location_id ": "LOC0000001",

151 "X": null ,

152 "Y": null ,

153 "Z": null ,

154 "SRID": null

155 },

156 "skills" : [/* 0 or more items */

157 "PATA",

158 "PESX",

159 "BLAB",

160 "XFRE"

161],

162 "working_shift" : [/* it includes holidays and leave */

163 {

164 "start_timestamp" : "2010 -07 -12 08:00:00" ,

165 "end_timestamp" : "2010 -07 -12 12:00:00"

166 },

167 {

168 "start_timestamp" : "2010 -07 -12 13:00:00" ,

169 "end_timestamp" : "2010 -07 -12 17:00:00"

170 }

171]

172 },

67

Chapter A. Terranova JSON Input Format

173 {

174 "operator_id ": "00000323" ,

175 "start_position ": { /* Starting point (it can be

one of the locations listed or another place). It cannot be null */

176 "location_id ": "LOC0000001",

177 "X": null ,

178 "Y": null ,

179 "Z": null ,

180 "SRID": null

181 },

182 "returning_position ": { /* Ending point (it can be one of

the locations listed or another place). It cannot be null */

183 "location_id ": null ,

184 "X": 11.7856349 ,

185 "Y": 42.1028363 ,

186 "Z": null ,

187 "SRID": "WGS84"

188 },

189 "skills" : [/* 0 or more items */

190 "PATA"

191],

192 "working_shift" : [/* it includes holidays and leave */

193 {

194 "start_timestamp" : "2010 -07 -12 08:00:00" ,

195 "end_timestamp" : "2010 -07 -12 12:00:00"

196 },

197 {

198 "start_timestamp" : "2010 -07 -12 13:00:00" ,

199 "end_timestamp" : "2010 -07 -12 15:00:00"

200 }

201]

202 }

203],

204 "instruments ": [/* 1 or more items */

205 {

206 "instrument_id ": "000002131" ,

207 "instrument_type ": "VEH", /* "VE*" = Vehicle. In this case

it needs the field capacity. Otherwise another 3-characters code */

208 "capacity ": 30000 , /* capacity in liters (if VEH),

null otherwise */

209 "needed_skills" : [/* 0 or more items */

210 "PATA",

211 "PESX"

212]

213 },

214 {

215 "instrument_id ": "000002141" ,

216 "instrument_type ": "MAZ", /* "VE*" = Vehicle. In this case

it needs the field capacity. Otherwise another 3-characters code */

217 "capacity ": null , /* capacity in liters (if VEH),

null otherwise */

218 "needed_skills" : [/* 0 or more items */

219]

220 },

221 {

222 "instrument_id ": "000002241" ,

223 "instrument_type ": "FEV", /* "VE*" = Vehicle. In this case

it needs the field capacity. Otherwise another 3-characters code */

224 "capacity ": null , /* capacity in liters (if VEH),

null otherwise */

68

Chapter A. Terranova JSON Input Format

225 "needed_skills" : [/* 0 or more items */

226 "DRFE"

227]

228 }

229]

230 }

69

Appendix B

Tool Outputs for Company-Provided
Data

B.1 City

B.1.1 Text Output

The following text output is for weighting α = 0, β = γ = 1. In other words, the optimisation
criteria is equally weighted between processing time and distance.

Max priority: 8.0 unit(s)

Max time taken: 3600.0 unit(s)

Max distance: 0.58 unit(s)

-

Job allocation to schedule is not feasible

- Job F is not allocated to any operator

- Job G is not allocated to any operator

- Job P is not allocated to any operator

- Job AK is not allocated to any operator

- Job BB is not allocated to any operator

Schedule does satisfy job skill constraints

- All jobs satisfy all skill constraints

Schedule does satisfy job instrument constraints

- All jobs satisfy all skill constraints

Schedule is efficient (for this instrument allocation)

- All jobs satisfy single and pairwise exchange properties

Individual schedule(s) are efficient

- All jobs satisfy single and pairwise exchange properties;

Instrument allocation is feasible

- There are no instruments

Schedule does satisfy job instrument constraints

- All instruments can be used by their assigned operators

Schedule does satisfy instrument skill constraints

- All instruments can be used by their assigned operators

70

Chapter B. Tool Outputs for Company-Provided Data B.1. CITY

B.1.2 Text Output for Priority Optimisation

The following text output is for weighting α = 1, β = γ = 0. In other words, the only
variable that is optimised is the priority.

Max priority: 8.0 unit(s)

Max time taken: 3600.0 unit(s)

Max distance: 0.58 unit(s)

-

Job allocation to schedule is not feasible

- Job F is not allocated to any operator

- Job G is not allocated to any operator

- Job P is not allocated to any operator

- Job AK is not allocated to any operator

- Job BB is not allocated to any operator

Schedule does satisfy job skill constraints

- All jobs satisfy all skill constraints

Schedule does satisfy job instrument constraints

- All jobs satisfy all skill constraints

Schedule is not efficient (for this instrument allocation)

- Job AH can be allocated from operator 7 to 1 at start to reduce by 1.0

- Job AH can be allocated from operator 7 to 2 after job W to reduce by 1.0

- Job AH can be allocated from operator 7 to 2 at start to reduce by 1.0

- Jobs AH and B can be swapped with operators 7 and 11 to reduce by 1.0

- Job AH can be allocated from operator 7 to 3 at start to reduce by 1.0

- Job AH can be allocated from operator 7 to 4 at start to reduce by 1.0

- Jobs AH and E can be swapped with operators 7 and 11 to reduce by 1.0

- Job AH can be allocated from operator 7 to 6 at start to reduce by 1.0

- Jobs AH and I can be swapped with operators 7 and 12 to reduce by 1.0

- Jobs AH and J can be swapped with operators 7 and 16 to reduce by 1.0

- Job AH can be allocated from operator 7 to 11 at start to reduce by 1.0

- Job AH can be allocated from operator 7 to 12 at start to reduce by 1.0

- Jobs AH and L can be swapped with operators 7 and 27 to reduce by 1.0

- Job AH can be allocated from operator 7 to 13 at start to reduce by 1.0

- Job AH can be allocated from operator 7 to 14 at start to reduce by 1.0

- Job AH can be allocated from operator 7 to 15 at start to reduce by 1.0

- Job AH can be allocated from operator 7 to 17 at start to reduce by 1.0

- Jobs AH and R can be swapped with operators 7 and 5 to reduce by 1.0

- Job AH can be allocated from operator 7 to 21 at start to reduce by 1.0

- Jobs AH and V can be swapped with operators 7 and 10 to reduce by 1.0

- Jobs AH and W can be swapped with operators 7 and 2 to reduce by 1.0

- Jobs AH and X can be swapped with operators 7 and 14 to reduce by 1.0

- Jobs AH and Y can be swapped with operators 7 and 4 to reduce by 1.0

- Job AH can be allocated from operator 7 to 26 at start to reduce by 1.0

- Jobs AH and AA can be swapped with operators 7 and 21 to reduce by 1.0

- Jobs AH and AB can be swapped with operators 7 and 26 to reduce by 1.0

- Job AH can be allocated from operator 7 to 30 at start to reduce by 1.0

- Jobs AH and AD can be swapped with operators 7 and 18 to reduce by 1.0

- Jobs AH and AG can be swapped with operators 7 and 19 to reduce by 1.0

- Jobs AH and AI can be swapped with operators 7 and 21 to reduce by 1.0

71

B.1. CITY Chapter B. Tool Outputs for Company-Provided Data

- Jobs AH and AJ can be swapped with operators 7 and 3 to reduce by 1.0

- Jobs AH and AL can be swapped with operators 7 and 3 to reduce by 1.0

- Jobs AH and AM can be swapped with operators 7 and 3 to reduce by 1.0

- Jobs AH and AP can be swapped with operators 7 and 9 to reduce by 1.0

- Jobs AH and AR can be swapped with operators 7 and 12 to reduce by 1.0

- Jobs AH and AU can be swapped with operators 7 and 27 to reduce by 1.0

- Job AN can be allocated from operator 7 to 1 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 2 after job W to reduce by 1.0

- Job AN can be allocated from operator 7 to 2 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 3 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 4 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 5 at start to reduce by 1.0

- Jobs AN and E can be swapped with operators 7 and 11 to reduce by 1.0

- Job AN can be allocated from operator 7 to 6 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 9 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 10 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 11 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 12 at start to reduce by 1.0

- Jobs AN and L can be swapped with operators 7 and 27 to reduce by 1.0

- Job AN can be allocated from operator 7 to 13 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 14 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 15 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 16 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 17 at start to reduce by 1.0

- Jobs AN and T can be swapped with operators 7 and 18 to reduce by 1.0

- Job AN can be allocated from operator 7 to 21 at start to reduce by 1.0

- Jobs AN and W can be swapped with operators 7 and 2 to reduce by 1.0

- Jobs AN and X can be swapped with operators 7 and 14 to reduce by 1.0

- Jobs AN and Y can be swapped with operators 7 and 4 to reduce by 1.0

- Job AN can be allocated from operator 7 to 26 at start to reduce by 1.0

- Job AN can be allocated from operator 7 to 27 at start to reduce by 1.0

- Jobs AN and AB can be swapped with operators 7 and 26 to reduce by 1.0

- Job AN can be allocated from operator 7 to 30 at start to reduce by 1.0

- Jobs AN and AL can be swapped with operators 7 and 3 to reduce by 1.0

- Jobs AN and AM can be swapped with operators 7 and 3 to reduce by 1.0

- Jobs AN and AU can be swapped with operators 7 and 27 to reduce by 1.0

- Jobs AN and BA can be swapped with operators 7 and 19 to reduce by 1.0

- Job AO can be allocated from operator 7 to 1 at start to reduce by 1.0

- Job AO can be allocated from operator 7 to 2 after job W to reduce by 1.0

- Job AO can be allocated from operator 7 to 2 at start to reduce by 1.0

- Jobs AO and B can be swapped with operators 7 and 11 to reduce by 1.0

- Job AO can be allocated from operator 7 to 3 at start to reduce by 1.0

- Job AO can be allocated from operator 7 to 4 at start to reduce by 1.0

- Jobs AO and E can be swapped with operators 7 and 11 to reduce by 1.0

- Job AO can be allocated from operator 7 to 6 at start to reduce by 1.0

- Job AO can be allocated from operator 7 to 8 at start to reduce by 1.0

- Jobs AO and I can be swapped with operators 7 and 12 to reduce by 1.0

- Jobs AO and J can be swapped with operators 7 and 16 to reduce by 1.0

- Job AO can be allocated from operator 7 to 11 at start to reduce by 1.0

72

Chapter B. Tool Outputs for Company-Provided Data B.2. HPA

- Job AO can be allocated from operator 7 to 12 at start to reduce by 1.0

- Jobs AO and L can be swapped with operators 7 and 27 to reduce by 1.0

- Job AO can be allocated from operator 7 to 13 at start to reduce by 1.0

- Job AO can be allocated from operator 7 to 14 at start to reduce by 1.0

- Job AO can be allocated from operator 7 to 15 at start to reduce by 1.0

- Job AO can be allocated from operator 7 to 17 at start to reduce by 1.0

- Jobs AO and R can be swapped with operators 7 and 5 to reduce by 1.0

- Job AO can be allocated from operator 7 to 21 at start to reduce by 1.0

- Jobs AO and V can be swapped with operators 7 and 10 to reduce by 1.0

- Jobs AO and W can be swapped with operators 7 and 2 to reduce by 1.0

- Jobs AO and X can be swapped with operators 7 and 14 to reduce by 1.0

- Jobs AO and Y can be swapped with operators 7 and 4 to reduce by 1.0

- Job AO can be allocated from operator 7 to 26 at start to reduce by 1.0

- Jobs AO and AA can be swapped with operators 7 and 21 to reduce by 1.0

- Jobs AO and AB can be swapped with operators 7 and 26 to reduce by 1.0

- Job AO can be allocated from operator 7 to 30 at start to reduce by 1.0

- Jobs AO and AD can be swapped with operators 7 and 18 to reduce by 1.0

- Jobs AO and AG can be swapped with operators 7 and 19 to reduce by 1.0

- Jobs AO and AI can be swapped with operators 7 and 21 to reduce by 1.0

- Jobs AO and AJ can be swapped with operators 7 and 3 to reduce by 1.0

- Jobs AO and AL can be swapped with operators 7 and 3 to reduce by 1.0

- Jobs AO and AM can be swapped with operators 7 and 3 to reduce by 1.0

- Jobs AO and AP can be swapped with operators 7 and 9 to reduce by 1.0

- Jobs AO and AR can be swapped with operators 7 and 12 to reduce by 1.0

- Jobs AO and AU can be swapped with operators 7 and 27 to reduce by 1.0

- Jobs AO and AW can be swapped with operators 7 and 8 to reduce by 1.0

Individual schedule(s) are efficient

- All jobs satisfy single and pairwise exchange properties;

Instrument allocation is feasible

- There are no instruments

Schedule does satisfy job instrument constraints

- All instruments can be used by their assigned operators

Schedule does satisfy instrument skill constraints

- All instruments can be used by their assigned operators

B.2 hpa

B.2.1 Text Output

The following text output is for weighting α = 0, β = γ = 1. In other words, the optimisation
criteria is equally weighted between processing time and distance.

Max priority: 30.0 unit(s)

Max time taken: 19200.0 unit(s)

Max distance: 2.23 unit(s)

-

Job allocation to schedule is feasible

- All jobs are allocated to exactly one operator

Schedule does satisfy job skill constraints

73

B.2. HPA Chapter B. Tool Outputs for Company-Provided Data

- All jobs satisfy all skill constraints

Schedule does satisfy job instrument constraints

- All jobs satisfy all skill constraints

Schedule is not efficient (for this instrument allocation)

- Job BH can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job BH can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 8 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job BH can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job BN can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 8 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 19 at start to reduce by 0.276

74

Chapter B. Tool Outputs for Company-Provided Data B.2. HPA

- Job BN can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job BN can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job CG can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 8 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job CG can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job CV can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 17 at start to reduce by 0.276

75

B.2. HPA Chapter B. Tool Outputs for Company-Provided Data

- Job CV can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 22 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job CV can be allocated from operator 30 to 29 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job CW can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 22 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job CW can be allocated from operator 30 to 29 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job CX can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 8 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 11 at start to reduce by 0.276

76

Chapter B. Tool Outputs for Company-Provided Data B.2. HPA

- Job CX can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job CX can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DB can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 8 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job DB can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job DE can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DE can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DE can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DE can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DE can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DE can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DE can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job DE can be allocated from operator 30 to 15 at start to reduce by 0.276

77

B.2. HPA Chapter B. Tool Outputs for Company-Provided Data

- Job DE can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DE can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DE can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DI can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 22 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job DI can be allocated from operator 30 to 29 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DL can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 21 at start to reduce by 0.276

78

Chapter B. Tool Outputs for Company-Provided Data B.2. HPA

- Job DL can be allocated from operator 30 to 22 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job DL can be allocated from operator 30 to 29 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DQ can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 22 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job DQ can be allocated from operator 30 to 29 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DS can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 8 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 14 at start to reduce by 0.276

79

B.2. HPA Chapter B. Tool Outputs for Company-Provided Data

- Job DS can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job DS can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DT can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 8 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job DT can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DV can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 8 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 11 at start to reduce by 0.276

80

Chapter B. Tool Outputs for Company-Provided Data B.2. HPA

- Job DV can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job DV can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DW can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 6 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 8 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 9 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 10 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 12 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 13 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 14 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 15 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 16 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 17 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 18 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 21 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 23 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 24 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 26 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 27 at start to reduce by 0.276

- Job DW can be allocated from operator 30 to 28 at start to reduce by 0.276

- Job DX can be allocated from operator 30 to 1 after job CU to reduce by 0.276

- Job DX can be allocated from operator 30 to 1 at start to reduce by 0.276

- Job DX can be allocated from operator 30 to 2 at start to reduce by 0.276

- Job DX can be allocated from operator 30 to 3 at start to reduce by 0.276

- Job DX can be allocated from operator 30 to 5 at start to reduce by 0.276

- Job DX can be allocated from operator 30 to 7 at start to reduce by 0.276

- Job DX can be allocated from operator 30 to 11 at start to reduce by 0.276

- Job DX can be allocated from operator 30 to 15 at start to reduce by 0.276

81

B.2. HPA Chapter B. Tool Outputs for Company-Provided Data

- Job DX can be allocated from operator 30 to 19 at start to reduce by 0.276

- Job DX can be allocated from operator 30 to 25 at start to reduce by 0.276

- Job DX can be allocated from operator 30 to 26 at start to reduce by 0.276

- Jobs BN and DJ can be swapped with operators 30 and 4 to reduce by 0.0319

- Jobs CG and DN can be swapped with operators 30 and 2 to reduce by 0.0286

- Jobs CG and CQ can be swapped with operators 30 and 2 to reduce by 0.0238

- Jobs CG and DO can be swapped with operators 30 and 2 to reduce by 0.0238

- Jobs BN and DM can be swapped with operators 30 and 4 to reduce by 0.0222

- Jobs BN and DR can be swapped with operators 30 and 4 to reduce by 0.0222

- Jobs BN and DK can be swapped with operators 30 and 4 to reduce by 0.0216

- Jobs BN and DY can be swapped with operators 30 and 4 to reduce by 0.0216

- Jobs CG and V can be swapped with operators 30 and 2 to reduce by 0.0188

- Jobs CG and X can be swapped with operators 30 and 2 to reduce by 0.0188

- Jobs CG and Y can be swapped with operators 30 and 2 to reduce by 0.0188

- Jobs CG and Z can be swapped with operators 30 and 2 to reduce by 0.0188

- Jobs CG and AB can be swapped with operators 30 and 2 to reduce by 0.0188

- Jobs CG and CS can be swapped with operators 30 and 2 to reduce by 0.0188

- Jobs CG and DH can be swapped with operators 30 and 2 to reduce by 0.0188

- Jobs CG and DZ can be swapped with operators 30 and 2 to reduce by 0.0188

- Jobs CG and AA can be swapped with operators 30 and 2 to reduce by 0.0163

- Jobs BN and DU can be swapped with operators 30 and 4 to reduce by 0.0121

Individual schedule(s) are efficient

- All jobs satisfy single and pairwise exchange properties;

Instrument allocation is feasible

- There are no instruments

Schedule does satisfy job instrument constraints

- All instruments can be used by their assigned operators

Schedule does satisfy instrument skill constraints

- All instruments can be used by their assigned operators

82

Appendix C

User Study Data

C.1 User Study Layout

We include the following pages from the user study:

1. Introduction to the user study (for the half-then-half format);

2. Formatting guide to answer questions;

3. Question examples:

(a) Distance 2;

(b) Choice of Schedule 2;

4. Introduction to optimal scheduling tool.

The full user study can be found at https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp/-
/tree/master/user study.

83

https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp/-/tree/master/user_study
https://gitlab.doc.ic.ac.uk/jcl122/OptimalSchedulingWebApp/-/tree/master/user_study

28/08/2023, 11:47Qualtrics Survey Software

Page 1 of 55https://imperial.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/Get…urveyID=SV_ah2g6myIUTWY69w&ContextLibraryID=UR_8CZXvLdIpnhOhp4

Introduction (HALF THEN HALF)

Optimal Scheduling User Study

Format
This exercise will judge the general ability to understand and explain various schedules (including

makespan schedules).

Schedules consist of m operators and n jobs.

Every job must be assigned to exactly one operator for the schedule to be feasible.

The objective is to minimise the longest collective processing time and/or distance traveled by

any operator.

Some jobs have constraints (skills) which the corresponding operators must satisfy.

Operators are denoted by integers 1, 2, 3, etc.

Jobs are denoted by letters A, B, C, etc.

Skills (if applicable) are denoted by 3-digit HEX codes, e.g. AB3, B04

Instruments (if applicable) are denoted by "I" plus integers (beginning at 0), e.g. I0, I1, I2, etc.

For simplicity, working shifts and travelling times have not been taken into account

Example
In this example, we want to minimise the makespan. Here, all jobs have the same processing time,

regardless of the operator it is assigned to.

28/08/2023, 11:47Qualtrics Survey Software

Page 2 of 55https://imperial.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/Get…urveyID=SV_ah2g6myIUTWY69w&ContextLibraryID=UR_8CZXvLdIpnhOhp4

This schedule is not optimal since jobs A, B or D could be moved to operator 1.

Suppose we choose to move job B from operator 2 to operator 1 (shown below):

This schedule is optimal since no different assignments could be made which would improve the overall

makespan cost.

Further Information
This exercise consists of 14 questions. The first half will require you to solve the problems by hand. You

will then have access an optimal scheduling tool, which should help you complete the remaining half of

questions.

Please note some of these questions are difficult, particularly solving by hand. If you have still not got an

answer after a few minutes, take a guess or leave blank, and move on.

Expected duration: 1 hour.

This exercise should be completed in one sitting.

Formatting

28/08/2023, 11:47Qualtrics Survey Software

Page 3 of 55https://imperial.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/Get…urveyID=SV_ah2g6myIUTWY69w&ContextLibraryID=UR_8CZXvLdIpnhOhp4

Formatting
For questions asking for an improved schedule, answers should be in the form:

1: A B C

2: D

For questions asking for the maximum distance/processing time an operator takes, answers should

be given to 2 decimal places, and only for the operator who travels the furthest/takes the most time.

e.g. If operator 1 travels 2.34 units and operator 2 travels 3.12 units, the answer would be 3.12

Distance 2 - by hand READING

(TO BE COMPLETED BY HAND)
In this question, we want to minimise the maximum distance travelled by any
operator.

The graph below illustrates the location of each job and each operator's start/end position.

- All operators must begin and end their shift at the origin (0,0)

- Job A is located at (6,2)

- Job B is located at (5, 5)

- Job C is located at (0,7)

- Job D is located at (3,2)

Read the information above, then click "Next" to begin the question.

28/08/2023, 11:47Qualtrics Survey Software

Page 4 of 55https://imperial.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/Get…urveyID=SV_ah2g6myIUTWY69w&ContextLibraryID=UR_8CZXvLdIpnhOhp4

Distance 2

In this question, we want to minimise the maximum distance travelled by any
operator.

The graph below illustrates the location of each job and each operator's start/end position.

- All operators must begin and end their shift at the origin (0,0)

- Job A is located at (6,2)

- Job B is located at (5, 5)

- Job C is located at (0,7)

- Job D is located at (3,2)

The below schedule is inefficient:

1: B

2: C D A

Using the above information about distance, suggest an improved schedule for this problem

What is the maximum distance that any operator must travel in your improved schedule?

28/08/2023, 11:47Qualtrics Survey Software

Page 9 of 55https://imperial.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/Get…urveyID=SV_ah2g6myIUTWY69w&ContextLibraryID=UR_8CZXvLdIpnhOhp4

Choice of Schedule 2 - by hand

(TO BE COMPLETED BY HAND)
In this question, we want to minimise the maximum distance travelled by any
operator.

Select the optimal schedule.

28/08/2023, 11:47Qualtrics Survey Software

Page 10 of 55https://imperial.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/Ge…urveyID=SV_ah2g6myIUTWY69w&ContextLibraryID=UR_8CZXvLdIpnhOhp4

28/08/2023, 11:47Qualtrics Survey Software

Page 18 of 55https://imperial.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/Ge…urveyID=SV_ah2g6myIUTWY69w&ContextLibraryID=UR_8CZXvLdIpnhOhp4

Introduction to Optimal Scheduling Model

Optimal Scheduling Tool

28/08/2023, 11:47Qualtrics Survey Software

Page 19 of 55https://imperial.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/Ge…urveyID=SV_ah2g6myIUTWY69w&ContextLibraryID=UR_8CZXvLdIpnhOhp4

Please read this guide under 'How to use the tool' for an introduction to the tool and how to use

it.

For Windows, you can download the tool here. Download the zip folder containing all 3 files to your

computer (run_app.bat, requirements.txt and main.exe).

To run the tool, go into this folder and click run_app (.bat in Windows). (If your module requirements

are already met, you can remove this line from the file.)

Alternate Installation
Download the source code from this link.

This assumes a Ubuntu 22.04 or MacOS Ventura 13.4 system. The following packages are required and

can be installed from the terminal:

pip install matplotlib

pip install numpy

pip install tkinter-tooltip

To start the tool, run python main.py -g in the src directory supplied in the repository.

Next Questions

28/08/2023, 11:47Qualtrics Survey Software

Page 20 of 55https://imperial.eu.qualtrics.com/Q/EditSection/Blocks/Ajax/Ge…rveyID=SV_ah2g6myIUTWY69w&ContextLibraryID=UR_8CZXvLdIpnhOhp4

For the remainder of exercises, you should use the optimal scheduling tool to calculate your answers.

1. Each question will include a .problem and a .schedule file which represents the problem and

schedule described (ignore any numbers associated with the exercises – the order is semi-

random).

2. Download the relevant files at the start of each question, and use the Load button in the relevant

sections of the tool to upload this information to the app.

Please take a couple minutes to get familiar with the tool before moving to the next section.

Chapter C. User Study Data C.2. AVERAGE QUESTION COMPLETION TIME

By hand By tool
Set 1 Alt HTH Total (by hand) Alt HTH Total (by tool)
Q1 630.42 406.13 518.27 476.65 142.39 225.95
Q2 257.09 274.97 266.03 25.87 22.55 23.38
Q3 1026.20 635.47 830.84 14.37 84.24 66.78
Q4 274.98 508.12 391.55 130.87 97.98 106.20
Q5 437.49 511.83 474.66 9.35 33.81 27.70
Q6 409.33 475.44 442.38 125.70 93.12 101.27
Q7 438.24 805.62 621.93 1.53 42.49 32.25

By hand By tool
Set 2 Alt HTH Total (by hand) Alt HTH Total (by tool)
Q1 1452.87 518.04 752.24 418.48 102.43 260.46
Q2 703.03 256.38 368.04 69.14 48.31 58.72
Q3 1214.38 448.07 639.64 112.29 56.61 84.44
Q4 78.17 333.22 269.46 138.06 296.88 217.47
Q5 1647.76 1468.62 1513.40 235.14 58.89 147.02
Q6 - 1661.55 1661.55 232.13 69.71 150.92
Q7 - 730.47 730.47 53.25 26.56 39.90

Table C.1: Average time taken (in seconds) for alternating (Alt) and half-then-half (HTH) groups
to complete each question set.

C.2 Average Question Completion Time

Table C.1 gives the average time each user spent on a given question before clicking submit.

93

	1 Introduction
	1.1 Motivation
	1.2 Objectives

	2 Background
	2.1 The Makespan Scheduling Problem
	2.2 Abstract Argumentation (AA) Framework
	2.3 Mapping A Schedule Using Argumentation
	2.3.1 Feasibility
	2.3.2 Efficiency
	2.3.3 Fixed Decisions
	2.3.4 Explanations

	2.4 Priority Scheduling Algorithms
	2.5 Travelling Salesman Problem
	2.6 Dataset

	3 Theory
	3.1 Efficiency with Extended Cost
	3.1.1 Variable Processing Times
	3.1.2 Priority
	3.1.3 Optimising Individual Cost Scheduling

	3.2 Schedule Order and Distance
	3.2.1 Distance
	3.2.2 Optimising Extended Cost Scheduling

	3.3 Mapping Skill Constraints to Fixed Decisions
	3.4 Individual Efficiency
	3.5 Instruments
	3.5.1 Job Instrument Constraints

	3.6 Summary

	4 Design and Implementation
	4.1 Incorporating Schedule Order
	4.2 Weighted Variables
	4.2.1 Graphical Representations

	4.3 Instruments
	4.4 Limitations of Source Code

	5 Evaluation
	5.1 Comparison with Company-Provided Examples
	5.1.1 City
	5.1.2 hpa

	5.2 User Study
	5.2.1 Outline of Questions
	5.2.2 Completion Times
	5.2.3 Accuracy
	5.2.4 Accuracy Breakdown & Format Comparisons

	5.3 Qualitative Evaluation

	6 Further Theory
	6.1 Time Constraints & Extended AFs
	6.1.1 Interval Scheduling
	6.1.2 Interval Scheduling with Distance
	6.1.3 Prerequisite Job Requirements

	6.2 Schedule-Dependant Individual Priority
	6.2.1 Variance of Priority
	6.2.2 Priority in Schedule Order

	7 Conclusions
	7.1 Limitations of Argumentation in Scheduling
	7.2 Future Work
	7.3 Summary

	Bibliography
	A Terranova JSON Input Format
	B Tool Outputs for Company-Provided Data
	B.1 City
	B.1.1 Text Output
	B.1.2 Text Output for Priority Optimisation

	B.2 hpa
	B.2.1 Text Output

	C User Study Data
	C.1 User Study Layout
	C.2 Average Question Completion Time

