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Abstract

Partial differential equations (PDEs) model an immense variety of physical phenomena of

theoretical and practical interest, although they often do not present closed-form solutions.

Firedrake is a high-performance, automated code generation software tool to approximate

the solution to PDEs using the finite element method (FEM). Time-dependent PDEs are

commonly solved numerically by applying the FEM only in the spatial-domain, reducing the

problem to a number of time-dependent ordinary differential equations solved by time-stepping

methods like Runge-Kutta. This report presents Fetsome, an extension to Firedrake and

the Irksome time-stepping library which discretises the time domain through finite elements

like in the spatial domain, providing a new software implementation for the mathematical

formulation of finite element in time (FET). Fetsome supports continuous Petrov-Galerkin and

discontinuous Galerkin time elements, which decouple the problem defined on the global time-

mesh to obtain local FET time-stepping. Code verification is performed through convergence

testing for classical linear and nonlinear time dependent PDEs such as the heat, transport

and Burger’s equations. By analysing the stability properties of solutions to the inviscid

Burgers’ equation, the efficacy of the implementation in combining with more complex spatial

discretisations and flux functions is highlighted.
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Chapter 1

Introduction

Partial differential equations (PDEs) are a fundamental tool in modelling the behaviour of

evolving systems and form one of the most important research areas in mathematics, both

from a theoretical and an applied point of view. The applications of PDEs are countless: from

the Korteweg-de Vries equation for water wave solitons, through the Klein-Gordon equation

in relativistic fundamental particles, or Skellam’s reaction-diffusion model for population dis-

persal [1], to name a few. It is therefore easy to understand the profound impact of PDEs on

scientific and engineering fields of any kind.

The relevance and power of PDEs is often hindered either by the impossibility of obtain-

ing closed form solutions to such problems or by the complex domains on which the problems

are posed. The Finite Element Method (FEM) is one of the most common and powerful nu-

merical methods that are employed to overcome this problem and obtain solutions to PDEs on

arbitrarily complex domains. It attempts to approximate these domains through ”meshes” of

connected nodes, partitioned into elements, over which a solution basis is defined. The PDE

of interest is then manipulated into its weak variational form and its approximate solution is

sought in this basis. Many software packages present an implementation of the tools needed

to solve finite element (FE) problems. Such packages aspire to provide great accuracy with

great performance, usually measured by their temporal and energetic efficiencies in obtaining

numerical solutions, as well as a fundamental simplicity-of-use for users who are often not

acquainted with writing high-performance, at times even parallel, mathematical code.

Firedrake [2] is one of such software packages and the one on which this study focuses. Fire-

drake provides a framework for automated generation of low-level, high-performance finite

element code that can be used by scientists, engineers and mathematicians alike, through its

focus on providing a natural software extension to the mathematical theory of the FEM.

The FEM approach of discretising spatial domains through a mesh of simplexes (or polytopes)

is widely used. Nevertheless, many problems of interest that also involve time derivatives are

not usually approached by preparing a finite element in time (FET) discretisation, which

uses higher dimensional space-time meshes. In fact, time-dependent PDEs are usually only

discretised in space, to obtain ordinary differential equations that can be solved iteratively by

conventional time stepping methods. One of the most widely adopted of these methods, also

considered in this study, is that of generic Runge-Kutta (RK) time stepping.
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Many important FE software frameworks, such as FEniCS [3] and DUNE [4], reflect this: a

user can employ the provided functionality to manipulate their problem, spatial domain and

boundary conditions but their code must be integrated with manually-implemented loops that

evolve the solutions forward through time. Besides introducing the need for implementation

specific knowledge on the side of the users, this forfeits the possibility of maintaining a higher

level of mathematical abstraction. This would often be useful in allowing a more natural and

generic software composition of the elements that constitute a numerical method for solving

PDEs. In the case of traditional RK time-steppers, the Irksome [5] extension of Firedrake

begins to challenge this. It provides its users with a symbolic definition of the time derivative,

subsequently interpreted inside expressions by a symbolic manipulation layer that composes

and solves the associated Runge-Kutta problems separately.

Nevertheless, Irksome does not support FET. Besides yielding a more unified formulation

for the solution of time-dependent PDEs, a FET solver is desirable in its automatic gener-

ation of high-order time-stepping schemes. Also, solutions produced with FET are always

meaningful over the continuous time domain. Furthermore, FET presents the opportunity to

apply spatial FEM techniques, such as choice of quadrature, in the time domain to investigate

their effects on efficiency and accuracy for time-dependent problems.

The implementation presented in this report extends Firedrake’s and Irksome’s symbolic

manipulation layer with Fetsome, a novel FET time-stepping layer that solves PDEs using

space-time finite elements. The focus of this implementation is on enabling FET solutions to

fundamental time-dependent problems, such as the heat equation and Burgers’ equation, com-

monly found in all fields of applied mathematics. The goals of Fetsome and this investigation

therefore are to:

• Introduce an automated FET layer for solving space-time dependent linear and nonlinear

PDEs, integrated with Firedrake and Irksome

• Support continuous (Petrov-Galerkin) and discontinuous (Galerkin) discretisations of

the time domain

• Support time-dependent forcing functions and spatial boundary conditions in FET

• Demonstrate FET in the context of solving classical time-dependent PDEs

• Evaluate the convergence properties of the supported time finite elements for code ver-

ification

This report describes all layers involved in the development of Fetsome, from the derivation

of the mathematical formulations and algebraic systems, through the implementation, to

showcasing and analysing the developed functionality.

4



Chapter 2

Mathematical and Computational

Background

2.1 Finite Element in Space

This section introduces the finite element method by considering the Poisson problem posed on

an exclusively spatial domain. It is shown how, by formulating the weak variational problem

on an approximating space, Firedrake can be used to obtain a numerical solution converging

to its exact solution.

2.1.1 A Standard Example

Let Ω ⊂ R2 be a two-dimensional spatial domain, then the forced Poisson problem requires

finding u(x, y) such that the following equation, combined to specific boundary conditions, is

satisfied:

−∇2u = f(x, y) (2.1.1)

In particular, suppose that Ω = [0, 1] × [0, 1] (the unit square) and that the forcing function

is f(x, y) = 5π2 sin(πx) sin(2πy). Suppose also that vanishing Dirichlet boundary conditions

are enforced such that u|∂Ω = 0. It can be verified that u(x, y) = sin(πx) sin(2πy) solves

the equation. Now let T be a triangulation (forming a ”mesh”) of the domain Ω and let Vh
be a function space such that the restriction of v ∈ Vh to a triangle K ∈ T is a degree k

polynomial. To obtain the variational formulation of the Poisson equation for what is called

the trial function u ∈ Vh, equation (2.1.1) must be multiplied by an arbitrary test function

v ∈ Vh and integrated by parts over Ω:∫
Ω
−v∇2udx =

∫
Ω
fvdx (2.1.2)

=⇒
∑
K∈T

[∫
K
∇v · ∇udx−

∫
∂K

v∇u · ndS
]
=

∑
K∈T

∫
K
fvdx (2.1.3)

=⇒
∫
Ω
∇v · ∇udx−

∫
∂Ω
v∇u · ndS −

∫
Γ
v∇u · (n+ + n−)dS =

∫
Ω
fvdx (2.1.4)

Where Γ is the set of all triangle edges that are contained in the interior of Ω and not on

its boundary. As all interior edges are shared by two triangles, each of these will contribute

to the surface integral through the n+ and n− terms. As the function space is continuous
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across triangles, the boundary term can be factored from its dot product with the normals in

this same integral. Note that the two normals are equal and opposite by definition, as they

belong to the same edge from opposite facing triangles, so the whole interior edge integral

vanishes. To enforce the vanishing Dirichlet boundary condition, the space of solutions and

test functions Vh is modified to Ṽh = {v ∈ Vh|v|∂Ω = 0} such that we now take u, v ∈ Ṽh.

Therefore, by v|∂Ω = 0, the integral over ∂Ω also vanishes, leaving:

∀v ∈ Ṽh :

∫
Ω
∇v · ∇udx =

∫
Ω
fvdx (2.1.5)

From equation (2.1.5) two forms can be defined, one bilinear in u and v and one linear in v.

Through this, the weak variational problem for the Poisson equation is to find u ∈ Ṽh such

that for all v ∈ Ṽh:

b(v, u) = L(v) (2.1.6)

b(v, u) =

∫
Ω
∇v · ∇udx (2.1.7)

L(v) =

∫
Ω
5π2 sin(πx) sin(2πy)vdx (2.1.8)

If a basis {ϕi(x, y)}i of Ṽh is taken, the following is obtained by imposing equation (2.1.6) is

satisfied for all basis functions (by linearity in v):

∀ϕi(x, y) :
∑
j

ujb(ϕi, ϕj) = L(ϕi) (2.1.9)

=⇒ Bu = L (2.1.10)

Where Bij = b(ϕi, ϕj), uj = uj are the constant coefficients of u expanded in the basis,

Li = L(ϕi). Therefore the finite element approximation can be solved by reducing to such

a matrix-vector system. It is worth noting that, in general, bilinear forms correspond to

matrices and linear forms to vectors when deriving the algebraic system for a problem. With

the weak variational formulation for the Poisson problem on Ṽh complete, it is now possible

to seek a solution using Firedrake.

2.1.2 Firedrake

Firedrake [2] is the automated system for solving PDEs with the finite element method on

which this study is based. It is a freely-available Python package that aims to present a

unified framework spanning from the definition of weak variational forms and problems on

arbitrary meshes, to the assembly of their equivalent systems of equations (like (2.1.9)), to

their high-performance sequential and parallel solutions.

On the highest level, Firedrake uses an extended version of the UFL [6] (Unified Form

Language, see 2.4.1) domain specific language (maintained by the FEniCS [3] Project) to

describe the integrals (such as (2.1.6)) over spatial domains that are employed in the FEM.

Finite element problems are posed on meshes and Firedrake supports both building meshes

programmatically as well as loading unstructured meshes from tools such as Gmsh [7]. Sim-

ilarly, Firedrake presents users with simple and effective ways of defining function spaces on
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arbitrary one, two or three dimensional meshes of polytopes supported by a variety of finite

elements. These include, but are not limited to: continuous and discontinuous Lagrange for

scalar elements, Brezzi-Douglas-Marini, Raviart-Thomas, H(div) and H(curl) for vector val-

ued elements and the Argyris element for derivative continuity as well as more exotic choices

such as the Hellan-Herrmann-Johnson and Bell elements. Functions defined on Firedrake

function spaces seamlessly interact with UFL to the point that some of the changes made by

Firedrake to UFL have been incorporated into its upstream release. Arbitrary functions in

the coordinates of the defined meshes can also be used through their interpolation onto the

supported function spaces.

In its lower levels, Firedrake reduces a finite element problem to objects and data structures

that better represent the computational task by interfacing with representation, tabulation

and solver libraries such as petsc4py [8] and FIAT/FInAT [9, 10] (see 2.4.3, 2.4.4 for more

details). Subsequently, its Two-Stage Form Compiler [11] compiles the tensor algebraic rep-

resentations of the specific finite element problem to efficient and explicitly-parallel C code

that is architecture specific and can be executed in scalable, high-performance contexts.

Firedrake’s philosophy of being flexible and composable has allowed it to be central in the

development of application-specific PDE frameworks like Thetis [12], for coastal ocean mod-

elling, and Icepack [13], for glacier flow, as well as supporting extensions like Slate [14], to

represent linear algebra operations on tensors. Together with the newly developed Irksome

package (see 2.4.2), these make development of a FET package for Firedrake very appealing

for the vast potential of applications it can target.

2.1.3 Solution with Firedrake

We now seek to solve the Poisson problem (2.1.1) on the unit square numerically to introduce

Firedrake’s core functionality. Firstly, the domain of the problem is defined by providing

a mesh and a corresponding function space over it. The finite element space composed of

the function space over the mesh will provide both the trial and the test functions for the

weak variational problem. In this case, the mesh is picked to partition a unit square and is

triangulated using a 10x10 grid, with each triangle supporting a continuous Lagrange element

composed of polynomials of degree less than or equal to 3 (the cubics). A traditional Lagrange

element involves functions that are specified by point-evaluation at equispaced points in each

triangle. In the case of Firedrake, the default spectral variant is a slight modification of

this, picking the points at which to evaluate functions to be Gauss-Lobatto-Legendre points

for better conditioning on the systems to be solved. The following then defines the mesh,

function space and functions that are needed to specify the weak variational problem:

1 from firedrake import *

2

3 mesh = UnitSquareMesh(10, 10)

4 v = FunctionSpace(mesh, "CG", 3)

5 u = TrialFunction(V)

6 v = TestFunction(V)

The bilinear and linear forms that were derived in (2.1.6) can be easily translated into

Firedrake-compatible UFL using syntax that closely resembles mathematical operations. The
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Figure 2.1: Contour plots of the finite element solution (left) on a 10× 10 grid of cubic
Lagrange elements on triangles, and the exact solution sin(πx) sin(2πy) (right)

forcing function f(x, y) = 5π2 sin(πx) sin(2πy) is interpolated onto the finite element space V

before it is used in the linear forcing form through Firedrake’s interpolate.

1 x, y = SpatialCoordinate(mesh)

2 f = interpolate(5*pi**2 * sin(pi*x) * sin(2*pi*y), V)

3

4 b = dot(grad(u), grad(v)) * dx

5 L = f*v*dx

Lastly, the vanishing Dirichlet boundary condition on the unit square boundary is enforced

using DirichletBC, specifying the domain as "on boundary" to be applied on the whole

domain boundary:

1 bc = DirichletBC(V, Constant(0.), "on_boundary")

Once the weak variational problem and its boundary condition are fully specified, we can

define a solution variable and let Firedrake’s solve compile the problem down to an algebraic

system solved by PETSc:

1 uh = Function(V)

2 solve(b == L, uh, bcs=[bc])

Figure 2.1 shows the analytical solution u(x, y) = sin(πx) sin(2πy) held in uh to the Poisson

problem compared to the obtained numerical solution using Firedrake. If h is the maximum

between the diameters of the triangles partitioning Ω, the choice of a cubic polynomial con-

tinuous Lagrange finite element space guarantees convergence of the Poisson problem in the

order O(h4). Hence, this numerical solution will converge to the exact solution as the number

of elements is increased uniformly, as the mesh size parameter decreases.
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2.2 Finite Element in Time

Finite element in time has a well-established mathematical theory. Nevertheless, its formula-

tion into software that can be used by general-problem finite element packages is not avail-

able in the literature. This section outlines the mathematical extension of the finite element

method to space-time elements and their convergence, forming the theoretical foundations

for the implementation of Fetsome, as well as a new, practical derivation of the systems that

underpin its translation into automatic software.

2.2.1 Numerical Quadrature in the Time Domain

Before the standard finite element method can be extended from an exclusively spatial domain

to the space-time domain, quadrature in the time domain must be presented. Quadrature

is the numerical method used to approximate an integral of an integrand over a chosen do-

main. Quadrature approximates integrals by their finite Riemann sums up to some order.

In conventional calculus, the limit of these Riemann sums as the typical size of the partition

over which they are defined tends to zero would be one formal mathematical definition of an

integral. The approximation of an integral over a time domain [0, T ] of a space-time function

f through quadrature can be generically expressed as:∫ T

0
f(x, t)dt ≈

q∑
i=1

bif(x, ti) (2.2.1)

In this form, the q point scheme is composed of the ti quadrature points and the bi weights.

Quadrature rules can be multi-dimensional, although a fundamental property of the time

domain is that it is always one-dimensional. This means that all quadrature schemes dealt

with inside this study will be one-dimensional, presenting a great degree of simplification of

the mathematics compared to that involved in the study of higher dimensional spatial quadra-

tures. Furthermore, this report will refer to the degree of precision of a quadrature scheme as

the highest polynomial degree that can be integrated exactly by the scheme.

When implementing a numerical solver that uses quadrature to compute time integrals, it

is important to choose schemes that have both the correct degrees of precision and enforce

evaluation of the integrand at the desired time points. In the case of continuous finite ele-

ments in time implemented through a Petrov-Galerkin method, introduced in section 2.2.3,

a Gauss-Legendre quadrature scheme with evaluation points on the interior of the element

is suggested [15]. A q point Gauss-Legendre quadrature has degree of precision of 2q − 1.

Differently, a discontinuous Galerkin method, introduced in section 2.2.4, will use right-sided

Gauss-Radau quadrature schemes, which evaluate a function also at the rightmost end of a

time-step and have a degree of precision 2q − 2 for a q point quadrature [15].

2.2.2 Heat Equation Example

Using the following example, it is demonstrated how it is possible to augment the usual finite

element method in the three spatial dimensions with a time discretisation. It is then shown

how a block system for the problem can be obtained and solved for the solution in the chosen

space-time finite element space.

9



t0 t1 t2 t3 t4
0

0.2

0.4

0.6

0.8

1

t

ψ
i(
t)

ψ0

ψ1

ψ2

ψ3

ψ4

Figure 2.2: First five temporal basis functions ψi for the interval [0, T ]

Consider the heat equation problem on the domain Ω× [0, T ], with Ω representing the spatial

domain and [0, T ] the finite closed time interval over which the solution is sought:

∂u

∂t
−∇2u = 0 (2.2.2)

The heat equation is equipped with the Neumann boundary condition ∂u
∂n = ∇u · n̂ = 0 on ∂Ω,

representing no heat dissipation at the boundary. From the time dependence, the problem

requires an initial condition for u(x, t), namely u(x, 0) = ρ(x). It is to be noted that the

thermal diffusivity is taken to be 1 and that the equation can also be referred to as a diffusion

equation in the literature.

Let T be a polygonal partition of the spatial domain Ω such that for each Ki ∈ T , (Ki,Pi,Ni)

is a Ciarlet finite element [16] with Pi being the space of shape functions on Ki and Ni being

the set of nodal variables forming a basis for the dual space P ′
i. It is assumed that the partition

covering Ω will not change through time. We wish to approximate the spatial solutions u(x, t)

on Ω for a fixed t ∈ [0, T ] by any chosen finite element space Sh ⊂ S with S a Sobolev space,

h representing a maximum measure for spatial elements in the mesh. Let Φ = {ϕk(x)}dk=0 be

a finite d+ 1 dimensional basis for Sh.

Then, let PN be the chosen discretisation of the one-dimensional time domain [0, T ] such

that PN = {0 = t0 < t1 < . . . < tN = T} and tn+1 = tn + ∆t, with ∆t = T
N . For this

example, the chosen discretisation is uniformly spaced for all time-steps, but it can be easily

modified to allow generically spaced points on the one-dimensional time domain. Let D be

a Sobolev space and let Dk ⊂ D (k = ∆t maximum time ”mesh” size) be the finite element

space that represents the temporal dependency of the approximated solution, with each in-

terval [tn, tn+1] being a time finite element. Let the temporal basis Ψ = {ψi(t)}pi=0 for Dk be

formed of piecewise-continuous polynomial functions such that ψi(tj) = δij . For piecewise-

linear basis functions, this temporal basis is visually composed of hat functions on the interior

points of PN , formed by a linearly increasing function between tn−1 and tn combined with a

linearly decreasing function between tn and tn+1 with range 0 to 1. Figure 2.2 presents the

basis Ψ in the case of linear shape functions as a graph.

10



Figure 2.3: A spatial function evolving across timesteps/time-elements where each basis
function is linear, showing the tensor product nature of space-time elements

Having defined spatial and temporal spaces and bases, we can define the Sobolev and Galerkin

approximating spaces for the problem on Ω× [0, T ] as the tensor product spaces W = D⊗ S

and Wkh = Dk ⊗ Sh, as justified by Aziz and Monk in [17]. From the definition, we obtain

the basis functions for Wkh:

ϕij(x, t) = ψi(t)ϕj(x) (2.2.3)

Above, the index i is interpreted as the time-point and j is interpreted as the unique spatial

node identifier. It follows that any function in the space can be expressed as a linear com-

bination of basis functions f(x, t) = fijϕij(x, t), withfij ∈ R constants, where the Einstein

summation convention over indices is used for conciseness. Figure 2.3 illustrates the tensor

product nature underpinning a time evolving spatial system, with the spatial dimension being

replicated for all points on the time axis.

We proceed to formulate the weak variational problem by taking a test function v ∈ W

(as shown later, v need not to be from the same space as u), multiplying equation (2.2.2) and

integrating on the space-time domain:

∂u

∂t
v − (∇2u)v = 0

=⇒
∫ T

0

∫
Ω

(
∂u

∂t
v − (∇2u)v

)
dxdt =

∫ T

0

∫
Ω

(
v
∂u

∂t
+∇u · ∇v

)
dxdt−

∫ T

0

∫
∂Ω
v(∇u · n̂)dsdt = 0

=⇒
∫ T

0

∫
Ω

(
v
∂u

∂t
+∇u · ∇v

)
dxdt = 0 (2.2.4)

With the last part following from the natural Neumann boundary condition (∇u · n̂)|∂Ω = 0.

Integration by parts can be carried out by the piecewise continuity of the space-time basis

functions across elements. It is important to see that this multiplication and integration guar-

antees that the resulting space-time equation is always linear in v. Since the heat equation

11



is to be satisfied for each time sub-interval, it must be that in a partition PN for each single

time-step tn < t < tn +∆t we can reduce the time integral to just over this interval:∫ tn+∆t

tn

∫
Ω

(
v
∂u

∂t
+∇u · ∇v

)
dxdt = 0 (2.2.5)

This fact, similarly justifiable for any arbitrary space-time finite element problem, allows to

formulate the continuous and discontinuous time-stepping procedures from FET covered in

the subsequent sections of the report. Moving from the variational problem on the Sobolev

space W to the Galerkin approximating space Wkh, the full variational problem is to find

ukh ∈Wkh such that ∀vkh ∈Wkh, equation (2.2.5) holds for each of the time-steps tn. We can

now proceed with the substitution t = tn + τ∆t in which f(t) = f̃(τ) such that dt = ∆tdτ ,

to pull-back the integral on the single time-step to the reference normalised interval [0, 1]:

∫ 1

0

∫
Ω
∆t

(
ṽkh

∂τ

∂t

∂ũkh
∂τ

+∇ũkh · ∇ṽkh
)
dxdτ = 0

=⇒ I :=

∫ 1

0

∫
Ω

(
ṽkh

∂ũkh
∂τ

+∆t∇ũkh · ∇ṽkh
)
dxdτ = 0 (2.2.6)

This is the space-time weak variational form for the homogenous heat equation problem over

a single time-step, the starting point for the derivation of a FET time-stepping procedure.

2.2.3 Continuous Petrov-Galerkin Elements

Once a space-time variational problem has been formulated, the finite element spaces Dk and

Sh have to be chosen for a solution to be sought in practice. First, it is noted that, by the

tensor product space nature of Wkh, Sh can in principle be any spatial domain finite element

space, therefore it is taken as a given for the problems considered in this report. To choose

Dk, we begin by imposing the simplest requirement on the function space, namely that a

function over a time mesh must be continuous between time elements. As discussed by Ern

and Guermond in [15], continuous Petrov-Galerkin (cPG) elements satisfy this continuity re-

quirement and decouple the FET problem into local problems over single time elements. This

makes the FET timestepping that this investigation seeks possible to implement.

The cPG approach consists in picking spaces that are different for the trial and test functions

that appear in the weak variational space-time problem. Keeping Sh homogenous between

trial and test spaces, the time dependence of ukh will derive from Dk spanned by the basis

Ψ but the time dependence of vkh will come from D′
k spanned by Ψ′. For Dk and D′

k being

polynomial spaces, the cPG method requires the trial function space to be that of piecewise-

continuous polynomials of degree p and the test function space to be of degree p− 1. Figure

2.4 depicts the trial and test basis functions across a reference unit time interval.

Let k = ∆t be the typical time mesh size and ukh the solution to the weak variational

problem on Wkh of interest. Let u be the exact solution of the weak variational problem on

12
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Figure 2.4: Continuous Petrov-Galerkin trial and test function space basis functions for
quadratic Lagrange finite elements

the Sobolev space W . Define the L2 square integrated error over the domain Ω× [0, T ] as:

||u− ukh||2L2 =

∫ T

0

∫
Ω
|u(x, t)− ukh(x, t)|2dxdt (2.2.7)

Then [15] also proves that ||u−ukh||L2 scales as O(hm+∆tp+1), with h being the usual spatial

typical size and m being some constant. This means that the error for a FET discretisation

scales as one degree higher than the chosen approximating polynomial degree.

Finally, [15] also establishes the equivalence of the cPG method with the Kuntzmann-Butcher

implicit Runge-Kutta (IRK) family of timestepping methods, discussed in more detail in

section 2.2.8. The lowest order cPG scheme, with linear trial functions and constant test

functions, is the lowest order Kuntzmann-Butcher scheme: Crank-Nicolson [18].

2.2.4 Discontinuous Galerkin Elements

It is also possible to obtain a timestepping FET implementation by relaxing the constraint

that trial functions, and therefore solutions, should be continuous across elements. This is

known as the discontinuous Galerkin (dG) FET scheme. It presents important benefits in the

stability of numerical solutions, due to the larger number of degrees of freedom available for

polynomial fixing within elements. For the kinds of problems where continuity provokes large

oscillatory behaviour of numerical solutions close to derivative discontinuities or shocks, this

is fundamental to produce meaningful solutions which converge as ∆t→ 0.

In the case of dG, the time Galerkin-approximating space Dk is the same for both trial

and test functions and can be defined as the span of the basis Ψ, composed of discontinuous

degree p polynomials when restricted to elements. Discontinuous elements require a change
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to the specification of a space-time weak variational problem. Consider the following:∫ T

0

∫
Ω

∂u

∂t
vdxdt =

∑
n

∫
In

∫
Ω

∂u

∂t
vdxdt (2.2.8)

=
∑
n

[∫
In

∫
Ω

∂

∂t
(uv)dxdt−

∫
In

∫
Ω
u
∂v

∂t
dxdt

]
(2.2.9)

=
∑
n

[[∫
Ω
uvdx

]
∂In

−
∫
In

∫
Ω
u
∂v

∂t
dxdt

]
(2.2.10)

=
∑
n

[∫
Ω
uvdx

]
∂In

−
∫ T

0

∫
Ω
u
∂v

∂t
dxdt (2.2.11)

In this case, the sum of terms over the endpoints of each sub element In ∈ [0, T ] does not

telescopically reduce to the contributions from the boundary of [0, T ]. This is because of

the discontinuity of the functions across element boundaries. Moreover, the value on the

boundary is multiply defined. Therefore, we introduce a numerical flux function f̂(u)(x, t) =

f̂(u(x, t−), u(x, t+)) [19] and impose that equation (2.2.11) is equal to:

∑
n

[∫
Ω
f̂(u)(x, t)v(x, t)dx

]
∂In

−
∫ T

0

∫
Ω
u
∂v

∂t
dxdt (2.2.12)

There are many kinds of application-specific flux functions. For time elements, a valid numer-

ical flux function is the standard upwind flux: the value of a function on a boundary between

time elements is chosen to be the function value given by the previous element:

f̂(u)(x, t) = f̂(u(x, t−), u(x, t+)) = u(x, t−) (2.2.13)

This is consistent with the ”arrow of time” assumption that a future evolution of a system

does not affect its present and is well defined for each time element except for the first in a

domain. An initial condition over a domain is therefore imposed weakly, by introducing it

through the flux function f̂ as the value passed by the ”previous element” for the first time

element.

Finally, [15] establishes that time dG has the same O(hm + ∆tp+1) space-time convergence

properties of the L2 error ||u− ukh||L2 of equation (2.2.7) as using cPG elements and that its

schemes are equivalent to Radau IIA implicit Runge-Kutta.
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2.2.5 Deriving the Heat Equation FET Block Systems for One Timestep

Consider the weak variational form for the heat equation over the first reference unit inter-

val as in equation (2.2.6). In order to discretise it, continuous Petrov-Galerkin elements are

chosen for a solution in time that is a degree p polynomial. The method requires the trial

function basis Ψ = {ψi(t)}pi=0 and a one-degree-lower test function basis Ψ′ = {ψ′
i(t)}

p−1
i=0 .

The spatial component remains equal for both space-time trial and test functions, meaning

that the exclusively-spatial restriction of both functions at a single point in time is spanned

by the d+ 1 dimensional basis Φ = {ϕj(x)}dj=0.

When restricted to this cPG finite element space, the expansions of the trial function ukh
and test function vkh in the two bases are u(x, t) = uijϕij(x, t) = uijϕ̃ij(x, τ) and v(x, t) =

vijϕ
′
ij(x, t) = vijϕ̃′ij(x, τ) with uij , vij ∈ R constants. Note that the Einstein summation con-

vention of summing over repeating indices is again used, together with the tilde to represent

the rewritten dependence on τ . Considering that the expansion coefficients and spatial basis

functions of ukh and vkh are time-independent we have that:

∂ukh
∂τ

= uij
∂ψ̃i
∂τ

(τ)ϕj(x)
∂vkh
∂τ

= vij
∂ψ̃′

i

∂τ
(τ)ϕj(x) (2.2.14)

We can now expand these expressions inside the variational form integral recalling that t =

tn + τ∆t to obtain:

I =

∫ 1

0

∫
Ω

[
uij

∂τ

∂t

∂ψ̃i
∂τ

ϕjvklψ̃′
kϕl + (uijψ̃i∇ϕj) · (vklψ̃′

k∇ϕl)

]
dx
∂t

∂τ
dτ (2.2.15)

=

∫ 1

0

∫
Ω

[
uij

∂ψ̃i
∂τ

ϕjvklψ̃′
kϕl +∆t(uijψ̃i∇ϕj) · (vklψ̃′

k∇ϕl)

]
dxdτ = 0 (2.2.16)

To computationally approximate the time interval, we perform numerical quadrature using a

q point Gauss-Legendre quadrature rule of the following form:∫ 1

0

∫
Ω
F (x, τ)dxdτ ≈

q∑
m=1

bm

(∫
Ω
F (x, τm)dx

)
= bm

∫
Ω
F (x, τm)dx (2.2.17)

Applying quadrature from (2.2.17) to the integral I:

I = bm

∫
Ω

[
uijvkl

∂ψ̃i
∂τ

|cmψ̃′
k|cmϕjϕl + uijvklψ̃i|cmψ̃′

k|cm∇ϕj · ∇ϕl∆t

]
dx (2.2.18)

= bmuijvkl
∂ψ̃i
∂τ

|cmψ̃′
k|cm

∫
Ω
ϕjϕldx+ bmuijvklψ̃i|cmψ̃′

k|cm
∫
Ω
∇ϕj · ∇ϕldx∆t (2.2.19)

To simplify the obtained expression, it is useful to define the following matrices:

• Petrov time mass: PMik = bmψ̃i|cmψ̃′
k|cm

• Petrov time half-stiffness on trial function: PLik = bm
∂ψ̃i

∂τ |cmψ̃′
k|cm

15



• Spatial mass matrix: Mjl =
∫
Ω ϕjϕldx

• Spatial stiffness matrix: Kjl =
∫
Ω∇ϕj · ∇ϕldx

Other quadrature dependent matrices that appear in other linear problems are the Petrov

time half-stiffness on test function PRik = bmψ̃i|cm
∂ψ̃′

k
∂τ |cm and time stiffness matrices PKik =

bm
∂ψ̃i

∂τ |cm
∂ψ̃′

k
∂τ |cm . Dik represents these same matrices for time discontinuous Galerkin elements

and basis functions. Using the defined matrix components, the spacetime variational form for

the heat equation reduces (including summation notation for clarity) to the expression:

p∑
i=0

d∑
j=0

p−1∑
k=0

d∑
l=0

uijvklP
L
ikMjl +∆t

p∑
i=0

d∑
j=0

p−1∑
k=0

d∑
l=0

uijvklP
M
ik Kjl = 0 (2.2.20)

From the variational problem in (2.2.5), equation (2.2.20) must hold for any v, therefore

it must also hold for v specified in its basis expansion by the coefficients vkl = δksδlr for

0 ≤ k, s ≤ p − 1 and 0 ≤ l, r ≤ d with δ being the Kroenecker symbol. This is equivalent to

saying that the variational form must hold for each of the test space’s basis functions sepa-

rately. Hence, we retrieve an equation for each s, r pair:

(
PLisMjr +∆tPMis Kjr

)
uij = 0 (2.2.21)

=⇒ G
(i,s)
rj uij = 0 with G

(n,s)
rj = PLnsMrj +∆tPMnsKrj (2.2.22)

From the summation on the coefficients of u we extract a matrix block system, that is a

matrix system where the entries are submatrices:
G(0,0) G(1,0) G(2,0) · · · G(p,0)

G(0,1) G(1,1) G(2,1) · · · G(p,1)

G(0,2) G(1,2) G(2,2) · · · G(p,2)

...
...

...
. . .

...

G(0,p−1) G(1,p−1) G(2,p−1) · · · G(p,p−1)


︸ ︷︷ ︸

Rp(d+1)×(p+1)(d+1)


u0

u1

u2
...

up


︸ ︷︷ ︸

R(p+1)(d+1)

=


0

0

0
...

0


︸︷︷︸

Rp(d+1)

(2.2.23)

System (2.2.23) is underdetermined, since it seeks (p+1)(d+1) unknowns from p(d+1) equa-

tions. Considering the first time-step, the initial condition u(x, 0) = ρ(x) can be interpolated

into the space Sh as ρjϕj(x). This gives the condition ∀j, 0 ≤ j ≤ d, u0j = ρj , yielding the

required d+ 1 equations to make the block matrix square and (in general) invertible. So, the

block system for the basis expansion coefficients of the solution for a whole timestep, assuming

a continuous Petrov-Galerkin discretisation with a fixed initial condition is:
I 0 0 · · · 0

G(0,0) G(1,0) G(2,0) · · · G(p,0)

G(0,1) G(1,1) G(2,1) · · · G(p,1)

...
...

...
. . .

...

G(0,p−1) G(1,p−1) G(2,p−1) · · · G(p,p−1)




u0

u1

u2
...

up

 =


ρ

0

0
...

0

 (2.2.24)
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Where ρ is the vector of coefficients of the initial condition. It is worth noting that, like

the time integral in (2.2.18), the integrals within Mij and Nij must be computed through

numerical quadrature, as a symbolic computable solution is not guaranteed and oftencases

unattainable. Once this system has been setup after quadrature, a solver such as PETSc [8]

can be used solve for the coefficients of the basis expansion of the approximated solution.

2.2.6 Extension to More Time-Steps

Having obtained a matrix block system for the first time-step t0 < t < t1, the immediate

consequence is to iterate the cPG approach with the following time-steps, enforcing continuity

by matching the final function value over a timestep to the initial condition of the following

step. Consider the case of lowest order Petrov-Galerkin, composed of linear test functions

and constant trial functions. In this case, each element has no intermediate function values.

Then, for an initial condition coefficient vector ρ, the block matrix systems for the first two

timesteps to be solved are:[
I 0

G(0,0) G(1,0)

][
u0

u1

]
=

[
ρ

0

] [
I 0

G(0,0) G(1,0)

][
u1

u2

]
=

[
u1

0

]
(2.2.25)

This procedure can be repeated for all intervals of the global time mesh PN , propagating up to

tN−1 < t < tN to give the full space-time approximation of the solution u(x, t) = uijϕij(x, t).

Each of the block systems can be combined into the bigger block system:



I 0 0 0 · · · 0 0

G(0,0) G(1,0) 0 0 · · · 0 0

0 G(0,0) G(1,0) 0 · · · 0 0

0 0 G(0,0) G(1,0) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · G(1,0) 0

0 0 0 0 · · · G(0,0) G(1,0)





u0

u1

u2

u3
...

un−1

un


=



ρ

0

0

0
...

0

0


(2.2.26)

In (2.2.26) we have I ∈ R(d+1)×(d+1), 0 ∈ R(d+1)×(d+1), ρ ∈ Rd+1 is the vector of coeffi-

cients of the projection of initial condition ρ(x) and 0 ∈ Rd+1 is the d + 1-dimensional zero

vector. The system can be solved either by a mixture of forward substitution and inversion on

rows, exploiting the visibly banded structure of the matrix, or more practically monolithically,

by applying LU patch preconditioners to solve the system in parallel. The structure of the

block system also shows how the problem has been decoupled over timesteps.

This approach of forming a larger block system that combines multiple timesteps can be

generalised trivially for time elements that are of a polynomial degree greater than 1.

2.2.7 Nonlinear FET and Burgers’ Equation

The homogenous heat equation is a linear PDE, that is if u0, u1 both solve the heat equation

problem then u0 + u1 also solves it. This is what allows composition of the bilinear forms in
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the test and trial functions that lead to the block matrix system of equation (2.2.24). Nev-

ertheless, many finite element problems of great interest are nonlinear in the trial function

(they must all be linear in the test function by construction of the variational forms). This

implies that no usual matrix-vector system can be produced to obtain a solution. As the

implementation presented in this investigation supports nonlinear problems, it is important

to outline the general solution procedure for nonlinear systems.

Consider the functional f(u; v), where the semicolon indicates that f is linear in all the

arguments that follow it but possibly nonlinear in those that precede it. Then f is called a

residual for a given weak variational problem if f(u; v) = 0 for v arbitrary if and only if u

solves the variational problem and satisfies its boundary conditions. For the linear Poisson

problem of (2.1.6), for example, the residual can be defined as:

f(u; v) = b(v, u)− L(v), f(u; v) = 0 ⇐⇒ b(v, u) = L(v) (2.2.27)

The requirement that f(u; v) = 0 for v arbitrary implies that iterative root finding algorithms

can be used to approximately solve the residual problem, assuming they are modified to seek

functions instead of scalars. The most common example of such an algorithm is the Newton

iterative scheme [20]. As detailed in [20], one needs to supply an initial guess u0 for the

solution, after which linearisation of the residual with respect to a perturbation function is

obtained using the Gateaux derivative and an updated solution guess is computed. The al-

gorithm halts when an update meets convergence criteria or when the procedure is deemed

non-convergent, for which a better guess is to be supplied.

As Fetsome exploits Firedrake’s standard solution layer built on PETSc for nonlinear prob-

lems, for more specific detail the reader is referred to [20].

To combine FET and iterative nonlinear solution procedures, it suffices to use FET to obtain

a residual form that is linear in its test function v. To illustrate how this can be done, consider

the one-dimensional nonlinear Burgers equation over a timestep Ω× In in conservative form:

∂u

∂t
+

1

2

∂

∂x
(u2) = 0 (2.2.28)

u(x, 0) = u0(x) (2.2.29)

We can obtain the weak variational problem and residual by picking a space-time finite element

space with time trial basis Ψ, time test basis Ψ′ and piecewise-continuous space basis Φ. We

perform the standard multiplication and integration procedure:

f(u; v) =

∫
In

∫
Ω

(
v
∂u

∂t
+

1

2
v
∂

∂x
(u2)

)
dxdt (2.2.30)

=

∫ 1

0

∫
Ω

(
ṽ
∂ũ

∂τ
+∆t

1

2
ṽ
∂

∂x
(ũ2)

)
dxdτ (2.2.31)

=

∫
Ω

[∫ 1

0

∑
i

viψ̃
′
i

∑
j

uj
∂ψ̃j
∂τ

dτ +∆t

∫ 1

0

∑
i

1

2
viψ̃

′
i

∂

∂x

(∑
j

ujψ̃j

)2
dτ

]
dx (2.2.32)
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In the above, vi = vi(x) =
∑

k vikϕk(x) and uj = uj(x) =
∑

k ujkϕk(x). As for the linear heat

equation, we introduce a quadrature rule to approximate the time integral.

=⇒ f(u;v) =
∑
i

∑
k

vik

∫
Ω
ϕk

[∑
m

bm

(
ψ̃′
i|τm

∑
j

ψ̃j |τmuj + ψ̃′
i|τm

∂

∂x

(∑
j

ψ̃j |τmuj
))]

dx

(2.2.33)

Where f(u; v) = f(u;v) to indicate the rewritten dependence of the residual on the coefficient

vectors that express u and v in their bases. By specification of the trial and test spaces, the

values of ψ̃′
i(τm) and ψ̃j(τm) are both known at all the points τm. Therefore, we have obtained a

problem which is linear in the test function and unknown exclusively in the spatial components

of the integral. So, an iterative procedure as the one already supported by Firedrake can be

used to obtain a solution automatically.
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2.2.8 FET and Runge-Kutta Time-Stepping Schemes

Runge-Kutta time-stepping schemes are very common methods to numerically approximate

solutions to time-dependent ordinary and partial differential equations. The stepping schemes

they use can differ both in implementation and the properties they guarantee, so Runge-Kutta

integrators constitute a large family of numerical methods.

Let the following be an ODE for u over a time domain [0, T ], f : (0, T ] × R → R, for

which the solution is sought together with its initial condition:

du

dt
= f(t, u), where u|t=0 = ρ, ρ ∈ R (2.2.34)

To obtain a Runge-Kutta approximation scheme, define the weights bi, the abscissae ci and

the coefficients aij , where 1 ≤ i, j ≤ s and s is the chosen number of stages. LetD = {0 = t0 <

t1 < · · · < tn = T} be a finite partition of the time domain [0, T ] and define hn = tn+1 − tn
as the size of a single time-step. Let un denote the approximated solution at time tn. We

consider an s-stage Runge-Kutta solution to the ODE in equation (2.2.34) to be defined as:

un+1 = un + hn

s∑
i=1

biki (2.2.35)

ki = f(tn + cihn, u
n + hn

s∑
j=1

aijkj) (2.2.36)

The formulation generalises to PDEs through the method of lines or Rothe’s method (see

2.3). Runge-Kutta schemes therefore approximate the evolution to un+1 from un through a

time-step by a weighted average of gradients evaluated at different sample points around the

known point. It is worth noting that the expression for the ith stage, ki, can depend on itself

from its inclusion in the arguments to f based on the coefficients aij . This differentiates what

are called implicit methods, that do present such inclusions, from explicit methods, where no

expression for a stage ki can include itself on the right-hand side.

As discussed in sections 2.2.3 and 2.2.4, a choice of continuous Petrov-Galerkin elements

in time is equivalent to using Kuntzmann-Butcher IRK schemes and a choice of discontinuous

Galerkin elements is equivalent to using Radau IIA IRK. The numerical analysis of implicit

Runge-Kutta methods therefore can be applied to obtain important properties of the two

FET discretisations considered. As discussed in [21], Kuntzmann-Butcher (or Gauss) IRK

has properties desirable for solving PDEs of physical interest. KB IRK is A and B stable,

as well as symplectic. On the other hand, Radau IIA IRK is important in the solution of

stiff problems through its L stability [5], although it does not possess the same symplecticity

properties as KB IRK. For more detail the reader is referred to [21].

Besides the properties of FET obtained by its correspondence to certain Runge-Kutta meth-

ods, there are advantages that a pure FET implementation has over relying on equivalent

timestepping schemes. First of all, many of the intermediate ”stage” values produced by

traditional time stepping procedures cannot be interpreted as solutions of the problem within

a time step, so solutions are fundamentally discrete. FET guarantees that the intermediate
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solution values are valid in approximating a solution within a time step. Secondly, the free-

dom given by FET in choosing the polynomial degree of time finite elements implies that

higher order equivalent time stepping methods are automatically derived in a unified way.

This makes development of higher order schemes easier and more straightforward. Moreover,

equivalent known time stepping methods often rely on integrating the time domain with exact

quadrature. The arbitrary choice of quadrature in FET allows under-integrated time step-

ping schemes to also be obtained, sacrificing a loss of accuracy to obtain systems which are

still meaningful but more easily solved computationally, through parallelisation for example.

Finally, it can be argued that a unified approach between space and time discretisations can

yield a more natural formulation of numerical solutions to time-dependent PDEs.

2.3 Current State of the Art for Time PDEs

One of the goals of Fetsome is to implement FET functionality that closely follows the math-

ematical abstractions that underpin it. This section evaluates this on the current state of the

art in solving time dependent PDEs using the finite element method, with a focus on packages

that present some space-time-like solvers.

The two most common methods found in modern FEM packages for solving spatially de-

pendent systems are the method of lines and Rothe’s method [15]. The method of lines

discretises the space domain using finite elements to obtain a system of coupled time do-

main ODEs, which can subsequently be solved using Runge-Kutta timestepping, for example.

Rothe’s method discretises in the time domain first, producing weak forms that are then

solved with the finite element method iteratively. The two methods are equivalent for many

applications.

The FEniCS framework is closely related to Firedrake, providing a similar level of mathe-

matical abstraction through its use of UFL, which it maintains. Its natural UFL support

means that both the method of lines and Rothe’s method can be used to solve time depen-

dent problems in FEniCS. Unicorn [22] is a FEniCS fork that uses space-time finite elements

to solve problems in continuum mechanics. Its implementation is restricted to the adaptive

G2 (General Galerkin) discretisations and currently only implements the cG(1)cG(1) space-

time method, which is equivalent to Crank-Nicolson timestepping (or first order continuous

Petrov-Galerkin). This is due to the package’s primary focus on moving space-time element

meshes along PDE characteristics rather than implementing FET in its generality.

The deal.II library is a well-known and important high performance C++ finite element

library. Despite not exploiting a DSL like UFL, its object oriented approach to the formula-

tion of weak variational problems is compatible with both the method of lines and Rothe’s

method for solving time-dependent PDEs, as shown in [23]. Another particular method sup-

ported by deal.II of solving a type of such PDEs is through Lie and Strang splitting [24].

Nevertheless, deal.II does not natively support FET schemes. Furthermore, an advantage

of Firedrake over deal.II is its sophisticated code generation framework, which automatically

makes high-performance solving possible.

Beyond FEnICS and deal.II, other software packages such as DUNE [4] and Hermes [25]
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were found to focus on the method of lines and Rothe’s method for the solution of time-

dependent PDEs. They did not present any FET functionality.

It can be concluded that the implementation of FET timestepping into a generic FE soft-

ware framework is a relatively unexplored task. Although its abstract mathematical theory is

well established, a generic formulation for a FET computational abstraction and its integra-

tion with existing software presents a novel and interesting opportunity to contribute to the

landscape of these automated solver packages.

2.4 Implementation Background

2.4.1 UFL (Unified Form Language)

UFL [6] (Unified Form Language) is a domain specific language that allows users to describe

finite element problems posed on spatial domains in code. It is developed and maintained as

part of the FEniCS Project and is released as a freely available Python library. It is integrated

within Firedrake to serve as a backbone for the specification of finite element problems as seen

by the users.

UFL is rich in its functionality: it gives the user the ability to specify variational forms

of weak PDEs distinguishing trial, test and forcing functions from each other, it integrates

function spaces (standard and mixed) with meshes and presents a variety of reference elements

on which to pose finite element problems. In its lower levels, UFL also presents a library to

access the internal representation of expressions and forms as well as algorithms to manipulate

them, favouring a high level of automation in the applications that use it. In the case of the

FET implementation presented in this study, UFL is central in the symbolic manipulation

layer that handles the first time-integration layer in mixed form assembly. In the subsequent

stages, Firedrake makes use of UFL to assemble the matrix-vector systems that are to be

solved in its implementation of the finite element method. Using UFL is covered in greater

detail in section 3.2.

2.4.2 Irksome

Irksome [5] is a high-level library that is built on top of Firedrake to target a more automatic

solution of time-dependent PDEs. It provides abstractions that extend UFL to represent time

derivatives inside variational forms and implements Runge-Kutta timestepping procedures in

a unified, user-centred manner. Irksome uses UFL’s form manipulation capabilities to relieve

a user from manually describing weak variational forms for each intermediate and final-step

stage of an RK procedure. A user can choose a specific method’s Butcher tableau and supply

it to one of the available time steppers which handle advancing the solution as well as enforce

initial conditions, boundary conditions and pass efficiency-related parameters to the lower

level solvers. This allows a great variety in the choice of timestepping methods for users only

requiring mathematical knowledge, as well as increasing the flexibility a user has on changing

the order of the chosen scheme or changing the chosen RK scheme entirely almost effortlessly.

The following is an example of the Irksome specification of the semidiscrete UFL form for

solving the heat equation:
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F = inner(Dt(u), v) * dx + inner(grad(u), grad(v)) * dx

Rather than targeting arbitrary RK methods, Irksome focuses on implicit RK (IRK) schemes.

Through their Butcher tableau specification, Irksome produces discrete algebraic systems

based on the weak variational problem of interest that exploit Firedrake’s solver infrastruc-

ture and efficiency optimisations to solve the time dependent problem. IRK methods are

important for PDEs of physical interest specifically, since their numerical structures provide

desirable stability and integral conservation properties. Some IRK methods that Irksome

currently supports include Lobatto IIA, Lobatto IIC, Radau IIA and Qin-Zhang.

By the equivalence of dG in time with Radau IIA methods, Irksome already supports a

FET-equivalent method. Nevertheless, the much wider generality obtained by developing a

full FET implementation that can be extended beyond time stepping procedures, as well as an

implementation that gives more freedom on the precision of integration over the time domain,

motivates Fetsome as a desirable extension of Irksome’s current capabilities.

2.4.3 PETSc

PETSc [8] is the Portable Extensible Toolkit for Scientific computation. Through the Python

library petsc4py, it forms the backbone of Firedrake’s linear and nonlinear systems of equa-

tions solvers. PETSc provides a variety in the choice of solvers, as well as algebraic sys-

tem preconditioning capabilities and MPI (Message Passing Interface)-supported parallelism,

which makes it possible for larger scale problems to be run on supercomputers. Beyond the

efficiency at solver-level, PETSc also targets the memory impact of large equation systems

by providing compressed sparse row storage of matrices with potentially millions to billions

of degrees of freedom. It also provides the DMPlex API to handle the mesh topology and

unstructured mesh data needed for the assembly of global systems.

In Fetsome’s implementation, PETSc’s relevance hides behind the mixed function space for-

mulation that leads to the large linear and nonlinear block systems that have to be solved (as

discussed in [2]). This is handled most directly by the existing layers of Firedrake that support

mixed function spaces and nonlinear solvers, not requiring any substantial modification on

the side of the presented Fetsome implementation. This means that the scalability, efficiency

and solver variety given by PETSc is effortlessly integrated into Fetsome. Finally, in line with

the PETSc philosophy that solver choices should not be hard-wired and that the maximum

flexibility in solver setup should be guaranteed, it is important for the Fetsome solution layer

to allow passthrough of all solver options to the Firedrake solver layer.

2.4.4 FIAT and TSFC

FIAT [9] is the FInite element Automatic Tabulator. It supports arbitrary order finite ele-

ments in up to three dimensions as well as tabulation of equispaced or spectral variant basis

functions on the elements. This means that FIAT also accounts for the automatic creation and

evaluation of the arbitrary-order quadrature schemes used for numerical integral evaluation

in Firedrake. Besides underpinning the one dimensional time elements used in this implemen-
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tation, FIAT is effectively used by Fetsome for the creation of the quadrature schemes used

in continuous Petrov-Galerkin and discontinuous Galerkin in time, as well as the evaluation

of spacetime functions at single timepoints.

TSFC [11] is Firedrake’s Two Stage Form Compiler which compiles UFL forms into efficiently

scheduled tensor algebraic operations in C. GEM is a tensor algebra language that holds the

intermediate tensor representation of forms for TSFC. The two stages of the compiler involve

first managing the construction of algebraic objects from UFL to GEM and then the schedul-

ing of the tensor operations to evaluate the lowered forms. TSFC and GEM are important for

Fetsome as they provide memoising utilities for efficient UFL form expression tree traversal

and transformations, exploited in the mixed function space time form generation layer.
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2.5 Further Considerations

2.5.1 Ethical Considerations

Although this study and the interested implementation in themselves involve very minor eth-

ical considerations, important observations must be made on the possible applications of the

developed software and this study.

First of all, it is worth noting that neither the study, the implementation or the develop-

ment of such implementation involve human participants. This is important because there

are no ethical considerations to be made regarding personal data collection, reconstruction or

diffusion. Similarly, there is no unethical behaviour that can be associated to user localisa-

tion. Also, this study makes no use of past personal data previously collected by third-party

entities, as its purpose is to aid the development of purely mathematical software that does

not involve datasets of any kind.

The most significant ethical concern tied to this study and the developed implementation

is that of its potential of application in military scenarios. Finite element analysis is common

in aviation resulting in its use, for example, to design an electromagnetic aircraft launcher

for aircraft carriers, as shown by [26]. Similarly, studies like the one proposed by [27] demon-

strate time dependent problems modelled through FEA for ballistic applications. In such a

way, this study could be applied to improve the software actively employed in the development

of military equipment or ammunition. It can nevertheless be discussed that the mathematical

software developed can also have ethical impacts in these same fields. Better ballistic protec-

tion, the subject of [27], is fundamental for the role of civilians such as reporters or rescue

volunteers in war zones.

Due to its wide applicability in the engineering industries, it is of no surprise that FEA

for time-dependent problems has the potential for unethical environmental applications. We

can understand from [28] the potential of application of this study to the improvement of

cost effective oil piping for gas ducts and offshore rigs and in consequence to oil extraction

methods, which can be seen as unethical behaviour given the impact of oil consumption on

climate change. Similarly, finite element analysis has been used in fracking, as shown by

[29], outlined as a greatly environmentally-problematic practice by [30] amidst its arguments

against the method. Despite these examples, we can argue that improvement in this tech-

nology fundamentally leads to and increase in the safety of such processes. This can bring

substantial advantages such as lowering the probability of an environmentally destructive oil

spill or landslides as a result of fracking practices. Furthermore, FEA can also be used to

drive positive environmental research, such as in [31], which discusses improvements to an

electric aircraft engines to increase the efficiency of aerial vehicles.

One final ethical consideration that can derive from the automation of finite element in time

solvers is the potential for unintentional misuse. It can be argued that fundamentally cor-

rect automation does in fact eliminate the possibility for human error in developing finite

element software. Nevertheless, the reduced need for expertise might lead to misjudgement

and misinterpreting of the results provided by this implementation, as suggested by Wheatley

in [32]. It is suggested that any user should demonstrate care in interpreting the results that
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the presented software obtains.

2.5.2 Legal Considerations

In addition to the ethical implications discussed above, some legal considerations tied to the

implementation of the software are outlined. Firedrake is licensed under the GNU LGPL

(Lesser General Public License), no code in the presented implementation impedes it from

remaining under this license. In particular, no code under the GNU GPL (General Public

License) was used as part of the implementation, as this would force Firedrake to forego its

LGPL for GPL. Apart from this, the written implementation remains under the LGPL from

its full integration with the Firedrake package.
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Chapter 3

Fetsome Implementation

3.1 Additions to Irksome

Fetsome is the finite element in time implementation presented by this investigation. It is an

extension to Firedrake that makes use of the Irksome package, in particular its UFL extensions

to represent time derivatives. Fetsome allows Irksome users to choose FET timestepping as

an alternative method to its implicit Runge-Kutta timestepping for solving time dependent

partial differential equations. This section illustrates the main FET additions to the Irksome

software base, explained in subsequent sections of Chapter 3.

3.1.1 Overview of Additions Functionality

The proposed implementation of finite element in time as an extension of Irksome consists in

a variety of additions to its codebase.

The primary goal of such an implementation is to present the user with a way of specifying

space-time domain finite element problems in a fashion compatible with the current Irksome

and Firedrake practices. This means that the interface-driven objective of the implementation

is to solve a FET problem starting from its weak variational form, specified in UFL forms,

equipped with the finite element function spaces for the time and space domains. The first

layer a user is therefore in contact with is that implemented by the VariationalTimeStepper

class, which provides a time-stepper object a user can initialise with a space-time problem.

This class can then be asked to evolve an initial condition according to the given problem by

advanceing.

Directly below a VariationalTimeStepper, the infrastructure required to reduce a symbolic

space-time variational problem to a mixed form problem solved by Firedrake is implemented

by the TimeFormGenerators. All implemented subclasses of such generator use varying com-

binations of trial and test function spaces over the time domain to assemble block systems

equivalent to those presented in section 2.2.5. They translate purely symbolic space-time

problems over space-time elements to mathematically equivalent multiple coupled spatial-

only problems specified in UFL. This is done such that the mixed forms that result from

the TimeFormGenerators can be solved through standard Firedrake interfaces, ultimately re-

ducing to computationally-intensive matrix-vector systems solved by the high-performance

PETSc package.
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In order to assemble space-time block systems from arbitrary forms automatically, the dif-

ferent kinds of TimeFormGenerators make extensive use of UFL expression and form tree

traversers and transformers. The split time orders on and strip dt utilities perform the

manipulation of symbolic space-time forms to reduce them to spatial-only forms separated

in their degree of time derivatives. The TimeQuadrature class provides tabulation of time

functions at arbitrary quadrature points, alongside the time mass, stiffness and half stiff-

ness matrices that simplify form generation for linear problems. The TimeFormGenerators

use TimeQuadrature to decompose time domain integrals into sums of weighted function

evaluations at quadrature timepoints. For exact or high precision computation of integrals,

quadrature degree of precision is estimated by traversing the integrals’ expression trees by the

TimeDegreeEstimator class and estimate time degree utility. This is then used to initialise

the correct TimeQuadrature scheme.

More of the complicated mathematical capabilities of the finite element in time implementa-

tion reside in the form generation subclasses. These include, but are not limited to, variational

problems which involve forcing functions, non-vanishing time boundary terms and time up-

winding (see section 3.6.1). The VariationalTimeStepper class also acts as an interface for

the user to access and make use of these in their formulation of weak variational space-time

problems. Figure 3.1 includes the most important Fetsome additions and its interaction with

the Firedrake and Irksome layers.

Figure 3.1: Map of the main classes and functions added in the Fetsome layer discussed in
this implementation section

3.2 Using UFL

As Firedrake’s and Irksome’s symbolic manipulation layer is built on UFL, introduced in

section 2.4.1, the finite element in time implementation subject of this study relies heavily on
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Figure 3.2: UFL expression tree for ∇2u+ u2 − 3

its functionality for time form assembly. This section outlines the structure of UFL expressions

and forms, as well as Irksome’s time derivative extension to UFL, and the most important

ways to manipulate them.

3.2.1 Internal Expression and Form Representations

The most basic layer in UFL’s representation of weak variational problems consists of its ex-

pression representation layer. All expressions are represented through expression trees which

implicitly handle operator precedence and arity, and are optimised when manipulated for

evident opportunities such as products with zero, operator associativity and commutativity.

UFL defines a hierarchy of classes that constitute its expressions.

The base class of all UFL expression types is the ufl.core.expr.Expr class. Common func-

tionality that all expressions present includes (but is not limited to) evaluate for evaluation

of expressions at coordinate points, ufl operands to obtain tree-node sub-expressions and

dx for automatic symbolic differentiation of the expression with respect to a spatial coordi-

nate. Some fundamental UFL classes that are subclasses of Expr are the Sum, Product and

Division classes (as part of the ufl.algebra package) or the Dot, Inner and Outer classes

(as part of the ufl.tensoralgebra package). Figure 3.2 presents the expression tree for

∇2u+ u2 − 3, encoded as the following UFL expression:

1 expr = div(grad(u)) + u**2 - 3

It is to be noted that ufl operands returns an array instead of presenting a way to obtain the

specific positional operands in an expression, for example the numerator and denominator in
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Figure 3.3: UFL expression tree for expr = 3 / u showing ufl operands order

a division expression. In the case of commutative or symmetric operators this has no effect.

For non-commutative operators (such as division), UFL follows the convention that operands

are sorted by their appearance in the typed expression. For example, expr = 3/u has the

expression tree depicted in figure 3.3. For a more comprehensive overview of UFL expression

types and examples, the reader is referred to [6].

The form layer is the second layer in UFL’s representation of weak variational problems.

Forms in UFL are restricted to sums of integrals that can be taken on different subdomains

of the global problem domain. The UFL class representing forms is ufl.form.Form and each

separate integral within a form is an instance of ufl.integral.Integral. The simplest ex-

ample of a linear form expressed in UFL is a single integral of a forcing function multiplied

by a test function over the entire spatial domain: F = f*u*dx. The integral, where f is the

forcing function and v is the test function, is represented by multiplication by a measure, in

this case dx. Integrals in forms defined over meshes can also be taken over domain bound-

aries, represented by the measure ds, and interior facets between cells, with the measure dS.

UFL gives more ways to access measure or domain information, most importantly through

ufl.integral.Integral.integral type and ufl.integral.Integral.ufl domain. Figure

3.4 illustrates the internal structure of the forms used for the Helmholtz problem as specified

in UFL within Firedrake, resulting from the following code:

1 b = dot(grad(u), grad(v))*dx + u*v*dx

2 F = f*v*dx

To replace sub-expressions within forms with new expressions, one can use the ufl.replace

utility. The following example illustrates this:

1 F = dot(grad(u), grad(v)*dx + u*v*dx

2 Fnew = replace(F, {u: u_0})

3 # Fnew is dot(grad(u_0), grad(v)*dx + u_0*v*dx
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Figure 3.4: Internal structure of b and F forms for the Helmholtz problem

3.2.2 Irksome TimeDerivative and the Time Variable

Due to the spatial focus of UFL, time derivatives are not directly representable in its standard

release. To allow manipulation of time derivatives, the irksome.deriv.TimeDerivative class

and the irksome.deriv.Dt function are implemented by Irksome [5] to instantiate such a term

in UFL expressions, and therefore also in forms. The following example illustrates the strong

form of the heat equation as a UFL expression with Irksome’s Dt:

heat = Dt(u) - div(grad(u))

All standard UFL functionality for expressions is available inside TimeDerivatives, since they

are a subclass of ufl.differentiation.Derivative and therefore are UFL expressions.

Similarly, UFL does not have a dedicated time variable object. In Irksome, it is custom-

ary to declare t as a UFL Constant, so this is the representation that Fetsome also adopts.

3.3 Time Quadrature and Associated Objects

3.3.1 The TimeQuadrature Class

The TimeQuadrature class produces all the objects needed to handle the numerical compu-

tation of integrals in the time domain that are central to FET. As described in section 2.2.1,

a quadrature rule is fundamentally composed of a set of quadrature points and the weight

associated to each quadrature point. In the case of the time domain, integration is always

one dimensional.

A quadrature object essentially only requires the quadrature points and weights that de-

scribe the numerical scheme. Once such elements are supplied, the TimeQuadrature class

has the capability of composing time mass, stiffness and half stiffness matrices that can be

used to solve linear problems (of section 2.2.5) by using the time finite element spaces that
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support a form’s trial and test functions. The class can also interact with a time finite el-

ement to evaluate its basis functions at the quadrature points, producing a vector rather

than a matrix. This generalisation allows direct substitution of the time-basis expansion of

functions that is used to solve nonlinear problems. As discussed, the trial and test function

spaces in time need not be the same, such as in Petrov-Galerkin solutions for continuous-in-

time solutions. Therefore, distinct trial and test function spaces for the time domain can be

supplied to a quadrature object to generate the desired matrices. A TimeQuadrature object

can be initialised with an arbitrary quadrature rule, although make gauss time quadrature

and make radau time quadrature can be used to make Gauss and Gauss-Radau quadrature

schemes for an arbitrary number of quadrature points. This automatic generation of specific

quadrature schemes uses FIAT utilities to generate the points and weights for a ufc simplex

of dimension 1 (the UFC unit interval) and then builds TimeQuadrature objects compatible

with the rest of the implementation.

3.3.2 Automating the Choice of Quadrature

Each quadrature scheme has its own degree of precision, that is the highest polynomial degree

that can be exactly integrated by that scheme. For forms to be automatically integrated ex-

actly, the maximum polynomial degree of a form can be calculated to then choose a quadrature

scheme with the desired degree of precision. To do this, Fetsome uses a modification of UFL’s

SumDegreeEstimator class, which in standard UFL estimates the polynomial degree in space

for an arbitrary expression. The SumDegreeEstimator is a MultiFunction, that is a UFL

non-recursive node handler that traverses an expression tree. Since not all expressions can be

integrated exactly (take for example a sin(x) curve), this existing estimator class makes use of

heuristics that can be translated and reapplied easily in the time domain. Therefore, the main

modification that the Fetsome TimeDegreeEstimator requires is that of ignoring the spatial

polynomial degree of forms but handling time polynomial degree like a SumDegreeEstimator

handles spatial degrees.

A TimeDegreeEstimator is supplied with a UFL Constant that represents the time vari-

able t as well as the polynomial degree of the trial function space (heuristically always equal

or greater than for the test function space). The most significant changes are made to the

handling of constants, spatial coordinates, arguments, coefficients and spatial derivatives.

For constants, it is retained that their polynomial degree is 0, with the modification that

a check for the constant t must be made and handled as a polynomial of degree 1. For

spatial and spatial-cell-coordinates, the time polynomial degree becomes 0. For arguments

and coefficients (i.e. known and unknown functions), the polynomial degree is taken to be

that passed to the estimator on initialisation. For spatial derivatives, a passthrough handler

ignore spatial dx is defined. Combinations of degrees in operations such as taking a sum

of degrees for products or a maximum over degrees for sum operations is handled directly by

the estimator’s superclass.

Finally, the TimeDegreeEstimator also handles the newly available Irksome TimeDerivative

UFL type by reducing the polynomial degree of the derivative operand.

Once the time degree estimator is applied as a MultiFunction to a form, integral or ex-

pression by estimate time degree, the calculated degree is used in time quadrature utilities
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such as estimate gauss time quadrature to calculate the number of points needed for an

exact quadrature.

3.4 Mixed Form Generation

3.4.1 The TimeFormGenerator Class

The TimeFormGenerator class is a base class for all generators that take a weak space-time

variational problem specified in UFL and its Irksome time-dependent extensions. Its goal is to

serve as a template for subclass generators that create time-independent forms representing

the variational problems on a variety of time-domain finite elements.

Before understanding the interface that a time form generator defines, it is important to

present how the space-time block-matrix (in the case of linear problems) and block-vector

(for nonlinear problems) systems can be represented by Firedrake MixedFunctionSpaces. In

the following, ”representative function space” refers to the Firedrake FunctionSpace used

in the UFL with Irksome representation of space-time weak variational problems whereas

”effective function space” refers to the MixedFunctionSpace that is actually employed by

the Firedrake solver to solve the spacetime problem. It is to be noted that, in principle, the

representative function space can be a mixed space as well, although in the current implemen-

tation of Fetsome mixed space formulations are not yet supported (see 5.2). It can therefore

be said that a form generator maps a space-time weak variational problem on a representative

function space to a spatial weak variational problem on an effective function space so that

it can be solved. This correspondence is underpinned by the tensor product nature of the

space-time function space.

Consider the linear unforced heat equation in weak variational form on a single degree p time

continuous Petrov-Galerkin element. Then by (2.2.24) we have a linear system of equations

to be solved encoded by the following block matrix-vector system:
I 0 · · · 0

G(0,0) G(1,0) · · · G(p,0)

...
...

. . .
...

G(0,p−1) G(1,p−1) · · · G(p,p−1)



u0

u1
...

up

 =


ρ

0
...

0

 (3.4.1)

With G(n,s) = PLnsM +∆tPMnsK, PL being the time half-stiffness on trial function matrix and

PM the time mass matrix, M and K the standard spatial mass and stiffness matrices.

Now define a Firedrake p+1-dimensional mixed function space Vt from the exclusively spatial

representative function space V of the weak variational problem (specified in UFL). Let, uhat

and vhat be trial and test mixed-space functions for Vt. Then, sub-component i of uhat and

vhat represents the restriction of finite element functions u, v ∈ Wkh at the single timestep

node i within a single time element. In the following code, subcomponents are accessed by

splitting on each function.

1 V = FunctionSpace(mesh, ..., ...) # Dots for arbitrary spatial elements

2 Vt = MixedFunctionSpace(V, V, ..., V) # V repeated p+1 times
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3

4 uhat = TrialFunction(Vt)

5 vhat = TestFunction(Vt)

6

7 uhatjs = split(uhat)

8 vhatis = split(vhat)

In the above, uhatjs and vhatis then are arrays containing each indexed spatial-only function

being the restriction of the function at a single time-node. Assume that the Petrov-Galerkin

time half-stiffness PL is encoded by the matrix P L[n][s] and PM by P M[n][s]. Then by

the correspondence of each indexed sub-function to a timepoint of the time element, the single

row i of the block system is equivalent to:

(self.P_L[0,i] * uhatjs[0] * vhatis[i]

+ self.dt * self.P_M[0,i] * dot(grad(uhatjs[0]), grad(vhatis[i])) + ...

+ self.P_L[p,i] * uhatjs[p] * vhatis[i]

+ self.dt * self.P_M[p,i] * dot(grad(uhatjs[p]), grad(vhatis[i])))*dx

= Constant(0)*vhatis[i]*dx

It is important to note that each double term in the sum is a replacement [v 7→ vhatis[i],

u 7→ uhatjs[j]] on the original form, an operation that can easily be handled by UFL’s

replace utility discussed in 3.2. By the Cartesian product nature of mixed function spaces

(hence the orthogonality of all fhatis[i] sub functions for a mixed-space function fhat), all

lines of the block system translated into Firedrake for a single vhatis[i] can be added to-

gether into a single UFL form without reducing the dimensionality of the system to be solved.

For an arbitrary block Figure 3.5 schematically presents how an arbitrary block system’s rows

and columns corresponds to the two UFL form that Firedrake can solve for.

A TimeFormGenerator defines the interface for this correspondence programmatically. It

receives a mapping of functions in the representative space (used in the user-supplied UFL

weak form) to functions in the effective space to provide the foundation for all block-system

replacement-based form generators.

3.4.2 The Splitting Form Generation Algorithms

Despite the block system to UFL form correspondence illustrated in the previous section and

figure 3.5, the form composition strategy only based on UFL replacement in the bilinear sys-

tem is not general enough. In fact, it relies on using the effective function space to represent

the matrix-vector block system as a single expression, but nonlinear systems do not reduce

to such block systems (from section 2.2.7). Moreover, there is no other special case to which

nonlinear systems reduce. To supply the generality needed, Fetsome introduces a new and

original layer of form manipulation based on splitting forms on the order of time derivatives

on test and trial functions, expansion in their time bases, and finally UFL replacement.

The algorithms and structures used within this layer are generalised for time cPG and dG

finite elements, so that all core functionality for this kind of form generation is shared

inside the SplitTimeFormGenerator subclass of TimeFormGenerator. The forms that a

SplitTimeFormGenerator creates cannot directly be used to solve a FET problem, as they
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Figure 3.5: The correspondence between an arbitrary block system to UFL left-hand-side
and right-hand-side forms by replacement

need to be supported by strongly or weakly imposed time boundary conditions that propagate

information across time elements. Therefore, these forms are referred to as interior forms, as

they only belong to the element considered independently.

When a weak variational form is passed through the SplitTimeFormGenerator, it is guaran-

teed to be linear in the test function v. Moreover, the implementation assumes that all time

derivatives on the trial functions are expanded without loss of generality:

∂

∂t
f(u) = f ′(u)

∂u

∂t
(3.4.2)

One further restriction is imposed on the form passed to the generator: explicit time depen-

dence from the t variable should only come from forcing functions and boundary terms, that

is explicit time dependence is additive and not multiplicative. This is discussed in more detail

in 5.2. Therefore the general structure of forms integrated over a time interval that can be

supplied to the SplitTimeFormGenerator is the following:

Fs =

∫
In

∫
⟨Ω,∂Ω,Γ⟩

[
g0(u(x, t), x)·h0(v)+g1(u, x)·h1

(∂v
∂t

)
+...+gn(u, x)·hn

(∂nv
∂tn

)]
d⟨x, s, S⟩dt

(3.4.3)

Where g0, ..., gn can be nonlinear in their arguments and can include arbitrary time and space

derivatives of u, and h0, ..., hn must be linear by construction but can include arbitrary space

derivatives of v. The angled brackets represent a choice of integration domain and measure.

Linear combinations c0F
(0)
s + ... + cmF

(m)
s of these forms are also supported by the gener-

ator. In Firedrake and Irksome, the forms supplied to the SplitTimeFormGenerator are

ufl.form.Forms.

Figure 3.6 illustrates all the steps of the split and replace procedure illustrated in this section.

The first step is to separate the supplied form in the orders of the time derivative applied to
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v. This is always possible by the linearity of the form with respect to the test function. This

yields:

[H0(u, x; v), H1(u, x; v), · · · , Hn(u, x; v)] (3.4.4)

with Hi(u, x; v) =

∫
In

∫
⟨Ω,∂Ω,Γ⟩

gi(u(x, t), x) · hi
(∂iv
∂ti

)
d⟨x, s, S⟩dt (3.4.5)

=

∫ 1

0

∫
⟨Ω,∂Ω,Γ⟩

gi(ũ(x, τ), x) ·
( 1

∆ti−1

)
hi

(∂iṽ
∂τ i

)
d⟨x, s, S⟩dτ (3.4.6)

In Fetsome, splitting is carried out using a recursive UFL expression tree traversal algorithm,

implemented by split time form on(F, v). Within it, expression nodes have a default or-

der of -1, each v expression node acquires an order of 0, instances of Dt on any expression

except v are ignored and the order of all forms increases when an instance of Dt is applied to

v. For efficiency in form reconstruction when splitting, the implementation exploits GEM’s

and TSFC’s memoization functionality through its Memoizer and MemoizerArg classes used

with ufl reuse if untouched.

Once the original form is split on the orders of the test function, the next step is the ex-

pansion of the trial function from the representative to the effective mixed function space.

This is done in a generic fashion to the Burgers’ equation example in 2.2.7. Since UFL does

not support a generic time variable, this substitution is performed for each quadrature point

used to evaluate the time integral. It uses Fetsome’s spacetime dot to evaluate the linear

combination of spatial basis functions at a time point equivalent to u or any of its time deriva-

tives, followed by UFL replace to perform substitution. The resulting object is now a two

dimensional collection of forms partially integrated in time, as shown in blue/first dashed line

in figure 3.6.

Subsequently, all remaining Irksome Dt expressions nodes appear only applied to the test func-

tions in the UFL expression tree. They can therefore be removed by the strip dt form(F)

utility without losing knowledge on their order due to the previous splitting. In fact, Dt

nodes cannot be understood by Firedrake’s standard solution layer as they are only part of

its Irksome extension and must be removed. Once again, this UFL expression tree traversal

algorithm uses the same GEM and TSFC memoization utilities.

The last step is an expansion, like the one for the trial functions, of the test functions into the

effective space using their time finite element space. After this, the indices of the remaining

object are contracted to produce a single form, representing the spacetime linear or nonlinear

system in the interior of the element to be solved. It is worth adding that, for linear problems,

this split and replace procedure produces the same form as the block matrix system of figure

3.5. The obtained form can now be augmented with initial values and forcing terms.
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Figure 3.6: Representation of the split and replace procedure used by the
SplitTimeFormGenerator to create interior forms

3.4.3 Adding Forcing Forms

Fetsome supports forcing forms in the specification of weak variational problems. Consider

the following integral over a timestep, where the forcing function f(x, t) is known:

L(v) =

∫
In

∫
Ω
f(x, t)v(x, t)dxdt = ∆t

∫ 1

0

∫
Ω
f̃(x, τ)ṽ(x, τ)dxdτ (3.4.7)

Then by expansion of v and f into their finite element bases and introduction of time quadra-

ture (using Einstein summation convention):

L(v) =∆t

∫ 1

0

∫
Ω
fijψ̃i(τ)ϕj(x)vklψ̃

′
k(τ)ϕl(x)dxdτ (3.4.8)

≈∆tfijvklbmψ̃i|τmψ̃′
k|τm

∫
Ω
ϕjϕldx (3.4.9)

=∆tfijvklQ
M
ikMjl (3.4.10)
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Qik is a quadrature-dependent time mass matrix (either Pik for cPG or Dik for dG). Picking

vkl = δksδlr:

=∆tfijδksδlrQ
M
ikMjl = ∆tfijQ

M
isMjr

=∆t(f0jQ
M
0sMjr + ...+ fpjQ

M
jsMjr) (3.4.11)

Therefore, if fs is the vector containing the Firedrake Functions of f evaluated at the time

points of the time element, the UFL equivalent for the full system is:

F_f = Constant(dt)*(Q_M[0,0]*fs[0] + ... + Q_M[p,0]*fs[p])*vhatis[0]

+ Constant(dt)*(Q_M[0,1]*fs[0] + ... + Q_M[p,1]*fs[p])*vhatis[1]

+ ...

+ Constant(dt)*(Q_M[0,p]*fs[0] + ... + Q_M[p,p]*fs[1])*vhatis[p]

3.4.4 Adding Boundary Terms

One of the goals of Fetsome is to support the integration of space-time weak boundary terms

with standard Firedrake. This is fundamental for the movement of partial space-time deriva-

tives from trial functions to test functions for non-smooth solutions, and necessary for the

weak enforcement of initial conditions for time-discontinuous elements. The layer of Fetsome

handling boundary terms is also part of the SplitTimeFormGenerator as it uses a similar

substitution strategy. To understand how this layer works, the two kinds of boundary inte-

grals to consider are space domain boundary forms and time interval boundary forms.

Firedrake, through UFL, divides integrals over interior and exterior facets of an exclusively

spatial domain by the integration measure used. Like dx is a measure for spatial integration,

similarly dS is the measure for integration over domain interior facets and ds integrates do-

main exterior facets. To understand how these integrals interact with the time discretisation,

the following commonly-found example is considered:∫ 1

0

∫
∂Ω
v∇u · ndSdτ (3.4.12)

=

∫ 1

0

∫
∂Ω
vklψ

′
k(τ)ϕl(x)uijψi(τ)∇ϕj(x) · ndSdτ (3.4.13)

= uijvkl

(∫ 1

0
ψi(τ)ψ

′
k(τ)dτ

)(∫
∂Ω
ϕl(x)∇ϕj(x) · ndS

)
(3.4.14)

= uijvklQ
M
ik

(∫
∂Ω
ϕl(x)∇ϕj(x) · ndS

)
(3.4.15)

Note that the Einstein summation convention is used. Qik is a quadrature-dependent time

mass matrix. This shows that for the shown space-time implementation with splitting, space

boundary terms will pass-through and be handled by standard Firedrake, therefore these

terms are supported without any modification to the implementation.

On the other hand, Fetsome must treat time boundary forms in a special way. For this,
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the following example is considered:[∫
Ω
ũṽdx

]1
0

=

[∫
Ω
ũṽdx

]
∂I

(3.4.16)

In which for a specific point in time τ∗:∫
Ω
ũṽdx =

∫
Ω
uijψi(τ

∗)ϕj(x)vklψ
′
k(τ

∗)ϕl(x)dx (3.4.17)

= uijψi(τ
∗)vklψ

′
k(τ

∗)

∫
Ω
ϕj(x)ϕl(x)dx = uijψi(τ

∗)vklψ
′
k(τ

∗)Mjl (3.4.18)

=⇒
[∫

Ω
ũṽdx

]
∂I

= uijψi(1)vklψ
′
k(1)Mjl − uijψi(0)vklψ

′
k(0)Mjl (3.4.19)

For a time-step set of nodes that includes the endpoint, let ⊥ represent the index of the time

nodal basis function which is 1 at τ = 0, ⊤ the index for the basis function which is 1 at

τ = 1. Therefore for arbitrary test function coefficients vkl:[∫
Ω
ũṽdx

]
∂I

=
[
uijψi(τ

∗)vklψ
′
k(τ

∗)
]1
0
Mjl = (u⊤jvklδ⊤k − u⊥jvklδ⊥k)Mjl (3.4.20)

We can then pick vkl = δksδlr, from arbitrariness of the test function with s a ranging temporal

index and r a ranging spatial index. Thus follows:

=⇒ ∀s, r : (u⊤jδksδlrδ⊤k − u⊥jδksδlrδ⊥k)Mjl = (u⊤jδ⊤s − u⊥jδ⊥s)Mjr (3.4.21)

=


u⊤jMjr s = ⊤
−u⊥jMjr s = ⊥
0 otherwise

(3.4.22)

Therefore, Fetsome can compute the contributions of the boundary terms by using the ef-

fective mixed space functions representing the solution at each time step’s endpoints and

only adding them when multiplied by the test function for the same endpoint. For a sup-

plied UFL form db and test function v to be integrated over the reference time boundary,

SplitTimeFormGenerator. expand boundary term performs splitting on the test function

orders with split time form on(db, v). This is followed by the replacement of each rep-

resentative trial function u (and its time derivatives) with the first and last of the effective

functions of uhat (and their time derivatives) on the time boundary or their weakly-enforced

value on the time-boundary (as in section 3.6.1 for dG). Each boundary term is added only

for the sub-functions of vhat that represent the endpoint at which it was evaluated.

3.4.5 Time Dependent Dirichlet Conditions

Dirichlet conditions in Firedrake are handled by the DirichletBC class, they are directly

passed to the Firedrake solver. Enforcing time-dependent Dirichlet boundary conditions on

the spatial domain Ω is then only a matter of replicating each DirichletBC object for a prob-

lem for each time point corresponding to the chosen time finite element basis functions. When

each DirichletBC is enforced on the subspace of the effective function space directly corre-

sponding to a time point in a timestep, the Firedrake solver will independently ensure that the
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mixed space solution will satisfy each condition if the problem is well posed. The remaining,

non-nodal part of the timestep then will satisfy the time-interpolated spatial Dirichlet con-

dition, as required. If the boundary condition has no time dependence, then it still requires

replicating for each of the time points.

Due to Firedrake interpolating a Dirichlet boundary condition on a space domain upon ini-

tialisation, Fetsome requires the TimeDirichletBC subclass to be used by its users whenever

the condition is time-dependent (see section 3.5).

3.5 Interface to the Solver

As discussed previously, a space-time weak variational problem is defined using the Irksome

Dt operator and explicit time dependence is given using the t variable declared as a UFL

Constant. In order to define the temporal component of the tensor product space-time fi-

nite element space, the TimeFunctionSpace utility is used, which automatically provides the

correct Firedrake FunctionSpace for the polynomial degree of the time domain requested. If

time dependent Dirichlet boundary conditions are used in the problem, they must be specified

as TimeDirichletBC objects, as to give the Fetsome expression manipulation layer an expres-

sion for each condition to be evaluated at element time points before Firedrake fixes the value

of the constant t at interpolation. Once the space-time variational problem is formulated, all

of its components are passed to the VariationalTimeStepper.

3.5.1 The VariationalTimeStepper

The Fetsome VariationalTimeStepper class aims to provide a similar interface to the Irk-

some TimeSteppers, although it fundamentally differs in its solution strategy. When given

a full formulation of a space-time finite element problem, the time stepper class provides an

advance method which solves the problem over a single timestep and produces the Firedrake

Functions representing the solution across the timestep. Subsequent calls to advance con-

tinue the stepping procedure over following elements. As FET produces intermediate interior

function values across a single time step which are meaningful, differently from most Runge-

Kutta schemes in which the intermediate values are just stages used to compute a weighted

average of gradients, advance gives the user the choice to obtain only the final solution or an

array containing the function restricted to each of a time-step’s points.

The components which a VariationalTimeStepper instance requires for a complete FET

problem specification are:

• A triple F = (b, db, L) where b is the sum of all forms which contain integrals over

the full time domain, db is the sum of the forms containing integrals over the timestep

boundary, L containing all linear forcing forms

• An initial condition u0, the trial function u and test function v as Firedrake Functions

from the problem’s representative function space

• The function space T representing the time domain of the space-time tensor product

space
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• The t time variable and the timestep size dt

• The choice of time finite element between cPG and dG

• Optionally, it can take space domain boundary conditions, PETSc solver parameters to

pass to the solver and a manually selected TimeQuadrature scheme

Through the choice of time finite element family, the class creates the effective trial and test

function spaces needed for the problem, composes the representative to effective space map-

pings and initialises the corresponding TimeFormGenerator. By collecting the initial condition

and sampling the space-time forcing terms at the time points of the chosen time finite element,

the VariationalTimeStepper invokes its TimeFormGenerator to compose the mixed forms

that can be passed to the the standard Firedrake solver. If spatial Dirichlet boundary condi-

tions are present, they are converted to effective space spatial-only conditions as previously

outlined. The time step forms and boundary conditions are then passed to a call to Fire-

drake’s solve. Section 3.6.2 discusses the additional details of the VariationalTimeStepper

that allow it to solve nonlinear problems too.

3.5.2 Solving With Petrov-Galerkin Elements

When passing family="CPG" to the VariationalTimeStepper, it initialises the test and trial

function spaces in time to differ by one in their polynomial orders, as required in section 2.2.3,

and selects a PetrovTimeFormGenerator to produce the time step forms.

The PetrovTimeFormGenerator imposes the initial condition of the timestep strongly by

using the first test function of the effective function space (corresponding to the first line of

the block system in 3.4.1 which is retained in both the linear and nonlinear cases). To pro-

duce the interior forms, it supplies the remaining effective space test functions to the shared

form generation algorithms implemented by its SplitTimeFormGenerator parent class, which

composes them using the split and replace procedure. The PetrovTimeFormGenerator also

adds the contributions from forcing and time boundary terms, which use the effective space

test functions instead of weakly imposed initial or final values, after which it returns the full

UFL form representing the system to the VariationalTimeStepper for solution.

3.5.3 L2 Spacetime Error

In addition to the functionality presented, Fetsome provides a utility function to compute the

space-time L2 error of equation (2.2.7) between an exact solution and a vector of Firedrake

functions corresponding to the time step values of the finite element solution: time errornorm.

Since the space-time function space is composed as a tensor product of temporal and spatial

bases rather than their Cartesian product, the error cannot be computed pointwise at the

time points of each element and added. Instead, it involves quadrature of the time integral

in (2.2.7) and the expansion of the numerical solution at the quadrature points through the

use of spacetime dot.

3.6 Advanced Implementation Details

The implementation presented thus far is designed to be flexible for extensions in form gen-

eration and in the type of problems that it supports. Nevertheless, there are additional

41



implementation details to be considered for discontinuous Galerkin elements and the support

for nonlinear problems.

3.6.1 Solving With Discontinuous Galerkin Elements

A discontinuous Galerkin time discretisation can be selected by passing the family="DG" to a

VariationalTimeStepper upon initialisation. This sets the trial and test spaces in the time

domain to be equal to one another, then supplies additional forcing functions and boundary

terms to the DiscontinuousTimeFormGenerator to produce the UFL forms passed to the

Firedrake solver.

A DiscontinuousTimeFormGenerator does not impose any initial conditions strongly, as this

would guarantee continuity between neighbouring intervals and reduce the degrees of freedom

available for a discontinuous discretisation. Initial conditions are imposed weakly through the

time-boundary conditions. As detailed in 2.2.4 the time dG discretisation implemented by

Fetsome uses time upwind flux. Therefore, between elements, the value of the sought trial

function is always chosen to be that of the element belonging to the previous interval. Within

the implementation of expand boundary term, used by the SplitTimeFormGenerator, it is

possible to pass a known function to be used instead of the trial function u at the lowest or

highest time point of time-boundary terms. In the case of upwind flux, the initial condition

is used at the lowest time point. When the time element is not the first in the time stepping

routine, the VariationalTimeStepper supplies the value of the solution at the final node of

the previous element as the initial condition to the DiscontinuousTimeFormGenerator. The

highest time point boundary value is left unspecified, as the default behaviour of the generator

is to use the trial function for the last node of the time step, as needed by upwind flux.

3.6.2 Solving Time Dependent Nonlinear Problems

The central functionality enabling the solution of nonlinear problems in Fetsome is the split

and replace procedure of generating space-time-equivalent UFL forms. No direct distinction

is made by the Fetsome layer between linear and nonlinear problems, so each weak variational

problem is manipulated in the generality required by a nonlinear problem.

The first important detail in preparing a Firedrake nonlinear problem is to obtain a residual

form (introduced in section 2.2.7) that vanishes for all solutions to the problem. This is done by

the VariationalTimeStepper for the space-time problem, once a PetrovTimeFormGenerator

or a DiscontinuousTimeFormGenerator has generated the effective space forms that solve

the FET problem on the considered time step.

The second important detail regards the convergence of the iterative scheme used to solve

the nonlinear problem. Without an initial guess close to the true solution of the scheme, it

might not be possible for convergence to this true solution to be achieved. The heuristic used

in Fetsome is to supply the initial value (or the last solution value of the previous timestep) as

a guess for the solution across the entire time step. As the chosen time step size is decreased,

it is expected that this heuristic is increasingly correct.
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Chapter 4

Evaluation

This chapter presents an evaluation of the mathematical correctness of the finite element in

time software formulation as implemented in Fetsome. As has been shown in Chapter 3, FET

problems present a diverse set of mathematical objects that can be used in their variational

formulation. The most fundamental, which require thorough evaluation to analyse the success

of the presented implementation, are the following:

• Bilinear or nonlinear forms with time derivatives applied to trial functions only

• Bilinear or nonlinear forms with time derivatives applied to test functions

• Linear forms produced by integrating the product of test functions and forcing functions

• Time boundary terms that appear when shifting time derivatives onto test functions

• Space boundary terms that appear when shifting spatial derivatives onto test functions

• Strong and weak initial conditions for the different cPG and dG discretisations

• Spatial operators that are defined based on the spatial dimension of the problem (e.g.

in 1 dimension ∇ · u = ∂u
∂x , in 3 dimensions ∇ · u = ∂u

∂x + ∂u
∂y + ∂u

∂z )

By considering a variety of important model problems, it is highlighted how the presented

implementation successfully tackles each of these. For this task, convergence testing allows

for a strictly quantitative evaluation procedure, as described in detail in section 4.1. Tests are

performed in different spatial dimensions, to guarantee the implementation’s flexibility and

solidity in seamlessly handling FET problems arbitrary of their spatial discretisation.

Given this investigation’s goal to extend Firedrake and Irksome’s capabilities, this evaluation

section also briefly highlights the design choices that integrate the presented extensions into a

typical user’s experience with time-dependent problems. All the problems considered as part

of this section are available on the Fetsome branch in Irksome along with their convergence

tests (https://github.com/firedrakeproject/Irksome/tree/jack-lascala/fetsome).

4.1 Convergence Testing Methodology

Convergence testing is the principal code verification method for the success of the presented

software. This consists in examining the scaling of the L2 error computed in spacetime, as
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the time mesh parameter (the timestep ∆t) varies, between the numerical solution obtained

by the presented solver and an expected solution. Despite the implementation exploiting

Firedrake mixed spaces to obtain spacetime solutions, it is to be noted that any spacetime

norm is not simply computed as the sum of space and time errors as in mixed spaces. This is

discussed in section 3.5.3.

Consider a FET discretisation that uses degree k polynomial 1D finite elements for the time-

domain with typical mesh size ∆t (the timestep) and a spatial discretisation with typical mesh

size h that converges with error O(hm) for some exponent m. As discussed in sections 2.2.3

and 2.2.4, we have an expected L2 spacetime error that asymptotically scales as O(∆tk+1),

assuming a theoretically perfect spatial discretisation. Nevertheless, the inevitable numerical

approximation of the spatial domain effectively modifies the asymptotic scaling of the error

to be O(hm+∆tk+1). This implies that as one parameter between h and ∆t varies, there will

be an interval of transition between which of the two error terms asymptotically dominates.

Hence, for a fixed h it is expected that as ∆t → 0 we will not have ||ukh − u||L2 → 0, rather

the error will tend to some constant depending on h. To mitigate this error for evaluation

purposes, the spatial discretisation parameter h is decreased for the smallest chosen ∆t until

the error numerically converges to a constant (the error for the specific value of ∆t), then all

subsequent time steps are analysed with such a fixed h. It is worth noting that the degree of

spatial elements in the case of polynomial spatial bases also affects the convergence parameter

m, although its modification is discouraged from its costly impact on the time taken to obtain

solutions.

Due to the inevitable computational limitations in floating point accuracy, a break down

of the error’s asymptotic behaviour is expected as h,∆t→ 0. On the other hand, the asymp-

totic behaviour is defined for both parameters tending to zero, therefore an upper bound on

the range of ∆t where the error scales correctly is also expected. Each of the examples dis-

cussed in this section present and argue such an interval of validity for the convergence rates

obtained.

4.2 Method of Manufactured Solutions

Partial differential equations of interest rarely have solutions that can be obtained in closed

form. It is therefore important to use the method of manufactured solutions as a way to obtain

the exact solutions needed to compute L2 errors to evaluate numerical solutions. Consider

the following PDE, to which boundary conditions of any kind are associated:

F (u, x, t) = f(x, t) (4.2.1)

In the above, F can include an arbitrary number of space and time derivatives, as well as

arbitrary nonlinearities. Instead, f(x, t) will be called a forcing function and cannot include u

or any of its derivatives. It follows that, if f(x, t) is left unspecified, any determined function

û(x, t) that satisfies the given boundary conditions solves the following forced PDE:

F (u, x, t) = F (û(x, t), x, t) (4.2.2)
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Hence, a forced alternative to a PDE of interest can always be obtained by first choosing û

and subsequently taking f(x, t) = F (û(x, t), x, t). This way of constructing PDEs with known

closed form solutions is the method of manufactured solutions [33].

Figure 4.1: Snapshots of the evolution of the 1D homogenous heat equation on 0 ≤ t ≤ 3
compared to the analytic solution; linear cPG time finite elements, ∆t = 1.0

4.3 Analytic 1D Heat Equation

The first example that is considered to evaluate the most fundamental functionality of the

presented implementation, namely the solution of unforced equations without boundary terms

or Dirichlet conditions, is the heat equation. The homogenous heat equation with Neumann

boundary condition reads as follows: on a spatial domain x ∈ Ω, time domain t ∈ [0, T ], for

a function u0(x), find u(x, t) such that:

∂u

∂t
−∇2u = 0 (4.3.1)

u(x, 0) = u0(x) (4.3.2)

∇u · n = 0 on ∂Ω (4.3.3)

When restricted to 1 spatial dimension, we have ∇2 = ∂2

∂x2
and Ω = [0, L]. The corresponding

variational form of the problem, using continuous Petrov-Galerkin elements with trial and

test spaces Wkh and W ′
kh, is to find ukh ∈Wkh such that ∀vkh ∈W ′

kh the following holds:∫ T

0

∫ L

0

∂ukh
∂t

vkhdxdt+

∫ T

0

∫ L

0

∂ukh
∂x

∂vkh
∂x

dxdt = 0 (4.3.4)

If the time and space domains are picked with T = 5, L = 7 along with the initial condition

u0(x) = 1
2 cos(

2πx
7 ), it can be verified that the specified problem has analytic closed form
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solution u(x, t) = 1
2 cos(

2πx
7 ) exp(−4π2t

49 ). For the Fetsome specification, continuous Petrov-

Galerkin elements are picked to discretise the time mesh coupled to continuous Lagrange

spatial elements. The VariationalTimeStepper solver for the problem can then be set up

and initialised as illustrated below.

1 mesh = IntervalMesh(Ns, 7)

2 V = FunctionSpace(mesh, "CG", 2)

3

4 time_interval = UnitIntervalMesh(1)

5 T = FunctionSpace(time_interval, "CG", kt)

6 u = TrialFunction(V)

7 v = TestFunction(V)

8 b = (Dt(u)*v + dot(grad(u), grad(v))) * dx

9

10 x = SpatialCoordinate(mesh)[0]

11 t = Constant(0)

12 u0 = interpolate((1/2)*cos((2*pi/7)*x), V)

13

14 F = (b, None, None)

15 timestepper = VariationalTimeStepper(F, u0, u, v, T, t, dt, "CPG")

In the initialisation code, dt holds the chosen timestep size, kt holds the degree for the time

finite elements and Ns holds the number of spatial elements. Timestepping is then performed

by calls to timestepper.advance() to obtain for 0 < t < 5 a solution similar to the one

presented in figure 4.1.

To evaluate the rate of convergence of the numerical solution to the exact solution, the

timestep parameter ∆t is varied between the values 0.0625, 0.125, 0.25, 0.5, 1.0, 2.5. A choice

of 400 quadratic spatial elements were found to make the space-time error converge within

0.1%. To demonstrate that the correct expected convergence rates are achieved for different

time elements, linear to cubic elements are examined. The errors for each time step and

polynomial degree are available in appendix A.1. Figure 4.2 illustrates the scaling of the

L2 spacetime error for the three chosen time finite elements. As seen, all elements converge

with their expected rates: linear elements converge quadratically, quadratic elements con-

(a) Linear time elements (b) Quadratic time elements (c) Cubic time elements

Figure 4.2: L2 errors for the 1D homogenous heat equation solution with correct
convergence rates for linear, quadratic and cubic time finite elements
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verge cubically and cubic elements converge quartically. It is clear from the figure that the

expected asymptotic behaviour is obtained for all the timestep sizes of interest, therefore we

can conclude that the numerical solution for this problem is in fact obtained correctly.

Figure 4.3: Snapshots of the evolution of the 1 dimensional heat equation subject to the
forcing function f(x, t) =

(
−1/100x3 + 3/20x2 − 3/50x− 53/10

)
exp(−t); linear dG time

elements, ∆t = 0.5

4.4 1D Forced Heat Equation

Similar to the homogenous or unforced heat equation, we introduce a time-dependent forcing

function f(x, t) and modify equation (4.3.1) to the following:

∂u

∂t
−∇2u = f(x, t) (4.4.1)

Homogenous Neumann boundary conditions are maintained. The forced heat equation presents

an opportunity for evaluating Fetsome’s support for discontinuous Galerkin elements in time,

as well as its manipulation of boundary terms and time dependent forcing functions. Taking

the spatial domain to be in a single dimension and using the same space Wkh for both trial

and test functions, as required by the time dG discretisation, this leads to modification of the

weak variational problem (4.3.4) to finding ukh ∈Wkh such that ∀vkh ∈Wkh:

∑
n

∫ L

0
[ukhvkh]∂Indx−

∫ T

0

∫ L

0
ukh

∂vkh
∂t

dxdt+

∫ T

0

∫ L

0

∂ukh
∂x

∂vkh
∂x

dxdt =

∫ T

0

∫ L

0
fvkhdxdt

(4.4.2)

For the specific problem, the parameters are taken to be L = 10, T = 4. It can be verified

that the following, obtained through the method of manufactured solutions of 4.2, constitute

an admissible solution to the forced heat equation and satisfy the homogenous Neumann
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boundary condition for all intermediate times:

u0(x) =
1

100
x3 − 3

20
x2 + 5, f(x, t) =

(
− 1

100
x3 +

3

20
x2 − 3

50
x− 47

10

)
e−t (4.4.3)

u(x, t) =

(
1

100
x3 − 3

20
x2 + 5

)
e−t (4.4.4)

Choosing the "DG" family upon initialisation of the VariationalTimeStepper, the code pre-

sented in section 4.3 to solve the unforced 1D heat equation can be thus modified as follows

to incorporate the forcing term and time-boundary term required by the weak variational

problem.

1 ... # Previous initialisation code

2 x = SpatialCoordinate(mesh)[0]

3 t = Constant(0)

4 u0 = interpolate(1/100 * x**3 - 3/20 * x**2 +5, V)

5 b = (-u*Dt(v) + dot(grad(u), grad(v))) * dx

6 db = u*v*dx

7 L = (-1/100 * x**3 + 3/20 * x**2 - 3/50 * x - 47/10) * exp(-t) * v * dx

8

9 F = (b, db, L)

10 timestepper = VariationalTimeStepper(F, u0, u, v, T, t, dt, "DG")

Figure 4.3 presents a comparison between the obtained FET solution and the exact solution

when using linear time elements and a timestep size of 0.5. For the spatial discretisation, 400

quadratic elements were found to allow convergence of the error across all chosen timesteps

(see appendix A.2). Figure 4.4 demonstrates the correct orders of convergence obtained by

linear (quadratic convergence), quadratic (cubic convergence) and cubic (quartic convergence)

elements. Once again, the validity of the asymptotic behaviour visibly extends to the whole

range of time steps considered.

(a) Linear time elements (b) Quadratic time elements (c) Cubic time elements

Figure 4.4: L2 errors for the time-dG 1D forced heat equation for varying timestep size with
reference convergence rate lines

4.5 2D Linear Transport Equation on Periodic Domain

To evaluate the capability of the Fetsome layer to deal with multiple spatial boundary con-

ditions in higher dimensions, the linear transport equation on a cylinder is considered. The

48



transport equation problem is to find u(x, y, t) such that:

∂u

∂t
+ c · ∇u = 0 (4.5.1)

u(x, y, 0) = u0(x, y) (4.5.2)

In the above, c is the constant advection speed of the solution. Taking c = (c, 0), which

represents advection in the x direction, the solution to the linear transport equation is:

u(x, y, t) = u0(x− ct, y) (4.5.3)

The FET weak variational form of the problem on the domain Ω× [0, T ] is to find ukh ∈Wkh

such that for all vkh ∈Wkh:∫
Ω
[ukhvkh]∂[0,T ]dx−

∫ T

0

∫
Ω
ukh

∂vkh
∂t

dxdt−
∫ T

0

∫
Ω
ukhc · ∇vdxdt = 0 (4.5.4)

For the numerical solution using Fetsome, the domain Ω is chosen to be the rectangle [0, 10]×
[0, 5] that is periodic in the x-direction, discretised through 150 × 75 continuous Lagrange

spatial elements of degree 3. The advection speed is taken to be c = (5/2, 0) and the initial

condition is taken to be:

u0(x, y) = 5 sin2
(πx
10

)
sin

(πy
5

)
(4.5.5)

=⇒ u(x, y, t) = 5 sin2
( π
10

(
x− 5

2

)
t
)
sin

(πy
5

)
(4.5.6)

The time domain is then picked to be [0, T ] = [0, 4], or one single period of the solution,

discretised through continuous Petrov-Galerkin elements.

Figure 4.5 shows the obtained convergence orders for the transport equation problem (the

data can be found in appendix A.3). Differently from the heat equation solutions, the ranges

which present the sought asymptotic convergence rates are obtained is less clear. In fact, it

can be seen that linear elements present a deviation from the convergence regime for time step

sizes greater than ∆ ∼ O(100). This can be ignored by noting that such an order of time step

size is excessive for the chosen time domain. Similarly, it is evident that the ∆t→ 0 limit for

cubic elements breaks the O(∆t4) expected convergence regime under ∆t ∼ O(10−1). This

(a) Linear time elements (b) Quadratic time elements (c) Cubic time elements

Figure 4.5: L2 error of cPG 2D semi-periodic linear transport equation with reference
convergence rates
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results from the dominance of the spatial discretisation error, and can be considered expected

and not influent on the correct convergence rate demonstrated in the rest of the considered

range. For the remainder of the evaluated ∆t ranges, all considered elements achieve their ex-

pected convergence rates. Therefore, we can conclude that the transport equation provides an

example where the Fetsome functionality is successful in applying FET to more complicated

and higher dimensional spatial domains.

Figure 4.6: Snapshots of the exact and numerical solutions to the viscous Burgers’ problem
on 0 ≤ t ≤ 0.8 (lines greatly overlapping); linear cPG elements, ∆t = 0.26666

4.6 Continuous Viscous Burgers’ Equation

In order to assess the convergence properties of the Fetsome implementation on nonlinear

problems, the 1D viscous Burgers’ equation is solved numerically. This problem is fundamen-

tal in fluid dynamics applications and in the study of advection diffusion equations, demon-

strating the applicability of the FET implementation presented in this investigation. On a

one dimensional periodic domain Ω, the viscous Burgers problem is to find u that solves the

following:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂t2
(4.6.1)

u(x, 0) = u0(x) (4.6.2)

The ν constant is the diffusivity, or kinematic viscosity, which is chosen based on the phe-

nomenon to be modelled. The viscous Burgers equation is regularised by its diffusive term,

which eliminates the possibility of shocks to form and prevents the strong form problem from

only having weak solutions. In the case where ν ̸= 0, an analytic solution can be found by

means of a Cole-Hopf transformation [34] which reduces the nonlinear equation to the linear
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heat equation:

u(x, t) = −2ν

w

∂w

∂x
=⇒ ∂w

∂t
= ν

∂2w

∂t2
, w(x, 0) = w0(x) (4.6.3)

=⇒ u(x, t) =

∫∞
−∞ exp[−(x− ξ)2/4νt] exp[−(2ν)−1

∫ ξ
0 u0(η)dη]u0(ξ)dξ∫∞

−∞ exp[−(x− ξ)2/4νt] exp[−(2ν)−1
∫ ξ
0 u0(η)dη]dξ

(4.6.4)

Salih [35] provides an exact solution using the Cole-Hopf transformation by picking the initial

condition to be the periodic function:

u0(x) =
2νακsin(κx)

β + α cos(κx)
(4.6.5)

=⇒ u(x, t) =
2νακe−νκ

2t sin(κx)

β + αe−νκ2t cos(κx)
(4.6.6)

Taking a periodic one-dimensional domain [0, L] on the time-interval [0, T ], the space-time

weak variational problem for the viscous Burgers’ equation is to find ukh ∈Wkh such that for

all vkh ∈Wkh:∫ L

0
[ukhvkh]∂[0,T ]dx−

∫ T

0

∫ L

0
ukh

∂vkh
∂t

dxdt−
∫ T

0

∫ L

0

1

2
u2kh

∂vkh
∂x

dxdt

+

∫ T

0

∫ L

0
ν
∂ukh
∂x

∂vkh
∂x

dxdt = 0 (4.6.7)

This corresponds to the UFL Fetsome compatible variational forms:

1 b = (-u*Dt(v) - 1./2.*(u**2)*v.dx(0) + nu*u.dx(0)*v.dx(0))*dx

2 db = u*v*dx

For the Fetsome specification, the spatial domain [0, L] = [0, 8] is discretised using degree

3 continuous Lagrange elements. The temporal domain [0, T ] = [0, 0.8] is discretised with

continuous Petrov-Galerkin elements. The values for the constant parameters are chosen to

be:

ν = 0.05, α = 1.5, β = 1.55, κ =
π

2
(4.6.8)

It has been found that 2500 spatial elements yield convergence within 0.1% of the space-time

error (see appendix A.4). Figure 4.6 presents a visual confrontation of the numerical and

exact solutions and figure 4.7 presents the convergence properties obtained for linear, cubic

and quadratic elements.

As can be clearly seen, all required convergence rates are achieved in the asymptotic regime

as ∆t → 0. Therefore, it can be concluded that Fetsome correctly handles the nonlinearity

present in the viscous Burgers’ equation. For quadratic and cubic elements, an inspection

of L2 error line shows that for time step sizes bigger than O(10−1) the convergence order

decreases, indicating that for this order of ∆t other numerical errors, such as that of the

space discretisation, dominate. Nevertheless, this does not influence the result obtained in

the approximate limit as the time step is too large to be considered asymptotic.
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(a) Linear time elements (b) Quadratic time elements (c) Cubic time elements

Figure 4.7: L2 error of viscous Burgers’ equation with reference convergence rate lines

4.7 Discontinuous Inviscid Burgers’ Equation

The inviscid Burgers’ equation, obtained by setting ν = 0 in (4.6.1), is of even greater nu-

merical interest than its viscous counterpart. In the absence of a viscous diffusion term, it is

in fact possible for derivative discontinuities to develop and for shock solutions to propagate

[36]. Therefore, analytical solutions often cannot be found or involve complicated interactions

between shocks and rarefaction fans. Also due to this, it is not possible to analyse the nu-

merical solution using a MMS approach without influencing the regularity of the solution a

priori. Instead of considering the convergence orders of the FET solution for this problem,

extensively considered in the previous examples, this problem illustrates the capabilities of

Fetsome in interfacing with more complex, standard Firedrake spatial discretisations to im-

prove the stability of time stepped solutions.

The inviscid Burgers problem is to find u(x, t) on the spatially-periodic space-time domain

Ω× [0, T ] = [0, 5]× [0, 0.5) (with t = 0.5 being the time when a smooth solution stops existing

for the following u0(x)), such that the following are satisfied:

∂u

∂t
+ u

∂u

∂x
= 0 (4.7.1)

u(x, 0) = u0(x) = sin
(4πx

5

)
(4.7.2)

For the space-time finite element discretisation, we pick dG elements of degree 3 for the time

domain and dG elements of degree 1 for the space domain. The doubly-discontinuous weak

variational problem is to find ukh ∈Wkh such that for all vkh ∈Wkh:

∑
In⊂[0,T ]

∑
K⊂Ω

[∫
K
[ukhvkh]∂Indx−

∫
In

∫
K
ukh

∂vkh
∂t

dxdt−
∫
In

∫
Ω

1

2
u2kh

∂vkh
∂x

dxdt

+

∫
In

∫
∂K

1

2
u2khvkh · ndsdt

]
= 0

(4.7.3)

As in 2.2.4, the integrals over ∂In and ∂K require a choice of numerical flux. While the flux

function in the time domain is chosen to be the time upwind flux, more care has to be taken

to choose the flux between spatial elements on the ∂K boundaries. As suggested by [19],

the optimal choice for a nonlinear problem such as the inviscid Burgers’ equation would be
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the Godunov flux, but in this case the Lax-Friedrichs flux provides an effective yet simpler

approximation to it:

f̂(u−kh, u
+
kh) =

1

2

(1
2
(u+kh)

2 +
1

2
(u−kh)

2
)
− c

2
(u+khn

− + u−khn
+) (4.7.4)

In the flux function, c is an estimate for what is called the maximum wave speed of the

problem. It can be taken to be c = 1 for the given initial condition u0, its maximum value.

With this choice of numerical flux, the UFL forms representing the doubly-discontinuous

space-time inviscid Burgers’ problem to be supplied to Fetsome are:

1 b = (-u*Dt(v) - 1./2.*(u**2)*v.dx(0))*dx

2 + (0.5*(0.5*u('+')**2 + 0.5*u('-')**2)

3 - 0.5*(u('+')*n('-')[0] + u('-')*n('+')[0]))

4 * (n('+')[0]*v('+') + n('-')[0]*v('-'))*dS

5 db = u*v*dx

The doubly-discontinuous discretisation is to be compared with the discretisation involving

degree 3 cPG elements in time and degree 1 continuous Lagrange elements in space. Both

formulations involve 100 spatial elements and a timestep size of ∆t = 0.0625.

Figure 4.8a illustrates the solution obtained with cPG+cG elements. It is clearly seen that

artificial oscillatory behaviour becomes dominant around the regions with a steep derivative as

the time approaches t = 0.5, the moment when a smooth solution stops existing. This instabil-

ity of the chosen finite element spaces is unsatisfactory for a meaningful numerical solution of

the inviscid Burgers’ problem. On the other hand, figure 4.8b presents the dG+dG solution.

It is evident that oscillations are absent and the solution presents none of the instabilities

present in the cPG+cG choice of space-time elements around the regions of interest. There-

fore, it can be concluded that improvements in solution stability can be achieved with the

two time elements currently provided by Fetsome and their combination with more complex

spatial discretisations from core Firedrake.

(a) cPG + cG space-time discretisation (b) dG + dG space-time discretisation

Figure 4.8: Comparison of the oscillatory behaviour and its absence for the two space-time
discretisations of the inviscid Burgers’ problem
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Chapter 5

Conclusion and Extensions

5.1 Project Conclusions

This report has presented Fetsome, a new UFL manipulation layer for the specification and

automatic solution of finite element in time problems for Firedrake and Irksome. By devel-

oping the software abstractions for the mathematics underpinning the theory of FET, the

presented implementation gives the capability for the users of these two finite element frame-

works to supply UFL forms to a FET time stepping solver, the VariationalTimeStepper.

Interpreting the supplied forms as space-time integrals, the manipulation layer automatically

composes the UFL forms representing the FET problem by coupled finite element problems

in space to be passed to the standard Firedrake solver, all with minimal input from the user.

Fetsome supports the numerical discretisation of the time domain using continuous Petrov-

Galerkin and discontinuous Galerkin elements for arbitrary polynomial degrees automatically,

a functionality which is found to be novel in the landscape and literature of general-purpose

finite element PDE solvers. Both discretisations of the time domain also support the inclu-

sion of integrals over one-dimensional timestep boundaries, as well as space-time integrals

representing time-dependent forcing terms and time-dependent spatial Dirichlet boundary

conditions, all contributions not previously found in the literature. The presented implemen-

tation also provides a unified approach in solving linear and nonlinear space-time problems

alike, needing no further input from its users. The capabilities of Fetsome which it provides

for both classes of problems makes it possible for it to target many important time-dependent

weak variational problems from across many areas of applied mathematics. This respects

the Firedrake philosophy that the core functionality it provides should be as application-

independent as possible and accessible for researchers from diverse fields.

The convergence of both continuous Petrov-Galerkin and discontinuous Galerkin FET dis-

cretisations has been analysed in depth for purposes of code verification. It has been discussed

that the mathematical theory predicts that degree k cPG and dG solutions to space-time weak

variational problems should converge to the exact solutions of the discretised PDEs with an

L2 error in space-time asymptotically scaling as O(∆tk+1). This has been verified for impor-

tant fundamental PDEs, namely the heat equation, the linear advection/transport equation

and Burgers’ equation in its viscid form. The mixture of boundary terms, forcing functions

and spatial boundary conditions used by such examples demonstrates the correctness of the

implementation and its interacting parts.
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Finally, Fetsome has been shown to easily combine with more complicated finite element dis-

cretisations in space, such as for the inviscid Burgers’ equation with discontinuous Galerkin

elements in space. The stability obtained by the dG+dG space-time element choice further

highlights the numerical potential of FET discretisations. Furthermore, Fetsome’s success

with spatial surface integrals involving numerical flux such as Lax-Friedrichs flux highlights

the compatibility with the core functionality of Firedrake and the expressivity of UFL which

can be exploited by a typical user of these packages. Overall, this makes Fetsome a successful

and valuable addition to the UFL symbolic manipulation layers of Firedrake and Irksome.

5.2 Future Work

Having implemented a foundational finite element in time layer for Firedrake and Irksome,

there are many possible extensions that can now be attempted, as well as further work that

can be done to enrich the functionality developed in this investigation.

5.2.1 Lagrangian Variational Problems

The first important extension to Fetsome that can now be attempted is that of coupling the

FET manipulation layer with a layer for the Lagrangian-dynamical specification of problems

of physical relevance. This formulation is based on the principle of least action, which states

that the path q taken through space by a particle is the one which minimises the action

functional given by integration of the Lagrangian L(q, q̇, t) along the particle’s path q(t) [37]:

δS = 0, S[q] =

∫ t2

t1

L(q, q̇, t)dt (5.2.1)

By calculating the variation of the action, the Euler-Lagrange equations of motion are ob-

tained:
∂L

∂q
− d

dt

∂L

∂q̇
= 0 (5.2.2)

Many finite element in time discretisations have favourable conservation properties for quan-

tities that are induced by symmetries of the Lagrangian [38], therefore making extending

Fetsome in this direction relevant for problems of physical interest.

5.2.2 Mixed Time Function Spaces

Fetsome currently only supports space-time FET problems which discretise all time-dependent

variable on the same temporal function space. This is sufficient in the case of time-dependent

PDEs which are first order in time, but cannot support higher orders of time dependence.

Mixed function spaces in time, just as the spaces implemented in standard Firedrake, present

the opportunity for Fetsome to most flexibly be extended in the support of these problems.

For example, consider the fundamental problem of the wave equation:

∂2u

∂t2
= c2∇2u, u(x, 0) = u0(x), u′(x, 0) = g(x), ∇u · n|∂Ω = 0 (5.2.3)

We can build the space-time finite element problem by taking the solution trial function as

ukh ∈ Wkh and the test function vkh ∈ Wkh. By introducing the new variable σkh = ∂ukh
∂t on
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the space Mkh and its appropriate test function ωkh ∈ Mkh, the second order wave equation

can be split into two coupled first order weak variational problems:

∀vkh ∈Wkh :

∫ T

0

∫
Ω

∂σkh
∂t

vkhdxdt+

∫ T

0

∫
Ω
c2∇ukh · ∇vkhdxdt = 0 (5.2.4)

∀ωkh ∈Mkh :

∫ T

0

∫
Ω
σkhωkhdxdt =

∫ T

0

∫
Ω

∂ukh
∂t

ωkhdxdt (5.2.5)

With mixed elements in time, the solution of such a system would be possible by combining

the two equations in a single effective-space UFL form in such a way to produce no ambiguity

between the trial-test function pairs. Mixed function spaces also introduce an outlook for

important and active research based on the stability of the combinations of the function

spaces Wkh and Mkh chosen for each of the trial-test function pairs appearing in the weak

variational problem. This makes mixed function spaces a very desirable extension to Fetsome.

5.2.3 UFL Space-Time Support

As has been presented in chapter 3 the way in which a collection of UFL forms is interpreted as

a space-time variational problem depends on the user forming a triple of forms and supplying

it to a VariationalTimeStepper. Nevertheless UFL’s role as a DSL for the specification of

finite element problems means that a much more natural formulation of FET problems can

be obtained by adding UFL extensions to Fetsome to support space-time forms, like Irksome

introduces the Dt UFL operator. By introducing time domain and time-boundary integrals

through the similar measures dt and dI to the supported dx, ds, dS measures, as well as the

introduction of a time variable t coupled to a TimeFunction class, solving FET problems

with Fetsome would be better integrated to the Firedrake, Irksome and UFL environments.

For example, the forced heat equation with vanishing Neumann conditions would then be

described by the UFL form:

F = u*v*dx*dI - u*Dt(v)*dx*dt + dot(grad(u), grad(v))*dx*dt - f*v*dx*dt

A modification like this would ultimately improve Fetsome’s user API and increase its poten-

tial as a common tool for the existing, specialisation-diverse Firedrake user base.

5.2.4 Future Studies in Efficiency

Although Fetsome successfully makes use of the Firedrake caching system to improve the effi-

ciency of space-time solutions, there are mathematical manipulations that can also be applied

to affect the speed with which solutions are found.

Fetsome automatically creates quadrature rules that can be used to integrate space-time

forms: custom chosen quadratures can be passed to the VariationalTimeStepper and down

to the UFL manipulation layer. Higher orders of quadrature require a greater number of point

evaluations and form systems of equations to be solved that are not diagonal, and so not eas-

ily invertible. Decreasing the order of quadrature to schemes that are non-exact can provide

lower accuracy but still low-error solutions and transform the derived algebraic systems to

ones that are solved with much reduced computational costs, and so a greater efficiency.

56



Another important tool that can be explored in a FET setting is system preconditioning.

When solving a linear system Au = f , a preconditioner P can be used to define the left and

right preconditioned problems [20] respectively:

(P−1A)u = P−1f , (AP−1)(Pu) = (AP−1)y = f then Pu = y (5.2.6)

For some choice of P depending on the system, solving the two preconditioning problems

can be much faster than solving the original problem. Fetsome allows the specification of

PETSc options to be passed down to the Firedrake solver, including the preconditioning layer.

Finding good preconditioners for FET is a potential great source of speedup in the solution

of space-time problems. Overall, exploring outlets for increased efficiency is an important

opportunity to reduce the computational cost of FET and make FET time stepping more

desirable compared to more traditional procedures, such as direct Runge-Kutta stepping.
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Appendix A

Evaluation Data

A.1 Analytic Heat Equation Convergence Data

Number of Spatial Elements L2 Error (Cubic cPG, ∆t = 0.0625) Error Decrease %

400 1.2616204822622198e-09 Chosen
500 1.2609533238223085e-09 -0.05%

Table A.1: Convergence of lowest timestep L2 error for the 1D heat equation with exact
solution for testing procedure.

Spacetime L2 Error

∆t Linear cPG Quadratic cPG Cubic cPG

0.0625 0.0001298843073086203 5.408811609945753e-07 1.2616204822622198e-09
0.125 0.000519416778055539 4.324728880758648e-06 2.0163651433674935e-08
0.25 0.002075743229848816 3.452387446279155e-05 3.2201165670711505e-07
0.5 0.008272404306194645 0.00027385316487789054 5.113868952346959e-06
1.0 0.03261382812441787 0.002119488919428314 7.947835900843637e-05
2.5 0.18634366343823308 0.02711772088251065 0.002605203998636307

Table A.2: L2 errors for the 1D heat equation with exact solution.

Relative Convergence Rates

∆t Linear cPG Quadratic cPG Cubic cPG

0.0625 Baseline Baseline Baseline
0.125 1.9996654821713218 2.9992261382637606 3.998407027470216
0.25 1.9986634714467455 2.9969127834486913 3.9972840892177057
0.5 1.9946787049164083 2.987736267419195 3.989230371205943
1.0 1.9791051878436703 2.9522419655074974 3.958074989774075
2.5 1.9020777872541332 2.7818817202182826 3.80859629948175

Table A.3: Relative convergence rates for the 1D heat equation with exact solution.
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A.2 MMS Forced Heat Equation Convergence Data

Number of Spatial Elements L2 Error (Cubic dG, ∆t = 0.03125) Error Decrease %

400 2.0573545813458467e-09 Chosen
500 2.058861203606176e-09 -0.007%

Table A.4: Convergence of lowest timestep L2 error for the 1D forced heat equation for
testing procedure.

Spacetime L2 Error

∆t Linear dG Quadratic dG Cubic dG

0.03125 0.00107442242888461 1.3470049007120087e-06 2.0573545813458467e-09
0.0625 0.004297191642260589 1.0730556131722163e-05 3.284383358603389e-08
0.125 0.017180441782850477 8.51072558400099e-05 5.216671803016542e-07
0.25 0.06858588168135032 0.0006688230106869757 8.211735938511207e-06
0.5 0.2721580073692369 0.0051536044220729165 0.00012644857762326606
1.0 1.0541981626830865 0.03814182220830581 0.0018360271795392132
2.0 3.704545608391724 0.2670090160456395 0.022907481999802387

Table A.5: L2 errors for the 1D forced heat equation.

Relative Convergence Rates

∆t Linear dG Quadratic dG Cubic dG

0.03125 Baseline Baseline Baseline
0.0625 1.999832791677082 2.9938978437019474 3.9967601643823816
0.125 1.9993011111651227 2.9875572859958606 3.989435236022311
0.25 1.997144495144824 2.974270444244156 3.9764856591093354
0.5 1.9884609482350168 2.9458854148004425 3.9447197624564314
1.0 1.9536296943346183 2.8877200605428768 3.859964701953044
2.0 1.813150512736781 2.8074427834476054 3.641159564814607

Table A.6: Relative convergence rates for the 1D forced heat equation.

A.3 2D Semi-Periodic Transport Equation Convergence Data

Spacetime L2 Error

∆t Linear cPG Quadratic cPG Cubic cPG

0.03125 0.01344466970355208 1.2130067438108289e-05 1.4967421873156793e-06
0.0625 0.053703496229867205 9.663445576437092e-05 1.55897786168289e-06
0.125 0.21361882667242632 0.0007832012785474081 7.159097585945785e-06
0.25 0.8358368135987186 0.00657597660567314 0.00011236394000093577
0.5 3.0731987655195385 0.06085314852061419 0.001824653775345493
1.0 9.235451607025453 0.6315188551006861 0.03185391056491163
2.0 18.005063255460616 5.146298853791152 0.6837294510447999

Table A.7: L2 errors for the 2D semi periodic transport equation.
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Relative Convergence Rates

∆t Linear cPG Quadratic cPG Cubic cPG

0.03125 Baseline Baseline Baseline
0.0625 1.9979817014451775 2.993950113629163 0.058774701451161704
0.125 1.9919508809685174 3.018773530086016 2.1991773041224
0.25 1.9681825017741321 3.0697501413744823 3.972257562554153
0.5 1.8784478720133868 3.210054837716668 4.021371718108193
1.0 1.5874414304459317 3.3754219943218606 4.125775850320304
2.0 0.9631482532108279 3.0266375251549666 4.42388316767253

Table A.8: Relative convergence rates for the 2D semi periodic transport equation.

A.4 Viscous Burgers’ Equation Convergence Data

Number of Spatial Elements L2 Error (Cubic cPG, ∆t = 0.00625) Error Decrease %

2500 5.956239709710478e-11 Chosen
2600 5.956029666467673e-11 -0.003%

Table A.9: Convergence of lowest timestep L2 error for the 1D viscous Burgers’ equation.

Spacetime L2 Error

∆t Linear cPG Quadratic cPG Cubic cPG

0.00625 4.168349955479895e-06 1.5578051430524667e-08 5.956029666467673e-11
0.0125 1.667058007601192e-05 1.2449484726605626e-07 9.509886900420065e-10
0.025 6.663734064673439e-05 9.918729417640358e-07 1.5094780729711198e-08
0.05 0.00026583932849720033 7.81111452158456e-06 2.344832722386521e-07
0.1 0.0010525612592314664 5.9171728290899064e-05 3.4047426899258154e-06
0.2 0.004063612285896424 0.00040575807073770854 4.208993440479101e-05
0.4 0.01457979242158248 0.0023216903731941275 0.0003971785781358016

Table A.10: L2 errors for the 1D viscous Burgers’ equation.

Relative Convergence Rates

∆t Linear cPG Quadratic cPG Cubic cPG

0.00625 Baseline Baseline Baseline
0.0125 1.9997559959273192 2.998499340315138 3.9970053384545206
0.025 1.9990265212115583 2.99406929258349 3.9884778064113644
0.05 1.996151821837603 2.9773011833231986 3.9573633010478164
0.1 1.9852777417623049 2.9213077162523637 3.8599888607470145
0.2 1.9488585586043459 2.77763985188123 3.6278575840940284
0.4 1.843135515045395 2.5164838872612934 3.2382406466509432

Table A.11: Relative convergence rates for the 1D viscous Burgers’ equation.
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