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Abstract

The p-adic fields Qp are integral in number theory and arithmetic geometry, and serve as a key example

of a non-Archimedean field. Unfortunately, a näıve attempt to construct a theory of analytic geometry

over Qp, paralleling the one over the complex numbers C, fails to be useful. For example, a compact

analytic manifold over Qp decomposes as a disjoint union of open balls. Over C, algebraic objects such

as curves given by the zero sets of polynomials may be studied as analytic objects by considering their

analytifications. Such analytifications reflect the geometry of the algebraic object, but an analog over

Qp using only the näıve approach lacks this property due to the highly disconnected nature of compact

manifolds.

Berkovich spaces provide an alternative approach to non-Archimedean analytic geometry, giving

a topologically well-behaved class of spaces. They allow for analytifications of varieties over non-

Archimedean fields, which preserve several important properties of the geometry of the variety. This

project aims to serve as an introduction to the theory of these spaces and how their geometric properties

may be determined, illustrating the theory with several examples, including the case of elliptic curves. Of

particular importance is the notion of a skeleton of a Berkovich space, which is a subspace controlling the

homotopy type of the space. We study how skeleta may be found for both curves and higher dimensional

spaces. In particular, we give a proof of a result showing how a Berkovich space may be recovered as

a topological inverse limit of its skeleta. To the best of our knowledge, all proofs of this result in the

literature utilise more advanced techniques in algebraic geometry than those in this report; the proof

given here can be considered more direct and explicit.
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Chapter 1

Introduction

1.1 Motivation

A field k is said to be non-Archimedean with respect to an absolute value | · | : k → R if the ultrametric

triangle inequality is satisfied:

|f + g| ≤ max{|f |, |g|} ∀f, g ∈ k.

In number theory, a prominent example of such fields are the p-adics Qp equipped with the p-adic absolute

value, while in geometry, one is often interested in working over the field of Laurent series F ((t)) over a

field F , equipped with the t-adic absolute value.

Over C, an important class of geometric objects comes in the form of Riemann surfaces, which

are compact analytic manifolds of complex dimension 1. More generally, a nonsingular variety over C
admits an analytification, which is a complex analytic space; Riemann surfaces then correspond to ana-

lytifications of curves. Furthermore, the analytification of a variety may be studied using transcendental

methods (see [17, Appendix B]). A suitable GAGA principle then indicates that the geometry of the

analytification reflects the geometry of the original variety.

In order to develop a similar theory over non-Archimedean fields, it is natural to consider compact

analytic manifolds, but here, a theorem of Serre shows that such spaces are poorly behaved when the

base field is non-Archimedean and locally compact - as is the case for the fields Qp and Fq((t)).

Theorem 1.1.1. [25, Appendix 2] Let X be a non-empty, compact analytic manifold over a locally

compact and non-Archimedean field. Then X decomposes as a disjoint union of a finite number of balls.

If there are two such decompositions into n and m balls respectively, then n ≡ m mod q, where q is the

size of the residue field.

In particular, this completely determines the structure of any such manifold and motivates the need

for an improved notion of non-Archimedean analytic spaces.

An important milestone in the development of a well-behaved non-Archimedean analytic theory came

through Tate’s rigid analytic spaces in the 1960s. These spaces, developed using rings of convergent

power series as opposed to the polynomial rings used in algebraic geometry, were much better behaved,

admitting, for example, a suitable GAGA principle. An important variation, and the one which will be

principally studied here, was in the form of Berkovich’s k-analytic spaces, developed in the late 1980s. An

advantage offered by Berkovich spaces was that it became possible to work directly with the topology

of the space itself, as opposed to the ‘Grothendieck topology’ used in rigid analytic geometry, a feat

made possible by effectively adding additional points to rigid spaces. Presently, Berkovich spaces find
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1.2. Report Structure

a plethora of uses, including non-Archimedean analogues for potential theory [5] and mirror symmetry

[19, 23].

1.2 Report Structure

In this report, we explore the theory of Berkovich spaces, focusing on techniques to visualise and deter-

mine the geometry of such spaces. We assume some knowledge of algebraic geometry, category theory

and some elementary results in non-Archimedean analysis. In particular, it is crucial to use the theory

of schemes as opposed to the classical theory of varieties.

In the first core chapter, we review the construction of Berkovich spaces. Although there are some

parallels here with the construction of schemes, some more care is needed in comparison with the approach

taken in algebraic geometry, since we must additionally capture the analytic aspects of the rings that we

are working with. The primary example considered to illustrate the theory is that of the analytic affine

line A1,an
k , for which we are able to derive an explicit picture. We also describe the construction of the

analytification functor, assigning to a k-variety X the Berkovich space Xan.

We then focus our attention towards k-analytic curves. We give an overview of formal schemes and

formal models. In general, a model for an analytic space can be considered to be a space, such as a

scheme or a formal scheme, which captures the geometry of the analytic space. Then, we move on to

the notion of a skeleton, which is a fundamental concept in the theory of Berkovich spaces. If X is a

k-analytic space, then a skeleton Σ is a closed subset of X admitting a strong deformation retraction

X → Σ. In particular, the homotopy type of X is controlled by the skeleton. We see how skeleta of

curves are closely linked to the classical theory of semistable formal models, using the analytic projective

line to illustrate the correspondence.

Equipped with the ideas and imagery of curves, we then generalise the notion of a skeleton to higher

dimensional analytic spaces. For each proper variety X over k, we consider the class of schemes which

model the analytic space Xan, known as snc models. We see how an snc model X gives rise to a

skeleton Sk(X ) ⊂ Xan, and furthermore, provide a proof of theorem 4.3.7, which states that there is a

homeomorphism

Xan ∼= lim←− Sk(X )

as X ranges over the snc models of Xan. Informally, the topology of Xan is determined by its snc

models.

In the final chapter, we consider the case of elliptic curves, explaining how non-Archimedean uni-

formization theory may be used to construct the analytic space associated to an elliptic curve with

multiplicative reduction. We apply the results from previous chapters to compute skeleta for this space.

1.2.1 Contributions

The contributions of the report are summarised as follows.

• Various aspects of the theory originally spread across various textbooks and papers are organised

into one report. In particular, there is no standard textbook for non-Archimedean geometry, so

information has been consolidated from a variety of sources.

• Examples in addition to what is presented in the sources have been computed in order to better

illustrate the theory.

• Efforts have been made to clarify details and arguments which were omitted in the original sources

or left as exercises to the reader.
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1.2. Report Structure

• A proof is given of the result labelled in the following chapters as theorem 4.3.7. To the best of

our knowledge, proofs in the literature of this result require more advanced techniques in algebraic

geometry (see [11]). We present two proofs for this result which essentially depend only on standard

results on blow-ups of schemes, hence providing a more direct and explicit argument.

– The first proof works for arbitrary dimensions, but requires resolution of singularities, which

is a powerful result in birational geometry.

– The second proof does not depend on resolution of singularities, but works only in the case of

curves.

Notation and Conventions Throughout the report, k will denote a complete non-Archimedean field

with a non-trivial absolute value | · |. Its valuation ring will be denoted by R and the residue field by k̃.

The valuation group of any valued field (K, | · |K) is denoted by |K×| = {|f |K | f ∈ K×} ⊂ R.
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Chapter 2

k-Analytic Spaces

To develop a satisfactory geometric theory of analytic spaces, we start by developing the corresponding

algebraic theory before using this to define the basic building blocks of analytic spaces. The material in

this chapter primarily follows [6] and [28].

2.1 k-Affinoid Spectra

Let A be a commutative ring with unity. A seminorm (resp. non-Archimedean seminorm) on A is a

function | · | : A→ R≥0 such that for all f, g ∈ k the following hold:

1. |0| = 0 and |1| = 1;

2. |f · g| ≤ |f | · |g|;
3. |f − g| ≤ |f |+ |g| (resp. |f − g| ≤ max{|f |, |g|}).

If we have that |f | = 0 if and only if f = 0, then the seminorm is called a norm. Note that we

assume any norm to be submultiplicative. If for all f, g ∈ k, |f · g| = |f | · |g|, then the norm is said to be

multiplicative; a multiplicative norm is an absolute value. Then, any norm on A induces a topology and

hence we may take the completion of A with respect to the given norm. For a normed ring (A, | · |), we
define:

A◦ := {a ∈ A | |a| ≤ 1}

A◦◦ := {a ∈ A | |a| < 1}

The residue ring Ã is then given by A◦/A◦◦. A complete normed ring is called a Banach ring. Given a

Banach ring A with norm || · ||, we say that a seminorm | · | on A is bounded if for all f ∈ A , |f | ≤ C||f ||
for some constant C. If the seminorm is multiplicative, then we may take C = 1. A morphism of Banach

rings ϕ : (A , || · ||A ) → (B, || · ||B) is a homomorphism of the rings which is bounded in the sense that

||ϕ(a)||B ≤ C · ||a||A , for any a ∈ A and some constant C. For our purposes, it suffices to consider only

Banach k-algebras.

For any r = (r1, . . . , rn) ∈ Rn≥0, a = (a1, . . . , an) ∈ kn, we define the Banach k-algebra:

k{r−1(T − a)} = k{r−11 (T1 − a1), . . . , r−1n (Tn − an)}

:=

f =
∑
|α|≥0

cα(T − a)α | cα ∈ k and |cα|r|α| → 0 as |α| → ∞


6



2.1. k-Affinoid Spectra

The norm on this algebra is given by ||f || := maxα |cα|r|α|. Although not immediate, the following

lemma describes some well-known properties of the norm.

Lemma 2.1.1. [9, §6.1.5] The norm || · || on k{r−1(T − a)} is multiplicative, and hence an absolute

value. Furthermore, when k is algebraically closed, for any f ∈ k{r−1(T − a)} we have that:

max
α
{|cα|r|α|} = sup

z∈B(a,r)

|f(z)|

where B(a, r) ⊂ kn denotes the closed ball of radius r centered at a.

The algebras described are the analytic counterpart to polynomial rings in n variables over k - they

additionally capture the notion of convergence of a power series on a polydisk centered at a with radius

r. This analogy extends to define a corresponding notion of finitely generated algebras.

For a closed ideal I of a Banach ring A with norm || · ||, the quotient A /I has an induced norm,

called the residue norm, given by |f + I| = infh∈I ||f + h||. Two norms are equivalent if they are both

bounded by each other. We say a map of Banach rings ϕ : A → B is admissible if the residue norm on

A / kerϕ is equivalent to the norm on B restricted to imϕ.

Definition 2.1.2. [6, §2.1] A k-affinoid algebra A is a Banach k-algebra such that there is an admissible

surjective homomorphism of Banach algebras k{r−1T} → A , for some r ∈ Rn>0 and some n ≥ 0.

Hence, the above definition means that we may identify, as Banach k-algebras, a k-affinoid algebra

with a quotient of k{r−1T}. A k-affinoid algebra A is Noetherian and all ideals are closed [6, Prop.

2.1.3], so it makes sense to talk about quotients A /I where I is a necessarily finitely generated ideal of

A .

Next, we introduce an analogue of the Spec construction in the form of the Berkovich spectrum of a

Banach ring.

Definition 2.1.3. [6, §1.2] Let (A , || · ||) be a Banach ring. The Berkovich spectrumM (A ) is the set

of all multiplicative seminorms on A , bounded with respect to || · ||. The topology is the weakest such

that for all f ∈ A , the functionM (A )→ R≥0 given by | · |x 7→ |f |x is continuous.

We will identify a point x ∈M (A ) with a seminorm, denoted | · |x. For a non-zero Banach ring A ,

the spectrum M (A ) is non-empty, compact and Hausdorff [6, Theorem 1.2.1], and when the norm on

A is non-Archimedean, the points ofM (A ) are non-Archimedean seminorms.

Example 2.1.4. For any field K endowed with a non-Archimedean absolute value || · ||, the spectrum

M (K) consists of a single point. Indeed, taking any element | · |x ∈ M (K) and f ∈ K×, we see that

|f |x ≤ ||f ||. But additionally, |f−1|x ≤ ||f−1||, which implies by multiplicativity that ||f || = |f |x. Hence

the only point ofM (K) is the absolute value on K.

Example 2.1.5. For all n > 0, a ∈ kn and r ∈ Rn>0, the Berkovich closed disk E(a, r) is defined as

E(a, r) =M
(
k{r−1(T − a)}

)
.

Since the norm || · || on k{r−1(T − a)} is multiplicative, it gives a point of E(a, r) which - by definition

of the spectrum - is maximal in the sense that for any other point | · |x and f ∈ k{r−1(T − a)}, we have

that |f |x ≤ ||f ||.

The closed disk admits the following description.

Proposition 2.1.6. [6, §1.4.4] For all n > 0, a = (a1, . . . , an) ∈ kn and r = (r1, . . . , rn) ∈ Rn>0, the

closed disk E(a, r) is identified with the set of multiplicative seminorms on k[T1, . . . , Tn] extending the

absolute value on k such that |Ti − ai|x ≤ ri for all 1 ≤ i ≤ n.
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2.1. k-Affinoid Spectra

Proof. We may assume by a suitable change of coordinates that a = 0 ∈ kn. Fix a point x ∈ E(0, r).

Then any such point defines a multiplicative seminorm on k[T1, . . . , Tn] by restricting along the inclusion

k[T1, . . . , Tn] ⊂ k{r−1T}. The fact that | · |x is bounded by the norm on k{r−1T} immediately implies

that the seminorm extends the absolute value on k and that |Ti|x ≤ ri for all 1 ≤ i ≤ n.

Conversely, fix a seminorm | · |x as in the statement of the theorem, and assume |T |x ≤ r. For an

element

f =

∞∑
|α|=0

cαT
α ∈ k{r−1T}

we define the sequence (fn)n∈N, where for any n ∈ N,

fn :=

n∑
|α|=0

cαT
α ∈ k[T1, . . . , Tn]

and subsequently define a map on k{r−1T} sending f 7→ limn→∞ |fn|x.

To see that this limit exists, we show that the sequence (an)n∈N given by an = |fn|x is Cauchy. Fix

N ≥ 0 and n,m ≥ N with n ≥ m. Then,

|an − am| ≤ |fn − fm|x ≤ max
m≤|α|≤n

{|cα|r|α|}

and the latter approaches 0 as N tends to infinity.

It is readily verified that this is a multiplicative seminorm on k{r−1T} using properties of limits, so

it remains to show that it is bounded by the norm || · || on k{r−1T}. But we see that for any n ≥ 0:

|fn|x ≤ max
0≤|α|≤n

{|cα|r|α|} ≤ max
|α|≥0

{|cα|r|α|} = ||f ||.

Later we will see that this description has a strong connection with the analytic affine line. We will

delay the visualisation of the one-dimensional closed disk until we have encountered the full affine line,

but in the meantime, the following lemma provides an initial insight into the topology of the space.

Lemma 2.1.7. Assume k is algebraically closed and denote the point associated to the norm on k{T}
by || · ||, where the elements of k{T} are power series in one variable. Then the subset E(0, 1)\{|| · ||} is
a disjoint union of open sets, the number of which is in bijection with k̃.

Proof. Fix representatives b ∈ k for each element b̃ ∈ k̃, and consider the sets:

Xb := {| · |x | |T − b|x < 1}

It follows directly from the definition of the topology on a Berkovich spectrum that these sets are open.

Using the description given in proposition 2.1.6, we see that as k is algebraically closed any point

| · |x ∈ E(0, 1) is determined by the values |T − a|x as a ranges over elements of k. Furthermore, when

|a| > 1, we have that |T − a|x = |a| due to the ultrametric triangle inequality. Since ||T − a|| = 1 when

|a| ≤ 1, it follows that for any other point | · |x ̸= || · ||, there exists some a with |a| ≤ 1 such that

|T − a|x < 1. If a′ ∈ k is such that |a − a′| < 1, then |T − a′|x ≤ max{|T − a|x, |a − a′|} < 1. So it

follows that any point distinct from || · || lies in Xb for some b. Finally, we find that if |a − a′| = 1 for

some a, a′ with |a|, |a′| < 1, and |T − a|x < 1, then |T − a′|x = max{|T − a|x, |a− a′|} = 1, so the Xb are

disjoint.
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2.1. k-Affinoid Spectra

In the above lemma, the sets Xb can be thought of as open disks D(b, 1). Recall that in k, the unit

closed disk already decomposes into a disjoint union of k̃ open unit disks. Later we will see that the unit

disk is in fact path connected; consequently, we see that we have somehow improved upon the topology

of k by adding in the point || · ||.

Now let A be a Banach ring. For any point x ∈ M (A ) the following construction is an invariant

known as the completed residue field at x [6, §1.2.2]. Firstly, note that the set of points

kerx := {a ∈ A | |a|x = 0}

is a closed prime ideal of A . Hence, A / ker | · |x is an integral domain and we may take the quotient

field Frac(A / kerx). The seminorm | · |x defines an absolute value on A / ker | · |x simply by setting

|f |x := |f |x for any representative f of the equivalence class f , and this absolute value extends to one

on the quotient field.

Definition 2.1.8. The completed residue field H (x) at x ∈ M (A ) is the completion of the quotient

field Frac(A / kerx) with respect to the induced absolute value.

In particular, when A is k-affinoid, we find that H (x) is a field extension of k.

We now explain remark 1.2.2ii in [6] giving an alternative viewpoint onM (A ), which will be occa-

sionally useful in the sequel. Firstly, a character is a non-zero bounded homomorphism A → K for a

valued field K. Two characters to fields K1 and K2 are said to be equivalent if there is a valued field

K with embeddings i1 : K → K1, i2 : K → K2 such that the characters factor through a character

A → K.

By construction of H (x), we see that any point x ∈ M (A ) defines a character A → H (x) by

mapping f 7→ f(x), where f(x) denotes the image of f in H (x). Conversely, let χ : A → K be any

character. Then we have an induced bounded multiplicative seminorm | · |χ on A given by f 7→ |χ(f)|K ,

where | · |K is the absolute value on K. The given character is in fact equivalent to the character

A → H (x), where x denotes the point corresponding to | · |χ. To see this, firstly note that there is an

induced bounded homomorphism A / kerx→ K since kerx = kerχ. This descends to an embedding of

quotient fields Frac(A / ker | · |χ) → Frac(K) = K and by construction, there is already an embedding

Frac(A / ker | · |χ)→H (x). Hence, the setM (A ) may also be described as the set of equivalence classes

of characters A → K.

Any bounded homomorphism of any commutative Banach rings ϕ : A → B defines a continuous map

of the spectra ϕ∗ :M (B) → M (A ) by sending a seminorm | · |x to the seminorm |f |ϕ∗(x) := |ϕ(f)|x
[6, §1.2.2 iii]. However, not all continuous maps of spectra arise in this way. We aim to have a category

of k-affinoid spectra which is equivalent to the opposite category of k-affinoid algebras, as in the case of

affine schemes. Hence, we now make a preliminary definition of the category of k-affinoid spaces k-Aff
as the opposite category to the category of k-affinoid algebras.

Ultimately, we endeavour to endow the Berkovich spectrum with the structure of a locally ringed

space, so that taking global sections recovers the k-affinoid space, and furthermore so that we may

discuss analytic functions on such spaces. This will also allow us to interpret Berkovich spectra as k-

affinoid spaces. Until that point, we will be careful to distinguish the notions. For a k-affinoid space

X, we will denote by O the corresponding k-affinoid algebra andM (O(X)) will denote the associated

spectrum. We note that a morphism X → Y of k-affinoid spaces induces a mapM (O(X))→M (O(Y )).

The process of building the structure sheaf is unfortunately more complicated here than in the

algebraic case. For an affine scheme SpecA, the structure sheaf is constructed so thatOSpecA(D(f)) = Af

but attempting to copy this in the analytic case fails, since a localization of a k-affinoid algebra A may

not admit a k-affinoid structure. Instead, we mirror the universal property of an open immersion of

9



2.1. k-Affinoid Spectra

schemes in the context of k-affinoid spaces.

Definition 2.1.9. [27, §3] Let X be a k-affinoid space with A = O(X) and V ⊂ M (O(X)) a closed

subset. Then V defines a k-affinoid domain in X if there is a k-affinoid space XV with AV = O(XV )

and a morphism ϕ : XV → X such that:

1. The image of the induced continuous mapM (AV )→M (A ) coincides with V .

2. For any morphism ψ : Z → X such that the image of the mapM (O(Z)) →M (A ) is contained

in V , there is a unique factorisation through ϕ, so the following diagram commutes.

XV X

Z

ϕ

ψ

∃!ψ

If V defines an affinoid domainXV → X inX, we denoteOX(V ) := O(XV ). The mapM (OX(V ))→
M (O(X)) can be shown to be a homeomorphism onto the image V , and the subset V uniquely determines

the morphism XV → X [6, Proposition 2.2.4]. Furthermore, if y ∈ M (OX(V )) is a point mapping to

x ∈ V under the mapM (OX(V ))→M (O(X)), then it is a fact that the induced isometric embedding

H (x) ↪−→H (y) is an isomorphism H (x) ∼= H (y) [28, Fact 3.2.3.2].

Using affinoid domains, we may begin to construct the structure sheaf for a k-affinoid spectrum X.

We first show that the intersection of two affinoid domains is an affinoid domain, akin to the fact that

the intersection of two affine open sets is affine in a separated scheme. An essential ingredient is the fact

that in the category of k-affinoid algebras, the fibered coproduct of A → AU and A → AV exists and

coincides with the completed tensor product AU ⊗̂A AV [28, §3.1.4.1]. We omit the construction of the

completed tensor product, which involves taking a suitable completion of the regular tensor product; see

[28, Definition 2.1.2.3].

Proposition 2.1.10. [6, §2.2.2] Let X be a k-affinoid space, A = O(X) and suppose U, V ⊂ M (A )

define affinoid domains XU → X and XV → X respectively. Then the intersection U ∩ V defines an

affinoid domain given by the fiber product XU ×X XV → X.

Proof. Denote AU := OX(U) and AV := OX(V ). Since the category of k-affinoid algebras admits a

fibered coproduct, the category of k-affinoid spaces admits a fiber product:

XU ×X XV XU

XV X

It suffices to show that the image of the induced map M (AU∩V ) → M (A ) is precisely U ∩ V , since

then the universal property of affinoid domains follows from the universal property of the fiber product.

By considering the maps of spectra obtained from the above diagram, we see that the image is

contained within U ∩ V , so only the reverse inclusion needs to be shown. Fix x ∈ U ∩ V . Then x is

identified with characters AU →H (x) and AV →H (x). This induces a commuting diagram:

A AU

AV H (x)

and so there exists a unique character AU∩V →H (x) by the universal property of the fibered coproduct,

which coincides with A →H (x) when composed with the map A → AU∩V . By our earlier remarks on

10



2.1. k-Affinoid Spectra

viewing points as characters, we deduce that x lies in the image ofM (AU∩V )→M (A ).

If V1, . . . , Vn define affinoid domains in X, then the union V1 ∪ · · · ∪ Vn is said to define a special

subset in X [6, §2.2]. Then, denoting AVi
= OX(Vi) and AVi∩Vj

= OX(Vi ∩Vj) and noting that we have

restriction maps AVi
→ AVi∩Vj

given by the fibered coproduct, define:

OX(V ) := ker

∏
i

AVi
→
∏
i,j

AVi∩Vj


where the map is given by (fi)i∈I 7→ (fi|Vi∩Vj − fj |Vi∩Vj )i,j . For any open set U ⊂M (O(X)), define:

OX(U) := lim←−
V⊂U

OX(V )

where the limit is taken over all special subsets V ⊂ U . The special subsets can hence be thought of

as a kind of ‘base’ of the topology, although the special subsets are not open in our case. With this

comparison in mind however, the procedure is inline with the formation of the sheaf on a scheme defined

as taking the limit over the sheaf defined on the distinguished opens. In both cases, it suffices to check

that the sheaf conditions are satisfied on the elements of the ‘base’ since limits commute with limits,

and it then follows that the resulting construction is a sheaf. The proof that the sheaf conditions are

satisfied on the special subsets, and that OX(V ) is independent of the choice of covering for each special

subset V is omitted; see [6, Corollary 2.2.6]. The key result used in the proof is Tate’s acyclity theorem,

which we present in the relevant form.

Theorem 2.1.11. [9, §8.2.2] Let V1, . . . , Vn define affinoid domains in X which form a finite covering

for M (A ), where A = O(X). Let M be a finite Banach A -module and denote Mi =M ⊗A OX(Vi),

Mij =M ⊗A OX(Vi ∩ Vj) and so on. Then, the Čech complex

0→M →
∏
i

Mi →
∏
i,j

Mij → . . .

is exact, and each map is an admissible morphism.

At each point x ∈M (O(X)), the stalk OX,x of this sheaf is a local ring [6, §2.3], with maximal ideal

mx = {f ∈ OX,x | |f |x = 0}.

We claim that affinoid neighbourhoods of a point are cofinal in the collection of all neighbourhoods. To see

this, we consider the following key example [6, §2.2.2]. Let X be a k-affinoid space, f1, . . . , fn, g1, . . . , gm

elements in A = O(X) and p1, . . . , pn, q1, . . . , qm positive real numbers. Define the set

X(p−1f, qg−1) := {x ∈ X | |fi|x ≤ pi, |gj |x ≥ qj , 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Then, V := X(p−1f, qg−1) defines an affinoid domain in X, called a Laurent domain. It corresponds to

the k-affinoid algebra

AV := A {p−11 T1, . . . , p
−1
n Tn, q1S1, . . . , qmSm}/(Ti − f1, gjSj − 1)

and the natural morphism A → AV .

If U is an open neighbourhood of a point x, then it can be shown to contain an open neighbourhood

of x of the form

{y ∈M (A ) | |fj |x < 1, |gj |x > 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m}

11



2.2. k-Analytic Spaces

for some f1, . . . , fn, g1, . . . , gm ∈ A . Hence, Laurent domains form a basis of closed neighbourhoods of a

point. It follows that there is an isomorphism

OX,x ∼= lim−→OX(V )

as V ranges over affinoid neighbourhoods of x. It can additionally be shown that for each point x ∈
M (A ), κ(x) := OX,x/mx is a dense subset of H (x), hence taking the completion with respect to the

induced absolute value results in precisely H (x), justifying the name ‘completed residue field’ [7, §2.1].

We now define the category of k-affinoid spectra as follows [28, Definition 3.3.3.1]. The objects are

the locally ringed spaces given by k-affinoid spectraM (A ) with the structure sheaf OX defined as above

on the usual topology ofM (A ), where X is the k-affinoid space corresponding to A . The morphisms

in this category are morphisms of locally ringed spaces f : M (A ) → M (B) satisfying the following

conditions. Denote by X and Y the k-affinoid spaces associated to A and B respectively. Then, we

require that for all V ⊂ M (B) and V ′ ⊂ f−1(V ) defining special subsets in Y and X respectively, the

induced morphism f ♯ : OY (V ) → OX(V ′) is bounded. It can then be shown that any such morphism

is uniquely induced by a morphism of k-affinoid algebras so that the categories of k-affinoid spectra and

k-affinoid spaces are equivalent [28, §3.3.3]. In the sequel, we will identify any k-affinoid space X with

the corresponding k-affinoid spectrum M (O(X)) considered as a locally ringed space. Additionally,

we will identify a closed subset V defining an affinoid domain in a k-affinoid space X with the space

M (OX(V )).

2.2 k-Analytic Spaces

We now build up a definition of k-analytic spaces following [6, §3.1]. Although this construction only

gives a strict subset of all Berkovich spaces - those where every point has an affinoid neighbourhood,

known as ‘good’ spaces - these spaces will be sufficient for our purposes, as it will turn out that the

constructions we are concerned with result in precisely such a space.

Definition 2.2.1. A k-quasiaffinoid space is a pair (U, ϕ), where U is a locally ringed space and ϕ is an

open immersion ϕ : U → Ũ for some k-affinoid space Ũ .

A morphism f of quasiaffinoid spaces (U, ϕ) → (U ′, ψ) is a morphism of the locally ringed spaces

U → U ′ such that for each pair of affinoid domains A ⊂ U and B ⊂ U ′ with f(A) contained in the

interior of B, the restriction f |A : A→ B is a map of affinoid spaces.

Definition 2.2.2. A k-analytic space is a locally ringed space X along with a choice of equivalence class

of atlases A = {(Ui, ϕi)}i∈I of quasiaffinoid spaces such that:

1. the set {Ui}i∈I forms an open cover of X;

2. for each i, j ∈ I, the map ϕi ◦ ϕ−1j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) is an isomorphism of quasiaffinoid

spaces.

A morphism of k-analytic spaces f : X → Y is given by a morphism of locally ringed spaces such

that for each chart (Ui, ϕi) of X and (Vj , ψj) of Y , the map ψj ◦ f ◦ ϕ−1i is a morphism of quasiaffinoid

spaces. Hence we obtain a category of k-analytic spaces, denoted k-An. Any k-affinoid space X is a

k-analytic space under the trivial atlas {(X, id)}, and the category k-Aff is a full subcategory of k-An .

We contrast this with the usual definition of a (smooth) manifold over a field K: the role of the

quasiaffinoid charts is that of charts of open subsets of Kn, except that we have replaced Kn by a

k-affinoid space.

If x ∈ X is a point, then we may fix a quasiaffinoid chart (U,U ↪−→ V ) containing x and define H (x)

to be the completed residue field computed by considering x as an element of V . This is independent of
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the choice of quasiaffinoid chart, since isomorphisms of quasiaffinoid spaces necessarily preserve stalks

at x of the sheaves on each chart, hence induce isomorphisms of the completed residue fields computed

in each chart.

The earlier notion of an affinoid domain is now generalized, using the same universal property, hence

providing a more global analogue to open subschemes.

Definition 2.2.3. [6, §3.1] A morphism of k-analytic spaces ϕ : Y → X is an analytic domain if ϕ is a

homeomorphism onto its image and for any ψ : Z → X with ψ(Z) ⊂ ϕ(Y ), there is a unique factorisation

of ψ through ϕ. Furthermore, if Y is isomorphic to a k-affinoid space, then it is said to be an affinoid

domain in X.

We briefly give details of an alternative construction of k-analytic spaces, which gives a strictly larger

class of spaces than those that we constructed above, following [28, §4.1]. If X is a topological space, a

quasi-net T on X is a set of subsets such that any point x ∈ X has a neighbourhood of the form ∪i=1.Vi,

with x ∈ V1 ∩ · · · ∩ Vn, for some elements Vi ∈ T , 1 ≤ i ≤ n. A quasi-net T is called a net if for any

U, V ∈ T , the set {W ∈ T |W ⊂ U ∩V } is a quasi-net on U ∩V . An atlas of k-affinoid domains consists

of a net T on X and a functor ϕ from T to the category of k-affinoid spaces, where T is considered as a

category with inclusions as morphisms, such that:

• the functor ϕ takes inclusions to embeddings of affinoid domains;

• if ϕ(U) =M (AU ), then there is a specified homeomorphism iU : U →M (AU );

• if j : U ↪−→ V is a morphism in T , then we have iV ◦ j = ϕ(j) ◦ iU .

A k-analytic space is then defined to be a locally Hausdorff space equipped with an atlas of k-affinoid

domains. We will call these spaces generalized k-analytic spaces; the spaces we described previously are

then known as good spaces. Good spaces are precisely the generalized spaces where every point has an

affinoid neighbourhood [28, §4.2.1], in the sense that for each point x ∈ X, there exists some element

V ∈ T of the atlas on X such that V is a neighbourhood of x in X.

In the generalized setting, an analytic domain is any subset Y ⊂ X such that there is a covering

Y = ∪i∈IVi such that each element Vi is an affinoid domain in some element of T ; this is equivalent to

our earlier definition definition 2.2.3 [7, §1.3.1]. We deduce that in a good space, an analytic domain

i : Y → X may be identified with a subset Y ⊂ X such that for every point y ∈ Y , there exists an

affinoid domain W in X contained in Y such that W is a neighbourhood of y in Y , giving a more

useful characterisation of analytic domains. It follows from the universal property that any such subset

determines a unique analytic domain up to unique isomorphism. In particular, a surjective analytic

domain embedding is an isomorphism.

Furthermore, suppose Y is an analytic domain inX, y ∈ Y is a point with quasiaffinoid neighbourhood

U , and W is an affinoid domain in X which is an affinoid neighbourhood of y in Y . Then V ∩ U is an

open of V , so there exists an affinoid domain W in V contained in V ∩ U such that W is an affinoid

neighbourhood of y in Y , since, for example, Laurent domains form a basis of closed neighbourhoods.

Hence, we may assume that W is contained in a quasiaffinoid chart U . If U ↪−→ V is the open immersion

into an affinoid space V , then W is an affinoid domain in V containing y. It follows that there is an

isomorphism H (y) ∼= HY (y), where HY (y) denotes the completed residue field computed in Y .

It is substantially more difficult to define morphisms of generalized spaces, and in the sequel, we will

work strictly with the good spaces defined previously, unless explicitly specified.
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2.2. k-Analytic Spaces

2.2.1 The Affine Line

We use the affine line A1,an
k as our primary example to illustrate the theory. In general, n-dimensional

k-analytic space is defined as follows [6, §1.5]. As a set, it is given by the multiplicative seminorms

on k[t1, . . . , tn] extending the norm on k. The topology on An,ank is the weakest such that for any

f ∈ k[t1, . . . , tn], the map An,ank → R≥0 sending x 7→ |f |x is continuous.

Additionally, An,ank is endowed with a sheaf of local rings as follows. Fix an open U . As in the case

of Berkovich spectra, any point x ∈ U has an associated completed residue field H an(x) given by the

completion of the quotient field of k[t1, . . . , tn]/ kerx. Denoting by Kn the fraction field of k[t1, . . . , tn],

we say that f ∈ Kn is defined on U if f = g/h for some g, h ∈ k[t1, . . . , tn] with h(x) ̸= 0 for all x ∈ U .

Denote f(x) := g(x)/h(x), where g(x), h(x) are the images of g, h in H an(x).

An analytic function on U is then a mapping

f : U →
∐
x∈U

H an(x)

such that for each x ∈ U there exists an open neighbourhood x ∈ U ′ ⊂ U where for any ε > 0 there is a

element g ∈ Kn defined on U ′ so that |f(y)− g(y)| < ε for all y ∈ U ′. Intuitively, this corresponds to the

idea that locally at each point the function may be arbitrarily well approximated by rational functions.

The assignment of an open U to the ring of analytic functions on U gives a sheaf of local rings on An,ank .

The Berkovich open disk D(a, r) = {x | |Ti−ai|x < ri} is an open set of E(a, r), it can be shown that

there is an open immersion D(0, r)→ An,ank [6, Corollary 2.6.2]. Hence, we use the open disks centered

at 0 as the quasiaffinoid atlas, since:

An,ank =
⋃
r>0

D(0, r)

where we have identified D(0, r) as an open in An,ank by proposition 2.1.6. Since k{r−11 t1, . . . , r
−1
n tn}

contains k[t1, . . . , tn] as a dense subset, we can show that H an(x) ∼= H (x) for any point x ∈ An,ank .

Having defined affine n-space, we now return to the affine line. To begin, we derive Berkovich’s

classification theorem of points on the affine line, using the approach suggested in [28, Exercise 2.3.3.5].

Until the end of the section, we will assume that k is algebraically closed, so that any point of A1,an
k

is determined by its values on polynomials of the form T − a, where a ∈ K. Define the radius of a point

to be the value rx = infa∈k |T − a|x; we say the radius is achieved if there exists some a ∈ k such that

|T − a|x = rx. Then:

1. x is type I if rx = 0 and the radius is achieved;

2. x is type II if rx ∈ |k×| and the radius is achieved;

3. x is type III if rx ̸∈ |k×| and the radius is achieved;

4. x is type IV if the radius is not achieved.

Proposition 2.2.4. If x is type I, then for any f ∈ k[T ], |f |x = |f(a)|.

Proof. The point x is of type I if the kernel is non-trivial, hence generated by T − a for some a ∈ k. It

suffices to consider the polynomials T −b, for b ∈ k. Then we see that |T −b|x ≤ max{|T −a|x, |a−b|x} =
|a− b|. Since |T − a|x = 0, this is in fact an equality.

For a type I point, it follows that H (x) is a completion of k[t]/ ker | · |x ∼= k, as k is algebraically

closed. But since k is complete, we find that H (x) = k. If x is not type I, the kernel is trivial and so

H (x) is a completion of k(T ).
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Proposition 2.2.5. If x is type II or type III, it is equal to the restriction of the norm on k{r−1x (T −a)}
to k[T ]. Furthermore:

1. if x is type II, then |H (x)×| = |k×| and H̃ (x) ∼= k̃(t);

2. if | · |x is type III, then |H (x)×| is generated by |k×| and rx, and H̃ (x) ∼= k̃.

Proof. In either case, we may assume that a = 0 by a suitable change of coordinates. Then, x is the

maximal point of the disk E(0, rx). To see this, fix a point | · |y ∈ E(0, rx) and b ∈ k×. Note that if

|b| ≠ rx, then |T − b|x = max{|T |x, |b|}, while if |b| = rx, then assuming |T − b|x < max{|T |x, |b|} = rx

yields a contradiction. Hence, in either case, |T − b|x = max{rx, |b|}. We then compute:

|T − b|y ≤ max{|T |y, |b|} ≤ max{rx, |b|} = |T − b|x.

So we conclude that x is the norm on k{r−1x T}, which is multiplicative and hence the maximal element

of E(0, rx).

To show the remaining claims, we adapt the proofs presented in [5, Prop. 2.3], noting that completions

yield an isomorphism of residue fields so in each case it suffices to work with k(T ) instead of H (x). For

an element f/g ∈ k(T ), we will denote the coefficient of T i in f and g by fi and gi respectively. Here,

k(T )◦, resp. k(T )◦◦, denotes the elements f ∈ k(T ) such that |f |x ≤ 1, resp. |f |x < 1.

When rx ̸∈ |k×|, we find that the value group is generated by the set {|T − b|x | b ∈ k}. But for

any b ∈ k, |T − b|x = max{|T |x, |b|x} = max{rx, |b|}, where the inequality is strengthened to an equality

since |b| ≠ rx. Hence the value group is generated by |k×| and rx.

To see that H̃ (x) ∼= k̃, note that for any f/g ∈ k(T )◦, there are unique indices i0, j0 such that |f |x =

|fi0 |ri0x and |g|x = |gj0 |rj0x . Then if |f/g|x = 1, we must have that i0 = j0 necessarily and so |fi0/gj0 | = 1.

Therefore, f/g ≡ fi0/gj0 mod k(T )◦◦ and we have a well-defined isomorphism k̃(T ) ∼= H̃ (x) induced

by mapping fi0/gj0 to its reduction.

Now assume rx ∈ |k×|, and by rescaling further assume that rx = 1. The expression for the norm on

k{T} informs us immediately that |H (x)×| = |k×|. Next, note that if f/g ∈ k(T )◦, then maxi |fi|k ≤
maxj |gj |k. Let gn be the coefficient achieving the maximum for g. Then f/g = g−1n f/g−1n g = p/q and

p, q have coefficients in R, so it makes sense to take reductions of the coefficients and map f/g 7→ p̃/q̃.

This gives a surjective ring homomorphism k(T )◦ → k̃(T ), with kernel precisely k(T )◦◦.

By lemma 2.1.1, the above result shows that a type II or III point may be written explicitly as

|f |x = sup
z∈B(a,rx)

|f(z)| = max
i
|ci| · rix

for f =
n∑
i=0

ci(T − a)i ∈ k[T ].

Proposition 2.2.6. If x is type IV, |f |x is given by:

lim
j→∞

sup
z∈B(aj ,rj)

|f(z)|

where B(a1, r1) ⊇ B(a2, r2) ⊇ . . . is a descending sequence of disks with empty intersection. In this

case, |H (x)×| = |k×| and H̃ (x) ∼= k̃.

Proof. There exists a sequence (aj , rj)j∈N where rj ∈ |k×| and |T − aj |x = rj for all j, and rj → rx as

j →∞. We may assume that (rj)j∈N is strictly monotonically decreasing and proceed to show that the
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corresponding disks B(aj , rj) ⊂ k form a descending chain with empty intersection.

Fix j ∈ N. Then, assuming |T − aj |x ̸= |aj − aj+1| tells us that:

|T − aj+1|x = max{|T − aj |x, |aj − aj+1|} ≥ rj > rj+1

This is a contradiction, so in fact, |aj −aj+1| = rj , showing that aj+1 ∈ B(aj , rj) and proving that there

is a descending chain as in the statement of the theorem.

Next, assume that the intersection is non-empty, so that there exists a ∈ ∩j∈NB(aj , rj). Then, for

any j, we have that:

|aj − a| = max{|aj − aj+1|, |aj+1 − a|} = rj

since |aj+1 − a| ≤ rj+1 < rj . Then, |T − a|x ≤ max{|T − aj |x, |aj − a|} < rj for all j. This shows that

the radius is achieved, yielding a contradiction.

We now claim that | · |x is the unique point in the intersection ∩j∈NE(aj , rj). Fix a ∈ k; then by the

above, |aj − a| > rj for some j. Fix a seminorm | · |y in the intersection; then

|T − a|y = max {|T − aj |x, |aj − a|} = |aj − a|

But |T−a|x = |aj−a| by the same calculation; hence x = y. We now note that |f |y = limj→∞ supz∈B(aj ,rj)
|f(z)|

is a seminorm in the intersection and must be equal to | · |x.

Suppose that |T − a|x = ρ for some a ∈ k, ρ ̸∈ |k×|. For some j, |aj − a| > rj , so then:

ρ = |T − a|x = |aj − a|

gives a contradiction.

Next, we define an isomorphism k̃(T ) ∼= k̃, adapting the proof in [5, Prop. 2.3]. For any a ∈ k,

our previous calculations showed that |T − a|x = |aj − a| for some j, hence any f ∈ k[T ] is eventually

constant on the descending chain of disks. Denote this constant value by f0, for any f ∈ k[T ]. Then

for any f/g ∈ k(T )◦, we have that |f0 · g−10 | ≤ 1, so map f/g to the reduction of f0/g0. This gives a

surjective homomorphism k(T )◦ → k̃, with kernel precisely k(T )◦◦.

Any descending chain of disks B1 ⊇ B2 ⊇ . . . as in the statement of proposition 2.2.6 defines a

seminorm by setting fi := supz∈Bi
|f(z)| and |f |x := limi→∞ fi. Conversely, any two such sequences

A and B define different seminorms x and y respectively if and only if there exists some n such that

An ∩ Bn = ∅. In one direction, suppose that such an n exists. Let An = B(an, rn) and Bn = B(bn, sn)

and consider f(T ) = T −an. Then |f |x ≤ rn but by the proof of proposition 2.2.6, |f |y = |bn − an| > rn.

In the other direction, fix f ∈ k[T ] and let fi := supz∈Ai
|f(z)| and gj := supz∈Bj

|f(z)|. We find that

if there is no such n, then since fi and gj are decreasing sequences and disks are either disjoint or one

contains the other that the two sequences have the same limit.

Speaking more generally, the unintuitive property that a descending chain of disks can have empty

intersection is known as being spherically incomplete [6, §1.4.4]. This is difficult to visualise, since Qp
and C((t)) are both spherically complete and do not exhibit this behaviour, but their completed algebraic

closures do, hence we will need to take care to give a proper treatment of these points in our picture of

the affine line.

Adapting [3] and [6, Thm. 4.2.1], we now see how the above classification of points allows us to

visualise the affine line. Firstly, we may define a partial order on A1,an
k by setting x ≤ y if and only if

|f |x ≤ |f |y for all f ∈ k[T ]. From the classification of points, we deduce that any type II or III point may

be associated with a closed disk in k, which we extend to type I points by allowing ‘degenerate’ disks
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of the form B(a, 0). We will hence denote a type I, II or III point by ζa,r for some a ∈ k and r ∈ R≥0.
Then, the partial ordering is summarised thusly.

1. If x = ζa,r is any type I, II or III point, then x ≤ y if and only if y = ζb,s is a type I, II or III point

and B(a, r) ⊆ B(b, s).

2. If x is any type IV point, then x ≤ y if and only if y = ζb,s is a type II or III point, and the disk

B(b, s) contains some element of any descending chain of disks associated with x.

Any two points x, y have a least upper bound x ∨ y with respect to this partial order. Excluding the

trivial case where x ≤ y or y ≤ x, we find that this is straightforward when neither of x = ζa,r or y = ζb,s

are type IV: it is given by the point ζa,|a−b|. Otherwise, suppose x is type IV and y = ζb,s is not. Let

A1 ⊇ A2 ⊇ . . . be a descending chain of disks defining x. For each i, denote the smallest disk containing

Ai = B(ai, ri) and B(b, s) by Di = B(b, |ai − s|). Then for some i, Ai and B(b, s) are disjoint; we then

find that |ai+1 − b| = max{|ai − ai+1|, |ai − b|} = |ai − b|, so that Di+1 = Di. Note that this argument

also shows that x ∨ y is independent of the choice of defining sequence. If y is also a type IV point

defined by a sequence B1 ⊇ B2 ⊇ . . . , where Bj = B(bj , sj), then we extend this argument. For some

i0, j0, Ai0 ∩Bj0 = ∅, so for all i ≥ i0, there exists a smallest disk Di containing Ai and Bj for all j ≥ j0.
We see that Di has radius |ai − bj0 |. We want to show that Di0 = Di0+1; they both contain ai0+1 so it

suffices to show their radii are the same:

|ai0+1 − bj0 | = max{|ai0 − ai0+1|, |ai0 − bj0 |} = |ai0 − bj0 |

Note that when neither x ≤ y nor y ≤ x, x ∨ y is a type II point. In any case, there are then paths:

[x, x ∨ y] := {z | x ≤ z ≤ x ∨ y}

[y, x ∨ y] := {z | y ≤ z ≤ x ∨ y}

lx,y = [x, x ∨ y] ∪ [y, x ∨ y]

We remark that the path between two non type IV points consists of enlarging a disk before shrinking

it again, essentially allowing us to overcome the totally disconnected nature of the field k. The following

propositions essentially show that the affine line has the structure of a tree.

Proposition 2.2.7. [6, §4.2] Let x be a type I or type IV point. Then, A1,an
k \{x} is connected.

Proof. This follows from the fact that for any points y, z ∈ A1,an
k \{x}, each point in ly,z\{y, z} is of type

II or type III.

Proposition 2.2.8. [6, Theorem 4.2.1] For any two points x, y ∈ A1,an
k with x ̸= y, the set lx,y is the

unique path between x and y.

Proof. When x ≤ y, we have that lx,y = [x, y]. Then let y = ζa,r and fix some z ∈ lx,y such that z ̸= x, y.

We may assume that z = ζa,r′ for some r′ < r and by translating further that a = 0. If r′ ∈ |k×|, then
we may also rescale so that r′ = 1. In this case, we note that z is the maximal point of the disk E(0, 1),

and A1,an
k = E(0, 1)⊔ {x | |T |x > 1}. It follows from this and the fact that E(0, 1)− {z} is disconnected

by lemma 2.1.7 that A1,an
k − {z} is disconnected, and x and y lie in disjoint connected components. On

the other hand, if r′ ̸∈ |k×|, then the continuous map x 7→ |T |x has image [0, r′)⊔ (r′,∞) on A1,an
k −{z};

in either case, removing z disconnects A1,an
k so that [x, y] is the unique path from x to y.

Otherwise, suppose x ̸≤ y and y ̸≤ x. Then we claim that any path from x to y must visit x ∨ y and

by the previous case it then follows that lx,y is unique. Once again, x ∨ y is some type II point ζa,r; we

may once more assume it is ζ0,1, in which case removing x∨ y from A1,an
k decomposes A1,an

k into disjoint

opens. It then suffices to show that x, y lie in separate connected components of A1,an
k −{ζ0,1}. From the
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2.2. k-Analytic Spaces

Figure 2.1: Visualisation of A1,an
k

construction of x ∨ y, we see that we must have |T |x ≤ 1 and |T |y ≤ 1; suppose that for some a ∈ R we

have |T − a|x < 1 and |T − a|y < 1 so that they lie in the same connected component of E(0, 1)−{ζ0,1}.
Then fix some 1 > r > max{|T − a|x, |T − a|y} and consider the point ζa,r. By calculation, we find that

x ≤ ζa,r and y ≤ ζa,r, contradicting the fact that x∨ y = ζ0,1. It follows that x and y lie in disjoint open

disks D(a, 1) and D(b, 1) for some a, b ∈ R with |a− b| = 1.

From our description of the partial order, it follows that type I and IV points are leaves and that

branching occurs only at type II points. In fact, at each type II point, the number of branches is in

bijection with closed points of P1
k̃
; this is immediate by reducing to the situation where the type II point

is ζ0,1, and then using lemma 2.1.7, noting that the points which are not contained in the unit disk are

those lying on the branch corresponding to ∞.

These results are visualised in fig. 2.1, where type I points are indicated with a closed circle and

identified with a point of k, type II points are identified with the corresponding closed disk in k and

type IV points are indicated by an open circle. The type III points can be imagined to be interpolating

between the type II points, similarly to how the irrationals interpolate between the rationals in the real

number line. The affine line is impossible to accurately draw - for example, there are infinitely many type

II points with infinitely many branches, and infinitely many type II points along each of those branches,

and so on.

Following the presentation in [4], we now define some analytic domains in A1,an
k by using the fact that

there is a continuous map σ : R≥0 → A1,an
k mapping r 7→ ζ0,r, which is a homeomorphism onto its image.

We will refer to this image as the embedded real line. Then, σ is a section of the map evT (x) = |T |x,
and we find that these maps make the embedded real line into a strong deformation retract of A1,an

k .

Indeed, for any point x ∈ A1,an
k , there is a point α := σ ◦ evT (x) lying on the embedded real line. By

our earlier exposition, there is then a path γ from x to α parameterised by the unit interval. Hence, the

map F (x, t) = γ(t) is a homotopy satisfying the conditions of a strong deformation retract. These ideas

will lead to the notion of the skeleton, which will later become central to our study of k-analytic spaces.

We find that for any I ⊂ R≥0, ev−1T (I) consists of the points which retract onto the points σ(I). Then

proposition 2.1.6 indicates that the closed (respectively, open) disk of radius r ∈ |k×| can be visualised

as ev−1T (Ir) where Ir = [0, r] (respectively, Ir = [0, r)). Similarly, [4, §2.1] we define the standard closed

annulus S(a, b) of inner radius |a| and outer radius |b|, for 0 < |a| ≤ |b| and a, b ∈ |k×| as the subset

ev−1T ([a, b]), and when a ̸= b, the standard open annulus as ev−1T ((a, b)). The closed annulus is affinoid,
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2.2. k-Analytic Spaces

as it is identified with the spectrum of the following k-affinoid algebra:

k{|a| · T−1, |b|−1 · T} =

{ ∞∑
i=−∞

aiT
i | |ai| · |a|i → 0 as i→∞, |ai| · |b|i → 0 as i→ −∞

}
.

The norm on this algebra is given by∣∣∣∣∣
∞∑

n=−∞
anT

n

∣∣∣∣∣ = max{|an| · |a|n, |an| · |b|n}.

Figure 2.2: Closed (left) and open (right) Berkovich disks

2.2.2 Gluing k-Analytic Spaces

As is the case for topological and algebraic spaces, we may glue k-analytic spaces under appropriate

conditions. A family of k-analytic spaces {Xi}i∈I gives gluing data if for each pair i, j ∈ I there are

analytic domains Xij ⊂ Xi, Xji ⊂ Xj with an isomorphism µij : Xij → Xji satisfying the conditions:

1. Xii = Xi and µii = id;

2. µij(Xij ∩Xik) = Xji ∩Xjk;

3. µik = µjk ◦ µik.

Theorem 2.2.9. [7, Prop. 1.3.3] Let {Xi}i∈I be k-analytic gluing data. Suppose that one of the two

following conditions holds.

1. Each Xij ⊂ Xi is open.

2. Each Xij ⊂ Xi is closed, and for each i ∈ I, Xij ̸= ∅ for only finitely many j ∈ I.

In each case, there exists a k-analytic space X such that:

1. For each i ∈ I there exists a morphism ϕi : Xi → X making Xi into an analytic domain in X.

2. The images ϕi(Xi) cover X.

3. ϕi(Xij) = ϕi(Xi) ∩ ϕj(Xj).

4. ϕi(Xij) = (ϕj ◦ µij)(Xij)

The proof of this is omitted and may be found in loc. cit. Instead, we consider the analytic projective

line to exemplify both types of gluing [28, Exercise 4.1.4.2]. Using the first kind of gluing, we may form

P1,an
k using affine opens. Let X1 = X2 = A1,an

k and X12 = X21 = {x ∈ A1,an
k | |T |x ̸= 0}. An isomorphism
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2.2. k-Analytic Spaces

of analytic domains is then induced by the map T 7→ T−1. Concretely, it maps a seminorm | · |x to the

seminorm | · |1/x, where:

|anTn + · · · a0|1/x := |T |−nx · |an + · · ·+ a0T
n|x

Using the second kind of gluing, P1,an
k may instead be constructed by gluing the unit disks X1 = X2 =

M (k{T}) along the closed analytic domains X12 = X21 =M
(
k{T, T−1}

)
= {x | |T |x = 1}. Similarly to

the previous case, the isomorphism is induced by the homomorphism k{T, T−1} → k{T, T−1} mapping

T 7→ T−1. This construction mirrors that of forming the Riemann sphere by gluing two closed disks

along their boundaries. We will delay the proof that these two constructions are isomorphic until we

have covered the notion of formal models; instead, we provide some pictorial intuition in fig. 2.3. The

left image visualises the gluing of the two affine lines while the right image shows the gluing of the unit

disks; the analytic domains which are identified by the gluing are indicated with dashed lines.

Figure 2.3: Two possible methods of constructing P1,an
k

The gluing procedure we have described may not, in general, result in a good k-analytic space. For

example, gluing two copies of the unit diskM (k{T}) along the isomorphism given byM
(
k{T, T−1}

) ∼=
M
(
k{T, T−1}

)
given by the identity map. In this case, we obtain the closed unit disk with a ‘doubled

open unit disk.’ The point corresponding to ζ0,1 does not admit an affinoid neighbourhood in this space.

2.2.3 The Analytification Functor

Similarly to the analytification of a complex variety, we can form the analytification of a variety over

the non-Archimedean field k. The process is described following the presentation in [6, §3.4]. The aim

of the procedure is to assign to any scheme locally of finite type X a k-analytic space Xan and a map

ι : Xan → X of locally ringed spaces with the following universal property: if Z is any k-analytic space

and ϕ : Z → X is a map of locally ringed spaces, then there is a unique factorization ϕ̃ : Z → Xan

through ι, where ϕ̃ is a map of k-analytic spaces.

For the scheme Spec k[T1, . . . , Tn], the analytification is the space An,ank described previously. The

map ι : An,ank → Ank is given by mapping a seminorm to the point corresponding to the prime ideal given

by its kernel. Now assume we have obtained the analytification of X and Y ⊂ X is an open subscheme.

Then we set Y an = ι−1(Y ) ⊂ Xan. If Y ⊂ X is a closed subscheme defined by a coherent OX ideal

J, then Y an is the closed subspace cut out by JOXan , which is a coherent OXan ideal. Finally, for any

scheme X locally of finite type covered by open affine subschemes {Xi}i∈I , we may glue together the

analytifications Xi since by the universal property, the gluing data of the schemes induces gluing data
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2.2. k-Analytic Spaces

for the analytifications. The canonical map of locally ringed spaces ι : Xan → X has the property that

the induced homomorphism of stalks ιx : OX,π(x) → OXan,x is local and flat [6, Theorem 3.4.1]. The

proof that the constructions satisfy the desired universal property is omitted.

To exemplify the analytification functor, we now work out some explicit examples. Firstly, we note

that the above construction applied to P1
k yields the space P1,an

k constructed as the gluing of two analytic

affine lines, justifying the notation.

Next, let X be n-dimensional affine space and let Y be the closed subscheme cut out by the ideal

generated by some function f ∈ k[T1, . . . , Tn]. Denote the corresponding OX -ideal by J and the OXan -

ideal corresponding to Y an by Jan. The space Y an is identified, by construction, with the set of points

{x ∈ An,ank | ∀g ∈ Janx , g(x) = 0}

where g(x) denotes the image of g in the residue field κ(x) := OAn,an,x/mx. Hence, it may be described

as the points x where Janx ⊂ mx. Denoting by fx := πx(fπ(x)) the image of the germ of f at π(x) under

πx we find:

Janx ⊂ mx ⇐⇒ Jπ(x)OXan,x ⊂ mXan,x ⇐⇒ fx ∈ mXan,x

Now, since πx is local:

fx ∈ mXan,x ⇐⇒ fπ(x) ∈ mX,π(x) ⇐⇒ f(x) = 0 ∈H (x) ⇐⇒ |f |x = 0

Therefore, Y an is the set of points of Xan = An,an that one might intuitively expect - namely, the

seminorms | · |x on k[T1, . . . , Tn] such that |f |x = 0.

Another example which will appear often is the analytification of the algebraic torus. As a scheme, we

have that Gm,k = Spec k[T, T−1], which is an open subscheme of the affine line. Hence, the analytification

is given by the set of points x ∈ A1,an
k such that the kernel is not the ideal (T ), so Gan

m,k ⊂ A1,an
k consists

of every point except for the type I point ζ0,0.

The analytification preserves several desirable properties, which we state without proof (see [6, The-

orem 3.4.8]). We will use these facts freely in the sequel. Let X be a scheme of locally finite type over

k. Then:

1. X is separated if and only if Xan is Hausdorff;

2. X is proper if and only if Xan is Hausdorff and compact;

3. X is connected if and only if Xan is arcwise connected;

4. the dimension of X equals the topological dimension of Xan.

The full theory of Berkovich spaces is a deep and rich field of study of which we have seen only a

small glimpse. Equipped with our understanding of analytic spaces, we now broaden our investigations

from the affine line to more general analytic curves.
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Chapter 3

k-Analytic Curves

In this chapter, we aim to further develop intuition surrounding the structure of analytic spaces. Whereas

giving an explicit picture for higher dimensional k-analytic spaces is difficult, curves have the advantages

that they yield visualisations as in the case of the affine line. The theory of k-analytic curves is a rich

field of study, and presently we will focus on studying curves and their skeleta through formal models.

3.1 Generic Fibers of Formal Schemes

We first give an overview of the theory of formal schemes, following [8, Chapter 7]. Recall that a

topological ring A is said to have an a-adic topology, where a is an ideal of A, if the subsets an form a

basis of neighbourhoods of 0. The a-adic completion for such a ring is defined as Â = lim←−nA/a
n; the

resulting ring is Hausdorff and complete. Where b is an ideal such that an ⊂ b and bn ⊂ a for some n,

then the topologies generated by the two ideals are equivalent, and any such ideal b is known as an ideal

of definition of A.

Now assume A is a complete and Hausdorff a-adic ring. Similarly to the Spec construction, the affine

building blocks are given by Spf A, the formal spectrum. As a topological space, Spf A is given by the

underlying topological space of SpecA/a and hence, it consists of open prime ideals of A. We endow

Spf A with a structure sheaf OSpf A where for each open U ⊂ Spf A, we define

OSpf A(U) = lim←−OSpecA/an(U)

where the inverse limit is taken in the category of topological rings, and the topology on eachOSpecA/an(U)

is discrete. The right hand side of the expression is well defined, since for all n > 0, the immersion

SpecA/an → SpecA/a is a homeomorphism. Generally, a formal scheme is then a locally topologi-

cally ringed space where each point has an open neighbourhood isomorphic to an affine formal scheme.

Morphisms of formal schemes are morphisms in the category of locally topologically ringed spaces.

We are interested particularly in a certain class of formal schemes, of which we now give an overview

following [28, §5.2.1]. Fix a non-zero element π of the maximal ideal of R, which is then a π-adic ring.

Let R{T1, . . . , Tn} be the algebra given by k{T1, . . . , Tn} ∩ R[[T1, . . . , Tn]]. Hence, it consists of formal

power series over R in n variables which converge on the closed unit disc. We say an R-algebra A is of

topologically finite presentation (tfp) if it is isomorphic to the algebra R{T1, . . . , Tm}/I, for some finitely

generated ideal ideal I. In addition, A is called admissible if it is tfp and it does not have π-torsion. If

A is tfp, then it can be shown that A⊗R k is a k-affinoid algebra admitting an admissible epimorphism

k{T1, . . . , Tn} → A⊗R k, for some n. We will say that a formal R-scheme X is locally finitely presented

(lfp), resp. admissible, if X has a locally finite cover by open affine formal schemes of the form Spf A,
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3.1. Generic Fibers of Formal Schemes

where A is tfp, resp. admissible.

Let X be a R-scheme with a locally finite covering by open subschemes SpecA, where each A is

finitely presented as a R-algebra. Then, we can define the formal completion X̂ as follows. Let J be

the quasi-coherent ideal sheaf generated by π. Then, X̂ is defined as a topological space to be the

topological space underlying the closed subscheme Y of X cut out by J, with the sheaf of topological

rings OX̂ = lim←−OX/J
n, where each sheaf OX/Jn is restricted to Y along the inclusion Y → X. Locally,

let X = SpecA; then X̂ is given by Spf Â, where Â is the completion of A with respect to the ideal πA.

For a lfp formal scheme X, we define its special fiber Xs := X×R k̃, where the fiber product is taken

in the category of formal schemes. Then, Xs is a scheme locally of finite presentation over k̃. Locally,

the special fiber of X = Spf A is given by the scheme SpecA/mA.

Furthermore, we assign to an lfp formal scheme X a k-analytic space Xη, known as the generic fiber

of X. Firstly, if X = Spf A, then we set Xη = M (A⊗R k). A map Spf A → Spf B corresponds to a

continuous homomorphism B → A, which induces a homomorphism of k-affinoid algebras B ⊗R k →
A⊗R k and hence ofM (A⊗R k)→M (B ⊗R k).

Next, assume X is separated and choose a locally finite covering by open affine formal subschemes

{Xi}i∈I . Then, each intersection Xij = Xi ∩Xj is also an affine open formal subscheme. It is a fact that

if Y→ X is an open immersion of affine formal schemes, then Yη → Xη is the embedding of an affinoid

domain. Hence, we may glue the affinoid spaces {(Xi)η}i∈I along the affinoid domains {(Xij)η}i,j∈I
using theorem 2.2.9. A morphism Y→ X of separated formal schemes induces a morphism Yη → Xη by

gluing the induced morphisms (Yi)η → X, where {Yi} is a locally finite covering by open affine formal

subschemes.

If X is arbitrary with a covering {Xi}i∈I by separated formal schemes, then the intersections Xij are

separated formal schemes, and it can be shown that (Xij)η is a compact analytic domain in (Xi)η and

(Xj)η. We may therefore glue (Xi)η and (Xj)η along (Xij)η as before to obtain Xη. Since affinoid and

compact analytic domains are closed subsets in a Hausdorff space, the fact that the cover is locally finite

is necessary to perform the gluing. Similarly to the separated case, we may also define a morphism of

k-analytic spaces Yη → Xη for any morphism Y → X by gluing appropriately. It may then be verified

that η gives a functor, known as the generic fiber functor.

There is a canonical reduction map redX : Xη → Xs which is defined by the following procedure.

Let x ∈ Xη be a point and Spf A ⊂ X such that (Spf A)η contains x. Then x defines a character

A⊗R k → H (x) and hence a homomorphism A → A⊗R k → H (x). The following lemma shows that

the image of this map lands inside H (x)◦.

Lemma 3.1.1. [28, Exercise 5.2.2.6] Suppose A is a tfp R-algebra, generated by f1, . . . , fn. Then for

all x ∈ (Spf A)η and 1 ≤ i ≤ n we have |fi|x ≤ 1.

Proof. We may find an admissible epimorphism ϕ : k{T1, . . . , Tn} → A⊗R k such that Ti 7→ fi for each

i. Denote Bn =M (k{t1, . . . , tn}). Then the morphism ϕ induces a map ϕ∗ :M (A⊗R k)→ Bn, where
a point x ∈ M (A⊗R k) gives a point ϕ∗(x) ∈ Bn by the equation |f |ϕ∗(x) = |ϕ(f)|x. Hence, we see

that |fi|x = |ϕ(ti)|x = |ti|ϕ∗(x) ≤ 1, where the final inequality follows from the fact that the norm || · ||
on k{t1, . . . , tn} is such that ||ti|| = 1, and any element of the Berkovich spectrum is bounded by this

norm.

Lemma 3.1.1 shows that x ∈ (Spf A)η induces a map A → H (x)◦ where the image of the ideal πA

lands in H (x)◦◦. Hence, there is a well-defined map A/πA → H̃ (x). Then, redX(x) is defined to be

the point given by Spec H̃ (x)→ Xs. This map is anti-continuous, in that the inverse image of an open

(resp. closed) set is closed (resp. open).
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If X is an R-scheme locally of finite presentation, there are now two ways to obtain a k-analytic

space: either by taking the generic fiber of the formal completion X̂η or by taking the analytification

of the generic fiber Xan
k , where Xk := X ×R k. In general, there is a canonical map ıX : X̂η → Xan

k ,

which we can construct as follows [13, §5.3]. By the universal property of analytification, it suffices to

give a map of locally ringed spaces X̂η → Xk. Consider the case where X = SpecA is affine, for some

finitely generated R-algebra A. There is a canonical map A⊗ k → Â⊗ k and it is a standard result that

Hom(Y,X) ∼= Hom(Γ(X,OX),Γ(Y,OY )) for a locally ringed space Y and an affine scheme X [2, Tag

01I1]. Hence, we immediately obtain a map X̂η → Xk, which gives the desired morphism iX : X̂η → Xan
k .

This morphism is ‘functorial’ in the following sense: if X → Y is a morphism of affine schemes, then we

have an induced commuting square 1:

X̂η Xan
k

Ŷη Y an
k

This follows from the fact that for any morphism A→ B of finitely presented R-algebras, the following

square commutes.

A⊗ k Â⊗ k

B ⊗ k B̂ ⊗ k

As in the case of constructing the generic fiber functor, we may extend this map first to the case

where X̂ is a separated formal scheme, and then to the case where X̂ is non-separated, to obtain a

functorial canonical morphism iX for any scheme X locally of finite presentation over R.

Example 3.1.2. Let X = A1
R. Then we find that Xan

k = A1,an
k , while X̂η =M (k{t}) is the unit disk.

In this case, iX : M (k{t}) ↪−→ A1,an
k is the canonical embedding of the closed unit disk into the affine

line.

Example 3.1.3. Let X be the affine line over R with doubled origin. As a scheme, this is formed by

gluing the affines SpecR[T ] and SpecR[S] by identifying the opens SpecR[T, T−1],SpecR[S, S−1] using

the isomorphism T 7→ S. The space Xk is then the analytic affine line with doubled origin. However,

the generic fiber of the formal completion of X is a little more interesting: it is in fact the closed unit

disk with doubled open unit disk which we previously encountered as an example of a generalized space

which is not good space. The map iX then identifies X̂η with the closed unit disk in the affine line

with doubled origin. Except for the origin, each point lying on an open unit disk and its copy are both

identified with the same point in Xan
k . Hence, iX is not injective.

The following lemmas and theorems, adapted from [28, Exercise 5.2.3.1] describe the map iX more

generally. The details of these facts are often omitted in the literature, so we provide some proofs.

Lemma 3.1.4. If X is an affine scheme of finite presentation, then iX is the embedding of an affinoid

domain.

Proof. Let X = SpecA. Suppose A is generated by f1, . . . , fn. Then, we may fix an admissible epimor-

phism k{T1, . . . , Tn} → Â⊗R k mapping Ti 7→ fi. By [6, Corollary 2.3.2], the induced map

X̂η =M
(
Â⊗R k

)
→ Bn =M (k{T1, . . . , Tn})

1This may be more formally stated by saying that iX is a functor from the category of affine schemes to the arrow
category of k-analytic spaces.
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is a closed immersion, that is, it is the embedding of an analytic domain with closed image.

The functoriality of iX then induces the following commuting diagram:

X̂η Xan
k

Bn An,ank

iX

where the vertical and bottom maps are closed immersions of k-analytic spaces. Since the vertical and

bottom maps are injective, it follows that iX is also injective. Since the source is compact and the target

is Hausdorff, iX is a homeomorphism onto its image. Now let Z → Xan
k be a morphism of k-analytic

spaces such that the image is contained in X̂η ⊂ Xan. It follows that there is an induced map Z → An,ank

with the image contained in Bn =M (k{T1, . . . , Tn}), hence there is a induced map Z → Bn since Bn is

an affinoid domain in An,ank . Furthermore, the map Z → Bn has image contained in X̂η, so since X̂η is an

analytic domain in Bn, we conclude that there is a map Z → X̂η. Since each induced map was uniquely

determined by the map Z → Xan, it follows that the map Z → X̂η is unique, so that iX : X̂η → Xan is

the embedding of an affinoid domain.

Lemma 3.1.5. The points y ∈ X̂η are in bijection with the set of maps SpecH (x)◦ → X extending

the map SpecH (x)→ X, where x = iX(y).

Proof. Fix a point y ∈ X̂η and let iX(y) = x. Now let SpecA be an affine open in X such that

y ∈ (Spf Â)η, from which it follows that iX(y) = x ∈ (SpecAk)
an. By lemma 3.1.4, the restriction of iX

to (Spf Â)η is the embedding of an affinoid domain into (SpecAk)
an; since the completed residue field

may be computed within an affinoid domain containing the point, it follows that H (y) ∼= H (x).

Next, we consider the map

A→ Â⊗R k →H (y) ∼= H (x).

The image of A along this map lands in H (y)◦ ∼= H (x)◦ by lemma 3.1.1, so that there is a factorisation

A→H (x)◦. This gives a lift SpecH (x)◦ → SpecA ↪−→ X.

Conversely, suppose that such a lift exists. Then, the image of SpecH (x)◦ → X is contained

within some affine open SpecA, since H (x)◦ is local. Hence, we have a homomorphism A → H (x)◦,

which, by passing to completions, determines a homomorphism Â → H (x)◦ and subsequently a map

Â ⊗R k → H (x). This is a character corresponding to some point y ∈ (Spf Â ⊗R k)η ↪−→ X̂η. Since

the map SpecH (x)◦ → X extends the map SpecH (x) → X, it follows by construction of iX that

iX(y) = x.

The two procedures are verified to be inverses of each other.

Theorem 3.1.6. If X is separated and quasi-compact then the map iX is the embedding of a compact

analytic domain.

Proof. The valuative criterion of separatedness indicates that there exists at most one lift SpecH (x)◦ →
X of a map SpecH (x) → X. Hence, by lemma 3.1.5, iX is injective. The source is compact since it

is a finite union of affinoid domains which are compact and the target is Hausdorff, hence, it must be

a homeomorphism onto its image. At each point y ∈ X̂η there exists an affinoid neighbourhood V of

y in X̂η such that the restriction of iX to V is the embedding of an affinoid domain V → Xan, hence

iX(X̂η) ⊂ Xan is such that each point has an affinoid neighbourhood in iX(X̂η). It follows that iX is

the embedding of an analytic domain.
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Corollary 3.1.7. If X is proper over R, then there is an isomorphism iX : X̂η
∼−→ Xan

k .

Proof. The valuative criterion of properness indicates that there exists precisely one lift SpecH (x)◦ → X

of a map SpecH (x) → X. By lemma 3.1.5, it follows that iX is surjective, and since X is necessarily

separated, we find that X̂η is an analytic domain in Xan
k , so that iX is an isomorphism.

Letting X = P1
R, we find that X̂η is the gluing of two closed disks M (k{T}) and M (k{S}) along

the isomorphism M
(
k{T, T−1}

) ∼=M (
k{S, S−1}

)
given by T 7→ S−1. On the other hand, Xan is the

gluing of two copies of A1,an
k along the isomorphism Gan

m,k
∼= Gan

m,k given by T 7→ T−1. Corollary 3.1.7

finally shows that the two constructions are isomorphic.

In this example, the formal scheme X̂ can be considered as a formal model for the k-analytic space

Xan.

Definition 3.1.8. A formal R-model X for a k-analytic space X is an admissible formal R-scheme

equipped with an isomorphism Xη ∼= X.

As we will see, models are spaces capturing the geometry of the k-analytic space in a (formal) scheme

which is potentially easier to study. If X is a proper k-scheme locally of finite type, then Xan admits a

formal model [28, Remark 5.3.3.2].

3.2 Skeleta of k-Analytic Curves

3.2.1 Classification of Points

To begin, we must consider the notion of dimension, which is more subtle for k-analytic spaces than in

the case of schemes. An obstruction is the fact that for k-affinoid algebras, the Krull dimension is not

preserved under extension of the base field. An example of this, as found in [28, §3.5], is the k-affinoid

algebra Kr := k{r−1T, rT−1}. For r ̸∈
√
|k×|, Kr is a field, and hence has Krull dimension 0, but

Kr⊗̂kKr
∼= Kr{T} does not. This motivates the following definition.

Definition 3.2.1. [6, §2.3]. The dimension dim(X) of a k-affinoid space X = M (A ) is the Krull

dimension of the algebra A ⊗̂kK, where K is a non-Archimedean field extension of k such that there

exists an admissible epimorphism K{T1, . . . , Tn} → A ⊗̂kK.

It can be shown that such a field extension exists, and that dim(X) is independent of the choice of

extension. We extend this notion to a general k-analytic space X, by defining its dimension dim(X) to

be the supremum of the dimensions of the k-affinoid domains of X.

Following [4], we define a k-analytic curve to be the analytification of a smooth, proper, geometrically

connected algebraic curve over k. We caution the reader that other sources map give more a general

definition, which may require more theory to be built up, but our definition will capture all the cases

we are interested in. It can be shown that such a space is of dimension one by invoking the appropriate

GAGA theorems [6, Corollary 3.2.8] [6, Proposition 3.4.3].

The classification of points for the affine line may then be extended to more general curves. For each

valued extension k ⊂ K, we associate the parameters:

E(K) = dimQ
(
|K×|/|k×| ⊗Z Q

)
F (K) = tr.deg.(K̃/k̃).

Let X be a k-analytic space of dimension n. Fixing a point x ∈ X, we denote E(x) := E(H (x)) and

F (x) := F (H (x)). Then, it may be shown that E(x) + F (x) ≤ n [7, Lemma 2.5.2]. In the case where
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n = 1, we can then classify x as follows [28, §2.3.3]:

1. x is type I if H (x) ⊂ k̂a, where k̂a is the completed algebraic closure of k;

2. x is type II if E(x) = 0 and F (x) = 1;

3. x is type III if E(x) = 1 and F (x) = 0;

4. x is type IV if E(x) = F (x) = 0 and x is not of type I.

Note that if x is type I then E(x) = F (x) = 0. It may be verified that this is an extension of our

earlier classification of the points of the affine line over an algebraically closed field.

3.2.2 Skeleta of Annuli

For the rest of this chapter, we assume that k is algebraically closed.

Recall that we defined maps evT : A1,an
k → R≥0 and σ : R≥0 → A1,an

k , where evT (x) = |T |x
and σ(r) = ζ0,r. Using these maps, we were able to define several analytic domains in A1,an

k , including

standard open and standard closed annuli, denoted by S(a, b)+ and S(a, b) respectively, for some a, b ∈ k×

with |a| ≤ |b|. When b = 1, we will denote the annulus as S(a). Denoting c = ab−1, we have a series of

isomorphisms:

S(a, b) ∼= S(c) ∼=M
(
k{t, |c| · t−1}

) ∼=M (k{t, s}/(st− c)) .

If X is any k-analytic space which is isomorphic to a standard closed (resp. open) annulus, then we will

call X a generalized closed (resp. generalized open) annulus. A standard annulus is any standard open

or standard closed annulus, and a generalized annulus is any space which is either a generalized open or

a generalized closed annulus. Similarly, if X is isomorphic to a standard closed (resp. open) ball, then

X will be called a generalized closed (resp. generalized open) ball.

Next, recall that we defined a strong deformation retraction from A1,an
k → σ(R≥0). In order to obtain

a suitable notion of a skeleton for an arbitrary curve, we make a similar definition for an annulus.

Definition 3.2.2. [4, §2.3] For any standard closed or open annulus A, its skeleton is the subset

Σ(A) := σ(evT (A)).

There is then a map ρA := σ ◦ evT which is a retraction of A onto Σ(A), and can be shown to

be a strong deformation retraction [6, Proposition 4.1.6]. If X is a generalized annulus, then fixing

an isomorphism ϕ : X → A for some standard annulus A, then the skeleton Σ(X) of X is defined as

ϕ−1(Σ(A)), and there is a corresponding retraction ρX = ϕ−1 ◦ ρA ◦ ϕ. It can be shown that Σ(X) and

ρX do not depend on A or ϕ [4, Corollary 2.6].

The following lemma describes the retraction map.

Lemma 3.2.3. [4, Lemma 2.12] Let A be a generalized annulus. Then A\Σ(A) is an analytic domain

in A isomorphic to an infinite disjoint union of open balls. If B is the topological closure of an open ball

B in the disjoint union, then B\B = {x}, and for every point y ∈ B, we have ρA(y) = x.

Before giving the proof, we consider the standard closed annulus

S(1) =M
(
k{t, t−1}

) ∼=M (k{s, t}/(st− 1)) .

Then, the affine formal scheme X = R{s, t}/(st − 1) is such that Xη ∼= S(1), and hence X is a formal

R-model for S(1). In this case, Xs ∼= Spec k̃[s, t]/(st − 1) is the affine open subscheme of the affine

line over k̃ given by removing the origin, and we wish to describe redX explicitly. Firstly, consider

the point x = ζ0,1 ∈ M
(
k{t, t−1}

)
. Then H̃ (x) ∼= k̃(t), and the map k̃[t, t−1] → k̃(t) is the natural

map. The kernel of this map corresponds to the zero ideal, hence redX(x) is the generic point of Xs.
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Next, assume that x ∈ D(b, 1) for some b ∈ R×. The claim is that redX(x) is the point given by the

maximal ideal (t − b̃), where b̃ is the residue class of b in k̃. Indeed, we see that |t − b|x < 1, so that

(t − b̃) ⊂ ker(k̃[t, t−1] → H̃ (x)). By maximality of (t − b̃) and the fact that the kernel of the map

k̃[t, t−1]→ H̃ (x) is a prime ideal as H̃ (x) is a field, it follows that the inclusion is an equality.

Proof of lemma 3.2.3. We elaborate on the proof given in loc. cit. If A = S(1), then the first two

claims follow by the remarks preceding the proof and the fact that k̃ is infinite. The last statement

is a consequence of the anti-continuity of redX. Indeed, let B be an open ball as in the statement, so

redX(b) = {y} for all b ∈ B, where y is a closed point. If z ∈ B, then z is contained in any closed set

containing B. Now let U be any open in Xs containing y; then red−1X (U) is a closed set and so it contains

z. Therefore, U contains redX(z). Since U was arbitrary, it follows that z ∈ red−1X (ξ), where ξ is the

generic point of Xs. Hence, z = ζ0,1.

Next, assume A is any generalized annulus, and by fixing an isomorphism, we may assume it is a

standard annulus. Let r ∈ evT (A). If r ̸∈ |k×|, then we claim that ev−1T (r) is a single type III point x.

Indeed, if y is any point such that |T |y = r, then for any b ∈ k we have |T−b|y = max{|T |y, |b|} = |T−b|x,
so that y = x. Hence it suffices to consider when r ∈ |k×|. In this case, we may rescale so that r = 1, in

which case ev−1T (r) = S(1). It then suffices to show that the connected components of S(1)\{ζ0,1} are the
connected components of A\Σ(A) since then we reduce to the previous case. This follows if S(1)\{ζ0,1}
is both open and closed in A\Σ(A). It is closed since S(1) is closed, and S(1)\{ζ0,1} = S(1)∩ (A\Σ(A)),
and it is open since it is a union of open balls of the form D(b, 1).

3.2.3 Semistable Vertex Sets and Semistable Reduction

AssumingX is a smooth proper connected algebraic curve over k, we now develop the theory of semistable

vertex sets following [4, §3-4], which allow the notion of a skeleton of an annulus to be used to construct

a skeleton for Xan.

Note that in the case of an annulus S(a, b), the skeleton is determined completely by the type II points

ζ0,|a| and ζ0,|b| which form the endpoints, since the skeleton is then the unique path between the two

points. Removing these two points results in a disjoint union of an open annulus S(a, b)+ and infinitely

many open balls. This observation motivates the following definitions.

Definition 3.2.4. [4, Definition 3.1] A semistable vertex set V of X is a finite set of type II points

V ⊂ Xan such that Xan\V is a disjoint union of open balls and finitely many generalized open annuli.

Such a decomposition is called a semistable decomposition.

Definition 3.2.5. [4, Definition 3.3] If V is a semistable vertex set for X, then the skeleton of X with

respect to V is

Σ(X,V ) = V ∪
⋃

Σ(A)

where A runs over the generalized open annuli in the semistable decomposition induced by V .

Next, we would like to define a retraction map Xan → Σ(X,V ) for any semistable vertex set V , with

the aid of the following result. Although the result is a generalisation of lemma 3.2.3, its proof requires

some additional theory on meromorphic functions on analytic spaces and hence is omitted.

Lemma 3.2.6. [4, Lemma 3.4] Let V be a semistable vertex set for X and B a connected component

of Xan\Σ(X,V ). Then B is isomorphic to an open ball, and if B is the topological closure of B in Xan,

then B\B = {x} for some point x ∈ Σ(X,V ) known as the limit boundary of B.

As a corollary, we see that Σ(X,V ) is a closed subset of Xan.

We now define a retraction map ρV : Xan → Σ(X,V ) with respect to V by setting ρV (x) = x for any

x ∈ Σ(X,V ) and ρV (x) to be the limit boundary of the connected component of Xan\Σ(X,V ) containing
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x.

Lemma 3.2.7. [4, Lemma 3.8] The retraction ρV is a continuous map which agrees with the retraction

A→ Σ(A) when restricted to an open annulus in the semistable decomposition induced by V .

Proof. By lemma 3.2.3, ρV is continuous on any open annulus A in the semistable decomposition, and

agrees with ρA by lemma 3.2.3. We now show continuity, completing the part of the proof which was left

as an exercise in loc. cit.. Fixing x ∈ V , let U ⊂ Σ(X,V ) be an open neighbourhood of x in Σ(X,V ).

It suffices to show that x lies in the interior of ρ−1V (U). By shrinking U , we may assume that each

connected component Ui of U\{x} is contained in an open annulus Ai in the semistable decomposition.

Then A′i = ρ−1V (Ui) is an open annulus. Let {Bj} be the open balls in the semistable decomposition

which retract to x. The claim is that

{x} ∪
⋃
Bj ∪

⋃
A′i

is an open neighbourhood of x. Consider its complement Y in Xan; then Y ∩ (Xan\
⋃
Ai) is closed, and

the set Y ∩ Ai is closed in Ai by the continuity of the restriction map on each open annulus. It follows

that Y is closed.

The language of semistable vertex sets can be seen as a translation of the theory of semistable models

of a curve into the analytic setting.

Definition 3.2.8. [4, §4] A semistable formal R-curve is an integral admissible formal R-curve X such

that the special fiber Xs is a connected reduced algebraic curve over k̃ where all singularities are ordinary

double points. A semistable formal model for X is a semistable formal R-curve with an isomorphism

Xη ∼= Xan.

A recurring motif is that the geometry of an analytic space can be determined by the structure of

the special fiber of a suitable model. As a first encounter, we look at a powerful theorem of Bosch-

Lütkebohmert, extended by Berkovich to the setting of k-analytic spaces, which generalizes our earlier

observations regarding the map redX : S(1)→ Spec k̃[T, T−1].

Theorem 3.2.9. [10, Prop. 2.3] [6, Theorem 4.3.1] Let X be an integral formal R-model for an analytic

curve Xan with a reduced special fiber Xs. Fix a point x ∈ Xs and denote by Fx := red−1X (x) the formal

fiber over x. Then:

1. x is the generic point of an irreducible component if and only if Fx consists of a single type II point.

2. x is a smooth closed point if and only if Fx is isomorphic to a standard open ball.

3. x is an ordinary double point if and only if Fx is isomorphic to a standard open annulus.

It follows from this theorem and the anticontinuity of the reduction map that to any semistable formal

model X, the set V (X) of type II points red−1X (ξ) as ξ runs over the generic points of Xs is a semistable

vertex set. The reverse also holds: any semistable vertex set gives rise to a semistable formal model.

Theorem 3.2.10. [4, Theorem 4.11] The correspondence X 7→ V (X) is a bijection between the set of

semistable formal models of X up to isomorphism and the set of semistable vertex sets of X.

We omit the proof, which may be found in loc. cit. and instead walk through some examples of how

the inverse map is constructed. The general proof is not much more difficult than our explicit examples,

and we will sketch how the proof generalises in each case. There is a key difference between the case of

the projective line and other curves [4, Remark 4.17]. Firstly, recall that for a field extension k ⊂ K

there exists a curve C(K) over k unique up to isomorphism with function field K. Define the genus of

a type II point x to be the genus of C(H̃ (x)). Any type II point in P1,an
k has genus 0. If x is a type II

point in Xan of positive genus, then it must be contained within any semistable vertex set of Xan, since

otherwise it has a neighbourhood isomorphic to an open ball or open annulus which admit embeddings

into P1,an
k .
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The proof is split into several cases, and we exemplify each case here by considering X = P1
k, fixing

a semistable vertex set V and denoting by Σ its associated skeleton.

Σ consists of a single vertex. To exemplify this, let V = {ζ0,1}. In this case, P1,an
k \V is an infinite

disjoint union of open balls. Let B1 = D(0, 1) and B2 = D(∞, 1). The complements Y1 = X\B1

and Y2 = X\B2 are then the affinoid domains given by the closed balls E(∞, 1) ∼= M (k{S}) and

E(0, 1) ∼= M (k{T}) respectively. We have models for Y1 and Y2 given by Spf R{T} and Spf R{S}
respectively. The intersection Y1 ∩ Y2 is the affinoid domain M

(
k{T, T−1}

) ∼= M (
k{S, S−1}

)
, where

the isomorphism is induced by T 7→ S−1. The intersections inform us how to glue the formal models for

Y1 and Y2: we have open subsets Spf R{T, T−1} ⊂ Spf R{T} and Spf R{S, S−1} ⊂ Spf R{S}. Gluing

along the isomorphism Spf R{T, T−1} ∼= Spf R{S, S−1} given by T 7→ S−1 recovers the semistable formal

model P̂1
R given by the formal completion of P1

R that we have previously encountered.

More generally, we fix two distinct balls B1, B2 in the semistable decomposition and let Y1 = Xan\B1

and Y2 = Xan\B2. Then Y1 and Y2 are affinoid domains due to the following lemma, the proof of which

we omit due to its dependence on some aspects of the theory of which we have not given a comprehensive

treatment.

Lemma 3.2.11. [4, Lemma 4.12] Let X be a projective k-curve and Y ⊂ Xan an open analytic domain

isomorphic to either an open ball or an open annulus. Then Xan\Y is an affinoid domain in Xan.

Then, we find models for Y1, Y2 and Y1 ∩ Y2 by the following lemma.

Lemma 3.2.12. [10, Proposition 1.1] Let M (A ) be a reduced k-affinoid space and assume k is alge-

braically closed. Then the ring

A ◦ = {f ∈ A | |f |x ≤ 1 for all x ∈M (A )}

is a tfp R-algebra and for X = Spf A ◦, we have Xη ∼=M (A ).

In our current setting, k is algebraically closed and X is smooth, hence reduced. It follows by [6,

Proposition 3.4.3] that Xan is also reduced, in the sense that all local rings are reduced. In particular

any affinoid domainM (A ) in Xan is reduced. Furthermore, A has no π-torsion since it is a k-algebra,

and it follows from this that A ◦ is an admissible R-algebra. Hence, X is an admissible formal model for

M (A ), called the canonical model.

Gluing the canonical models for Y1 and Y2 along the canonical model for Y1 ∩ Y2 then gives us the

desired semistable formal model.

Σ consists of a single edge. For this case, we can take V = {x = ζ0,r, y = ζ0,1}, where 0 < r < 1

and r = |c| for some c ∈ |k×|. Let Bx = D(0, r) and B′x = D(c, r), and similarly By = D(∞, 1) and

B′y = D(1, 1). We see that Y is the standard annulus S(c) which has a model Y = Spf R{S, T}/(ST − c).

We may perform a change of coordinates by setting

U :=
T − c
T − 1

.

where T is the coordinate on P1
k. This induces an automorphism of P1

k, hence of P1,an
k . Assume that

x ∈ Y ′, so that |T−1|x ≥ 1 and |T−c|x ≥ r. Analysing each of the cases r < |T |x < 1, |T |x ≤ r, |T |x ≥ 1,

we find that r ≤ |U |x ≤ 1. From this it follows that the image of Y ′ lands inside S(c). Furthermore, the

transformation is self-inverse, so performing a similar calculation shows that S(c) lands inside Y ′ under
the inverse map, hence showing that this transformation gives an isomorphism Y ′ ∼= S(c). Therefore,

Y′ = Spf R{A,B}/(AB − c) is a model for Y ′.
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The intersection Y ∩Y ′ is modelled by open formal subschemes U ⊂ Y and U′ ⊂ Y′. By theorem 3.2.9,

the open subset U is obtained from Y by removing the closed points redY(B′x) and redY(B′y). These

correspond to the ideals of k̃[S, T ]/(ST ) given by (T−1, S) and (T, S−1) respectively. Similarly, the open

subset U′ is obtained from Y′ by removing the closed points redY′(Bx) and redY′(By) corresponding to

the ideals of k̃[A,B]/(AB) given by (A− 1, B) and (A,B − 1) respectively. The isomorphism U→ U′ is

then induced by the homomorphism of rings sending A 7→ T/(T − 1) and B 7→ S/(S− 1). It follows that

the resulting formal model consists of two copies of P1
k̃
intersecting transversally.

The general procedure is similar: we begin by choosing two open balls Bx, B
′
x retracting to x and two

open balls By, B
′
y retracting to y. Again, by lemma 3.2.11, Y = P1,an

k \(Bx∪By) and Y ′ = P1,an
k \(B′x∪B′y)

are affinoid domains, and we let Y and Y′ be the respective canonical models. It can be shown that

each model consists of two curves intersecting at an ordinary double point. The intersection Y ∩Y ′ is an
affinoid domain, and the canonical model is identified with an open formal subscheme of each model by

deleting a smooth point from each irreducible component of the model. Gluing along these opens then

gives the desired formal model.

Σ consists of at least two edges. Let V = {ζ0,1, ζ0,r, ζ0,r′}, where 0 < r′ < r < 1 and r = |c|, r′ = |c′|
for some c, c′ ∈ k. The induced semistable decomposition contains open annuli S(c′, c)+ and S(c, 1)+.
Then, Σ has edges e1 and e2 corresponding to the annuli A1 = S(c′, c) and A2 = S(c, 1) respectively.

Denote the vertices by x = ζ0,1, y = ζ0,r and ζ0,r′ = z.

Firstly, we consider the edge e1 with vertices x and y. The open ball Bx = D(0, r′) retracts to x,

and P1,an
k \(A2 ∪ Bx) is the standard annulus A1, which has a model Y = Spf R{S, T}/(ST − d) where

d = c′c−1. We note that ρ−1V (x) = E(0, r′), which has model Yx = Spf R{U}. We find that Bx is

the formal fiber above the closed point ζ given by the origin of the special fiber of Yx. Suppose that

Cx = Spec k̃[T ] is the irreducible component of Y such that the generic point of Cx has formal fiber

{x}. Let ξ be the closed point where the irreducible components of Y1 intersect. The intersection

A1 ∩E(0, r′) is modelled by the open formal subscheme Cx\{ξ} of Cx and Yx\{ζ} of Yx. We then have

an isomorphism

Cx\{ξ} ∼= Yx\{ζ}

which is induced by the mapping U 7→ T−1. Gluing along this isomorphism results in a formal scheme

X1 topologically given by a projective line over k̃ intersecting transversally with an affine line.

We may perform a similar procedure for the edge e2 and the vertex z, resulting in an isomorphic

formal scheme X2. It now remains to glue the two formal schemes. To do this, we letD1 be the irreducible

component of X1 whose generic point has formal fiber {y}, and similarly define D2 with respect to X2.

Topologically, D1 is homeomorphic to Spec k̃[S], and D2 is homeomorphic to Spec k̃[V ]. Let ξ1 and ξ2 be

the ordinary double points of the special fibers of X1 and X2 respectively. Then, we see that the formal

fibers above D1\{ξ1} and D2\{ξ2} are both given by the affinoid domain given by A1 ∩ A2
∼= S(1). We

therefore glue X1 and X2 along the following isomorphism

D1\{ξ1} ∼= Spf R{S, S−1} ∼= Spf R{V, V −1} ∼= D2\{ξ2}

where the middle isomorphism maps S 7→ V −1. This procedure results in a projective line with a

projective line intersecting transversally at 0 and another projective line intersecting transversally at

infinity, visualised in fig. 3.1.

In the general case, we begin by fixing an edge e. Suppose the open annuli in the semistable de-

composition are A0, . . . , An, and by permuting indices that e contains ρ(A0). There are two cases to

consider.
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Figure 3.1: The relationship between a skeleton induced by a semistable vertex set and the corresponding
formal model. The top image shows the analytic projective line with the skeleton in bold. Dashed arrows
indicate the reduction map. Clouds above each projective line in the semistable model shown at the
bottom indicate the generic point of the component.

If e has a vertex x which is not contained in any other edge in Σ 2, then we choose an open ball Bx

retracting to x. It can be shown that Y = ρ−1(x) is an affinoid domain, by arguing that Xan\(
⋃n
i=0Ai)

is an affinoid domain using lemma 3.2.11 and using the fact that ρ−1(x) is a connected component. We

let Cx be the canonical model for ρ−1(x). Similarly, we can show that Y ′ = ρ−1(e)\Bx is an affinoid

domain with canonical model Y, by arguing that it is a connected component of Xan\(Bx ∪
⋃n
i=1Ai).

The intersection Y ∩Y ′ is then modelled by isomorphic open formal subschemes of Cx and Y, giving the

appropriate gluing data.

In the second case, both vertices of e are contained in other edges of Σ. We again argue that ρ−1(e)

is an affinoid domain since it is a connected component of \(
⋃n
i=1Ai). Let D be the canonical model;

then the formal fibers above closed points are given by connected components of ρ−1(e)\{x, y}. These

connected components are the open balls which retract to either x or y, or A0, so it follows that D

consists of two irreducible components intersecting at an ordinary double point ξ. If C is the irreducible

component whose generic fiber has formal fiber {x}, then the canonical model for ρ−1(x) is given by

C\{ξ}. If e′ is another edge with vertex x, then ρ−1(e) ∩ ρ−1(e′) = ρ−1(x), so that by repeating this

procedure for e′, we obtain the necessary gluing data for the respective canonical models.

A natural question to ask now is whether any k-analytic curve has a semistable decomposition, and

hence, a skeleton. The following theorem answers this positively in the algebraically closed case.

Theorem 3.2.13 (Semistable Reduction Theorem). [10, Theorem 7.1] Let X be a smooth, projective,

geometrically connected curve over k, where k is not necessarily algebraically closed. Then, there exists a

finite extension k ⊂ k′ with valuation ring R′ such that (X×k k′)an admits a semistable formal R′-model.

Hence, when k is algebraically closed, we deduce by our correspondence that a k-analytic curve Xan

has a semistable vertex set.

2Note that this case is missing from the proof of [4, Theorem 3.2.10].
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Chapter 4

Skeleta in Higher Dimensions

Throughout this section, let k be the fraction field of a discrete valuation ring R which has uniformizer

π. We will denote by X a smooth, proper, connected k-scheme. Once again, we will use the notion of

models to study k-analytic spaces, but it is more convenient here to use schemes as opposed to formal

schemes. The aim of this section is to generalise the notion of skeleta to higher dimensions.

4.1 R-Models

To begin, we define an R-model for X to be a flat, proper, R-scheme X equipped with an isomorphism

Xk
∼= X, where Xk = X ×R k denotes the generic fiber. The assumption that the model is proper may

be weakened, but we include it here to simplify the presentation. A morphism of R-models h : X ′ →X

is a morphism of R-schemes which is compatible with the isomorphisms X ′
k
∼= X and Xk

∼= X in the

following sense. By the universal property of the fiber product, h induces a morphism hk : X ′
k → Xk.

We then require that the following diagram commutes, where the diagonal maps are the isomorphisms

specified by the model.

X ′
k Xk

X

∼

hk

∼

For an R-model X , we may consider the space X̂η, which is isomorphic to Xan due to the properness

assumption. We find that X̂s
∼= Xs, and so we obtain a map redX : X̂η → Xs. Fixing a point x ∈ X̂η

and choosing U = SpecA ⊂ X to be such that x ∈ Ûη, we find that redX (x) corresponds to the prime

ideal of A given by {a ∈ A | |a|x < 1}. We note that if h : X ′ → X is a morphism of R-models, then

one sees that h ◦ redX ′ = redX .

Furthermore, x defines a multiplicative seminorm on OX ,redX (x). Indeed, if f ∈ OX ,redX (x), then

f is regular on some neighbourhood U = SpecA, and we find that x induces a seminorm on A. To

see that this is well-defined, let x ∈ V ⊂ U , with U = SpecA and V = SpecA′. The open immersion

V → U induces an open immersion V an
k → Uan

k by [6, Proposition 3.4.6], and a morphism V̂η → Ûη. By

considering the following diagram and replicating the proof of lemma 3.1.4, we see that that V̂η → Ûη is

the embedding of an affinoid domain.

V̂η Ûη

V an
k Uan

k
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4.2. The Skeleton of a Strict Normal Crossings Model

It follows from this observation that the following diagram commutes, where the top map is the restriction

map, showing that the seminorm is well-defined.

A A′

H (x)

res

4.2 The Skeleton of a Strict Normal Crossings Model

4.2.1 Strict Normal Crossings Divisors

The notion of a strict normal crossings model can be seen as a generalisation of semistable formal models

to the current setting.

Definition 4.2.1. [20, Chapter 9, Definition 1.6] Let D be an effective Cartier divisor on a locally

Noetherian schemeX. Let {Di}i∈I be the irreducible components ofD considered as reduced subschemes.

Then, the following are equivalent.

1. For each p ∈ D, the ring OX,p is a regular ring with a regular system of parameters z1, . . . , zn such

that D is locally given by the vanishing of the monomial zN1
1 · · · zNr

r for some r ≤ d and positive

integers N1, . . . , Nr.

2. Each Di is an effective Cartier divisor and the scheme theoretic intersection
⋂
j∈J Dj is a regular

subscheme of codimension |J | in X, where J ⊂ I is finite.

If D satisfies the above, it is called a strict normal crossings divisor on X.

The special fiber Xs of an R-model is a closed subscheme whose ideal sheaf is locally generated by

the element π. A module over a discrete valuation ring is flat if and only if the uniformizer π is not a

zero divisor, hence Xs is an effective Cartier divisor on X .

A regular R-model X where Xs is a strict normal crossings divisor is called an snc model. For

brevity, an snc system of parameters will refer to a regular system of parameters at a point z ∈Xs such

that Xs is locally given by the vanishing of the monomial zN1
1 · · · zNr

r and zi = 0 is a local equation for

the irreducible component Di. Note that we allow each irreducible component, when considered as a

prime divisor, to appear with multiplicity.

In general, it is not known whether snc models exist for a given scheme X. Starting from a proper

R-model, we may produce an snc model using resolution of singularities; here, we state a stronger version

which will be useful for some proofs in this chapter.

Theorem 4.2.2 (Embedded Resolution of Singularities). [18, 16, 15, 14] Let (W,Y ) be a pair such that

Y is a divisor on an excellent, reduced scheme W . Assume W has characteristic zero, or that W has

dimension at most three and is separated. Then, there exists a proper birational morphism Π :W ′ →W

such that W ′ is regular, the total transform of Y is a strict normal crossings divisor in W ′ and Π is an

isomorphism outside of Sing(Y ) ∪ Sing(W ), where Sing(·) denotes the singular locus of a scheme.

For our purposes, the algebraic condition of excellence always holds since any complete local Noethe-

rian ring is excellent, and a finitely generated algebra over an excellent ring is excellent. Proper R-models

exist due to Nagata’s compactification theorem, and then Theorem 4.2.2 may be used, assuming that X

satisfies the relevant conditions, to produce an snc model from a proper R-model X , by applying the

theorem to the pair (X ,Xs). In general, we will assume the existence of an snc model for X.

To begin, we explore how blow-ups allow us to construct snc models from existing ones. Throughout

the chapter, we will freely use the following standard facts about blow-ups, references for which can be
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4.2. The Skeleton of a Strict Normal Crossings Model

found in [20, Chapter 8].

Firstly, if X is a scheme and Π : X ′ → X is the blow-up along some center Z, then for any open

U ⊂ X, Π−1(U) is isomorphic to the blow-up of U along U ∩ Z. Hence, blow-ups can be computed

locally and patched together.

Assume next that U = SpecA is a Noetherian, integral affine scheme and the blow-up U ′ → U has

center cut out by the ideal I = (f1, . . . , fn), where fi ̸= 0. Then, U ′ is covered by affines of the form

SpecAi, where Ai ⊂ Frac(A) is the A subalgebra of Frac(A) generated by fj/fi, for j ̸= i. It follows

from these facts that if X is additionally a flat R-scheme, then X ′ is also a flat R-scheme. If both X

and the center Z are regular, then the blow-up of X along Z is also regular.

If X is locally Noetherian, the blow-up along a closed subscheme cut out by a quasi-coherent ideal

sheaf is a proper morphism, and Π restricts to an isomorphism away from the center of the blow-up.

Furthermore, a composition of proper morphisms is proper, hence a sequence of blow-ups gives a a proper

morphism.

Proposition 4.2.3. Let X be an snc model and Z a closed subscheme such that one of the following

holds:

1. Z = {z} for a closed point z, such that z ∈Xs;

2. Z is a connected component of an intersection ∩ri=1Di of irreducible components of Xs.

Let Π : X ′ →X be the blow-up with center Z. Then X ′ is an snc model.

Proof. Assume we are in the first case. There is an isomorphism of the generic fibers X ′
k
∼= Xk since

the blow-up has center contained in the special fiber. We see that X ′ is a regular R-model by standard

results on blow-ups.

We now show that X ′
s = X ∗

s +E is an snc divisor, where X ∗
s denotes the strict transform of Xs and

E is the exceptional divisor. It suffices to work in an affine neighbourhood U = SpecA of z, in which

case the blow-up U ′ → U with center z may be computed as follows. Let z1, . . . , zn be an snc system of

parameters at z, so that by shrinking U as necessary, z corresponds to a maximal ideal of A generated

by (z1, . . . , zn) and Xs is given by the vanishing of the function zN1
1 · · · zNr

r in U . The blow-up U ′ → U

can be covered by charts Ui = SpecAi where

Ai := A[T1, . . . , T̂i, . . . Tn]/(Tjzi − zj)j ̸=i.

We show that X ′
s ∩ Ui is a divisor with strict normal crossings in each Ui.

Consider the case where i = r; the other cases are similar. Then, if J is the ideal of A generated by

π, we have

J ·Ai = (zN1
1 · · · zNr

r ) ·Ai =

((
z1
zr

)N1

· · ·
(
zr−1
zr

)Nr−1

· zN1+···+Nr
r

)
=
(
TN1
1 · · ·TNr

r · zN1+···+Nr
r

)
.

Since the exceptional divisor is given by the vanishing of zr in the chart Ur, it follows that the strict

transform X ∗
s is cut out by the monomial TN1

1 · · ·TNr−1

r−1 in Ur. A prime component is given by the

vanishing of Tj , and hence is the strict transform of the prime component Dj of Xs given by the

vanishing of zj . Since the strict transform of Dj is isomorphic to the blow-up of Dj with center z,

we see that it is regular. To show regularity of the intersections, it suffices to consider the subscheme

SpecAi/(Ti1 , . . . , Tim , zr) for some set of indices i1, . . . , im. We assume for ease of notation that the
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4.2. The Skeleton of a Strict Normal Crossings Model

indices are {1, . . . ,m}, for some m < r. We now find that:

SpecAi/(T1, . . . , Tm, zr)

∼= SpecA[T1, . . . , T̂r, . . . , Tn]/(Tjzr − zj , T1, . . . , Tm, zr)j ̸=r
∼= Spec(A/(z1, . . . , zn))[Tm+1, . . . , Tn]

∼= SpecK[Tm+1, . . . , T̂r, . . . , Tn].

whereK is a field. Hence, we see that the intersection is regular and of codimension n−(n−m−1) = m+1,

as required.

The proof of the second case is done via a similar computation.

4.2.2 Monomial and Divisorial Points

Let X be an snc model for X. Using the notation as above, if ξ is a generic point of some connected

component of an intersection ∩ri=1Di of Xs, then there exists an snc system of parameters z1, . . . , zr

and a unit u in OX ,ξ such that π = uzN1
1 · · · zNr

r for some positive integers N1, . . . , Nr. The aim of

this section is to see how the special fiber identifies a subset of points of X̂η, known as monomial and

divisorial points.

To begin the construction of such points, we require the following lemma, which can be seen as a

generalisation of the idea that for a local ring A with a principal maximal ideal m = (π), every element

of the m-adic completion Â can be written as a power series in π.

Lemma 4.2.4. [21, Lemma 2.4.4] Let z1, . . . , zn be a regular system of parameters for the maximal ideal

of OX ,ξ. Let ÔX ,ξ be the completion with respect to the maximal ideal. Then, every element f ∈ ÔX ,ξ

can be written in the form

f =
∑
β∈Zn

≥0

cβz
β (4.1)

where each cβ is zero or a unit in ÔX ,ξ. Such an expansion is called an admissible expansion for f .

Proof. The proof is reproduced from loc. cit. here. Denote by mξ the maximal ideal of ÔX ,ξ. Fix an

element f ∈ ÔX ,ξ and assume that f lies in mξ since otherwise we are done. Now let i ≥ 1 and assume

that for all j ≤ i, any f ′ ∈ ÔX ,ξ has an expansion of the form:

f ′ = f ′i +

∑
|β|=i

cβz
β


where f ′i is an element which has an admissible expansion and each cβ is some element of ÔX ,ξ. In

particular, for j = i, f has such an expansion:

f = fi +

∑
|β|=i

cβz
β

 .

For each coefficient cβ in the expansion for f , we may apply the assumption with j = 1, so that we can
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4.2. The Skeleton of a Strict Normal Crossings Model

write f in the form:

f = fi +
∑
|β|=i

(cβ,i + d1z1 + · · ·+ dnzn)z
β

=

fi + ∑
|β|=i

cβ,iz
β

+

∑
|β|=i

d1z1z
β + · · ·+ dnznz

β


= fi+1 + gi+1

where cβ,i is an element admitting an expansion of the form 4.1. We see that fi+1 is an element with an

admissible expansion while gi+1 is a monominal in z1, . . . , zn of degree i+1. Furthermore, the coefficients

of fi+1 and fi agree in degree < i. Iterating this gives an admissible expansion for f .

Lemma 4.2.5. [21, Prop. 2.4.6] The element 0 ∈ ÔX ,ξ has a unique admissible expansion, where all

coefficients are 0.

Proof. Let

0 =
∑
β∈Zr

≥0

dβz
β

be an admissible expansion for 0. The claim is that for each β, dβ lies in the maximal ideal m of ÔX ,ξ,

hence must be zero. We show this by inducting on |β|, and using the following result from commutative

algebra.

Lemma 4.2.6. [1, Prop. 11.20] Let z1, . . . , zr be a regular system of parameters for a local ring A with

maximal ideal m and f(t1, . . . , tr) a homogeneous polynomial of degree s with coefficients in A. Assume

that f(z1, . . . , zr) ∈ ms+1. Then all coefficients of f lie in m.

In the base case, we have that d0 must lie in the maximal ideal, since

d0 = −
∑
|β|>1

dβz
β .

Assuming that dβ = 0 for all β such that |β| ≤ s for some s ≥ 0, we consider the homogeneous polynomial

of degree s+ 1 given by:

f =
∑
|β|=s+1

dβt
β .

The parameters z1, . . . , zr generate m and we must have that f(z1, . . . , zr) lies in ms+1 by the inductive

hypothesis and rearranging the expansion. Hence, all coefficients lie in m by the lemma.

The utility of an admissible expansion is the following. Firstly, note that for any f ∈ OX ,redX (x) for a

point x ∈ X̂η, vx(f) ≥ 0. From this we observe that if f is a unit in OX ,redX (x), then vx(f) = −vx(f−1),
so vx(f) = 0. The same then holds true for ÔX ,redX (x). Hence, finding an admissible expansion for an

element f ∈ OX ,redX (x) as in eq. (4.1), we see that

vx(f) ≥ min{α · β | β ∈ Zn≥0, cβ ̸= 0} (4.2)

where α ·β denotes the dot product, and α = (vx(z1), . . . , vx(zn)). Due to the equation π = uzN1
1 · · · zNr

r ,

we must have that vx(z1)N1 + · · · vx(zr)Nr = 1. These ideas lead to the construction of ‘monomial

points’, which are the points where eq. (4.2) is an equality.
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Proposition 4.2.7. [21, Prop. 2.4.6] Let D1, . . . , Dr be irreducible components of Xs, and ξ the

generic point of a connected component of ∩ri=1Di. Let Ni be the multiplicity of Di in Xs and let

α = (α1, . . . , αr) ∈ Rr≥0 be such that α1N1+ · · ·+αrNr = 1. Then, there exists a point x ∈ X̂η inducing

a valuation vx : K(X)× → R such that for each f ∈ OX ,ξ and any admissible expansion of f as in

eq. (4.1), we have:

vx(f) = min{α · β | β ∈ Zm≥0, cβ ̸= 0}.

The point x is then called a monomial point with presentation (X , (D1, . . . , Dr), ξ, α).

Proof. We give an alternative proof from the one presented in loc. cit..

Firstly, assume by permuting indices that α = (α1, . . . , αr′ , 0, . . . , 0), where α1, . . . , αr′ are non-zero,

for some r′ ≤ r.

Define for each α ∈ Rr≥0 and w ∈ R the ideal I≥w of ÔX ,ξ generated by the monomials zβ such

that α · β ≥ w, and the ideal I>w generated by the monomials zβ such that α · β > w. Denoting by κ

the residue field of ÔX ,ξ, the claim is that I≥w/I>w is a κ vector space with a basis given by zβ where

α ·β = w. To see this, first note that if α ·β = w for some β and w, then zβ ∈ I≥w\I>w. Indeed, suppose
that zβ ∈ I>w; then, we may write zβ = c1z

β1 + · · · + cnz
βn , and, choosing admissible expansions for

each ci, we may find an admissible expansion

zβ +
∑
α·γ>w

cγz
γ = 0.

By, lemma 4.2.5, each coefficient in the admissible expansion must be zero, giving a contradiction. Hence,

the classes of the elements zβ give a generating set for I≥w/I>w. A similar argument shows that any

finite sum

c1z
β1 + · · ·+ cmz

βm

where each ci is a unit, is not contained in I>w, so that the classes of the elements zβ with α · β = w

form a basis for I≥w/I>w.

For each element f of ÔX ,ξ, there exists some w such that f ∈ I≥w\I>w, which must be unique

since R is totally ordered. To see this, fix an admissible expansion for f with coefficients cβ and let

v = min{α · β | cβ ̸= 0}. We can then write

f =
∑
α·β=v

cβz
β +

∑
α·β>v

cβz
β

= f ′ + f ′′.

The ideal I>v is closed in the mξ-adic topology; for this it suffices to show that⋂
i>0

(I>v +miξ) ⊂ I>v.

This follows from the fact that miξ is generated by monomials of degree i in the z1, . . . , zn, so for i large

enough, miξ ⊂ I>w. A similar argument shows that I≥v is closed. It follows from this that f ′′ ∈ I>v and

f ′ ∈ I≥v, and by considering reductions modulo I>v we see that f ̸∈ I>v. Hence v is the unique real

number such that f ∈ I≥v\I>v, and in particular vx is independent of the choice of admissible expansion.

Since ideals are closed under addition, we find that vx(f + g) ≥ min{vx(f), vx(g)}. Next, let f be

the reduction of f modulo I>v, and write

f =
∑
α·β=w

dβz
β
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where dβ ∈ κ. We define Γf as follows: for each choice of β1, · · · , βr such that α1β1 + · · ·+ αr′βr′ = v,

β = (β1, · · · , βr) is in Γf if βr′+1 + · · ·+ βr is minimal amongst all possible choices of βr′+1, . . . , βr such

that dβ ̸= 0. We then define the polynomial

fα =
∑
β∈Γf

dβz
β .

Then, we can view fα as an element of κ[z1, . . . , zn]. To show vx(f · g) = vx(f) + vx(g), we now fix

admissible expansions for f and g, and a computation shows that (f · g)α = fα · gα, where the latter

product is taken in the ring κ[z1, . . . , zn].

Since π = u · zN1
1 · · · zNr

r is an admissible expansion, vx(π) = α1N1 + · · · + αrNr = 1. Hence, vx

extends the valuation on k. We conclude by noting that although vx is currently only defined on the

local ring OX ,ξ, it extends to a valuation on K(X ) ∼= K(X) by setting vx(f/g) = vx(f)− vx(g).

Let ξ be the generic point of a connected component of ∩ri=1Dr, and suppose α has zero entries.

Then we may, after permuting indicies, assume that α = (α1, . . . , αr′ , 0, . . . , 0) with α1, . . . , αr′ non-zero.

Then, the formula for vx shows that it is also the monomial point with presentation

(X , (D1, . . . , Dr′), ξ
′, α′)

where α′ = (α1, . . . , αr′) and ξ
′ is the generic point of the connected component of ∩r′i=1Di which contains

ξ.

When ξ is the generic point of an irreducible componentD, then OX ,ξ is a discrete valuation ring with

fraction field equal to K(X). In this case, the valuation on K(X) such that the valuation ring is OX ,ξ

coincides with the valuation given by the monomial point corresponding to the data (X , D, ξ, α = 1).

The point is then called a divisorial point associated to the data (X , D).

Note that a point which is monomial with respect to a given model may in fact be divisorial with

respect to another snc model. The following lemma and proposition form the contents of the proof of

[21, Prop. 2.4.11], and characterize when such a case occurs.

Lemma 4.2.8. Let D1, . . . , Dr be prime components of Xs for some snc model X and ξ the generic

point of a connected component of D1 ∩ · · · ∩ Dr. Let X ′ → X be the blow-up at the closure of

ξ. If x ∈ X̂η is a point with monomial presentation (X , (D1, . . . , Dr), ξ, α), then x is also monomial

with respect to X ′. If α = (α1, . . . , αr) is such that α1 is the minimal coordinate, D′2, . . . , D
′
r are

the strict transforms of D2, . . . , Dr and E is the exceptional divisor, then x has monomial presentation

(X ′, (E,D′2, . . . , D
′
r), ξ

′, α′) where ξ′ is the generic point of E ∩D′2 ∩ · · · ∩D′r and α′ is the tuple

α′ = (α1, α2 − α1, . . . , αr − α1).

Proof. By proposition 4.2.3, X ′ is an snc model. Let U = SpecA be an affine neighbourhood of ξ such

that if z1, . . . , zr is an snc system of parameters, then ξ corresponds to the prime ideal (z1, . . . , zr) of A.

We have that redX ′(x) is the point of SpecA[T2, . . . , Tr]/(Tjz1 − zj) ⊂ X ′ corresponding to the prime

ideal (z1, T2, . . . , Tr). The vanishing of the elements Tj define the strict transforms D′j of Dj for each

2 ≤ j ≤ r, and the vanishing of z1 defines the exceptional divisor. In particular, we can take z1, T2, . . . , Tr

to be an snc system of parameters.

Now, let x′ be the monomial point corresponding to the data (X ′, (E,D′2, . . . , D
′
r), ξ

′, α′) as in the

statement of the lemma. Since redX (x′) = redX (x), to show that x′ = x, it suffices to show that for all

f ∈ OX ,redX (x), vx(f) = vx′(f).
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Fix f ∈ OX ,redX (x). Let

f =
∑

cβz
β1

1 · · · zβr
r

be an admissible expansion for f in ÔX ,redX (x). We note that

f =
∑

cβz
β1+···+βr

1 T β2

2 · · ·T βr
r

gives an admissible expansion for f in ÔX ,redX ′ (x′). It follows immediately from the formulae for vx and

vx′ that vx(f) = vx′(f).

Proposition 4.2.9. [21, Proposition 2.4.11] A monomial point x of X̂η with a monomial presentation

(X , (D1, . . . , Dr), ξ, α)

is divisorial if the entries of α are rational.

Proof. Let X ′ → X be the blow-up at the closure of ξ. We may assume by permuting indices that α1

is the minimial coordinate. Then, by lemma 4.2.8, X ′ is an snc model where the monomial presentation

of x with respect to X ′ is such that α′ = (α1, α2 − α1, . . . , αr − α1). Since each coordinate is rational,

we can assume α is of the form
(
a1
b , . . . ,

ar
b

)
for positive integers a1, . . . , ar and some integer b. Hence,

repeating this process and removing any zero entries, we reduce to the case where r = 1. This gives a

divisorial presentation.

4.2.3 The Retraction to the Skeleton

The skeleton Sk(X ) of Xan induced by an snc model X is defined as the set of points of Xan which

are monomial with respect to X . The space Sk(X ) has a particularly elegant topological description

as the dual complex ∆(Xs) of Xs [22, §2.4.2].

Let {Di}i∈I be the irreducible components of Xs, and J ⊂ I a non-empty finite subset. Then, the

dual graph ∆(Xs) contains an r-simplex for each connected component of ∩j∈JDj , where r = |J |−1. We

make the following identifications. Let C ⊂ ∩j∈JDj and C ′ ⊂ ∩k∈J′Dk be two connected components

corresponding to simplicies E and E′. Then E is a face of E′ if and only if we have C ′ ⊂ C. There is a

homeomorphism Φ : ∆(Xs)→ Sk(X ). We describe the construction of the map and omit the proof that

it gives a homeomorphism which may be found in [22, §2.4.4]. Let x ∈ ∆(Xs) be a point; if it is a vertex,

then it corresponds to an irreducible component D ⊂ Xs and we map it to the divisorial point with

presentation (X , D). Otherwise, y lies on the interior of a simplex corresponding to some connected

component of an intersection ∩j∈JDj . Let r = |J |, ξ be the generic point of the component and let

(w1, . . . , w|J|) be the coordinates of y considered as a point on the simplex. Then w1 + · · ·+ wr = 1, so

α = (w1/N1, . . . , wr/Nr) is such that α1N1 + · · · + αrNr = 1. We then map y to the monomial point

with presentation (X , (D1, . . . , Dr), ξ, α).

The inclusion Sk(X ) ⊂ X̂η admits a continuous retraction ρX : X̂η → Sk(X ) [21, §3.1.5]. For

any x, let D1, . . . , Dr be the irreducible components of Xs passing through redX (x). Fix 1 ≤ i ≤ r.

Letting z1, . . . , zn be an snc system of parameters at redX (x) such that Di is locally given by the

vanishing of zi, set vx(Di) := vx(zi). Note that N1vx(z1) + · · ·+Nrvx(zr) = vx(π) = 1, so that setting

α = (vx(z1), . . . , vx(zr)) and letting ξ be the generic point of the connected component of ∩ri=1Di which

contains redX (x), we set ρX (x) to be the point with monomial presentation (ξ, α) with respect to the

model X . This is well-defined: the parameters z1, . . . , zr are determined up to multiplication by a unit in

OX ,redX (ξ), so if z′i is another function defining Di locally, then zi = u · z′i for some unit u ∈ OX ,redX (ξ).

Since vx(u) = 0 it follows that vx(zi) = vx(z
′
i). We also see that vx(D) = vρX (x)(D) for every prime

component D of Xs passing through redX (x). We remark for later use that the construction vx(D)
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extends to any divisor D which is not supported on ι(x), by similarly choosing a local equation for D at

redX (x).

The retraction map has the following properties, which we state without proof. Denote y = ρX (x), for

any f ∈ OX ,redX (x). If f ∈ OX ,redX (x) is a function regular on some neighbourhood U of redX (x), then

note that U contains redX (y) so that we may consider |f |y. Then, |f |x ≤ |f |y for every f ∈ OX ,redX (x)

[21, Prop. 3.1.6]. The following proposition shows that the retraction map is well-behaved with respect

to blow-ups.

Proposition 4.2.10. [21, Prop. 3.1.7] If X ′ → X is a proper morphism of snc models of X, i.e. a

proper morphism of R-models where both X ,X ′ are snc, then ρX ◦ ρX ′ = ρX and Sk(X ) ⊂ Sk(X ′).

In the case of curves, we have the following characterisation of the retraction points.

Proposition 4.2.11. Let X be a curve and x, y ∈ X̂η be distinct points such that ρX (x) = ρX (y).

Then, ρX (x) is a divisorial point.

Proof. Without loss of generality, we may assume that y = ρX (x) is a monomial point which is not

divisorial with respect to X . Let (ξ, (α1, α2)) be a monomial presentation for y with respect to the

model X and let z1, z2 be a regular system of parameters at redX (x) = redX (y) =: ξ, such that ξ is the

generic point of the intersection of the vanishing loci of z1 and z2. It suffices to show that |za1 |y = |πb|
for some a, b, since then α1 and α2 must be rational and we can conclude using proposition 4.2.9.

Assume x is not a type III point; then we are done, since |H (x)×|/|k×| is a rank 0 abelian group

and hence for every element r ∈ |H (x)×|, we have ra ∈ |k×|. for some a ∈ Z≥0

Now, we assume that both x and y are type III points and proceed to assume that α1 and α2 are

irrational. Since x and y are distinct, we can assume that there exists some f ∈ OX ,redX (x) such that

vx(f) ̸= vy(f). Choosing an admissible expansion for f :

f =
∑

cabz
a
1z
b
2

we see that

vx(f) = vx

(∑
cabz

a
1z
b
2

)
= min{vx(cab) + aN1α1 + bN2α2}

= min{vy(cab) + aN1α1 + bN2α2}

= vx

(∑
cabz

a
1z
b
2

)
= vy(f)

where we have used the irrationality of α1 and α2 to sharpen the triangle inequality into an equality,

and the fact that vx(c) = vy(c) = 0 for any unit c ∈ ÔX ,redX (x). Hence, we arrive at a contradiction, so

it follows that α1 and α2 are rational.

A corollary of the proof of proposition 4.2.11 is that for any type III point x monomial with respect

to an snc model X , we have that ρ−1X (x) = {x}.

We now consider how blow-ups of snc models affect the skeleton of a curve. Let X be an snc model

for a curve X, D1, D2 irreducible components of Xs and z the closed point contained in a connected

component of the intersection D1 ∩D2. Let X ′ →X be the blow-up at z and σ the interval of Sk(X )

corresponding to z. Then, the simplicial structure of Sk(X ′) is given by barycentrically subdividing σ

in Sk(X ′).
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To see this, let E be the exceptional divisor and D′1, D
′
2 the strict transforms of D1 and D2 respec-

tively. Firstly, if redX (x) is the generic point of E, then it follows from lemma 4.2.8 that

(X , (D1, D2), z, (1/(N1 +N2), 1/(N1 +N2))

is a monomial presentation for x. If redX (x) is, without loss of generality, the generic point of D′1, then

(X , D1) is a divisorial presentation for x.

Next, we consider a point x such that redX ′(x) =: ξ is the generic point of an intersection E ∩D′2,
after possibly permuting the induces. Hence, let (X ′, (E,D2), ξ, α) be a monomial presentation for x.

In this case, it follows from lemma 4.2.8 that

(X , (D1, D2), z, (α1, α2 + α1))

is a monomial presentation for x.

Hence, we have shown that Sk(X ′) ⊂ Sk(X ), from which it follows that Sk(X ′) = Sk(X ). Consid-

ering the simplicial structure, there is an extra vertex corresponding to the exceptional divisor, which is

located in the barycenter of the 1-simplex corresponding to the point z.

This is in fact a special case of the following more general theorem, which we present without proof.

Proposition 4.2.12. [21, Prop. 3.1.9] Let D1, . . . , Dr be irreducible components of Xs, ξ the generic

point of a connected component of the intersection D1∩ · · · ∩Dr and σ the face of Sk(X ) corresponding

to ξ. If X ′ → X is the blow-up with center given by the closure of ξ, then Sk(X ′) = Sk(X ), and the

simplicial structure of Sk(X ′) is obtained by adding a vertex to the barycenter of σ and joining it to

the faces of σ.

Now let X be an snc model for a curve X, D an irreducible component of Xs and z a closed point

on D such that no other irreducible components pass through z. Let X ′ →X be the blow-up centered

at z. In this case, Sk(X ) is a strict subset of Sk(X ′). Consider a point x ∈ Sk(X ′) such that the

closure of redX ′(x) is contained in the exceptional divisor E. We have that redX (x) = z, hence x is

not monomial with respect to X . We can see that the simplicial structure of Sk(X ′) is obtained by

adjoining a line segment to a vertex of Sk(X ): more precisely, the vertices of the line segment correspond

to the divisorial points associated with E and D, while the interior corresponds to the monomial points

with presentation (X ′, (E,D), ξ, α), for some α.

Finally, we note the following proposition due to Berkovich and Thuillier shows that for an snc model

X , Sk(X ) is a strong deformation retract of Xan.

Proposition 4.2.13. [29, Theorem 3.26] There exists a continuous map

H : X̂η × [0, 1]→ X̂η

such that H0(x) = H(x, 0) is the identity map, H1(x) = H(x, 1) is the retraction map ρX and for all

t ∈ [0, 1], H(x, t) = x for x ∈ Sk(X ).

Hence, for an snc model X , the homotopy type of Xan is the same as that of the dual complex of Xs,

which admits a simplicial structure and is hence easier to analyse. The proof of the prior theorem requires

machinery which is outside of the scope of this report; a construction of the deformation retraction in a

concrete example may be found in [22, §2.5].
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4.3 The Structure of k-Analytic Spaces

The primary goal of this section will be to prove theorem 4.3.7, which essentially states that an analytic

space Xan can be recovered by taking an inverse limit of skeleta. In order for this result to hold,

we assume that X satisfies the conditions of the ambient scheme W in our statement of resolution of

singularities (theorem 4.2.2).

A key result in proving this is the fact that for any two distinct points x and y in Xan, there exists

an snc model X such that ρX (x) ̸= ρX (y). Before giving a proof of this theorem, we illustrate the

strategy using the example of the analytic projective line. To begin, X = P1
R is an snc model for P1,an

k .

The special fiber is simply the projective line over k̃ and the corresponding skeleta consists of a single

type II point, corresponding to the norm on k{T}. Consequently, we see that every point retracts to the

same point.

We split our analysis into two cases, depending on whether redX (x) and redX (y) are equal. In the

first case, let x be the point given by the seminorm |f(T )|x = |f(0)| for all f ∈ k[T ], and y the point given
by the seminorm |f(T )|x = |f(1)|. Both of these points lie in the closed disk E(0, 1) =M (k{T}) ⊂ P1,an

k ,

so that the affine chart SpecR[T ] ⊂X contains redX (x) and redX (y). Then, observe that H (x)◦◦∩R[T ]
is the ideal (π, T ): if f(T ) = π · g(T ) + T · h(T ), then we may assume that g(T ) = c is a constant and

compute:

|f(T )|x ≤ max{|π · c|x, |T · h(T )|x} < 1.

Conversely, if f(T ) = a0 + · · · + anT
n is such that |f(T )|x < 1, then: |f(T )|x = |a0 + · · · + anT

n|x =

|a0| < 1, hence it follows that a0 ∈ (π) and hence f(T ) ∈ (π, T ). Therefore, redX (x) is the point of

SpecR[T ] corresponding to the maximal ideal (π, T ). A similar argument shows that redX (y) is the

point corresponding to the maximal ideal (π, T − 1), and hence we are in the case redX (x) ̸= redX (y).

It follows from proposition 4.2.3 that performing a blow-up of X at either of the reduction points will

give rise to an snc model X ′; the claim is that ρX ′(x) ̸= ρX ′(y).

Choosing the point given by (π, T ) as the center of the blow-up, we find that the resulting scheme

X ′ = ProjR[T ][A,B]/(πB − TA)

admits a covering by affine charts UB = SpecR[T, a]/(π − Ta) and UA = SpecR[T, b]/(πb − T ) ∼=
SpecR[b]. These affine charts are glued along the isomorphism SpecR[T, a, a−1]/(π−Ta) ∼= SpecR[T, b, b−1]/(πb−
T ) induced by the ring homomorphism sending a 7→ b−1. Consequently, the special fiber is now given by

the charts ŨB = Spec k̃[T, a]/(Ta) and ŨA = Spec k̃[T, b]/(t) ∼= Spec k̃[b] with the corresponding gluing.

Geometrically, the blow-up has the effect of attaching a projective line to the origin of the affine line over

k̃. In particular, redX ′(x) is now the point at infinity of the projective line in the special fiber. Since the

sets of irreducible components of the special fiber passing through redX ′(x) and redX ′(y) are disjoint,

it follows that the points ρX ′(x) and ρX ′(y) are distinct.

We digress momentarily to analyse the generic fiber of X ′. The space X̂ ′
η is now formed by gluing

M (k{T, a}/(π − aT )) and M (k{T, b}/(πb− t) along M
(
k{π−1T, πT−1}

)
. Observe that the former

affinoid space is an annulus with inner radius π and outer radius 1, while the latter is isomorphic to the

closed disk M (k{b}), which embeds into M (k{T}) using the map b 7→ π−1T . Hence, it is identified

with the closed disk of radius π, and the space X̂ ′
η is isomorphic to the closed unit diskM (k{T}).

Now we consider a case where the specializations redX (x) and redX (y) are equal. For this, let x be

as before, and let y be the point given by the norm on k{r−1T}, where r < 1. The earlier argument

which showed that redX (x) is the point of SpecR[T ] given by the ideal (π, T ) generalises to show that

redX (y) is also the point (π, T ). Intuitively, we can think of this as a consequence of the fact that both

x and y lie in the open disk D(0, 1).
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The goal now is to find a suitable center for a blow-up such that the reductions of the two points are

distinct, hence reducing to the previous case.

Note that the regular function f(T ) = T + π2 is such that |f |x = |π2| ≠ |π| = |f |y. Consider the

subscheme Z of X defined by the ideal (π, T+π2) = (π, T ). Blowing-up gives the same scheme computed

above, but we note that both reduction points now lie in the chart UA. In particular, the points define

multiplicative seminorms on the ring R[T, b]/(πb−T ), and f/π = b+π is a regular function on the chart

UA. We find that |f/π|x = |b+ π|x = |π|, while |b+ π|y = 1, so it follows that the reduction points are

now distinct.

To generalise these arguments, we must consider which aspects of the example above resulted in

simplification which may in general be unreasonable to expect.

In the first case of our analysis, when the analytic space is not a curve, it may not be the case that one

of the reduction points is closed. In this case, we may try to take the closure of one of the reduction points

as a center for the blow-up, but this center may contain singularities, so that the blow-up may not even

be regular. Consequently, to produce the desired snc model, we may invoke resolution of singularities.

If Π : X ′ →X is as in the statement of the theorem, then Π−1(Xs) ∼= X ′
s .

In the second case, we wish to more generally find a function f such that |f |x ̸= |f |y and either |f |x
or |f |y is equal to |πk| for some k, so that we can then take the blow-up with center defined by the ideal

(πk, f) in some neighbourhood of the reduction point. Once again, the closure of the subscheme defined

by this ideal may not be regular, leading us to further invoke resolution of singularities.

Equipped with these ideas, we formulate the following series of lemmas.

Lemma 4.3.1. Let X be an snc model and x, y ∈ X̂η distinct points such that ρX (x) = ρX (y) but

redX (x) ̸= redX (y). Then there exists a snc model X ′ →X such that ρX ′(x) ̸= ρX ′(y)

Proof. We may assume firstly that redX (x) ̸∈ {redX (y)}. Indeed, if we have both redX (x) ∈ {redX (y)}
and redX (y) ∈ {redX (x)}, then it follows that {redX (x)} = {redX (y)} =: Z. Hence, redX (x) =

redX (y) is the generic point of the irreducible closed subset Z, which is a contradiction.

Now denoting Z := {redX (y)}, we consider the blow-up X ′′ → X with center Z. In general, the

subscheme Z is not regular and hence X ′′ is not guaranteed to be an snc model. We now perform

a resolution of singularities of the pair (X ′′,X ′′
s ), resulting in a regular scheme X ′ → X ′′. Since

a blow-up is an isomorphism outside of its center, any singular points are contained within X ′′
s . In

particular, performing resolution of singularities induces an isomorphism of generic fibers (X ′
s )

an ∼=
(X ′′

s )an. Furthermore, the special fiber of X ′ is given by the total transform of the special fiber of X ′′.

Hence, we see that X ′ is an snc model.

Let Π : X ′ →X ′′ →X be the composition. We observe that redX ′(y) lies in Π−1(Z); consequently,

the set of irreducible components of X ′
s passing through redX ′(y) is distinct from those passing through

redX ′′(x), showing that ρX ′′(x) ̸= ρX ′′(y).

Lemma 4.3.2. Let A be an R-algebra of finite type, X = SpecA and x, y ∈ X̂η distinct points. Then,

there exists a regular function f ∈ A such that |f |x ̸= |f |y and either |f |x = |πn| or |f |y = |πn| for some

n.

Proof. If x and y are distinct points of X̂η ⊂ Xan
k , then there exists a regular function g ∈ A such

that |g|x ̸= |g|y. Without loss of generality, assume that |g|x < |g|y ≤ 1 and that neither |g|x nor

|g|y are equal to |πn| for any n. Consider that if there exists n such that |g|x < |πn| < |g|y, then

|g + πn|x = |πn| < |g + πn|y = |g|y by the non-Archimedean triangle inequality, so that we can set

f = g + πn to conclude. In general, denote |π| = p, |g|x = r, |g|y = s. Then it is a matter of computing:
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there exists a rational a/b such that logp r > a/b > logp s, so logp r
b > a > logp s

b and hence we find

that rb < pa < sb. Therefore, letting g′ = gb, we reduce to the situation above.

Lemma 4.3.3. Let X be an snc model and x, y ∈ X̂η distinct points such that redX (x) = redX (y).

Then there exists an snc model X ′ →X such that redX ′(x) ̸= redX ′(y).

Proof. Let U = SpecA ⊂X be an affine neighbourhood of redX (x) = redX (y); then, x and y are points

in Ûη. By lemma 4.3.2 we may assume that there exists some f ∈ A such that |f |x ̸= |f |y and |f |x = |πm|
for some m. Assume that |f |x < |f |y; the other case is similar. Consider the closed subscheme of U

cut out by the ideal (f, πm) and let Z be its closure in X . Let Π : X ′′ → X be the blow-up with

center Z. We note that redX ′′(x) and redX ′′(y) are both contained in Π−1(U). By considering the usual

affine cover of the blow-up, we see that redX ′′(x) and redX ′′(y) lie in a common affine chart where the

function t = πm/f is regular. We now have that |t|x = |πm|/|f |x = 1 while |t|y = |πm|/|f |y < 1. Since

the blow-up may be computed locally, we find that X ′′ gives an R-model where the reduction points

of x and y are distinct. In general X ′ is not an snc model since Z may not be regular, but once again,

resolving singularities gives an snc model X ′ →X ′′, and we see that redX ′(x) ̸= redX ′(x).

The following theorem is now immediately implied by the existence of an snc model for X and

lemmas 4.3.1 and 4.3.3.

Theorem 4.3.4. Let x, y ∈ Xan be distinct points. Then there exists an snc model X of X such that

ρX (x) ̸= ρX (y).

It is worth exploring the situations where resolution of singularities, which is an involved and intricate

result, is not required. In the above proofs, resolution of singularities was invoked twice. Proposition 4.2.3

showed that if the center of the blow-up is closed, then resolution of singularities does not need to be

invoked, and in the case of curves we find that if two points retract to the same point of the skeleton but

have different reductions, then one of the reduction points must be closed. Indeed, if neither reduction

point is closed, then they are both generic points of some irreducible component of the special fiber

of the model; since they retract to the same point on the skeleton, it follows that both points are the

generic point of the same irreducible component. Hence, for a curve the first instance of resolution of

singularities is unnecessary. We now claim that the second invocation is also unnecessary in the case of

curves.

Theorem 4.3.5. Let X be a curve, x and y distinct points of Xan and X an snc model of X such that

redX (x) = redX (y). Then there exists a finite sequence of blow-ups

X ′ = Xn → · · · →X0 = X

where each blow-up Xi+1 →Xi has a center given by a closed point and each Xi is an snc model, such

that ρX ′(x) ̸= ρX ′(y).

Firstly, we show this in the case where one of the points has non-trivial kernel, in other words,

x ∈ X̂η is such that ι(x) is a closed point of X ∼= Xk. In this case, we may consider the closure

F = {ι(x)} in X . Recall that there exists a unique map ϕ : SpecH (x)◦ →X ′ extending the morphism

SpecH (x) → X ′, where the generic point of SpecH (x) is mapped to the generic point of F , and the

closed point of SpecH (x) is mapped to redX ′(p). The residue field at ι(x) is a finite field extension of k,

and it follows that its completion H (x) is also a finite field extension of k. Consequently, the morphism

SpecH (p)◦ → SpecR is finite. In particular, SpecH (p)◦ is a proper R-scheme. It follows that the

image of ϕ is the closed subscheme of X corresponding to F , and in particular, the point redX (p) is the

unique point contained in Xs ∩ SuppF . We note that redX (x) is then a closed point in X , so taking

the blow-up with center redX (x) results in an snc model.
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Lemma 4.3.6. Let X be a curve, x and y distinct points of Xan and X an snc model of X such that

redX (x) = redX (y). Assume that ι : Xan → X maps x to a closed point of X. Then there exists a

finite sequence of blow-ups

X ′ = Xn → · · · →X0 = X

where each blow-up Xi+1 →Xi has center given by a closed point, each Xi is an snc model, ρX ′(x) ̸=
ρX ′(y) and, additionally, redX ′(x) ̸= redX ′(y).

Proof. It is notationally convenient to switch to additive notation using semivaluations instead of semi-

norms. If Xi is an snc model as in the statement of the theorem, denote the corresponding reduction

map by redi and the corresponding retraction map by ρi.

Firstly, we note that since H (x) is a finite field extension of k, it follows that |k×| has finite index in

|H (x)×|, so that |H (x)×|/|k×| is a finite group. Denote by b(x) the order of this group. In particular

then, for any f ∈ OX ,redX (x) which is not a unit, vx(f) = a(f)/b(x) for some integer a(f) ≥ 1.

Let f ∈ OX ,redX (x) be such that vx(f) ̸= vy(f). Assume that we have constructed a sequence of

blow-ups Xi → · · · →X0 = X , for i ≥ 0, as in the statement of the theorem. If redi(x) ̸= redi(y), then

we can conclude using lemma 4.3.1. So assume that redi(x) = redi(y) =: z, so that z is a closed point of

Xi. Let z1, z2 be an snc system of parameters at z, and let Xi+1 →Xi be the blow-up with center z.

Case 1 If vy(z1) < vy(z2), then it follows that redi+1(x) ̸= redi+1(y). Indeed, assume for a contradic-

tion that the reduction points are equal. Then, either z1/z2 or z2/z1 is regular on a neighbourhood of

redi+1(x); assuming that it is the former, we find that vx(z1/z2) < 0, which gives a contradiction. We

may now conclude by lemma 4.3.1.

Case 2 Assume that vy(z1) ≥ vy(z2), so that redi+1(x) = redi+1(y). Furthermore, suppose that

vx(z2) ̸= vy(z2). Since ρi(x) = ρi(y), it follows from construction of the retraction map that we must

have vx(z1) = vy(z1). Then, z2, z1/z2 is a regular system of parameters at redi+1(x), but we now note

that vy(z2) ̸= vx(z2) and vy(z1/z2) ̸= vx(z1/z2), so it follows that ρi+1(x) ̸= ρi+1(y).

If redi+1(x) = redi+1(y), then we note that since x has non-trivial kernel, it cannot be a point on

Sk(Xi+1). Hence, ρi+1(x) is a divisorial point by proposition 4.2.11, so that by taking finitely many

blow-ups, where each center is a closed point, we may find a model X ′ with respect to which ρi+1(x) is

divisorial. It then follows that redX ′(x) ̸= redX ′(y).

Case 3 Wemay now assume that vx(z2) = vy(z2). Writing f = z1f1+z2f2, we see that inOXi+1,redi+1(x),

f can be written in the following form:

f = z2 ·
z1
z2
f1 + z2f2 = z2

(
z1
z2
· f1 + f2

)
= z2f

′.

Then, vx(f
′) = vx(f)− vx(z2), and vx(z2) ≥ 1/b(x). Since vy(z2) = vx(z2), we see that vy(f

′) ̸= vx(f
′).

Iterating this process, replacing Xi with Xi+1 and f with f ′, we see that this procedure terminates after

finitely many steps. Then, redX ′′(x) ̸= redX ′′(y), and we again conclude by lemma 4.3.1.

For any f ∈ K(X)×, a point x ∈ Xan is called a zero of f if |f |x = 0. For any closed point p of

X, the residue field κ(p) is a finite field extension of k, and admits a unique non-Archimedean absolute

value extending the absolute value on k. There is hence a unique point x ∈ Xan where ι(x) = p. Since

X is a proper, integral scheme of dimension 1, we see that a rational function f has finitely many zeros.

This observation may now be used to generalise the prior lemma to any set of points.
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4.3. The Structure of k-Analytic Spaces

Proof of theorem 4.3.5. Fix an element f ∈ OX ,redX (x) such that vx(f) ̸= vy(f). By lemma 4.3.6, we

may find a proper morphism h : X ′ →X such that the zeros of f reduce to distinct points on X ′
s , and

by applying lemma 4.3.6 again, we can further assume that redX ′(x) and redX ′(y) are distinct from the

reductions of the zeros of f .

Let D = divX ′(f) be the divisor of f on X ′. Since f is regular on a neighbourhood U of redX (x), the

intersection D ∩ h−1(U) is an effective divisor on h−1(U), and we may hence assume that D is effective.

There is a decomposition D = D̃ + E, where the prime components of E are prime components which

appear in the special fiber X ′
s . Let F be a prime component of D̃. The generic point of F corresponds

to a closed point of the generic fiber X ′
k and hence to a zero p ∈ Xan of f , and by our earlier remarks,

the only point contained in Supp(F ) ∩X ′
s is then redX ′(p).

In particular, we find that redX ′(x) and redX ′(y) are not contained in Supp(D̃). Hence, vx(f) =

vx(D̃ + E) = vx(E), where the first equality is by definition of the valuation of a divisor. The second

equality is due to the fact that we may choose a local equation g = 0 for D such that g is a unit in

OredX ′ (x), and hence

vx(D̃ + E) = vx(g · g′) = vx(g) + vx(g
′) = vx(g

′) = vx(E)

where g′ = 0 is a local equation for E.

Denoting z = ρX ′(x), we claim that vx(E) = vz(E). This follows from the fact that vx(F ) = vz(F )

for any irreducible component of Xs passing through redX ′(x); the multiplicity with which each such F

appears in E then completely determines vx(E) and shows that vx(E) = vz(E). The same argument then

shows that the corresponding equation holds for y, so that ρX ′(x) ̸= ρX ′(y) since vx(E) ̸= vy(E).

Proposition 4.2.10 shows that proper morphisms of snc models X ′ →X induce an inverse system of

skeleta, composed of the retraction maps ρX : Sk(X ′)→ Sk(X ). The following theorem then says that

taking the limit over all skeleta recovers the space Xan, providing a connection between the geometry

of Xan and the birational geometry of X. This result is stated without proof in [19, p. 77, Theorem

10], and a proof is given using significantly more advanced and vastly different techniques in algebraic

geometry in [11, Corollary 3.2]. We stress that the arguments we have presented in this chapter are

not simplifications of those found in loc. cit. and have been constructed independently. A proof is

also provided in the algebraically closed case for curves in [4, Theorem 5.2]. There are several results

in the literature investigating how an analytic space may be expressed as an inverse limit of simplicial

complexes and similar polyhedral topological spaces. A set of references to these results may be found

in the discussion preceding [11, Corollary 3.2].

Theorem 4.3.7. There is a homeomorphism

Xan ∼= lim←− Sk(X )

where X ranges over the snc models of X.

Proof. The continuous maps ρX : Xan → Sk(X ) are such that ρX ◦ρX ′ = ρX , so that by the universal

property of the limit, there exists a unique map u : Xan → lim←− Sk(X ). SinceX is proper, Xan is compact.

Furthermore, each skeleton Sk(X ) is compact and Hausdorff, so that lim←− Sk(X ) is also compact and

Hausdorff. As a result, it suffices to show that the map u is a bijection. It follows by [12, §9.6, Cor.
2] that since each map ρX is surjective, the map u is also surjective. Finally, injectivity is a direct

consequence of theorem 4.3.4.

An application of this theorem may be found in [11]; we suppress further discussion as it falls outside

of the scope of this project.
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Chapter 5

Applications to Elliptic Curves

In this final chapter, we analyse the case of elliptic curves, consider the technique of uniformization and

contrast it to the approaches we have seen so far.

5.1 Non-Archimedean Uniformization

Assume k is algebraically closed. Let X be the R-curve given by the equation xyz + π(x3 + y3 + z3).

Then, X̂ is a formal model for Xan
k and can be used to give an explicit picture of the latter.

Firstly, the special fiber is given by the vanishing of the function xyz, where x, y, z are considered

as coordinates on P2
k̃
. Hence, the special fiber X̂s is a ‘cycle of projective lines.’ Although Xan

k may be

explicitly determined without much difficulty in this case by gluing, we may more immediately determine

its geometry using theorem 3.2.9. Each irreducible component gives a type II point contained in the

semistable vertex set. The ordinary double points have formal fiber given by an open annulus while the

smooth, closed points of each affine line correspond to an open ball. Note that the smooth closed points,

and hence the open balls which retract to each type II point in the semistable vertex set, are in bijection

with the set P1,an

k̃
\{0,∞}. This gives the semistable decomposition; the associated skeleton is a triangle.

We obtain the explicit picture shown in fig. 5.1.

Speaking more generally, the curve Xk defines an elliptic curve over k with multiplicative reduction.

When working over C, the uniformization theorem states that any elliptic curve defined over C is ana-

lytically isomorphic to a quotient C/Λ by a lattice Λ [26, §VI.5]. To find an analog when working over

non-Archimedean fields, Tate observed that changing variables using the map z 7→ exp (2πiz) gives an

isomorphism C/Λ→ C×/qZ, where q = exp (2πiζ). Although Qp has no non-trivial discrete subgroups,

the multiplicative group Q×p does, and this observation spurred the development of rigid analytic spaces

and p-adic uniformization theory.

In the Berkovich setting, we let E be an elliptic curve over k with multiplicative reduction, in which

case E is known as a Tate curve. Then, there exists some q ∈ k× with ζ = |q| < 1 such that Ean

is formed from the closed annulusM
(
k{t, ζt−1}

)
by gluing along the isomorphism of affinoid domains

M
(
k{ζ−1t, ζt−1}

) ∼=M (
k{t, t−1}

)
. The claim is that there exists an isomorphism of k-analytic spaces

Ean ∼= Gan
m,k/q

Z.

If a ∈ k× is any element, then it induces an automorphism of P1
k by multiplication by a. This extends

to an automorphism γa of P1,an
k by mapping a point x ∈ P1,an

k \P1,an
k (k) to the point a · x given by

|f(t)|a·x = |f(a · t)|x, for any f(t) ∈ k[t] [24, §II1.3]. It is worth determining more concretely the effect
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5.2. SNC Models for Elliptic Curves

of this action. Denote ξ = |a| and for each n ∈ Z, denote An =M
(
k{ξ−(n−1)t, ξnt−1}

)
for some n ∈ Z.

Then a · x is such that |t|a·x = |a| · |t|x = ξ · |T |x, which shows that a ∈ An+1. Since there is an inverse

automorphism induced by multiplication by a−1, it follows that γa defines a map An → An+1. In fact,

this map is an isomorphism induced by the isomorphism of k-affinoid algebras

k{ξ−nt, ξn+1t−1} → k{ξ−(n−1)t, ξnt−1}
∞∑

m=−∞
cmt

m 7→
∞∑

m=−∞
cma

mtm

We have that Gan
m,k =

⋃
An, so that γa restricts to an automorphism of Gan

m,k. Now, letting a = q and

Γ = qZ be the infinite cyclic subgroup of k× generated by q, we see that Γ has an action on Gan
m,k. This

action is properly discontinuous, since for each point we may take an open neighbourhood U isomorphic

to an open annulus S(q′), where |q′| < |q|, and it follows that γqm(U) ∩ U is empty for any m ̸= 0.

It follows similarly to the complex analytic case that we may form a k-analytic space Gan
m,k/q

Z, and

our description of the action of q on Gan
m,k coupled with the construction of Gan

m,k/q
Z then shows that

Ean ∼= Gan
m,k/q

Z.

The theory of semistable vertex sets may be applied to the Tate curve. Let p =
√
q and ξ =

|p| = ζ1/2, and observe that Ean can equivalently be described by gluing the annuliM
(
k{t, ξt−1}

)
and

M
(
k{ξ−2t, ξt−1}

)
appropriately. The points with representatives ζ0,1 and ζ0,ξ then form a semistable

vertex set V , and the corresponding skeleton Σ(Ean, V ) is topologically a circle.

We also remark that the isomorphism Ean ∼= Gan
m,k/q

Z may be used to determine a skeleton for Ean.

Recall that there exists a closed subset of Gan
m,k which is homeomorphic to R>0 by the map r 7→ ζ0,r,

and such that Gan
m,k deformation retracts onto this subspace. Now, the action of q on this subspace has

the effect of identifying a point ζ0,r with ζ0,|q|·r, resulting in the same skeleton as we obtained using the

approach of semistable vertex sets.

Figure 5.1: A visualisation of the analytification of an elliptic curve with multiplicative reduction. The
skeleton, which is highlighted here, is a circle.

5.2 SNC Models for Elliptic Curves

We may also consider how the theory of snc models may be used to determine the geometry of the

analytification of an elliptic curve E with multiplicative reduction when working over a discrete valuation
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5.2. SNC Models for Elliptic Curves

Figure 5.2: Diagram indicating how a sequence of point blow-ups of the special fiber affects the skeleton.
The top row depicts the special fibers of each model, with the next model obtained by a blow-up with
the center indicated by a circle. The bottom row depicts the dual complex.

ring. In this case, E admits a proper regular model X over R and Tate’s algorithm may then be used

to compute the structure of the special fiber Xs [26, §IV.9, Theorem 8.2]. Informally, Xs consists of n

rational curves, each appearing with multiplicity one, arranged in the shape of an n-gon for some n ≥ 1.

We assume that n ≥ 2; then, in such an arrangement, each intersection is transversal, and in particular

X is an snc model for E. The dual graph is then also given by an n-gon, hence, it is homeomorphic to

a circle once more. We may recover the full picture of Ean by taking sequences of blow-ups and passing

to the projective limit. This procedure is depicted for n = 3 in fig. 5.2. In the general case, we obtain a

picture similar to fig. 5.1.

A benefit of working with snc models is that we may also investigate the topology of elliptic curves

other than those with multiplicative reduction. We remark that in the case where the elliptic curve E

has good reduction, Tate’s algorithm indicates that there exists a proper regular model X where Xs

consists of a single non-singular curve. In this case, the dual graph consists of a point, indicating that

the space Ean is contractible.
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Chapter 6

Conclusion

A primary objective of this report was to give an overview of the theory of k-analytic spaces and explore

methods to construct skeleta, which are a useful tool in analysing the geometry of such spaces. We break

down the evaluation of the contributions of the project by chapter.

We firstly gave an overview of k-analytic spaces. After reviewing the foundational theory, we were

able to draw an explicit picture, giving an alternative derivation of Berkovich’s classification of points

using an approach originally stated in [28, Exercise 2.3.3.5]. We additionally gave a description of the

partial ordering on the affine line; in particular, this involved extending the description given in [3] to

the case of type IV points, which was left as an exercise.

Next, we considered formal models for analytic spaces and the skeleta of curves over algebraically

closed fields. After giving an overview of the theory of formal schemes, we proved lemma 3.1.4, theo-

rem 3.1.6, and corollary 3.1.7, which detail the relation between the generic fiber of the formal completion

and the analytification of the generic fiber. Following [4], we developed the theory of semistable vertex

sets and sketched the correspondence with semistable formal models of a curve. We illustrated this

correspondence concretely by considering the projective line.

Next, we gave a presentation of the construction of a skeleton for analytic spaces of arbitrary dimen-

sion, using snc models. The main contribution of this section was providing a proof of theorem 4.3.7.

The key aspect in showing this result was to prove that for any two distinct points x and y on the

analytic space, there exists an snc model such that x and y retract to distinct points on the associated

skeleton. This was shown in theorem 4.3.4, which applied to arbitrary dimension but required resolution

of singularities. Hence, in the case of curves, we also provided a more direct argument utilising only

blow-ups with centers given by closed points.

Finally, we exemplified the theory by applying these techniques to the analytification of an elliptic

curve.

Berkovich spaces are used prominently in various areas of mathematics. One particularly excit-

ing application is to mirror symmetry, which is a geometric duality with roots in string theory. The

SYZ conjecture is an attempt to provide mathematical foundations for mirror symmetry, which is orig-

inally a physical phenomenon, and in [19], the theory of Berkovich spaces is a central in finding a

non-Archimedean analog for the conjecture. The notion of the skeleton is then a vital component of the

conjecture, and in particular, the conjecture is exemplified through the Tate elliptic curve [23]. Due to

time constraints, we were not able to provide an exposition of this, but it is indubitable that a discussion

of such applications would have provided strong motivations for the theory.

Throughout the report, proofs were occasionally omitted when it was deemed that they would not be

51



beneficial in our goals of developing intuition and an understanding of the theory. In certain cases, we

endeavoured to replace the proofs with examples, as in the case of theorem 3.2.10 and proposition 4.2.12.

A possible extension to the work presented here would be to investigate the results in chapter 4 in

the context where the base field is algebraically closed. One effect of the discretely valued assumption

was that it simplified certain aspects, such as by ensuring that the schemes we were considering were

locally Noetherian. In particular, the notion of an snc divisor is ill-defined and we must instead work

with semistable models. The construction of monomial and divisorial points, as found in [21], was

also presented in the discretely valued case and would first need to be extended to the algebraically

closed case. We must be careful to consider blow-ups with centers given by finitely generated ideals; we

conjecture that the proof of theorem 4.3.4 may be extended without too much difficulty, but the analogue

of theorem 4.3.5 may be more challenging in this context.

Ethical Considerations The ethical concerns regarding this project are negligible, which is highly

theoretical in nature. One aspect which may be considered is that of the role of areas of mathematics

such as number theory in military applications, primarily as a result of its use in cryptography. While

algebraic geometry and the theory of Berkovich spaces has some uses in the fields of algebraic number

theory and arithmetic geometry, the contents of this project are sufficiently detached from any potential

applications in real world scenarios for this to be a reasonable concern. Additionally, the project does not

involve the collection and processing of user data, and does not involve human or animal participants.

The project has not encountered legal or moral issues.
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