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Abstract

Road networks play a critical role in cities by supporting the transportation of goods
and people. It is important to understand road networks and their effects on society,
economies, and the environment, to design and develop better future transportation sys-
tems. There is hence a need for scientific grounded methods to analyze urban space and
predict how they evolve over time. One of these methods is space syntax : a collection
of measures based on graph theory used to forecast movement patterns and link them to
land use, density, and other spatial features of cities.

In the parallel field of road network representation learning, researchers aim to predict
spatial patterns such as traffic by using graph neural networks. These techniques, when
employed with space syntax, have the potential of offering new data insights and better
performance.

As such, this paper proposes a machine learning pipeline that incorporates both space
syntax measures and graph neural networks. We evaluate state-of-the-art architectures
and contribute approaches for processing space syntax measures as input features. By
demonstrating our pipeline on road link prediction and road classification tasks using a
large road dataset of Great Britain, we show that space syntax enables our model to
outperform previous feature set baselines under both transductive and inductive settings.
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Chapter 1: Introduction

Road networks play significant roles in urban environments by enabling the transportation
of goods and people. Researchers analyzing cities are interested in how the structure of
road networks relates to vehicle and pedestrian movement patterns [1, 2], as well as socio-
economic patterns such as social deprivation, land value, and crime [3: p. vii]. To explain
and predict such spatial characteristics, urban scientists have developed space syntax to
characterize road structures of varying scales by exploiting topological measures based
on graph theory, which include integration, choice (betweenness centrality), and their
angular variants. The insights gained have been used to inform decisions, particularly in
urban planning and design [4].

With the emergence of machine learning, researchers are increasingly harnessing the
power of data-driven pipelines to predict phenomena based on the urban configuration
[5–9]. This gave rise to the field of road network representation learning, which aims to
produce effective representations that capture intrinsic features of the road graph struc-
ture. These studies have proposed and applied various models based on Graph Neural
Networks (GNNs), deep neural networks designed for graph-structured data, for ma-
chine learning tasks on road networks. However, these tasks are complex: road attribute
data is typically imbalanced [6], and road graphs are typically extremely heterogeneous
and structurally inconsistent, making generalization difficult [5].

Space syntax measures, which incorporate spatial topology at different scales, may
alleviate this issue by complementing the local graph structure information captured by
GNNs. Yet, previous studies have not considered using space syntax metrics as input
features. In this paper, we investigate a new road network representation that combines
neighborhood road structure information derived by GNNs with larger-scale topologi-
cal information from space syntax. We evaluate our approach on two kinds of machine
learning tasks on roads: link prediction and classification, using a large spatial dataset
consisting of over 2 million roads in Great Britain [10].

To optimize for model performance, we conducted extensive experiments to deter-
mine which layer types, data loading techniques, and aggregation functions work best in
conjunction with space syntax measures as input features. We evaluate these under the
transductive approach, which involves prediction within the same graph, and the inductive
approach, which applies trained GNNs to produce representations of unseen graphs.

As the aim is to understand how space syntax can be applied in machine learning on
road networks, we hope our contributions will be of interest to various stakeholders in
urban road network analysis and their associated environments.

1. For urban data analysts, we contribute an optimized machine learning frame-
work that can perform tasks such as road link prediction, clustering, or attribute
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1.1. Objectives & Contributions Chapter 1. Introduction

classification, while taking advantage of space syntax information.

2. For researchers in space syntax, we introduce novel techniques for applying
space syntax with GNNs and evaluate their efficacy.

3. For transport network planners implementing road network modifications, our
link prediction pipeline can extrapolate existing road structures or transfer them
from another locality.

4. For curators of spatial datasets, our classification pipeline can assist in auto-
matically assigning typical road attributes in areas lacking official or open data.

1.1 Objectives & Contributions

In summary, this project aims to explore the potential synergy between GNNs and space
syntax, with the objectives highlighted below. In achieving these goals, we make several
contributions to both fields of space syntax and road representation learning.

1. Determine the potential for space syntax features to enhance performance
in road representation learning tasks.

We evaluate performance on two kinds of graph learning tasks: road link prediction (Chap-
ter 4) and road classification (Chapter 5). Our results show that space syntax features
improve upon baseline coordinate feature sets, by 39% and 26% in two different
road classification tasks. For link prediction, we show that using quantile-normalized
coordinate features achieves 17% higher average precision over similarly normalized space
syntax features.

We also introduce different training regimes for the link prediction task and evaluate
them under transductive and inductive settings. We propose that the achieved average
precision on the link prediction task can be used to measure spatial homogeneity in the
transductive setting, and network similarity in the inductive setting. We then analyze its
relationships with socio-economic indicators for each city.

2. Devise optimal GNN-based architectures using space syntax measures as
input.

We develop a graph autoencoder model for undirected link prediction on road networks
and evaluate various state-of-the-art GNN layer types for the encoder. Our results show
that attention-based mechanisms, such as the recently proposed GAIN operator [6], as
well as symmetric DistMult decoding, yield better results when paired with space syntax
for road link prediction.

For road classification, we show that the GraphSAGE layer type with maximum
aggregation leads to the best performance in two different tasks: road-type classification
and accident count classification. Our results also reveal that MLPs remain competitive
with GNNs when space syntax measures are used as features. Lastly, we integrate a
framework for ordinal classification with GNNs, and demonstrate its efficacy.
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Chapter 1. Introduction 1.2. Ethical Considerations

3. Implement a pipeline that can process space syntax measures from large
road datasets, and evaluate the impact of pipeline parameters on model per-
formance.

We implement a data processing pipeline that can process a dataset of over 40 million
road geometries into mini-batches of subgraphs through state-of-the-art graph sampling
modules: Cluster-GCN [11] and GraphSAGE Neighbor Sampling [12]. We evaluate
aggregation functions for edge feature pooling and for simplifying road geometries, and
show empirically that the minimum leads to better performance in the former case.

To support this pipeline, we developed SSx-GNN, a Python library containing utilities
for processing spatial data into input features for graph learning, training GNNs, and
visualizing predictions. In this library, we utilized PyTorch Geometric [13], a framework
for graph representation learning. PyTorch Geometric is equipped with many state-of-
the-art graph learning algorithms and is able to leverage dedicated CUDA kernels on
GPUs for high performance. We provide details of SSx-GNN in Appendix C.

1.2 Ethical Considerations

The data used for this research include open data, for the most part only contains public
information and poses no risk of identifying individuals. Several statistical metrics used
are based on individual data, but have been aggregated and include no personal infor-
mation. For example, census data stems from an individual’s social status, but because
statistics are published on the level of cities, they cannot be used for the re-identification
of individuals. Produced model statistics are also not persisted in any storage medium
and can only be retrieved via recomputation.

Beyond data, it is possible to use the tools we propose to identify patterns in real
cities around the world. There is an unlikely possibility of bad actors making use of such
tools to identify the crucial urban infrastructure that would severely cripple the city if
compromised. The tools can also be used to identify community segregation in the city.
This poses some political implications, such as justifying future electoral boundaries based
on representation between segregated areas.

Planners should also be careful about making actual decisions that affect real people
using insights gained from these black-box tools, because they produce only estimations of
true data. Also, while we perform many correlation analyses in this paper, it is important
to remember that these do not imply causation and cannot be directly used to justify
decisions without context. The intention is that, instead, this study would contribute
to urban planning to improve cities by making positive use of our methods to obtain
data-driven insights.

Multiple open datasets are used in this project, all of which contain real data about
the UK and its road networks. By making use of data from outside sources, we assume
that the agencies that maintain these datasets have done their due diligence in assessing
potential privacy risks. We list them and their potential ethical considerations in Table
A.2 of Appendix A.
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Chapter 2: Preliminaries

In this chapter, we introduce the space syntax measures used in this project, explain their
mathematical derivation, and provide intuitions for how they are used (Section 2.1). Next,
we explain deep neural networks and other concepts that form the basis for the models
used in this project (Section 2.2). Finally, Section 2.3 covers graphs and the basics of
graph neural networks used for machine learning on graph-structured data. Concepts
specific to certain tasks are covered in their respective chapters.

2.1 Space Syntax

Space syntax comprises several techniques and theories that are used to study spatial
configurations [3: p. vii]. They are built on the notion that space can be split into
components and represented by graphs, which are then analyzed for connectivity and re-
lationships. Space syntax measures, detailed in Section 2.1.2, have been found to correlate
closely with human spatial behavior and traffic flows in urban networks [14, 15].

Since its inception, advancements in computing have expanded the capabilities of
space syntax techniques, enabling it to be applied in larger contexts of entire cities and
metropolitan regions. They have been used to develop new theories of how cities are
built upon economic, social, and cognitive factors, and consequently how urban space is
generative of such factors. Many cities around the world have been analyzed with space
syntax, contributing to data stores used by researchers and planners alike [16].

2.1.1 Representations of Space

Figure 2.1: Axial Map, Line Segment, and Road Segment visualizations [17: p. 20]
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Chapter 2. Preliminaries 2.1. Space Syntax

In space syntax research the term “street” tends to be used more than “road” un-
like in road network representation learning. This paper uses the term “road” for
consistency, but considers them generally synonymous.

The relationship between movement and road structure is well established, with pio-
neering studies relying on axial maps manually drawn by researchers [15, 18]. These maps
depict axial lines indicating the sightline along possible movement edges, which have a
large impact on human navigation [18]. However, in more recent studies [17, 19], newer
measures have been developed on Geographic Information Science (GIS)-based represen-
tations of road networks, which use geo-referenced road segments as the primary unit
of analysis. Metrics derived from these representations have been shown to differ only
slightly from that of the axial line representation [14], and have become the standard for
urban network analysis [20].

Definitions

Borrowing the definitions from Peponis et al. [19], we use the term “line segment” to refer
to the actual straight lines stored by spatial databases, and the term “road segment” to
refer to one or more line segments between two road nodes. The term “road node” is used
to refer to an intersection indicating a choice of paths, or to an endpoint indicating a
dead-end. The term “line node” then refers to the common point between two consecutive
line segments. Figure 2.1 clarifies on the differences between axial maps, line segments,
and road segments defined in this way.

Segment Maps and Distances

Segment maps were developed in response to the criticism [21] that previous space syntax
measures do not account for metric distance. To create a segment map, the axial map is
divided into road segments at each intersection. Segment maps are used to derive three
notions of distance used in space syntax, each inducing different definitions of the “shortest
distance” [16].

1. Topological distance: The lowest number of directional changes from each segment
to all others.

2. Geometric distance: The lowest number of angular deviations from each segment to
all others.

3. Metric distance: The shortest distance from a segment to all others.

In particular, angular measures derived from geometric distance are predominantly
used in space syntax analyses [3: p. 83], and are detailed in Section 2.1.2.

Deriving graph representations of road networks

There are two ways to derive graphs (further defined in Section 2.3.1) from segment maps,
as shown in Figure 2.2. The primal representation has intersections and dead-ends as
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2.1. Space Syntax Chapter 2. Preliminaries

nodes, with the roads connecting nodes as edges. The dual representation takes the road
segments to be the nodes and the intersections as edges. The dual, also known as a line
graph, is the typical view taken by space syntax, since treating roads as nodes enables
the use of techniques derived from graph theory to measure accessibility [18].

Figure 2.2: The primal and dual graph representations of a road network. (Line data from
OpenStreetMap [22])

Automatic Generation of Representations

An algorithm to go from convex spatial representations such as (a) in Figure 2.1 to the
graph representations depicted above has been achieved and incorporated into tools such
as Depthmap [23]. These tools also compute the space syntax measures detailed later, and
are thus integral to the space syntax analysis pipeline. In addition, most street networks
in the world have been geo-referenced in open datasets such as OpenStreetMap [22].
Interfaces that seamlessly extract the networks as graphs exist and have been incorporated
into open-source analysis tools such as OSMnx [24].

Nevertheless, an automatic and accurate algorithm to generate the above representa-
tions from raster images of urban plans or streets remains an open problem. Some studies
have proposed using computer vision techniques [25], but a full pipeline has yet to be
achieved.

2.1.2 Space Syntax Measures

From the above graph representations, many measures that involve concepts from graph
theory have been developed and are used to quantify properties of road networks. This sec-
tion covers the measures included in the Space Syntax (SSx) OpenMapping dataset
used extensively in this project. Most of these measures are calculated from the perspec-
tive of each road as its corresponding node in a dual graph. Measures that are properties
of the entire network exist, but are not covered in this paper.

10



Chapter 2. Preliminaries 2.1. Space Syntax

Connectivity

The 1-step connectivity is the number of direct connections a road has with other roads,
equivalent to the node degree in graph theory [26]. Connectivity can be measured over
several steps, where a step (or “hop”) is a change in direction going from one road or
axial line to an adjacent one. The one-step or two-step analysis represents the degree of
connectivity of roads to other roads in the neighboring vicinity. Increasing the number
of steps measures the overall catchment of a road in increasingly larger contexts of the
overall network. The N-step analysis takes the entire network into account, but involves
the greatest computational cost. This measure can be useful for transport planners who
wish to measure how well a public transport stop covers the city, or to quantify the ease
of reaching amenities such as shopping streets from any location in a city [3: p. 44].

Mean Depth

The depth of a road node i refers to the shortest distance dci from a chosen root node
of the graph c to i, where distance can take any one of the three definitions described in
Section 2.1.1. The mean depth of the root node c is hence the mean shortest distance
from c to all other nodes as follows, where k is the number of nodes in the graph [20].

Mean Depthc =

∑k
i=1 dci
k − 1

(2.1)

Integration (Closeness Centrality)

Integration, also known as the closeness centrality in graph theory, is a measure of a road’s
accessibility to all other roads [18]. It is computed by normalizing the reciprocal of the
mean depth. As such, the fewer the steps required from a road to reach all other roads
in the system, the lower its mean depth and the higher its integration value.

In contrast, roads that require many steps have low integration, and are considered
“spatially segregated”. Global integration, which considers all nodes in the network, is
computed from the mean depth by including multiple normalizing constants to account
for the effect of graph size on the output magnitude. This allows comparison across
spatial systems of differing scale [3: p. 49]. As a measure of centrality, integration is
commonly applied to analyze movement patterns in urban environments. Planners have
applied integration to test different options of implementing transit systems [20].

Choice (Betweenness Centrality)

The choice at a segment is the measure of how often that segment lies on the shortest paths
in the network [15]. It requires generating the geodesics (the shortest paths) between all
segments in the network that go through that segment, a computationally expensive step
for large networks. The higher the choice of a road segment, the more likely it is to be
chosen to be a part of journeys between every possible origin and destination [27]. Choice
is also known as the betweenness centrality in graph theory [28].

11



2.1. Space Syntax Chapter 2. Preliminaries

Both integration and choice were noted by Rashid [26] to be the two most useful space
syntax measures in traffic flow studies. They differ in that integration indicates the to-
movement potentials, or the ease of getting to a destination, while choice indicates the
through-movement potentials, or the likelihood of being along journey routes [29].

Urban researchers often visualize these two metrics on maps with line color gradients
like the ones in Figure 2.3. On such maps, choice tends to highlight the most impor-
tant routes in the network, while integration highlights the neighborhood or city centers,
depending on the scale of analysis [3: p. 77].

Figure 2.3: Rank-normalized angular integration and choice on the same road network in Coven-
try, England. (Values taken from the SSx OpenMapping dataset)

Angular Integration and Choice

The motivation for angular measures can be attributed to Dalton [30], who empirically
observed that people often pick the simplest route with the least angle deviations in the
path. Accordingly, both integration and choice have been found to be more predictive of
actual human movement when computed using the geometric distance [15].

Angular integration is the reciprocal of the angular mean depth [14], which is the
average shortest angular distance from the segment to all others. Angular integration at
a segment r in a road network with total nodes k is hence computed as follows, where
dθ(r, i) refers to the shortest angular distance between two segments r and i.

Angular Integrationr =
k∑k

i=1 dθ(r, i)
(2.2)

Angular choice requiring computing all shortest paths, similar to axial choice above,
but using geometric distance [14]. The number of paths going through road r is then
averaged over the total number of possible paths as follows.

Angular Choicer =
2
∑k

i=1

∑k
j=1 σ(i, r, j)

(k − 1)(k − 2)
, i ̸= r ̸= j (2.3)

where σ(i, r, j) = 1 if r lies on the shortest path from i to j, and 0 otherwise.

12



Chapter 2. Preliminaries 2.1. Space Syntax

Metric distance can be incorporated into these measures by considering only road
segments within a certain radius [29]. This allows a finer local scale analysis, such as
movement within a shopping district, by deliberately excluding the context of the entire
road network. Several specific ranges of radii have been identified for regional (8,200 to
30,000 meters), city (1,200 to 8,200 meters), and neighborhood (400 to 1,200 meters) scale
analysis [31].

Normalized Angular Measures in SSx OpenMapping

The Space Syntax OpenMapping (SSx OpenMapping) dataset comprises 40 million ge-
ometries representing the simplified Great Britain road network, taken from the OS Merid-
ian 2, a dataset from the Ordnance Survey. It contains precomputed angular choice and
angular integration at three selected scales: 2 km, 10 km and 100 km, for each road
segment in the dataset. Also included are the road segment lengths, and the node count
in the area for each scale, which gives a measure of road density. For a full list of the
attributes that we use, refer to Appendix A.

In addition, SSx OpenMapping includes two types of measure normalization, denoted
by the attribute name suffixes log and rank. These normalization techniques allow for
smaller variations between values to be more easily seen in data analysis, with rank allow-
ing for comparison across scales without being skewed by the different node counts. The
effect of normalization can be seen in the distribution graphs in Figure A.4 of Appendix
A.

Normalized angular measures are known to have higher correlation and predictive
capability with human spatial behaviors such as pedestrian movement [1] and traffic [2].
Therefore, using such measures as input into machine learning pipelines on road graphs
may enhance their predictive capability over the raw features.

2.1.3 Limitations of Space Syntax

Classic space syntax has been criticized for being sensitive to the defined network bound-
aries, potentially causing errors depending on the truncated elements. The usual solution
for this is to establish a cut-off depth for analysis based on the maximum depth [26].

While the measures have been shown to positively correlate with human spatial behav-
ior, using them to suggest improvements for the urban transport network still requires a
domain expert with contextual knowledge. There are therefore some grounds for a system
that incorporates space syntax measures with other domain-specific information, to assist
urban planners in making such decisions.

Computational Complexity

The choice algorithm implemented in Depthmap involves traversing the graph between
sampled node pairs and accumulating angular deviations to compute the geometric geodesics
[29]. This traversal makes computing choice prohibitively expensive for large radii in re-
gional or nationwide analyses.

Varoudis et al. [32] proposed an approximate algorithm that weights edges in the dual
graph (representing intersections) by angular change and then computes the standard
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2.2. Deep Neural Networks & Related Concepts Chapter 2. Preliminaries

weighted graph betweenness centrality. Even though this speeds up the computation
time considerably over previous methods, it still involves computing the shortest paths
between all pairs of nodes, a O(n3) problem for n total nodes. Taking several hours
or even days to compute choice for road networks on large scales remains a significant
detriment for planners wishing to quickly iterate through multiple planned networks.

2.2 Deep Neural Networks & Related Concepts

Due to the increasing availability of large datasets and the growth of computing power,
deep neural networks have become some of the most successful machine learning tech-
niques in recent years [33]. They provide state-of-the-art solutions to many problems,
such as convolutional neural networks (CNN) in image recognition, recurrent neural net-
works (RNN) and Long Short Term Memory (LSTM) in natural language processing.
Their major advantage over traditional linear models lies in their capacity to scale up to
and infer patterns in big datasets. Big spatial datasets in particular have become common
and are being used for street network analyses across large regions [34].

2.2.1 Multi-Layer Perceptron

The simplest case of a neural network is the single neuron. A neuron is a computational
unit that takes one or several inputs, applies a linear transformation followed by a nonlin-
ear activation, and outputs the result. Commonly used nonlinearities include the logistic
sigmoid function σ and the piecewise linear function ReLU.

A neural network can be built from multiple neurons by connecting the output of a
neuron to the input of another neuron. These neurons can then be stacked into a layer
to enable multivariate input. Deep neural networks hence consist of multiple layers of
neurons that take an input vector, propagate them through the layers, and then output
a new vector, as shown in Figure 2.4.

A multi-layer perceptron (MLP) is a fully connected neural network. In theory, an
MLP can be used to approximate any function from the input space into the output space.
One limitation, however, is that they scale poorly to input data with many dimensions
due to the number of parameters they must store. The amount of training data required
also scales exponentially with the number of dimensions, a problem typically referred to
as the “curse of dimensionality” [35].

2.2.2 Autoencoders

Autoencoders are another class of neural networks used to learn embeddings of unlabeled
data in unsupervised learning [36], with its typical structure being illustrated in Figure
2.5. They consist of two parts: an encoder and a decoder. The encoder maps an input to
a typically lower-dimensional latent vector, while the decoder then maps the latent vector
back into the input space. The reconstruction loss, which measures the error between the
reconstructed output and the original input, is used for end-to-end training of both the
encoder and the decoder.
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Figure 2.4: Structure of a 2-layer MLP, which will be used as a baseline for several tasks in this
project

Figure 2.5: An overview of a typical autoencoder architecture.

The variational autoencoder (VAE) repurposes the autoencoder architecture to
solve problems in approximate inference [37]. Practically, two vectors representing a
mean and a standard deviation are generated at the output of the encoder. These vectors
parameterize a Gaussian distribution, from which samples are drawn for input into the
decoder. This opens the door for generative tasks, with VAE-based architectures being
competitive with the state of the art on generated image fidelity [38].

2.2.3 Attention

Attention mechanisms, initially developed for encoder-decoder models [39], are used in
state-of-the-art solutions to sequence-based tasks such as machine translation [40]. Similar
to the psychological process of selectively concentrating on certain things while ignoring
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others, attention in machine learning involves weighting features in different positions by
similarity or relevance. This enables variable sized inputs by focusing on the most relevant
parts to make decisions [41].

Attention weights are typically computed using the softmax function, which attributes
a weight between 0 and 1 to each position such that the higher the weight, the greater the
deemed relevance of that position. Generally, attention can be applied to two different
sequences h and h′. Given a measure of similarity s (such as the dot product), the weights
between positions hu and h′

v are computed as follows:

αuv =
exp s(hu, h

′
v)∑

k exp s(hu, h′
v)
, (2.4)

Self-attention is a special case of attention where h = h′, which can be used to compute
a new representation of that sequence. [40].

2.3 Machine Learning on Graphs

2.3.1 Graphs

Graphs are collections of links (edges) between entities (nodes). Specialized links can be
represented by adding directionality or weights to edges. Graphs may have multiple edge
types (heterogeneous graphs), but we only focus on the homogeneous case in this project,
where every edge is the same. Figure 2.6 illustrates how edges can be represented using
an adjacency matrix that indicates which pairs of nodes are linked.

Road networks, the focus of this project, can be represented by the primal and dual
graphs described in Section 2.1.1. For simplicity, we assume the primal graph to be
planar, i.e. no edges cross each other. Even though such abstractions are common in
urban network analysis, they can be misrepresentative of the real world, as actual road
networks are three-dimensional. [42].

Graph structures are used to represent constructs across many domains, even in in-
direct contexts such as texts or images [43]. This motivated the development of machine
learning architectures that incorporate and exploit the graph properties of such structures.

x1

x2

x3

x4

x5

x6

x1 x2 x3 x4 x5 x6

x1 1 1 1 0 1 0
x2 1 0 0 1 0 0
x3 1 0 0 1 0 0
x4 0 1 1 0 1 1
x5 1 0 0 1 0 1
x6 0 0 0 1 1 0

Figure 2.6: An undirected graph and its symmetric adjacency matrix.
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2.3.2 Graph Neural Networks

Graph neural networks (GNNs) are neural models that capture the dependence of graphs
via message passing between nodes. The problems GNNs can solve can be divided into
the following categories [44], with the ones we tackle in this project in bold:

• Node-level tasks that include node classification and regression, which aim to
predict a class or a value respectively for each node. Node clustering is another task
that aims to partition the nodes into similar groups.

• Edge-level tasks that include edge classification and link prediction, which respec-
tively use the model to classify edges or to predict the existence of an edge between
two nodes.

• Graph-level tasks that include classification, regression, and matching, which require
the model to understand the full graph structure.

The simplest GNN applies a separate MLP to each component of the graph. The
MLP is applied to each input node feature vector, and outputs a learned vector (node
embedding). If required, the same can be done for edges, obtaining edge embeddings,
and for the global context, generating an embedding for the entire graph. This process is
encapsulated in a single GNN layer [43].

Typically, GNNs combine the node feature vector with that of its neighbors before
generating an embedding. There are many ways to combine these vectors (also described
as propagation or aggregation), and they can be broadly categorized into convolutional,
attentional, and message-passing approaches [45]. Convolutional approaches aggregate the
features of neighbors with fixed weights. This includes the popular Graph Convolutional
Network (GCN) [46] which is used for its simplicity and scalability.

Attentional approaches aggregate the features of neighbors with learnable weights, via
self-attention as described in Section 2.2.3. Message-passing is the most general approach
and involves computing and sending arbitrary vectors (“messages”) across edges. This ap-
proach scales poorly to large graphs due to the cost of computing messages. In such cases,
a sampling layer can be incorporated to reduce the input dimensions during propagation.

To move from node to edge representations, or vice-versa, a pooling layer can be used
[44]. This involves a permutation-invariant function, such as the average or the sum,
which produces the same output no matter the order of its inputs. There is no function
that is optimal for every task, though the sum is often used [43].

While there has not been a study done using GNNs and space syntax measures, they
share a common purpose in detecting and inferring patterns from graph-structured data.
This might suggest that they are redundant as input features into GNNs. Still, measures
like angular choice and integration (Section 2.1.2) capture geometric information that is
orthogonal to the graph structure. As such, GNNs may be able to interpret more aspects
of a road network by using space syntax measures as node or edge-level features.

Over-smoothing

Despite their success, GNNs commonly face the issue of feature over-smoothing [44]. Over-
smoothing arises when node representations of different classes become less distinct while
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stacking multiple GNN layers, to the point of negatively impacting model performance.
This occurs due to the nature of graph convolution, which causes adjacent nodes to have
similar output representations through an operation known as Laplacian smoothing [47].

As a result, GNN models in the literature typically stick to two or three layers, as
increasing the number of layers past that usually degrades performance [46, 47]. However,
as the number of layers indicates the number of hops over which feature propagation takes
place, this restricts structural information captured by GNNs to the local neighborhood.
This contrasts with space syntax measures that can capture information at a much bigger
scale when measured at large radii.

2.4 Summary

In this chapter, we covered the major techniques used in this project: space syntax and
GNNs. The space syntax measures of integration and choice are highly predictive of
movement, and form the majority of features in the SSx OpenMapping dataset. We then
covered several high-level concepts in deep neural networks such as MLPs, autoencoders
and attention, which are used in our proposed architectures as well as the baseline com-
parisons for evaluation. We also defined and described graphs, including the primal and
dual graph representations of road networks. Lastly, we explained the feature propa-
gation mechanism behind GNNs, which are machine learning architectures designed for
graph-structured data.
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This chapter surveys and reviews the state of the art in techniques that aim to leverage the
integration of GNNs with space syntax to analyze urban road networks. We first address
previous works in road network representation learning (Section 3.1), which proposed
methods and models that form the basis of our work in the following chapters. We
then address works that incorporated machine learning in space syntax (Section 3.2), and
explain how our methods will differ from theirs. Finally, we summarize and go over the
open issues in this interdisciplinary area (Section 3.3).

3.1 Modeling Road Networks

Various state-of-the-art GNN architectures have been developed and applied in the fol-
lowing recent works to model road networks.

3.1.1 Road Link Prediction

Xue et al. [8] applied link prediction using Relational GCNs [48] to study urban growth
patterns in 30 cities worldwide. They removed several roads from existing road network
graphs and then trained the model to predict the missing roads. The authors then use
the F1 score achieved by their model as a metric of spatial homogeneity. They inductively
applied their model to unseen road networks of different cities, and used the F1 score to
quantify the similarity between the two networks. The authors argue that such analyses
can be used to understand and apply urban planning insights between cities.

As our project focuses on homogeneous graphs, we explore approaches other than the
Relational GCN as it is designed for heterogeneous graphs. Furthermore, while they used
a grid-based approach to divide road networks, we use officially-defined labels to derive
subgraphs of different cities. We describe, evaluate and compare our approach in Chapter
4.

Wang et al. [49] proposed a novel pipeline for link prediction, including partitioning
subgraphs and using heuristics like the Katz index to compute the similarity score between
nodes. However, they performed link prediction on the dual graph, which represents
predicting intersections between roads instead of the roads themselves. For our link
prediction task in Chapter 4, we instead adopt Xue et al.’s approach [8] of using the
primal graph.
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3.1.2 Road Attribute Prediction

Jepsen et al. [5] used GCNs for two road prediction tasks: driving speed prediction, and
speed limit classification. They noted that standard GCNs do not support edge attributes
and between-edge attributes (such as the angle between road segments). In contrast
to graphs typically modelled by GCNs, road network graphs exhibit volatile homophily,
i.e. abrupt differences in features between adjacent roads, such as a sharp drop in the
speed limit at motorway exits [5]. They proposed a modification of GCNs that attempts
to resolve these issues: the Relational Fusion Network (RFN), which incorporates both
primal and dual graphs with parallel GNNs, and uses attentional GNN layers to selectively
exclude noise from neighboring nodes.

Although the RFN outperformed other approaches, it uses many attribute types.
When limited to a node-only or edge-only feature set, a model with lower complexity
can be deployed. In our project, space syntax constitutes only edge features, and can be
simply represented by node features in the dual graph. Node features of the primal graph
can also be obtained through edge-to-node feature aggregation, which is proposed and
evaluated in Chapter 4.

Gharaee et al. [6] employed various GNN architectures for the task of inferring missing
data in open road datasets via unsupervised classification of road labels. They proposed
an attention-based aggregation, GAIN, and a method of sampling adjacent and distant
node using random walks of different lengths. They evaluated their approach under the
transductive (same city) and inductive (unseen city) settings with road networks from 17
different Swedish cities, and showed that the GAIN outperformed competing models like
the RFN. We adopt the GAIN for our model for link prediction in Chapter 4, and also
for road classification tasks in Chapter 5.

Zheng et al. [7] applied the GCN in the field of cartography to the problem of road
selection for map display, which involves choosing the appropriate roads for a given map
resolution while optimizing for an uncluttered visual impression. The architecture that
produced the best results was the Graph Attentional Network (GAT) from JK-Nets [50],
which flexibly changes the size of the node neighborhood used for aggregation. Out of
these studies, they present a unique problem involving the prediction of subjective human
(expert cartographer) inputs rather than data-defined labels. However, their experiments
only involved relatively small-scale networks of around 5000 roads, whereas we examine
much larger networks in this project.

The above works suggest that there is no optimal GNN for to prediction tasks in-
volving road networks. Making accurate high granularity (node and edge) predictions on
unseen road networks remains a significant challenge, since the urban configuration can
change greatly between networks. Nevertheless, there is an opportunity for space syntax
to overcome these issues with computed measures describing centrality and movement po-
tential. In this project, we formulate and evaluate a GNN and space syntax approach in
two road attribute classification tasks in Chapter 5: road-type classification and accident
count classification.

3.1.3 Baseline Features for Road Learning

Below are some feature sets used by the papers above, and other studies in graph learning,
as input node features to GNNs. We adopt these as baselines for evaluating space syntax
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features in the following chapters.

• Coordinate Features: The coordinates of road nodes can be directly used as
features of the primal graph, as was done in Xue et al. for link prediction [8].
For road classification on the dual graph, Gharee et al. proposed using a set of
normalized interpolated points between both ends of the road segment, the segment
length, and the absolute coordinate of the midpoint [6].

• Data-derived labels: Road geometries from open datasets often come with labeled
data, such as the road type (highway, residential, etc.), speed limit and number of
lanes. As these are categorical data, they are usually one-hot encoded before being
used as features [5, 6]. However, such attributes are typically incomplete in open
datasets, especially for rural areas [51]. We therefore propose using space syntax
measures as a viable alternative to such features when they are not available.

• Local Degree Profile: The Local Degree Profile (LDP) was proposed by Cai et
al. [52] for featureless graph classification, and involves appending the degree of
each node and its neighbors to the node feature vector. As mentioned in Section
2.1.2, the degree is known in space syntax as the single step connectivity; however
in contrast to the other space syntax measures, it only considers the 2-hop neigh-
borhood (topological distance) compared to all roads within a fixed radius (metric
distance). As such, we use the LDP as a baseline feature set to contrast with space
syntax measures.

3.1.4 Predicting Betweenness Centrality

Several studies have developed and applied GNNs to predict the standard betweenness
centrality based on the shortest paths in a weighted graph. Fan et al. [53] applied a
convolutional GNN to predict the top-N nodes of a graph with the highest centrality.
Maurya et al. [54] proposed another convolutional architecture that constrains GNN
aggregation along edges which lie on the shortest paths. Both studies were able to give
accurate predictions that were much faster than previous exact algorithms, and were also
able to inductively predict the centrality rankings in unseen graphs.

Both of these studies proposed the alternative problem of predicting relative ranks
of nodes instead of the actual betweenness values, recasting the problem as classification
instead of regression. The exact values for choice are also in practice not as critical as their
relative rankings. This motivation is similar to that of sampling algorithms approximating
choice in modern space syntax tools such as Depthmap [23].

Predicting Choice

Despite its usefulness, computing space syntax’s angular choice incurs a high computa-
tional cost, as described in Section 2.1.3. For example, it took 15 days to compute all
choice values for a road network graph containing 1.5 million nodes [32]. Even though
a decade has passed since that study, algorithmic efficiency has not improved much, es-
pecially for choice measured at large radii. Hence, it is worth investigating whether a
reasonable proxy for choice could be predicted using graph neural networks, and if it can
accurately generalize to unseen road networks.
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We initially considered developing models for this problem, and tested models includ-
ing the GNNBet described in Fan et al. [53]. This proved to be an intractable task,
making it unlikely that it would take any faster than existing approximate methods. Due
to the narrow local neighborhood perspective of GNNs, it is difficult for information about
one side of the graph to propagate to the other side. Hence, GNNs are to some extent
incompatible with predicting large-scale attributes such as choice, especially when vital
routes, such as motorways and major roads, may be located far from the local roads that
they serve. Many layers would be required to propagate information at that scale, which
may induce over-smoothing (Section 2.3.2).

3.2 Space Syntax & Machine Learning

There has been limited previous work in the interdisciplinary area of space syntax and
machine learning. The unavailability of large labeled spatial datasets incorporating space
syntax-derived metrics is a reason for this shortcoming [25]. Many of the previous studies
in this area have tended to view the two approaches comparatively rather than integrating
them, such as by inputting measures into a model. Moreover, GNNs have not been
considered for predictive tasks in space syntax. As such, this project investigates whether
employing graph-based architectures improves results over linear models.

3.2.1 Pedestrian Route Simulation

Wang et al. [55] compared integration and other space syntax measures with simulated
pedestrian movement from a trained Generative Adversarial Network (GAN). The study’s
objective was to identify pedestrian hot spots and simulate movement tracks within a
fixed commercial area, using empirically collected images of pedestrian route trajectories.
They interpreted the most common trajectories under the context of a global integration
analysis.

As they focused on a relatively small commercial district, their proposed methods may
not scale well to a larger network, mainly as increasing the image resolution would lead
to unfeasible computational cost. The study also only applied space syntax measures to
analyze their simulated trajectories. Using the measures in conjunction with the move-
ment data to predict pedestrian hot spots might be a better approach. We use this “space
syntax approach” to investigate a similar problem of predicting traffic accident counts
(Section 5.2 of Chapter 5).

3.2.2 Unsupervised Classification

Chang et al. [56] used a K-means clustering approach to classify points of interest (POIs)
data in Zurich, in order to determine features of urban identity in public spaces. The POIs
were combined with weighted choice and integration statistics to measure the quality of
the surrounding space. They proposed using classification as a method for planners to
understand the relationship between urban identity and spatial layout.

As their POI clustering approach was based directly on the area’s features, adjacent
areas were not considered. A GNN-based approach would on the other hand produce a
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neighborhood-aware classifier that incorporates features of the surrounding environment
through aggregation. While this project does not tackle this problem of classifying urban
identity, the GNN models we present for classification could be applied similarly to such
tasks.

Varoudis et al. [57] trained a convolutional VAE using images of randomly generated
subgraphs of the London road network. In doing so, they derived clusters as well as a
generative model for urban networks. The clusters identified morphologically similar road
networks, such as “perpendicular” and “organic tree” structures. Since their model outputs
probability distributions of subgraph structures, it could also be used to generative new
networks via random sampling.

However, they did not utilize space syntax measures, as the study was primarily inves-
tigating how a neural network could model intrinsic patterns of road networks. The study
did not go into details of how they determined their architecture, nor was the architecture
evaluated. It is possible that a graph-based VAE, such as the one that we discuss in the
following chapter, could serve as an alternative for generating spatial configurations.

3.3 Summary, Insights & Open Issues

Space syntax measures have been shown to be predictive of human movement patterns.
Yet, predicting movement and traffic, among other spatial features, can also be done with
deep neural networks. Previous approaches, which include convolutional VAEs, GANs
and GNNs, have used image and graph representations of road networks for prediction
but did not consider incorporating space syntax. This motivates our investigation into
their potential as input features for neural network-based approaches.

In road network representation learning, researchers have used GNNs to predict various
urban road network features based on road data and graph structure. Since most space
syntax measures are based in graph theory, the information they represent may overlap
with the spatial characteristics GNNs model, making them potentially irrelevant as input.
However, as angular measures are derived from topological road properties orthogonal to
the graph structure, we hypothesize that these measures may enable standard GNNs to
model road networks better when used as input node or edge features.

Still, space syntax measures such as choice have high computational costs, especially
at large scales. This incentivizes a neural network approximation trained using precom-
puted measures from large street datasets. However, through initial work, we found that
GNNs are not a good fit for predicting space syntax measures. Due to their emphasis on
local neighborhoods, GNNs face difficulty in consolidating the network-wide information
required for such a task.

An important point to keep in mind is that deep neural networks do not necessarily
produce better results than traditional classification or regression methods [33]. Therefore,
they should not be applied needlessly, especially if the dataset is small, such as when
analyzing local neighborhoods of less than 1000 roads. Regardless, the SSx OpenMapping
dataset used in this project contains over 40 million road geometries with 17 space syntax
measures each, making it a suitable candidate for use with deep models.
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This chapter focuses on link prediction to evaluate the relevance of space syntax mea-
sures as useful features for training GNNs on road networks. We also investigate and
demonstrate the usefulness of the link prediction task for quantifying spatial homogene-
ity, comparing network similarity, and deriving spatial clustering.

Firstly, we explain potential applications for the link prediction task in Section 4.1.
Next, we describe the link prediction task on road networks, the spatial dataset used,
and our chosen evaluation metrics (Section 4.2). We then discuss our results in Section
4.3, which reveal that out of all the space syntax measures, integration leads to the best
performance. However, we will also show that quantile-normalized coordinate features
enables our model to outperform previous approaches (Section 4.3.3).

We discuss and evaluate our data processing and model parameter choices in Sections
4.4 and 4.5, where results show that our graph autoencoder model that uses the GAIN
operator and symmetric DistMult outperforms other variations. We conclude with a
discussion of the autoencoder’s output latent representations, the limitations of this task,
as well as other considered approaches (Section 4.6).

4.1 Applications

Link prediction is an established task in graph representation learning, most notably in
applications such as social networks and recommender systems [44]. For road networks,
predicting links has use cases in designing and planning transport infrastructure [49].
Reasonable estimates of how road networks evolve can assist transport planners in de-
ciding which new roads to build in order to maximize traffic efficiency, connectivity, and
pedestrian movement.

Link prediction can also be used inductively by applying a learned model trained on
one city to another. For example, if one city is known to have good walkability and cycling
routes, another city wishing to benefit from similar infrastructure can use link prediction
to “transfer” the network structure over. Yet, there is still not much research investigating
architectures for link prediction in road networks, as well as the potential enhancements
space syntax can bring.

4.1.1 Spatial Homogeneity & Network Similarity

The F1 score, which can be used to evaluate link prediction performance, has been applied
as a measure of spatial homogeneity in road networks [8]. Here, spatial homogeneity refers
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to how topologically similar the road node connections are between separate areas in the
same road network. The intuition for using the F1 score is that a road network with
high homogeneity should correspond to a primal graph with edges that are more easily
recoverable given the rest of the graph. High homogeneity can denote that the road
structure in a city was developed in a unified manner, while a low homogeneity may
indicate more organic growth.

When link prediction is applied inductively, the resultant metric gives an indicator of
the similarity between different road networks [8]. This can be leveraged to assess intercity
similarity based on transport infrastructure, or to evaluate the feasibility of transferring
knowledge between cities. For example, one can plan new store locations in one city based
on existing locations in a “similar” city [58].

In contrast to Xue et al.’s work [8], we use Average Precision (AP) instead of the F1
score, as it is a less biased measure. Our results show that the AP achieves a similar
distribution to that of the F1 score when taken at optimal thresholds, and can thus
function as a suitable measure for spatial homogeneity.

4.2 Link Prediction Task Formulation

We frame the link prediction task on a single road network as follows: Given the undirected
primal graph G = (V,E), where V (vertices) is the set of line nodes and E (edges) is the
set of line segments, a set percentage (20%) of E is sampled and removed. The objective
is to predict the existence of a link between pairs of nodes u, v ∈ V by computing a
similarity score s(u, v). This score can be interpreted as the probability of a road between
the two nodes, and is thresholded at a chosen breakpoint, e.g. s(u, v) > 0.6 to make a
prediction.

All node pairs that demarcate the removed edges are tested as positive samples. Fol-
lowing that, in a process known as negative sampling, the model is tested on a random
sample of node pairs that do not have links between them. The ratio of positive to nega-
tive samples is set to 1:5, which allows for more balanced prediction as non-existent links
vastly outnumber existing links1. Testing every single negative edge would otherwise incur
significant computation time.

Link prediction can be interpreted as a binary classification task, where false positives
refer to newly predicted links, and the removed links that are not recovered successfully are
false negatives. As such, classification metrics are often used for evaluating link prediction
models [59].

4.2.1 Datasets for Link Prediction

To construct graphs for link prediction, the SSx OpenMapping dataset (see Appendix
A) is split into subnetworks based on the 348 UK local authorities in 2011. Next, the
geo-referenced line segments are converted into primal graphs for each local authority.
Figure A.4 in Appendix A shows a sample of the graphs generated through this process,
together with several compiled statistics.

1This approach is adopted from Xue et al. [8]. However, we deal with much bigger road networks in
this project, which makes testing all negative edges prohibitively expensive.
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Two other datasets are used in subsequent regression analyses. The English indices of
deprivation 2011 is a dataset containing statistics on relative deprivation for small areas
in England, summarized for local authorities [60]. We also use a dataset detailing the
Gross Value Added (GVA), a measure of the economic output of local authorities, similar
to the Gross Domestic Product for countries [61]. Such statistics have been applied in
urban network analyses [62] to quantify the socio-economic status of cities.

4.2.2 Cross-validation Setup on Multiple Graphs

To optimize model parameters for performance across the dataset, a method to perform
cross-validation over multiple graphs is required. Crucially, this involves extending the
previous task definition so that the model trains to predict links of multiple graphs at
once. We thus formulate the transductive-inductive split in two different ways:

• Batched Graph: Train on 80% of all graphs with a fifth of their edges removed,
test it on the same graphs in full to obtain the transductive metrics, and test on the
remaining 20% to derive the inductive metrics. As the model is forced to generalize
to different graph structures, running such a task allows us to obtain generally
optimal model hyperparameters. Accordingly, this task is used for cross-validation.

• Single Graph: Train on each graph and compute the average over the test met-
rics obtained on every other graph, using the model parameters optimized via the
Batched Graph task. The metrics for transductive performance, which measures
the intra-city spatial homogeneity, are obtained directly by testing the model on the
same graph it was trained on. Applying the same model to other graphs reveals the
inductive performance, which then determines network similarity.

Details of our model and how the space syntax measures are processed to form input
features are provided in Sections 4.4 and 4.5.

4.2.3 Metrics for Link Prediction

The following binary classification metrics are used to quantify the performance of our
model. Some metrics are also used for subsequent regression analyses.

1. Precision, Recall, F1: Precision (P ) describes the classifier’s ability to avoid
labeling negative samples (sampled nonexistent roads) as positive, and recall (R)
describes its ability to find all positive samples (existing roads). F1 balances the two
measures via the harmonic mean: F1 = 2(P+R)

P×R
. These metrics require thresholding

model outputs to make predictions, as described in Section 4.2.

2. Area Under the Receiver-Operating Characteristic (ROC) Curve (AUC):
This metric captures the extent to which a positive sample is more highly ranked by
the classifier than a negative sample across varying thresholds. This metric is used
to compare models, as it is less sensitive to the negative sampling ratio. A random
classifier achieves a baseline AUC of 0.5.
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3. Average Precision (AP): This metric summarizes the relationship between pre-
cision and recall as the threshold is varied between values n, and is formulated by
AP =

∑
n(Rn − Rn−1)Pn. The AP achieved by a random classifier is the ratio of

positive samples to total samples.

4. Pearson’s r: The metric expresses the linear correlation between two variables,
with a two-tailed p-value that determines its statistical significance. This metric
is used to investigate relationships between the above metrics and potential ex-
planatory variables. It ranges from 1 to -1, with 1 indicating perfect correlation, 0
indicating no linear relationship, and -1 perfect anti-correlation.

The AUC and AP are standard metrics used in link prediction to quantify performance
[59], both ranging between 0 and 1. A random classifier for our tasks would achieve an
AUC of 0.5 and an AP of 0.167 given our negative sampling ratio of 1:5. This ratio
directly affects the range the AP can take and can be used as a control to manipulate the
distribution of output metrics.

4.3 Results

4.3.1 Best Performing SSx Feature: Integration

Transductive Inductive

Feature set AUC AP AUC AP

Ranked Choice 2km & 10km 0.705 0.366 0.702 0.364
Ranked Integration 2km & 10km 0.880 0.569 0.878 0.564
Ranked Choice & Integration 0.844 0.533 0.842 0.528
Node Counts 2km & 10km 0.857 0.480 0.855 0.476
All SSx features 0.653 0.305 0.651 0.302

Coordinate Features 0.540 0.240 0.531 0.233

Local Degree Profile 0.573 0.252 0.573 0.252

Table 4.1: [Batched Graph Task] Feature set experiment results under transductive and
inductive testing. Out of the space syntax measures, the GNN achieves the best performance
with ranked integration. The “SSx (space syntax) features” are described in Appendix A, while
“Coordinate Features” refers to the point coordinates in the EPSG:27700 coordinate reference
system. Each experiment was run for 5 iterations, taking an average of 15 minutes per iteration
(500 epochs). The average margin of error is 0.015 (p = 0.05).

The results in Table 4.1 show that the best performing set of space syntax measures
performs better than baseline coordinate feature data, with a 62.9% and 65.5% improve-
ment on transductive and inductive AUC respectively2. Out of all the space syntax
measures, ranked angular integration provides the most relevant information for the link

2In these earlier experiments, sum-to-one normalization was used, which scales every input feature
vector such that all of its components sum to one. In Section 4.3.3, we however show that quantile-
normalization leads to a better performing feature set.
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prediction task. A possible rationale is that areas with high integration tend to be denser
in road connections, and as such, the model may be learning to predict more links if the
nodes have higher integration values.

However, when other measures are used, our model returns poorer performance, and
combining those metrics with choice or integration causes a decline in performance. This
suggests that using too many redundant features can confuse the model while it attempts
to produce discriminating representations from the high dimensional input space. In other
words, this leads to the curse of dimensionality [35].

4.3.2 Average Precision as a Spatial Homogeneity Measure

Xue et al. [8] used the F1 score of the link prediction task as a measure of spatial
homogeneity. However, their choice of 0.61 for the binary prediction threshold may not
generalize well to arbitrary graphs, as this measure is computed based on the average
best performance on their dataset. In contrast, our alternative metric of average precision
forgoes the need for thresholding while still being able to measure performance.

For comparison, Figure 4.1 shows the distribution of AP and F1 scores with a threshold
of 0.63 achieved per local authority in the Single Graph task, and we report a Pearson’s
r value of 0.821, indicating a strong linear relationship between the two metrics. A map
visualization is provided in Figure 4.2, further showing a similar spatial distribution. Since
the metrics are highly correlated, we choose the unbiased AP instead to measure spatial
homogeneity.

Avoiding the filtering procedure saves on computation

In the same paper by Xue et al. [8], predicted road links were filtered to eliminate
impossible new roads, such as ones that cross or form a tight acute angle with existing
roads. When filtering is applied in addition to our pipeline, performance significantly
improves since many false positives are eliminated, as Figure 4.3 shows. In spite of the
benefits, such an operation takes up considerable computation time and is not crucial
when measuring spatial homogeneity. With space syntax, our pipeline is able to achieve
comparable performance without filtering, while taking less time to compute.

Correlation analysis with space syntax features and network measures

To interpret our results, we perform correlation analyses between our model’s achieved
performance (measured using the AP), and various statistics of each graph.

Results in Table 4.2 reveal that spatial homogeneity has a significant inverse relation-
ship with the mean space syntax measures, as well as other several graph measures. For
integration, a large mean value indicates high road density. Dense graphs may induce
poorer performance, as there are more links that the model has to predict successfully.
The significant relationship with choice also corroborates the correlation between spatial
homogeneity and average betweenness shown by Xue et al. [8].

3This is the threshold that gives the highest average F1 on our graphs.
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Figure 4.1: [Single Graph Task] Box plots showing the distribution of transductive and induc-
tive metrics. As expected, the inductive setting induces worse performance, mostly due to false
positives as precision drops while recall stays about the same. The distributions of the AP and
F1 are also comparable, showing that potentially biased thresholding required for the F1 may
not be necessary for a homogeneity measure based on link prediction.

Measures like the number of nodes and edges, the mean shortest path length, and
network diameter all indicate graph size in some aspect. Their small positive correlation
with performance may be due to larger networks contributing more data for link pre-
diction, allowing the model to make more informed predictions. However, measures like
the average degree and network density indicate more complex graphs with many edges.
This potentially leads to a more challenging classification task for the model, causing a
negative correlation between those metrics and the AP.

Correlation analysis with socio-economic indicators

Spatial homogeneity has been shown to share nuanced relations with societal factors that
may influence, or be influenced by, urban development patterns [8]. To exemplify such
studies, we compute the Pearson’s r between the transductive AP and several indicators
of development across all local authorities for which the statistics were available. These
include economic indicators such as the GVA (348 local authorities) and social indicators
such as the Index of Multiple Deprivation (IMD, 326 local authorities). These statistics
come from the datasets described earlier in Section 4.2.1, and are filtered to the year 2011,
which corresponds with our road data.

The plots in Figure 4.5 show several interesting inverse correlations, including a trend
where an area with high homogeneity tends to experience a smaller IMD, albeit also with
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Figure 4.2: [Single Graph Task] Choropleth map of UK Local Authorities based on the
achieved transductive AP and F1 (lighter regions see better link prediction performance).
The spatial distributions are similar for both metrics, which share a Pearson’s r of 0.821
(p = 2.43× 10−86).

a lower GVA. A possible reason is that larger cities generate more income, but due to
greater diversity within their communities, their road networks are less homogeneous.

These analyses are meant to exemplify possible space syntax studies that use link
prediction performance as a metric for analyzing urban development and its effects
on people. A more in-depth analysis would incorporate more contextual features
and methods to diminish the impact of confounding variables, such as road network
size, on the results.

Measuring Network Similarity

When link prediction is applied inductively, the resultant metric gives an indicator of the
topological similarity between road networks. This represents the potential of transferring
knowledge from one area to another, for example, to develop a new town based on an
existing city. To illustrate how well the inductive AP can reveal network similarity, Figure
4.4 shows several pairs of local authority graphs and their corresponding metrics.

4.3.3 Quantile Normalization Substantially Improves Performance

Late in the project, we discovered that changing the normalization function used for the
experiments in Table 4.1 results in substantially improved performance, especially for the
baseline coordinate features. Expanding on this discovery, we investigate the following
normalization techniques, which are applied to the features of each graph just before
input.
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Figure 4.3: Map visualization of link prediction on the Cambridge, Brent, and Coventry road
networks, with 20% of links in the initial graph randomly sampled and removed. The model
tries to recover those edges, while also avoiding positively predicting edges that do not exist in
the original graph. The ratio of negatively sampled edges is lowered to 1:1 for less map clutter.
The figures on the right show the effect of filtering invalid new edges, which greatly boosts the
Precision score and in turn the F1. The model used for all figures is the same GAIN-DistMult
GAE trained using the Batched Graph Task.
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Figure 4.4: [Single Graph Task] Pairs of local authority graphs that give rise to the highest
(row above) and lowest (row below) inductive AP scores. Here, the model is trained on the
left graph and applied to the right graph. This visual comparison clearly demonstrates how the
inductive AP can measure network similarity.

• Min-Max Normalization: Every feature is adjusted into the range [0, 1] based on
their minimum and maximum value. This technique scales the feature range while
keeping the probability distribution the same. Consequently, it is prone to outliers.

• Quantile Normalization: This technique transforms the input feature’s distribu-
tion to match that of a new probability distribution, for which the Standard Normal
is used. This transformation consists of applying the estimated cumulative distri-
bution function of the input features and then the quantile function of the Standard
Normal. In doing so, the relationships between individual values are smoothed out
and mapped into the new distribution. The most frequent values also get spread
out, with outliers becoming less impactful.

As normalization is done after the feature split into local authorities, the techniques
only consider the feature distribution within each graph. Figure A.2 in Appendix A
displays the effect of both approaches on coordinates and integration at 10 km (the tested
features).

Our results show that with quantile-normalized coordinate features, our model is able
to reach an AUC of 0.992 and an AP of 0.918 in the inductive setting. This improves
upon the AP achieved by our previous approach of ranked integration by a very substantial
43.4%, as well as the filtering architecture discussed in Section 4.3.2. We also investigate
normalizing the space syntax measures in the same way, but the AP with coordinate
features remains 17% higher than that of quantile-normalized integration. It is likely
that with quantile-normalized coordinate features, our model is able to derive a distance
representation that allows it to innately filter out impossible links.

As also shown in Figure 4.6, appending quantile-normalized integration does not im-
prove upon the achieved AP. While space syntax does not enhance performance, these
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Category Target variable Pearson’s r Sign p-value

(a) Space Syntax

choice2km 0.453 - 5.18e-19
choice10km 0.444 - 2.79e-18
choice100km 0.020 + 0.708
integration2km 0.431 - 3.44e-17
integration10km 0.392 - 3.13e-14
integration100km 0.040 - 0.458

(b) Graph Statistics

Number of nodes 0.201 + 0.000163
Number of edges 0.200 + 0.000173
Average degree 0.273 - 2.41e-07
Density 0.224 - 2.55e-05
Mean shortest path length 0.159 + 0.00301
Network diameter 0.170 + 0.00147

(c)
Indices of
Deprivation (rank)
& GVA

IMD 0.191 - 0.000539
Crime 0.186 - 0.000728
Income 0.106 - 0.0548
Health Deprivation & Disability 0.024 - 0.672
Barriers to Housing 0.442 - 5.45e-17
Living Environment 0.358 - 2.80e-11
2011 GVA 0.418 - 3.09e-15

Table 4.2: [Single Graph Task] Pearson’s r with corresponding p-values between the trans-
ductive AP and (a) the average unnormalized space syntax measures at various radii, (b) graph
metrics, and (c) socio-economic indicators. The greatest correlation is achieved with choice and
integration at smaller radii, from which it can be inferred that highly integrated networks are less
topologically homogeneous. There is no statistically significant correlation for measures taken at
the large radius of 100 km, which is expected as these measures are computed on a scale much
larger than individual local authorities. For the indices of deprivation, a larger number indicates
worse conditions, whereas for GVA, a larger number indicates high regional income.

results show that the choice of data normalization is critical for the link prediction task
on road networks. For the full results of our experiments, refer to Appendix B.

4.4 Data Processing

4.4.1 Graph Processing

To obtain the graphs corresponding to each local authority, the line geometry in SSx
OpenMapping is split based on local authority designations, and then transformed into
networkx [63] graphs using gdf_to_nx from momepy [64], a Python library for urban form
analysis. The graphs are then truncated to their largest connected component, as the
division into local authorities occasionally produces several disconnected subgraphs for
one local authority graph.
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Figure 4.5: [Single Graph Task] Correlation analyses between various local authority statis-
tics and the AP achieved on its road network. Not all have a significant relationship: Health
Deprivation and Disability, among other statistics, do not exhibit any correlation with the AP.

4.4.2 Feature Processing

Although the log and rank features in SSx OpenMapping are already normalized (see
Section 2.1.2), other features are of dominantly large scales, such as choice at 100 km
as shown in Figure A.4 of Appendix A. For each feature to be considered evenly, they
must first be normalized into a similar range of values. However, since we only use ranked
integration for our experiments in this section, any further normalization approaches are
not considered.

As Section 4.3.3 revealed, quantile normalization appears to be a superior approach.
The results in this section pertaining to relative performance remain valid never-
theless, as we did not evaluate feature sets for these earlier experiments.

Edge Feature Pooling

Node-level representations are obtained by pooling edge features, which involves combin-
ing the space syntax measures from the roads incident on that node. This procedure is
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Figure 4.6: [Batched Graph Task] Inductive performance over the course of training, using
the GAIN-DistMult GAE and various quantile-normalized features. Normalized coordinates give
a large increase in performance compared to our previous approach. For the full results, which
include other space syntax feature sets, refer to Table B.1 of Appendix A.

Algorithm 1: Edge feature pooling: Creating road node features from edge
features in the primal graph representation
Data: Graph G(V,E); input edge features xe for e ∈ E; aggregation function

AGGREGATE; edge lookup table edges : V → E
Result: Node features xv for v ∈ V
for v ∈ V do

xv ← AGGREGATE({xe, ∀e ∈ edges(v)})
end

illustrated by Algorithm 1. Although pooling does smooth out the distribution of the
measures, it is necessary as all the space syntax measures are edge features while our
model requires node representations.

Instead of just taking the average, other aggregation functions such as the sum or
maximum can be used, analogous to neighborhood propagation in convolutional GNNs.
We hence evaluate different aggregation functions and report the achieved metrics in Table
4.3. Our results show that minimum aggregation leads to the best performance, although
not by a large margin.

4.5 Modified Graph Autoencoder

Our model is based on the graph autoencoder (GAE) [59], which is capable of generating
node embeddings in an unsupervised fashion using a GNN encoder and a decoder. Figure
4.7 illustrates our model.
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Transductive Inductive

Aggregation AUC AP AUC AP

Max 0.892± 0.001 0.570± 0.005 0.890± 0.002 0.564± 0.006
Min 0.908± 0.003 0.614± 0.012 0.907± 0.003 0.608± 0.014
Sum 0.846± 0.004 0.477± 0.009 0.843± 0.004 0.470± 0.008
Mean 0.904± 0.003 0.606± 0.009 0.903± 0.003 0.600± 0.008
Median 0.898± 0.002 0.594± 0.010 0.897± 0.002 0.590± 0.009
Std 0.639± 0.012 0.264± 0.006 0.633± 0.011 0.258± 0.007

Table 4.3: [Batched Graph Task] Performance achieved by different aggregating operations
for edge feature pooling (p = 0.05). The minimum results in the best performance, although
the differences are fairly small overall (save for standard deviation, which performs significantly
worse). The features used are integration2kmrank and integration10kmrank, with the GAIN-
DistMult GAE, as these were shown to derive the best prediction results. Each experiment was
run for 5 iterations over 500 epochs, with the reported metrics being the ones achieved at the
end of each iteration.

Figure 4.7: An overview of the graph autoencoder architecture based on Kipf et al. [59] used for
the self-supervised link prediction task. X represents the input node features, A the adjacency
matrix, and Z the latent features obtained at the output of the encoder. The decoder reflects
the standard inner product version, and the two GNN layers of the encoder are flexible in their
message-passing scheme.

4.5.1 Encoder Layer Types

Given a primal graph representation of a road network with features attached to each
node, the encoder maps each node feature vector to a latent vector z of set length 10
(derived from cross-validation). As the GNN layers within the encoder are flexible in
their message-passing strategies, several layer types are tested as follows.

The Graph Convolution Network (GCN) [46] generates the node representations
H of the next layer l + 1 by convolving neighboring node representations from layer l as

36



Chapter 4. Road Link Prediction 4.5. Modified Graph Autoencoder

follows:
H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W) (4.1)

where Ã = A+ I is the sum of the adjacency and identity matrix for numerical stability,
D̃ is the degree matrix for magnitude normalization, W is the learnable weight matrix,
and σ(.) is the activation function.

An alternative layer type that has seen success when applied to road network graphs
is the Graph Attention Network (GAT) [41]. It applies attention to the convolution
operation, and is hence more expressive while incurring greater computational cost. For
the GAT, a single node representation, hv, at layer l + 1 is computed as follows:

h(l+1)
v = σ

αvvWh(l)
v +

∑
u∈N (v)

αuvWh(l)
u

 (4.2)

where N (v) is the set of neighborhood nodes for node v, and αuv refers to attention
weights, computed via self-attention (Section 2.2.3). The similarity score for attention is
parameterized with a weight vector a as follows:

s(hu, hv) = LeakyReLU(aT (Whu∥Whv)) (4.3)

where LeakyReLU is a variant of the ReLU function and ∥ denotes concatenation.

The operator Graph Sample and Aggregate (GraphSAGE) [12] is designed for
inductive performance by uniformly sampling a fixed-sized set of neighbors Ñ (v) ⊆ N (v)
per node and combining their features with an aggregation function AGG. For AGG, the
original paper recommends taking the mean and maximum. This paper uses the format
SAGE-AGG to refer to the selected aggregation function (e.g. SAGE-MEAN, SAGE-
MAX). The GraphSAGE operator also has separate projection matrices W1 and W2 for
self loops and edges respectively as follows:

h(l+1)
v = σ(W1h

(l)
v + AGGu∈Ñ (v)W2h

(l)
u ) (4.4)

The Graph Isomorphism Network (GIN) [65] uses the following message passing
scheme:

h(l+1)
v = MLP

(1 + ϵ)h(l)
v +

∑
u∈N (v)

h(l)
u

 (4.5)

where MLP is an input neural network that models an injective function, and ϵ can be
learned as a parameter or set to zero. In the same paper, the GIN was shown to be
able to distinguish graph structures that the GraphSAGE and GCN could not. For our
evaluation, the MLP was fixed to 2 layers following the original paper, with ϵ = 0 as it
was shown to have similar performance.

Gharaee et al. [6] enhanced the GIN with GAT-like attention using the following
Graph Attention Isomorphism Network (GAIN) operator:

h(l+1)
v = MLP

(1 + ϵ)Wh(l)
v +

∑
u∈N (v)

αuvWh(l)
u

 (4.6)

In their paper, this GAIN model performed better than GAT or GIN for road network
classification tasks, although it also incurs the greatest computation complexity.
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4.5.2 Decoder and the Symmetric DistMult

We evaluate two types of decoders:

1. Taking the inner product between nodes as the similarity score, which was used in
the original GAE paper [59]

2. A weighted inner product decoder based on DistMult from the RGCN architecture
[48]. Given latent vectors zu and zv, the similarity score for nodes u, v is computed
as s(u, v) = zTuWzv

The weights in DistMult allow for a more refined extraction of score components from
the pair of latent vectors, in a manner similar to attention. DistMult was designed for
directed heterogeneous graphs, and can thus produce an asymmetric adjacency matrix,
i.e. given two nodes u and v, s(u, v) ̸= s(v, u) in general. However, road networks
are represented using undirected primal and dual graphs in this project. To enforce
symmetry of the output adjacency matrix, we modify DistMult by adding the transposed
weights prior to taking the product. This symmetric DistMult is therefore computed as
s(u, v) = zTu (W +W T )zv.

4.5.3 Evaluation

Training Setup

The training methodology employed in our evaluation is adapted from Kipf et al. [59].
The various parameters that follow were again obtained by 5-fold cross-validation with a
fixed model on the Batched Graph task.

Our model is trained by minimizing the reconstruction loss (binary cross-entropy) on
training graphs that have 20% of edges removed, with negative edges that are resampled
every epoch. For the Batched Graph task, we utilize Batch from PyTorch Geometric,
an abstraction that allows multiple graphs to be treated like a single graph by stacking
adjacency matrices diagonally. To speed up convergence, each Batch is set to contain 8
graphs, enabling multiple parameter updates per epoch. We use a learning rate of 0.01,
but reduce it over time as performance on the inductive set plateaus.

In the Single Graph task, only a single graph is used for training, which requires a lower
learning rate of 0.0005 as the limited amount of data causes more training instability. To
inductively test the model in the Single Graph task, the model is evaluated on the graphs
of every other local authority, and we report the average metric achieved over them.

Hyperparameters

The 2 layers and 10 output dimensions are decided by 5-fold cross-validation on the
Batched Graph task, using the inductive AUC as the evaluating metric. The best perfor-
mance is achieved with just 2 layers; having more layers fails to achieve better performance
while taking longer to train. This result is likely due to the over-smoothing issue men-
tioned in Section 2.3.2.
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One solution, known as Jumping Knowledge (JK), borrows the idea of residual con-
nections by concatenating the outputs of each layer before a final output linear layer [50].
In this way, the final layer still sees the raw, non-smoothed features. However, initial
testing showed that enhancing the encoder with JK and more layers still results in similar
or even worse AUC, and hence this line of investigation was not pursued.

Results

Table 4.7 contains link prediction metrics for varying encoders and decoders on the
Batched Graph task, with the number of model parameters and training time per epoch
for comparison.

Transductive Inductive

Decoder Encoder P. count Time(s)/epoch AUC AP AUC AP

Inner

GCN 140 1.524 0.811 0.434 0.809 0.431
GAT 180 1.527 0.825 0.518 0.822 0.514
SAGE-MEAN 260 1.307 0.732 0.381 0.729 0.377
GIN 400 1.349 0.745 0.316 0.743 0.310
GAIN 660 1.683 0.862 0.589 0.863 0.586

DistMult

GCN 240 1.551 0.851 0.441 0.849 0.438
GAT 280 1.557 0.882 0.570 0.880 0.565
SAGE-MEAN 360 1.339 0.734 0.404 0.729 0.399
GIN 500 1.385 0.786 0.349 0.782 0.343
GAIN 760 1.703 0.901 0.591 0.899 0.585

Table 4.4: [Batched Graph Task] Link prediction metrics obtained by varying encoder (2
layers, 10 output dimensions) and decoders, with the total learnable parameter count of the
model and the average time taken in seconds per training epoch. Best performances are in
bold. We report the mean results over 5 iterations, with an average margin of error of ±0.0015
(p = 0.05). The feature set used is ranked integration (the best performing set). The training
run times are obtained by single-threaded execution on a system with an Intel i7-7700K CPU
and a NVIDIA GeForce GTX 1080 GPU.

These results showcase the importance of attention in link prediction for road networks,
as the GAT and GAIN models are the only models that achieved an AP of over 0.5. From
the metrics, we can also determine that the GAIN encoder with the DistMult decoder
obtains the best transductive and inductive performance overall through the AUC.

Generally, additional parameters are beneficial: the DistMult decoder nearly always
improves performance, while the GAIN model maintains a slight edge over both the GAT
and the GIN models. The GAIN also maintains its performance on the Single Graph task,
for which the achieved ROC and PR curves for differing encoders are depicted in Figure
4.8. The PR curves in particular suggest that the expressive power of attention greatly
enhances link prediction performance, with both the GAT and GAIN having the largest
area under the curve.

It is worth mentioning that high link prediction performance is not necessary when
measuring spatial homogeneity or network similarity. High performance may even be
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Figure 4.8: [Single Graph Task] ROC and PR curves (average of 5 iterations) achieved by
the various encoders with the DistMult decoder on the graph of Coventry’s road network. The
GAIN encoder achieves the highest AUC, while the GAT encoder achieves the highest AP, which
is related to the area under the PR curve.

detrimental if the output distribution becomes so narrow that differences become in-
significantly small. Hence, even though improving a model to achieve F1 scores above 0.9
is possible, it may be undesirable for comparative analysis.

4.6 Discussion

4.6.1 Spatial Clustering of the Latent Variable

The GAE passes intermediate node representations (latent vectors) from the encoder to
the decoder, which then computes a link probability between nodes. As roads typically
connect nearby nodes, these representations encode spatial information intrinsically while
optimizing for link prediction. To investigate this, we conducted a spatial autocor-
relation analysis in Figure 4.9 using Moran’s I [66], which quantifies the extent of the
relationship, if any, between location and attribute values. Since the analysis is restricted
to a single variable, the 10-dimensional latent vectors are reduced to 2-dimensional vectors
via TSNE [67], a dimensionality reduction algorithm, and we analyze each dimension.

Interestingly, the latent representations capture some spatial clustering even though
the model does not use spatial features like coordinate data. The nature of neighborhood
propagation in GNNs could be contributing to this result, as nearby connected nodes
are optimized to have similar latent representations. Yet, as the model does not achieve
perfect accuracy on the link prediction task, the clustering is not perfect.

It may be the case that a GAE that achieves high accuracy can produce latent vectors
with better clustering metrics. However, that model would have to achieve this without
manual filtering techniques (Section 4.3.2).
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Figure 4.9: Above - Map visualization of output node latent vectors, reduced to 2 dimensions, for
Coventry. Below - A Moran’s I plot showing the spatial autocorrelation of the two dimensions,
with the value bracketed in the title. A value of 1 indicates a completely clustered distribution,
while a random distribution would result in 0. A uniform spatial distribution would be indicated
by -1. This analysis reveals significant spatial clustering captured by the latent vector.

4.6.2 Limitations & Other Approaches

Other than graph-based approaches, link prediction can be done through heuristics that
directly produce similarity scores between nodes. An example is the Jaccard coefficient,
which computes similarity based on how many neighbors nodes share [68]. Such heuristics
have been integrated with GNNs in the SEAL framework [69], which is the state of the
art for general link prediction problems.

As we aimed to demonstrate the synergy between space syntax and GNNs, a com-
prehensive look at all possible strategies in link prediction is beyond this project’s scope.
Furthermore, these measures were developed for link prediction in social networks, and
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may not be as compatible on road networks, which are more heterogeneous and sparse [5].
Still, it may be worth investigating the integration of space syntax with such techniques.

For simplicity, we assumed the use of undirected planar graphs in this project, but road
networks are directed and 3-dimensional in reality. However, our model can be adapted
for directed road graphs by reverting the DistMult modification, while no adjustments
are required for non-planar graphs.

While we expressed the potential of link prediction in transport network design and
planning, more work in realistic settings is required to demonstrate its practical appli-
cability. Yet as the evolution of actual road infrastructure is affected by factors such
as topological limitations, politics, and culture [49], such predictive models may be con-
strained to a limited part of the overall decision process.

Subgraph Partitioning by Local Authority

Partitioning based on the local authorities was done to allow correlation analyses with
city statistics, and to reduce the scale of the link prediction task. This approach does have
limitations: the boundaries of local authorities are defined by data and do not necessarily
preserve graph connectivity after partitioning. There is also a variety of sizes across the
split graphs, which may have influenced the trends in our regression analyses. Modularity-
based partitioning algorithms such as METIS [70] may hence be a better approach to split
a large network for link prediction analysis.

Negative Sampling

With quantile-normalization, our model predicted fewer roads between distant road nodes
randomly chosen by our negative sampling approach. To exceed this level of performance,
a better approach for negative sampling may be to only consider the k-nearest unconnected
road nodes. In this way, the model can be evaluated on more ambiguous links that cannot
be easily filtered by distance.

With this modified objective, space syntax measures may contribute better as input
features. A robust link prediction model can then comprise this model, as well as a
simple filter that eliminates any predicted roads longer than the longest road segment in
the dataset.

Variational GAE

The Variational GAE (VGAE) [59] generates mean and standard deviation vectors which
can alleviate overfitting, analogous to the VAE described in Section 2.2.2. Yet, initial
experiments revealed that VGAE performs worse than our standard autoencoder in link
prediction for both transductive and inductive settings. Training a VGAE also introduces
another sensitive parameter, β, in the loss function, and the optimal value for β may differ
between graphs.

Nonetheless, the VGAE can be used as a generator of edges through random sampling,
which can be useful for road network design. The VGAE is still unable to form new road
nodes that can allow, for example, the creation of a new intersection to form a new road.
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Models for generative tasks that go beyond a fixed set of nodes include the GraphRNN
[71]. These deep graph generative models, which were designed for molecular graphs, may
have the potential to generate small-scale road network designs.

4.7 Summary

Our initial results in road network link prediction showed that rank-normalized angular
integration contributes to better performance compared to other space syntax measures.
However, we later discovered that using quantile-normalized coordinate features outper-
forms this approach under both transductive and inductive settings, showing the impor-
tance of data normalization techniques for this task. To enable space syntax measures to
form node representations, we proposed edge feature pooling via minimum aggregation.

We also proposed using the average precision of link prediction to measure spatial
homogeneity, and demonstrated statistically significant correlations with various socio-
economic factors. We argued that the metric can be used as a measure of network simi-
larity in the inductive setting.

Finally, we described our proposed graph autoencoder, which consists of a 2-layer
GAIN encoder and a symmetric DistMult decoder. Our results showed that this combi-
nation results in higher AUC than other variants. To determine model hyperparameters,
we developed and used the Batched Graph task for cross-validation. We also verified that
the latent node embeddings produced by the encoder achieves high spatial clustering after
training for link prediction.
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In machine learning involving road networks, open datasets are prone to issues of missing
or inaccurate values [51]. Space syntax measures can be more reliable than using attributes
from these datasets, as they can be computed precisely with just the road network’s
topological information.

This chapter investigates the potential of space syntax measures with GNNs in two
particular classification tasks on roads: road-type classification in Section 5.1 and
(traffic) accident count classification in Section 5.2. We show that when space syntax
measures are added to baseline feature sets, the models improve in both tasks, achieving
in the transductive setting a 39% higher weighted F1 score in road-type classification, and
a 26% lower error in accident count classification. However, we also found that GNNs do
not significantly outperform MLPs when space syntax measures are used. These findings
and other insights are discussed in Section 5.3.

We optimize and evaluate various data processing methods and models, some of which
have yet to be applied in road network representation learning. These include data load-
ers for dividing large road network graphs into mini-batches (Section 5.1.4) and aggrega-
tion functions for simplifying road geometries (Section 5.2.5). Furthermore, we integrate
CORAL [72], a framework for ordinal classification, with our model for accident count
classification (Section 5.2.3).

While the project focuses on two specific tasks, the proposed training methodology,
data processing and architecture are applicable, with minimal modifications, for
predicting other target values. For example, in places where there is not much data
beyond open datasets, typical speed limits can be automatically allocated based
on existing road attributes.

5.1 Road-type Classification

5.1.1 Motivation

Labeling data in spatial datasets is often time-consuming and labor-intensive. This often
leads to missing, incorrect, or outdated labels, especially in open datasets which rely on
contributions from the public [51]. Instead, researchers exploit the road graph structure
by applying GNNs to perform prediction of road attributes [5, 6]. With the predicted
labels, dataset maintainers can automatically assign labels based on trends from existing
data.
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To exemplify downstream tasks in road representation learning, this chapter analyses
a task to classify roads in the UK by their road-type, which is defined by the attribute
meridian_class in the SSx OpenMapping dataset. By comparing multiple feature sets
against previous baselines, we evaluate space syntax measures as input features for GNN
classifiers. This section will also detail the data processing, models and training setup
steps used for these tasks.

Predictions on the Dual Graph

For all experiments in the following section, the roads in the SSx OpenMapping dataset
are transformed into the dual representation, with the attributes directly forming input
node features. Unlike in the link prediction task, the road network is typically represented
by the dual graph (see Section 2.3.1) in road classification tasks [6].

In the dual graph, space syntax measures directly become input node features while
providing information about how each road relates to the larger graph network. This may
be preferable to adding many message passing layers to propagate information to and
from distant nodes, which leads to over-smoothing (see Section 2.3.2).

5.1.2 Methods: Data Processing & Models

meridian_-
class

Description Count

motorway Multi-carriageway public roads connecting important cities. 9592
aroad A road: Major roads intended to provide large-scale transport

links within or between areas.
218558

broad B road: Roads intended to connect different areas, and to feed
traffic between A roads and smaller roads on the network.

138544

minor Smaller roads intended to connect together unclassified roads
with A and B roads, often linking a housing estate or a village
to the rest of the network.

1696628

Table 5.1: [Road-type Classification] Counts of road-type classes in the SSx OpenMapping
dataset, and their descriptions as defined by the UK Department of Transport’s guidance on
road classification [73]. Counts are taken after data processing. The dataset is simplified: lower-
ranked and unclassified roads are not included.

Dataset and Data Preprocessing

In road-type classification, the objective is to predict the road’s category out of the four
meridian_class shown in Table 5.1. Several combinations of input features were consid-
ered here, including the baseline Local Degree Profile and Coordinate Features detailed
in Section 3.1.3. We test the space syntax measures taken at 2 km, 10 km, and 100 km,
the different categories of features (choice, integration, node counts), as well as all of
them combined. The initially unnormalized features (non-rank measures) are min-max
normalized to reduce the variance that results from input features of large magnitude.
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Figure 5.1 shows the distribution of the categorical road-type variable over the full
dataset, as well as a map to help visualize the typical spatial distribution of the classes
in a road network. Since the road-types are labelled at the granularity of line segments,
there can be multiple classes within a road segment. Therefore, the line segments are not
combined into road segments in this task.

The road network and the meridian_class labels originate from the OS Meridian
2, which is a simplified dataset of the full UK road network [10]. Motorways and dual
carriageways have been collapsed into a single geometry, and numerous lower order and
unclassified roads are not included. As the space syntax features had been computed
using this simplification, some bias is incurred in our results.

Figure 5.1: OS Meridian 2 class counts (log scale), with a map of Coventry to showcase the
typical road types in a city. The vast majority of roads are minor, with only a few motorways.

Mini-batch Training using Neighborhood Sampler

The SSx OpenMapping dataset comprises over 40 million line segments, which are pro-
cessed into a dual graph consisting of 2,040,269 nodes and 3,189,373 edges. In order to
facilitate machine learning on such a large graph, the Neighborhood Sampling algorithm
from GraphSAGE [12] is used, which involves sampling nodes and obtaining their 2-hop
computational graphs. Multiple sampled nodes and their computational graphs are then
grouped into mini-batches for training the model via stochastic gradient descent (SGD).

We also consider several alternative methods of mini-batching, and the results of our
comparisons are detailed in Section 5.1.4.

GNN Architecture

For a multi-class node classification task, a GNN can be applied directly to aggregate
neighborhood information and output embeddings describing class probabilities. We use
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a GNN with 2 layers to limit over-smoothing, with 20 hidden dimensions and 4 output
dimensions (one for each possible class). Similar to link prediction, initial testing via cross-
validation showed that increasing model depth past 2 layers does not improve performance.
The dimensionality of 20 is also selected in this way.

Our model for classification can be seen as just the encoder part of the autoencoder
shown in Figure 4.7 of the previous chapter. We compare varying layer types with baseline
MLPs, as well as a naïve classifier that always predicts the mode of the distribution.

Transductive-Inductive Split

To assess the transfer learning potential of our models, a section of the road network
corresponding to the county of Kent was removed for use as the inductive test set, leaving
about 97.5% of the dataset for the primary training graph. Kent was chosen as it lies on
the boundary of the network; truncating it results in few lost road links overall.

Our cross-validation setup for node classification is based on Errica et al.’s comparison
of GNNs [74], which divides nodes in the training graph with a 90%-10% training to
validation ratio. While the entire adjacency matrix of the graph is input into the GNN
to enable message passing over all nodes, the gradient update only considers the loss
from training nodes. We report the metrics achieved on the validation nodes, which are
indicative of the model’s transductive performance. The model is then tested on all nodes
within the truncated graph of Kent to obtain the inductive metrics.

Training Setup with Weighted Loss

Training is performed for 100 epochs, by which the model typically converges with a
learning rate that decays over time from 0.01. This is repeated over 5 iterations, each
time with a new training-validation split. The model is trained to minimize the cross-
entropy loss, which is weighted by the reciprocal of the class representation, i.e. the
percentages reported in Figure 5.1. This acts as an alternative to upsampling the minority
class, as the model weights the gradient signal from minority classes more than that of
the majority class (minor).

Metrics for Imbalanced Classification

The following metrics are used to evaluate models for the road-type classification task.

• Weighted F1 weights the F1 score achieved on each class by its representation, and
ranges from 0 to 1. As such, this metric is used to assess the overall performance
the classifier would have on the actual data distribution.

• Matthews Correlation Coefficient (MCC) ranges from -1 to 1, where 1 indi-
cates perfect prediction, 0 random prediction and -1 inverse prediction. This metric
considers true negatives and thus captures more of the confusion matrix than the
F1 score. As it is more robust to imbalanced data [75], the MCC is used to assess
the balanced class performance.

47



5.1. Road-type Classification Chapter 5. Road Classification

5.1.3 Results & Insights

Transductive Inductive

Feature Set Weighted F1 MCC Weighted F1 MCC

SSx features @ 2km 0.570± 0.003 0.215± 0.002 0.586± 0.012 0.195± 0.003
SSx features @ 10km 0.755± 0.017 0.360± 0.033 0.755± 0.002 0.347± 0.002
SSx features @ 100km 0.776± 0.020 0.418± 0.030 0.788± 0.004 0.400± 0.004
Choice: 2, 10, 100km 0.679± 0.010 0.255± 0.010 0.676± 0.011 0.227± 0.010
Integration: 2, 10, 100km 0.163± 0.085 0.042± 0.005 0.328± 0.015 0.071± 0.003
Node Count: 2, 10, 100km 0.118± 0.071 0.022± 0.001 0.171± 0.031 0.021± 0.003
All SSx features 0.792± 0.003 0.453± 0.014 0.787± 0.007 0.410± 0.008

Coordinate Features 0.570± 0.051 0.082± 0.014 0.496± 0.373 0.017± 0.026
with SSx features 0.788± 0.008 0.450± 0.010 0.788± 0.010 0.410± 0.011

Local Degree Profile 0.429± 0.020 0.071± 0.005 0.426± 0.037 0.066± 0.009
with SSx features 0.789± 0.015 0.454± 0.014 0.792± 0.005 0.414± 0.006

Naïve baseline 0.744 0 0.774 0

Table 5.2: [Road-type Classification] Feature set experiments with a 2-layer GAIN model
(p = 0.05). “All SSx features” refers to the first 17 features in Table A.1. Baseline feature sets
fail to outperform the naïve baseline, which predicts all roads to be minor. Using the space
syntax measures instead allows the GNN to fit to the imbalanced data with a MCC of 0.453,
while outperforming the naïve classifier by a margin of 6.5% on the Weighted F1. Performance
remains similar even in the inductive setting.

Space syntax measures enhance prediction accuracy

Based on the results in Table 5.2, with space syntax, our model outperforms the naïve
classifier by 6.5% on the distribution-skewed metric of Weighted F1, while having a sig-
nificantly higher MCC and thus balanced class performance. By adding the space syntax
measures to the baseline coordinate features, our model improves by a margin of 39.0%
(transductive) and 58.7% (inductive) on the weighted F1 score.

The best performance is achieved with all space syntax features, with no significant
difference between the transductive and inductive settings. This is different from the
link prediction task, where adding more features did not improve performance. Although
choice and integration alone do not achieve the same prediction accuracy as the full set of
features, choice appears to be significantly more predictive of road-types than integration.

But performance was expected as choice measures through-movement potential, and
major roads typically have higher choice compared to minor roads. Moreover, space
syntax features computed at the largest radius (100 km) are the most predictive features,
with an inductive MCC of 0.4 when considered alone. Since these features measure large-
scale accessibility, they are likely to be more predictive of road class hierarchies that are
defined at the same scale according to the definitions in Table 5.1.
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Figure 5.2: [Road-type Classification] Map visualization of road-type labels and their pre-
dicted values by a 3-layer MLP and a 2-layer GraphSAGE-MIN, on three local authority graphs
of increasing scale. In general, the models predict fairly similar patterns, both making errors
such as overestimating the number of B roads. The predictions are rather sporadic in places,
with adjacent roads along the same sightline having different predicted classes.
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Transductive Inductive

Layer Type P. count Time(s)/epoch Weighted F1 MCC Weighted F1 MCC

2-Layer MLP 344 4.503 0.806 0.478 0.776 0.416
3-Layer MLP 804 4.424 0.807 0.484 0.771 0.411
4-Layer MLP 1264 4.465 0.807 0.488 0.774 0.412

GCN 304 4.428 0.790 0.438 0.759 0.385
GAT 352 5.800 0.785 0.449 0.768 0.401
SAGE-MIN 584 5.418 0.806 0.479 0.779 0.419
SAGE-MEAN 584 6.346 0.805 0.478 0.779 0.421
SAGE-MAX 584 5.932 0.808 0.481 0.782 0.424
SAGE-SUM 584 4.359 0.805 0.477 0.778 0.418
GIN 792 6.075 0.788 0.445 0.764 0.396
GAIN 1280 8.704 0.805 0.480 0.776 0.413

Table 5.3: [Road-type Classification] Performance achieved by various GNN layer types tak-
ing all space syntax features as input, with a margin of error less than 0.005 (p = 0.05). The
GraphSAGE-MAX performs slightly better than MLPs in the inductive setting. Models are
trained for 100 epochs with a scheduled learning rate that decreased from 0.01. The dimension-
ality is fixed to 20 for all models, with only two layers for GNNs as increasing the number of
layers results in similar or worse performance. The Neighbor Sampler is used for these experi-
ments.

GNNs do not outperform MLPs

As shown in Table 5.3, the performance achieved with MLPs is similar to that of the GNNs
when space syntax measures are provided as input. This may be due to the volatile
homophily shown in the road-types, where roads that are adjacent, yet perpendicular,
may belong to different classes. For such data distributions, the feature smoothing effect
caused by GNN aggregation is less compatible with such drastic differences within the
neighborhood. MLPs, on the other hand, avoid such issues.

Since choice, integration, and node counts are already predictive of the road type, it
is likely that additional information about neighbor node features gained through 2-hop
propagation does not aid in prediction. In addition, the GAT and GIN performs worse
than the GCN even though they have more expressive power, which may indicate some
undesirable bias introduced by more complex propagation.

Out of all the layer types, the GraphSAGE models and especially the MAX variant,
manage to be on par with the MLPs, even slightly outperforming them in the inductive
setting. The pattern of predictions also differs slightly, as shown by the maps in Figure
5.2. Furthermore, the maps reveal that the predicted road classes tend to be discon-
tinuous, with different classes along the same axial sight-line. Since the road segment
representation divides roads at intersections, the models do not take the continuity of
roads into account, leading to such sporadic predictions.

5.1.4 Data Loaders: Scaling GNNs

One challenge in applying GNNs directly to larger graphs is scale, as the memory cost of
the feature matrix is O(n) while that of the adjacency matrix is O(n2) with n total nodes.
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However, space syntax analyses of nation-wide road networks may involve large graphs of
over a million nodes [32]. For prediction tasks where there may be multiple floating point
features per road segment, the feature matrix can become too large to fit into GPUs with
limited memory.

To resolve such space constraints, methods have been developed to sample mini-
batches of graph data, which can then be input separately to perform SGD. Figure 5.3
illustrates two of these methods: Neighbor Sampler and Cluster-GCN.

Figure 5.3: Diagram comparing how the GraphSAGE Neighbor Sampler and the Cluster-GCN
derive mini-batches. Note that Neighbor Sampler produces computational graphs for the sampled
node, and not induced subgraphs like in Cluster-GCN. As such, it only generates a single node
embedding per sample, while Cluster-GCN generates embeddings for every node in the sampled
subgraph. This does not mean that the Neighbor Sampler is less efficient, as multiple nodes can
be sampled per batch.

In this section, we evaluate the following approaches1, implemented as DataLoader
classes in PyTorch Geometric [13].

• Cluster-GCN [11]: This method involves partitioning nodes, and inputting their
induced subgraphs in mini-batches for SGD. Since GNNs perform node embedding
by passing information through edges, ideal partitions should retain as much edge
connectivity from the original graph as possible. Such partitions can be computed
efficiently with modularity-based algorithms such as METIS [70]. Moreover, several
subgraphs can then be used in a single mini-batch to reduce variance between steps
of SGD. The number of partitions and the number of subgraphs per batch are
hyperparameters that are varied in our experiments.

• Neighbor Sampler (GraphSAGE) [12]: In addition to the layer type, Hamilton
et al. also proposed a method of sampling nodes and their k-hop neighborhoods,

1To the best of our knowledge, there has yet to be work evaluating the effect of these sampling
algorithms for road network representation learning.
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where k is picked to match the number of GNN layers. The neighborhoods corre-
spond to the computational graph for each node, and several can batched together
for SGD. For GNNs with many layers, the number of sampled neighbors per hop
should be limited to avoid an exponentially growing graph (neighborhood explosion).
However, since our model only has 2 layers, all possible neighbors are sampled. We
evaluate the Neighbor Sampler with varying batch sizes, i.e. nodes per batch.

• GraphSAINT Random Walk [76]: Instead of considering computational graphs
like GraphSAGE, this method samples nodes and constructs induced subgraphs
based on a fixed-length random walk from the node. Similar to the Cluster-GCN,
these subgraphs are directly input as batches, avoiding potential neighborhood ex-
plosion issues. A walk length of 2 is used as it corresponds to our 2-layer GNN,
while the batch size is varied.

• Full Batch: As a baseline, the entire graph is passed through the GNN without
partitioning, akin to full batch gradient descent. This method is only feasible with
a GPU that has sufficient memory.

Loader Batch Size Weighted F1 MCC Time(s)/epoch

Cluster-GCN, 512 parts 4 0.809± 0.001 0.472± 0.002 10.459
Cluster-GCN, 512 parts 8 0.808± 0.001 0.470± 0.002 4.934
Cluster-GCN, 512 parts 16 0.807± 0.002 0.468± 0.003 2.550
Cluster-GCN, 1024 parts 4 0.811± 0.002 0.476± 0.002 21.021
Cluster-GCN, 1024 parts 8 0.809± 0.001 0.472± 0.001 9.808
Cluster-GCN, 1024 parts 16 0.808± 0.002 0.471± 0.002 4.804

Neighbor Sampler 1024 0.805± 0.001 0.477± 0.001 12.363
Neighbor Sampler 4096 0.806± 0.001 0.476± 0.001 6.195
Neighbor Sampler 16384 0.805± 0.003 0.472± 0.004 4.685

SAINT, 2-hop RW 5000 0.736± 0.017 0.364± 0.013 8.217
SAINT, 2-hop RW 10000 0.750± 0.019 0.373± 0.030 8.224
SAINT, 2-hop RW 20000 0.769± 0.006 0.406± 0.010 8.197

Full Batch - 0.800± 0.002 0.452± 0.004 0.543

Table 5.4: [Road-type Classification] Transductive performance (p = 0.05) and execution
times for different data loaders and batch sizes. The model used is a 2-layer GAIN with 20
dimensions, trained for 100 epochs with an initial learning rate of 0.01. Training times are
achieved on a system with an Intel i7-7700K CPU and a NVIDIA GeForce GTX 1080 GPU.

Bias and variance from samplers affect performance

From our results in Table 5.4, we see that the Neighbor Sampler and the Cluster-GCN are
comparable in performance, with similar training speeds and achieved metrics. Given the
low depth of our model and the sparsity of road network graphs, neighborhood sampling
does not incur a large computational overhead, and can be preferred to Cluster-GCN.

Since Cluster-GCN eliminates edges that go between partitions, it is known to produce
systematically biased gradient signals that can adversely impact performance [11]. How-
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ever, our results do not show a significant drop in performance when using Cluster-GCN.
This may be due to the large size of our dataset, which offsets the loss of a few edges.

Figure 5.4: [Road-type Classification] Average validation cross entropy loss and MCC curves
corresponding to different data loaders over 5 iterations, with the margin of error (p = 0.05)
indicated by the shaded areas. To aid convergence, the learning rate is reduced whenever the
validation loss rises.

Full batch training led to slightly poorer performance while also taking longer to con-
verge, as shown by its training curve in Figure 5.4. On the other hand, the methods
involving stochastic updates converged faster as the model parameters are updated multi-
ple times per epoch, and achieve slightly better MCC. It may be possible that randomness
through sampling and mini-batching leads to better performance. Yet, GraphSAINT’s
random walk sampler did not see the same level of performance as the other stochas-
tic methods. This may have resulted from inconsistent gradient signals caused by the
incomplete random walk neighborhoods.

Cluster-GCN provides faster training with competitive performance

The results also show that Cluster-GCN takes more advantage of larger batch sizes than
other loaders, as the time taken sees a directly inverse relationship with batch size. There
is, however, a slight trade-off in performance as batch size is increased. Still, if GPU
memory is able to accommodate large batches, then using Cluster-GCN can save on the
overhead incurred by sampling methods. We hence apply the Cluster-GCN for the next
task: classifying traffic accident counts.
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5.2 Accident Count Classification

5.2.1 Motivation

Research in space syntax has shown that choice and integration are predictive of vehicular
and pedestrian movement [15]. Under the presumption that traffic accidents happen more
often on roads with high vehicular movement, this task uses accident counts as a proxy
to assess whether GNNs can boost performance when used with space syntax measures in
such prediction tasks. In addition, this task serves as an example of ordinal classification
where the classes are intrinsically ordered. We will see that these distinctions lead to
slightly different results compared to the previous task of road-type classification.

5.2.2 Generating Classes From Traffic Accident Data

Accident counts are generated for every road using the Road Safety traffic accident dataset
from the Department of Transport [77]. The dataset contains spatial coordinate points
where traffic accidents have occurred across Great Britain. Since the SSx OpenMapping
dataset uses road data from 2011, accident data prior to that year may be biased towards
older road infrastructure. As such, the point data is filtered to the year range of 2011 to
2020.

Next, the points are assigned to their nearest line segment via the spatial join methods
available from geopandas, a Python library for manipulating spatial datasets [78]. Since
the SSx OpenMapping dataset is simplified and does not include unclassified roads, several
accident points fall onto non-existent segments. These points are filtered out using a
maximum threshold join distance of 15 meters. This value was chosen by quantile
analysis on the join distances between the datasets, which revealed that the large majority
(90%) are under the 15-meter threshold.

After this filter, the accident counts for every road are tallied. This results in a highly
right-skewed distribution as shown in Figure 5.5, which is expected as accidents are rare
events that do not occur on the majority of roads.

Graph Simplification and Feature Aggregation

In order to reduce the imbalance in the target count data, we perform graph simplification,
combining line segments into road segments with straight line geometries. To accomplish
this, interstitial nodes only used for geometry are removed, i.e. all nodes that are neither
intersections nor dead-ends. For a visualization of graphs produced by this process, refer
to Figure A.4 in Appendix A.

The accident count of the output segment is set to the sum of the counts of its con-
stituent line segments. Attributes (the space syntax measures) of combined geometries
are also aggregated from the components, and we evaluate the various aggregation oper-
ations for numerical features in Section 5.2.5. For categorical attributes, we simply take
the mode of the constituents.

Following this, the target is categorized into the K = 5 quantiles shown in Figure 5.5.
This reduces the impact of the right tail outliers, and transforms the task from regression
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Figure 5.5: [Accident Count Classification] As traffic accidents are rare events, the global
distribution of counts shown on the left is right-skewed. These quantiles are used to simplify the
task from regression into ordinal classification. The map on the right portrays the accident count
classes in the road network of Coventry. Unlike the graphs used in the road-type classification
task, these graphs are simplified, i.e. line segments are merged into a single road segment with
aggregated attributes.

into ordinal classification. The resultant quantiles remain imbalanced, but less so than the
road-types in the previous task. The number of quantiles K = 5 was chosen for balanced
counts between classes, and constitutes the number of classes for this classification task.

5.2.3 Ordinal Classification Using CORAL

We then use CORAL [72], an architecture-agnostic framework for training classifiers of
ordinal targets. While the authors demonstrated its effectiveness in convolutional neural
network architectures, to the best of our knowledge, this framework has yet to be applied
with GNNs. CORAL involves transforming every road i’s quantile, yi, into a series of
K − 1 binary labels that indicate whether the road ranks above the corresponding quan-
tile. Given the ordered quantiles rk, k = 1, . . . , K − 1 (where the 0 accident count class
corresponds to r1), the labels yki are computed as follows:

yki =

{
1 if yi > rk

0 otherwise
(5.1)

For example, a road with 0 accidents (rank r1) will take the vector [0, 0, 0, 0], while
a road with 3 accidents (rank r4) turns into [1, 1, 1, 0]. In our classifier, the CORAL
layer (illustrated in Figure 5.6) is added just after the final layer of the GNN2. It adds
shared weight parameters w, and K − 1 independent bias units bk that are initialized

2Initially, we applied binary level labelling without the CORAL layer, but it led to inconsistent per-
formance, likely due to the model’s inability to ensure rank-consistency between predicted probabilities
of different quantiles.

55



5.2. Accident Count Classification Chapter 5. Road Classification

to descending values in the range [0, 1] for faster convergence. With sigmoid activation,
the predicted probability that a road ranks above quantile rk can be described as P̂ (yi >
rk) = σ(zi ·w + bk), where zi is the output embedding from the GNN for road i.

Figure 5.6: [Accident Count Classification] GNN model with an added CORAL layer, com-
prising shared weights w and K − 1 = 4 independent bias terms b. n refers to the number of
hidden dimensions. The diagram of the CORAL layer is based on Cao et al. [72: p. 328].

To predict a quantile rank, the output probabilities are thresholded at 0.5 and summed.
For more details about this procedure and other aspects of CORAL, including the spe-
cialized loss function, please refer to Cao et al. [72].

5.2.4 Evaluation Setup & Metrics

A similar setup to the road-type classification task is employed, with the same training-
validation split, transductive-inductive split, and training hyperparameters. However,
this task involves different optimization targets and metrics for ordinal classification: the
model is trained on the CORAL loss function and evaluated using the Mean Average
Error (MAE) and Root Mean Squared Error (RMSE) metrics. These metrics are
used as they produce a larger error if, for example, the model outputs r1 compared to
r3 for a road with quantile r4. To turn the labels back into continuous values for these
metrics, the quantile’s rank is taken as its integer value, i.e. r1 corresponds to 1, r2 to 2
and so on.

The CORAL layer adds some overhead to the training process, as the conversion from
predicted probabilities to labels is done sequentially per batch. We hence utilize the
Cluster-GCN for this task, since neighborhood sampling would incur a higher overhead
with its large batch sizes.
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Transductive Inductive

Layer Type MAE RMSE MAE RMSE

SSx features @ 2km 0.623± 0.001 1.089± 0.002 0.769± 0.002 1.248± 0.004
SSx features @ 10km 0.584± 0.001 1.034± 0.002 0.731± 0.002 1.184± 0.005
SSx features @ 100km 0.617± 0.001 1.088± 0.002 0.760± 0.002 1.259± 0.006
Choice: 2, 10, 100km 0.580± 0.001 1.029± 0.001 0.692± 0.002 1.161± 0.004
Integration: 2, 10, 100km 0.652± 0.003 1.142± 0.004 0.826± 0.004 1.324± 0.007
Node Count: 2, 10, 100km 0.708± 0.004 1.253± 0.006 0.890± 0.004 1.438± 0.011
All SSx features 0.522± 0.002 0.947± 0.003 0.628± 0.002 1.070± 0.004

Coordinate Features 0.695± 0.001 1.221± 0.002 0.874± 0.002 1.435± 0.002
with SSx features 0.510± 0.002 0.932± 0.002 0.639± 0.002 1.084± 0.004

Local Degree Profile 0.719± 0.001 1.273± 0.007 0.896± 0.003 1.496± 0.005
with SSx features 0.529± 0.003 0.957± 0.004 0.630± 0.005 1.072± 0.006

Meridian Class 0.625± 0.000 1.095± 0.001 0.741± 0.003 1.238± 0.008
with SSx features 0.508± 0.002 0.926± 0.004 0.603± 0.001 1.036± 0.002

Naïve baseline 0.776 1.446 0.978 1.655

Table 5.5: [Accident Count Classification] Feature set experiments with a 2-layer
GraphSAGE-MAX model (p = 0.05). Other parameters remain the same as in the previous
task (see Table 5.2), except for the use of Cluster-GCN (512 parts, 16 per batch). For all tested
baselines, appending space syntax features lowers the prediction error.

5.2.5 Evaluation Results

As shown by Table 5.5, the best performance is again achieved by adding the full set
of space syntax features. This lowers the RMSE achieved by the coordinate feature set
by 26.6% in the transductive setting and 28.3% in the inductive setting. The inductive
setting incurs a greater performance loss compared to the road-type task, with an 11.9%
to 17.6% increase in the RMSE across all the feature sets.

Next, we use the one-hot encoded meridian_class from the previous task as an
example of data-derived input features, and found that it generalizes better than the other
baselines. Nevertheless, adding space syntax measures to it still improves performance,
lowering the RMSE by 15.4% and 19.5% under the transductive and inductive settings
respectively. The combination of space syntax features and the meridian_class proves
to be the most effective feature combination in the inductive setting.

Choice and 10 km measures are more predictive than other features

In contrast to the 100 km measures for road-type classification, the 10 km measures
have a more positive impact on predictive performance. This suggests that the intrinsic
spatial pattern of traffic accidents is smaller in scale compared to that of road-types.
Choice remains more predictive than integration, a result that corroborates with the role
of choice in highlighting the most vital routes in the network [20: p. 77]. These routes
presumably experience the highest traffic and thus accident rates in the road network.
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Figure 5.7: [Accident Count Classification] Map visualization of accident counts and their
predicted values by a 4-layer MLP and a 2-layer GraphSAGE-MAX GNN, on three local authority
graphs of increasing scale. The models are generally able to identify the “0” accident roads, but
underestimate roads with “5 or more” accidents. Again, the pattern of predictions is similar
between the GNN and the MLP.
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Transductive Inductive

Layer Type P. count Time(s)/epoch MAE RMSE MAE RMSE

2-Layer MLP 924 1.529 0.521 0.952 0.613 1.057
3-Layer MLP 1384 1.562 0.519 0.947 0.613 1.056
4-Layer MLP 1844 1.591 0.518 0.946 0.613 1.057

GCN 884 1.652 0.558 0.992 0.693 1.164
GAT 964 1.731 0.552 0.984 0.680 1.144
SAGE-MIN 1704 1.582 0.510 0.929 0.608 1.048
SAGE-MEAN 1704 1.578 0.506 0.924 0.609 1.050
SAGE-MAX 1704 1.568 0.508 0.926 0.603 1.037
SAGE-SUM 1704 1.566 0.507 0.926 0.613 1.054
GIN 1804 1.616 0.549 0.982 0.712 1.200
GAIN 2724 1.852 0.512 0.935 0.611 1.051

Naïve baseline — — 0.776 1.446 0.978 1.655

Table 5.6: [Accident Count Classification] Mean performance and parameter counts for
various architectures, taking all space syntax features and the one-hot encoded meridian_class
as input. The average margin of error is below 0.005 (p = 0.05). All other parameters remain
the same as in the previous task (see Table 5.3), except for the use of Cluster-GCN (512 parts,
16 per batch). All GNN models contain only two layers, as increasing that results in similar or
worse performance. Note that the CORAL layer is included in the parameter count.

GraphSAGE models remain competitive with MLPs

Again, the GraphSAGE layer types outperform the others, with the MAX variant showing
the best performance overall. It may be possible that the separate weight matrix for self
loops in the GraphSAGE operator enables the model to weight the road’s own features
more than that of its neighbors during aggregation. This would allow the local features
to be more represented in the output node embedding and avoid over-smoothing.

However, the GNN models do not significantly outperform a standard MLP when
using space syntax features. In theory, MLPs should generalize to the inductive setting
better than the GNNs, as they do not perceive the graph structure and as such avoid
biasing towards the training graph. Yet, GraphSAGE remains competitive with MLPs,
which aligns with its intended purpose of inductive performance [12].

CORAL integrates well with GNNs

Results in Table 5.6 show that with CORAL, the GNNs perform better than the naïve
baseline. Given the difficulty of this task with its imbalanced class distribution, this
indicates that the CORAL framework can positively integrate with GNNs. This result is
useful for road network representation learning: most classification tasks on roads, such
as assigning speed limits, involve predicting ordered variables.

Sum aggregation leads to slightly better performance

Table 5.7 reports the metrics achieved by the model with features processed by varying
aggregation functions. We saw a similar analysis for edge feature pooling (see Table 4.3 of
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Transductive Inductive

Aggregation MAE RMSE MAE RMSE

Max 0.509± 0.002 0.929± 0.003 0.606± 0.002 1.041± 0.004
Min 0.507± 0.003 0.925± 0.005 0.604± 0.001 1.037± 0.003
Sum 0.508± 0.001 0.927± 0.002 0.600± 0.002 1.028± 0.003
Mean 0.508± 0.003 0.926± 0.004 0.604± 0.001 1.038± 0.002
Median 0.507± 0.003 0.926± 0.004 0.604± 0.002 1.038± 0.004
Std 0.519± 0.002 0.944± 0.004 0.614± 0.002 1.044± 0.005

Table 5.7: [Accident Count Classification] Varying aggregation function for simplifying line
segments into road segments, using the SAGE-MAX model and the best performing feature set
(space syntax & meridian_class). These results show that taking the sum results in about 1%
better inductive performance. This choice of aggregation is only applied to the space syntax
measures.

Chapter 4); however, here we have a separate context of combining line segment features
into road segment features. In this case, no significant difference was found between
aggregation functions, although the sum is very slightly better in the inductive setting.
In comparison to other functions, the sum results in a more diverse set of features, which
may help the model to distinguish roads comprising many line segments.

5.3 Discussion & Future Directions

In optimizing our model and pipeline, the multiple hyperparameters involved made cov-
ering all possibilities difficult. Several data-dependent assumptions were made during
processing, such as the quantile boundaries, the choice of min-max normalization, and
the maximum distance for the spatial join between accident points and road geometries.
This was to prioritize optimizing model parameters, but given more time we would inves-
tigate how these assumptions impact performance.

Since space syntax features by themselves can be already predictive of road-based
attributes, we found that GNNs do not consistently outperform the MLP baseline that
avoids smoothing those precisely measured angular features. This could be due to some
degree of volatile homophily in the target variable, as shown in Figure 5.5 where a road
with 5 or more accidents can be directly adjacent to a road with no accidents. As such,
these features may be better predicted directly without neighborhood aggregation.

Predicting Traffic Data

Instead of class labels, traffic data that is more contiguous over space may be better suited
for prediction by GNNs. Unfortunately, such datasets are typically incomplete and can
be challenging to obtain. We were unable to find a complete dataset that accounts for
the large area covered by our dataset, and thus used accident counts as a proxy.

Still, as a popular research topic, many dedicated architectures have been developed
for traffic prediction. An example is the Spatio-Temporal Graph Convolutional Network
[79], which incorporates recurrent units from sequence-to-sequence models into GCNs to
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model the temporal dimension. It would be interesting to evaluate how well space syntax
features could improve such models.

Training Variance and Data Loaders

Our models see high volatility during training as shown in Figure 5.4, which required the
use of a learning rate scheduler. In our experiments, the GAIN in particular incurred the
greatest variance, likely because it has many parameters that inflate model capacity. In
addition, the batch size parameter of the DataLoader incurs a trade-off, where increasing
batch size lowers variance while increasing bias. The parameter hence requires careful
adjustment depending on the chosen sampling method and the model.

Computing SSx Measures for Transfer Learning

Our results revealed that space syntax measures at large radii (100 km) can be highly
predictive of road-type classes. However, these measures incur high computation time,
making it tricky to transfer the learned model to other road network graphs that lack
precomputed space syntax measures. The context of the full road network is required
to compute these large-scale measures, which may make computation infeasible if the
network is located in sprawling metropolitan regions.

Instead, limiting the metric radii can mitigate these issues. For our case, just using
the 10 km measures can be advantageous as they are sufficiently predictive of our chosen
target variables, while being more computationally feasible than measures at 100 km.

5.4 Summary

In this chapter, we demonstrated that space syntax measures improve classification of
road-types and accident counts. Compared to link prediction, choice appeared to be the
most predictive measure, although the combination of all space syntax measures resulted
in the best metrics. As space syntax measures are computed with just topological data,
they can be used for featureless classification tasks in locations lacking reliable sources of
other data.

We showed that the type of aggregation for combining line segment features into road
segments does not have a significant impact on performance. To enable training on large
road datasets, neighborhood sampling from GraphSAGE works well for road graphs, while
Cluster-GCN is an alternative for faster training. The optimal model can vary based on
the task, with the MLP being superior in the road-type classification task, but not in
accident count classification. Our results also showed that the GraphSAGE-MAX layer
type leads to the best performance in both tasks. Finally, we saw that CORAL integrates
well with GNNs for ordinal classification.

Since MLPs remain competitive and can perform better than GNNs with space syn-
tax features, not all space syntax-based models may benefit from GNNs. Nevertheless,
employing space syntax with MLPs or GNNs can serve as effective baselines for future
work in road network representation learning, be it for classification or other tasks.
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In this project, we investigated the potential of improving urban road network analysis
by incorporating space syntax into machine learning with GNNs on road networks. We
implemented a pipeline for doing so using PyTorch Geometric, and evaluated it on two
task types: road link prediction in Chapter 4 and road classification in Chapter 5. The
pipeline is supported by SSx-GNN (Appendix C), a library containing utilities for data
processing, model training and visualization that we developed.

When used as input features, space syntax measures substantially improved on
the prediction accuracy on the road classification task, under both the transduc-
tive and inductive task settings. For link prediction, however, space syntax measures did
not improve performance over quantile-normalized coordinate features. Our results
also showed that exactly which space syntax measures work best is task-dependent: for
link prediction, integration provided the best performance, but for the classification tasks,
choice was more predictive of the target attributes.

We proposed a graph autoencoder model with a 2-layer GAIN encoder and a
symmetric DistMult decoder to solve the task of road link prediction. Our data pro-
cessing pipeline used minimum edge pooling of space syntax features to produce node
representations, giving the best link prediction performance. We also introduced the
Batched Graph task as a method of optimizing model parameters over multiple graphs.

The unbiased metric of average precision was proposed as a measure of spatial
homogeneity and network similarity. Our approach of partitioning the nationwide road
dataset into local authority graphs enabled correlation analyses of the achieved metrics
with city statistics. In exemplifying such analyses, we reported several graph features
that correlated with link prediction performance, such as graph size, density, and several
socio-economic indicators.

In road classification, our results showed that the GraphSAGE-MAX layer type
was optimal for both our chosen tasks of road-type classification and accident count
classification. We found that using the Neighborhood Sampler and Cluster-GCN to
partition large road datasets for input into GNNs is generally preferable to other methods
of mini-batching. We also integrated CORAL for ordinal classification with GNNs, and
showed that it works effectively for training classifiers. However, depending on the dataset
and task, we observed that MLPs remain competitive with GNNs when space syntax
features as used as input.

Still, such models are useful as baselines for urban data analysts wishing to analyze
spatially continuous data. Further work in realistic settings with more comprehensive
datasets can go a long way in showing the practicality of our methods. Nevertheless, we
believe that our extensive evaluation of the synergy between GNNs and space syntax will
be useful for stakeholders in urban network analysis.
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6.1 Future Directions

As a pioneering work in the interdisciplinary area between space syntax and road repre-
sentation learning, there are many promising directions for extending our proposed ideas.

6.1.1 Road Network Generation

As mentioned in Chapter 4, the VGAE can be used to generate sets of possible links from
a latent distribution of node embeddings. Beyond VGAEs, there are architectures that
generate both nodes and edges [80], which may be able to create realistic designs of small-
scale road networks for urban planners. Different from Varoudis et al.’s approach [57]
that used convolutional VAEs, such a method would generate graphs instead of images.
However, since topological information is required to convert graphs into actual road
networks, the difficulty in such a task would lie in determining the precise coordinates of
the generated nodes alongside their embeddings.

6.1.2 Graph Classification

In this project, we did not cover graph-level tasks in road network representation learning.
Graph pooling layers can nonetheless be added to GNNs to enable such tasks. This could
be a way for urban data analysts to link local network structure to region-level statistics
at different scales. Still, as road networks are structurally very different from the networks
that these algorithms were designed for, it would be useful to understand which pooling
layers work well for both the primal and dual graph representations.

6.1.3 Analyzing Other Urban Datasets

While the primary dataset used in this paper was the Space Syntax OpenMapping Dataset,
external datasets such as accident counts can be obtained from the UK Department of
Transport at data.gov.uk. The site does directly include traffic count data; however,
those datasets typically only feature a small subset of roads chosen for data collection.
A study that considers reliable traffic data, perhaps at a smaller scale, would make for a
feasible practical evaluation of our methods.

6.2 Final Remarks

As our project makes inroads into the largely unexplored interdisciplinary area of space
syntax and machine learning, the main challenges were in developing our specific ap-
proaches and processing steps required to make the pipeline work, as well as evaluating
the impact of the many parameters involved. While it certainly does not bring benefits
in every case, this project provides evidence that space syntax can improve neural models
that represent road networks. We hope that our contributions will be of use in advancing
the state of the art in road network representation learning, in space syntax as a precedent
for how it can be applied with machine learning, and also in the wider context of deriving
data-driven insights to inform city planning and development.
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Appendix A: Space Syntax OpenMap-
ping

Feature Type Description

metres float64 Length of the line segment

choice2km float64 Angular choice computed by considering
surrounding road geometries within the
specified radius.

choice10km float64
choice100km float64

integration2km float64 Angular integration computed in the same
way as choice.integration10km float64

integration100km float64

nodecount2km float64 Number of line nodes within the specified
radius, which measures density.nodecount10km float64

nodecount100km float64

choice2kmlog float64
Log-normalized (base 10) choice.choice10kmlog float64

choice100kmlog float64

choice2kmrank float64 Rank-normalized choice and integration, i.e.
the percent rank of the road relative to
others within the neighborhood.

choice10kmrank float64
integration2kmrank float64
integration10kmrank float64

geometry LineString Projected coordinates indicating the geome-
try of the line segment.

meridian_class string OS Meridian 2 road classes. Takes one of 4
values: aroad, broad, minor, motorway.

lad11nm string Name of the local authority to which the line
segment is assigned.

Table A.1: A summary of the features from the Space Syntax OpenMapping dataset1. In this
paper, “SSx features” refers to the 17 attributes from metres to integration10kmrank. An
explanation of the measures is provided in Section 2.1.2 of Chapter 2.

1Available from https://github.com/spacesyntax/OpenMapping
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Appendix A. Space Syntax OpenMapping

Dataset License Description & Ethical Considerations

Space Syntax
OpenMapping
[10]

CC BY-SA 4.0
by Space Syntax
Limited

A road dataset of Great Britain containing line
segment geometries. It includes labels from au-
thoritative sources and computed space syntax
measures, and does not constitute personal data.

English indices of
deprivation 2011
[60]

Open Govern-
ment License by
the Department
for Communities
and Local Gov-
ernment

Local authority statistics on deprivation, span-
ning multiple categories such as education, crime
and health. The data from this dataset is derived
from public census information about real people.
However, as these statistics are aggregated on the
level of local authorities, they are no longer per-
sonally identifying.

Regional gross
value added (bal-
anced) by local
authority in the
UK [61]

Open Govern-
ment License by
the Office of Na-
tional Statistics

Gross Value Added statistics aggregated by local
authority. This has similar considerations to the
above dataset, just in the context of economic
status.

Road Safety Data
- Accidents 1979 -
2020 [77]

Open Govern-
ment License by
the Department
for Transport

Coordinates and details of traffic accidents
that have taken place since 1979 on roads in
Great Britain. However, they have been duly
anonymised of any directly identifying informa-
tion.

Table A.2: Datasets used in this project, the licenses that permit their use, and any ethical
considerations they may engender.
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Appendix A. Space Syntax OpenMapping

Figure A.1: Density plot showing the effect of the normalization on the full distribution of choice
and integration measures before preprocessing. Kernel Density Estimate curves approximating
the shape of the distributions are shown for reference.
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Appendix A. Space Syntax OpenMapping

Figure A.2: Density plots comparing the effect of minmax and standard normal quantile nor-
malization on coordinate and integration features.
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Appendix A. Space Syntax OpenMapping

Figure A.3: Choropleth maps for key space syntax measures corresponding to the road network
of Birmingham. These measures also include information about the wider network, especially
near the graph boundary.
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Appendix A. Space Syntax OpenMapping

Figure A.4: A sample of primal graphs produced from the SSx OpenMapping dataset, and their
corresponding simplified versions. We use the function simplify_graphs from OSMnx [24] to
achieve this.
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Appendix B: Additional Results

Transductive Inductive

Feature set AUC AP AUC AP

SSx features @ 2km 0.928± 0.004 0.688± 0.013 0.928± 0.004 0.687± 0.013
SSx features @ 10km 0.953± 0.002 0.775± 0.008 0.953± 0.002 0.775± 0.008
SSx features @ 100km 0.952± 0.002 0.777± 0.005 0.953± 0.002 0.779± 0.006
Choice: 2, 10, 100km 0.769± 0.008 0.420± 0.024 0.768± 0.007 0.417± 0.023
Integration: 2, 10, 100km 0.959± 0.001 0.795± 0.006 0.961± 0.001 0.801± 0.005
Node Count: 2, 10, 100km 0.967± 0.001 0.835± 0.002 0.967± 0.001 0.834± 0.003
All SSx features 0.969± 0.001 0.832± 0.007 0.970± 0.001 0.833± 0.006

Coordinate Features 0.988± 0.009 0.918± 0.053 0.988± 0.010 0.918± 0.057
with SSx features 0.978± 0.013 0.872± 0.058 0.978± 0.013 0.870± 0.060

Table B.1: [Batched Graph Task, Quantile Normalization] Link prediction performance
with varying quantile-normalized feature sets, using the GAIN-DistMult autoencoder. Using
coordinate features results in the highest metrics, while adding space syntax features does not
appear to improve performance. Minmax-normalized features generally follow these trends, but
with lower achieved metrics.

Figure B.1: [Batched Graph Task, Quantile Normalization] Link prediction performance
with varying encoder layer types, using quantile-normalized coordinate features and the DistMult
decoder. The shaded area represents the margin of error (p = 0.05). The relative performance
of layer types is similar to the experiments that used rank-normalized integration (Table 4.4).
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Appendix B. Additional Results

Figure B.2: [Quantile Normalization] Map visualization of links predicted by our GAIN-
DistMult GAE trained using quantile-normalized coordinate features, on the Cambridge, Brent,
and Coventry road networks. Compared to the predictions made by the model that was trained on
ranked integration (see Figure 4.3), this model predicts fewer false positives. Negative sampling
ratio was set to 1:1 for consistency.
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Appendix C: SSx-GNN: Utilities for Data
Processing, Model Train-
ing & Visualizations

To realize our machine learning pipeline, we developed SSx-GNN, a Python library con-
taining utilities for reading and processing spatial data for graph learning. Although the
pipeline is highly tailored to the tasks investigated in this project, it can be easily adapted
for similar problems involving road network graphs. Concisely, it consists of utilities for
reading the datasets described in Appendix A, for converting between various data struc-
tures for spatial data, including GeoDataFrame tables, networkx graphs and PyTorch
Geometric Data graphs, as well as for training link prediction and road classification
models.

The overall pipeline assumes that the input spatial dataset contains precomputed
space syntax measures. The Jupyter notebooks in the root directory contain examples of
how we call the utility and training functions to run experiments. In particular, data_-
analysis_visualizations.ipynb contains most of the code used to create the figures
in this paper.

Table C.1 lists and provides a brief description of the various high level utilities in
SSx-GNN.
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Appendix C. SSx-GNN: Utilities for Data Processing, Model Training & Visualizations

File & Category Function/Class Description

utils/load_-
geodata.py
Data Loading
and Processing
Functions

load_gdf Loads a .gpkg containing the SSx OpenMapping
dataset and returns a GeoDataFrame correspond-
ing to a local authority or a bounding box of co-
ordinates.

load_graph Converts a GeoDataFrame to a networkx graph,
and calls the preprocessing utilities below, before
finally converting it to a PyTorch Geometric Data
object.

construct_ac-
cident_dataset

Loads and performs a spatial join between an in-
put road dataset and traffic accident point data,
attributing a total accident count for each road.

clean_gdf Combines line segments from a GeoDataFrame
into road segments, and returns them in a net-
workx graph while aggregating features.

models/init_-
model.py
Initialization of
GNN models

ModGAE Graph autoencoder class with flexible encoder
GNN layer types and decoder types.

CoralGNN GNN integrated with CORAL for use in ordinal
classification.

GAINConv Implementation of the GAIN operator as a Py-
Torch Geometric MessagePassing class.

train.py
Link prediction
training code

process_-
dataset

Performs min-max feature normalization, feature
selection, random link split with negative sam-
pling, as well as the transductive-inductive split.
Returns the split DataLoader objects.

run Executes the Batched Graph task for hyperpa-
rameter search.

run_single Executes the Single Graph Task, and returns the
transductive and average inductive metrics.

prediction.py
Road
classification
training code

load_data Loads processed graphs, normalizes and selects
features, and finally outputs the data in a Dat-
aLoader object.

run Trains classifiers and outputs evaluation metrics.

Table C.1: Brief description of utility functions and classes in SSx-GNN, which were written using
the PyTorch Geometric framework.
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