
Nondeterministic Variants of
Pseudorandomness, and Learning Theory

Lu-Ming Zhang
Imperial College London

A thesis submitted for the degree of
MSc in Artificial Intelligence

September 2022

3

ABSTRACT

Super-bits and demi-bits introduced by Rudich [33] are nondeterministic variants of strong pseu-
dorandom generators. Demi-bits require their distinguishers to break them in a stronger sense than
super-bits. Whether a demi-bit is stretchable at all had been an open problem for about 25 years. We
answer this question affirmatively by providing an algorithm that achieves a sublinear-stretch for any
given demi-bit.
Furthermore, we demonstrate the plausibility of the existence of demi-bits, by giving a rigorous proof,

based on a sketch by Pich [28], that demi-bits exist assuming the class of polynomial-size boolean
circuits is not PAC-learnable by sub-exponential circuits. If we further assume the existence of demi-bits
implies the existence of super-bits, we are able to rule out the existence of 𝑁𝑃/𝑞𝑝𝑜𝑙𝑦-natural properties
useful against 𝑃/𝑝𝑜𝑙𝑦 based on the assumption that the class of polynomial-size boolean circuits is not
PAC-learnable by sub-exponential circuits.
In the deterministic setting, Yao [39] proved that the super-polynomial hardness of pseudorandom

generators is equivalent to unpredictability. Unpredictability loosely means, given any strict prefix of
a random string, it is infeasible to predict the next bit. We initiate the study of unpredictability be-
yond the deterministic setting, and characterise the nondeterministic hardness of pseudorandom gener-
ators from a predictability perspective. Specifically, we propose four stronger notions of unpredictabil-
ity: 𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictability, 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictability, ∩-unpredictability, ∪-unpredictability, and
show that super-polynomial nondeterministic hardness is stronger than ∩-unpredictability but weaker
than ∪-unpredictability.
Moreover, we propose a nondeterministic variant of hard-core predicates, called super-core predi-

cates. We establish that the existence of a super-bit is equivalent to the existence of a super-core of
some non-shrinking function, which serves as a counterpart of the known equivalence between the ex-
istence of a strong pseudorandom generator and the existence of a hard-core of some one-way function
[17, 20]. We also prove that a certain class of functions, which may have hard-cores, can not possess
any super-core.

ACKNOWLEDGEMENTS

I shall give deep thanks to my thesis supervisor Prof Iddo Tzameret for his meticulous and remarkable
supervision and guidance, and deep thanks to my friend Yufeng Li for his timely assistance with many
LATEX related issues. I shall also give thanks to Dr Iain Phillips for providing helpful midway feedback
and to Prof Rahul Santhanam and Dr Ján Pich for discussion in the mid-course. Without their help, the
completion of this project would have been impossible.

4

Contents

Abstract 3
Acknowledgements 3
Contents 4
1 Introduction 5
1.1 Background and motivation 5
1.2 Our contributions and organisation 8
1.3 Notations and conventions 9
2 Preliminaries and basic concepts 11
2.1 Computation models 11
2.2 Natural proofs 11
2.3 Pseudorandom generators 12
2.4 Super-bits and demi-bits 12
2.5 Infinitely often super-bits and demi-bits 14
2.6 Complexity class separation 15
3 Consequences of the purported existence of demi-bits 16
3.1 Stretching a demi-bit 16
4 Consequences of the purported nonexistence of demi-bits 18
4.1 PAC-learning 18
4.2 Learning based on nonexistence assumptions 18
5 Super-bits: characterizations and connections 22
5.1 Deterministic predictability 22
5.2 Nondeterministic predictability 23
5.3 One-way functions and hard-core predicates 26
5.4 Super-core predicates 27
6 Future directions 32
References 33

5

1 INTRODUCTION

In this chapter, we introduce the relevant background and summarise our contributions in the first
chapter. We defer formal definitions of concepts to the chapters that follow. Specifically, we review basic
concepts appearing across different chapters in Chapter 2, and recall or introduce concepts belonging to
a single chapter in the corresponding chapter. We assume readers have basic knowledge of complexity.
Please see Section 1.3 for notation declarations.

1.1 Background and motivation

Pseudorandomness and pseudorandom generators (PRGs) are essential concepts in fields such
as cryptography, artificial intelligence, complexity and algorithms, and beyond. Widespread applica-
tion of PRGs is revealed in derandomization, secure encryption, zero-knowledge proofs, cryptographic
protocols, etc [14]. PRGs efficiently expands short random seeds into longer strings which are compu-
tationally indistinguishable from truly random strings. We call such generated strings pseudorandom.
Pioneering work on computational indistinguishability were developed in [18, 34] in the context of
encryption. Yao [39] firstly defined PRGs as producing sequences that are computationally indistin-
guishable from uniform sequences and proved this definition of indistinguishability is equivalent to
deterministic unpredictability, which was used in an earlier definition of PRGs suggested by Blum and
Micali [9]. Loosely speaking, unpredictability means, given any strict prefix of a random string, it is
infeasible to predict the next bit.
The stretching length of a PRG 𝑔 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) , defined as𝑚 − 𝑛, measures how much 𝑔 can

stretch a random seed 𝑥 , and the hardness of 𝑔 describes how secure 𝑔 is. We say a PRG is C-hard if it
can sufficiently fool all distinguishers in class C. Strong PRGs are ones that are 𝑃-hard in the uniform
setting or 𝑃/𝑝𝑜𝑙𝑦-hard in the nonuniform setting. Unfortunately, any concrete example of strong PRGs
is unknown because the existence of such a PRG implies 𝑃 ≠ 𝑁𝑃 in the uniform setting and 𝑃/𝑝𝑜𝑙𝑦 ≠
𝑁𝑃/𝑝𝑜𝑙𝑦 in the nonuniform setting. Nevertheless, PRGs that can fool classes of weaker distinguishers
were constructed. Nisan and Wigderson [26] constructed PRGs safe against constant-depth circuits
based on a parity lower bound given in [19]. Babai, Nisan, and Szegedy [5] constructed logspace-hard
PRGs by considering multiparty communication protocol lower bounds. Other kinds of special-purpose
PRGs were also suggested. 𝑇 -wise independent generators in [3, 11] fool any distinguishers that only
observe 𝑡 locations in the output sequence. Small-bias generators in [4, 25] fool any linear test. Expander
Random Walk Generator in [1] produces a sequence of stings that hit any dense subset of strings with
probability close to the hitting probability of a random string.
One-way functions and hard-core predicates are concepts intimately related to PRGs and partic-

ularly to constructing candidates of strong PRGs. The notion of one-way functions was introduced by
Diffie and Hellman [12], and the notion of hard-core predicates originates from the work of Blum and
Micali [9]. Loosely speaking, a one-way function (family) 𝑓 is a one that is easy to compute but hard to
invert on average (with the probability taken over the range of 𝑓). More precisely, “easy to compute”
means 𝑓 is in 𝑃 or 𝑃/𝑝𝑜𝑙𝑦, and “hard to invert” means any efficient algorithm can only invert a negligi-
ble portion of 𝑦 = 𝑓 (𝑥) when 𝑥 is unseen. By “efficient”, in the uniform setting, we mean an algorithm
in bounded-error probabilistic polynomial time (𝐵𝑃𝑃), and in the nonuniform setting, an algorithm in
𝑃/𝑝𝑜𝑙𝑦, and by “invert”, we mean finding an 𝑥′ for a given 𝑦 in 𝑟𝑎𝑛𝑔𝑒 (𝑓) such that 𝑓 (𝑥′) = 𝑦. A neg-
ligible portion for us means a portion that is less than 1/𝑝 (𝑛) for any polynomial 𝑝 and all large 𝑛’s.
We say 𝑏 : {0, 1}𝑛 → {0, 1} in 𝑃 or 𝑃/𝑝𝑜𝑙𝑦 is a hard-core of a function 𝑓 if it is infeasible (a negligible
portion more than 1/2) to efficiently predict 𝑏 (𝑥) given 𝑓 (𝑥).

6

The existence of hard-core predicates is known (e.g., 𝑏 (𝑥) = 𝑥 [−1], the last bit of a string 𝑥 , is a
hard-core of the function 𝑓 (𝑥) = 𝑥 [1], the first bit of 𝑥), but the existence of a hard-core for a one-
way function and the existence of any one-way function at all are unknown. Goldreich and Levin [17]
proved the fact that the inner product 𝑚𝑜𝑑 2 is a hard-core for any one-way function of the form
𝑔(𝑥, 𝑟) = (𝑓 (𝑥), 𝑟) (where 𝑓 is any function and |𝑥 | = |𝑟 |) supposing some one-way function exists at
all. Sequentially, Håstad, Impagliazzo, Levin, and Luby [20] showed that strong PRGs exist if and only
if one-way functions exist. This theorem can also be stated equivalently as: a strong PRG exists if and
only if a hard-core of some one-way function exists.
Many candidates of strong PRGs were constructed by exploiting functions conjectured to be one-way

or/and their hard-cores (e.g, cf. [2, 21, 22]). [2] presented PRGs based on the intractability assumption
of factoring. [22] presented PRGs based on the intractability assumption of discrete-logarithm problem.
[21] presented PRGs based on the subset sum problem.
The existence of strong PRGs also imposes limitations on certain proof techniques, called natural

proofs, used in establishing circuit lower bounds.
The notion of natural proofs was introduced by Razborov and Rudich in [31]. Natural proofs for

proving circuit lower bounds are proofs that somehow use a natural combinatorial property of boolean
functions. A combinatorial property (or a property for short)𝐶 of boolean functions is a set of boolean
functions. We say a function 𝑓 has the property𝐶 if 𝑓 is in𝐶 . Let Γ and Λ be complexity classes, and 𝐹𝑛
be the set of all 𝑓 : {0, 1}𝑛 → {0, 1} . We say𝐶 is Γ-natural it itself or at least some subset𝐶′ of it satisfies
constructivity (whether an 𝑓 ∈ 𝐶′ is Γ-computable) and largeness (𝐶′ constitutes a nonnegligible portion
of 𝐹𝑛). We say𝐶 is useful againstΛ if every function family 𝑓 which has property𝐶 infinitely often is not
computable in Λ. The idea of natural proofs is that, if we want to prove some function family 𝑓 (e.g., the
boolean satisfiability problem SAT, or some other problem) in not in 𝑃/𝑝𝑜𝑙𝑦 (or some complexity class
Λ in general), we identify some natural combinatorial property 𝐶 of 𝑓 and show all function families
which have property𝐶 is not in 𝑃/𝑝𝑜𝑙𝑦 (i.e., useful against 𝑃/𝑝𝑜𝑙𝑦). If 𝑓 is 𝑁𝑃-complete (e.g., SAT), then
such a proof concludes 𝑃 ≠ 𝑁𝑃 .
Unfortunately, similarly to the result of Baker, Gill, and Solovay [6] who showed that relativizing

proof techniques could not solve problems such as 𝑃 ≠ 𝑁𝑃 , Razborov and Rudich argued that, based on
the existence assumption of strong PRGs, no 𝑃/𝑝𝑜𝑙𝑦-natural proofs can be useful against 𝑃/𝑝𝑜𝑙𝑦. They
showed that all the known proofs of lower bounds against non-monotone boolean circuits are natural
or can be presented as natural in some way. Examples include: [13, 19, 40] established lower bounds for
the parity function by𝐴𝐶0-natural proofs, and [7, 30, 35] established𝐴𝐶0 [𝑞] lower bounds with 𝑞 being
a prime power by 𝑁𝐶2-natural proofs (𝐴𝐶0 [𝑚] is the class of poly-size constant-size circuits allowing
𝑚𝑜𝑑 𝑚 gates).

In a follow-up paper of [31], Rudich [33] introduced, in the nonuniform setting, super-bits and
demi-bits as nondeterministic variants of strong PRGs, and showed that the existence of super-bits
rules out the existence of a larger class of natural proofs (than 𝑃/𝑝𝑜𝑙𝑦-natural proofs) useful against
𝑃/𝑝𝑜𝑙𝑦. Super-bits and demi-bits are PRGs secure against nondeterministic adversaries (i.e., adversaries
in 𝑁𝑃/𝑝𝑜𝑙𝑦). More specifically, super-bits and demi-bits both require a nondeterministic adversary to
meaningfully distinguish truly random strings from pseudorandom ones by certifying truly random
ones (i.e., an adversary outputs 1 if it thinks a given string is random and 0 otherwise). Thus, a nonde-
terministic distinguisher cannot break super-bits nor demi-bits by simply guessing a seed. The differ-
ence between super-bits and demi-bits is that demi-bits require their distinguishers to break them in a
stronger sense: a distinguisher must always be correct on the pseudorandom strings (i.e., always output
0). Thus, if a PRG 𝑔 is super-bit(s) (the plural here denotes 𝑔 may have stretching length more than 1; if
the stretching length is exactly 1, we say 𝑔 is a super-bit), no algorithms in 𝑁𝑃/𝑝𝑜𝑙𝑦 can break 𝑔 in the

7

weaker sense, and hence no algorithms in 𝑁𝑃/𝑝𝑜𝑙𝑦 can break 𝑔 in the stronger sense, which means 𝑔 is
also demi-bit(s). In other words, the existence of super-bits implies the existence of demi-bits, although
both are unknown (obviously, the existence of super-bits also implies the existence of strong PRGs). In
this paper, Rudich conjectured a concrete super-bit generator based on the hardness of the subset sum
problem studied in [21].
In the standard theory of pseudorandomness, a hard-bit (i.e., a strong PRG with stretching length

1) is shown to be stretchable to polynomially many hard-bits (i.e. a polynomial stretching-length) [9,
39] and can even be exploited to construct hard-to-break pseudorandom function generators (loosely
speaking, generators that generate pseudorandom functions indistinguishable from truly random ones)
[16]. As a hard-bit, a super-bit can also be stretched, using similar stretching algorithms, to polynomially
many super-bits and to pseudorandom function generators safe against nondeterministic adversaries
[33]. The proofs of the correctness of such stretching algorithms are based on a technique called the
hybrid argument [18] reviewed below. In contrast, whether a demi-bit can be stretched to two demi-
bits was even unknown before our work as a standard hybrid argument does not apply. However, demi-
bits stretching may have intriguing applications to proof complexity generators and in average-case
complexity.
We mentioned that a strong PRG exists if and only if a hard-core of some one-way function exists.

Thus, just as super-bits is the nondeterministic correspondence of strong PRGs, a meaningful question
to ask is:

What are the nondeterministic correspondences of one-way functions and hard-cores?
We shall call these nondeterministic variants of one-way functions and hard-cores “super” one-way
functions and super-cores, respectively. To come up with a reasonable definition of super one-way
functions is not an easy task because, for any function 𝑓 , a nondeterministic algorithm can always
invert a range-element𝑦 by guessing some 𝑥 and checking if 𝑓 (𝑥) = 𝑦. Similarly, a reasonable definition
of super-core predicates is non-trivial as well: for any function 𝑓 and predicate 𝑏, a nondeterministic
algorithm can predict 𝑏 (𝑥) when given 𝑓 (𝑥) as input by guessing 𝑥 and then applying 𝑏.
We also mentioned that, in the deterministic setting, the hardness of PRGs is equivalent to unpre-

dictability, but unpredictability beyond the deterministic setting had not attracted proper attention be-
fore our work. A better understanding of unpredictability beyond the deterministic setting would help
to better understand the nondeterminitic hardness of PRGs.
On the other hand, PAC-learning algorithms can be developed from breaking PRGs (e.g., cf. [8, 27]).

Themodel of PAC-learning (an abbreviation of probably approximately correct learning) was introduced
and elaborated by Valiant in [36–38]. In the PAC-learning model, the goal of a leaner is to learn an ar-
bitrary target function 𝑓 drawn from a target set (e.g., the class of decision trees, the class of boolean
conjunctions, or even 𝑃/𝑝𝑜𝑙𝑦). The target function is invisible to the learner. The learner receives sam-
ples (randomly or by querying) from an 𝑓 -oracle and selects a generalization function 𝑓 ′, called the
hypothesis, from some hypothesis class. The selected function must have low generalization error (the
“approximately correct” in “PAC”) with high probability (the “probably” in “PAC”). Furthermore, the
learner is expected to be efficient and to output hypotheses that are as well efficiently evaluable on any
given input.
The hybrid argument (a.k.a. the hybrid method, the hybrid technique, etc.) is a common proof tech-

nique in the study of complexity and is also used repeatedly in this thesis. The hybrid argument orig-
inated from the work of Goldwasser and Micali [18] and was named by Leonid Levin. (Please refer to
Section 1.3 for notations used below.) When we have a PRG 𝑔 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) , a distinguisher 𝐷 ,

8

and a function 𝑝 (usually a polynomial) such that

P[𝐷 (𝑈𝑚) = 1] − P[𝐷 (𝑔(𝑈𝑛)) = 1] ≥ 1/𝑝 (𝑛), (∗)

where𝑈𝑚 stands for the truly random strings and𝑔(𝑈𝑛) stands for the pseudorandom ones, the standard
hybrid argument defines a spectrum (i.e. an ordered set) of randomvariables𝐻𝑖 ’s, call hybrids, traversing
from one extreme, 𝑈𝑚 , to another, 𝑔(𝑈𝑛). A concrete example is 𝐻𝑖 := 𝑔(𝑈𝑛) [1...𝑖] ·𝑈𝑚−𝑖, 0 ≤ 𝑖 ≤ 𝑚. In
this example, indeed 𝐻0 = 𝑈𝑚 and 𝐻𝑚 = 𝑔(𝑈𝑛). Then the inequality (∗) can be written as:

1/𝑝 (𝑛) ≤ P[𝐷 (𝑈𝑚) = 1] − P[𝐷 (𝑔(𝑈𝑛)) = 1]
=
∑
𝑖

(P[𝐷 (𝐻𝑖) = 1] − P[𝐷 (𝐻𝑖+1) = 1]) .

Thus, a usual next step is to claim there exists some 𝑖 such that

P[𝐷 (𝐻𝑖) = 1] − P[𝐷 (𝐻𝑖+1) = 1] ≥ 1
𝑘 · 𝑝 (𝑛) ,

where 𝑘 is the total number of hybrids (in the above example, 𝑘 =𝑚). In a nutshell, we show that if we
can distinguish𝑈𝑚 from 𝑔(𝑈𝑛) by a 1/𝑝 (𝑛) portion, then we can distinguish some neighbouring pair of
hybrids 𝐻𝑖 from 𝐻𝑖+1 by a 1/(𝑘 · 𝑝 (𝑛)) portion. Please see Lemma 4.2.1 for a simple demonstration of
the hybrid argument.
As we have mentioned, a standard hybrid argument cannot be applied to prove a stretched PRG 𝑔

by some stretching algorithm, from a single demi-bit 𝑏, is still demi-bits. We now intuitively explain
the reason of this. A usual proof goes like this: we assume, for a contradiction, 𝑔 is not demi-bits.
Then there are some distinguisher 𝐷 of 𝑔 and function 𝑝 such that P[𝐷 (𝑈𝑚) = 1] − P[𝐷 (𝑔(𝑈𝑛)) = 1] ≥
1/𝑝 (𝑛), and in particular P[𝐷 (𝑔(𝑈𝑛)) = 1] = 0 as 𝐷 is a breaker of demi-bits, and we hope we can
construct some qualified distinguisher 𝐷′ of 𝑏 based 𝐷 . However, as we saw above, a standard hybrid
argument only yields that P[𝐷 (𝐻𝑖) = 1] − P[𝐷 (𝐻𝑖+1) = 1] ≥ 1/𝑝′(𝑛) for some function 𝑝′ and cannot
deduce that P[𝐷 (𝐻𝑖+1) = 1] = 0. Then we are usually at a wit’s end of constructing any 𝐷′ such that
P[𝐷′(𝑏 (𝑈𝑛)) = 1] = 0.

1.2 Our contributions and organisation

This thesis defines and studies nondeterministic variants and counterparts of established concepts and
results, related to pseudorandom, in the deterministic setting. As Rudich did in [33], our study is also
in the nonuniform setting. We summarise our main contributions in this section.
In Chapter 2, we formulate the concepts of infinitely often (i.o.) super-bits and demi-bits, which are

only secure for infinitely many 𝑛’s (where 𝑛 denotes the length of input seeds), and show that we can
construct a (full) super-bit/demi-bit defined as usual from an i.o. one which is “decently” often.
In Chapter 3, we provide an algorithm that achieves a sublinear-stretch for any given demi-bit and

thus solve the open problemwhether a demi-bit is stretchable at all.We overcome the barrier for proving
the stretchability of demi-bits by a clever and more flexible use of the hybrid technique combined with
some other tricks. We encourage the reader to visit the exact proof of Theorem 3.1.2 for the details.
In Chapter 4, we formulate rigorously a nonuniform version of PAC-learning. Furthermore, based

on a sketch by Pich [28], we give a rigorous proof that:

theoRem 1.2.1 (infoRmal). Demi-bits exist assuming the class of polynomial-size boolean circuits is not
PAC-learnable by sub-exponential circuits.

9

The informal theorem stated here is, in fact, a contrapositive to theorems appearing in Chapter 4. This
result demonstrates the plausibility of the existence of demi-bits because it is widely believed (e.g., cf.
[29]) that learning 𝑃/𝑝𝑜𝑙𝑦 is hard.
In Chapter 5, We initiate the study of unpredictability beyond the deterministic setting. We propose

four stronger notions of unpredictability for probability ensembles:
(1) 𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictability: the capacity of being unpredictable by 𝑁𝑃/𝑝𝑜𝑙𝑦 predictors.
(2) 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictability: the capacity of being unpredictable by 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦 predictors.
(3) ∪-unpredictability: the capacity of being unpredictable by predictors in 𝑁𝑃/𝑝𝑜𝑙𝑦 and predictors

in 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦.
(4) ∪-unpredictability: the capacity of being unpredictable by nondeterministic function-computing

predictors.
We then characterise the nondeterministic hardness of pseudorandom generators from a predictability
perspective (here, 𝐴 ≤ 𝐵 denotes 𝐵 implies 𝐴):
theoRem 1.2.2 (infoRmal).

∩-unpredictable ≤ super-polynomially nondeterministic-hard ≤ ∪-unpredictable

and

∩-unpredictable ≤ 𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable ∨ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable ≤ ∪-unpredictable.

Moreover, we pin down a sensible definition of super-core predicates served as a nondeterministic
correspondence of hard-core predicates. We establish:
theoRem 1.2.3 (infoRmal). There is a super-core 𝑏 of some non-shrinking function if and only if there is
a super-bit.

as a counterpart of the known equivalence between the existence of a hard-core of some one-way
function and the existence of a strong PRG. We also show that a certain class of functions, which may
have hard-cores, can not possess any super-core:
theoRem 1.2.4 (infoRmal). If a length-preserving function 𝑓 is “predominantly” one-to-one, then 𝑓 does
not have a super-core.

We say a function 𝑓 is “predominantly” one-to-one if |𝑓 −1(𝑓 (𝑥)) | = 1 for at least a 2/3-portion of 𝑥 ’s in
𝑑𝑜𝑚𝑎𝑖𝑛(𝑓). What we achieve in chapter 5 provides a big step forward to better understand nondetermin-
istic hardness of PRGs and to suggest a sensible definition of one-way functions in the nondeterministic
setting.

1.3 Notations and conventions

The thesis follows the following conventions:
• N denotes the set of positive integers (excluding 0). For 𝑛 ∈ N, [𝑛] denotes {1, ..., 𝑛}. [0] is the

empty set ∅.
• The size of a Boolean circuit C, denoted as 𝑠𝑖𝑧𝑒 (𝐶) or |𝐶 |, is the total number of gates (including

the input gates). 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑠] denotes the Boolean circuits of size at most s. If 𝑠 : N → N is a
function,𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑠] contains all the Boolean circuit families𝐶𝑛 such that |𝐶𝑛 | ≤ 𝑠 (𝑛) for all large
𝑛’s.

• All the distributions we consider in this dissertation are, by default, uniform. 𝑈𝑛 denotes the
uniform distribution over {0, 1}𝑛 unless stated otherwise.

• For functions 𝑓 , 𝑔 : {0, 1}𝑛 → {0, 1}, we say 𝑔 𝛾-approximates 𝑓 if P𝑥 [𝑓 (𝑥) = 𝑔(𝑥)] ≥ 𝛾 .

10

• For a string 𝑥 , where its bits are indexed from left to right by 1 to |𝑥 |, 𝑥 [𝑖] denotes its 𝑖-th bit, and
𝑥 [𝑖 ... 𝑗] denotes the sub-string indexed from 𝑖 to 𝑗 of 𝑥 (if 𝑖 > 𝑗 , 𝑥 [𝑖 ... 𝑗] = 𝜀, the empty string).
𝑥 [−𝑖] denotes its 𝑖-th last bit.

• For strings 𝑥,𝑦, we may use any of the following to denote the concatenation of 𝑥 and 𝑦: 𝑥𝑦,
(𝑥,𝑦), 𝑥 · 𝑦.

• Wemay not verbally distinguish a functionwith its string representation (this can be a truth table,
or a string encoding a circuit representation of this function, etc.) when there is no ambiguity.

We may also follow other common conventions used in the complexity community or literature.

11

2 PRELIMINARIES AND BASIC CONCEPTS

This chapter reviews and introduces preliminaries that appear across the subsequent chapters.

2.1 Computation models

Definition 2.1.1 (Randomized ciRcuits). A circuit 𝐶 is a randomized circuit if, in addition to the
standard input bits, it contains zero or more random input bits (i.e., bits taken from a random distribution).
We call {𝐶𝑛} a randomized circuit family if for every 𝑛,𝐶𝑛 is a randomized circuit with 𝑛 “user”-input
bits (i.e., standard input bits as a non-randomized circuit has).

If a randomized circuit family {𝐶𝑛} is in 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑠 (𝑛)], that means for every large 𝑛, the randomized
circuit 𝐶𝑛 has size at most 𝑠 (𝑛), which automatically constrains the number of the random input bits
that 𝐶𝑛 is allowed to have.

Definition 2.1.2 (nondeteRministic/co-nondeteRministic ciRcuits). A circuit 𝐶 is a (co-
)nondeterministic circuit if, in addition to the standard input bits, it contains zero or more nondetermin-
istic input bits. We call {𝐶𝑛} a (co-)nondeterministic circuit family if for every 𝑛, 𝐶𝑛 is a randomized
circuit with 𝑛 “user”-input bits. For a nondeterministic/co-nondeterministic circuit with one-bit output, it
is said to accept/reject if and only if there is a choice of nondeterministic bits that causes the circuit to
accept/reject its input (composed of the deterministic part and the nondeterministic choice).

Definition 2.1.3 (oRacle ciRcuits). 𝐶 is an oracle circuit if it is allowed to equip with oracle gates. We
write 𝐶 as 𝐶 𝑓1,...,𝑓𝑘 if 𝐶 has oracle gates computing Boolean functions 𝑓1, ..., 𝑓𝑘 .

We note that an oracle gate computing a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} has fan-in 𝑛, and in
our model, an oracle gate is allowed to appear in any place of the circuit.

2.2 Natural proofs

Let 𝐹𝑛 be the set of all functions 𝑓 : {0, 1}𝑛 → {0, 1} and Γ and Λ be complexity classes. We call
𝐶 = (𝐶𝑛)𝑛∈N a combinatorial property of boolean functions if each 𝐶𝑛 ⊆ 𝐹𝑛 .

Definition 2.2.1 (natuRal pRopeRties [31]). We say a combinatorial property 𝐶 = (𝐶𝑛)𝑛∈N is 𝚪-
natural if some 𝐶′ = (𝐶′

𝑛)𝑛∈N with 𝐶′
𝑛 ⊆ 𝐶𝑛 for each 𝑛 satisfies:

• Constructivity. Whether 𝑓 ∈ 𝐶′
𝑛 is computable in Γ when 𝑓 is encoded by its truth table as input.

• Largeness. |𝐶′
𝑛 | ≥ 2−𝑂 (𝑛) · |𝐹𝑛 | for all large 𝑛’s.

We say 𝐶 is useful against 𝚲 if it satisfies:

• Usefulness. For any function family 𝑓 = (𝑓𝑛)𝑛∈N, if 𝑓𝑛 ∈ 𝐶𝑛 infinitely often, then 𝑓 ∉ Λ.

A circuit lower bound proof that some explicit function (family) is not in Γ is call a Γ-natural proof
against Λ if it uses, more or less explicitly, some Γ-natural combinatorial property useful against Λ.
Especially, a 𝑃/𝑝𝑜𝑙𝑦-natural proof against 𝑃/𝑝𝑜𝑙𝑦 is a proof that uses a 𝑃/𝑝𝑜𝑙𝑦-natural combinatorial
properties useful against 𝑃/𝑝𝑜𝑙𝑦.
We note that the notion of natural proofs, unlike natural combinatorial property, is not defined in a

mathematically rigorous sense. Nevertheless, the use of the terminology “natural proof” in a statement
more intuitively embodies our intention and also does not affect the rigorousness of the statement.
Whenever we say Γ-natural proofs do or do not exist, what we mean, in a mathematically rigorous
sense, is Γ-natural combinatorial properties do or do not exist.

12

2.3 Pseudorandom generators

Definition 2.3.1 (pseudoRandom geneRatoRs). A function family 𝑔𝑛 : {0, 1}𝑛 → {0, 1}𝑙 (𝑛) is a pseu-
dorandom generator (PRG) if 𝑔𝑛 ∈ 𝑃/𝑝𝑜𝑙𝑦 and 𝑙 (𝑛) > 𝑛 for every 𝑛. We call such an 𝑙 a stretching
function and call 𝑙 (𝑛) − 𝑛 the stretching length of 𝑔𝑛 (sometimes, we alternatively call 𝑙 (𝑛) the stretching
length).

In fact, inmore general settings, the requirement of being 𝑃/𝑝𝑜𝑙𝑦-computable for PRGs is unnecessary
when, for example, in the context of derandomization (cf. [26]). Nevertheless, all the PRGs concerned
in following thesis will be in 𝑃/𝑝𝑜𝑙𝑦.
We review the definition of the standard hardness for PRGs:

Definition 2.3.2 (standaRd haRdness). Let 𝑔𝑛 : {0, 1}𝑛 → {0, 1}𝑙 (𝑛) be a PRG. Then the hardness
𝐻 (𝑔𝑛) of 𝑔𝑛 is the minimal 𝑠 for which there exists a circuit 𝐷 of size at most 𝑠 such that���� P

𝑦∈{0,1}𝑙 (𝑛)
[𝐷 (𝑦) = 1] − P

𝑥∈{0,1}𝑛
[𝐷 (𝑔𝑛 (𝑥)) = 1]

���� ≥ 1/𝑠 (𝑛).

The order of the two terms in the absolute value and the absolute value itself are immaterial since in
the deterministic setting, we can always flip the output bit of a distinguisher 𝐷 .

Definition 2.3.3 (stRong pseudoRandom geneRatoRs). A PRG 𝑔 : {0, 1}𝑛 → {0, 1}𝑙 (𝑛) is called a
strong PRG if for every 𝐷 in 𝑃/𝑝𝑜𝑙𝑦, every polynomial 𝑝 , and all sufficiently large 𝑛’s,���� P

𝑦∈{0,1}𝑙 (𝑛)
[𝐷 (𝑦) = 1] − P

𝑥∈{0,1}𝑛
[𝐷 (𝑔(𝑥)) = 1]

���� < 1/𝑝 (𝑛).

A strong PRG is defined to be a PRG safe against all polynomial-size distinguishers. An alternative
definition used in some resources is: a PRG with hardness at least 2𝑛𝜀 for some 𝜀 > 0 and all large 𝑛’s,
which defines a “stronger” PRG.

We comment that a function 𝑓 (𝑛) : N → R+ is (at least) exponential if there is some 𝜀 > 0 such
that 𝑓 (𝑛) ≥ 2𝑛

𝜀 for all large 𝑛’s. A function is not (at least) exponential if for every 𝜀 > 0, there exist
infinitely many 𝑛’s such that 𝑓 (𝑛) < 2𝑛

𝜀 , which is equivalent to: there is an infinite monotone sequence
(𝑛𝑖) ⊆ N such that 𝑓 (𝑛𝑖) is sub-exponential in 𝑛𝑖 (i.e., 𝑓 (𝑛𝑖) = 2𝑛

𝑜 (1)
𝑖).

The existence of a strong PRG is quite plausible because many intractable problems (e.g., factoring)
seem to provide a basis for constructing a such generator [31]. PRGs used in practice (built from block
ciphers) have also been subjected to significant public scrutiny and resisted all attempts at attacks so
far [32].

ConjectuRe 2.3.4. There is a strong PRG.

The existence of a strong PRG rules out the existence of 𝑃/𝑝𝑜𝑙𝑦-natural proofs useful against 𝑃/𝑝𝑜𝑙𝑦
[31].

2.4 Super-bits and demi-bits

Rudich [33] proposed nondeterministic variants of the concept of standard hardness. In Section 2.4, we
conduct a brief literature review of the main results and open problems in [33] that are relevant to our
thesis.

Definition 2.4.1 (NondeteRministic HaRdness). Let 𝑔𝑛 : {0, 1}𝑛 → {0, 1}𝑙 (𝑛) be a PRG. Then the
nondeterministic hardness 𝐻nh(𝑔𝑛) (also called super-hardness) of the PRG 𝑔𝑛 is the minimal 𝑠 for

13

which there exists a nondeterministic circuit 𝐷 of size at most 𝑠 such that

P
𝑦∈{0,1}𝑙 (𝑛)

[𝐷 (𝑦) = 1] − P
𝑥∈{0,1}𝑛

[𝐷 (𝑔𝑛 (𝑥)) = 1] ≥ 1
𝑠
. (1)

In contrast to the definition of deterministic hardness, the order of the two possibilities on the LHS is
crucial. This order forces a nondeterministic distinguisher to certify the randomness of a given input.
Reversing the order or keeping the absolute value trivialize the task of breaking 𝑔: a distinguisher𝐷 can
simply guess a seed 𝑥 and check if𝑔(𝑥) equals the given input. For such a𝐷 , we have P[𝐷 (𝑔(𝑥)) = 1] = 1
and P[𝐷 (𝑦) = 1] ≤ 1/2.
We call exponentially super-hard PRGs super-bits:

Definition 2.4.2 (SupeR-bits). 𝑔 : {0, 1}𝑛 → {0, 1}𝑛+𝑐 for some 𝑐 : N→ N is called 𝑐 super-bit(s) (or a
𝑐-super-bit(s)) if 𝐻nh(𝑔) ≥ 2𝑛

𝜀
for some 𝜀 > 0 and all sufficiently large 𝑛’s. In particular, if 𝑐 = 1, we call 𝑔

a super-bit.

Super-bits semantically means pseudorandom bits that can fool “super” powerful adversaries. Rudich
constructed a candidate super-bit based on subset sum and conjectured that:
ConjectuRe 2.4.3 (SupeR-bit conjectuRe). There exists a super-bit.

The core theorem in this paper of him is as follows, which is proved based on the stretchability of
super-bits as we have discussed in Chapter 1.

theoRem 2.4.4. If super-bits exist, then there are no 𝑁𝑃/𝑞𝑝𝑜𝑙𝑦-natural properties useful against 𝑃/𝑝𝑜𝑙𝑦,
where 𝑁𝑃/𝑞𝑝𝑜𝑙𝑦 is the class of languages recognised by non-uniform, quasi-polynomial-size circuit fami-
lies.

We remark that, in this theorem, the “largeness” requirement of 𝑁𝑃/𝑞𝑝𝑜𝑙𝑦-natural properties can in
fact be relaxed to |𝐶′

𝑛 | ≥ 2−𝑛
𝑂 (1) · |𝐹𝑛 | (cf. Definition 2.2.1).

Rudich also proposed another more intuitive notion (in his opinion), call demi-hardness, than super-
hardness:
Definition 2.4.5 (Demi-HaRdness). Let 𝑔𝑛 : {0, 1}𝑛 → {0, 1}𝑙 (𝑛) be a PRG in 𝑃/𝑝𝑜𝑙𝑦. Then the demi-
hardness𝐻dh(𝑔𝑛) of the PRG 𝑔𝑛 is the minimal 𝑠 for which there exists a nondeterministic circuit 𝐷 of size
at most 𝑠 such that

P
𝑦∈{0,1}𝑙 (𝑛)

[𝐷 (𝑦) = 1] ≥ 1
𝑠

and P
𝑥∈{0,1}𝑛

[𝐷 (𝑔𝑛 (𝑥)) = 1] = 0. (2)

We note (2), which requires a distinguisher to make no mistake on generated strings, is a stronger
requirement than (1). Thus, 𝐻nh(𝑔) ≤ 𝐻dh(𝑔) for every generator 𝑔.
We call exponentially demi-hard PRGs demi-bits, where “demi” semantically means (in Rudich’s opin-

ion) “half”.
Definition 2.4.6 (Demi-bits). 𝑔 : {0, 1}𝑛 → {0, 1}𝑛+𝑐 for some 𝑐 : N → N is called 𝑐 demi-bit(s) (or a
𝑐-demi-bit(s)) if 𝐻dh(𝑔) ≥ 2𝑛

𝜀
for some 𝜀 > 0 and all sufficiently large 𝑛’s. In particular, if 𝑐 = 1, we call 𝑔

a demi-bit.

As 𝐻nh(𝑔) ≤ 𝐻dh(𝑔), it is reasonable to conjecture:
ConjectuRe 2.4.7 (Demi-bit conjectuRe). There exists a demi-bit.

and to ask:
Open PRoblem 2.4.8. Does the existence of a demi-bit imply the existence of a super-bit?

14

As we have discussed, A super-bit can be stretched to polynomially many super-bits and to pseudo-
random function generators safe against nondeterministic adversaries. In contrast, whether a demi-bit
can be stretched to two demi-bits was unknown before our work. We will still list this question here as
it was proposed in Rudich’s paper but resolve this open problem in our next chapter.

Open PRoblem 2.4.9. If you have a demi-bit, can you stretch it to a 2-demi-bits?

The question which is still open is:

Open PRoblem 2.4.10. If you have a demi-bit, can you build a pseudorandom function generator with
exponential demi-hardness?

A positive answer to the last problem would answer:

Open PRoblem 2.4.11. Does the existence of a demi-bit rules out the existence of 𝑁𝑃/𝑞𝑝𝑜𝑙𝑦-natural prop-
erties against 𝑃/𝑝𝑜𝑙𝑦?

2.5 Infinitely often super-bits and demi-bits

We formalize a weaker variant of super-bits/demi-bits, which only requires infinitely many 𝑛’s to be
“hard” (recall super-bits/demi-bits require hardness for all sufficiently large 𝑛’s). This variant is occa-
sionally concerned implicitly in the literature but may not have been formally defined.

Definition 2.5.1 (infinitely often supeR-bits/demi-bits). 𝑔 : {0, 1}𝑛 → {0, 1}𝑛+𝑐 for some 𝑐 : N→ N
is called 𝑐 infinitely often (i.o.) super-bit(s)/demi-bit(s) if 𝐻nh(𝑔) ≥ 2𝑛

𝜀
/𝐻dh(𝑔) ≥ 2𝑛

𝜀
for some 𝜀 > 0

and infinitely many 𝑛’s. In particular, if 𝑐 = 1, we call 𝑔 an i.o. super-bit/demi-bit.

In fact, it is an easy observation that we can construct, from a reasonably often i.o. super-bit/demi-bit,
a super-bit/demi-bit, by properly choosing a prefix of a given input 𝑛 and applying the i.o. algorithm
to the prefix. More details follow next. However, we (the author) are unaware if we can construct a
super-bit/demi-bit from any i.o. super-bit/demi-bit.

Lemma 2.5.2. Assume 𝑔𝑛 : {0, 1}𝑛 → {0, 1}𝑛+𝑐 for some 𝑐 ∈ N are 𝑐 i.o. super-bits/demi-bits. If there exist a
polynomial 𝑝 and an infinite monotone sequence (𝑛𝑖)𝑖∈N ⊆ N such that: (1) 𝑛𝑖+1 ≤ 𝑝 (𝑛𝑖), and (2) for some
𝜀 > 0 and every 𝑛 ∈ (𝑛𝑖)𝑖∈N, 𝐻nh(𝑔𝑛) ≥ 2𝑛

𝜀
/𝐻dh(𝑔𝑛) ≥ 2𝑛

𝜀
, then there exists a 𝑐-super-bits/𝑐-demi-bits

constructed from 𝑔𝑛 .

PRoof. We present the proof for constructing super-bits from i.o. super-bits, and the proof for con-
structing demi-bits from i.o. demi-bits is almost identical.
Assume 𝑔, (𝑛𝑖), 𝑝 are as given in the lemma statement. Denote𝑚 = 𝑛+𝑐 and𝑚𝑖 = 𝑛𝑖 +𝑐 . We construct

a new generator 𝐺 as follows:
Given 𝑥𝑛 ∈ {0, 1}𝑛 , there is an 𝑖 such that 𝑛𝑖 ≤ 𝑛 < 𝑛𝑖+1. Define 𝐺 (𝑥𝑛) = 𝑔(𝑎) · 𝑏, where
𝑎 = 𝑥𝑛 [1...𝑛𝑖], 𝑏 = 𝑥𝑛 [𝑛𝑖 + 1...𝑛]. We note |𝐺 (𝑥𝑛) | = |𝑔(𝑎) | + |𝑏 | = 𝑛 + 𝑐 .

We want to show that 𝐺 is indeed super-bits. Suppose, for a contradiction, 𝐺 is not. Then there exist
an infinite monotone sequence 𝑆 ⊆ N, a sub-exponential function 𝑠 , and a distinguisher 𝐷 of size 𝑠 such
that for every 𝑛 ∈ 𝑆 ,

1/𝑠 (𝑛) ≤ P[𝐷 (𝑈𝑚) = 1] − P[𝐷 (𝐺 (𝑈𝑛)) = 1] = P[𝐷 (𝑈𝑚𝑖𝑈𝑚−𝑚𝑖) = 1] − P[𝐷 (𝑔(𝑈𝑛𝑖)𝑈𝑚−𝑚𝑖) = 1]
Thus, for every 𝑛 ∈ 𝑆 , there exists a fixed string𝑤 = 𝑤 (𝑛) such that

1/𝑠 (𝑛) ≤ P[𝐷 (𝑈𝑚𝑖𝑤) = 1] − P[𝐷 (𝑔(𝑈𝑛𝑖)𝑤) = 1] .

We now construct a new distinguisher 𝐷′ for 𝑔 as follows:

15

Given 𝑌 ∈ {0, 1}𝑚𝑖 as input, if there exists an 𝑛 ∈ 𝑆 such that 𝑛𝑖 ≤ 𝑛 < 𝑛𝑖+1(≤ 𝑝 (𝑛𝑖)),
𝐷′ outputs 𝐷 (𝑌𝑤 (𝑛)), and otherwise 𝐷′ always outputs 0 (which means 𝐷′ fails to do
anything for such an 𝑛𝑖).

Note that the (1) 𝑛𝑖+1 ≤ 𝑝 (𝑛𝑖) assumption guarantees the efficiency of 𝐷′. As 𝑆 is infinite and every
𝑛 ∈ 𝑆 is between some 𝑛𝑖 and 𝑛𝑖+1, there are infinitely many 𝑛𝑖 ’s such that:

P[𝐷′(𝑈𝑚𝑖) = 1] − P[𝐷′(𝑔(𝑈𝑛𝑖)) = 1] = P[𝐷 (𝑈𝑚𝑖𝑤) = 1] − P[𝐷 (𝑔(𝑈𝑛𝑖)𝑤) = 1] ≥ 1/𝑠 (𝑛)
This shows, for infinitelymany𝑛𝑖 ’s,𝐻nh(𝑔(𝑛𝑖)) ≤ 1/𝑠′(𝑛) for some sub-exponential 𝑠′, which contradicts
the assumption (2) in the lemma statement. ■

Remark. Lemma 2.5.2 is often used implicitly in the constructions of super-bits and demi-bits.

2.6 Complexity class separation

Although in this thesis, we will not consider class separation problems exclusively, it is worth mention-
ing that the existence assumptions of certain PRGs are stronger than certain complexity class separa-
tions.
If there exists a strong PRG 𝑔, then 𝑃/𝑝𝑜𝑙𝑦 ≠ 𝑁𝑃/𝑝𝑜𝑙𝑦 because an 𝑁𝑃/𝑝𝑜𝑙𝑦-distinguisher can easily

break 𝑔 by guessing a seed 𝑥 and outputs 1 if and only if 𝑔(𝑥) equals the given input. Similarly, if there
exists a demi-bit 𝑏, then 𝑁𝑃/𝑝𝑜𝑙𝑦 ≠ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦 because an 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-distinguisher can easily break
𝑔 by guessing a seed 𝑥 and outputs 0 if and only if 𝑔(𝑥) equals the given input.

16

3 CONSEQUENCES OF THE PURPORTED EXISTENCE OF DEMI-BITS

In this chapter, we answer affirmatively whether a demi-bit is stretchable, which had been an open
problem for about 25 years.

3.1 Stretching a demi-bit

We propose Algorithm 3.1.1, which stretches a single demi-bit to 𝑛𝑐 demi-bits for any 𝑐 < 1, and verify
the correctness of this stretching algorithm (i.e., verify the exponential demi-hardness of the new elon-
gated generator). Intuitively, Algorithm 3.1.1 partitions a given seed into disjoint pieces and apply the
1-demi-bit generator to each piece. The algorithm proposed here is very similar to other stretching or
amplification algorithms seen in the literature (e.g., cf. [24, 39]). The real difficulty of demi-bit stretch-
ing comes from to prove the correctness of the attempted stretch (i.e., to proof the stretching algorithm
applied preserve exponential demi-hardness).

AlgoRithm 3.1.1. Suppose 𝑏 is a demi-bit and 𝑚 = ⌈𝑁 𝑐⌉ for some 0 < 𝑐 < 1. We define a new PRG 𝑔
as follows: given input 𝑥 of length 𝑁 , let 𝑛 = ⌊𝑁𝑚 ⌋ and say 𝑥 = 𝑥1𝑥2...𝑥𝑚𝑟 , where each 𝑥𝑖 has length 𝑛.
𝑔(𝑥) = 𝑏 (𝑥1)...𝑏 (𝑥𝑚)𝑟 . We note that 𝑔 has stretching length𝑚.

Wemake use of amodified hybrid argument combinedwith clever use of nondeterminism and nonuni-
formity to establish the following theorem. In the proof, we reserve the bold face for random variables.

theoRem 3.1.2. 𝑔 defined in Algorithm 3.1.1 has at least exponential demi-hardness.

PRoof. Given any 𝑐 < 1, let𝑚 = ⌈𝑁 𝑐⌉. Suppose, for a contradiction, 𝑔 does not have exponential demi-
hardness. That is, there is a sub-exponential size nondeterministic circuit 𝐷 such that, for infinitely
many 𝑁 ’s (without loss of generality, we assume𝑚 |𝑁 and let 𝑛 = 𝑁 /𝑚), P[𝐷 (y1, . . . , ym) = 1] ≥ 1/|𝐷 |
and P[𝐷 (𝑏 (x1), . . . , 𝑏 (xm)) = 1] = 0, where x1, . . . , xm are totally independent length-𝑛 random strings
and y1, . . . , ym are totally independent length-(𝑛 + 1) random strings. Our aim is to efficiently break 𝑏
in the desired sense.
We define a new nondeterministic circuit 𝐷′ which takes a pair of parameters: the first is the same as

𝐷’s, an (𝑁 +𝑚)-bit string 𝑦1...𝑦𝑚 , and the second is 𝑖 ∈ {0, 1, . . . ,𝑚} (with 𝑖 properly encoded):
Given input (𝑦1...𝑦𝑚, 𝑖), 𝐷′ guesses 𝑛-bit strings 𝑥1, . . . , 𝑥𝑖 and does whatever 𝐷 does on
𝑏 (𝑥1)...𝑏 (𝑥𝑖)𝑦𝑖+1...𝑦𝑚 .

We observe that P[𝐷′(y1...ym, 0) = 1] = P[𝐷 (y1...ym) = 1] ≥ 1/|𝐷 | and P[𝐷′(𝑏 (x1)...𝑏 (xm),𝑚) = 1] =
P[𝐷 (𝑏 (x1)...𝑏 (xm)) = 1] = 0. 𝐷′ is also of sub-exponential size.
A hybrid argument applied to terms P[𝐷′(y1...ym, 0) = 1], . . ., P[𝐷′(𝑏 (x1)...𝑏 (xi)yi+1...ym, 𝑖) = 1], . . .,
P[𝐷′(𝑏 (x1)...𝑏 (xm),𝑚) = 1] gives that, for each of those 𝑁 , there is an 𝑖 = 𝑖 (𝑁) such that

P[𝐷′(𝑏 (x1)...𝑏 (xi−1)yi...ym, 𝑖 − 1) = 1] ≥ 1/𝑓 (𝑁)

and

P[𝐷′(𝑏 (x1)...𝑏 (xi)yi+1...ym, 𝑖) = 1] ≤ 1/𝑠 (𝑁)

for some sub-exponential 𝑓 (𝑁) and some at least exponential 𝑠 (𝑁).
We let 𝑆 = {0, 1}(𝑛+1)×(𝑚−𝑖) , the set of (𝑚−𝑖)-tuples of (𝑛+1)-bit strings, and let 𝑆1 = {(𝑦𝑖+1, . . . , 𝑦𝑚) ∈

𝑆 : ∃(𝑥1, . . . , 𝑥𝑖) ∈ {0, 1}𝑛×𝑖, 𝐷 (𝑏 (𝑥1)...𝑏 (𝑥𝑖)𝑦𝑖+1...𝑦𝑚) = 1} and 𝑆2 = 𝑆 \ 𝑆1. We note that (1)
𝐷′(𝑏 (𝑥1)...𝑏 (𝑥𝑖−1)𝑦𝑖𝑦𝑖+1...𝑦𝑚, 𝑖 − 1) = 1 if and only if 𝐷′(𝑏 (0𝑛)...𝑏 (0𝑛)𝑦𝑖𝑦𝑖+1...𝑦𝑚, 𝑖 − 1) = 1, and (2)
𝐷′(𝑏 (𝑥1)...𝑏 (𝑥𝑖−1)𝑏 (𝑥𝑖)𝑦𝑖+1...𝑦𝑚, 𝑖) = 1 if and only if (𝑦𝑖+1, . . . , 𝑦𝑚) ∈ 𝑆1.

17

Therefore,
1/𝑓 (𝑁) ≤ P[𝐷′(𝑏 (x1)...𝑏 (xi−1)yiyi+1...ym, 𝑖 − 1) = 1]

= P[𝐷′(𝑏 (x1)...𝑏 (xi−1)yiyi+1...ym, 𝑖 − 1) = 1|yi+1...ym ∈ 𝑆1] ∗ P[yi+1...ym ∈ 𝑆1] +
P[𝐷′(𝑏 (x1)...𝑏 (xi−1)yiyi+1...ym, 𝑖 − 1) = 1|yi+1...ym ∈ 𝑆2] ∗ P[yi+1...ym ∈ 𝑆2]

≤ 1 ∗ P[yi+1...ym ∈ 𝑆1] +
P[𝐷′(𝑏 (0𝑛)...𝑏 (0𝑛)yiyi+1...ym, 𝑖 − 1) = 1|yi+1...ym ∈ 𝑆2] ∗ P[yi+1...ym ∈ 𝑆2]

= P[𝐷′(𝑏 (x1)...𝑏 (xi−1)𝑏 (xi)yi+1...ym, 𝑖) = 1] +
P[𝐷′(𝑏 (0𝑛)...𝑏 (0𝑛)yiyi+1...ym, 𝑖 − 1) = 1|yi+1...ym ∈ 𝑆2] ∗ P[yi+1...ym ∈ 𝑆2]

≤ 1/𝑠 (𝑁) + P[𝐷′(𝑏 (0𝑛)...𝑏 (0𝑛)yiyi+1...ym, 𝑖 − 1) = 1|yi+1...ym ∈ 𝑆2] ∗ P[yi+1...ym ∈ 𝑆2]
(in particular, this implies P[yi+1...ym ∈ 𝑆2] > 0)

≤ 1/𝑠 (𝑁) + P[𝐷′(𝑏 (0𝑛) ...𝑏 (0𝑛)yiyi+1...ym, 𝑖 − 1) = 1|yi+1...ym ∈ 𝑆2]

Hence, there is a sub-exponential 𝑓 ′ such that
P[𝐷′(𝑏 (0𝑛)...𝑏 (0𝑛)yiyi+1...ym, 𝑖 − 1) = 1|yi+1...ym ∈ 𝑆2] ≥ 1/𝑓 ′(𝑁),

which means there is a particular 𝑦𝑖+1...𝑦𝑚 ∈ 𝑆2 such that
P[𝐷′(𝑏 (0𝑛)...𝑏 (0𝑛)yi𝑦𝑖+1...𝑦𝑚, 𝑖 − 1) = 1] ≥ 1/𝑓 ′(𝑁).

We define another nondeterministic circuit 𝐶 by 𝐶 (𝑦𝑖) = 𝐷′(𝑏 (0𝑛) ...𝑏 (0𝑛)𝑦𝑖𝑦𝑖+1...𝑦𝑚, 𝑖 − 1) with
𝑦𝑖 ∈ {0, 1}𝑛+1 as input. As 𝐷′ is of sub-exponential size in 𝑁 and 𝑛 is polynomially related to 𝑁 , 𝐶
is of sub-exponential size in 𝑛. We now argue that 𝐶 breaks 𝑏 in the desired sense. For infinitely many
𝑛’s, (1) P[𝐶 (yi) = 1] = P[𝐷′(𝑏 (0𝑛)...𝑏 (0𝑛)yi𝑦𝑖+1...𝑦𝑚, 𝑖 − 1) = 1] ≥ 1/𝑓 ′(𝑁), and (2) P[𝐶 (𝑏 (xi)) = 1] =
P[𝐷′(𝑏 (0𝑛)...𝑏 (0𝑛)𝑏 (xi)𝑦𝑖+1...𝑦𝑚, 𝑖 − 1) = 1] = 0 because 𝑦𝑖+1...𝑦𝑚 ∈ 𝑆2 implies there is no 𝑥1, . . . , 𝑥𝑖 such
that 𝐷 (𝑏 (𝑥1)...𝑏 (𝑥𝑖)𝑦𝑖+1...𝑦𝑚) = 1. (1) and (2) contradict that 𝑏 is a demi-bit. ■

The condition 𝑐 < 1 in Algorithm 3.1.1 guarantees 𝑛 = 𝑁 1−𝑐 is polynomially related to 𝑁 and an infinite
monotone sequence of 𝑁 yields an infinite monotone sequence of 𝑛.

18

4 CONSEQUENCES OF THE PURPORTED NONEXISTENCE OF DEMI-BITS

In this chapter, we develop PAC-learning algorithms from breaking PRGs.

4.1 PAC-learning

We formulate the following nonuniform version of PAC-learning:

Definition 4.1.1 (PAC-leaRning, nonunifoRm). A circuit class C is learnable (over the uniform dis-
tribution) by a circuit class D up to error 𝜀 with confidence 𝛿 if there is a randomized oracle family
𝐿 = {𝐷𝑛} ∈ D such that for every family 𝑓 : {0, 1}𝑛 → {0, 1} computable by C and every large enough 𝑛,
we have:

(1) P
𝑤
[𝐿 𝑓 (1𝑛,𝑤) (1 − 𝜀)−𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑠 𝑓] ≥ 𝛿 , where𝑤 is the random input bits to 𝐿 𝑓 and the output

𝐿 𝑓 (1𝑛,𝑤) of 𝐿 𝑓 is a string representation of an approximator 𝑓 ′ of 𝑓 . 𝐿 𝑓 (1𝑛,𝑤) can be a description
of a uniform or nonuniform algorithm of the following types: deterministic, nondeterministic, co-
nondeterministic, randomized.

(2) For every 𝑓 and 𝑤 , 𝐿 𝑓 (1𝑛,𝑤) is D-evaluable: there is another circuit family 𝐸 ∈ D such that
for every possible output 𝐿 𝑓 (1𝑛,𝑤) of 𝐿 and every 𝑥 ∈ {0, 1}𝑛 given as the input to 𝐸, 𝐸 com-
putes 𝐿 𝑓 (1𝑛,𝑤) on 𝑥 . When 𝐿 𝑓 (1𝑛,𝑤) is (co-)nondeterministic or randomized, 𝐸 is allowed to be
(co-)nondeterministic or randomized respectively.

For a such learner 𝐿, we also say C is learnable by 𝐿 or every 𝐶 ∈ C is learnable by 𝐿.

Remarks.
1. We say 𝐿 𝑓 uses membership query if it somehow selects the set of queries made to the oracle gates.

We say 𝐿 𝑓 uses uniformly distributed random examples if the set of queries made is sampled uni-
formly at random. The above learning model is general enough to admit both kinds of learners and
also any kind of mixture. In this thesis, we will only consider learners using uniformly distributed
random examples. Thus by “learning”, we always mean learning using uniformly distributed random
examples.

2. The defined learning model is also general enough to admit learning over other distributions (i.e. we
change the distribution of 𝑤 in condition (1)). When D contains 𝑃/𝑝𝑜𝑙𝑦, learning over any polyno-
mially generated distribution is equivalent to learning over the uniform distribution.

3. A common mistake in the literature is to leave out Condition (2). However, Condition (2) is indis-
pensable here. The reason is that without this restriction, 𝑃/𝑝𝑜𝑙𝑦 can be efficiently learned, which
is widely believed not to be the case (e.g., cf. [29]). It is an easy exercise to prove the learnability of
𝑃/𝑝𝑜𝑙𝑦 without the second condition by applying the Occam’s Razor theorem established in [10].
Intuitively, a learner can learn 𝑃/𝑝𝑜𝑙𝑦 efficiently by remembering the samples and postponing all
the “learning” to the hypothesis evaluation stage.

4. The confidence 𝛿 and accuracy 1 − 𝜀 of a learner in D can be efficiently boosted to constants less
than 1 in standard ways (cf. [23]) when they are not negligible with respect to D. For example, when
D = 𝑃/𝑝𝑜𝑙𝑦, it is sufficient for 𝛿 and 1 − 𝜀 to achieve 𝑝 (𝑛) and 1/2 + 𝑞(𝑛) respectively for any
polynomials 𝑝 and 𝑞. Beyond the remark here, boosting will be digress from the theme of this thesis.

4.2 Learning based on nonexistence assumptions

We recall a construction from [8]: for a positive integer 𝑚 and a circuit 𝐶 : {0, 1}𝑛 → {0, 1} , define
generator 𝐺𝑚,𝐶 : {0, 1}𝑚𝑛 → {0, 1}𝑚𝑛+𝑚 , which maps𝑚 𝑛-bit strings 𝑥1, ..., 𝑥𝑚 to 𝑥1,𝐶 (𝑥1), ..., 𝑥𝑚,𝐶 (𝑥𝑚).

19

We reformulate Theorem 7 on average-case learning in [8] into our PAC-learning framework as the
following lemma:

Lemma 4.2.1. Given a circuit class C, if there is an𝑚 and an 𝑠 (𝑛)-size circuit 𝐷 such that for every𝐶 ∈ C

P[𝐷 (𝑦) = 1] − P[𝐷 (𝐺𝐶 (𝑥)) = 1] ≥ 1/𝑠 , where𝐺𝐶 = 𝐺𝑚,𝐶 ,

then there is a randomized polynomial time (in 𝑛 and |⟨𝐷⟩|, where ⟨𝐷⟩ is a given string representation of
𝐷) algorithm 𝐿 that learns C with confidence 1/2𝑚2𝑠 up to error 1/2 − 1/2𝑚𝑠 .

In particular, if D is a nondeterministic or co-nondeterministic circuit, the output of L is allowed to be a
nondeterministic or co-nondeterministic algorithm.

PRoof. Given any 𝐶 ∈ C, 𝐿 randomly chooses an 𝑖 ∈ [𝑚], bits 𝑟1, ..., 𝑟𝑚 , and n-bit strings 𝑥1, ..., 𝑥𝑚
except 𝑥𝑖 , queries 𝐶 (𝑥1), ...,𝐶 (𝑥𝑖−1), and outputs 𝐶′, which predicts 𝐶 as follows: given any 𝑛-bit input
𝑥𝑖 , 𝐶′ emulates 𝐷 on (𝑥1,𝐶 (𝑥1), ..., 𝑥𝑖−1,𝐶 (𝑥𝑖−1) to get an output bit 𝑝𝑖 . If 𝑝𝑖 = 1, C’ outputs 𝑟𝑖 ; if 𝑝𝑖 = 0,
C’ outputs 𝑟𝑖 .
We next want to prove that 𝐿 indeed learns 𝐶 in the desired sense. Given random bits 𝑟1, ..., 𝑟𝑚 and

random 𝑛-bit strings 𝑥1, ..., 𝑥𝑚 , we define 𝑝𝑖 := 𝐷 (𝑥1,𝐶 (𝑥1), ..., 𝑥𝑖−1,𝐶 (𝑥𝑖−1), 𝑥𝑖, 𝑟𝑖, ..., 𝑥𝑚, 𝑟𝑚). Then (note:
here we are applying a hybrid argument),

1/𝑠 ≤ P[𝐷 (𝑥) = 1] − P[𝐷 (𝐺𝐶 (𝑥)) = 1]
= P[𝑝1 = 1] − P[𝑝𝑚 = 1]

=
𝑚−1∑
𝑖=1

(P[𝑝𝑖 = 1] − P[𝑝𝑖+1 = 1])

Hence, there exist i such that P[𝑝𝑖 = 1] − P[𝑝𝑖+1 = 1] ≥ 1/𝑚𝑠 , and therefore the 𝑖 𝐿 chooses satisfies
P[𝑝𝑖 = 1] − P[𝑝𝑖+1 = 1] ≥ 1/𝑚𝑠 with probability ≥ 1/𝑚. When 𝐿 has successfully chosen such an 𝑖 ,

P
𝑟1,...,𝑟𝑚
𝑥1,...,𝑥𝑚

[𝐶′(𝑥𝑖) = 𝐶 (𝑥𝑖)]

= P[𝑝𝑖 = 1, 𝑟𝑖 ≠ 𝐶 (𝑥𝑖)] + P[𝑝𝑖 = 0, 𝑟𝑖 = 𝐶 (𝑥𝑖)]

=
1
2
P[𝑝𝑖 = 1|𝑟𝑖 ≠ 𝐶 (𝑥𝑖)] +

1
2
P[𝑝𝑖 = 0|𝑟𝑖 = 𝐶 (𝑥𝑖)]

=
1
2
P[𝑝𝑖 = 1|𝑟𝑖 ≠ 𝐶 (𝑥𝑖)] +

1
2
(1 − P[𝑝𝑖 = 1|𝑟𝑖 = 𝐶 (𝑥𝑖)])

=
1
2
+ 1
2
P[𝑝𝑖 = 1|𝑟𝑖 ≠ 𝐶 (𝑥𝑖)] −

1
2
P[𝑝𝑖 = 1|𝑟𝑖 = 𝐶 (𝑥𝑖)]

=
1
2
+ 1
2
P[𝑝𝑖 = 1|𝑟𝑖 ≠ 𝐶 (𝑥𝑖)] + (1

2
P[𝑝𝑖 = 1|𝑟𝑖 = 𝐶 (𝑥𝑖)] − P[𝑝𝑖 = 1|𝑟𝑖 = 𝐶 (𝑥𝑖)])

=
1
2
+ (P[𝑝𝑖 = 1, 𝑟𝑖 ≠ 𝐶 (𝑥𝑖)] + P[𝑝𝑖 = 1, 𝑟𝑖 = 𝐶 (𝑥𝑖)]) − P[𝑝𝑖 = 1|𝑟𝑖 = 𝐶 (𝑥𝑖)]

=
1
2
+ P[𝑝𝑖 = 1] − P[𝑝𝑖+1 = 1]

≥ 1
2
+ 1
𝑚𝑠

Let 𝑝 = P
𝑟1,...,𝑟𝑚

𝑥1,...,𝑥𝑚 𝑒𝑥𝑐𝑒𝑝𝑡 𝑥𝑖

[P
𝑥𝑖
[𝐶′(𝑥𝑖) = 𝐶 (𝑥𝑖)] >= 1/2 + 1/2𝑚𝑠]. As there exist 0 ≤ 𝑎 < 1/2 such that

1/2+ 1/2𝑚𝑠 +𝑎 represents the average accuracy of the predictor𝐶′ when 𝑟1, ..., 𝑟𝑚, 𝑥1, ..., 𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑚

20

satisfy P
𝑥𝑖
[𝐶′(𝑥𝑖) = 𝐶 (𝑥𝑖)] >= 1/2 + 1/2𝑚𝑠 , we have

𝑝 (1
2
+ 1
2𝑚𝑠

+ 𝑎) + (1 − 𝑝)(1
2
+ 1
2𝑚𝑠

) ≥ P
𝑟1,...,𝑟𝑚
𝑥1,...,𝑥𝑚

[𝐶′(𝑥𝑖) = 𝐶 (𝑥𝑖)] ≥
1
2
+ 1
𝑚𝑠

,

and thus
𝑝 ≥ 1

2𝑚𝑠
· 1
𝑎
≥ 1
𝑚𝑠

.

Therefore, 𝐿 outputs a (1/2 + 1/2𝑚𝑠)-accurate 𝐶′ with confidence 1/𝑚2𝑠 . ■

Remarks.When 𝐷 is nondeterministic: (1) if 𝑟𝑖 = 0, then the𝐶′ learned by 𝐿𝐶 is also nondeterministic;
(2) if 𝑟𝑖 = 0, then the 𝐶′ learned by 𝐿𝐶 is co-nondeterministic.
In the remaining of this section, we are going to derive learning algorithms based on the assumptions

of the nonexistence of i.o. demi-bits and demi-bits respectively. It is obvious that the non-existence of
i.o. demi-bits is a stronger assumption than the non-existence of demi-bits. We will also see that, given
our proof strategy, the stronger assumption yields a better learning result, in a sense that will be clear
later.
Based on a sketch in [28], we establish the following theorem:

theoRem 4.2.2. Assume the nonexistence of i.o. demi-bits. Then for every 𝑐 ∈ N, 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐] is learnable
by 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [2𝑛𝑜 (1)] (by taking random examples) with confidence 1/2𝑛𝑜 (1) up to error 1/2 − 1/2𝑛𝑜 (1) , where
the learner is allowed to generate a nondeterministic or co-nondeterministic algorithm approximating the
target function.

PRoof. Assume the nonexistence of i.o. demi-bits and 𝑐 ∈ N. There is an encoding scheme for
𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐] such that every 𝐶 ∈ 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐] with 𝑛-bit input can be encoded as a string ⟨𝐶⟩ of length
≤ 𝑑 = 𝑑 (𝑛), where 𝑑 (𝑛) is a polynomial. Set 𝑚 = 𝑛𝑑 + 1 and consider a generator 𝐺 : {0, 1}𝑚𝑛+𝑛𝑑 →
{0, 1}𝑚𝑛+𝑚 , which interprets the last 𝑛𝑑 input bits as a description of some 𝐶 ∈ 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐] and then
computes on the remaining𝑚𝑛 bits of input as 𝐺𝑚,𝐶 . We note that 𝐺 is in 𝑃/𝑝𝑜𝑙𝑦(whenever the encod-
ing scheme for𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐] is reasonable). Because𝐺𝑚,𝐶 is not an i.o. demi-bit, there is nondeterministic
circuit 𝐷 of sub-exponential size such that for all sufficiently large 𝑛’s

P[𝐷 (𝑦) = 1] ≥ 1/|𝐷 | and P[𝐷 (𝐺 (𝑥) = 1] = 0.

In particular, for every 𝐶 ∈ 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐], P[𝐷 (𝐺 (⟨𝐶⟩, 𝑥) = 1] = 0. That is P[𝐷 (𝐺𝑚,𝐶 (𝑥)) = 1] = 0 for
every 𝐶 ∈ 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐]. Therefore,

P[𝐷 (𝑦) = 1] − P[𝐷 (𝐺𝑚,𝐶 (𝑥)) = 1] ≥ 1/|𝐷 |.
Because𝑚 = 𝑛𝑑 + 1 is polynomial in 𝑛 and |𝐷 | is sub-exponential, by Lemma 4.2.1, C can be learned by
a randomized circuit family of size 2𝑛𝑜 (1) with confidence 1/2𝑛𝑜 (1) up to error 1/2 − 1/2𝑛𝑜 (1) . ■

If we weaken the assumption to the non-existence of demi-bits, with the same proof, we are able to
learn 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐] in a weaker sense formulated as below:
theoRem 4.2.3. Assume the nonexistence of demi-bits. Then for every every 𝑐 ∈ N, there is an infinite
monotone sequence {𝑛𝑖} ⊆ N such that 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐] is learnable by 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [2𝑛𝑜 (1)] (by taking random
examples) with confidence 1/2𝑛𝑜 (1) up to error 1/2−1/2𝑛𝑜 (1) for every 𝑛 ∈ {𝑛𝑖}, where the learner is allowed
to generate a nondeterministic or co-nondeterministic algorithm approximating the target function.

Because the existence of 𝑁𝑃/𝑞𝑝𝑜𝑙𝑦-natural proofs (a weaker assumption than the existence assump-
tion of 𝑁𝑃/𝑝𝑜𝑙𝑦-natural proofs) rules out the existence of i.o. super-bits [33], by Theorem 4.2.2, we
have:

21

CoRollaRy 4.2.4. Assume the existence of i.o. demi-bits implies the existence of i.o. super-bits. If there
exists an 𝑁𝑃/𝑞𝑝𝑜𝑙𝑦-natural property useful against 𝑃/𝑝𝑜𝑙𝑦, then for every 𝑐 ∈ N,𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [𝑛𝑐] is learnable
by 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 [2𝑛𝑜 (1)] (by taking random examples) with confidence 1/2𝑛𝑜 (1) up to error 1/2 − 1/2𝑛𝑜 (1) , where
the learner is allowed to generate a nondeterministic or co-nondeterministic algorithm approximating the
target function.

22

5 SUPER-BITS: CHARACTERIZATIONS AND CONNECTIONS

In Section 5.1, we review the notion of predictability in the deterministic setting. In Section 5.2, we
introduce new notions of predictability beyond the deterministic setting and study nondeterministic
hardness from a predictability aspect. In Section 5.3, we review the concepts of one-way functions and
hard-core predicates and as well their known connections with strong PRGs. In Section 5.4, the last
section in this chapter, we introduce a dramatically new concept, super-core predicates, and investigate
on its connections with super-bits.
In this chapter, we will use a slightly modified definition of super-bits, which is parallel to Defini-

tion 2.3.3 in the deterministic setting: a PRG 𝑔 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) is called super-bits if for every 𝐷
in 𝑁𝑃/𝑝𝑜𝑙𝑦, every polynomial 𝑝 , and all sufficiently large 𝑛’s,

P[𝐷 (𝑈𝑚(𝑛)) = 1] − P[𝐷 (𝑔(𝑈𝑛)) = 1] < 1/𝑝 (𝑛).
Namely, 𝑔 is super-bits if 𝑔 is safe against all 𝑁𝑃/𝑝𝑜𝑙𝑦-distinguishers.
What we have achieved in this chapter provides a big step forward to better understand the nonde-

terministic hardness of PRGs and to suggest a sensible definition of one-way functions in the nondeter-
ministic setting.

5.1 Deterministic predictability

In this section, we review the notion of predictability in the deterministic setting and the equivalence
between deterministic unpredictability and super-polynomial hardness of PRGs. The results reviewed
in Section 5.1 are mostly adapted from [15].
Definition 5.1.1 (pRobability ensembles). A probability ensemble (or ensemble for short) is an in-
finite sequence of random variables (𝑍𝑛)𝑛∈N. Each 𝑍𝑛 ranges over {0, 1}𝑙 (𝑛) , where 𝑙 (𝑛) is polynomially
related to 𝑛 (i.e., there is a polynomial 𝑝 such that for every 𝑛 it holds that 𝑙 (𝑛) ≤ 𝑝 (𝑛) and 𝑝 (𝑙 (𝑛)) ≥ 𝑛.

We say an ensemble is polynomially generated if there is 𝑔 ∈ 𝑃/𝑝𝑜𝑙𝑦 such that 𝑔(𝑈𝑛) = 𝑍𝑛 . In this
paper, we are only interested in polynomially generated ensembles because they are easy to generate
to imitate other probability ensembles (e.g., the uniform ensemble as we will see in the next definition)
from a cryptography perspective. Thus, every ensemble we consider from now on will be implicitly
assumed to be polynomially generated if not specified otherwise.
Definition 5.1.2 (stRong-pseudoRandom ensembles). The probability ensemble (𝑍𝑛)𝑛∈N is strongly
pseudorandom if for every algorithm 𝐷 in 𝑃/𝑝𝑜𝑙𝑦, every polynomial 𝑝 , and all sufficiently large 𝑛’s,

|P𝑈𝑚 (𝑛) [𝐷 (𝑈𝑚(𝑛), 1
𝑛) = 1] − P𝑍𝑛 [𝐷 (𝑍𝑛, 1

𝑛) = 1] |,
where𝑚 = |𝑍𝑛 | and𝑈𝑚 is the uniform distribution

The input 1𝑛 allows 𝐷 is run poly-time in 𝑛 and informs 𝐷 of the value 𝑛. But for the sake of notation
simplicity, 1𝑛 is often omitted and will be omitted from now on.
We note that if 𝑔 is a strong PRG, then 𝑔(𝑈𝑛) is a strong-pseudorandom ensemble. We will see, for

𝑔(𝑈𝑛), being strongly pseudorandom is equivalent to being unpredictable.
Definition 5.1.3 ((deteRministic) pRedictability). An ensemble (𝑍𝑛)𝑛∈N is called predictable or
P/poly-predictable is there exist an algorithm A in 𝑃/𝑝𝑜𝑙𝑦, a polynomial 𝑝 , infinitely many 𝑛’s, and
an 𝑖 (𝑛) < |𝑍𝑛 | for each of those 𝑛’s such that

P[A(𝑍𝑛 [1...𝑖] = 𝑍𝑛 [𝑖 + 1])] ≥ 1
2
+ 1/𝑝 (𝑛).

An ensemble (𝑍𝑛)𝑛∈N is unpredictable if it is not predictable.

23

theoRem 5.1.4. An ensemble is strong-pseudorandom if and only if it is unpredictable.

We will see in the next section a nondeterministic variant of the last theorem.

5.2 Nondeterministic predictability

In this section, we propose four new notions of unpredictability beyond the deterministic setting and
characterise super-hardness of PRGs based on the new notions.
Before we define nondeterministic predictability, we emphasise an important distinction between

a decision problem and a single-bit-output computing problem in the nondeterministic setting. We
say a nondeterministic algorithm A is a (total) function-computing algorithm, which computes a
function 𝑓 : {0, 1}𝑛 → {0, 1} if for every input 𝑥 ∈ {0, 1}𝑛 , (1) a computation branch either yields ⊥
(which indicates a failure) or 𝑓 (𝑥), and (2) there is a computation branch yielding 𝑓 (𝑥). In the following
discussion, by default, any algorithm A : {0, 1}𝑛 → {0, 1} will still be considered as an algorithm for
solving decision problems, unless we explicitly mention that A is function-computing.
Definition 5.2.1 (nondeteRministic pRedictability).
NP/poly-predictability. An ensemble (𝑍𝑛)𝑛∈N is 𝑁𝑃/𝑝𝑜𝑙𝑦-predictable if there exist an algorithm A in

𝑁𝑃/𝑝𝑜𝑙𝑦, a polynomial 𝑝 , infinitely many 𝑛’s, and an 𝑖 (𝑛) < |𝑍𝑛 | for each of those 𝑛’s such that

P[A(𝑍𝑛 [1...𝑖]) = 𝑍𝑛 [𝑖 + 1]] ≥ 1/2 + 1/𝑝 (𝑛).
An ensemble (𝑍𝑛)𝑛∈N is 𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable if it is not 𝑁𝑃/𝑝𝑜𝑙𝑦-predictable.

coNP/poly-predictability. An ensemble (𝑍𝑛)𝑛∈N is 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-predictable if there exist an algorithmA
in 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦, a polynomial 𝑝 , infinitely many 𝑛’s, and an 𝑖 (𝑛) < |𝑍𝑛 | for each of those 𝑛’s such
that

P[A(𝑍𝑛 [1...𝑖]) = 𝑍𝑛 [𝑖 + 1]] ≥ 1/2 + 1/𝑝 (𝑛).
An ensemble (𝑍𝑛)𝑛∈N is 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable if it is not 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-predictable.

∪-predictability. An ensemble (𝑍𝑛)𝑛∈N is called ∪-predictable (a short for (𝑁𝑃/𝑝𝑜𝑙𝑦 ∪ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦)-
predictable) if it is 𝑁𝑃/𝑝𝑜𝑙𝑦-predictable or 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-predictable. An ensemble (𝑍𝑛)𝑛∈N is ∪-
unpredictable if it is not ∪-predictable.

∩-predictability. An ensemble (𝑍𝑛)𝑛∈N is called ∩-predictable (a short for (𝑁𝑃/𝑝𝑜𝑙𝑦 ∩ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦)-
predictable) if there exist a poly-time nondeterministic function-computing algorithm A, a poly-
nomial 𝑝 , infinitely many 𝑛’s, and an 𝑖 (𝑛) < |𝑍𝑛 | for each of those 𝑛’s such that

P[A(𝑍𝑛 [1...𝑖]) = 𝑍𝑛 [𝑖 + 1]] ≥ 1/2 + 1/𝑝 (𝑛).
An ensemble (𝑍𝑛)𝑛∈N is ∩-unpredictable if it is not ∩-predictable.

Remark. A reader should not mistake the definition of being ∩-predictable as being 𝑁𝑃/𝑝𝑜𝑙𝑦-
predictable ∧ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-predictable. In fact, being ∩-predictable is a stronger assumption than be-
ing 𝑁𝑃/𝑝𝑜𝑙𝑦-predictable and 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-predictable because a function 𝑓 is nondeterministically com-
putable if and only if it is in 𝑁𝑃/𝑝𝑜𝑙𝑦 ∩ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦. A more detailed proof is provided below. Nev-
ertheless, being ∩-unpredictable is still a non-trivial property because it is stronger than 𝑃/𝑝𝑜𝑙𝑦-
unpredictable (as 𝑃/𝑝𝑜𝑙𝑦 ⊆ 𝑁𝑃/𝑝𝑜𝑙𝑦 ∩ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦).
Lemma 5.2.2. If an ensemble (𝑍𝑛) is ∩-predictable, it is both 𝑁𝑃/𝑝𝑜𝑙𝑦-predictable and 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-
predictable.

PRoof. Suppose there exist a poly-time nondeterministic function-computing algorithm A, a poly-
nomial 𝑝 , infinitely many 𝑛’s, and an 𝑖 (𝑛) < |𝑍𝑛 | for each of those 𝑛’s such that

P[A(𝑍𝑛 [1...𝑖]) = 𝑍𝑛 [𝑖 + 1]] ≥ 1/2 + 1/𝑝 (𝑛).

24

We define A1 in 𝑁𝑃/𝑝𝑜𝑙𝑦 and A0 in 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦 as follows:
Given input 𝑌 ∈ {0, 1}𝑖 , A 𝑗 (𝑗 = 0, 1) mimics A on input 𝑌 to get an output bit 𝑐 . If 𝑐 = ⊥,
A 𝑗 outputs 1 − 𝑗 , and otherwise A 𝑗 outputs 𝑐 .

By the definition of A 𝑗 , A 𝑗 (𝑌) = A(𝑌). Thus, P[A 𝑗 (𝑍𝑛 [1...𝑖]) = 𝑍𝑛 [𝑖 + 1]] ≥ 1/2 + 1/𝑝 (𝑛) for 𝑗 =
0, 1. ■
PRoposition 5.2.3. If 𝑔 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) is super-bit(s), then 𝑔(𝑈𝑛) is ∩-unpredictable.

PRoof. Suppose, for a contradiction, 𝑔(𝑈𝑛) is ∩-predictable. there exist a poly-time nondeterministic
function-computing algorithm A, a polynomial 𝑝 , infinitely many 𝑛’s, and an 𝑖 (𝑛) < |𝑍𝑛 | for each of
those 𝑛’s such that

P[A(𝑍𝑛 [1...𝑖]) = 𝑍𝑛 [𝑖 + 1]] ≥ 1/2 + 1/𝑝 (𝑛).
For a fixed 𝑛, denote 𝑍𝑖 = 𝑔(𝑈𝑛) [1...𝑖] and 𝑧𝑖+1 = 𝑔(𝑈𝑛) [𝑖 + 1].
We construct algorithm 𝐷 to distinguish𝑈𝑚 from 𝑔(𝑈𝑛):

Given input𝑌 ∈ {0, 1}𝑚 ,𝐷 runsA on𝑌 [1...𝑖] to obtain an output bit 𝑐 . If 𝑐 = ⊥,𝐷 outputs
0. When 𝑐 ∈ {0, 1} , if 𝑐 ≠ 𝑌 [𝑖 + 1], 𝐷 outputs 1, and else 𝐷 outputs 0.

For a fixed 𝑛, we denote 𝑍𝑖 = 𝑔(𝑈𝑛) [1...𝑖] and 𝑧𝑖+1 = 𝑔(𝑈𝑛) [𝑖 + 1] and use 𝑏 to denote a random bit.
Now, we have:

P[𝐷 (𝑈𝑚) = 1] − P[𝐷 (𝑔(𝑈𝑛)) = 1] = P[A(𝑈𝑖) ≠ 𝑏] − P[A(𝑍𝑖) ≠ 𝑧 + 𝑖 + 1]
= 1/2 − (1 − P[A(𝑍𝑖) = 𝑧 + 𝑖 + 1])
= P[A(𝑍𝑖) = 𝑧 + 𝑖 + 1] − 1/2
≥ 1/𝑝 (𝑛).

■
PRoposition 5.2.4. If𝑔(𝑈𝑛) is∪-unpredictable (i.e.,𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable∧ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable),
where 𝑔 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) ∈ 𝑃/𝑝𝑜𝑙𝑦 and𝑚(𝑛) > 𝑛, then 𝑔 is super-bit(s).

PRoof. Suppose, for a contradiction, g is not super-bits. For any fixed 𝑛, define hybrids 𝐻𝑖 =
𝑔(𝑈𝑛) [0...𝑖]𝑈𝑚 [𝑖 + 1...𝑚] and denote denote 𝑍𝑖 = 𝑔(𝑈𝑛) [1...𝑖] and 𝑧𝑖 = 𝑔(𝑈𝑛) [𝑖]. Then there exist an
algorithm 𝐷 in 𝑃/𝑝𝑜𝑙𝑦, a polynomial 𝑝 , infinitely many 𝑛’s, and an 𝑖 for each of these 𝑛’s such that

P[𝐷 (𝐻𝑖) = 1] − P[𝐷 (𝐻𝑖+1) = 1] ≥ 1/𝑝 (𝑛).
Therefore, for each such 𝑛, there is a fixed string𝑤 such that

P[𝐷 (𝑍𝑖𝑏,𝑤) = 1] − P[𝐷 (𝑍𝑖+1,𝑤) = 1] ≥ 1/𝑝 (𝑛), (∗)
where we use 𝑏 to denote a random bit. We may omit writing𝑤 from now on.

We construct an algorithm A1 in 𝑁𝑃/𝑝𝑜𝑙𝑦 and A2 in 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦to predict 𝑧𝑖+1 based 𝑍𝑖 as follows:
Given 𝑌𝑖 ∈ {0, 1}𝑖 as input, A1 does whatever 𝐷 does on 𝑌𝑖0𝑤 ; A2 does whatever 𝐷 does
on 𝑌𝑖1𝑤 but then flip the bit got.

The definitions of A1,A2 imply that A1(𝑌𝑖) = 𝐷 (𝑌𝑖0) and A2(𝑌𝑖) = 𝐷 (𝑌𝑖1) (𝑤 omitted). Hence,
(1) := P[A1(𝑍𝑖) = 𝑧𝑖+1]

= P[𝐷 (𝑍𝑖0) = 𝑧𝑖+1]
= P[𝐷 (𝑍𝑖0) = 0 ∧ 𝑧𝑖+1 = 0] + P[𝐷 (𝑍𝑖0) = 1 ∧ 𝑧𝑖+1 = 1]
= P[𝐷 (𝑍𝑖𝑧𝑖+1) = 0 ∧ 𝑧𝑖+1 = 0] + P[𝐷 (𝑍𝑖𝑧𝑖+1) = 1 ∧ 𝑧𝑖+1 = 1],

25

and

(2) := P[A2(𝑍𝑖) = 𝑧𝑖+1]
= P[𝐷 (𝑍𝑖1) ≠ 𝑧𝑖+1]
= P[𝐷 (𝑍𝑖1) = 0 ∧ 𝑧𝑖+1 = 1] + P[𝐷 (𝑍𝑖1) = 1 ∧ 𝑧𝑖+1 = 0]
= P[𝐷 (𝑍𝑖𝑧𝑖+1) = 0 ∧ 𝑧𝑖+1 = 1] + P[𝐷 (𝑍𝑖𝑧𝑖+1) = 1 ∧ 𝑧𝑖+1 = 0] .

Therefore,

(1) + (2) = P[𝐷 (𝑍𝑖𝑧𝑖+1) = 0] + P[𝐷 (𝑍𝑖𝑧𝑖+1) = 1] .

As
P[𝐷 (𝑍𝑖𝑧𝑖+1) = 0] = 1 − P[𝐷 (𝑍𝑖+1) = 1]

and

2P[𝐷 (𝑍𝑖, 𝑏) = 1] = 2P[𝐷 (𝑍𝑖, 𝑏) = 1 ∧ 𝑏 = 𝑧𝑖+1] + 2P[𝐷 (𝑍𝑖, 𝑏) = 1 ∧ 𝑏 ≠ 𝑧𝑖+1]
= 2P[𝑏 = 𝑧𝑖+1]P[𝐷 (𝑍𝑖, 𝑏) = 1|𝑏 = 𝑧𝑖+1] + 2P[𝑏 ≠ 𝑧𝑖+1]P[𝐷 (𝑍𝑖, 𝑏) = 1|𝑏 ≠ 𝑧𝑖+1]
= P[𝐷 (𝑍𝑖, 𝑧𝑖+1) = 1] + P[𝐷 (𝑍𝑖, 𝑧𝑖+1) = 1],

(1) + (2) = (1 − P[𝐷 (𝑍𝑖+1) = 1]) + (2P[𝐷 (𝑍𝑖𝑏) = 1] − P[𝐷 (𝑍𝑖+1) = 1])
= 1 + 2(P[𝐷 (𝑍𝑖𝑏) = 1] − P[𝐷 (𝑍𝑖+1) = 1])
≥ 1 + 2/𝑝 (𝑛) by (∗).

Hence, either (1) = P[A1(𝑍𝑖) = 𝑧𝑖+1] ≥ 1/2 + 1/𝑝 (𝑛) for infinitely many 𝑛’s or (2) =
P[A2(𝑍𝑖) = 𝑧𝑖+1] ≥ 1/2 + 1/𝑝 (𝑛) for infinitely many 𝑛’s. That is, the ensemble (𝑍𝑛) is either 𝑁𝑃/𝑝𝑜𝑙𝑦-
predictable or 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-predictable. ■

Summary.We summarise Lemma 5.2.2, Proposition 5.2.3, and Proposition 5.2.4 together as (here,𝐴 ≤ 𝐵
denotes 𝐵 implies 𝐴):

∩-unpredictable ≤ super-polynomially nondeterministic-hard ≤ ∪-unpredictable

and

∩-unpredictable ≤ 𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable ∨ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable ≤ ∪-unpredictable.

In contrast to Theorem 5.1.4, which is an precises characterization of standard hardness from a pre-
dictability perspective, we have so far only obtained inaccurate characterizations of super-hardness in
the nondeterministic setting. I am inclined to the viewpoint that we might be unable to obtain an exact
characterization of super-hardness in terms of predictability, because we will see in Section 5.4, super-
hardness is not just about algorithm (e.g., algorithms used to witness randomness or used to predict)
behaviour on the range elements (i.e., 𝑦 such that P[𝑍𝑛 = 𝑦] > 0) but may also concern behaviour on
the non-range elements (i.e., 𝑦 such that P[𝑍𝑛 = 𝑦] = 0). In other words, it is very possible that at least
some of the inequalities above are strict.

Open PRoblem 5.2.5. Could the inequalities in Summary be further refined or classified? For example, is
there any relation between super-hardness and 𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable ∨ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦-unpredictable?

26

5.3 One-way functions and hard-core predicates

In this section, we review the concepts of one-way functions and hard-core predicates and the equiva-
lence between the existence of a strong PRG and the existence of a hard-core of some one-way function.
The results reviewed in Section 5.3 are mostly adapted from [15].
Definition 5.3.1 (one-way functions). A function 𝑓 : {0, 1}∗ → {0, 1}∗ in 𝑃/𝑝𝑜𝑙𝑦 is called one-way if
for every A in 𝑃/𝑝𝑜𝑙𝑦, every polynomial 𝑝 (·), and all sufficiently large 𝑛’s,

P
𝑥∈{0,1}𝑛

[A(𝑓 (𝑥), 1𝑛) ∈ 𝑓 −1(𝑓 (𝑥))] < 1
𝑝 (𝑛) .

The input 1𝑛 is for technical reason. It allows the algorithm A to run in polynomial time in 𝑛 = |𝑥 |,
which is important when 𝑓 dramatically shrinks its input (e.g., when |𝑓 (𝑥) | = 𝑂 (𝑙𝑜𝑔 |𝑥 |)). When the
auxiliary input 1𝑛 is not necessary (e.g., when 𝑓 is length-preserving), we may omit it. Intuitively, a
function 𝑓 in 𝑃/𝑝𝑜𝑙𝑦 is one-way if it is “typically” hard to invert, when the probability is taken over the
input distribution, for all efficient algorithms.
It is known that the existence of one-way functions and the existence of strong PRGs:

theoRem 5.3.2. One-way functions exist if and only if strong PRGs exist.

As we can construct a length-preserving one-way function from an arbitrary one-way function, The-
orem 5.3.2 can be alternatively stated as:
theoRem 5.3.3. Length-preserving one-way functions exist if and only if strong PRGs exist.

The backward construction of Theorem 5.3.2 is rather straightforward, while the forward, in fact,
relies on a concept closed related to one-way functions, called hard-core predicates. Even though with
the help of hard-core predicates to produce one more bit from a seed 𝑥 , the known proof of the forward
direction in Theorem 5.3.3 is still rather involved.
Definition 5.3.4 (haRd-coRe pRedicates). A predicate 𝑏 : {0, 1}∗ → {0, 1} in 𝑃/𝑝𝑜𝑙𝑦 is called a hard-
core of a function 𝑓 if there do not exist an algorithm A in 𝑃/𝑝𝑜𝑙𝑦, a polynomial 𝑝 (·), and infinitely many
𝑛’s such that

P
𝑥∈{0,1}𝑛

[A(𝑓 (𝑥), 1𝑛) = 𝑏 (𝑥)] ≥ 1
2
+ 1
𝑝 (𝑛) .

In other words, 𝑏 is a hard-core of 𝑓 if it is safe against (in terms of prediction) all 𝑃/𝑝𝑜𝑙𝑦 algorithms,
which may be due to an information loss of 𝑓 (e.g, 𝑏 (𝑥) = 𝑥 [𝑛] is a hard-core of 𝑓 (𝑥) = 𝑥 [1...(𝑛 − 1)])
or to the difficulty of inverting 𝑓 .
If 𝑏 is a hard-core of any 𝑓 , then P[𝑏 (𝑥) = 0] ≈ P[𝑏 (𝑥) = 1] ≈ 1/2 (otherwise, we can predict 𝑏 by

outputting the constant 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈{0,1} (P[𝑏 (𝑥) = 𝑏])).
One-way functions and hard-core predicates are “paired” by the construction of a “generic” hard-core:

theoRem 5.3.5. For any one-way function 𝑓 , the inner-product mod 2 of 𝑥 and 𝑦, denoted as ⟨𝑥,𝑦⟩, is a
hard-core of 𝑓 ′(𝑥,𝑦) := (𝑓 (𝑥), 𝑦).
In particular, if 𝑓 is length-preserving, so is 𝑓 ′. Indeed, in the theorem, we should also define 𝑓 ′ and 𝑏 on
the odd length inputs (𝑥,𝑦, 𝑏), where |𝑥 | = |𝑦 | and𝑏 is a single bit, but this case is often omitted as we can
trivially “ignore” the last bit (use the same idea as in Lemma 2.5.2) and define 𝑓 ′(𝑥,𝑦, 𝑏) = (𝑓 (𝑥), 𝑦, 𝑏)
and 𝑏 (𝑥,𝑦, 𝑏) = ⟨𝑥,𝑦⟩.
This theorem states that every one-way function 𝑓 , in a weaker sense, “has” a hard-core; or in other

words, ⟨𝑥,𝑦⟩ is “almost universal”. It is an easy exercise that a true universal hard-core for every one-
way function does not exist.

27

Therefore, Theorem 5.3.3 can be reformulated as:

theoRem 5.3.6. There is a hard-core 𝑏 of some length-preserving one-way function if and only if there is
strong PRG 𝑔.

We will develop a non-deterministic variant of the last theorem in the next section.

5.4 Super-core predicates

In this section, we introduce a dramatically new concept, super-core predicates, and investigate on its
connections with super-bits and on which functions could or could not have super-cores.

Definition 5.4.1 (supeR-coRe pRedicates). A predicate 𝑏 : {0, 1}𝑛 → {0, 1} in 𝑃/𝑝𝑜𝑙𝑦 is called a super-
core of a function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) if there do not exist an algorithm A1 in 𝑁𝑃/𝑝𝑜𝑙𝑦, an algorithm
A2 in 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦, polynomial 𝑝 (·), and infinitely many 𝑛’s such that

P𝑥∈{0,1}𝑛 [A1(𝑓 (𝑥), 1𝑛) = 𝑏 (𝑥) = 0] + 1
2
P𝑦∈{0,1}𝑚 [A1(𝑦, 1𝑛) = 1] ≥ 1

2
+ 1
𝑝 (𝑛)

or

P𝑥∈{0,1}𝑛 [A2(𝑓 (𝑥), 1𝑛) = 𝑏 (𝑥) = 1] + 1
2
P𝑦∈{0,1}𝑚 [A2(𝑦, 1𝑛) = 0] ≥ 1

2
+ 1
𝑝 (𝑛)

For convenience, we define some abbreviations for formulas above: 1 (A1) := P𝑥∈{0,1}𝑛 [A1(𝑓 (𝑥)) =
𝑏 (𝑥) = 0], 2 (A2) := P𝑥∈{0,1}𝑛 [A2(𝑓 (𝑥)) = 𝑏 (𝑥) = 1], 3 (A1) := 1

2P𝑦∈{0,1}𝑚 (𝑛) [A1(𝑦) = 1], 4 (A2) :=
1
2P𝑦∈{0,1}𝑚 (𝑛) [A2(𝑦) = 0] (the input 1𝑛 is omitted).
Our intention here is to come up with a nondeterministic variant of hard-core predicates and to

build some kind of relation between the existence of super-bits and the existence of this nondetermin-
istic counterpart. The inequalities in Definition 5.4.1 concerns not only elements in the range but also
elements that are not. A nondeterministic or co-nondeterministic adversary is unable to satisfy its cor-
responding inequality in any trivial way (e.g., by guessing a seed or by outputting the constant 0 or 1),
though a more intuitive explanation of Definition 5.4.1 seems desirable.
We observe that, if 𝑏 is a super-core of 𝑓 , then 𝑏 is also a super-core of any “shortened” 𝑓 . Precisely,

if 𝑖 : N → N is such that 𝑖 (𝑛) ≤ |𝑓 (1𝑛) | for every 𝑛, then 𝑏 is a super-core of 𝑓 ′(𝑥) := 𝑓 (𝑥) [1...𝑖 (|𝑥 |)]
because 𝑓 ′(𝑥) provides less information than 𝑓 (𝑥).
Just as a super-bit is also a strong PRG, we have:

Lemma 5.4.2. If 𝑏 is a super-core of function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) , 𝑏 is a hard-core of 𝑓 .

PRoof. Suppose, for a contradiction, 𝑏 is not a hard-core of 𝑓 . Then there exist 𝐶 in 𝑃/𝑝𝑜𝑙𝑦, a polyno-
mial 𝑝 , and infinitely many 𝑛’s such that P[𝐶 (𝑓 (𝑈𝑛) = 𝑏 (𝑈𝑛)] ≥ 1/2 + 1/𝑝 (𝑛) . We note 𝐶 is in both
𝑁𝑃/𝑝𝑜𝑙𝑦and 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦. As

1 (𝐶) + 2 (𝐶) + 3 (𝐶) + 4 (𝐶) = P[𝐶 (𝑓 (𝑈𝑛) = 𝑏 (𝑈𝑛)] + 1/2 ≥ 1 + 1/𝑝 (𝑛),
either 1 (𝐶) + 3 (𝐶) ≥ 1/2 + 1/(2𝑝 (𝑛)) or 2 (𝐶) + 4 (𝐶) ≥ 1/2 + 1/(2𝑝 (𝑛)). ■

We now show that we can construct a super-bit from a super-core for some length-preserving func-
tion:

PRoposition 5.4.3. If 𝑏 is a super-core of function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 in 𝑃/𝑝𝑜𝑙𝑦, then 𝑔(𝑥) := 𝑓 (𝑥)𝑏 (𝑥)
is a super-bit.

28

PRoof. Suppose, for a contradiction, 𝑔 is not a super-bit. Then there exist a distinguisher 𝐷 in 𝑃/𝑝𝑜𝑙𝑦,
a polynomial 𝑝 , and infinitely many 𝑛’s such that:

P[𝐷 (𝑈𝑛+1) = 1] − P[𝐷 (𝑔(𝑈𝑛)) = 1] ≥ 1/𝑝 (𝑛).

We define algorithm A1 in 𝑁𝑃/𝑝𝑜𝑙𝑦 and algorithm A2 in 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦 to predict 𝑏 as follows:
Assume 𝑌 ∈ {0, 1}𝑛 is given as input. A1 emulates 𝐷 on 𝑌0 and outputs what 𝐷 outputs.
A2 emulates 𝐷 on 𝑌1 and outputs the opposite of what 𝐷 outputs.

The definitions of A 𝑗 imply A1(𝑌) = 𝐷 (𝑌0) and A2(𝑌) = 𝐷 (𝑌1). Now, we have:
1 (A1) + 2 (A2) = P[A1(𝑓 (𝑈𝑛)) = 𝑏 (𝑈𝑛) = 0] + P[A2(𝑓 (𝑈𝑛)) = 𝑏 (𝑈𝑛) = 1]

= P[𝐷 (𝑓 (𝑈𝑛)0) = 0 ∧ 𝑏 (𝑈𝑛) = 0] + P[𝐷 (𝑓 (𝑈𝑛)1) = 0 ∧ 𝑏 (𝑈𝑛) = 1]
= P[𝐷 (𝑓 (𝑈𝑛)𝑏 (𝑈𝑛)) = 0 ∧ 𝑏 (𝑈𝑛) = 0] + P[𝐷 (𝑓 (𝑈𝑛)𝑏 (𝑈𝑛)) = 0 ∧ 𝑏 (𝑈𝑛) = 1]
= P[𝐷 (𝑓 (𝑈𝑛)𝑏 (𝑈𝑛)) = 0]
= 1 − P[𝐷 (𝑔(𝑈𝑛)) = 1],

and

3 (A1) + 4 (A2) =
1
2
P[A1(𝑈𝑛) = 1] + 1

2
P[A2(𝑈𝑛) = 0]

=
1
2
P[𝐷 (𝑈𝑛0) = 1] + 1

2
P[𝐷 (𝑈𝑛1) = 1]

= P[𝐷 (𝑈𝑛+1) = 1]

Therefore, for infinitely many 𝑛’s,
1 (A1) + 2 (A2) + 3 (A1) + 4 (A2) = 1 + P[𝐷 (𝑈𝑛+1) = 1] − P[𝐷 (𝑔(𝑈𝑛)) = 1] ≥ 1 + 1/𝑝 (𝑛),

which implies either 1 (A1) + 3 (A1) ≥ 1 + 1/(2𝑝 (𝑛)) for infinitely many 𝑛’s or 2 (A2) + 4 (A2) ≥
1 + 1/(2𝑝 (𝑛)) for infinitely many 𝑛’s. ■

Beforewe establish Proposition 5.4.5, which is the converse of Proposition 5.4.3, we need the following
auxiliary lemma:

Lemma 5.4.4. If 𝑔 : {0, 1}𝑛 → {0, 1}𝑛+1 is a strong PRG and define 𝑓 (𝑥)𝑏 (𝑥) := 𝑔(𝑥), where 𝑏 (𝑥) is the
last bit of 𝑔(𝑥), then 𝑏 is a hard-core of 𝑓 ∈ 𝑃/𝑝𝑜𝑙𝑦.

PRoof. Suppose for contradiction, 𝑏 is not a hard-core of 𝑓 . Then there existA in 𝑃/𝑝𝑜𝑙𝑦, a polynomial
𝑝 , and infinitely many 𝑛’s such that

P[A(𝑓 (𝑈𝑛)) = 𝑏 (𝑈𝑛)] ≥ 1/2 + 1/𝑝 (𝑛).

We construct 𝐷 to break 𝑔 as follows:
Given 𝑌 ∈ {0, 1}𝑛+1 as input, 𝐷 outputs 1 if and only if A(𝑌 [1..𝑛]) = 𝑌 [𝑛 + 1].

Let 𝑏 denote a random bit. Then, for infinitely many 𝑛’s,
P[𝐷 (𝑔(𝑈𝑛)) = 1] − P[𝐷 (𝑈𝑛+1) = 1] = P[A(𝑓 (𝑈𝑛)) = 𝑏 (𝑈𝑛)] − P[𝑏 = A(𝑈𝑛)]

≥ 1/2 + 1/𝑝 (𝑛) − 1/2
= 1/𝑝 (𝑛).

■

Now, we are able to show:

29

PRoposition 5.4.5. If 𝑔 : {0, 1}𝑛 → {0, 1}𝑛+1 is a super-bit and define 𝑓 (𝑥)𝑏 (𝑥) := 𝑔(𝑥), where 𝑏 (𝑥) is the
last bit of 𝑔(𝑥), then 𝑏 is a super-core of 𝑓 ∈ 𝑃/𝑝𝑜𝑙𝑦.

PRoof. Suppose, for a contradiction, 𝑏 is not a super-core of 𝑓 . We present a proof for the case, in which
there exist an A ∈ 𝑁𝑃/𝑝𝑜𝑙𝑦, a polynomial 𝑝 , and infinitely many 𝑛’s such that 1 (A) + 3 (A) ≥
1/2 + 1/𝑝 (𝑛), and the proof for the other case is similar.
We define a distinguisher 𝐷 to break 𝑔 as follow:

Given 𝑌 ∈ {0, 1}𝑛+1 as input, 𝐷 runs A on 𝑌 [1...𝑛] to get one output bit 𝑐 of A. 𝐷 then
outputs 1 if and only if 𝑌 [𝑛 + 1] = 0 ∧ 𝑐 = 1.

Then, infinitely many 𝑛’s, we have
P[𝐷 (𝑈𝑛+1) = 1] − P[𝐷 (𝑓 (𝑈𝑛)𝑏 (𝑈𝑛)) = 1]

= P[A(𝑈𝑛) = 1 ∧𝑈1 = 0] − P[A(𝑓 (𝑈𝑛)) = 1 ∧ 𝑏 (𝑈𝑛) = 0]
= 1/2 · P[A(𝑈𝑛) = 1] − (P[𝑏 (𝑈𝑛) = 0] − P[A(𝑓 (𝑈𝑛)) = 0 ∧ 𝑏 (𝑈𝑛) = 0])
= 1 (A) + 3 (A) − P[𝑏 (𝑈𝑛) = 0]
≥ 1/2 + 1/𝑝 (𝑛) − P[𝑏 (𝑈𝑛) = 0]

Let 1/𝑠 (𝑛) = |P[𝑏 (𝑈𝑛) = 0] − 1/2| As 𝑔 is a strong PRG, 𝑏 is a hard-core of 𝑔 by Lemma 5.4.4. Thus,
for every polynomial 𝑞 (in particular, for 𝑞(𝑛) = 2𝑝 (𝑛)) and every sufficiently large 𝑛, 1/𝑠 (𝑛) ≤ 1/𝑞(𝑛).
Therefore, for infinitely many 𝑛’s,

P[𝐷 (𝑈𝑛+1) = 1] − P[𝐷 (𝑓 (𝑈𝑛)𝑏 (𝑈𝑛)) = 1] ≥ 1/2 + 1/𝑝 (𝑛) − P[𝑏 (𝑈𝑛) = 0] ≥ 1/2𝑝 (𝑛).
■

By combining Proposition 5.4.3 and Proposition 5.4.5, we establish, as promised, the following non-
deterministic variant of Theorem 5.3.6.
theoRem 5.4.6. There is a super-core 𝑏 of some length-preserving 𝑓 ∈ 𝑃/𝑝𝑜𝑙𝑦 if and only if there is a
super-bit 𝑔.

We say a function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) is non-shrinking if𝑚(𝑛) ≥ 𝑛 for every 𝑛. Because (1) 𝑏 is
a super-core of some length-preserving function if and only if 𝑏 is a super-core of some non-shrinking
function and (2) there exists a super-bits if and only if there exist super-bits, we can alternatively state
Theorem 5.4.6 as:
theoRem 5.4.7. There is a super-core 𝑏 of some non-shrinking 𝑓 ∈ 𝑃/𝑝𝑜𝑙𝑦 if and only if there are super-bits
𝑔.

Although we can loose the condition “length-preserving” to “non-shrinking”, the requirement “non-
shrinking” is not redundant because there is an easy construction of a super-core 𝑏 of some function
𝑓 which shrinks its input, but whether a super-bit exists is unknown. Define 𝑓 (𝑥) = 𝑥 [1] and 𝑏 (𝑥) =
𝑥 [−1], then 𝑏 is a super-core of 𝑓 as there are only four functions from {0, 1} to {0, 1} , and none of them
can predict 𝑏 given 𝑓 (𝑥) ∈ {0, 1} in the required sense (indeed, 1 (𝑐) + 3 (𝑐) = 2 (𝑐) + 4 (𝑐) = 1/2 for
any 𝑐 : {0, 1} → {0, 1}).
At this point, we may want to understandmore about the relation between being one-way and having

a super-core for a function 𝑓 . Let’s recall what we know in the deterministic setting: (1) if 𝑓 has a hard-
core 𝑏, 𝑓 is not necessarily one-way because the possession of a hard-core can be due to an information
loss of 𝑓 , and (2) if 𝑓 is one-way, then we can construct a hard-core 𝑏 of 𝑓 ′(𝑥,𝑦) = (𝑓 (𝑥), 𝑦).
The first point is the same in the nondeterministic setting. The aforementioned 𝑓 (𝑥) = 𝑥 [1] is clearly

not one-way but has a super-core 𝑏 (𝑥) = 𝑥 [−1], which is due to a dramatic loss of information. A more

30

interesting question is that whether the 𝑓 constructed in Proposition 5.4.5 from a super-bit 𝑔, which we
know possesses a super-core 𝑏 (𝑥) = 𝑔(𝑥) [−1].
Open PRoblem 5.4.8. If 𝑔 is a super-bit, if 𝑓 (𝑥) := 𝑔(𝑥) [1...𝑛] (𝑛 = |𝑥 |) is a one-way function?

As for the second point, however, since being a super-core is stronger requirement than being a hard-
core, it is not necessarily true that there is a “universal” super-core in the sense that some predicate 𝑏
(e.g., 𝑏 (𝑥,𝑦) = ⟨𝑥,𝑦⟩) is a super-core for every 𝑓 ′(𝑥,𝑦) = (𝑓 (𝑥), 𝑦), where 𝑓 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) is a
one-way function. Then, a natural question to ask is:

Open PRoblem 5.4.9. Suppose 𝑓 is a one-way function. If we want ⟨𝑥,𝑦⟩ to be a super-core of 𝑓 ′(𝑥,𝑦) =
(𝑓 (𝑥), 𝑦), what other properties does 𝑓 need to have if any?

Rather, as for the second point, we can show that it is impossible for certain 𝑓 ’s to have a super-core
even if they are possibly one-way. Such 𝑓 ’s include length-preserving functions which are “predomi-
nantly 1-1” infinitely often. To state this more precisely, we say 𝑥 is of type 1 if |𝑓 −1(𝑓 (𝑥)) | = 1 and 𝑥
is of type 2 otherwise. We define 𝑇1(𝑛) to be the set of 𝑥 ∈ {0, 1}𝑛 of type 1 and 𝑇2(𝑛) to be the set of
𝑥 ∈ {0, 1}𝑛 of type 2 . Now, we establish:

theoRem 5.4.10. Given 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 in 𝑃/𝑝𝑜𝑙𝑦, if there exists infinitelymany𝑛’s and a polynomial
𝑝 such that,

|𝑇1 |
2𝑛

≥ 2
3
+ 1
𝑝 (𝑛) ,

then 𝑓 does not have a super-core.

PRoof. Assume 𝑓 has the stated property. Suppose, for a contradiction, 𝑏 is a super-bit of 𝑓 . We con-
struct as follows two algorithms A 𝑗 (𝑗 = 0, 1), in which A0 is co-nondeterministic and A1 is nondeter-
ministic, to predict 𝑏:

Given 𝑦 ∈ {0, 1}𝑛 as input, A 𝑗 guesses 𝑥′ such that 𝑓 (𝑥′) = 𝑦. If A 𝑗 fails to guess such an
𝑥′, it outputs 1 − 𝑗 . Otherwise, it outputs 𝑏 (𝑥′).

We note that if 𝑦 = 𝑓 (𝑥) for some 𝑥 ∈ 𝑇1, then there is always exactly one correct guess 𝑥′ (i.e., 𝑥
itself) for A 𝑗 such that 𝑓 (𝑥′) = 𝑦 = 𝑓 (𝑥), and whenever such an 𝑥′ is guessed, 𝑏 (𝑥′) = 𝑏 (𝑥). Hence,
1 (A1) = P[A1(𝑓 (𝑥)) = 𝑏 (𝑥) = 0] ≥ P[A1(𝑓 (𝑥)) = 𝑏 (𝑥) = 0 ∩ 𝑥 ∈ 𝑇1] = P[𝑏 (𝑥) = 0 ∩ 𝑥 ∈ 𝑇1], and
3 (A1) = 1

2P[A1(𝑦) = 1] ≥ 1
2P[𝑦 = 𝑓 (𝑥) ∩ 𝑏 (𝑥) = 1 for some 𝑥 ∈ 𝑇1]. Similarly, 2 (A0) ≥ P[𝑏 (𝑥) =

1 ∩ 𝑥 ∈ 𝑇1], and 4 (A0) ≥ 1
2P[𝑦 = 𝑓 (𝑥) ∩ 𝑏 (𝑥) = 0 for some 𝑥 ∈ 𝑇1].

Therefore, 1 (A1) + 2 (A0) + 3 (A1) + 4 (A0) = P[𝑥 ∈ 𝑇1] + 1
2P[𝑦 = 𝑓 (𝑥) for some 𝑥 ∈ 𝑇1] =

P[𝑥 ∈ 𝑇1] + 1
2P[𝑥 ∈ 𝑇1] = 3

2P[𝑥 ∈ 𝑇1] ≥ 1 + 1
𝑝 (𝑛) for some polynomial 𝑝 and infinitely many 𝑛’s, but

this implies that either 1 (A1) + 3 (A1) ≥ 1/2 + 1/2𝑝 (𝑛) or 2 (A0) + 4 (A0) ≥ 1/2 + 1/2𝑝 (𝑛). ■

The intuition reason that such 𝑓 ’s do not have a super-core is: such an 𝑓 preserves most of the infor-
mation (thus, a unique pre-image can be guessed), and not many non-range elements are there to be
identified. This result can also be proved alternatively by making using of other aforementioned results
as follows. Suppose, for a contradiction, 𝑏 is a super-core of 𝑓 , then 𝑔(𝑥) := 𝑓 (𝑥)𝑏 (𝑥) is a super-bit
by Proposition 5.4.3. However, we can then easily break 𝑔 as follows: we witness the randomness of a
given 𝑦 ∈ {0, 1}𝑛+1 by guessing an 𝑥 ∈ {0, 1}𝑛 such that 𝑓 (𝑥) = 𝑦 [1...𝑛] and test if 𝑏 (𝑥) = 𝑦 [𝑛 + 1]; if
𝑏 (𝑥) ≠ 𝑦 [𝑛 + 1], 𝑦 is random.

We state a weaker but more concise corollary of Theorem 5.4.10:

CoRollaRy 5.4.11. If 𝑓 ∈ 𝑃/𝑝𝑜𝑙𝑦 is length-preserving and 1-1 (or at least 1-1 for infinitely many 𝑛’s), then
𝑓 does not have a super-core.

31

This corollary contrasts the result that a length-preserving and 1-1 𝑓 ∈ 𝑃/𝑝𝑜𝑙𝑦 could have a hard-core
(in fact, if 𝑏 is a hard-core of a length-preserving and 1-1 𝑓 ∈ 𝑃/𝑝𝑜𝑙𝑦, then 𝑔(𝑥) := 𝑓 (𝑥)𝑏 (𝑥) is a strong
PRG [15]). Thus, the corollary suggests there might be strong PRGs which are not super-bits.
Besides all the above investigation on which functions can or cannot have a super-core and the re-

lation between being a one-way function and having a super-core, another central question is to ask
is:
Open PRoblem 5.4.12. What is a sensible definition of the “nondeterministic one-way functions” if any?

Satisfactory answers to Open Problem 5.4.8 and Open Problem 5.4.9 will shed light on this question. A
possible candidate is “a one-way function which has a super-core”, but this unsettled question clearly
needs further exploration.

32

6 FUTURE DIRECTIONS

In the final chapter, we propose some future directions and open problems that are worth pursuing.
Demi-bits stretching.
We have provided an algorithm that achieves a sublinear-stretch for any given demi-bit. If we are

greedier, we may wonder if we can stretch more. More specifically, if we can stretch one demi-bit
to linearly many demi-bits, or to polynomially many demi-bits, or even to a pseudorandom function
generator (PRFG) with exponential demi-hardness. Even if assuming we do have some 𝑛-demi-bits
𝑏 : {0, 1}𝑛 → {0, 1}2𝑛 , it is still unclear whether we can construct an PRFG with exponential demi-
hardness by any standard algorithm for constructing PRFGs or a novel one. If we can construct an
exponentially demi-hard PRFG from a single demi-bit, then we can prove: the existence of a demi-bit
rules out the existence of 𝑁𝑃/𝑞𝑝𝑜𝑙𝑦-natural properties against 𝑃/𝑝𝑜𝑙𝑦, which is an improvement of
Theorem 2.4.4 [33].
On the other hand, stretching algorithms of demi-bits have intriguing applications, which we are

working on, to proof complexity generators and average-case complexity.
“Super” one-way functions.

One of the open problem we proposed in Chapter 5 is: what is a sensible definition of super one-way
functions? A candidate definition is “a one-way function which has a super-core”, but the proposal
demands further verification. Together with this question, We rehearse all the open problems proposed
in Chapter 5 here:

• What is a sensible definition of super one-way functions?
• If 𝑔 is a super-bit, if 𝑓 (𝑥) := 𝑔(𝑥) [1...𝑛] (𝑛 = |𝑥 |) is a one-way function?
• Suppose 𝑓 is a one-way function. If we want ⟨𝑥,𝑦⟩ to be a super-core of 𝑓 ′(𝑥,𝑦) = (𝑓 (𝑥), 𝑦),

what other properties does 𝑓 need to have if any?
• Can we further refine or classify the inequalities in Summary at the end of section 5.2? Can we

also characterise demi-hardness from an unpredictability point of view?
Better answers to the questions list above would help us to better understand the hardness of PRGs in
the nondeterministic setting and shed light on the open problem “whether the existence of demi-bits
implies the existence of super-bits”.

33

REFERENCES

[1] M.Ajtai, J. Komlos, and E. Szemeredi. Deterministic simulation in logspace. In Proceedings of the NineteenthAnnual ACM
Symposium on Theory of Computing, STOC ’87, page 132–140, New York, NY, USA, 1987. Association for Computing
Machinery. doi:10.1145/28395.28410.

[2] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. Rsa and rabin functions: Certain parts are as hard as the whole. SIAM
Journal on Computing, 17(2):194–209, 1988. arXiv:https://doi.org/10.1137/0217013, doi:10.1137/0217013.

[3] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for themaximal independent set problem.
Journal of Algorithms, 7(4):567–583, 1986. URL: https://www.sciencedirect.com/science/article/pii/0196677486900192,
doi:https://doi.org/10.1016/0196-6774(86)90019-2.

[4] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple construction of almost k-wise independent random variables.
In Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science, pages 544–553 vol.2, 1990. doi:
10.1109/FSCS.1990.89575.

[5] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols and logspace-hard pseudorandom sequences. In Proceedings
of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC ’89, page 1–11, New York, NY, USA, 1989.
Association for Computing Machinery. doi:10.1145/73007.73008.

[6] T. Baker, J. Gill, and R. Solovay. Relativizations of the p =? np question. SIAM Journal on Computing, 4(4):431–442,
1975. arXiv:https://doi.org/10.1137/0204037, doi:10.1137/0204037.

[7] D. A. Barrington. ANote on aTheorem of Razborov. University of Massachusetts at Amherst. Computer and Information
Science [COINS], 1987. URL: https://books.google.co.uk/books?id=2JAjrgEACAAJ.

[8] A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic primitives based on hard learning problems. In Dou-
glas R. Stinson, editor, Advances in Cryptology — CRYPTO’ 93, pages 278–291, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg.

[9] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput.,
13(4):850–864, nov 1984. doi:10.1137/0213053.

[10] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor. Inf. Process. Lett., 24(6):377–380, apr 1987.
doi:10.1016/0020-0190(87)90114-1.

[11] B. Chor and O. Goldreich. On the power of two-point based sampling. Journal of Complexity, 5(1):96–106,
1989. URL: https://www.sciencedirect.com/science/article/pii/0885064X89900150, doi:https://doi.org/10.1016/
0885-064X(89)90015-0.

[12] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, 22(6):644–654,
1976. doi:10.1109/TIT.1976.1055638.

[13] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits and the polynomial time hierarchy. Mathematical Systems Theory,
17:13–27, 1984. doi:10.1007/BF01744431.

[14] O. Goldreich. Foundations of Cryptography, volume 1. Cambridge University Press, 2001. doi:10.1017/
CBO9780511546891.

[15] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press, 2008. doi:10.1017/
CBO9780511804106.

[16] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM, 33(4):792–807, aug 1986.
doi:10.1145/6490.6503.

[17] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st Annual ACM Symposium
on Theory of Computing, STOC ’89, page 25–32, New York, NY, USA, 1989. Association for Computing Machinery.
doi:10.1145/73007.73010.

[18] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299,
1984. URL: https://www.sciencedirect.com/science/article/pii/0022000084900709, doi:https://doi.org/10.1016/
0022-0000(84)90070-9.

[19] J. Håstad. Computational Limitations for Small-Depth Circuits. Mit Press, 1987.
[20] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function.

SIAM Journal on Computing, 28(4):1364–1396, 1999. arXiv:https://doi.org/10.1137/S0097539793244708, doi:
10.1137/S0097539793244708.

[21] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset sum. In 30th Annual Sym-
posium on Foundations of Computer Science, pages 236–241, 1989. doi:10.1109/SFCS.1989.63484.

[22] B. S. Kaliski. Elliptic curves and cryptography : a pseudorandom bit generator and other tools. Phd Thesis Mit, 2005.
[23] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. MIT Press, Cambridge, MA, USA,

1994.
[24] M. Luby. Pseudorandomness and Cryptographic Applications, volume 1. Princeton University Press, 1996. URL: http:

//www.jstor.org/stable/j.ctvs32rpn.

https://doi.org/10.1145/28395.28410
http://arxiv.org/abs/https://doi.org/10.1137/0217013
https://doi.org/10.1137/0217013
https://www.sciencedirect.com/science/article/pii/0196677486900192
https://doi.org/https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.1109/FSCS.1990.89575
https://doi.org/10.1109/FSCS.1990.89575
https://doi.org/10.1145/73007.73008
http://arxiv.org/abs/https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://books.google.co.uk/books?id=2JAjrgEACAAJ
https://doi.org/10.1137/0213053
https://doi.org/10.1016/0020-0190(87)90114-1
https://www.sciencedirect.com/science/article/pii/0885064X89900150
https://doi.org/https://doi.org/10.1016/0885-064X(89)90015-0
https://doi.org/https://doi.org/10.1016/0885-064X(89)90015-0
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/BF01744431
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/73007.73010
https://www.sciencedirect.com/science/article/pii/0022000084900709
https://doi.org/https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/https://doi.org/10.1016/0022-0000(84)90070-9
http://arxiv.org/abs/https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/SFCS.1989.63484
http://www.jstor.org/stable/j.ctvs32rpn
http://www.jstor.org/stable/j.ctvs32rpn

34

[25] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. In Proceedings of the
Twenty-Second Annual ACM Symposium on Theory of Computing, STOC ’90, page 213–223, New York, NY, USA, 1990.
Association for Computing Machinery. doi:10.1145/100216.100244.

[26] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System Sciences, 49(2):149–167, 1994.
URL: https://www.sciencedirect.com/science/article/pii/S0022000005800431, doi:https://doi.org/10.1016/S0022-
0000(05)80043-1.

[27] I. C. Oliveira and R. Santhanam. Conspiracies between learning algorithms, circuit lower bounds, and pseudoran-
domness. In Proceedings of the 32nd Computational Complexity Conference, CCC ’17, Dagstuhl, DEU, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[28] J. Pich. Learning algorithms from circuit lower bounds. CoRR, abs/2012.14095, 2020. URL: https://arxiv.org/abs/2012.
14095, arXiv:2012.14095.

[29] N. Rajgopal and R. Santhanam. On the Structure of Learnability Beyond P/Poly. In MaryWootters and Laura Sanità, ed-
itors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2021), volume 207 of Leibniz International Proceedings in Informatics (LIPIcs), pages 46:1–46:23, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/14739,
doi:10.4230/LIPIcs.APPROX/RANDOM.2021.46.

[30] A. A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition.
Mathematical notes of the Academy of Sciences of the USSR, 41:333–338, 1987.

[31] A. A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences, 55(1):24–35, 1997. URL: https:
//www.sciencedirect.com/science/article/pii/S002200009791494X, doi:https://doi.org/10.1006/jcss.1997.1494.

[32] M. Rosulek. The Joy of Cryptography. Oregon State University, 2021. https://joyofcryptography.com. URL: https:
//joyofcryptography.com.

[33] S. Rudich. Super-bits, demi-bits, and np/qpoly-natural proofs. Journal of Computer and System Sciences, 55:204–213,
1997.

[34] A. Shamir. On the generation of cryptographically strong pseudo-random sequences. In Shimon Even and Oded Kariv,
editors, Automata, Languages and Programming, pages 544–550, Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.

[35] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, page 77–82, New York, NY, USA, 1987.
Association for Computing Machinery. doi:10.1145/28395.28404.

[36] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, nov 1984. doi:10.1145/1968.1972.
[37] L. G. Valiant. Learning disjunction of conjunctions. In Proceedings of the 9th International Joint Conference on Artificial

Intelligence - Volume 1, IJCAI’85, page 560–566, San Francisco, CA, USA, 1985. Morgan Kaufmann Publishers Inc.
[38] L. G. Valiant and J. C. Shepherdson. Deductive learning [and discussion]. Philosophical Transactions of the Royal

Society of London. Series A, Mathematical and Physical Sciences, 312(1522):441–446, 1984. URL: http://www.jstor.org/
stable/37444.

[39] A. C. Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on Foundations of Computer Science,
FOCS ’82, pages 80–91, 1982. doi:10.1109/SFCS.1982.45.

[40] A. C. Yao. Separating the polynomial-time hierarchy by oracles. In 26th Annual Symposium on Foundations of Computer
Science, FOCS ’85, pages 1–10, 1985. doi:10.1109/SFCS.1985.49.

https://doi.org/10.1145/100216.100244
https://www.sciencedirect.com/science/article/pii/S0022000005800431
https://doi.org/https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/https://doi.org/10.1016/S0022-0000(05)80043-1
https://arxiv.org/abs/2012.14095
https://arxiv.org/abs/2012.14095
http://arxiv.org/abs/2012.14095
https://drops.dagstuhl.de/opus/volltexte/2021/14739
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.46
https://www.sciencedirect.com/science/article/pii/S002200009791494X
https://www.sciencedirect.com/science/article/pii/S002200009791494X
https://doi.org/https://doi.org/10.1006/jcss.1997.1494
https://joyofcryptography.com
https://joyofcryptography.com
https://joyofcryptography.com
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/1968.1972
http://www.jstor.org/stable/37444
http://www.jstor.org/stable/37444
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1985.49

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Background and motivation
	1.2 Our contributions and organisation
	1.3 Notations and conventions

	2 Preliminaries and basic concepts
	2.1 Computation models
	2.2 Natural proofs
	2.3 Pseudorandom generators
	2.4 Super-bits and demi-bits
	2.5 Infinitely often super-bits and demi-bits
	2.6 Complexity class separation

	3 Consequences of the purported existence of demi-bits
	3.1 Stretching a demi-bit

	4 Consequences of the purported nonexistence of demi-bits
	4.1 PAC-learning
	4.2 Learning based on nonexistence assumptions

	5 Super-bits: characterizations and connections
	5.1 Deterministic predictability
	5.2 Nondeterministic predictability
	5.3 One-way functions and hard-core predicates
	5.4 Super-core predicates

	6 Future directions
	References

