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Abstract

Black-box constrained Bayesian Optimisation is a method to optimise black-box objective func-
tions, that are expensive to evaluate, and subject to black-box constraint functions which can
only be evaluated point-wise. This approach has been successfully applied to a plethora of real-
world problems, such as the tuning of machine learning architectures. In this context, previous
work focused exclusively on the usage of Gaussian Processes as surrogates to model the black-
box objective and constraint functions. In contrast, tree ensembles are another model type that
can be used for this purpose, and have advantages over Gaussian Processes due to their natural
scaling to high dimensions and capability of handling continuous and categorical variables alike.
Thus, this thesis introduces tree ensembles as surrogate models for black-box constrained opti-
misation problems. In previous works, the usage of tree ensembles as surrogate models has been
discouraged due to a lack of reliable uncertainty metrics and strategies to optimise the response
surface. We overcome both of these issues in the present work by proposing a novel uncertainty
metric for Mondrian Forest tree ensembles, and the usage of the Nelder-Mead global optimisa-
tion strategy. Our experimental results demonstrate the strengths of our approach and showcase
that tree ensembles outperform Gaussian Process surrogates on various Bayesian Optimisation
benchmark problems.
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Chapter 1

Introduction

About half of the global banana production is crucially endangered by the Panama disease,
which is caused by a fungus named Fusarium oxysporum [1]. Bananas make up 25% of the daily
calorie intake in some African countries [2], so protecting banana farms from the disease is a
crucial issue. Since Fusarium oxysporum is resistant to existing fungicides [1], it is a key issue
to develop a fungicide that helps to save existing banana populations.

Consider a company that attempts to design a new fungicide, which is specific to Fusarium
oxysporum, in the quest to save the banana from the Panama disease. There are many degrees
of freedom in the design of such a new chemical. For instance, which compounds shall be mixed,
how much of which compound is used, and how long these compounds are mixed together, etc.
The goal of the development process is to find a new chemical that reduces the vulnerability of
banana plants to Fusarium wilt. Representing each design choice as a mathematical variable, a
candidate fungicide can be described by the vector x. Thus, the fungicide development problem
can be formalised as a mathematical optimisation problem:

argmin
x∈X

f(x) (1.1)

where x is a candidate fungicide and f is the objective function that measures the vulnerability
of banana plants to the fungus after treatment with fungicide x. Solving such a problem from
scratch is generally very difficult due to the number of possible parameter combinations, i.e.
the search space X being high-dimensional. Additionally, to evaluate the objective f(x), a full
product must be developed and tested on several plants, which may be time and cost intensive.
These problem properties make simple approaches such as random search and grid search ineffi-
cient [3], as they suffer from the curse of dimensionality, even for an only 10-dimensional search
space. To systematically address optimisation problems like the one described in Eq. 1.1, Mockus
et al. [4] described an algorithm called Bayesian Optimisation (BO). BO describes a procedure
to solve hard optimisation problems, where the objective function is a black-box that can only
be evaluated point-wise, and each evaluation of that function is expensive [3]. The principle of
this procedure is illustrated in Fig. 1.1. The main advantage of BO over other methods such
as grid search lies in the fact that it is an informed search strategy – i.e., it learns from each
observation that is made and slowly converges towards a global solution. Consequently, BO has
been successfully applied in many domains, for instance robotics [5], machine learning [6], or
materials design [7], to produce results beyond the previous state-of-the-art. Following Shahriari
et al. [8], BO is based on two main ingredients: First, a probabilistic surrogate model is used
to learn the value of the objective function and to measure the uncertainty about the function
estimates. Second, a heuristic, called acquisition function, is used to capture the benefits of

1



CHAPTER 1. INTRODUCTION 2

collecting data at a given point in the domain.

Figure 1.1: The Bayesian Optimisation loop [4]. The procedure is iterated until a stopping criterion
is met.

An additional challenge to BO problems may be constraints in the input space, which can be
a-priori known or unknown. In the context of our fungicide example, known constraints of the
fungicide development process may be the sum of costs of all ingredients that are used. Unknown
constraints in this process may be the knowledge that there exist combinations of compounds
that may result in non-degradable waste, so it is crucial to avoid these combinations to protect
the environment, but the specific combinations may be unknown due to the large combinatorial
space. Another simple example of a black-box constraint function is the training time of a Neural
Network (NN). While the objective function that is minimised during hyperparameter tuning
quantifies the model error, model training times must often remain within a reasonable range,
but cannot be inferred from the selection of hyperparameters alone, so this quantity is a-priori
unknown. If BO constraints are unknown, they are also referred to as black-box constraints in
literature [9]. Consequently, this thesis attempts to solve black-box optimisation problems of
the following form:

argmin
x∈X

f(x), s.t. ck(x) ≤ 0;∀k ∈ {1, . . . ,K} (1.2)

where ck defines a constraint on the input variables. To address such problems, we perform BO
with black-box constraint models, which is characterised by [3]:

1. Black-box objective function: The objective function f is not known in closed form and is
can only be evaluated point-wise.

2. Expensive function evaluations: A single evaluation of the objective function f at point x
is very resource intensive, e.g. it may require very costly studies to evaluate the value of a
given candidate solution.

3. Unknown constraints: The optimisation problem is constrained by black-box constraints
that are not known. Similarly to the black-box objective, the evaluation of these constraints
is costly and only observed with noise.

The focus of this work lies on improving current surrogate models to model the functions in Eq.
1.2. In particular, it is our aim to establish tree ensembles as an alternative to Gaussian Process
(GP) surrogate models for solving black-box constrained optimisation problems.
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1.1 Motivation

Existing research has addressed the problem of BO from many angles, for example by using
different acquisition functions and surrogate models [8]. The most common surrogate for BO
is the GP [10]. GPs are a natural choice for regression problems in continuous domains due
to their abilities to naturally quantify model uncertainty and to extrapolate well to data in
unseen regions. In line with this, existing works that perform BO with known [11, 12, 13], or
unknown constraints [9, 14, 15, 16, 17], do focus on GP surrogates. The usual approach in works
on black-box constrained optimisation is to use a GP [10] surrogate model for each constraint,
which models the probability that a data points falls within the feasible region.

Despite their popularity and strong performance on many problems, GPs are known to
have weaknesses. Most GP kernel functions assume smooth objective functions [10]. Evidently,
such objective functions are not necessarily given in real world applications, in particular if the
data is categorical. Consequently, GPs may struggle on domains with categorical features, and
their performance depends on the data transformation that is used to encode the features [18,
19, 20]. This is an issue for many fields, such as materials design or drug discovery, where
categorical features are common [20]. Other known limitations of GPs include their declining
performance on large datasets [21, 22], and in high dimensions [23]. There exist works that
address these problems [24, 25, 26, 27], but most of these approaches address only one single of
the aforementioned problems at a time and may require intricate implementations. Thus, there
is a need for a BO surrogate that (i) naturally handles categorical and continuous data alike,
(ii) scales well to high dimensions, and (iii) performs well on large datasets.

Regression Trees (RTs) are machine learning models that can be naturally used for regression
on categorical and continuous data alike. Since single trees tend to overfit the training data, tree-
based ensembles such as Random Forests (RFs), Gradient Boosted Regression Trees (GBRTs),
and Mondrian Forests (MFs) have been proposed [28, 29, 30], which alleviate this problem. Tree
ensembles have a multitude of desirable properties. They make accurate predictions [31], scale
well to high-dimensional function spaces [32], and can naturally handle mixed function spaces,
that consist of categorical and continuous features. This makes tree ensembles to be some of
the most popular machine learning models for regression tasks [33]. In particular, tree-based
surrogate models may be suited well to approximate the feasible region of a constrained BO
problem, since both, optimisation constraints, and simple branches in a tree, are defined by less-
than-or-equal-to conditions. Furthermore, tree ensembles are able to outperform GPs in simple
regression tasks, as we will show in this work (please note that regression tasks are not equivalent
to BO problems). We believe that these reasons make tree-based ensembles excellent candidates
as surrogate models for BO with unknown constraints, so one of the main aims of this project
is to introduce tree-based ensembles as surrogate models for BO with black-box constraints. To
the best of our knowledge, the present work is the first report of using tree-based ensembles as
surrogates to identify feasible regions in BO.

A major shortcoming of existing tree ensembles is that most models aim to estimate point-
wise responses and thus lack a natural uncertainty estimate [29, 34]. Thus, Shahriari et al. [8]
have identified the lack of reliable uncertainty estimates as one of the main issues that limit the
performance of tree-based models as BO surrogates in BO applications. Several works in the past
have aimed to address this issue by either proposing uncertainty metrics that are based solely
on the underlying data [32], or based on the ensemble predictions [19, 30, 35, 36]. Still, existing
uncertainty metrics for trees are known to have limitations. An issue with the uncertainty
estimate currently used for MFs is that it can be overly uncertain in previously explored regions,
leading to underexploration during BO. In line with this, it has been demonstrated, that the
same metric for RFs may be over- or underconfident and estimate uncertainty intervals that may
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be too wide or too narrow [37]. Therefore, we introduce distance-based uncertainty estimation
as an alternative way to quantify the uncertainty of the predictions by MF ensembles. Similarly,
Malinin et al. [38] introduced MC Dropout as an uncertainty estimate for GBRTs, but did
not test its performance in BO settings. We thus are the first to establish MC Dropout as an
uncertainty estimate for GBRTs as BO surrogates.

A second performance-limiting factor of tree ensembles that Shahriari et al. [8] identified is
their non-differentiable response surface. Due to this issue, gradient-based optimisation strate-
gies cannot be used to find novel candidate points for the black-box function evaluation. We
will investigate multiple gradient-free, global, optimisation strategies to address this issue, and
demonstrate that the Nelder-Mead algorithm [39] can be used effectively to perform this step in
the BO loop.

1.2 Contributions

The aim of this thesis is to improve BO with black-box constraints. To achieve this goal, we
make the following contributions:

1. We introduce tree ensembles as surrogates for black-box constrained BO. In Chapter 3,
we describe how we use tree ensembles for black-box constrained BO, and in Chapter 6, we
experimentally prove that tree ensembles can solve a diverse set of constrained black-box
optimisation problems. In Section 6.5, we extend our results and show that tree ensembles
are able to outperform GPs on multiple problems.

2. We improve the uncertainty estimation of established tree ensembles (Chapter 4). To
this end, we introduce the distance-based uncertainty estimation for Mondrian Forests,
and the MC Dropout uncertainty estimation for GBRTs which has not been used for BO
before. In our experiments, we investigate the role of different uncertainty metrics in the
optimisation of black-box optimisation problems with unknown constraints. Our results
show that the distance-based uncertainty for MFs allows solving problems that cannot be
solved using the commonly used uncertainty metric for MFs.

3. We investigate gradient-free optimisation strategies to minimise the acquisition function
(Chapter 5). Our experiments demonstrate the superiority of the Nelder-Mead (NM) algo-
rithm over sampling-based and Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) optimisation strategies on multiple high-dimensional optimisation benchmarks.

1.3 Report structure

First, Chapter 2 provides an extensive overview of the theoretical background that is the most
relevant to this work. This includes an overview of prior work on the BO method (Section 2.1),
tree ensembles for regression (Section 2.2), their previous usage in BO (Section 2.3) and uncer-
tainty metrics for tree ensembles (Section 2.4).

The core of this project, introducing tree-based surrogate models for BO with black-box
constraints, is introduced in Chapter 3. Then, we present two new ways to quantify surrogate
uncertainty in BO (Chapter 4). The last contribution we make, which is the investigation of
optimisation strategies for the BO acquisition function, is introduced in Chapter 5.

In Chapter 6, we evaluate all contributions that we make and compare our method to Gaus-
sian Processes as state-of-the-art surrogate models. Finally, Chapter 7 highlights ethical aspects
of the presented work, discusses the limitations of this work, and outlines potential future fields
of research, before concluding this thesis.



Chapter 2

Background and related work

This chapter gives an overview of the theoretical background that is most relevant to the present
research project. We begin by outlining the principles of BO in Section 2.1. Then Section 2.2
gives a brief summary of the most important work on tree-based regression models, notably RFs,
GBRTs, and Mondrian Forests. Finally, Section 2.3 provides an overview of BO with tree-based
surrogate models.

2.1 Bayesian Optimisation

The general problem setting of BO can be described as the global minimisation of a black-box
objection function f : X 7→ Y, which is expensive to evaluate [14]. Mathematically, this can be
expressed as:

argmin
x∈X

f(x) (2.1)

In this setting, the only assumptions about f are, that its domain X is known, and that f can
be evaluated point-wise at any x ∈ X . This implies that the objective function f is treated as a
black-box in BO, i.e., there is no known closed-form, let alone information on the differentiability
of f . Generally, Y can be any region, but in the scope of the present project, we focus on Y ⊆ R,
while X can include continuous, and categorical dimensions.

Given this setting, BO is a simple iterative algorithm, which has a structure that is often
referred to as ask-and-tell [40, 41, 42]. Each iteration n consists of identifying a prospective
candidate xn for function evaluation (ask) and the evaluation of f at this point (tell), resulting
in a new observation yn = f(xn), as illustrated in Figure 1.1. This makes BO a sequential
optimisation process that terminates after N ∈ N iterations.

The most challenging step in this procedure is the selection of an appropriate candidate for
the next (costly) query of the objective function. From a decision theoretical perspective, the
BO aim is to add data to the set of observations D, such that the negative expected utility is
minimised during observation [43]. Given a utility function U , this can be expressed as [8]:

x∗ = argmin
x

Ef |D [−U (D, f)] (2.2)

Unfortunately, this quantity is generally very difficult to evaluate or intractable, as it contains
an expectation over the black-box function f . Thus, BO uses a heuristic approach to estimate
how promising different regions in the input domain are. This heuristic is called acquisition
function, and will be denoted by α in the remainder of this work. Using a tractable acquisition
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function allows selecting the next candidate point at which the objective shall be evaluated, by
minimising the acquisition function instead of the negative expected utility in Eq. 2.2. Please
note that for the remainder of this work we follow the convention of minimising any objective,
so we minimise any acquisition function.

BO acquisition functions are typically based on model estimations of the true objective
function. In BO literature, a model that is used to estimate the value of the unknown objective
is called surrogate model. As the true function f can only be evaluated point-wise, the purpose
of a surrogate model M is to estimate the expected value of f at any point without requiring
an actual (costly) evaluation of f . Additionally, surrogates typically provide estimates of the
uncertainty on the current estimate of the function value at a point x. This way, it becomes
possible to choose the best candidate for the next actual function evaluation, based on previously
seen data and surrogate confidence.

Algorithm 1: The Bayesian Optimisation algorithm [8, 14].

input : Objective function f , acquisition function α, time budget N
1 Initialise surrogate modelM
2 Initialise data D0 with specified number of initial observations
3 while n < N do
4 Select next candidate for evaluation: xn+1 ← argminx∈X α(x | Dn)
5 Evaluate f at candidate: yn+1 ← f(xn+1)
6 Add new observation to dataset: Dn+1 ← Dn ∪ {(xn+1, yn+1)}
7 Fit modelM to data Dn+1

8 n← n+ 1

9 return argmin(x,y)∈DN y

The pseudocode of the complete BO algorithm following Gelbart [3] and Shahriari et al. [8]
is outlined in Algorithm 1, and is illustrated on a high level in Fig. 1.1. The algorithm illustrates
that the BO loop is typically executed for a pre-defined number of iterations N ∈ N. In each
iteration of this loop, the acquisition function α is minimised to select a point at which f is
evaluated. Then the observed data tuple (x, y) is added to the data, and the surrogate model
M is fitted to the new dataset. Finally, the lowest objective value that was observed during the
process is returned.

2.1.1 Surrogate models for BO

A surrogate model approximates the unknown function of BO problems. The only requirement
for a BO surrogate is that it provides point-wise function estimates and uncertainty intervals
for these estimates. Consequently, many regression models may be used as BO surrogates. The
most common BO surrogate model is the Gaussian Process (GP) [10]. Other surrogate models
that have been used for BO include tree-based regression ensembles, Tree-structured Parzen
Estimators (TPE) [44], and multivariate adaptive regression splines (MARS) [45]. Tree-based
regression models are at the heart of the current work, so we will outline this model class in
detail in an upcoming section. Due to the popularity of GPs these models are commonly used
as performance baselines, so we now provide a brief summary of GPs.

A GP defines a distribution over functions, of which any finite subset of function values has
a joint Gaussian distribution [46]. A GP prior on a function f : X 7→ Y ⊆ R is defined by a
mean function µGP (·), and a covariance kernel function kGP (·, ·):

f(x) ∼ GP
(
µGP (x) , kGP

(
x,x′)) (2.3)



CHAPTER 2. BACKGROUND AND RELATED WORK 7

Given the above GP prior, a likelihood function, observations (X,y), and query pointsX∗, a pos-
terior distribution over objective function values can be computed in closed form. LetK(X,X) ∈
Rd×d be the covariance function evaluated at all input pairs inX, that is, [K(X,X)]ij = k(xi,xj).
Assuming observation noise σ2

noise ∈ R, the GP posterior distribution is given by:

mean f∗ = K(X∗, X)
[
K(X,X) + σ2

noiseI
]−1

y (2.4)

covariance cov(f∗) = K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2

noiseI
]−1

K(X,X∗) (2.5)

Thus, GPs allow to tractably compute the posterior distribution over all possible functions from
the prior distribution, given the observations (X,y).

2.1.2 Unconstrained acquisition functions

Acquisition functions quantify how promising a location in the input domain is for function eval-
uation. With this task at hand, acquisition functions need to balance two aspects: exploration
and exploitation. On the one hand, exploration is necessary to identify unexplored regions in
the input domain, which may contain minima of the objective function. On the other hand,
exploitation is necessary to improve existing candidate solutions in already well explored re-
gions. To effectively balance exploration and exploitation, acquisition functions make use of
the predicted mean M(x) and uncertainty u(x) of the underlying surrogate model M. This
information allows inferring an interval in which the true function value at the point x is the
most likely to lie in. Two of the most common unconstrained acquisition functions for BO are
the Lower Confidence Bound [47] and the Expected Improvement [4]:

1. Lower Confidence Bound (LCB): the LCB is one of the most simple acquisition functions
that exist. This acquisition function acts as a pessimistic heuristic in the face of uncer-
tainty. It is conservatively assuming the lowest possible value of the estimated objective
function that is within some multiplicity of the estimated model uncertainty. Minimising
this quantity consequently identifies points with either high uncertainty or low predictive
mean. Assuming the model surrogate prediction at point x is denoted by M(x), the
mathematical formulation of LCB is:

αLCB(x) =M (x)− κu (x) , κ > 0 (2.6)

2. Expected Improvement (EI): the EI at a point x is typically defined as the expected
improvement of the minimum observed objective value, if an evaluation of f is made at
x. Since we follow the convention of minimising the acquisition function, we present the
negative Expected Improvement as EI acquisition function, which is:

αEI(x) = −Ep(f) [max {f (x) , y⋆}] (2.7)

where y⋆ = min{y1, . . . , yn} is the best objective value observed so far. Commonly, this
expectation is described in its closed form, which exists under the assumption that the
predictive distribution is Gaussian:

αEI(x) = −u(x)
(
Z · Φ(Z) +N (Z | 0, 1)

)
, Z =

M(x)− y⋆

u(x)
(2.8)

In recent years, more sophisticated acquisition functions of unconstrained BO have been proposed
[48, 49]. For a more thorough overview of acquisition functions, we refer to Shahriari et al. [8].
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2.1.3 Optimising the acquisition function

GPs are the most commonly used surrogate models in BO. As their predictive distribution
is differentiable, the minimum of the acquisition function (line 4 of Algorithm 1) can be found
using gradient-based optimisation techniques, L-BFGS [50] being the most popular method. Tree
ensembles, on the other hand, do not permit to use gradient-based techniques due to their non-
differentiable response surfaces. Instead, existing works have used sampling-based optimisation
approaches [51, 52] or linear mixed integer programming [32]. In theory, any method for global
optimisation can be used in this step. Two of the most popular global optimisation methods are
the NM algorithm [39] with stochastic restarts, and evolutionary strategies such as the CMA-ES
algorithm [53]. In Chapter 5 of this thesis, we present both of these methods as alternatives to
the sampling-based optimisation of the acquisition function, and describe them in more detail
in Chapter 5.

For a more in-depth overview of general BO methods, see Shahriari et al. [8] and Brochu et
al. [54]. The present work focuses on BO in the presence of unknown, i.e. black-box constraints,
which will be outlined next.

2.1.4 Bayesian Optimisation with black-box constraints

Traditionally, BO focuses on unconstrained settings [8]. Constrained BO, on the other hand,
extends this setting with additional constraints. If the constraints are known, they may be
easily added to the design by simply only considering feasible inputs as candidates for function
evaluation (line 4 of Alg. 1) [32]. A more challenging problem arises when the constraint functions
are unknown. This setting, where the objective and constraints are black-box functions, is
known in literature as BO with black-box constraints. Within the realm of BO with black-
box constraint, there is a further specification that can be made on the constraint properties.
While decoupled constraints can be evaluated separately from the objective function, coupled
constraints can only be evaluated when the objective function is evaluated [3]. The focus of the
present work lies on coupled constraints, which implies that during minimisation of the objective
function, BO has the goal to identify feasible regions in the input space.

Typically, the two goals of minimisation of the objective and identification of the feasible
region are combined into a single objective. This is done using specific acquisition functions that
are minimised at promising feasible points [3, 9]. Following Schonlau [55], the most general way
of formulating an acquisition function for constrained problems is by taking the product of an
unconstrained acquisition function and the Probability of constraint feasibility (PoF):

αcons(x) = α(x) · PoF (x) (2.9)

where α is any acquisition function that quantifies the utility of evaluating the objective function
at x. Following the formulation of constrained BO in Eq. 1.2, we assume that all constraints
can be expressed in the form of ck ≤ 0. Thus, the PoF quantifies the probability of the latent
constraint functions ck being smaller than or equal to zero at input x:

PoF (x) =
K∏
k=1

∫ 0

−∞
P (ck(x) | x, y) dck(x) (2.10)

This quantity can be estimated using a separate surrogate modelMck for every k-th constraint,
which estimates the mean of the latent function ck, and an uncertainty interval.

Based on the unconstrained acquisition functions mentioned above, generic constrained ac-
quisition functions can be formulated. Following the general formulation of a constrained ac-
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quisition function in Eq. 2.9, notable acquisition functions that in the presence of unknown
constraints include:

1. Constraint-Weighted Expected Improvement (CWEI) [14, 16, 56]: This constrained ac-
quisition function is simply the general constrained acquisition from Eq. 2.9, with α(x) =
αEI(x):

αCWEI = αEI(x) · PoF (x) (2.11)

Consequently, the (negative) Expected Improvement (Eq. 2.8) is simply weighted by the
probability that all constraints are satisfied at x.

2. Integrated Expected Conditional Improvement (IECI) [9]: This acquisition function moves
beyond CWEI, by not only considering the improvement at x, if x is chosen as next for
function evaluation, but instead it integrates the improvement over the entire input domain
X , given that x is added to the design:

αIECI(x) = −
∫
x′∈X

αEI(x
′ | x ∈ D)PoF (x′)dx̂ (2.12)

where αEI(x
′ | x ∈ D) describes the EI at x′, given that x is added to the set of observations

D.

Unknown constraints are a well-studied topic in continuous domains [3, 16]. As mentioned
above, the feasible region is typically approximated using acquisition functions that have high
values across infeasible regions in the input space. To optimise the acquisition function over
a continuous domain, the common choice of surrogate model is the GP [16, 57]. In mixed or
categorical domains, non-GP surrogate models are generally a common choice. However, so far
little work has been done on BO with unknown constraints in categorical domains. Daxberger et
al. [18] used a linear basis function model and random Fourier features to perform constrained BO
over mixed domains that included categorical dimensions. Still, all the investigated constraints
were known, so inference over the feasible region was not necessary. Similarly, Thebelt et al. [32]
used GBRTs to perform BO over various mixed domains in the presence of known constraints
using tree-based surrogates. To our knowledge, we are unaware of any works that use tree-based
surrogate models for BO with unknown constraints. In particular, learning the feasible region
using tree-based surrogates is a novelty that we present in the present work.

2.2 Tree-based regression models

Regression Trees (RTs) are a simple, yet powerful tool for regression. A RT is constructed by
recursively subdividing the input domain, where each split divides the given domain into two
several parts, and can be represented as the node of a tree. This principle is illustrated in Figure
2.1. Given an input tuple (x0, x1), the model checks if x1 ≤ 190.5. Depending on the value of x1,
the next decision will either be x0 ≤ 2219.5, or x1 ≤ 284.5. The resulting regression output is
now the mean response of the assigned leaf region. As you can see in Figure 2.1, this procedure
results in a piecewise constant and discontinuous response surface.

There are various reasons for the popularity of RTs: They can naturally deal with categorical
and continuous inputs at the same time, they are easy to interpret, and they scale well to large
datasets and high dimensions [58]. Since single regression trees tend to have high variance [58],
i.e., overfit the data, many modern applications have moved away from using single RTs. Instead,
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so-called ensemble methods have been conceived as means of controlling the variance of RTs.
In short, a tree-ensemble combines several individual RTs to predict a single output. The main
difference between existing methods lies in how the individual trees are constructed, to obtain
an ensemble. In the context of BO, the most prominent tree-ensemble methods are Gradient
Boosted Regression Trees (GBRTs) [29, 59] and Random Forests (RFs) [34]. More recent tree-
based ensemble methods that have produced promising results in various works include Bayesian
Additive Regression Trees (BART) [36] and Mondrian Forests (MFs) [30]. Next, we will describe
these methods in more detail.

(a) Decision tree nodes. (b) Decision tree response surface. Training
data is depicted as spheres.

Figure 2.1: Illustration of a regression tree. 2.1a illustrates the nodes that arise from the splits. 2.1b
illustrates the observed data and the piece-wise continuous response surface of the tree.

2.2.1 Random forest models

Random Forests (RFs) [34] are a popular extension of single regression trees. An issue of single
regression trees is their high prediction variance [58], as individual trees tend to overfit the
training data. RFs address this issue by constructing several regression trees and using their
average prediction as the final regression output. Let RF be a RF model consisting of a set of
trees T , where |T | = T ∈ N. The prediction of RF is the average of the prediction of all trees
t ∈ T [58]:

RF(x) = 1

T

∑
t∈T

t̂(x) (2.13)

where t̂(x) is the prediction of tree t on data point x. To construct each of the individual trees
in an RF, a random subset of the data is sampled with replacement in a bootstrapping-like
procedure called bagging [28]. Then, a regression tree is constructed for each sub-data set. Once
T trees are constructed on T bootstrapped data sets, the prediction can be computed as the
empirical mean of the tree responses (see Eq. 2.13).

2.2.2 Gradient-boosted tree models

Introduced by Friedmann [29], boosting methods combine several trees and thus incrementally
reduce the prediction error. The main difference to the above ensemble methods such as Random
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Forests (RFs), boosting constructs a model ensemble sequentially. Crucially, the idea behind
GBRTs is to iteratively construct very small RT, so-called weak-learners or stumps, which reduce
the residual with respect to the prediction of the previously constructed weak-learners.

Based on these building blocks, a GBRT ensemble is constructed from multiple stumps
following an iterative procedure that minimises prediction error. Given a loss function L and
the convention of denoting the prediction of stump t by t̂, a first stump t1 is defined as:

t1 = argmin
t

|D|∑
i=1

L
(
yi, t̂

(
xi
))

(2.14)

We use T̂n(·) to denote the prediction of all trees in the ensemble after iteration n. Now, in
iteration j of the fitting algorithm, the tree stump tj is found by solving the following problem
[58]:

ηj , tj = argmin
η,t

|D|∑
i=1

L
(
yi, T̂j−1(x

i) + ηt̂
(
xi
))

(2.15)

An important theoretical result proves that this algorithm is equivalent to performing gradient
descent in the function space of the loss function [60], given each step identifies the optimal
stump t and weight η. Hence, the name Gradient-Boosted Regression Trees. The complete
gradient boosting algorithm, following [58], is described in Alg. 2.

Algorithm 2: The GBRT fitting algorithm. Pseudocode adapted from Murphy [58].

input : Objective fct f , iteration budget N

1 Initialise t1 = argmint

|D|∑
i=1
L(yi, t̂(xi))

2 Initialise set of trees T ← {t1}
3 for n = 2 : N do

4 Compute gradient residual: ri = −
[
∂L(yi,T̂n−1(xi))

∂T̂n−1(xi)

]
, i = 1, . . . , |D|

5 Construct next stump: tn = argminβ,t

|D|∑
i=1

(
ri − βt̂(xi)

)
6 Find weight: ηn = argminη

|D|∑
i=1
L
(
ri, T̂n−1(xi) + ηt̂n

(
xi
))

7 return GBRT model: GBRT (x) =
∑
ti∈T

ηit̂i(x)

The result of this fitting procedure algorithm is a sum-of-trees model, which means that the
resulting prediction of a GBRT ensemble GBRT is the weighted sum of all weak-learners:

GBRT (x) =
∑
ti∈T

ηit̂i(x) (2.16)

where ηi is the weight assigned to the prediction t̂i(x) of the tree ti.

2.2.3 Mondrian Forests

Mondrian Forests (MFs) [19, 30] are an ensemble of so-called Mondrian Tree structures [61]. Each
Mondrian Tree can be sampled from a Mondrian Process, which is an algorithm that recursively
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splits the input domain with axis-aligned cuts. The main difference between Mondrian Trees and
conventional binary regression trees lies in the underlying fitting procedure. Classical regression
trees define the splits in the tree by minimising an error criterion. Mondrian Trees, on the
other hand, define the splits stochastically, so the split location and split value are determined
probabilistically, based on the size of the area that a node currently covers, and not based on the
data fit. A Mondrian Tree is constructed using the Mondrian Process algorithm that is outlined
in Algorithm 3. Here, the stochasticity of the learning procedure is incorporated in two main
steps: (i) the feature dimension δn at which the next node in the tree will split the input space
is drawn with a probability proportional to the feature range along this axis (line 11), and (ii)
the split value ξn for a chosen split dimension in sampled from a uniform distribution. Note that
in line 11, und and ℓnd represent the upper and lower bounds of the given feature dimension δn.

Algorithm 3: The Mondrian Process Algorithm to construct a single Mondrian Tree.
Pseudocode adapted from Lakshminarayanan et al. [30].

1 Function SampleMondrianTree(data D, lifetime λ):
2 Initialise: MT ← ∅, leaves(MT )← ∅, τroot ← 0
3 SampleMondrianBlock(root, D, λ)
4

5 Function SampleMondrianBlock(node n, data D, lifetime λ):
6 Add n to treeMT
7 ℓnd ← min(D[d]); und ← max(D[d])
8 E ∼ Exp(

∑
d und − ℓnd)

9 τn ← min(λ, τparent(n) + E)

10 if τn < λ then
11 δn ∼ p(d), where p ∝ (und − ℓnd)
12 ξn ∼ Uniform (min(D[δn]), max(D[δn]))
13 Dleft ← {x ∈ D : xδn ≤ ξn}; Dright ← {x ∈ D : xδn > ξn}
14 SampleMondrianBlock(left(n), Dleft, λ)
15 SampleMondrianBlock(right(n), Dright, λ)

16 else
17 Add n to leaves(MT )

Constructing a Mondrian Forest In Algorithm 3, a Mondrian Tree MT is constructed by
recursively splitting the input space X recursively over a pre-defined period of time λ. For
this, in each non-terminal call of SampleMondrianBlock, a new split is defined. To do this, the
algorithm samples a number E ∈ R from an exponential distribution with a rate proportional
to the area covered by the node (line 8). For example, if the root node splits the space [0, 1]2 at
0.5 along each dimension, the resulting rate for sampling of the child nodes will be 1+ 0.5, that
is, the sum of the dimensions that a node covers. If E ≥ λ, the process lifetime has ended, so
the procedure stops and node n is assigned to be a leaf node.

Given that the lifetime has not yet ended, the area covered by node n is split into two parts
by a split (δn, ξn), where δn defines the dimension along which the split is made and ξn the exact
value of the split. For this, the dimension δn along which the split is made is sampled from the
set of dimensions based on the observed feature ranges along the different dimensions. The idea
here is, that features which differ a lot across the training data will capture the most information,
so they can be used to classify the data well. Similarly, given a dimension, the value at which
the dimension is split is sampled from a uniform distribution with equal probability for each
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value along the axis. Once a split is sampled, this defines two new subsets of the data domain,
Dleft and Dright, which contain all training data points that fall into the regions specified by the
split.

Predictions using Mondrian Trees In difference to the previously discussed RT models, a Mon-
drian Tree prediction is not simply the mean of all observed training samples at a leaf node.
Instead, a Mondrian Tree considers all the nodes on the path from root to leaf where a new
instance is classified to. In this step, each node n defines the parameters of a Gaussian, using
the mean mn and empirical variance vn over all data that is stored at this node n. Following
this formulation, the predictive distribution p(y | x, t) of tree t is a mixture of Gaussians defined,
by the weighted label distributions at each node on path (t(x)). Formally, this distribution is
defined as:

p(y | x, t) =
∑

n∈path(t(x))

wn(x)N (y | mn, vn) (2.17)

where n ∈ path (t(x)) are all nodes on the path from root to leaf, and mn, vn are the means
and variances of all training samples that lie in the subregion covered by node n, and wn is the
weight that is associated with the prediction of node n. Consequently, the prediction of a single
tree for a new data point x is:

t̂(x) =
∑

n∈path(t(x))

wn(x)mn (2.18)

Intuitively, this prediction procedure allows every node along the path to contribute to the
prediction, specifically, based on how certain the classification of x at each node is.

Given a tree node n, the weight wn is defined based on how likely it is that a new data point
x lies within the region that is defined by that node n. Given the probability pn(x) that x does
not lie within the region defined by n (Lakshminarayanan et al. [30] call this “branching-off”),
the prediction weight wn(x) for node n is defined as:

wn(x) =


pn(x)

∏
k∈anc(n)

(1− pk(x)) if n is no leaf

1−
∑

k∈anc(n)
wk(x) else

(2.19)

where pn(x) is estimated the as follows:

pn(x) = 1− exp

(
−
(
τn − τparent(n)

) [ d∑
i=1

(relu (xi − uni) + relu (ℓni − xi))

])
, (2.20)

(2.21)

Since pn(x) = 0 if x ∈ [ℓnd, und], the prediction of a Mondrian Tree in Eq. 2.18 can be simplified
to:

t̂(x) =
∑

n∈path(t(x))

pn(x)mn

∏
k∈anc(n)

(1− pk(x)) (2.22)

Predictions using Mondrian Forests As a Mondrian Forest is an ensemble of independent Mon-
drian Trees, the predictive distribution of the forest MF is defined as a sum-of-trees-model,
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similar to RF ensembles. This results in the following predictive distribution:

p(y | x) = 1

|T |
∑
t∈T

p(y | x, t) (2.23)

where T is the set of individual trees in the ensemble. Consequently, the posterior predictive
distribution of a MF is a normal distribution N of which the first moments is used for point
predictions. The moment can be estimated empirically [62], resulting in the following MF
prediction:

MF(x) = Ep(y|x)[y]

=
1

|T |
∑
t∈T

t̂(x)

=
1

|T |
∑
t∈T

∑
n∈path(t(x))

wn(x)mn

(2.24)

2.2.4 Miscellaneous

2.2.4.1 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) [36] are a Bayesian formulation of tree ensembles.
Similar to RFs and MFs, the idea of BART is to use an ensemble of several trees to predict a single
prediction at an input location x. The main difference between BART and other tree ensembles
lies in the way that the individual trees are constructed. While a Random Forest is constructed
by directly minimising an error function, a BART ensemble induces a prior distribution p(θ)
over the structure of the binary decision trees, and subsequently uses the posterior distribution
p(θ | y) given training data, to sample the trees. Given an ensemble of sampled trees, BART
inference works similarly to inference with other tree ensembles, such as RFs.

Using the above intuition, we do now outline the BART prior for binary trees. The purpose
of the BART prior is to define the structure of the trees in the ensemble. The prior contains
three stochastic components: First, p(ti) is a prior over the structure of the binary tree ti, i.e. the
tree depth, and splits that the tree encompasses. Second, p(mℓij | ti) is a prior distribution over
the value of leaf node ℓij in tree ti, and p(σ2

noise) is a prior over the noise variance. Assuming
independence between these variables, the full BART prior distribution can be expressed as
follows [63]:

p(θ) = p(σ2
noise)

∏
ti∈T

∏
ℓij∈ti

p(mℓij | ti)p(ti)

 (2.25)

The specific formulation of p(ti), p(σ
2
noise), and p(mℓij | ti) can depend on domain knowledge,

e.g. in scenarios where deep trees are desirable, p(ti) should put weight on such trees. For
more information on the default choice formulation of p(ti), p(σ

2
noise), and p(m | ti), we refer to

Chipman et al. [36], for other formulations of the BART prior components, readers are referred
to the work of Hill et al. [64].

Given a prior distribution p(θ) and observations y, tree ensembles can be sampled from
the posterior p(θ | y). For this, Markov Chain Monte Carlo (MCMC) methods, such as the
Metropolis Hastings algorithm [65, 66] or Gibbs sampling [67] can be used. Once a BART tree
ensemble is defined, a point-wise prediction at x is then simply the average of all sampled tree
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predictions, similar to Eq. 2.13. Additionally, it is easily possible to estimate model prediction
uncertainty based on the quantiles of the predictions of the sampled trees. Hence, BART offers
a natural way to estimate a predictive mean and standard deviation for BO applications.

2.2.4.2 NG-Boost

Recently, a novel boosting-based surrogate for unconstrained BO has been presented by Duan
et al. [68]. The method, called Natural Gradient Boosting (NG-Boost), uses several GBRT
ensembles that together define a mixture of Gaussians. For training, each GBRT ensemble is
not used to approximate the predictive mean function directly, but instead, learn the parame-
ters of the Gaussian N (θ1, θ2). Intuitively, NG-Boost achieves this by maintaining one GBRT
ensemble Mθi per distributional parameter θi, for instance N (θ1, θ2) = N (Mθ1(x),Mθ2(x))
given the above Gaussian. The result of the fitting procedure is a mixture of Gaussians. To
construct each ensemble, the authors present a boosting-like approach, which performs gradient
descent on a loss function. In difference to standard GBRTs, the NG-Boost algorithm does not
optimise the constructed trees directly using gradient descent, but instead the parameters of
the distribution predictive distribution are optimised via maximum likelihood estimation, which
indirectly determines the ensemble.

2.3 Tree ensembles as Bayesian Optimisation surrogate models

Tree-based models were first used as BO surrogates by Hutter et al. [35], in their Sequential
Model-Based Optimisation for General Algorithm Configuration (SMAC) method. Following
this work, several other methods adopted RFs as BO surrogates [51, 52]. A major strength
of RFs as BO surrogates is their low computational cost, making them one of the fastest BO
surrogates available [19, 35]. This makes RFs particularly attractive in the context of large,
and high-dimensional datasets. However, Nickson et al. [37] and Shahriari et al. [8] pointed out
that the SMAC [35] surrogate and its empirical uncertainty estimates may be overconfident in
previously unexplored regions, and that the RF predictive mean suffers from unrealistic extrap-
olations in regions with little data. Additionally, Lim et al. [69] demonstrated that RFs may
also be underconfident, resulting in much larger uncertainty intervals than GPs. These results
demonstrate that RFs may be unable to approximate the true underlying function well enough,
and do not indicate appropriate information about the models’ uncertainty with regard to this
approximation. Another weakness of RFs for BO is that while RFs may perform better than GP
surrogates in categorical or mixed domains [35, 70, 71], they have shown weaker performance
than other surrogates, such as GPs, in continuous domains [32, 70, 72]. Since all of these results
have been produced on problems with no, or only a-priori known constraints, the capabilities of
RFs to learn the feasible region and minimise a black-box objective function simultaneously have
not yet been established, but we hypothesise that other tree ensembles might be more suitable
for this task.

Another tree-based surrogate for BO are boosting-based ensembles for regression, for exam-
ple, GBRTs. In fact, several libraries for BO offer GBRTs as surrogate models [32, 73, 74]. It is
a well-established fact in general machine learning literature, that GBRTs are among the best
performing models for regression [33]. In line with this, Thebelt et al. [32] demonstrated that
GBRTs can outperform RFs as BO surrogates in several scenarios. Similarly, Lim et al. [69]
demonstrated that GBRTs may outperform RFs in unconstrained BO. Still, both evaluations
suggest that there are scenarios in which GPs are superior surrogate models. The performance
differences between these two surrogate models are not yet fully understood. It appears that
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it heavily depends on the benchmark function if GBRTs beat GPs or not [19]. Since no work
has tested GBRTs as surrogates for BO with unknown constraints, it is unclear which surrogate
model is to be preferred.

A recent GBRT-based regression algorithm is NG-Boost [68]. While some works demon-
strated that the NG-Boost method can achieve promising results [19, 68], outperforming other
tree-based GBRT surrogate models in BO, Kim and Choi [19] noted that it does not scale to
high-dimensional settings as well as other tree-based surrogates such as RFs or GBRTs. Fur-
thermore, [75] showed that NG-Boost produces state-of-the-art uncertainty estimates, but its
predictive mean tends to perform worse than standard GBRT models in regression settings.

Recent years also saw BART [36] be used as BO surrogates. In contrast to GBRTs and
RFs, BART are derived using a Bayesian framework. Due to their Bayesian formulation, BART
models tend to extrapolate better than other models, as predictions in regions far from training
data will follow the prior distribution, much like GPs. This property makes BART attractive
as BO surrogates, since exploration can be carried out more efficiently [20, 76, 77]. In line with
this, BART were shown to be able to produce better outcomes than other tree-based surrogates
when performing BO [20]. However, BART have some notable drawbacks as BO surrogates:
due to their sampling-based training procedure, BART struggle in high dimensions [78], and
fitting these models may be computationally more expensive than other tree-based surrogates,
such as RFs and GBRTs [19, 20]. In particular, BART models are constructed in batch mode,
i.e., they cannot be trained online sequentially, as GBRTs may be, which typically makes them
slow surrogates [19].

Other tree-based Bayesian models that have been used as BO surrogates are MFs [19, 30].
Just like BART, MFs are a Bayesian approach that offers a prior. Again, this generally makes
MFs extrapolate better than RFs and GBRTs to unseen data, since the model can fall back onto a
sensible prior [78]. Hence, MFs have been successfully applied as surrogates in unconstrained BO
in recent years [19, 78]. Different to BART, MFs do not require expensive sampling procedures
and can be trained in batch mode: The fact that Mondrian trees can be constructed online
makes them interesting for BO, since they have been shown to be fitted in O(|D| log |D|), given
the number of data points is denoted by |D| ∈ N. This gives MFs an advantage over BART
ensembles, which also extrapolate well, but may struggle in high dimensions and take longer to
train [19]. Since BO is a setting that heavily depends on the surrogates’ ability to extrapolate,
we believe that MFs may be effective surrogates for BO with unknown constraints. In light of
this, the properties of MFs still require a better understanding in BO scenarios to comprehend
their strengths and weaknesses.

The main question that remains unanswered in all previous work is whether tree ensembles
can be used to learn feasible regions of BO problems and if so, how effective different tree
ensembles are at doing so. Consequently, our aim is to close this gap in literature with the
present work.

2.4 Quantifying uncertainty

2.4.1 Notions of uncertainty in ML and optimisation

To make statements about the uncertainty of predictions, it is necessary to understand the
sources of uncertainty that exist. In the literature, there are two distinct sources of uncertainty
that are commonly distinguished: aleatoric and epistemic uncertainty [79]:

• Aleatoric uncertainty describes the uncertainty due to the stochasticity of the observations
[79, 80]. For example, this uncertainty can be caused by measurement noise, and it is the
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reason why even if the underlying function were known, the prediction error would not
reduce to zero since the data will be unlikely to be perfectly aligned with it, as illustrated
in Fig. 2.2.

• Epistemic uncertainty on the other hand describes the uncertainty due to lack of knowledge
about the underlying model of the data. Intuitively, this refers to not knowing what the
underlying model should be in areas without training data, hence it is sometimes called
model uncertainty [79]. In Figure 2.2, this issue is apparent, because it is impossible to
extrapolate the correct function, given the current data, without making any assumptions.

It is important to note that while epistemic uncertainty can typically be reduced by collecting
more data, or adjusting the algorithm in use, aleatoric uncertainty is more difficult to be reduced
by optimisation methods, as it is related to the data itself [81].

Figure 2.2: Illustration of epistemic and
aleatoric uncertainty. Source: Abdar et al.
[82].

Knowing about the different sources of uncer-
tainty is particularly relevant in the context of BO,
because the notion of uncertainty is at the heart of
the underlying exploration-exploitation trade-off.
If the assumed underlying function is continuous,
the epistemic uncertainty is small in regions where
data has already been observed. On the other
hand, the uncertainty about the predictions will
grow, the further away one moves from observed
data. If the used uncertainty metric may reflect
this, BO will automatically emphasise the explo-
ration of unseen regions in the input space. Con-
sequently, multiple authors have emphasised that
it should be the goal of BO to reduce epistemic
uncertainty [19, 38, 83].

2.4.2 Quantifying uncertainty in regression trees

Uncertainty estimation is a crucial part of BO, as the estimated uncertainty is used to balance
exploration and exploitation. In fact, one of the main reasons for why tree-based surrogates are
relatively unpopular for BO is due to the lack of reliable uncertainty intervals [8]. In this section,
we give an overview of the efforts that have been made so far in constructing uncertainty intervals
for regression trees or ensembles. The approaches to quantifying prediction uncertainty can be
broadly classified into two categories: (i) the usage of data-based metrics, and (ii) the usage
of ensemble-based metrics. Data-based uncertainty defines a metric based on the previously
seen data points, independent of the underlying model, which means that they measure how
similar a new input is to previously seen inputs. Ensemble-based metrics estimate uncertainty
based on the trained model predictions, for instance the empirical variance of model predictions.
Note that these categories are not synonymous with aleatoric and epistemic uncertainties, as
for instance the variance of predictions across trees in an ensemble captures both aleatoric and
model uncertainty [19]. For this section, we assume that a model prediction can be expressed
as a predictive score, and an associated uncertainty interval around the predictive score. The
width of the uncertainty interval will be denoted by u(x).
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2.4.2.1 Data-based uncertainty metrics

The most common data-based uncertainty metrics are based on distance metrics. In this sce-
nario, given a distance metric ∥·∥, the uncertainty u(x) at a point x is proportional to the
distance of x to a specified point x′ in the dataset D. For example, Thebelt et al. [32] use such
an uncertainty metric, where the specified point x′ is the closest point to x:

u(x) = min
x′∈D
∥x− x′∥ (2.26)

where choosing ∥·∥ as Manhattan distance seems to yield better results than the Euclidean
distance in high-dimensional settings [84]. This approach can be easily extended to any trans-
formation of the distance. For instance, kernel-based surrogates, i.e. GPs [10], typically use
stationary kernels, which rely on a distance metric to quantify prediction uncertainty. Although
there is a plethora of kernel covariance functions for GPs that use other information than just
the distance between two data points [46, 85], we are not aware of any data-based uncertainty
measures that go beyond simple distance quantifications as in Eq. 2.26. A main strength of
distance-based uncertainty estimates is that they only rely on the input features of previous
observations. This makes distance-based uncertainty estimates invariant to observation noise,
because they ignore the model response surface.

Despite their simple and meaningful nature in continuous domains, a shortcoming of these
distance-based metrics is that they struggle to provide meaningful estimates in categorical do-
mains. In particular, if categorical data is encoded by a one-hot encoding, distance-based un-
certainty measures become binary quantities. Consequently, the estimated uncertainty intervals
become nonsmooth, so only a small difference in inputs may lead to a large difference in un-
certainty, which is undesirable for BO applications [86]. A way to address these shortcomings
is to perform data transformations in order to obtain meaningful representations of categorical
variables in a domain where distance metrics can be used efficiently. For instance, Thebelt et al.
[32] employ the tree structure distance metric that was presented by Mǐsić [87] to obtain dis-
tance estimates in categorical domains. Additionally, input transformations may help to handle
high-dimensional data, as the number of features may be reduced. In this vein, Thebelt et al.
[32] propose a data-based uncertainty measure that relies on the distance in latent space. For
this, the data is clustered using an arbitrary clustering algorithm such as k-Nearest-Neighbour,
and subsequently the uncertainty is defined as distance to the closest cluster centroid p̂k:

u(x) = min
p̂k∈K

∥x− p̂k∥ (2.27)

To the best of our knowledge, no dimensionality reduction algorithm beyond clustering [32] or
Principal Component Analysis [88] has been combined with tree-based surrogates yet. In the
context of BO with non-tree-based surrogates, more advanced techniques have been applied for
the construction of latent spaces. For instance, using the distance in the latent space of an
autoencoder [89, 90] or neural networks [91].

2.4.2.2 Ensemble-based uncertainty metrics

Ensemble-based uncertainty metrics capture the differences of the individual model outputs
across the ensemble. The idea behind this is that a certain prediction will be supported by large
parts of the ensemble. This makes ensemble-based metrics naturally perform equally well on
categorical and continuous data, as the individual model responses can be computed effectively
irrespective of the domain.
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Empirical prediction variance. A straightforward way to estimate uncertainty from an ensemble
is to use the variation of the predictions directly. This approach assumes a Gaussian predictive
distribution, and estimates the first and second central moment of this distribution empirically.
Given we denote the mean and variance of all training labels assigned to leaf ℓ by mℓ and vℓ
respectively, this means that for a given data point x, the resulting uncertainty u(x) is defined
as:

M(x) = Et∈T [t̂(x)] =
1

T

∑
t∈T

t̂(x) (2.28)

u(x) = Vt∈T [t̂(x)]

=
1

|T |
∑
t∈T

(∑
ℓ∈t

vℓ1(x ∈ ℓ)

)2

+

(∑
ℓ∈t

mℓ1(x ∈ ℓ)

)2
− Et∈T [t̂(x)]

2
(2.29)

as it was demonstrated by Hutter et al. [92] (remember that t̂ denotes the prediction of tree
t). This illustrates that, intuitively, predictions are uncertain if the trees within the ensemble
disagree, as well as if the predictions made by the individual trees are varying a lot, i.e., are
uncertain themselves. This uncertainty metric was popularised by Hutter et al. [35], who used
the empirical variance of the individual tree estimates across the RF to perform BO with SMAC.
Today, it is one of the most popular uncertainty estimates for tree ensembles, being proposed
for Mondrian Forests [62, 78], NG-Boost [68], and BART [19].

While the empirical variance uncertainty estimate has the desirable property that it will
typically grow, the further a data point is from the training data, it has been criticised as
well. Crucially, for RF models, the variance is estimated across trees that are all trained on
a slightly different data set, so Hüllermeier and Waegeman [93] noted that the uncertainty
estimate captures aleatoric rather than epistemic uncertainty. This problem does not exist for
stochastically trained tree ensembles such as MFs and NG-Boost, and variance-based uncertainty
estimation has shown promising results for these models [19, 78]. Still, we are not aware of any
work that compares the performance of these metrics to other possible uncertainty estimators
for these surrogates, so the practical properties of this metric remain unclear.

Quantile regression. The idea behind the Quantile Regression (QR) method is to provide an
uncertainty interval, much like a confidence interval, by training multiple ensembles on different
quantiles of the data to predict the probability that a specified percentage of the data is below
the given value. Mathematically, this can be achieved by changing the optimised loss function
to the quantile loss [94, 95]. The quantile loss for a quantile of 0 < τ < 1 is as follows:

Lτ (y, y′) =

{
(y′ − y)τ if y′ ≥ y

(y − y′)(1− τ) else
(2.30)

Using this loss, three tree ensembles can be trained, which estimate the expected prediction
value, the lower quantile bound, and the upper quantile bound. These tree values can subse-
quently be used as predictive mean and uncertainty estimate for BO. Due to its straightforward
implementation and intuitive results, quantile regression is the underlying uncertainty metric in
the Scikit-Optimize [73] implementation of GBRTs. Furthermore, quantile regression has been
used for RFs [95, 96], and is the default uncertainty metric for BART ensembles [36].
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Tree overlap proximity-based uncertainty. Another ensemble-based uncertainty metric for GBRTs
was presented by Thebelt et al. [32]. Originally developed in Mǐsić [87], this metric defines un-
certainty based on the concept of proximity. In tree ensembles, the proximity of two observations
x,x′ is defined as the proportion of trees for which x and x′ are classified to the same leaf:

proximity(x,x′) =
1

T

∑
t∈T

1
{
ℓt(x) = ℓt

(
x′)} (2.31)

where ℓt(x) returns the leaf that x falls to in tree t. Using this metric of proximity, the uncer-
tainty for a prediction made at x can be defined as:

u(x) = min
x′∈D

proximity(x,x′) (2.32)

Despite having different theoretical embeddings, the empirical prediction variance and proximity-
based uncertainty are very similar, since they are both low in the case where all trees classify
a data point similarly. However, a weakness of the proximity-based uncertainty lies in it being
ignorant of the actual prediction at the leaf node. Specifically, on functions that exhibit only
gradual changes, this metric will be underconfident compared to a GP or MF, potentially leading
to overexploration of the domain during BO.

Jackknifing. Another approach of estimating uncertainty intervals from RFs is the Jackknife
[97]. To calculate a Jackknife estimate of the prediction variance in a RF, each sample in the
data is iteratively excluded exactly once, and the remaining data is used to regress a prediction,
over which finally the variance is used as an estimate of the model uncertainty. Eq. 2.33 gives
an illustration of this procedure in mathematical terms. Let T be the set of trees in a random
forest model, that was constructed from a set of bootstrap samples B. Let T−i be the trees of
the random forest ensemble that was trained on all bootstrap samples not containing the i-th
data point. Then, the Jackknife uncertainty estimate can be defined as:

u(x) =
N − 1

N

M∑
i=1

(
MT−i (x)−MT (x)

)2
(2.33)

whereMT−i(x) defines the prediction of a random forest when all bootstrap samples containing
data point i are excluded:

MT−i(x) =

∑
t∈RF

t not trained on i

t̂(x)

| t∈RF
t not trained on i|

(2.34)

and the mean of all trees is defined as:

MT (x) =
1

T

∑
t∈T

t̂(x) (2.35)

Despite being its theoretical properties, the Jackknife has been criticised for its performance in
practise, specifically Scillitoe et al. [78] have noted that the Jackknife fails to account for uncer-
tainty arising from training and test data differing in modelling tasks. Additionally, Jackknifing
compares the predictions of the same model on slightly different data sets, which results in the
estimation of aleatoric uncertainty, much like prediction variance as uncertainty estimate for
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RFs [93].

Figure 2.3: The virtual ensemble used by Malinin et al. Source [38].

Bayesian Model Averaging. Recently, Malinin et al. [38] presented Bayesian Model Averaging
to estimate model uncertainty in GBRTs ensembles. This approach follows Gal and Ghahramani
[98], who demonstrated that using dropout in a neural network during testing is equivalent
to drawing samples from the distribution of model architectures, which can be used to MC
approximate a GP in the limit. To apply this idea to GBRTs, Malinin et al. [38] train a
single GBRT ensemble, and subsample multiple virtual ensembles, which are then considered
as draws from the distribution of GBRT models. This idea is illustrated in Fig. 2.3. This
approach offers important theoretical properties, as the uncertainty measure enables to capture
uncertainty about the optimal model configuration, as the number of trees varies across the data
set. However, all trees within the virtual GBRT ensemble are highly correlated by construction,
which may ultimately lead to bad uncertainty estimates and overconfident surrogate models.
Additionally, by construction, different trees in a GBRT ensemble will predict different parts
of the input space better than others, so simply leaving out parts of the ensemble may lead to
underfitting models. Furthermore, other uncertainty sources in the model, for instance prediction
weights and tree depth, are not captured by this approach. Still, Malinin et al. [38] demonstrate
that MC Dropout is a valid uncertainty metric, which can be successfully used in outlier detection
tasks. However, it is unclear how well the Bayesian Model Averaging approach by Malinin et al.
[38] translates to BO. To investigate this question, this work introduces MC Dropout as an
uncertainty estimate in BO tasks.

Method Construction procedure Uncertainty estimation strategies

Random Forests [34] Bagging [28]
Empirical prediction variance [35, 92]

Jackknife [97]
Quantile Regression [95]

Gradient-boosted trees [29] Boosting [29]
Quantile Regression [95]

Proxmity-based metric [32, 87]
Bayesian Model Averaging [38]

Mondrian Forests [30] Stochastic splitting of large regions in trees Empirical prediction variance

NG-Boost [68]
Boosting w. natural gradients

Optimising distributional parameters
Empirical prediction variance

BART [36] MCMC sampling from posterior distribution
Quantiles of posterior samples [36]
Empirical prediction variance [19]

Table 2.1: A summary of tree-ensemble-based surrogates for Bayesian Optimisation. The listed
uncertainty strategies represent existing options for uncertainty estimation when using a specific
tree ensemble. Note that only one uncertainty metric can be used at a time.



Chapter 3

Solving black-box constrained Bayesian
Optimisation with tree ensembles

In this chapter, we propose to use tree ensembles as surrogate models for BO with black-box
constraints. To this end, we model each function in the problem setting, i.e. the objective and
constraint function(s), with a separate tree ensemble, and combine the resulting approximations
in an appropriate acquisition function that is used to select the next candidate point at which
the black-box objective and constraint functions are evaluated. To analyse the performances
of different tree ensembles, we will compare three different tree-based surrogate models in this
work:

1. Random Forests [34].

2. Gradient-Boosted Regression Trees [28]

3. Mondrian Forests [30, 62]

To the best of our knowledge, this is the first work that solves constrained BO with tree ensem-
bles.

We begin this chapter with the mathematical formalisation of the optimisation problem that
we try to solve (Section 3.1). Next, we provide a theoretical motivation for using tree-based
ensembles to solve this problem (Section 3.2). We then describe the version of the Bayesian
Optimisation algorithm that we use (Section 3.4), and lastly we discuss details of our implemen-
tation (Section 3.5).

3.1 Problem Formulation

BO with unknown constraints is a problem that is characterised by a black-box objective function
which shall be optimised under the presence of (multiple) black-box constraint functions. We
assume that the objective function, and each constraint function, can only be evaluated point-
wise, i.e. the underlying function is unknown in its closed form. We furthermore assume that the
evaluation of the objective and constraint conditions is expensive, so the number of point-wise
evaluations shall be kept at a minimum.

Let f : X 7→ Y ⊆ R be the objective function that shall be minimised. Note that X ⊆ R
does not hold in general, since the feature space of many optimisation problems may contain
categorical variables, e.g. the choice of activation function in a NN layer. Let c : X 7→ Z ⊆ R be
a constraint function, such that the corresponding constraint condition is satisfied iff. c(x) ≤ 0.

22
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We define C(X ) = {c1(·), . . . , cK(·)} as the set of black-box constraint functions, which all must
be satisfied to solve the problem. This results in the following constrained optimisation problem:

x∗ ∈ argmin
x∈X

f(x)

s.t. ck(x) ≤ 0, ∀ck ∈ C(X )
(3.1)

3.2 Motivation

This thesis is not the first work to address the problem in Eq. 3.1 via surrogate modelling.
As outlined in Section 2.1, notable works include Schonlau et al. [56] and Gelbart et al. [14].
However, none of these previous works has modelled the unknown objective and constraint
functions using any surrogate models other than GPs. This is surprising, as GPs are known to
have limitations. For instance, their performance may deteriorate on large datasets [21, 22], and
in high dimensions [23]. There do exist works that address these problems [25, 26, 27]. Still, GPs
are known to struggle on multimodal functions [32], and a particular issue remains: while most
synthetic benchmark problems are smooth, many real-world problems feature categorical inputs
and non-smooth objective functions, for example in materials design [20]. GPs however, assume
that the underlying function is smooth, so they may struggle on such problems. In contrast, tree
ensembles are naturally able to model such non-smooth functions, as outlined Chapter 2. In
addition, some tree ensembles are among the strongest machine learning models for regression
tasks [31, 32]. This is illustrated in Table 3.1, where we compare the performance of tree
ensembles as regression-point estimators to that of a GP with automatic relevance determination
(ARD) 5/2-Matérn kernel on well-established benchmarks for regression [98, 99], and tree models
outperform GPs on several datasets from literature. Thus, regression tree ensembles have great
potential as BO surrogates. Additionally, the scalability of tree ensembles to high dimensions
[100] compared to conventional GPs makes them ideal candidate surrogate models for learning
feasible regions, since an independent model needs to be trained for each constraint.

Dataset Gaussian Process Random Forest GBRT Mondrian Forest

Concrete strength [101] 5.33± 0.14 5.42± 0.33 4.57± 0.36 7.12± 0.44
Energy efficiency [102] 1.33± 0.10 1.83± 0.11 1.36± 0.16 1.71± 0.28
Wine Quality Red [103] 0.80± 0.07 0.59± 0.05 0.62± 0.04 0.59± 0.05

Yacht Hydrodynamics [104, 105] 0.38± 0.04 1.25± 0.43 1.10± 0.35 6.66± 1.05

Table 3.1: Performance of tree ensembles and Gaussian Processes as regression point estimators.
Average test performance in RMSE for several tree ensemble methods on popular regression benchmark
problems that were used in Hernández-Lobato and Adams [99]. Displayed are mean error and one
standard deviation across 5 runs. Best method is highlighted in bold.

3.3 Modelling constraints with tree ensembles

Following BO convention, we assume the predictive distribution of a surrogate model to be
Gaussian [8, 9, 14, 32], i.e., it is defined by two parameters: the predictive mean and the standard
deviation. We estimate these two parameters using (i) a surrogate model that estimates the
predictive mean and (ii) an uncertainty metric, which estimates the second central moment of the
predictive distribution. These two values are subsequently used as parameters of a multivariate
Gaussian predictive distribution N (x | M(x), u(x)), where M : X 7→ R is a tree ensemble,
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which takes an input x and returns a regression estimate, and uM(x) : X 7→ R is an uncertainty
estimator that returns a point-wise uncertainty estimate ofM at x.

To learn the feasible region, we model each constraint ck with a separate surrogate model
Mck . Consequently, given K ∈ N constraints, there will be K + 1 surrogate models, which are
trained: one surrogate modelMf that learns the objective function f , and one surrogateMck

for each constraint function ck, k ∈ {1, . . . ,K}. The type of model, i.e. GBRT or RF, is chosen
to be consistent across all surrogates. For instance, if the objective f is modelled using a GBRT
ensemble, so is each respective constraint function.

Given the set of constraints C(X ), we follow the literature on constrained black-box optimi-
sation, and use the CWEI acquisition function (Eq. 2.11) [16, 56], which is the product of the
expected improvement and probability of constraint feasibility at a given input point. Following
previous works [9, 16, 56], we assume independent constraints, which allows us to compute the
PoF as:

PoF (x) =
K∏
k=1

P (Mck(x) ≤ 0)

=

K∏
k=1

∫ 0

−∞
p(Mck(x

′) ≤ 0) dMck(x
′)

=

K∏
k=1

Φ(0 | Mck(x), uMck
(x))

(3.2)

where Φ(0 | Mck(x), uMck
(x)) denotes the cumulative density function (CDF) of the multivari-

ate Gaussian distribution N (x | Mck(x), uMck
(x)). Since the predictive distribution is assumed

to be a Gaussian, we can exploit the closed form expression of EI [56], which we introduced in
Eq. 2.8. Consequently, we optimise the following function:

αCWEI(x) = αEI(x) · PoF (x)

= uf (x)
(
Z · Φ(Z) +N (Z | 0, 1)

) [ K∏
k=1

Φ(0 | Mck(x), uMck
(x))

]
, Z =

Mf (x)− y⋆

uf (x)

where y⋆ is the best feasible objective value that has been observed previously.

3.4 Optimising a constrained objective with tree ensembles

In the present work, we investigate constrained BO with tree ensemble surrogate models. To
solve Eq. 3.1 while having a limited budget of evaluations N ∈ N, we use the algorithm for
constrained BO [9, 14, 16, 32], which can be seen as an extension of Algorithm 1. The resulting
Algorithm is listed in Alg. 4. The main difference between the two aforementioned algorithms
lies in the acquisition function and number of surrogate models. Instead of training a single
surrogate model and using the EI acquisition function, Alg. 4 trains a separate surrogate model
for each function in the problem, i.e. objective or constraint functions. The resulting model
predictions are combined in the acquisition function that is minimised in line 4 of Algorithm 4.
As stated above, we use the CWEI acquisition function [56] (Eq. 2.11), as it is probably the
most widely used acquisition function for constrained BO, yielding strong results on a variety
of problems [9, 14, 16]. Consequently, we minimise over α = αCWEI in line 4 of Algorithm 4.
In the situation that no feasible point is known, the CWEI is undefined. In this case, we follow
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Gardner et al. [16] and optimise only the second part of the equation, that is the PoF.
In addition to the specified input parameters in this algorithm, the following hyperparameters

need to specified for optimisation: the tree ensemble type that is used for each surrogate model,
the acquisition function that is minimised in the BO loop, and the optimisation strategy that is
used in line 4 of the Algorithm. While we use the CWEI acquisition function in all experiments,
we compare the performances of different tree ensembles in our experimental evaluation. Due to
the non-differentiable response surfaces of tree ensembles, higher order optimisation techniques
such as gradient descent or L-BFGS [50], which are used to optimise GP surrogate models,
cannot be used. Instead, we rely on non-gradient based optimisation strategies, which are
described in Chapter 5.

To initialise the surrogate models (lines 1 and 3 of the Algorithm), a number of random
points is sampled from the domain X and evaluated with respect to their objective value and
constraint feasibility. The results of these evaluations are used as initial training samples of
the surrogate models. To sample pseudo-random points, we use Sobol’s sequence [106], which
guarantees exploration of the space and has been successfully used in BO [3, 19, 26].

Algorithm 4: The Bayesian Optimisation algorithm for problems with unknown con-
straints [9, 14, 32]. Differences to the unconstrained BO algorithm are highlighted in
pink.

input : Objective fct f , constraint fcts {c1, . . . , cK}, acquisition fct α, time budget N
1 Initialise objective surrogate modelMf

2 Initialise data D0
f with specified number of initial observations

3 Init constraint surrogate modelsMc1 , . . . ,McK

4 Initialise data D0
c1 , . . . ,D

0
cK

with specified number of initial observations
5 while n < N do
6 Select next candidate for evaluation: xn+1 ← argminx∈X α(x | Dn

f ,Dn
c1 , . . . ,D

n
cK

)

7 Evaluate objective function f at candidate: yn+1
f ← f(xn+1)

8 Add new observation to objective dataset: Dn+1
f ← Dn

f ∪ {(xn+1, yn+1
f )}

9 Fit objective surrogate modelMf to data Dn+1

10 for constraint k ∈ [1, . . . ,K] do
11 Evaluate constaint function ck at candidate: yn+1

ck
← ck(xn+1)

12 Add new observation to constraint datasets: Dn+1
ck
← Dn

ck
∪ {(xn+1, yn+1

ck
)}

13 Fit constraint surrogate modelMck to data Dn+1
ck

14 n← n+ 1

15 return argmin(x,y)∈DN
f

y, s.t. ck(x) ≤ 0,∀k ∈ [1, . . . ,K]

3.5 Implementation

The source code of our implementation is available on GitHub1. All code is implemented using
version 3.9 of the Python programming language. We implemented Algorithm 4 based on the
scikit-optimize implementation of unconstrained BO [73], and entmoot implementation of
the BO algorithm with known constraints [32] 2. Both software packages are licenced under
the BSD 3-Clause Licence, which allows the usage and modification of the code. Using parts of
existing software packages offers the benefit that the resulting software integrates well into the

1https://github.com/cornelius-braun/constrained-bo-trees
2https://github.com/cog-imperial/entmoot

https://github.com/cornelius-braun/constrained-bo-trees
https://github.com/cog-imperial/entmoot
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scikit-learn API, which is used in both aforementioned software packages. For instance, this
permits to easily integrate scikit-learn’s implementation of input spaces that allows to define
continuous, mixed and discrete domains, from which points can easily be sampled. Following the
licence requirements, each file that is based on a different software package, carries the copyright
of the original author(s) and our copyright, as the contents were altered and extended. At
a high level, our contributions encompass the implementation of the distance-based and MC
Dropout uncertainties, the surrogate model wrappers, as well as the optimiser, which performs
the Bayesian Optimisation. For a detailed overview of which code parts are new contributions,
we refer to the listing in our GitHub repository3.

We implement the tree ensembles using the following open source software packages: RF
surrogate models are implemented using the scikit-optimize package [73], GBRTs surrogate
models are implemented using the LightGBM package4, and MFs using the scikit-garden pack-
age5.

Tree ensemble training has many hyperparameters, such as the number of trees in the ensem-
ble, or the minimum number of observations per leaf. For this work, we use the default values
of the respective software packages with two exceptions: (i) since BO involves less training data
than many other regression problems, we decrease the minimum number of observations per leaf
from 20 to 2 for GBRTs (for MFs this is already the default), and (ii) we increase the number
of trees in MF ensembles slightly from 10 to 20 to match the predictive performance of GBRT
ensembles (which contain 100 trees per default).

Instructions on how to use the software can be found in our README6. For more info on
the software usage, we refer to the Appendix.

3https://github.com/cornelius-braun/constrained-bo-trees/blob/main/contributions.txt
4https://github.com/microsoft/LightGBM
5https://github.com/scikit-garden/scikit-garden
6https://github.com/cornelius-braun/constrained-bo-trees/blob/main/README.md

https://github.com/cornelius-braun/constrained-bo-trees/blob/main/contributions.txt
https://github.com/microsoft/LightGBM
https://github.com/scikit-garden/scikit-garden
https://github.com/cornelius-braun/constrained-bo-trees/blob/main/README.md


Chapter 4

Improving the uncertainty estimation of
tree ensemble surrogate models

In the previous chapter, we introduced tree ensembles as surrogate models in BO with unknown
constraints. Shahriari et al. [8] identified the unsatisfactory performance of existing uncertainty
metrics for trees as one drawback of using tree ensembles as BO surrogates. The aim of this
chapter is to address this issue by establishing novel uncertainty metrics for MF and GBRT
ensembles in the context of BO. The uncertainty metrics that we analyse are:

1. Distance-based uncertainty estimation for MFs

2. MC Dropout uncertainty estimation for GBRTs as BO surrogates

To the best of our knowledge, this is the first work that uses these uncertainty metrics in the
context of BO.

In this chapter, we first present a motivation for why novel ways of estimating model uncer-
tainty are needed (Section 4.1). Then, we present the distance-based uncertainty estimate for
MFs (Section 4.2). Subsequently, we outline the MC Dropout uncertainty estimate for GBRTs
(Section 4.3). Finally, we give an overview of the most important implementation details of
these uncertainty estimates (Section 4.4).

4.1 Motivation

In BO, the predictive distribution of a surrogate model is typically assumed to be a multi-
variate Gaussian distribution, parametrised by the point prediction of a regression model and
the predictive uncertainty of that model. Given this predictive distribution, various acquisition
functions, such as the EI (Eq. 2.11) can be computed. In particular, in constrained settings, the
uncertainty of the constraint surrogates is used to compute the probability of constraint feasibil-
ity, as we describe in Eq. 3.2. Consequently, a well-calibrated uncertainty estimate is essential
to the success of BO, as the optimisation objective directly depends on it. For example, if the
uncertainty estimate was too low for several regions, the learnt feasible region would be very
small and the model will probably not explore in the regions where the uncertainty estimate is
overconfident. Likewise, underconfident uncertainty estimates may lead to overexploration of
the input space.

While GPs offer a natural quantification of uncertainty, Shahriari et al. [8] identified the lack
of such uncertainty metrics as one of the main reasons why tree ensembles are less used as BO
surrogates. Several works succeeding this claim have acknowledged this issue and made efforts
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to overcome it [19, 30, 32, 87]. Still, for many tree ensemble types such as MFs, we are not
aware of uncertainty estimates other than the empirical prediction variance being used, despite
their known weaknesses that we discuss in Section 2.4.2. Motivated by this gap in literature, it
is the aim of this chapter to improve the uncertainty estimation of GBRTs and MFs.

In particular, MFs have been shown to perform well as surrogate models [62, 78], but it
appears likely that these results might at least partly be due to the strong performance of
MFs as point estimators in regression settings. Specifically, the usage of the empirical prediction
variance as standard uncertainty estimate of MFs has been criticised by Kim and Choi [19], since
this estimate may be influenced by observation noise, leading to the underexploration of certain
areas relative to others during BO due to high uncertainty estimations for already explored
regions. To address this criticism, we introduce distance-based uncertainty estimation as a new
way to quantify the prediction uncertainty of a MF. Since distance-based uncertainty estimates
are invariant to observation noise, we hypothesise that distance-based uncertainty estimation
may improve the performance of MF surrogate models. To the best of our knowledge, this work
represents the first effort to improve the uncertainty estimation of MFs, and consequently is the
first to use the presented uncertainty metric for MFs.

A second uncertainty estimate that is considered in this chapter is the MC Dropout uncer-
tainty for GBRTs. Based on the successful use of MC Dropout as uncertainty estimate for NNs,
Malinin et al. [38] presented MC Dropout uncertainty for GBRTs for outlier detection, but we
are not aware of it being used in the context of BO before. Despite the promising results that
Malinin et al. [38] report on outlier detection tasks, we hypothesise that this uncertainty esti-
mate may not be suitable for BO, since the ensembles that are averaged in this procedure will
be highly correlated, which should result in very low uncertainty estimates even in unexplored
regions. To test this hypothesis, we are, to the best of our knowledge, the first to use the MC
Dropout uncertainty estimate for GBRTs in the context of BO.

4.2 Distance-based uncertainty estimation for Mondrian Forests

To quantify the uncertainty of a MF prediction at a point x ∈ X , we propose to use a distance-
based metric. Originally, this distance-based metric was conceived for GBRTs by Thebelt et al.
[32], which we discussed in Section 2.4.2. The idea behind this uncertainty metric is to use the
distance to the closest previously observed point as uncertainty quantification. Given continuous
data, we quantify the distance between two data points using the Euclidean distance:

dist(x,x′) = ∥x− x′∥22 =
D∑

d=1

(
xd − x′

d

)2
(4.1)

Following Thebelt et al. [100], we replace ∥·∥2 with the Goodall4 distance metric [107] in cate-
gorical domains:

dist(x,x′) = Goodall4(x,x′) =
1

D

D∑
d=1

Sd

(
xd, x

′
d

)
(4.2)

where

Sd(xd, x
′
d) =

{
count(D[d]=xd)(count(D[d]=x′

d)−1)
|D|(|D|−1) , if xd = x′d

0, otherwise
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Here, count(D[d] = xd) quantifies how often the d-th feature in dataset D has the same category
as point x along dimension d, and D denotes the number of dimensions of the input space. In
mixed spaces, we sum the distance between two data points across all dimensions, choosing the
Euclidean distance for continuous and Goodall4 for categorical domains [100].

While the GP uncertainty estimate naturally scales with the predictive mean, distances do
not scale with the magnitude of the observed function values. To circumvent this issue, we scale
all uncertainty estimates using Min-Max-scaling to a range of [0,maxx∈D y], i.e. at most the
largest absolute value observed so far. This makes it likely that the uncertainty intervals are
likely to cover all uncertain predictions. Since the uncertainty directly influences the predicted
acquisition function values, this scaling is crucial to ensure that the contribution of the local
uncertainty estimate is large enough to encourage exploration.

Another challenge we need to address when using distance-based uncertainties, is that Eu-
clidean distances grow to very large values quickly, in particular in higher dimensions. Without
setting an upper bound to the distance-based uncertainty, the predictive uncertainty would grow
too large too quickly. To circumvent this issue, we follow the approach by Thebelt et al. [32]
and limit the uncertainty to be at most as high as the variance over all previous observations.
This leads to the following scaled and clipped uncertainty estimate:

udist(x) = argmin
x′∈X

[
min

[
dist(x,x′) · ylargest, V(y)

]]
(4.3)

where V(y) refers to the variance over all previous observations, and ylargest = maxy∈y(|y|) is
the largest absolute value observed so far.

4.3 MC Dropout uncertainty estimation for Gradient Boosted Regres-

sion Trees

The idea underlying MC Dropout uncertainty estimation is to embrace the uncertainty over
the parameters of a machine learning model by assuming a distribution over all possible model
configurations. In the case of GBRTs, an example of such parameters are the split values of
the nodes in the trees. As the true distribution over all models is unknown, MC Dropout
uncertainty estimation approximates the parameters of the distribution over all tree ensembles,
and uses them as predictive mean and uncertainty estimate [98]. Introduced for outlier detection
with GBRTs by Malinin et al. [38], this uncertainty estimate has not been introduced in the
context of BO before.

Given data D, the posterior distribution over GBRT model configurations is specified by:

p(t | D) = p(D | t)p(t)
p(D)

(4.4)

Assuming a Gaussian prior p(t) over the tree configurations in a GBRT ensemble, and a Gaussian
likelihood p(D | t), the parameters of this distribution can be estimated via MC approximation,
resulting in the predictive posterior p(y | x,D) [38], which is used as predictive distribution
in BO. Specifically, the first moment, that is the mean of the distribution, is used for point
estimates, and the second central moment, i.e the variance, is used as uncertainty estimate.
However, to compute both moments, an intractable expectation needs to be computed [98]. In
particular, the expectation Ep(t|D) must be computed, which is not possible in closed form. To
circumvent this issue, Eq. 4.5 uses a sampling-based MC approximation, which averages the
predictions of multiple GBRT ensembles that were drawn from the distribution p(t | D). Similar
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to the prediction variance estimate for MFs, this leads to point-prediction estimates of:

GBRT MC(x) = Ep(t|D)

[
t̂(x)

]
=

1

M

M∑
m=1

t̂(x), t ∼ p(t | D)
(4.5)

with the MC Dropout uncertainty quantified by the empirical prediction variance:

uMC(x) = Vp(t|D)[t̂(x)]

=
1

|T |
∑
t∈T

(∑
ℓ∈t

vℓ1(x ∈ ℓ)

)2

+

(∑
ℓ∈t

mℓ1(x ∈ ℓ)

)2
− Ep(t|D)[t̂(x)]

2
(4.6)

which is equivalent to the expected value and variance across the predictions of all possible
ensembles.

The main challenge in the computation of the resulting uncertainty estimate lies in drawing
samples t ∼ p(t | D) from the posterior distribution over GBRT ensembles. To avoid training
multiple tree ensembles in parallel, we employ the virtual ensemble approach in Fig. 2.3 by
Malinin et al. [38]. This approach reduces the computational complexity of the estimation
by sampling sub-ensembles from a single large GBRT ensemble. Since GBRT ensembles are
constructed sequentially (see Algorithm 2), the sub-ensembles cannot be sampled completely
randomly from the entire ensemble, without deteriorating the performance of the sub-ensemble.
Instead, we restrict the drawn subsamples to encompass only sequentially constructed ensembles,
i.e. tree 1 to tree k, for k ≤ K, as illustrated in Figure 2.3. Malinin et al. [38] called this approach
virtual ensemble construction and demonstrated its validity in their work.

4.4 Implementation

The implementation of all tree ensembles and the BO algorithm is the same as described in
Section 3.5.

The implementation of the distance-based uncertainty is based on the implementation for
GBRTs by Thebelt et al. [100]. However, we significantly improve the runtime of this imple-
mentation by using numpy broadcasting [108] to compute the distance to the closest previously
seen observation. Additionally, we extend the implementation with the aforementioned Min-
Max-scaling of the uncertainty measures.

The MC Dropout uncertainty estimate for GBRTs is implemented as described in [38]. This
uncertainty estimate relies on a Monte Carlo approximate, which we approximate by sampling
multiple sub-ensembles from a trained tree ensemble and average their outcomes. Important
hyperparameters in this procedure are the size of the sub-samples and the number of sampling
iterations. Following Malinin et al. [38], we only sample sub-ensembles that include at least
half the number of estimators in the full ensemble. Since we only consider sub-ensembles that
have been constructed sequentially, there are ensemble size

2 distinct sub-ensembles that can be
sampled. Since MC approximations of integrals improve with the number of samples drawn, we
use all ensemble size

2 distinct sub-ensembles in our computation. Following Section 3.5, we use
the LGBM default parameters for GBRTs, which means that ensemble size = 100, so we sample
50 sub-ensembles to estimate the MC Dropout uncertainty estimate.



Chapter 5

Selecting the optimisation strategy to
minimise the acquisition function

In this thesis, we introduce tree ensembles as surrogate models in BO with unknown constraints.
Shahriari et al. [8] identified two main reasons for why tree ensembles are unpopular as BO sur-
rogate models: the lack of reliable uncertainty estimates, and the non-applicability of gradient-
based optimisation strategies due to the non-differentiable response surfaces of tree ensembles.
While we addressed the first issue in the previous chapter, it is the aim of this chapter to address
the second issue by improving the optimisation of the acquisition function in Algorithm 4 (see
line 4). To this end, we discuss three of the most popular gradient-free optimisation strategies:

1. Sampling-based optimisation

2. The Nelder-Mead (NM) algorithm with stochastic restarts [39]

3. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [53]

This chapter is outlined as follows, we first present a motivation for improving optimisation
strategy of the acquisition function (Section 5.1). Then, we discuss the optimisation techniques
that we use in the present work (Section 5.2), and finally we outline the implementation details
of these techniques (Section 5.3).

5.1 Motivation

Optimising the acquisition function is crucial for the success of BO. In each iteration of Algo-
rithm 4, the next candidate point at which the objective and constraint functions are evaluated
is chosen by minimising the acquisition function (Algorithm 4, line 4). If the optimisation strat-
egy that is used in this step fails to determine the true minimum, expensive evaluations of the
oracle will be wasted. In the absence of higher-order information, previous works using tree
ensembles as surrogate models in unconstrained optimisation or BO with known constraints,
commonly used sampling-based optimisation to minimise the acquisition function [19, 51, 73].
However, this optimisation strategy has major weaknesses. In particular, it offers no theoretical
guarantees, as the optimisation is stochastic, and furthermore, its performance deteriorates in
higher dimensions. The latter is due to the fact that the number of samples that are needed
to cover the input space increases exponentially with the number of dimensions. To circumvent
these issues, Thebelt et al. [32] presented a mixed integer formulation of BO with trees that can
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be solved using mixed integer program solvers such as Gurobi1. In their experiments, Thebelt
et al. [32] prove that this approach of optimising the acquisition function works well in uncon-
strained settings, and settings with known constraints. However, their approach comes with
several weaknesses. Since it only allows for linear or quadratic acquisition functions to be used,
Thebelt et al. [32] use the LCB acquisition function. While this function may offer theoretical
guarantees, its practical outcomes heavily depend on the tuning of the exploration hyperpa-
rameters, leaving it vulnerable to over- or underexploration [109, 110]. A second shortcoming of
formulating BO as a quadratic mixed integer program lies in the fact that the predictive mean of
some tree ensembles, such as MFs, is not linear, so these surrogate models cannot be used when
following this approach. To alleviate these issues, we propose using other popular algorithms
for global optimisation. Specifically, we discuss the NM algorithm [39], and CMA-ES [53] as
alternatives to sampling-based optimisation for global gradient-free optimisation.

5.2 Optimisation of the acquisition function when using tree ensemble
surrogates

In the present work, we use and compare three methods for minimising the equation in Eq.
(2.11): (i) sampling-based optimisation, (ii) the CMA-ES algorithm [53], and (iii) the NM
algorithm [39]. This section provides a short overview of the methods that will be evaluated.
While we expect that the latter two methods both outperform sampling-based optimisation, we
will investigate empirically in a later chapter which of the two latter methods performs better.

Algorithm 5: The CMA-ES algorithm. For a detailed discussion of how the distributional

parameters µ, σ, and C are updated in lines 8-10, we refer to Hansen [111] and Dang et al.

[112]. Algorithm adapted from Dang et al. [112].

input : Objective fct f , N points keep k, Init sigma σ, Population size λ, time budget N
1 Initialise C ← I, pc ← 0, pσ ← 0, n← 0
2 while not converged ∧ n < N do
3 Sample population xi ∼ N (mean = 0, covariance = C), for i ∈ [1, . . . , λ]
4 // update mean

5 m←m+ σz, where z =
∑k

i=1wix
i

6 // update step-size
7 pσ ← update_p_sigma(pσ, σ, C,p)
8 σ ← update_sigma(σ, pσ)
9 // update covariance matrix
10 pc ← update_pc(pc,p)

11 C ← update_covariance(C, σ, pc,x
1, . . . ,xλ)

12 n← n+ 1

13 return argminx∈D f(x)

5.2.1 Sampling-based optimisation

Sampling-based optimisation stochastically minimises a function. To this end, the target func-
tion is evaluated at a specified number of random points, and the best observation across all of
these evaluations is used as the minimum of the function. In our case, the target function is the

1https://www.gurobi.com/

https://www.gurobi.com/
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CWEI acquisition function, which is defined by one or multiple surrogate models, and the best
of these evaluations of the acquisition function is used as the next candidate in line 4 of Alg.
4. Typically, this method’s weaknesses are exposed in high domains, where a very high number
of samples is needed to cover the spaces. Consequently, we expect this optimisation method to
perform badly in high dimensions, in particular.

5.2.2 The CMA-ES algorithm

CMA-ES belongs to the class of evolutionary algorithms, where in each step a set of candidate
solutions is evolved, while the best solutions are kept. This process resembles natural selection,
as the fittest candidate solutions are chosen to “survive” and new candidates are derived from
these solutions. Introduced by Hansen and Ostermeier [53], CMA-ES is a particular strategy for
evolving the set of candidate solutions, by sampling new candidate solutions from a multivariate
Gaussian whose parameters are defined based on the best candidate solutions. The general
algorithm is listed in Algorithm 5. For a detailed discussion of how the distributional parameters
are evolved, we refer to Hansen [111].

5.2.3 The Nelder-Mead algorithm

The NM algorithm is a local search algorithm, that may be converted into a global optimisation
algorithm by combining the results of multiple restarts from different locations [3]. In particular,
using restarts aids to avoid local minima that the algorithm may converge to. The result is a
robust algorithm for derivative-free optimisation that shows good performances in practise. The
algorithm starts with a simplex, whose vertices are iteratively adapted, such that the function
values at those points improve in each iteration. The full algorithm is listed in Algorithm 6.

Algorithm 6: The Nelder-Mead algorithm. Adapted from Gao and Han [113].

input : Objective fct f , init simplex ∆, Number of dim. D, time budget N ,
hyperparams α, β, γ, δ

1 while not converged ∧ n < N do
2 Sort points in ∆: x1, . . . ,xD+1 ← arg sortf(xi) x

i

3 Compute centroid: x← centroid(x1, . . . ,xD)
4 Compute reflection point: xr ← x+ α(x− xD+1)
5 xD+1 ← xr if f(x1) ≤ f(xr) < f(xD)
6 // Expansion
7 if f(xr) < f(x1) then
8 Compute expansion point: xe ← x+ β(xr − x)
9 xD+1 ← argmin{xe,xr} f(x)

10 // Contraction
11 if f(xD) ≤ f(xr) < f(xD+1) then
12 Compute outside contraction point xo ← x+ γ(xr − x)
13 xD+1 ← xo if f(xo) ≤ f(xr)

14 else if f(xr) ≥ f(xD+1) then
15 Compute inside contraction point xi ← x− γ(xr − x)
16 xD+1 ← xi if f(xi) ≤ f(xr)

17 Shrink: xi ← x1 + δ(xi − x1), for i ∈ [2, . . . , D + 1]
18 n← n+ 1

19 return argminx∈D f(x)
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5.3 Implementation

We implement the sampling-based optimisation by sampling 20, 000 points from a multivariate
uniform distribution that is bounded by the limits of the input space. For example, the G6
benchmark that we use in our evaluation (see Table 6.1) is defined over X = [13.5, 14.5]×[0.5, 1.5],
so x1 ∼ U(13.5, 14.5), x2 ∼ U(0.5, 1.5).

For NM optimisation, we use the adaptive implementation of scikit-learn2, which is based
on Gao and Han [113]. For all hyperparameters, in particular α, β, γ, δ, we use the default values
of the implementation mentioned above. We use five restarts, which are initialised with the five
best points among 20, 000 random function evaluations, i.e. the first run uses the best point, the
second run uses the second best, etc. Given the initial point of a single run, the initial simplex
δ is defined automatically by scikit-learn.

For CMA-ES, we use the pycma package3. Following the BoTorch tutorial on CMA-ES4,
we set σ = 0.2, and double the population size with respect to the aforementioned tutorial to
100 to guarantee a good performance in high dimensions. All other hyperparameters of the
algorithm are chosen to be the default values of the pycma implementation. As initial value,
we choose the best point among 20, 000 random function evaluations. Unfortunately, the pycma
implementation does not support the optimisation over categorical dimensions, so the evaluation
of this method will be limited to continuous domains.

For both NM and CMA-ES optimisation, the resulting optimum is compared to the best
observed function value when performing random sampling optimisation and the better value is
chosen. This step helps to escape local minima during the optimisation.

2https://scikit-learn.org/
3https://github.com/CMA-ES/pycma
4https://botorch.org/tutorials/optimize_with_cmaes

https://scikit-learn.org/
https://github.com/CMA-ES/pycma
https://botorch.org/tutorials/optimize_with_cmaes


Chapter 6

Evaluation

In this chapter, we analyse the performance of our proposed approach. The goal of this section
is to incrementally analyse the impact of the different contributions that we make. This means
that we:

1. Outline the experimental setup of our experiments (Section 6.1),

2. Experimentally prove that tree ensembles can be used as surrogates for black-box con-
strained BO, and that GBRTs and MFs outperform RFs as such (Section 6.2),

3. Demonstrate how the distance-based uncertainty metric for Mondrian Forests, which we
proposed in Chapter 4, improves the performance of MFs as BO surrogates (Section 6.3),

4. Demonstrate that using the Nelder-Mead optimisation algorithm improves the optimisation
outcomes compared to other global optimisation methods(Section 6.4),

5. Show that Mondrian Forest surrogates with our novel uncertainty estimate outperform
state-of-the-art GP surrogate models on several benchmark problems (Section 6.5).

6.1 General experimental setup

In each problem setting that we analyse, the constraint functions are unknown to the optimiser,
and the feasible region is approximated using tree ensembles. We repeat each experiment with
different random seeds for five iterations. As results, we report the mean and standard deviation
across these runs1. All experiments are computed on a Linux machine with an Intel Core i7-
7700K @ 4.20GHz CPU with 16 GB RAM. We do not use GPU support for any experiment. In
Section 6.3, we report runtimes. For this, the wall-clock time is measured and averaged across
five iterations.

While we vary the type of tree ensemble, uncertainty metric, and optimisation method
across our experiments, the choice of acquisition function is not subject of our analysis, so we
keep this parameter constant across all experiments, choosing the CWEI acquisition function
(see Section 3.5 for a justification of this choice).

We compare the performances of the presented tree ensembles on a variety of constrained
black-box optimisation tasks: the Welded Beam Design problem [25, 114, 115], the XGBoost
hyperparameter tuning task by Daxberger et al. [18], and many synthetic benchmarks on con-
tinuous and mixed domains [14, 16, 25, 114, 116, 117, 118, 119]. This includes three own

1The seed values were generated randomly and are [854203, 901350, 320477, 968248, 81922].
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constrained benchmark problems, consisting of established objective functions with new con-
straint conditions, which are described in the Appendix. The benchmarks that we test our
algorithm on are listed in Table 6.1. We report a total of 13 problems, of which 11 are synthetic,
and 2 are real-world problems (Welded Beam and XGBoost tuning). A detailed mathematical
description of the problems, as well as a visualisation of the 2D benchmarks, can be found in
the Appendix. In Table 6.1, we list the number of initial points that are used in this problem
setting. In all experiments, the evaluation of these initial points is included in the total number
of iterations. For instance, if the optimisation is run for 50 iterations, and there are 8 initial
points, the surrogate models are used to choose the next candidate for evaluation in the last 42
iterations, while the first 8 iterations evaluate the objective at the given initial points.

Problem dcont dcat p ρ Known optimum Studied by N. init. points

Branin 2 0 1 69.8782% 0.3979 [14, 120, 121] 8
Rosenbrock 2 0 1 48.8489% 0.0 – 8

G6 2 0 2 1.1237% −6961.8138 [114, 116, 122] 8
Gardner 2 0 1 1.6226% 0.2532 [16, 123] 8

Alpine (modified) 2 0 1 90.6292% −1.0 – 8
Townsend 2 0 1 50.0139% -3.2 [117] 8
Sphere 2 0 1 17.4385% 0.0 – 8

Welded Beam 4 0 5 37.4383% 2.3811 [25, 114, 115] 16
Ackley 20 0 2 0.0035% 0.0 [25, 124] 16

Keane Bump 30 0 2 99.9999% unknown [25, 125, 126] 16

Mixed Branin 2 2 1 3.8110% −0.8143 [118] 8
Func-3C 2 3 1 2.6029% −0.2315 [119, 127, 128] 8

XGBoost tuning 7 3 1 unknown ∼ 0.0 [18, 127] 16

Table 6.1: Constrained optimisation benchmark problems. dcont specifies the number of continuous
input dimension, and dcat the number of categorical input dimensions. The horizontal line in the table
separates problems on continuous domains from problems on mixed domains. d specifies the number of
constraints. To estimate the size of the feasible region(s), we uniformly sampled 106 points and evaluated
their feasibility. The resulting relative size of the feasible region(s) is listed in the ρ column. The number
of initial points refers to the number of points that all datasets are initialised with in the respective
experiment.

6.2 Analysis of tree-based surrogate models for black-box constrained
Bayesian Optimisation

Chapter 3 proposes using tree ensembles as surrogates for BO with unknown constraints. The
purpose of this section is to empirically validate this approach by demonstrating that tree en-
sembles can be used for black-boxed constrained BO. Additionally, we intend to gain insight
into the performance differences between different tree ensemble types. The tree ensembles that
we consider in this analysis are:

1. Random Forests (RFs) [34] with prediction variance uncertainty

2. Gradient Boosted Regression Trees (GBRTs) [28] with Quantile Regression (QR) uncer-
tainty

3. Mondrian Forests (MFs) [30, 62] with prediction variance uncertainty
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Additionally, we report the performances of a random baseline, called DUMMY, which randomly
selects a point from a uniform distribution bounded by the limits of the input space (this replaces
the minimisation in line 4 of Algorithm 4 with sampling a point).

Based on the results of tree ensembles on regression tasks (Table 3.1), we expect GBRTs to
perform well, since these models should be able to approximate the underlying constraint func-
tions well. Following the literature, we also expect MFs to perform well, since they successfully
solve unconstrained BO tasks [62], and their response surface is expected to be closer to that of
a Gaussian Process (GP) than that of the other models [19]. In contrast, we hypothesise worse
results for RFs, based on the results in previous works [19, 37].

The rest of this section is organised as follows: After a brief description of the setting of all
experiments in this section, we first qualitatively assess the performance of the different surrogate
types. Then, we analyse the performances quantitatively on continuous as well as categorical
benchmarks. Finally, we summarise and discuss the implications of our results.

6.2.1 Additional experimental setup specifications

The purpose of this section is to compare the results of different tree ensembles. Hence, we keep
the uncertainty metric for each respective tree ensemble type constant across all experiments
in this section. The uncertainty metric that is used with each respective tree ensemble is listed
above. Not varying the uncertainty across experiments helps to attribute performance differences
to the type of tree ensemble rather than to the uncertainty metric. We selected the given
uncertainty metrics, since they are the default uncertainty estimates in the implementations of
the respective tree ensembles that we use (see Section 3.5 for more details on our implementation
and Section 2.4.1 for a thorough discussion of the uncertainty metrics).

For the same reasons as we do not vary the uncertainty metrics in this section, we also keep
the optimisation method constant across all experiments in this section (see Section 6.4 for an
analysis of the impact of other optimisation techniques). To keep the runtime of the experiments
as low as possible, all experiments in this section use the sampling-based optimisation procedure
to minimise the acquisition function (see Chapter 5 for an extensive explanation of this method).

6.2.2 Qualitative performance of tree ensembles as BO surrogates

We first perform a qualitative analysis of the surrogate model performances by examining the
approximated feasible regions and exploration behaviour across the models. To this end, we run
50 iterations of BO on the first three constrained optimisation problems in Table 6.1.

The Branin Hoo problem was one of the first problems that was used for BO with unknown
constraints [14]. We, therefore, examine the performance of tree ensembles on this benchmark
problem to gain insight whether tree-based surrogate models are able to learn the underlying
feasible region of this problem as well. The G6 problem has a very small feasible region, so
this benchmark tests how well the different tree ensembles are able to detect and model such
a small region. Finally, the 2D Rosenbrock function with the given constraints has not been
used in literature before. We created this benchmark problem, to analyse the model capacities
to learn discontinuous, and non-linear constraint functions. For a mathematical definition of all
problems, we refer to the Appendix.

The results in Figure 6.1 confirm our initial hypothesis, that MF surrogate models are able
to learn the feasible region of constrained BO problems well. In particular, MF surrogates with
prediction variance uncertainty estimates display a sensible uncertainty about the underlying
feasible region in the light of prior function evaluations. Furthermore, we observe on the Branin
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Figure 6.1: Learnt feasible regions of tree-based BO surrogates. We depict the learnt probability
of constraint feasibility after constrained BO on the 2D Branin Hoo function [14], 2D G6 function [116],
and 2D Rosenbrock [129] benchmarks. Results are after initialisation with 50 function evaluations (8
random initial points and 42 points selected by the optimiser).

Hoo and Rosenbrock problems, that MFs are able to approximate continuous and discontinuous
feasible regions alike. This highlights the capacity of MFs as BO surrogates.

Similarly, GBRTs are able to learn feasible regions well enough to evaluate points, which
lie mostly in the true feasible region. We can also observe that the approximated regions are
compositions of axis-aligned boxes. This is a benefit on problems where the underlying feasible
region has this property as well, e.g. the Rosenbrock 2D example. On the other hand, this may
lead to worse extrapolation on other problems, as we observe in the case of the Branin Hoo
problem, where the learnt feasible region is far from the ground truth for x0 ∈ [5, 10]. Still, the
approximated feasible regions are close enough to the ground truth to encourage exploration
near the true function minimum.

As hypothesised, RF surrogate models perform poorly. On each problem, the learnt feasible
region is dissimilar to the ground truth. Additionally, the function evaluations made by these
surrogate models are confidently exploring regions far from the actual function minimum. While
MF and GBRT ensembles mostly explore in a sensible region around the true minimum, RFs
explore only small regions that are not including the true optimum.

6.2.3 Quantitative performance of tree ensembles as BO surrogates

Performance in continuous domains Figure 6.2 shows the per iteration best objective found by
different tree ensemble types on multiple benchmarks (see Table 6.1 and Appendix for details
on the problem settings). The first row of Figure 6.2 contains problems in continuous domains.
While the Branin problem is easy to solve, but popular in literature, the G6 problem is chal-
lenging due to the small feasible region, and the Keane Bump problem is difficult to optimise
due to its high number of input dimensions and multimodality.
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(d) Mixed Branin. (e) Func-3C. (f) XGBoost.

Figure 6.2: Tree surrogate performances on continuous and mixed domains. The first row con-
tains problems on strictly continuous domains, while the second row presents the performance on mixed
domains. Depicted are the minimum feasible values obtained per iteration. In case no feasible value was
found yet at a given iteration, the maximum feasible value across all model is depicted. In all experiments,
the CWEI acquisition function is minimised using sampling-based optimisation. For all models, we in-
dicate the tree ensemble type ∈ {RF, GBRT, MF} and uncertainty metric ∈ {QR, Variance}. DUMMY
refers to a baseline of randomly sampling the next candidate point.

The results in Figure 6.2 demonstrate that tree ensembles can effectively be used to solve BO
problems with unknown constraints in continuous domains. All tree ensembles outperform the
random baseline (DUMMY) on the continuous benchmarks. We observe that GBRTs outperform
RFs on all continuous benchmarks. Similarly, on all but one of the continuous problems (Keane
Bump), MFs outperform RFs as surrogate models, converging faster or to lower function values.
As hypothesised, RFs perform the worst out of all tree ensemble types on the low-dimensional
benchmarks (Figure 6.2a and Figure 6.2b), being the slowest to minimise the objective function
in these settings, and not converging to the true minimum on either function (the lowest observed
value on the Branin function is 1.54 while the minimum is at 0.4). Surprisingly, RFs perform
better than MFs on the high-dimensional Keane Bump function. We hypothesise that this result
may be due in part to the variance uncertainty metric, leading to weak results for MFs.

In Figure 6.5, we present another set of benchmark problems, which we observed to be
difficult for tree-based surrogate models. No surrogate model performs better than random
search on the Gardner and Ackley problems (Figure 6.5b and Figure 6.5f). In particular, no
surrogate model is able to find the feasible region on the Ackley problem. The performance
on the Welded Beam problem shows that tree-based surrogate models can perform better than
random search, but in particular MFs and RFs struggle to perform well on this problem, while
GBRTs perform better than random search.

Performance in mixed domains The second row of Figure 6.2 shows the per iteration best
objective found by different types of tree ensembles on the mixed domain benchmarks from
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(a) Gardner. (b) Welded Beam. (c) Ackley.

Figure 6.3: Difficult problems for tree-ensemble surrogates. Depicted are the minimum feasible
values obtained per iteration. In case no feasible value was found yet at a given iteration, the max-
imum feasible value across all model is depicted. In all experiments, the CWEI acquisition function
is minimised using sampling-based optimisation. For all models, we indicate the tree ensemble type
∈ {RF, GBRT, MF} and uncertainty metric ∈ {QR, Variance}. DUMMY refers to a baseline of ran-
domly sampling the next candidate point.

Table 6.1. Our results demonstrate that tree ensembles can be used to solve BO problems
with unknown constraints in mixed input spaces that encompass continuous and categorical
dimensions. We observe that GBRTs and MFs perform well across all benchmarks. While
GBRTs converge faster than MFs on the Func-3C problem (Figure 6.2e), the converse holds
on the two other benchmark problems. Again, our results show weaker performances for RF
surrogate models compared to the other two ensemble types on tow of the three problems.
In particular, they do perform worse than other tree ensembles on the Mixed Branin problem
(Figure 6.2d), and do not converge at all on the Func-3C problem (Figure 6.2e).

6.2.4 Discussion and Summary

In this section, we investigated whether tree ensembles can learn the feasible regions of black-box
constrained BO problems. The experimental results of this section demonstrate that:

1. Tree ensembles can learn the feasible region of black-box constrained problems: We could
solve multiple established benchmark problems from continuous and mixed domains using
tree ensemble surrogate models. In particular, our results show that tree ensembles per-
form better than random search even in high dimensions, and in scenarios with multiple
constraints. This experimentally proves that the approach that we present in Chapter 3
is valid.

2. GBRTs surrogates generally outperform RFs: The results in Figure 6.5 and Figure 6.6
show that GBRTs perform better than or as well as RFs on all presented benchmark prob-
lems. We hereby extend the results of previous work, which reported a worse performance
of RFs on unconstrained black-box optimisation [8, 19, 37] to constrained optimisation
problems. Our qualitative results in Figure 6.1 suggest that a reason for the weaker per-
formance of RFs may lie in the fact that these surrogate models tend to overconfidently
explore non-ideal regions, where a lot of function evaluations are made despite the true
minimum lying elsewhere. This result is in line with Nickson et al. [37], who were the first
to report on the tendency of RF surrogate models to be overconfident in BO.
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3. MF surrogates perform better than RFs on some problems: Despite the qualitative results
in Figure 6.1 suggesting the superiority of MFs, there is no clear evidence for one ensemble
being consistently stronger than the other. While MFs perform better on the Branin, G6,
Mixed Branin, and Func-3C problems, RFs perform better on the Welded Beam and Keane
Bump problems. Although this shows that MFs perform better than RFs more often than
the opposite is the case, our results do not support a general statement suggesting the
superiority of MFs. Still, our qualitative results make us believe that MFs may be the
better choice overall, and that their weaker performance in the Welded Beam and Keane
Bump problems may be overcome if the uncertainty metric is improved. This issue will be
addressed in the next section.

4. No clear winner between MFs and GBRTs: We observe in Figure 6.1 that the response
surface of GBRTs tends to be less close to the ground truth compared to MFs. How-
ever, GBRT surrogate models outperform MFs on several of the presented problems (e.g.
Figure 6.2c and Figure 6.2e). Consequently, the above results do not present conclusive
evidence whether GBRTs or MFs are to be preferred over one-another. Therefore, we
will investigate this question more thoroughly in the next section, where we evaluate the
performance of these two tree ensemble types using the same uncertainty metric.

5. There is room for improvement: Although we have proven that tree ensembles can be
used to solve constrained black-box optimisation problems, our results also highlight that
there exist problems that are challenging for tree ensemble surrogates (see Figure 6.3).
In particular, the Gardner and Ackley problems cannot be solved by any surrogate in
the experiments presented (see Figure 6.3). We hypothesise that these problems may
be too difficult for the evaluated tree ensembles, due to the sampling-based optimisation
that was used for all the above experiments, as well as the properties of the uncertainty
metrics used. MFs struggle on the Gardner, Keane Bump and Welded Beam problems
(Figure 6.3a, Figure 6.2c and Figure 6.3b), which have large feasible regions and several
local optima. We hypothesise that MFs with prediction variance uncertainty may be
underexploring the input domain, in particular in the presence of the multiple feasible
regions (Gardner problem), or many local optima (Keane Bump problem). Since the
distance-based uncertainty metric that we presented in Chapter 4 ignores the estimated
function value, we hypothesise that this uncertainty estimate may help address these issues.
We investigate this claim in the next section.

6.3 Analysis of novel uncertainty metrics for tree ensembles

In Chapter 4, we present the novel distance-based uncertainty for MF BO surrogate models.
We hypothesise that this uncertainty estimate for MFs will improve the performance of these
surrogates, as it may reduce effects of under- and overconfidence of the traditional prediction
variance uncertainty for MFs. Second, we proposed to use the MC Dropout uncertainty estimate
for GBRTs in the context of BO for the first time. We hypothesise that this uncertainty estimate
will not improve the performance of GBRT surrogates, because the sub-ensembles that are used
in the MC approximation are highly correlated. This correlation will lead to small uncertainty
intervals that discourage necessary exploration (see Chapter 4 for more details on this). To test
our hypotheses, we compare the presented uncertainty metrics, to other, well-established uncer-
tainty estimates, which are listed in Table 6.2. Again, we include the DUMMY random baseline
from Section 6.2 in our experiments as a reference. Like in the previous section, all experiments
in this section use the sampling-based optimisation strategy to minimise the CWEI acquisition
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function. This section is structured as follows: we first analyse the impact of the different

Gradient Boosted Regression Trees (GBRT) Mondrian Forests (MFs)

MC Dropout [38] (new for BO) Distance-based (ours)
Prediction variance [30, 62, 78] Quantile regression (QR) [95]

Distance-based [32]

Table 6.2: Analysed uncertainty metrics. The distance-based uncertainty for MFs and MC Dropout
uncertainty for GBRTs have been introduced in this work in Chapter 4. For background on all other
uncertainty estimates, we refer to Section 2.4.2.

uncertainty estimates on the predictive distribution of the surrogate models, and compare it
to the predictive distribution of a GP. Subsequently, we perform a quantitative analysis of the
different uncertainty metrics and evaluate the outcomes of BO on several benchmarks. Then,
we analyse the runtimes of the uncertainty estimation techniques. Finally, we summarise and
discuss our findings.

6.3.1 Impact of uncertainty metrics on predictive distributions

Figure 6.4 displays the learnt objective function after fitting GBRTs and MFs models to 50
training data points. As hypothesised, we observe that the MC Dropout uncertainty for the
GBRT ensemble leads to very small uncertainty intervals. In particular, we observe that the
uncertainty does not increase in regions far from the training data. In contrast, the distance-
based uncertainty estimate produces narrow uncertainty intervals in regions where observations
have been made and increasingly wide intervals in unexplored regions. Thus, the predictive

(a) GBRT + QR. (b) GBRT + Distance. (c) GBRT + MC Dropout.

(d) MF + Variance. (e) MF + Distance. (f) Gaussian Process.

Figure 6.4: Estimated predictive distribution for different tree ensembles. Estimated predictive
distribution for different tree ensembles using different uncertainty metrics for the function f(x) = sin(x)+
x sin

(
10
3

)
, which is depicted in blue. Green markers indicate training points. The learnt function and

uncertainty intervals are plotted in orange. Displayed intervals are two times the estimated uncertainty
interval.
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distribution of the MF + Distance surrogate (Figure 6.4e) is closest to that of a GP (Figure 6.4f).
In particular, the predicted uncertainty interval is fitting the data better than the variance-based
uncertainty estimate for MFs, and the QR uncertainty estimate for GBRTs, which both produce
too wide uncertainty intervals in regions that are covered by training data.

The qualitative results are supported in Table 6.3, where the Kullback-Leibler (KL) diver-
gence of a GP to the predictive distribution of the different surrogates is listed. The results show
that the MF + Distance ensemble performs the best or second best on all problems, producing
the lowest KL divergences. This confirms the qualitative results in Figure 6.4. We observe that
for both GBRTs and MFs, the distance-based uncertainty estimate yields the best results. Addi-
tionally, we observe that on each benchmark, MFs outperform GBRTs, which follows the trend
we observe in Figure 6.1. Although the MC Dropout uncertainty estimate leads to an improve-
ment over the QR uncertainty estimate, it consistently performs worse than the distance-based
uncertainty estimate and any MF ensemble.

Method
f(x) x3

100
+ ϵ sin(x) + x sin

(
10
3

)
1
x

√
x
4
+ sin(x)

GBRT + Quantile Regression 00.01± 00.01 432.20± 2029.78 77.70± 623.98
GBRT + Distance 00.01± 00.01 52.64± 232.02 01.50± 05.63
GBRT + MC Dropout 00.04± 00.02 73.30± 330.64 11.44± 55.06

MF + Variance 00.00± 00.00 6.22± 17.15 4.38± 15.60
MF + Distance 00.01± 00.01 0.68± 01.41 0.09± 00.12

Table 6.3: Kullback–Leibler divergences of tree ensembles to Gaussian Process. Kullback–Leibler
divergence of a GP to the results by tree ensembles with different uncertainty measures. The horizontal
line separates MF- and GBRT-ensembles. The best results per problem are bold, the second best are
underlined. All runs are repeated 100 times. In the first column, we sample ϵ ∼ N (0.2, 1).

6.3.2 Comparison of uncertainty metrics on constrained BO problems

Figure 6.5 displays the performances of GBRT and MF surrogates for different uncertainty
metrics being used. We observe that on all benchmarks reported problems, that can be solved
by MFs, the distance-based uncertainty is superior to the variance-based uncertainty. The
only exception is the Ackley problem, which is too difficult to be solved by any surrogate.
These results demonstrate that the distance-based uncertainty for MFs that we present improves
the performance of MFs as surrogates on high and low-dimensional, synthetic, and real-world
benchmarks with unknown constraints. In particular, the distance-based uncertainty enables to
solve the previously challenging Gardner problem (Figure 6.5b), and improves the performance
of MF surrogates considerably on the Keane Bump and Welded Beam problems.

For GBRTs surrogates, we observe that the distance-based uncertainty is producing good
results on all benchmark problems presented as well, except for the Ackley problem. The MC
Dropout uncertainty estimate produces better outcomes than the QR uncertainty on the Welded
Beam problem, but performs worse on the Keane Bump problem. Given the same uncertainty
(distance-based uncertainty), we observe only negligible differences between GBRT and MF
ensembles.

As stated above, the Ackley problem cannot be solved by any surrogate model. This shows
that there exist problems that are generally difficult for tree ensembles. We hypothesise that this
benchmark exposes the weaknesses of the sampling-based optimiser, since it is defined on R20,
and has a very small feasible region (0.0035%), which is difficult to detect. We address this issue
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in the next section, which investigates the effects of using non-sampling-based optimisations
strategies to minimise the acquisition function.

(a) G6. (b) Gardner.

(c) Welded Beam. (d) XGBoost.

(e) Keane Bump. (f) Ackley.

Figure 6.5: Comparison of uncertainty metrics. Comparison of different uncertainty metrics for
tree-ensemble-based surrogates for BO with black-box constraints. Depicted are the minimum feasible
values obtained per iteration. If no feasible value was found yet at a given iteration, the maximum feasible
value across all model is depicted. In all experiments, the CWEI acquisition function is minimised using
sampling-based optimisation. For all models, we indicate the tree ensemble type ∈ {GBRT, MF} and
uncertainty metric ∈ {QR, Distance, Variance, MC Dropout}. DUMMY refers to a baseline of randomly
sampling the next candidate point.

6.3.2.1 Investigating why the distance-based uncertainty performs well

The results in Figure 6.5 show that distance-based uncertainty estimation improves the perfor-
mance of MF surrogates. On problems such as the Gardner function, the difference from other
uncertainty estimates is large for both GBRTs, and MFs. This subsection has the purpose to
empirically investigate why and when the distance-based uncertainty performs better than other
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uncertainties.

The Gardner problem is difficult as it contains multiple disjoint feasible regions, which re-
quires escaping the non-optimal one if it is encountered, much like a local optimum in uncon-
strained optimisation (see Appendix for a visualisation of the feasible region). Similarly, the
Keane Bump objective function and Welded Beam design problem possess multiple local optima
that need to be avoided or escaped during optimisation. Thus, we hypothesise that the distance-
based uncertainty estimate helps to guarantee sufficient exploration to find global optima in the
presence of local optima due to a multimodal objective or specific constraint boundaries.

(a) Alpine.

(b) Townsend.

(c) Sphere.

Figure 6.6: Analysis of tree-based surrogate models on functions with multiple local optima.
Comparison of different uncertainty metrics for tree-ensemble-based surrogates for BO with black-box con-
straints. Depicted are the minimum feasible values obtained per iteration. If no feasible value was found at
a given iteration, the maximum feasible value across all models is depicted. In all experiments, the CWEI
acquisition function is minimised using sampling-based optimisation. For all models, we indicate the
tree ensemble type ∈ {GBRT, MF} and uncertainty metric ∈ {QR, Distance, Variance, MC Dropout}.
DUMMY refers to a baseline of randomly sampling the next candidate point.
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To test this hypothesis, we evaluate different uncertainty metrics on problems with the
given characteristics: the constrained Townsend function [117], a modified version of the Alpine
function (own), and a Sphere problem (own). All these problems were designed to include
multiple disjoint feasible regions and vary in the degree of difficulty of the objective function,
e.g., Alpine being more difficult than the Sphere function. The resulting problems are displayed
in Figure 6.6, and the mathematical problem definitions can be found in the Appendix.

The results in Figure 6.6 confirm our hypothesis. We observe that for all three problems, the
distance-based uncertainty surrogates find the true minima, while the usage of other uncertainties
leads to slower or no convergence to the true optimum. Although the convergence of the Distance
MF surrogate is initially slower than that of the Variance MF surrogate, the lowest observed value
on all functions is lower when using the distance-based uncertainty. In particular, the variance-
based uncertainty surrogate only finds local optima on all three problems. For example, while the
Variance MF surrogate converges to a local optimum of the Townsend function of f(x) ≈ −3.15
(at the top right of the plotted domain), the Distance MF surrogate finds the true minimum
of f(x) = −3.2 at x = (−2.25,−1.2964). On the Alpine and Sphere problems, the observed
performance differences are even greater, with the Distance MF surrogate outperforming the
Variance MF surrogate on both problems. Similarly, for GBRTs, we observe that the distance-
based uncertainty produces the best results of all uncertainty metrics compared. Thus, the
results show that the distance-based uncertainty improves BO on multimodal objective functions
and problems with multiple feasible regions.

(a) G6 (2D, p = 2). (b) Gardner (2D, p = 1). (c) Welded Beam (4D, p = 5).

(d) XGBoost (9D, p = 1). (e) Ackley (20D, p = 2). (f) Keane Bump (30D, p = 2).

Figure 6.7: Runtime comparison of tree-based surrogate models. Plotted are the average wall-
clock times in seconds for different surrogates and uncertainty metrics. For each benchmark, we report
the runtime for 100 iterations of BO with sampling-based minimization of the acquisition function. On
display are the mean and standard deviation, averaged across five repetitions. All functions are sorted
by number of input dimensions in ascending order. p refers to the number of constraints.
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6.3.3 Runtime analysis

Figure 6.7 shows the average wall-clock times of running 100 iterations of BO on several bench-
mark functions. We observe that the MC Dropout uncertainty estimation consistently takes
more than twice the time than all other uncertainty estimates do. Furthermore, we observe that
the distance-based uncertainty is the fastest uncertainty for GBRTs. We believe that the QR
uncertainty is slower than the distance-based uncertainty for GBRTs since quantile regression
requires the training of a separate tree ensemble for each quantile, which represents a consid-
erable overhead compared to the distance-based uncertainty. For MFs, the prediction variance
uncertainty is quicker than the distance-based uncertainty for MFs. The variance-based uncer-
tainty of MFs requires no extra computation during prediction, which makes it faster than the
distance-based uncertainty. Overall, the speed differences between GBRT and MFs are only
small given the same uncertainty (distance-based), with GBRTs being slightly faster, although
the gap seems to slowly increase with the number of dimensions.

We furthermore observe that all runtimes increase notably with the number of dimensions
and number of constraints of the problems. While the optimisation of the 2D problems (Gardner
and G6) is very fast for all uncertainty estimates, the optimisation times are the highest on the
Welded Beam, XGBoost, and Keane Bump problems. We believe that solving the XGBoost
problem requires more time, since each function evaluation includes training an XGBoost en-
semble for each function evaluation. For the Welded Beam problem, we believe that the longer
optimisation time can be attributed to the number of constraints in this problem, as each con-
straint is learnt by a separate tree ensemble. Lastly, we hypothesise that the longer optimisation
time on the Keane Bump problem is due to the increased problem dimensionality, as we can
see a steady increase in prediction time for problems with two constraints from G6 (2D) over
Ackley (20D) to Keane Bump (30D).

6.3.4 Discussion and Summary

In this section, we investigated the performance of the novel uncertainty metrics that were
introduced in Chapter 4. The experimental results of this section demonstrate that:

1. The distance-based uncertainty for MFs improves the predictive performance: The results
in Figure 6.5 demonstrate that the distance-based uncertainty improves the performance
of MFs as BO surrogates considerably compared to the classical prediction variance un-
certainty. In particular, on problems such as the Gardner and Welded Beam function, we
achieve improvements by an order of magnitude compared to the previously used predic-
tion variance uncertainty. Our results also show that the predictive distribution of the
surrogates is closer to that of a GP when using the distance-based uncertainty estimate
(Figure 6.4). We hypothesise that this may explain the strong performance of the distance-
based uncertainty for MFs. In Figure 6.6, we investigated why the novel uncertainty helps
to improve the surrogate performance. Here, we demonstrated that our novel uncertainty
estimate is superior to the predictive variance uncertainty, since it effectively avoids local
minima during the optimisation. Lastly, our runtime comparison reveals that although the
prediction variance uncertainty estimate is faster to compute, the difference is very small
and, in our eyes, does not justify the usage of a worse performing uncertainty estimate.

2. MC Dropout uncertainty for GBRT can be used for BO, but it is slow: The second uncer-
tainty estimate that we outlined in Chapter 4, is MC Dropout for GBRTs by Malinin et al.
[38]. Since this uncertainty estimate has previously been unused in the context of BO, it
was unclear how well it performs. Prior to our experimentation, we hypothesised that this
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uncertainty estimate may be unsuitable to balance exploration and exploitation because
the sub-ensembles that are used for the MC approximation are correlated. To our surprise,
the MC Dropout GBRT surrogates perform better than the random baseline and quantile
regression uncertainty on most problems. Nevertheless, the distance-based uncertainty es-
timate for GBRTs is superior or equal on all benchmark problems. In particular, problems
that require exploration, such as the Gardner and Keane Bump benchmarks, could not be
solved with a satisfying result when using the MC Dropout uncertainty estimate. These re-
sults are in line with the observations that we made in Table 6.3, where the KL divergence
of a GP to GBRTs was consistently lower when using the distance-based uncertainty esti-
mate compared to the MC Dropout uncertainty. While the MC Dropout uncertainty does
perform similarly well or better than the QR uncertainty on most problems, our runtime
analysis unveils that the MC Dropout uncertainty estimate is computationally demanding.
On all problems, the MC estimation takes more than twice as long as other uncertainty
estimate computations. The reason for this inefficiency lies in the fact that this uncer-
tainty estimate relies on a sampling-based approximation of the predictive distribution,
which requires computational effort. Consequently, we do not recommend the usage of the
MC Dropout uncertainty for GBRTs surrogates, as other uncertainty estimates perform
equally well or better while being much faster to compute.

3. There are no large differences between MF and GBRT: The introduction of the distance-
based uncertainty for MFs allows one to compare GBRTs and MFs given the same uncer-
tainty estimator. Our runtime analysis in Figure 6.7 unveils no large differences in training
times between the two methods. Similarly, the results in Figure 6.5 and Figure 6.6 reveal
similar predictive performances of the Distance MF and Distance GBRT surrogates. This
result is surprising, considering the qualitative analysis of the predictive distribution in
Figure 6.4, where the MF predictive distribution is much closer to the ground truth than
that of GBRTs.

4. There is (still) room for improvement: At the end of the previous experimental section,
we noted that the investigated surrogate models need improvements to be used for BO.
This section demonstrates that the usage of novel uncertainty metrics constitutes such an
improvement. In particular, the Gardner and Welded Beam problems become solvable
for MFs when using the distance-based uncertainty estimate. Still, the Ackley problem
remains unsolved by any surrogate. This shows that there remains room for improvement.
The next section investigates if this improvement can be achieved by using a non-sampling-
based optimisation strategy of the acquisition function.

6.4 Analysis of gradient-free acquisition optimisation strategies

In Chapter 3 we present sampling-based optimisation, the Nelder-Mead (NM) algorithm, and the
CMA-ES algorithm as gradient-free optimisation strategies to minimise the acquisition function
during BO. The purpose of this section is to compare these methods empirically. We hypoth-
esise that the sampling-based optimisation strategy that was used in previous experimental
sections may perform well in lower dimensions but has its limitations in higher dimensions, as
the number of points that need to be sampled to cover the space increases exponentially with
the number of dimensions. Consequently, we hypothesise that both, the NM optimisation strat-
egy and the CMA-ES algorithm, perform better than the sampling-based optimisation strategy
with the largest performance differences in high dimensions, i.e. d ≥ 10. Additionally, we com-
pare the performances of the NM optimisation strategy and the CMA-ES strategy. Since the
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pycma implementation only allows continuous inputs, we only evaluate the NM algorithm on the
benchmarks in mixed domains. We have no a-priori hypothesis which of the two methods will
perform better.

Since the purpose of this section is to compare different strategies for acquisition function
optimisation, we keep the tree ensemble and uncertainty type constant across all experiments
in this section. Due to the strong performance in the evaluations above, we choose to evaluate
all optimisation strategies when using MF surrogates with distance-based uncertainty. Again,
we compare all runs against a random baseline, DUMMY, that randomly samples the next
candidate point from the input space.

The remainder of this section is structured as follows: first, we analyse the performance of
different optimisation strategies on problems on continuous domains. Then, we compare the
performances on mixed domains. Finally, we summarise and discuss our findings.

6.4.1 Analysis of optimisation strategies on continuous domains

Figure 6.8 shows the performance of the three different optimisation strategies: sampling, Nelder
Mead (NM), and evolutionary strategies (CMA-ES). As hypothesised, the NM optimisation
strategy outperforms the sampling-based optimisation strategy in high dimensions. Further-
more, the results show that the sampling-based optimisation strategy performs well in lower
dimensions, producing similar results to the NM algorithm in less than 20 dimensions. To our
surprise, the CMA-ES algorithm performs the worst of all three methods. While it performs

(a) G6 2D. (b) Gardner 2D. (c) Welded Beam 4D.

(d) Ackley 20D. (e) Ackley Unconstrained 20D. (f) Keane Bump 30D.

Figure 6.8: Comparison of acquisition function optimisation strategies. Comparison of different
optimisation strategies to find the minimum of the acquisition function (see line 4 in Alg. 1). De-
picted are the minimum feasible values obtained per iteration. In case no feasible value was found yet
at a given iteration, the maximum feasible value across all model is depicted. We compare strategies
∈ {Sampling, Nelder-Mead (NM), CMA-ES (CMA)}. DUMMY refers to a baseline that ignores the
acquisition and randomly sampling the next candidate point from the input space. The Ackley Uncon-
strained problem is the same as the Ackley problem, but with constraints removed.
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as well as sampling-based optimisation on the Keane Bump, G6, and Gardner functions, it is
outperformed on the unconstrained Ackley function and Welded Beam problem. We notice that
despite using non-sampling-based optimisation strategies, the 20D Ackley problem cannot be
solved, as no surrogate is able to locate the feasible region. In order to test the optimisation
strategies on a high-dimensional benchmark other than the Keane Bump function, we addi-
tionally report the performances on the Ackley function without the specified constraints. The
results on the unconstrained Ackley function show that the NM algorithm improves the result
of BO considerably in high dimensions, an effect we observe even more so on the 30D Keane
Bump function.

6.4.2 Analysis of optimisation strategies on mixed domains

Figure 6.9 shows the performance of the Nelder Mead optimisation strategy and sampling-
based optimisation strategy on the problems that are defined on mixed domains, which include
continuous and categorical dimensions. We have to exclude the CMA-ES algorithm from this
comparison, since the pycma implementation of the algorithm only supports continuous inputs.

The results on mixed domains show that the sampling-based optimisation and NM-based
optimisation strategies perform equally well on problems in mixed domains. Both optimisation
strategies solve all problems. For the XGBoost problem, note that the minimised objective is
the cross-validation loss, so the dashed line at 0.0 is hard to reach in reality, which is why the
results on this problem of around 0.04 are very good. These results show that tree ensembles
generally can solve the selected problem well. All three problems are solved quickly, i.e. the best
objective value is found no later than after 50 iterations.

(a) Mixed Branin 4D. (b) Func-3C 5D. (c) XGBoost 10D.

Figure 6.9: Effect of improved acquisition function optimisation in mixed domains. Comparison
of different optimisation strategies to find the minimum of the acquisition function (see line 4 in Alg. 1).
Depicted are the minimum feasible values obtained per iteration. In case no feasible value was found
yet at a given iteration, the maximum feasible value across all model is depicted. We compare strategies
∈ {Sampling, Nelder-Mead (NM)} for Mondrian Forest (MF) surrogate models. DUMMY refers to a
baseline that ignores the acquisition and randomly samples the next candidate point.

6.4.3 Discussion and Summary

Shahriari et al. [8] identified the lack of reliable optimisation strategies for the acquisition func-
tion, as one of the main shortcomings when using tree ensemble surrogates for BO. In this
section, we investigated the performance of the optimisation strategies that were discussed in
Chapter 5. The experimental results of this section demonstrate that:
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1. The NM algorithm improves the performance in continuous domains: As hypothesised,
using a non-sampling-based optimisation strategy improves the result of the BO algorithm
using tree ensemble surrogates. Specifically, the NM algorithm produces large improve-
ments over the sampling-based optimisation strategy on high-dimensional continuous do-
mains. This demonstrates that the NM algorithm can be used to successfully overcome
the optimisation issue that Shahriari et al. [8] had pointed out.

2. The NM algorithm and sampling perform equally well in mixed domains: On benchmark
problems in mixed domains, we do not observe any notable performance differences be-
tween sampling-based and NM-based optimisation. We hypothesise that this is due to the
same reason as why there are no large differences between the two strategies on the G6,
or Gardner problems: the sampling-based optimisation performs well in low dimensions.
Since all benchmarks in mixed domains are defined in spaces with at most ten dimensions,
we believe that the space can still be covered relatively well by sampling. Consequently,
we hypothesise that a similar effect as for continuous benchmarks in higher dimensions
may be observed, where the NM-based optimisation of the acquisition function achieved
clearly better results than the sampling-based strategy.

3. The CMA-ES algorithm fails to perform better than stochastic optimisation: To our
surprise, the third method for global optimisation that we tested, the CMA-ES algorithm,
fails to improve the performance of tree ensemble surrogates. In particular, in higher
dimensions, the performance of the CMA-ES algorithm is insufficient. We believe that a
reason for this is that the CMA-ES algorithm typically requires a lot of function evaluation
to perform well [25]. However, this number of evaluations is limited in high dimensions,
as its computational complexity scales quadratically with the number of input dimensions
[130].

4. The Ackley problem cannot be solved: In the previous section, we failed to solve the
20D Ackley problem and hypothesised that a reason for this may be the sampling-based
optimisation strategy that we used in these experiments. In this section, we observe that
non-sampling-based optimisation strategies fail to solve the problem as well. Since no
method makes it possible to find a feasible point, we conclude that this is a weakness of
the presented approach. When the feasible region is very small and no feasible point is
known, it is very difficult to solve the optimisation problem.

6.5 Comparison of tree ensembles and Gaussian Processes as surrogate
models for constrained BO

Chapter 3 of this work introduced tree ensembles as surrogate models for black-box constrained
BO. We improved our method in Chapter 4, where we presented novel uncertainty estimates.
Our experiments in Section 6.3, demonstrate that the distance-based uncertainty estimate for
MFs produces strong results on various benchmark problems. We further improved our method
in Chapter 5 by presenting the NM algorithm as a strategy to optimise the acquisition function.
In Section 6.4, we demonstrated that the NM algorithm again improves the performance, in
particular in high dimensions.

The motivation of our work was to improve existing approaches for black-box constrained
BO, as they suffer from several shortcomings that are common to GP surrogate models. Thus, it
remains an open question remains as to how well our novel approach compares to GPs as state-
of-the-art surrogate models. To this end, this section compares the performance of Distance MF
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surrogates with NM optimisation, and GP surrogates with ARD Matérn 5/2 kernel.
One well-known limitation of GPs is the deterioration of their performance in high dimen-

sions [131]. Since MFs showed to perform well on the high-dimensional Keane Bump problem in
previous sections, we hypothesise that MFs may be superior to GPs on high-dimensional prob-
lems. Additionally, we observed that Mondrian Forests using the distance-based uncertainty
estimate perform particularly strong on problems that are multimodal and require a consid-
erable amount of exploration. Consequently, we hypothesise that MFs may outperform GPs
on benchmarks such as the Alpine and Unconstrained Ackley problems, as the gradient-based
optimisation of GPs may get stuck in local optima. Meanwhile, no tree ensemble was able to
solve the constrained 20D Ackley problem. Since a 200D version of this problem was solved with
GPs by Eriksson et al. [131], we hypothesise that GPs will perform better than tree ensembles
on this problem.

6.5.1 Additional experimental setup specifications

In this section, we compare tree ensembles against GP surrogate models. We implement all GPs
using GPFlow [132] and use the trieste package2 to implement the BO algorithm (Algorithm 4)
for GPs. For each GP, we use the ARD Matérn 5/2 kernel. All hyperparameters are optimised
using the L-BFGS-B algorithm [133], which is the default optimiser of trieste. More details of
our GP implementation are discussed in the Appendix.

6.5.2 Results of experimental comparison between Mondrian Forests and Gaussian
Processes

Figure 6.10 displays the performances of GPs and MFs on nine continuous benchmark problems
(see Table 6.1 for more information). We observe that both MFs and GPs find the true minimum
on the G6, Townsend, and Sphere problems. We also observe that GPs converge faster to the
true optimum on all of these tree problems, although the difference is only small on the Sphere
problem.

While GPs clearly outperform MFs on the Welded Beam problem, the Mondrian Forest
surrogates outperform GPs on the Gardner, Alpine, Unconstrained Ackley, and Keane Bump
problems. To our surprise, no surrogate model is capable of solving the constrained Ackley
problem. We observe that these results exhibit the trend that MFs perform better than the
given GP surrogates on problems in high dimensions. Additionally, these results confirm our
initial hypothesis that MFs perform better than GPs on objective functions that are highly
multimodal, as this characteristic is shared by the Alpine, Ackley, and Keane functions.

Figure 6.11 shows the performance of GPs and MF on three challenging benchmark problems
on mixed domains (see Table 6.1 for more information). To our surprise, GPs converge faster
on the XGBoost problem. However, at the same time, the performance of MFs is better on the
other two problems in Figure 6.10. Specifically, GPs converge slower to the true optimum on
the Func-3C problem, and fail to converge to the true minimum on the Mixed Branin problem.
We hypothesise that these performance differences may be due to problem-specific properties
of the objective function surfaces. In the case of the Func-3C and Mixed Branin problems,
the optimal value of the continuous variables highly depends on the value of the categorical
variables, i.e. whether increasing or decreasing the value of the continuous inputs minimises the
objective, depends strongly on the value of the categorical variables. When varying values of
the categorical dimensions of the XGBoost problem on the other hand, the optimal value of the
continuous variables may not be affected as strongly by the value of the categorical variables.

2https://secondmind-labs.github.io/trieste/0.12.0/index.html

https://secondmind-labs.github.io/trieste/0.12.0/index.html
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Of course, when changing the booster type from gbtree to glinear, the regularisation term may
need adjustment, but a value of 0.0009 is likely to still be better than one of 109. Since GPs with
Matérn kernel assume continuous objective functions, we hypothesise that the Mixed Branin and
Func-3C objective functions may be harder to learn for GPs than the XGBoost objective, as we
hypothesise that the XGBoost objective function may be smoother in most parts of the input
domain.

(a) G6 2D. (b) Townsend 2D. (c) Sphere 2D.

(d) Gardner 2D. (e) Alpine 2D. (f) Welded Beam 4D.

(g) Ackley 20D. (h) Ackley Unconstrained 20D. (i) Keane Bump 30D.

Figure 6.10: Comparison of tree ensembles and Gaussian Processes in continuous domains.
Comparison of Gaussian Process (GP) and Mondrian Forest (MF) surrogate models. Depicted are the
minimum feasible values obtained per iteration. In case no feasible value was found yet at a given iteration,
the maximum feasible value across all model is depicted. DUMMY refers to a baseline that ignores the
acquisition and randomly sampling the next candidate point from the input space. Note that for the MF
surrogate, we use Nelder Mead acquisition function optimisation and distance-based uncertainty.
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(a) Mixed Branin 4D. (b) Func-3C 5D. (c) XGBoost 10D.

Figure 6.11: Comparison of tree ensembles and Gaussian Processes in mixed domains. Compar-
ison of Gaussian Process (GP) and Mondrian Forest (MF) surrogate models. Depicted are the minimum
feasible values obtained per iteration. In case no feasible value was found yet at a given iteration, the
maximum feasible value across all model is depicted. DUMMY refers to a baseline that ignores the ac-
quisition and randomly sampling the next candidate point from the input space. Note that for the MF
surrogate, we use Nelder Mead acquisition function optimisation and distance-based uncertainty.

6.5.3 Discussion and Summary

In this section, we compared the performance of the presented tree ensemble-based optimiser
against GPs as state-of-the-art surrogate models for BO. Our results reveal the following:

1. MFs outperform GPs on multimodal functions in continuous domains: Our results un-
veil that the presented BO software outperforms a state-of-the-art GP-based Bayesian
Optimiser (trieste) on multiple continuous benchmark problems from low and high di-
mensions. On four out of the nine presented problems, MFs perform better than GPs,
while GPs clearly outperform MFs only on a single problem (Welded Beam Design). The
benchmarks on which GPs struggle in this comparison mostly feature objective functions
that are multimodal, which causes GPs to explore local optima and either converge later
or not at all to the true optimum. MFs on the other hand, perform better on these prob-
lem instances. Additionally, we observe that the performance differences become larger in
higher dimensions, as our results on the 30D Keane Bump and 20D unconstrained Ackley
problem show. Thus, our results confirm our initial hypothesis that tree ensembles can
help to address the issue of GPs struggling in high dimensions.

2. MFs perform better than GPs on discontinuous objective functions: Our results in Fig-
ure 6.10 unveil stronger performances of MFs on the Mixed Branin and Func-3C problems,
while GPs converge quicker on the XGBoost problem. We believe that the reason for the
weak performances of GPs on the two former problems lies in the fact that the objective
functions of these problems are highly discontinuous. Since the given GPs with Matérn
kernel assume continuous objective functions, this could explain their weaker performances
on these problems. While being defined on a mixed domain too, we believe that the ef-
fect of varying a categorical variable may not be that strong on the optimal values of the
other input variables in the case of the XGBoost problem, which could explain the better
performance of GPs on this benchmark.

3. GPs are more efficient on simple problems: The relatively easy G6, Sphere, and Townsend
problems, could be solved by both surrogate model types that we compared in this section.



CHAPTER 6. EVALUATION 55

However, on all three problems, GPs found the optimal solution faster than MFs. All of
these problems have in common that the corresponding objective functions are relatively
simple, and easy to learn. We believe that MFs converge slower because the presented
scaling of the distance-based uncertainty makes MFs explore more than GPs. While this
may be a downside on problems where the solution is easy to find, e.g. the aforementioned
problems, this also enables MFs to solve problems with highly multimodal objective func-
tions.

4. The Ackley problem is too difficult for any surrogate: Throughout this chapter, we at-
tempted to solve the constrained Ackley optimisation problem and failed to do so. While
our hypothesis was that this is due to insufficiently accurate uncertainty estimates, or
poor optimisation strategies of the acquisition functions, we observed in this section that
state-of-the-art GP surrogate models fail to solve this problem as well. This demonstrates
that the inability of tree ensembles to solve this problem cannot be attributed to the short-
comings of tree ensembles as surrogate models, but rather to the inherent difficulty of the
problem. Not only is the 20D Ackley problem high-dimensional, its feasible region is also
very small relative to the size of the input domain (∼ 0%). This optimisation problem
thus exposes a general, unsolved, issue for BO, which is the detection of a feasible region
without knowing a single feasible point.



Chapter 7

Conclusion

The present work began with the development of a fungicide that can be used on bananas as a
practical scenario in which Bayesian Optimisation can be helpful. Motivated by this example,
this project set out to improve the state-of-the-art in BO for black-box optimisation with un-
known constraints by learning the objective and constraint functions using tree ensembles. This
purpose of this section is to evaluate our achievements, the limitations of our approach, and to
finally give an answer if we made a step toward saving the banana from the Panama disease.

This section is structured as follows: Section 7.1 provides a brief discussion of the most
relevant ethical, legal, and social issues surrounding this work, Section 7.2 summarises the main
achievements that have been presented in this work, Section 7.3 discusses some limitations of
our approach, and finally, we provide a brief summary of the entire project.

7.1 Legal, social, ethical, and professional considerations

This section discusses the most relevant social, ethical, and legal issues related to the present
project. The main issues that we identify are the potential misuse of the projects’ results, ethical
issues in datasets, and copyright implications.

This project focusses on leveraging tree-based machine learning methods for BO, which can
be used to effectively find the best properties among many candidate solutions. Since almost
any product property can be optimised with BO, the presented project results have the potential
to be used in military applications, for instance in the development of armour materials [134].
Although this is a theoretical project, we do want to stress that we do see the objective of
this project in creating an optimisation system for civilian applications exclusively. Still, the
presented solver can be subject to misuse. This misuse could be of criminal use, for instance, in
the development of illegal chemical substances such as recreational drugs.

In Table 3.1, we report the performance of machine learning models on several regression
benchmark datasets from Hernández-Lobato and Adams [99]. In contrast to the latter work,
we decided not to analyse model performances on the Boston Housing dataset [135], due to
well-known racist bias in this dataset [136]. Similar racist bias has been reported for data from
other domains [137, 138]. While the issue of the Boston Housing dataset is well-known and
can thus be avoided by using alternative datasets, the optimiser that is presented in this thesis
may be used on other data, that includes discriminating bias or features. Any practitioner that
applies optimisation algorithms in real-world settings must be aware of this issue and guarantee
optimisation solutions that do not systematically discriminate against any minority group. For
a more thorough discussion of this issue, we refer to Knight et al. [139] and D’ignazio and Klein
[140].

56
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In the present project, we present a BO optimisation solver for research usage purposes. With
this goal in mind, the resulting code is licenced under the BSD 3-Clause Licence. The project
source code is based in parts on the openly available source code from the scikit-optimize

[73], scikit-garden1, and entmoot [32] packages for BO. All three packages are licenced under
the BSD 3-Clause Licence2, which permits redistribution, usage, and modification of the code.
To the best of our knowledge, there is no copyright infringement or licencing conflict.

7.2 Achievements

The goal of this project was to improve Bayesian Optimisation surrogate modelling. In partic-
ular, we aimed to address issues in high dimensions and categorical inputs of existing surrogate
models, i.e., Gaussian Processes in particular. To this end, we made the following contributions:

1. We established tree ensemble surrogates for black-box constrained Bayesian Optimisation:
Our work is the first that performs Bayesian Optimisation with tree ensemble surrogates to
solve black-box optimisation problems with unknown constraints. To this end, Chapter 3
adapted the results of previous work on constrained BO to tree ensemble surrogates. We
validated this approach in Section 6.2, where we investigated the performance of different
types of tree ensembles, and showed that Gradient Boosted Regression Trees and Mondrian
Forests produce better performances compared to Random Forests, due to their superior
exploration behaviour.

2. We presented novel ways to estimate the uncertainty of tree ensembles: We presented the
distance-based uncertainty for MFs, and the MC Dropout uncertainty for GBRTs, which
has previously been used for BOs. We proved experimentally that the novel distance-
based uncertainty metric for Mondrian Forests helps improves the performance of MF
surrogates by an order of magnitude. Furthermore, our work is the first to use the MC
Dropout uncertainty estimate for GBRTs in the context of BO. Our results show that the
MC Dropout uncertainty estimate for GBRTs can be used to solve black-box constrained
optimisation problems, but its computational costs make it an unappealing choice for this
task.

3. We demonstrated that well-performing gradient-free optimisation strategies for BO exist:
Specifically, we showed the Nelder-Mead algorithm can be used to address the problem
of the lack of gradients when using tree-based surrogate models. We show that the NM
algorithm not only outperforms the sampling-based optimisation strategy, but also the
CMA-ES strategy for global optimisation.

4. We demonstrate that the resulting approach outperforms Gaussian Process-based Bayesian
Optimisation on a multitude of benchmark problems: Our results show that GPs may
perform better on simple, small-scale problems, but that MFs performed better on high-
dimensional benchmark problems. Additionally, our analysis unveiled that GPs struggle to
find minima of discontinuous, multimodal objective functions, while MFs perform better
on these problems.

In summary, our empirical results show that the resulting software is able to successfully find so-
lutions to synthetic and real-life optimisation problems that are subject to unknown constraints.

1https://github.com/scikit-garden/scikit-garden
2https://opensource.org/licenses/BSD-3-Clause

https://github.com/scikit-garden/scikit-garden
https://opensource.org/licenses/BSD-3-Clause
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Being the first work to use tree ensembles as surrogates for black-box constrained optimisa-
tion, we have improved on state-of-the-art in this area through presenting an alternative to the
commonly used Gaussian Process surrogate models. In particular, we have shown that prob-
lems which may not be solved using Gaussian Process surrogates may be solved using Mondrian
Forests as surrogate models, and optimising the acquisition function using the Nelder-Mead algo-
rithm. Additionally, we have successfully established a novel uncertainty metric for MFs, which
outperformed the existing uncertainty metric by an order of magnitude on many benchmark
problems.

7.3 Limitations

Although we have successfully improved the performance of BO on black-box constrained prob-
lems, our work has several limitations:

1. Finding a feasible point remains difficult: Throughout this report, we cannot solve the
constrained 20D Ackley problem. Although we initially believed this issue may be solved
by improving the uncertainty metric and optimisation strategy, our results show that this
is not the case. Even more so, Figure 6.10 shows that GPs fail to solve this problem
as well. The fact that we could not find any surrogate model that solves this problem
exposes a weakness of the presented approach: If no feasible point is known a-priori and
the feasible region is very small, finding any feasible point is very difficult. This issue
can be circumvented by initialising the optimiser with at least one feasible point [141,
142], but this approach may be inapplicable in scenarios where such a point is unknown.
Other works have focused on improving the acquisition function that is optimised when no
feasible point is known [143] with some success, but work in this direction is still necessary.

2. Tree ensembles may extrapolate worse than Gaussian Processes: Despite the practical
success of the presented approach, the presented tree ensembles may not extrapolate as
well as Gaussian Processes to unseen data: While GBRTs predict the same label as the
closest training data point, predictions of MFs slowly converge towards the mean of the
training data the further away inputs move from the training data. The latter produces a
similar extrapolation as the Matérn kernel on many regression problems. However, there
do exist special kernel functions for special problem classes, e.g. periodic kernels, which
are likely to extrapolate better than any tree ensemble on periodic objective functions. On
the other hand, the same kernel is likely to perform worse on other problems. Ultimately,
this is a problem of choosing the right hyperparameters. We believe that MFs are strong
surrogate models due to their flexibility, which allows them to perform well on many
different problems.

3. The complexity of the Nelder Mead algorithm scales with the dimensionality: The com-
plexity of a single iteration of the Nelder-Mead algorithm is in Θ(d2) given d dimensions
[144]. Although some efforts to improve the speed of the method exist [145, 146], we fear
that our method’s efficiency may deteriorate in high dimensions, i.e. d ≥ 100. Thus, we
strongly encourage future research to address this research by exploring alternative global
optimisation methods that were not investigated in this work, e.g. particle swarm methods
[147].
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7.4 Future work

Being the first work to use tree ensembles as surrogates for black-box constrained optimisation,
there are many opportunities for future work to further improve the existing approach:

1. Extend comparisons: In the present work, we compare MF surrogates against GPs as
state-of-the-art surrogate models. While we use the versatile Matérn kernel in our imple-
mentations, there exist multiple other kernel functions that may perform better on some
problems. For example, Cornford et al. [148] propose a kernel that is designed for discon-
tinuous objective functions, and Thebelt et al. [149] propose a kernel that performs well
on mixed domains. Similarly, several efforts have been made to improve the performance
of GPs in high dimensions, e.g. Eriksson et al. [131]. It would be an interesting next step
to compare the work we present in this thesis to the aforementioned approaches.

2. Explore transformations of distance-based uncertainty estimates: In this work, we present
a distance-based uncertainty estimate for Mondrian Forests, which quantifies the distance
to the closest point in the training data. We transform this distance using Min-Max-
scaling to obtain estimates in a reasonable range. The chosen transformation is not the
only sensible choice of transformation, and a thorough exploration of alternatives in the
future would be desirable. For example, we observed that the uncertainty estimate of
Gaussian Processes seems to grow logarithmically with the distance to the closest training
point, while our present estimate grows quadratically. Hence, we propose to explore a
log-transformation, such as x′ := log(1 + x) in future works. This transformation may
help, because it will lead to larger uncertainty estimates closer to existing data, which may
be appropriate in particular in high dimensions.

3. Explore other uncertainty estimates: The present work focused on two new uncertainty
estimates: the MC Dropout uncertainty estimate for GBRTs had been previously unused
in the context of BO, and the novel distance-based uncertainty estimate for MFs. Our ap-
proach was motivated by the strong performances of trees as point-predictors on regression
problems, and the lack of reliable uncertainty estimates for these ensembles. Other works
have used the predictive power of tree ensembles to construct GP kernels, which work
better on categorical data than other kernels [85, 149, 150]. At the same, our comparison
of GPs and trees shows that the predictive mean of tree ensembles may be more accurate
than that of GPs. Thus, we believe that it may be interesting to investigate a surrogate
model that reverses the aforementioned approach of using a tree-based kernel, and instead
use the predictive mean of a tree ensemble, and the uncertainty of a GP. We believe that
it may be possible to combine the strengths of both model types in this way, and achieve
even stronger results.

7.5 Project summary

We began this work on Bayesian Optimisation, motivated by the endangerment of the banana
by the Panama disease. To protect existing banana farms from the disease, a novel fungicide
must be developed, which can be done much more effectively by formulating the design process
as a black-box constrained optimisation problem that is solved using the Bayesian Optimisation
algorithm. Due to the shortcomings of Gaussian Processes our work introduced tree ensembles
as surrogate models for black-box constrained Bayesian Optimisation. Previously, Shahriari et
al. [8] identified the lack of reliable uncertainty metrics and acquisition function optimisation
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strategies as issues that limit the performance of tree ensembles as BO surrogate. We successfully
addressed both issues in our work by introducing a novel uncertainty metric for Mondrian Forests
that improves their performance by an order of magnitude, and by proving experimentally
that the Nelder-Mead algorithm can be used to optimise the acquisition function during BO.
Our experiments unveiled that the resulting approach outperforms Gaussian Processes on a
multitude of benchmarks. In particular, problems in high dimension, that are characterised
by a highly multimodal, or discontinuous, objective function may be solved better when using
Mondrian Forest surrogate models with the presented distance-based uncertainty metric than
when using GPs. We thus successfully improved the performance of BO surrogates, and in
particular of tree ensembles, for Bayesian Optimisation on black-box constrained optimisation
problems. Assuming that the efficacy of fungicide ingredients is a function with the specified
characteristics, we thus made a step toward saving the banana from the Panama disease.
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Appendix A

Optimisation benchmarks

A.1 Continuous benchmarks

A.1.1 Branin Hoo

Figure A.1: The 2D Branin Hoo problem with 1 black-box constraint. We depict the objective
function and feasible region of the 2D Branin Hoo problem.

The constrained 2D Branin Hoo problem [14] is defined by:

min
x∈R2

f(x) = (x2 −
5.1

4π2
x21 +

5

π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10

s.t. c1(x) = (x1 − 2.5)2 + (x2 − 7.5)2 − 50 ≤ 0

x1 ∈ [−5.0, 10.0], x2 ∈ [0.0, 15.0]

The function has a constrained minimum f(x∗) = 0.397887 at (π, 2.275). Its objective and
feasible region are plotted in Figure A.1.

A.1.2 Rosenbrock problem

This is the first work that optimises this version of the constrained 2D Rosenbrock function. We
created this benchmark problem with the goal to present a constrained optimisation problem
with a discontinuous constraint function. The objective function is the 2D Rosenbrock function

70
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Figure A.2: The 2D Rosenbrock problem with 1 black-box constraint. We depict the objective
function and feasible region of the 2D Rosenbrock problem.

[129], and the constraint function is novel. The problem is defined by:

min
x∈R2

f(x) = (1− x1)
2 + 100(x2 − x21)

2

s.t. c1(x) = |max(x1, x2)| − 1 ≤ 0

x1, x2 ∈ [−2.048, 2.048]

The function has a constrained minimum f(x∗) = 0.0 at (1, 1). Its objective and feasible region
are plotted in Figure A.2.

A.1.3 G6 problem

Figure A.3: The 2D G6 problem with 1 black-box constraint. We depict the objective function and
feasible region of the 2D G6 problem [116].

The 2D G6 problem [114, 116] is defined by:

min
x∈R2

f(x) = (x1 − 10)3 + (x2 − 20)3

s.t. c1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

c2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0
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x1 ∈ [13.5, 14.5], x2 ∈ [0.5, 1.5]

The original input space bounds are defined as [13, 100]× [0, 100], but we adapted the problem
bounds to [13.5, 14.5] × [0.5, 1.5]. The smaller input domain makes this problem easier for
surrogates, which have to learn the feasible region. Still, the size of the feasible region remains
relatively small.

The function has a constrained minimum f(x∗) = −6961.8138 at (14.0950, 0.8430). Its
objective and feasible region are plotted in Figure A.3.

A.1.4 Gardner problem

Figure A.4: The 2D Gardner problem with 1 black-box constraint. We depict the objective
function and feasible region of the 2D Gardner problem [16].

The constrained 2D Gardner problem [16] is defined by:

min
x∈R2

f(x) = sin(x1) + x2

s.t. c1(x) = sin(x1) sin(x2) + 0.95 ≤ 0

x1, x2 ∈ [0, 2π]

The function has a constrained minimum f(x∗) = 0.2532 at (4.7124, 1.2532). Its objective and
feasible region are plotted in Figure A.4.

A.1.5 Alpine problem

The 2D Alpine-1 function was introduced by Rahnamayan et al. [151]. As the present work
focuses on constrained optimisation problems, we added a constraint to the function which is
a ring around the region containing the global optimum. We created this benchmark problem
with the goal to present a constrained optimisation problem with a highly multimodal objective
function. To highlight the consequences of not exploring the full domain on this problem, we
modify the objective function, subtracting one in the inner feasible region (see the visualisation
Figure A.5). This does not change the exploration behaviour of any surrogate model that we
evaluated on the function, while exposing the lack of exploration on this function. The problem
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Figure A.5: The 2D Alpine problem with 1 black-box constraint. We depict the objective function
and feasible region of the 2D Alpine problem.

is defined by:

min
x∈R2

f(x) =


2∑

i=1
|xi sin(xi) + 0.1xi| − 1, if ∥x∥2 ≤ 2

2∑
i=1
|xi sin(xi) + 0.1xi|, else

s.t. c1(x) = (∥x∥2 − 2) (4− ∥x∥2) ≤ 0

x1, x2 ∈ [−10, 10]

The function has a constrained minimum f(x∗) = −1.0 at (0, 0). Its objective and feasible region
are plotted in Figure A.5.

A.1.6 Townsend problem

Figure A.6: The 2D Townsend problem with 1 black-box constraint. We depict the objective
function and feasible region of the 2D Townsend problem [117].

The Townsend function was introduced by Townsend [152]. In this work, we will use the
constrained version that was introduced in by van der Herten [117], which defined multiple
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disjoint feasible regions. The problem is defined by:

min
x∈R2

f(x) = − cos ((x1 − 0.1)x2)
2 − x1 sin (3x1x2)

s.t. c1(x) = − cos

(
3

2
πx1

)
cos

(
3

2
x2

)
− sin

(
3

2
πx1

)
sin

(
3

2
x2

)
≤ 0

x1 ∈ [−2.25, 2.5], x2 ∈ [−2.5, 1.75]

The function has a constrained minimum f(x∗) = −3.2 at (−2.25,−1.2964). Its objective and
feasible region are plotted in Figure A.6.

A.1.7 Sphere problem

Figure A.7: The 2D Sphere problem with 1 black-box constraint. We depict the objective function
and feasible region of the 2D Sphere problem.

The 2D Sphere function is a standard benchmark function in optimisation. As the present
work focuses on constrained optimisation problems, we added a constraint to the function which
is a ring around the region containing the global optimum. We created this benchmark problem
with the goal to present a constrained optimisation problem with a multiple disjoint feasible
regions, while the underlying objective is simple to optimise. The problem is defined by:

min
x∈R2

f(x) = (x1 + 0.5)2 + x22

s.t. c1(x) = sin(4π(x1 − 0.1))− 2 sin2(2πx2) + 0.95 ≤ 0

x1 ∈ [−1.0, 0.75], x2 ∈ [−1., 1.]

The function has a constrained minimum f(x∗) = 0.0 at x∗ = (−0.5, 0). Its objective and
feasible region are plotted in Figure A.7.

A.1.8 Welded Beam Design problem

The 4D welded beam design problem [25, 114, 115, 153] minimises the cost of a welded beam.
We use the formulation of [25, 153] who incorporate two of the original constraints into the
boundary conditions, leading to the following problem formulation with 5 constraints:

min
x∈R4

f(x) = 1.10471x21x2 + 0.04811x3x4(x2 + 14)
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s.t. c1(x) = τ(x)− 13000 ≤ 0

c2(x) = σ(x)− 30000 ≤ 0

c3(x) = x1 − x4 ≤ 0

c4(x) = 6000− Pc(x) ≤ 0

c5(x) = δ(x)− 0.25 ≤ 0

x1 ∈ [0.125, 10], x2, x3, x4 ∈ [0.1, 10]

where

τ(x) =

√
τ21 (x) + τ22 (x) +

x2τ1(x)τ2(x)√
0.25(x22 + (x1 + x3)2)

τ1(x) =
6000√
2x1x2

, σ(x) =
504000

x23x4
, δ(x) =

2.1952

x33x4

τ2(x) =
6000(0.5x2 + 14)

√
0.25(x22 + (x1 + x3)2)

1.414x1x2(x22/12 + 0.25(x1 + x3)2)

Pc(x) = 64746.022(1− 0.0282346x3)x3x
3
4

The true minimum is unknown. The best known result is f(x∗) = 2.3811 at
x∗ = (0.2444, 6.2158, 8.2939, 0.2444).

A.1.9 Ackley problem

The 20D Ackley problem [124, 131] is defined by:

min
x∈R20

f(x) = −20 exp

−0.2
√√√√ 1

20

20∑
i=1

x2i

− exp

[
1

20

20∑
i=1

cos(2πxi)

]
+ e+ 20

s.t. c1(x) =

20∑
i=1

xi ≤ 0

c2(x) = ∥x∥2 − 5 ≤ 0

x ∈ [−5, 10]20

The function has a global minimum f(x∗) = 0.0 at the origin.

A.1.10 Keane Bump problem

The 30D Keane Bump problem [25, 125, 126] is defined by:

min
x∈R30

f(x) = −

∣∣∣∣∣∣∣∣∣∣
30∑
i=1

cos4(xi)− 2
30∏
i=1

cos2(xi)√
30∑
i=1

ix2i

∣∣∣∣∣∣∣∣∣∣
s.t. c1(x) = 0.75−

30∏
i=1

xi ≤ 0
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c2(x) =
30∑
i=1

−225 ≤ 0

x ∈ [0, 10]30

The true minimum is unknown. The best known result is f(x∗) = −0.818056222. The location
of this value can be found in [126].

A.2 Mixed benchmarks

A.2.1 Mixed Branin problem

The Mixed Branin problem [118] is a mixed domain version of the Branin Hoo problem from
Gelbart et al. [14]. Additionally to the two continuous dimensions, two categorical dimension
are added. The resulting problem is defined by:

min
x1,x2,z1,z2∈X

f(x1, x2, z1, z2) =


h(x1, x2), if z1 = A, z2 = A

0.4h(x1, x2), if z1 = A, z2 = B

−0.75h(x1, x2) + 3, if z1 = B, z2 = A

−0.5h(x1, x2) + 1.4, if z1 = B, z2 = B

s.t. c1(x1, x2, z1, z2) =


x1x2 − 0.4, if z1 = A, z2 = A

1.5x1x2 − 0.4, if z1 = A, z2 = B

1.5x1x2 − 0.2, if z1 = B, z2 = A

1.2x1x2 − 0.3, if z1 = B, z2 = B

x1, x2 ∈ [0, 1]; z1, z2 ∈ {A,B}

where

h(x1, x2) =
1

51.9496

[((
15x2 −

5

4π2
(15x1 − 5)2 +

5

π
(15x1 − 5)− 6

)2

+

10

(
1− 1

8π

)
cos(15x1 − 5) + 10

)
− 54.8104

]
Note that h defines the Branin Hoo function. The function has a constrained minimum f(x∗) =
−0.814299 at x∗ = (1.0, 0.4, A,A).

A.2.2 Func-3C

The unconstrained Func-3C problem [119, 127, 128] has enjoyed some popularity as benchmark
for BO in mixed domain. We extend this benchmark with a simple disk constraint to transform
the problem into a constrained optimisation problem. The resulting problem is defined by:

min
x1,x2,z1,z2,z3∈X

f(x1, x2, z1, z2, z3) = A(x1, x2, z1) +A(x1, x2, z2) +B(x1, x2, z3)

s.t. c1(x1, x2, z1, z2, z3) =
5∑

i=1

x2i − 1 ≤ 0
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where

A(x1, x2, z) =


1

300R(x1, x2), ifz = 0
1
10S(x1, x2), ifz = 1
1
50B(x1, x2), else

B(x1, x2, z) =

{
1
2S(x1, x2), ifz = 0
1

500R(x1, x2), else

R(x, y) = (1− x)2 + 100(y − x2)2

S(x, y) =

(
4− 2.1x2 +

x4

3

)
x2 + xy + (4y2 − 4)y2

B(x, y) = (1.5− x+ xy)2 +
(
2.25− x+ xy2

)2
+
(
2.625− x+ xy3

)2
x1, x2 ∈ [−1, 1]; z1 ∈ {0, 1, 2}, z2 ∈ {0, 1, 2, 3, 4}, z3 ∈ {0, 1}

Note that R,S,B define the 2D versions of the Rosenbrock function [129], Six-Hump Camel
function [154], and Beale’s function [155] respectively. The function has a global optimum of
f(x∗) = −0.23144967 at x∗ = (−0.116834, 0.591213, 0, 0, 0).

A.2.3 XGBoost tuning

The XGBoost tuning problem [18, 127] minimises the training error of an XG-Boost GBRT
ensemble [156]. The objective function measures the model fit on the Iris dataset [157]. Origi-
nally, this problem tests classification accuracy on the Boston Housing data [135], but due to the
ethical problems that are associated with this data set (Section 7.1), we test the model on the
Iris data. To reliable estimate the model performance, we estimate the model accuracy as mean
across all runs of a 5-fold cross-validation. The constraint function restricts the elapsed time of
the cross-validation to be less or equal to three seconds. The resulting problem is defined by:

min
params∈X

f(params) = 1− accuracy(modelparams)

s.t. c1(params) = elapsed time in sec(params)− 3 ≤ 0

where

accuracy(modelparams) = Mean accuracy across 5-fold cross-validation

We use the Microsoft XGBoost implementation for Python 1. The parameters that are tuned
in this problem are listed in Table A.1.

The original problem in Daxberger et al. [18] does not include any constraints. We added
the time constraints to emulate a real-world black-box optimisation problem with unknown
constraint function. Although the size of the feasible region is difficult to estimate, we observed
training times in the range of 0.01−15 seconds. We measure the wall-clock time of the entire cross
validation run. Furthermore, the original problem included only binary categorical variables.
To make the search more challenging along these dimensions, we included a third value for the
n_estimators and max_depth parameters. Since this modification increases the search space
considerably, we decrease the range of the alpha parameter from [0.000985, 1009.209690] to
[0.0, 109.209690].

Since the feasible region is defined based on the training time of an XGBoost model, the
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actual feasible region may vary from machine to machine on which the experiment is conducted.
Consequently, we want to highlight that the results on this particular benchmark problem may
be different when repeated. In particular, it may be required to adjust the time constraint on
better hardware to prevent the task from becoming too easy.

The function has a theoretical minimum of f(x∗) = 0.0, as the classification accuracy can
be zero. However, we do not know where this minimum lies.

Parameter Description Range

alpha L1 regularisation term on weights. [0.0, 109.209690]
lambda L2 regularisation term on weights. [0.000978, 99.020893]

colsample_bylevel Subsample ratio of columns for each level. [0.046776, 1.0]
colsample_bytree Subsample ratio of columns when constructing each tree. [0.062528, 1.0]
learning_rate Boosting learning rate (xgb’s “eta”). [0.000979, 0.995686]

min_child_weight Minimum sum of instance weight(hessian) needed in a child. [0.5, 127.042806]
subsample Subsample ratio of the training instance. [0.5, 1.0]

booster Which booster to use. {gbtree, gblinear}
n_estimators Number of boosting rounds. {3, 100, 5000}
max_depth Maximum tree depth for base learners. {1, 10, 15}

Table A.1: XGBoost parameters. The parameters of the XGBoost model that are optimised. The
parameter descriptions are taken directly from the documentation of the Microsoft XGBoost documen-
tation 2.

2https://xgboost.readthedocs.io/en/stable/python/python_api.html

https://xgboost.readthedocs.io/en/stable/python/python_api.html


Appendix B

Gaussian Process implementation

Every GP in this work is implemented using GPFlow [132]. While other software for Bayesian
Optimisation with GPs exist, e.g. BoTorch [158], we found that the implementation of the CWEI
acquisition function in the latter software is ill-defined if no feasible point was found previously.

All GP in this work use the automatic relevance determination (ARD) Matérn 5/2 kernel
with constant mean function, a signal variance σ2

f and d lengthscale parameters ℓi, 1 ≤ i ≤ d.
The resulting kernel covariance function is:

kM52(x,x
′) = σ2

f

(
1 +

√
5r2(x,x′) +

5

3
r2(x,x′)

)
exp

(
−
√

5r2(x,x′)
)

where

r2(x,x′) =

d∑
i=1

(xi − x′i)
2

ℓ2i

The above kernel function has two types of hyperparameters: signal variance σ2
f and d lengthscale

parameters ℓi. A third type of hyperparameter is the noise variance σ2
noise of a GP. Following

Eriksson et al. [131], we use the following bounds for these hyperparameters:

• Signal variance: σ2
f ∈ [0.05, 20.0] with initial value 1.0

• Lengthscales: ℓi ∈ [0.005, 2.0] with initial value 0.5, ∀i ∈ {1, . . . , d}

• Noise variance: σ2
noise ∈ [0.0005, 0.2] with initial value 0.005

For numerical stability, we transform the input data X to lie within a hypercube [0, 1]d, and
the observed objective function values y are standardised to have mean zero and variance one.
Additionally, we transform the observed constraint function values using the bilog transformation
that is described by Eriksson et al. [131]:

bilog(x) := sign(x) log(1 + |x|)

We apply the transformation twice to each entry in the label vector y before we fit the GP
surrogate models.
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Appendix C

Software usage guide

Instructions on how to use the software can be found in our README1. Additionally, we created
a notebook2 with an example use case to help users.

1https://github.com/cornelius-braun/constrained-bo-trees/blob/main/README.md
2https://github.com/cornelius-braun/constrained-bo-trees/blob/main/example_usage.ipynb

80

https://github.com/cornelius-braun/constrained-bo-trees/blob/main/README.md
https://github.com/cornelius-braun/constrained-bo-trees/blob/main/example_usage.ipynb

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Notation
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Report structure

	2 Background and related work
	2.1 Bayesian Optimisation
	2.2 Tree-based regression models
	2.3 Tree ensembles as Bayesian Optimisation surrogate models
	2.4 Quantifying uncertainty

	3 Solving black-box constrained Bayesian Optimisation with tree ensembles
	3.1 Problem Formulation
	3.2 Motivation
	3.3 Modelling constraints with tree ensembles
	3.4 Optimising a constrained objective with tree ensembles
	3.5 Implementation

	4 Improving the uncertainty estimation of tree ensemble surrogate models
	4.1 Motivation
	4.2 Distance-based uncertainty estimation for Mondrian Forests
	4.3 MC Dropout uncertainty estimation for Gradient Boosted Regression Trees
	4.4 Implementation

	5 Selecting the optimisation strategy to minimise the acquisition function
	5.1 Motivation
	5.2 Optimisation of the acquisition function when using tree ensemble surrogates
	5.3 Implementation

	6 Evaluation
	6.1 General experimental setup
	6.2 Analysis of tree-based surrogate models for black-box constrained Bayesian Optimisation
	6.3 Analysis of novel uncertainty metrics for tree ensembles
	6.4 Analysis of gradient-free acquisition optimisation strategies
	6.5 Comparison of tree ensembles and Gaussian Processes as surrogate models for constrained Bayesian Optimisation

	7 Conclusion
	7.1 Legal, social, ethical, and professional considerations
	7.2 Achievements
	7.3 Limitations
	7.4 Future work
	7.5 Project summary

	Bibliography
	A Optimisation benchmarks
	A.1 Continuous benchmarks
	A.2 Mixed benchmarks

	B Gaussian Process implementation
	C Software usage guide

