
Imperial College London

Department of Computing

Runtime Code Generation for
Sparse Small Matrix Multiplies

Final Project Report

Author:
Chenyu Zhang

Supervisor:
Prof. Paul Kelly

Second Marker:
Prof. Wayne Luk

Submitted in partial fulfilment of the requirements for the MSc degree in Computing
Science of Imperial College London

September 2021

Abstract

GEneral Matrix Multiplication (GEMM) is the core of many numerical solvers in sci-
ence and engineering domain. This thesis is motivated by the use of GEMM in PyFR
- a Python open-source library for solving Computational Fluid Dynamics (CFD)
problems using the Flux Reconstruction (FR) method. In PyFR, the GEMM is block-
by-panel variant. The block matrix is small and potentially sparse, and remains con-
stant throughout the entire simulation. Standard Basic Linear Algebra Subprograms
(BLAS) libraries are the most common choices for solving GEMM. However, as these
libraries are optimised for large and dense matrices, using them for PyFR results in
sub-optimal performance.
PyFR uses two libraries to accelerate the computation - GiMMiK and LIBXSMM,
which are both Just-In-Time compilers capable of generating optimised problem-
specific GEMM kernels. This thesis focuses on LIBXSMM, which is an Intel open-
source library providing specialised dense and sparse matrix operation routines for x86
platforms with SSE, AVX, AVX2 and AVX-512 extensions. This thesis targets AVX-
512. LIBXSMM also supports accelerating primitive deep neuron network routines
such as small convolutions.
The sparse matrices involved in the PyFR’s GEMM contain repeated elements. LIB-
XSMM provides a specialised small and sparse GEMM routine which stores these
distinct non-zero elements of the sparse matrix in vector registers. For AVX-512,
this routine can accommodate maximally 240 double-precision or 480 single-precision
distinct non-zero elements in the sparse matrix. A fallback dense routine will be
employed if the matrix contains too many unique elements.
In this thesis we presented two improved small and sparse GEMM implementations
based on the LIBXSMM method. The first implementation significantly improves
the domain of applicability as it allows unlimited number of distinct non-zeros in the
sparse matrices by runtime broadcasting them at runtime from the main memory.
By experiments, we measured our kernel is averagely 9% slower than the reference
LIBXSMM routines evaluated using the common 170 PyFR operator matrices on an
Intel Xeon Platinum 8124M machine. Our second implementation was derived from
the first one. It caches some matrices strides in the vector registers to avoid redundant
memory access. Our evaluation shows the second implementation is between 75.6%
and 236.9% performant comparing to the reference LIBXSMM routines. For the dense
PyFR operator matrices, our method shows significant performance improvement of
over 30% consistently.
During the evaluation process, we observed using too many registers for accumulat-
ing the intermediate values can affect the performance negatively. We conducted a
systematic micro-architectural analysis and identified the issue was caused by two
instructions for memory reads and writes.

Acknowledgments

I would like to thank my supervisor Professor Paul Kelly for the guidance and support,
and especially for the enthusiasm on this project. I would also like to thank Freddie
Witherden of Texas A&M University and previous year student Mehedi Paribartan
for their valuable feedback and advice.
Finally, I would like to thank my family back in China, and also the “family” of my
wonderful housemates in Manchester. Without their support and love, this journey
cannot be as enjoyable as it is right now.

i

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 2

2 Background 4
2.1 General Matrix Multiplication . 4
2.2 Small and Sparse GEMM . 5
2.3 LIBXSMM . 6

2.3.1 The Library . 6
2.3.2 Original LIBXSMM Small and Sparse GEMM Routine 7
2.3.3 Paribartan’s Improvements to LIBXSMM Small and Sparse GEMM

Routine . 7
2.3.4 Hybrid Small and Sparse GEMM Routine 11

2.4 PyFR . 11

3 Related Work 16
3.1 GiMMiK . 16
3.2 BLASFEO . 18
3.3 Measurement Bias is Significant, Commonplace and Unavoidable 21

4 Evaluation Methodology 24
4.1 Evaluation Platforms . 24
4.2 Test Matrices . 26
4.3 Benchmark Process . 27
4.4 Performance Metric . 28
4.5 Limitations and Threat to Validity . 29

5 Small and Sparse GEMM Kernel with Runtime Broadcasting Packed
A Constants from Memory 33
5.1 Broadcast with VBROADCASTSS/D . 33
5.2 Kernel Design . 34
5.3 Evaluation . 35
5.4 Supports for AVX2 . 51

ii

6 Multiple Vector Registers for Accumulating C Strides 52
6.1 N Blocking . 52
6.2 M Blocking . 53
6.3 Kernel Design . 54
6.4 Evaluation - N Blocking . 54
6.5 Evaluation - M Blocking . 68
6.6 Evaluation - Both N and M Blocking 80

7 Small and Sparse GEMM Kernel with Caching B Strides in Vector
Registers 83
7.1 Runtime Broadcasting with FMA instruction 83
7.2 Kernel Design . 84
7.3 Performance Prediction . 86
7.4 Evaluation - Single Accumulation . 87
7.5 Evaluation - N Blocking . 88
7.6 Evaluation - M Blocking . 89
7.7 Evaluation - Both N and M Blocking 101

8 Possible Reasons for Why Too Large M Blocking Factors Decrease
Kernel Performance 104
8.1 Saturation of Write Buffer by Multiple Non-Temporal Stores 104
8.2 CPU Stalls Due to Loading B Strides 106
8.3 Sanity Check - Are There Any More Factors? 110

9 Conclusion and Future Work 111
9.1 Summary . 111
9.2 Future Work . 112

Bibliography 120

A Characteristics of PyFR operator matrices 121

B Kernel Examples 125
B.1 Reference LIBXSMM kernels . 126
B.2 GiMMiK Kernel . 136
B.3 Small and Sparse GEMM Kernel with Runtime Broadcasting Packed A

Constants from Memory . 137
B.4 Small and Sparse GEMM Kernel with Runtime Broadcasting Packed A

Constants from Memory and Caching B Strides in Vector Registers . . 145

C Complete Experiment Results for Testing the Small and Sparse GEMM
Kernel with Runtime Broadcasting Packed A Constants from Mem-
ory 150
C.1 FyFR Operator Matrices . 150
C.2 Synthetic Matrices . 168

iii

D Complete Experiment Results for Testing the Small and Sparse GEMM
Kernel with Runtime Broadcasting Packed A Constants from Mem-
ory and Multiple Accumulations 178
D.1 N Blocking . 178
D.2 M Blocking . 206

E Complete Experiment Results for Testing the Small and Sparse GEMM
Kernel with Runtime Broadcasting Packed A Constants from Mem-
ory and Caching B Strides in Vector Register 234
E.1 Single Accumulation . 234
E.2 N Blocking . 254
E.3 M Blocking . 273

iv

Chapter 1

Introduction

Matrix Multiplication (MM) is the core of many numerical solvers in the science and
engineering domain. For problems involving solving Partial Differential Equations
(PDEs), the resulting matrices are generally small (size less than an order of tens)
and sparse. Despite the popular demand for small and sparse MM, the standard
GEMM (GEneral Matrix Multiplication) routines provided by many BLAS (Basic
Linear Algebra Subprograms) libraries do not support this in the most efficient manner.
These libraries generally exploit the techniques of tiling and cache blocking, which are
tuned for large matrix sizes, resulting in sub-optimal performance for the small and
sparse MM [1,2].

Our project is motivated by the use of small and sparse GEMM in PyFR [3,4], which
is an open-source Python framework for solving advection-diffusion problems using the
Flux Reconstruction (FR) method [5]. The main application of PyFR is Computa-
tional Fluid Dynamics (CFD), in which the governing equations of compressible flows,
namely Euler and Navier–Stokes equations, are solved. For PyFR, one of the core
computations is small, sparse and block-by-panel GEMM. Because the block matrix
remains constant throughout the entire simulation, a problem-specific GEMM kernel
can be generated Just-In-Time (JIT) for each constant block matrix at the start of
the simulation. The specialised kernels are reused throughout the simulation so the
kernel generation time can be amortised.

Currently, PyFR uses two libraries for generating the bespoke GEMM kernels - an Intel
open-source library LIBXSMM [1, 6] targeting x86 CPUs, and GiMMiK [7] targeting
both GPU and CPU platforms. Our project aims to improve the LIBXSMM small
and sparse GEMM implementation with a focus on x86 CPU platforms supporting
the AVX-512 extension.

1

1.1 Objectives

One major limitation of the current LIBXSMM small and sparse GEMM implementa-
tion is that it does not allow a large number of distinct non-zero constants present in
the sparse matrix. For matrices with too many constants, a fallback dense kernel is gen-
erated which yields sub-optimal performance for sparse problems. The reason for this
is that the LIBXSMM sparse kernel pre-loads these distinct constants into the vector
registers in either a broadcasted or a packed form, so these constants can be accessed
quickly for GEMM computations. For the packed form, which allows more distinct
constants in the sparse matrix, each AVX-512 zmm register (512 bits wide) can store
8 double-precision or 16 single-precision floating-point numbers. As the LIBXSMM
sparse kernel uses maximally 30 zmm registers for storing the constants, the sparse
kernel can only accommodate maximally 240 double-precision or 480 single-precision
distinct non-zero constants present in the sparse matrix.

This idea of storing packed constants in the vector registers was investigated by pre-
vious year student Paribartan [8] in 2020. During his research, he reported that the
LIBXSMM sparse routine is generally less performant than the LIBXSMM dense rou-
tine for moderately dense matrices with densities higher than 0.5. He concluded this
is because the dense kernel is highly optimised even for moderately dense problems.
It would be beneficial if we could improve the sparse kernel with techniques from the
dense routine so that it can achieve better performance for these moderately dense
matrices.

This brings us to the two objectives of our project:

1. Improve the LIBXSMM small and sparse kernel so that it can accommodate an
unlimited number of distinct non-zeros present in the sparse matrix.

2. Improve the LIBXSMM small and sparse kernel so that it can achieve higher
performance (floating point operations per second).

1.2 Contributions

This thesis makes the following contributions:

1. An improved an automatic benchmark suite for small and sparse
GEMM routines. We developed an automatic benchmark suite for small
and sparse GEMM routines based on the work from the previous year student
Paribartan [8]. Our enhanced performance evaluation has improved ability of re-
evaluation and better reflects the practical significance. The test suite is based
on two sets of matrices - a complete set of all the 170 PyFR operator matri-
ces and a set of 100 synthetic matrices aiming to provide a broader coverage

2

and a finer resolution of the matrices characteristics space. This is presented in
Chapter 4.

2. An improved LIBXSMM’s sparse GEMM kernel which allows unlim-
ited number of distinct non-zeros in the sparse matrix. We improved
LIBXSMM’s small and sparse GEMM routine with the technique to runtime
broadcast matrix elements from memory. Comparing to the reference LIBXSMM
routine, which allows maximally 240 double-precision or 480 single-precision con-
stants present in the sparse matrix for AVX-512 (and much fewer for AVX2), our
improved routine allows an unlimited number of constants in the sparse matrix
for both AVX-512 and AVX2. This is presented in Chapter 5.

3. Exploration of multiple accumulations techniques. We explored tech-
niques to accumulate multiple intermediate GEMM results simultaneously in
the free registers to exploit Instruction-Level Parallelism. We evaluated two
techniques - N blocking and M blocking, and determined the optimum block-
ing factors experimentally. We reported N blocking can provide a maximum
speedup of 30% for matrices with densities larger than 0.1. M blocking can
provide a maximum speedup of 60% for matrices with densities larger than 0.4.
This is presented in Chapter 6.

4. A high-performance LIBXSMM’s sparse GEMM kernel for AVX-512.
We further improved our routine with techniques to cache and reuse matrix
strides in the free vector registers, and runtime broadcast matrix elements us-
ing FMA instructions. This implementation is only supported by AVX-512.
With the optimum N blocking and M blocking setting, comparing with reference
LIBXSMM, our implementation shows a significant performance superiority up
to 136% when executing on the dense PyFR operator matrices. This is presented
in Chapter 7.

5. A systematic micro-architectural analysis of performance bottleneck.
During our evaluation process, we observed that the kernels with large M block-
ing factors show unexpectedly low performance. We successfully identified the
problem was caused by two instructions for memory writes and reads. We con-
ducted a systematic micro-architectural analysis and suggested possible under-
lining causes for this. This is presented in Chapter 8.

3

Chapter 2

Background

In this chapter, we will provide the context of our project. At the start we will
introduce what is GEMM with a simple vectorised implementation. This is followed
by two simple but effective optimisation techniques for small and sparse GEMM. In
Section 2.3, we will cover the Intel open-source library LIBXSMM with a focus on its
small and sparse GEMM implementation. This section will also include improvements
made by Paribartan [8] in 2020. In the end, we will provide an overview of PyFR,
which greatly benefits from the LIBXSMM small and sparse GEMM routine.

2.1 General Matrix Multiplication

GEMM (GEneral Matrix Multiplication) denotes the following calculation:

Cm×n ← αAm×k ×Bk×n + βCm×n, (2.1)

where α and β are constants, and A, B, C are matrices of shape m × k, k × n and
m× n respectively.

For CPUs supporting vector or SIMD (Single Instruction Multiple Data) instruction
set extensions, GEMM routines can be vectorised for higher execution speed. As
illustrated by Figure 2.1, a basic vectorised routine for GEMM can be executed as the
following steps:

1. Load and scale (×β) the first stride of C into a vector register vc. The stride
has the same size as the vector registers.

2. Load the first stride of B into a vector register vb.

4

LoadLoad Store Broadcast

MultiplyAdd

Memory Vector register Dot product
direction

Figure 2.1: A simple vectorised GEMM routine.

3. Load and broadcast the first element of A to a vector register va, such that each
element in va is the first element of A.

4. Element-wise multiply the vectors in va and vb. Scale (×α) and accumulate the
result into vc.

5. Repeat steps 2 to 4 with loading the A element of the next column and the B
stride of the next row.

6. After exhausting the entire row of A (the column of B), repeat from step 1 with
loading the C stride and the A element of the next row.

7. Once the entire column of C is exhausted, repeated from step 1 with loading
the C stride and the B stride of the next stridden column.

This simple example algorithm has a time complexity of O (m× n× k) arising from
the three nested loops at steps 5, 6 and 7. It is worth noting that, matrix multiplication
can be visualised as computing multiple dot products between A rows and B columns,
as illustrated by the arrows in Figure 2.1.

For the cases when α and β are either 0 or 1, step 4 can be executed by a single
FMA (Fused Multiply-Add) instruction of an x86 CPU supporting AVX extensions or
above. Step 2 (explicit instruction for loading B strides) can then be omitted as FMA
accepts memory operands.

2.2 Small and Sparse GEMM

Small and sparse GEMM can be considered as a special case of GEMM, such that the
matrix dimensions (m, n, k) are small and either A or B is of sparse nature. For the
case of sparse A, the simple GEMM routine proposed in Section 2.1 can be optimised
by the following two techniques:

5

1. Sparsity elimination: for elements of zero in A, the broadcasting and the subse-
quent FMA can be omitted.

2. Loop unrolling: benefited from a smaller problem size, the loops can be fully
unrolled, eliminating branching cost.

2.3 LIBXSMM

2.3.1 The Library

In 2016, Heinecke et al. from Intel developed LIBXSMM (Small Matrix Multiplication
LIBrary for X86 architectures), which delivers specialised GEMM routines tailored for
small and dense matrices [1, 6]. The library originally targeted x86 CPUs with AVX2
and AVX-512 extensions. It exploits an optimised tiling scheme for small GEMM which
outperforms the generic BLAS routines by 10 times. For LIBXSMM, the problem is
considered small if 3

√
m× n× k ≤ 80 (see Equation 2.1 for m, n and k). This threshold

of 80 was later extended to 128 [9]. For problems with matrix size larger than this, a
fallback GEMM routine from generic BLAS library is generated.

LIBXSMM embeds a well-tuned Just-In-Time (JIT) low-level x86 code generator for
the backend. When a GEMM routine is called, the library first examines the input
matrices and the code generator then dispatches the encoded/binary kernel directly
into main memory. A function pointer to this kernel is returned to the caller for
execution. Because this process does not require any external compiler or assembler,
LIBXSMM can generate binary kernels extremely fast. The code generation process
is illustrated in Figure 2.2.

Call

Call bespoke GEMM routine

User application

LIBXSMM

Call

Interface
(analyse input

matrices)

Function pointer
to kernel

JIT code
generatorMemory

Function pointer
to kernel

Dispatch
binary kernel

Figure 2.2: Diagrammatic representation of a LIBXSMM calling procedure. Reproduced
from [8]. (JIT: Just-In-Time)

In the subsequent releases of LIBXSMM [9], its functionality was extended to the

6

domains of small and sparse GEMM, and small convolutions for Convolutional Neural
Networks (CNN). It now also supports other SIMD architectures including SSE, AVX,
AVX2, AVX-512 and AMX. The supported datatypes are DP (Double-Position) FP
(Floating-Point) format, SP (Single-Position) FP format, bfloat16 (Brain Floating
Point) format, 16-bit integer and 8-bit integer.

2.3.2 Original LIBXSMM Small and Sparse GEMM Routine

In addition to the two optimisation methods outlined in Section 2.2 (1. sparsity
elimination, and 2. loop unrolling), the small and sparse GEMM routine of LIBXSMM
exploits a technique of pre-broadcasting the absolute values of the distinct non-zero
elements in A to the vector registers. The GEMM is computed using either FMA or
FNMA (Fused Negative Multiply-Add) instructions depending on the sign of the A
constants. Taking an example of a DP routine running on the AVX-512 architecture,
which has 32 512-bit zmm vector registers, the kernel can pre-broadcast up to 31 distinct
non-zero elements from A to the vector registers. One additional register has to hold
the accumulated C stride. If the number of unique non-zeros in A is less than or equal
to 31, this method eliminates any additional instructions to load and broadcast the A
elements. Figure 2.3 illustrates this idea.

zmm0

zmm1

zmm2

zmm3

zmm30

zmm31

FMA or FNMA

Pr
e-

br
oa

dc
as

t u
ni

qu
e

no
n-

ze
ro

el
em

en
ts

 o
f

 stride from memory

 stride accumulation

Figure 2.3: Diagrammatic representation of the default small and sparse GEMM routine
of LIBXSMM. Reproduced from [8]. (FMA: fused multiply–add)

2.3.3 Paribartan’s Improvements to LIBXSMM Small and
Sparse GEMM Routine

For AVX-512, the original LIBXSMM small and sparse routine only supports up to
31 unique non-zeros in A, limited by the number of vector registers. It falls back to
the default small and dense routine otherwise. In 2020, Paribartan [8] exploited the

7

idea of register packing and further extended this threshold to 240 and 480 unique
non-zeros, for DP and SP respectively.

Register Packing

Register packing refers to that, instead of pre-broadcasting the non-zero elements of
A into the vector registers, the elements are stored in a packed form in the vector
registers and are only broadcasted at runtime just before the FMAs. This allows
compact packing so that each AVX-512 vector register can hold up to 8 DP or 16 SP
numbers.

Paribartan exploited the instruction VPERMD (Permute Packed Doublewords Elements)
which allows single-instruction runtime broadcasting. VPERMD takes three operands: a
source which is either a memory location or a vector register, a selector vector register,
and a destination vector register. Despite that VPERMD permutes doublewords, it also
allows broadcasting DP numbers which are quadwords. Figure 2.4 shows the details
and the required patterns of the selector register for broadcasting both DP and SP
numbers.

zmm3/m512
Source

zmm2
Selector

zmm1
Destination

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

0xa 0xa0xa 0xa0xa 0xa0xa 0xa0xa 0xa0xa 0xa0xa 0xa0xa 0xa

SP10 SP10 SP10 SP10 SP10 SP10 SP10 SP10 SP10 SP10 SP10 SP10 SP10 SP10 SP10 SP10

(a) Broadcasting SP10 (single-precision floating-point number)

zmm3/m152
Source

zmm2
Selector

zmm1
Destination

DP0DP1DP2DP3DP4DP5DP6DP7

0x1 0x00x1 0x00x1 0x00x1 0x00x1 0x00x1 0x00x1 0x00x1 0x0

DP0DP0DP0DP0DP0DP0DP0DP0

(b) Broadcasting DP0 (double precision floating point number)

Figure 2.4: Use of VPERMD for runtime broadcasting.

For DP numbers, this requires additional 8 selectors to be stored by the vector regis-
ters. As one vector register needs to hold the broadcasted value and one to hold the
accumulated C stride, there are 22 registers left for storing the A constants, which
can hold a maximum of 176 DP numbers. For SP numbers, 16 registers are to hold
the selectors so there are 14 registers left for storing 224 SP numbers. By experiments,
Paribartan showed that the runtime broadcasting introduces no performance penalty.
For both cases, these are big improvements from the original capacity of 31. Figure 2.5
shows this idea with DP.

8

zmm0
zmm1

zmm30

zmm31

FMA or FNMA

 stride from memory

 stride accumulation

zmm22
zmm23
zmm24

zmm3

Broadcasted constant

Pa
ck

ed

co
ns

ta
nt

s
Se

le
ct

or
s

VPERMD

Runtime
broadcasting

FMA

Figure 2.5: Diagrammatic representation of the small and sparse GEMM routine using
register packing.

Register Packing with Selector Operands Stored in L1 Cache

To pack more distinct non-zero elements of A into the registers, Paribartan experi-
mented with storing the selector operands in memory. Because these selectors are read
regularly, they are likely to present in the L1 cache and supports quick access.

For Paribartan’s design shown in Figure 2.6, one register stores both the loaded selector
operand and the broadcasted A constant, and one for storing the accumulated C,
which leaves 30 spare registers for packing 240 DP or 480 SP.

Paribartan observed that, despite of having one additional 64-byte cache access per
FMA, runtime broadcasting with the selector operands storing in the L1 cache per-
forms no slower than the original register packing method on sparse As. Interestingly,
Paribartan observed that this method with selectors storing in L1 cache could out-
perform the original one by up to 1.1× for a few test cases. They suggested that the
Skylake-SP microarchitecture could execute this kernel better by out-of-order (OOO)
execution and instruction-level parallelism (ILP).

Multiple Accumulations

When the operator matrices A are small, register packing leaves unused vector reg-
isters. To better utilise the free registers for these cases, Paribartan investigated
two additional methods using multiple vector registers for the accumulation of the C
strides. These are N blocking and M blocking.

N blocking N blocking refers to that for each iteration over anA constant, nB FMA
operations are performed with nB strides of B (nB stands for N blocking factor). An
example with nB = 2 is illustrated in Figure 2.7. Each nB consumes one additional

9

zmm0
zmm1

zmm30

zmm31
 stride accumulation

zmm3

Pa
ck

ed

co
ns

ta
nt

s

Selector in L1 cache

Loaded selector operand or
Broadcasted constant

(a) Loading selector operand from L1 cache.

FMA or FNMA

 stride from memory

VPERMD

zmm0
zmm1

zmm30

zmm31
 stride accumulation

zmm2

Loaded selector operand or
Broadcasted constant

Pa
ck

ed

co
ns

ta
nt

s Runtime
broadcasting

FMA

(b) Runtime broadcasting and FMA.

Figure 2.6: Diagrammatic representation of the small and sparse GEMM routine using
register packing with selector operands from L1 cache.

vector register for accumulating the C stride. The threshold of number of unique
non-zeros reduces to 232 DP or 464 SP for nB = 2, 224 DP or 448 SP for nB = 3, etc.

Paribartan investigated the performance of N blocking for N = 2, 3 experimentally [8].
They observed that for very small and sparse matrices, N blocking could provide up to
2× increased performance. However, for large or dense matrices, N blocking reduced
the performance which was possibly due to cache spill as more (nB) columns of B
strides were accessed regularly.

Stride 0
Stride 2

Stride 1
Stride 3

Figure 2.7: Diagrammatic representation of N blocking for nB = 2. Reproduced from [8].

10

M blocking For M blocking, each stride of B is used for mB FMAs with different
A constants, as illustrated in Figure 2.8 (mB stands for M blocking factor). Each mB

requires two more vector registers. One for C stride accumulation, and one for storing
the loaded selector operand and the broadcasted A constant. With M blocking, the
threshold of number of non-zeros in A is 224 DP or 448 SP for mB = 2, 208 DP or
416 SP for mB = 3, etc.

Stride
Stride
Stride

Figure 2.8: Diagrammatic representation of M blocking for mB = 2. Reproduced from
[8].

For the evaluations, M blocking provided either similar or reduced performance com-
pared to the base case. Although Paribartan suggested this was likely due to L1 cache
spill, we believe that it was caused by the saturation of L1 cache bandwidth as each
runtime broadcasting requires a 64-byte load from L1 cache and M blocking introduces
more broadcasting for each B stride.

2.3.4 Hybrid Small and Sparse GEMM Routine

In a recent commit [10], LIBXSMM merges the aforementioned small and sparse
GEMM implementations into a single hybrid routine, as shown by Figure 2.9. When
the hybrid routine is called, it tries to generate a sparse kernel without using N blocking
and a wide-sparse kernel which exploits N blocking. It also tries to generate a fallback
dense kernel in case neither the sparse kernels are generated. If multiple kernels are
available for the user input A, LIBXSMM runs a simple benchmark and output the
fastest kernel.

2.4 PyFR

Overview

As briefly described in Chapter 1, PyFR is an open-source Python library for solv-
ing advection-diffusion problems using the Flux Reconstruction (FR) method [3–5].
Currently the main application of PyFR is Computational Fluid Dynamics (CFD) in
which the governing Euler and Naiver-Stokes equations, are solved. Comparing to con-
ventional CFD programs which commonly solve 1st or 2nd order Reynolds-Averaged

11

Navier–Stokes (RANS) equations, FR offers solutions with higher-order accuracy while
still maintains the flexibly and stability of low-order methods by using unstructured
grids. PyFR supports four element types: hexahedral and tetrahedral elements for
3D, quadrilateral and triangular elements for 2D. [3]

Implementation and Operator Matrices

As shown by Figure 2.10, majority of the PyFR computations are GEMMs while the
rests are element-wise matrix operations [3]. For the GEMM operations (see Equa-
tion 2.1), theAmatrices, also known as operator matrices, are small block matrices, i.e.
m ≈ k, and remain constant throughout the entire simulation. The B matrices which
store the fluid states are short and wide, commonly containing 10000-100000 columns,
and the contents change between the iterations. Because the constant A matrices are
known at the start of each simulation (also because As are commonly sparse, as we
will see later), this allows PyFR to generate matrix-specific high-performant GEMM
kernel at the start of each simulation. Because the kernels are reused throughout the
entire simulation, the generation time is negligible.

The characteristics of the constant operator matrices depend on the following factors:

• The mash shape: quadrilateral, hexahedron, tetrahedron or triangle.

• The quadrature method for numerical integration: Gauss-Legendre, Gauss-Legendre-
Lobatto, Shunn-Ham or Williams-Shunn.

• The order of the numerical integration scheme: from the 1st to the 6th order.

• The iteration step the operator matrix is involved: m0, m3, m6, m132 or m460
(see Figure 2.10).

Appendix A lists the characteristics of the entire 170 PyFR operator matrices. These
matrices are available from [6]. It is worth noting that, not only most of the operator
matrices are sparse, all the operator matrices contains repeated values. This makes
the LIBXSMM small and sparse GEMM routine previously discussed in Section 2.3
extremely suitable for PyFR.

Summary

In this chapter, we introduced what is GEMM and provided a simple vectorised rou-
tine. We presented the software we are aiming to improve - LIBXSMM, with a focus
on its small and sparse GEMM routine. We presented the excellent work from the
previous year student Paribartan [8], which significantly improved the applicability of

12

LIBXSMM’s small and sparse implementation by his register packing technique. In
the end, we provided an overview of PyFR and explained why it would benefit greatly
from LIBXSMM’s small and sparse routine.

13

YesNo

Can generate
a sparse kernel?
(pre-broadcasted

constants)

Yes
Can generate

a sparse kernel?
(packed constants)

Sparse kernel

Yes
No

Can generate
a sparse kernel?

(pre-broadcasted constants,
)

Yes

Can generate
a sparse kernel?

(packed constants,
)

Wide-sparse
kernel

Yes

Can generate
a dense kernel?

Dense kernel

No

Yes

More than one avaliable
kernel?

Output the only avaliable
kernel

Run a simple benchmark
and output the fastest

kernel

Sparse kernel Wide-sparse
kernel

Dense
kernel

Figure 2.9: LIBXSMM hybrid small and sparse GEMM implementation.

14

Figure 2.10: The use of GEMM and point-wise kernels in PyFR. [3]

15

Chapter 3

Related Work

In this section we will present two other libraries matrix operations relevant to our
thesis - GiMMiK and BLASFEO. We will present the significance of measurement
error and what are the best practises for avoiding them.

3.1 GiMMiK

GiMMiK is another JIT small and sparse GEMM kernel generator developed by
Wozniak et al. in 2016 [7]. It originally targeted GPU platforms through CUDA
and OpenCL. The hardware support was later widened to include CPU through
C/OpenMP at version 2.0 [11]. As with our thesis, GiMMiK was motivated directly
by the GEMMs in PyFR. Right now, it is PyFR’s default GEMM accelerator.

Unlike LIBXSMM, which directly dispatches the encoded kernel into main memory,
GiMMiK generates high-level codes, e.g., *.cu and *.c, and requires a separate compi-
lation process for generating the executables. Therefore, unlike LIBXSMM, GiMMiK
depends on the compiler for code vectorisation. In 2020, Paribartan [8] observed that
Intel C/C++ Compiler (ICC) was unable to fully vectorise the kernel for very big
operator matrices. One example GiMMiK kernel can be found in Appendix B.2.

GiMMiK implements GEMM by a for loop which iterates through every column of
C. Within each iteration, there is a sub-kernel for matrix-vector multiplication, as
GEMM can be decomposed into n cm×1 ← Am×kbk×1 + cm×1 problems, where cm×1

and bm×1 are column vectors in C and B respectively at the same position.

For the matrix-vector multiplication sub-kernel, GiMMiK exploits the following tech-
niques:

1. Value embedding: As shown by the kernel example in Appendix B.2, theA values
are embedded inside the C code as numerical values. By experiments, Wozniak

16

et al. [7] observed that this technique improves the performance significantly
because the compiler can have explicit knowledge about the access pattern of
the A elements. For GPU platforms, this also allows the kernel to utilise the
fast constant cache [7].

2. Sparsity elimination: As previously mentioned in Section 2.2, sparsity elimina-
tion can significantly reduce the floating-point operations (FLOPs) by removing
the unnecessary computations with the zeros. Wozniak et al. [7] observed that
this can significantly improve the performance. Because of lower arithmetic in-
tensities (will be later explained in Chapter 4), Wozniak et al. [7] showed that
the sparse kernel was commonly limited by memory bandwidth but not the CPU
computational ability. They suggested streaming A in the CSR format is not
favourable because it requires additional memory bandwidth for loading the col-
umn and the row indices [7].

3. Loop unrolling: As described in Section 2.2, this is a straightforward optimisation
for reducing the branching cost.

4. No cleanup code: Because generic GEMM routines usually exploit a fixed tiling
schemed designed for reducing the cache and TLB miss rates, they required
additional cleanup routines for dealing with the edge cases - when the matrix is
smaller than the tiling size. The edge cases are commonly handled by one of the
two methods - introduce additional kernel for each edge case, such as in [2], or
use the same kernel with masking or zero-padding so it can be applied to non-
standard shapes, as in [12]. These methods will either significantly increase the
code complexity or reduce the kernel performance for these edge cases. Wozniak
et al. [7] suggested that, one of the reasons for generic GEMM routine gives
sub-optimal performance for small matrices is that these matrices are smaller
than the fixed tiling size so they are treated as the edge cases. Using a flexible
JIT approach with loop unrolling, GiMMiK avoids this problem completely.

In additional to these optimisation techniques, Wozniak et al. [7] also experimented
with basic common subexpression elimination techniques. However, this was not ex-
ploited for GiMMiK because it did not improve the performance significantly.

Wozniak et al. [7] evaluated their routine using the PyFR operator matrices on two
GPU platforms - a consumer class GPU GTX 780Ti and a professional GPU Tesla
K40s. They reported that, for matrices with 1% density, GiMMiK outperformed
cuBLAS (a BLAS implementation based on NVIDIA CUDA) by 9.98× and 63.30×
for double-precision GEMM, on Tesla K40s and GTX 780Ti respectively. Significant
improvement for single-precision GEMM was also observed. For PyFR operator matri-
ces, GiMMiK provided significant speed up for the sparse quadrilateral and hexahedral
element matrices, and for the small and dense triangular element matrices. For the
large and dense tetrahedral element matrices, cuBLAS showed better performance.
For example PyFR runs, GiMMiK was able to provide speed up of 1.70 and 2.19 for
double-precision and single-precision simulations respectively [7].

17

Takeaway Points

The design of GiMMiK is highly relevant to our thesis as the small and sparse GEMM
routines share similar optimisation techniques: value embedding, sparsity elimination
and loop unrolling. The only difference is that GiMMiK does not account for the
repeated elements in the sparse matrices. GiMMiK has a higher portability than
LIBXSMM, as it generates kernels in high-level language. However, this is at the ex-
pense of relying on the compiler for generating high-performant vectorised codes. The
evaluation results indicate the flexible JIT approach is very suitable for our targeting
application and can outperform generic GEMM routines significantly.

3.2 BLASFEO

BLASFEO stands for Basic Linear Algebra Subroutines for Embedded Optimisation
which is a specialised BLAS- and LAPACK- like library optimised for real-time op-
timisation tasks common for embedded software applications, developed by Frison et
al. [12] in 2017. Level 3 BLAS and LAPACK routines are the core computations
for 2nd order optimisation problems. Within the context of embedded optimisations,
these matrices are generally small and dense. BLASFEO was developed aiming to
provide optimised BLAS and LAPACK routines for small and dense problems [12].

As opposed to LIBXSMM and GiMMiK which are JIT kernel generators, BLASFEO
kernels were implemented in the form of a stand-alone library. BLASFEO consists
of three implementations: 1. a high-performance implementation BLASFEO HP, 2.
a portable reference implementation BLASFEO RF, and 3. a wrapper to standard
BLAS and LAPACK library BLASFEO WR. BLASFEO HP aims to deliver the best
performance possible so the core kernels are coded in assembly. By the time of this
thesis, BLASFEO HP support x86 processors with AVX-512, AVX2, AVX, and SSE,
and ARM Cortex-A processors with NEONv2 and NEON. BLASFEO RF is a portable
version of BLASFEO HP. It is coded in C and preserves some optimisation technique
of BLASFEO HP which can be implemented using the high-level language. BLASFEO
WR is a wrapper to standard BLAS and LAPACK library. It aims to provide high-
performant routines for large matrices while still maintains the BLASFEO interface
[12].

BLASFEO HP employs the following techniques:

1. Register blocking (tiling): Register blocking is a common optimisation method
for matrix operations. LIBXSMM exploits register blocking through N and M
blocking (see Section 2.3). As we will further discussed in Chapter 6, matrix op-
erations commonly involve repeated loads and saves of some intermediate values.
This introduces data dependency between instructions, leading to performance
bound by instruction latency. This is sometimes known as C-slowing. With reg-

18

ister blocking, the instructions can be reordered so data hazard stalls are avoided.
Additionally, register blocking allows the CPU to temporally cache some matrix
elements in the register so they can be reused to reduce redundant memory traf-
fic. In Chapter 7 we will show how this can be achieved by M blocking. Frison
et al. [12] also considered cache blocking, which is a tiling technique used by
GotoBLAS [2] to ensure the active matrix chunks fit in the cache or TLB. Cache
blocking was not exploit as the matrices are already small for BLASFEO [12].

2. Vectorisation: Many processors support Single Instruction, Multiple Data (SIMD)
instructions, which are commonly deeply pipelined for an increased throughput.
It is beneficial for matrix operation routines to employ the SIMD instructions,
a.k.a. be vectorised, for a better performance.

3. “Panel-major” matrix: Standard BLAS and LAPACK libraries usually exploit
packing - the matrix elements are reordered such that the elements will be ac-
cess contiguously by the kernels. Including the packing operation would also be
beneficial for BLASFEO, however, Frison et al. [12] suggested the performance
improvement is insignificant for small matrices. This is because the packing pro-
cess has a quadratic time complexity relative to the matrix dimensions, while
the matrix multiplication has a cubic complexity. For small matrices, the ad-
ditional packing cost cannot be well amortised by the matrix multiplications.
Instead of doing implicit packing, BLASFEO has an option to accepted packed
matrices from the users. BLASFEO calls this storing format as “panel-major”
format. With this option, users can explicitly pack and unpack the matrices
before and after a series of matrix manipulations. Between these manipulations,
the matrices are stored in the panel-major format so the cost of packing and
unpacking can be amortised. Figure 3.1 shows how panel-major format works
for an example GEMM operation.

+=

Figure 3.1: The panel-major memory layout for an example GEMM operation. Within
each panel, elements are ordered in column-major format. (The GEMM is “NT” variant,
which is the optimal one for column-major layout.) [12]

4. Assembly subroutines: As implied by the name, BLASFEO are implemented
as several subroutines which coordinate with each other. These subroutines are
coded in assembly so they can have flexible and efficient calling conventions such
that the arguments can be passed by the vector registers. The calling conventions
of high-level languages, such as C, have high overhead as these values have to be
written to memory before calling, and read from memory after calling. [12]

19

5. Cleanup codes: Unlike LIBXSMM and GiMMiK, BLASFEO does not use JIT
approaches so cleanup codes for corner cases are required. BLASFEO deals this
with three different variants of kernels. The first one is the nominal variant
which has a smaller blocking size. The nominal kernels provide uncompromising
performance but it is not flexible. Because complexities, nominal kernels are
only included for a few corner cases. The second type is variable-size variant,
which is adapted nominal variant with masking. The last one is generalised
variant, which is adapted variable-size variant allowing matrix elements to be
non-aligned. [12]

Figure 3.2: BLASFEO HP vs LIBXSMM. Evaluated on Intel Haswell processor. HP2
stands for an improved BLASFEO HP implementation which has more nominal variants
dealing with the edge cases. HP2F stands for a flexible, JIT-like BLASFEO HP imple-
mentation which fully unroll the loops for maximum flexibility against edge cases. [12]

By experiments, Frison et al. [12] reported BLASFEO HP can achieve significant bet-
ter performance than standard BLAS and LAPACK libraries - 20%-30% better perfor-
mance for BLAS routines and 200%-300% better performance for LAPACK routines.
As shown in Figure 3.2, Frison et al. [12] also evaluated the performance of BLASFEO
HP GEMM kernel against the LIBXSMM’s one, together with adapted fully-unrolled
BLASFEO kernels using JIT-like approach. For small matrices, BLASFEO HP was
less performant than LIBXSMM while the fully-unrolled BLASFEO kernel showed
comparable performance to LIBXSMM. Because of this, Frison et al. [12] suggested
the flexible JIT approach employed by LIBXSMM is inherently better than the library
approach of BLASFEO for small matrix operations by eliminating the corner cases.

Frison et al. [12] also evaluated the BLASFEO RF implementation. Unlike the HP one,
BLASFEO RF was unable to compete with standard BLAS and LAPACK libraries
for most of the routines. This indicates the compilers are unable to generate highly
optimised vectorised codes, so performance critical kernels should be coded in assembly
for maximum execution speed.

20

Takeaway Points

BLASFEO shares similarities with LIBXSMM as they both target optimised small
matrix operations. BLASFEO aims to provided BLAS- and LAPACK- like routines
while LIBXSMM only focus on GEMM. The experiments conducted by Frison et
al. [12] strengthen the idea that LIBXSMM’s JIT approach is more suitable for small
GEMM as it eliminates the edge cases. The kernels should be generated in binary
format for best performance.

The idea of panel-major matrix format is maybe irrelevant to LIBXSMM, but we
suggest it could be highly beneficial for PyFR. We suggest PyFR could store the
state matrix Bs and Cs in this format for the entire simulation process for better
execution speed, and only unpack the matrices when the final results are required. This
would increase cache and TLB usage efficiency significantly as the memory accesses
are contiguous.

3.3 Measurement Bias is Significant, Commonplace

and Unavoidable

The performance of computer software is known to be sensitive to memory access lay-
out. In 2009 Mytkowicz et al. [13] investigated if innocuous characteristics of bench-
mark experiment could introduce measurement bias. By experiments, Mytkowicz et
al. [13] investigate the effects of two aspects - the size of UNIX environment variables
and the linking order. As UNIX environments are loaded before loading the program,
changing the environment size will alter the location of call stack. Changing the linking
order would affect the memory arrangement of the data and code segments.

Mytkowicz et al. [13] set up an experiment which measured if changing the afore-
mentioned aspects would affect the measured speedup provided by GCC optimisation
option O3 relative to the option O2. The experiment covered a big range of benchmark
software - all the CINT and CFP tests of SPEC CPU2006 benchmark suite. The
experiment was conducted on three different hardware - Intel Core 2 and Pentium 4,
and a m5 O3CPU simulator.

By experiments, Mytkowicz et al. [13] observed that the measurement error induced
by these innocuous aspects of the experiment setup is significant. Figure 3.3 shows
the speedup measurement of Perlbench benchmark obtained from the Intel Core 2
machine. Both of the settings can introduce fluctuated results in the range between
0.90 and 1.10. These measurement biases are also commonplace - they were observed
for all the benchmark software and on all the testing platforms [13]. These biases are
also reproducible - they cannot be eliminated by repeating the measurements under
the same setup.

21

(a) Varying linking order.

(b) Varying UNIX environment size.

Figure 3.3: The measured speedup of GCC optimisation option O3 on Perlbench bench-
mark with varying innocuous aspects of the experiment setup. [13]

From the field of social and natural science, Mytkowicz et al. [13] collected three
methods for avoiding falling into measurement bias. The first idea is to have a diverse
and comprehensive suite of benchmark software. Therefore, any bias arising from a
single benchmark can be factored out. However, Mytkowicz et al. [13] showed that even
their collection of all the CFP and CINT tests in SPEC CPU2006 was unable to factor
out all the bias. The second method is to repeat the experiments with randomised
experiment setup. Any conclusion should be drawn using statistical procedures such
as t test. The final method is using casual analysis for testing any hypothesis. If we
are testing a hypothesis that X causes Y. Casual analysis requires to test a derived
system which does not have X but contains every other aspect of the original system.
If this test does not show Y behaviour, we can be more confident that X causes Y. [13]

22

Takeaway Points

Mytkowicz et al. [13] showed that measurement bias is significant and commonplace,
and more importantly, they are unavoidable. Any insignificant performance changes
are potentially be caused by measurement bias. For our project, if the benchmark suite
is not carefully designed, validity of this thesis cannot be assured. Our experiment
should target a comprehensive and diverse set of matrices, and should be evaluated
on different hardware. We should aim to validate our hypothesis systematically using
casual analysis.

Summary

In this chapter we presented GiMMiK and BLASFEO. GiMMiK is another JIT be-
spoke GEMM kernel generator targeting small matrix multiplies. BLASFEO is a
stand-alone library provides optimised BLAS- and LAPACK- like routines for small
and dense matrices. The evaluations of GiMMiK and BLASFEO show that the JIT
approach is inherently more suitable for small matrix operations comparing to the
library approach of BLASFEO and other standard BLAS libraries. BLASFEO em-
ploys several optimisation techniques which we can exploit for LIBXSMM. We also
presented that measurement bias is significant and unavoidable. Care should be taken
when designing our experiment to avoid the bias.

23

Chapter 4

Evaluation Methodology

As previously described in Section 3.3, software performance measurements are ex-
tremely sensitive to the testing environment. An ill-designed benchmark suite would
introduce bias to the measurement data, so it might not reflect the actual performance
seen by the users. More importantly, this would lead to faulty data been analysed in
the later phase of this project, resulting in wrong optimisation decisions.

In this chapter, we present the design and the reasoning behind our comprehensive
test suite, which primarily focus on PyFR applications while still provides insights
into other general use cases.

4.1 Evaluation Platforms

Skylake Machine

For this project, the evaluation platforms were virtual machine instances hosted on
Amazon Web Service (AWS) Elastic Compute Cloud (EC2). All test machines were
running on Ubuntu 20.04 LTS. Our primary test machine was c5n.xlarge instance
which provides exclusive access to 2 physical cores (4 logical cores because of hyper-
threading) of a dual-socket Intel Xeon Platinum 8124M system, running at 3.0 GHz
base frequency. The CPU, which is based on Skylake-SP microarchitecture (SP stands
for Scalable Performance), has 32 KB L1 instruction cache and 32 KB L1 data cache
per physical core. Both the L1 caches are 8-way set associative and the cache line
sizes are 64-byte. The L1 data cache supports a maximum bandwidth of 128-byte
load and 64-byte store per cycle. Skylake-SP also provides a 16-way set associative
1 MB L2 cache per core, which is shared by both instruction and data. The 11-way
set associative L3 cache has a size of 1.375 MB per core totalling to 24.75 MB, and is
shared by all the cores on a single socket.

24

c5n.xlarge supports AVX-512 extension and features 2 FMA units per core, each of
which can perform 16 double-precision floating-point operations (FLOPs) per cycle.
As c5n.xlarge instance provides no means of controlling CPU clock frequency, we
measured the CPU clock and observed it always stabilised at exactly the 3.0 GHz base
frequency when executing the matrix multiplication kernels (see Section 4.3). This
results in a theoretical maximum of 96 GFLOP/s per physical core. The practically
achievable performance was measured using Intel LINPACK benchmark provided with
the Intel Math Kernel Library (MKL) [14]. A single-thread LINPACK benchmark
reported 85.1125 GFLOP/s as the double-precision peak performance.

c5n.xlarge provides access to 10.5 GB DDR4 random-access memory (RAM) running
at 2666 MHz. The memory bandwidth for a single core was determined using the
STREAM Triad benchmark [15] which measures the performance of a simple FMA
kernel (a[i] = b[i] + q*c[i]). The Triad benchmark was compiled using Intel C/C++
Compiler (ICC) with -O3 -xCORE-AVX512 -qopenmp -DSTREAM_ARRAY_SIZE=80000000

-DNTIMES=20 flags and executed with OMP_NUM_THREADS=1 for a single-thread bench-
mark. The Triad benchmark reported a peak memory bandwidth of 12.93656 GB/s.

Cascade Lake Machine

To avoid experimental bias favouring Skylake microarchitecture, all the benchmarks
were also executed on EC2 m5c.xlarge instance which runs on 2 physical cores of
a dual-socket Intel Xeon Platinum 8259CL system based on Cascade Lake-SP. The
processor has a base frequency of 2.5 GHz. Comparing to c5n.xlarge, m5n.xlarge has
exactly the same cache configuration, except a larger L3 cache of 33.0 MB due to a
higher core count.

Similar to c5n.xlarge, m5n.xlarge supports AVX-512 and has 2 FMA units per core.
We measured that matrix multiplication kernels were executed at exactly the processor
base frequency. The theoretical maximum performance of m5n.xlarge is 80 GFLOP/s.
The practically achievable performance was evaluated using single-thread LINPACK
benchmark, which was 70.5427 GFLOP/s.

m5n.xlarge provides 16 GB DDR4 RAM running at 2666 MHz. The single-core
STREAM Triad benchmark reported a peak memory bandwidth of 12.73666 GB/s.

Metal Skylake Machine

During this project, sometimes we were in need to profile the microarchitecture events,
for instance, cache miss and page fault rates. Both c5n.xlarge and m5n.xlarge did not
support this as they are virtual machines. For this reason, we configured another EC2
c5n.metal instance which allows complete access to the entire physical node (dual-
socket Intel Xeon Platinum 8124M) and hardware event counters. We used Linux

25

perf for simple and Intel VTune Profiler for more complicated profiling jobs.

Software Environment

For the evaluation process, all test machines were running on Ubuntu 20.04 LTS.
The reference LIBXSMM library is the latest version on 17/07/2021, with the hash:
13550e3d68a7df0d5415c51eb8b7cd3194008219. The LIBXSMM was compiled using
GNU GCC, but the compiler choice should not affect our results. During the experi-
ments, we noticed that for some big A matrices, a LIBXSMM sparse kernel cannot be
generated because of hitting the LIBXSMM maximum kernel binary size limit. There-
fore we increased the kernel size limit to 2 MB when evaluating our custom routines.
The kernel size limit was not increased for the reference LIBXSMM as we would like
to reflect how the reference library performs in its default setting. Because of this,
the readers are reminded that for some matrices, a direct comparison between the
reference and our custom routines are irrelevant, due to the difference in kernel size
limits.

4.2 Test Matrices

PyFR Operator Matrices

Two different sets of matrices were used for evaluating the matrix multiplication ker-
nels. The first one being the complete set of the operator matrices used in PyFR.

As described in Section 2.4, there are in total 170 operator matrices. The character-
istics of these matrices only depend on the element shape, quadrature type, the order
of integration scheme, the iteration step that the operator matrix is involved in, and
remain constant from run to run. These matrices were available from the code samples
of the LIBXSMM repository [6]. We have checked and confirmed these matrices were
the same as the operator matrices used in the example runs provided in PyFR repos-
itory [4]. The detailed characteristics of the PyFR operator matrices are included in
Appendix A.

Synthetic Matrices

Although the PyFR matrices set could provide accurate insight into how the kernels
perform in PyFR, it does not have enough breadth to cover more general use cases.
It also lacks the potential to reveal subtle relations between kernel performance and
matrix characteristics because two operator matrices are usually different in more than
one property. Following this reasoning, we adapted and included a synthetic set of

26

operator matrices from Paribartan [8], aiming to explore the matrix characteristic in
a more controlled manner.

The synthetic set is generated randomly and uniformly from three base matrices, which
are 128× 128 in shape, have a density of 0.05, contain 16, 64 and 256 unique absolute
non-zeros (U), respectively. Each synthetic matrix is different from the base ones in
only one property. The matrices properties are as follows:

• Varying number of rows R = 32, 64, 128, 256, 512, 1024, for each U

• Varying number of columns C = 32, 64, 128, 256, 512, 1024, for each U

• Varying density ρ = 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, for U = 16, 64

• Varying density ρ = 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0, for U = 256

• Varying number of unique absolute non-zeros U = 16, 32, 48, 64, 80, 96, 112, 128,
144, 160, 176, 192, 208, 224, 240, 256

There were in total 100 operator matrices in the synthetic set.

4.3 Benchmark Process

In PyFR, the GEMM kernels are used with α = 1 and either β = 0 or β = 1. For
LIBXSMM kernels, β only determines if the vector registers are initialised as zeros
or strides from C. The kernel performance is dominated by the numerous FMA
instructions. Therefore, we only tested the case with α = 1, β = 0 and expect kernels
with β = 1 to have similar performance. Only double-precision kernels were tested for
similar reasoning.

For this project, the performance was expressed in units of FLOP/s, which was cal-
culated from the time taken for executing the kernels. To reduce the measurement
error, we measured the duration for running each individual kernel repeatedly for
60 times and the average was calculated. We used LIBXSMM service functions
libxsmm_timer_duration and libxsmm_timer_ncycles to measure the kernel du-
ration and number of CPU cycles, from which we also obtained the averaged CPU
clock speed.

Our test setup does encourage cache hits as the matrices are likely to present in the
cache after the initial iteration. This reflects realistic utilisation as for PyFR the
GEMMs use the results directly from the previous step making the cache possibly hot
(see Figure 2.10). This also reduces stress on the memory system so that potential

27

CPU bottlenecks can be revealed. To utilise most of the CPU resources and to avoid
context switching, the benchmark process was prioritised by using nice -n -20.

In PyFR, matrixB stores the fluid states and typically contains 10000-100000 columns
[3]. To exploit multiprocessing of machines running PyFR, B is divided into chunks of
48 columns, which are taken by identical and independent GEMM kernels for parallel
execution [8]. For our benchmark, each kernel was tested with randomly generated Bs
with the number of columns of 9600, 33600, 57600, 81600 and 105600. As with PyFR,
the Bs were fed into the kernels in chunks of 48 columns. For each kernel, an averaged
performance was calculated using weighted arithmetic mean (W.A.M.) weighted with
execution time. Multi-threading was not exploited and the process was enforced to
run in a single logical core by using taskset -c 0.

The operating system could also exert randomness and inconsistency to the experiment
results. One reason for this is that the memory page mapping is different from run
to run. Considering this, the experiment was repeated 10 times using shell-level loops
and the averaged performance was reported as the final result.

4.4 Performance Metric

Pseudo-FLOP/s

FLOP/s is the commonest performance matrix for reporting GEMM kernel perfor-
mance in the literature [2,9,12]. However, it does not fit the context of this project as
most of the test matrices are sparse and the bespoke kernel contains no unnecessary
FMA with zeros. Therefore, we adapted the idea of pseudo-FLOP/s from [8] which
only accounts for the FLOPs arising from non-zero elements.

For sparse matrix multiplication, the number of pseudo-FLOPs can be calculated from
problem dimensions (m, n, k) and matrix density (ρ):

pseudo-FLOPs = 2× ρ×m× n× k. (4.1)

Here we consider one FMA on a single number contributes two FLOPs - one from
multiplication and one from addition. Pseudo-FLOP/s is then calculated as:

pseudo-FLOP/s =
pseudo-FLOPs

execution time
. (4.2)

For the rest of this thesis, Pseudo-FLOP/s is the default metric for reporting kernel
performance.

28

Arithmetic Intensity

Another important metric used in this project is arithmetic intensity, which is calcu-
lated as:

arithmetic intensity =
pseudo-FLOPs

theoretical minimum amount of RAM access
. (4.3)

Unlike pseudo-FLOP/s, arithmetic intensity is a property of the matrix multiplication
problem and it is independent of the kernel. Arithmetic intensity is powerful in deter-
mining the theoretically achievable performance for a problem and in indicating if a
kernel speed is limited by the RAM bandwidth or the CPU computing power.

Similar to pseudo-FLOP/s, the formula to calculate the amount of memory access for
our small and sparse matrix multiplication problems was modified to account for the
sparsity of matrix A. The theoretical minimum amount of RAM access was computed
according to these rules:

• There is no memory read for loading A, as it is already encoded in the binary
matrix multiplication kernel.

• Memory read for loading B elements at the ith row is counted if and only if the
ith column of A is non-empty.

• Memory write for storing C elements at the ith row is counted if and only if the
ith row of A is non-empty.

• There is no memory read for loading C, as β = 0 and the instructions for storing
C use a non-temporal hint.

4.5 Limitations and Threat to Validity

Single-Threaded Benchmark

One major limitation of our evaluation is that the kernels were run single-threaded.
For this project, this is desired as we would like to focus on investigating and im-
proving individual kernel performance. However, for realistic scientific computational
workloads, the kernels are commonly run on multiple threads to exploit the amount
of multiprocessing available on modern high-performance computers.

In a multi-thread setting, multiple kernels are sharing the L3 cache and memory
bandwidth meaning each kernel is more likely to be limited by memory bottleneck.

29

0 10 20 30 40 50 60 70
Number of threads

20000

40000

60000

80000

100000

120000

140000

160000
To

ta
l m

em
or

y
ba

nd
wi

dt
h

(M
B/

s)

2000

4000

6000

8000

10000

12000

M
em

or
y

ba
nd

wi
dt

h
pe

r t
hr

ea
d

(M
B/

s)

Figure 4.1: Total and per-thread memory bandwidth available across varying numbers
of threads. Results measured by STREAM Triad benchmark on the m5c.metal machine.

Figure 4.1 shows the total and per-thread available bandwidth with different total
numbers of threads, measured on c5n.metal. For running 72 threads, the per-thread
bandwidth is 17.8% comparing to only running 1 thread. For this reason, the readers
are reminded that the measured performance in this report could be higher than the
per-thread performance in multi-thread settings.

It is also worth noting that, for our evaluation, we might have observed a higher clock
rate than what the uses might see when running the GEMM kernels using multiple
cores. This because if all the cores are heavily utilised, the CPU might lower the clock
speed to control its operating temperature.

Sharing the Physical Node with Other Users

The test suite was hosted remotely on EC2 virtual machines, implying all the bench-
mark processes were subject to virtualisation overhead. More importantly, the test
suite was sharing the computer resources, for example, memory bandwidth and L3
cache, with other virtual machines hosting on the same physical node.

To further investigate the effects of this, we experimented on benchmarking the ref-
erence LIBXSMM small and sparse kernel on three different c5n.xlarge instances. As
shown in Figure 4.2, the results from different instances show a similar trend, but for
some tests, there were up to 15% difference between the runs.

Because of this, we avoided directly comparing the raw kernel performance between
different virtual machine instances. The experimental data was first compared to
the reference LIBXSMM performance measured immediately before the benchmark
process on the same instance and the ratio between these was used for comparing

30

across different virtual machines.

Limited Test Platform Choice

The last limitation comes with the fact that we were only evaluating the kernels on a
narrow selection of micro-architectures, which are Skylake-SP and Cascade Lake-SP.
The main reason behind this is the newness of AVX-512 extension so it is only available
on high-end Intel processors running on Skylake or newer architectures. This presents
little problem to this project, as we were targeting kernels using AVX-512 instructions.

However, as we will later discuss in Chapter 5, some of our methods can be also
applied to AVX2, which is very widely supported by x86 processors from both Intel
and AMD. We were not able to evaluate the AVX2 kernels. In Section 9 later we will
further discuss the benefits of implementing and evaluating support to AVX2 as an
extension to this project.

Summary

In this section, we discussed and presented our comprehensive benchmark suite. The
test machines were hosted remotely on AWS EC2. To avoid bias towards a single mi-
croarchitecture, we chose c5n.xlarge (Intel Skylake-SP) and m5n.xlarge (Intel Cascade
Lake-SP) instances as the test machines. A c5n.metal instance was also configured for
hardware event profiling.

There were two sets of test A matrices. The first set contains the complete 170
PyFR operator matrices and the second set consists of 100 synthetic matrices aiming
to provide a finer resolution in the matrix characteristic space. Only the case of
double-precision GEMM, α = 1 and β = 0 was tested in this project. To reduce the
measurement error, we measured the duration to run the kernel 60 times repeatedly.
Each kernel was tested with 5 randomly generated B matrices with different widths.
We used weighted arithmetic means for calculating the average performance. We later
presented two important metrics for reporting performance, namely pseudo-FLOP/s
and arithmetic intensity.

Our evaluation has three limitations. We run the kernels single-threaded so the results
are not representative of a multi-thread setting. Additionally, our test programs were
sharing the physical node with other virtual machine users, resulting in the inconsis-
tency of the measured performance by up to 15%. Lastly, our benchmark suite cannot
evaluate AVX2 kernels, leaving the benefits of these kernels unexplored.

31

0 1000 2000 3000 4000 5000
Size

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

Machine 1
Machine 2
Machine 3

(a) A for quadrilateral element.

0 100000 200000 300000
Size

109

Ps
eu

do
-F

LO
P/

s
Machine 1
Machine 2
Machine 3

(b) A for hexahedral element.

0 10000 20000
Size

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

Machine 1
Machine 2
Machine 3

(c) A for tetrahedral element.

0 500 1000 1500
Size

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

Machine 1
Machine 2
Machine 3

(d) A for triangular element.

Figure 4.2: The performance of reference LIBXSMM small and sparse kernel against A
size. Results were obtained from 3 different EC2 c5n.xlarge instances.

32

Chapter 5

Small and Sparse GEMM Kernel
with Runtime Broadcasting Packed
A Constants from Memory

In Chapter 2 we introduced the original LIBXSMM small and sparse GEMM rou-
tine designed for x86 processors supporting AVX-512. The kernel pre-broadcasts A
constants to vector registers so can accommodate a maximum of 31 distinct absolute
non-zero A values. In 2020, Paribartan [8] improved the LIBXSMM routine by pack-
ing the constants in vector registers, which are only broadcasted at runtime before
each FMAs using VPERMD. This allows the kernel to handle up to 240 double-precision
or 480 single-precision A constants.

It is beneficial to further optimise the routine such that it can be applied to A con-
taining more constants. In this chapter, we present the design and evaluation of our
routine which supports an unlimited number of distinct absolute values in A. Instead
of storing the A constants in the vector registers, our kernel packs them in the main
memory and uses VBROADCASTSD or VBROADCASTSS for runtime broadcasting.

Although this method does not show superior performance comparing to reference
LIBXSMM, it is a fundamental building block for our high performance implementa-
tions which we will presented in the Chapter 6 and 7 later.

5.1 Broadcast with VBROADCASTSS/D

AVX, AVX2 and AVX-512 support single-instruction load and broadcast with
VBROADCASTSD and VBROADCASTSS for double-precision and single-precision floating-
point numbers respectively [16]. VBROADCASTSS/D takes two operands: a source operand
which is either a memory location or a vector register, and a destination vector register

33

operand. For our kernel, we exploit the setting when the source operand is a memory
location. As shown by Figure 5.1, this loads and broadcasts the data at the memory
location to all locations in the destination vector register.

m64
Source

zmm0
Destination DP0DP0DP0DP0DP0DP0DP0DP0

DP0

(a) VBROADCASTSD for double-precision numbers.

m32
Source

zmm0
Destination

SP0

SP0SP0SP0SP0SP0SP0SP0SP0SP0SP0SP0SP0SP0SP0SP0SP0

(b) VBROADCASTSS for single-precision numbers.

Figure 5.1: Runtime broadcast with VBROADCASTSD and VBROADCASTSS.

As tabulated in [17], our use of VBROADCASTSS/D has a latency of 4 cycles. The
maximum throughput is 2 instructions per cycle.

Broadcast Elements from Vector Registers with VBROADCASTSS/D

The source operand of VBROADCASTSS/D can also be a vector register. For this case,
the lowest element in the source register is broadcasted to the destination register, as
illustrated in Figure 5.2. Although this setting is not applied to our kernel, it could be
beneficial for Paribartan’s register packing technique [8] by simplifying the operations
for broadcasting the first packed number in the registers.

zmm1
Destination DP0DP0DP0DP0DP0DP0DP0DP0

zmm0
Source DP0DP1DP2DP3DP4DP5DP6DP7

Figure 5.2: VBROADCASTSD with vector register as the source operand.

5.2 Kernel Design

Figure 5.3 illustrates how we utilise VBROADCASTSS/D in our matrix multiplication
kernels. Comparing to the LIBXSMM routines which either pre-broadcasts or stores
packed A constants in the vector registers, our routine pre-packs A constants in mem-
ory. These constants are loaded and broadcasted with VBROADCASTSS/D at runtime

34

FMA or FNMA

 stride from memory

zmm0

zmm31
 stride accumulation

Broadcasted constant

Runtime
broadcasting

FMA

 constants packed in
memory

VBROADCASTSD

Sp
ar

e
re

gi
st

er
s

Figure 5.3: Diagrammatic representation of the small and sparse double-precision
GEMM routine using VBROADCASTSD runtime broadcasting with A constants stored in
memory.

for FMA. The packing operation, which has a time complexity of O (ρ×m× k), is
performed when generating the kernel, so that the cost can be amortised when the
kernel is executed repeatedly.

Because A is small and sparse, the packed A constants only occupy a small segment
of memory (less than 192 bytes for quadrilateral and hexahedral PyFR operator ma-
trices). Together with the fact that these constants are accessed regularly, we expect
them to present in the L1 cache allowing fast runtime broadcasting. As shown in Fig-
ure 5.3, our routine requires two vector registers, leaving 30 vector registers unused.
zmm0 stores the broadcasted A constant and zmm31 accumulates the C stride. As the
number of A constants is no longer limited by the number and size of vector registers,
the kernel allows an unlimited number of distinct absolute non-zero values in A.

For our routine, each FMA operation requires two memory reads - one for loading 4-
or 8-byte A constant and one for loading 64-byte B stride. For Paribartan’s register
packing method with the selector operands (64-byte) stored in memory [8], each FMA
operation requires two 64-byte reads. Therefore we expect our kernel to induce less
stress on L1 bandwidth so should perform not slower than Paribartan’s method.

An example kernel is included in Appendix B.3.

5.3 Evaluation

In this section we present the benchmark results of our GEMM routine, comparing to
reference LIBXSMM. A detailed description of our evaluation method can be found in
Chapter 4. All kernels were tested on two different sets of A matrices - a set of PyFR
operator matrices and a set of synthetic matrices.

35

As described in Section 2.3, when called, the reference LIBXSMM always tries to
generate three kernels - a default sparse kernel, a wider sparse kernel (N blocking of
2) and a dense kernel. If multiple kernels are generated, it tests which kernel performs
the fastest and returns the best kernel. For the case when only one kernel is generated,
it returns that only kernel. The plots in the report reflect this feature of the reference
LIBXSMM library by marking different types of kernels with different markers.

PyFR Operator Matrices

In this section, we only present the roofline and performance data plotting against A
density (ρ) and the number of A constants (U) measured on the c5n.xlarge machine.
Results from m5n.xlarge are very similar so there are not included in this section. For
performance data plotting against the number of A columns, the number of A rows
and A size, and the results from m5n.xlarge, please refer to Appendix C.

Quadrilateral Element Matrices

Figure 5.4a shows the performance of the reference LIBXSMM routine and our method
plotting against the number of distinct absolute values in A. As indicated by the
markers, the reference LIBXSMM kernels are wide-sparse for the majority of the cases.
No dense kernel was generated due to the sparsity of the quadrilateral element matrices,
as indicated by Figure 5.4b. One important feature to notice is that all the reference
LIBXSMM kernels use the routine which pre-broadcasts A constants into the vector
registers. These are supposedly the fastest sparse routines in LIBXSMM as they have
the least amount of memory access.

Comparing with the reference kernels, our method shows comparable performance for
many matrices. As shown by the roofline plot Figure 5.4c, these matrices result in
very small arithmetic intensity. For these problems, the performance is largely limited
by memory bandwidth. For some of the matrices with more than 10 unique constants,
our method performs worse than the reference library by around 15%. The extreme
case is when U = 18, in which our method is 31% slower than the reference one. We
suggest two possible reasons for this. Firstly, our method requires one more 8-byte
memory read per FMA comparing to the reference method. This exerts pressure on
the memory system and resulted in a performance decrease. Secondly, our method uses
only one register for accumulating the C strides after each FMA. As the accumulated
values are used for later FMAs as a source operand, this creates data dependency
between the FMA instructions. For AVX-512, although FMA instructions can achieve
a maximum Instructions Per Cycle (IPC) of 2 [17], the throughput is possibly limited
by the 4-cycle latency due to pipeline stall because of the data hazard. The processor
possible exploits techniques such as operand forwarding to mitigate the effect of data
hazard, but for deeply pipelined Single Instruction Multiple Data (SIMD) instructions
such as FMA, operand forwarding might provide only limited improvement. As shown

36

in Figure 5.4c, the matrices showing a slow down on our method have relatively large
arithmetic intensity. This indicates that for these problems, the performance is more
likely to be limited by the CPU, such as instruction latency, rather than memory
bandwidth.

For some matrices, our method performs faster than the reference routine by up to
10%. There is no obvious reason for this. We suggest this could be because computer
performance is extremely, randomly sensitive to memory access pattern [13] and our
method indeed introduces a different memory access pattern. Because the speedups
are rather insignificant, we did not further investigate this. On average, our method is
97.6% performant comparing to reference LIBXSMM for quadrilateral PyFR matrices.

In the roofline plot shown in Figure 5.4c, some data points are exceeding the memory
roofline. These points are produced by small As. We suggest the reasoning behind
this is that some of B remain in the cache during benchmark iterations. This was
confirmed by including a cache flush function into the benchmark suite, which declares
and assigns random values to a dummy array with a size larger than the L3 cache.
With this setup, almost all the data points are either on or below the memory roofline.

Hexahedral Element Matrices

Figure 5.5a shows the performance of our method comparing to reference LIBXSMM
when executing the PyFR hexahedral element matrices. Comparing to quadrilateral
element matrices, hexahedral ones are generally larger in shape and have lower density.
Similar to the quadrilateral ones, all hexahedral element matrices have less than 31
unique absolute non-zero constants so that the fastest LIBXSMM sparse routine which
pre-broadcasts the constants was used for all the matrices. The wide-sparse kernel is
generated for most of the cases. One exception of this is the 6th order Gauss-Legendre
m460 matrix. Although only having a 2% density, the matrix is too big in shape
(1029× 343) making the fully unrolled sparse kernel hit the kernel size limitation. A
fallback dense kernel is generated which is 85% slower than our sparse method with
no kernel size limitation.

Similar to the quadrilateral element matrices, our method shows alike performance
comparing to the reference routines for small arithmetic intensity. For matrices with
arithmetic intensity larger than 2−1, our method tends to perform no faster than
the reference routines. For some of the matrices, our method is around 12% slower.
The extreme case is U = 11, when our method performs 19% slower. Same as the
quadrilateral element matrices, we suggested the slowdown is due to additional loads
for runtime broadcasting the A constants and pipeline stalls because of the data
dependency between the FMA instructions. Excluding the 6th order Gauss-Legendre
m460 matrix, our method is 92.3% performant comparing to the reference library for
hexahedral PyFR matrices.

Figure 5.5c shows the roofline plot. Comparing to the quadrilateral element matrices,

37

all the data points are further away from the memory roofline. We suggested this is
because the hexahedral element matrices are larger in size. This results in larger Bs
therefore lower spatial locality for loading the B elements. This would increase cache
miss rates, decreasing the kernel performance.

Tetrahedral Element Matrices

Figure 5.6a shows the performance of our kernel comparing to the reference routines for
FyFR tetrahedral matrices. Unlike the sparse hexahedral and quadrilateral element
matrices, the tetrahedral ones are dense. As shown in Figure 5.6b, the minimum
density is 50%, while most of the matrices have a density between 80% and 100%. For
tetrahedral element matrices, most of the reference LIBXSMM kernels are the dense
one. There are two reasons for this. Firstly, neither the sparse nor wide-sparse routine
can accommodate more than 240 A constants in the vector registers. Secondly, for the
cases when a sparse kernel can be generated, the dense kernel could perform faster as
it is highly optimised for dense problems. However, it is interesting to note that, for
some very dense matrices, the wide-sparse kernel is generated instead of the dense one,
for example, the three wide-sparse kernels generated at ρ = 1 shown in Figure 5.6b.
These kernels belong to problems with relatively small arithmetic intensities, so the
performance is memory bandwidth bound. For this case, the bottleneck is not the
FMA instruction latency so the dense routine cannot improve the performance with
multiple accumulations. The sparse kernel also fully unrolls the loops, eliminating any
penalty of branching. In addition, the sparse kernel avoids any memory traffic for
loading A constants, which is favoured in this memory bandwidth bound case.

Comparing with the reference routines, our method is slower for the majority of the
data points, especially for the problems with large arithmetic intensity. The extreme
case is U = 1760, when our kernel is 55% slower than the dense kernel. After examining
the dense kernel, we suggested three reasons for its superior performance. Firstly the
dense kernel always tries to use as many vector registers available for accumulating the
C strides. This hides the FMA instruction latency and is crucial for dense matrices
as the performance is not limited by memory bandwidth. Secondly, the dense kernel
keeps some B strides in vector registers so that they can be reused for multiple FMAs
without accessing the main memory. In fact, the dense kernel also uses the FMA
instruction differently. For AVX-512, the FMA instruction can runtime broadcast one
quadword (DP number) or doubleword (FP number) memory operand right before the
FMA computation [16]. Therefore, runtime broadcasting can be achieved by AVX-
512 FMA instructions, freeing the registers for storing broadcasted A elements. In
Chapter 7 we explained how we integrated this method with our routine. A reference
dense kernel example can be found in Appendix B.1. Lastly, the dense kernel exploits a
tiling scheme in all m, n and k directions to increase the temporal locality for accessing
the matrices. Our method can be greatly benefited from these techniques for relatively
dense problems. On average, our routine is 41.2% slower than reference LIBXSMM
for tetrahedral PyFR matrices.

38

Interestingly, although the dense kernel is highly optimised, it can only reach 37% of the
performance potential of the test machine as shown in the roofline plot (Figure 5.6c).
This implies room for further optimisation improving the dense routine. Similar to the
quadrilateral element matrices, there are data points above the memory bandwidth
roofline. We confirmed this is due to small matrices remain in the cache during the
benchmark iterations by repeating the experiment with the cache flushing function.

Triangular Element Matrices

Figure 5.7a shows the performance of our method comparing to reference LIBXSMM.
Comparing to dense tetrahedral FyFR operator matrices, the triangular ones have a
similar density, as shown in Figure 5.7b. However, the matrices are generally small
in size and have a smaller number of unique constants, resulting in lower arithmetic
intensities. Because of this, comparing to tetrahedral element matrices, more sparse
kernels can be generated, even for fully dense matrices. Our reasoning for this is similar
to that for the tetrahedral element matrices. As these dense matrices have relatively
small arithmetic intensity (see Figure 5.7c), the performance is limited by memory
bandwidth. Therefore, the dense kernel’s techniques such as multiple accumulations
cannot improve the performance. This finding reinforces the idea that both our and
LIBXSMM’s sparse routines are superior for problems with small arithmetic intensity,
whatever the matrix density is.

Similar to the quadrilateral element matrices, our routine performs better than the
reference sparse/wide-sparse routine for some matrices by around 10%. As shown in
Figure 5.7c, this performance superiority mostly happens for arithmetic intensities
between 20 and 21. The reasoning for this is unclear but we suggest it could be due
to performance sensitivity to memory access patterns.

For matrices with relatively large arithmetic intensities, the dense routine is more
performant than our method. Similar to tetrahedral element matrices, the dense
kernels exploit multiple C stride accumulations and reusing B strides stored in vector
registers, resulting in better performance when it is not limited by memory bandwidth
roofline.

This concludes our results and evaluations for our benchmark using the PyFR matrix
set.

39

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s
reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(c) Roofline plot.

Figure 5.4: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations, for PyFR quadrilateral element operator matrices.

40

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s
reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1
2
4
8

16
32
64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(c) Roofline plot.

Figure 5.5: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations, for PyFR hexahedral element operator matrices.

41

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s
reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(c) Roofline plot.

Figure 5.6: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations, for PyFR tetrahedral element operator matrices.

42

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s
reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(c) Roofline plot.

Figure 5.7: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations, for PyFR triangular element operator matrices.

43

Synthetic Matrices

This section presents a comparison between our routine and reference LIBXSMM
evaluating using the synthetic matrix set. The synthetic matrices are generated from
three base matrices, containing 16, 64, 256 distinct absolute non-zero values respec-
tively. Comparing to the PyFR set, the synthetic set explores the A characteristic
space in a more controlled manner, as each matrix only differs from the base one by
one property. The varying properties are: number of rows (R), number of columns
(C), density (ρ) and number of unique absolute non-zero constants (U). A complete
description of the synthetic set can be found in Section 4.2.

Similar to the evaluation on the PyFR set, results from m5c.xlarge (Cascade Lake-
SP) match the results from c5n.xlarge (Skylake-SP). Therefore, for this section only
the c5n.xlarge results are presented and discussed. For complete experiment results
including the m5c.xlarge ones, please refer to Appendix C.

Varying Number of A Columns

Figure 5.8a, 5.8c and 5.8e show the performance of our method comparing with ref-
erence LIBXSMM, evaluating using the synthetic matrices with 16, 64 and 256 A
constants (U), respectively. Figure 5.8b, 5.8d and 5.8f present these results in roofline
plots. For both U = 16 and U = 64, the performance of both our method and reference
routine increases with more number of columns, until 512 columns. The performance
gain is due to an increase in arithmetic intensity, which gradually lifts the memory
bandwidth bottleneck. The Skylake processor we were testing on has 32 KB of L1 data
cache per core, which can accommodate 4096 double-precision floating-point numbers
(assuming idealised fully-associate cache). This is equivalent to 512 rows of B strides,
each containing 8 numbers. Therefore, for A with more than 512 columns, the B
column stride cannot be fully accommodated by the L1 cache, increasing the L1 cache
miss rate. This explains why the performance decreases for C > 512. As shown in
Figure 5.8a, our method shows a larger performance decrease comparing to the refer-
ence method. We suggest this is because our method requires more memory traffic for
loading and broadcasting the A constants, so it is more prone to cache miss penalty.
For U = 16, 64 and 25 < C < 28, the reference sparse and wide-spare routine show
6% - 12% better performance than our method. This is because the reference routines
do not require loading A constant from memory and the wide-sparse kernel has 2
accumulation registers for hiding FMA instruction latency.

For U = 64 and C = 210, the reference method generates a dense kernel despite the
matrix is sparse. This is because both the sparse and wide-sparse kernels are hitting
the size limitation. Similarly, a sparse kernel is generated for U = 16 and C = 210, as
the wide-sparse kernel is too large.

For U = 256, reference LIBXSMM can only generate dense kernels as the sparse

44

routines only allow a maximum of 240 A constants. For these cases, our method is
200% more performant than the dense routine, as the dense method spends most of
its FMA instructions on zeros.

Varying Number of A Rows

Figure 5.9a, 5.9c and 5.9e show the kernel performance with varying numbers of A
rows (R). Figure 5.9b, 5.9d and 5.9f present the same data but using roofline plots.
For all U , our method shows an increasing performance with increasing R. This is
because of the increase in arithmetic intensities as shown in the roofline plots. For
U = 16, 64, the reference method initially shows 10% less performance than our
method for R ≤ 26. For larger U , the reference method performs better than our
method by up to 28% as ours is likely limited by FMA instruction latency. For very
large R (R = 210 for U = 16, R = 29, 210 for U = 64), the wide-sparse kernel cannot
be generated because of hitting the kernel size limitation. For these cases, alternative
sparse or dense kernels are generated, resulting in lower performance.

For U = 256, no reference sparse kernel can be generated. Our method outperforms
the dense kernel by around 180%.

Varying A Density

Figure 5.10a, 5.10c and 5.10e show the performance of our method comparing to the
reference LIBXSMM library. Figure 5.10b, 5.10d and 5.10f present the same results in
roofline plots. For U = 16 and U = 64, our method shows an increasing performance
with increasing ρ, and converges to 1.3× 1010 pseudo-FLOP/s at ρ = 0.5, limiting by
FMA instruction latency. The reference method generates wide-sparse kernels for very
small ρ. For ρ ≤ 0.05, these sparse kernels have a similar performance to our method,
as they are bottlenecked by memory bandwidth. For larger ρ, the wide-sparse kernels
outperform our method by up to 30% as they hide instruction latency by multiple
accumulations. For ρ at around 0.25, the wide-sparse kernel can no longer be generated
because of hitting the kernel size limitation. Alternative sparse kernels are generated,
which show similar performance to our method. For ρ ≥ 0.4, neither the sparse
nor wide-sparse kernel is generated because of kernel size limitation. The fallback
dense kernels are generated, showing an increasing performance with increasing ρ and
increasing arithmetic intensity. For large ρ, the dense kernel is up to 135% faster
than our method. Similar to earlier results, this is because the dense method utilises
multiple accumulations, an optimised tiling scheme, and stores B strides in vector
registers for faster repeated access.

For U = 256, the reference library cannot generate any sparse or wide-sparse kernel for
this many A constants, so alternative dense kernels are generated. The dense kernels
are less performant than our method for ρ ≤ 0.4 as most of their FMA operations are

45

computed with zeros. For larger ρ, the dense kernel outperforms our method as it is
more optimised for dense matrices.

Varying the Number of Unique Absolute Non-zero Values in A

Figure 5.11 shows the performance of our method and the reference LIBXSMM library
with varying U . For U ≤ 224, both the methods show a steady performance, unaffected
by U . The reference wide-sparse kernels perform better than our method by ∼ 8%
because of multiple accumulations. For U = 240, the sparse kernel is generated because
of the U limitation, which has a similar performance to our method. For U = 256,
neither the reference sparse methods works. A dense kernel is generated which is 68%
slower than our method.

This concludes our evaluation results based on the synthetic A set.

46

25 26 27 28 29 210

Number of Columns, C

4 × 109

5 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure 5.8: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations, for synthetic matrices with varying number of A columns.

47

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure 5.9: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations, for synthetic matrices with varying number of A rows.

48

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure 5.10: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying A density.

49

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of unique constants.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot.

Figure 5.11: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying number of unique ab-
solute non-zero constants in A.

50

5.4 Supports for AVX2

As discussed in Section 5.1 earlier, instruction VBROADCASTSS/D is available on AVX2.
Comparing to the newer AVX-512, AVX2 is widely supported by both server and
consumer x86 processors from both Intel and AMD. At the time of this report,
LIBXSMM’s sparse GEMM routine can only accommodate a maximum of 15 dis-
tinct absolute non-zero values in A for AVX2 processors. This is because AVX2 only
provides 16 256-bit vector registers. With Paribartan’s register packing method [8],
this threshold can be increased to 56 double-precision or 112 single-precision numbers.
However, this is still significantly lower than what can be achieved on AVX-512.

Therefore it is very beneficial to develop a sparse GEMM routine for AVX2 allowing
unlimited constants present in A. Our method introduced in this section should be
readily available for AVX2. Unfortunately, as this project focuses primarily on AVX-
512, we were unable to evaluate our method on an AVX2 platform.

Summary

In this chapter we presented our GEMM routine which runtime broadcastsA constants
from memory using VBROADCASTSS/D. Our method allows an unlimited number of
distinct absolute values in A as the constants are not stored in vector registers. Our
method was evaluated using our benchmark suite on two matrices sets - PyFR operator
matrices set and synthetic matrices set. Despite our method allows an unlimited
number of A constants, it performs 10% - 30% slower than the reference LIBXSMM’s
wide-sparse kernel for certain sparse matrices. For dense matrices, our kernel is 55%
less performant than the LIBXSMM’s dense routine. We suggested three reasons for
this: 1. Our method uses a single vector register for accumulating C strides, so the
kernel is easily bottlenecked by FMA instruction latency. 2. Our method does not
store B strides in registers for later reuses. 3. Our method does not exploit any tiling
scheme, resulting in poor temporal locality. In the later chapters, we will present
how we optimise our kernel in these three aspects. In the end, we briefly described
our method is very beneficial for AVX2 users. Unfortunately, because of test suite
limitations, kernel performance on AVX2 platform was not measured.

51

Chapter 6

Multiple Vector Registers for
Accumulating C Strides

In Chapter 5 we presented our GEMM routine which allows an unlimited number of
A constants. Comparing with the performance of LIBXSMM’s wide-sparse and dense
routines, our kernel is slower as it uses only one vector register for accumulating the C
strides. This creates strong data dependency as each FMA instruction has to wait for
the result from the previous FMA before execution, leading to pipeline stall. One way
of improving this is to have multiple registers accumulating different C strides. As
data dependencies only exist between FMA instructions using the same accumulation
register, multiple FMA instructions using different accumulation registers can run
independently exploiting Instruction-Level Parallelism.

In 2020, Paribartan [8] experimented with two techniques for achieving multiple accu-
mulations, namely N blocking and M blocking. In this chapter, we present our efforts
in improving our routine with these techniques.

6.1 N Blocking

Both our and LIBXSMM’s sparse kernels are developed from a simple vectorised
GEMM routine which involves computing the dot products between A rows and B
stride columns and storing the results to the corresponding C locations (see Fig-
ure 2.1). The dot product is computed using a sequence of FMA instructions which
frequently load and store intermediate values to an accumulation register. As dis-
covered in Chapter 5, this creates data dependency between each FMA instruction
leading to performance bottleneck due to instruction latency.

As experimented by Paribartan in 2020 [8], one method to overcome this is to com-
pute multiple dot products between the same A row and different B stride columns
simultaneously. As shown in Figure 6.1, this requires multiple vector registers for

52

Broadcast

Memory Vector register

Multiply

LoadLoad and store

Add

Dot product
direction

Figure 6.1: Diagrammatic representation of a simple vectorised GEMM routine with N
blocking factor of 2.

accumulating C strides in the n direction, so this technique is called N blocking. N
blocking increases the temporal locality of accessing A elements. There is no data
dependency between FMA instructions issued for different dot products so multiple
FMA can be executed independently exploiting Instruction-Level Parallelism (ILP)
thus reducing pipeline stall. For our routine discussed in Chapter 5, each N blocking
factor requires one more register for accumulating C strides. As B strides are loaded
directly from memory, N blocking does not require more register for B strides. For
the remainder of this report, we will use nB standing for N blocking factor.

6.2 M Blocking

LoadBroadcast

Multiply

Multiply

Memory Vector register

Add

Load and save

Add

Dot product
direction

Figure 6.2: Diagrammatic representation of a simple vectorised GEMM routine with M
blocking factor of 2.

Another technique for achieving multiple accumulations is M blocking, which involves
accumulating multipleC strides in the m direction, as shown in Figure 6.2. Each stride

53

column of B is used for computing multiple dot products with different A rows. M
blocking increases the temporal locality for accessingB strides. For our method shown
in Chapter 5, each M blocking factor requires one more register for accumulating C
stride and one more register for holding broadcasted A elements. Unlike N blocking,
for the context of sparse GEMM, M blocking does not always guarantee the generation
of independent FMA instructions. Imaging the following A matrix:

A =

1 2 0
0 0 2
0 0 1

 .
Despite having a maximum M blocking factor of 3, the initial 2 FMA instructions have
data dependency as they are issued for the same A row.

For this report, we will use mB standing for M blocking factor.

6.3 Kernel Design

Our sparse kernel presented in Chapter 5 can be easily adapted with N and M blocking
techniques. For our design, we use the first (starting from zmm0) mB vector registers
for storing broadcasted A elements and the last nB × mB (starting backwards from
zmm31) registers for accumulating C strides. As AVX-512 supports 32 vector registers,
so nB and mB must obey:

mB + nB ×mB ≤ 32. (6.1)

For nB = 1, the maximum mB is 16. For nB = 2, the maximum mB is 10. For nB = 3,
the maximum mB is 8. We did not consider the case for nB > 3 in this project. This
is because each nB increases the kernel width by 8. For nB > 3, the GEMM kernel is
wider than 24, which is incompatible with the current PyFR setting, which computes
GEMM in B tiles of 48 columns. Appendix B.3 shows some example kernels with
different nB and mB.

6.4 Evaluation - N Blocking

In this section we present our evaluation of the N blocking technique using our test
suite (see Chapter 4), for nB = 1, 2, 3. Similar to the previous tests, we increased the
maximum kernel code size limitation for our method to 2 MB.

54

PyFR Operator Matrices

In this section, we only present the roofline and performance data plotting against
A density (ρ) and the number of A constants (U) measured on c5n.xlarge machine.
Results from m5n.xlarge are very similar so there are not included in this section. For
performance data plotting against the number of A columns, the number of A rows
and A size, and the results from m5n.xlarge, please refer to Appendix D.

Quadrilateral and Hexahedral Element Matrices

Figure 6.4 and 6.5 show the effect of N blocking for PyFR quadrilateral and hexahedral
element matrices. These matrices are very sparse and contain less than 26 distinct
absolute non-zero constants. As shown by Figure 6.4a and 6.5a, the performance is
almost exactly the same for small U , irrelevant to nB. Indicating by the roofline plots
(Figure 6.4c and 6.5c), these kernels are heavily bottlenecked by memory bandwidth,
so that N blocking should not affect performance. For U ≥ 10, as the performance
starts to be limited by FMA instruction latency, nB = 3 kernels are slightly faster
than that with nB = 2 and nB = 1. However, nB = 3 does not provide a significant
improvement comparing to the reference kernels.

It is interesting to note that for some matrices, nB = 2 kernels perform marginally
worse than both the nB = 3 and nB = 1 kernels. We suggest this relates to performance
sensitivity to memory access patterns. In average, for the quadrilateral matrices, our
methods with nB = 1, nB = 2 and nB = 3 are 98.6%, 99.3% and 100.3% performant
comparing to the reference library, respectively. For the hexahedral element matrices1,
our method is 99.0%, 95.7% and 100.2% performant comparing to the reference one,
for nB = 1, nB = 2 and nB = 3 respectively.

Tetrahedral and Triangular Element Matrices

Figure 6.6 and 6.7 shows the performance of our method with N blocking for tetrahe-
dral and triangular PyFR matrices. As shown in Figure 6.6b and 6.7b, these matrices
are much denser compared to the quadrilateral and hexahedral ones. Indicating by
the roofline plots (Figure 6.6c and 6.7c), N blocking does not improve the performance
for problems with small arithmetic intensity, as these kernels are heavily limited by
memory bandwidth. For problems with large arithmetic intensity, N blocking shows
significant improvement to kernel performance, as it issues independent FMA instruc-
tions which can execute independently, hiding the instruction latency. The maximum
performance increase is 36% comparing to that without N blocking.

However, despite this improvement, our kernels with N blocking are still ∼ 30% slower

1We exclude the 6th order Gauss-Legendre m460 matrix as a sparse kernel cannot be generated
as the kernel code size exceeds LIBXSMM’s default setting.

55

than the reference dense routine. There are two reasons for this. Firstly, the dense
routine achieves a higher degree of multiple accumulations utilising both N and M
blocking. Therefore, it exploits ILP better as more independent FMA instructions can
be executed in the pipeline. Secondly, our method requires a 64-byte memory read for
each FMA for loading the B stride. The architecture we were testing on, Skylake-SP,
only supports maximum 128-byte L1 cache read per cycle. Together with the fact that
our routine also requires to load and broadcastA constants from memory, the L1 cache
bandwidth can be easily saturated with multiple accumulations. The reference dense
routine bypasses this problem by temporally storing the active B strides in vector
registers and repeatedly use them for multiple FMA instructions by M blocking. It is
beneficial if we can integrate this feature into our routine.

It is interesting to note that, for tetrahedral matrices, the performance gain by N
blocking gradually decreases as the arithmetic intensity become very large. In fact,
nB = 2 sometimes performs better than nB = 3. This is because although N blocking
increase the temporal locality for referencingA elements, it decreases that for referenc-
ing B strides as multiple B stride columns are accessed simultaneously. This is more
noticeable for large As with large arithmetic intensities, as the L1 data cache cannot
fully accommodate multiple B stride columns, resulting in an increasing cache miss
rate. This suggests M blocking which increases the temporal locality of referencing B
strides could be very beneficial.

PyFR Operator Matrices - Summary

Figure 6.3 summarises the average performance of our kernel with different N blocking
factors relative to reference LIBXSMM. The 6th order Gauss-Legendre m460 matrix
was excluded for calculations as reference sparse kernel cannot be generated due to
the kernel size limitation. As shown by the figure, N blocking can provide ∼ 15%
performance improvements for tetrahedral and triangular element matrices. Despite
the performance increase, our routine is still slower than the reference dense routine
for tetrahedral matrices.

56

1 2 3
N blocking factor, nB

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M

hexahedral
quadrilateral
tetrahedral
triangular

Figure 6.3: Average performance of our routines using different degrees of N blocking
evaluating using PyFR matrices, relative to reference LIBXSMM.

57

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s
reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(c) Roofline plot.

Figure 6.4: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for PyFR quadrilateral operator matrices.

58

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s
reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1
2
4
8

16
32
64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(c) Roofline plot.

Figure 6.5: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for PyFR hexahedral operator matrices.

59

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s
reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(c) Roofline plot.

Figure 6.6: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for PyFR tetrahedral operator matrices.

60

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(c) Roofline plot.

Figure 6.7: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for PyFR triangular operator matrices.

61

Synthetic Matrices

In this section we present the performance of our kernels with different N blocking
factors, evaluated using the synthetic test set. Similar to evaluation on PyFR matrices,
the results from c5n.xlarge and m5n.xlarge are very similar so we only present the
c5n.xlarge here. The m5n.xlarge results are included in Appendix D.

Varying Number of A Columns

Figure 6.8 shows the performance of our method with different N blocking factors
evaluated with the synthetic matrices with varying numbers of columns. For U =
16, 64 and C = 25, all the routines perform the same irreverent to nB. This is
because the performance is heavily limited by memory bandwidth. For 25 < C ≤ 28,
N blocking wins, as it can harness more ILP and hide FMA instruction latency with
multiple accumulations. However, for C > 28, N blocking routines perform worse than
that without N blocking. As discussed earlier, this is because N blocking kernels are
prone to an earlier and more severe cache spill, as N blocking requires simultaneous
reads of multiple B stride columns. Therefore, N blocking should be used for only
C ≤ 28. This observation is consistent for all of the Us.

Varying Number of A Rows

Figure 6.9 shows the effects of N blocking on our kernel evaluated using the synthetic
matrices with varying numbers of rows. For all of the Us, the kernels without N
blocking outperform the ones with N blocking by ∼ 10% for R ≤ 26. The reasoning
for this is unclear, but because the speed up is rather insignificant, it is not investigated
during this project. For R ≥ 28, routines with N blocking perform better than the
ones without by up to 27%, as N blocking helps hiding the instruction latency. Our
data shows nB = 2 and nB = 3 have a very similar performance. nB = 2 shows a
marginally better performance for 28 ≤ R ≤ 29 while nB = 3 is slightly better for
R = 27. In summary, our results support the use of N blocking for R ≥ 27.

Varying A Density

Figure 6.10 shows the performance of our routines, with and without N blocking, eval-
uated using the synthetic matrices with varying densities. For all the Us, N blocking
does not improve the performance for ρ ≤ 0.1. This is because the arithmetic intensity
is very small for these matrices so that the performance is majority memory bandwidth
bound. For larger ρ, N blocking shows a consistent speedup comparing to our routine
without N blocking. We observed a maximum speed up of 28%. Comparing between
different N blocking factors, nB = 2 shows a slightly better performance comparing to

62

nB = 3. The reasoning for this is unclear. It could be due to that nB = 2 can already
saturate L1 cache read bandwidth so larger nB won’t further improve the performance.
Despite N blocking provides a big performance improvement, the reference dense rou-
tine outperforms our methods for ρ ≥ 0.6. As discussed earlier, this is because the
dense routine utilises way more registers for multiple accumulations and it stores and
reuses some B strides in registers to avoid repeated B stride loads.

Varying the Number of Unique Absolute Non-zero Values in A

Figure 6.11 shows the performance of our routines with and without N blocking eval-
uated using the synthetic matrices with varying numbers of unique constants. Consis-
tently, kernels with n = 3 are faster than the n = 2 ones by around 10%. The n = 2
kernels are faster than the ones without N blocking by around 10%. For these matrices,
N blocking helps the performance by hiding FMA instruction latency. Comparing to
the reference method, N blocking does not affect how many constants our kernel can
accommodate. In summary, these results support using N blocking with our kernel for
all of the Us.

63

25 26 27 28 29 210

Number of Columns, C

4 × 109

5 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure 6.8: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
columns.

64

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure 6.9: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
rows.

65

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure 6.10: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying A density.

66

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of unique absolute
non-zero values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

Figure 6.11: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying the number
of unique absolute non-zero constants in A.

67

6.5 Evaluation - M Blocking

In this section we present our evaluation of the M blocking technique using our test
suite (see Chapter 4), for mB = 1, 3, 6, 12, 16.

PyFR Operator Matrices

In this section, we only present the roofline and performance data plotting against
A density (ρ) and the number of A constants (U) measured on c5n.xlarge machine.
Results from m5n.xlarge are very similar so there are not included in this section. For
performance data plotting against the number of A columns, the number of A rows
and A size, and the results from m5n.xlarge, please refer to Appendix D.

Quadrilateral and Hexahedral Element Matrices

Figure 6.13 and 6.14 present the benchmark results for our kernel using M blocking
evaluated by the quadrilateral and hexahedral PyFR matrices. Unlike N blocking, M
blocking does not improve the performance for these matrices significantly. This is
because these matrices are very sparse (see Figure 6.13b and 6.14b), so M blocking
cannot generate independent FMA instructions as effective as N blocking. In previous
Section 6.2, we have explained why this is the case.

Tetrahedral and Triangular Element Matrices

Figure 6.15 and 6.16 show the performance of our routine with and without M blocking
evaluated using the PyFR tetrahedral and triangular element matrices. Comparing to
the sparse quadrilateral and hexahedral matrices, M blocking provides a big improve-
ment for these dense matrices, as for dense matrices performance is more limited by
instruction latency and M blocking is more efficient in issuing independent FMAs. We
observed a maximum speed up of 62%. This improvement is also higher than what
can be achieved by N blocking, as M blocking also increase the temporal locality of
reading B strides, which contributes most to the memory traffic. However, despite
such an improvement, our routine with M blocking is still slower than the reference
dense routine. Similar to our arguments for N blocking, the reference dense routine is
superior as it caches some B strides in the vector register to avoid redundant memory
traffic. In Chapter 7 later we present how we further improve our routine using this
method.

It is worth noting that, although for the tetrahedral matrices, larger mB almost always
show higher performance, this is not the case for triangular ones. For triangular
element matrices, mB = 3 and mB = 6 generally show a better performance than

68

mB = 12 and mB = 16. This indicates some factors slowing down the kernel for large
mB. In the later phase of this project, when we were evaluating a more performant
kernel (see Chapter 7), we also observed this behaviour. For now, we will leave the
discussion of this behaviour to that later section, as it is more beneficial to address
this issue for a more performant method.

PyFR Operator Matrices - Summary

Figure 6.12 summarises the average performance of our M blocking kernels comparing
to reference LIBXSMM. Similar to earlier sections, we excluded the 6th order Gauss-
Legendre m460 matrix for calculating the average. As shown in the figure, M blocking
improves the performance significantly for dense tetrahedral and triangular matrices.
For triangular matrices, mB = 3 perform the best comparing to higher mB. Despite
the performance increase, our routine is still slower than the reference dense routine
for tetrahedral matrices.

1 2 3 6 12 16
M blocking factor, mB

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M

hexahedral
quadrilateral
tetrahedral
triangular

Figure 6.12: Average performance of our routines using different degrees of M blocking
evaluating using PyFR matrices, relative to reference LIBXSMM.

69

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Roofline plot.

Figure 6.13: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR quadrilateral operator matrices.

70

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1
2
4
8

16
32
64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Roofline plot.

Figure 6.14: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR hexahedral operator matrices.

71

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Roofline plot.

Figure 6.15: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR tetrahedral operator matrices.

72

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Roofline plot.

Figure 6.16: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR triangular operator matrices.

73

Synthetic Matrices

In this section we present the performance of our kernels with different M blocking
factors, evaluated using the synthetic test set. Similar to evaluation on PyFR matrices,
the results from c5n.xlarge and m5n.xlarge are very similar so we only present the
c5n.xlarge here. The m5n.xlarge results are included in Appendix D.

Varying Number of A Columns

Figure 6.17 presents the benchmark results of our kernels using M blocking techniques
evaluated using the synthetic matrices set with varying numbers of columns. For all
the Us, M blocking does not provide any speed up for these matrices. We suggest
the reason for this is that, as the synthetic matrices are very sparse (ρ = 0.05), M
blocking is inefficient in issuing independent FMA instructions for these matrices.
Therefore, instruction latency cannot be hidden. In fact, M blocking introduces a
slight performance decrease for these matrices. We suggest this is because M blocking
decreases the temporal locality in accessing A elements.

Varying Number of A Rows

Figure 6.18 shows the performance of our M blocking kernels evaluated using the
synthetic matrices with varying numbers of rows. Similar to our previous findings, M
blocking does not improve the performance as it cannot effectively issue independent
FMAs due to matrices sparsity. It introduces a slight performance decrease because
it decreases the temporal locality of accessing A elements. It is worth noting that,
we observed a larger performance decrease for increasing R. This is because that as
the matrices grow taller, they require more A element accesses which magnifies the
performance decrease due to lower A referencing locality.

Varying A density

Figure 6.19 present the benchmark result for our M blocking kernels evaluated using
the synthetic matrices with varying densities. For all of the Us, M blocking provides
no change or a slight decrease to the kernel performance in the range of 0.0 < ρ <
0.4. For this ρ range, N blocking is more suitable as it guarantees the generation of
multiple independent FMA instructions. For ρ ≥ 0.4, M blocking provides positive
improvement to kernel performance. In fact, M blocking is superior to N blocking for
this ρ range as it also increases B access temporal locality. At ρ = 1.0, mB = 16
kernel is significantly faster than the one without M blocking by 48%.

74

Varying the Number of Unique Absolute Non-zero Values in A

Figure 6.20 shows the performance of our M blocking kernels evaluated using the
synthetic matrices containing varying numbers of unique absolute values. As shown in
the figure, for the entire range of U , our routines show similar performance, irrelevant
to the M blocking factor. Comparing to the reference wide-sparse kernel, our M
blocking kernels are slower, as M blocking cannot effectively issue independent FMA
instructions for very sparse matrices.

75

25 26 27 28 29 210

Number of Columns, C

3 × 109

4 × 109

5 × 109

6 × 109
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(f) Roofline plot, U = 256.

Figure 6.17: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
columns.

76

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(f) Roofline plot, U = 256.

Figure 6.18: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
row.

77

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(f) Roofline plot, U = 256.

Figure 6.19: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with A density.

78

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. number of absolute non-zero
values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot.

Figure 6.20: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying the number
of unique absolute non-zero constants in A.

79

6.6 Evaluation - Both N and M Blocking

In the previous sections, we evaluated both N blocking and M blocking individually.
Both these methods improve the kernel performance. N blocking provides a moderate
speed up (up to ∼ 30%) for A with density higher than 0.1. M blocking is better
suitable for denser matrices. It can provide a significant speedup (up to ∼ 60%) for A
with density higher than 0.4. In this section we present our evaluation of our GEMM
routine which utilise both N and M blocking techniques simultaneously.

Figure 6.21 show the relative performance of our routines with different N and M
blocking factors comparing to reference LIBXSMM evaluated using PyFR matrices
set on the c5n.xlarge machine. Similar to previous sections, we excluded the 6th
order Gauss-Legendre m460 matrix as a reference sparse implementation cannot be
generated due to the kernel size limitation. As shown in Figure 6.21a and 6.21b, M
blocking slows down the kernels for all tested nBs for the quadrilateral and hexahedral
element matrices. M blocking cannot help these matrices because it is inefficient in
generating independent FMA for very sparse matrices. Figure 6.21c and 6.21d show
that M blocking can provided significant improvement for the dense tetrahedral and
triangular matrices as they are more limited by instruction latency. For triangular
matrices, some nB and mB settings can even provide better performance than the
reference LIBXSMM implementation. As shown in 6.21d, once passing the optimum
mB setting, further mB would only decrease the performance. In Chapter 8 later
we will discuss potential causes of this in detail. Figure 6.21e shows the average
performance evaluated on the entire PyFR matrices set. As shown in the figure,
nB = 3,mB = 2 is the optimum setting for the PyFR matrices. nB = 2,mB = 4 also
shows decent performance, which is only ∼ 2% slower than the optimum one.

Summary

In this chapter we presented the design and evaluation of our sparse GEMM implemen-
tation with N blocking and M blocking techniques allowing multiple C stride accumu-
lations. N blocking provides a moderate speedup of around 30% for As with densities
larger than 0.1. M blocking is more suitable for denser matrices as it could provide
up to 60% speedup for As with densities higher than 0.4. Despite the significant
performance increase, our routine is still generally slower than the LIBXSMM dense
implementation. One reason behind this is that the reference dense method caches
some B strides in the vector registers to avoid redundant loads. In the Chapter 7
later we will improve our implementation with this technique. We also evaluated the
performance of our implementation with different N and M blocking factors. Among
all the tested combinations, N blocking factor of 3 together with M blocking factor of
2 provides the best average performance for all PyFR matrices. We observed that for
the triangular matrices, once the M blocking factor passes the optimum one, further M
blocking decreases the performance. In Chapter 8 we will discuss the potential cause

80

of this in detail.

81

1 2 4 6 8 10 12 14 16
M blocking factor, mB

0.92

0.94

0.96

0.98

1.00

1.02

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M nB = 1

nB = 2
nB = 3

(a) Quadrilateral matrices.

1 2 4 6 8 10 12 14 16
M blocking factor, mB

0.90

0.92

0.94

0.96

0.98

1.00

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M nB = 1

nB = 2
nB = 3

(b) Hexahedral matrices.

1 2 4 6 8 10 12 14 16
M blocking factor, mB

0.60

0.65

0.70

0.75

0.80

0.85

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M

nB = 1
nB = 2
nB = 3

(c) Tetrahedral matrices.

1 2 4 6 8 10 12 14 16
M blocking factor, mB

0.85

0.90

0.95

1.00

1.05

1.10
Re

la
tiv

e
pe

rfo
rm

an
ce

 to
 re

f.
LI

BX
SM

M nB = 1
nB = 2
nB = 3

(d) Triangular matrices.

1 2 4 6 8 10 12 14 16
M blocking factor, mB

0.86

0.88

0.90

0.92

0.94

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M

nB = 1
nB = 2
nB = 3

(e) Entire PyFR matrices.

Figure 6.21: Performance of our routines with different N and M blocking factors eval-
uated using PyFR matrices set, relative to reference LIBXSMM.

82

Chapter 7

Small and Sparse GEMM Kernel
with Caching B Strides in Vector
Registers

In Chapter 6 we presented our sparse GEMM implementations with multiple accumu-
lations allowing us to hide some of the FMA instruction latency. Despite a significant
performance increase, our routine is generally slower than the LIBXSMM dense imple-
mentation for relative dense PyFR matrices. One reason for this is that the reference
dense routine caches some B strides in the vector register to avoid later repeated B
access.

In this chapter, we will present and evaluate our efforts in improving our implemen-
tation with caching B strides in the vector registers.

7.1 Runtime Broadcasting with FMA instruction

In our previous sparse GEMM implementations, we use VBROADCASTSS/D instruction
to runtime broadcast each A element before FMAs. In fact, for AVX-512, the FMA
instructions can be used to broadcast single-precision or double-precision numbers
from memory on-the-fly [16], as illustrated in Figure 7.1. The reason why runtime
broadcasting using FMA was not employed is that the x86 FMA instructions accept
at most one memory operand, which was used to pass in B stride location in our
previous implementations.

For our current implementation, in which we intend to cache some B strides in the
vector registers, A elements can be runtime broadcasted by AVX-512 FMA instruc-
tions. This also frees the vector registers previously required for temporally holding
the broadcasted A elements, allowing a higher M blocking factor to be achieved.

83

m64
Source 3

S3_DP0S3_DP0S3_DP0S3_DP0S3_DP0S3_DP0S3_DP0S3_DP0

S3_DP0

S2_DP0S2_DP1S2_DP2S2_DP3S2_DP4S2_DP5S2_DP6S2_DP7

Broadcasted
Source 3

zmm1
Source 2

S/D1_DP0S/D1_DP1S/D1_DP2S/D1_DP3S/D1_DP4S/D1_DP5S/D1_DP6S/D1_DP6
zmm0

Source/
destination 1

+=+=+=+=+=+=+=+=

Figure 7.1: Runtime broadcasting and fused multiply-add using VFMADD231PD.

7.2 Kernel Design

FMA or FNMA

 stride in memory

zmm0

zmm31
 stride accumulation

 stride in memory

Sp
ar

e
re

gi
st

er
s

Figure 7.2: Diagrammatic representation of the small and sparse double-precision
GEMM routine with caching B stride in vector registers and using AVX-512 FMA
instruction for runtime broadcasting. No multiple accumulations were employed for this
simple illustration.

Figure 7.2 illustrates our GEMM implementation which cachesB strides in vector reg-
isters and uses FMA instruction to broadcast A elements in runtime. For simplicity,
our example uses only one register for accumulating C strides but multiple accumu-
lations can be readily adapted using the 30 spare registers. For N blocking, each nB

requires one register to cache the B strides and mB registers for C accumulation.
For M blocking, each mB requires nB registers for accumulating the C strides. For
AVX-512, which contains 32 vector registers, nB and mB must obey

nB + nB ×mB ≤ 32. (7.1)

For mB = 1, i.e., no M blocking, the current implementation has exactly the same
memory access pattern as our previous implementations - each FMA requires 1 8- or

84

4-byte read for loading A element, and 1 64-byte read for loading B stride. However,
for implementations with M blocking, the current routine shows great advantages as
it only loads a B stride when it is first encountered in the current M block column.
For executing this example matrix with mB = 3:

A =

1 0 0
2 0 2
3 3 3

 ,
B strides are only loaded when the kernel is executing the underlined elements. There-
fore, pairing with M blocking, caching B strides in vector registers eliminates redun-
dant B loads.

Hiding Memory Latency with Pre-Loading B Strides

Algorithm 1 Simplified representation of a section of our sparse GEMM routine
which pre-loads B strides to hide memory latency.

1: load the first B stride to zmm0

2: zero zmm31 for C accumulation
3: load the next B stride to zmm1

4: compute FMA using B stride from zmm0 and accumulate the result to zmm31

5: load the next B stride to zmm0

6: compute FMA using B stride from zmm1 and accumulate the result to zmm31

7: load the next B stride to zmm1

8: ...
9: load the last B stride to zmm1

10: compute FMA using B stride from zmm0 and accumulate the result to zmm31

11: compute FMA using B stride from zmm1 and accumulate the result to zmm31

12: store the C stride accumulated at zmm31 to memory

When evaluating this implementation, we observed that the performance is mostly
limited by memory latency for loadingB strides. VTune profiling results show that for
some matrices, our kernel spends more than 70% of the time waiting forB strides from
memory. The LIBXSMM dense implementation tries to overcome this issue by pre-
loadingB strides several instructions before they are computed by FMA. The reference
LIBXSMM sparse and wide-sparse routines use pre-fetch instructions to overcome this.
For our implementation, we decided to use the pre-loading technique, as there are
spare registers to cache extra B strides. Algorithm 1 illustrates how we implemented
pre-loading.

Depending on the matrices, our evaluation results show that the pre-loading technique
can improve the performance by 2%-10%. Despite this improvement, our kernel is
still mostly bound by memory latency. The reason for this is that memory latency

85

is typically longer than 10 nanoseconds, which is equivalent to more than 30 CPU
cycles for the c5n.xlarge machine. Our pre-loading technique shown in Algorithm 1
only shifts the loading instructions one step forwards which is not sufficient to hide
the entire memory latency. For this project, we were not able to implement a more
aggressive pre-loading technique that can hide more memory latency.

Although Algorithm 1 only shows the kernel example using single accumulation, our
implementation can be easily adapted with N blocking and M blocking. Because of
pre-loading, each N blocking factor requires 2 vector registers for storing the B strides.
For Skylake-SP, nB and mB must obey:

2nB + nB ×mB ≤ 32. (7.2)

Therefore, for nB = 1, maximum mB = 30. For nB = 2, maximum mB = 14.
For nB = 3, maximum mB = 8. Appendix B.4 includes some kernel examples with
different N and M blocking factors generated by our current implementation.

7.3 Performance Prediction

With our implementation been introduced, we predict our routine should perform as
follows:

Expectation 1. Without M blocking, our implementation should perform similarly to
the reference sparse, the reference wide-sparse and our previous imple-
mentations discussed in Chapter 5 and 6 because of similar memory
access patterns.

Expectation 2. Without M blocking, our implementation should perform worse than
the reference dense routine for relative denseA as the cachedB strides
are not reused in the absence of M blocking.

Expectation 3. With M blocking, our implementation should perform better than the
reference sparse, the reference wide-sparse and our previous implemen-
tations discussed in Chapter 5 and 6 as it caches and reuses B strides
to avoid repeated B access.

Expectation 4. Our implementation should show higher performance for larger M
blocking factors, as larger mB can issue more independent FMA in-
structions.

86

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)
Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(a) Quadrilateral element matrices.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Hexahedral element matrices.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(c) Tetrahedral element matrices.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Triangular element matrices.

Figure 7.3: Roofline plots of runtime broadcasting with loading A from memory and
caching B strides in vector registers vs. reference LIBXSMM implementations. Bench-
mark run on c5n.xlarge machine.

7.4 Evaluation - Single Accumulation

Figure 7.3 presents our evaluation results tested using the PyFR matrices on c5n.xlarge
in the form of roofline plots. Comparing with the reference sparse, the reference wide-
sparse and our previous implementation presented in Chapter 5, our implementation
shows similar performance, satisfying Expectation 1. As shown in Figure 7.3c and
7.3d, for the dense tetrahedral and triangular element matrices, our implementation is
slower than the LIBXSMM dense implementation, which satisfies Expectation 2. The
benchmark on m5n.xlarge also supports these expectations.

Because the results of our implementation evaluated on the synthetic set are mostly
the same as what we have presented in Chapter C, they are not repeatedly discussed
here. For the complete and detailed benchmark results evaluated on both c5n.xlarge

87

and m5n.xlarge machines, pleases refer to Appendix E.

7.5 Evaluation - N Blocking

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(a) Quadrilateral element matrices.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Hexahedral element matrices.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(c) Tetrahedral element matrices.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Triangular element matrices.

Figure 7.4: Roofline plots of runtime broadcasting with loading A from memory and
caching B strides in vector registers vs. reference LIBXSMM implementations for vary-
ing N blocking factors. Benchmark run on c5n.xlarge machine.

Figure 7.4 presents the benchmark results of our implementation with only N blocking,
evaluated using the PyFR matrices set on c5n.xlarge machine. Similar to Section 7.4
previously, our implementation performs comparably to the reference sparse, reference
wide-sparse and our previous implementation presented in Chapter 6 because they
have similar memory patterns. This satisfies Expectation 1. As shown in Figure 7.4c
and 7.4d, although N blocking improves the kernel performance considerably, our
implementation cannot outperform the reference dense routine because the latter one
utilises a higher degree of multiple accumulations and reuses cached B strides through

88

M blocking. This satisfies Expectation 2. The benchmark ran on m5n.xlarge also
supports these expectations.

For the same reasoning as previously stated in Section 7.4, we will not discuss the
benchmark results evaluated on the synthetic set here. Appendix E presents the
complete test results on both c5n.xlarge and m5n.xlarge machines.

7.6 Evaluation - M Blocking

In this section, we present our evaluation of our implementation with only M blocking
using our test suite (see Chapter 4), for mB = 1, 6, 12, 20, 30.

PyFR Operator Matrices

In this section, we only present the roofline and performance data plotting against
A density (ρ) and the number of A constants (U) measured on c5n.xlarge machine.
Results from m5n.xlarge are very similar so there are not included in this section. For
performance data plotting against the number of A columns, the number of A rows
and A size, and the results from m5n.xlarge, please refer to Appendix E.

Quadrilateral and hexahedral element matrices

Figure 7.6 and 7.7 show the benchmark results of our implementation paired with M
blocking evaluated using the PyFR quadrilateral and hexahedral element matrices re-
spectively. Similar to our previous implementation presented in Chapter 6, M blocking
alone does not improve the kernel performance. This is because both the quadrilateral
and hexahedral element matrices are very sparse (see Figure 7.6b and 7.7b) so that M
blocking is not efficient in generating independent FMA instructions. The reason for
this has been discussed in Section 6.2. In fact for some very sparse hexahedral element
matrices, the reference wide-sparse routine outperforms our M blocking implementa-
tions because N blocking is superior in generating independent FMA instructions for
these matrices. Therefore, our observation shows that M blocking is not superior for
sparse matrices, which is against Expectation 3 and Expectation 4.

Tetrahedral and triangular element matrices

Figure 7.8 and 7.9 show the benchmark results of our implementation paired with
M blocking evaluated using the PyFR tetrahedral and triangular element matrices.
As shown in 7.8b and 7.9b, these matrices are much denser compared to the quadri-
lateral and hexahedral ones so that the M blocking kernels show significantly better

89

performance. For the cases in which the reference sparse or wide-sparse kernels are
generated, our M blocking implementations show better performance than the refer-
ence ones by up to 30%. This observation satisfies Expectation 3. Additionally, our
M blocking kernel can significantly outperform the reference dense kernels for the big
and dense matrices. We observed a maximum performance increase of 78% and 168%,
comparing to the reference dense routine and our routine without M blocking, respec-
tively. We suggest three possible reasons why our implementation can outperform
the reference dense routine even for 100% dense matrices. Firstly, our routine fully
unrolls the loops, eliminating any branching overhead. Secondly, our routine packs A
constants in a compacted form which increases the spatial locality. Lastly, as we will
shortly discuss, the dense routine uses the maximally available number of registers
for multiple accumulations. In fact, having too many accumulation registers might
impact the performance negatively.

Counter-intuitively, bigger mB does not always bring better performance. For both
the tetrahedral and triangular element matrices, mB = 6 shows a significantly better
performance than mB = 20 and mB = 30. In fact, for a few triangular matrices,
mB = 30 has worse performance than the kernel without using M blocking at all
(mB = 1). Our observation indicates too large M blocking factors can impact the
performance negatively, which does not support Expectation 4. It is worth noting that
for many tetrahedral and triangular matrices, the mB = 30 and the reference dense
routines show very similar performances. Both of these methods use the maximally
available number of registers for accumulating the C strides. Therefore, we suggest it
might be possible to increase the dense kernel performance by decreasing the degree
of multiple accumulations.

PyFR Operator Matrices - Summary

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
M blocking factor, mB

0.8

1.0

1.2

1.4

1.6

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M

hexahedral
quadrilateral
tetrahedral
triangular

Figure 7.5: Average performance of our routines using different degrees of M blocking
evaluating using PyFR matrices, relative to reference LIBXSMM.

Figure 7.5 shows the average performance of our M blocking implementation with dif-

90

ferent M blocking factors, relative to reference LIBXSMM. We excluded the 6th order
hexahedral Gauss-Legendre m460 matrix as a reference sparse kernel cannot be gener-
ated for it. As previously discussed, M blocking does not improve performance for the
sparse quadrilateral and hexahedral element matrices. For tetrahedral and triangular
element matrices, M blocking can increase the performance significantly, but not for
very large mB. Again, this does not support Expectation 4. For tetrahedral element
matrices, the optimum mB is 6, which outperforms reference LIBXSMM by 59% on
average. For triangular element matrices, the optimum mB is 4, which outperforms
reference LIBXSMM by 35% on average.

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s
reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Roofline plot.

Figure 7.6: Runtime broadcasting with loadingA from memory, cachingB in vector reg-
isters and N blocking vs. reference LIBXSMM implementations, for PyFR quadrilateral
element operator matrices.

91

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1
2
4
8

16
32
64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Roofline plot.

Figure 7.7: Runtime broadcasting with loading A from memory, caching B in vector
registers and N blocking vs. reference LIBXSMM implementations, for PyFR hexahedral
element operator matrices.

92

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Roofline plot.

Figure 7.8: Runtime broadcasting with loading A from memory, caching B in vector
registers and N blocking vs. reference LIBXSMM implementations, for PyFR tetrahedral
element operator matrices.

93

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Roofline plot.

Figure 7.9: Runtime broadcasting with loading A from memory, caching B in vector
registers and N blocking vs. reference LIBXSMM implementations, for PyFR triangular
element operator matrices.

94

Synthetic Matrices

In this section, we present the performance of our kernels with different M blocking
factors, evaluated using the synthetic test set. Similar to evaluation on PyFR matrices,
the results from c5n.xlarge and m5n.xlarge are very similar so we only present the
c5n.xlarge here. The m5n.xlarge results are included in Appendix E.

Varying Number of A Columns

Figure 7.10 shows the benchmark results of our M blocking implementation evaluated
using the synthetic matrices with varying numbers of rows. For U = 16 and U = 64,
our routine is generally slower than the reference dense and wide-sparse routines,
which is against Expectation 3. This is because the synthetic matrices are very sparse
(ρ = 0.05), so M blocking is less efficient in generating independent FMA instructions.
Comparing among different M blocking factors, it is not the case that kernels with
larger mB will always outperform the ones with small mB, which is against Expecta-
tion 4. For U = 16 and 26 ≤ C ≤ 28, mB = 1 kernel is more performant than all the
M blocking kernels.

Varying Number of A Rows

Figure 7.11 present the performance of our M blocking kernels evaluated using the
synthetic matrices with varying numbers of rows. Similar to our previous discussion,
the reference sparse and wide-sparse routines generally outperform our M blocking
kernels, except for the very large R for which the reference sparse kernel cannot be
generated because of the kernel size limitation. This is because N blocking is supe-
rior to M blocking in generating independent FMA instructions for sparse matrices.
Therefore Expectation 3 is not supported here. Comparing among different M block-
ing implementations, there is no significant performance difference for our routines
with different mB, except mB = 12 is ∼ 7% less performant than the other mBs. Be-
cause this performance decrease is insignificant and can easily be caused by hardware
sensitivity to memory access patterns, it was not further investigated for our project.

Varying A density

Figure 7.12 shows the benchmark results of our M blocking kernels evaluated using the
synthetic set with varying densities. Comparing among our M blocking implementa-
tions, M blocking does not provide any significant performance improvement for all of
the Us and ρ < 0.2. This is because 1. performance of these matrices is mostly limited
by memory bandwidth but not instruction latency, 2. M blocking is not efficient for
generating independent FMAs for sparse matrices. For ρ ≥ 0.2, M blocking can pro-

95

vide significant performance improvements. For completely dense matrices, mB = 6
kernel is 180% more performant than the one without using M blocking. However,
it is not the case that higher mB is always better. For all of the Us, at very high ρ,
mB = 6 kernels generally significantly outperform the ones with mB = 30. This does
not support Expectation 4.

Comparing our M blocking implementations with the reference LIBXSMM routines,
our kernels are slower than the wide-sparse kernel for U = 16, 64 and ρ < 0.2.
This is because N blocking is more efficient in generating independent FMA for sparse
matrices. Therefore Expectation 3 is not correct for sparse matrices. For ρ ≥ 0.2 our M
blocking kernels outperform both the reference sparse and the reference dense routines.
The reasons for the superiority have been previously discussed when analysing the
results of PyFR matrices, so they are not repeated here.

Varying the Number of Unique Absolute Non-zero Values in A

Figure 7.13 shows the benchmark results of our M blocking kernels evaluated using the
synthetic matrices set with varying numbers of absolute non-zero values in A. Our M
blocking kernels are around 14% slower than the reference wide-sparse routine because
N blocking is more efficient in generating independent FMAs for sparse matrices. This
does not support Expectation 3. Comparing among different M blocking factors,
the M blocking kernels show very similar performance irrelevant to mB, except for
mB = 12, which is around 7% slower. The slow down for mB = 12 is not significant
and can be caused by hardware sensitivity to memory access patterns so it is not
further investigated in this project.

96

25 26 27 28 29 210

Number of Columns, C

4 × 109

5 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(f) Roofline plot, U = 256.

Figure 7.10: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A columns.

97

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(f) Roofline plot, U = 256.

Figure 7.11: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A rows.

98

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(f) Roofline plot, U = 256.

Figure 7.12: Runtime broadcasting with loading A from memory, caching B strides and
M blocking vs. reference LIBXSMM implementations, for synthetic matrices with A
density.

99

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. number of absolute non-zero
values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot.

Figure 7.13: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying the number of unique absolute non-zero constants in A.

100

7.7 Evaluation - Both N and M Blocking

Figure 7.14 shows the average performance of our implementation with different set-
tings of nB and mB evaluated using the PyFR matrices set, relative to the performance
of reference LIBXSMM. As shown in Figure 7.14a and 7.14b, for quadrilateral and hex-
ahedral element matrices, the performance is mostly determined by N blocking factor
and M blocking does not affect the performance significantly. Again, this is because
M blocking is ineffective in generating independent FMAs for these sparse matrices.
Because of this, the cached B strides are not frequently reused so caching B strides
does not improve the performance. For quadrilateral and hexahedral element matrices,
the best setting is nB = 3 with small mB, which has a similar average performance to
reference LIBXSMM.

Figure 7.14c and 7.14d show the average performance evaluated using the tetrahedral
and triangular element matrices. For these dense matrices, M blocking with cachingB
strides can significantly improve the performance. The best setting is nB = 2, mB = 4
for both tetrahedral and triangular element matrices which can outperform reference
LIBXSMM by 63% and 38% respectively. For these matrices, we observe a performance
decline for very large mB which is against Expectation 4. The exact reason for this
performance decline is unsure at this stage but we will discuss some potential causes
in Chapter 8 later.

Figure 7.14e shows the average performance for the entire PyFR matrices set. nB =
2, mB = 4 is averagely the optimum setting for all PyFR operator matrices. Coinci-
dentally this setting matches the minimum number of accumulation registers required
to fully utilise the FMA units, as for Skylake-SP, FMA has an IPC of 2 and a la-
tency of 4 cycles. With this setting, our implementation is 11% faster than reference
LIBXSMM. It is worth noting that this 11% performance increase is significantly lower
than the 63% increase for tetrahedral matrices. This is because the average perfor-
mance is calculated using weight arithmetic mean weighted with execution time. As
shown in Appendix A, there are twice more quadrilateral and hexahedral element
matrices than the tetrahedral and triangular ones, so the performances of the former
matrices dominate the average values.

Summary

In this chapter, we presented our improved small and sparse GEMM kernel for AVX-
512 which caches B strides in vector registers. Because the B strides are now passed
to FMA instructions as register operands, we use AVX-512 FMA instructions for run-
time broadcasting A elements. During the initial design period, we noticed that the
performance is mostly limited by memory access latency so we implemented a tech-
nique that pre-loads B strides a few instructions in advance to hide memory latency.
Our method can be readily adapted with N and M blocking, allowing multiple accu-

101

mulations to hide instruction latency. More importantly, M blocking allows reusing
cached B strides, eliminating repeated B loads.

We evaluated our kernel using the benchmark set presented in Chapter 4. With-
out using M blocking, our kernels show very similar performance to our previous
implementations discussed in Chapter 5 and 6, because they have similar memory
access patterns. Our M blocking kernels show a significant performance improve-
ment for the PyFR tetrahedral and triangular element matrices. We experimentally
determined that, for PyFR operator matrices, the optimum N and M blocking set-
ting is nB = 2, mB = 4. At this setting, our implementation outperforms reference
LIBXSMM by 63% and 38% for tetrahedral and triangular element matrices, respec-
tively. The performance for quadrilateral and hexahedral element matrices remains
similar to reference LIBXSMM. Similar to Chapter 6, we observed that a too big mB

could decrease the kernel performance. We suggest that the reference dense kernel per-
formance could be limited by this as it always uses the maximum M blocking factors.
In Chapter 8 later, we will discuss some potential causes for this behaviour.

102

12 4 6 8 1012141618202224262830
M blocking factor, mB

0.95

0.96

0.97

0.98

0.99

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M nB = 1

nB = 2
nB = 3

(a) Quadrilateral element matrices.

12 4 6 8 1012141618202224262830
M blocking factor, mB

0.92

0.94

0.96

0.98

1.00

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M nB = 1

nB = 2
nB = 3

(b) Hexahedral element matrices.

12 4 6 8 10 12 14 16 18 20 22 24 26 28 30
M blocking factor, mB

0.8

1.0

1.2

1.4

1.6

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M nB = 1

nB = 2
nB = 3

(c) Tetrahedral element matrices.

12 4 6 8 1012141618202224262830
M blocking factor, mB

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40
Re

la
tiv

e
pe

rfo
rm

an
ce

 to
 re

f.
LI

BX
SM

M nB = 1
nB = 2
nB = 3

(d) Triangular element matrices.

12 4 6 8 1012141618202224262830
M blocking factor, mB

0.85

0.90

0.95

1.00

1.05

1.10

Re
la

tiv
e

pe
rfo

rm
an

ce
 to

 re
f.

LI
BX

SM
M nB = 1

nB = 2
nB = 3

(e) Entire PyFR matrices set.

Figure 7.14: Performance of our caching B strides routines with different N and M
blocking factors evaluated using PyFR matrices set, relative to reference LIBXSMM.

103

Chapter 8

Possible Reasons for Why Too
Large M Blocking Factors Decrease
Kernel Performance

In Chapter 6 and 7 we presented two improved small and sparse GEMM implemen-
tations. For these implementations, utilisation of M blocking can achieve significant
performance improvement for the dense PyFR tetrahedral and triangular element ma-
trices. Counter-intuitively, we observed that the optimum M blocking factor is never
the largest possible one, which uses the maximally available number of vector registers
for accumulating C strides. In fact, the largest M blocking factor can severely decrease
the kernel performance. In Chapter 7, we suggested this behaviour might be limiting
the performance of the reference dense routine, which always tries to utilise as many
vector registers available for multiple accumulations.

In this chapter, we present our investigation into potential causes of such behaviour.

8.1 Saturation of Write Buffer by Multiple Non-

Temporal Stores

For modern computer hardware, memory access is generally an order of magnitude
slower than CPU clock speed. Instead of initiating a write signal directly to the main
memory and wait for the write to complete, modern CPUs usually writes the data to
a write buffer [18]. The memory controller will handle the writing process from the
write buffer so the CPU can continue on its execution.

As mentioned in Chapter 4, our kernels use non-temporal store instruction vmovntpd

for streaming C strides from registers to main memory after GEMM computations.
Comparing to the ordinary store instructions without the non-temporal hint, which

104

writes to the cache, the non-temporal store writes directly to the main memory so
are prone to write stall. We suggest that with multiple accumulations, the amount of
non-temporal stores issued in a small window can saturate the write buffer so that the
CPU has to wait for the writes to complete.

Hypothesis Test

0 5 10 15 20 25 30
Instruction number

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pe
rc

en
ta

ge
 d

ur
at

io
n

to
 to

ta
l s

to
rin

g
tim

e

Figure 8.1: Percentage duration of each vmovntpd comparing to the total duration of 30
vmovntpd instructions.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 4
mB = 8
mB = 16
mB = 30

Figure 8.2: Roofline plots of our “broken” kernel with no non-temporal store evaluated
using the PyFR tetrahedral element matrices.

For testing the hypothesis, we profiled our kernel discussed in Chapter 7 with a setting
of nB = 1 and mB = 30 executing on the 6th order tetrahedral Shunn Ham m3 matrix
using Intel VTune profiler running on the c5n.metal machine. With Intel VTune
profiler, we were able to get the CPU time of each instruction. Figure 8.1 shows the
percentage duration of each vmovntpd instruction, comparing to the total duration

105

of 30 vmovntpd instructions. As shown in the figure, the CPU spends less time on
the initial 12 vmovntpd instructions than the later 18 instructions, suggesting possible
write stalls.

We later prototyped a “broken” kernel which does not issue any non-temporal store
instruction. Although this kernel does not compute correctly, the benchmark result
should reflect if the non-temporal store instructions are the only cause for slow perfor-
mance for big M blocking factors. The evaluation results are presented in Figure 8.2.
As shown in the figure, mB = 8 is still more performant than mB = 16 and mB = 30
for many data points, indicating other factors contributing to the slower performance
for large mBs.

8.2 CPU Stalls Due to Loading B Strides

As shown by the screenshots of our VTune profiler results in Figure 8.3 and 8.4, the
vmovupd instructions for loading B strides usually cause the CPU to stall. The stall
time is higher for mB = 30 than mB = 8. Additionally, the first vmovupd instruction
is also blocking the subsequent xor instruction despite these two instructions have no
data dependency. We suggested and explored two possible reasons for this:

1. mB = 30 kernel is slower because CPU has a fewer number of free physical
registers.

2. mB = 30 kernel is slower because there are bigger FMA instruction “chunks”.
The big chunk size prevents the out-of-order (OOO) execution engine to detect
and issue vmovupd in advance to exploit memory-level parallelism.

Hypothesis Test - CPU Run Out of Free Registers

For testing this hypothesis, we prototyped a kernel which occupies all the remaining
zmm registers using xor instructions. Therefore, regardless of the M blocking factors,
the CPU should have the same number of free physical registers when executing dif-
ferent kernels.

Figure 8.5 shows the benchmark result of our modified kernel evaluated using the PyFR
tetrahedral element matrices. As shown in the figure, mB = 8 kernel still outperforms
the mB = 30 one, indicating CPU running out of free registers is not the cause.

106

Figure 8.3: The top section of Intel VTune profiler results of our kernel with mB = 30
running on the 6th order tetrahedral Shunn Ham m3 matrix.

107

Figure 8.4: The top section of Intel VTune profiler results of our kernel with mB = 8
running on the 6th order tetrahedral Shunn Ham m3 matrix.

108

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s) Double AVX512 Unit

Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 4
mB = 8
mB = 15
mB = 30

Figure 8.5: Roofline plots of our modified kernel which occupies all zmm registers using
xor evaluated using the PyFR tetrahedral element matrices.

Hypothesis Test - OOO Engine Cannot Detect Loading In-
structions In Advance

This hypothesis assumes that the CPU OOO unit can only detect instructions a certain
number of instructions ahead of the current executed one. If the vmovupd instruction
is too further ahead of the current one, because of the large chunk of FMAs, the OOO
unit cannot issue a memory load in advance to exploit memory-level parallelism.

For OOO CPUs, the window size that the OOO unit can detect is determined by the
size of the reservation station. For x86 processors such as the Skylake-SP one we were
using, the reservation station acts like a buffer between the decoder and execution
unit. It buffers the decoded micro-operations which are ready for OOO execution. As
listed in [19], Intel Skylake microarchitecture features a 97-entry reservation station per
core. As the FMA instructions count as simple operations [17], each FMA instruction
is decoded into one micro-operation. Therefore, the 97-entry reservation station is
large enough for accommodating multiple FMA instruction chunks so our hypothesis
is not correct.

One other possible reason why big mB introduces poor performance is that for smaller
mB, there are more micro-operations for loading B strides present in the reservation
buffer. This means the CPU could issues multiple memory read signals for loading
multiple B strides to exploit memory-level parallelism. However, this does not explain
why the first B loading instruction stalls the subsequent xor instruction.

109

8.3 Sanity Check - Are There Any More Factors?

In Section 8.1 and 8.2 we discussed two reasons why kernels with large mB are slower
than the ones with smaller mB. However, we have not ruled out any other potential
causes. For this purpose, we prototyped another broken kernel which does not issue
any non-temporal stores for writing C strides or any moving instructions for loading
B strides. Figure 8.6 shows the benchmark result of our modified kernel evaluated
using the PyFR tetrahedral element matrices. As shown in the figure, mB = 8, 16, 30
now have similar performance because they all can fully utilise the FMA pipeline.
This indicates that there is no more factor contributing to slower kernel performance
for large mB.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 4
mB = 8
mB = 16
mB = 30

Figure 8.6: Roofline plots of our “broken” kernel with no non-temporal and vmovupd,
evaluated using the PyFR tetrahedral element matrices.

Summary

In this chapter, we tried to answer one question: why are big M blocking factors bad
for performance? With the help of Intel VTune profiler, we identified two instructions
causing this problem - the non-temporal store instruction vmovntpd and the loading
B instruction vmovupd. The former instruction hits the performance because it can
easily saturate the write buffer for large mB as it writes directly to the main memory.
However, the reason why vmovupd hurts the performance is not clear. We suggested
two hypotheses. The first one is related to the number of free physical registers avail-
able and the second one is about how wide the OOO instruction window is. However,
we ruled out both hypotheses by either experimental or theoretical analysis. In the
end, we completed a sanity check experimentally, confirmed there is no other cause to
the problem apart from the two instructions we have discussed.

110

Chapter 9

Conclusion and Future Work

In this final chapter we will summarise and evaluate what our project has achieved.
We will conclude our thesis with suggestions for directions of future work which can
extend our research further.

9.1 Summary

We believe we have successfully accomplished the project objectives. The objectives of
our project were to improve the small and sparse GEMM implementation of the Intel
open-source library LIBXSMM, by 1. allowing a greater number of distinct absolute
non-zero values present in the sparse matrix and 2. enhancing the kernel execution
speed. The targeting platform was x86 CPUs with AVX-512 extension.

In Chapter 2, we introduced the context of our project - GEMM, LIBXSMM and
PyFR. In Chapter 3 we reviewed two other matrix operation libraries GiMMiK and
BLASFEO. We also presented that measurement bias is significant and unavoidable.
In Chapter 4 we presented our comprehensive benchmark suite for sparse GEMM ker-
nels. The benchmark suite was based on two matrices set - a set of complete 170
PyFR matrices and a set of 100 synthetic matrices with gradual changes of proper-
ties. In Chapter 5 we presented our first improved GEMM implementation which
allows unlimited number of constants present in A by runtime broadcasting packed
A constants from the main memory. Although this implementation is not faster than
LIBXSMM’s routines, it significantly increases the applicability of the sparse kernel
for AVX2 architectures which originally only allows 15 constants present in A. In
Chapter 6 we explored two techniques allowing us to accumulate multiple C strides
- N blocking and M blocking. Both these techniques can improve the performance of
our kernel. In Chapter 7, we presented our improved kernel which caches B strides
and runtime broadcasted packed A elements from the main memory using AVX-512
FMA instructions. With the optimum N and M blocking setting, our kernel shows

111

significant superior performance than LIBXSMM’s methods. In Chapter 8, we tried
to answer the question: why a too large M blocking factor hurts the performance? We
successfully identified two memory access instructions causing this problem through
micro-architectural analysis.

This thesis made the following contributions:

1. We developed an automatic benchmark suite for small and sparse GEMM rou-
tines based on the work from the previous year student Paribartan [8]. The test
suite is based on two sets of matrices - a complete set of all the 170 PyFR op-
erator matrices and a set of 100 synthetic matrices aiming to provide a broader
coverage and a finer resolution of the matrices characteristics space.

2. We improved LIBXSMM’s small and sparse GEMM routine with the technique
to runtime broadcast A constants from memory. Comparing to the reference
LIBXSMM routine, which allows maximally 240 double-precision or 480 single-
precision constants present in A for AVX-512, our improved routine allows an
unlimited number of constants in the sparse matrix for both AVX-512 and AVX2.

3. We explored techniques to accumulate multiple C strides in the free registers
to exploit Instruction-Level Parallelism. We evaluated techniques - N blocking
and M blocking, and determined the optimum blocking factors experimentally.
We reported N blocking can provide a maximum speedup of 30% for As with
densities larger than 0.1. M blocking can provide a maximum speedup of 60%
for As with densities larger than 0.4.

4. We further improved our routine with techniques to cache and reuse B strides in
the free vector registers, and runtime broadcast A elements using FMA instruc-
tions. This implementation is only supported by AVX-512. With the optimum
N blocking and M blocking setting, comparing with reference LIBXSMM, our
implementation shows a significant performance superiority up to 78% when
executing on the dense PyFR operator matrices.

5. We observed that the kernels with large M blocking factors show unexpect-
edly low performance. We successfully identified the problem was caused by
two instructions for memory writes and reads - vmovntpd and vmovupd. We
conducted a systematic micro-architectural analysis and suggested possible un-
derlining causes for this.

9.2 Future Work

We have successfully accomplished the project objectives. However we were unable to
explore several promising ideas which can extend our thesis partially because of the
time limitation. These ideas will be briefly discussed in this section.

112

Contribution to LIBXSMM Repository

It is unfortunate we were unable to get our prototyped improved kernel integrated with
the upstream LIBXSMM repository. We suggest this should be one of the priorities
for future work so scientific solvers such as PyFR can benefit from our achievements.
Additionally, this will expose our method in an open-source format, allowing us to
receive real-world practical significant feedback. We proposed the integration process
can be realised in the following steps:

1. Implementation for AVX-512 In Chapter 7 we presented our small and sparse
GEMM implementation which allows unlimited number of constants present in A.
This method caches some B strides in the vector registers and achieves the runtime
broadcasting using AVX-512 FMA instructions. Our evaluation shows our method is
up to 78% faster than LIBXSMM’s dense routine when executing the PyFR tetrahedral
and triangular element operator matrices. Figure 9.1 presents our proposed changes
to the LIBXSMM routine.

2. Implementation for AVX2 In Chapter 5 we discussed that platforms which
only supports AVX2 can greatly benefit from our first improved GEMM routine. This
routine runtime broadcasts packed A constants from memory using VBROADCASTSS/D

thus allows unlimited number of constants present in A. Although the performance
of our method on an AVX2 platform was not evaluated, we believed that being able
to extend the applicability to A containing more constants is extremely beneficial
regardless of the performance change.

3. Improve the reference LIBXSMM routines with B caching technique
In Chapter 7 we present how we improved our first and second implementations with
caching B strides in vector registers for later reuses. Paring with M blocking, this
technique provides significant performance increase, especially for dense matrices. In
fact, this caching B technique can also be applied to LIBXSMM’s original and Parib-
artan’s register packing kernels presented in Section 2.3. Figure 9.2 how the original
LIBXSMM’s small and sparse GEMM implementation can be integrating with our
caching B strides technique. Paribartan’s register packing kernel can be improved
with a similar method.

Improvement to the LIBXSMM Dense GEMM Routine

In Chapter 5 we pointed out that even for complete dense matrices, the reference
LIBXSMM dense kernel can only achieve maximally 37% of the performance potential
of our test machine. As the dense routine has the widest applicability among all the
routines we have evaluated during our thesis, any further performance improvement

113

Yes
No

Can generate
a sparse kernel?

(pre-broadcasted constants
in registers)

Yes

No

Can generate
a sparse kernel?

(packed constants in
registers)

Sparse kernel

Yes
No

Can generate
a sparse kernel?

(pre-broadcasted constants,
)

Yes

No

Can generate
a sparse kernel?

(packed constants,
)

Wide-sparse
kernel

Yes

Can generate
a dense kernel?

Dense kernel

No

Yes

More than one avaliable
kernel?

Output the only avaliable
kernel

Run a simple benchmark
and output the fastest

kernel

Sparse kernel Wide-sparse
kernel

Dense
kernel

Yes

Can generate
a sparse kernel?

(unlimited number of
constants)

Yes

Can generate
a sparse kernel?

(unlimited number of
constants,

)

Figure 9.1: LIBXSMM small and sparse GEMM implementation integrated with our
method. The bold diamond shapes indicate our proposed changes.

114

zmm0

zmm1

zmm2

zmm3

zmm30

zmm31

FMA or FNMA

Pr
e-

br
oa

dc
as

t u
ni

qu
e

no
n-

ze
ro

el
em

en
ts

 o
f

 stride from memory

 stride accumulation

 stride cached in
register

Loading if not
present in register

FMA

Figure 9.2: Improved original LIBXSMM’s small and sparse GEMM routine with caching
B stride in register.

would be extremely beneficial. In Chapter 7 we observed that, although our best
implementation can significantly outperform the dense routine with the optimal N
and M blocking factors (nB = 2, mB = 4), if we set mB = 30 to utilise all the vector
registers available for multiple accumulations, we got far worse performance which is
very similar to the performance of the dense routine. Coincidentally, the dense routine
also tries to accumulate maximum number of C strides. Based on these observations,
we suggested the performance of the dense kernel could be improved by decreasing the
M blocking factor. It would be beneficial if this idea can be evaluated in future.

CPU Front-End Bottleneck Due to Large Instruction Size

During our evaluation process, we noticed that our best performant kernel, which was
presented in Chapter 7, uses FMA instructions with variable code sizes. Figure 9.3
shows a section of our kernel generated for the 6th order Shun-Ham tetrahedral m3
matrix with nB = 1 and mB = 30. As shown in the figure, some of our FMA
instructions are 8-byte long while the others are 10-byte. As the Skylake-SP instruction
fetch unit has a maximum throughput of 16 bytes per cycle [19], the 10-byte FMA
instructions could easily saturate the fetch unit leading to CPU front-end bottleneck
(front-end refers to the CPU components responsible for fetching and decoding). This
idea was confirmed by Intel VTune profiler, which reported 10% front-end bound for
some kernels. We noticed that the instruction length is determined by the memory
displacement and the 10-byte encoding scheme is only used for displacements larger
or equal to 0x400, which is 1024 in decimal. We suggest this problem can be overcome
by including an index register for addressing the memory location. Each time the
displacement value reaches 0x400, the index register is incremented by 0x400 so we
will always have the 8-byte encoding. As the LIBXSMM’s dense kernel also shows
front-end bottleneck due to this instruction length problem, it is very beneficial to
explore this idea in the future.

115

K Blocking

In Chapter 5 we observed that there are some kernels with performance very close
to or even higher than the memory bandwidth roofline. The reason for this is that
these kernels belong to problems with small matrices sizes, so parts of matrix B
are likely to remain inside the cache during the benchmark iterations. Throughout
the entire project, we observed a general trend that smaller matrices tend to show
higher performance. We suggest this is because smaller matrices have higher spacial
locality. One technique used by many BLAS libraries including [2] is K blocking, which
is the tiling in the k direction. Figure 9.4 shows how K blocking can be achieved
for GEMM by dividing the entire MM into the summation of multiple independent
and smaller MM problems. Because the sub-problems have smaller k dimensions,
they have high temporal locality for accessing the matrices elements thus could result
in better performance. One disadvantages of K blocking is that it introduces more
intermediate C strides which are stored in either the cache or the main memory.
Because K blocking kernels have to access these intermediate values, they are more
prone to memory bandwidth bottleneck. A good K blocking design should find the
right balance between memory bandwidth bottleneck and the temporal locality.

For this thesis, we have done some preliminary evaluations of our kernels with K
blocking. Our evaluation is rather incomplete, but it shows K blocking tends to hurt
performance for sparse GEMM as the performance is limited by memory bandwidth.
Because of the time constraint, we were unable to test K blocking together with M
and N blocking. Because N blocking introduces more stress on the cache system as we
discussed in Chapter 6, K blocking could be beneficial if pairing with it. We suggest
this idea should be revisited in a more systematic manner for future development of
LIBXSMM’s small and sparse GEMM routines.

Multi-Thread Evaluation

One of the major limitations of our benchmark suite is it only evaluates the kernel
performance running in a single-threaded setting. However, for realistic scientific com-
puting tasks, it is almost certain that GEMM kernels are run as multi-threaded pro-
cesses to exploit the massive multiprocessing capability of modern high-performance
computers. As discussed in Chapter 4, multi-threaded environment establishes com-
pletely different design challenges because of sharing key hardware resources. It is
worth exploring in this direction so we could further optimise our GEMM routines
thus make them better suitable for real-life scientific tasks.

This concludes our thesis.

Excluding figures and appendix, this thesis consists of 70 pages.

116

c3: 62 f1 fd 48 10 4e 06 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x180]

ca: 62 f2 fd 58 b8 17 vfmadd231pd zmm2 ,zmm0 ,QWORD PTR [rdi]{1to8}

d0: 62 f2 fd 58 bc 5f 07 vfnmadd231pd zmm3 ,zmm0 ,QWORD PTR [rdi+0x38]{1 to8}

d7: 62 f2 fd 58 bc 67 07 vfnmadd231pd zmm4 ,zmm0 ,QWORD PTR [rdi+0x38]{1 to8}

de: 62 f2 fd 58 bc 6f 07 vfnmadd231pd zmm5 ,zmm0 ,QWORD PTR [rdi+0x38]{1 to8}

e5: 62 f2 fd 58 bc 77 2e vfnmadd231pd zmm6 ,zmm0 ,QWORD PTR [rdi+0x170]{1to8}

ec: 62 f2 fd 58 bc 7f 35 vfnmadd231pd zmm7 ,zmm0 ,QWORD PTR [rdi+0x1a8]{1to8}

f3: 62 72 fd 58 bc 47 35 vfnmadd231pd zmm8 ,zmm0 ,QWORD PTR [rdi+0x1a8]{1to8}

fa: 62 72 fd 58 bc 4f 35 vfnmadd231pd zmm9 ,zmm0 ,QWORD PTR [rdi+0x1a8]{1to8}

101: 62 72 fd 58 b8 57 5c vfmadd231pd zmm10 ,zmm0 ,QWORD PTR [rdi+0x2e0]{1to8}

108: 62 72 fd 58 b8 5f 63 vfmadd231pd zmm11 ,zmm0 ,QWORD PTR [rdi+0x318]{1to8}

10f: 62 72 fd 58 b8 67 63 vfmadd231pd zmm12 ,zmm0 ,QWORD PTR [rdi+0x318]{1to8}

116: 62 72 fd 58 b8 6f 63 vfmadd231pd zmm13 ,zmm0 ,QWORD PTR [rdi+0x318]{1to8}

11d: 62 72 fd 58 bc b7 50 vfnmadd231pd zmm14 ,zmm0 ,QWORD PTR [rdi+0x450]{1to8}

124: 04 00 00

127: 62 72 fd 58 bc bf 50 vfnmadd231pd zmm15 ,zmm0 ,QWORD PTR [rdi+0x450]{1to8}

12e: 04 00 00

131: 62 e2 fd 58 b8 87 d0 vfmadd231pd zmm16 ,zmm0 ,QWORD PTR [rdi+0x4d0]{1to8}

138: 04 00 00

13b: 62 e2 fd 58 b8 8f d0 vfmadd231pd zmm17 ,zmm0 ,QWORD PTR [rdi+0x4d0]{1to8}

142: 04 00 00

145: 62 e2 fd 58 bc 97 50 vfnmadd231pd zmm18 ,zmm0 ,QWORD PTR [rdi+0x450]{1to8}

14c: 04 00 00

14f: 62 e2 fd 58 b8 9f d0 vfmadd231pd zmm19 ,zmm0 ,QWORD PTR [rdi+0x4d0]{1to8}

156: 04 00 00

159: 62 e2 fd 58 bc a7 50 vfnmadd231pd zmm20 ,zmm0 ,QWORD PTR [rdi+0x650]{1to8}

160: 06 00 00

163: 62 e2 fd 58 bc af 50 vfnmadd231pd zmm21 ,zmm0 ,QWORD PTR [rdi+0x650]{1to8}

16a: 06 00 00

16d: 62 e2 fd 58 b8 b7 d0 vfmadd231pd zmm22 ,zmm0 ,QWORD PTR [rdi+0x6d0]{1to8}

174: 06 00 00

177: 62 e2 fd 58 b8 bf d0 vfmadd231pd zmm23 ,zmm0 ,QWORD PTR [rdi+0x6d0]{1to8}

17e: 06 00 00

181: 62 62 fd 58 bc 87 50 vfnmadd231pd zmm24 ,zmm0 ,QWORD PTR [rdi+0x650]{1to8}

188: 06 00 00

18b: 62 62 fd 58 b8 8f d0 vfmadd231pd zmm25 ,zmm0 ,QWORD PTR [rdi+0x6d0]{1to8}

192: 06 00 00

195: 62 62 fd 58 b8 97 50 vfmadd231pd zmm26 ,zmm0 ,QWORD PTR [rdi+0x850]{1to8}

19c: 08 00 00

19f: 62 62 fd 58 b8 9f d0 vfmadd231pd zmm27 ,zmm0 ,QWORD PTR [rdi+0x8d0]{1to8}

1a6: 08 00 00

1a9: 62 62 fd 58 bc a7 b0 vfnmadd231pd zmm28 ,zmm0 ,QWORD PTR [rdi+0x9b0]{1to8}

1b0: 09 00 00

1b3: 62 62 fd 58 b8 af d0 vfmadd231pd zmm29 ,zmm0 ,QWORD PTR [rdi+0x8d0]{1 to8}

1ba: 08 00 00

1bd: 62 62 fd 58 bc b7 b0 vfnmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi+0x9b0]{1to8}

1c4: 09 00 00

1c7: 62 62 fd 58 b8 bf d0 vfmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi+0x8d0]{1 to8}

1ce: 08 00 00

Figure 9.3: Section of our kernel example disassembled using objdump. Each line is in
the format: [Instruction offset]: [Raw binary instruction] [Disassembled instruction].

117

+

Figure 9.4: K blocking technique.

118

Bibliography

[1] Heinecke A, Henry G, Hutchinson M, Pabst H. LIBXSMM: Accelerating Small
Matrix Multiplications by Runtime Code Generation. In: SC16 Int. Conf. High
Perform. Comput. Networking, Storage Anal. November. IEEE; 2016. p. 981–991.

[2] Goto K, van de Geijn RA. Anatomy of high-performance matrix multiplication.
ACM Trans Math Softw. 2008 may;34(3):1–25. Available from: https://dl.

acm.org/doi/10.1145/1356052.1356053.

[3] Witherden FD, Farrington AM, Vincent PE. PyFR: An open source framework
for solving advection–diffusion type problems on streaming architectures using the
flux reconstruction approach. Comput Phys Commun. 2014 nov;185(11):3028–
3040. Available from: https://linkinghub.elsevier.com/retrieve/pii/

S0010465514002549.

[4] Witherden F, Vincent P, Vermeire B, Trojak W, Park JS, Ntemos G, et al..
PyFR/PyFR: PyFR; 2021. [Accessed 09/08/2021]. Available from: https://

github.com/PyFR/PyFR.

[5] Huynh HT. A Flux Reconstruction Approach to High-Order Schemes Including
Discontinuous Galerkin Methods. In: 18th AIAA Comput. Fluid Dyn. Conf..
vol. 1. Reston, Virigina: American Institute of Aeronautics and Astronautics;
2007. p. 698–739. Available from: https://arc.aiaa.org/doi/10.2514/6.

2007-4079.

[6] LIBXSMM Contributors. hfp/libxsmm: Library for specialized dense and sparse
matrix operations, and deep learning primitives.; 2021. [Accessed 09/08/2021].
Available from: https://github.com/hfp/libxsmm.

[7] Wozniak BD, Witherden FD, Russell FP, Vincent PE, Kelly PHJ. GiMMiK -
Generating bespoke matrix multiplication kernels for accelerators: Application
to high-order Computational Fluid Dynamics. Comput Phys Commun. 2016
may;202:12–22.

[8] Paribartan MV. Using Register Packing for Small Sparse Matrix Multiplication
[MEng Thesis]. Imperial College London; 2020.

[9] LIBXSMM Contributors. LIBXSMM; 2021. [Accessed 25/15/2021]. Available
from: https://libxsmm.readthedocs.io/en/latest/.

119

https://dl.acm.org/doi/10.1145/1356052.1356053
https://dl.acm.org/doi/10.1145/1356052.1356053
https://linkinghub.elsevier.com/retrieve/pii/S0010465514002549
https://linkinghub.elsevier.com/retrieve/pii/S0010465514002549
https://github.com/PyFR/PyFR
https://github.com/PyFR/PyFR
https://arc.aiaa.org/doi/10.2514/6.2007-4079
https://arc.aiaa.org/doi/10.2514/6.2007-4079
https://github.com/hfp/libxsmm
https://libxsmm.readthedocs.io/en/latest/

[10] LIBXSMM Contributors. Attempt to JIT double width kernels in dfsspmdm.
by FreddieWitherden · Pull Request #487 · hfp/libxsmm; 2021. [Accessed
29/08/2021]. Available from: https://github.com/hfp/libxsmm/pull/487.

[11] GiMMiK Contributors. PyFR/GiMMiK; 2021. [Accessed 31/08/2021]. Available
from: https://github.com/PyFR/GiMMiK.

[12] Frison G, Kouzoupis D, Sartor T, Zanelli A, Diehl M. BLASFEO: basic linear
algebra subroutines for embedded optimization. ACM Trans Math Softw. 2017
apr;44(4):1–30. Available from: https://dl.acm.org/doi/10.1145/3210754.

[13] Mytkowicz T, Diwan A, Hauswirth M, Sweeney PF. Producing wrong data with-
out doing anything obviously wrong! ACM SIGPLAN Not. 2009 feb;44(3):265–
276. Available from: https://dl.acm.org/doi/10.1145/1508284.1508275.

[14] Intel Corporation. Intel Math Kernel Library (Intel MKL) Benchmarks Suite;
2021. [Accessed 08/08/2021]. Available from: https://software.intel.com/

content/www/us/en/develop/articles/intel-mkl-benchmarks-suite.html.

[15] McCalpin J. STREAM: Sustainable Memory Bandwidth in High Performance
Computers;. [Accessed 22/08/2021]. Available from: https://www.cs.

virginia.edu/stream/.

[16] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual; 2021. Available from: https://software.intel.com/content/www/us/en/
develop/articles/intel-sdm.html.

[17] Fog A. 4. Instruction tables; 2021. [Accessed 13/08/2021]. Available from: https:
//www.agner.org/optimize/instruction_tables.pdf.

[18] Hennessy JL, Patterson DA. Computer Architecture: A Quantitative Approach.
Elsevier; 2011.

[19] Fog A. The microarchitecture of Intel, AMD, and VIA CPUs; 2021. [Accessed
28/08/2021].

120

https://github.com/hfp/libxsmm/pull/487
https://github.com/PyFR/GiMMiK
https://dl.acm.org/doi/10.1145/3210754
https://dl.acm.org/doi/10.1145/1508284.1508275
https://software.intel.com/content/www/us/en/develop/articles/intel-mkl-benchmarks-suite.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mkl-benchmarks-suite.html
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf

Appendix A

Characteristics of PyFR operator
matrices

This appendix lists the major characteristics of all 170 PyFR operator matrices. Fol-
lowing notations are used:

R Number of rows;

C Number of columns;

ρ Density, calculated as num. of non−zeros
size

;

U Number of unique absolute non-zero values.

The PyFR operator matrices are available from samples/pyfr/mats/ in LIBXSMM
repository [6].

121

Order Matrix R C ρ U
m0 8 4 0.500 2
m3 4 8 0.500 2

First m6 8 8 0.250 2
m132 4 8 0.500 1
m460 8 4 0.500 1
m0 12 9 0.333 3
m3 9 12 0.333 3

Second m6 18 12 0.167 3
m132 9 18 0.296 4
m460 18 9 0.296 4
m0 16 16 0.250 4
m3 16 16 0.250 4

Third m6 32 16 0.125 4
m132 16 32 0.250 8
m460 32 16 0.250 8
m0 20 25 0.200 5
m3 25 20 0.200 5

Fourth m6 50 20 0.100 5
m132 25 50 0.192 12
m460 50 25 0.192 12
m0 24 36 0.167 6
m3 36 24 0.167 6

Fifth m6 72 24 0.083 6
m132 36 72 0.167 18
m460 72 36 0.167 18
m0 28 49 0.143 7
m3 49 28 0.143 7

Sixth m6 98 28 0.071 7
m132 49 98 0.140 24
m460 98 49 0.140 24

(a) Using Gauss-Legendre quadrature.

Order Matrix R C ρ U
m0 12 9 0.111 1
m3 9 12 0.333 3

Second m6 18 12 0.167 3
m132 9 18 0.296 3
m460 18 9 0.296 3
m0 16 16 0.063 1
m3 16 16 0.250 3

Third m6 32 16 0.125 3
m132 16 32 0.219 7
m460 32 16 0.219 7
m0 20 25 0.040 1
m3 25 20 0.200 4

Fourth m6 50 20 0.100 4
m132 25 50 0.176 11
m460 50 25 0.176 11
m0 24 36 0.028 1
m3 36 24 0.167 4

Fifth m6 72 24 0.083 4
m132 36 72 0.148 16
m460 72 36 0.148 16
m0 28 49 0.020 1
m3 49 28 0.143 5

Sixth m6 98 28 0.071 5
m132 49 98 0.128 22
m460 98 49 0.128 22

(b) Using Gauss-Legendre-Lobatto quadrature.

Table A.1: Characteristics of quadrilateral operator matrices.

122

Order Matrix R C ρ U
m0 24 8 0.250 2
m3 8 24 0.250 2

First m6 24 24 0.833 2
m132 8 24 0.250 1
m460 24 8 0.250 1
m0 54 27 0.111 3
m3 27 54 0.111 3

Second m6 81 54 0.037 3
m132 27 81 0.099 4
m460 81 27 0.099 4
m0 96 64 0.063 4
m3 64 96 0.063 4

Third m6 192 96 0.021 4
m132 64 192 0.063 8
m460 192 64 0.063 8
m0 150 125 0.040 5
m3 125 150 0.040 5

Fourth m6 375 150 0.013 5
m132 125 375 0.038 12
m460 375 125 0.038 12
m0 216 216 0.028 6
m3 216 216 0.028 6

Fifth m6 648 216 0.009 6
m132 216 648 0.028 18
m460 648 216 0.028 18
m0 294 343 0.020 7
m3 343 294 0.020 7

Sixth m6 1029 294 0.007 7
m132 343 1029 0.020 24
m460 1029 343 0.020 24

(a) Using Gauss-Legendre quadrature.

Order Matrix R C ρ U
m0 54 27 0.037 1
m3 27 54 0.111 3

Second m6 81 54 0.037 3
m132 27 81 0.099 3
m460 81 27 0.099 3
m0 96 64 0.016 1
m3 64 96 0.063 3

Third m6 192 96 0.021 3
m132 64 192 0.055 7
m460 192 64 0.055 7
m0 150 125 0.008 1
m3 125 150 0.040 4

Fourth m6 375 150 0.013 4
m132 125 375 0.035 11
m460 375 125 0.035 11
m0 216 216 0.005 1
m3 216 216 0.028 4

Fifth m6 648 216 0.009 4
m132 216 648 0.025 16
m460 648 216 0.025 16
m0 294 343 0.003 1
m3 343 294 0.020 5

Sixth m6 1029 294 0.007 5
m132 343 1029 0.018 22
m460 1029 343 0.018 22

(b) Using Gauss-Legendre-Lobatto quadrature.

Table A.2: Characteristics of hexahedral operator matrices.

123

Order Matrix R C ρ U
m0 12 4 1.00 3
m3 4 12 1.00 6

First m6 12 12 0.50 3
m132 4 12 0.50 1
m460 12 4 0.50 1
m0 24 10 1.00 14
m3 10 24 1.00 28

Second m6 30 24 0.50 14
m132 10 30 0.84 23
m460 30 10 0.84 23
m0 40 20 1.00 40
m3 20 40 1.00 80

Third m6 60 40 0.50 40
m132 20 60 0.91 100
m460 60 20 0.91 100
m0 60 35 1.00 101
m3 35 60 1.00 202

Fourth m6 105 60 0.50 101
m132 35 105 0.93 304
m460 105 35 0.93 304
m0 84 56 1.00 214
m3 56 84 1.00 428

Fifth m6 168 84 0.50 214
m132 56 168 0.95 784
m460 168 56 0.95 784
m0 112 84 1.00 425
m3 84 112 1.00 850

Sixth m6 252 112 0.50 425
m132 84 252 0.96 1760
m460 252 84 0.96 1760

Table A.3: Characteristics of tetrahe-
dral Shunn-Ham operator matrices.

Order Matrix R C ρ U
m0 6 3 1.00 3
m3 3 6 1.00 6

First m6 6 6 0.67 3
m132 3 6 0.67 1
m460 6 3 0.67 1
m0 9 6 1.00 10
m3 6 9 1.00 20

Second m6 12 9 0.67 10
m132 6 12 0.89 14
m460 12 6 0.89 14
m0 12 10 1.00 20
m3 10 12 1.00 40

Third m6 20 12 0.67 20
m132 10 20 0.96 48
m460 20 10 0.96 48
m0 15 15 1.00 39
m3 15 15 1.00 78

Fourth m6 30 15 0.67 39
m132 15 30 0.96 108
m460 30 15 0.96 108
m0 18 21 1.00 63
m3 21 18 1.00 126

Fifth m6 42 18 0.67 63
m132 21 42 0.98 216
m460 42 21 0.98 216
m0 21 28 1.00 100
m3 28 21 1.00 200

Sixth m6 56 21 0.67 100
m132 28 56 0.98 384
m460 56 28 0.98 384

Table A.4: Characteristics of trian-
gular Williams-Shunn operator ma-
trices.

124

Appendix B

Kernel Examples

In this appendix we provide example kernels for the matrix multiplication routines
discussed in this report. All the kernels apply to a simple GEMM operation:

C ← αA×B + βC,

with α = 1 and β = 0.

For the matrices:

A =

1.1 2.2 3.3 4.4
0 −1.1 −2.2 −3.3
0 0 1.1 2.2
0 0 0 −1.1

1.1 2.2 3.3 4.4
0 −1.1 −2.2 −3.3
0 0 1.1 2.2
0 0 0 −1.1

,

and B is 8× 48 in shape.

As LIBXSMM does not directly generate kernel as textual assemblies, we set the envi-
ronment with LIBXSMM_VERBOSE=-1 to enable binary kernel dump. The binary kernels
were disassembled by objdump with -D -b binary -m i386 -M x86-64,intel flags.

125

B.1 Reference LIBXSMM kernels

For the reference sparse and wide-sparse kernels, the A constants are originally stored
in the instruction stream. These constants are loaded into the vector registers at
the beginning of kernel execution by VMOVUPS instructions relative to the RIP register.
This is why there are uninterpretable instructions in the beginning of these two kernels
as objdump sees these data as instructions.

Sparse Kernel

libxsmm_skx_f64_nn_8x8x4_0_48_48_a1_b0_p0.sreg: file format binary

Disassembly of section .data:

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: eb 40 jmp 0x4b

b: 9a (bad)

c: 99 cdq

d: 99 cdq

e: 99 cdq

f: 99 cdq

10: 99 cdq

11: f1 icebp

12: 3f (bad)

13: 9a (bad)

14: 99 cdq

15: 99 cdq

16: 99 cdq

17: 99 cdq

18: 99 cdq

19: f1 icebp

1a: 3f (bad)

1b: 9a (bad)

1c: 99 cdq

1d: 99 cdq

1e: 99 cdq

1f: 99 cdq

20: 99 cdq

21: f1 icebp

22: 3f (bad)

23: 9a (bad)

24: 99 cdq

25: 99 cdq

26: 99 cdq

27: 99 cdq

28: 99 cdq

29: f1 icebp

2a: 3f (bad)

2b: 9a (bad)

2c: 99 cdq

2d: 99 cdq

2e: 99 cdq

2f: 99 cdq

30: 99 cdq

31: f1 icebp

126

32: 3f (bad)

33: 9a (bad)

34: 99 cdq

35: 99 cdq

36: 99 cdq

37: 99 cdq

38: 99 cdq

39: f1 icebp

3a: 3f (bad)

3b: 9a (bad)

3c: 99 cdq

3d: 99 cdq

3e: 99 cdq

3f: 99 cdq

40: 99 cdq

41: f1 icebp

42: 3f (bad)

43: 9a (bad)

44: 99 cdq

45: 99 cdq

46: 99 cdq

47: 99 cdq

48: 99 cdq

49: f1 icebp

4a: 3f (bad)

4b: 62 f1 7c 48 10 05 b6 vmovups zmm0 ,ZMMWORD PTR [rip+0 xffffffffffffffb6]

0xb

52: ff ff ff

55: eb 40 jmp 0x97

57: 9a (bad)

58: 99 cdq

59: 99 cdq

5a: 99 cdq

5b: 99 cdq

5c: 99 cdq

5d: 01 40 9a add DWORD PTR [rax -0x66],eax

60: 99 cdq

61: 99 cdq

62: 99 cdq

63: 99 cdq

64: 99 cdq

65: 01 40 9a add DWORD PTR [rax -0x66],eax

68: 99 cdq

69: 99 cdq

6a: 99 cdq

6b: 99 cdq

6c: 99 cdq

6d: 01 40 9a add DWORD PTR [rax -0x66],eax

70: 99 cdq

71: 99 cdq

72: 99 cdq

73: 99 cdq

74: 99 cdq

75: 01 40 9a add DWORD PTR [rax -0x66],eax

78: 99 cdq

79: 99 cdq

7a: 99 cdq

7b: 99 cdq

7c: 99 cdq

7d: 01 40 9a add DWORD PTR [rax -0x66],eax

80: 99 cdq

81: 99 cdq

82: 99 cdq

83: 99 cdq

84: 99 cdq

85: 01 40 9a add DWORD PTR [rax -0x66],eax

88: 99 cdq

89: 99 cdq

8a: 99 cdq

127

8b: 99 cdq

8c: 99 cdq

8d: 01 40 9a add DWORD PTR [rax -0x66],eax

90: 99 cdq

91: 99 cdq

92: 99 cdq

93: 99 cdq

94: 99 cdq

95: 01 40 62 add DWORD PTR [rax+0x62],eax

98: f1 icebp

99: 7c 48 jl 0xe3

9b: 10 0d b6 ff ff ff adc BYTE PTR [rip+0 xffffffffffffffb6],cl # 0x57

a1: eb 40 jmp 0xe3

a3: 66 66 66 66 66 66 0a data16 data16 data16 data16 data16 data16 or al ,BYTE PTR

[rax+0x66]

aa: 40 66

ac: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

b3: 66

b4: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

bb: 66

bc: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

c3: 66

c4: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

cb: 66

cc: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

d3: 66

d4: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

db: 66

dc: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x62]

e3: 62

e4: f1 icebp

e5: 7c 48 jl 0x12f

e7: 10 15 b6 ff ff ff adc BYTE PTR [rip+0 xffffffffffffffb6],dl # 0xa3

ed: eb 40 jmp 0x12f

ef: 9a (bad)

f0: 99 cdq

f1: 99 cdq

f2: 99 cdq

f3: 99 cdq

f4: 99 cdq

f5: 11 40 9a adc DWORD PTR [rax -0x66],eax

f8: 99 cdq

f9: 99 cdq

fa: 99 cdq

fb: 99 cdq

fc: 99 cdq

fd: 11 40 9a adc DWORD PTR [rax -0x66],eax

100: 99 cdq

101: 99 cdq

102: 99 cdq

103: 99 cdq

104: 99 cdq

105: 11 40 9a adc DWORD PTR [rax -0x66],eax

108: 99 cdq

109: 99 cdq

10a: 99 cdq

10b: 99 cdq

10c: 99 cdq

10d: 11 40 9a adc DWORD PTR [rax -0x66],eax

110: 99 cdq

111: 99 cdq

112: 99 cdq

128

113: 99 cdq

114: 99 cdq

115: 11 40 9a adc DWORD PTR [rax -0x66],eax

118: 99 cdq

119: 99 cdq

11a: 99 cdq

11b: 99 cdq

11c: 99 cdq

11d: 11 40 9a adc DWORD PTR [rax -0x66],eax

120: 99 cdq

121: 99 cdq

122: 99 cdq

123: 99 cdq

124: 99 cdq

125: 11 40 9a adc DWORD PTR [rax -0x66],eax

128: 99 cdq

129: 99 cdq

12a: 99 cdq

12b: 99 cdq

12c: 99 cdq

12d: 11 40 62 adc DWORD PTR [rax+0x62],eax

130: f1 icebp

131: 7c 48 jl 0x17b

133: 10 1d b6 ff ff ff adc BYTE PTR [rip+0 xffffffffffffffb6],bl # 0xef

139: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

13f: 62 62 fd 48 b8 3e vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi]

145: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

149: 62 62 f5 48 b8 7e 06 vfmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x180]

150: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

157: 62 62 ed 48 b8 7e 0c vfmadd231pd zmm31 ,zmm2 ,ZMMWORD PTR [rsi+0x300]

15e: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

165: 62 62 e5 48 b8 7e 12 vfmadd231pd zmm31 ,zmm3 ,ZMMWORD PTR [rsi+0x480]

16c: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

173: 62 61 fd 48 2b 3a vmovntpd ZMMWORD PTR [rdx],zmm31

179: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

17f: 62 62 fd 48 bc 7e 06 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

186: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

18d: 62 62 f5 48 bc 7e 0c vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x300]

194: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

19b: 62 62 ed 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm2 ,ZMMWORD PTR [rsi+0x480]

1a2: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1a9: 62 61 fd 48 2b 7a 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm31

1b0: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1b6: 62 62 fd 48 b8 7e 0c vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

1bd: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

1c4: 62 62 f5 48 b8 7e 12 vfmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

1cb: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1d2: 62 61 fd 48 2b 7a 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm31

1d9: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1df: 62 62 fd 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

1e6: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1ed: 62 61 fd 48 2b 7a 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm31

1f4: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1fa: 62 62 fd 48 b8 3e vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi]

200: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

204: 62 62 f5 48 b8 7e 06 vfmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x180]

20b: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

212: 62 62 ed 48 b8 7e 0c vfmadd231pd zmm31 ,zmm2 ,ZMMWORD PTR [rsi+0x300]

219: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

220: 62 62 e5 48 b8 7e 12 vfmadd231pd zmm31 ,zmm3 ,ZMMWORD PTR [rsi+0x480]

227: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

22e: 62 61 fd 48 2b 7a 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm31

235: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

23b: 62 62 fd 48 bc 7e 06 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

242: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

249: 62 62 f5 48 bc 7e 0c vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x300]

250: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

257: 62 62 ed 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm2 ,ZMMWORD PTR [rsi+0x480]

25e: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

129

265: 62 61 fd 48 2b 7a 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm31

26c: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

272: 62 62 fd 48 b8 7e 0c vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

279: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

280: 62 62 f5 48 b8 7e 12 vfmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

287: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

28e: 62 61 fd 48 2b 7a 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm31

295: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

29b: 62 62 fd 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

2a2: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

2a9: 62 61 fd 48 2b 7a 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm31

2b0: 41 5f pop r15

2b2: 41 5e pop r14

2b4: 41 5d pop r13

2b6: 41 5c pop r12

2b8: 5b pop rbx

2b9: c3 ret

Wide-sparse Kernel

libxsmm_skx_f64_nn_8x16x4_0_48_48_a1_b0_p0.sreg: file format binary

Disassembly of section .data:

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: eb 40 jmp 0x4b

b: 9a (bad)

c: 99 cdq

d: 99 cdq

e: 99 cdq

f: 99 cdq

10: 99 cdq

11: f1 icebp

12: 3f (bad)

13: 9a (bad)

14: 99 cdq

15: 99 cdq

16: 99 cdq

17: 99 cdq

18: 99 cdq

19: f1 icebp

1a: 3f (bad)

1b: 9a (bad)

1c: 99 cdq

1d: 99 cdq

1e: 99 cdq

1f: 99 cdq

20: 99 cdq

21: f1 icebp

22: 3f (bad)

23: 9a (bad)

24: 99 cdq

25: 99 cdq

26: 99 cdq

27: 99 cdq

28: 99 cdq

29: f1 icebp

2a: 3f (bad)

2b: 9a (bad)

130

2c: 99 cdq

2d: 99 cdq

2e: 99 cdq

2f: 99 cdq

30: 99 cdq

31: f1 icebp

32: 3f (bad)

33: 9a (bad)

34: 99 cdq

35: 99 cdq

36: 99 cdq

37: 99 cdq

38: 99 cdq

39: f1 icebp

3a: 3f (bad)

3b: 9a (bad)

3c: 99 cdq

3d: 99 cdq

3e: 99 cdq

3f: 99 cdq

40: 99 cdq

41: f1 icebp

42: 3f (bad)

43: 9a (bad)

44: 99 cdq

45: 99 cdq

46: 99 cdq

47: 99 cdq

48: 99 cdq

49: f1 icebp

4a: 3f (bad)

4b: 62 f1 7c 48 10 05 b6 vmovups zmm0 ,ZMMWORD PTR [rip+0 xffffffffffffffb6]

0xb

52: ff ff ff

55: eb 40 jmp 0x97

57: 9a (bad)

58: 99 cdq

59: 99 cdq

5a: 99 cdq

5b: 99 cdq

5c: 99 cdq

5d: 01 40 9a add DWORD PTR [rax -0x66],eax

60: 99 cdq

61: 99 cdq

62: 99 cdq

63: 99 cdq

64: 99 cdq

65: 01 40 9a add DWORD PTR [rax -0x66],eax

68: 99 cdq

69: 99 cdq

6a: 99 cdq

6b: 99 cdq

6c: 99 cdq

6d: 01 40 9a add DWORD PTR [rax -0x66],eax

70: 99 cdq

71: 99 cdq

72: 99 cdq

73: 99 cdq

74: 99 cdq

75: 01 40 9a add DWORD PTR [rax -0x66],eax

78: 99 cdq

79: 99 cdq

7a: 99 cdq

7b: 99 cdq

7c: 99 cdq

7d: 01 40 9a add DWORD PTR [rax -0x66],eax

80: 99 cdq

81: 99 cdq

82: 99 cdq

131

83: 99 cdq

84: 99 cdq

85: 01 40 9a add DWORD PTR [rax -0x66],eax

88: 99 cdq

89: 99 cdq

8a: 99 cdq

8b: 99 cdq

8c: 99 cdq

8d: 01 40 9a add DWORD PTR [rax -0x66],eax

90: 99 cdq

91: 99 cdq

92: 99 cdq

93: 99 cdq

94: 99 cdq

95: 01 40 62 add DWORD PTR [rax+0x62],eax

98: f1 icebp

99: 7c 48 jl 0xe3

9b: 10 0d b6 ff ff ff adc BYTE PTR [rip+0 xffffffffffffffb6],cl # 0x57

a1: eb 40 jmp 0xe3

a3: 66 66 66 66 66 66 0a data16 data16 data16 data16 data16 data16 or al ,BYTE PTR

[rax+0x66]

aa: 40 66

ac: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

b3: 66

b4: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

bb: 66

bc: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

c3: 66

c4: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

cb: 66

cc: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

d3: 66

d4: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x66]

db: 66

dc: 66 66 66 66 66 0a 40 data16 data16 data16 data16 data16 or al,BYTE PTR [rax+0

x62]

e3: 62

e4: f1 icebp

e5: 7c 48 jl 0x12f

e7: 10 15 b6 ff ff ff adc BYTE PTR [rip+0 xffffffffffffffb6],dl # 0xa3

ed: eb 40 jmp 0x12f

ef: 9a (bad)

f0: 99 cdq

f1: 99 cdq

f2: 99 cdq

f3: 99 cdq

f4: 99 cdq

f5: 11 40 9a adc DWORD PTR [rax -0x66],eax

f8: 99 cdq

f9: 99 cdq

fa: 99 cdq

fb: 99 cdq

fc: 99 cdq

fd: 11 40 9a adc DWORD PTR [rax -0x66],eax

100: 99 cdq

101: 99 cdq

102: 99 cdq

103: 99 cdq

104: 99 cdq

105: 11 40 9a adc DWORD PTR [rax -0x66],eax

108: 99 cdq

109: 99 cdq

10a: 99 cdq

132

10b: 99 cdq

10c: 99 cdq

10d: 11 40 9a adc DWORD PTR [rax -0x66],eax

110: 99 cdq

111: 99 cdq

112: 99 cdq

113: 99 cdq

114: 99 cdq

115: 11 40 9a adc DWORD PTR [rax -0x66],eax

118: 99 cdq

119: 99 cdq

11a: 99 cdq

11b: 99 cdq

11c: 99 cdq

11d: 11 40 9a adc DWORD PTR [rax -0x66],eax

120: 99 cdq

121: 99 cdq

122: 99 cdq

123: 99 cdq

124: 99 cdq

125: 11 40 9a adc DWORD PTR [rax -0x66],eax

128: 99 cdq

129: 99 cdq

12a: 99 cdq

12b: 99 cdq

12c: 99 cdq

12d: 11 40 62 adc DWORD PTR [rax+0x62],eax

130: f1 icebp

131: 7c 48 jl 0x17b

133: 10 1d b6 ff ff ff adc BYTE PTR [rip+0 xffffffffffffffb6],bl # 0xef

139: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

13f: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

145: 62 62 fd 48 b8 36 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi]

14b: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

14f: 62 62 fd 48 b8 7e 01 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x40]

156: 0f 18 9e 80 00 00 00 prefetcht2 BYTE PTR [rsi+0x80]

15d: 62 62 f5 48 b8 76 06 vfmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x180]

164: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

16b: 62 62 f5 48 b8 7e 07 vfmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x1c0]

172: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

179: 62 62 ed 48 b8 76 0c vfmadd231pd zmm30 ,zmm2 ,ZMMWORD PTR [rsi+0x300]

180: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

187: 62 62 ed 48 b8 7e 0d vfmadd231pd zmm31 ,zmm2 ,ZMMWORD PTR [rsi+0x340]

18e: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

195: 62 62 e5 48 b8 76 12 vfmadd231pd zmm30 ,zmm3 ,ZMMWORD PTR [rsi+0x480]

19c: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1a3: 62 62 e5 48 b8 7e 13 vfmadd231pd zmm31 ,zmm3 ,ZMMWORD PTR [rsi+0x4c0]

1aa: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

1b1: 62 61 fd 48 2b 32 vmovntpd ZMMWORD PTR [rdx],zmm30

1b7: 62 61 fd 48 2b 7a 01 vmovntpd ZMMWORD PTR [rdx+0x40],zmm31

1be: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

1c4: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1ca: 62 62 fd 48 bc 76 06 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

1d1: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

1d8: 62 62 fd 48 bc 7e 07 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x1c0]

1df: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

1e6: 62 62 f5 48 bc 76 0c vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x300]

1ed: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

1f4: 62 62 f5 48 bc 7e 0d vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x340]

1fb: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

202: 62 62 ed 48 bc 76 12 vfnmadd231pd zmm30 ,zmm2 ,ZMMWORD PTR [rsi+0x480]

209: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

210: 62 62 ed 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm2 ,ZMMWORD PTR [rsi+0x4c0]

217: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

21e: 62 61 fd 48 2b 72 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm30

225: 62 61 fd 48 2b 7a 07 vmovntpd ZMMWORD PTR [rdx+0x1c0],zmm31

22c: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

232: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

238: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

133

23f: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

246: 62 62 fd 48 b8 7e 0d vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

24d: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

254: 62 62 f5 48 b8 76 12 vfmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

25b: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

262: 62 62 f5 48 b8 7e 13 vfmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x4c0]

269: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

270: 62 61 fd 48 2b 72 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm30

277: 62 61 fd 48 2b 7a 0d vmovntpd ZMMWORD PTR [rdx+0x340],zmm31

27e: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

284: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

28a: 62 62 fd 48 bc 76 12 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

291: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

298: 62 62 fd 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

29f: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

2a6: 62 61 fd 48 2b 72 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm30

2ad: 62 61 fd 48 2b 7a 13 vmovntpd ZMMWORD PTR [rdx+0x4c0],zmm31

2b4: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

2ba: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

2c0: 62 62 fd 48 b8 36 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi]

2c6: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

2ca: 62 62 fd 48 b8 7e 01 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x40]

2d1: 0f 18 9e 80 00 00 00 prefetcht2 BYTE PTR [rsi+0x80]

2d8: 62 62 f5 48 b8 76 06 vfmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x180]

2df: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

2e6: 62 62 f5 48 b8 7e 07 vfmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x1c0]

2ed: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

2f4: 62 62 ed 48 b8 76 0c vfmadd231pd zmm30 ,zmm2 ,ZMMWORD PTR [rsi+0x300]

2fb: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

302: 62 62 ed 48 b8 7e 0d vfmadd231pd zmm31 ,zmm2 ,ZMMWORD PTR [rsi+0x340]

309: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

310: 62 62 e5 48 b8 76 12 vfmadd231pd zmm30 ,zmm3 ,ZMMWORD PTR [rsi+0x480]

317: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

31e: 62 62 e5 48 b8 7e 13 vfmadd231pd zmm31 ,zmm3 ,ZMMWORD PTR [rsi+0x4c0]

325: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

32c: 62 61 fd 48 2b 72 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm30

333: 62 61 fd 48 2b 7a 19 vmovntpd ZMMWORD PTR [rdx+0x640],zmm31

33a: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

340: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

346: 62 62 fd 48 bc 76 06 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

34d: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

354: 62 62 fd 48 bc 7e 07 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x1c0]

35b: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

362: 62 62 f5 48 bc 76 0c vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x300]

369: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

370: 62 62 f5 48 bc 7e 0d vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x340]

377: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

37e: 62 62 ed 48 bc 76 12 vfnmadd231pd zmm30 ,zmm2 ,ZMMWORD PTR [rsi+0x480]

385: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

38c: 62 62 ed 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm2 ,ZMMWORD PTR [rsi+0x4c0]

393: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

39a: 62 61 fd 48 2b 72 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm30

3a1: 62 61 fd 48 2b 7a 1f vmovntpd ZMMWORD PTR [rdx+0x7c0],zmm31

3a8: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

3ae: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

3b4: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

3bb: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

3c2: 62 62 fd 48 b8 7e 0d vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

3c9: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

3d0: 62 62 f5 48 b8 76 12 vfmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

3d7: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

3de: 62 62 f5 48 b8 7e 13 vfmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x4c0]

3e5: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

3ec: 62 61 fd 48 2b 72 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm30

3f3: 62 61 fd 48 2b 7a 25 vmovntpd ZMMWORD PTR [rdx+0x940],zmm31

3fa: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

400: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

406: 62 62 fd 48 bc 76 12 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

40d: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

134

414: 62 62 fd 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

41b: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

422: 62 61 fd 48 2b 72 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm30

429: 62 61 fd 48 2b 7a 2b vmovntpd ZMMWORD PTR [rdx+0xac0],zmm31

430: 41 5f pop r15

432: 41 5e pop r14

434: 41 5d pop r13

436: 41 5c pop r12

438: 5b pop rbx

439: c3 ret

Dense Kernel

libxsmm_skx_f64_nn_8x8x4_48_4_48_a1_b0_p0_br0_uh0_si0_tc -

abid_avnni0_bvnni0_cvnni0_decompress_A0_spfactor1.mxm: file format binary

Disassembly of section .data:

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: 49 c7 c3 00 00 00 00 mov r11 ,0x0

10: 49 83 c3 08 add r11 ,0x8

14: 49 c7 c2 00 00 00 00 mov r10 ,0x0

1b: 49 83 c2 08 add r10 ,0x8

1f: 62 01 3d 40 ef c0 vpxord zmm24 ,zmm24 ,zmm24

25: 62 01 35 40 ef c9 vpxord zmm25 ,zmm25 ,zmm25

2b: 62 01 2d 40 ef d2 vpxord zmm26 ,zmm26 ,zmm26

31: 62 01 25 40 ef db vpxord zmm27 ,zmm27 ,zmm27

37: 62 01 1d 40 ef e4 vpxord zmm28 ,zmm28 ,zmm28

3d: 62 01 15 40 ef ed vpxord zmm29 ,zmm29 ,zmm29

43: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

49: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

4f: 62 a1 7d 40 ef c0 vpxord zmm16 ,zmm16 ,zmm16

55: 62 a1 75 40 ef c9 vpxord zmm17 ,zmm17 ,zmm17

5b: 62 a1 6d 40 ef d2 vpxord zmm18 ,zmm18 ,zmm18

61: 62 a1 65 40 ef db vpxord zmm19 ,zmm19 ,zmm19

67: 62 a1 5d 40 ef e4 vpxord zmm20 ,zmm20 ,zmm20

6d: 62 a1 55 40 ef ed vpxord zmm21 ,zmm21 ,zmm21

73: 62 a1 4d 40 ef f6 vpxord zmm22 ,zmm22 ,zmm22

79: 62 a1 45 40 ef ff vpxord zmm23 ,zmm23 ,zmm23

7f: 62 f1 fd 48 10 07 vmovupd zmm0 ,ZMMWORD PTR [rdi]

85: 62 f1 fd 48 10 4f 06 vmovupd zmm1 ,ZMMWORD PTR [rdi+0x180]

8c: 62 62 fd 58 b8 06 vfmadd231pd zmm24 ,zmm0 ,QWORD PTR [rsi]{1to8}

92: 62 62 fd 58 b8 4e 04 vfmadd231pd zmm25 ,zmm0 ,QWORD PTR [rsi+0x20]{1to8}

99: 62 62 fd 58 b8 56 08 vfmadd231pd zmm26 ,zmm0 ,QWORD PTR [rsi+0x40]{1to8}

a0: 62 62 fd 58 b8 5e 0c vfmadd231pd zmm27 ,zmm0 ,QWORD PTR [rsi+0x60]{1 to8}

a7: 62 62 fd 58 b8 66 10 vfmadd231pd zmm28 ,zmm0 ,QWORD PTR [rsi+0x80]{1 to8}

ae: 62 62 fd 58 b8 6e 14 vfmadd231pd zmm29 ,zmm0 ,QWORD PTR [rsi+0xa0]{1 to8}

b5: 62 62 fd 58 b8 76 18 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rsi+0xc0]{1 to8}

bc: 62 62 fd 58 b8 7e 1c vfmadd231pd zmm31 ,zmm0 ,QWORD PTR [rsi+0xe0]{1 to8}

c3: 62 f1 fd 48 10 47 0c vmovupd zmm0 ,ZMMWORD PTR [rdi+0x300]

ca: 62 e2 f5 58 b8 46 01 vfmadd231pd zmm16 ,zmm1 ,QWORD PTR [rsi+0x8]{1to8}

d1: 62 e2 f5 58 b8 4e 05 vfmadd231pd zmm17 ,zmm1 ,QWORD PTR [rsi+0x28]{1 to8}

d8: 62 e2 f5 58 b8 56 09 vfmadd231pd zmm18 ,zmm1 ,QWORD PTR [rsi+0x48]{1 to8}

df: 62 e2 f5 58 b8 5e 0d vfmadd231pd zmm19 ,zmm1 ,QWORD PTR [rsi+0x68]{1 to8}

e6: 62 e2 f5 58 b8 66 11 vfmadd231pd zmm20 ,zmm1 ,QWORD PTR [rsi+0x88]{1 to8}

ed: 62 e2 f5 58 b8 6e 15 vfmadd231pd zmm21 ,zmm1 ,QWORD PTR [rsi+0xa8]{1 to8}

f4: 62 e2 f5 58 b8 76 19 vfmadd231pd zmm22 ,zmm1 ,QWORD PTR [rsi+0xc8]{1 to8}

fb: 62 e2 f5 58 b8 7e 1d vfmadd231pd zmm23 ,zmm1 ,QWORD PTR [rsi+0xe8]{1 to8}

102: 62 f1 fd 48 10 4f 12 vmovupd zmm1 ,ZMMWORD PTR [rdi+0x480]

135

109: 62 62 fd 58 b8 46 02 vfmadd231pd zmm24 ,zmm0 ,QWORD PTR [rsi+0x10]{1 to8}

110: 62 62 fd 58 b8 4e 06 vfmadd231pd zmm25 ,zmm0 ,QWORD PTR [rsi+0x30]{1 to8}

117: 62 62 fd 58 b8 56 0a vfmadd231pd zmm26 ,zmm0 ,QWORD PTR [rsi+0x50]{1 to8}

11e: 62 62 fd 58 b8 5e 0e vfmadd231pd zmm27 ,zmm0 ,QWORD PTR [rsi+0x70]{1to8}

125: 62 62 fd 58 b8 66 12 vfmadd231pd zmm28 ,zmm0 ,QWORD PTR [rsi+0x90]{1 to8}

12c: 62 62 fd 58 b8 6e 16 vfmadd231pd zmm29 ,zmm0 ,QWORD PTR [rsi+0xb0]{1to8}

133: 62 62 fd 58 b8 76 1a vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rsi+0xd0]{1 to8}

13a: 62 62 fd 58 b8 7e 1e vfmadd231pd zmm31 ,zmm0 ,QWORD PTR [rsi+0xf0]{1to8}

141: 48 81 c7 00 06 00 00 add rdi ,0x600

148: 62 e2 f5 58 b8 46 03 vfmadd231pd zmm16 ,zmm1 ,QWORD PTR [rsi+0x18]{1 to8}

14f: 62 e2 f5 58 b8 4e 07 vfmadd231pd zmm17 ,zmm1 ,QWORD PTR [rsi+0x38]{1to8}

156: 62 e2 f5 58 b8 56 0b vfmadd231pd zmm18 ,zmm1 ,QWORD PTR [rsi+0x58]{1 to8}

15d: 62 e2 f5 58 b8 5e 0f vfmadd231pd zmm19 ,zmm1 ,QWORD PTR [rsi+0x78]{1to8}

164: 62 e2 f5 58 b8 66 13 vfmadd231pd zmm20 ,zmm1 ,QWORD PTR [rsi+0x98]{1 to8}

16b: 62 e2 f5 58 b8 6e 17 vfmadd231pd zmm21 ,zmm1 ,QWORD PTR [rsi+0xb8]{1to8}

172: 62 e2 f5 58 b8 76 1b vfmadd231pd zmm22 ,zmm1 ,QWORD PTR [rsi+0xd8]{1 to8}

179: 62 e2 f5 58 b8 7e 1f vfmadd231pd zmm23 ,zmm1 ,QWORD PTR [rsi+0xf8]{1 to8}

180: 62 21 bd 40 58 c0 vaddpd zmm24 ,zmm24 ,zmm16

186: 62 21 b5 40 58 c9 vaddpd zmm25 ,zmm25 ,zmm17

18c: 62 21 ad 40 58 d2 vaddpd zmm26 ,zmm26 ,zmm18

192: 62 21 a5 40 58 db vaddpd zmm27 ,zmm27 ,zmm19

198: 62 21 9d 40 58 e4 vaddpd zmm28 ,zmm28 ,zmm20

19e: 62 21 95 40 58 ed vaddpd zmm29 ,zmm29 ,zmm21

1a4: 62 21 8d 40 58 f6 vaddpd zmm30 ,zmm30 ,zmm22

1aa: 62 21 85 40 58 ff vaddpd zmm31 ,zmm31 ,zmm23

1b0: 62 61 fd 48 2b 02 vmovntpd ZMMWORD PTR [rdx],zmm24

1b6: 62 61 fd 48 2b 4a 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm25

1bd: 62 61 fd 48 2b 52 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm26

1c4: 62 61 fd 48 2b 5a 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm27

1cb: 62 61 fd 48 2b 62 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm28

1d2: 62 61 fd 48 2b 6a 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm29

1d9: 62 61 fd 48 2b 72 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm30

1e0: 62 61 fd 48 2b 7a 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm31

1e7: 48 83 c2 40 add rdx ,0x40

1eb: 48 81 ef c0 05 00 00 sub rdi ,0x5c0

1f2: 49 83 fa 08 cmp r10 ,0x8

1f6: 0f 8c 1f fe ff ff jl 0x1b

1fc: 48 81 c2 c0 0b 00 00 add rdx ,0xbc0

203: 48 81 c6 00 01 00 00 add rsi ,0x100

20a: 48 83 ef 40 sub rdi ,0x40

20e: 49 83 fb 08 cmp r11 ,0x8

212: 0f 8c f8 fd ff ff jl 0x10

218: 41 5f pop r15

21a: 41 5e pop r14

21c: 41 5d pop r13

21e: 41 5c pop r12

220: 5b pop rbx

221: c3 ret

B.2 GiMMiK Kernel

void

gimmik_mm(int ncol ,

const double* restrict b, int ldb ,

double* restrict c, int ldc)

{

double dotp;

#pragma omp parallel for simd private(dotp)

for (int i = 0; i < ncol; i++)

{

dotp = 1.1*b[i + 0*ldb] + 2.2*b[i + 1*ldb] + 3.3*b[i + 2*ldb] + 4.4*b[i + 3*

ldb];

c[i + 0*ldc] = dotp;

136

dotp = -1.1*b[i + 1*ldb] + -2.2*b[i + 2*ldb] + -3.3*b[i + 3*ldb];

c[i + 1*ldc] = dotp;

dotp = 1.1*b[i + 2*ldb] + 2.2*b[i + 3*ldb];

c[i + 2*ldc] = dotp;

dotp = -1.1*b[i + 3*ldb];

c[i + 3*ldc] = dotp;

dotp = 1.1*b[i + 0*ldb] + 2.2*b[i + 1*ldb] + 3.3*b[i + 2*ldb] + 4.4*b[i + 3*

ldb];

c[i + 4*ldc] = dotp;

dotp = -1.1*b[i + 1*ldb] + -2.2*b[i + 2*ldb] + -3.3*b[i + 3*ldb];

c[i + 5*ldc] = dotp;

dotp = 1.1*b[i + 2*ldb] + 2.2*b[i + 3*ldb];

c[i + 6*ldc] = dotp;

dotp = -1.1*b[i + 3*ldb];

c[i + 7*ldc] = dotp;

}

}

B.3 Small and Sparse GEMM Kernel with Run-

time Broadcasting Packed A Constants from

Memory

No Multiple Accumulation

libxsmm_skx_f64_nn_8x8x4_0_48_48_a1_b0_p0.sreg: file format binary

Disassembly of section .data:

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

f: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

15: 62 62 fd 48 b8 3e vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi]

1b: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

1f: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

26: 62 62 fd 48 b8 7e 06 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

2d: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

34: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

3b: 62 62 fd 48 b8 7e 0c vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

42: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

49: 62 f2 fd 48 19 47 03 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x18]

50: 62 62 fd 48 b8 7e 12 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

57: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

5e: 62 61 fd 48 2b 3a vmovntpd ZMMWORD PTR [rdx],zmm31

64: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

6a: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

70: 62 62 fd 48 bc 7e 06 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

77: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

7e: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

85: 62 62 fd 48 bc 7e 0c vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

8c: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

93: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

9a: 62 62 fd 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

a1: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

a8: 62 61 fd 48 2b 7a 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm31

137

af: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

b5: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

bb: 62 62 fd 48 b8 7e 0c vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

c2: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

c9: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

d0: 62 62 fd 48 b8 7e 12 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

d7: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

de: 62 61 fd 48 2b 7a 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm31

e5: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

eb: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

f1: 62 62 fd 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

f8: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

ff: 62 61 fd 48 2b 7a 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm31

106: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

10c: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

112: 62 62 fd 48 b8 3e vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi]

118: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

11c: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

123: 62 62 fd 48 b8 7e 06 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

12a: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

131: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

138: 62 62 fd 48 b8 7e 0c vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

13f: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

146: 62 f2 fd 48 19 47 03 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x18]

14d: 62 62 fd 48 b8 7e 12 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

154: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

15b: 62 61 fd 48 2b 7a 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm31

162: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

168: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

16e: 62 62 fd 48 bc 7e 06 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

175: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

17c: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

183: 62 62 fd 48 bc 7e 0c vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

18a: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

191: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

198: 62 62 fd 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

19f: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1a6: 62 61 fd 48 2b 7a 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm31

1ad: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1b3: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

1b9: 62 62 fd 48 b8 7e 0c vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

1c0: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

1c7: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

1ce: 62 62 fd 48 b8 7e 12 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

1d5: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1dc: 62 61 fd 48 2b 7a 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm31

1e3: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1e9: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

1ef: 62 62 fd 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

1f6: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1fd: 62 61 fd 48 2b 7a 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm31

204: 41 5f pop r15

206: 41 5e pop r14

208: 41 5d pop r13

20a: 41 5c pop r12

20c: 5b pop rbx

20d: c3 ret

N Blocking of 2

libxsmm_skx_f64_nn_8x16x4_0_48_48_a1_b0_p0.sreg: file format binary

Disassembly of section .data:

138

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

f: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

15: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

1b: 62 62 fd 48 b8 36 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi]

21: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

25: 62 62 fd 48 b8 7e 01 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x40]

2c: 0f 18 9e 80 00 00 00 prefetcht2 BYTE PTR [rsi+0x80]

33: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

3a: 62 62 fd 48 b8 76 06 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

41: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

48: 62 62 fd 48 b8 7e 07 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x1c0]

4f: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

56: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

5d: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

64: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

6b: 62 62 fd 48 b8 7e 0d vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

72: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

79: 62 f2 fd 48 19 47 03 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x18]

80: 62 62 fd 48 b8 76 12 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

87: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

8e: 62 62 fd 48 b8 7e 13 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

95: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

9c: 62 61 fd 48 2b 32 vmovntpd ZMMWORD PTR [rdx],zmm30

a2: 62 61 fd 48 2b 7a 01 vmovntpd ZMMWORD PTR [rdx+0x40],zmm31

a9: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

af: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

b5: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

bb: 62 62 fd 48 bc 76 06 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

c2: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

c9: 62 62 fd 48 bc 7e 07 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x1c0]

d0: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

d7: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

de: 62 62 fd 48 bc 76 0c vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

e5: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

ec: 62 62 fd 48 bc 7e 0d vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

f3: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

fa: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

101: 62 62 fd 48 bc 76 12 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

108: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

10f: 62 62 fd 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

116: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

11d: 62 61 fd 48 2b 72 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm30

124: 62 61 fd 48 2b 7a 07 vmovntpd ZMMWORD PTR [rdx+0x1c0],zmm31

12b: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

131: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

137: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

13d: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

144: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

14b: 62 62 fd 48 b8 7e 0d vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

152: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

159: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

160: 62 62 fd 48 b8 76 12 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

167: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

16e: 62 62 fd 48 b8 7e 13 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

175: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

17c: 62 61 fd 48 2b 72 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm30

183: 62 61 fd 48 2b 7a 0d vmovntpd ZMMWORD PTR [rdx+0x340],zmm31

18a: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

190: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

196: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

19c: 62 62 fd 48 bc 76 12 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

1a3: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1aa: 62 62 fd 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

139

1b1: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

1b8: 62 61 fd 48 2b 72 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm30

1bf: 62 61 fd 48 2b 7a 13 vmovntpd ZMMWORD PTR [rdx+0x4c0],zmm31

1c6: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

1cc: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1d2: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

1d8: 62 62 fd 48 b8 36 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi]

1de: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

1e2: 62 62 fd 48 b8 7e 01 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x40]

1e9: 0f 18 9e 80 00 00 00 prefetcht2 BYTE PTR [rsi+0x80]

1f0: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

1f7: 62 62 fd 48 b8 76 06 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

1fe: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

205: 62 62 fd 48 b8 7e 07 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x1c0]

20c: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

213: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

21a: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

221: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

228: 62 62 fd 48 b8 7e 0d vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

22f: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

236: 62 f2 fd 48 19 47 03 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x18]

23d: 62 62 fd 48 b8 76 12 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

244: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

24b: 62 62 fd 48 b8 7e 13 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

252: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

259: 62 61 fd 48 2b 72 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm30

260: 62 61 fd 48 2b 7a 19 vmovntpd ZMMWORD PTR [rdx+0x640],zmm31

267: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

26d: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

273: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

279: 62 62 fd 48 bc 76 06 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

280: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

287: 62 62 fd 48 bc 7e 07 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x1c0]

28e: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

295: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

29c: 62 62 fd 48 bc 76 0c vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

2a3: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

2aa: 62 62 fd 48 bc 7e 0d vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

2b1: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

2b8: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

2bf: 62 62 fd 48 bc 76 12 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

2c6: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

2cd: 62 62 fd 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

2d4: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

2db: 62 61 fd 48 2b 72 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm30

2e2: 62 61 fd 48 2b 7a 1f vmovntpd ZMMWORD PTR [rdx+0x7c0],zmm31

2e9: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

2ef: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

2f5: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

2fb: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

302: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

309: 62 62 fd 48 b8 7e 0d vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

310: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

317: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

31e: 62 62 fd 48 b8 76 12 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

325: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

32c: 62 62 fd 48 b8 7e 13 vfmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

333: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

33a: 62 61 fd 48 2b 72 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm30

341: 62 61 fd 48 2b 7a 25 vmovntpd ZMMWORD PTR [rdx+0x940],zmm31

348: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

34e: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

354: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

35a: 62 62 fd 48 bc 76 12 vfnmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

361: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

368: 62 62 fd 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

36f: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

376: 62 61 fd 48 2b 72 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm30

37d: 62 61 fd 48 2b 7a 2b vmovntpd ZMMWORD PTR [rdx+0xac0],zmm31

140

384: 41 5f pop r15

386: 41 5e pop r14

388: 41 5d pop r13

38a: 41 5c pop r12

38c: 5b pop rbx

38d: c3 ret

M Blocking of 2

libxsmm_skx_f64_nn_8x8x4_0_48_48_a1_b0_p0.sreg: file format binary

Disassembly of section .data:

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

f: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

15: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

1b: 62 62 fd 48 b8 36 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi]

21: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

25: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

2c: 62 62 fd 48 b8 76 06 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

33: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

3a: 62 f2 fd 48 19 0f vbroadcastsd zmm1 ,QWORD PTR [rdi]

40: 62 62 f5 48 bc 7e 06 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x180]

47: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

4e: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

55: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

5c: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

63: 62 f2 fd 48 19 4f 01 vbroadcastsd zmm1 ,QWORD PTR [rdi+0x8]

6a: 62 62 f5 48 bc 7e 0c vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x300]

71: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

78: 62 f2 fd 48 19 47 03 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x18]

7f: 62 62 fd 48 b8 76 12 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

86: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

8d: 62 f2 fd 48 19 4f 02 vbroadcastsd zmm1 ,QWORD PTR [rdi+0x10]

94: 62 62 f5 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

9b: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

a2: 62 61 fd 48 2b 32 vmovntpd ZMMWORD PTR [rdx],zmm30

a8: 62 61 fd 48 2b 7a 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm31

af: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

b5: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

bb: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

c1: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

c8: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

cf: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

d6: 62 62 fd 48 b8 76 12 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

dd: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

e4: 62 f2 fd 48 19 0f vbroadcastsd zmm1 ,QWORD PTR [rdi]

ea: 62 62 f5 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

f1: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

f8: 62 61 fd 48 2b 72 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm30

ff: 62 61 fd 48 2b 7a 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm31

106: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

10c: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

112: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

118: 62 62 fd 48 b8 36 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi]

11e: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

122: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

129: 62 62 fd 48 b8 76 06 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

141

130: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

137: 62 f2 fd 48 19 0f vbroadcastsd zmm1 ,QWORD PTR [rdi]

13d: 62 62 f5 48 bc 7e 06 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x180]

144: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

14b: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

152: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

159: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

160: 62 f2 fd 48 19 4f 01 vbroadcastsd zmm1 ,QWORD PTR [rdi+0x8]

167: 62 62 f5 48 bc 7e 0c vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x300]

16e: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

175: 62 f2 fd 48 19 47 03 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x18]

17c: 62 62 fd 48 b8 76 12 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

183: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

18a: 62 f2 fd 48 19 4f 02 vbroadcastsd zmm1 ,QWORD PTR [rdi+0x10]

191: 62 62 f5 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

198: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

19f: 62 61 fd 48 2b 72 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm30

1a6: 62 61 fd 48 2b 7a 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm31

1ad: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

1b3: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1b9: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

1bf: 62 62 fd 48 b8 76 0c vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

1c6: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

1cd: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

1d4: 62 62 fd 48 b8 76 12 vfmadd231pd zmm30 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

1db: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1e2: 62 f2 fd 48 19 0f vbroadcastsd zmm1 ,QWORD PTR [rdi]

1e8: 62 62 f5 48 bc 7e 12 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

1ef: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

1f6: 62 61 fd 48 2b 72 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm30

1fd: 62 61 fd 48 2b 7a 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm31

204: 41 5f pop r15

206: 41 5e pop r14

208: 41 5d pop r13

20a: 41 5c pop r12

20c: 5b pop rbx

20d: c3 ret

N Blocking of 2 and M Blocking of 2

libxsmm_skx_f64_nn_8x16x4_0_48_48_a1_b0_p0.sreg: file format binary

Disassembly of section .data:

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: 62 01 1d 40 ef e4 vpxord zmm28 ,zmm28 ,zmm28

f: 62 01 15 40 ef ed vpxord zmm29 ,zmm29 ,zmm29

15: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

1b: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

21: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

27: 62 62 fd 48 b8 26 vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi]

2d: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

31: 62 62 fd 48 b8 6e 01 vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x40]

38: 0f 18 9e 80 00 00 00 prefetcht2 BYTE PTR [rsi+0x80]

3f: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

46: 62 62 fd 48 b8 66 06 vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

4d: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

54: 62 62 fd 48 b8 6e 07 vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x1c0]

5b: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

142

62: 62 f2 fd 48 19 0f vbroadcastsd zmm1 ,QWORD PTR [rdi]

68: 62 62 f5 48 bc 76 06 vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x180]

6f: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

76: 62 62 f5 48 bc 7e 07 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x1c0]

7d: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

84: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

8b: 62 62 fd 48 b8 66 0c vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

92: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

99: 62 62 fd 48 b8 6e 0d vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

a0: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

a7: 62 f2 fd 48 19 4f 01 vbroadcastsd zmm1 ,QWORD PTR [rdi+0x8]

ae: 62 62 f5 48 bc 76 0c vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x300]

b5: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

bc: 62 62 f5 48 bc 7e 0d vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x340]

c3: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

ca: 62 f2 fd 48 19 47 03 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x18]

d1: 62 62 fd 48 b8 66 12 vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

d8: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

df: 62 62 fd 48 b8 6e 13 vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

e6: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

ed: 62 f2 fd 48 19 4f 02 vbroadcastsd zmm1 ,QWORD PTR [rdi+0x10]

f4: 62 62 f5 48 bc 76 12 vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

fb: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

102: 62 62 f5 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x4c0]

109: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

110: 62 61 fd 48 2b 22 vmovntpd ZMMWORD PTR [rdx],zmm28

116: 62 61 fd 48 2b 6a 01 vmovntpd ZMMWORD PTR [rdx+0x40],zmm29

11d: 62 61 fd 48 2b 72 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm30

124: 62 61 fd 48 2b 7a 07 vmovntpd ZMMWORD PTR [rdx+0x1c0],zmm31

12b: 62 01 1d 40 ef e4 vpxord zmm28 ,zmm28 ,zmm28

131: 62 01 15 40 ef ed vpxord zmm29 ,zmm29 ,zmm29

137: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

13d: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

143: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

149: 62 62 fd 48 b8 66 0c vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

150: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

157: 62 62 fd 48 b8 6e 0d vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

15e: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

165: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

16c: 62 62 fd 48 b8 66 12 vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

173: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

17a: 62 62 fd 48 b8 6e 13 vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

181: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

188: 62 f2 fd 48 19 0f vbroadcastsd zmm1 ,QWORD PTR [rdi]

18e: 62 62 f5 48 bc 76 12 vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

195: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

19c: 62 62 f5 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x4c0]

1a3: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

1aa: 62 61 fd 48 2b 62 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm28

1b1: 62 61 fd 48 2b 6a 0d vmovntpd ZMMWORD PTR [rdx+0x340],zmm29

1b8: 62 61 fd 48 2b 72 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm30

1bf: 62 61 fd 48 2b 7a 13 vmovntpd ZMMWORD PTR [rdx+0x4c0],zmm31

1c6: 62 01 1d 40 ef e4 vpxord zmm28 ,zmm28 ,zmm28

1cc: 62 01 15 40 ef ed vpxord zmm29 ,zmm29 ,zmm29

1d2: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

1d8: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1de: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

1e4: 62 62 fd 48 b8 26 vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi]

1ea: 0f 18 5e 40 prefetcht2 BYTE PTR [rsi+0x40]

1ee: 62 62 fd 48 b8 6e 01 vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x40]

1f5: 0f 18 9e 80 00 00 00 prefetcht2 BYTE PTR [rsi+0x80]

1fc: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

203: 62 62 fd 48 b8 66 06 vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x180]

20a: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

211: 62 62 fd 48 b8 6e 07 vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x1c0]

218: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

21f: 62 f2 fd 48 19 0f vbroadcastsd zmm1 ,QWORD PTR [rdi]

225: 62 62 f5 48 bc 76 06 vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x180]

22c: 0f 18 9e c0 01 00 00 prefetcht2 BYTE PTR [rsi+0x1c0]

143

233: 62 62 f5 48 bc 7e 07 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x1c0]

23a: 0f 18 9e 00 02 00 00 prefetcht2 BYTE PTR [rsi+0x200]

241: 62 f2 fd 48 19 47 02 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x10]

248: 62 62 fd 48 b8 66 0c vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

24f: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

256: 62 62 fd 48 b8 6e 0d vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

25d: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

264: 62 f2 fd 48 19 4f 01 vbroadcastsd zmm1 ,QWORD PTR [rdi+0x8]

26b: 62 62 f5 48 bc 76 0c vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x300]

272: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

279: 62 62 f5 48 bc 7e 0d vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x340]

280: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

287: 62 f2 fd 48 19 47 03 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x18]

28e: 62 62 fd 48 b8 66 12 vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

295: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

29c: 62 62 fd 48 b8 6e 13 vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

2a3: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

2aa: 62 f2 fd 48 19 4f 02 vbroadcastsd zmm1 ,QWORD PTR [rdi+0x10]

2b1: 62 62 f5 48 bc 76 12 vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

2b8: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

2bf: 62 62 f5 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x4c0]

2c6: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

2cd: 62 61 fd 48 2b 62 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm28

2d4: 62 61 fd 48 2b 6a 19 vmovntpd ZMMWORD PTR [rdx+0x640],zmm29

2db: 62 61 fd 48 2b 72 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm30

2e2: 62 61 fd 48 2b 7a 1f vmovntpd ZMMWORD PTR [rdx+0x7c0],zmm31

2e9: 62 01 1d 40 ef e4 vpxord zmm28 ,zmm28 ,zmm28

2ef: 62 01 15 40 ef ed vpxord zmm29 ,zmm29 ,zmm29

2f5: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

2fb: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

301: 62 f2 fd 48 19 07 vbroadcastsd zmm0 ,QWORD PTR [rdi]

307: 62 62 fd 48 b8 66 0c vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x300]

30e: 0f 18 9e 40 03 00 00 prefetcht2 BYTE PTR [rsi+0x340]

315: 62 62 fd 48 b8 6e 0d vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x340]

31c: 0f 18 9e 80 03 00 00 prefetcht2 BYTE PTR [rsi+0x380]

323: 62 f2 fd 48 19 47 01 vbroadcastsd zmm0 ,QWORD PTR [rdi+0x8]

32a: 62 62 fd 48 b8 66 12 vfmadd231pd zmm28 ,zmm0 ,ZMMWORD PTR [rsi+0x480]

331: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

338: 62 62 fd 48 b8 6e 13 vfmadd231pd zmm29 ,zmm0 ,ZMMWORD PTR [rsi+0x4c0]

33f: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

346: 62 f2 fd 48 19 0f vbroadcastsd zmm1 ,QWORD PTR [rdi]

34c: 62 62 f5 48 bc 76 12 vfnmadd231pd zmm30 ,zmm1 ,ZMMWORD PTR [rsi+0x480]

353: 0f 18 9e c0 04 00 00 prefetcht2 BYTE PTR [rsi+0x4c0]

35a: 62 62 f5 48 bc 7e 13 vfnmadd231pd zmm31 ,zmm1 ,ZMMWORD PTR [rsi+0x4c0]

361: 0f 18 9e 00 05 00 00 prefetcht2 BYTE PTR [rsi+0x500]

368: 62 61 fd 48 2b 62 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm28

36f: 62 61 fd 48 2b 6a 25 vmovntpd ZMMWORD PTR [rdx+0x940],zmm29

376: 62 61 fd 48 2b 72 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm30

37d: 62 61 fd 48 2b 7a 2b vmovntpd ZMMWORD PTR [rdx+0xac0],zmm31

384: 41 5f pop r15

386: 41 5e pop r14

388: 41 5d pop r13

38a: 41 5c pop r12

38c: 5b pop rbx

38d: c3 ret

144

B.4 Small and Sparse GEMM Kernel with Run-

time Broadcasting Packed A Constants from

Memory and Caching B Strides in Vector Reg-

isters

No Multiple Accumulation

libxsmm_skx_f64_nn_8x8x4_0_48_48_a1_b0_p0.sreg: file format binary

Disassembly of section .data:

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: 62 f1 fd 48 10 06 vmovupd zmm0 ,ZMMWORD PTR [rsi]

f: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

15: 62 f1 fd 48 10 4e 06 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x180]

1c: 62 62 fd 58 b8 3f vfmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi]{1to8}

22: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

29: 62 62 f5 58 b8 7f 01 vfmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x8]{1 to8}

30: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

37: 62 62 fd 58 b8 7f 02 vfmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi+0x10]{1to8}

3e: 62 62 f5 58 b8 7f 03 vfmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x18]{1to8}

45: 62 61 fd 48 2b 3a vmovntpd ZMMWORD PTR [rdx],zmm31

4b: 62 f1 fd 48 10 46 06 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x180]

52: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

58: 62 f1 fd 48 10 4e 0c vmovupd zmm1 ,ZMMWORD PTR [rsi+0x300]

5f: 62 62 fd 58 bc 3f vfnmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi]{1to8}

65: 62 f1 fd 48 10 46 12 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x480]

6c: 62 62 f5 58 bc 7f 01 vfnmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

73: 62 62 fd 58 bc 7f 02 vfnmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi+0x10]{1to8}

7a: 62 61 fd 48 2b 7a 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm31

81: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

88: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

8e: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

95: 62 62 fd 58 b8 3f vfmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi]{1to8}

9b: 62 62 f5 58 b8 7f 01 vfmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

a2: 62 61 fd 48 2b 7a 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm31

a9: 62 f1 fd 48 10 46 12 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x480]

b0: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

b6: 62 62 fd 58 bc 3f vfnmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi]{1to8}

bc: 62 61 fd 48 2b 7a 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm31

c3: 62 f1 fd 48 10 06 vmovupd zmm0 ,ZMMWORD PTR [rsi]

c9: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

cf: 62 f1 fd 48 10 4e 06 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x180]

d6: 62 62 fd 58 b8 3f vfmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi]{1to8}

dc: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

e3: 62 62 f5 58 b8 7f 01 vfmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

ea: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

f1: 62 62 fd 58 b8 7f 02 vfmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi+0x10]{1 to8}

f8: 62 62 f5 58 b8 7f 03 vfmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x18]{1 to8}

ff: 62 61 fd 48 2b 7a 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm31

106: 62 f1 fd 48 10 46 06 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x180]

10d: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

113: 62 f1 fd 48 10 4e 0c vmovupd zmm1 ,ZMMWORD PTR [rsi+0x300]

11a: 62 62 fd 58 bc 3f vfnmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi]{1 to8}

120: 62 f1 fd 48 10 46 12 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x480]

127: 62 62 f5 58 bc 7f 01 vfnmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x8]{1 to8}

145

12e: 62 62 fd 58 bc 7f 02 vfnmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi+0x10]{1to8}

135: 62 61 fd 48 2b 7a 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm31

13c: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

143: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

149: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

150: 62 62 fd 58 b8 3f vfmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi]{1to8}

156: 62 62 f5 58 b8 7f 01 vfmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

15d: 62 61 fd 48 2b 7a 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm31

164: 62 f1 fd 48 10 46 12 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x480]

16b: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

171: 62 62 fd 58 bc 3f vfnmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi]{1to8}

177: 62 61 fd 48 2b 7a 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm31

17e: 41 5f pop r15

180: 41 5e pop r14

182: 41 5d pop r13

184: 41 5c pop r12

186: 5b pop rbx

187: c3 ret

N Blocking of 2

libxsmm_skx_f64_nn_8x16x4_0_48_48_a1_b0_p0.sreg: file format binary

Disassembly of section .data:

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: 62 f1 fd 48 10 06 vmovupd zmm0 ,ZMMWORD PTR [rsi]

f: 62 f1 fd 48 10 56 01 vmovupd zmm2 ,ZMMWORD PTR [rsi+0x40]

16: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

1c: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

22: 62 f1 fd 48 10 4e 06 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x180]

29: 62 f1 fd 48 10 5e 07 vmovupd zmm3 ,ZMMWORD PTR [rsi+0x1c0]

30: 62 62 fd 58 b8 37 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

36: 62 62 ed 58 b8 3f vfmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi]{1to8}

3c: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

43: 62 f1 fd 48 10 56 0d vmovupd zmm2 ,ZMMWORD PTR [rsi+0x340]

4a: 62 62 f5 58 b8 77 01 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

51: 62 62 e5 58 b8 7f 01 vfmadd231pd zmm31 ,zmm3 ,QWORD PTR [rdi+0x8]{1 to8}

58: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

5f: 62 f1 fd 48 10 5e 13 vmovupd zmm3 ,ZMMWORD PTR [rsi+0x4c0]

66: 62 62 fd 58 b8 77 02 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi+0x10]{1 to8}

6d: 62 62 ed 58 b8 7f 02 vfmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi+0x10]{1to8}

74: 62 62 f5 58 b8 77 03 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x18]{1 to8}

7b: 62 62 e5 58 b8 7f 03 vfmadd231pd zmm31 ,zmm3 ,QWORD PTR [rdi+0x18]{1to8}

82: 62 61 fd 48 2b 32 vmovntpd ZMMWORD PTR [rdx],zmm30

88: 62 61 fd 48 2b 7a 01 vmovntpd ZMMWORD PTR [rdx+0x40],zmm31

8f: 62 f1 fd 48 10 46 06 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x180]

96: 62 f1 fd 48 10 56 07 vmovupd zmm2 ,ZMMWORD PTR [rsi+0x1c0]

9d: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

a3: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

a9: 62 f1 fd 48 10 4e 0c vmovupd zmm1 ,ZMMWORD PTR [rsi+0x300]

b0: 62 f1 fd 48 10 5e 0d vmovupd zmm3 ,ZMMWORD PTR [rsi+0x340]

b7: 62 62 fd 58 bc 37 vfnmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

bd: 62 62 ed 58 bc 3f vfnmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi]{1to8}

c3: 62 f1 fd 48 10 46 12 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x480]

ca: 62 f1 fd 48 10 56 13 vmovupd zmm2 ,ZMMWORD PTR [rsi+0x4c0]

d1: 62 62 f5 58 bc 77 01 vfnmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1 to8}

d8: 62 62 e5 58 bc 7f 01 vfnmadd231pd zmm31 ,zmm3 ,QWORD PTR [rdi+0x8]{1 to8}

df: 62 62 fd 58 bc 77 02 vfnmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi+0x10]{1to8}

146

e6: 62 62 ed 58 bc 7f 02 vfnmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi+0x10]{1to8}

ed: 62 61 fd 48 2b 72 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm30

f4: 62 61 fd 48 2b 7a 07 vmovntpd ZMMWORD PTR [rdx+0x1c0],zmm31

fb: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

102: 62 f1 fd 48 10 56 0d vmovupd zmm2 ,ZMMWORD PTR [rsi+0x340]

109: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

10f: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

115: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

11c: 62 f1 fd 48 10 5e 13 vmovupd zmm3 ,ZMMWORD PTR [rsi+0x4c0]

123: 62 62 fd 58 b8 37 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

129: 62 62 ed 58 b8 3f vfmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi]{1to8}

12f: 62 62 f5 58 b8 77 01 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1 to8}

136: 62 62 e5 58 b8 7f 01 vfmadd231pd zmm31 ,zmm3 ,QWORD PTR [rdi+0x8]{1to8}

13d: 62 61 fd 48 2b 72 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm30

144: 62 61 fd 48 2b 7a 0d vmovntpd ZMMWORD PTR [rdx+0x340],zmm31

14b: 62 f1 fd 48 10 46 12 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x480]

152: 62 f1 fd 48 10 56 13 vmovupd zmm2 ,ZMMWORD PTR [rsi+0x4c0]

159: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

15f: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

165: 62 62 fd 58 bc 37 vfnmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

16b: 62 62 ed 58 bc 3f vfnmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi]{1 to8}

171: 62 61 fd 48 2b 72 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm30

178: 62 61 fd 48 2b 7a 13 vmovntpd ZMMWORD PTR [rdx+0x4c0],zmm31

17f: 62 f1 fd 48 10 06 vmovupd zmm0 ,ZMMWORD PTR [rsi]

185: 62 f1 fd 48 10 56 01 vmovupd zmm2 ,ZMMWORD PTR [rsi+0x40]

18c: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

192: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

198: 62 f1 fd 48 10 4e 06 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x180]

19f: 62 f1 fd 48 10 5e 07 vmovupd zmm3 ,ZMMWORD PTR [rsi+0x1c0]

1a6: 62 62 fd 58 b8 37 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

1ac: 62 62 ed 58 b8 3f vfmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi]{1to8}

1b2: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

1b9: 62 f1 fd 48 10 56 0d vmovupd zmm2 ,ZMMWORD PTR [rsi+0x340]

1c0: 62 62 f5 58 b8 77 01 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

1c7: 62 62 e5 58 b8 7f 01 vfmadd231pd zmm31 ,zmm3 ,QWORD PTR [rdi+0x8]{1to8}

1ce: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

1d5: 62 f1 fd 48 10 5e 13 vmovupd zmm3 ,ZMMWORD PTR [rsi+0x4c0]

1dc: 62 62 fd 58 b8 77 02 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi+0x10]{1 to8}

1e3: 62 62 ed 58 b8 7f 02 vfmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi+0x10]{1 to8}

1ea: 62 62 f5 58 b8 77 03 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x18]{1 to8}

1f1: 62 62 e5 58 b8 7f 03 vfmadd231pd zmm31 ,zmm3 ,QWORD PTR [rdi+0x18]{1 to8}

1f8: 62 61 fd 48 2b 72 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm30

1ff: 62 61 fd 48 2b 7a 19 vmovntpd ZMMWORD PTR [rdx+0x640],zmm31

206: 62 f1 fd 48 10 46 06 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x180]

20d: 62 f1 fd 48 10 56 07 vmovupd zmm2 ,ZMMWORD PTR [rsi+0x1c0]

214: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

21a: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

220: 62 f1 fd 48 10 4e 0c vmovupd zmm1 ,ZMMWORD PTR [rsi+0x300]

227: 62 f1 fd 48 10 5e 0d vmovupd zmm3 ,ZMMWORD PTR [rsi+0x340]

22e: 62 62 fd 58 bc 37 vfnmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1 to8}

234: 62 62 ed 58 bc 3f vfnmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi]{1to8}

23a: 62 f1 fd 48 10 46 12 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x480]

241: 62 f1 fd 48 10 56 13 vmovupd zmm2 ,ZMMWORD PTR [rsi+0x4c0]

248: 62 62 f5 58 bc 77 01 vfnmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1 to8}

24f: 62 62 e5 58 bc 7f 01 vfnmadd231pd zmm31 ,zmm3 ,QWORD PTR [rdi+0x8]{1to8}

256: 62 62 fd 58 bc 77 02 vfnmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi+0x10]{1to8}

25d: 62 62 ed 58 bc 7f 02 vfnmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi+0x10]{1to8}

264: 62 61 fd 48 2b 72 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm30

26b: 62 61 fd 48 2b 7a 1f vmovntpd ZMMWORD PTR [rdx+0x7c0],zmm31

272: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

279: 62 f1 fd 48 10 56 0d vmovupd zmm2 ,ZMMWORD PTR [rsi+0x340]

280: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

286: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

28c: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

293: 62 f1 fd 48 10 5e 13 vmovupd zmm3 ,ZMMWORD PTR [rsi+0x4c0]

29a: 62 62 fd 58 b8 37 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

2a0: 62 62 ed 58 b8 3f vfmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi]{1to8}

2a6: 62 62 f5 58 b8 77 01 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

2ad: 62 62 e5 58 b8 7f 01 vfmadd231pd zmm31 ,zmm3 ,QWORD PTR [rdi+0x8]{1to8}

147

2b4: 62 61 fd 48 2b 72 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm30

2bb: 62 61 fd 48 2b 7a 25 vmovntpd ZMMWORD PTR [rdx+0x940],zmm31

2c2: 62 f1 fd 48 10 46 12 vmovupd zmm0 ,ZMMWORD PTR [rsi+0x480]

2c9: 62 f1 fd 48 10 56 13 vmovupd zmm2 ,ZMMWORD PTR [rsi+0x4c0]

2d0: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

2d6: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

2dc: 62 62 fd 58 bc 37 vfnmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

2e2: 62 62 ed 58 bc 3f vfnmadd231pd zmm31 ,zmm2 ,QWORD PTR [rdi]{1to8}

2e8: 62 61 fd 48 2b 72 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm30

2ef: 62 61 fd 48 2b 7a 2b vmovntpd ZMMWORD PTR [rdx+0xac0],zmm31

2f6: 41 5f pop r15

2f8: 41 5e pop r14

2fa: 41 5d pop r13

2fc: 41 5c pop r12

2fe: 5b pop rbx

2ff: c3 ret

M Blocking of 2

libxsmm_skx_f64_nn_8x8x4_0_48_48_a1_b0_p0.sreg: file format binary

Disassembly of section .data:

00000000 <.data >:

0: 53 push rbx

1: 41 54 push r12

3: 41 55 push r13

5: 41 56 push r14

7: 41 57 push r15

9: 62 f1 fd 48 10 06 vmovupd zmm0 ,ZMMWORD PTR [rsi]

f: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

15: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

1b: 62 f1 fd 48 10 4e 06 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x180]

22: 62 62 fd 58 b8 37 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

28: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

2f: 62 62 f5 58 b8 77 01 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

36: 62 62 f5 58 bc 3f vfnmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi]{1 to8}

3c: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

43: 62 62 fd 58 b8 77 02 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi+0x10]{1to8}

4a: 62 62 fd 58 bc 7f 01 vfnmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi+0x8]{1to8}

51: 62 62 f5 58 b8 77 03 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x18]{1to8}

58: 62 62 f5 58 bc 7f 02 vfnmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x10]{1to8}

5f: 62 61 fd 48 2b 32 vmovntpd ZMMWORD PTR [rdx],zmm30

65: 62 61 fd 48 2b 7a 06 vmovntpd ZMMWORD PTR [rdx+0x180],zmm31

6c: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

73: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

79: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

7f: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

86: 62 62 fd 58 b8 37 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

8c: 62 62 f5 58 b8 77 01 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

93: 62 62 f5 58 bc 3f vfnmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi]{1 to8}

99: 62 61 fd 48 2b 72 0c vmovntpd ZMMWORD PTR [rdx+0x300],zmm30

a0: 62 61 fd 48 2b 7a 12 vmovntpd ZMMWORD PTR [rdx+0x480],zmm31

a7: 62 f1 fd 48 10 06 vmovupd zmm0 ,ZMMWORD PTR [rsi]

ad: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

b3: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

b9: 62 f1 fd 48 10 4e 06 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x180]

c0: 62 62 fd 58 b8 37 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

c6: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

cd: 62 62 f5 58 b8 77 01 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1to8}

d4: 62 62 f5 58 bc 3f vfnmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi]{1to8}

da: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

e1: 62 62 fd 58 b8 77 02 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi+0x10]{1 to8}

e8: 62 62 fd 58 bc 7f 01 vfnmadd231pd zmm31 ,zmm0 ,QWORD PTR [rdi+0x8]{1 to8}

148

ef: 62 62 f5 58 b8 77 03 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x18]{1 to8}

f6: 62 62 f5 58 bc 7f 02 vfnmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi+0x10]{1to8}

fd: 62 61 fd 48 2b 72 18 vmovntpd ZMMWORD PTR [rdx+0x600],zmm30

104: 62 61 fd 48 2b 7a 1e vmovntpd ZMMWORD PTR [rdx+0x780],zmm31

10b: 62 f1 fd 48 10 46 0c vmovupd zmm0 ,ZMMWORD PTR [rsi+0x300]

112: 62 01 0d 40 ef f6 vpxord zmm30 ,zmm30 ,zmm30

118: 62 01 05 40 ef ff vpxord zmm31 ,zmm31 ,zmm31

11e: 62 f1 fd 48 10 4e 12 vmovupd zmm1 ,ZMMWORD PTR [rsi+0x480]

125: 62 62 fd 58 b8 37 vfmadd231pd zmm30 ,zmm0 ,QWORD PTR [rdi]{1to8}

12b: 62 62 f5 58 b8 77 01 vfmadd231pd zmm30 ,zmm1 ,QWORD PTR [rdi+0x8]{1 to8}

132: 62 62 f5 58 bc 3f vfnmadd231pd zmm31 ,zmm1 ,QWORD PTR [rdi]{1to8}

138: 62 61 fd 48 2b 72 24 vmovntpd ZMMWORD PTR [rdx+0x900],zmm30

13f: 62 61 fd 48 2b 7a 2a vmovntpd ZMMWORD PTR [rdx+0xa80],zmm31

146: 41 5f pop r15

148: 41 5e pop r14

14a: 41 5d pop r13

14c: 41 5c pop r12

14e: 5b pop rbx

14f: c3 ret

149

Appendix C

Complete Experiment Results for
Testing the Small and Sparse
GEMM Kernel with Runtime
Broadcasting Packed A Constants
from Memory

This appendix presents the complete benchmark results for our GEMM method which
runtime broadcasts packed A constants from memory. As explained in Chapter 4, two
sets of A matrices were used for the testing - a set of all PyFR operator matrices,
and a set of synthetic matrices. We evaluated our kernel on two testing machines - a
Skylake machine (c5n.xlarge) and a Cascade Lake machine (m5n.xlarge). Please refer
to Chapter 5 for how the kernel implements GEMM.

C.1 FyFR Operator Matrices

Benchmark Run on c5n.xlarge

150

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

Figure C.1: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for PyFR quadrilateral operator matrices. Benchmark
run on c5n.xlarge machine.

151

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

Figure C.2: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations for PyFR quadrilateral operator matrices - roofline plots. Benchmark
run on c5n.xlarge machine.

152

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

Figure C.3: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations, for PyFR hexahedral operator matrices. Benchmark run on c5n.xlarge
machine.

153

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1
2
4
8

16
32
64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

Figure C.4: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations for PyFR hexahedral operator matrices - roofline plots. Benchmark run
on c5n.xlarge machine.

154

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

Figure C.5: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations, for PyFR tetrahedral operator matrices. Benchmark run on c5n.xlarge
machine.

155

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

Figure C.6: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations for PyFR tetrahedral operator matrices - roofline plots. Benchmark run
on c5n.xlarge machine.

156

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

Figure C.7: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations, for PyFR triangular operator matrices. Benchmark run on c5n.xlarge
machine.

157

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

Figure C.8: Runtime broadcasting with loadingA from memory vs. reference LIBXSMM
implementations for PyFR triangular operator matrices - roofline plots. Benchmark run
on c5n.xlarge machine.

158

Benchmark Run on m5n.xlarge

159

0 5 10 15 20 25
Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

Figure C.9: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for PyFR quadrilateral operator matrices. Benchmark
run on m5n.xlarge machine.

160

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

Figure C.10: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations for PyFR quadrilateral operator matrices - roofline plots.
Benchmark run on m5n.xlarge machine.

161

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

Figure C.11: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for PyFR hexahedral operator matrices. Benchmark run
on m5n.xlarge machine.

162

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

Figure C.12: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations for PyFR hexahedral operator matrices - roofline plots.
Benchmark run on m5n.xlarge machine.

163

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

Figure C.13: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for PyFR tetrahedral operator matrices. Benchmark run
on m5n.xlarge machine.

164

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

Figure C.14: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations for PyFR tetrahedral operator matrices - roofline plots.
Benchmark run on m5n.xlarge machine.

165

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

Figure C.15: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for PyFR triangular operator matrices. Benchmark run
on m5n.xlarge machine.

166

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

Figure C.16: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations for PyFR triangular operator matrices - roofline plots.
Benchmark run on m5n.xlarge machine.

167

C.2 Synthetic Matrices

Benchmark Run on c5n.xlarge

168

25 26 27 28 29 210

Number of Columns, C

4 × 109

5 × 109

6 × 109
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure C.17: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying number of A columns.
Experiment run on c5n.xlarge.

169

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure C.18: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying number of A rows.
Experiment run on c5n.xlarge.

170

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure C.19: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying A density. Experi-
ment run on c5n.xlarge.

171

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of unique constants.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot.

Figure C.20: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying number of unique ab-
solute non-zero constants in A. Experiment run on c5n.xlarge.

172

Benchmark Run on m5n.xlarge

173

25 26 27 28 29 210

Number of Columns, C

3 × 109

4 × 109

5 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure C.21: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying number of A columns.
Experiment run on c5n.xlarge.

174

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure C.22: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying number of A rows.
Experiment run on c5n.xlarge.

175

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure C.23: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying A density. Experi-
ment run on c5n.xlarge.

176

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of unique constants.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot.

Figure C.24: Runtime broadcasting with loading A from memory vs. reference
LIBXSMM implementations, for synthetic matrices with varying number of unique ab-
solute non-zero constants in A. Experiment run on c5n.xlarge.

177

Appendix D

Complete Experiment Results for
Testing the Small and Sparse
GEMM Kernel with Runtime
Broadcasting Packed A Constants
from Memory and Multiple
Accumulations

This appendix presents the complete benchmark results for our GEMM method which
runtime broadcasts packedA constants from memory and uses multiple accumulations.
As explained in Chapter 4, two sets of A matrices were used for the testing - a set of
all PyFR operator matrices, and a set of synthetic matrices. We evaluated our kernel
on two testing machines - a Skylake machine (c5n.xlarge) and a Cascade Lake machine
(m5n.xlarge). Please refer to Chapter 6 for how the kernel implements GEMM.

D.1 N Blocking

PyFR Operator Matrices

Benchmark Run on c5n.xlarge

178

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

Figure D.1: Runtime broadcasting with loading A from memory and N blocking vs. ref-
erence LIBXSMM implementations, for PyFR quadrilateral operator matrices. Bench-
mark run on c5n.xlarge machine.

179

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

Figure D.2: Runtime broadcasting with loading A from memory and N blocking vs. ref-
erence LIBXSMM implementations for PyFR quadrilateral operator matrices - roofline
plots. Benchmark run on c5n.xlarge machine.

180

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

Figure D.3: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for PyFR hexahedral operator matrices. Bench-
mark run on c5n.xlarge machine.

181

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1
2
4
8

16
32
64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

Figure D.4: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations for PyFR hexahedral operator matrices - roofline
plots. Benchmark run on c5n.xlarge machine.

182

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

Figure D.5: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for PyFR tetrahedral operator matrices. Bench-
mark run on c5n.xlarge machine.

183

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

Figure D.6: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations for PyFR tetrahedral operator matrices - roofline
plots. Benchmark run on c5n.xlarge machine.

184

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

Figure D.7: Runtime broadcasting with loading A from memory and N blocking vs. ref-
erence LIBXSMM implementations, for PyFR triangular operator matrices. Benchmark
run on c5n.xlarge machine.

185

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

Figure D.8: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations for PyFR triangular operator matrices - roofline
plots. Benchmark run on c5n.xlarge machine.

186

Benchmark Run on m5n.xlarge

187

0 5 10 15 20 25
Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

Figure D.9: Runtime broadcasting with loading A from memory and N blocking vs. ref-
erence LIBXSMM implementations, for PyFR quadrilateral operator matrices. Bench-
mark run on m5n.xlarge machine.

188

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

Figure D.10: Runtime broadcasting with loadingA from memory and N blocking vs. ref-
erence LIBXSMM implementations for PyFR quadrilateral operator matrices - roofline
plots. Benchmark run on m5n.xlarge machine.

189

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

Figure D.11: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for PyFR hexahedral operator matrices. Bench-
mark run on m5n.xlarge machine.

190

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

Figure D.12: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations for PyFR hexahedral operator matrices - roofline
plots. Benchmark run on m5n.xlarge machine.

191

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

Figure D.13: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for PyFR tetrahedral operator matrices. Bench-
mark run on m5n.xlarge machine.

192

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

Figure D.14: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations for PyFR tetrahedral operator matrices - roofline
plots. Benchmark run on m5n.xlarge machine.

193

0 100 200 300 400
Number of Unique Constants, U

1010

4 × 109

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

Figure D.15: Runtime broadcasting with loadingA from memory and N blocking vs. ref-
erence LIBXSMM implementations, for PyFR triangular operator matrices. Benchmark
run on m5n.xlarge machine.

194

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

Figure D.16: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations for PyFR triangular operator matrices - roofline
plots. Benchmark run on m5n.xlarge machine.

195

Synthetic Matrices

Benchmark Run on c5n.xlarge

196

25 26 27 28 29 210

Number of Columns, C

4 × 109

5 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure D.17: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
columns. Benchmark run on c5n.xlarge machine

197

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure D.18: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
rows. Benchmark run on c5n.xlarge machine

198

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure D.19: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying A density.
Benchmark run on c5n.xlarge machine

199

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of unique absolute
non-zero values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot.

Figure D.20: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying the number
of unique absolute non-zero constants in A. Benchmark run on c5n.xlarge machine

200

Benchmark Run on m5n.xlarge

201

25 26 27 28 29 210

Number of Columns, C

3 × 109

4 × 109

5 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure D.21: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
columns. Benchmark run on m5n.xlarge machine

202

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure D.22: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
rows. Benchmark run on m5n.xlarge machine

203

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure D.23: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying A density.
Benchmark run on m5n.xlarge machine

204

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of unique absolute
non-zero values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot.

Figure D.24: Runtime broadcasting with loading A from memory and N blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying the number
of unique absolute non-zero constants in A. Benchmark run on m5n.xlarge machine

205

D.2 M Blocking

PyFR Operator Matrices

Benchmark Run on c5n.xlarge

206

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance against number of A size.

Figure D.25: Runtime broadcasting with loadingA from memory and M blocking vs. ref-
erence LIBXSMM implementations, for PyFR quadrilateral operator matrices. Bench-
mark run on c5n.xlarge machine.

207

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

Figure D.26: Runtime broadcasting with loadingA from memory and M blocking vs. ref-
erence LIBXSMM implementations for PyFR quadrilateral operator matrices - roofline
plots. Benchmark run on c5n.xlarge machine.

208

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance against number of A size.

Figure D.27: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR hexahedral operator matrices. Bench-
mark run on c5n.xlarge machine.

209

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1
2
4
8

16
32
64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

Figure D.28: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations for PyFR hexahedral operator matrices - roofline
plots. Benchmark run on c5n.xlarge machine.

210

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance against number of A size.

Figure D.29: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR tetrahedral operator matrices. Bench-
mark run on c5n.xlarge machine.

211

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

Figure D.30: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations for PyFR tetrahedral operator matrices - roofline
plots. Benchmark run on c5n.xlarge machine.

212

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance against number of A size.

Figure D.31: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR triangular operator matrices. Bench-
mark run on c5n.xlarge machine.

213

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

Figure D.32: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations for PyFR triangular operator matrices - roofline
plots. Benchmark run on c5n.xlarge machine.

214

Benchmark Run on m5n.xlarge

215

0 5 10 15 20 25
Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance against number of A size.

Figure D.33: Runtime broadcasting with loadingA from memory and M blocking vs. ref-
erence LIBXSMM implementations, for PyFR quadrilateral operator matrices. Bench-
mark run on m5n.xlarge machine.

216

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

Figure D.34: Runtime broadcasting with loadingA from memory and M blocking vs. ref-
erence LIBXSMM implementations for PyFR quadrilateral operator matrices - roofline
plots. Benchmark run on m5n.xlarge machine.

217

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance against number of A size.

Figure D.35: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR hexahedral operator matrices. Bench-
mark run on m5n.xlarge machine.

218

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

Figure D.36: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations for PyFR hexahedral operator matrices - roofline
plots. Benchmark run on m5n.xlarge machine.

219

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance against number of A size.

Figure D.37: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR tetrahedral operator matrices. Bench-
mark run on m5n.xlarge machine.

220

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

Figure D.38: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations for PyFR tetrahedral operator matrices - roofline
plots. Benchmark run on m5n.xlarge machine.

221

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance against number of A size.

Figure D.39: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for PyFR triangular operator matrices. Bench-
mark run on m5n.xlarge machine.

222

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

Figure D.40: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations for PyFR triangular operator matrices - roofline
plots. Benchmark run on m5n.xlarge machine.

223

Synthetic Matrices

Benchmark Run on c5n.xlarge

224

25 26 27 28 29 210

Number of Columns, C

3 × 109

4 × 109

5 × 109

6 × 109
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(f) Roofline plot, U = 256.

Figure D.41: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
columns. Benchmark run on c5n.xlarge machine.

225

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(f) Roofline plot, U = 256.

Figure D.42: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
row. Benchmark run on c5n.xlarge machine.

226

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(f) Roofline plot, U = 256.

Figure D.43: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with A density. Bench-
mark run on c5n.xlarge machine.

227

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. number of absolute non-zero
values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot.

Figure D.44: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying the number
of unique absolute non-zero constants in A. Benchmark run on c5n.xlarge machine.

228

Benchmark Run on m5n.xlarge

229

25 26 27 28 29 210

Number of Columns, C

3 × 109

4 × 109

5 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(f) Roofline plot, U = 256.

Figure D.45: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
columns. Benchmark run on m5n.xlarge machine.

230

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(f) Roofline plot, U = 256.

Figure D.46: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying number of A
row. Benchmark run on m5n.xlarge machine.

231

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(f) Roofline plot, U = 256.

Figure D.47: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with A density. Bench-
mark run on m5n.xlarge machine.

232

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(a) Performance vs. number of absolute non-zero
values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 3
mB = 6
mB = 12
mB = 16

(b) Roofline plot.

Figure D.48: Runtime broadcasting with loading A from memory and M blocking vs.
reference LIBXSMM implementations, for synthetic matrices with varying the number
of unique absolute non-zero constants in A. Benchmark run on m5n.xlarge machine.

233

Appendix E

Complete Experiment Results for
Testing the Small and Sparse
GEMM Kernel with Runtime
Broadcasting Packed A Constants
from Memory and Caching B
Strides in Vector Register

This appendix present the complete evaluation results for our GEMM routine which
runtime broadcasts packed A constants from memory and caches B strides in the
vector register. Chapter 7 details how this routine was implemented. As explained
in Chapter 4, two sets of A matrices were used for the testing - a set of complete
PyFR operator matrices, and a set of synthetic matrices. We evaluated our kernel on
two testing machines - a Skylake machine (c5n.xlarge) and a Cascade Lake machine
(m5n.xlarge).

E.1 Single Accumulation

FyFR Operator Matrices

Benchmark Run on c5n.xlarge

234

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot.

Figure E.1: Runtime broadcasting with loading A from memory and caching B strides
in vector registers vs. reference LIBXSMM implementations, for PyFR quadrilateral
element matrices. Benchmark run on c5n.xlarge machine.

235

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot.

Figure E.2: Runtime broadcasting with loadingA from memory and cachingB strides in
vector registers vs. reference LIBXSMM implementations, for PyFR hexahedral element
matrices. Benchmark run on c5n.xlarge machine.

236

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot.

Figure E.3: Runtime broadcasting with loadingA from memory and cachingB strides in
vector registers vs. reference LIBXSMM implementations, for PyFR tetrahedral element
matrices. Benchmark run on c5n.xlarge machine.

237

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot.

Figure E.4: Runtime broadcasting with loadingA from memory and cachingB strides in
vector registers vs. reference LIBXSMM implementations, for PyFR triangular element
matrices. Benchmark run on c5n.xlarge machine.

238

Benchmark Run on m5n.xlarge

239

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot.

Figure E.5: Runtime broadcasting with loading A from memory and caching B strides
in vector registers vs. reference LIBXSMM implementations, for PyFR quadrilateral
element matrices. Benchmark run on m5n.xlarge machine.

240

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot.

Figure E.6: Runtime broadcasting with loadingA from memory and cachingB strides in
vector registers vs. reference LIBXSMM implementations, for PyFR hexahedral element
matrices. Benchmark run on m5n.xlarge machine.

241

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot.

Figure E.7: Runtime broadcasting with loadingA from memory and cachingB strides in
vector registers vs. reference LIBXSMM implementations, for PyFR tetrahedral element
matrices. Benchmark run on m5n.xlarge machine.

242

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot.

Figure E.8: Runtime broadcasting with loadingA from memory and cachingB strides in
vector registers vs. reference LIBXSMM implementations, for PyFR triangular element
matrices. Benchmark run on m5n.xlarge machine.

243

Synthetic Matrices

Benchmark Run on c5n.xlarge

244

25 26 27 28 29 210

Number of Columns, C

4 × 109

5 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure E.9: Runtime broadcasting with loading A from memory and caching B strides
vs. reference LIBXSMM implementations, for synthetic matrices with varying number
of A columns. Benchmark run on c5n.xlarge machine

245

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure E.10: Runtime broadcasting with loading A from memory and caching B strides
vs. reference LIBXSMM implementations, for synthetic matrices with varying number
of A rows. Benchmark run on c5n.xlarge machine

246

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure E.11: Runtime broadcasting with loading A from memory and caching B strides
vs. reference LIBXSMM implementations, for synthetic matrices with varyingA density.
Benchmark run on c5n.xlarge machine

247

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of unique absolute
non-zero values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot.

Figure E.12: Runtime broadcasting with loading A from memory and caching B stride
vs. reference LIBXSMM implementations, for synthetic matrices with varying the num-
ber of unique absolute non-zero constants in A. Benchmark run on c5n.xlarge machine

248

Benchmark Run on m5n.xlarge

249

25 26 27 28 29 210

Number of Columns, C

3 × 109

4 × 109

5 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure E.13: Runtime broadcasting with loading A from memory and caching B strides
vs. reference LIBXSMM implementations, for synthetic matrices with varying number
of A columns. Benchmark run on m5n.xlarge machine

250

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure E.14: Runtime broadcasting with loading A from memory and caching B strides
vs. reference LIBXSMM implementations, for synthetic matrices with varying number
of A rows. Benchmark run on m5n.xlarge machine

251

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(f) Roofline plot, U = 256.

Figure E.15: Runtime broadcasting with loading A from memory and caching B strides
vs. reference LIBXSMM implementations, for synthetic matrices with varyingA density.
Benchmark run on m5n.xlarge machine

252

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
our method

(a) Performance vs. number of unique absolute
non-zero values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
our method

(b) Roofline plot.

Figure E.16: Runtime broadcasting with loading A from memory and caching B stride
vs. reference LIBXSMM implementations, for synthetic matrices with varying the num-
ber of unique absolute non-zero constants in A. Benchmark run on c5n.xlarge machine

253

E.2 N Blocking

FyFR Operator Matrices

Benchmark Run on c5n.xlarge

254

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot.

Figure E.17: Runtime broadcasting with loading A from memory, caching B strides in
vector registers, and N blocking vs. reference LIBXSMM implementations, for PyFR
quadrilateral element matrices. Benchmark run on c5n.xlarge machine.

255

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot.

Figure E.18: Runtime broadcasting with loading A from memory, caching B strides in
vector registers, and N blocking vs. reference LIBXSMM implementations, for PyFR
hexahedral element matrices. Benchmark run on c5n.xlarge machine.

256

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot.

Figure E.19: Runtime broadcasting with loading A from memory, caching B strides in
vector registers, and N blocking vs. reference LIBXSMM implementations, for PyFR
tetrahedral element matrices. Benchmark run on c5n.xlarge machine.

257

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot.

Figure E.20: Runtime broadcasting with loading A from memory, caching B strides in
vector registers, and N blocking vs. reference LIBXSMM implementations, for PyFR
triangular element matrices. Benchmark run on c5n.xlarge machine.

258

Benchmark Run on m5n.xlarge

Synthetic Matrices

Benchmark Run on c5n.xlarge

259

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot.

Figure E.21: Runtime broadcasting with loading A from memory, caching B strides in
vector registers, and N blocking vs. reference LIBXSMM implementations, for PyFR
quadrilateral element matrices. Benchmark run on m5n.xlarge machine.

260

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot.

Figure E.22: Runtime broadcasting with loading A from memory, caching B strides in
vector registers, and N blocking vs. reference LIBXSMM implementations, for PyFR
hexahedral element matrices. Benchmark run on m5n.xlarge machine.

261

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot.

Figure E.23: Runtime broadcasting with loading A from memory, caching B strides in
vector registers, and N blocking vs. reference LIBXSMM implementations, for PyFR
tetrahedral element matrices. Benchmark run on m5n.xlarge machine.

262

0 100 200 300 400
Number of Unique Constants, U

1010

4 × 109

6 × 109

2 × 1010

3 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance against number of A size.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot.

Figure E.24: Runtime broadcasting with loading A from memory, caching B strides in
vector registers, and N blocking vs. reference LIBXSMM implementations, for PyFR
triangular element matrices. Benchmark run on m5n.xlarge machine.

263

25 26 27 28 29 210

Number of Columns, C

4 × 109

5 × 109

6 × 109
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure E.25: Runtime broadcasting with loading A from memory, caching B strides
and N blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A columns. Benchmark run on c5n.xlarge machine

264

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure E.26: Runtime broadcasting with loading A from memory, caching B strides
and N blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A rows. Benchmark run on c5n.xlarge machine

265

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure E.27: Runtime broadcasting with loading A from memory, caching B strides
and N blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying A density. Benchmark run on c5n.xlarge machine

266

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of unique absolute
non-zero values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot.

Figure E.28: Runtime broadcasting with loading A from memory, caching B strides
and N blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying the number of unique absolute non-zero constants in A. Benchmark run on
c5n.xlarge machine

267

Benchmark Run on m5n.xlarge

268

25 26 27 28 29 210

Number of Columns, C

3 × 109

4 × 109

5 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure E.29: Runtime broadcasting with loading A from memory, caching B strides
and N blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A columns. Benchmark run on m5n.xlarge machine

269

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure E.30: Runtime broadcasting with loading A from memory, caching B strides
and N blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A rows. Benchmark run on m5n.xlarge machine

270

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(f) Roofline plot, U = 256.

Figure E.31: Runtime broadcasting with loading A from memory, caching B strides
and N blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying A density. Benchmark run on m5n.xlarge machine

271

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
nB = 1
nB = 2
nB = 3

(a) Performance vs. number of unique absolute
non-zero values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
nB = 1
nB = 2
nB = 3

(b) Roofline plot.

Figure E.32: Runtime broadcasting with loading A from memory, caching B strides
and N blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying the number of unique absolute non-zero constants in A. Benchmark run on
m5n.xlarge machine

272

E.3 M Blocking

FyFR Operator Matrices

Benchmark Run on c5n.xlarge

273

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance against number of A size.

Figure E.33: Runtime broadcasting with loading A from memory, caching B strides and
M blocking vs. reference LIBXSMM implementations, for PyFR quadrilateral element
operator matrices. Benchmark run on c5n.xlarge machine.

274

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

Figure E.34: Runtime broadcasting with loading A from memory, caching B strides and
M blocking vs. reference LIBXSMM implementations for PyFR quadrilateral element
operator matrices - roofline plots. Benchmark run on c5n.xlarge machine.

275

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance against number of A size.

Figure E.35: Runtime broadcasting with loading A from memory, caching B strides and
M blocking vs. reference LIBXSMM implementations, for PyFR hexahedral element
operator matrices. Benchmark run on c5n.xlarge machine.

276

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1
2
4
8

16
32
64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

Figure E.36: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations for PyFR hexahedral element
operator matrices - roofline plots. Benchmark run on c5n.xlarge machine.

277

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance against number of A size.

Figure E.37: Runtime broadcasting with loading A from memory, caching B strides and
M blocking vs. reference LIBXSMM implementations, for PyFR tetrahedral element
operator matrices. Benchmark run on c5n.xlarge machine.

278

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

Figure E.38: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations for PyFR tetrahedral element
operator matrices - roofline plots. Benchmark run on c5n.xlarge machine.

279

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance against number of A size.

Figure E.39: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for PyFR triangular element
operator matrices. Benchmark run on c5n.xlarge machine.

280

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

Figure E.40: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations for PyFR triangular element
operator matrices - roofline plots. Benchmark run on c5n.xlarge machine.

281

Benchmark Run on m5n.xlarge

282

0 5 10 15 20 25
Number of Unique Constants, U

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.0 0.1 0.2 0.3 0.4 0.5
Density,

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

0 20 40 60 80 100
Number of Columns, C

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance against number of A columns.

0 20 40 60 80 100
Number of Rows, R

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Performance against number of A rows.

0 1000 2000 3000 4000 5000
Size, S

1010

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance against number of A size.

Figure E.41: Runtime broadcasting with loading A from memory, caching B strides and
M blocking vs. reference LIBXSMM implementations, for PyFR quadrilateral element
operator matrices. Benchmark run on m5n.xlarge machine.

283

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

Figure E.42: Runtime broadcasting with loading A from memory, caching B strides and
M blocking vs. reference LIBXSMM implementations for PyFR quadrilateral element
operator matrices - roofline plots. Benchmark run on m5n.xlarge machine.

284

0 5 10 15 20 25
Number of Unique Constants, U

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.00 0.05 0.10 0.15 0.20 0.25
Density,

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

0 200 400 600 800 1000
Number of Columns, C

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance against number of A columns.

0 200 400 600 800 1000
Number of Rows, R

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Performance against number of A rows.

0 100000 200000 300000
Size, S

109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance against number of A size.

Figure E.43: Runtime broadcasting with loading A from memory, caching B strides and
M blocking vs. reference LIBXSMM implementations, for PyFR hexahedral element
operator matrices. Benchmark run on m5n.xlarge machine.

285

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

Figure E.44: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations for PyFR hexahedral element
operator matrices - roofline plots. Benchmark run on m5n.xlarge machine.

286

0 500 1000 1500
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.5 0.6 0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

0 50 100 150 200 250
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance against number of A columns.

0 50 100 150 200 250
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Performance against number of A rows.

0 10000 20000
Size, S

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance against number of A size.

Figure E.45: Runtime broadcasting with loading A from memory, caching B strides and
M blocking vs. reference LIBXSMM implementations, for PyFR tetrahedral element
operator matrices. Benchmark run on m5n.xlarge machine.

287

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

Figure E.46: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations for PyFR tetrahedral element
operator matrices - roofline plots. Benchmark run on m5n.xlarge machine.

288

0 100 200 300 400
Number of Unique Constants, U

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010
Ps

eu
do

-F
LO

P/
s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance against number of unique A
constants.

0.7 0.8 0.9 1.0
Density,

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Performance against A density.

10 20 30 40 50
Number of Columns, C

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance against number of A columns.

10 20 30 40 50
Number of Rows, R

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Performance against number of A rows.

0 500 1000 1500
Size, S

1010

6 × 109

2 × 1010

3 × 1010

4 × 1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance against number of A size.

Figure E.47: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for PyFR triangular element
operator matrices. Benchmark run on m5n.xlarge machine.

289

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s) Double AVX512 Unit
Single AVX512 Unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

Figure E.48: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations for PyFR triangular element
operator matrices - roofline plots. Benchmark run on m5n.xlarge machine.

290

Synthetic Matrices

Benchmark Run on c5n.xlarge

291

25 26 27 28 29 210

Number of Columns, C

4 × 109

5 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(f) Roofline plot, U = 256.

Figure E.49: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A columns. Benchmark run on c5n.xlarge machine

292

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(f) Roofline plot, U = 256.

Figure E.50: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A rows. Benchmark run on c5n.xlarge machine

293

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(f) Roofline plot, U = 256.

Figure E.51: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying A density. Benchmark run on c5n.xlarge machine

294

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. number of unique absolute
non-zero values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot.

Figure E.52: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying the number of unique absolute non-zero constants in A. Benchmark run on
c5n.xlarge machine

295

Benchmark Run on m5n.xlarge

296

25 26 27 28 29 210

Number of Columns, C

3 × 109

4 × 109

5 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. number of columns, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance vs. number of columns, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Columns, C

109

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance vs. number of columns, U =
256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(f) Roofline plot, U = 256.

Figure E.53: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A columns. Benchmark run on m5n.xlarge machine

297

25 26 27 28 29 210

Number of Rows, R

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. number of rows, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot, U = 16.

25 26 27 28 29 210

Number of Rows, R

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance vs. number of rows, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Roofline plot, U = 64.

26 27 28 29 210

Number of Rows, R

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance vs. number of rows, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(f) Roofline plot, U = 256.

Figure E.54: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying number of A rows. Benchmark run on m5n.xlarge machine

298

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. density, U = 16.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot, U = 16.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(c) Performance vs. density, U = 64.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(d) Roofline plot, U = 64.

0.0 0.2 0.4 0.6 0.8 1.0
Density,

109

1010

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(e) Performance vs. density, U = 256.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(f) Roofline plot, U = 256.

Figure E.55: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying A density. Benchmark run on m5n.xlarge machine

299

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

Number of Unique Constants, U

2 × 109

3 × 109

4 × 109

Ps
eu

do
-F

LO
P/

s

reference LIBXSMM
sparse kernel
wide-sparse kernel
dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(a) Performance vs. number of unique absolute
non-zero values.

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

1

2

4

8

16

32

64
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

double FMA unit
single FMA unit
LINPACK
ref. sparse kernel
ref. wide-sparse kernel
ref. dense kernel
mB = 1
mB = 6
mB = 12
mB = 20
mB = 30

(b) Roofline plot.

Figure E.56: Runtime broadcasting with loading A from memory, caching B strides
and M blocking vs. reference LIBXSMM implementations, for synthetic matrices with
varying the number of unique absolute non-zero constants in A. Benchmark run on
m5n.xlarge machine

300

	1 Introduction
	1.1 Objectives
	1.2 Contributions

	2 Background
	2.1 General Matrix Multiplication
	2.2 Small and Sparse GEMM
	2.3 LIBXSMM
	2.3.1 The Library
	2.3.2 Original LIBXSMM Small and Sparse GEMM Routine
	2.3.3 Paribartan's Improvements to LIBXSMM Small and Sparse GEMM Routine
	2.3.4 Hybrid Small and Sparse GEMM Routine

	2.4 PyFR

	3 Related Work
	3.1 GiMMiK
	3.2 BLASFEO
	3.3 Measurement Bias is Significant, Commonplace and Unavoidable

	4 Evaluation Methodology
	4.1 Evaluation Platforms
	4.2 Test Matrices
	4.3 Benchmark Process
	4.4 Performance Metric
	4.5 Limitations and Threat to Validity

	5 Small and Sparse GEMM Kernel with Runtime Broadcasting Packed A Constants from Memory
	5.1 Broadcast with VBROADCASTSS/D
	5.2 Kernel Design
	5.3 Evaluation
	5.4 Supports for AVX2

	6 Multiple Vector Registers for Accumulating C Strides
	6.1 N Blocking
	6.2 M Blocking
	6.3 Kernel Design
	6.4 Evaluation - N Blocking
	6.5 Evaluation - M Blocking
	6.6 Evaluation - Both N and M Blocking

	7 Small and Sparse GEMM Kernel with Caching B Strides in Vector Registers
	7.1 Runtime Broadcasting with FMA instruction
	7.2 Kernel Design
	7.3 Performance Prediction
	7.4 Evaluation - Single Accumulation
	7.5 Evaluation - N Blocking
	7.6 Evaluation - M Blocking
	7.7 Evaluation - Both N and M Blocking

	8 Possible Reasons for Why Too Large M Blocking Factors Decrease Kernel Performance
	8.1 Saturation of Write Buffer by Multiple Non-Temporal Stores
	8.2 CPU Stalls Due to Loading B Strides
	8.3 Sanity Check - Are There Any More Factors?

	9 Conclusion and Future Work
	9.1 Summary
	9.2 Future Work

	Bibliography
	A Characteristics of PyFR operator matrices
	B Kernel Examples
	B.1 Reference LIBXSMM kernels
	B.2 GiMMiK Kernel
	B.3 Small and Sparse GEMM Kernel with Runtime Broadcasting Packed A Constants from Memory
	B.4 Small and Sparse GEMM Kernel with Runtime Broadcasting Packed A Constants from Memory and Caching B Strides in Vector Registers

	C Complete Experiment Results for Testing the Small and Sparse GEMM Kernel with Runtime Broadcasting Packed A Constants from Memory
	C.1 FyFR Operator Matrices
	C.2 Synthetic Matrices

	D Complete Experiment Results for Testing the Small and Sparse GEMM Kernel with Runtime Broadcasting Packed A Constants from Memory and Multiple Accumulations
	D.1 N Blocking
	D.2 M Blocking

	E Complete Experiment Results for Testing the Small and Sparse GEMM Kernel with Runtime Broadcasting Packed A Constants from Memory and Caching B Strides in Vector Register
	E.1 Single Accumulation
	E.2 N Blocking
	E.3 M Blocking

