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Abstract

Matrix multiplication (MM) is a well studied operation and is used heavily in multiple
areas of science and engineering. This thesis is motivated by the MM that occurs in PyFR
- an application that implements Flux Reconstruction schemes for higher-order fluid flow
simulations on unstructured meshes. Most of the computation time within PyFR is spent
carrying out MM with repeated uses of small operator matrices on multiple, large operand
matrices, in a block-by-panel style. Some simulations can take days to weeks, so it is
important to generate as optimal code as possible for the target hardware. Previous work
resulted in GiMMiK - a library that can be used to accelerate MM on a range of hard-
ware, including GPUs and CPUs. Intel has an open-source library, LIBXSMM, which is
a Just-In-Time compiler that can also be used to accelerate the MM found within PyFR.
LIBXSMM is also used to accelerate deep learning applications and is part of Intel’s support
to accelerate both the PyTorch and TensorFlow libraries on Intel hardware. LIBXSMM
can generate code for the AVX-512 hardware found on Intel Skylake-SP CPUs, which is the
target hardware in this thesis. The operator matrices encountered in PyFR applications
contain repeated unique constant values. LIBXSMM contains a specialised small-sparse
operator matrix routine that stores the unique non-zero values of the operator matrix in
the the vector registers, supporting up to 31 unique non-zero constants. This routine is
used by PyFR but many of the typical operator matrices encountered in its application
contain more than 31 unique non-zero values and hence cannot be used for those matrices.
We present methods to enhance the specialised routine to support operator matrices with
up to 240 unique double precision values, an increase from the 31 supported by the refer-
ence LIBXSMM version. This is achieved by packing the unique values within the vector
registers and efficiently broadcasting them at runtime for use within the MM routine. This
method can free up registers which can then be used to implement further optimisations
and provide speedups between 0.997 and 11.5 times over the reference LIBXSMM version,
over a suite of 146 example operator matrices that can be encountered in PyFR applica-
tions. We show that the enhanced LIBXSMM can offer speedups between 0.484 and 5.457
times over GiMMiK over the same suite of example matrices and we suggest when PyFR
users should chose one over the other.

As a result of this thesis, we made contributions to Intel’s open-source LIBXSMM. This
contribution enhanced the specialised small sparse operator matrix routine used by PyFR
and increased the number of unique non-zero constants in the operator matrix from 31, to
240 for double precision and 480 for single precision.
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Chapter 1

Introduction

Matrix multiplication (MM) is a well studied operation due to demand for an efficient
and performant implementation, arising from its heavy use in multiple areas of science and
engineering. The are many libraries that conform to the Basic Linear Algebra Subprograms
(BLAS) interface, which focus on how to optimally implement the BLAS routines on
specific hardware architectures. The generic BLAS routines are not always optimal in
cases where additional information is known before-hand. If the operator matrix is known
to be sparse and relatively small (under 100 x 100), displayed in Figure 1.1, we can achieve
a more efficient routine. The motivation for this thesis originates from the block-by-panel
case of matrix multiplication that occurs in Flux Reconstruction implementations, which
aims to simulate fluid flows [12]. Due to the popularity of matrix multiplication, we believe
generating more optimal routines would help other areas of research as well. LIBXSMM is
an open-source Intel library for specialised dense and sparse matrix multiplication [3]. The
library is part of Intel’s support to accelerate deep learning applications and is used by both
the PyTorch and TensorFlow libraries to improve performance on Intel hardware. CP2K
is a quantum chemistry and solid state physics software package that can use LIBXSMM
to processes batches of small matrix multiplications that originate from distributed block-
sparse matrix with problem-specific small matrices [3]. CP2K uses around 7% of the
core-hours on ARCHER, the UK national supercomputer for science which can run with
over 10, 000 CPU cores, and is the second highest ranked application by usage on the
system [30]. Users of the software packages listed above and many more [3] will be able to
benefit from contributions to LIBXSMM as a result of this work.

1.1 Context

1.1.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is a family of techniques that use numerical anal-
ysis to estimate the flow of fluids as well as the interaction between the fluids and surface

Figure 1.1: Visualisation of a block-by-panel type of matrix multiplication arising from Flux
Reconstruction. The operator matrix is typically small, square and sparse. The operand
and output matrices are typically fat and dense, implying N >> M,K and M ≈ K
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areas. High-order (third and above) methods can potentially give more accurate results
at the same computational cost as low-order methods. Traditionally, high-order methods
were harder to implement and less robust, thus they had a lower adoption in both industry
and academia.
In 2007 H.T. Huynh [12] presented the Flux Reconstruction (FR) approach, a single math-
ematical framework that unifies multiple high-order schemes. The framework made it
simple to create economical solutions for high-order CFD problems. FR has good element
locality lending itself to be efficiently run on streaming architectures, such as GPUs and
CPUs with Single Instruction Multiple Data (SIMD) instruction sets.
PyFR [7] is an open-source Python library that implements the FR approach to solve
advection-diffusion type problems on unstructured grids (known as meshes) and is de-
signed to target a range of hardware architectures. In FR, partial differential equations
are converted into block-by-panel style matrix multiplications where the operator matrix
is sparse and heavily reused. The operator matrices also have a relatively small amount of
unique non-zero elements.
In 2014, Wozniak [34] extended PyFR with GiMMiK to generate bespoke kernels to take
advantage of the additional information known about the matrices, which provided perfor-
mance speedups over generic BLAS libraries when running on GPUs. Section 2.2.3 covers
GiMMiK in further detail. Other commercial libraries have more recently been released,
such as cuSPARSE by NVIDIA [5] and MKL ’Inspector-Executor’ routines by Intel [4],
which also utilise additional information about the operator matrix. PyFR can target
AVX-512 architectures via Intel’s LIBXSMM [3], an open-source library for specialised
sparse and dense matrix multiplications. In 2019 Price [23] evaluated VecReg, which also
generates routines to run on AVX-512. Price compared VecReg against LIBXSMM with a
suite of PyFR example operator matrices and obtained speedups in some cases.

1.1.2 Convolutional Neural Networks - An unrelated area that can ben-
efit from this work

A type of deep learning class is Convolutional Neural Networks (CNN), typically used in
the image processing domain. In a CNN, there are convolutional layers, where the input
is convolved with a (learned) filter. The ’lowering method’ [28] is a commonly applied
technique to carry out the convolutions, where they are transformed into matrix multi-
plications. It can be common for the operator matrix arising from the filter to be sparse
and have a small amount of unique non-zeros. As the convolution is applied repeatedly to
many inputs during training, improving the speed of this operation can be beneficial.
In 2017 Park et. al. [13] designed Direct Sparse Convolutions (DSC) as an alternative
approach to the lowering method. DSC leads to greater arithmetic intensity by reducing
the amount of repeated information stored from the input. DSC can be considered as a
’virtual sparse-matrix-dense-matrix multiplication’ [13] and so would benefit from more
performant sparse-dense matrix multiplication routines.
Whilst not a direct motivator for this thesis, CNNs and other machine learning areas are
an example of other scientific applications that could benefit from the work in this thesis.

1.2 Objectives

The current limitation with LIBXSMM’s highly specialised sparse operator matrix multi-
plication routine that is used by PyFR, is that it only supports up to 31 unique non-zeros
in the operator matrix. This is due to the method it uses to store the operator matrix
within the vector register file (31 registers in AVX-512), where each value stored is repeated
to fill the corresponding vector register. This is done to allow it to quickly access it in the
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form required for the MM routine. If there are more unique non-zeros, LIBXSMM defaults
to a less specialised routine. The first objective of this thesis will be to explore how we
can adapt LIBXSMM to support more unique constants via packing for AVX-512 based
CPUs.
If the number of unique non-zeros in the operator matrix is less than the total num-
ber we can pack within the vector register file, then packing can result in free, unused
registers. Price used these free registers for column-based Common Sub-expression Elimi-
nation (CSE), but noted that there were many other CSE opportunities. We will explore
other methods of utilising available hardware that do not require extensive analysis of
the operator matrices, hopefully allowing the further optimisations to apply to the gen-
eral small-sparse-matrix dense-matrix multiplication case. This thesis will primarily target
AVX-512 on the Intel Skylake-SP architecture. The proposed techniques in conjunction
with the register packing could be adapted for libraries other than LIBXSMM, to target
other computer architectures.

1.3 Contributions

The contributions from this thesis are summarised as follows:

• We explore how to broadcast any selected vector lane, which leads to more unique
non-zeros being able to be packed into the vector register file for the sparse-dense
matrix multiplication routine within LIBXSMM. We evaluate the performance of
kernels generated by this updated routine and report speedups between 0.976 and
10.915 times for some sparse PyFR operator matrices on the Intel Xeon 8175M.

• We compare with a suite of 170matrices that arise in common PyFR applications, the
performance of the new kernels against the characteristics of those operator matrices.
We aim to provide an exhaustive evaluation with this diverse set of operator matrices,
and to highlight when the new kernels perform faster.

• We present a synthetic suite of operator matrices that are used to further evaluate the
new code generator. By controlling the other characteristics of an operator matrix,
we are able to confidently draw conclusions about the effect on performance when
one characteristic varies at a time.

• We experimentally explore the impact on performance when free registers are used
to increase the parallelism of the kernel, by working on accumulating multiple strides
of C concurrently. We report speedups between 0.997 and 11.500 times using these
optimisations over the reference LIBXSMM for some sparse PyFR operator matrices.

• We present a hybrid strategy that uses heuristics to select between existing and newly
proposed LIBXSMM routines to achieve good performance based on the character-
istics of the operator matrix. The heuristics are formed using the results from the
evaluation on the existing and new routines.

• We compare the hybrid strategy against GiMMiK and report speedups between 0.484
and 5.457 times on a suite of example operator matrices encountered in PyFR ap-
plications. For the sparse examples (quadrilateral and hexahedra based meshes) we
report speedups of up to 5.457 times. When a solution accuracy of third-order and
greater is used for dense examples (triangle and tetrahedra based meshes), we report
speedups of up to 2.325 times.
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1.3.1 Contributions to Intel’s Open-Source LIBXSMM

The following contributions are made to Intel’s open-source LIBXSMM as a result of this
thesis:

• We submit code [20] to the LIBXSMM repository on GitHub, that increases the
number of unique non-zeros supported by the sparse-dense routine from 31 to 176
(224) for DP (SP) data types.

• We submit code [21] to the LIBXSMM repository on GitHub, that further increases
the number of unique non-zeros supported by the sparse-dense routine to 240 (480)
for DP (SP) data types. This method builds on top of the first submission, but the
former is preferred for fewer than 176 (224) DP (SP) unique non-zeros.

In Chapters 2 and 3, we cover various background information required to understand
the remainder of the thesis, and a range of prior and related work. Chapter 4 outlines the
evaluation environment and the test-suite, and covers the methodology used for evaluation.
In Chapters 5 and 6, we describe and discuss our experiments on implementing register
packing within LIBXSMM. In Chapter 7 we explore and evaluate a method to further
increase the number of unique non-zeros compared to the register packing solution from
Chapter 5. Register packing can result in free registers and in Chapter 8, we evaluate
a method to utilise the free registers for potential performance speedups. Methods from
Chapters 7 and 8 are combined and evaluated in Chapter 9. We then propose a new
strategy that chooses between routines based on a few heuristics, and compare it against
GiMMiK in Chapter 10. Finally, Chapter 11 will contain a summary of the results and
discussion of future work.
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Chapter 2

Background

In this chapter we first provide a brief overview of Computational Fluid Dynamics (CFD)
and Flux Reconstruction (FR). In Section 2.2 the Python library PyFR is covered in more
depth, including its approaches to heterogeneous computing. We cover examples from a
suite of 170 matrices that arise in common PyFR applications. The evaluation will be
based on this suite, and so we discuss the characteristics of the matrices. Lastly, we cover
the Intel AVX-512 SIMD architecture and how the open-source library LIBXSMM targets
this architecture for optimised sparse-dense matrix multiplication.

2.1 Flux Reconstruction Overview

In CFD there are three basic physical laws that state that mass, momentum and energy
are conserved within a closed system. The Navier-Stokes equations are commonly used to
describe the conservation of momentum in a fluid flow. The need to conserve other physi-
cal properties leads to continuity equations being solved in tandem. There are variants of
the equation, such as if the flow is compressible or not. Regardless of the variation, they
are given as a Partial Differential Equation. Analytical solutions, if possible in theory, are
often too complex and so are computationally expensive to solve, so numerical methods
are used to obtain estimated solutions.
In the numerical solutions, time and space are discretised. Three of the most popular
spatial discretisations are; Finite Volume (FV) ’where the governing system is discretised
onto a structured grid of points’, Finite Difference (FD) ’where the domain is decomposed
into cells and an integral form of the problem is solved within each cell’, Finite Element
(FE) ’where the domain is decomposed into elements inside of which sits a polynomial that
is required to satisfy a variational form of the governing system’ [33]. These methods are
often implemented with first-order or second-order accuracy. The order of the accuracy
determines how the error in the solution will respond to a change in the resolution of the
grid [33]. It is possible to implement the schemes with higher-orders, but the computa-
tional cost increases rapidly. Spectral Difference (SD) is a more recent class of high-order
methods [31], which involve decomposing within the frequency space. However, they have
issues with geometrical flexibility.
Flux Reconstruction provides the superior accuracy of high-order spectral or finite differ-
ence methods with the geometrical flexibility of low-order finite volume or finite element
schemes [7]. Detailed derivations of how the FR framework obtains numerical solutions to
the governing equations, via a seven-stage process, are provided by Castonguay et. al. in
[19] and Huynh in [12]. The remainder of this thesis should be accessible without having
read the additional material.
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Figure 2.1: NASA FAST guide [18] shows the difference between Structured and Unstruc-
tured grids

2.2 PyFR

2.2.1 Overview

PyFR is an open-source Python library, first presented by Witherden et al. [7] that imple-
ments the FR approach to solve advection-diffusion type problems and is designed to target
a range of hardware architectures [8]. PyFR is a high-order accurate solver. Traditionally,
commercial solvers have been low-order accurate and can provide stable results relatively
quickly. The downfall with low-order solvers is that they perform poorly when a higher
accuracy is desired. PyFR satiates an increasing desire from both industry and academia
for a higher accuracy solver to CFD problems, by implementing the FR scheme.
FR has good element locality and so PyFR is able to run the scheme efficiently on modern
streaming architectures. Whilst most of the scheme is implemented in Python, PyFR uses
external libraries to accelerate the matrix multiplication part of FR. PyFR uses different
libraries when targeting different hardware [8].
In FR, partial differential equations can be converted into block-by-panel style matrix
multiplications where the operator matrix A can be sparse, and is heavily reused. The
resulting matrix is accumulated with a scalar β (usually either 0 or 1 - i.e. added or not).

C = αAB+ βC (2.1)

This gives an opportunity to generate bespoke kernels by analysing the operator matrix.
The kernel is then used on multiple, fat matrices (B) over the FR process.
In an unstructured grid, the Euclidean space is discretised using a simple type of shape,
where an irregular pattern is found among the shapes. The collection of the shapes in
the space is often called the mesh. Figure 2.1 from NASA [18] shows an example of an
unstructured grid and how it differs compared to a structured grid.
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2.2.2 Operator Matrices

PyFR supports 2D and 3D grids and multiple types of shapes. The operator matrices
that are repeatedly used originate from a process of storing flux and solution points into a
file. This is an arbitrary process and could be changed to lead to different patterns in the
matrices, but the process used is encoded into PyFR. This means that for a given PyFR
version, every simulation uses the same process. It is also very unlikely, but possible, that
the process would change between PyFR versions.

• Throughout this thesis, there will be 5 operator matrices for a given combination
of shape, quadrature (numerical integration) and order of accuracy of the solution.
Specifically, each set will have an m0, m3, m6, m132 and m460.

• The characteristics (size, density and number of unique non-zeros) of the operator
matrices highly depend on the shape used, as well as the quadrature method and
also the order of the solution.

• Generally, as the order of the solution increases, so do the dimensions of the operator
matrix.

• The pattern characteristic is not dependent on FR directly, but as mentioned above,
the arbitrary storage layout chosen for flux and solutions points within PyFR.

The following sections showcase some properties of example operator matrices from PyFR.
Appendix A provides more detail on every operator matrix from the suite of PyFR exam-
ples used in the evaluation. The matrices are directly plotted as heatmaps, where each cell
represents an element of the matrix and the row and column numbers are labelled on the
axes.
Note: the operator matrices are not a representation of the meshes, but represent opera-
tions carried out in PyFR.

Quadrilaterals

Figures 2.2 and 2.3 show the operator matrices for Quadrilateral shapes using the Gauss-
Legendre quadrature. The operator matrices increase in size as the order of the solution
increases. Large sections of pink/purple are sections where the elements are all 0, high-
lighting that the the matrices are sparse. The pattern of the respective operator matrix
for a given FR step (m_), holds as the order of the solution varies. Blocks of patterns
can be seen better at the higher-orders, like in Figure 2.3 where interleaved diagonals span
the matrix. The patterns arise from the storage layout of the points in memory and the
neighbouring point being considered. For quadrilaterals, two sets of neighbours are con-
sidered, those within a stride of 1 and those within a stride of n. The stride of 1 leads to
the sparser sections - for example the left half of Figure 2.4a.
Figure 2.4 shows the m132 operator matrix for Quadrilateral fourth-order with slightly
differing quadratures being used. The different stride lengths and their respective sections
can be clearly seen. Tables A.1 and A.2 in Appendix A show that the dimensions stay the
same, but the density and number of unique non-zeros varies when the quadrature used
was varied. Figure 2.5 shows another example of how the operator matrix grows as the
order increases. The top half of the matrices have a ’blocky’ diagonal, associated with
the neighbours within a stride of 1. The bottom half has a different diagonal pattern,
associated with the neighbours within a stride of n.
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Figure 2.2: Quadrilateral Gauss-Legendre Second-Order

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0
2

4
6

8
10

12
14

16
18

20
22

0.5

0.0

0.5

1.0

1.5

(a) m0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34 2

0

2

4

6

8

(b) m3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68

7.5

5.0

2.5

0.0

2.5

5.0

7.5

(c) m6

Figure 2.3: Quadrilateral Gauss-Legendre Fifth-Order
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Figure 2.4: Quadrilateral Fourth-Order different quadratures
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Figure 2.5: Quadrilateral Third-Order vs Sixth Order
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Hexahedra

Hexahedra meshes lead to even more sparse operator matrices as points within stride
of n2 in memory must also be considered, due to the increase in dimensionality over
quadrilaterals. This results in the blocks connecting to points within a stride of 1 and
n becoming sparser as the dimensions of the operator matrix increase, but those patterns
for the blocks remain the same. Figure 2.6 illustrates how the size of the operator matrix
increases greatly as the order of the solution increased from second to sixth, leading to a
sparser matrix. The sections for strides of 1, n and n2 are distinctly shown, from left to
right respectively, in both matrices in Figure 2.7.
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Figure 2.6: Hexahedra Second-Order vs Sixth Order
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Figure 2.7: Hexahedra Second-Order vs Fourth Order
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Triangles

Unlike the shapes above, triangles are a simplex element (1-simplex) and triangular meshes
lead to dense operator matrices. Figures 2.8 and 2.9 show the operator matrices for a
triangular mesh using the Williams-Shunn quadrature with second-order and sixth-order
accuracy respectively. Again, as the order increases, the size of the matrices increases.
However, the size of the matrices at sixth-order are relatively very small, compared to
quadrilaterals and hexahedra. The patterns, whilst not very sparse, still hold for the
respective operators as the order increases. Figures 2.8b and 2.9b show that operator m6
has a density of just above 0.5, whilst the other operators are shown to be more dense.
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Figure 2.8: Triangles Williams-Shunn Second-Order
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Figure 2.9: Triangles Williams-Shunn Sixth-Order
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Tetrahedra

Figures 2.10 and 2.11 show some of the operator matrices for Tetrahedra (2-simplex) meshes
using the Shunn-Ham quadrature. The operator m6 for both second-order and fifth-order
show distinct sparse regions, one for each different stride length. The other operators
are shown to be denser than m6. The operator matrix size increases at a greater rate
compared to triangular meshes, as the order increases, but they are still small compared
to the operators for the other 3D shape, hexahedra.
In summary, the operator matrices are denser but smaller for triangles and tetrahedra,
compared to sparser and potentially much larger matrices for quadrilaterals and hexahedra.
The matrices for triangles and tetrahedra also have more number of unique non-zeros at
higher orders, which is detailed in Appendix A.
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Figure 2.10: Tetrahedra Shunn-Ham Second-Order
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Figure 2.11: Tetrahedra Shunn-Ham Fifth-Order

2.2.3 GiMMiK

In 2014, Wozniak [34] extended PyFR with GiMMiK to generate bespoke kernels to take
advantage of the additional information known about the matrices, which provided per-
formance speedups over generic libraries when running on GPUs. The main optimisations
made were to fully unroll the loops and to remove multiplications where the value from the
operator matrix was 0. Another step was to embed the constants of the operator matrix
in the GPU kernel code.
In 2016, GiMMiK v2.0 was released. The bespoke kernels targeting CPUs used OpenMP
SIMD pragmas to take advantage of SIMD extensions on CPUs. The use of the OpenMP
library gives less control to GiMMiK over the eventual assembly code, but provides a simple
kernel code. The compiler is then required to support the pragma and then generate the
final kernel assembly code. Roth [27] and Park [22] experimented with improving GiMMiK
by exploring tiling schemes for kernels targeting CPU hardware.
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Figure 2.12: SIMD - Single Addition Instruction

2.3 Single Instruction Multiple Data Architectures

Single Instruction Multiple Data (SIMD) architectures operate on multiple sets of data
with a single instruction. SIMD differs from vector-processing by operating on all elements
of the vector simultaneously, as opposed to operating on the vector elements in a pipelined
fashion. This means that multiple results are obtained from a single instruction operating
identically on different source elements. Figure 2.12 illustrates how a parallel addition is
performed with SIMD. Each element is stored in a ’lane’ of the vector and the right most
lane is numbered lane zero. The vectors in Figure 2.12 have 4 lanes and the left most lane
in each vector is the third lane of that vector. The operation takes values from the same
lane in each source vector, and places the result of the addition into the respective lane in
the destination vector.
Historically SIMD was used for massively-parallel supercomputers. Modern SIMD is now
more commonly found as Instruction Set Architecture (ISA) extensions. The Advanced
Vector Extension (AVX) class of extensions have been heavily adopted among x86 class
CPUs and Arm also has the Neon and Scalable Vector Extension (SVE) extensions. SVE
is unique in that it does not specify the vector width, only a range of valid widths that the
CPU vendor can implement.

2.3.1 AVX-512: A Single Instruction Multiple Data ISA

Intel AVX-512 is a SIMD ISA extension for x86 CPUs, and is an evolution of its predecessor
AVX2, which it is backwards compatible with. AVX-512 registers are 512-bit wide, double
that of AVX2. The registers can therefore store up to 8 double precision (DP) or 16 single
precision (SP) floating point numbers. In the case of DP, each register has 8 vector lanes.
AVX-512 also support signed and unsigned integers of differing lengths. The ISA provides
the ability to perform arithmetic operations, bit manipulation, compression, shuffling and
more between vectors.
The Intel microarchitecture Skylake Server Configuration has a sub-memory system that
supports 2x64B loads and 1x64B stores in each cycle. This allows an entire 512-bit (64B)
register to be loaded or stored during each cycle, using only one memory port. AVX-512
is included in Skylake-Scalable Performance (SP) server CPUs; the improved sub-memory
system provides the memory bandwidth required by the doubling of the vector width.
The main instructions used during a matrix multiply are the Fused-Multiply-Add (FMA)
and memory loads/stores. The FMA instruction multiplies two source values and adds
them to the destination register. AVX-512 has an instruction that can FMA 8 DP values.
In Skylake-SP, hardware support provides this instruction with the same cycle latency as
an 8-wide DP vector addition.
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Figure 2.13: Roth illustrated the vectorisation of the matrix multiply routine[27]

2.3.2 Sparse MM: Vectorisation

As shown by Roth [27] in Figure 2.13, the vectorised matrix multiply is performed by the
following procedure:

• For each row:

– Load a stride of C equal to the width of the vector register. (only if adding
αAB to βC where β 6= 0)

– For each element in A on this row, broadcast the element into a vector register
and multiply with the corresponding stride from B.

– Store the accumulated value for the C stride.

• Repeat this for all ’columns’ of strides in B.

With AVX-512 and DP, the strides of B and C are 8 values wide. A nice feature arises from
this, which is that the strides fit exactly into a single 64 byte cache-line. Since Skylake-SP
supports two 64 byte loads and one 64 byte store per cycle, each B-stride can be loaded
in each cycle, even when storing the C-stride. Additionally, a column of B-strides takes
up 8∗K∗64

8 bytes for DP with dimension K. So for A with K ≤ 100, a column of B-strides
takes a max of 6.25 KiB, which would fit within the L1 data cache of a Skylake-SP core.
This means that repeated access to B-strides for different rows of A should be read the
stride from L1-cache after the first access for a previous C-stride calculation.
A couple of trivial optimisations arise from the above routine when A is sparse:

• If the element in A is 0, skip the load and resulting FMA of the corresponding B
stride and continue to the next element of A.

• After eliminating the the above, fully unroll the loop to potentially improve perfor-
mance.
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Figure 2.14: High-level view of Just-In-Time code generation in LIBXSMM

2.4 LIBXSMM

2.4.1 The Library

LIBXSMM is a library for specialised dense and sparse matrix multiplication as well as
other related deep learning operations [3]. The library focuses on small matrix multipli-
cation, which is approximated by problems with dimensions MNK : (MNK)1/3 ≤ 64 [3].
The library is designed to target various Intel architectures such as Intel SSE, AVX, AV2
and AVX-512.
The library acts as a Just-In-Time (JIT) compiler, by generating code after analysing val-
ues discovered during runtime. The resulting byte-code is then placed into an executable
buffer in memory. LIBXSMM is designed to be both compiler agnostic and threading-
runtime agnostic. This means the same performance should be expected regardless of the
compiler or threading library utilised by the user application.
Each specialised operation that LIBXSMM supports has its own dedicated function, that
uses LIBXSMM’s instruction API to ’write’ assembly instructions into the executable
buffer. LIBXSMM then casts this buffer to a suitable function pointer, allowing the user
application to call the generated code. This process is visualised in Figure 2.14.

2.4.2 Use within PyFR

PyFR can optionally incorporate LIBXSMM as a matrix multiplication implementation
whilst using the OpenMP library as its threading runtime. LIBXSMM is not required
to provide a threading runtime and is threading runtime agnostic, so other threading
libraries could be used. As well as running on CPU only clusters, it can use the library
when heterogeneously computing [8]. In contrast to GiMMiK 2.0 where a third-party
compiler writes the resulting kernel, LIBXSMM directly writes every line of assembly for
the bespoke kernel, giving a finer grain of control, with the additional complexity that
comes with this control.

2.4.3 Sparse MM: Storing A in the register file

LIBXSMM has a specific generator for when a sparse A has less than or equal to 31 unique
non-zeros. As part of the JIT process, the number of unique non-zeros is counted. If
above 31, then a slower alternative fallback strategy is used. As described in section 2.3.2,
the elements of A have to be broadcast to fill a vector. If one vector register is used to
accumulate the C-stride, then there are 31 free vector registers to store constants from
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operation - DP with AVX-512

A. The FMA operations can use memory locations as source operands as well as register
sources. This means B-strides do not have to be stored in registers.
This generator pre-broadcasts (fills the vector with the same value) each unique element
of A into separate vector registers. During the FMA, the broadcasted element of A is
obtained from the corresponding register, as shown in Figure 2.15. This removes every
load instruction for the operator matrix, leading to performance gains. The routine follows
the strategy outlined in section 2.3.2.

Tiling Scheme

The sparse-dense MM routine in LIBXSMM applies a fixed tiling scheme. The user defines
a ’chunk size’ - number of columns for a ’chunk’ of B. The chunk size must be a multiple
of of the target SIMD vector width; in the case of AVX-512 using DP the width is 8, so the
chunk size must be a multiple of 8. 48 was found to provide good performance for PyFR
operator matrices.
Within the chunk of B, there are mini-chunks which have the same number of columns as
the vector width. In the case of AVX-512 using a chunk size of 48, there are 6 mini-chunks
each with a width of 8. The user successively calls the kernel on chunks of B. Internally,
the kernels successively operate on each mini-chunk B. For AVX-512 this means that
operator matrices with under 512 columns would lead to the mini-chunks of B remaining
in L1-cache with minimal spilling. These mini-chunks are accessed up to an amount equal
to the number of rows in the operator matrix, so it is important to keep them in L1 cache.

Summary

We have covered the motivation behind FR and PyFR - an implementation of it. The
operator matrices found in PyFR have certain characteristics based on a number of factors
which we discussed. We explained the basics of SIMD architectures and specifically, AVX-
512 on Intel Skylake-SP. PyFR simulations contain sparse MM and we showed how SIMD
can be used to accelerate this computation. Finally, we covered LIBXSMM and how it
is used as a JIT compiler. We focused on the existing sparse-dense MM routine within
LIBXSMM and how it makes use of the vector registers to store an operator matrix that
has up to 31 unique non-zero elements.
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Chapter 3

Related Work

In this chapter we will explore previous work which had the aim of speeding up PyFR’s
execution. We will then discuss a broad range of work that made use of SIMD architec-
tures with a focus on the vector register use. Next, we analyse Common Subexpression
Elimination (CSE) techniques from multiple research areas that have a common goal of
FLOP (floating point operation) reduction.

3.1 GiMMiK

We briefly covered GiMMiK In Chapter 2 covering the main optimisations made by Woz-
niak in 2014 [34]. The main optimisations were simple; fully unroll loops and apply sparsity
elimination. However, they led to significant speedups over other GEMM approaches on
GPUs. The evaluation carried out was on a set of example operator matrices from PyFR,
which is the same set we will use in our evaluation. In the evaluation, we will place a
greater focus on the characteristics of the operator matrices and how they could be affect-
ing performance.
GiMMiK v2.0, released in 2016, added support for generating kernels that target CPUs.
In 2015, Roth explored adding new tiling schemes to GiMMiK [27], targeting CPU SIMD
architectures. The tiling greatly benefited performance for the large and the dense operator
matrices found within the set of example PyFR operator matrices. In 2016, Park presented
a ’tailored tiling’ scheme for GiMMiK when targeting CPUs [13]. The main contribution
was to implement and evaluate a tiling strategy that had dynamic tiles, based on the num-
ber of sequential non-zero elements in the operator matrix. Suppose a threshold T was set.
Then the tile on A would be made by traversing the first column of A until T non-zero
elements have been found. If required, the tile can continue over to the next columns(s),
until T is reached. Tiles are continuously made until all of A has been tiled. Park re-
ported speedups of up to 1.95 times for large and dense matrices compared to fix-sized
tiling schemes. However, Park also reported speedups of 0.9 times (slowdowns) for some
small and sparse matrices. The tailored tiling scheme does not take into consideration the
uniqueness of the non-zero elements within the tiles it forms.
The sparse-dense MM routine in LIBXSMM applies a more fixed tiling scheme, which is
explained in Section 2.4.3. The difference in the approach taken by LIBXSMM is that part
of the tiling scheme is exposed to a higher layer of abstraction - the user must be aware of
it. This design choice allows the user to use any threading runtime library to operate on
tiles in parallel, making LIBXSMM threading runtime agnostic.
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3.2 VecReg

Overview

In 2019, Price presented VecReg [23], a Just-In-Time (JIT) code generator targeting AVX-
512 hardware to perform sparse matrix multiplication. Price used the Python Mako tem-
plating library to generate C code that makes use of AVX-512 intrinsics. The C code would
then be compiled using Intel’s C/C++ compiler, ICC.
The main difference between VecReg and LIBXSMM’s sparse register routine is how the
values from the operator matrix are stored in the register file. As mentioned in Chapter 2,
LIBXSMM pre-broadcasts each of the unique non-zeros into a vector register. VecReg took
a different approach, by compactly packing up to 8 (double precision) unique non-zeros
into a 512-bit array, as displayed in Figure 3.1. VecReg followed the same higher-level
routine of matrix multiplication that LIBXSMM uses, and so still required the values of
A to be repeated across an entire, single vector register. During runtime, VecReg kernels
broadcast the values of A into a vector register, by extracting them from the compact
format. VecReg relies on ICC to perform this broadcasting.

Evaluation

The compact storage of unique non-zeros led to spare registers that could be used to
apply CSE to reduce the FLOP count of the kernels. Price found up to 1.6x speedups
over LIBXSMM, which was attributed to being able to perform CSE, and in general found
speedups over LIBXSMM for operator matrices with more than 31 unique non-zeros (when
LIBXSMM defaults to a less specialised sparse kernel).
Price notes that LIBXSMM was loading C when not required, which has been corrected in
a newer version of the library. Price continues his evaluation when A is dense and compares
against LIBXSMM, to see how ICC, and therefore how VecReg, handles operator matrices
with more than the storage limit of 240 unique unique non-zero. Price approximated 256,
but one register is always required for storing the broadcasted version of a value of A and
another to store a cumulative sum for matrix C.
Although Price does not explicitly state the following, we believe the assumption that the
runtime broadcasting would not be on the critical-path was essential for performance to
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Figure 3.2: VecReg Speedup vs unique non-zeros in A (density of A ≥ 0.1) [23]

not degrade for operator matrices that do fit within LIBXSMM sparse A limit of 31 unique
non-zeros.

Investigating VecReg in practice

If the value is stored in lane zero, then ICC can use the ’VBROADCAST’ instruction to
achieve the desired broadcast with one instruction, which is represented by the green step in
Figure 3.1. However, for other lanes, Price’s assumption was that ICC would generate code
that is longer than a single assembly instruction to broadcast the constant, represented by
the red step in Figure 3.1.
A couple of sample kernels generated by VecReg are provided by Price. We investigated
the assembly output of ICC, whilst using the same compiler options as Price (importantly,
’-O3 -march=skylake-avx512 -qopt-zmm-usage=high’ were used). ICC did not store any
of the 512-bit arrays directly into the AVX-512 registers. Instead, packed values of A
were loaded from memory into lane zero of a register. This was then broadcast using
’VBROADCAST’. By not utilising the register file to store A, the ICC compiler misses
out on potential performance improvements. This investigation reveals VecReg does not
implement the theoretical method proposed by Price.
Figure 3.2 shows the speedups of VecReg over LIBXSMM versus the number of unique
non-zeros in A. The points for β = 0 should be ignored due to the previously mentioned
issue in LIBXSMM with loading C being fixed. For β = 1 and the number of unique
non-zeros ≤ 31, most of the data points show that VecReg was noticeably slower. This
is explained by VecReg/ICC kernels loading A from memory (most likely L1 data cache).
Therefore results of VecReg cannot be used to say that runtime broadcasting does not add
to the critical-path, as we believe the performance penalties arise from loading A from
memory.

Key Takeaways

We believe any runtime broadcasting operations should be tuned to use minimal instruc-
tions to avoid reaching the critical-path. To achieve this, alternative storage layouts and
code generation would have to be explored. It should be noted that although there are
a couple of issues with Price’s work, the idea of packing values seems to be an excellent
approach to being able to support more operator matrices and to allow for CSE.
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Figure 3.3: Bitwise XOR Operation on Multiple Data

3.3 Compiling for SIMD Within A Register

SIMD Within A Register (SWAR) integrates SIMD within conventional microprocessor
instructions and memory layouts. The primary goal was to improve the speed of certain
multimedia operations, by computing on multiple 8/16-bit data values within 32/64-bit
scalar registers. In 1998, Fisher et al. [24] presented a language and compiler to allow users
to ’write portable SIMD programs that could be compiled into efficient SWAR modules’.
Some operations, like bitwise XOR, are called polymorphic, as the same instruction can
be used regardless of the data-size vs the register-size. Figure 3.3 shows how the single
machine operation can trivially morph into multiple operations. These operations are easy
to encode into SWAR.
Another class of operations are the communication operations, where the operations "logi-
cally transmits data across processing elements in an arbitrary pattern" [24]. In the SWAR
model, if a register is logically partitioned, then shift and rotate instructions can be used
to transmit data between partitions. Fisher et al. note that the available ISA extensions
at the time, such as MultiMedia eXtension (MMX), did not provide for efficient complex
communication patterns, and so SWAR programs should avoid the use of them. So even
when SIMD extensions were available on the target machine, the SWAR program would
be slowed down by inter-partition communication operations. However, with new exten-
sions such as AVX2 and AVX-512, the logical idea of inter-partition communication can
be efficiently performed as direct hardware support is provided for it.

3.4 Intel SPMD Program Compiler

Single-Program Multiple-Data (SPMD) is a programming model that runs the same serial
program in parallel, on multiple sets of data. A key difference to a single program utilising
SIMD, is that the control-flow for each set of data can diverge in SPMD. In 2012, Pharr et
al. [16] developed a compiler, Intel SPMD Program Compiler (ISPC), that generates code
for SPMD on CPUs with SIMD hardware.
In the single core case, when calling an ISPC function, a group of program instances start
running concurrently, and are referred to as a ’gang ’. Each program instance has its own
vector lane in the SIMD registers. The number of program instances, or the gang size, is in
practice no larger than twice the number of lanes in the SIMD register [26]. It is relatively
easy to extend the SPMD program to work across multiple cores for further parallelisation.
Pharr et al. outline how divergent control-flow can be managed in Section 3.3 in [16]. The
main idea is to use runtime write-masks that ignore new results if control has diverged.
This is good for basic for loops and simple if statements, as the control-flow is converted
into partially predicated instructions.
Deeply-nested if statements would lead to less energy-efficient code, as all possible branches
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would be executed. However, the user of ISPC should be aware of this, and one of the
’non-goals’ of ISPC was to not protect the programmer, but the goal was to allow them to
achieve higher performance.
ISPC targeted hardware that provided cross-lane SIMD operations. ISPC exposes the
capability via built-in functions that allow program instances to exchange data between
the gang. Two useful operations are; broadcast a value to all other gang members and
arbitrarily share a value to other members. So, ISPC has schemes to share data from
any program instance, to any other instance(s) in the gang, by utilising the rich-set of
instructions on modern SIMD that provide cross-lane operations. We can also make use
of these cross-lane operations to unpack a packed version of the sparse A matrix.

3.5 Pixel Interlacing to Trade off the Resolution of a Cellular
Processor Array against More Registers

Cellular Processor Array (CPA) vision-chips are compact and low power-budget chips that
embed a Processing Element (PE) at each pixel. The PE consists of a processing unit
(PU) and registers. The number of registers and general complexity of the circuity of each
PE is constrained by many physical and cost constraints. These chips capture, store and
process the light intensity at each pixel. By having a massively parallel computation on
the chip via a SIMD approach, meaningful pre-processed data can be output instead of
transferring entire frames of data, which is much slower.
In 2015, Martel et al. [17] proposed a method of creating a virtual ’super pixel’. This
logically groups together neighbouring pixels and pools together the registers within the
PEs. The greater the number of pixels in a super-pixel, the greater the number of registers
per super-pixel, but also the lower the resolution of the chip. This is a trade-off made to
allow for more complex on-chip computation for algorithms that require the use of more
registers and/or more temporary registers.
The super-pixels are arranged on a 2D grid. For some algorithms, data is required to
be shifted around the grid. A shift can be performed either vertically or horizontally.
However, when grouping pixels together into a super-pixel, greater care has to be taken
to shift only the correct register to the immediate neighbouring super-pixel, and not ev-
ery register value. Martel et al. achieve this using two components, an activity flag and
masking registers. Detail on how the correct shifting is achieved can be found in Section
2.B from [17]. Essentially, the registers in PEs that shouldn’t be operated on during the
shift are masked to not be overwritten, which is decided by the activity flag. The goal of
the routine can be considered to transfer data between lanes of a SIMD vector, where the
vector lanes/elements are super-pixels.
This method of shifting with write-masks could be used to unpack a packed form of the
sparse matrix A for our case of sparse matrix multiplication. However, without fast hard-
ware support for this style of operation being in a loop, alternative cross-lane data transfer
could be more efficient.
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Figure 3.4: Bitslice array of sixteen 4-bit values

3.6 Customizable Precision of Floating-Point Arithmetic with
Bitslice Vector Types

The work carried out in 1998 by Fisher et al. [24] on SWAR was strictly for integer data
types. In 2016, Xu et al. [29] proposed methods to compute on arrays of custom-precision
floating point data types. An area where custom-precision can be useful is approximate
computing, where the input and output are approximations, and a small additional impre-
cision is unlikely to impact the final results. Approximate computing can be implemented
by using fewer binary bits. When designing custom hardware solutions either via FP-
GAs or ASICs, these custom-precision data types can be configured precisely. However,
on general-purpose processors, this is not the case. The drawback of using larger than
required data types, such as 32-bit floating-point (FP) when the application may only re-
quire 13-bit FP, is that more memory space and memory bandwidth is required, especially
when dealing with large arrays of the data. There is also a potential benefit to power
consumption when using lower-precision [15]
A software bitslice representation was used, taken from the implementation of some cryp-
tography algorithms [2]. In this representation, each machine word contains a single-bit
from each array element. For example, if the machine word size is 16-bits, then for a data
precision of 4-bits, four 16-bit machine words are used. This gives a 16 element array of
4-bit values and is shown in Figure 3.4. The machine size in bits determines the width of
the vector. To carry out arithmetic operations, integer bitwise operations can be carried
out on each machine word, and so the individual bits of the array elements. This allows
for software equivalent algorithms to replace dedicated hardware units, such as adders. Xu
et al. provide software intrinsics that carry out these arithmetic operations on the users
array of custom length data types.
Performance was evaluated against various integer types, (as the CPU did not have native
support for custom-precision FP). Only FP8 saw speedups; 2x over 32-bit integer and 4x
over 64-bit integer for division, and around a 1.1x speedup for multiplication compared to
64-bit integers. Custom FP16 and FP32 resulted in significant slowdowns. Xu et al. con-
cluded that for smaller data types, typically used in approximate computing, the bitwise
parallelism outweighed the cost of the bitwise arithmetic.
The scheme presented showcased a form of packing values across machine words, to enable
a novel SIMD computation within general-purpose microprocessors. Whilst this work di-
rectly operated on the packed form, the SIMD sparse matrix multiplication routine cannot
trivially do so. However, packing data within vector registers, as opposed to reading from
cache, should reduce memory bandwidth requirements as well.
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3.7 Topological Optimisation of the Evaluation of Finite El-
ement Matrices

Kirby et al. [25] presented a framework in 2006 that aimed to reduce FLOP count over
the evaluation of finite element matrices. The matrix being evaluated is known as the
’stiffness’ matrix, which represents the system of linear equations to be solved in order to
obtain an approximation for the original differential equation.
Kirby et al. make the abstraction to only consider the vector products when multiplying
a Rnm matrix with a vector in Rm in the the optimisation problem. The objective was
to minimise the number of multiply-add pairs, or FMA operations. The total number of
FMAs is bounded by nm when calculating[

(yi)tg
]n
i=1

y, g ∈ Rm (3.1)

A discrete distance was calculated between y, z ∈ Rm, and if they are close, then the
product of ytg should be easy to compute once ztg is known.
Kirby et al. formed a graph where a node represents a vector product ytg. This node
i ∈ m was connected to every other node j ∈ m, i 6= j. The edges were weighed by how
close yi was to yj using a chosen distance metric. A lower distance represented a lower
amount of FMAs that were required to go from the vector product of the node i to the
vector product of node j. Kirby et al. further expand on the distance metric, which they
define as a complexity-reducing relation [25]. An example metric that satisfies the formal
definition is the Hamming distance.
By calculating a directed minimum spanning tree (MST), and calculating the products in
the traversal order, the minimum number of FMAs should have been used to calculate all
the vector products.
As noted by Kirby et al. there were a couple of downfalls with the approach. The true
optimal number of FMAs was not guaranteed to be found, as the complexity-reducing re-
lation only considered two vectors at a time. By considering more than two, it is possible
to find routines that would use even fever FMAs.
After removing multiplications by zero, the additional optimisations only provided a ’mod-
est’ speedup [25]. This can be attributed to the routine now being more memory bound. A
modification to the modelling of the cost to include memory access could have potentially
improved the speedup provided by the additional optimisations.
By forming a fully connected graph, a trivial algorithm to find the MST would have
quadratic complexity. Kirby et al. propose various methods to reduce the search space,
including only considering edges that have a minimum FMA reduction payoff.
We can utilise the notion of using a weighted-graph to decide which CSE optimisations
decisions to make if some clash, on a per operator matrix basis, as part of the JIT process.
An important takeaway from this related piece of work, is that we should consider the
memory access patterns and costs when weighting the edges.

3.8 Optimized Code Generation for Finite Element Local As-
sembly Using Symbolic Manipulation

In 2013, Russell and Kelly [10] presented EXCAFE, a code generator that used symbolic
integration to perform finite element local assembly, as opposed to the popular approaches
of quadrature and tensor contractions. This allowed the authors to perform a CSE pass,
which was crucial to achieving at least similar performance levels as quadrature and tensor
contraction implementations.
Russell and Kelly extended the factorizer from the work of Hosangadi et al. [1]. They had
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to adapt it to work with the representations they used, but also improved the work to be
able to detect more types of factorisations.
Russell and Kelly achieved a reduction in operation count by over a factor of 4 in some
cases, across their selected benchmark. Our work will require a factorizer if implementing
CSE and so the work of Russell and Kelly would be a good starting point. However, as
noted by the authors, the code-generator does not scale well with large problems. While
the symbolic integration part of EXCAFE suffers with large sizes, the factorisation is both
computationally and memory intensive. Since the operator matrix in PyFR is small, this
should not be too much of an issue.

3.9 Compiler-Level Matrix Multiplication Optimization for
Deep Learning

In 2019, Zhang et al. [11] proposed two algorithms, a greedy best first search and a
novel Neighborhood Actor Advantage Critic (N-A2C) algorithm, designed to optimise the
GEMM routine by choosing the optimal tiling configurations for the target hardware.
The nodes in the graphs were the tiling configurations. Tiling configurations that are
close, are likely to have similar performance. Both algorithms dynamically searched new
nodes by exploring configurations that were likely to not have similar performance as the
current configuration. For the edges in the graphs used in both algorithms, the weights
are calculated by measuring runtime differences between the nodes.
Since LIBXSMM is a JIT compiler, we can make the assumption that AVX-512 would
be present on the CPU to collect measurements, if we are targeting AVX-512 hardware
during the JIT process. This has the potential to simplify the weight calculation on any
graph model, as ideally our model would consider memory access, and not just FMA uses.
The major disadvantage of this approach, as acknowledged by Zhang et al, is that the
measurement is subject to large noise. This greatly impacts the decisions taken by the
greedy BFS algorithm [11].
It is important to highlight that this paper looked into GEMM, and not sparse-dense MM.
So the random, dynamic searching of configurations could be justified, as there was no
prior information to take advantage of, other than the dimensions.

Summary

We covered two previous pieces of work which focused on improving PyFR’s execution
speed. The first, GiMMiK, was made to work on CPUs as well as GPUs and we compared
some of its key differences to LIBXSMM. The second, VecReg, was covered in detail and
we highlighted a key flaw in its implementation - it does not utilise the vector registers in
the way it was previously thought to have done so. The related work that made use of
SIMD architectures had a common feature which was moving data between lanes of vector
registers. Through our analyses, we find that hardware support for cross-lane communica-
tion operations allows for some algorithms to become feasible in practice, by providing a
fast enough method to move data. The pieces of work we discussed that make use of CSE
showed that it has been a well studied matter and that there are various solutions to find
optimal combinations of CSE.
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Chapter 4

Evaluation Methodology

In this chapter we first outline both the hardware and software environment that the eval-
uation will be performed on. We then detail the benchmark used to measure performance
on example operator matrices encountered in PyFR applications and operator matrices
from a new synthetic suite. Next, we explain the performance metric that will be used for
the evaluation and also describe the process of generating roofline plots for the evaluation.
Finally, we outline any threats to the validity of the results and discuss the measures taken
to attempt to neutralise them.
We describe and explain the benchmarking process in detail to help to make the results
repeatable and so that if desired, others can validate the measurements we report. A script
is provided in the accompanying files to make it easier to run the benchmark and obtain
results.

4.1 Environment

Software Version

All testing will be run on Ubuntu 18.04 LTS. The benchmark will be compiled using GCC
version 7.5.0, but the exact compiler used should not effect performance as the LIBXSMM
kernels are compiler agnostic. The updates to LIBXSMM were made to the parent commit
’51e64904fc53c19de79ec8e66414233f4fc4130e’, which itself builds upon version 1.14. The
maximum code buffer size was doubled in LIBXSMM for all versions tested (including
reference) in Chapter 6. In Chapters 7, 8, 9 and 10, the code buffer size was increased by
a factor of 8. Appendix B details the reasons why this change was required.

Benchmark Controls

To minimise the gap from the theoretical peak kernel performance and the best execution
time obtained, we can control a few things. Firstly, we can pin the benchmark to a single
core using "taskset -c 0" in Linux. This prevents any repeat compulsory low level cache
misses from the process being moved to a different core. The benchmark should be run
with real-time priority, which can be easily set within the Linux operating system using
"nice -20". This important measure prevents the OS from scheduling other processes to
run on the core the benchmark is running on. Compared to the execution times of the
kernels, the scheduling overhead may not be that significant, but the CPU time taken by
other process can be very significant. Since we will be measuring the time from when the
kernel is called to when it returns, any time taken by other processes will increase the
measured time.
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Hardware

Originally we intended to run the benchmark on a private compute cluster. However, there
would often be other work being executed on the same node that the benchmark was as-
signed to. The system in place did not allow for the benchmark to be given exclusive access
to a core. This led to a large variance in performance between runs and so an alternative
platform had to be used.
Instead, the benchmarks will be run on Amazon Web Services (AWS) Elastic Compute
(EC2) nodes, that have Intel CPUs with AVX-512. The exact instance type is ’m5.xlarge’
which uses a single core from the Intel Xeon Platinum 8175M, a Skylake-SP based CPU,
along with 8GB of RAM. AWS provides exclusive access to the physical core, even though
the entire CPU is shared. However, as the benchmark aims to keep reused data within at
least L2 cache, sharing L3 cache should not be detrimental. Disabling Hyper-Threading
should not be necessary due to setting CPU affinity and process priority.

4.2 Benchmark Suite

We will be testing the kernel performance for different operator matrices (A) in the matrix
multiplication from equation 4.1 with DP. α = 1 and β = 0 will be the only versions
tested, β = 1 would have the same effect on performance for the reference and updated
versions of LIBXSMM. This is because all versions tested would load the stride of C in the
same way, before continuing with their strategies to carry out the matrix multiplication.

C = αAB+ βC (4.1)

Emulating PyFR’s use of LIBXSMM

The strategy found to be optimal with LIBXSMM for PyFR splits the B matrix every 48
columns. Splitting B takes advantage of the massive multi-threading available in a typical
PyFR simulation setup, and 48 columns was found to be optimal by the LIBXSMM and
PyFR maintainers. The setup effectively calls a ’hot’ kernel with new data. The kernel is
very likely to keep data in L1, and only spill to L2 cache if the B matrix has a very, very
large amount of rows (A has a very large amount of columns). The C program PyFR uses
to call the kernels, is linked to the LIBXSMM library. If dynamic linking was to be used,
once the kernel is ’hot’, runtime linker look-ups should be resolved and cached, so function
call expenses should be minimal over the entire simulation.
To provide performance metrics that translate well into PyFR’s real-world use case, we
propose a method that aims measure the performance of the kernel when passed 48 columns
of B. For each operator matrix kernel, we successively pass 48 column ’chunks’ of B, where
B is random with a total of 192, 000 columns of data. The time measured is just before
calling the kernel with the first chunk of B, to when the kernel returns from calling it with
the last chunk of B. The C ’gettimeofday ’ function is used to measure time.
Figure 4.1 shows the results of an experiment to determine if using a total of X columns
in B can emulate a PyFR simulation. The kernel is repeatedly called called for successive
48 column chunks of B. After operating on all of B, the process is repeated 60 times, as
we intend to do in the benchmark. The test operator matrix was taken from the PyFR
examples (quad-p4-gauss-legendre-m132). If X is too low, then chunks of B remain in the
last-level cache (LLC) between calls to the kernel for the same chunk of B. So the best
performance measured would not be realistic for unseen B. X = 192, 000 was chosen as
it was large enough to not fit in LLC, leading to the performance within the flat range in
Figure 4.1 for the average execution time per 48 columns of B.
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Figure 4.1: Investigate Number of B columns - Average Best Time per 48 columns

Repeating Experiments

During a single benchmark run, each kernel is called 60 times with the 192, 000 column B.
The best time is recorded. For the evaluation, the entire benchmark is run on 3 separate
AWS VM instances and the average of the best times across the 3 runs is used. The
benchmark is statically linked to LIBXSMM, eliminating runtime linking overheads.
The benchmark consists of two separate sets of operator matrices; the first a collection
of example operator matrices encountered in PyFR applications and the second a set of
synthetic matrices.

4.2.1 PyFR Example Operator Matrices

A subset of examples were taken from a set provided by PyFR, listed in Table 4.1. From the
whole set (detailed in Appendix A), any matrix with less than or equal to 176 unique non-
zeros were used. Matrices with over 176 unique non-zeros would have used the same kernel
generation strategy in our updated LIBXSMM as the in the reference version. In Table 4.1

Order 1 2 3 4 5 6

Quadrilateral - GL all all all all all all

Quadrilateral - GLL - all all all all all

Hexahedra - GL all all all all all all

Hexahedra - GLL - all all all all all

Triangle - WS all all all m0,m3,m6 m0,m3,m6 m0

Tetrahedra - SH all all m0,m3,m6 m0 - -

Table 4.1: PyFR Example Operator Matrices Used in Benchmark

’GL’ is Gauss-Legendre quadrature, ’GLL’ is Gauss-Legendre-Lobatto, ’WS’ is Williams-
Shunn and ’SH’ is Shunn-Ham. ’all’ is equivalent to having m0,m3,m6,m132,m460 op-
erator matrices.
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4.2.2 Synthetic Operator Matrices

As the operator matrices vary in more than one characteristic between them in the PyFR
examples, a suite was synthesised to only vary one characteristic at a time. The base
configuration was 128 rows and columns, a density of 0.05 and either 16 or 64 number
of unique non-zeros (U). The data was uniformly, randomly sampled from the available
unique constants. The data was also uniformly, randomly placed in the matrix. Two base
configurations were made to be able to compare against two routines LIBXSMM used, one
for U ≤ 31 (LIBXSMM sparse-dense register routine) and one for U > 31 (LIBXSMM
dense routine).

• Vary number of rows in A ∈ [32, 64, 128, 256, 512, 1024]. U = 16

• Vary number of rows in A ∈ [32, 64, 128, 256, 512, 1024]. U = 64

• Vary number of columns in A ∈ [32, 64, 128, 256, 512, 1024]. U = 16

• Vary number of columns in A ∈ [32, 64, 128, 256, 512, 1024]. U = 64

• Vary density ∈ [0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5]. U = 16

• Vary density ∈ [0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5]. U = 64

• Vary number of unique non-zeros in A
∈ [8, 16, 24, 31, 40, 48, 56, 64, 78, 96, 112, 128, 144, 160, 176, 192]

4.3 Performance Metric

An alternative performance metric to execution time will be used for the evaluation. The
aim is to provide insight into how well the hardware capabilities are utilised effectively and
to also better showcase performance speedups.
We call the metric used pseudo-FLOP/s. For a given operator matrix, the pseudo-
FLOPS (Floating Points Operations) is first counted. The algorithm to count the pseudo-
FLOPS is a basic 3 loop matrix multiply, with the exception that when an element is 0
in A, the FLOPS are not counted. The algorithm assumes an FMA is available, and each
FMA counts as two FLOPS. The count is then divided by the measured execution time of
the kernel from the benchmark, resulting in a performance metric of ’pseudo-FLOP/s’.

The ’pseudo’ prefix is used as the same FLOP count will be used across the different
kernels/strategies implemented, even though the actual FLOPS required by an optimised
kernel might be less. This leads to a different ’pseudo-FLOP/s’ as the optimised kernel
should have lower execution times, thus displaying the performance improvement in a
hopefully more contextual way. Similarly, a less optimised kernel could have a lower pseudo-
FLOP/s than the actual FLOP/s. Figure 4.2 transforms the time measurements from
Figure 4.1, using the new ’pseudo-FLOP/s’ measurement. The data being displayed is the
same, but shown in a different context.

4.4 Roofline Plots

The evaluation includes plotting roofline plots. The compute bound lines are calculated
using the AVX-512 boost frequency of the Intel Xeon 8175M, 2.4GHz. Two compute bound
lines are shown; the first is for when the CPU core has a single AVX-512 FMA unit, and
the second for when the core has two AVX-512 FMA units. This is due to lower-end
Skylake-SP CPUs only having one FMA unit per core. The Intel Xeon 8175M used in
testing has two FMA units per core.

27



Figure 4.2: Investigate Number of B columns - Average pseudo-FLOP/s per 48 columns

The memory bandwidth used for the memory bound line was obtained using a modified
STREAM benchmark. The modification was to instead measure the operation of a[i] =
a[i] + b[i]. This gave a 1 : 1 ratio of load-store, as when writing to a, the cache-line
must also be loaded from memory. Intel’s C/C++ compiler ICC was used to compile
the benchmark, with the compiler flags "-Ofast -ipo -static -xskylake-avx512 -qopenmp -
DSTREAM_ARRAY_SIZE=80000000" used. The measured peak bandwidth for a single-
core was 13.516GB/s.
Some data points in the following evaluation chapters lie above the memory bound line.
This is possibly due to LIBXSMM gaining from better hand-written pre-fetching versus
ICC’s best efforts to add pre-fetching when compiling the tuned STREAM benchmark.
LIBXSMM will issue SW pre-fetch instructions that go ahead of the (automatic) HW
pre-fetching, helping to improve BW.

4.5 Validity of Results

Using AWS would at first suggest that the other VMs running on the same physical system
would lead to a large variance in performance. To investigate this, we ran a small test with
results shown in Figure 4.2, where each run was on a different AWS VM instance. Most of
the data points are very tightly grouped, showing that the variation due to other workloads
was not as large as first thought to be. This assumes a fair distribution of VM instances
and workloads across the physical nodes in AWS.
Another potential issue is that AWS does not allow us to control the CPU frequency
unless we rent enough cores or the entire CPU. This means any timing measurements will
be affected by the turbo frequency of the CPU, which is likely to not remain constant due
to varying CPU temperatures and other uncontrollable factors when using an AWS VM.
After the first round of testing, a reliable, stable average recording of 2.4GHz was found
for the frequency, which is one of the AVX-512 heavy-use boost frequencies of the CPU.
Another potential pitfall of using AWS is having to share memory. However, on AWS
it is highly unlikely all other users will simultaneously use a lot of memory bandwidth.
The bandwidth obtained (repeatable) on a single core VM using the modified STREAM
benchmark is around the peak single core memory bandwidth measured in an experiment
by AnandTech [14]. So sharing the memory does not appear to impact the bandwidth we
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can achieve.
In PyFR simulations, kernels are run on all available cores with memory bandwidth being
heavily used by all cores. AnandTech also showed that as more cores utilise memory
bandwidth, the bandwidth available per core decreases [14]. So the threat to the validity
of our results is that for kernels that are fully memory bound, they may be running faster
than if that kernel was being ran on all cores. We will consider this limitation in the
evaluation, especially when discussing the roofline plots. One point to note is that not
all CPU architectures have as large a decreasing bandwidth per core as more cores are
utilised, as Skylake-SP does.
Additionally, it is possible that the stressed core running the benchmark could have access
to more L3 cache, if other AWS users on the same machine have low memory use. So any
results that rely on access to a larger L3 share may not show typical performance that
would occur in a PyFR simulation. However, the kernels are intended to operate using L1
cache and have minimal spilling. So the availability of more L3 cache should not impact
the performance obtained especially since we use 192, 000 columns for B (which ensures B
does not fit on the Intel Xeon Platinum 8175M’s L3 cache).

Summary

We provided detail on both the software and hardware environment used for the evaluation
and described the process of how we settled on the chosen platform. For the benchmark
process, we showed the results of an initial experiment to tune some benchmark parameters
in order to better simulate a PyFR workload. We also described the synthetic suite that
forms part of the benchmark. The performance metric ’pseudo-FLOP/s’ will be used in
the evaluation and we explained how it is calculated and the motivations behind using it.
Next, we described how the boundaries of the roofline plots were obtained. Finally, we
addressed the major potential threats to the validity of the measured results based on the
chosen benchmark environment and methodology.
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Chapter 5

Register Packing Solutions

In this chapter we introduce two schemes to pack the matrix A in an AVX-512 register file,
that enables single instruction broadcasting, regardless of the vector lane that the value is
stored in. The value is required in a broadcasted format (repeated across all of the lanes
in the vector) for the MM routine. The first solution uses a shuffle instruction with an
intricate storage layout and the second uses a permute instruction. Both solutions are
compared in terms of the number of unique non-zero values they could pack into a register
file.

5.1 Solution with Shuffles

AVX-512 Shuffle Instruction

The following storage layout was designed to be able to use the VSHUFF64X2 AVX-512
instruction. On Skylake-SP it has a 3 cycle latency [9]. The instruction has two source
vector register operands, an 8-bit operand and one destination vector register operand.
The 8-bit operand is encoded at compilation time via embedding into the instruction.
In this instruction, the vector registers are split into sections of 128-bits, so each source and
destination register has 4 sections. The VSHUFF64X2 instruction copies 128-bit sections
from the source registers to the destination.
The 8-bit integer, called the selector, selects which source sections to copy for a destination
register. The selector is split into 4 groups of 2-bits. The lowest 2-bits select for the lowest
128-bits in the destination, and the highest 2-bits select for the highest 128-bits in the
destination.
The lowest 4-bits of the selector, select for the first two 128-bit sections in the destination
register, which are chosen from the first source register. A 2-bit selector can choose any of
the four 128-bit sections from the source register.
So the lowest half (256-bits) of the destination register is given two 128-bit sections from
the first source register. The 128-bit sections chosen can be the same or different. Similarly,
the highest 4-bits of the selector choose 128-bit sections from the second source register.
The highest half (256-bits) of the destination register is given two 128-bit sections from
the second source register. The entire operation is illustrated in Figure 5.1 [6].

Single Instruction Broadcasting

To make use of the VSHUFF64X2 instruction for a single-instruction broadcast the 128-bit
sections have to contain only the desired value to be broadcast. This means that the value
must be repeated for 128-bits. For double precision, this means storing the value twice.
For single precision, the value must be stored four times. The logical register layout is
shown in Figure 5.2, which shows that there are four 128-bits sections in a register. A
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Figure 5.1: Illustration of VSHUFF64X2 [6]

trade-off is made by repeating values to obtain a single-instruction broadcast, that uses
only one temporary register to hold the broadcasted value.

Packing Scheme in Register (DP)

x0 x0x1 x1x2x2x3 x3

0b00b511

(a) Double Precision

x2 x2 x2 x2x3 x3 x3 x3 x1 x1x1x1 x0 x0 x0 x0

Packing Scheme in Register (SP)

0b511 0b0

(b) Single Precision

Figure 5.2: Layout within Register for DP and SP values

Figure 5.3 shows how the VSHUFF64X2 instruction can be used with the DP logical
storage layout from Figure 5.2 to achieve a single instruction broadcast, regardless of
which lane the value is stored in (groups of sequential lanes due to repetition). The same
register is used as both source operands, which can be seen in Figure 5.3 by both the
source registers being zmm0. This allows the selector to choose the same 128-bit source
section, for all four 128-bit sections in the destination register. The end result is that the
selected source section is broadcast to all four sections - a 1− 4 broadcast operation. The
same process would apply to SP and would also be a 1−4 broadcast, as the SP value must
be repeated four times to fill the 128-bit section.

0b 0101 0101

x0 x0x1 x1x2x2x3 x3 x0 x0x1 x1x2x2x3 x3

x1 x1x1x1x1x1x1x1

0b010b01 0b010b01

Selector

Source Register A Source Register B
0b00 0b000b010b100b11 0b010b100b11

0b000b010b100b11

Destination Register

zmm0 zmm0

zmm1

Figure 5.3: Using VSHUFF64X2 to Broadcast

Figure 5.4 showcases the four possible broadcasts and the corresponding selector values
required to achieve them. The binary values show that a 2-bit value is repeated, which is
due to the same source 128-bit section being chosen for all four destination sections.
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0b 0000 0000

Source Register Selector Destination Register

0b 0101 0101

0b 1010 1010

0b 1111 1111

x1 x1x1x1x1x1x1x1

x2 x2x2x2x2x2x2x2

x3 x3x3x3x3x3x3x3

x0 x0x0x0x0x0x0x0

x0 x0x1 x1x2x2x3 x3

x0 x0x1 x1x2x2x3 x3

x0 x0x1 x1x2x2x3 x3

x0 x0x1 x1x2x2x3 x3

Figure 5.4: The four possible effective broadcasts

Register Packing for the MM routine

By fully storing A in the register file with the packing scheme, no memory access is
required for A during the MM routine. The adaptation made to the routine from Section
2.3.2 is to broadcast the required value of A from the register file using the VSHUFF64X2
instruction. Figure 5.5 shows that the 31st register, zmm30, is used as the temporary
register to hold the broadcasted value. This is then multiplied with the stride of B (loaded
from memory) in the FMA to calculate (part of the accumulation of) the stride of C.

a0 a0a2 a2a3a3 a1 a1

a7 a7 a6 a6 a5 a5 a4 a4

a11 a11 a10 a10 a9 a9 a8 a8

a119 a119 a118 a118 a117 a117 a116a116

Broadcast aX destination

C-Stride Accumulation

zmm0

zmm1

zmm2

zmm29

zmm30

zmm31

AVX-512 Register File

Figure 5.5: The Vector Register File logical layout when using register packing for the
SpMM routine
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5.2 Solution with Permutes

AVX-512 Permute Instruction

Permute instructions provide a method to rearrange the order of elements in a vector. The
VPERMD and VPERMQ instructions allow for arbitrary positioning of elements. Both
instructions have a 3 cycle latency on Skylake-SP [9]. A source element can be sent to any
destination lane, as shown in Figures 5.6 and 5.7. VPERMD has 16 elements, splitting the
vector register into 32-bit values. VPERMQ has 8 elements, splitting the vector register
into 64-bit values.
For both instructions, one source operand, either a vector register or memory location, is
used as the source of data. The other source operand is used as a selector. The selector
has the same number of values as the number of elements in the destination register.
This means that each destination value can be filled with any of the source elements.
By choosing the same source element for every destination element, a single instruction
broadcast is achieved.

Figure 5.6: Illustration of VPERMD/PS [6]

Figure 5.7: Illustration of VPERMQ/PD [6]

32-bit Permute for 64-bit values

LIBXSMM has the VPERMD instruction available, but not the VPERMQ. Whilst the
64-bit permute instruction could have been added, it is possible to perform the exact same
operation with the 32-bit permute instruction.
Figure 5.8 shows the logical layout within a register packed values for both DP and SP.
The VPERMD treats the register as the SP layout. However, a DP value (64-bits) can be
treated as the concatenation of two consecutive 32-bit (SP) values.
Figure 5.9 shows eight 512-bit values for the selector operand of VPERMD. Each operand

Packing Scheme in Register (DP)

x1 x0x3 x2x4x5x7 x6

0b00b511

(a) Double Precision

Packing Scheme in Register (SP)

x9 x8x11x10x12x13x15x14 x1 x0x3 x2x4x5x7 x6

0b00b511

(b) Single Precision

Figure 5.8: Layout within Register for DP and SP values

corresponds to broadcasting a certain 64-bit value from the data source operand. For
example, broadcasting bits 63-0, the selector alternates between an index of 0 and 1. As
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this is selecting 32-bit values, the first 64-bits of the destination is composed of the first
and second 32-bits from the source. These 2 32-bits join to form the DP value. The pair of
32-bits is repeatedly selected for every 64-bit destination as well. The linked white boxes in
Figure 5.9 detail which source lane (DP/64-bit value) is broadcasted by the corresponding
permute selector operands.

Permute Operands for DP using VPERMD/SP (Must be loaded to register)
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Figure 5.9: Using VPERMD to Broadcast DP

Register Packing for the MM routine

VPERMD can be used to broadcast either SP values (trivially) or DP values as shown.
This solution, like the Shuffle solution, fully stores A in the register file, so no memory
access is required for A during the MM routine. The adaptation made to the routine from
Section 2.3.2 is also the same, apart from the broadcasting instruction and the layout in
the register file. Figure 5.10 shows that for DP, 8 vector registers are used to store the
permute operands. This leaves 22 registers to store data, meaning 176 DP values can be
packed. The other 2 registers are used to hold the broadcasted value and the C-stride
being accumulated.
For SP, 16 registers are used to hold permute operands, as there as 16 of them. This leaves
14 registers for data with a total of 224 SP values that can be packed.

5.3 Summary: Comparing the Solutions

Table 5.1 shows that the solution using permutes supports a greater number of unique
non-zeros to be packed, for both DP and SP. Both instructions also have a 3 cycle latency
on Skylake-SP and both issue one micro-operation [9].
However, the permute solution requires 8/16 permute operands to be loaded into the
register file for DP/SP respectively. The trade-off for supporting more unique non-zeross
is that space is taken up by storing the permute operands in the register file. Whilst
the maximum number of supported non-zero values is higher, the permute solution is not
always the most space efficient. Figure 5.11 shows the amount of registers required by each
solution (for both DP and SP) as the number of unique non-zeros to be packed increases
from 32 (when below 32, the current LIBXSMM pre-broadcast solution is more optimal).
The solution using VSHUFF64X2 is more space efficient for DP until 64 values are to
be packed, and for SP until 85 values are to be packed. The greater the number of free
registers available, the greater the potential number of further optimisations that could be
made.
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Figure 5.10: The Vector Register File logical layout when using register packing for the
SpMM routine (DP)

Method SP DP
Shuffle 120 120
Permute 224 176

Table 5.1: Number of Unique Non-Zeros that can be packed with the Solutions
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Figure 5.11: Comparing the number of registers required by the packing schemes against
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35



Chapter 6

Register Packing Evaluation

For the evaluation of register packing, we will show results using the permute solution, as
the the maximum number of unique non-zeros that can be packed with it is higher. As no
further optimisations are used in this chapter, the number of free registers is not of con-
cern. Initial evaluation has shown that the performance difference between both solutions
is within margin of error for matrices with a number of unique non-zeros supported by
both. This was expected as both are 3 cycle latency, single instruction broadcasts, with
all the data of A remaining in the register file.

The register packing using permutes is evaluated against the reference LIBXSMM on the
PyFR suite and synthetic suite in this chapter. We separately explore the PyFR suite based
on the shape used for the mesh, comparing the performance against the number of unique
non-zeros, as well as the density of the operator matrices. Additionally, accompanying
roofline plots are shown and discussed. When evaluating the synthetic suite, we plot
performance against the (independent) varying characteristic and discuss the experimental
results obtained with the help of roofline plots. Throughout the evaluation, we refer to the
following proposed hypotheses and test them against the results.

Hypotheses

1: Kernels for operator matrices where the number of unique non-zeros (U), is bound by
U ≤ 31, should not have decreased performance when using register packing compared to
other sparse strategies deployed by LIBXSMM. The runtime broadcasting should not add
to the critical path of execution.
2: Kernels for operator matrices where the number of unique non-zeros (U), is bound by
31 < U ≤ 176, should have increased performance compared to other strategies deployed
by LIBXSMM.

6.1 Evaluation on PyFR Suite

The following plots compare the performance, measured by pseudo-FLOP/s, of the register
packing strategy (green line) versus two existing LIBXSMM strategies; the register routine
from Section 2.4.3 (orange line) and a dense MM routine (maroon line). When the number
of unique non-zeros (U) is greater than 31, LIBXSMM falls back to this dense MM routine.
For this evaluation we also measured the performance of the dense routine when U < 31
as well as the existing sparse register routine.
The dense routine used by LIBXSMM is a well optimised dense GEMM routine for small
matrices, that implements various tiling strategies. In the following roofline plots, the
Arithmetic Intensity (AI) is calculated differently for the sparse routines compared to the
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dense routine. For the sparse routines, strides of B and C are only counted as memory
loads/stores if the element in A that causes the load/store is non-zero. This (correctly)
reduces the count of number of bytes transferred for sparse matrices. The AI for the dense
routine counts every byte of B and C for the amount of bytes transferred to/from memory.
Appendix C contains further plots from the benchmark, plotting performance vs the num-
ber of rows in A, the number of columns in A and the size of A.

Quadrilaterals

Figure 6.1a shows the performance of the three strategies for the quadrilateral operator
matrices vs each matrices U . For U ≤ 31, it can be seen that the dense strategy performs
slower than both sparse routines for some matrices, and the same for others, but never
faster. Figure 6.1b plots the performance vs the density of the same operator matrices.
This shows that when the dense routine performs the same as the other strategies, the
operator matrices are relatively dense. So although U ≤ 31, the increased density allows
the dense routine to reach the same performance. When the matrices are very sparse, the
sparse routines can perform over 2x faster.
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Figure 6.1: Register Packing vs Reference Performance - PyFR Quadrilateral Examples
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Comparing the existing register routine and the register packing routine, for U ≤ 31,
the performance is nearly identical apart from two data points where the existing routine
performs slightly, yet insignificantly, faster. This data generally supports hypothesis 1,
that there is no performance penalty for runtime broadcasting.
For U > 31, the register packing strategy always performs faster than the dense routine.
Figure 6.1b shows that these matrices have a sparsity between 0.1 and 0.2, which explains
why the dense routine cannot achieve similar performance. This part of the data supports
hypothesis 2, that register packing would provide increased performance for 31 < U ≤ 176.
Speedups of up to around 1.5x can be observed in Figure 6.1a for U > 31.
The results are also shown as a roofline plot in Figure 6.2. For kernels with an Arithmetic
Intensity (AI) of < 0.5, the sparse, register based routines are close to reaching the roofline
based on memory bandwidth (BW). For these same matrices, the dense routine is shown
to not come close to reaching the roofline as shown by the few, lower maroon points.
This is due to using the pseudo-FLOP/s metric, where the dense routine is doing a lot
of computation that is not considered useful (multiplying when the value of the operator
matrix is 0). If using a traditional FLOP/s metric, we would expect these points to be
higher on the plot. For AI > 0.5, the sparse routines also do not reach the roofline, but
are still above the dense points. This suggest these kernels can reach a higher performance
with more intricate optimisations.
There is one point, in Figure 6.2 where the dense routine is plotted above the sparse
routines (the group of points above the roofline). Figure 6.1b indicates that this kernel
was for a matrix with a density of 0.5, and so the dense routine performing faster is not
too surprising in this specific case.
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Hexahedra

The hexahedra operator matrices are more sparse relative to quadrilaterals. Figure 6.3b
shows the performance of the three strategies vs the density of the matrices. Both sparse
routines perform up to 10x faster over the dense routine for density under 0.05.
Figure 6.3a shows that for U ≤ 31, the register packing routine performs near identical
to the reference sparse register routine. This supports hypothesis 1, that the runtime
broadcasting does not add to the critical-path. Figure 6.4 shows that not all of the reg-
ister packing kernels reach the memory BW roofline. This could be due to the memory
access pattern of the kennels not achieving the peak we obtained in the modified STREAM
benchmark. However, in a real PyFR simulation, we would expect a lower peak BW when
all cores are used on Skylake-SP. We would then expect the few sparse kernels that reach
the memory bound in the single core case to not be as fast in a real simulation. However,
they would still be faster than the kernels from the dense routine.
For 31 < U ≤ 176, the register packing is shown to perform to perform around 8 − 10x
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Figure 6.3: Register Packing vs Reference Performance - PyFR Hexahedra Examples

faster than the dense routine. However, it should be noted these kernels were for very
sparse matrices, with a density of under 0.05. This demonstrates the advantage of being
able to still use a sparse routine, where the loops are fully unrolled and multiplications by
0 in A are skipped. By supporting a higher U , the updated LIBXSMM is prevented from
falling back on the dense routine.
Figure 6.4 highlights how much the dense routine is not suited for hexahedra operator
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matrices, with many of the data points for dense being well below the roofline due to mul-
tiplying by 0s from A, leading to low pseudo-FLOP/s. It should be noted, if traditional
FLOP/s was to be plotted, the dense kernels would be much closer to the roofline.
As mentioned above, the sparse routines do not reach the roofline, and are further away
when compared to the quadrilateral points in Figure 6.2. This suggests further optimisa-
tions could potentially have a greater impact on the kernel performance for hexahedra or
that the an alternative memory access pattern could provide higher BW.
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Figure 6.4: Register Packing vs Reference: Roofline Plot - PyFR Hexahedra Examples

Triangles

Operator matrices for triangles are more dense than the above matrices, as shown in Figure
6.5b. So using a sparse routine may not be the most optimal due to the many methods
applied by advanced dense GEMM routines to increase performance, such as LIBXSMM’s
dense routine. However, for U ≤ 31 the performance of all three strategies are close, but
the dense appears to be the best, and the reference sparse register routine the worst. It is
hard to draw conclusions as to why the register packing performed faster than the reference
register routine, as the operator matrices vary in multiple ways other than density and U .
For U > 31, the register packing either performs around the same, or around 0.5x as fast
as the dense routine. Whilst not explicitly shown, this is most likely due to the density
varying as well as U . So the 2x faster dense kernels are for more dense operator matrices.
This data then suggests that hypothesis 2 is incorrect, as LIBXSMM has better alternatives
for U > 31 than the sparse register packing routine.
For the higher AIs (> 1) in Figure 6.6, the dense routine points are shown to be close to the
roofline, suggesting that the matrices are dense (which is the case) as the pseudo-FLOP/s
plot appears to show expected performance for a traditional FLOP/s plot. For lower AIs,
≤ 1 all three strategies are very close to the roofline. The plot also shows that the register
packing performs faster than the reference register routine. The kernels are close to being
fully memory bound, and the runtime broadcasting did not make performance slower. This
supports hypothesis 1, that the additional work does not add to the critical-path.
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Figure 6.5: Register Packing vs Reference Performance - PyFR Triangles Examples
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Tetrahedra

Like triangles, tetrahedra operator matrices are dense. For U ≤ 31, the register packing
routine performs near identically to the reference sparse routine, shown in Figure 6.7a.
However, the dense routine was again the best for U ≤ 31. This supports hypothesis 1,
that the runtime broadcasting did not add to the critical path of the sparse routine. For
U > 31, the dense routine kernels once again outperformed the register packing kernels.
Figure 6.7b shows that these speedups came when the density was over 0.8. Regardless,
the data shows that hypothesis 2 does not hold, and that LIBXSMM does have better
alternatives to register packing for 31 < U ≤ 176 in certain scenarios.
Figure 6.8 shows a similar story as the roofline plot for the triangle operator matrices
showed.
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Figure 6.8: Register Packing vs Reference: Roofline Plot - PyFR Tetrahedra Examples

6.2 Evaluation on Synthetic Suite

In the synthetic suite one of the main characteristics of the operator matrices is varied
whilst the rest are held constant. The base configuration was 128 rows and columns, a
density of 0.05 and either 16 or 64 number of unique non-zeros (U). The reference version
of LIBXSMM uses the sparse register MM routine for the set of matrices where U = 16
(orange), and uses the dense MM routine for the set where U = 64 (maroon). In the fol-
lowing plots, the results for the sparse register packing MM routine are shown for U = 16
(green) and U = 64 (cyan).
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Vary Number of Rows

Figure 6.9 shows that the sparse routines at least maintain around a 2x speedup over
the dense routine as the number of rows in A is increased. At 1024 rows, the dense
routine performs slower than for 512 rows. The dense routine in LIBXSMM picks between
many different sub-strategies depending on the dimensions of the matrices. However, the
available options are designed for small operator matrices. So as A gets too large, the
dense routine has issues to pick an optimal sub-routine/strategy. The sparse routines, of
course, do not have this issue as they store A efficiently within the registers. Hypothesis 2
is supported by this data, as LIBXSMM does not have an alternative that performs faster
in this case.
The register packing for U = 16 shows no performance penalty for broadcasting at runtime,
strongly supporting hypothesis 1. Register packing has very similar performance when
U = 64 compared to when U = 16. The register packing routine broadcasts the element of
A on every use, even if it was the most recently used (so already available). This leads to
the similar performance. An improvement to the routine could be to not issue a broadcast
if already available. The overhead of doing this check would come at the JIT compile time,
not at runtime. However, as shown by Figures 6.10a, there may not be any gain from doing
this. The register packing points are below the roofline and at the same locations for the
reference sparse routine for U = 16, suggesting that the runtime broadcasting does not add
to the critical-path when not memory BW bound. So, removing unnecessary broadcasting
should not lead to any significant performance gain.
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Vary Number of Columns

As the number of columns (CA) in A increased beyond 128, the performance speedup of the
sparse routines over the dense routine increased, shown in Figure 6.11. As CA increases,
the number of rows in B increases. At CA = 256 and beyond, the dense routine struggles
to manage the larger dimensions of both A and B. For the sparse routines, at CA = 512,
the 8 columns of B being repeatedly accessed in the routine, take up 32KB. Skylake-SPs
L1 data cache size is also 32KB, leading to the routine spilling to L2 cache. However,
the drop in performance due to using L2 for A is smaller than the drop due to the dense
routine using sub-optimal small strategies for large matrices. This led to an increase in
the speedup, to around 3x, whilst the performance of the sparse routines decreased.
For U = 16, the register packing routine does not perform slower than the reference sparse
routine. In fact for both U = 16 and U = 64, register packing can perform faster, for
example when C = 512. The data supports both of the original hypotheses. Figure 6.12b
shows how the inability of dense routine to manage larger matrices moves the data points
further from the roofline. We also see how bad cache use leads to lower data points on the
roofline plots.
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Vary Density

So far, the dense MM routine has always performed slower in the synthetic suite, which
was expected as all the previous matrices had a density of 0.05. Figure 6.13 uncovers
a critical point, where the dense routine stops being slower. At a density of 0.25, the
dense routine performs around the same as the sparse routines, and performs faster as
the density increases further. This suggests hypothesis 2, that LIBXSMM doesn’t have a
faster performing strategy than register packing, is only true up until a critical density.
This information can be used to add a density heuristic to LIBXSMM to decide to fall back
to the dense routine, even if the sparse routine supports the U in the operator matrix.
Again, the data supports hypothesis 1, that the runtime broadcasting is not detrimental
to performance. For both U = 16 and U = 64, register packing performs at least the same
as the reference sparse routine at U = 16.
Figure 6.14b shows that the performance of the reference dense routine kernels increase
linearly with AI. However, performance of register packing kernels level off as AI increases.
The levelling off is not due to the runtime broadcasting, as Figure 6.14a shows that the
reference sparse routine kernels also level off. The cause for the plateau is more likely
due to the under-utilisation of the available execution units, and is shown not to be due
to memory BW limitations. This is where further optimisations could greatly improve
performance for the sparse routines.
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Figure 6.14: Register Packing vs Reference: Roofline Plot - Synthetic Suite Vary Density
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Vary Number of Unique Non-Zeros

Finally, we vary U with the other properties held constant. Figure 6.15 shows that regis-
ter packing had over a 2x speedup over the dense routine for U ≤ 176. This shows that
for a small A, that is relatively sparse (ρ = 0.05), register packing consistently delivers a
speedup for matrices that it can support. At U = 192, the LIBXSSM with register packing
defaulted to the same dense routine as found in the reference version.
Surprisingly, register packing consistently performs faster than the reference sparse rou-
tine for U ≤ 31. We believe this is due to the out-of-order (OOO) scheduling within the
CPU core, or possibly something else as intricate. Whilst hard to find evidence for what
exactly gives the speedup, this speedup appeared in the experiments above, notably when
the number of columns was varied.
Figure 6.16 shows that the register packing kernels did not reach the roofline. This is pos-
sibly due to matrices tested not being sparse enough, like some of the hexahedra examples
from PyFR. However, this again suggests that further optimisations could help the kernels
for these synthetic matrices reach the roofline.
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6.3 Summary

The results from all the experiments supported hypothesis 1, that stated that there should
be no performance penalty for runtime broadcasting for U ≤ 31, compared to other
LIBXSMM sparse strategies. Hypothesis 2 was disproved by the experiment with the
denser matrices found in PyFR, and the synthetic experiment where the density was var-
ied. We found that at around a density of 0.25, the dense MM routine in LIBXSMM
performs faster than all the sparse MM routines tested. This value is further supported by
the hexahedra experiment, where all matrices had a density of under 0.25, and the dense
MM routine never performed faster.
We also found that that using an A with too many rows (1024) or too many columns (256)
led to the dense MM routine performance decreasing, showing that LIBXSMM’s dense
MM routine is suited for smaller operator matrices.
Finally, it was shown that register packing with runtime broadcasting can lead to slightly
faster performance over the pre-broadcast, sparse MM register based routine from the refer-
ence LIBXSMM. We believe this is due to the OOO scheduling and execution in Skylake-SP
working better for the code generated by register packing and its runtime broadcasting.
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Chapter 7

Register Packing using L1 Cache to
store Selector Operands

In this chapter we will iterate on the register packing solution that uses permute instruc-
tions for the broadcasting, showing how even more unique non-zeros can be packed by
making a trade-off. The first section describes the steps taken to achieve this. We will
then evaluate the modified version using the benchmark against the version from the pre-
vious two chapters, which we will refer to as the base register packing version. Due to
supporting more non-unique zeros, we will also evaluate against the reference LIBXSMM
for operator matrices that the base register packing version does not support.

7.1 Solution

7.1.1 Layout of Operands

In the base register packing version, vector registers are used to store the selector operands
for the permute instructions, which are required for broadcasting the packed values. In-
stead, these can be stored in data memory, as shown in Figure 7.1. In total, the operands
(for DP values) would take up 512 bytes (8 ∗ 64B), or 1.57% ( 1

64) of the L1 data cache in a
Skylake-SP CPU core (for SP they would take up 3.13%). This would free up 8 (16) vector
register when using DP (SP). Table 7.1 compares the amount of unique non-zeros that
can be packed when using ’L1 selector operands’ compared to the base register packing. A
total of 240 unique non-zeros can be packed for DP, and 480 for SP.

Load Selector Operand / Broadcast aX

C-Stride Accumulation

zmm1

zmm29

zmm30

zmm31

AVX-512 Register File

222 2 2 2 223 3 3 3 3 3 3 3

44444444 55555555

6666666 6 77777777

8 8 8 8 8 8 889 9 9 9 99 9 9

101010 10 10 10 101011 11 11 11 11 11 11 11

1212121212121212 1313131313131313

14141414141414 14 1515151515151515

9

12

x9 x8x11 x10x12x13x15 x14

x233 x232x235 x234x236x237x239 x238

Packed U
nique Values

Selector Operands Stored in Memory (L1 Data Cache) (8x64B)

Broadcast Lane 3

Broadcast Lane 4

Broadcast Lane 5

Broadcast Lane 6

Broadcast Lane 7

Broadcast Lane 2

Broadcast Lane 1

0 0 0 0 0 0 001 1 1 1 11 1 1 Broadcast Lane 0zmm0 x1 x0x3 x2x4x5x7 x6

Figure 7.1: Logical storage layout for unique non-zeros and selector operands
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Method SP DP
Base 224 176
L1 480 240

Table 7.1: Comparing the Number of Unique Non-Zeros that can be packed against the
base register packing version

7.1.2 Broadcasting Process

However, this increase comes at a cost. An additional memory load instruction has to
be issued for every permute instruction issued. Figure 7.2 displays the steps to broadcast
the packed value. First, the selector operand is loaded into the single temporary register
(zmm30). This is used as the second source register for the permute instruction (first
source contains the packed value). The result of that permute instruction is written in the
same register, zmm30, overwriting the selector operand with the broadcasted value. This
can then be used for the FMA in the matrix multiplication routine.

Load Selector Operand / Broadcast aXzmm30 0 0 0 0 0 0 001 1 1 1 11 1 1 Broadcast Lane 0

Step 1: Load Selector Operand from Memory

Step 2: Broadcast value of A using Permute

Load Selector Operand / Broadcast aXzmm30

Load

0 0 0 0 0 0 001 1 1 1 11 1 1 x1 x0x3 x2x4x5x7 x6
Permute

zmm30

Memory Reference

zmm0

Final Result: Now have broadcasted value in zmm30 for use in FMA

zmm30 x0 x0x0 x0x0x0x0 x0

Figure 7.2: Updated broadcasting process

7.1.3 Alternative Strategy

The selector operand for the permute instruction must be a vector register and not a
memory reference. The data operand (one that contains the packed value) can however be
a memory reference. This would breakdown into multiple micro-operations.
An alternative strategy would be to continue to store the selector operands in the register
file, and to selectively store packed values in memory, once the number of unique non-zeros
is above 176. This would lead to fewer additional memory loads. However, the risk in
deploying this strategy is that the packed values of A can be evicted from L1-cache. If this
occurs often, the stalls would lead to slower performance.
In the case of storing the selector operands in L1-cache, they are much less likely to be
evicted, as they are likely to be loaded more frequently. There is also a bound on the
amount of space taken by them, so there is less of a concern on the contention for L1
between them and B.
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7.2 Evaluation

As in the previous evaluation on the base register packing solution, we will show and dis-
cuss performance, measured by pesudo-FLOP/s, against the number of unique non-zeros
(U) and the density of the operator matrices. Roofline plots will also be provided.
In the following sections we will first evaluate the modified register packing, referred to as
’Register Packing L1’ (RP L1) against the base version, referred to as ’Register Packing
Base’ (RP Base) using the benchmark.
Additionally, we evaluate against a few more PyFR operator matrices that have 176 ≤ U ≤
240. The performance is compared against the dense routine from the reference LIBXSMM
version. The focus throughout the evaluation will be to determine if the following hypoth-
esis holds.

Hypothesis

3: Kernels loading selector operands from memory (L1 data cache) should perform about
the same as kernels using the base register packing solution. The reason for this is that
there should be spare read bandwidth to the L1 data cache in the kernels using the base
solution, which can be used to load the selector operands.

7.2.1 Evaluation on PyFR suite

The following plots show the performance of RP L1 (green lines) versus RP Base (maroon
lines). From the PyFR suite of operator matrices, the examples from quadrilaterals and
hexahedra have been placed into a ’sparse’ group, and the examples from triangles and
tetrahedra form a ’dense’ group. All examples tested have a number of unique non-zeros
supported by both strategies. The evaluation will focus on determining if there is a perfor-
mance difference due to reading selector operands from memory. Appendix D.1 contains
further plots from the benchmark, plotting performance vs the number of rows in A, the
number of columns in A and the size of A.

Sparse Operator Matrices

Figures 7.3 and 7.4 show that there was no significant performance difference between RP
L1 and RP Base for sparse operator matrix examples from PyFR. There are a couple of
points for both quadrilaterals and hexahedra kernels where the the RP L1 performed up
to around 1.1x faster. Figure 7.5 shows that the majority of these speedups are for kernels
that do not reach the (memory) bound. These smaller speedups can then be attributed to
the micro-architecture of Skylake-SP favouring the instruction sequence of RP L1, leading
to a small pseudo-FLOP/s increase. If RP L1 displayed the same speedups for the same
kernels across a variety of micro-architectures, then a different conclusion could be made.
However, given that the evaluation is only carried out on one architecture, and that the
majority of kernels perform the same, the results from the ’sparse’ group of operator
matrices support hypothesis 3.
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Figure 7.5: Register Packing L1 vs Base - PyFR Sparse Examples (Roofline Plots)
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Dense Operator Matrices

Figures 7.6 and 7.7 show that generally, kernels using RP Base perform slightly faster than
kernels using RP L1, up to around 1.1x, disproving hypothesis 3. For the denser opera-
tor matrices, more broadcasts are required and so more reads from memory for selector
operands are required. Interestingly, there are a couple of data points at a density of 1.0
where RP L1 performed around 1.2x faster. Figure 7.8 shows that this occurs at extremely
small matrices, where there are fewer than 5 columns. Figure 7.9 reveals that the slow-
downs occur at high AI, which correspond to the larger and denser operator matrices.
Slowdowns mean that the more complex broadcasting was adding to the critical-path of
execution.
However, at low AI, the results show performance speedups for RP L1 over RP Base, es-
pecially for triangles, shown in Figure 7.9a. These points correspond to operator matrices
that are relatively small. These kernels were memory bound when using RP Base, and so
the additional broadcasting could not negatively impact performance as there was ’free’
time whilst waiting on main memory.
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Figure 7.9: Register Packing L1 vs Base - PyFR Dense Examples (Roofline Plots)

7.2.2 Evaluation on Large PyFR Operator Matrices

The following evaluation is performed on example PyFR operator matrices that have 176 ≤
U ≤ 240. RP Base does not support these, and so RP L1 is compared against the dense
routine from the reference LIBXSMM. Instead of testing for hypothesis 3 in this specific
evaluation, we are mainly interested in seeing if the results from Chapter 6 hold, where the
dense routine beat RP Base for the dense group of PyFR matrices. Appendix D.2 contains
further plots from the benchmark, plotting performance vs the number of rows in A, the
number of columns in A and the size of A.

Dense Operator Matrices

Figures 7.10 and 7.11 clearly show that RP L1 is slower than the dense routine for these
operator matrices, by a factor of up to 3x in some cases. Figure 7.12 shows that none of
these kernels were memory bound. From this, we cannot determine if it was either the use
of L1 selector operands, or the general sparse MM routine, that was the main contributing
factor to the slower performance. Results from Chapter 6 on RP Base with similar matrices
would suggest that the main reason would be the general sparse MM routine.
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7.2.3 Evaluation on Synthetic Suite

We will now evaluate RP L1 against RP Base using the synthetic suite of operator matrices.
In the following plots, the results for RP L1 kernels are shown for U = 16 (green) and
U = 64 (cyan). The results for RP Base kernels are shown for U = 16 (orange) and
U = 64 (maroon). The results will be used to determine if hypothesis 3 holds or not,
which is repeated below for convenience.

Hypothesis

3: Kernels loading selector operands from memory (L1 data cache) should perform about
the same as kernels using the base register packing solution. The reason for this is that
there should be spare read bandwidth to the L1 data cache in the kernels using the base
solution, which can be used to load the selector operands.
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Vary Number of Rows

As the number of rows increases, so does the size of A, and so does the total number of
broadcasts that are issued in the kernel. The strides of B are reused more often and so
the broadcasting can have a higher chance of impacting performance as less time is spent
waiting on main memory loads. A very small speedup (less than 1.03x) when using RP
Base over RP L1 is shown in Figure 7.13 at very large number of rows. However, for a
more typical number of rows (≤ 128) RP L1 has a speedup over RP Base. Overall, the
data provides support for hypothesis 3, as it shows that there is no significant difference
in performance.
Figure 7.14 shows that all of the kernels were not memory bound. Perhaps the small
observed differences in performance would not occur if they were memory bound. In a
scenario where the kernel was being run on all cores, the memory bandwidth per core
would be reduced on Skylake-SP, and so these differences may not persist.
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Figure 7.13: Register Packing L1 vs Base: Performance vs Number of Rows
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Figure 7.14: Register Packing L1 vs Base: Roofline Plot - Vary Number of Rows

57



Vary Number of Columns

Similarly to the results seen in Chapter 6, Figure 7.15 shows that increasing the number
of columns to 512 and beyond leads to a decrease in performance for both RP L1 and
RP Base. This is due to the 512+ strides of B no longer fitting within the L1 data cache.
However, around a 1.1x speedup is observed when using RP L1 for some of the kernels. The
roofline plot in Figure 7.16 shows us that these kernels are further away from the memory
bound. In these cases, the latency of loading the selector operands from L1 is masked
by the latency of loading strides of B from L2. So the relatively small speedups can be
attributed to micro-architecture specifics (possibly various OOO mechanisms) of Skylake-
SP working better with the instruction sequence of RP L1 kernels. Again, investigating
on other micro-architectures would help to confirm or reject that last conclusion.
For typical sizes of operator matrices, NumCol ≤ 128, hypothesis 3 holds. However, the
results show the hypothesis does not hold for large matrices when running on Skylake-SP.
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Figure 7.15: Register Packing L1 vs Base: Performance vs Number of Columns
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Figure 7.16: Register Packing L1 vs Base: Roofline Plot - Vary Number of Columns
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Vary Density

Figure 7.17 shows that there was no significant performance difference between RP L1 and
RP Base as the density increased. At the higher densities, the current strides of B are
reused more often. The additional step of loading selector operands from L1 is shown to
not add to the critical path. The CPU is most likely being bound by the FMA operations.
It appears that the OOO execution of the Skylake-SP core cannot squeeze out further
instruction-level parallelism (ILP) with the RP L1 kernels (and RP Base). Figure 7.18
reveals that the kernels for denser matrices do not reach the roofline, suggesting they are
not using the hardware as effectively as they could be. This led to slower than possible
performance, which could have been masking the L1 selector operand loads. The results
support hypothesis 3, and show that loading the selector operands from L1 did not lead
to performance differences.
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Figure 7.18: Register Packing L1 vs Base: Roofline Plot - Vary Density
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Vary Number of Unique Non-Zeros

The original aim of using L1 selector operands was to support more unique non-zeros.
Figure 7.19 shows that RP L1 maintains a similar level of performance for an operator
matrix with U = 192 as it does for U ≤ 176. In comparison, RP Base defaults to the
dense routine for U = 192. As only U is varied, we can conclude that RP L1 continues to
provide the sparse routine level of performance for small sparse matrices (up to a size of
128x128 and a density of around 0.05) that have a larger U .
The results do support hypothesis 3, but we should note that the performance for RP L1
kernels are consistently slightly faster than RP Base, but the difference is not noticeable
on larger scales, such as in Figure 7.20. Again, no concrete conclusions can be drawn to
explain this without testing on more micro-architectures.
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7.3 Summary

We evaluated RP L1 against RP Base on both the PyFR suite and synthetic suite. The
results showed that hypothesis 3 does not strictly hold. RP L1 appears to be suited for
small sparse matrices where the kernels are either memory bound or under utilise the
hardware when not memory bound. In those cases any potential L1 selector operand
load penalties would be hidden. However, the ’sparse’ group of PyFR operator matrices
suggested that for kernels which are not memory bound, will also not have a penalty for
using L1 operands either. The ’dense’ group of PyFR operator matrices revealed that RP
Base could often have up to a 1.1x speedup over RP L1 for denser matrices, suggesting
that hypothesis 3 only holds for small sparse matrices.
Evaluation on even larger and denser PyFR operator matrices, (that RP Base could not
support), showed that RP L1 was not as performant as the optimised dense routine in
LIBXSMM for those matrices.
We observed a few instances were RP L1 would have up to a 1.1x speedup over RP base,
where the reason for the speedup was not obvious. It is possible that the Skylake-SP
micro-architecture could better execute (via OOO/ILP) the instruction sequence of RP L1
kernels.
Ultimately, for the target use case of this LIBXSMM sparse routine - small sparse operator
matrices - RP L1 is a solution that provides support for an increased U (240 DP / 480 SP)
in the operator matrix without adding a performance penalty.
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Chapter 8

Multiple Accumulations

When using register packing to store the operator matrix in the vector register file, if the
number of unique non-zeros is less than the maximum number supported, then there are
free, unused vector registers. In this chapter, we cover two methods that make use of the
unused registers. After outlining how they work, we will investigate if runtime broadcasting
impacts performance when using either method. Then we will evaluate the methods using
the benchmark, finally coming to a conclusion if either (or both) lead to an increase in
performance.
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8.1 Solutions

8.1.1 N Blocking: Operating on multiple mini-chunks of B

In 2.4.3 we describe how the kernels are passed ’chunks’ of B, where each column of strides
of B are called ’mini-chunks’. In the reference sparse-dense MM routine, only one ’mini-
chunk’ is operated on, used when calculating the strides of C (corresponding to the rows of
A). This can be referred to as N Blocking, where N = 1. The advantage of using N = 1,
is that each ’mini-chunk’ / block of B can be larger and still fit within L1 cache.
However, for small operator matrices, where the number of columns is less than 256(171),
the L1 data cache in a Skylake-SP CPU core can fit 2(3) ’mini-chunks’ of B. This enables
the kernel to quickly (L1 cache hit) access different parts of B to calculate multiple strides
of C, by making use of data parallelism. The CPU hardware will itself carry out the
instruction level parallelism.
Figure 8.1 demonstrates the order that a kernel would issue FMAs using N = 2 blocking.
For a row in A, after broadcasting the unique value, issue the first (#1) FMA with the
corresponding stride of B from the first mini-chunk, accumulating into the first stride of
C. Then, issue the second (#2) FMA with the corresponding stride of B from the second
mini-chunk, accumulating into the second stride of C. This is repeated for each unique
value in the row of A to calculate the N = 2 strides of C. Some (if not most) of the strides
of B from both mini-chunks will be in L1 data cache, to use with the next row of A, to
calculate the next N = 2 strides of C.
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Figure 8.1: Multiple Accumulation - N Blocking Visualised

Table 8.1 shows that increasing N by 1, reduces the number of free registers that can be
used to pack A by 1. This is due to each additional accumulation of a stride of C requiring
an additional vector register to hold the (partial) result. Going from N = 1 to N = 3, the
number of unique non-zeros that can be packed decreases from 176 to 160 for DP.

N Free Reg (DP/SP) U (SP) U (DP)
1 22(14) 224 176
2 21(13) 208 168
3 20(12) 192 160

Table 8.1: Comparing the Number of Unique Non-Zeros (U) that can be packed for different
N Blocking
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8.1.2 M Blocking: Interleaving rows of A

Unlike N blocking, this method operates on the same ’mini-chunk’ of B. Different rows of
A are accessed in an ’interleaved’ fashion, to work on accumulating multiple strides of C.
Figure 8.2 shows an example of this ’M Blocking’, where M = 2.
Each row of A has its own dedicated register to hold the broadcasted value. The two rows
are iterated together, with FMAs (and preceding broadcasts) being issued for whichever
row has a non-zero value in the current column. For this example, the first FMA (#1)
is issued due to the second row having the value 3 in the first column. The first row has
a zero value, and so no FMA is issued. The next column, it is the opposite case, with
the second FMA (#2) issued due to the first row. On the third column, both rows have
non-zeros, and so two FMAs (#3 and #4) are issued respectively.
This is repeated until all of rows of A have been dealt with. If the number of rows is not
exactly divisible by M , the final remaining group of rows (< M) are interleaved.
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Figure 8.2: Multiple Accumulation - M Blocking Visualised

Table 8.2 shows that increasing M by 1, reduces the number of free registers that can be
used to pack A by 2. This is due to each additional accumulation of a stride of C requiring
both; a vector register to hold the broadcasted value from the corresponding row and an
additional vector register to hold the (partial) result. Going from M = 1 to M = 3, the
number of unique non-zeros that can be packed decreases from 176 to 144 for DP.

M Free Reg (DP/SP) U (SP) U (DP)
1 22(14) 224 176
2 20(12) 192 160
3 18(10) 160 144

Table 8.2: Comparing the Number of Unique Non-Zeros (U) that can be packed for different
M Blocking
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8.2 Investigating the effect of runtime broadcasting

The first hypothesis (1) in Chapter 6 that was evaluated to be true, stated that ’the
runtime broadcasting should not add to the critical path of execution’. When issuing
more FMAs to carry out multiple accumulations, this cannot be assumed to still hold. So,
we will evaluate both N and M blocking on a subset of the operator matrices from the
benchmark, when runtime broadcasting is and isn’t used. The subset is formed by testing
only on operator matrices with a number of unique non-zeros ≤ 26. This allows the values
to be pre-broadcast into the register file whilst using additional blocking. The proposed
hypothesis to be evaluated is as follows.

Hypothesis

4: Kernels carrying out multiple accumulations in ’parallel’ and using runtime broadcasting
should not perform slower than kernels carrying out multiple accumulations in ’parallel’
and using pre-broadcast values. The runtime broadcasting should not add the critical
path of execution, even when more FMAs are being issued, as in the case of multiple
accumulations.

8.2.1 N Blocking

Using the subset of operator matrices from the benchmark, we show the performance for
both N = 2 and N = 3 blocking, with and without runtime broadcasting. In the following
figures, NX Base represents N = X blocking without runtime broadcasting, and NX RP
represents N = X blocking with runtime broadcasting.

Sparse Operator Matrices

Figure 8.3 shows that for most of the sparse PyFR operator matrices, there is no difference
in performance when using and not using runtime broadcasting, for both N = 2 and N = 3.
However, there are a few kernels where using runtime broadcasting can lead to performance
gains of up to 3%, which isn’t a large enough and common enough of a difference to delve
further into. The results strongly support hypothesis 4.
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Figure 8.3: Register Packing impact on N Blocking - PyFR Sparse Examples (Number of
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65



Dense Operator Matrices

Figure 8.4 shows that for the dense PyFR operator matrices, the kernels using runtime
broadcasting either perform around the same or faster than kernels using pre-broadcast
values. In the case of triangular meshes and N = 2 blocking, speedups around 1.3x can
be observed when using runtime broadcasting. We can attribute this to the Skylake-SP
micro-architecture favouring runtime broadcasting, as seen in Chapter 6. Again, the results
support hypothesis 4.
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Figure 8.4: Register Packing impact on N Blocking - PyFR Dense Examples (Number of
Unique Non-Zeros)

Synthetic Operator Matrices

The results from the subset of synthetic operator matrices are shown in Figure 8.5. All
of the data shows that the kernels with runtime broadcasting perform either the same or
faster than kernels using pre-broadcast values, for both N = 2 and N = 3.

Summary

Results from the subset of both PyFR and synthetic operator matrices show that hypothesis
4 holds for additional N blocking.
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Figure 8.5: Register Packing impact on N Blocking - Synthetic Operator Matrices
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8.2.2 M Blocking

Using the subset of operator matrices from the benchmark, we show the performance for
bothM = 2 andM = 3 blocking, with and without runtime broadcasting. In the following
figures, MX Base represents M = X blocking without runtime broadcasting, and MX RP
represents M = X blocking with runtime broadcasting.

Sparse Operator Matrices

Figure 8.6 shows that for the sparse PyFR operator matrices, the kernels using runtime
broadcasting either perform around the same, or slightly ( 1.1x) faster than kernels using
pre-broadcast values. Again, this difference can be explained by the Skylake-SP micro-
architecture favouring runtime broadcasting. Hypothesis 4 is supported by the results.

0 5 10 15 20 25
Number of Unique Constants

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

Quad: Number of Unique Constants in A vs Pseudo-FLOP/s

M2 Base
M2 RP
M3 Base
M3 RP

(a) Quadrilaterals

0 5 10 15 20 25
Number of Unique Constants

109

2 × 109

3 × 109

4 × 109

6 × 109
Ps

eu
do

-F
LO

P/
s

Hex: Number of Unique Constants in A vs Pseudo-FLOP/s

M2 Base
M2 RP
M3 Base
M3 RP

(b) Hexahedra

Figure 8.6: Register Packing impact on M Blocking - PyFR Sparse Examples (Number of
Unique Non-Zeros)

Dense Operator Matrices

Figure 8.7 shows that for the dense PyFR operator matrices, the kernels using runtime
broadcasting either perform around the same or up to around 1.3x faster than kernels
using pre-broadcast values. Importantly, no kernels using runtime broadcasting perform
noticeably slower when using runtime broadcasting. The results show that Hypothesis 4
holds for the dense PyFR matrices as well.

Synthetic Operator Matrices

The results from the subset of synthetic operator matrices are shown in Figure 8.8. All
of the data shows that the kernels with runtime broadcasting perform either the same or
faster than kernels using pre-broadcast values, for both M = 2 and M = 3.

Summary

Results from the subset of both PyFR and synthetic operator matrices show that hypothesis
4 holds for M blocking.
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Figure 8.8: Register Packing impact on M Blocking - Synthetic Operator Matrices

8.2.3 Summary

We evaluated both N and M blocking on a subset of the operator matrices from the bench-
mark, with and without the kernels using runtime broadcasting. Looking at the results, we
showed that hypothesis 4 is true for both N and M blocking - runtime broadcasting does
not add to the critical path of execution, even when carrying out multiple accumulations.
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8.3 N Blocking Evaluation

In this section we will evaluate N = 2 and N = 3 blocking being used in conjunction
with register packing. We will compare performance against the reference LIBXSMM
(maroon lines) as well as the base register packing (RP Base) from Chapter 6 (orange
lines). Throughout the evaluation, we will discuss the following hypothesis.

Hypothesis

5: Using additional N blocking with register packing leads to faster performance over
register packing without additional N blocking.

8.3.1 PyFR Suite

Sparse Operator Matrices

When plotting performance against the number of unique non-zeros or the density, as in
Figures 8.9 and 8.10, N blocking is shown to lead to faster performance for some of the
sparse PyFR operator matrices. For hexahedra, the performance is either the same or
marginally faster. For quadrilaterals, Figure 8.9a shows speedups of up to 1.1x when using
N blocking. When plotting against the number of columns, as in Figure 8.11, it is more
clear that N blocking performed faster when there are around 50 to 100 columns at a
density between 0.1 and 0.2 for quadrilaterals. The hexahedra operator matrices do not
have examples that fit those features, and so we do not see similar speedups.
Interestingly, N = 3 appears to give the same performance as N = 2. Figure 8.12 shows
that this is most likely due to the kernels saturating memory bandwidth, as they are
memory bound. This implies that the execution of FMAs is not the limiting factor. The
results do not support hypothesis 5, as additional N blocking does not always lead to faster
performance than without it being used.
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Figure 8.10: N Blocking - PyFR Sparse Examples (Density)
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Figure 8.11: N Blocking - PyFR Sparse Examples (Number of Columns)
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Figure 8.12: N Blocking - PyFR Sparse Examples (Roofline Plots)

71



Dense Operator Matrices

Additional N blocking was not as effective for the set of dense PyFR operator matrices,
as it was for the sparse examples. Figures 8.13a and 8.14a shows that for the majority of
kernels for triangles, performance was the same as when not using additional N blocking.
In the case of tetrahedra, there were a few cases with around a 1.2x speedup when using
additional N blocking, but the performance was the same for most kernels. Figure 8.15b
reveals that the speedups for hexahedra kernels where when the kernels were not near the
memory bound. It is possible that the additional FMA instructions being issued lead to
better utilisation of the execution hardware in the CPU core. Figure 8.15a shows that the
kernels without additional N blocking for triangles, were already achieving performance
levels for respective AIs that tetrahedra achieved once using N blocking of either 2 or 3.
Overall, the results on the dense PyFR operator matrices disprove hypothesis 5.
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Figure 8.14: N Blocking - PyFR Dense Examples (Density)
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Figure 8.15: N Blocking - PyFR Dense Examples (Roofline Plots)

8.3.2 Synthetic Suite

Vary Number of Rows

Figure 8.16 shows that with 128 rows or more in A, additional N blocking leads to up to
1.2x speedups over N = 1. N = 3 had similar performance to N = 1 for fewer rows than
128, whereas N = 2 performed slightly slower. Figure 8.17 highlights that from 128 rows
and beyond, the arithmetic intensity increases. This is due to the strides of B being reused
more often as the number of rows increases. It appears that, up to 64 rows, additional
N blocking does not increase performance. In this case, the strides are not reused often
enough to greatly benefit from having them in L1 data cache. When they are reused more
often, performance can increase by up to 1.2x. We could expect that at a greater density,
N blocking would start to provide speedups with an even fewer amount of rows in A. The
results show that hypothesis 5 does not hold.
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Figure 8.16: N Blocking: Performance vs Number of Rows

Vary Number of Columns

Figure 8.18 shows that additional N blocking provides an increase in performance when
the number of columns is ≥ 64. Increasing the number of columns, for a given density,
increases the total number of strides of B that need to be loaded from memory. Additional
N blocking increases the data parallelism by loading more strides in parallel, which can
help to reduce the total time spent waiting for data to load into the L1 cache.
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Figure 8.17: N Blocking: Roofline Plot - Vary Number of Rows

Additional N blocking has slower performance at 256 columns than at 128 columns. At
256 columns, the L1 data cache gets filled and so spilling to L2 cache leads to slower per-
formance. Whereas for RP Base, performance increased at this step as the L1 data cache
does not get filled until 512 columns.
However, performance with additional N blocking was not slower than RP Base with
256+ columns. In the case of N = 3, performance was continuously faster as the number
of columns increased further. This suggests that the benefits to performance of using addi-
tional N blocking when data is stored in L1 cache, translates to performance improvements
when data is stored in L2 cache. Figure 8.19 illustrates the impact on performance when
accessing L2. The kernels are now impacted by L2 hit times. Unlike previous results, the
experiment on varying columns shows support for hypothesis 5.
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Figure 8.18: N Blocking: Performance vs Number of Columns

Vary Density

As the density increased beyond 0.05 (density in the above synthetic experiments), the
performance speedup from using additional N blocking increased, as shown in Figure 8.20.
However, from a density of 0.4 and above, the dense routine from LIBXSMM was faster
by up to 1.5x. The strides of B are reused more often as a direct result of the density
increasing. Figure 8.21 reveals that additional N blocking helps the sparse routine to
achieve performance closer to the peak pseudo-FLOP/s for a given AI. This suggests that
the kernels using it are making better use of the available hardware.
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Figure 8.19: N Blocking: Roofline Plot - Vary Number of Columns
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Figure 8.20: N Blocking: Performance vs Density
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Figure 8.21: N Blocking: Roofline Plot - Vary Density

Vary Number of Unique Non-Zeros

Since we showed that the runtime broadcasting does not impact the performance when
using additional N blocking, it is not surprising to see relatively flat performance in Figure
8.22, as the number of unique constants is increased. We can however more clearly see
the around 1.25x speedup N = 3 blocking provides over RP Base at the configuration of
size and density being tested. The additional N blocking strategies support fewer unique
non-zeros, and so default to the dense routine sooner. Hypothesis 5 is supported by the
results.
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Figure 8.22: N Blocking: Performance vs Number of Unique Non-Zeros
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Figure 8.23: N Blocking: Roofline Plot - Vary Number of Unique Non-Zeros

8.3.3 Summary

We evaluated using additional N blocking with the register packing strategy on both the
PyFR and synthetic operator matrices. Specifically, we tested N = 2 and N = 3. Through
the evaluation, we conclude that hypothesis 5 is false, and that additional N blocking does
not always lead to faster performance over RP Base. However, through evaluation on the
synthetic suite, we uncovered that additional N blocking can be very advantageous for
slightly less sparse (but density still ≤ 0.5) matrices and for matrices that have a slightly
higher number of rows and/or columns.
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8.4 M Blocking Evaluation

In this section we will evaluate M = 2 and M = 3 blocking being used in conjunction
with register packing. We will compare performance against the reference LIBXSMM
(maroon lines) as well as the base register packing (RP Base) from Chapter 6 (orange
lines). Throughout the evaluation, we will discuss the following hypothesis.

Hypothesis

6: Using additional M blocking with register packing leads to faster performance over
register packing without additional M blocking.

8.4.1 PyFR Suite

Sparse Operator Matrices

Both Figures 8.24 and 8.25 reveal that additional M blocking leads to the same performance
as RP Base for sparse PyFR matrices. Figure 8.26 shows that these kernels are primarily
memory bound. Smaller and sparse matrices have a lower AI, and so attempts to increase
execution throughout will be hindered by memory bandwidth. Although performance did
not decrease, the results show that hypothesis 6 is not true.
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Figure 8.24: M Blocking - PyFR Sparse Examples (Number of Unique Non-Zeros)

0.0 0.1 0.2 0.3 0.4 0.5
Density

109

1010

Ps
eu

do
-F

LO
P/

s

Quad: Density of A vs Pseudo-FLOP/s
Dense
RP Base
RP M2
RP M3

(a) Quadrilaterals

0.00 0.05 0.10 0.15 0.20 0.25
Density

108

109

1010

Ps
eu

do
-F

LO
P/

s

Hex: Density of A vs Pseudo-FLOP/s

Dense
RP Base
RP M2
RP M3

(b) Hexahedra

Figure 8.25: M Blocking - PyFR Sparse Examples (Density)

77



2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

2e-01

5e-01

1

2

4

8

16

32

64

128
Pe

rfo
rm

an
ce

 (P
se

ud
o-

GF
LO

P/
s)

M Blocking Roofline - Quad

Double AVX512 Unit
Single AVX512 Unit
Ref Dense
RP Base
RP M2
RP M3

(a) Quadrilaterals

2 4 2 3 2 2 2 1 20 21 22 23 24

Arithmetic Intensity (FLOP/DRAM Byte)

2e-01
5e-01

1
2
4
8

16
32
64

128

Pe
rfo

rm
an

ce
 (P

se
ud

o-
GF

LO
P/

s)

M Blocking Roofline - Hex

Double AVX512 Unit
Single AVX512 Unit
Ref Dense
RP Base
RP M2
RP M3

(b) Hexahedra

Figure 8.26: M Blocking - PyFR Sparse Examples (Roofline Plots)

Dense Operator Matrices

Figure 8.27 shows that additional M blocking provided up to 1.5x speedup over RP Base in
the case of M = 3. Generally, M = 3 performed faster than M = 2. Figure 8.28 does not
show a clear trend in speedups when the density changes. However, Figure 8.29a shows
that as the number of columns increases, the additional M blocking provides speedups.
Larger and denser matrices have a higher AI and so the kernels for them will be less likely
to be memory bound. Figure 8.30 shows that the speedups occur at higher AIs where
there is room to make better use of the hardware by issuing more FMAs. However, not all
kernels benefited, as some dense PyFR operator matrices are still memory bound. Thus
we cannot say hypothesis 6 is fully supported by the results. We should note that the
dense routine still provided faster performance than any of the kernels from the various
RP routines.

0 20 40 60 80 100 120
Number of Unique Constants

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

Tri: Number of Unique Constants in A vs Pseudo-FLOP/s
Dense
RP Base
RP M2
RP M3

(a) Triangles

0 20 40 60 80 100
Number of Unique Constants

1010

4 × 109

6 × 109

2 × 1010

3 × 1010

Ps
eu

do
-F

LO
P/

s

Tet: Number of Unique Constants in A vs Pseudo-FLOP/s
Dense
RP Base
RP M2
RP M3

(b) Tetrahedra

Figure 8.27: M Blocking - PyFR Dense Examples (Number of Unique Non-Zeros)
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Figure 8.28: M Blocking - PyFR Dense Examples (Density)
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Figure 8.29: M Blocking - PyFR Dense Examples (Number of Columns)
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Figure 8.30: M Blocking - PyFR Dense Examples (Roofline Plots)
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8.4.2 Synthetic Suite

Vary Number of Rows

Figure 8.31 shows that as the number of rows varied, there was no noticeable performance
difference between RP Base and RP with additional M blocking. Figure 8.32 shows that
these kernels were not fully memory bound. So it was surprising to see that issuing addi-
tional FMAs did not lead to an increase in performance. One explanation for this is that
the density of these matrices, 0.05, is too small to see benefits from additional M blocking.
For low densities, each additional row is likely to access strides of B not already loaded
into L1 data cache, and so the memory bandwidth limits the performance. Hypothesis 6
is disproved by the experiment.
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Figure 8.31: M Blocking: Performance vs Number of Rows
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Figure 8.32: M Blocking: Roofline Plot - Vary Number of Rows
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Vary Number of Columns

Interestingly, Figure 8.33a reveals that beyond 256 columns, additional M blocking per-
formed slower (around 0.9x) than RP Base. Increasing the number of columns increases
the total number of strides of B that could be loaded from memory. Additional M blocking
increases the number of parallel loads, and at the density of 0.05, these loads would be
more likely to be from memory, and not L1. Combining these two together, the kernels
using additional M blocking place a greater load on the memory controller to read values
from memory. Beyond 256 columns, it is possible that this increase in load is causing the
decrease in performance.
We should note the large drop off in performance for all kernels beyond 512 columns is
due to spilling into L2 cache. The performance penalty when using additional M blocking
occurs before this, at 256 columns. Figure 8.34 shows that the kernels are not fully memory
bound but do not benefit from issuing more FMAs. The experiment disproves hypothesis
6.
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Figure 8.33: M Blocking: Performance vs Number of Columns
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Figure 8.34: M Blocking: Roofline Plot - Vary Number of Columns
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Vary Density

From around a density of 0.25, additional M blocking starts to provide a speedup over RP
Base, peaking at around a 1.25x speedup at a density of 0.5, as shown in Figure 8.35a.
However, the dense routine is shown to provide even faster performance over additional
M blocking in Figure 8.35b. Figure 8.36 shows that only at very high AIs, additional M
blocking can provide faster performance over RP Base. Issuing additional FMAs to access
the same mini-chunk of B only helps when the kernels are in the compute bound region of
the roofline plot. Whilst performance speedups are shown, hypothesis 6 does not hold as
the speedups do not occur for all matrices.
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Figure 8.35: M Blocking: Performance vs Density
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Figure 8.36: M Blocking: Roofline Plot - Vary Density

Vary Number of Unique Non-Zeros

Varying the number of unique constants does not effect the performance difference between
RP Base and additional M blocking. Figure 8.37 stresses how using additional M blocking
leads to defaulting to the dense routine sooner, leading to significant slowdowns. If tested
at a higher density, and thus a higher AI, we would expect additional M blocking to provide
a speedup, getting closer to the roofline in Figure 8.38.
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Figure 8.37: M Blocking: Performance vs Number of Unique Non-Zeros
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Figure 8.38: M Blocking: Roofline Plot - Vary Number of Unique Non-Zeros

8.4.3 Summary

We evaluated using additional M blocking with the register packing strategy on both the
PyFR and synthetic operator matrices. Specifically, we testedM = 2 andM = 3. Through
the evaluation, we conclude that hypothesis 6 is false, and that additional M blocking does
not always lead to faster performance over RP Base. For denser matrices (≥ 0.5) that have
high AIs, additional M blocking can provide up to 1.5x speedups over RP Base for PyFR
matrices. However, the dense LIBXSMM routine still performed faster in those scenarios.
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8.5 Summary

We outlined two methods that make use of the unused registers when register packing is
used; additional N blocking and additional M blocking. Runtime broadcasting was found
to not impact performance when using either method. We concluded that both hypothesis
5 and 6 were false, and that additional N/M blocking does not always provide speedups
over RP Base.
However, for additional N blocking, we found that for sparse PyFR matrices, it can provide
speedups of up to 1.1x over RP Base. For additional M blocking, we observed speedups of
up to 1.5x over RP Base for denser PyFR matrices, but it was still slower than the dense
LIBXSMM routine in those cases.
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Chapter 9

Register Packing with Multiple
Accumulation and L1 Operands

In Chapter 7 we showed that using L1 selector operands for register packing was suitable for
small and sparse operator matrices. In Chapter 8 we showed that additional N blocking was
also advantageous for those matrices. For denser matrices, additional M blocking provided
speedups. These methods can be mixed together and combined to provide speedups whilst
also supporting a greater number of unique non-zeros.
In this chapter we will combine additional N/M blocking with L1 selector operands to see if
the performance speedups over RP Base remain, whilst being able to support more unique
non-zeros. If there is spare bandwidth to L1 data cache, then the performance should be
the same. If there are stalls when loading new strides of B, then there is an opportunity
to load selector operands without penalty, whilst waiting on main memory loads.
Figures in Appendix E show the performance when mixing additional N and M blocking
with L1 operands. The combinations did not lead to faster performance than using only
one of N or M blocking for most matrices. In the cases that they did (some dense PyFR
examples), they still performed slower the dense routine from LIBXSMM.

9.1 Solutions

By using L1 selector operands, a further 8/16 vector registers (DP/SP) out of 32 are avail-
able for use. In Chapter 7 they were only used to pack more unique values. However, they
can also be utilised for additional N/M blocking. Table 9.1 summarises the combinations
tested, which chapters detail the performance of them, and how many DP/SP values can
be packed using them. For comparison, RP Base is also detailed. All of the other com-
binations support more unique non-zeros whilst using some form of additional blocking,
compared to RP Base.

Combination Chapter Num of Free Registers Max Num Values Packed (DP/SP)
RP Base Ch. 6 22 176 / 352
L1 N2 Ch. 9 29 232 / 464
L1 N3 Ch. 9 28 224 / 448
L1 M2 Ch. 9 28 224 / 448
L1 M3 Ch. 9 26 208 / 416

L1 N2 M3 App. E 23 184 / 368
L1 N3 M2 App. E 24 192 / 384

Table 9.1: Comparing the Number of Unique Non-Zeros (U) that can be packed for different
combinations of method
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9.2 L1 N Blocking Evaluation

In this section we will evaluate N = 2 and N = 3 blocking being used in conjunction
with register packing that also uses L1 selector operands. We will compare performance
against the base register packing (RP Base) from Chapter 6 (black lines) and the register
packing with L1 selector operands (RP L1) from Chapter 7 (pink lines). Roofline plots are
not provided for this evaluation as previous results have shown that the kernels would be
appear at around the same areas on a roofline plot. Throughout the evaluation, we will
discuss the following hypothesis.

Hypothesis

7: Using L1 selector operands does not decrease performance when also using additional
N blocking with register packing. The reason for this is that there should be enough
bandwidth to L1 data cache and opportunities to load selector operands without penalty
if there are stalls when loading strides of B.
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9.2.1 PyFR Suite

Sparse Operator Matrices

Figures 9.1a and 9.2a shows that using L1 selector operands does not impact performance
when also using additional N blocking, for quadrilateral kernels. However, for hexahedra,
as the number of columns increases in Figure 9.2b, the performance decreases to around
0.9x when using L1 selector operands. As the number of columns increases, the number
of strides of B that are loaded increases. The slowdown could be due to the L1 selector
operands taking up L1 data cache space, causing spilling to L2 cache for the increased
amount of strides of B. Due to those few kernels, hypothesis 7 is shown to not be true.
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Dense Operator Matrices

For the dense PyFR operator matrices, Figure 9.3 shows that using L1 operands leads to
mixed results when compared to just using additional N blocking. Figure 9.4 reveals that
most of the larger slowdowns occur at very high densities. At higher densities, strides
of B are reused more, and so have more broadcasts associated with them. This suggests
that the kernels are over-saturating bandwidth to the L1 data cache, introducing a new
bottleneck. The results show hypothesis 7 does not hold, especially for N = 3.
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9.2.2 Synthetic Suite

Vary Number of Rows

When using L1 selector operands, speedups of around 1.1x can be observed at very large
number of rows in Figure 9.5 when compared to not using L1 selector operands. As in
Chapter 7, without testing on a range of micro-architecture, no solid conclusions can be
drawn from this behaviour. However, this specific experiment supports hypothesis 7.

25 26 27 28 29 210

Number of Rows

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

Number of Rows in A vs Pseudo-FLOP/s (U16)
RP Base
RP L1
RP L1N2
RP L1N3
RP N2
RP N3

(a) 16 Unique Non-Zeros

25 26 27 28 29 210

Number of Rows

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

Number of Rows in A vs Pseudo-FLOP/s (U64)
RP Base
RP L1
RP L1N2
RP L1N3
RP N2
RP N3

(b) 64 Unique Non-Zeros

Figure 9.5: Register Packing L1 N Blocking: Performance vs Number of Rows

Vary Number of Columns

For up to 128 columns, the kernels using L1 selector operands perform the same as the
kernels that don’t use them. However, Figure 9.6 shows that from 256 columns and beyond,
using L1 selector operands with N = 3 blocking leads to around 0.85x the performance
compared to when not using them. For N = 2, a smaller drop occurs, with around 0.95x
the performance compared to when not using L1 selector operands, but at 1024 columns.
This is explained by the L1 selector operands taking up space in the L1 data cache, causing
the strides of B to be evicted to a higher level. As the number of columns increases, the
number of strides of B that are loaded increases, so those matrices are affected more by L1
cache evictions. This is clear evidence that hypothesis 7 is false, and that not considering
the space taken by selector operands was a mistake when forming the hypothesis.
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Figure 9.6: Register Packing L1 N Blocking: Performance vs Number of Columns
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Vary Number of Density

As the density increases in Figure 9.7, the performance when using L1 selector operands
remains the same as the kernels not using them for N = 2 and N = 3. For small matrices,
there is sufficient L1 data cache space and bandwidth to load L1 selector operands as well
as the multiple strides of B, up to the density of 0.5. This experiment strongly supports
hypothesis 7, showing that it holds for matrices that fit within the target dimensions of
the sparse-dense MM routine.
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Figure 9.7: Register Packing L1 N Blocking: Performance vs Density

Vary Number of Unique Non-Zeros

Figure 9.8 shows how using L1 selector operands allows the routine to continue to provide
over 2x the performance of the dense routine when the number of unique non-zeros in-
creases. The kernels using L1 selector operands consistently performed around 1.01x faster
than the kernels that didn’t use the L1 selector operands for N = 3. For N = 2 they
provided the same performance. The results support hypothesis 7.
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9.2.3 Summary

We evaluated N = 2 and N = 3 blocking being used in conjunction with register packing
that also uses L1 selector operands. For matrices where the number of columns was large
(> 128), using L1 selector operands in conjunction with additional N blocking led to slower
performance than just using additional N blocking. Also, we found that for dense PyFR
operator matrices, the combination did not always maintain the performance levels of the
kernels that do not use L1 selector operands. This meant that hypothesis 7 was false.
The extra cache space taken by the operands is harmful for larger matrices and for denser
matrices, the increase in L1 cache bandwidth that is required can over-saturate it and
cause slowdowns. However, we found that for the smaller and sparser matrices, using L1
selector operands with additional N blocking was an adequate method to support more
unique non-zeros without causing slowdowns in performance.
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9.3 L1 M Blocking Evaluation

In this section we will evaluate M = 2 and M = 3 blocking being used in conjunction
with register packing that also uses L1 selector operands. We will compare performance
against the base register packing (RP Base) from Chapter 6 (black lines) and the register
packing with L1 selector operands (RP L1) from Chapter 7 (pink lines). Roofline plots are
not provided for this evaluation as previous results have shown that the kernels would be
appear at around the same areas on a roofline plot. Throughout the evaluation, we will
discuss the following hypothesis.

Hypothesis

8: Using L1 selector operands does not decrease performance when also using additional
M blocking with register packing. The reason for this is that there should be enough
bandwidth to L1 data cache and opportunities to load selector operands without penalty
if there are stalls when loading strides of B.

9.3.1 PyFR Suite

Sparse Operator Matrices

M = 2 blocking appears to not be impacted by using L1 selector operands, unlike M = 3
blocking, which shows performance decreases, as seen in Figure 9.9. Unlike additional
N blocking, additional M blocking increases the number of ’parallel’ broadcasts (linearly
with M), and so the number of selector operands loaded in parallel increases. That is why
M = 3 blocking is affected more than M = 2. Figure 9.10a shows that for quadrilaterals,
the largest drop in performance with M = 3 is around 0.85x and occurs at a density of
0.5. Denser matrices lead to an increase in L1 data cache read pressure, which can end
up becoming a bottleneck. For hexahedra, Figure 9.11b shows that when the number
of columns is around 400 and greater, additional M blocking with L1 selector operands
has around 0.8x the performance of kernels without L1 selector operands. M = 2 does
not show a similar drop in performance, which suggests M = 3 with L1 selector operand
kernels over-saturate bandwidth to L1 data cache. For M = 2, hypothesis 8 is true, but
not for M = 3.

0 10 20 30 40 50
Number of Unique Constants

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

Quad: Number of Unique Constants in A vs Pseudo-FLOP/s

RP Base
RP L1
RP L1M2
RP L1M3
RP M2
RP M3

(a) Quadrilaterals

0 10 20 30 40 50
Number of Unique Constants

109

2 × 109

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

Hex: Number of Unique Constants in A vs Pseudo-FLOP/s

RP Base
RP L1
RP L1M2
RP L1M3
RP M2
RP M3

(b) Hexahedra
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Figure 9.10: Register Packing L1 M Blocking - PyFR Sparse Examples (Density)
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Dense Operator Matrices

Figure 9.12 shows that both M = 2 and M = 3 blocking perform slower when using L1
selector operands than when not using them. M = 3 with L1 selector operands exhibit
performance around 0.8x with them compared to without, which can be better seen in
Figure 9.13. In comparison, M = 2 blocking is shown to drop to around 0.95x the perfor-
mance. This shows that at higher densities, M = 2 starts to also saturate L1 data cache
bandwidth. For M = 3, the effects are even more severe for dense matrices than sparse
matrices. Hypothesis 8 should be rejected based on these results.
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Figure 9.12: Register Packing L1 M Blocking - PyFR Dense Examples (Number of Unique
Non-Zeros)
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Figure 9.13: Register Packing L1 M Blocking - PyFR Dense Examples (Density)
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9.3.2 Synthetic Suite

Vary Number of Rows

Performance is about the same for M = 2 blocking with and without L1 selector operands
as the number of rows is varied in Figure 9.14. For M = 3, beyond 64 rows, using L1
selector operands leads to around 0.9x the performance compared to when not using them.
Increasing the number of rows increases the number of times the strides of B are reused.
This then leads to L1 data cache bandwidth becoming the bottleneck once filled with the
mini-chunk of B, as opposed to the main memory bandwidth when first loading the strides.
As M = 3 loads more selector operand in parallel than M = 2, it runs into this bottleneck
whereas M = 2 does not. The results suggest that hypothesis 8 is false.
As seen in the experiment from varying the density, further below, it is likely that the
increase in reuse of strides of B is not only the reason M = 3 suffered at higher number of
rows. It is possible that a mixture of that and the Skylake-SP micro-architecture resulted
in slower performance. If tested with a density of 0.25 instead of 0.05, we might have seen
similar or even faster performance forM = 3 when using L1 selector operands versus when
not using them.

25 26 27 28 29 210

Number of Rows

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

Number of Rows in A vs Pseudo-FLOP/s (U16)
RP Base
RP L1
RP L1M2
RP L1M3
RP M2
RP M3

(a) 16 Unique Non-Zeros

25 26 27 28 29 210

Number of Rows

3 × 109

4 × 109

6 × 109

Ps
eu

do
-F

LO
P/

s

Number of Rows in A vs Pseudo-FLOP/s (U64)
RP Base
RP L1
RP L1M2
RP L1M3
RP M2
RP M3

(b) 64 Unique Non-Zeros

Figure 9.14: Register Packing L1 M Blocking: Performance vs Number of Rows

Vary Number of Columns

For M = 2 blocking, using L1 selector operands led to similar performance than without.
When the number of columns was 512 it performed about 1.05x faster, as shown in Figure
9.15. For M = 3, performance was always slower when using L1 selector operands. When
spilling to L2 cache occurred from 512 columns and beyond, the use of L1 selector operands
led to around 0.9x the performance compared to justM = 3 blocking. Once spilling occurs,
the space taken up by the selector operands causes even more evictions from L1 data cache.
This is a bigger issue for M = 3 as it loads more strides of B in parallel, and so the L2
cache latency is considerably impacting the kernel performance.
An unexpected result is that we see the effects of spilling to L2 cache for M = 3 blocking
with L1 selector operands at just 256 columns, where the mini-chunk of B should easily fit
within the L1 data cache. This suggests that the L1 selector operands cause conflict cache
misses for the strides of B.
For M = 3 we reject hypothesis 8, but it holds for M = 2.
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Figure 9.15: Register Packing L1 M Blocking: Performance vs Number of Columns

Vary Number of Density

Interestingly, as the density increased, the performance for both M = 2 and M = 3
remained around the same when using L1 selector operands compared to when not using
them, as seen in Figure 9.16. There are a couple of densities for M = 3, where using L1
selector operands was slower ( 0.97x at density of 0.05) or faster ( 1.03x at density of 0.25),
but this can be down to micro-architecture quirks, and so further testing would need to be
carried out to draw solid conclusions. This suggests the results from the experiment where
we varied the number of rows could have had a different outcome if we tested with a density
of 0.25 instead of 0.05. Hypothesis 8 is supported by the results from this experiment.
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Figure 9.16: Register Packing L1 M Blocking: Performance vs Density
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Vary Number of Unique Non-Zeros

As we can see from Figure 9.17, M = 3 with L1 selector operands performed around 0.97x
as fast compared to without, when both versions support the number of unique non-zeros.
This would most likely be slightly different if tested at a different density. For N = 2,
performance is mostly the same when both versions support the number of unique non-
zeros. However, we see that using L1 selector operands allow the routines to provide a
roughly similar of performance for small matrices that have a greater number of unique
non-zeros. We can roughly say the results provide support for hypothesis 8, once we take
into account the exact density (0.05) of the matrices tested.
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9.3.3 Summary

We evaluated M = 2 and M = 3 blocking being used in conjunction with register packing
that also uses L1 selector operands. For matrices where the number of columns was large
(> 256), using L1 selector operands in conjunction with M = 3 blocking led to slower
performance than just using M = 3 blocking. This was due to the space taken up by
selector operands in L1 data cache causing more spilling to L2 cache for the strides of B.
Also, we found that for high density PyFR matrices, using L1 selector operands led to
slower performance when used with either M = 2 or M = 3 blocking.
Thus, we conclude that hypothesis 8 is false for the general case of additional M blocking.
However, forM = 2 blocking, the hypothesis is true when the matrices are small and sparse.
So, using L1 selector operands with M = 2 blocking for small and sparse matrices is a
method to support a greater number of unique non-zeros without sacrificing performance.
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9.4 Summary

We outlined solutions that mixed together additional N/M blocking with L1 selector
operands, detailing the increase in number of unique non-zeros supported. However, this
method increases the number of loads from and the space taken in the L1 data cache, so
we evaluated the new solutions against kernels just using additional N/M blocking.
For operator matrices with a large number of columns (128/256) and for dense PyFR op-
erator matrices, additional N/M blocking when used with L1 selector operands performed
slower than kernels just using additional N/M blocking.
For smaller (number of columns ≤ 128) and sparser matrices (density ≤ 0.5), using L1
selector operands did not impact performance when also using additional N blocking or
M = 2 blocking. This was not the case for M = 3 blocking, where performance decreased
on those matrices when also using L1 selector operands.
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Chapter 10

Hybrid LIBXSMM vs GiMMiK

In this chapter we will outline a strategy that chooses one of the previously evaluated
solutions depending on a couple of heuristics. We refer to this as the hybrid routine.
We will evaluate this hybrid routine against GiMMiK 2.1 on the benchmark. We aim to
provide a suggestion on which library to use to accelerate the PyFR matrix multiplication,
as well as using the synthetic suite to investigate the similarities and differences between
the solutions.
Appendix F contains additional Figures that compare the performance between the hybrid
routine and GiMMiK 2.1 on the PyFR example operator matrices.

10.1 Solution

10.1.1 GiMMiK 2.1

The benchmark was adapted to use GiMMiK 2.1 [32] to generate ’C’ kernels. Instead of
passing in ’chunks’ of B within a loop to the kernel, like in LIBXSMM, the kernel is only
called once with the entire matrix. Performance was measured in the same environment
as used for LIBXSMM, outlined in Chapter 4. The ’C’ kernel code was compiled using
Intel’s C/C++ compiler, ICC, with the following compiler flags: "-std=c11 -O3 -pthread
-D_GNU_SOURCE -DNDEBUG -mavx512f -mavx512cd -mavx512vl -mavx512dq
-mavx512bw -mfma -march=skylake-avx512 -qopt-zmm-usage=high -qopenmp".
The ’C’ kernel generated by GiMMiK contains one for loop, which iterates over the columns
in B. Within the loop, dot-products are calculated between the rows of A and the current
column of B, then stored to C. Sparsity is eliminated and this loop is vectorised by the
compiler.
We inspected the assembly code generated and found that the code was being vectorised
for AVX-512 and the loop was being fully unrolled for most of the matrices tested. Kernels
compiled for the following matrices had the warning of "was not vectorized with "simd"":

• PyFR - Hexahedra, Sixth Order, Gauss-Legendre-Lobatto - m132

• PyFR - Hexahedra, Sixth Order, Gauss-Legendre-Lobatto - m460

• PyFR - Hexahedra, Sixth Order, Gauss-Legendre - m132

• PyFR - Hexahedra, Sixth Order, Gauss-Legendre - m460

• Synthetic - Vary Density (U = 16) - 0.5

• Synthetic - Vary Density (U = 64) - 0.5

• Synthetic - Vary Number of Rows (U = 16) - 1024
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• Synthetic - Vary Number of Rows (U = 16) - 1024

This was due to the main body of the for loop in the ’C’ kernel being too large for the
compiler, ICC, to handle.

10.1.2 Hybrid Routine - Strategy

The strategy for the hybrid routine is listed in Algorithm 1. The conditions were chosen
based on results from previous evaluations in the thesis.
Starting with the first condition, if the density falls within the dense PyFR operator ma-
trices range, the reference dense routine is used. Next, for slightly less dense matrices that
are not considered small, the dense routine is also used. From then on, the sparse routine
using additional N blocking is preferred. The exact method used is determined by the
number of unique non-zeros in the matrix, with the more performant subroutine is chosen
if possible. Finally, if the number of unique non-zeros cannot be supported, the fallback
of the reference dense routine is used.
Ideally, there would be a fallback routine that can handle any amount of unique non-zeros
which also performs sparsity elimination. This would essentially be a routine that imple-
ments the strategy GiMMiK uses, but the code generation would use the LIBXSMM API
and be fully in our control, instead of relying on a third-party compiler. However, in the
suite of matrices tested, there is no small and sparse matrix that is not covered by the
available sparse subroutines within the hybrid routine.
Algorithm 1: Hybrid Routine - Strategy to choose subroutine (DP values)
ρ = density;
U = number of unique non-zeros;
R = number of rows;
C = number of columns;
if ρ ≥ 0.5 then

use dense routine;
else if ρ ≥ 0.4 and R ≥ 128 and C ≥ 128 then

use dense routine;
else

if U ≤ 160 then
use sparse - register packing with N = 3 blocking;

else if U ≤ 224 then
use sparse - register packing with N = 3 blocking and L1 selector operands;

else if U ≤ 232 then
use sparse - register packing with N = 2 blocking and L1 selector operands;

else if U ≤ 240 then
use sparse - register packing with L1 selector operands;

else
use dense routine;

end
end
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10.2 Hybrid vs GiMMiK Evaluation

10.2.1 PyFR Suite

Sparse Operator Matrices

In general, the hybrid routine performed faster or the same as GiMMiK for sparse PyFR
operator matrices. In a couple of cases, GiMMiK performed around 1.3x faster for quadri-
laterals, shown in Figure 10.1a. However, there are more cases where the hybrid routine
performed 2x faster. In those cases, GiMMiK performed slower than the dense routine. For
hexahedra, GiMMiK was faster than the dense routine, but the hybrid routine was usually
faster than GiMMiK, by over 2x in a few cases, including the four cases when GiMMiK
does not produce SIMD code, shown in Figure 10.1b.
Figure 10.2a shows that as the density varies there is no clear trend as to which routine
was faster for quadrilaterals. However, when looking at Figure 10.3, it is clear that as
the number of rows increases, the hybrid routine outperformed GiMMiK for sparse PyFR
matrices. As the number of rows increases, so does the length of the body of the for loop
inside of a GiMMiK ’C’ kernel. It is possible that ICC struggles to generate as optimal
code for larger loop bodies as it does for smaller loop bodies. We should note that all of
the GiMMiK kernels for quadrilaterals were using AVX-512 code.
Figure 10.4 shows that whilst the hybrid routine kernels appear to be mainly memory
bound, the slower GiMMiK kernels do not saturate the bandwidth to main memory. We
confirmed that the kernels were fully vectorised and also unrolled. So the slowdown could
be due to ICC generating code with worse low level cache (L1) usage compared to the hy-
brid routine. Overall, the hybrid routine beat GiMMiK for sparse PyFR operator matrices.
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Dense Operator Matrices

The hybrid routine uses the reference LIBXSMM dense routine for dense (density ≥ 0.5)
PyFR operator matrices. Figure 10.5b shows that in general, for tetrahedra the hybrid
routine performed faster than GiMMiK, and by up to 3x in one case. For triangles, the
story is more complex. Figure 10.6a suggests that for triangles, GiMMiK was faster at the
higher densities. If we instead look at Figure 10.7a, it cleat that beyond 20 rows in the
operator matrix, GiMMiK performed slower, and that below 20 rows, it performed around
the same or faster. For triangle meshes using third order accurate and lower solutions, the
number of rows is ≤ 20. So for even higher-order solutions, the hybrid (dense) routine
would offer faster performance. In the case of tetrahedra, only the first order accurate so-
lution has all of its operator matrices contain fewer than 20 rows. Figure 10.7b shows that
as the number of rows increases, GiMMiK performed slower than the hybrid routine for
tetrahedra, and so shouldn’t be used for tetrahedra meshes using a second order accurate
or greater solution.

Interestingly, in the cases where the hybrid routines are close to being memory bound,
GiMMiK performed faster, especially for triangles, shown in 10.8a. This suggests ICC is
better able to schedule the loads from main memory than the pre-fetching that LIBXSMM
applies, and so achieved a higher peak bandwidth. When not memory bound, as in a
few cases in Figure 10.8b for tetrahedra, GiMMiK performed slower. It is possible that
the GiMMiK kernels are not making good use of the fast L1 data cache, and so strug-
gle to achieve a high pseudo-FLOP/s. This could be confirmed via profiling and using
performance counters.
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Figure 10.6: Hybrid LIBXSMM vs GiMMiK - PyFR Dense Examples (Density)
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10.2.2 Synthetic Suite

For the synthetic suite, the hybrid routine mainly uses the Register Packing with N = 3
blocking (RP N3) routine, apart from a few cases. In the density experiment, at densities
of 0.4+, the dense routine is used. In the number of unique non-zeros experiment, for over
160 unique non-zeros, the Register Packing with N = 3 blocking and L1 selector operands
(RP L1 N3) routine is used.

Vary Number of Rows

At the lowest number of rows tested, 32, the performance gap between GiMMiK and the
hybrid routine was at its smallest, shown in Figure 10.9. As the number of rows increases,
so did the performance difference; where the hybrid routine performed 1.1x faster at 32
rows, to around 2.6x faster at 256 rows. At 512 rows, the GiMMiK kernels performance
increased faster than the hybrid routine, when compared to 256 rows. This suggests the
strategy ICC uses to compile the code works better for higher kernels with a higher AI.
However, at 1024 rows the performance of the GiMMiK kernel deteriorated, when ICC
no longer generates SIMD code, and the hybrid routine performed 10x faster. Table 10.1
shows the binary size of the compiled GiMMiK kernels for 256+ rows. The size is smaller
for 1024 rows, at 177KB, than for 512 rows, where it was 263KB. We would expect the
code size to increase if ICC was applying the same technique to generate code as it does
for the matrices with fewer than 1024 rows. Instead, this binary size confirms the kernel
was not being fully unrolled, which when combined with the non-SIMD code, led to the
kernel performing poorly.
It is possible that for very small matrices with at least fewer than 32 rows, GiMMiK might
offer competitive performance.
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Figure 10.9: Hybrid LIBXSMM vs GiMMiK: Performance vs Number of Rows

Number of Rows Binary Size (KB) Compiler Warning
256 153 None
512 263 None
1024 177 was not vectorized with "simd"

Table 10.1: GiMMiK Kernel Binary Size - Vary Number of Rows
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Figure 10.10: Hybrid LIBXSMM vs GiMMiK: Roofline Plot - Vary Number of Rows

Vary Number of Columns

Interestingly, as the number of columns increases from 128 to 512, the performance gap be-
tween GiMMiK and the hybrid routine decreased, where GiMMiK then performed around
1.1x faster for U = 64, shown in Figure 10.11b. When U = 16, they performed the same
as seen in Figure 10.11a. The hybrid routine performed the same between U = 16 and
U = 64. We cannot determine a solid reason as to why GiMMiK did not.
At 1024 columns, GiMMiK’s performance dropped, but the kernel was still being fully
unrolled by ICC and it still used AVX-512 code. It is possible that the strategy used by
ICC to compile the kernel has worse cache hit-rates at 1024 columns than it has for 512
columns and below.
From 32 to 128 columns, the performance difference was maintained. From 256 columns,
RP N3 starts to spill to L2 cache. It appears that ICC uses a strategy that isn’t reliant
on keeping ’mini-chunks’ of B in L1 data cache, and so gains the benefit of a higher AI
without spilling outside of whatever cache (not L1, likely L2) strategy it is using. This
is highlighted in Figure 10.12 where the increase in columns leads to an increase in AI,
and so does the higher peak pseudo-FLOP/s. This experiment reveals that the LIBXSMM
strategy of keeping to L1 data cache can be significantly advantageous for small matrices.
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Figure 10.11: Hybrid LIBXSMM vs GiMMiK: Performance vs Number of Columns
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Figure 10.12: Hybrid LIBXSMM vs GiMMiK: Roofline Plot - Vary Number of Columns

Vary Number of Density

As the density varied, the hybrid routine maintained around a 1.8x speedup over GiMMiK
until the density reached 0.3, shown in Figure 10.14, for both 16 and 64 unique non-zeros.
Once the hybrid routine switched to the dense routine at a density of 0.4 and greater, it
started to increase its performance lead over GiMMiK, which instead plateaued. The drop
in performance for GiMMiK at density of 0.5 is explained by ICC failing to generate SIMD
code for it.
If operator matrices in this test were smaller than 128 · 128, we would then expect, based
on the previous two experiments, that the performance difference would at least be closer.
This experiment shows that the performance gap between GiMMiK and hybrid routine
kernels is more sensitive to the dimensions of the operator matrix, than the density.
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Figure 10.13: Hybrid LIBXSMM vs GiMMiK: Performance vs Density

Vary Number of Unique Non-Zeros

Increasing the number of unique non-zeros did not significantly impact the performance of
the GiMMiK kernels, as seen in Figure 10.15. This was expected as GiMMiK encodes the
values into the kernel code. However, we see that as the hybrid routine is able to switch to
the RP L1 N3 routine when U > 160, it maintained just over a 2x speedup over GiMMiK.
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Figure 10.14: Hybrid LIBXSMM vs GiMMiK: Roofline Plot - Vary Density
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10.3 Summary

In this chapter we outlined a strategy that chooses one of the previously evaluated solutions
depending on a couple of heuristics, and named this the hybrid routine. We evaluated this
hybrid routine against GiMMiK 2.1 on the benchmark.
For sparse PyFR operator matrices, (quadrilateral and hexahedra meshes), we found that
the hybrid routine, using the sparse-dense, register packing with N = 3 blocking routine,
performed faster than GiMMiK for the majority of the matrices, and so should be used
for those matrices. The hybrid routine selects the dense routine from LIBXSMM for the
dense PyFR operator matrices. For triangular meshes, where a third-order accurate or
lower solution is being computed, GiMMiK was shown to offer faster performance. For
tetrahedra meshes, the hybrid LIBXSMM routine offered faster performance for second-
order accurate and greater solutions.
Evaluation on the synthetic suite showed that the performance difference between the
hybrid LIBXSMM routine and GiMMiK is strongly linked to the dimensionality of the
operator matrix. GiMMiK was shown to perform closer to the hybrid routine when the
matrix had a small number of rows. For a larger number of columns, the hybrid routine
’spills’ to L2 cache when GiMMiK does not spill, as it is likely already operating at that
level. That allowed GiMMiK to close the performance gap, and in some cases, perform
faster for those larger matrices.
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Chapter 11

Conclusions & Further Work

In this chapter we summarise the findings of this thesis, have a look at the initial objectives
set out and cover the contributions made. We then discuss a range of further work which
could potentially deliver further performance improvements not only for AVX-512, but also
for other SIMD architectures.

11.1 Summary

The main objective of this thesis was to find and evaluate a method to support a greater
number of unique non-zeros for the sparse-dense matrix multiplication routine within
LIBXSMM, to support more operator matrices found in PyFR applications. The next
aim was to explore methods to utilise any resulting free registers to gain additional per-
formance speedups. The primary hardware target was AVX-512 on the Skylake-SP micro-
architecture. In Chapter 2 we cover in detail the characteristics of the operator matrices
found in PyFR, SIMD architectures, how matrix multiplication can be performed using
them and we describe how the LIBXSMM JIT process is used within PyFR. Chapter 3
covers pieces of work where values where intricately packed within registers and where
cross-lane communication was used to move data around. In Chapter 4 we outline the
benchmarking process and how a synthetic suite of operator matrices was created to be
used with a suite of example operator matrices encountered in PyFR applications, for the
evaluation of solutions. Chapter 5 introduces two schemes to pack more unique values
into vector registers that also allow for efficient runtime broadcasting, and in Chapter 6
we evaluate the performance against the reference LIBXSMM for both PyFR and syn-
thetic operator matrices. Chapters 7, 8 and 9 detail further iterations on the base register
packing scheme, where some make use of free registers, and we evaluate their performance
using the benchmark. In Chapter 10 we compare a new hybrid strategy for LIBXSMM
against GiMMiK by evaluating on both the PyFR and synthetic suite of operator matrices.

The following contributions were made in this thesis:

• We explored how to broadcast any selected vector lane, which leads to more unique
non-zeros being able to be packed into the vector register file for the sparse-dense
matrix multiplication routine within LIBXSMM. We evaluated the performance of
kernels generated by this updated routine and report speedups between 0.976 and
10.915 times for some sparse PyFR operator matrices on the Intel Xeon 8175M.

• We compared with a suite of 170 matrices that arise in common PyFR applications,
the performance of the new kernels against the characteristics of those operator
matrices. We highlighted when the new kernels perform faster and when they perform
slower than kernels generated by the reference LIBXSMM version.
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• We presented a synthetic suite of operator matrices that are used to further evaluate
the new code generator. By controlling the other characteristics of an operator
matrix, we were able to confidently draw conclusions about the effect on performance
when one characteristic varies at a time.

• We experimentally explored the impact on performance when free registers are used
to increase the parallelism of the kernels, by working on accumulating multiple strides
of C concurrently. We report speedups between 0.997 and 11.500 times using these
optimisations over the reference LIBXSMM for some sparse PyFR operator matrices.

• We presented a hybrid strategy that uses heuristics to select between existing
LIBXSMM routines and routines we developed, to achieve good performance based
on the characteristics of the operator matrix. The heuristics were formed using the
results from the evaluation on existing and new routines.

• We compared the hybrid strategy against GiMMiK and report speedups between
0.484 and 5.457 times on a suite of example operator matrices encountered in PyFR
applications. For the sparse examples (quadrilateral and hexahedra based meshes)
we report speedups of up to 5.457 times. When a solution accuracy of third-order
and greater is used for dense examples (triangle and tetrahedra based meshes), we
report speedups of up to 2.325 times.

The following contributions were made to Intel’s open-source LIBXSMM as a result of this
thesis:

• We submitted code [20] that was merged to the LIBXSMM repository on GitHub,
that increases the number of unique non-zeros supported by the sparse-dense routine
from 31 to 176 (224) for DP (SP) data types.

• We submitted code [21] that was merged to the LIBXSMM repository on GitHub,
that further increases the number of unique non-zeros supported by the sparse-dense
routine to 240 (480) for DP (SP) data types. The method was built on top of the
first submission, but the former is preferred for fewer than 176 (224) DP (SP) unique
non-zeros.

We believe that there are other subject areas, in and out of CFD, that could benefit from
using the sparse-dense matrix multiplication routine within LIBXSMM. As we have con-
tributed code to the open-source Intel library, adopters of the JIT compiler can benefit from
the work in this thesis. Furthermore, the findings in this thesis can be used to support the
application of register packing and runtime broadcasting for matrix multiplication imple-
mented on other SIMD architectures, and potentially for other memory bound algorithms
as well.

11.2 Further Work

Register Packing with AVX2

We have implemented various versions of register packing for the small sparse operator ma-
trix when performing matrix multiplication with the AVX-512 instruction set. Currently,
most x86 CPUs do not have support for AVX-512, only the higher end Intel workstation
and server class CPUs do. This limits the range of target hardware that the new version
of the sparse-dense matrix multiplication routine within LIBXSMM can be used on. Most
modern x86 CPUs from both Intel and AMD do however support AVX2, the 256-bit SIMD
architecture.
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AVX2 also has good support for permutes and shuffles, allowing for cross-lane commu-
nication. However, it has half as many vector registers (16) and half the vector width
compared to AVX-512.
The AVX2 version of VPERMQ/PD encodes the selector operand within the instruction,
using 8-bits, similar to the AVX-512 VSHUFF64X2 instruction. Whenever a permute or
shuffle can only chose from 4 sources, it is possible to encode selections within 8-bits. In
AVX-512, the VPERMQ/PD has 8 sources, hence a vector register is used to store the
selector operand, not an encoded 8-bit integer. Interestingly, even though the vector width
doubled from AVX2 to AVX-512, the width of the space for integer operands encoded
into the vector instructions did not increase. This led to AVX-512 losing the ability to
use permutes to broadcast DP values without having to store selector operands in vector
registers.
By encoding the selection within the instruction, the basic register packing on AVX2 leaves
14 free registers, and so can pack 56 unique DP values. For SP in AVX2, VPERMD/PS
requires the use of vector registers to store the selector operands, as there are 8 sources
for each destination lane. This only leaves 6 vector registers for packing unique values,
hence a total of 48 unique SP values. Table 11.1 summarises the number of unique values
basic register packing can support via permute instructions, in AV2 and AVX-512. Table
11.2 shows the number of unique values that can be packed if the selector operands for the
permute operands were to be read from L1 cache.

Data Type AVX2 AVX-512
SP 48 224
DP 56 176

Table 11.1: Number of Unique Values that can be packed using permutes in AVX2 vs
AVX-512

Data Type AVX2 AVX-512
SP 112 480
DP 56* 240

Table 11.2: Number of Unique Values that can be packed using permutes with L1 selector
operands in AVX2 vs AVX-512 (* AVX2 DP does not require selector operands to be stored
as vectors)

However, in AVX2, each stride of B (4 sequential elements on the same row) does not take
up an entire cache-line. So it would be interesting to see if the performance gains for the
operator matrices that both would support, are significantly different to the performance
gains for AVX-512.
This also shows that register packing could be applied to other SIMD architectures, possi-
bly without the use of LIBXSMM for non x86 hardware, such as the ARM Scalable Vector
Extension (SVE) or one of the RISC-V SIMD extensions. In the case of SVE where each
implementation can have a different width, the use of a JIT is beneficial as the SIMD width
only needs to be known at runtime. The main requirement to apply register packing on
any SIMD architecture is the availability of hardware supported cross-lane communication
operations. It would also be interesting to see if the register packing scheme could be
adapted and applied for GPUs.
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Hybrid Register Packing

When using multiple accumulators with register packing and L1 selector operands, there
is a potential for the runtime broadcasting to hinder the performance. Steps can be taken
to reduce this:

• Pre-Broadcast most commonly used values: After accounting for any selector operands
and registers required for accumulators and runtime broadcasting, there could be free
registers due to the operator matrices having fewer unique non-zero values than the
maximum supported. The most commonly used non-zero values can be stored in a
pre-broadcast format in a free register, and not stored with the other packed values.
This should reduce the amount of runtime broadcasting in proportion to the relative
frequency of this non-zero value appearing in the operator matrix.

• Store some Permute Selector Operands in registers and some in memory: To reduce
read pressure on the L1 data cache, some of the selector operands for the permute
operands can be stored in the registers, while other less frequently used ones can
be stored in L1. The values with a higher frequency of appearing in the operator
matrix could be packed in a way so that certain permute operands have a much
higher frequency of use over others. An additional benefit of this is that more reg-
isters are available to use either to pack more unique non-zeros, or to use for other
optimisations.

Use Free Registers to Store B

Alternatively, another use of free registers is to keep strides of B in a temporary register
if they are heavily used. For example, an operator matrix where one column of A of is
dense, but others are sparse, the corresponding stride of B for the dense column could be
kept within a free temporary register. This could greatly reduce the number of reads from
the L1 data cache. It is possible this could now lead to the runtime broadcasting adding
to the critical path, where in basic register packing it wasn’t.
As long as there are free registers due to using some form of register packing, there poten-
tially exists multiple optimisations that can make use of them. A model could be made that
considers the benefits to either reducing the critical path and/or reducing read pressure
to memory. The model could also consider further increasing the number of accumulators
and the effects that would have on the previous two factors, as well as the increase in
parallelism. As all of these techniques make use of the free registers, a cost/weight could
be associated with adding the optimisation. A minimum spanning tree could be calculated
as part of the JIT process that selects the most beneficial uses of the free registers, in order
to generate more optimal code for a given operator matrix.

Tiling to Reduce Number of Unique Non-Zeros

When an operator matrix has more unique non-zeros than the amount supported by a
given register packing scheme, LIBXSMM defaults to using a well tuned dense routine.
However, if the matrix is small and sparse, this dense routine will generate kernels with
slower performance than a register packing based routine (where the number of unique
non-zeros was supported).
If the operator matrix is split into n tiles, then n smaller kernels could be generated for
those respective tiles. If each tile has a number of unique non-zeros less than or equal to
the maximum number supported by the register packing scheme, then the register packing
routine could be used over the dense routine. There are few methods to logically split the
operator matrix, each one requires a corresponding tiling scheme to be applied to the B
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matrix, shown in Figure 11.1.
The first basic tiling scheme splits A vertically, shown in Figure 11.1a. This has the
advantage that the tiling applied to B does not split a cache line, other than possibly
at the final element, assuming row-major storage. However, the JIT process has to more
carefully traverse the CSR layout of A. Figure 11.1b shows a simple horizontal tiling.
While traversing the CSR layout becomes easier, now care has to be taken so that the
tiling on B does not split cache lines. For AVX-512, each stride of B is a cache line, so this
doesn’t apply, but for other SIMD architectures it might. These can be combined together
to split A even further, as shown in Figure 11.1c.
The drawback of using a basic approach, based on equal splits, is that no consideration is
given to the locations and possible grouping of unique non-zeros in A. Park [13] presented
a ’tailored tiling scheme’ in 2016 that would create tiles by counting up to an amount of
non-zero elements in the operator matrix, and then splitting when a threshold was reached.
However, the uniqueness of the non-zero values was not considered. A more complex JIT
process could analyse those factors and decide on a tiling that possibly uses irregular shapes
to split the matrices. This is a more complex process but could yield good results.

A B1

1

2

2

(a) Vertically Split A

A B1

1

2

2

(b) Horizontally Split A

BA

1 22

3

1

34 4

(c) Split A in two directions

Figure 11.1: Example tiling schemes for operator matrix

CSE and Graphs

The use of the free registers due to packing in this work has focused on how to execute a
set number of FLOPS as fast as possible. Alternatively, the free registers could be used to
reduce the required FLOPS by finding and eliminating redundant calculations by saving
results in temporary (free) registers. This is known as common sub-expression elimination
(CSE) and examples of related work can be found in [25] and [10]. We summarise a few
possible CSE tactics:

• Column Wise CSE when there are non-zero elements in a column of A that are the
same: The broadcasted value can be multiplied with a stride of B and stored in a
temporary register. This result is then added to the corresponding strides of C. If
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the value is repeated in n times in a column, then there would be a reduction of n−1
FLOPS. However, if using FMA, then the same number of FMA instructions would
still be used, as the partial result is added to each stride of C. The benefit would
come from having to perform n− 1 fewer broadcasts and n− 1 fewer reads of B by
keeping the partial result within a register. For hardware without FMA support or
where the FMA is slower than an addition, the resulting performance improvement
could be even greater.

• Row Reordering without changing memory layout of A: Whilst possible to keep the
temporary results from column wise CSE in a register for the whole kernel duration,
it would be better to free up the register once no longer required, i.e. no more rows
of A have that specific value in that specific column. The column wise CSE above
can work without the values being sequentially repeated in a column. However, if
they were, then once the kernel has passed the last row with that common value,
the register used to store the partial result can be freed and used for other CSE
opportunities.
The matrix A could be re-ordered row-wise to find an optimal order where the com-
mon values in (multiple) columns are grouped together. However, changing the actual
storage of A in memory can be avoided, by just traversing the rows of A in the new
optimal order.

• Row Wise CSE to reduce the number of broadcasts: If sequential non-zero values
of A are the same for a given row of A, then the number of required FLOPS can
be reduced. If the value is repeated n times, then n fewer FLOPS can be used. By
adding together the n corresponding strides of B (n−1 FLOPS) and then multiplying
by the broadcasted value of A (1 FLOP), a total of n FLOPS are required with one
additional free temporary register, compared to the 2n FLOPS the basic register
packing routine would need. Again, if FMA hardware is available and just as fast,
no performance would be gained from the reduction in FLOPS. However, this tactic
of row wise CSE would reduce the number of runtime broadcasts by an amount of
n− 1. So for hardware with fast FMAs, this tactic can solely be used to issue fewer
runtime broadcasts.

• Computing a minimum spanning tree to decide on which CSE options to take: All
of the above tactics require the use of a free register, which is a limited resource. A
model could be proposed that considers the changes in the number of broadcasts, the
number of reads from memory and the FLOPS for the kernel. Then, a graph could
be constructed where a new node is formed by applying a single CSE tactic to a given
row or column. By using directed edges to connect nodes, the graph construction
could avoid creating edges where CSE tactics conflict with each other. Finally, a
minimum/maximum (depending on the edge weight calculation) spanning tree could
be obtained, to inform the code generation which specific CSE tactics to apply.
The use of free registers for ‘Hybrid Register Packing’ and ‘Use Free Registers to
Store B’ could also be considered as an alternative use of the registers in this model,
with the cost/benefit being calculated for those uses as well. To further increase the
model complexity, the use of multiple accumulators could be considered for the free
registers, if not already utilised.
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Appendix A

PyFR Example Operator Matrices
Characteristics

The follwing tables describe the example operator matrices from PyFR in terms of:

• Number of Rows, R

• Number of Columns, C

• Density, ρ

• Number of unique non-zeros, U

Matrix R C ρ U

m0 8 4 0.5000 2
m3 4 8 0.5000 2
m6 8 8 0.2500 4
m132 4 8 0.5000 2
m460 8 4 0.5000 2

(a) First Order

Matrix R C ρ U

m0 12 9 0.3333 3
m3 9 12 0.3333 3
m6 18 12 0.1667 6
m132 9 18 0.2963 8
m460 18 9 0.2963 8

(b) Second Order
Matrix R C ρ U

m0 16 16 0.2500 4
m3 16 16 0.2500 4
m6 32 16 0.1250 8
m132 16 32 0.2500 16
m460 32 16 0.2500 16

(c) Third Order

Matrix R C ρ U

m0 20 25 0.2000 5
m3 25 20 0.2000 5
m6 50 20 0.1000 10
m132 25 50 0.1920 24
m460 50 25 0.1920 24

(d) Fourth Order
Matrix R C ρ U

m0 24 36 0.1667 6
m3 36 24 0.1667 6
m6 72 24 0.0833 12
m132 36 72 0.1667 36
m460 72 36 0.1667 36

(e) Fifth Order

Matrix R C ρ U

m0 28 49 0.1429 7
m3 49 28 0.1429 7
m6 98 28 0.0714 14
m132 49 98 0.1399 48
m460 98 49 0.1399 48

(f) Sixth Order

Table A.1: Quadrilateral Gauss-Legendre Operator Matrices Characteristics
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Matrix R C ρ U

m0 12 9 0.1111 1
m3 9 12 0.3333 3
m6 18 12 0.1667 6
m132 9 18 0.2963 6
m460 18 9 0.2963 6

(a) Second Order

Matrix R C ρ U

m0 16 16 0.0625 1
m3 16 16 0.2500 4
m6 32 16 0.1250 6
m132 16 32 0.2188 14
m460 32 16 0.2188 14

(b) Third Order
Matrix R C ρ U

m0 20 25 0.0400 1
m3 25 20 0.2000 4
m6 50 20 0.1000 8
m132 25 50 0.1760 22
m460 50 25 0.1760 22

(c) Fourth Order

Matrix R C ρ U

m0 24 36 0.0278 1
m3 36 24 0.1667 6
m6 72 24 0.0833 8
m132 36 72 0.1481 32
m460 72 36 0.1481 32

(d) Fifth Order
Matrix R C ρ U

m0 28 49 0.0204 1
m3 49 28 0.1429 5
m6 98 28 0.0714 10
m132 49 98 0.1283 44
m460 98 49 0.1283 44

(e) Sixth Order

Table A.2: Quadrilateral Gauss-Legendre-Lobatto Operator Matrices Characteristics

Matrix R C ρ U

m0 24 8 0.2500 2
m3 8 24 0.2500 2
m6 24 24 0.0833 4
m132 8 24 0.2500 2
m460 24 8 0.2500 2

(a) First Order

Matrix R C ρ U

m0 54 27 0.1111 3
m3 27 54 0.1111 3
m6 81 54 0.0370 6
m132 27 81 0.0988 8
m460 81 27 0.0988 8

(b) Second Order
Matrix R C ρ U

m0 96 64 0.0625 4
m3 64 96 0.0625 4
m6 192 96 0.0208 8
m132 64 192 0.0625 16
m460 192 64 0.0625 16

(c) Third Order

Matrix R C ρ U

m0 150 125 0.0400 5
m3 125 150 0.0400 5
m6 375 150 0.0133 10
m132 125 375 0.0384 24
m460 375 125 0.0384 24

(d) Fourth Order
Matrix R C ρ U

m0 216 216 0.0278 6
m3 216 216 0.0278 6
m6 648 216 0.0093 12
m132 216 648 0.0278 36
m460 648 216 0.0278 36

(e) Fifth Order

Matrix R C ρ U

m0 294 343 0.0204 7
m3 343 294 0.0204 7
m6 1029 294 0.0068 14
m132 343 1029 0.0200 48
m460 1029 343 0.0200 48

(f) Sixth Order

Table A.3: Hexahedra Gauss-Legendre Operator Matrices Characteristics
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Matrix R C ρ U

m0 54 27 0.0370 1
m3 27 54 0.1111 3
m6 81 54 0.0370 6
m132 27 81 0.0988 6
m460 81 27 0.0988 6

(a) Second Order

Matrix R C ρ U

m0 96 64 0.0156 1
m3 64 96 0.0625 4
m6 192 96 0.0208 6
m132 64 192 0.0547 14
m460 192 64 0.0547 14

(b) Third Order
Matrix R C ρ U

m0 150 125 0.0080 1
m3 125 150 0.0400 4
m6 375 150 0.0133 8
m132 125 375 0.0352 22
m460 375 125 0.0352 22

(c) Fourth Order

Matrix R C ρ U

m0 216 216 0.0046 1
m3 216 216 0.0278 6
m6 648 216 0.0093 8
m132 216 648 0.0247 32
m460 648 216 0.0247 32

(d) Fifth Order
Matrix R C ρ U

m0 294 343 0.0029 1
m3 343 294 0.0204 5
m6 1029 294 0.0068 10
m132 343 1029 0.0183 44
m460 1029 343 0.0183 44

(e) Sixth Order

Table A.4: Hexahedra Gauss-Legendre-Lobatto Operator Matrices Characteristics

Matrix R C ρ U

m0 6 3 1.0000 3
m3 3 6 1.0000 6
m6 6 6 0.6667 6
m132 3 6 0.6667 2
m460 6 3 0.6667 2

(a) First Order

Matrix R C ρ U

m0 9 6 1.0000 10
m3 6 9 1.0000 20
m6 12 9 0.6667 20
m132 6 12 0.8889 28
m460 12 6 0.8889 28

(b) Second Order
Matrix R C ρ U

m0 12 10 1.0000 20
m3 10 12 1.0000 40
m6 20 12 0.6667 40
m132 10 20 0.9600 96
m460 20 10 0.9600 96

(c) Third Order

Matrix R C ρ U

m0 15 15 1.0000 39
m3 15 15 1.0000 78
m6 30 15 0.6667 78
m132 15 30 0.9600 216
m460 30 15 0.9600 216

(d) Fourth Order
Matrix R C ρ U

m0 18 21 1.0000 63
m3 21 18 1.0000 126
m6 42 18 0.6667 126
m132 21 42 0.9796 432
m460 42 21 0.9796 432

(e) Fifth Order

Matrix R C ρ U

m0 21 28 1.0000 100
m3 28 21 1.0000 200
m6 56 21 0.6667 200
m132 28 56 0.9796 768
m460 56 28 0.9796 768

(f) Sixth Order

Table A.5: Triangles Williams-Shunn Operator Matrices Characteristics
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Matrix R C ρ U

m0 12 4 1.0000 3
m3 4 12 1.0000 6
m6 12 12 0.5000 6
m132 4 12 0.5000 2
m460 12 4 0.5000 2

(a) First Order

Matrix R C ρ U

m0 24 10 1.0000 14
m3 10 24 1.0000 28
m6 30 24 0.5000 28
m132 10 30 0.8400 46
m460 30 10 0.8400 46

(b) Second Order
Matrix R C ρ U

m0 40 20 1.0000 40
m3 20 40 1.0000 80
m6 60 40 0.5000 80
m132 20 60 0.9100 200
m460 60 20 0.9100 200

(c) Third Order

Matrix R C ρ U

m0 60 35 1.0000 101
m3 35 60 1.0000 202
m6 105 60 0.5000 202
m132 35 105 0.9339 608
m460 105 35 0.9339 608

(d) Fourth Order
Matrix R C ρ U

m0 84 56 1.0000 214
m3 56 84 1.0000 428
m6 168 84 0.5000 428
m132 56 168 0.9541 1568
m460 168 56 0.9541 1568

(e) Fifth Order

Matrix R C ρ U

m0 112 84 1.0000 425
m3 84 112 1.0000 850
m6 252 112 0.5000 850
m132 84 252 0.9637 3520
m460 252 84 0.9637 3520

(f) Sixth Order

Table A.6: Tetrahedra Shunn-Ham Operator Matrices Characteristics
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Appendix B

LIBXSMM Code Buffer Size

LIBXSMM has a maximum code buffer size of 128 KB (v1.15 [3]). This limit is set to
prevent the JIT process from writing too large a function for the user process. If the limit
was reached, a fallback strategy is used. If the limit is reached in the case of A of being
sparse, then LIBXSMM v1.15 falls back to a dense matrix multiply routine.
However, in our evaluation, the aim was to compare the algorithms used to generate the
code, and not necessarily what would be best for the general user in a production release
of LIBXSMM. For that reason, the code buffer size was doubled to 256 KB, to be able to
handle larger loop unrolling in Chapter 6. This removed buffer size limits for 5 operator
matrices in the benchmark.
The following list details which matrices ran into the previous 128 KB limit, when using
the Register Packing update from Chapter 5:

• PyFR Example: Hexahedra Sixth-Order Gauss-Legendre m132

• PyFR Example: Hexahedra Sixth-Order Gauss-Legendre m460

• PyFR Example: Hexahedra Sixth-Order Gauss-Legendre-Lobatto m132

• PyFR Example: Hexahedra Sixth-Order Gauss-Legendre-Lobatto m460

These were the largest size operator matrices in the benchmark, all having a size of 1029 ∗
343.
Only one matrix from the synthetic suite ran into the buffer size limit, when using the
reference LIBXSMM version:

• Synthetic: Density of 0.5, with 64 unique non-zeros. Size of 128 ∗ 128

For Chapters 7, 8 and 9, the code buffer size was increased by a factor of 8, to 1 MB.
This provided sufficient space for the additional instructions being issued by the updated
routines that were evaluated in those chapters.
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Appendix C

Register Packing Evaluation on
PyFR Suite Additional Plots
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Figure C.1: Register Packing vs Reference Performance - PyFR Quadrilateral Examples
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Figure C.2: Register Packing vs Reference Performance - PyFR Hexahedra Examples
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Figure C.4: Register Packing vs Reference Performance - PyFR Tetrahedra Examples
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Appendix D

Register Packing L1 Evaluation on
PyFR Suite Additional Plots
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Figure D.1: Register Packing L1 vs Base Performance - PyFR Quadrilateral Examples
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Figure D.2: Register Packing L1 vs Base Performance - PyFR Hexahedra Examples
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D.2 Against Reference Dense Routine
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Figure D.5: Register Packing L1 vs Dense Performance - PyFR Triangles Examples
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Appendix E

Register Packing Combination Extra
Evaluation Plots

E.1 PyFR Suite
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Figure E.1: Register Packing Combination - PyFR Sparse Examples (Number of Unique
Non-Zeros)
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Figure E.2: Register Packing Combination - PyFR Sparse Examples (Density)
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Dense Operator Matrices
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Figure E.3: Register Packing Combination - PyFR Dense Examples (Number of Unique
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Figure E.4: Register Packing Combination - PyFR Dense Examples (Density)
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E.2 Synthetic Suite
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Figure E.5: Register Packing Combination: Performance vs Number of Rows
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Figure E.6: Register Packing Combination: Performance vs Number of Columns
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Appendix F

Hybrid LIBXSMM vs GiMMiK
Evaluation on PyFR Suite
Additional Plots
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Figure F.1: Hybrid LIBXSMM vs GiMMiK - PyFR Sparse Examples (Number of Columns)
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Figure F.2: Hybrid LIBXSMM vs GiMMiK - PyFR Sparse Examples (Size)
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Figure F.3: Hybrid LIBXSMM vs GiMMiK - PyFR Dense Examples (Number of Columns)
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Figure F.4: Hybrid LIBXSMM vs GiMMiK - PyFR Dense Examples (Size)

140


	Abstract
	Acknowledgements
	Introduction
	Context
	Computational Fluid Dynamics
	Convolutional Neural Networks - An unrelated area that can benefit from this work

	Objectives
	Contributions
	Contributions to Intel's Open-Source LIBXSMM


	Background
	Flux Reconstruction Overview
	PyFR
	Overview
	Operator Matrices
	GiMMiK

	Single Instruction Multiple Data Architectures
	AVX-512: A Single Instruction Multiple Data ISA
	Sparse MM: Vectorisation

	LIBXSMM
	The Library
	Use within PyFR
	Sparse MM: Storing A in the register file


	Related Work
	GiMMiK
	VecReg
	Compiling for SIMD Within A Register
	Intel SPMD Program Compiler
	Pixel Interlacing to Trade off the Resolution of a Cellular Processor Array against More Registers
	Customizable Precision of Floating-Point Arithmetic with Bitslice Vector Types
	Topological Optimisation of the Evaluation of Finite Element Matrices
	Optimized Code Generation for Finite Element Local Assembly Using Symbolic Manipulation
	Compiler-Level Matrix Multiplication Optimization for Deep Learning

	Evaluation Methodology
	Environment
	Benchmark Suite
	PyFR Example Operator Matrices
	Synthetic Operator Matrices

	Performance Metric
	Roofline Plots
	Validity of Results

	Register Packing Solutions
	Solution with Shuffles
	Solution with Permutes
	Summary: Comparing the Solutions

	Register Packing Evaluation
	Evaluation on PyFR Suite
	Evaluation on Synthetic Suite
	Summary

	Register Packing using L1 Cache to store Selector Operands
	Solution
	Layout of Operands
	Broadcasting Process
	Alternative Strategy

	Evaluation
	Evaluation on PyFR suite
	Evaluation on Large PyFR Operator Matrices
	Evaluation on Synthetic Suite

	Summary

	Multiple Accumulations
	Solutions
	N Blocking: Operating on multiple mini-chunks of B
	M Blocking: Interleaving rows of A

	Investigating the effect of runtime broadcasting
	N Blocking
	M Blocking
	Summary

	N Blocking Evaluation
	PyFR Suite
	Synthetic Suite
	Summary

	M Blocking Evaluation
	PyFR Suite
	Synthetic Suite
	Summary

	Summary

	Register Packing with Multiple Accumulation and L1 Operands
	Solutions
	L1 N Blocking Evaluation
	PyFR Suite
	Synthetic Suite
	Summary

	L1 M Blocking Evaluation
	PyFR Suite
	Synthetic Suite
	Summary

	Summary

	Hybrid LIBXSMM vs GiMMiK
	Solution
	GiMMiK 2.1
	Hybrid Routine - Strategy

	Hybrid vs GiMMiK Evaluation
	PyFR Suite
	Synthetic Suite

	Summary

	Conclusions & Further Work
	Summary
	Further Work

	Bibliography
	PyFR Example Operator Matrices Characteristics
	LIBXSMM Code Buffer Size
	Register Packing Evaluation on PyFR Suite Additional Plots
	Register Packing L1 Evaluation on PyFR Suite Additional Plots
	Against RP Base
	Against Reference Dense Routine

	Register Packing Combination Extra Evaluation Plots
	PyFR Suite
	Synthetic Suite

	Hybrid LIBXSMM vs GiMMiK Evaluation on PyFR Suite Additional Plots

