
Individual Project

Department of Computing

Imperial College of Science, Technology and Medicine

Using Answer Set Grammars For
Text Summarization

Author:
Julien Amblard

Supervisor:
Alessandra Russo

Co-Supervisor:
David Tuckey

Second Marker:
Krysia Broda

Sunday 14th June, 2020

Submitted in partial fulfillment of the requirements for the Computing MEng of
Imperial College London

Abstract

To this day, text summarization remains a largely open-ended problem in Natu-
ral Language Processing, and is most often resolved using some form of Machine
Learning.

In this project, we aim to resolve the problem for short texts about a para-
graph in length, via a novel approach that makes use of Answer Set Grammars. By
combining ideas from the fields of logic-based learning, knowledge representation
and linguistics, we have created a system that is capable of producing partially ab-
stractive, generic and informative summaries, as well as scoring them by order of
pertinence and information density.

The approach chosen for this project relies on a central context-free grammar as
its internal representation for a simplified version of the English language. Using
Answer Set Programming, the system is able to perform logic-based learning to
understand the input text after having pre-processed it, the result of which then
goes through a number of summarization logic rules, producing a set of possible
summaries.

Throughout the development phase, we ran our system on a suite of targeted
examples. When the implementation was complete, we successfully trained a neural
network to learn the summarization rules used by our framework, thereby validating
our approach. We then performed two experiments to evaluate our system, and to
establish some of the key differences compared to a neural network.

From this we conclude that although our approach is less general than a neural
network, it is able to produce more consistent results and can detect grammatically-
incorrect text. Moreover, it does not rely on noisy annotated data, and can be
expanded upon without the need to be retrained.

ii

Acknowledgements

Firstly, I would to thank my supervisor Prof. Alessandra Russo, as well as my co-
supervisor David Tuckey, for the time they have put into this project. Week after
week, we have had very interesting discussions in which they have provided their
respective expertise in logic programming and NLP, helping to move the project
forward. I would also like to thank Mark Law for creating ASG, as well as helping
me with some of the syntax and numerous optimisations. In addition, I would like
to thank my Personal Tutor, Antonio Filieri, for providing advice and guidance
throughout my four years at Imperial College London. Finally, I am grateful for my
family who supported me during my studies.

iii

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Objectives . 1
1.3 Approach Overview . 2
1.4 Contributions . 3
1.5 Paper Structure . 4

2 Background 5
2.1 Summarization . 5

2.1.1 Types Of Summaries . 5
2.1.2 Summarization Levels . 6
2.1.3 Evaluating Summaries . 7

2.2 Syntactic Parsing . 7
2.3 Answer Set Grammars . 9

2.3.1 Answer Set Programming . 9
2.3.2 Answer Set Grammars . 10

2.4 Neural Networks . 13
2.4.1 Recurrent Neural Networks 13
2.4.2 Long Short-Term Memories 13
2.4.3 Encoder-Decoders . 14
2.4.4 Attention Mechanism . 14

3 Preprocessor 16
3.1 Overview . 16
3.2 Tokenization And Simplification . 16

3.2.1 Punctuation . 16
3.2.2 Individual Word Transformations 17
3.2.3 Clause Transformations . 18
3.2.4 Case And Proper Nouns . 18

3.3 Sentence Pruning And Homogenisation 19
3.3.1 Word Similarity . 19
3.3.2 Sentence Similarity And Pruning 20
3.3.3 Synonyms And Homogenisation 20

3.4 Example . 20

4 ASG 23
4.1 Overview . 23
4.2 Internal Representation . 23

4.2.1 Leaf Nodes . 23

iv

4.2.2 Non-Leaf Nodes . 24
4.3 Learning Actions . 26

4.3.1 Formalisation . 26
4.3.2 Implementation . 27
4.3.3 Search Space Reduction . 28

4.4 Generating Summary Sentences . 29
4.4.1 Formalisation . 29
4.4.2 Implementation . 29

4.5 Example . 31

5 Post-Processing / Scoring 32
5.1 Overview . 32
5.2 Summary Creation . 32

5.2.1 Post-Processing . 32
5.2.2 Combining . 33

5.3 Scoring . 33
5.3.1 Type-Token Ratio . 33

5.4 Summary Selection . 34
5.4.1 Proper Nouns . 34
5.4.2 Top Summaries . 34
5.4.3 Reference Summaries . 35

5.5 Example . 35

6 Possible Improvements 37
6.1 Preprocessor . 37

6.1.1 Negation . 37
6.1.2 Lists . 37

6.2 ASG . 37
6.2.1 Missing English Structures . 37
6.2.2 Learning Summarization Rules 38
6.2.3 Speed . 38

6.3 Post-Processing / Scoring . 38
6.3.1 Grammatical Shortcomings 38
6.3.2 Better Summary Selection . 39

7 Validation And Evaluation 40
7.1 General Idea . 40
7.2 Story Generation . 40

7.2.1 Datasets . 40
7.2.2 Main Sentence Generation . 41
7.2.3 Conjunctive Summaries . 42
7.2.4 Descriptive Summaries . 42
7.2.5 Summary Generation . 43

7.3 Validation . 43
7.4 Evaluation Experiments . 45

7.4.1 Experiment 1: Robustness To Perturbations 45
7.4.2 Experiment 2: Input Validity Awareness 46

7.5 Takeaways . 47

v

8 Related Work 48
8.1 Semantic Analysis Methods . 48

8.1.1 Combinatory Categorial Grammar 48
8.2 Existing Text Summarization Approaches 49

8.2.1 Lexical Chains . 49
8.2.2 Corpus-Based Approach / Latent Semantic Analysis 51

8.3 Approach Categories . 52
8.3.1 Frame . 53
8.3.2 Statistical . 53
8.3.3 Symbolic . 55

9 Conclusion 57
9.1 Achievements . 57
9.2 Future Work . 58

9.2.1 Better Semantic Understanding 58
9.2.2 Longer Stories . 59
9.2.3 Domain-Specific Understanding 59

Appendix A POS Tags 60

Appendix B Example Stories 61

Appendix C ASG 63
C.1 Common Grammar . 63
C.2 Task: SumASG1 . 72
C.3 Task: SumASG2 . 74

vi

Chapter 1 Introduction

In general, the task of summarization in Natural Language Processing (NLP) is to
produce a shortened text which covers the main points expressed in a longer text
given as input. To this end, a system performing such a task must analyse and
process the input in order to extract from it the most important information.

1.1 Motivations

In recent years, state-of-the-art systems that accomplish text summarization have re-
lied largely on Machine Learning. These include Bayesian classifiers, hidden Markov
models, neural networks and fuzzy logic, among others [1]. Given a training corpus,
along with some careful pre-processing as well as fine-tuning of hyper-parameters
and feature extraction functions, such systems are able to produce effective sum-
maries [1].

Among these approaches, one of the most prominent types of neural networks is
the encoder-decoder. These are commonly used for sequence-to-sequence translation
due to their promising performance in NLP tasks [2]. Encoder-decoders use a fixed-
dimension internal representation which can be trained to act as an intermediate
between variable-length inputs and outputs, making this approach highly suitable
for text summarization. However to learn what is a summary, these systems require
tremendous amounts of data and take a long time to train.

In our case, using logic for the semantics means that we can hard-code the defi-
nition of a summary directly into the program, avoiding the problem of randomness
and uncertainty that often comes with neural networks. By carefully constructing
the structure of our system, we can get results with just a short list of rules. In
addition, using a grammar that models the syntax of English sentences helps ensure
that our output is always grammatically correct. From both of these aspects, we
know that our system will always produce a complete and valid output with respect
to the background knowledge we encode into it.

1.2 Objectives

The main goal of this project is to explore the task of text summarization via logic-
based learning with Answer Set Grammars (ASG). Below you will find the principal
objectives which were established as being vital to achieving this goal.

Objective 1 (Translate English Into ASG). Our system should be capable of taking
a text written in English and converting it into some logic-based form that can be
interpreted by ASG. Moreover, this representation should capture as much of the
semantics from the original text as possible, and not be limited to a particular
domain.

1

Chapter 1: Introduction Section 1.2: Objectives

Objective 2 (Generate Summaries Automatically). Given a brief paragraph of
text, for example a short story aimed at young children, we should be able to
provide a grammatically correct summary in multiple sentences. This should be
fully-automated and not require any human intervention during the process.

Objective 3 (Evaluate The Approach). Once we have implemented the basic ap-
proach, we should run our system on a suite of examples to verify that it can
produce summaries that closely resemble the corresponding human-generated ones.
On a larger scale, it is important to also run it against a popular summarization
approach to ensure that our logic-based mechanism is sound.

1.3 Approach Overview

The approach described in this paper, known as SumASG*, can be diagrammat-
ically represented as a three step pipeline, as seen in Figure 1.1. While the core
part of the the project is written in ASG, Python scripts are used to respectively
pre-process and post-process the input and output.

Story Preprocessor SumASG Post-Processing/Scoring Scored Summaries

Figure 1.1: Main pipeline for SumASG*

As the first step in the pipeline, the Preprocessor plays an essential role. Given
an input story, its goal is to simplify the story’s sentences into a simpler and more
consistent structure, one that will then be easier to parse by ASG. Additionally, the
Preprocessor removes irrelevant sentences from the story and reduces it lexical
diversity, which helps increase the chances of generating a high-quality summary.

Once the story has been pre-processed, it then goes through a procedure we
call SumASG. This revolves around a purpose-built representation of English sen-
tences, represented as a tree. The first of two steps, SumASG1, involves translating
sentences from the input story into our internal representation using ASG’s learn-
ing abilities. From this, SumASG2 then exploits a number of logic-based rules to
generate sentences which may be used to form a summary.

The third and final step in the pipeline serves to turn the output of SumASG
into usable summaries. To begin, we post-process the summary sentences given to
us as output, and combine them in different ways so as to form potential summaries.
Afterwards we assign to each one a score, and only those with the highest scores are
returned.

Example

Throughout this paper, we use the example of the story of Peter Little to illustrate
the different steps of our pipeline, as shown below in Figure 1.2.

Additional examples of stories can be found in Appendix B, along with the
summaries generated by SumASG*.

2

Chapter 1: Introduction Section 1.3: Approach Overview

There was a curious little boy named Peter Little. He was interested
in stars and planets. So he was serious in school and always did his
homework. When he was older, he studied mathematics and quantum
physics. He studied hard for his exams and became an astrophysicist.
Now he is famous.

(a) Original story

A. Peter Little was interested in space so he studied hard and became
a famous astrophysicist.
B. Peter Little was curious about astronomy. He was always serious in
school, and now he is famous.

(b) Reference summaries

Figure 1.2: Example of the task of summarization for the story of Peter Little

1.4 Contributions

The main contribution of this project to the field of NLP is the creation of an end-
to-end, fully-automated logic-based system capable of text summarization, without
the need of any training whatsoever, as would be the case with a typical Machine
Learning-based approach these days. Going more into depth, we discuss some more
specific contributions in what follows.

Contribution 1 (Identification Of Existing Techniques Used For Summarization).
After researching existing state-of-the-art text summarization systems, identified
techniques which were beneficial to use for this project (e.g., text relationship maps).

Contribution 2 (Complexity Reduction In Some English Sentences). Implemented
an algorithm that dramatically reduces the complexity in the structure of certain
English sentences, without losing too much information (e.g., co-referencing).

Contribution 3 (Removal Of Irrelevant Sentences And Homogenisation). Imple-
mented an algorithm which uses similarity to remove irrelevant sentences from a
short story, and replaces synonyms with a single representative in each set of syn-
onyms.

Contribution 4 (Representation Of English In ASG). Created a context-free gram-
mar that models the structure of basic English sentences, and can be used both for
semantic learning, as well as generating grammatically-correct text.

Contribution 5 (Translation Of English Into ASG). Wrote an ASG learning task
capable of taking English text and turning it into a set of chronologically-ordered
actions which convey in ASP what occurs in the text.

Contribution 6 (Automatic Generation Of Summaries). Developed a set of rules
which, given actions from a story, allow ASG to generate both extractive and ab-
stractive summary sentences.

Contribution 7 (Scoring Mechanism). Implemented a scoring mechanism priori-
tizing information density, while taking into account words which may appear fre-
quently in English and can be considered the topic of the original text.

3

Chapter 1: Introduction Section 1.5: Paper Structure

1.5 Paper Structure

In this paper, we begin by discussing some essential background knowledge in Chap-
ter 2. After giving an overview of text summarization, we introduce the notion of
syntactic parsing. Then, we go over some concepts that will be necessary in order to
understand the ASG part of the pipeline. Finally, we briefly mention some Machine
Learning structures which we make use of for evaluating our implementation.

In Chapters 3, 4 and 5, we dive into the various steps involved in the pipeline
of SumASG*, as outlined in Section 1.3. In addition, we discuss possible technical
improvements for each step of the pipeline in Chapter 6.

After this, we validate our approach by training an encoder-decoder for the task
of summarization in Chapter 7, then show that our system is capable of producing
a more consistent output and can detect invalid input out-of-the-box.

In Chapter 8 we explore some of the existing state-of-the-art implementations
and differentiate between statistical, frame and symbolic approaches. Where rele-
vant, we discuss which ideas from these approaches we have borrowed for SumASG*,
as well as how our approach differs from these implementations.

Finally, we conclude the paper in Chapter 9 by listing the main achievements
of this project, as well as giving a high-level overview of future work which may be
done to build on top of SumASG*.

4

Chapter 2 Background

In this chapter we discuss the background on which our work is based. We first
present text summarization and outline the different levels on which this can be done
(Section 2.1). We then introduce the notion of syntactic parsing, which respectively
allows us to understand the grammatical structure of a sentence as well as the
relations between its constituents (Section 2.2). Then, we explain a number of
logic programming concepts which will later be necessary for the description of our
implementation (Section 2.3). Finally, we give a brief overview of the Machine
Learning concepts we make use of in order to evaluate our system (Section 2.4).

2.1 Summarization

Summarization is a general task which consists of taking the most important infor-
mation from a passage and rewriting it into a more concise form, using at most half
the amount of text [3].

2.1.1 Types Of Summaries

In what follows we discuss different ways in which we can characterise summaries.
Firstly, summaries can be grouped into one of the two following categories, depend-
ing on how they are built:

• An extractive summary is made up of chunks of sentences which are copied
word-for-word from the original text.

• An abstractive summary is a rewriting of the text’s content in a more concise
form.

Summaries can focus on different sections or topics of the text, allowing us to dif-
ferentiate between the two following types:

• Generic summaries do not try and focus on anything in particular, they simply
aim to recount the most important features.

• Focused (or query-driven) summaries, on the other hand, require a user-input,
which specifies the focus of the summary.

We can also differentiate the purpose of summaries [4] (see example in Figure 2.1):

• Indicative summaries aim to outline what a text is about, without going into
much detail.

• Informative summaries, on the other hand, take the content from an original
document and give a shortened version of it.

5

Chapter 2: Background Section 2.1: Summarization

The document in question is an article from The Guardian describing
the timeline of storm Brendan and its possible consequences.

(a) Indicative summary

It’s going to be windy across the western half of the UK, with gusts
reaching 60 to 70mph along Irish Sea coastlines, the west of Scotland
and perhaps some English Channel coasts. Those in affected areas are
advised to take extra care when driving on bridges or high open roads.
Flood warnings were issued on Sunday for two areas – Keswick campsite
in Cumbria and a stretch along the River Nene east of Peterborough.

(b) Informative summary

Figure 2.1: Example of indicative and informative summaries for a news article1

2.1.2 Summarization Levels

Depending on the level of detail at which text analysis is done, we identify three
different levels of summarization [3]: surface, entity and discourse. Many current
systems employ what is called a hybrid approach, combining techniques from differ-
ent summarization levels.

Surface Level

On a surface level, little text analysis is performed, and we rely on keywords in the
text which are later combined to generate a summary. Common techniques are:

• Thematic features are identified by looking at the words that appear most
frequently. Usually, the sentences in a passage containing the most important
information have a higher probability of containing these thematic features.

• Often, the location of a sentence can help identify its importance; the first and
last sentences are generally a good indicator for the respective introduction
and conclusion of a document. Moreover, we may use the title and heading (if
any) to find out which topics are most relevant.

• Cue words are expressions like “in this article” and “to sum up”; these can
give us a clue as to where the relevant information is.

Entity Level

A more analytic approach can be done at an entity level, where we build a model
of a document’s individual entities (i.e., words or phrases) and see how they relate.
Common techniques are:

• Similarity between different words or groups of words, whether it be synonyms
or terms relating to the same topic.

1Article from The Guardian about storm Brendan: https://www.theguardian.com/uk-news/
2020/jan/12/storm-brendan-gales-forecast-uk

6

https://www.theguardian.com/uk-news/2020/jan/12/storm-brendan-gales-forecast-uk
https://www.theguardian.com/uk-news/2020/jan/12/storm-brendan-gales-forecast-uk

Chapter 2: Background Section 2.1: Summarization

• Logical relations involve the use of a connector such as “before” or “therefore”,
and tell us how the information given by such connected phrases relates.

Discourse Level

Finally at a discourse level we go beyond the contents of a text, exploiting its
structure instead. Some of the things we can analyse are:

• The format can be taken into account to help us extract key information. For
example, in a rich-text document we may want to pay close attention to terms
that are underlined or italicized.

• The rhetorical structure can tell us whether the document is argumentative
or narrative in nature. In the latter case a more concise description of the
text’s contents would suffice, while the former would involve recounting the
key points and conclusions made by the author.

2.1.3 Evaluating Summaries

In order to evaluate a hypothesis summary with respect an expected reference, there
exist a number of metrics, one of which is called the BLEU score. Its value lies in
the range [0, 1], 1 denoting a perfectly matching hypothesis.

By looking at sequences of up to 4 tokens in length (see Section 2.2), this metric
aims to calculate the fraction of such sequences in the hypothesis which also appear in
the reference. Furthermore, the BLEU score penalises hypothesis summaries which
are too short, thereby prioritising summaries with less information loss [5].

2.2 Syntactic Parsing

Tokenization is the processes of splitting a text into its individual tokens, or words.
To each of these tokens we can assign a position of speech (POS) tag, which tells
us what type of word this is (see Appendix A). Additionally, each of these tokens
is assigned a lemma, which is essentially the “neutral” form of a word, be it the
singular of a noun or the base form of a verb.

Furthermore, syntactic parsing is a technique that reveals the grammatical links
between POS tagged tokens [6], the result of which can then be visualised in what is
called a parse tree. This type of syntactic parsing is known as constituency parsing.
An example of such a parse tree is shown in Figure 2.2 for one of the first of the two
most prominent syntactic parsers : CoreNLP2 and spaCy3.

2CoreNLP is an NLP toolkit developed by Stanford: https://corenlp.run
3spaCy is an NLP toolkit that integrates with deep learning libraries: https://spacy.io

7

https://corenlp.run
https://spacy.io

Chapter 2: Background Section 2.2: Syntactic Parsing

S

______|________________________

NP VP |

___|______ ___|______ |

NP | | ADJP |

_____|___ | | | |

NNP POS NN VBZ JJ .

| | | | | |

Albert ’s chocolate is delicious .

Figure 2.2: Constituency parse tree for a basic sentence, as generated by CoreNLP

Moreover, many syntactic parsers are also capable of dependency parsing, which
involves linking the tokens in a sentence using binary asymmetric relations called
dependencies [7]. These dependencies can help us understand the connections be-
tween different tokens when visualised in the form of a parse tree, as illustrated in
Figure 2.3.

Figure 2.3: Dependency parse tree for a basic sentence, as generated by CoreNLP

However, the English language can often be ambiguous and highly context-dependent,
meaning that multiple interpretations may be possible, resulting in different parse
trees for the same sentence. Consider the following two sentences [8]:

He fed her cat food.
I saw a man on a hill with a telescope.

Depending on the context, we could interpret the first sentence as a person who
either fed a woman’s cat, fed a woman some cat food, or fed the cat food itself.
Although the last meaning does not make much sense, this is one that CoreNLP
chooses, as shown in Figure 2.4. Therefore, it very important to first accurately
perform syntactic parsing if we then want to produce a summary which is coherent
with the original text [9].

Figure 2.4: Dependency parse tree for an ambiguous sentence, as generated by
CoreNLP: here, “cat food” is interpreted as a compound entity belonging to “her”,
erroneously meaning that a man fed a woman’s “cat food”

8

Chapter 2: Background Section 2.3: Answer Set Grammars

2.3 Answer Set Grammars

ASGs are an extension of context-free grammars (CFGs), and allow the introduction
of Answer set programming (ASP) into CFGs [13].

2.3.1 Answer Set Programming

ASP is a declarative first-order (predicate) logic language whose aim is to solve
complex search problems [11]. When asked to solve a problem ASP returns a list of
answer sets (or stable models), whose definition (see Definition 5) we will give after
having introduced a number of concepts pertinent to logic programming.

Definition 1 (Term [12]). A term is either a variable x, y, z, ... or an expression
f(t1, t2, ..., tk), where f is a k-ary function symbol and the ti are terms. A constant
is a 0-ary function symbol.

Definition 2 (Atom [12]). An atomic formula (or atom) has the form P (t1, t2, ..., tk),
where P is a k-ary predicate (boolean function) symbol and the ti are terms.

In ASP, a literal is an atom a or its negation not a (we call the latter “negation
as failure”). ASP programs are composed of a set of normal rules whose head is a
single atom and whose body is a conjunction of literals [13].

h︸︷︷︸
head

← b1, b2, ..., bk, not bk+1, ..., not bm︸ ︷︷ ︸
body

. (2.1)

If the body is empty (k = m = 0) then a rule is called a fact. We can also have
constraints, which are like normal rules except that the head is empty. These prevent
any answer sets from both including b1, b2, ..., bk and excluding bk+1, ..., bm.

To compute the reduct of a program (see Definition 3), we are first going to
need to understand the notion of Herbrand base. The Herbrand base of a program
P, denoted HBP , is the set of variable-free (ground) atoms that can be formed
from predicates and constants in P. The subsets of HBP are called the (Herbrand)
interpretations of P [13].

Definition 3 (Reduct [13]). Given a program P and a Herbrand interpretation
I ⊆ HBP , the reduct P I is constructed from the grounding of P in three steps:

1. Remove rules whose bodies contain the negation of an atom in I.
2. Remove all negative literals from the remaining rules.
3. Replace the head of any constraint with ⊥ (where ⊥ /∈ HBP).

For example, the reduct of the program {a← not b, c. d← not c.} with respect to
I = {b} is {d.}.

Given a set A, a ground normal rule of P is satisfied if the head is in A when all
positive atoms and none of the negated atoms of the body are in A; that is, when
the body is satisfied. A ground constraint is satisfied when its body is not (i.e., the
body does not evaluate to true) [13].

Definition 4 (Minimal Model). We say that I is a (Herbrand) model when I sat-
isfies all the rules in the program P. It is a minimal model if there exists no smaller
model than I.

9

Chapter 2: Background Section 2.3: Answer Set Grammars

Definition 5 (Answer Set [13]). Any I ⊆ HBP is an answer set of P if it is equal
to the minimal model of the reduct P I . We will denote the set of answer sets of a
program P with AS(P).

2.3.2 Answer Set Grammars

A CFG is a grammar characterised by a set of production rules that describe all
possible strings which can be formed by this grammar. Before discussing ASGs
though we must first formally define CFGs (see Definition 6), and introduce the
notion of a parse tree in the current context (see Definition 7).

Definition 6 (Context-Free Grammar [14]). A CFG is a finite set G of production
rules α → β, where α is a single symbol and β is a finite string of symbols from a
finite alphabet (vocabulary) V. V contains precisely the symbols appearing in these
rules plus the “boundary” symbol ε, which does not appear in these rules. Rules of
the form α→ α (which have no effect) are not allowed.

Definition 7 (Parse Tree [13]). Let GCF be a CFG. A parse tree PT of GCF for a
given string consists of a node node(PT), a list of parse trees, called children and
denoted children(PT), and a rule rule(PT), such that:

1. If node(PT) is a terminal node, then children(PT) is empty.
2. If node(PT) is non-terminal, then rule(PT) is of the form node(PT)→ n1...nk

where each ni is equal to the node of the ith element in children(PT), and
|children(PT)| = k.

Definition 8 (Trace [13]). We can represent each node n in a parse tree by its trace,
trace(n), through the tree. The trace of the root is the empty list []; the ith child
of the root is [i]; the jth child of the ith child of the root is [i, j], and so on.

These concepts are illustrated in Figure 2.5, where we have written a set of pro-
duction rules for the grammar aib (i.e., strings consisting of any number of “a”s
followed by a “b”), along with a parse tree for the specific string “aab”.

1: start -> as "b"

2: as -> "a" as

3: as ->

(a) CFG for aib

trace(n) node(n)

[] start

[1] as

[1,1] a

[1,2] as

[1,2,1] a

[1,2,2] as

[2] b

(b) Parse tree table for aab

start

as

"a" as

"a" as

"b"

(c) Parse tree graph for aab

Figure 2.5: Example of a CFG for the grammar aib

ASGs are an extension of CFGs, whereby each production rule is annotated (see
Definition 10). Using these annotated production rules, it is possible to vastly reduce
the complexity of the structures that can be produced by a grammar.

10

Chapter 2: Background Section 2.3: Answer Set Grammars

Definition 9 (Annotated ASP Program [13]). An annotated ASP program is an
ASP program where some atoms are annotated with a ground term. For instance,
the annotated atom a(1)@2 represents the atom a(1) with the annotation 2.

Definition 10 (Annotated Production Rule [13]). An annotated production rule is
of the form n0 → n1...nk P where n0 → n1...nk is an ordinary CFG production rule
and P is an annotated ASP program, every annotation being an integer in [1, k].

In the context of ASGs, the annotations in each annotated ASP program refer to
index of a node’s child. For instance, a(1)@2 can be read as the truth value of the
term a(1) in the annotated ASP program of the second child of the node whose
production rule we are in.

An example is shown in Figure 2.6, where we have written annotated production
rules for the language anb (n ≥ 2). By restricting this grammar to strings which
contain at least two “a”s, we have effectively captured a subset of the language
shown in Figure 2.5.

1: start -> as "b" { :- size(X)@1, X < 2. }

2: as -> "a" as { size(X+1) :- size(X)@2. }

3: as -> { size(0). }

* Intuitively, size represents the length of the current string.

Figure 2.6: Example of an ASG for the grammar anb, where n ≥ 2: here, size(X)@1
refers to the truth value of size(X) in the first child of production rule 1 (as)

In order to understand the notion of satisfiability for a given parse tree with respect
to an annotated grammar, we must first formally define what is a conforming parse
tree (see Definition 12).

Definition 11 (Parse Tree Program [13]). Let G be an ASG and PT be a parse tree.
G[PT] is the program { rule(n)@trace(n) | n ∈ PT }, where for any production rule
n0 → n1...nk P , and any trace t, PR@t is the program constructed by replacing all
annotated atoms a@i with the atom a@t + +[i] and all unannotated atoms a with
the atom a@t (++ being the concatenation operator).

Definition 12 (Conforming Parse Tree [13]). Given a string str of terminal nodes,
we say that str ∈ L(G) (str conforms to the language of G) if and only if there
exists a parse tree PT of G for str such that the program G[PT] is satisfiable. For
such a PT, every single rule in the language must be satisfied.

The parse tree program G[PT] corresponding to the annotated production rules from
Figure 2.6 and parse tree from Figure 2.5 is given in Figure 2.7. This program has a
single answer set {size(0)@[1,2,2], size(1)@[1,2], size(2)@[1]}, confirming
that aab ∈ L(G). From this example, you can see that the program is unsatisfiable
for the string ab, because from the fact size(0)@[1,2] we would end up with
size(1)@[1] but 1 < 2.

:- size(X)@[1], X < 2.

size(X+1)@[1] :- size(X)@[1,2].

size(X+1)@[1,2] :- size(X)@[1,2,2].

size(0)@[1,2,2].

Figure 2.7: G[PT] for the parse tree PT of Figure 2.5 and grammar G of Figure 2.6

11

Chapter 2: Background Section 2.3: Answer Set Grammars

Learning Answer Set Grammars

Given an incomplete ASG, it is possible to learn the complete grammar (i.e., the
missing production rules) by induction, which makes use of ILASP4 behind the
scenes. For such a task we must provide some positive examples (strings which
should conform to the language) and/or negative examples (strings which must not),
and sometimes background information [13]. This background knowledge can either
serve as context for the program or act as a sort of “helper” (like the predicates num
and inc in Figure 2.8).

In such an inductive learning program (ILP) task, we have what is called a
hypothesis space (or search space) in the form of mode declarations, which form the
mode bias and define the format of the heads (written #modeh) and bodies (written
#modeb) of production rules which can be learned [15]. It is also possible to restrict
the scope of a particular mode declaration by specifying a list of rule numbers at the
end. Note that there are two forms of body mode declarations : #modeba is used for
predicates that accept an @ annotation, and #modebb is intended for those without
(which are defined in #background). This is illustrated in Figure 2.8, where we show
a learning task for the grammar that accepts all string of the form anbn.

start -> as bs {}
as -> "a" as {} | {}
bs -> "b" bs {} | {}

+ []

+ ["a", "b"]

+ ["a", "a", "b", "b"]

- ["a"]

- ["b"]

- ["a", "a"]

- ["b", "b"]

- ["a", "a", "b"]

- ["a", "b", "b"]

#background {
num(0). num(1). num(2). num(3).

inc(X,X+1) :- num(X), num(X+1). }

#modeh(size(var(num))):[2,3,4,5].

#modeh(size(0)):[2,3,4,5].

#modeba(size(var(num))).

(a) Input incomplete program

start -> as bs {
:- not size(X)@2, size(X)@1.

}

as -> "a" as {
size(X+1) :- size(X)@2.

}

as -> {
size(0).

}

bs -> "b" bs {
size(X+1) :- size(X)@2.

}

bs -> {
size(0).

}

(b) Output learned program

* Note: the symbol | shows that multiple production rules exist for the same node.

Figure 2.8: Example of an ASG ILP task for the language anbn

4ILASP is a logic-based machine learning system: http://www.ilasp.com

12

http://www.ilasp.com

Chapter 2: Background Section 2.4: Neural Networks

2.4 Neural Networks

In this section, we present concepts relating to Machine Learning which will later
be useful to understand the validation and evaluation of our project (Chapter 7).

To begin, a neural network is a set of neurons organized in layers. The first and
last layers are respectively called the input layer and the output layer, while all the
intermediate layers are known as hidden layers.

The role of a neuron is to receive input from its immediate predecessors, compute
an output signal using a differentiable activation function on the weighted sum of its
inputs, and then propagate the result to its successors [16]. Some neural connections
are stronger then others; these get assigned a higher weight and will thus contribute
more to the final output value of the network.

A neural network can be trained to produce a specific output given a certain
input. This is done over a certain number of timesteps by feeding some data as
input and comparing the predicted output with the expected output. The second
phase of each timestep is called backpropagation, which involves going backwards
from the output and at every neuron computing the gradient of what we call a loss
function, with respect to the weights of that neuron’s inputs. Using this gradient,
we can see which weights need to be increased and which need to be decreased in
order to better fit the input data. By repeating this over time, we can eventually
find the optimal weights that give us predictions as close as possible to the expected
output data [16].

In general, we use a larger dataset for training and a smaller one for what we
call validation, which is where we use a different dataset every certain number of
timesteps to ensure the network does not overfit the training data. At the end of
training, we use an even smaller test dataset to give a final assessment of the neural
network. Moreover, training a neural network to perform as well as possible also
involves choosing suitable activation functions, as well as fine-tuning a number of
hyper-parameters (e.g., learning rate, number of hidden layers, batch size...).

2.4.1 Recurrent Neural Networks

A problem with conventional neural networks is that they do not allow variable-
length input vectors, making them inadequate for learning sequential data. Recur-
rent neural networks (RNNs) solve this issue by using an internal state vector that
can be updated each time part of the input is processed.

To be more precise, an RNN is a chain-like neural network that is applied once
for each token in the input sequence [17]. At each timestep t in a “vanilla” RNN
(i.e., for each item in the sequence), the current hidden state ht is computed as a
function of the previous hidden state ht−1 and the current input token xt, using a
non-linear activation function [17].

2.4.2 Long Short-Term Memories

A long short-term memory (LSTM) is a particular kind of RNN, motivated by the
problems of vanishing and exploding gradients which sometimes occur due to the
chain-like nature of RNNs. The solution here is to at each timestep use what is called
a memory block, which holds at it center a linear unit that is connected to itself.

13

Chapter 2: Background Section 2.4: Neural Networks

In addition, it has three gates : input (i), forget (f) and output (o). Respectively,
these three gates are concerned with which information to store, how long to store
it, and when it should be passed on [18].

Finally, each memory block also stores a cell state ct, which combines information
from the previous cell state ct−1 and from the candidate state gt (defined as per
the hidden state in a vanilla RNN), using the forget and input gates to regulate
information flow. The hidden state ht is then defined as a function of this cell state,
controlled by the output gate. Figure 2.9 shows this diagrammatically [19].

it = σ(Wxi · xt +Whi · ht−1 +Wci · ct−1 + bi)

ft = σ(Wxf · xt +Whf · ht−1 +Wcf · ct−1 + bf)

ot = σ(Wxo · xt +Who · ht−1 +Wco · ct + bo)

gt = tanh(Wxg · xt +Whg · ht−1 + bg)

ct = ft · ct−1 + it · gt
ht = tanh(ct)

(2.2)

Figure 2.9: [19] Diagram showing the flow of information in an LSTM memory block

2.4.3 Encoder-Decoders

An encoder-decoder is a neural network consisting of two eponymous RNNs, which
are often LSTMs. The encoder ’s job is to translate any variable-length sequence
given as input into a fixed-length vector representation, while the decoder ’s role is
to transform this into a new variable-length sequence. Together, they are trained to
maximize the probability of generating a target sequence given the corresponding
input sequence [17].

2.4.4 Attention Mechanism

In the context of neural machine translation (NMT) systems such as encoder-
decoders, the idea behind attention is to improve performance by selectively looking
at sub-portions of the input sequence, which becomes especially important for long
sequences of text [2].

14

Chapter 2: Background Section 2.4: Neural Networks

Global Attention

On top of being dependant on the last hidden state dt−1 and output token yi−1,
every hidden state dt in a decoder with global attention is computed also in function
of its context vector ct. Each context vector ct is defined as a weighted sum of the
encoder ’s hidden states hi. The hi that are assigned a higher weight are those which
are more similar to dt, which is done using a trainable alignment model a [20].

ct =
∑
i

αti · ht

where αti =
exp(sti)∑
j exp(stj)

sti = a(dt−1, hi)

(2.3)

Here the idea is that αti tells us how important each hi is with respect to the current
timestep t, influencing the value of dt and hence the decision of the generated output
token yt. Essentially, this is a way of telling the decoder which parts of the input
sequence to pay attention to. Thanks to this mechanism, the encoder is no longer
forced to compress all the useful information from an input sequence into a fixed-
length vector, thus improving performance for longer sequences of tokens [20].

15

Chapter 3 Preprocessor

In this chapter, we present the first part of our system’s pipeline: the Prepro-
cessor. In order to avoid having to do extremely complicated semantic analysis
in SumASG, we begin by pre-processing the input text so that we can give ASG
something which is simpler to understand as well as more computationally tractable.

To ensure a consistent sentence structure for SumASG, we try and transform
every sentence in the story to a basic subject-verb-object form (Section 3.2). To
further help with the goal of generating optimal summaries, we take advantage of
the Preprocessor’s semantic awareness to also remove irrelevant sentences and
unnecessary use of synonyms (Section 3.3). We illustrate how the Preprocessor
works using our running example of the story of Peter Little (Section 3.4).

3.1 Overview

The different stages of the Preprocessor can be seen in Figure 3.1. The first
step is to tokenize the story. After this we apply a number of transformations to
reduce the complexity of the sentence structures. Once this simplification step is
complete, we prune away sentences which provide little value, and finally homogenise
the resulting text so that its lexical diversity is reduced.

Story Tokenize Simplify Prune Homogenise Pre-processed Story

Figure 3.1: Preprocessor steps

3.2 Tokenization And Simplification

With the help of CoreNLP, we assign a POS tag to each word, or token, from the
input story. Using this information, we now make a number of simplifications which
will make the sentence structure more consistent throughout.

3.2.1 Punctuation

To avoid having to build recognition and semantic understanding of different types
of punctuation into SumASG, it is preferable to transform the story such that it
uses no punctuation apart from full stops. The idea is that each sentence in the
resulting text contains exactly one action or description (i.e., it must consist of only
one clause).

Depending on the type of punctuation used at the end of a clause in English, a
different treatment is applied:

• Question marks: We remove the clause, as it is very uncommon for questions
in a story to contain crucial information. It also helps avoid negation since we
are deleting rhetorical questions.

16

Chapter 3: Preprocessor Section 3.2: Tokenization And Simplification

• Dashes: These are used around clauses which add detail, so it is quite safe to
delete them for the task of summarization.

• Exclamation marks, commas, semi-colons and colons: We replace any of these
with a full stop.

3.2.2 Individual Word Transformations

One of the main goals of the Preprocessor is to transform the story into a simple
and consistent structure, one where a given POS tag may only appear in a limited
number of places in a sentence.

Acronyms, Contractions And Determiners

Some acronyms are often spelled using full stops after each letter. To prevent these
from being recognized as multiple sentences, it is beneficial to remove any punctu-
ation from acronyms. For instance, the word “U.S.A.” becomes “USA”.

Contractions can be difficult to understand for machines, and they add unwanted
complexity to the task of parsing. Therefore it is best to expand all of them, trans-
forming “it’s” into “it is”.

In the English language, the determiners “a” and “an” are semantically identical,
so it makes sense to only use one of the two to reduce the number of tokens that
SumASG has to process. After generating a summary, we will revert this change
so that our framework’s output is grammatically correct.

Adverbs

In the English language, adverbs can appear almost anywhere in a sentence, and
their position has minimal semantic influence. To illustrate this, consider the fol-
lowing sentences, which all have the same meaning:

Slowly he eats toast.
He slowly eats toast.
He eats toast slowly.

In order to provide SumASG with a consistent format for parsing adverbs, we
should always move them to the end of the clause in which they appear (in the
above example we would keep the last sentence).

Possessive Pronouns, Interjections And Prepositions

In most cases, possessive pronouns and interjections do not add much to the meaning
of a story, especially when the end goal is to create a summary. Therefore, we remove
such words from the text. For instance, the sequence “Ah! She ate her chocolate.”
would become “She ate chocolate.”.

Prepositions which appear at the start of a sentence may be removed, as they
are not integral to the meaning of the sentence. For example, “Besides today is
Sunday” gets transformed into “Today is Sunday”.

Moreover, prepositions which come after the object in a sentence can sometimes
cause it to become syntactically too complex. Rather than encoding such high level

17

Chapter 3: Preprocessor Section 3.2: Tokenization And Simplification

of detail into the internal representation of SumASG, it is preferable to simply omit
the final clause. In this case, “They have a picnic under a tree.” becomes “They
have a picnic.”. Although some information is thrown away, and there could be a
small impact on the quality of the summary, this is a simplification we are willing
to make.

3.2.3 Clause Transformations

After going through the Preprocessor, we would like each sentence in the given
story to only focus on a single topic.

When possible, we should split sentences containing multiple clauses into indi-
vidual sentences. Otherwise, we delete the auxiliary clause to only keep the main
clause. Examples of the transformations applied to different types of clauses can be
seen below in Figure 3.2.

Conjunctive Clause. We looked left and they saw us.
Conjunctive Clause. Cars have wheels and go fast.
Subordinating Clause. She never walks alone because she is afraid.
Dependant Clause. I want to be President when I grow up.
Dependant Clause. When I grow up, I will have a garden.

(a) Before transformation

Conjunctive Clause. We looked left. they saw us.
Conjunctive Clause. Cars have wheels. Cars go fast.
Subordinating Clause. She never walks alone. she is afraid.
Dependant Clause. I want to be President.
Dependant Clause. I will have a garden.

(b) After transformation

Figure 3.2: Examples of the splitting of multi-clause sentences

Hypernym Substitution

In some cases however, we may be able to perform an optimisation that allows us
to collapse a conjunction of two words into a common hypernym (i.e., superclass).

In practice, this involves using Pattern5 to try and find a lexical field to which
both words pertain. For example, the words “chicken” and “goose” both belong to
the lexical field of “poultry”. Similarly, “cars” and “trucks” have common hypernym
“motor-vehicles”.

3.2.4 Case And Proper Nouns

We want to ensure that all occurrences of a word are treated as the same token. Since
SumASG will be generating new sentences from scratch, the simplest solution is to
convert the entire story to lower-case, apart from proper nouns.

5Pattern is a module that is able to perform POS tagging, verb conjugation and noun singu-
larisation, among others: https://www.clips.uantwerpen.be/pages/pattern-en

18

https://www.clips.uantwerpen.be/pages/pattern-en

Chapter 3: Preprocessor Section 3.2: Tokenization And Simplification

In the case of complex proper nouns (i.e., those constructed from multiple words),
we should remove inner spaces so that we end up with a camel-case string. For
instance, the sequence “Peter Little” will become “PeterLittle”. We also do this
with complex common nouns, for example transforming “bird house” into “bird-
house”.

Pronoun Substitution

Sometimes, an author will introduce a character or group by name, and later refer
to them using a pronoun.

If a story contains exactly one distinct singular proper noun and then uses either
“he” or “she”, then it is safe to assume that this pronoun refers the aforementioned
proper noun. The same can be said about plural proper nouns and the pronoun
“they”. To clarify this, an example is shown in Figure 3.3.

Antonio is a cheesemaker. He makes burrata. Italians eat pasta. They
make it with egg sometimes.

(a) Before transformation

Antonio is a cheesemaker. Antonio makes burrata. Italians eat pasta.
Italians make it with egg sometimes.

(b) After transformation

Figure 3.3: Example of substituting pronouns with proper nouns

3.3 Sentence Pruning And Homogenisation

Once the sentence structure of the story has been simplified, one of the main roles
of the Preprocessor is to remove irrelevant semantic complexity from the story.

In order to understand what is relevant in a story and what is not, the Prepro-
cessor looks at the semantic similarity between words with the same POS tag (or
a related one, i.e. singular noun and plural noun, or verbs with a different tense).

3.3.1 Word Similarity

It iterates over each sentence, and compares each word with every word from other
sentences which have the same or a related POS tag. For each comparison, word
similarity is computed using ConceptNet6.

Having such nesting of loops is quite expensive, which is why we keep a cache
of previously requested similarities, and use the fact that this similarity relation is
symmetric.

6ConceptNet is a semantic knowledge network, providing information about the relations be-
tween different words: http://www.conceptnet.io

19

http://www.conceptnet.io

Chapter 3: Preprocessor Section 3.3: Sentence Pruning And Homogenisation

3.3.2 Sentence Similarity And Pruning

Once we have computed the similarity between words of different sentences, we
add these up on a per-sentence basis, which gives us a binary relation of similarity
between sentences.

We now have enough information to generate a text relationship map (see Sub-
section 8.2.2) over the sentences. The idea is that the more “linked” a sentence is,
the more relevant it is to the story. For each sentence, we therefore take the sum
of the values of all its similarity relations with other sentences. The higher this
number, the more relevant, or important, the sentence is to the story.

Pruning

In the interest of removing irrelevant sentences to help SumASG (see Figure 3.6),
we compute the 25th percentile over the importances of all the sentences (i.e., the
value below which 25% of all importances fall). We then prune sentences whose
importance is strictly less than this value.

In most cases, one quarter of the story will be pruned. However, if every sentence
has the same importance, then nothing gets removed. On the other hand, if two
thirds of the story are very important and the rest is irrelevant, then we remove
more than a quarter of the sentences.

3.3.3 Synonyms And Homogenisation

Another use for word similarity is to find out if the author of the story has used any
synonyms. When the similarity between two words is above a certain threshold,
then we consider them to be synonyms.

For every set of synonyms we find in the text, we choose a unique representative
for the set, and replace occurrences of the other words in that set with our repre-
sentative. For simplicity, we choose the representative as the shortest word in its
synonym set.

This is what we call story homogenisation, and it helps SumASG link words
that would otherwise be considered completely different tokens in the story.

3.4 Example

To illustrate how all of the steps in the Preprocessor come together to produce
a text that will be easy to parse by SumASG, we use our running example of the
story of Peter Little, which we have repeated below in Figure 3.4.

There was a curious little boy named Peter Little. He was interested
in stars and planets. So he was serious in school and always did his
homework. When he was older, he studied mathematics and quantum
physics. He studied hard for his exams and became an astrophysicist.
Now he is famous.

Figure 3.4: Story of Peter Little

20

Chapter 3: Preprocessor Section 3.4: Example

The first half of the Preprocessor’s job is to tokenize the story of Peter Little and
then apply all possible simplification transformations, the result of which is outlined
in Figure 3.5.

a© Adverbs: move “always” and “Now” to the end of the sentence

b© Determiners: “an” → “a”

c© Possessive pronouns: “his”

d© Prepositions: “So”

e© Conjunctive clauses: “serious in school” ‖ “did homework always”

f© Dependant clauses: “When he was older”

g© Complex clauses: “was a curious little boy” ‖ “named Peter Little”

h© Hypernym substitution: “stars and planets” → “astronomy”

i© Case: make all words but proper nouns lower case

j© Complex nouns: “Peter Little” → “PeterLittle”

k© Complex nouns: “quantum physics” → “quantum-physics”

l© Pronoun substitution: “he” → “PeterLittle”

(a) Transformations applied (where ‖ means splitting into multiple sentences)

0. there was a curious little boy.
1. g© the curious little boy was named j© PeterLittle.
2. l© PeterLittle was interested in h© astronomy.
3. d© PeterLittle was serious in school.
4. e© PeterLittle did c© homework a© always.
5. f© PeterLittle studied mathematics and k© quantum-physics.
6. PeterLittle studied for c© exams hard.
7. PeterLittle became b© a astrophysicist.
8. PeterLittle is famous a© now.

(b) Sentences after applying transformations

Figure 3.5: Example of applying simplification to the story of Peter Little

Using the simplified form of the story from Figure 3.5, the Preprocessor now
applies sentence pruning and finally homogenisation, giving a fully-preprocessed
story as can be seen in Figure 3.6. In the text relationship maps of Figure 3.6a, the
weight between two nodes denotes similarity, and we consider words to be synonyms
whenever their similarity is at least 20. Furthermore, the labels of these nodes
(starting from 0) for sentence similarity correspond to indices of simplified sentences
from Figure 3.5.

In this particular case, sentences 5 and 6 are deemed irrelevant and will be
pruned, while sentences 0, 1 and 2 are identified as being very important.

Moreover, {“homework”, “school”} and {“interested”, “curious”} are considered
synonym sets, and applying homogenisation causes occurrences of these words to be
replaced with their shortest synonym (which may be itself).

21

Chapter 3: Preprocessor Section 3.4: Example

(i) Word similarity (ii) Sentence similarity

(a) Text relationship maps

Sentence 0 1 2 3 7 8 4 5 6

Importance 40.7 24.4 18.8 14.8 12.5 11.3 6 0 0

(b) Sentences ordered by importance

there was a curious little boy. the curious little boy was named Peter-
Little. PeterLittle was curious in astronomy. PeterLittle was serious in
school. PeterLittle did school always. PeterLittle became a astrophysi-
cist. PeterLittle is famous now.

(c) Homogenised story and output of the Preprocessor

Figure 3.6: Example of applying sentence pruning and homogenisation to the sim-
plified story of Peter Little

22

Chapter 4 ASG

In this chapter we present the core module of our pipeline: SumASG. After giving
an overview of the module (Section 4.1), we introduce a general grammar which
we have created specifically for the purpose of representing English sentences in
ASG (Section 4.2). We then go further into the details of SumASG’s two-part
implementation (Sections 4.3 and 4.4), and finish by showing the results of running
SumASG on a pre-processed story (Section 4.5).

4.1 Overview

Our use of ASG is two-fold. Firstly, we pass in each sentence from the story to
ASG to obtain its semantic representation in ASP. Secondly, we take these actions
and use ASG rules to generate possible summary components. These will later be
post-processed and turned into actual valid summaries. A diagram of the two ASG
steps is shown below in Figure 4.1.

Sentence 1

Sentence 2

...

Sentence n

Learn Action

Learn Action

...

Learn Action

Generate Summaries

Summary Sentence 1

Summary Sentence 2

...

Summary Sentence m

Figure 4.1: ASG steps

4.2 Internal Representation

In order to model the structure of sentences in English, we have created a CFG
that has a similar hierarchy to that of a constituency parse tree. The ASG code for
this general structure can be seen in Appendix C. Throughout this description of
SumASG, please refer to Chapter 2 for information on how to interpret an ASG
program. Also, a table listing the possible POS tags is available in Appendix A.

4.2.1 Leaf Nodes

At the bottom end of the CFG, there are leaf nodes that correspond to individual
English words. These nodes get added based on the context, that is to say the words
appearing in our story.

23

Chapter 4: ASG Section 4.2: Internal Representation

Each of these nodes has on the left-hand side (LHS) of the production rule its
POS tag, and on the right-hand side (RHS) a string containing the word itself.
In order to conform to the syntax of ASG, we must write the POS tags in lower-
case. Also, we include a space at the end of each word’s textual representation so
that when we run our program the words appear distinct and not all concatenated
together.

In ASG every production rule also has a set of ASP rules, which in the case of
leaf nodes is just a single rule telling us the word’s lemma and sentence role. In the
case of verbs, the lemma is simply the base form of the verb, so we also need to keep
track of its tense.

For example, leaf nodes for the sentence “they drove a race-car fast.” would look
like this:

1 prp −> ‘‘they ” { noun(they). }
2 vbd −> ‘‘drove ” { verb(drive,past). }
3 dt −> ‘‘a ” { det(a). }
4 nn −> ‘‘race−car ” { noun(race car). }
5 rb −> ‘‘fast ” { adj or adv(fast). }

As part of the input to SumASG, we receive some leaf nodes corresponding to
words in the story, where the lemmas and roles have been assigned by the Prepro-
cessor.

In Figure 4.2, you can see which POS tags fall under which roles, keeping in mind
that this categorisation is only an optimisation and was not intended to strictly
adhere to English grammar.

Role POS tags

verb(lemma,tense) VB, VBD, VBG, VBN, VBP, VBZ
noun(lemma) EX, NN, NNS, NNP, NNPS, PRP
det(lemma) CD, DT, IN
adj or adv(lemma) JJ, JJR, JJS, RB, RP

(a) POS tags by role

POS tag VB VBD VBG VBN VBP VBZ

Verb tense base past gerund past part present present third

(b) Verb tense by POS tag

Figure 4.2: Predicates used for the leaf nodes in the internal representation

4.2.2 Non-Leaf Nodes

The job of the non-leaf nodes is to join leaf nodes together, matching the way we
would join words in English to form a sentence.

In our general grammar, sentences (s -> np vp) are made up a noun part (np)
followed by a verb part (vp). While a noun part can be made up of leaf nodes, a
verb part is always a verb followed by a noun part.

24

Chapter 4: ASG Section 4.2: Internal Representation

Noun Parts

In the production rule for a noun part, we use logic rules whose role it is to encap-
sulate a sentence subject and/or an object. This is done in a bottom-up manner, by
using information from the child node(s) to populate a predicate at the noun part
level.

The reason why we differentiate between these two forms is because some noun
parts in English are only used as subjects (e.g., existential “there”), while others
can only be objects (e.g., the adjective “green”), and we want to keep the search
space as small as possible (see Subsection 4.3.3).

The resulting predicates have respective forms subject(noun,det,adj or adv)

and object(noun,det,adj or adv). For all these predicates, we use the ground
term 0 to denote the absence of a token.

For instance, we can capture the noun phrase “a race-car” using the following
production rule:

1 np −> dt nn {
2 subject(N,D,0) :− det(D)@1, noun(N)@2.
3 object(N,D,0) :− det(D)@1, noun(N)@2.
4 }

To handle the case of more complex noun phrases, we have created a special predicate
conjunct(first,second), allowing us to join two words with the same role. We
also need to add constraints that rule out cases where the two conjuncts have the
same lemma.

For example, the noun phrase “bread and cheese” would be encompassed by the
below production rule:

1 np −> nn ‘‘and ” nn {
2 subject(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
3 object(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
4 :− subject(conjunct(N,N),0,0).
5 :− object(conjunct(N,N),0,0).
6 }

Verb Parts

The last child node of a verb part is always a single noun part. Before that comes
a verb, whose POS tag may represent any of the forms used in English as seen in
Figure 4.2. In each of these cases, the node inherits the verb(lemma,tense) and
object(noun,det,adj or adv) from its children.

For instance, the verb phrase “drank tea” can be captured with the following
production rule:

1 vp −> vbd np {
2 verb(N,T) :− verb(N,T)@1.
3 object(N,D,A) :− object(N,D,A)@2.
4 }

25

Chapter 4: ASG Section 4.2: Internal Representation

In order to handle continuous tenses, we introduce the predicate comp(first,second).
Without changing the arity of our predicate verb(lemma,tense), we can use this
to combine two verb lemmas, as well as two verb tenses.

For example, the production rule that handles the verb phrase “are eating apples”
is the following:

1 vp −> vbp vbg np {
2 verb(comp(N1,N2),comp(T1,gerund)) :− verb(N1,T1)@1, verb(N2,

↪→ gerund)@2.
3 object(N,D,A) :− object(N,D,A)@3.
4 }

Sentences

In order to join sentences (s -> np vp) together we use what is called an s group.
Defined recursively, these can either be empty or contain another s group followed
by a sentence (s) and a full-stop:

1 s group −> { count(0). }
2 s group −> s group s ‘‘. ” { count(X+1) :− count(X)@1. }

In the way we currently use this general grammar, only a single sentence is allowed
per parse tree for efficiency reasons. However, if we we were to increase this limit
for another application, it could easily be done by changing the first constraint at
the root node (line 2 in the code below):

1 start −> s group {
2 :− count(X)@1, X > 1.
3 :− count(X)@1, X = 0.
4 }

4.3 Learning Actions

We first convert the pre-processed story’s sentences from English into our inter-
nal ASG structure. In other words, we learn about the actions described by the
sentences in our story, which can be thought of as high-level semantic descriptors.

4.3.1 Formalisation

We formalise the task of learning an action as SumASG1(CFG,BK,E). Given our
general grammar (CFG), a set of context-specific leaf nodes (BK), and a grammar-
conforming sentence (E), its goal is to return the action corresponding to this sen-
tence, which should have the format action(verb,subject,object).

However this is not a learning task in the true sense, as we are only interested
in generating ground facts. It is more of an abduction task, whereby we only learn
heads of production rules. In our case, we use this as a mechanism to translate from
English into our internal representation.

26

Chapter 4: ASG Section 4.3: Learning Actions

4.3.2 Implementation

In practice, this translation involves taking our general grammar and, on a per-
sentence basis (see Subsection 4.3.3), appending to it the sentence’s context-specific
leaf nodes (given to us by the Preprocessor), a positive example (containing the
sentence itself), as well as a mode bias for learning actions.

Positive Example

To give a positive example to SumASG1, we must provide the sentence as a list of
tokens. For instance, we would use the following positive example for the sentence
“they drove a race-car fast.”:

+ [‘‘they ”, ‘‘drove ”, ‘‘a ”, ‘‘race−car ”, ‘‘fast ”, ‘‘. ”]

In order to ensure that this positive example contributes to learning a corresponding
action, we also need to add a constraint to the production rule for sentences (s ->

np vp). Intuitively, the rule shown in line 2 below says that if we have a sentence
(i.e., our positive example) which consists of a given verb, subject and object, then
we need to learn the matching action.

1 s −> np vp {
2 :− not action(verb(V N,V T),subject(S N,S D,S A),object(O N,O D

↪→ ,O A)), verb(V N,V T)@2, subject(S N,S D,S A)@1, object(
↪→ O N,O D,O A)@2.

3 ...
4 }

Mode Bias

In order to guide the learning task, we must also specify a mode bias as part of the
program for SumASG1, which essentially tells ASG the format of the rules which
can be learned.

Since we are only interested in learning facts (rules with an empty body), it is
enough to provide mode bias rules of the following form (where [4] restricts the
learning task to the fourth production rule):

#modeh(action(verb(,), subject(, ,), object(, ,)):[4].

For the most basic of sentences (ones where there is no need to use any conjunct

or comp predicates), we use this specific rule:

#modeh(action(verb(const(main verb),const(main form)), subject(
↪→ const(noun),const(det),const(adj or adv)), object(const(noun),
↪→ const(det),const(adj or adv)))):[4].

Such rules require defining ILASP constants corresponding to possible tokens. To
this end, we do so for each word in the simplified text. For the sentence “they drove
a race-car fast.”, these would look like this:

27

Chapter 4: ASG Section 4.3: Learning Actions

1 #constant(noun,they).
2 #constant(main verb,drive).
3 #constant(main form,past).
4 #constant(det,a).
5 #constant(noun,race car).
6 #constant(adj or adv,fast).

After running the full learning task on this example, the ASG engine returns a
new program where the following action has been added to the production rule for
sentences (s -> np vp):

action(verb(drive, past), subject(they, 0, 0), object(race car, a, fast)).

After doing this for each sentence in the pre-processed story, we end up with at most
as many actions as there are sentences in this text (those which do not conform to
our general grammar are ignored).

4.3.3 Search Space Reduction

The set of rules that a task in ILASP is able to learn, as defined by the mode bias, is
called the search space. The more complex the structure of the rules we can learn,
the more of these the engine can generate, and so the larger the search space. The
more leaf nodes we add, the more combinations of lemmas we can create, thereby
exponentially growing the search space. Since ASG tries to run the program with
every single rule in the search space, we need to keep this as small as possible.

Learning Actions Individually

With this in mind, it is preferable to feed in each sentence separately to SumASG1.
Although it might seem easier at first to learn them all in one go, doing so individ-
ually limits the number of leaf nodes we need to add to the program.

Using this optimisation, learning the actions from the simplified and homogenized
story of Peter Little takes just a few minutes, rather than many hours.

Cutting Out Rules

We have also created a number of mode bias rules which eliminate impossible or
extremely improbable sentences. With this optimisation, we have been able to take
the search space size for a simple sentence down from 396 to 16, and from 9477 to
1044 for a more complicated one (i.e., one with more leaf nodes).

For example, the following rule says that we cannot have an action where the
object of sentence is a conjunction of two words which both have the same lemma.

#bias(”:− head(holds at node(action(verb(,),subject(, ,),object(
↪→ conjunct(V,V), ,)),var (1))).”).

28

Chapter 4: ASG Section 4.3: Learning Actions

Additionally, a number of extraneous rules can appear in the search space when we
allow for continuous verbs. Continuous verbs are made up of a main verb and an
auxiliary verb. What can happen is that the search space contains rules where the
main verb is never used as such in English (normally always the verb “to be”).

To get around this issue, we enforce that all potential main verbs already appear
in this form in the input story sentence; the same can be said regarding auxiliary
verbs. Practically, this means adding constants to the program for each main verb
and auxiliary verb appearing in the input.

For instance, the phrase “are eating” would require the following constants :

1 #constant(main verb,be).
2 #constant(aux verb,eat).
3 #constant(main form,present).
4 #constant(aux form,gerund).

Without the optimisation, we would end up with a search space size of 176 for the
sentence “they are eating apples”. We are able to reduce this number to 20 thanks
to a mode bias that enforces learned continuous verbs to be exactly as they appear
in the simplified and homogenized story:

#modeh(action(verb(comp(const(main verb),const(aux verb)),comp(
↪→ const(main form),const(aux form))), subject(const(noun),const(
↪→ det),const(adj or adv)), object(const(noun),const(det),const(
↪→ adj or adv)))):[4].

Another way to solve this would have been to add a mode bias constraint ruling
out cases where both verbs in a continuous form are the same. However, we would
usually end up with a search space at least as large, since any verb could appear in
continuous form. Also, we would have to handle the edge case where both verbs are
“to be”, as “is being” is a perfectly acceptable phrase in English.

4.4 Generating Summary Sentences

The second part of SumASG deals with generating summary sentences using the
actions that were learned from the story in the previous step.

4.4.1 Formalisation

We formalise the task of generating a summary sentence as SumASG2(CFG,BK,E).
Given our general grammar (CFG), a set of context-specific leaf nodes for the origi-
nal story (BK), and a set of learned actions, (E), its goal is to return a set of English
sentences which may be used to summarize the text.

4.4.2 Implementation

In practice, this task involves gathering all of the story-specific leaf nodes and learned
actions from SumASG1, adding these to our general grammar, and then using a
set of summary generation rules to create summary sentences.

29

Chapter 4: ASG Section 4.4: Generating Summary Sentences

Learned Actions

In order to keep the story’s chronological ordering, we assign indices to the learned
actions, inserting this information directly into the action predicates as an addi-
tional first argument.

We then put all of these augmented actions as rules inside the production rule
for sentences (s -> np vp) in our general grammar.

Summary Generation Rules And Constraints

A summary sentence should have the same structure as a sentence from the story,
so we can define the predicate summary in the same way as we did for actions.

Moreover, we create rules whose head is a summary predicate, and whose body
contains one or more action predicates. We also assign an identifier to each of these
rules, in order to keep track of which one has been used.

In the base case, a summary sentence is simply a word-for-word copy of an action,
in which case we do not care about its position in the story:

summary(0, V, S, O) :− action(, V, S, O).

We also have more complex rules, allowing us to combine information from multiple
actions into a single summary sentence. In the case where we have two actions that
share a common subject and verb, we define a rule that combines these into a single
summary sentence, preserving the order in which these objects appear originally:

summary(7, V, S, object(conjunct(N1,N2),D,0)) :− action(I1, V, S,
↪→ object(N1,D,)), action(I2, V, S, object(N2,D,)), N1 != N2, N1
↪→ != 0, N2 != 0, I1 < I2.

After having defined a suite of such summarization rules, we now need to apply them
using our general grammar. To this end, we add to the production rule for sentences
(s -> np vp) a choice rule, enforcing with the predicate output that the program
must output every derivable summary sentence exactly once. Using constraints, we
say that for each output (summary sentence), the child nodes of a sentence (s) must
contain the verb, subject and object corresponding to the given ouput:

1 0{output(I,V,S,O)}1 :− summary(I,V,S,O).
2 :− not output(, , ,).
3

4 :− output(,verb(V N,V T),subject(S N,S D,S A),object(O N,O D,
↪→ O A)), not verb(V N,V T)@2.

5 :− output(,verb(V N,V T),subject(S N,S D,S A),object(O N,O D,
↪→ O A)), not subject(S N,S D,S A)@1.

6 :− output(,verb(V N,V T),subject(S N,S D,S A),object(O N,O D,
↪→ O A)), not object(O N,O D,O A)@2.

Once we have augmented the production rule for sentences in our general grammar
(s -> np vp) with the learned actions and our set of summary generation rules
and constraints, we use to ASG engine to output all strings conforming to this
augmented grammar. These strings correspond exactly to the possible summary
sentences as written in English, which is what we use as the output for SumASG2.

30

Chapter 4: ASG Section 4.5: Example

4.5 Example

Now that we have discussed how SumASG works, we can show the results of running
it on the pre-processed story of Peter Little. Figure 4.3 shows the respective outputs
of SumASG1 and SumASG2, as well as a breakdown of the runtime.

After passing in each sentence individually to SumASG1, we end up with a
list of actions, which is essentially the original story translated into our internal
representation.

From these actions we apply SumASG2, generating all possible summary sen-
tences which are then used to summarize Peter Little’s story.

1 action(0, verb(be, past), subject(there, 0, 0), object(boy, a, conjunct(
↪→ curious, little))).

2 action(1, verb(comp(be, name), comp(past, past part)), subject(boy,
↪→ the, conjunct(curious, little)), object(peterlittle, 0, 0)).

3 action(2, verb(be, past), subject(peterlittle, 0, 0), object(astronomy, in
↪→ , curious)).

4 action(3, verb(be, past), subject(peterlittle, 0, 0), object(school, in,
↪→ serious)).

5 action(4, verb(do, past), subject(peterlittle, 0, 0), object(school, 0,
↪→ always)).

6 action(5, verb(be, present third), subject(peterlittle, 0, 0), object(0, 0,
↪→ conjunct(famous, now))).

(a) Results from SumASG1

0© PeterLittle was serious in school .
0© PeterLittle was curious in astronomy .
4© PeterLittle was curious and serious .
0© PeterLittle did school always .
0© there was a curious little boy .
0© the curious little boy was named PeterLittle .
0© PeterLittle is famous now .

(b) Results from SumASG2 (where the numbers indicate a summary generation rule)

Action 0 1 2 3 4 5

Running time (s) 18 32 9 9 7 9

(i) SumASG1

Running time (s) 20

(ii) SumASG2

(c) Runtime for each step

Figure 4.3: Example of running SumASG for the story of Peter Little

31

Chapter 5 Post-Processing / Scoring

We present in this chapter the final part of our pipeline, which involves taking the
output of SumASG to create summaries (Section 5.2), assigning to each one a score
(Section 5.3), and then picking out the best ones (Section 5.4). We then illustrate
these steps using the example of the story of Peter Little (Section 5.5).

5.1 Overview

Once we have obtained potential sentences from ASG to be used in a summary, we
now post-process these as explained in Section 5.2. By combining them in different
ways, we are able to form summaries. From these, we will retain the highest scoring
ones, according to the metric detailed in Section 5.3. A diagram illustrating these
steps is shown below in Figure 5.1.

Summary Sentence 1

Summary Sentence 2

...

Summary Sentence n

Post-Process

Post-Process

...

Post-Process

Combine

Summary 1

Summary 2

...

Summary m

Score

Score

...

Score

Figure 5.1: Post-processing and scoring steps

5.2 Summary Creation

The output of SumASG is a list of sentences, each of which could potentially appear
in the final summary. However before we start concatenating them together to form
summaries, we should first post-process them to undo some of the simplifications
made by the Preprocessor and ensure that they are grammatically correct.

5.2.1 Post-Processing

Because SumASG uses the same capitalisation for a given word regardless of its
position in the sentence, it means that the first word of each sentence will not be
capitalised unless it is a proper noun. We therefore need to fix this, as well as remove
the space before each full stop.

Compound nouns, whose hyphen was replaced with an underscore for the internal
representation of SumASG, also need to be restored to their grammatically correct
form.

32

Chapter 5: Post-Processing / Scoring Section 5.2: Summary Creation

In addition, the task of summarization might have created a sentence where an
incorrect verb form is used, or possibly the wrong determiner. To amend this we
use a tool called language-check7, which is able to correct phrases like “they has
an dog” to “they have a dog”.

Moreover, one of the optimisations done by the Preprocessor was to combine
complex nouns such as “Peter Little” into their camel-case form “PeterLittle”, so
that they would be recognized as a single token by SumASG. We now need to
expand them back to their original form, which is how they should appear in English.

5.2.2 Combining

Depending on the length of the original story, we envision a different number of
sentences to be in the summary, as shown below in Table 5.1.

Story length 1-2 3-4 5+

Summary length 1 2 3

Table 5.1: Length of a summary depending on the number of sentences in the story

Once we have grammatically-correct summary sentences and know how many should
be kept for the summary (say n), we generate all possible order-preserving combina-
tions of length n. For instance, such combinations of length 3 for the list [0, 1, 2, 3]
would be the following: [0, 1, 2], [0, 2, 3] and [1, 2, 3].

5.3 Scoring

Because we often end up with a large number of combinations at this phase, we
need to determine which of these are preferred.

5.3.1 Type-Token Ratio

To this end, we utilize an NLP metric called type-token ratio (TTR), a measure of
lexical density. To provide the most informative summaries possible, we want to
maximize the density of unique words.

To calculate a summary’s TTR, we divide the number of unique words in the
summary by the total number of words. We then divide this by number of unique
words in the story and multiply it by a constant, in order to get a more consistent
range for our scores.

Ignored Words

However, we do not want to neglect summaries using the same determiner, proper
noun, or the verb “to be” multiple times, as these are extremely common in English.

7language-check is Python package that is able to find grammatical errors: https://pypi.org/
project/language-check/

33

https://pypi.org/project/language-check/
https://pypi.org/project/language-check/

Chapter 5: Post-Processing / Scoring Section 5.3: Scoring

In addition, a story might revolve around a given topic, which could be a per-
son. Regarding the former, it could also be the case that the Preprocessor had
replaced different synonyms of this topic with a unique word.

To get around this, what we do is to exclude such words from the summary
length and number of unique summary words. This way, we no longer require that
these “common” words be unique in a summary. In the following, we will call the
enhanced mechanism TTR*.

In Figure 5.2 is an example which illustrates this metric. The summary with
the highest final score is considered to be the best. Moreover, there is a greater
difference between the summaries when using TTR*, which takes into account the
commonly-used building blocks of the English language.

Jonathan was a little boy. He was hungry. Jonathan was eating an apple.

(a) Story

A. Jonathan was a hungry boy. Jonathan was eating an apple.
B. Jonathan was a little boy. Jonathan was a hungry boy.

(b) Possible summaries (underlined words will be ignored by TTR*)

Words Unique words TTR Words* Unique words* TTR* Score

A 10 8 0.8 4 4 1 38
B 10 6 0.6 4 3 0.75 28

(c) Steps for computing the score for each generated summary

Figure 5.2: Score computation (column headers ending with * pertain to TTR*)

5.4 Summary Selection

Now that we have assigned a score to each generated summary, we should priori-
tise those which start with an introduction of the main character, and also get rid
of suboptimal summaries. In addition, we should have a way to ensure that the
summaries our framework prefers are indeed good-quality.

5.4.1 Proper Nouns

If a story revolves around a given person and the summary mentions their name, it
is preferable for this to be in the first sentence. To put this more clearly, we would
like the summary of a biography to introduce the protagonist from the very first
sentence. To achieve this, we simply increase the score of every summary starting
with a proper noun by a constant.

5.4.2 Top Summaries

With a more complex story (5 or more sentences), it is highly likely that we will
end up with a very long list of possible summaries. As there could be a number of

34

Chapter 5: Post-Processing / Scoring Section 5.4: Summary Selection

very interesting summaries, we do not want to have to choose exactly one.
Instead, we compute the 75th percentile over the scores of all generated sum-

maries (giving us the value below which 75% of all scores fall), and then discard all
those whose score falls below. We shall call the remaining summaries top summaries.

5.4.3 Reference Summaries

Finally, we want to be sure that our framework generates good summaries, and that
the scoring works as intended. Therefore, if a story has a reference summary, then
we should make sure that there exists a similar top summary.

If there exists a top summary whose BLEU score with one of the references is
above a certain threshold, then we consider the summarization to be successful.

5.5 Example

To illustrate how this works for the story of Peter Little, we have outlined the steps
of post-processing and scoring in Figure 5.5. We have also repeated the reference
summaries for this story in Figure 5.3, and the output of SumASG in Figure 5.4.

A. Peter Little was interested in space so he studied hard and became
a famous astrophysicist.
B. Peter Little was curious about astronomy. He was always serious in
school, and now he is famous.

Figure 5.3: Reference summaries for the story of Peter Little

PeterLittle was serious in school .
PeterLittle was curious in astronomy .
PeterLittle was curious and serious .
PeterLittle did school always .
there was a curious little boy .
the curious little boy was named PeterLittle .
PeterLittle is famous now .

Figure 5.4: Summary sentences as generated by SumASG

The first step, post-processing, involves fixing the grammar in the summary sen-
tences generated by SumASG, which in this case simply means capitalising them
and removing the space before the full stop. We also need to restore the proper
noun “PeterLittle” to “Peter Little”. After combining, we end up with 35 possible
summaries.

The next step is scoring, where we augment the default set of ignored words with
the case-insensitive topics set {”peter”, ”little”} for TTR*. This gives us scores in
the range [10, 17], twenty of which fall below the 75th percentile (15.0) and never
become top summaries.

Finally, we compare these top summaries to our reference summaries for Peter
Little. One of them achieves a BLEU score of at least 0.65, confirming they are
close enough to reference summary B.

35

Chapter 5: Post-Processing / Scoring Section 5.5: Example

Peter Little is famous now.
The curious little boy was named Peter Little.
There was a curious little boy.
Peter Little did school always.
Peter Little was curious and serious.
Peter Little was curious in astronomy.
Peter Little was serious in school.

(a) Post-processed summary sentences

1. Peter Little is famous now. Peter Little did school always. Peter
Little was curious in astronomy.
2. Peter Little is famous now. There was a curious little boy. Peter
Little did school always.
3. Peter Little is famous now. The curious little boy was named Peter
Little. Peter Little did school always.
4. Peter Little is famous now. Peter Little did school always. Peter
Little was curious and serious.
...

(b) Top summaries

Summary 1 2 3 4

Reference A 0.4 0.38 0.32 0.38
Reference B 0.66 0.58 0.49 0.63

(c) BLEU scores for reference summaries (summary indices as shown in Figure 5.5b)

Figure 5.5: Example of post-processing then scoring for the story of Peter Little

36

Chapter 6 Possible Improvements

Had there been more time to finalise the project, there are a number of possible
improvements we could have implemented. In what follows, we discuss immediate
next steps which could be taken to improve each part of the pipeline.

6.1 Preprocessor

In its current state, SumASG expects positive sentences only, and the only form of
punctuation recognized is the full stop.

6.1.1 Negation

In order to support negation, we would need to modify the structure of SumASG’s
internal representation (see Chapter 4). However, to achieve a better semantic
understanding in SumASG*, we could add some more simplification logic to the
Preprocessor.

After having implemented this, the phrase “not happy” would be transformed
into the word “sad”.

6.1.2 Lists

At the moment, SumASG can parse a list of length 2 at the most, i.e. a conjunc-
tion of two items. By adding a transformation to the Preprocessor before we
modify the punctuation (see Subsection 3.2.1), we could overcome this limitation.
Intuitively, this would mean going from a sentence with a an n-item list, to bn

2
c

sentences with two objects and one sentence with a single object (if n is odd).
For instance, the sentence “Bob had a book, a computer and a chair.” would be

split into “Bob had a book and a computer. Bob had a chair.”.

6.2 ASG

Throughout the development of SumASG, it was a constant struggle to try and find
the right balance between expressibility, summary pertinence and computational
efficiency.

6.2.1 Missing English Structures

Although our general grammar allows for a wide range in terms of the words that can
be used to form a sentence, to no extent does it cover even a tenth of the sentences
that are used in formal or informal English. Even if we were to consider only
sentences consisting of exactly one clause, SumASG is incapable of understanding
most non-general structures commonly used in English.

37

Chapter 6: Possible Improvements Section 6.2: ASG

By greatly simplifying the input story using the Preprocessor, we were able
to alleviate a large part of this struggle. However if we were to use our general
grammar for a task other than summarization, we would most likely run into issues
due to loss of information.

6.2.2 Learning Summarization Rules

In its current implementation, SumASG2 only uses 12 summary generation rules,
one of which simply repeats the given action. While this is largely sufficient to
demonstrate the potential of our approach, in no way can it be used as is in a
production text summarization tool.

In order to augment this suite of rules, it would be simple to define a mode
bias to learn summary generation rules. With just a single example of a story
and its corresponding summary, ASG could generate multiple such rules, allowing
us to build up a large collection of these. Unfortunately, this is infeasible due to
performance reasons.

6.2.3 Speed

Apart from readability, the main reason for trying to keep our general grammar’s
structure simple, and the number of summarization rules restricted, has to do with
computational cost.

The more complexity we allow in terms of expressible sentences, the more ex-
pensive it is to use our general grammar.

Similarly, the more summarization rules we create, the longer it takes to generate
summaries. On top of this, having more potential summary sentences means that
we end up with more summaries to score, many of which could be syntactically
different but semantically equivalent.

In order to increase complexity without a detrimental impact on performance,
we would need to either optimize ASG itself to run faster with our framework, or
use more powerful machines.

6.3 Post-Processing / Scoring

Although our approach to post-processing and scoring works well for the simple
stories we have been using, it remains limited in terms of scope.

6.3.1 Grammatical Shortcomings

First of all, we do not revert all the simplification changes made by the Prepro-
cessor. This can lead to a linguistically poor summary, where the same noun or
proper noun is repeated multiple times, rather than using synonyms or personal
pronouns.

Worse than this, we can end up with sentences that would never be written by a
human. Because the Preprocessor moves all adverbs to the end of the sentence in
which they appear, and is quite eager to homogenize synonyms, summaries generated
by SumASG* may end up “sounding wrong”.

38

Chapter 6: Possible Improvements Section 6.3: Post-Processing / Scoring

6.3.2 Better Summary Selection

Another issue is that we can easily end up with a very large list of summaries.
Because the mechanism used to score them is not very advanced, it cannot determine
for sure that one particular summary is better than all the others. Instead, we
usually end up with multiple entries that all have the same maximum score.

We would therefore need to build much more intelligence into this system if we
wanted the program to always return a single summary, one that is humans would
also consider optimal.

39

Chapter 7 Validation And Evaluation

In this chapter we present the validation and evaluation of our approach, which in-
volves comparing SumASG* to an encoder-decoder. After explaining the reasoning
behind this comparison (Section 7.1), we present the training data that are used for
validation (Section 7.2) and how our neural network performs on them (Section 7.3).
We then carry out two evaluation experiments (Section 7.4) and finish by giving an
overview of what we have learned (Section 7.5).

7.1 General Idea

As the vast majority of modern text summarization frameworks are based on Ma-
chine Learning, it makes sense to evaluate SumASG* against a neural network.
There exist a number of text summarization corpora, such as the CNN / Daily
Mail dataset8. However, we cannot use one of these datasets with SumASG* as
it is unfortunately not general enough to be able to parse such complicated text.

In order to validate our approach, we have built a generative model which cre-
ates stories that our system is capable of summarizing. Using SumASG*, we gen-
erate summaries corresponding to these stories, and use this as training data for an
encoder-decoder.

To evaluate our approach, we then use this generated dataset as a starting point
to check both the encoder-decoder and SumASG* for robustness to small pertur-
bations in the input, as well as their ability to detect invalid input.

7.2 Story Generation

To give a more generalized representation of what SumASG* can do, we shall
create two different types of stories: those with conjunctive summaries, and those
with descriptive summaries. In this section, we go more into depth about these two
types of randomly-generated stories, and discuss how they are created.

7.2.1 Datasets

In order to generate the required number of stories, we have used words from word-
frequency.info9. This dataset contains 5,000 individual English words, of which
1,001 are verbs, 2,542 nouns and 839 adjectives.

For each story we chose a noun from our dataset, which we shall refer to as the
topic. We will later construct sentences that revolve around this topic.

8The CNN / Daily Mail dataset consists of around 300,000 news articles and their corre-
sponding multi-sentence summaries; these have been used to train state-of-the-art text sum-
marization models, which were evaluated using metrics such as ROUGE and METEOR: http:
//nlpprogress.com/english/summarization.html

9wordfrequency.info hosts a dataset of the most commonly used words in English

40

http://nlpprogress.com/english/summarization.html
http://nlpprogress.com/english/summarization.html
wordfrequency.info

Chapter 7: Validation And Evaluation Section 7.2: Story Generation

In addition, we query from the Datamuse API10 for what we call a lexical verb,
i.e. one that is related to the story’s topic. If one cannot be found, then we default
to the verb “to be”.

7.2.2 Main Sentence Generation

We will begin by detailing how what we call main sentences are generated, starting
with a few necessary definitions. Throughout this section, it is important to keep
in mind that the goal here is to create a story that is as lexically and semantically
coherent as possible, which is tricky to do algorithmically. It is important to note
that all main sentences for the same story share a common subject and verb.

Definition 13 (Holonym). A holonym of something is one of its constituents; “light-
bulb” is a holonym of “lamp”.

Definition 14 (Meronym). A meronym is an object which something is part of;
“house” is a meronym of “kitchen”.

For the subject of a main sentence, we use the story’s topic. This being a singular
noun, we need to add a determiner, which can be “the” or “a”. We also ask the
Datamuse API to find us an adjective which is often modified by the chosen subject
noun, and is part of our dataset of words. If none are found, then we do not need
to use an adjective.

Here we use the lexical verb, conjugating it in the past tense using Pattern5 so
that it agrees with the sentence’s subject.

For the object of our sentence, we look at the story’s topic and lexical verb. Using
the Datamuse API we try and find a noun which often appears right after this
verb, and which is related to all of the nouns we have used thus far in the story.
With 50% probability we ask it to be a holonym of the topic, otherwise it should be
a meronym. In the same way as we did for the subject, we try and find an adjective
often modified by the chosen noun. Sometimes it will be the case that no noun was
found, but it is fine in English to have an adjective as the only word in the object.
The determiner is added as for the subject ; if there is no noun we do not use one.

Example

We take the example of generating a sentence for a story whose topic is “football”.
In this case, we have two choices for our lexical verb: “to match” and “to pitch”.

For the subject, we use the topic “football” with the determiner “a”; an adjective
commonly used to modify this word is “professional”. We then conjugate the verb
“to pitch” in the past tense, which becomes “pitched”. For the object, we take into
account our topic “football” to find a holonym of this word which often appears after
the verb “pitched”. In this case the Datamuse API returns the word “reception”,
resulting in the adjective “warm” being chosen to accompany it.

The resulting main sentence can be seen in Figure 7.1, along with a second main
sentence that has been generated for the same story.

10Datamuse is a lexical knowledge engine which can be used to find words that are semantically
related to a given word in a certain way: https://www.datamuse.com/api/

41

https://www.datamuse.com/api/

Chapter 7: Validation And Evaluation Section 7.2: Story Generation

A professional football pitched the warm reception.
A professional football pitched a place.

Figure 7.1: Main sentences generated for a story with topic “football” and lexical
verb “to pitch”

As has already been mentioned, generating a coherent and meaningful text is a very
difficult problem for computers. This explains why the main sentences shown in
Figure 7.1 do not make much sense from a human perspective. However, they are
both grammatically correct, as well as highly suitable for the task of summarization,
which is what we are looking for in this experiment.

7.2.3 Conjunctive Summaries

Stories with conjunctive summaries consist of three main sentences. Because of the
way in which we have implemented the summarization rules in SumASG, one of the
sentences in the corresponding summary should be a combination of two of the input
story’s sentences. That is to say, its object should consist of these two sentences’
objects, joined using the conjunction “and”. An example is shown in Figure 7.2.

The publication printed a lightning. The publication printed a move-
ment. The publication printed the stereotype.

(a) Story

The publication printed a lightning and a movement. The publication
printed the stereotype.

(b) Summary

Figure 7.2: Example of a story with a conjunctive summary

7.2.4 Descriptive Summaries

In contrast, stories with a descriptive summary consist of a single main sentence,
one which does contain an adjective in the object position.

We use the second of its two sentences to expand on the first. To be more precise,
the object of this sentence is the same as in the first, apart from the fact that we
assign an adjective as is done for typical main sentences. However the subject here
is the preposition “it”, while the verb is the verb “to be” conjugated in the past
tense.

The idea for a descriptive summary is that it will be identical to the first sentence
of its corresponding story, but augmented with the adjective coming from the second
sentence, as illustrated in Figure 7.3.

42

Chapter 7: Validation And Evaluation Section 7.2: Story Generation

The heavy traffic transported the birthday. It was the isolated birthday.

(a) Story

The heavy traffic transported the isolated birthday.

(b) Summary

Figure 7.3: Example of a story with a descriptive summary

7.2.5 Summary Generation

Using a Python script, we generate the corresponding actions as would SumASG1,
creating the necessary additional leaf nodes for our general grammar in ASG. We do
not use SumASG1 to do this mainly for performance reasons, but also because we
can consistently produce the same actions as SumASG1 programmatically with the
chosen sentence structure. Also, because of the way in which we have created our
stories, simplification in the Preprocessor would not change anything whatsoever.

To generate a summary for this experiment, we take a story and feed the corre-
sponding actions and leaf nodes directly into SumASG2, skipping the first half of
the SumASG* pipeline. After scoring, we pick an entry at random from the top
summaries.

7.3 Validation

Using the mechanism described in Section 7.2, we generate for our encoder-decoder
4,000 story/summary pairs: 3,582 to be used for training, 398 for validation and 20
for testing.

To allow for greater flexibility, we have chosen to use OpenNMT-py11 to train
our neural network. In addition, we preprocess the data using GloVe12, giving our
network a head start when it comes to semantics.

Our encoder and decoder share embeddings for a vocabulary of size 4,239, its
contents being internally represented using a vector of size 500. They both use a
two-layer LSTM with dropout of 0.25 and hidden size of 500. Additionally, our
decoder uses global attention.

The neural network was trained using an Adam optimizer with a learning rate of
0.001 and batch size of 25. In order to preserve the GloVe word embeddings across
training, we fix them at the start and use them in both the encoder and decoder.

Training was done over a period of 10,000 steps (i.e., 400 epochs), validating
every 20 epochs. Using Google Colaboratory13 this took a total of 5 minutes and
30 seconds. The final training and validation accuracies are respectively 99.83% and
92.07%, as shown in Table 7.1.

11OpenNMT-py is a highly versatile open-source framework for performing Neural Machine
Translation: https://github.com/OpenNMT/OpenNMT-py

12GloVe is a Machine Learning model consisting of pre-trained word embeddings: https://nlp.
stanford.edu/projects/glove/

13Google Colaboratory is an online tool for creating Python notebooks, providing free access to
GPUs: https://colab.research.google.com/

43

https://github.com/OpenNMT/OpenNMT-py
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://colab.research.google.com/

Chapter 7: Validation And Evaluation Section 7.3: Validation

Epochs 20 100 200 300 400

Training accuracy (%) 60.68 98.73 99.45 99.82 99.83
Validation accuracy (%) 61.54 90.24 91.38 91.38 92.07
Training perplexity 12.45 1.06 1.03 1.01 1.01
Validation perplexity 16.73 2.07 2.15 2.23 2.36
Test perplexity - - - - 2.05

Table 7.1: Evolution of accuracy and perplexity during training

Discussion

Unsurprisingly, our encoder-decoder was able to mostly learn this hard-coded sum-
marization task, as confirmed by the numbers in Table 7.1. This is because neural
networks have a much more general scope than SumASG*.

However, it appears that it was not able to fully learn the rules used by SumASG,
as the final validation and test perplexities are a little high (> 2).

Part of this discrepancy is due to the use of slightly different words in the pre-
dicted summaries. Upon further inspection, the words that differ have very close
meanings; this is because we have used pre-trained embeddings and fixed their rep-
resentation. It is not too problematic though, as it would be much worse to get a
semantically-unrelated word in one of our predicted summaries.

Another reason for this discrepancy is the fact that multiple conjunctive sum-
maries can be generated from the same story, depending on which words are chosen
to be put together.

An example of a predicted summary which highlights both of these discrepancies
is shown in Figure 7.4.

A new approach attacked the lesson. A new approach attacked the
counseling. A new approach attacked the league.

(a) Story

A new approach attacked the lesson and the counseling. A new approach
attacked the league.

(b) Expected summary

A new approach attacked the lesson and the league. A new approach
attacked the patient.

(c) Predicted summary

Figure 7.4: Example of a story whose predicted summary is different from the
expected summary, but with very close semantics: here, the order of the objects is
slightly different, and the word “counseling” has been replaced by “patient”

44

Chapter 7: Validation And Evaluation Section 7.4: Evaluation Experiments

7.4 Evaluation Experiments

In order to evaluate our approach and highlight some of the major differences be-
tween SumASG* and a neural network-based text summarization system, we carry
out two experiments in what follows.

7.4.1 Experiment 1: Robustness To Perturbations

For the first experiment, we take the test data from Section 7.3, which we know works
well with our encoder-decoder (see Table 7.1), and apply a few small perturbations
to the stories, while keeping them grammatically correct. With these changes, we
now run both text summarization systems to see how they perform.

To avoid giving SumASG* an advantage, let us choose a story whose predicted
summary is exactly the expected summary. Also, to prevent sentences in the modi-
fied stories from being pruned, we bypass the Preprocessor.

For perturbation A we move the subject ’s adjective to each object in the story,
while perturbation B involves exchanging the subject and object in the first sentence
of the story.

The results of applying these two perturbations are shown below in Figure 7.5.

The nervous system processed a fraud. The nervous system processed a
whale. The nervous system processed the American.

(a) Original story

A. The system processed a nervous fraud. The system processed a
nervous whale. The system processed the nervous American.
B. A fraud processed the nervous system. The nervous system processed
a whale. The nervous system processed the American.

(b) Story with perturbations A and B respectively applied (changes are underlined)

A. The system processed a banking and a killer. The system processed
the nervous.
B. A fraud processed the nervous and the American. A fraud processed
a whale.

(c) Summaries predicted by the trained encoder-decoder

A. The system processed a fraud and a whale. The system processed
the nervous American.
B. The nervous system processed the American. The nervous system
processed a whale.

(d) Summaries generated by SumASG* (without using the Preprocessor)

Figure 7.5: Results of experiment 1: summaries generated by SumASG* and the
encoder-decoder after separately applying two different perturbations

45

Chapter 7: Validation And Evaluation Section 7.4: Evaluation Experiments

Unsurprisingly, SumASG* is able to produce a grammatically-correct summary
with little loss of information and no change in meaning for both perturbations.

However, our neural network has created a conjunctive summary for perturbation
A that changes the first two objects to words with a slight semantic link, and makes
too much of a generalisation of the third sentence of the modified story by omitting
the object noun. For perturbation B, the summary is even more different from the
modified story: subjects and objects from different sentences have been put together,
conveying a completely different meaning. Of course, this is extremely tied to the
data we have used to train our encoder-decoder, so such results were expected.

From this experiment we conclude that SumASG* is more robust to small
changes in the input than a neural network (with respect to its training corpus),
as well as much more consistent when it comes to producing a summary that is
coherent with the original text.

7.4.2 Experiment 2: Input Validity Awareness

The goal of the second experiment is to highlight how both systems deal with invalid
input (i.e., stories that are not grammatically correct). To avoid giving SumASG*
too much of an advantage, we use only words from the vocabulary known by our
encoder-decoder, and create sequences of similar length compared to the training
data used in Section 7.3.

For invalid input A we take the original story from Figure 7.5 and make a few
small changes to render it grammatically incorrect, while for invalid input B we
create a story of length 3 from scratch using randomly selected words from the
vocabulary.

While SumASG* is able the recognise that these stories are not grammatically
correct, our encoder-decoder produces an output, as is shown in Figure 7.6.

A. The system processed processed a nervous fraud. processed The
system a nervous whale. a The system processed nervous American.
B. question hunger whole ruled cleared. needle front pound spun rented
programming. bought journalism disclosed broad check died delight.

(a) Invalid stories (changes in story A from the original story in Figure 7.5 are underlined;
story B is generated from arbitrary words in the encoder-decoder ’s vocabulary)

A. The system processed a nervous and a killer. The system processed
a pregnancy.
B. The

(b) Summaries predicted by the trained encoder-decoder

Figure 7.6: Results of experiment 2: summaries generated by the encoder-decoder on
invalid input stories (SumASG* recognises these as invalid, producing no output)

Since SumASG* is built around a grammar that models the structure of English
sentences, the fact that it recognises these stories as invalid is no surprise.

By looking at the neural network’s prediction for invalid story A, we see that
only one of the three nouns in the output summary appear in the story. Moreover,

46

Chapter 7: Validation And Evaluation Section 7.4: Evaluation Experiments

even if we were to correct story A, its meaning would have nothing in common with
the predicted summary.

In contrast, the prediction for invalid story B is not grammatically correct, and
its only word does not even appear in the story. Of course, such a result is expected
as this story is incredibly different from any of the training pairs, and does not make
any sense whatsoever.

From this experiment, we can conclude that a neural network trained for text
summarization cannot detect when the input is invalid, unless it has been specifically
trained to do so. However, SumASG* is by construction unable to summarize
grammatically-incorrect stories.

7.5 Takeaways

To sum up what we have learned from validating and then evaluating our approach,
we use a table to outline the main differences between SumASG* and using a neural
network, as shown in Table 7.2.

Neural network SumASG*

Rules Learnable using state-of-the-art
encoder-decoders

Written directly into
program

Training required Yes; can take a long time No
Examples required Vast amounts for training None
Expansion Need to retrain Can be used directly
Coherence of result
(Subsection 7.4.1)

Extremely tied to nature and
diversity of training corpus

Similar on all parsable texts

Output tokens Can be irrelevant or <unk> token Taken from input text
Termination
(Subsection 7.4.2)

Always produces output,
regardless of whether input is
valid English

Sometimes returns no
summaries

Table 7.2: Main differences between SumASG* and neural networks used for the
task of text summarization

47

Chapter 8 Related Work

In this chapter we introduce related work which will help in highlighting how our
framework fits into the larger field of automated text summarization systems. After
introducing a logic-based semantic analysis method (Section 8.1), we discuss a few
existing approaches to solve the task of text summarization (Section 8.2), and finish
by differentiating between three main categories of such systems (Section 8.3).

8.1 Semantic Analysis Methods

Semantic analysis methods have been widely used to provide machines with a way
of understanding the semantics of human language. In what follows, we present a
logic-based approach to semantic analysis.

8.1.1 Combinatory Categorial Grammar

In a paper from 2019 [21], the author introduces Combinatory Categorial Grammar
(CCG), an efficient parsing mechanism to get to the underlying semantics of a text
in any natural language. It is combinatory in the sense that it uses functional
expressions such as λp.p in order to express the semantics of words.

In CCG, every word, written in English in its phonological form, is assigned a
category. Furthermore, a category is comprised of the word’s syntactic type and
logical form. As shown in Figure 8.1, the former gives all the conditions necessary
for a word to be combined with another, and the latter shows in a simpler form
its representation in logic. The phonological form comes from the input text, the
syntactic type is used in the process of conducting semantic analysis, and finally the
logical form is the result of parsing a passage.

Figure 8.1: [21] Diagram explaining the mains terms used in CCG

In the syntactic type of a word, the forward slash / indicates forward application to
combine terms, while \ indicates backward combination. If there is no slash, then
the expression can be thought of as a clause, and it can combine with any rule.

• X/Y : f Y : a =⇒ X : fa (>)
• Y : a X\Y : f =⇒ X : fa (<)

48

Chapter 8: Related Work Section 8.1: Semantic Analysis Methods

There also exists a morphological slash \\, which restricts application to lexical
verbs, ruling out auxiliary verbs (whose role is purely grammatically, hence they
do not play any part in providing information). The morphological slash can be
used when dealing with reflexive pronouns such as “themselves”. Furthermore,
combining rules directly correlates to obtaining a simpler logical form with fewer
bound variables, as can be seen in Figure 8.2.

(a) [21] Basic clause (b) [21] Reflexive transitive clause

Figure 8.2: Examples of derivations in CCG

There are more advanced syntactic rules in CCG, which we shall not go into detail
about for the purposes of brevity. However with the basic rules that we explained,
it is easy to see how this parsing mechanism could be an efficient way to get to
the underlying semantics of a sentence. Although the syntactic type may seem
complicated, it allows for a very precise understanding of English grammar, as well
as giving a simple and consistent logical form at the end.

Although SumASG also achieves a form of semantic analysis using logic, it is
much less advanced than CCG. In CCG, multiple sequences of text using a different
word order can produce the same derivation. In contrast, actions in SumASG
are closely tied to the subject-verb-object structure of English sentences, and the
diversity of structures that it can parse is much more limited. Even though we could
have used CCG in this project, it would have been difficult to translate between CCG
and ASG.

8.2 Existing Text Summarization Approaches

There are a number of existing approaches to text summarization, two of which we
have chosen to discuss in this section.

8.2.1 Lexical Chains

In a paper about lexical chains [24], the authors describe a method which relies on
semantic links between words. The idea is that we establish chains of related words,
in order to learn what a text is about.

In order to create such a chain, the algorithm begins by choosing a set of can-
didate words for the chain. These candidate words are either nouns, or noun com-
pounds (such as “analog clock”). Starting from the first word, the task is to find the
next related word which has a similar meaning (a dictionary is used here). If the
word has multiple meanings, then the chain gets split into multiple interpretations;
this process continues until we have analysed all candidate words. For instance, the

49

Chapter 8: Related Work Section 8.2: Existing Text Summarization Approaches

word “person” can be interpreted as meaning a human being (interpretation 1), or
as a grammatical term used for pronouns (interpretation 2). An example for the
below text is shown in Figure 8.3.

Mr. Kenny is the person that invented an anesthetic machine which
uses micro-computers to control the rate at which an anesthetic is
pumped into the blood. Such machines are nothing new. But his
device uses two micro-computers to achieve much closer monitoring
of the pump feeding the anesthetic into the patient. [24]

Furthermore, lexical chains are attributed a strength, which is based on three cri-
teria: repetition (of the same word), density (the concentration of chain members
in a given portion of the text) and length (of the chain). For instance, the lexical
chain beginning with the word “machine” shown in Figure 8.3 (interpretation 1)
has considerable repetition, moderate density, and is quite long (it spans almost the
entire text).

Based on this indicator, interpretations of a lexical chain with higher strength
will be preferred. (In reality this is a bit more complex, but we will omit the details
for simplicity.)

(a) Step 1, interpretations 1 and 2 (b) Step 3, interpretation 1

Figure 8.3: [24] Example of a lexical chain and its interpretations

In order to construct the summary, a single “important” sentence is extracted from
the original text. To this end, they use a heuristic which is based on the fact that
an important topic will discussed across the entire passage. Once a lexical chain
has been chosen according to this metric (i.e., one that is well distributed across the
text), the output of the algorithm is the sentence which has the highest number of
words from the selected lexical chain.

Although the proposed solution is very interesting in that it tries to link impor-
tant words, it does not do anything whatsoever to learn about the actions which are
described in a passage. This means it has no knowledge of chronology (problematic
when we have an action causing a change of state, such as a someone acquiring a
good), nor does it try to link subjects with objects or verbs (for instance in the
phrase “Mary has a pencil”, it does not link Mary to the pencil).

Furthermore, the algorithm outputs a singe unchanged sentence from the original
text, which is suboptimal when equally important information is conveyed across
multiple sentences. In our approach, we are able to form single sentences using
information from different sentences in the story, making SumASG* a much a more
abstractive summarization framework.

50

Chapter 8: Related Work Section 8.2: Existing Text Summarization Approaches

8.2.2 Corpus-Based Approach / Latent Semantic Analysis

In a paper by Yeh et al. [22], two different methods are put forward for text sum-
marization. The first is the modified corpus-based approach (MCBA), which uses a
score function as well as the genetic algorithm, while the second (LSA+TRM) uti-
lizes latent semantic analysis (LSA) with the aid of a text relationship map (TSA).

In order to understand MCBA, we must first mention corpus-based approaches,
which rely on machine learning applied to a corpus of texts and their (known) sum-
maries. In the training phase important features (such as sentence length, position
of a sentence in a paragraph, uppercase word...) are extracted from the training
corpus and used to generate rules. In the test phase the learned rules are applied on
the training corpus to generate corresponding summaries. Most approaches rely on
computing a weight for each unit of text, this is based on a combination of a unit’s

The MCBA builds on the basic corpus-based approach (CBA) by ranking sen-
tence positions and using the genetic algorithm (GA) to train the score function. In
the first case, the idea is that the important sentences of a paragraph are likely to
have the same position in different texts, such as the first sentence (introduction)
and the last one (summary). Depending on a sentence’s position, a rank (from 1 to
some R) is assigned, and used to compute a score for this feature. The paper also
discusses other features, whose corresponding scores, along with the aforementioned
rank, are used to compute a weighted sum of all scores. Only the highest scoring
sentences are retained in order to form the summary.

Moreover, the genetic algorithm (GA) is used to obtain suitable weights, where
a chromosome is defined by a set of values for all the features weights. Using the
notions of precision (proportion of predicted positive cases that are actually real
positives) and recall (proportion of real positive cases that are correctly predicted
positive) [23], a so-called F-score is computed to define the fitness for each chromo-
some. By combing two chromosomes to generate children, where the fittest parents
are most likely to mate, we end up (after some number of generations) with a set of
feature weights suitable for the corpus in question.

On the other hand, the LSA+TRM approach comprises four major steps, which
are illustrated in Figure 8.4:

1. Preprocessing: Sentences are decomposed according to their punctuation,
as well as divided into keywords.

2. Semantic model analysis: A word-by-sentence matrix is computed on the
scale of the entire document (or corpus). This gets factorized and reduced to
leave out words which do not occur often, then turned into a semantic matrix
linking words to their according relevance with each sentence.

3. Text relationship map construction: The semantic matrix is converted
to a text relationship map. A text relationship map is a graph comprised of
nodes, each one represents a sentence or paragraph. A link exists between any
two which have high semantic similarity, and the idea is that nodes with many
links are likely to cover the main topics of the text.

4. Sentence selection: Finally, we use the text relationship map to pick out the
most important sentences for the summary.

51

Chapter 8: Related Work Section 8.2: Existing Text Summarization Approaches

(a) [22] Overall process

(b) [22] Example of a text relationship map

Figure 8.4: LSA+TRM approach, diagrammatically

Compression rate (CR) is a proportion describing the size of the summary with
respect to the size of the original text.

After evaluating both approaches on a news article corpus, it was found that
MCBA outperforms the basic CBA by around 3%, confirming the hypothesis that
the position of a sentence plays a role in its importance. Furthermore, MCBA+GA
performs around 10% better than MCBA.

Concerning LSA+TRM, it was found that on a per-document level this approach
outperformed simply using TRM with the sentence keywords rather than LSA by
almost 30%. It was thus concluded that LSA helps get a better semantic under-
standing of a text.

Comparing the two approaches highlighted in the paper, it is mentioned that
performance is similar, although LSA+TRM is easier to implement than MCBA
in single-document level as it requires no preprocessing, and in some optimal cases
performs up to 20% better. Although the former approach is more computationally
expensive, it is more adept at understanding the semantics of a text because it does
not rely on the genre of the corpus that was used for training. In both cases though,
performance improves as CR increases.

From the first approach, what is interesting is that it uses a certain number of
important features to identify the most pertinent sentences of a passage. However
this would not have been useful in our case, as we focus on very short stories.

From the second approach, the main takeaways are the storage mechanisms in
use such as the semantic matrix and text relationship map, the latter of which we
have implemented in the Preprocessor in order to filter out irrelevant sentences.

8.3 Approach Categories

Broadly speaking, there exist three categories in which we can place text summariza-
tion approaches: frame, statistical and symbolic (which is what our system uses).

52

Chapter 8: Related Work Section 8.3: Approach Categories

8.3.1 Frame

In the frame approach, the idea is that we try and keep track of how the plot in a
story progresses, recording each action as well as the links which connect them. From
this understanding, we should then have enough information to build an accurate
summary.

In one of the original papers describing this approach [26], sentences are decom-
posed into different affect states and affect links. An affect state can either be a
mental state, or a positive or negative event which may cause a change to a mental
state. Affect links are then the transitions that explain the sequence of affect states.

We are given the example of John and Mary who both want to buy the same
house, but it ends up being sold to Mary. At the start, both characters have the
same mental state (desire to buy the house). However the actualization (a type of
affect link which denotes realization of an action) of Mary’s desire is recognized as
a positive event for Mary and a negative event for John.

By combining sequences of affect links (transitions) between affect states for
different characters in a story, it is easy to see how one can build the narrative
of the entire text. Such an example is shown in Figure 8.5, where m denotes the
motivation affect link (connecting an action with a mental state which it motivates),
and e denotes the equivalence affect link (i.e., when a character has the same mental
state before and after the transition).

Figure 8.5: [26] Example of a narrative in the frame approach

While this approach is interesting from a semantic point of view, it can easily become
very complicated when many sentences are involved. In addition, it would not be
suitable for purely descriptive texts, involving only continuous actions without any
direct link (“It was October. Leaves were falling from the trees.”).

Despite these drawbacks, the approach described here is much better than SumASG*
at understanding a narrative. In fact, our system has no notion whatsoever of cause
and effect, making it highly unsuitable for summarizing any kind of discourse.

8.3.2 Statistical

In the statistical approach, the methodology is to use probabilities in order to gener-
ate a summary that is both grammatically correct and conveys the important details
of a text.

53

Chapter 8: Related Work Section 8.3: Approach Categories

The authors of the paper [25] envision what they call a noisy-channel model,
which at the time of writing was limited to single sentence summarization. For
the model, assume that there was at some point a (shorter) summary string s for
the (longer) string t to summarize, from which optional words were removed. The
idea is that optional details were added to produce t, and we want to know with
what probability s contained this information given t. At this stage, there a three
problems to solve:

1. To obtain the source model, we must assign a probability P (s) to every string
s, which tells us how likely it is that this is the summary. If we assign a lower
P (s) to less grammatically-correct strings, then it helps ensure that our final
summary is well-formed.

2. To obtain the channel model, we now assign the probabilities P (t|s) to every
pair 〈s, t〉. This contributes to preserving important information, as we take
into account the differences between s and t when computing the corresponding
probability. In this case, we may want to assign a very low P (t|s) when s
omits an important verb or negation (these are not optional to get the correct
meaning), while this can sometimes be much higher if the only difference is
the word “that”.

3. For a given string t the goal is now to maximise P (s|t) which, because of
Bayes’ theorem14, is equivalent to maximising P (s) · P (t|s).

In practice, the implementation discussed in the paper uses parse trees rather than
whole strings. Also, they use machine learning techniques in order to train their
summarizer.

To this end, they created what was referred to in the paper as a shared-forest
structure, allowing them to represent all compressions given an original text t; an
example is shown in Figure 8.6. Their system picks out high-scoring trees from the
forest, and based on this score we can choose the best compression s for t (i.e., the
summary s which has the highest P (s) · P (t|s)).

If the user wants a shorter or longer summary, the system can simply return the
highest-scoring tree for a given length. In reality though their solution is a bit more
complex, but the important points of the approach are described here.

A → B C D
A → B C
A → C D
A → B D
A → B
D → E F
D → E
D → F

(a) Shared-forest structure

A

B

“It’s”

C

“now”

D

E

“3”

F

“o’clock”

(b) Parse tree for t

A

B

“It’s”

D

E

“3”

(c) Parse tree for s

Figure 8.6: Example of an original text t and possible summarization s

14For the definition of Bayes’ theorem, see https://www.investopedia.com/terms/b/

bayes-theorem.asp

54

https://www.investopedia.com/terms/b/bayes-theorem.asp
https://www.investopedia.com/terms/b/bayes-theorem.asp

Chapter 8: Related Work Section 8.3: Approach Categories

In their testing it was found that their algorithm has a conservative nature, promot-
ing correctness over brevity, which sometimes has the consequence of not trimming
any words away. We learn from this approach the notion of a shared-forest structure,
as well as the use of Bayesian probability theory.

Comparing this approach with SumASG*, we can see that the shared-forest
structure shares a resemblance with the different ways in which we combine the
summary sentences output by SumASG. Moreover, our final output corresponds to
maximising the summary score, in the same way that the approach described here
uses probabilities to minimise information loss.

8.3.3 Symbolic

In the symbolic approach [27], meaning is expressed through logic, and the repre-
sentation of a sentence is the combination of the meaning of each of its individual
components.

CCG, as discussed in Subsection 8.1.1, uses a symbolic approach. Generally
the semantics of a word is captured as a single predicate in logic, and sometimes
this is automatically derived from a large dataset such as an online dictionary. In
order to obtain the final (sentential) logical form however, parsed sentences (rep-
resented for example as a parse tree) must first be translated from their original
(natural language) syntax. It then becomes possible to combine the meanings of
words to obtain sentence fragments, and then combine these to understand the
whole sentence. These can be further composed to cover an entire passage. This
representation can then be provided to a theorem prover in first-order logic (FOL),
or directly converted into a logic program (for instance in ASP).

Besides CCG, another pertinent case study is that of the Montague Grammar
[28]. In such a grammar, we have what is called a syntactic language and a semantic
language. The former is similar to POS tags (see Appendix A), while the latter
captures the type of a token (which can either be e for entity or t for truth value).
For instance, the word “John” has syntactic category ProperN and semantic type e,
while for the verb “walks” these are respectively VP and e→ t.

For both of these languages, there exist rules that dictate how we are allowed
to compose tokens. In the syntactic case, this is simply a restriction on the format
of parse trees (i.e., S → NP V P means that a sentence node must have an NP
and a VP as its children to be grammatically correct). For the semantic language,
combining tokens with respective types A → B and A results in one whose type is
B. Taking the example from before, “John walks” would have type t; this makes
sense because “John” is an entity, and whether he is walking can either be true or
false.

As we have seen above, these rules allow us to compose tokens together, and
in the Montague Grammar everything has a logical representation (expressed in
the λ-calculus). For instance, we would compose λP.[P (john)] with walk to obtain
λP.[P (john)](walk) ≡ walk(john). A more advanced example would be that “every
student walks” is represented as ∀x.(student(x)→ walk(x)).

One of the criticisms with this type of approach [27] is that it is domain-specific

55

Chapter 8: Related Work Section 8.3: Approach Categories

and not easily scalable. However more recent work (as with CCG) has shown that
the latter issue is not necessarily the case anymore, as we now have more pow-
erful parsers. The same could be said with a more complete implementation of
SumASG*, one which would be able to parse a much wider diversity of sentence
structures, and could be run on a supercomputer for performance reasons.

56

Chapter 9 Conclusion

We have engineered a logic-based text summarization system which solves the task
in different way than the commonly-used Machine Learning approaches these days.
In this chapter, we discuss the main achievements of this project (Section 9.1), and
then explore future work which may be done to improve our system (Section 9.2).

9.1 Achievements

SumASG* is a symbolic system which is able to generate generic, informative and
partially-abstractive summaries given a simple story about a paragraph in length.

Internally, it relies on the ASG engine, which is used for both for understanding
text and creating summary sentences. This is an entity level approach to the task of
text summarization, whereby the Preprocessor makes use of the similarity be-
tween words and sentences, and creates a text relationship map to aid in simplifying
the given input story.

The core accomplishments of this project are the following:

• Created a context-free grammar that models the structure of basic English
sentences, and can be used both for semantic learning, as well as generating
grammatically correct text.

• Implemented an algorithm that dramatically reduces the complexity in the
structure of some English sentences, without losing too much information (e.g.
co-referencing).

• Implemented an algorithm which uses similarity to remove irrelevant sentences
from a short story, as well as reduces lexical diversity.

• Wrote an ASG learning task capable of taking English text and turning it into
a set of chronologically-ordered actions.

• Developed a set of rules which, given actions from a story, allow ASG to
generate both extractive and abstractive summary sentences.

• Implemented a scoring mechanism prioritizing information density, while tak-
ing into account words which may appear frequently in English and are con-
sidered the topic of the original text.

• Created a framework to automatically generate topical short stories for train-
ing a neural network in the aim of evaluate the soundness of SumASG*, based
on a dataset of words and particular sentence structures.

• Used the trained encoder-decoder to show that our approach is able to produce
more consistent results than a neural network, and can detect invalid input
out-of-the-box.

57

Chapter 9: Conclusion Section 9.2: Future Work

9.2 Future Work

Text summarization is a highly involved task in NLP, bringing together many dif-
ferent fields of study. For this reason, there any many ways in which we could take
the overall pipeline forward, the most beneficial of which we shall discuss in what
follows. Although these ideas may seem rather involved, it is easy to reduce them
to a more manageable task.

9.2.1 Better Semantic Understanding

By way of the Preprocessor, SumASG* is able to transform complex sentence
structures into simple ones. Unfortunately, this comes at the cost of removing
connectors, as well many auxiliary clauses whose structure SumASG cannot parse.

By doing so we can lose some information, or worse: convey a false meaning due
to the intricacy of English semantics. To illustrate this consider the following story,
as shown in Figure 9.1.

John and Mary are siblings. Today is Monday 25 May. Unless it rains
in London, which is highly likely, John’s sister is going running and then
buying a brioche feuilletée aux pralines roses tomorrow. However she
doesn’t know that her favorite bakery doesn’t make pastries on Tuesdays.

(a) Story

Unless is rains, Mary is going running and then buying a pastry on
Tuesday. However she doesn’t know that her favorite bakery doesn’t
make pastries on that day of the week.

(b) “Ideal” partially-abstractive and informative summary

Figure 9.1: Example of a short story with complex semantics

With the way things are currently set up, the Preprocessor might remove the
second sentence, getting rid of all useful temporal information from the story. It
could also remove the last sentence, which is crucial in the narrative. Finally, it
would definitely delete the first two clauses from the third sentence, missing out on
an important nuance.

Even if all this information had been preserved and passed through to SumASG,
it would be unable to understand it in a contextually-aware enough manner. More
to the point, the following facts are relevant to create a good summary:

• John and Mary are siblings, so “John’s sister” refers to Mary.

• The current day of the week is Monday, so Mary is thinking of going running
on a Tuesday.

• It is probably going to rain on Tuesday, so there is a slim chance Mary will
carry out her plans.

• The bakery where she was planning on getting her pastry not be selling any
that day (inference is necessary here).

58

Chapter 9: Conclusion Section 9.2: Future Work

Even though they are essential to comprehend the story, there is also a set of facts
that should not appear in the summary:

• John is Mary’s brother.

• The current date is 25 May.

• Mary is in London.

• She is interested specifically in a brioche feuilletée aux pralines roses.

In order to understand such a story, we would therefore need to strengthen SumASG*
at each step in the pipeline. As well as much better parsing, this would require cre-
ating a more complex set of predicates to better capture the meaning in a story.
Finally, we would also have the change the scoring mechanism, so that it looks for
summaries which lose as little meaning as possible from the original story.

9.2.2 Longer Stories

What we would like to do is use this mechanism to summarize longer texts, such
as newspaper articles or even whole books. Using a supercomputer, we could run
a much more advanced and polished version of SumASG* in order to generate a
summary of one or more pages in length.

As we have seen, runtime is one of the major bottlenecks of SumASG, which is
why SumASG* is limited to very succinct stories. What we would therefore need
to do is to carefully reason about the most efficient implementation of our logic
program. This could involve separately running SumASG* on each paragraph or
page, and then gathering the results together to construct the final summary.

9.2.3 Domain-Specific Understanding

There are many domains where a certain background knowledge is assumed, such
as research papers in Computer Science, or scripts for plays. With an enhanced
version of SumASG*, we could help authors by automating (or at least partially)
their respective tasks of writing abstracts and loglines. A way to accomplish this
would be to create a suite of extensions, each providing background knowledge to
help understand a particular subject.

In the case of reading a paper, the extension would include the relevant ency-
clopedic knowledge translated into logic. By combining this with the information
contained in the paper, a machine would be able to understand what the author is
talking about.

When it comes to understanding a play, we would need encode into the parsing
mechanism the difference in format between reading narrative and dialog (from
various characters). By carefully keeping track of the timeline, and using action
predicates that know who is speaking, we would be able to programmatically learn
about the evolution of the characters in the story.

59

Appendix A POS Tags

Tag Description

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Table A.1: [29] List of position of speech (POS) tags

60

Appendix B Example Stories

In what follows are examples designed to test various aspects of SumASG*. For
each story we list a few of the generated top summaries and underline the best one.

Powerful Car

The green car was moving fast.
It was a very powerful vehicle.

(a) Story

• The green car was moving fast.
• The powerful green car was moving fast.

(b) Top summaries

Electric Car

Barack Obama was president.
You and Ian have an electric car.
You own a red vehicle.

(a) Story

• You own a red car.
• You own an electric red car.
• You and Ian own an electric car.

(b) Top summaries

Jonathan

Jonathan likes ASG.
Jonathan likes ILASP.
Jonathan eats culatello.

(a) Story

Jonathan likes ASG and ILASP.

(b) Top summaries

Mr. Predicate

Mr. Predicate was a logic. The logical system was sound and complete.

(a) Story

Mr Predicate was a sound complete logic.

(b) Top summaries

61

Chapter B: Example Stories Section :

Mary

Mary went out.
It was raining hard.
Mary went back.
She entered quickly.

(a) Story

• Mary was out quickly. Mary was back.
• Mary was out quickly. It was raining hard.
• Mary was out. Mary was back.
• Mary was back quickly. It was raining hard.

(b) Top summaries

Jack’s Birdhouse

The example shown in Figure B.6 was taken from K5Learning15.

Jack wants to build a birdhouse. He gets some wood.
He gets some nails and paint.
His mom helps too.
She gets a saw and a hammer.
She gets a pencil and ruler.
Jack draws his birdhouse. They build it together. Then they hang it up
in a tree.
A bird goes into the bird house.
A second bird goes in. A third bird goes in.
A fourth bird goes in!
Jack and his mom look at each other.
They need a bigger birdhouse!

(a) Story

• Jack wants to build a birdhouse. He gets wood. A bird goes in the birdhouse.
• Jack wants to build a birdhouse. He gets wood and nails. They hang it up.
• Jack wants to build a birdhouse. He gets wood and paint. They hang it up.
• Jack gets birdhouse. A fourth bird goes in. They need a bigger birdhouse.
• Jack wants to build a birdhouse. A second bird goes in. A fourth bird goes

in.
• Jack wants to build a birdhouse. He gets wood and nails. A bird goes in the

birdhouse.
• Jack gets birdhouse. A bird goes in the birdhouse. They need a bigger bird-

house.
• Jack wants to build a birdhouse. A fourth bird goes in. They need a bigger

birdhouse.

(b) Top summaries

Figure B.6: Example of the task of summarization for “Jack’s Birdhouse”

15K5Learning is a site that provides worksheets for Key Stage 1 students: https://www.

k5learning.com/reading-comprehension-worksheets/first-grade-1

62

https://www.k5learning.com/reading-comprehension-worksheets/first-grade-1
https://www.k5learning.com/reading-comprehension-worksheets/first-grade-1

Appendix C ASG

Although SumASG1 and SumASG2 share the same grammar, they need to augment
a few of its derivations with some extra rules. The code that you see in Sections C.2
and C.3 gets appended to the general grammar, giving the complete ASG program.

C.1 Common Grammar

1 start −> s group {
2 :− count(X)@1, X > 1.
3 :− count(X)@1, X = 0.
4 }
5

6 s group −> { count(0). }
7 s group −> s group s ‘‘. ” { count(X+1) :− count(X)@1. }
8

9 s −> np vp {
10 subject :− subject(S N,S D,S A)@1.
11 :− not subject.
12 object :− object(S N,S D,S A)@2.
13 :− not object.
14 }
15

16 vp −> vbn np {
17 verb(N,T) :− verb(N,T)@1.
18 object(N,D,A) :− object(N,D,A)@2.
19 }
20

21 vp −> vbd np {
22 verb(N,T) :− verb(N,T)@1.
23 object(N,D,A) :− object(N,D,A)@2.
24 }
25

26 vp −> vbd vbg np {
27 verb(comp(N1,N2),comp(T1,gerund)) :− verb(N1,T1)@1, verb(N2,gerund)@2.
28 object(N,D,A) :− object(N,D,A)@3.
29 }
30

31 vp −> vbd vbn np {
32 verb(comp(N1,N2),comp(T1,past part)) :− verb(N1,T1)@1, verb(N2,past part)

↪→ @2.
33 object(N,D,A) :− object(N,D,A)@3.
34 }
35

63

Chapter C: ASG Section C.1: Common Grammar

36 vp −> vbd ‘‘to ” vb np {
37 verb(comp(N1,N2),comp(T1,base)) :− verb(N1,T1)@1, verb(N2,base)@3.
38 object(N,D,A) :− object(N,D,A)@4.
39 }
40

41 vp −> vbp np {
42 verb(N,T) :− verb(N,T)@1.
43 object(N,D,A) :− object(N,D,A)@2.
44 }
45

46 vp −> vbp vbg np {
47 verb(comp(N1,N2),comp(T1,gerund)) :− verb(N1,T1)@1, verb(N2,gerund)@2.
48 object(N,D,A) :− object(N,D,A)@3.
49 }
50

51 vp −> vbp vbn np {
52 verb(comp(N1,N2),comp(T1,past part)) :− verb(N1,T1)@1, verb(N2,past part)

↪→ @2.
53 object(N,D,A) :− object(N,D,A)@3.
54 }
55

56 vp −> vbp ‘‘to ” vb np {
57 verb(comp(N1,N2),comp(T1,base)) :− verb(N1,T1)@1, verb(N2,base)@3.
58 object(N,D,A) :− object(N,D,A)@4.
59 }
60

61 vp −> vbz np {
62 verb(N,T) :− verb(N,T)@1.
63 object(N,D,A) :− object(N,D,A)@2.
64 }
65

66 vp −> vbz vbg np {
67 verb(comp(N1,N2),comp(T1,gerund)) :− verb(N1,T1)@1, verb(N2,gerund)@2.
68 object(N,D,A) :− object(N,D,A)@3.
69 }
70

71 vp −> vbz vbn np {
72 verb(comp(N1,N2),comp(T1,past part)) :− verb(N1,T1)@1, verb(N2,past part)

↪→ @2.
73 object(N,D,A) :− object(N,D,A)@3.
74 }
75

76 vp −> vbz ‘‘to ” vb np {
77 verb(comp(N1,N2),comp(T1,base)) :− verb(N1,T1)@1, verb(N2,base)@3.
78 object(N,D,A) :− object(N,D,A)@4.
79 }
80

81 np −> np rb {

64

Chapter C: ASG Section C.1: Common Grammar

82 object(N,D,A) :− object(N,D,0)@1, adj or adv(A)@2.
83 }
84

85 np −> np rb {
86 object(N,D,conjunct(A1,A2)) :− object(N,D,A1)@1, adj or adv(A2)@2.
87 :− object(N,D,conjunct(A,A)).
88 }
89

90 np −> np rp {
91 object(N,D,A) :− object(N,D,0)@1, adj or adv(A)@2.
92 }
93

94 np −> np rp {
95 object(N,D,conjunct(A1,A2)) :− object(N,D,A1)@1, adj or adv(A2)@2.
96 :− object(N,D,conjunct(A,A)).
97 }
98

99 np −> nn {
100 subject(N,0,0) :− noun(N)@1.
101 object(N,0,0) :− noun(N)@1.
102 }
103

104 np −> nns {
105 subject(N,0,0) :− noun(N)@1.
106 object(N,0,0) :− noun(N)@1.
107 }
108

109 np −> nnp {
110 subject(N,0,0) :− noun(N)@1.
111 object(N,0,0) :− noun(N)@1.
112 }
113

114 np −> nnps {
115 subject(N,0,0) :− noun(N)@1.
116 object(N,0,0) :− noun(N)@1.
117 }
118

119 np −> prp {
120 subject(N,0,0) :− noun(N)@1.
121 object(N,0,0) :− noun(N)@1.
122 }
123

124 np −> rb {
125 subject(0,0,A) :− adj or adv(A)@1.
126 object(0,0,A) :− adj or adv(A)@1.
127 }
128

129 np −> rp {

65

Chapter C: ASG Section C.1: Common Grammar

130 subject(0,0,A) :− adj or adv(A)@1.
131 object(0,0,A) :− adj or adv(A)@1.
132 }
133

134 np −> ex {
135 subject(N,0,0) :− noun(N)@1.
136 }
137

138 np −> in {
139 object(0,D,0) :− det(D)@1.
140 }
141

142 np −> prp ‘‘and ” nnp {
143 subject(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
144 object(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
145 :− subject(conjunct(N,N),0,0).
146 :− object(conjunct(N,N),0,0).
147 }
148

149 np −> nnp ‘‘and ” prp {
150 subject(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
151 object(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
152 :− subject(conjunct(N,N),0,0).
153 :− object(conjunct(N,N),0,0).
154 }
155

156 np −> dt nn ‘‘and ” prp {
157 subject(conjunct(N1,N2),D,0) :− det(D)@1, noun(N1)@2, noun(N2)@4.
158 object(conjunct(N1,N2),D,0) :− det(D)@1, noun(N1)@2, noun(N2)@4.
159 :− subject(conjunct(N,N), ,0).
160 :− object(conjunct(N,N), ,0).
161 }
162

163 np −> prp ‘‘and ” dt nn {
164 subject(conjunct(N1,N2),D,0) :− noun(N1)@1, det(D)@3, noun(N2)@4.
165 object(conjunct(N1,N2),D,0) :− noun(N1)@1, det(D)@3, noun(N2)@4.
166 :− subject(conjunct(N,N), ,0).
167 :− object(conjunct(N,N), ,0).
168 }
169

170 np −> dt nn ‘‘and ” nnp {
171 subject(conjunct(N1,N2),D,0) :− det(D)@1, noun(N1)@2, noun(N2)@4.
172 object(conjunct(N1,N2),D,0) :− det(D)@1, noun(N1)@2, noun(N2)@4.
173 :− subject(conjunct(N,N), ,0).
174 :− object(conjunct(N,N), ,0).
175 }
176

177 np −> nnp ‘‘and ” dt nn {

66

Chapter C: ASG Section C.1: Common Grammar

178 subject(conjunct(N1,N2),D,0) :− noun(N1)@1, det(D)@3, noun(N2)@4.
179 object(conjunct(N1,N2),D,0) :− noun(N1)@1, det(D)@3, noun(N2)@4.
180 :− subject(conjunct(N,N), ,0).
181 :− object(conjunct(N,N), ,0).
182 }
183

184 np −> nnp ‘‘and ” nnp {
185 subject(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
186 object(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
187 :− subject(conjunct(N,N),0,0).
188 :− object(conjunct(N,N),0,0).
189 }
190

191 np −> nn ‘‘and ” nn {
192 subject(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
193 object(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
194 :− subject(conjunct(N,N),0,0).
195 :− object(conjunct(N,N),0,0).
196 }
197

198 np −> nn ‘‘and ” nns {
199 subject(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
200 object(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
201 :− subject(conjunct(N,N),0,0).
202 :− object(conjunct(N,N),0,0).
203 }
204

205 np −> nns ‘‘and ” nn {
206 subject(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
207 object(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
208 :− subject(conjunct(N,N),0,0).
209 :− object(conjunct(N,N),0,0).
210 }
211

212 np −> nns ‘‘and ” nns {
213 subject(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
214 object(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
215 :− subject(conjunct(N,N),0,0).
216 :− object(conjunct(N,N),0,0).
217 }
218

219 np −> dt nn ‘‘and ” dt nn {
220 subject(conjunct(N1,N2),D,0) :− det(D)@1, det(D)@4, noun(N1)@2, noun(N2)

↪→ @5.
221 object(conjunct(N1,N2),D,0) :− det(D)@1, det(D)@4, noun(N1)@2, noun(N2)

↪→ @5.
222 :− subject(conjunct(N,N), ,0).
223 :− object(conjunct(N,N), ,0).

67

Chapter C: ASG Section C.1: Common Grammar

224 }
225

226 np −> prp ‘‘and ” prp {
227 subject(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
228 object(conjunct(N1,N2),0,0) :− noun(N1)@1, noun(N2)@3.
229 :− subject(conjunct(N,N),0,0).
230 :− object(conjunct(N,N),0,0).
231 }
232

233 np −> rb ‘‘and ” rb {
234 subject(0,0,conjunct(A1,A2)) :− adj or adv(A1)@1, adj or adv(A2)@3.
235 object(0,0,conjunct(A1,A2)) :− adj or adv(A1)@1, adj or adv(A2)@3.
236 :− subject(0,0,conjunct(A,A)).
237 :− object(0,0,conjunct(A,A)).
238 }
239

240 np −> jj {
241 object(0,0,A) :− adj or adv(A)@1.
242 }
243

244 np −> jj ‘‘and ” jj {
245 object(0,0,conjunct(A1,A2)) :− adj or adv(A1)@1, adj or adv(A2)@3.
246 :− object(0,0,conjunct(A,A)).
247 }
248

249 np −> jj rb {
250 subject(0,0,conjunct(A1,A2)) :− adj or adv(A1)@1, adj or adv(A2)@1.
251 object(0,0,conjunct(A1,A2)) :− adj or adv(A1)@1, adj or adv(A2)@1.
252 :− subject(0,0,conjunct(A,A)).
253 :− object(0,0,conjunct(A,A)).
254 }
255

256 np −> dt nn {
257 subject(N,D,0) :− det(D)@1, noun(N)@2.
258 object(N,D,0) :− det(D)@1, noun(N)@2.
259 }
260

261 np −> dt nns {
262 subject(N,D,0) :− det(D)@1, noun(N)@2.
263 object(N,D,0) :− det(D)@1, noun(N)@2.
264 }
265

266 np −> jj nns {
267 subject(N,0,A) :− adj or adv(A)@1, noun(N)@2.
268 object(N,0,A) :− adj or adv(A)@1, noun(N)@2.
269 }
270

271 np −> jj nnp {

68

Chapter C: ASG Section C.1: Common Grammar

272 subject(N,0,A) :− adj or adv(A)@1, noun(N)@2.
273 object(N,0,A) :− adj or adv(A)@1, noun(N)@2.
274 }
275

276 np −> jj nnps {
277 subject(N,0,A) :− adj or adv(A)@1, noun(N)@2.
278 object(N,0,A) :− adj or adv(A)@1, noun(N)@2.
279 }
280

281 np −> dt jj nn {
282 subject(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
283 object(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
284 }
285

286 np −> dt jj nns {
287 subject(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
288 object(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
289 }
290

291 np −> dt jj jj nn {
292 subject(N,D,conjunct(A1,A2)) :− det(D)@1, adj or adv(A1)@2, adj or adv(A2)

↪→ @3, noun(N)@4.
293 object(N,D,conjunct(A1,A2)) :− det(D)@1, adj or adv(A1)@2, adj or adv(A2)

↪→ @3, noun(N)@4.
294 :− subject(N,D,conjunct(A,A)).
295 :− object(N,D,conjunct(A,A)).
296 }
297

298 np −> dt jj jj nns {
299 subject(N,D,conjunct(A1,A2)) :− det(D)@1, adj or adv(A1)@2, adj or adv(A2)

↪→ @3, noun(N)@4.
300 object(N,D,conjunct(A1,A2)) :− det(D)@1, adj or adv(A1)@2, adj or adv(A2)

↪→ @3, noun(N)@4.
301 :− subject(N,D,conjunct(A,A)).
302 :− object(N,D,conjunct(A,A)).
303 }
304

305 np −> dt jjr nn {
306 subject(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
307 object(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
308 }
309

310 np −> dt jjr nns {
311 subject(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
312 object(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
313 }
314

315 np −> dt jjs nn {

69

Chapter C: ASG Section C.1: Common Grammar

316 subject(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
317 object(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
318 }
319

320 np −> dt jjs nns {
321 subject(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
322 object(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
323 }
324

325 np −> in nn {
326 object(N,D,0) :− det(D)@1, noun(N)@2.
327 }
328

329 np −> in dt nn {
330 object(N,conjunct(D1,D2),0) :− det(D1)@1, det(D2)@2, noun(N)@3.
331 }
332

333 np −> in nns {
334 object(N,D,0) :− det(D)@1, noun(N)@2.
335 }
336

337 np −> in dt nns {
338 object(N,conjunct(D1,D2),0) :− det(D1)@1, det(D2)@2, noun(N)@3.
339 }
340

341 np −> in nnp {
342 object(N,D,0) :− det(D)@1, noun(N)@2.
343 }
344

345 np −> in nnps {
346 object(N,D,0) :− det(D)@1, noun(N)@2.
347 }
348

349 np −> jj in nn {
350 object(N,D,A) :− adj or adv(A)@1, det(D)@2, noun(N)@3.
351 }
352

353 np −> jj in nn ‘‘and ” nn {
354 object(conjunct(N1,N2),D,A) :− adj or adv(A)@1, det(D)@2, noun(N1)@3,

↪→ noun(N2)@5.
355 }
356

357 np −> jj in nns {
358 object(N,D,A) :− adj or adv(A)@1, det(D)@2, noun(N)@3.
359 }
360

361 np −> jj in nns ‘‘and ” nns {

70

Chapter C: ASG Section C.1: Common Grammar

362 object(conjunct(N1,N2),D,A) :− adj or adv(A)@1, det(D)@2, noun(N1)@3,
↪→ noun(N2)@5.

363 }
364

365 np −> jj in nnp {
366 object(N,D,A) :− adj or adv(A)@1, det(D)@2, noun(N)@3.
367 }
368

369 np −> jj in nnp ‘‘and ” nnp {
370 object(conjunct(N1,N2),D,A) :− adj or adv(A)@1, det(D)@2, noun(N1)@3,

↪→ noun(N2)@5.
371 }
372

373 np −> jj in prp {
374 object(N,D,A) :− adj or adv(A)@1, det(D)@2, noun(N)@3.
375 }
376

377 np −> jj in prp ‘‘and ” prp {
378 object(conjunct(N1,N2),D,A) :− adj or adv(A)@1, det(D)@2, noun(N1)@3,

↪→ noun(N2)@5.
379 }
380

381 np −> jj in nn ‘‘and ” nns {
382 object(conjunct(N1,N2),D,A) :− adj or adv(A)@1, det(D)@2, noun(N1)@3,

↪→ noun(N2)@5.
383 }
384

385 np −> jj in nns ‘‘and ” nn {
386 object(conjunct(N1,N2),D,A) :− adj or adv(A)@1, det(D)@2, noun(N1)@3,

↪→ noun(N2)@5.
387 }
388

389 np −> cd nn {
390 subject(N,D,0) :− det(D)@1, noun(N)@2.
391 object(N,D,0) :− det(D)@1, noun(N)@2.
392 }
393

394 np −> cd nns {
395 subject(N,D,0) :− det(D)@1, noun(N)@2.
396 object(N,D,0) :− det(D)@1, noun(N)@2.
397 }
398

399 np −> cd jj nn {
400 subject(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
401 object(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
402 }
403

404 np −> cd jj nns {

71

Chapter C: ASG Section C.1: Common Grammar

405 subject(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
406 object(N,D,A) :− det(D)@1, adj or adv(A)@2, noun(N)@3.
407 }
408

409 np −> cd nns jj {
410 object(N,D,A) :− det(D)@1, noun(N)@2, adj or adv(A)@3.
411 }
412

413 np −> dt jj cd {
414 subject(0,conjunct(D1,D2),A) :− det(D1)@1, adj or adv(A)@2, det(D2)@3.
415 object(0,conjunct(D1,D2),A) :− det(D1)@1, adj or adv(A)@2, det(D2)@3.
416 }

C.2 Task: SumASG1

1 s −> np vp {
2 ...
3

4 :− not action(verb(V N,V T),subject(S N,S D,S A),object(O N,O D,O A)),
↪→ verb(V N,V T)@2, subject(S N,S D,S A)@1, object(O N,O D,O A)@2.

5 }
6

7 #modeh(action(verb(const(main verb),const(main form)), subject(const(noun),
↪→ const(det),const(adj or adv)), object(const(noun),const(det),const(
↪→ adj or adv)))):[4].

8 #modeh(action(verb(const(main verb),const(main form)), subject(const(noun),
↪→ const(det),const(adj or adv)), object(const(noun),const(det),conjunct(
↪→ const(adj or adv),const(adj or adv))))):[4].

9 #modeh(action(verb(const(main verb),const(main form)), subject(const(noun),
↪→ const(det),conjunct(const(adj or adv),const(adj or adv))), object(const(
↪→ noun),const(det),const(adj or adv)))):[4].

10 #modeh(action(verb(const(main verb),const(main form)), subject(conjunct(const(
↪→ noun),const(noun)),const(det),const(adj or adv)), object(const(noun),const
↪→ (det),const(adj or adv)))):[4].

11 #modeh(action(verb(const(main verb),const(main form)), subject(const(noun),
↪→ const(det),const(adj or adv)), object(conjunct(const(noun),const(noun)),
↪→ const(det),const(adj or adv)))):[4].

12 #modeh(action(verb(const(main verb),const(main form)), subject(const(noun),
↪→ const(det),const(adj or adv)), object(const(noun),conjunct(const(det),
↪→ const(det)),const(adj or adv)))):[4].

13 #modeh(action(verb(const(main verb),const(main form)), subject(const(noun),
↪→ const(det),const(adj or adv)), object(const(noun),conjunct(const(prep),
↪→ const(det)),const(adj or adv)))):[4].

14

15 #modeh(action(verb(comp(const(main verb),const(aux verb)),comp(const(
↪→ main form),const(aux form))), subject(const(noun),const(det),const(
↪→ adj or adv)), object(const(noun),const(det),const(adj or adv)))):[4].

16 #modeh(action(verb(comp(const(main verb),const(aux verb)),comp(const(

72

Chapter C: ASG Section C.2: Task: SumASG1

↪→ main form),const(aux form))), subject(const(noun),const(det),const(
↪→ adj or adv)), object(const(noun),const(det),conjunct(const(adj or adv),
↪→ const(adj or adv))))):[4].

17 #modeh(action(verb(comp(const(main verb),const(aux verb)),comp(const(
↪→ main form),const(aux form))), subject(const(noun),const(det),conjunct(
↪→ const(adj or adv),const(adj or adv))), object(const(noun),const(det),const(
↪→ adj or adv)))):[4].

18 #modeh(action(verb(comp(const(main verb),const(aux verb)),comp(const(
↪→ main form),const(aux form))), subject(conjunct(const(noun),const(noun)),
↪→ const(det),const(adj or adv)), object(const(noun),const(det),const(
↪→ adj or adv)))):[4].

19

20 #bias(”:− head(holds at node(action(verb(,),subject(0, ,),object(, ,)),var (1))
↪→).”).

21 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(0,0,0)),var (1)
↪→)).”).

22

23 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(conjunct(V,V),
↪→ ,)),var (1))).”).

24 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(conjunct(,0), ,
↪→)),var (1))).”).

25 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(conjunct(0,), ,
↪→)),var (1))).”).

26

27 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(, ,conjunct(V,
↪→ V))),var (1))).”).

28 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(, ,conjunct(
↪→ ,0))),var (1))).”).

29 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(, ,conjunct(0,
↪→))),var (1))).”).

30

31 #bias(”:− head(holds at node(action(verb(,),subject(conjunct(V,V), ,),object(,
↪→ ,)),var (1))).”).

32 #bias(”:− head(holds at node(action(verb(,),subject(conjunct(,0), ,),object(, ,
↪→)),var (1))).”).

33 #bias(”:− head(holds at node(action(verb(,),subject(conjunct(0,), ,),object(, ,
↪→)),var (1))).”).

34

35 #bias(”:− head(holds at node(action(verb(,),subject(, ,conjunct(V,V)),object(,
↪→ ,)),var (1))).”).

36 #bias(”:− head(holds at node(action(verb(,),subject(, ,conjunct(,0)),object(, ,
↪→)),var (1))).”).

37 #bias(”:− head(holds at node(action(verb(,),subject(, ,conjunct(0,)),object(, ,
↪→)),var (1))).”).

38

39 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(,conjunct(V,V
↪→),)),var (1))).”).

40 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(,conjunct(,0),

73

Chapter C: ASG Section C.2: Task: SumASG1

↪→)),var (1))).”).
41 #bias(”:− head(holds at node(action(verb(,),subject(, ,),object(,conjunct(0,),

↪→)),var (1))).”).
42

43 #bias(”:− head(holds at node(action(verb(,),subject(, ,conjunct(V,)),object(,
↪→ ,conjunct(V,))),var (1))).”).

44 #bias(”:− head(holds at node(action(verb(,),subject(, ,conjunct(V,)),object(,
↪→ ,conjunct(,V))),var (1))).”).

45 #bias(”:− head(holds at node(action(verb(,),subject(, ,conjunct(,V)),object(,
↪→ ,conjunct(V,))),var (1))).”).

46 #bias(”:− head(holds at node(action(verb(,),subject(, ,conjunct(,V)),object(,
↪→ ,conjunct(,V))),var (1))).”).

47

48 #bias(”:− head(holds at node(action(verb(comp(V,V),comp(,past part)),subject(
↪→ , ,),object(0,0,0)),var (1))).”).

49

50 #constant(noun,0).
51 #constant(det,0).
52 #constant(adj or adv,0).

C.3 Task: SumASG2

1 s −> np vp {
2 ...
3

4 summary(0, V, S, O) :− action(, V, S, O).
5

6 summary(1, verb(V,T), S, object(N2,D,A)) :− action(, verb(V,T), S, object(N2
↪→ ,D,)), action(, verb(be,T), subject(it, ,), object(, ,A)).

7 summary(2, verb(be,T), S, object(N,D1,conjunct(A2,A3))) :− action(, verb(be,
↪→ T), S, object(N,D1,)), action(, verb(be,T), subject(N,D2,A1), object(,
↪→ ,conjunct(A2,A3))).

8 summary(3, V, subject(N1,0,0), object(N3,D,conjunct(A1,A2))) :− action(, V,
↪→ subject(conjunct(N1,N2), ,), object(N3,D,A1)), action(, V, subject(N1,
↪→ ,), object(N3,D,A2)).

9 summary(4, V, S, object(N,D1,conjunct(A1,A2))) :− action(I1, V, S, object(N,
↪→ D1,A1)), action(I2, V, S, object(N,D2,A2)), A1 != A2, A1 != 0, A2 !=
↪→ 0, I1 < I2.

10 summary(5, V, S, object(N,D2,conjunct(A1,A2))) :− action(I1, V, S, object(N,
↪→ D1,A1)), action(I2, V, S, object(N,D2,A2)), A1 != A2, A1 != 0, A2 !=
↪→ 0, I1 < I2.

11 summary(6, V, S, object(conjunct(N1,N2),D,0)) :− action(I1, V, S, object(N1,0,
↪→)), action(I2, V, S, object(N2,D,)), N1 != N2, N1 != 0, N2 != 0, I1 <
↪→ I2.

12 summary(7, V, S, object(conjunct(N1,N2),D,0)) :− action(I1, V, S, object(N1,D
↪→ ,)), action(I2, V, S, object(N2,0,)), N1 != N2, N1 != 0, N2 != 0, I1 <
↪→ I2.

13 summary(8, V, S, object(conjunct(N1,N2),D,0)) :− action(I1, V, S, object(N1,D

74

Chapter C: ASG Section C.3: Task: SumASG2

↪→ ,)), action(I2, V, S, object(N2,D,)), N1 != N2, N1 != 0, N2 != 0, I1 <
↪→ I2.

14 summary(9, V1, subject(N, D1, conjunct(A1, A2)), object(0, 0, A3)) :− action(
↪→ , V1, subject(N, D1, A2), object(0, 0, A3)), action(, V2, subject(, 0, 0),
↪→ object(N, D2, A1)), A1 != A3.

15 summary(10, V1, subject(N, D1, conjunct(A1, A2)), object(0, 0, A3)) :− action
↪→ (, V1, subject(N, D1, A2), object(0, 0, A3)), action(, V2, subject(, 0,
↪→ 0), object(N, D2, conjunct(A1,))), A1 != A3.

16 summary(11, V1, subject(N, D1, conjunct(A1, A2)), object(0, 0, A3)) :− action
↪→ (, V1, subject(N, D1, A2), object(0, 0, conjunct(A3,))), action(, V2,
↪→ subject(, 0, 0), object(N, D2, A1)), A1 != A3.

17

18 summary(I, V, S, object(conjunct(N1,N2),D,A)) :− summary(I, V, S, object(
↪→ conjunct(conjunct(N1,N2),N3),D,A)).

19 summary(I, V, S, object(conjunct(N1,N2),D,A)) :− summary(I, V, S, object(
↪→ conjunct(N1,conjunct(N2,N3)),D,A)).

20 summary(I, V, S, object(conjunct(N2,N3),D,A)) :− summary(I, V, S, object(
↪→ conjunct(conjunct(N1,N2),N3),D,A)).

21 summary(I, V, S, object(conjunct(N2,N3),D,A)) :− summary(I, V, S, object(
↪→ conjunct(N1,conjunct(N2,N3)),D,A)).

22 summary(I, V, S, object(conjunct(N1,N3),D,A)) :− summary(I, V, S, object(
↪→ conjunct(conjunct(N1,N2),N3),D,A)).

23 summary(I, V, S, object(conjunct(N1,N3),D,A)) :− summary(I, V, S, object(
↪→ conjunct(N1,conjunct(N2,N3)),D,A)).

24 summary(I, V, S, object(N,D,conjunct(A1,A2))) :− summary(I, V, S, object(N,
↪→ D,conjunct(conjunct(A1,A2),A3))).

25 summary(I, V, S, object(N,D,conjunct(A1,A2))) :− summary(I, V, S, object(N,
↪→ D,conjunct(A1,conjunct(A2,A3)))).

26 summary(I, V, S, object(N,D,conjunct(A2,A3))) :− summary(I, V, S, object(N,
↪→ D,conjunct(conjunct(A1,A2),A3))).

27 summary(I, V, S, object(N,D,conjunct(A2,A3))) :− summary(I, V, S, object(N,
↪→ D,conjunct(A1,conjunct(A2,A3)))).

28 summary(I, V, S, object(N,D,conjunct(A1,A3))) :− summary(I, V, S, object(N,
↪→ D,conjunct(conjunct(A1,A2),A3))).

29 summary(I, V, S, object(N,D,conjunct(A1,A3))) :− summary(I, V, S, object(N,
↪→ D,conjunct(A1,conjunct(A2,A3)))).

30

31 % Pick exactly one summary sentence for each applicable rule
32 0{output(I,V,S,O)}1 :− summary(I,V,S,O).
33 :− not output(, , ,).
34

35 :− output(,verb(V N,V T),subject(S N,S D,S A),object(O N,O D,O A)), not
↪→ verb(V N,V T)@2.

36 :− output(,verb(V N,V T),subject(S N,S D,S A),object(O N,O D,O A)), not
↪→ subject(S N,S D,S A)@1.

37 :− output(,verb(V N,V T),subject(S N,S D,S A),object(O N,O D,O A)), not
↪→ object(O N,O D,O A)@2.

38 }

75

Bibliography

[1] Kiyani F, Tas O. A survey automatic text summarization. Pressacademia. 2017
Jun;5(1):205–213. Available from: http://www.pressacademia.org/images/

documents/procedia/archives/vol_5/029.pdf.

[2] Yao K, Zhang L, Du D, Luo T, Tao L, Wu Y. Dual Encoding for Abstractive
Text Summarization. IEEE Transactions on Cybernetics. 2018;p. 1–12.

[3] Lloret E. Text summarization: an overview. Paper supported by the Spanish
Government under the project TEXT-MESS (TIN2006-15265-C06-01). 2008;.

[4] Radev DR, Hovy E, McKeown K. Introduction to the Special Issue on Summa-
rization. Computational Linguistics. 2002 Dec;28(4):399–408. Available from:
http://www.mitpressjournals.org/doi/10.1162/089120102762671927.

[5] Ehling N, Zens R, Ney H. Minimum Bayes Risk Decoding for BLEU. In:
Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the Demo and Poster Sessions.
Prague, Czech Republic: Association for Computational Linguistics; 2007. p.
101–104. Available from: https://www.aclweb.org/anthology/P07-2026.

[6] Syntactic Parsing with CoreNLP and NLTK | District Data
Labs;. Available from: https://www.districtdatalabs.com/

syntax-parsing-with-corenlp-and-nltk.

[7] Kübler S. Dependency Parsing;p. 40.

[8] Studying Ambiguous Sentences;. Available from: https://www.byrdseed.

com/ambiguous-sentences/.

[9] Gomez-Rodriguez C, Alonso-Alonso I, Vilares D. How important is syn-
tactic parsing accuracy? An empirical evaluation on rule-based senti-
ment analysis. Artificial Intelligence Review. 2019 Oct;52(3):2081–2097.
WOS:000486256400018.

[10] Apt KR. Logic Programming. Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B). 1990;1990:493–574.

[11] Lifschitz V. What Is Answer Set Programming?;p. 4.

[12] Kowalski R. Predicate logic as programming language. In: IFIP congress.
vol. 74; 1974. p. 569–544.

[13] Law M, Russo A, Bertino E, Broda K, Lobo J. Representing and Learning
Grammars in Answer Set Programming. Proceedings of the AAAI Conference
on Artificial Intelligence. 2019 Jul;33:2919–2928. Available from: https://

aaai.org/ojs/index.php/AAAI/article/view/4147.

76

http://www.pressacademia.org/images/documents/procedia/archives/vol_5/029.pdf
http://www.pressacademia.org/images/documents/procedia/archives/vol_5/029.pdf
http://www.mitpressjournals.org/doi/10.1162/089120102762671927
https://www.aclweb.org/anthology/P07-2026
https://www.districtdatalabs.com/syntax-parsing-with-corenlp-and-nltk
https://www.districtdatalabs.com/syntax-parsing-with-corenlp-and-nltk
https://www.byrdseed.com/ambiguous-sentences/
https://www.byrdseed.com/ambiguous-sentences/
https://aaai.org/ojs/index.php/AAAI/article/view/4147
https://aaai.org/ojs/index.php/AAAI/article/view/4147

[14] Scheinberg S. Note on the boolean properties of context free languages.
Information and Control. 1960 Dec;3(4):372–375. Available from: https:

//linkinghub.elsevier.com/retrieve/pii/S0019995860909657.

[15] Law M, Russo A, Broda K. Inductive Learning of Answer Set Programs - User
Manual;p. 25.

[16] Kröse B, Krose B, Smagt Pvd, Smagt P. An introduction to Neural Networks;
1993.

[17] Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk
H, et al. Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv:14061078 [cs, stat]. 2014 Sep;ArXiv:
1406.1078. Available from: http://arxiv.org/abs/1406.1078.

[18] Gers FA, Schmidhuber J, Cummins F. Learning to Forget: Continual Prediction
with LSTM. Neural Computation. 2000 Oct;12(10):2451–2471. Available from:
http://www.mitpressjournals.org/doi/10.1162/089976600300015015.

[19] Graves A, Jaitly N, Mohamed Ar. Hybrid speech recognition with Deep Bidirec-
tional LSTM. In: 2013 IEEE Workshop on Automatic Speech Recognition and
Understanding. Olomouc, Czech Republic: IEEE; 2013. p. 273–278. Available
from: http://ieeexplore.ieee.org/document/6707742/.

[20] Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv:14090473 [cs, stat]. 2016 May;ArXiv:
1409.0473. Available from: http://arxiv.org/abs/1409.0473.

[21] Steedman M. Combinatory Categorial Grammar;p. 31.

[22] Yeh JY, Ke HR, Yang WP, Meng IH. Text summarization using a trainable
summarizer and latent semantic analysis. Information Processing & Manage-
ment. 2005 Jan;41(1):75–95. Available from: https://linkinghub.elsevier.
com/retrieve/pii/S0306457304000329.

[23] Powers DM. Evaluation: from Precision, Recall and F-measure to ROC, In-
formedness, Markedness and Correlation. 2011 Dec;Available from: https:

//dspace.flinders.edu.au/xmlui/handle/2328/27165.

[24] Barzilay R, Elhadad M. Using lexical chains for text summarization. 1997;Avail-
able from: https://doi.org/10.7916/D85B09VZ.

[25] Knight K, Marcu D. Statistics-based summarization-step one: Sentence com-
pression. AAAI/IAAI. 2000;2000:703–710.

[26] Lehnert WG. 1980 - Narrative Text Summarization;p. 3.

[27] Clark S. Combining Symbolic and Distributional Models of Meaning;p. 4.

[28] Partee B. Lecture 2. Lambda abstraction, NP semantics, and a Fragment of
English. Formal Semantics;p. 11.

[29] Penn Treebank P.O.S. Tags;. Available from: https://www.ling.upenn.edu/
courses/Fall_2003/ling001/penn_treebank_pos.html.

77

https://linkinghub.elsevier.com/retrieve/pii/S0019995860909657
https://linkinghub.elsevier.com/retrieve/pii/S0019995860909657
http://arxiv.org/abs/1406.1078
http://www.mitpressjournals.org/doi/10.1162/089976600300015015
http://ieeexplore.ieee.org/document/6707742/
http://arxiv.org/abs/1409.0473
https://linkinghub.elsevier.com/retrieve/pii/S0306457304000329
https://linkinghub.elsevier.com/retrieve/pii/S0306457304000329
https://dspace.flinders.edu.au/xmlui/handle/2328/27165
https://dspace.flinders.edu.au/xmlui/handle/2328/27165
https://doi.org/10.7916/D85B09VZ
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

	Introduction
	Motivations
	Objectives
	Approach Overview
	Contributions
	Paper Structure

	Background
	Summarization
	Types Of Summaries
	Summarization Levels
	Evaluating Summaries

	Syntactic Parsing
	Answer Set Grammars
	Answer Set Programming
	Answer Set Grammars

	Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memories
	Encoder-Decoders
	Attention Mechanism

	Preprocessor
	Overview
	Tokenization And Simplification
	Punctuation
	Individual Word Transformations
	Clause Transformations
	Case And Proper Nouns

	Sentence Pruning And Homogenisation
	Word Similarity
	Sentence Similarity And Pruning
	Synonyms And Homogenisation

	Example

	ASG
	Overview
	Internal Representation
	Leaf Nodes
	Non-Leaf Nodes

	Learning Actions
	Formalisation
	Implementation
	Search Space Reduction

	Generating Summary Sentences
	Formalisation
	Implementation

	Example

	Post-Processing / Scoring
	Overview
	Summary Creation
	Post-Processing
	Combining

	Scoring
	Type-Token Ratio

	Summary Selection
	Proper Nouns
	Top Summaries
	Reference Summaries

	Example

	Possible Improvements
	Preprocessor
	Negation
	Lists

	ASG
	Missing English Structures
	Learning Summarization Rules
	Speed

	Post-Processing / Scoring
	Grammatical Shortcomings
	Better Summary Selection

	Validation And Evaluation
	General Idea
	Story Generation
	Datasets
	Main Sentence Generation
	Conjunctive Summaries
	Descriptive Summaries
	Summary Generation

	Validation
	Evaluation Experiments
	Experiment 1: Robustness To Perturbations
	Experiment 2: Input Validity Awareness

	Takeaways

	Related Work
	Semantic Analysis Methods
	Combinatory Categorial Grammar

	Existing Text Summarization Approaches
	Lexical Chains
	Corpus-Based Approach / Latent Semantic Analysis

	Approach Categories
	Frame
	Statistical
	Symbolic

	Conclusion
	Achievements
	Future Work
	Better Semantic Understanding
	Longer Stories
	Domain-Specific Understanding

	Appendix POS Tags
	Appendix Example Stories
	Appendix ASG
	Common Grammar
	Task: SumASG1
	Task: SumASG2

