
MEng Individual Project

Imperial College London

Department of Computing

Optimised small-matrix linear algebra in
Firedrake

Author:

Natalia Arciuchiewicz

Supervisor:

Paul Kelly

Second Marker:

David Ham

June 17, 2020

Abstract

Many physical processes can be modelled and understood using partial di�erential equations, such
as �uid �ow, cell growth and structural analysis.

Firedrake is a compiler for a domain-speci�c language. Given a partial di�erential equation
and a discretisation method, it uses �nite elements to generate code to approximately solve the
equation.

The aim of this project is to optimise operations on local, small-matrix tensors in Firedrake so
that they are more e�cient in terms of the memory and number of calculations required. This was
achieved in two ways:

Firstly, by reducing the amount of memory needed by temporaries to perform op-
erations on tensors. This was done through smart indexing, which was implemented through
manipulations of the expression graph. Although the optimisation still created some unneccessary
memory associated with temporaries, it did reduce the amount of memory needed by 55% - 65%.

A model was developed to predict the amount of memory needed by temporaries before and
after our changes, based on things like mesh and operation order. The model was applied to various
examples, including the common and useful example of hybridization, with predictions validated
by comparison with the true values obtained from the output code.

Secondly, by taking advantage of the sparsity of local tensors. Sparse local tensors were
successfully implemented via a bu�er of non-zero values and a mapping of these back into the full
tensor.

We developed a solution to show how PyOP2 global assembly could be adapted to support
sparse tensors and demonstrated its correctness through a proof of concept. We deduced that by
completing the implementations of sparse local tensors, we could reduce the memory and calcula-
tion on the local tensors to by over 50% for 2D tensors and over 66% for 3D tensors.

Acknowledgements

I would like to thank everyone who has supported me throughout this project.
In particular, I thank my supervisors Paul Kelly and David Ham for their support and advice.

I greatly appreciated the frequent meetings and interest in the success of the project. Their
knowledge and dedication have been invaluable.

I also thank Sophia Vorderwuelbecke for her support and patience in helping me understand
the system and overcome issues.

I am grateful to all those who read this thesis and especially Andrew Young for his inspirational
discussions, feedback and support which helped and encouraged me throughout.

Finally, thank you to my family and friends for their encouragement throughout my time at
Imperial.

Contents

1 Introduction 5
1.1 Context: Automating the �nite element method . 5
1.2 Objectives . 6
1.3 Contributions . 6
1.4 Thesis structure . 7

2 Background 8
2.1 Finite element method . 8

2.1.1 The steps in FEM: A simple example [1, 2, 3] 8
2.1.2 More details about FEM . 13
2.1.3 FEM implementation . 13

2.2 Hybridization, Static Condensation, Local Post-Processing 14
2.2.1 Background mathematical concepts . 14
2.2.2 Hybridization [4] . 14
2.2.3 Static condensation . 17
2.2.4 Local post-processing . 17

2.3 FEniCS . 17
2.4 Firedrake . 17

2.4.1 Firedrake architecture [5] . 19
2.5 Slate and Slac [4] . 20
2.6 Eigen [6] . 21
2.7 Loopy [7, 8, 9] . 21
2.8 Other Related Work . 22

2.8.1 Dune-FEM and deal.II . 22
2.8.2 BLAS and LAPACK . 22
2.8.3 EXCAFE [10] . 23

2.9 Summary . 23

3 Part 1: Reducing Unneccessary Temporaries 24
3.1 GEM and UFL terminology [11] . 24
3.2 Slate/Slac terminology [4, 11] . 25
3.3 First steps . 26
3.4 Model problem . 26

3.4.1 Tensor . 26
3.4.2 Transpose . 27
3.4.3 Other basic Slate operations . 29

3.5 Implementation . 29
3.6 Relation to existing work . 29
3.7 Summary . 30

4 Part 1: Reducing Unneccessary Temporaries: Evaluation and Results 31
4.1 Aims . 31
4.2 Analysis of the optimisation using modelling . 31

4.2.1 Operation type . 32
4.2.2 Temporary type . 37
4.2.3 Finite element family . 37
4.2.4 Mesh and degree of �nite element . 38

2

4.2.5 Evaluating on examples: Aggressive unary op nesting 39
4.2.6 Evaluating on examples: Hybridization . 41

4.3 Evaluation of optimisation to remove unneccessary temporaries 44
4.3.1 Limitations . 44
4.3.2 Strengths . 45

4.4 Evaluation of model for amount of memory needed for temporaries 45
4.4.1 Limitations . 45
4.4.2 Strengths . 45

4.5 Summary . 46

5 Part 2: Structured Sparse Local Tensors 47
5.1 Introduction . 47
5.2 Context: Sparsity and indexing strategies . 47

5.2.1 Structured and unstructured sparsity . 47
5.2.2 How local tensor sparsity arises . 48
5.2.3 Di�erent indexing strategies . 49

5.3 Implementing sparsity in local kernels . 49
5.3.1 Before . 49
5.3.2 After . 50
5.3.3 Implementation details . 51

5.4 Propagating the local tensor sparsity . 52
5.4.1 Global assembly procedure details . 52
5.4.2 PyOP2 concepts . 53
5.4.3 Assembly implementation in PyOP2 . 54
5.4.4 Adapting PyOP2 assembly to support structured sparse local tensors 55

5.5 E�ect . 57
5.6 Evaluation . 57

5.6.1 Limitations . 57
5.6.2 Strengths . 57

5.7 Summary . 58

6 Conclusion 59
6.1 Conclusions . 59

6.1.1 Reducing the amount of memory needed by temporaries to perform opera-
tions on tensors . 59

6.1.2 Taking advantage of the sparsity of local tensors to reduce memory and
computation. 59

6.2 Future work . 60

A Notation, Acronyms and Glossary 61
A.1 Notation . 61
A.2 Acronyms and Shorthands . 61
A.3 Glossary . 62

B Speci�cation of testing hardware 63

C Code before and after removing unneccessary temporaries 64
C.1 AssembledVector . 64
C.2 Negative . 64
C.3 Inverse local . 65
C.4 Addition . 65
C.5 Multiplication . 66

C.5.1 Matrix-Vector multiplication . 66
C.5.2 Matrix-matrix . 66

C.6 Solve . 67
C.6.1 Global solve: solve(A, u, F, solver_parameters={'ksp_type':'cg'}) 67
C.6.2 Local solve: assemble(_A.solve(_F)) . 67

C.7 Blocks . 68
C.8 Hybridization . 68

3

D Aggressive unary op nesting output 72
D.1 Before optimisation . 72
D.2 After optimisation . 74

E Appendix for Structured Sparse Local Tensors 75
E.1 Local kernel . 75
E.2 Code generated from PyOP2 wrapper . 77

4

Chapter 1

Introduction

This thesis presents optimisations that allow local, small-matrix tensors in Firedrake to be used
more e�ciently in terms of memory and calculation required. The contributions fall into two
main categories: (1) reducing the number of temporaries needed to perform manipulations on the
tensors, and (2) taking advantage of the sparsity of local tensors.

In this chapter, we outline the context of this project, and hence show the importance of the
work for solving real-life problems. We discuss the objectives of the project and highlight our key
contributions.

1.1 Context: Automating the �nite element method

Many physical processes, such as �uid �ow or cell growth, can be modelled and understood using
partial di�erential equations (PDEs). The �nite element method (FEM) is a widely used numerical
method for solving PDEs. There are many tools that automate the process of using FEM to solve
problems. Notable among these is Firedrake, on which this project is based.

Why is the �nite element method widely used?

FEM can be a powerful technique of �nding solutions to interesting and useful questions. It uses
discretisation to divide the system into �nite elements. This is bene�cial since it allows for an
accurate representation of complex geometry, capturing of local e�ects and a simple representation
of the whole solution. [12] Advantages of FEM include: [13, 14, 15]

• Modelling objects made from many di�erent materials.

• The size of the elements can be adapted for better representations.

• Can be used for time-dependent simulations.

• Visualisations can easily be created from it.

FEM has many strengths, but in order to take advantage of these, we need to �nd a way to make
it easy to use. This leads us on to our next question.

How can we use the �nite element method?

It is possible to hand-calculate the results of problems using FEM, but this is very cumbersome.
Many steps in FEM can be automated by a computer, and luckily the mathematics of FEM can
often be simply and abstractly speci�ed.

However, it is di�cult and time consuming to hand-code e�cient, parallel and correct imple-
mentations. A key disadvantage of hand-coding low-level code is the loss of abstraction. When
working on such low level code, where all the implementations of the di�erent parts of the process
are not separated, it is much harder to reason about the program and the higher-level mathemat-
ical concepts, as well as to make changes to the choice of a certain part, e.g. wanting to solve a
di�erent PDE.

All this naturally leads us to create tools that automate the �nite element method that take in a
user-de�ned problem and automatically generate code to solve the problem using FEM. Many such
software solutions have been implemented, including the system used in this project: Firedrake
[5].

5

Why use Firedrake as opposed to other systems utilising the �nite element method?

What di�erentiates Firedrake from other �nite element system is that it has �ne-grain separation of
the FEM abstraction. By separating the calculation into many specialised layers, Firedrake allows
people knowledgable about di�erent disciplines to add value within their domain of expertise
without needing to have much understanding of the other parts of the systems or the underlying
mathematics. In addition, layers allow optimisations to automatically and easily be performed on
many di�erent levels of abstraction.

Firedrake users use Uni�ed Form Language (UFL) to specify the mathematics of their problems.
UFL is a domain speci�c language (DSL) embedded in Python that allows the expression of FEM
problems compactly and in a language close to mathemetics. This makes it more intuitive and
simple to use, according to its authors Alnaes et al [16]. With UFL, users can easily specify their
problems without needing to think about the lower-level implementations.

However, Firedrake is not fully optimised for all FEM problems. Two methods have become
increasingly popular, especially in simulating geophysical �ows. These are discontinuous Galerkin
methods and mixed FEMs. It is di�cult to create solvers for the systems these methods produce;
it can be more e�cient to solve the systems by directly manipulating local tensors.

How can we manipulate local tensors in Firedrake?

Slate is an embedded DSL in Firedrake that can be used to manipulate local tensors. [4]

How do we e�ciently manipulate local tensors in Firedrake?

This project aims to address this question.

1.2 Objectives

The objective of this project is to optimise the layer in Firedrake responsible for tensor computa-
tions. This is accomplished through the following:

1. Reducing the amount of memory needed by temporaries to perform operations on tensors.

2. Taking advantage of the sparsity of local tensors to reduce memory and computation.

1.3 Contributions

This thesis has the following contributions:

1. A new optimisation phase is proposed that reduces the number of temporaries through smart
indexing, and the implementation of this in Firedrake through manipulations of the expression
graph. This has led to a reduction of the memory required for temporaries by 55%-65%.

2. Analysis of the stacking e�ects of di�erent operations, i.e. how the number of temporaries
needed for a sequence of operations is di�erent to what one may expect from taking the
operations in isolation.

3. A model for the memory required for temporaries before and after our changes, based on
things like the mesh and the �nite element; application of the model to various examples,
including the common and useful example of hybridization, validated through comparison
with the true values obtained from the output code.

4. Design and implementation of a new optimisation in Firedrake that takes advantage of the
sparsity of local tensors. For 2D tensors, this cuts the space and calculation to just over 50%,
while for 3D tensors these are cut by almost 66%.

5. Analysis of global assembly in PyOP2 and proposal for how it could be changed to support
structurally sparse local tensors.

6

1.4 Thesis structure

In chapter 2 we provide a review of relevant literature that forms the background knowledge related
to this project and related work.

In chapter 3 we discuss the work undertaken in this project with relation to reducing the amount
of memory needed for temporaries, giving a run through of the ideas and approaches along the
way.

In chapter 4 we evaluate our work on reducing the memory for temporaries, putting it into
context of similar work and analysing the e�ects of our changes through the creation of a model
to predict memory required for temporaries. We then use this model on several examples, most
notably on a hybridization example.

In chapter 5 we present our work on implementing structured sparse local tensors, including a
discussion about the limitations of PyOP2 with regards to performing global assembly on the local
sparse tensors.

Finally, in chapter 6 we conclude the project, discussing its successes, limitations in the current
Firedrake system, and possible future work.

7

Chapter 2

Background

This chapter is intended to familiarise the reader with the Firedrake toolchain and to give some
context for the work presented later in this thesis. This requires a brief outline of the mathematical
concepts related to the �nite element method. We then go on to discuss related work in order to
show Firedrake in the context of similar systems.

A summary of commonly used acronyms is included in the appendix. The appendix also
includes a glossary with items not de�ned explicitly in the text that we have assumed the reader
is familiar with.

2.1 Finite element method

Figure 2.1: An example of a mesh [12]

Partial di�erential equations (PDEs) are either elliptic, hyperbolic or parabolic. The common
way of solving elliptic PDEs is using variational methods, which includes the �nite element method
(FEM). [17]

The �nite element method is a type of numerical method for solving PDEs. Given a di�erential
equation, the �nite element method generates an algorithm for approximating the solution. [2]
FEM uses discretisation implemented by a 'mesh' (e.g. 2.1) to divide the system into '�nite
elements'. Computations are performed on each element and the results of these are assembled
into a system of polynomial equations which are then solved. [12]

We will give a general introduction to the steps in FEM through a simple example, given below.

2.1.1 The steps in FEM: A simple example [1, 2, 3]

Before diving in to, we brie�y discuss an important concept that will be used in this example.

Boundary conditions Boundary conditions are enforced to ensure a unique solution to the
di�erential equation. There are two main forms of boundary conditions, each enforced in a di�erent
way in the �nite element method: [1, 2]

8

• Dirichlet (e.g. u(0) = 0), which specify the value of the solution on the boundary. Also called
'essential' since they are in the essence of the problem and appear in the weak form explicitly
(discussed later).

• Neumann (e.g. u'(1) = 0), which specify the values of the derivatives within the boundary
of the domain. Also called 'natural' since they naturally emerge from the problem. They are
incorporated implicitly in the weak form.

Let's now consider a simple example to demonstrate the steps in FEM, namely Poisson's equation
in one dimension:

−∇2u = f, in [0, 1] (2.1)

where u(0) = 0, (2.2)

u′(1) = 0 (2.3)

Here u is an unknown function we wish to �nd that we call the trial function. Let's walk through
the steps of FEM to �nd u.

Step 0: Strong form. We start with the PDE in the strong form. For our example, this is
equation 2.1. In this form, the equality in 2.1 applies for every point in the domain and the
boundary conditions apply for the boundary points. Often PDEs in the strong form cannot be
solved as-is. If we are willing to accept a wider class of solutions, such as functions that are not
everywhere continous, we can transform the PDE into a "weaker" form in order to solve it.

Step 1: Weak/Integral form. The weak form, also called the integral form, is a reformulation
of the original (strong) form of the equation which has much weaker constraints on valid solutions.
The solutions to the weak form are a superset of the solutions to the strong form.

To bring the equation into this weaker form, we weigh the equation with a (su�ciently regular)
test function v, integrate over the entire domain, then integrate by parts.

We perform integration by parts in order to lower the order of derivatives (we want u′(x), not
u′′(x)), as this lowers the order of continuity required. Let us de�ne the space V of suitable test
functions, v, which includes the conditions that must be imposed on v.

V = {v ∈ L2([0, 1]) : a(v, v) <∞ and v(0) = 0} (2.4)

where the constraint that v(0) = 0 comes from the Dirichlet condition in the original problem.

Putting this all together we get:

(f, v) :=

∫ 1

0

fv dx =

∫ 1

0

−u′′v dx =

∫ 1

0

u′v′ dx− u′v|10 =

∫ 1

0

u′v′ dx =: a(u, v) (2.5)

In the above workings, u′v|10 = 0 because of the boundary conditions of our original problem
2.1. This is what we mean by the Neumann boundary conditions being incorporated implicitly in
the weak form.

Then the variational (weak) form of 2.1 is:

u ∈ V such that a(u, v) = (f, v) ∀v ∈ V (2.6)

This form is also called the variational form because v can vary over all possible values. If f ∈
C0([0, 1]) and u ∈ C2([0, 1]) (i.e. the functions are su�ciently well-behaved), and f and u satisfy
the weak form 2.6, then u solves the original equation 2.1 [1]. Here we use Cn([0, 1]) to denote the
space of functions with n continuous derivatives on the interval [0, 1].

In the weak form, we are still looking for an in�nite-dimensional solution in an in�nite-
dimensional space. We want to make our problem �nite-dimensional so that we can implement it
in code.

9

(a) Example of two functions, v1 and v2, that are
in our chosen S.

(b) Basis for our chosen S.

Step 2: Discretization of the weak form. We choose a �nite-dimensional subspace, call it
S, of the function space we are in, S ⊂ V . Hence, we now seek

us ∈ S such that a(us, v) = (f, v) ∀v ∈ S (2.7)

Here we see that we have excluded some possible solutions for u, but we have also reduced the
number of test functions v we need to look at. If f ∈ L2([0, 1]) then 2.7 has a unique solution
(proof omitted).

Let's look at a possible space S and a mesh of it for our one-dimensional Poisson example.
Consider 0 = x0 < x1 < ... < xn = 1 an ordered set of points in our domain [0, 1] that we will
call the nodes of our system. The intervals between these points, [xi−1, xi], form a partition of the
entire domain [0, 1]. These intervals are called the elements and together they form a mesh on the
domain. We can de�ne S to be the linear space of functions v such that:

1. v ∈ C0([0, 1])

2. v|[xi−1,xi] is a linear polynomial for i = 1, ..., n (i.e. of the form y = ax+ b)

3. v(0) = 0 (the boundary condition from the original de�nition of the PDE in equation 2.1)

Let's arbitarily for this example choose the nodes to be point evaluation at

x = {0, 0.1, 0.4, 0.5, 0.55, 0.8, 1} (2.8)

An example of two functions, v1 and v2, that would be part of S for nodes 2.8 is shown in �gure
2.2a.

The errors in FEM come from the di�erence between the discretised space S and the continuous
space V . The error decreases when the mesh is re�ned i.e. when we add in more nodes to make
the diameter of each element smaller.

Step 3: Assembly procedure. Now we use the assembly procedure to turn 2.7 into a system
of linear equations that we can then solve. In short, the assembly procedure consists of two main
steps:

1. Local assembly. Compute local n× n matrix Ke and local n× 1 vector F e for each element
e in the domain, where n is the number of nodes per element.

2. Global assembly. Form global matrix K and global vector F from the local ones.

Let's work through these steps in more detail with our Poisson example. We �rst introduce some
concepts needed for the assembly steps.

We must decide on a basis for our discrete space S. A possible basis for S for our Poisson
example is the set

{φi : φi(xj) = δij i = 1, ..., n} (2.9)

We illustrate this global basis in �gure 2.2b, where we've taken the same set of nodes as before,
2.8.

10

Since we are computing locally then combining globally, we need a way to translate between
local and global node references. This is done via a global-to-local index (also called a cell-node
map or a facid node map). This index, which we will denote i(e, j), gives the global node number of
local node j, given that we are in element e. For our Poisson example, each element corresponds to
two nodes, so j ∈ {0, 1}. For example, if we are in element [0.1, 0.4] then i(e, 0) = 1 and i(e, 1) = 2.

The change of basis from global x ∈ [0, 1], which moves across all elements, to local X ∈ [0, 1],
which moves across a single element [xj−1, xj], will be

x = xj−1 +X(xj − xj−1) (2.10)

Let us de�ne an interpolant vI ∈ S of v ∈ C0([0, 1]) to be determined by vI :=
∑n
i=1 v(xi)φi.

We can write interpolant functions for functions in space S as:

fI =
∑
e

1∑
j=0

f(xi(e,j))φ
e
j (2.11)

where {φej : j = 0, 1} denotes the local basis function for a given element [xe−1, xe]:

φej(x) = φj

(
x− xe−1

xe − xe−1

)
(2.12)

where

φ0(x) :=

{
1− x if x ∈ [0, 1]

0 otherwise
and φ1(x) :=

{
x if x ∈ [0, 1]

0 otherwise
(2.13)

At this point we've decided on a global basis, an index to translate between local and global
node references, de�ned the change of basis mapping, determined a local basis, and have a way of
interpolating continuous functions in our discrete space S. Now we can assemble (i.e. compute)
equation 2.7:

us ∈ S such that a(us, v) = (f, v) ∀v ∈ S (2.14)

Let's look at the right hand side �rst: (f, v). Here v is our test function. Fortunately, testing just
the basis functions is su�cient because then we've tested with all the functions in the function
space (since any function v ∈ S can be represented as v =

∑
i viφi and by linearity of a(us, v) and

(f, v)).
Since we are working in a discrete space we want to represent f discretely so we re-write it as

a linear combination of some basis elements (usually, but not necessarily, the same as the basis for
S). For simplicity, in this example let's use the same basis elements as for S. Hence our continuous
f can be represented by the interpolant form given in 2.11.

Putting it all together, for the right hand side we get:
∀i = 1, ..., n and ∀v ∈ S:

(f, v) ≡ (f, φi) :=

∫ 1

0

fφi dx (Su�cient to test only basis functions) (2.15)

≡
∑
e

∫
e

fφi dx (Summing all local element contributions) (2.16)

=
∑
e

1∑
j=0

f(xi(e,j))

∫
e

φiφ
e
j dx (Represent f discretely) (2.17)

Changing 2.17 into local coordinates we see that for each element we want to �nd F e such that:

F e =

1∑
j=0

f(xi(e,j))

∫
e

φeiφ
e
j

dx

dX
dX ∀i = 1, ..., n (2.18)

where
dx

dX
= xi(e,1) − xi(e,0) (2.19)

from our change of basis 2.10. Note that xi(e,1) − xi(e,0) is just the length of the interval.

11

Since j ∈ {0, 1}, 2.18 gives us back two values corresponding to the local contributions of the
current element to the global nodes associated with it (e.g. if the current element is [0.1, 0.4] then
this calculation will give us the local contributions of this element to global nodes 1 and 2).

Let's now look at the left hand side. We have that ∀i = 1, ..., n and ∀v ∈ S:

a(us, v) = a(

n∑
j=1

ujφj , v) =

n∑
j=1

uja(φj , v) (Substitute us =

n∑
j=1

ujφj) (2.20)

≡
n∑
j=1

uja(φj , φi) (Su�cient to test only basis functions) (2.21)

=:

n∑
j=1

ujK
e (2.22)

Taking Ke from 2.22 and changing it into local coordinates as well as changing the basis for the
derivatives appropriately we see that from each element we will get ∀i ∈ {0, 1} and ∀j ∈ {0, 1}

Ke =

∫ 1

0

dX

dx

dφej(X)

dX

dX

dx

dφei (X)

dX

dx

dX
dX (2.23)

Here i and j can both take two values hence Ke will be a 2× 2 matrix.
Typically, the local assembly matrixKe is evaluated approximately using numerical quadrature.

Using numerical quadrature to �nd, for a domain e ⊂ Rn, the integral of a suitable function f
(i.e. f is never discontinuous inside e) involves the summation of f evaluated on speci�cally chosen
quadrature points and then weighted appropriately:∫

e

f(x)dx =
∑
i

wif(xi) + O(|e|k) (2.24)

The second term is the error term, which can be reduced to a desired level by using more quadrature
points.

The weights depend on the diameter of each element, call this h. Practically, we want to deter-
mine the combination of the quadrature points and the weights, collectively known as quadrature
rules, as arrays of numbers independent of h. To do this, we determine these quadrature rules for
a reference element. Then when we want to perform numerical quadrature on our mesh elements,
we can change coordinates to our reference element to perform the computation there. The change
of basis is found using the Jacobian. [18]

The global matrix K is composed out of all the individual Ke elements. For example, when
calculating Ke for element [0.1, 0.4], K's 1st and 2nd row and column would be a�ected. The
sparsity of K depends on the connectivity of the mesh, hence K is typically very sparse.

Step 4: Solve the resulting system of linear equations. Putting this all together, we have
us =

∑n
j=1 ujφj . For each element, we also have Ke = a(φj , φi) and F

e = (f, φi).
Using these parts, let's build the system of linear equations:

• Let u = (uj)

• Assemble all the local contributions of the Ke elements into K

• Assemble all the local F es into F .

We now see that equation 2.7 is equivalent to

Ku = F (2.25)

In this system of linear equations, the basis functions for S are the test functions we are testing,
where each test function corresponds to one row in the sti�ness matrix, K.
We can solve this system of linear equations using variational or iterative methods.
We note the properties of K as: symmetric, positive de�nite and typically sparse.
[1, 2, 3]

12

2.1.2 More details about FEM

Things that can change between �nite element methods These are: [12]

• a variational formulation (e.g. Galerkin, discontinuous Galerkin, mixed methods)

• a discretisation strategy. This involves creating the mesh, choosing the shape functions (see
2.1.3) and de�ning the mapping between the reference element and the physical elements of
the mesh.

• solution algorithms. These are classi�ed as either direct or iterative.

• post-processing steps. These can be used to extract information of interest from the solution
as well as to perform error estimation.

Galerkin methods (Continuous) Galerkin methods are methods that take continuous operator
problems, change them into a weak formulation, discretize, then apply the speci�ed constraints on
the discrete function space. Most relevantly here, an example of such a method is the Galerkin
method of weighted residuals which is often used to �nd the global sti�ness matrix in FEM. The
solutions of this example method are represented as weighted sums of test functions, where the
method seeks to �nd the weights such as to minimize the error between the actual solution and
the approximation given by the test function combination. [19, 20]

Discontinuous Galerkin (DG) methods are similar to continuous Galerkin methods, but DG
supports trial spaces that are only piecewise continous; thus DG has no continuity constraints
across element boundaries. [21] To work around the lack of continuity, the connection between cells
is de�ned by �ux terms that are represented as integrals over the interior facets (jump conditions).
[11]

2.1.3 FEM implementation

Here we discuss some key ideas for understanding how the �nite element method can be imple-
mented in code.

Figure 2.3: Examples of �nite elements [22]

Finite element The concept of a �nite ele-
ment was formalised by Ciarlet in 1978 as: [1]

1. K ⊂ Rn the element domain, the cell.
This should be a bounded and closed set,
have a non-empty interior and have a
piecewise smooth boundary. This is just
the shape to de�ne the element on.

2. P is the space of functions K → Rn. Ref-
ered to as the shape functions, this is the
�nite dimensional space of functions on
K. This is just the polynomials the ele-
ment should be able to represent.

3. N = {N1, N2, ..., Nk} a basis for P ∗, the
dual of P . These are the nodal variables,
also called the set of degrees of freedom.
This is how one speci�es "where" the so-
lutions should live.

Nodal basis Letting N = {φ∗j}j be a basis for P ∗, then a nodal basis, {φi}i for P is a basis for
P with the property that φ∗j (φi) = δij . Examples of nodal bases include: [18]

• evaluation of the function f ∈ P at points on the cell.

• evaluating the integral of the function over e.g. a cell, vertex, edge, face.

• evaluating the gradient of the function at a given point.

13

(a) Cubic hermite element on a
triangle.

(b) Quintic Argyris element on
a triangle.

Nodes and degrees of freedom We brie�y note the di�erence between nodes and degrees of
freedom. The degrees of freedom are the number of all the things you can evaluate. A node is a
point in the domain to which degrees of freedom are assigned. A particular node can have multiple
degrees of freedom. For example, a node on a vertex could calculate the function at the point and
also the function's gradients in two directions � one node, three degrees of freedom. [23, 24]

Nodal basis depictions We brie�y introduce the conventional depictions of common nodal
bases on a 2D triangle. We use the cubic Hermite (2.4a) and quintic Argyris element (2.4b) as
a reference. The '•' denotes the nodal variable evaluation at that point. '©' denotes evaluation
of the gradient at the given point (note that the gradient can have multiple components so this
may give more than one degree of freedom). '}' denotes evaluation of the Hessian. The outgoing
arrows denote evaluation of the gradient normal to the three triangle edges. [18]

2.2 Hybridization, Static Condensation, Local Post-Processing

Here we brie�y discuss some methods related to FEM which the reader should be familiar with in
order to appreciate the capabilities of Slate, as well as to understand the choice of FEM problems
used in the later parts of this paper.

2.2.1 Background mathematical concepts

We begin by providing de�nitions and brief descriptions of mathematical concepts that are useful
for understanding hybridization, static condensation and local post-processing.

Lagrange multipliers In summary, the method of Lagrange multipliers seeks to �nd local
extrema of function f(x) subject to equality constraint g(x) = 0. It does this by �nding the
stationary points of the Lagrangian function L(x, λ) = f(x) − λg(x), with λ referred to as the
Lagrange multiplier. [25]

2.2.2 Hybridization [4]

Hybridization is a method that takes discrete equations, and transforms them into a form to which
one can apply the static condensation and local post-processing methods, such that the systems
can be solved more easily. Hybridization methods can be used to avoid the di�cult task of making
sparse approximations of dense elliptical operators.

The challenge with implementing hybridization is making the code e�cient and able to handle
complex models, as well as keeping separate the di�erent levels of abstraction. Slate is Firedrake's
solution to this challenge.

In summary, what hybridization does is create an equivalent but discontinuous variant of the
original problem, leading to the coupling of velocity only within cells. Within this process, Lagrange
multipliers are introduced in order to enforce certain continuity constraints.

We will use the following example of an elliptical equation as an example of hybridization of
mixed methods. This example is an adaptation of the example found in Gibson 2018 [4].

14

Notation

• Take dx and ds to be the standard measures of integration.

• Ω ⊂ Rn, the domain in which we are working.

• Th the tesselation of Ω, made up of polygonal elementsK associated with mesh size parameter
h.

• ∂Th = {e ∈ ∂K : K ∈ Th} the set of factes of Th
• The jump of the normal component of any double-valued vector �eld w across a facet e ∈ ∂Th
is:

[[w]]e =

{
w|e+ · ne+ + w|e− · ne− , e ∈ ∂Th \ ∂Ω

w|e · ne, e ∈ ∂Th ∩ ∂Ω
(2.26)

with + and - denoting arbitary but globally de�ned sides of the facet.

Bringing a mixed method example into a solvable form

−∇ · (κ∇p) + cp = f, inside the domain Ω (2.27)

p = p0, on ∂Ωp (2.28)

−κ∇p · n = g, on ∂ΩN (2.29)

with ∂ΩD ∪ ∂ΩN = ∂Ω and κ, c : Ω→ R+ are positive-valued coe�cients. We now work throught
the problem in the usual way before applying hybridization. We rewrite the problem as a �rst
order system to get the mixed problem:

µu +∇p = 0, inside the domain Ω (2.30)

∇ · u + cp = f, inside the domain Ω (2.31)

p = p0 on ∂Ωp (2.32)

u · n = g, on ∂ΩN (2.33)

where µ = κ−1 and u = −κ∇p is the velocity variable.
Bringing this into the weak form we seek to �nd (uh, ph) in �nite-dimensional subspaces Uh ×

Vh ⊂ H(div)× L2 such that:∑
K∈Th

∫
K

w · µuhdx−
∑
K∈Th

∫
K

∇ ·w · phdx = −
∑

e∈∂ΩD

∫
e

w · n · p0ds ∀w ∈ Uh,0 (2.34)

∑
K∈Th

∫
K

φ · ∇ · uhdx+
∑
K∈Th

∫
K

φ · cphdx =
∑
K∈Th

∫
K

φ · fdx ∀φ ∈ Vh (2.35)

with:

Uh = {w ∈ H(div; Ω) : w|K ∈ U(K),∀K ∈ Th,w · n = g on ∂ΩN} (2.36)

Vh = {φ ∈ L2(Ω) : φ|K ∈ V (K),∀K ∈ Th} (2.37)

and where Uh,0 ⊂ Uh is the space of vector-valued functions in Uh whose normal components
vanish on ∂ΩN . Typical choices of U(K) include Raviart-Thomas (RT), Brezzi-Douglas-Marini
(BDM) and Brezzi-Douglas-Fortin-Marini (BDFM) elements. [4]. Now we expand the solutions in
terms of {Ψi}i, the basis for Uh, and {ξi}i, the basis for Vh:

uh =

Nu∑
i=1

UiΨi, ph =

Np∑
i=1

Piξi (2.38)

with Ui and Pi being the coe�cients to be determined. Letting w = Ψj , j ∈ {1, ..., Nu} and
φ = ξj , j ∈ {1, ..., Np} in 2.34 - 2.35, we get the following discrete saddle point system:[

A −BT
B C

](
U
P

)
=

(
F0

F1

)
(2.39)

15

with U = {Ui}, P = {Pi} the coe�cient vectors and

Aij =
∑
K∈Th

∫
K

Ψi · µΨjdx (2.40)

Bij =
∑
K∈Th

∫
K

ξi · ∇ ·Ψjdx (2.41)

Cij =
∑
K∈Th

∫
K

ξi · cξjdx (2.42)

F0,j = −
∑

e∈∂ΩD

∫
e

Ψj · n · p0ds (2.43)

F1,j =
∑
K∈Th

∫
K

ξj · fdx (2.44)

Now we have worked through the problem and brought it into a form we can solve. There are
many methods to solve such a system, but here we will look at a hybridized mixed method.

Hybridized mixed method example

1. To create the discontinuous variant of our problem, we replace the solution for uh with the
space Udh with

Udh = {w ∈ (L2(Ω))n : w|K ∈ U(K),∀K ∈ Th} (2.45)

The di�erences with Uh, the original space, is that U
d
h is a subspace of (L2(Ω))n thus contains

local H(div) functions. Additionally, normal componets are no longer continuous on ∂Th,
the set of facets of Th.

2. Introduce Lagrange multipliers as an additional variable in the space of approximate traces,
Mh:

Mh = {γ ∈ L2(∂Th) : γ|e ∈M(e),∀e ∈ ∂Th} (2.46)

with M(e) denoting a polynomial space de�ned on each facet.

3. Take 2.30, test with w ∈ Ud
h(K) and integrate by parts over each element K. Introduce

the trace function λh in surface integrals to approximate ph on elemental boundaries. This
results in:∫

K

w · µudhdx−
∫
K

∇ ·w · phdx+
∑
e∈∂K

∫
e

w · n · λhds = −
∑

e∈∂K∩∂ΩD

∫
e

w · n · phds (2.47)

4. Add an extra constraint equation in order to close the system, yielding the hybridizable form:
�nd (uh, ph, λh) ∈ Ud

h × Vh ×Mh∑
K∈Th

∫
K

w·µudhdx−
∑
K∈Th

∫
K

∇·w·phdx+
∑

e∈∂Th\∂ΩD

∫
e

[[w]]·λhds = −
∑

e∈∂ΩD

∫
e

w·n·p0ds, ∀w ∈ Ud
h,

(2.48)∑
K∈Th

∫
K

φ · ∇ · udhdx+
∑
K∈Th

∫
K

φ · cphdx =
∑
K∈Th

∫
K

φ · fdx, ∀φ ∈ Vh, (2.49)

∑
e∈∂Th\∂ΩD

∫
e

γ · [[udh]]ds =
∑

e∈∂ΩN

∫
e

γ · gds, ∀γ ∈Mh,0 (2.50)

where Mh,0 is the space of traces vanishing on ∂ΩD. udh will be equal to uh if Mh is chosen
such that the normal components of w ∈ Uh are in the same polynomial space as the trace
functions.

5. As before, we expand the function in terms of bases for Ud
h, Vh and Mh to get the matrix

system: A00 A01 A02

A10 A11 A12

A20 A21 A22

UdP
A

 =

F0

F1

F2

 (2.51)

16

6. Since Ud
h and Vh are discontinuous, U

d and P are coupled within the cell only. Hence, we can
use local static condensation to eliminate these unknowns simultaneously and thus produce
a smaller global hybridized problem for the trace unknowns Λ:

SΛ = E (2.52)

where S = {SK}K∈Ωh and E = {EK}K∈Ωh which are assmbled by gathering local contribu-
tions. We can solve this system through purely local operations (see Gibson 2018 [4]).

7. Once system 2.52 is solved to �nd Λ, Ud and P can be recovered locally in each element (see
Gibson 2018 [4]).

2.2.3 Static condensation

Static condensation, also called Guyan reduction, reduces the number of degrees of freedom by
eliminating interior unknowns and thus leading to a system de�ned on cell-interfaces only. [4, 26]

2.2.4 Local post-processing

Local post-processing can produce improved conservation properties or superconvergent approxi-
mations. Superconvergent approximations are those that have one order of accuracy more than
solutions which have not been locally post-processed [4].

2.3 FEniCS

There are many existing �nite element solvers, each o�ering slightly di�erent features (e.g. possible
mesh elements, visualization, solver quadrature) and focused on varying purposes. Examples of
these are deal.II [27], a massively-parallel general-purpose object-oriented �nite element library,
and FEBio [28], a �nite element analysis package for biomechanics and biophysics.

Most notable in relation to Firedrake is FEniCS [29], a toolchain used to implement �nite
element methods to solve problems. It uses the �nite element method to automatically generate
�nite element codes. These are computer codes of the algorithms coming out of FEM which
calculate the approximate solution for the given di�erential equation.

The FEniCS environment has been created to allow the development of �nite element solvers
within Python. The novel addition from this project was an easy to use tensor contraction rep-
resentation, which lowers the number of operations used for computing integrals using Gaussian
quadrature. [3]

Many parts of FEniCS's toolchain are also a part of Firedrake's toolchain. In comparison
to FEniCSs, however, Firedrake is designed to have an even more separated set of abstractions,
making it easier for individuals to contribute their expertise. [5]

2.4 Firedrake

Firedrake [5] is a toolchain that serves as a compiler for a domain-speci�c langage (DSL). Given a
partial di�erential equation (PDE) and a discretisation method, it uses �nite elements to generate
code to approximately solve the equation.

It does this by creating intermediate representations at many di�erent levels of abstraction.
This allows the decoupling of de�ning the equation and its discretisation from generating e�cient
code to perform the calculations. Each layer of abstraction provides the opportunity to apply
di�erent types of optimisations to ultimately yield more e�cient code.

It is this separation of the FEM abstraction further than ever before that makes Firedrake
di�erent from previous �nite element systems. [5] It not only splits up using the �nite element
method from implementing it, as FEniCS does, but it also separates the creation of cell-local
kernels from computing them e�ciently over all the cells in the mesh, using a new abstraction
called PyOP2. This means that, unlike for other systems, contributors don't need to deeply
understand the �nite element method.

Where possible, Firedrake re-uses existing abstractions to avoid re-invention and make it easier
for users and contributors who might be familiar with these abstractions. [5]

17

Figure 2.5: A basic diagram of the Firedrake toolchain. The abstractions originating from the
FEniCS project are coloured blue. This is an updated and modi�ed version of the original 2016
diagram found in [5]

18

Another feature that distinguishes Firedrake is its aim to be performance-portable i.e. have
high performance on many di�erent hardware platforms without needing to change its code. [3]

2.4.1 Firedrake architecture [5]

A basic diagram of the Firedrake toolchain is included in �gure 2.5. The reader is strongly encour-
aged to follow through the diagram as we discuss some of the key abstractions below.

User input There are two main approaches to allowing the speci�cation of the mathematics:
stand-alone languages with their own grammar and syntax (e.g. freefem++ [30], GetDP [31]), or
embedded languages (e.g. Uni�ed Form Language [16], Sundance [32]) in existing general-purpose
languages (in Python and C++ respectively).

Firedrake uses the Uni�ed Form Language (UFL) [16] at its top layer. This is the same DSL as
used in the FEniCS project. UFL is a DSL embedded in Python that allows users to express PDEs
e�ciently in a language close to mathematics. Firedrake's user interface is almost identical to the
DOLFIN Python interface exposed by FEniCS. Firedrake models the higher-level mathematical
objects using a combination of PyOP2 and PETSc objects.

TSFC [11] A form compiler takes in a de�nition of a weak form of PDEs and generates low-level
code to compute it.

Until 2018, Firedrake used a modi�ed version of the FEniCS Form Compiler (FFC) as its form
compiler. This has now been replaced by the Two Stage Form Compiler (TSFC) [11].

FEniCS still uses FFC at this time, speci�cally with an implementation called the UFL Analyser
and Compiler System (UFLACS).

Both UFLACS and TSFC take in variational forms de�ned in UFL and output low level code
for the local assembly step. The output for the UFLACS is optimised C++ kernel functions. This
would not �t in with Firedrake's PyOP2 layer, since PyOP2 expects to receive an unoptimised
kernel that it then optimises for the given hardware. Hence TSFC generates unoptimised ASTs
that represent the local assembly operations. [5]

The novel idea of TSFC is keeping the input expression at the highest abstraction for as long
as possible such that optimisations can be done at this level. To make this process easier, the
compilation done by the form compiler was split into two steps:

1. Change from the high-level form in UFL that includes �nite element objects and geometry
to the tensor algebra language GEM [11].

2. Generate abstract syntax trees for C to perform the tensor algebra expressions. These are
optimized by later layers.

Keeping the structure of �nite element forms is particularly important for discontinuous Ga-
lerkin problems.

FIAT The FInite element Automatic Tabulator (FIAT) [33] is a library responsible for producing
�nite elements. FIAT returns a tabulation matrix (just a numerical array) which has the values
for the basis at each quadrature point.

FInAT FInAT [34] is a more abstract library of �nite elements whose interface to form compilers
allows for the implementation of optimisations crucial to generating su�ciently fast code for higher
order �nite element discretisations. The FInAT library's novel contribution is the interface it
presents that makes it possible to rearrange �nite element assembly loops such that one can express
the structure within elements. Unlike FIAT, "FInAT Is not A Tabulator" and instead it allows
users to evaluate basis functions at speci�c points (rather than just returning the values of the
basis functions at the quadrature points like FIAT does). The expressions for these evaluations of
the basis functions at arbitrary points are written in the tensor algebra language GEM [11], which
is also the intermediate language used in TSFC.

FInAT serves as a generic FIAT wrapper, allowing TSFC to have access to all the functionality
of FIAT through FInAT.

19

PyOP2 PyOP2 [5] is the main novel abstraction introduced by Firedrake. PyOP2 is a DSL
embedded in Python that provides data structures for �nite element operations, such as sparse
matrices.

Recall that computational kernels (local operations) de�ne the local assembly step of computing
the integral of a test function against a trial function. PyOP2 allows users to de�ne calculations
that involve invoking these kernels for each entry in an unstructured mesh or �xed arity graph.
It also allows users to specify their own kernels in either C or as an AST. PyOP2 then performs
e�cient parallel execution of these local kernels on each element in a mesh and assembles them
into the global system of linear equations.

The introduction of PyOP2 in the system results in higher performance of mesh iteration across
the board, as well as a much smaller code base leading to easier maintanence and extensibility. [5]

PETSc The results from local computations are assembled into a global system of linear equa-
tions that can be solved using exisiting libraries. Firedrake makes use of PETSc [5], a library with
many solver algorithms.

MPI MPI [35] is a library which allows C or Fortran programs to communicate with each other.
MPI routines are the means by which MPI processes (the C/Fortran program) communicate.

2.5 Slate and Slac [4]

Figure 2.6: The Slate toolchain. The entries in white boxes are intermediate representations. This
is a modi�ed version of the original diagram found in [4]

In the local assembly step of FEM, the local contributions from each element in the mesh are
found. Slate [4] is an embedded DSL Firedrake users use to express manipulations (linear algebra
operations) on the �nite element tensors coming from this stage.

UFL had a large in�uence on the design of Slate, especially in that both are compiled to low
level code that executes the speci�ed operations element-wise on the mesh. However, unlike for
UFL, users of Slate can express complex linear algebra operations on the tensor objects.

20

Figure 2.6 shows the Slate toolchain. Slate expressions, which wrap UFL objects, are passed to
the linear algebra compiler, Slac. In the newest development of Slac, it compiles these expressions
in two steps: [36]

1. Using TSFC, translate Slate to Gem. Slac uses TSFC for its kernel functions for evaluating
integral expressions.

2. Using TSFC, translate Gem to Loopy linear algebra kernels in C++ that will be applied
cell-wise.

The �nal Loopy kernel is then passed to PyOP2, which wraps it in a mesh-iteration kernel. After
the PyOP2 layer, parallelisation, code creation and compilation happen.

Important use cases of Slate are the automatic code generation for methods of hybridization,
static condensation and localized post-processing. Hybridization and static condensation are imple-
mented as runtime-con�gurable preconditioners via PETSc's Python interface. Slate can generate
the code for local post-processing methods, since these can be expressed as local solves on each
element. [4]

Slac/Slate is currently still using the Eigen library, however there is an ongoing migration from
this to using the Loopy library. This project aimed to optimise for the new Loopy kernels.

2.6 Eigen [6]

Eigen is a widely used C++ template library for linear algebra. Eigen is di�erent from other
matrix libraries in that it is the only one that provides all of:

• it's fast
• it's versatile

� handles all matrix types and sizes and all numeric types

� provides various matrix decompositions and geometry features

� has a rich ecosystem with many specialized modules

• it's reliable, with the reliability trade-o�s of the algorithms available being well documented

It provides optimisations such as:

• Intelligent removal of temporaries

• Cache-friendliness for large matrices

Some additional advantages of Eigen include its small size, it being only a compile-time dependency,
it being multi-platform and that compilation times stay reasonable when Eigen is used.

At the moment, Eigen only parallellizes general matrix-matrix products, hence parallel hard-
ware is not used much by Eigen. [37]

2.7 Loopy [7, 8, 9]

Loopy is a loop generator that is embedded in Python. It allows the user to simply describe a
computation and then the library transforms this code into code that will be highly performant
on GPUs and multi-core CPUs. It targets array-type computations, such as those in PDE solvers
like �nite element. It targets the OpenCL/CUDA model of computation.

Loopy exposes the intermediate representations of the code to the user, so that they can be
inspected and manipulated, allowing users control over the transformations applied. Users can
implement their own transformations, but Loopy already provides many transformations such as:

• Change of data layout, e.g. switching between structure-of-arrays and array-of-structures
memory layouts, padding, and block granularities.

• Loop unrolling and loop tiling.

• Prefetching and precomputation.

• Instruction-level parallelism.

21

Since the transformations performed are all done so explicitly by the user, the user takes on the
responsibility of ensuring the observable behaviour of the code is unchanged. This has the bene�t
of allowing more di�erent transformations to be applied as compared to those that conventional
compiler architectures can safely perform.

Loopy transformations are controlled by a programming language, hence the code generated
can be adapted for speci�c hardware or workloads.

Procedures in Loopy are called Loopy kernels.

2.8 Other Related Work

There are many systems for the e�cient implementation of tensor algebra expressions, but many
of these have little overlap of challenges resulting from their focus being on domains di�erent from
the �nite element method. Such systems include libtensor [38], CTF [39] and TensorFlow [40].
Libtensor, for example, has been developed for quantum chemistry, where the tensors tend to be
much larger than for those in �nite element local assembly. [11]

There are also several projects that have tensor algebra languages in their intermediate stages.
[41, 42, 43]

2.8.1 Dune-FEM and deal.II

An alternative way of implementing �nite element solvers is using templated C++ code, as seen
in systems such as DUNE-FEM [44] and deal.II [27]. A bene�t of this method is that users have
total control over all parts of the algorithm, hence this approach is more �exible and extendable.

However, users need to provide C++ implementations of the key kernels (such as the local
operations), hence there is often a steep learning curve for new users and the user needs to have
some experience in programming. This is in contrast to systems that use simple high-level languages
for the user input, such as UFL used in Firedrake and FEniCS, which are good for prototyping
but make it more di�cult to extend the underlying C++ framework. Related is FreeFEM, which
features a DSL embedded in C++ through the use of expression templates. [45]

In addition, for such templated C++ �nite element solvers, the optimisations available are lim-
ited by the compiler available. In comparison, systems like Firedrake and FEniCS have domain-
speci�c compilers that are able of optimising far beyond the limitations of general-purpose com-
pilers. [46]

Vectorization in DUNE and Firedrake The vectorization strategy in Firedrake is automat-
ically generated through the toolchain. This toolchain uses Loopy to apply sequences of transfor-
mations which support vectorization by grouping mesh entities such that each SIMD lane computes
independently on one entity. [47]

Vectorization strategies in Dune for the assembly stages of Discontinuous Galerkin methods
on hexahedral meshes make use of the tensor product structure of �nite elements. The exact
vectorization strategies applied to a given problem are chosen by a code generation toolchain that
is integrated with dune-pdelab. This toolchain is very similar to that of Firedrake, including UFL
combined with loopy. [45]

2.8.2 BLAS and LAPACK

LAPACK [48] (Linear Algebra PACKage) is a library for numerical linear algebra. It provides
routines for solving linear systems of equations, eigenvalue problems, singular value problems,
as well as implementing matrix factorizations, providing implementations in single and double
precision for real and complex matrices alike. Much of the computation done within LAPACK
routines is done by calling BLAS.

BLAS [49] (Basic Linear Algebra Subprograms) is a speci�cation for low-level routines that
perform linear algebra computations. There are many implementations of BLAS, many of which
are optimised for particular machines.

BLAS implementations are often optimised for large tensors, while Eigen is e�cient for small
tensors [11]. Unlike Eigen, BLAS and LAPACK do not handle �xed-sized matrices nor sparse
matrices. They also don't have as many convenience features, such as specialized modules for
geometric operations. [37] Eigen speed is comparable to that of the best BLAS versions. [50]

22

In BLAS, the user must separate their desired operations into tiny steps that follow its �xed-
function API. This leads to the creation of more temporaries. Eigen, on the other hand, can
optimize operations globally, allowing it to be much faster than BLAS for computations that
include complex expressions. [37]

2.8.3 EXCAFE [10]

Traditionally, the local assembly step in FEM has been performed using numerical quadrature.
FFC and TSFC, present in FEniCS and Firedrake respectively, use tensor contraction as well as
quadrature, depending on heuristics to choose the most suitable method for the given problem.
The tensor contraction method does the local computation using the contraction of a reference
tensor with an element-dependent geometry tensor [11].

EXCAFE [10] is a dense linear algebra active library that uses symbolic algebra techniques in
an attempt to outperform these other implementations of local assembly. These techniques have
been tried previously, for example in the FINGER [51] system and the SyFi Form Compiler [29]
(a previous form compiler used in FEniCS).

EXCAFE delays evaluating library calls, storing this as part of a DAG, and then generates
optimised code at runtime for the composition of library calls that have been delayed. The key
optimisations it performs are loop fusions and contracting temporary arrays to scalars.

In EXCAFE local matrices are represented by the polynomial expressions that are used to eval-
uate the entries within them. This representation reduces the number of �oating point operations
required to evaluate the local matrix, and hence reduces the execution time required. The local
assembly code generated in EXCAFE is often more e�cient than that from tools that use the
quadrature or tensor representations. [52]

All the parts of the EXCAFE toolchain are closely integrated, whereas the components in
Firedrake are much more loosely coupled. This means EXCAFE is hard to weave in to existing
toolchains, despite it being able to generate very e�cient code. [3]

2.9 Summary

This concludes the outline of the mathematical concepts related to the �nite element method,
including some of the notation and depictions we will use throughout this thesis. This discussion
includes Firedrake, its components and some of its supporting libraries.

The ideas in this chapter form the basis of our discussion about Firedrake, and will continue
to contextualise the mathematics and the code which we produce in this project.

23

Chapter 3

Part 1: Reducing Unneccessary

Temporaries

Through intelligent indexing, we were able to reduce the number of temporaries created from
Slate operations. This resulted in the reduction of the amount of memory needed to store the
temporaries. The implementation involved the modi�cation of directed acyclic graphs (DAGs)
composed of GEM nodes that represent operations on tensors.

We begin by brie�y de�ning relevant terminology for UFL, GEM and Slate/Slac.

3.1 GEM and UFL terminology [11]

This section draws from the examples and de�nitions from Homoloya 2018 [11].
GEM and UFL distinguish between:

• shape: ordered list of the extent in each dimension.

• free indices: unordered set of "named" dimensions.

A good example of this taken from Homolya 2018 [11] is summarised in table 3.1.

Object Shape Free indices
B, a 2x2 matrix (2,2) none

B(1,1) (1,1) none
B(i,j) (1,1) i and j
B(i,1) (1,1) i

Table 3.1: Examples of shape and free indices.

Throughout this thesis, we will be making use of the following subset of UFL nodes:

• Indexed(e, (α1, α2, ...αr)) (frequently written as A[α1, ..., αr])
indexes into expression e of rank r using multi-index α. The multi-index can be made up of
�xed and free indices. The resulting object has scalar shape and the same free indices as in
α.

For example, let e be a tensor of shape (3, 4, 5) with no free indices. Then Indexed(e, (1,

j, k)) would have shape (1, 1, 1) and free indices j and k, j=1...4, k=1...5.

• ComponentTensor(e, (α1, α2, ...αk))
turns scalar expression e's free indices α1, α2, ...αk into shape.

GEM and UFL as quite similar; the main di�erence between them is how they treat free indices.
In UFL, free indices have the same constraints as shape, e.g. for addition the two tensors must
have the same shape and the same free indices. GEM has the same constraints for shape, but it
allows the result of an expression to be index-dependent. For example if u has shape (3,1), then
ui + uj is illegal in UFL but in GEM is a 3x3 matrix.

Below is a summary of the GEM nodes relevant to this project:

24

• Terminals: Variable

• Scalar operations: Delta (i.e. δij=1 if i = j, else 0)

• Index types

� Index (free index): results in a loop at code generation

� FlexiblyIndexed

• Tensor nodes: Indexed, ComponentTensor (as for UFL)

3.2 Slate/Slac terminology [4, 11]

Slate is designed around UFL. However, unlike for UFL, users of Slate can express complex linear
algebra operations on the tensor objects.

Note that in this thesis we are using the notation f(x, y, z;α, β) to denotes that the form f
must be linear in its coe�cients (x, y and z), but it may not necessarily be linear in its arguments
(α and β).

Slate is made up of two main abstraction types: (1) 'terminal' tensors and (2) operations on
terminal tensors.

Terminal tensors, also called leaf nodes or terminals, are nodes of the expression graph that
have no children. Terminals associate a tensor with data on an element. This data is either in the
form of a multi-linear integral or assembled data (i.e. a vector of coe�cients). [4, 11]

• Tensor(a(c; v))
associates form a(c; v) with its local tensor, i.e.

Ak ← a(c; v)|K

for all elements K of the mesh.

• AssembledVector(f)
associates function f with its local coe�cient vectors.

Operations on terminal tensors currently supported by Slate include: [4]

• -A, the additive inverse of A

• Transpose(A)
• A.inv, the inverse of A, with A a square tensor

• A + B, addition of A and B, with A and B equally shaped

• A * B, a contraction over the last index of A and the �rst index of B. This is simply
multiplication for matrices, vectors and scalars.

• A.solve(B, decomposition="..."), the X obtained from solving AX = B. One can
optionally specify a direct factorisation strategy.

• A.blocks[indices]
where A is a tensor from a mixed �nite elemnt space. This function return the block of A
corresponding to the indices. For example, if A is

A =

A00 A01 . . . A0m

A10 A11 . . . A1m

...
. . .

...
An0 . . . Anm

Then

Apq =

Ap1q1 . . . Ap1qc
...

. . .
...

Aprq1 . . . Aprqc

← Block(A, (p,q))

25

3.3 First steps

We begin by trying to understand the GEM expression DAGs produced for simple Slate operations,
as more complex operations are built out of these simpler ones.

We predict that optimising these building-block operations would translate to more optimised
complex expressions. This hypothesis forms a basis for our optimisation.

To help with understanding, we experimented with existing functions, manually inspected the
code produced and visualised the structure of the GEM DAGs in the GEM to Loopy stage of
compilation (as this is the stage during which we will have our unneccessary temporary removing
step). We used Graphviz [53] to create a way to easily visualise these DAGs, both in a DAG-aware
way to see what computations were being performed and also in a tree view to understand what
part of each expression creates what nodes in the DAG. Several of the graphs created from this
are included in this thesis.

3.4 Model problem

We chose our �rst model problem to be the discontinous Helmholtz equation on cell integrals. The
code for the setup is included in 4.1. This means that for the below operations, we use

a =

∫
∇v · ∇u+ vu dx

L =

∫
fv dx

f =
(
1 + 8π2

)
cos (2πx) cos (2πy)

(3.1)

3.4.1 Tensor

We begin by considering the simplest example: creating a Tensor object. We will do this for object
a, where a is as in 3.1. For this, we actually envoke assemble(Tensor(a)), since we need to call
assemble() to evaluate Tensor(a).

The original expression tree is given in �gure 3.1. In our trees, root is an arbitrary name
used by the ploter to represent the highest level of the expressions in order to support lists of
expressions.

This originally produced the code:

1 for i1, i0

2 t0[i0, i1] = T0[i0, i1] {id=insn, priority=2}

3 end i1, i0

4 for i_0, i

5 output[i, i_0] = output[i, i_0] + t0[i, i_0] {id=insn_0, priority=1}

6 end i_0, i

Listing 3.1: Original code for Tensor(a)

Note the di�erent forms for the possible names for a temporary:

1. Tn, where n ∈ R, is the name of the temporary that stores the tensor when it is created.
This is always a neccessary temporary.

2. tn, where n ∈ R, is the name of an intermediate temporary, used to store intermediate results
in the computation of an operation on a tensor.

In the code outputs, output denotes the bu�er that we �ll up at the end of our set of operations
and it is this bu�er that is passed on to other parts of the code.

In 3.1, T0 and t0 are the names of the temporaries created here. T0 is necessary as it stores
the tensor object. t0 is created as an intermediate temporary used to perform the operation of
Tensor(). We see that t0 is an unneccessary temporary.

After appling our optimisation, the resulting GEM expression DAG is as in �gure 3.2. We see
that the di�erence between the DAG before and the DAG after is the removal of the Component-
Tensor node and its associated Indexed node.

26

Figure 3.1: Tree representation of the GEM DAG created for operation Tensor(a), before the
optimisation.

Through this change, the underlying tensor can be more directly accessed. This leads to greatly
simpli�ed code, as we see in 3.2. In this code, there is only one temporary used. This is of the form
Tn, hence we know it is the necessarily one which holds the actual tensor. From this we see that
the resulting code is the optimal one for this operation - there are no unneccessary temporaries.

1 for i_0, i

2 output[i, i_0] = output[i, i_0] + T0[i, i_0] {id=insn, priority=1}

3 end i_0, i

Listing 3.2: Optimised code for Tensor(a)

3.4.2 Transpose

Next, we look at the example of Tranpose(Tensor(a)), where is a as in 3.1. For this, we actually
envoke assemble(Transpose(Tensor(a))).

The original expression tree is given in �gure 3.3.
We can express the transpose operation in terms of the GEM/UFL operations as

Tranpose: ComponentTensor(A[i, j], (j, i)) (3.2)

The original code output for Tranpose(Tensor(a)) is given in 3.3 below.

1 for i1, i0

2 t0[i0, i1] = T0[i0, i1] {id=insn, priority=3}

3 end i1, i0

4 for i6, i5

5 t1[i6, i5] = t0[i5, i6] {id=insn_0, priority=2}

6 end i6, i5

7 for i_0, i

8 output[i, i_0] = output[i, i_0] + t1[i, i_0] {id=insn_1, priority=1}

9 end i_0, i

Listing 3.3: Original code for Transpose(Tensor(a))

27

Figure 3.2: Tree representation of the GEM DAG created for operation Tensor(a), after the
optimisation.

In 3.3, we see we have three temporaries created, T0, t0 and t1. T0 is necessary as it stores
the tensor object. t0 and t1 are intermediate temporaries used to perform the operation of Trans-
pose(Tensor()). We see that t0 and t1 are unneccessary temporaries.

The same operation can be performed by just �ipping the indices at which we are accessing
T0. This then means we don't need to create t0 and t1. As before, the creation of one temporary,
T0, is unavoidable.

We achieved this smarter indexing and thus removal of the need to create t0 by removing the
ComponentTensor and its associated nodes from the GEM DAG. The tree representation of the
resulting GEM expression is given in �gure 3.4 and the generated code is given in 3.4.

1 for i, i_0

2 output[i_0, i] = output[i_0, i] + T0[i, i_0] {id=insn, priority=1}

3 end i, i_0

Listing 3.4: Optimised code for Transpose(Tensor(a))

Figure 3.4: Tree representation of optimised GEM DAG created from Transpose(Tensor(a)).

The bene�t of this is more pronounced when considering stacking operations, for example for
Transpose(Transpose(Tensor(a))) we reduced the number of temporaries from 5 to just 1.

28

Figure 3.3: Tree representation of original GEM DAG created from Transpose(Tensor(a)).

3.4.3 Other basic Slate operations

We include the code generated before and after removing these ComponentTensor nodes for the
remainder of the basic Slate operations in the appendix. For all these operations we see the same
pattern of fewer temporaries needed, details in table 4.1, as well as shorter, more succinct code
being generated that continued to have the same behaviour.

3.5 Implementation

How this optimisation is actually implemented in Firedrake is by passing through the GEM ex-
pression DAG before code generation and eliminating the ComponentTensor nodes.

As discussed in Homoloya 2018, this transformation can be understood as removing non-scalar
shapes in non-terminal nodes using the rule: [11]

Indexed(ComponentTensor(e, α), β)→ e|α→β (3.3)

with e being a scalar-shaped expression, α a multi-index made up of free indices of e and β a
multi-index with the same rank as α. e|α→β denotes of substitution of indices from αi to βi ∀i.

3.6 Relation to existing work

This elimination of ComponentTensors is the same transformation that is performed in the second
stage of TSFC, the translation of GEM to C. In TSFC this transformation is done to make the
code generation easier. [11]

29

3.7 Summary

In this chapter we discussed the implementation of our optimisation to reduce the number of
temporaries created when performing operations on tensors. This optimisation involves passing
through the GEM expression DAG before code generation and eliminating the ComponentTensor
nodes.

Through looking at examples of expression trees and output code, we demonstrated that our
optimisation results in the removal of ComponentTensors in the DAGs and leads to the reduction
of the number of temporaries in the code.

In making this optimisation, our goal was to reduce the memory needed to perform the sequence
of operations. We therefore want to investigate the speci�c e�ects that a reduction in temporaries,
as we saw in this chapter, has in reducing the memory overhead.

30

Chapter 4

Part 1: Reducing Unneccessary

Temporaries: Evaluation and Results

4.1 Aims

This project aims to optimise the local assembly layer in Firedrake. In this part of the project,
we focused on trying to remove the number of temporaries created, which we achieved through
modifying and removing nodes in the GEM expression DAG.

We measure success by the reduction of the working set size (WSS), i.e. the amount of memory
needed to perform the sequence of operations. Reducing the working set size allows more informa-
tion to �t into faster memory and thus can also reduce the calculation time. We care about the
WSS only for the resulting code, not for the compiler itself, hence we don't really care about the
e�ect of the optimisations on the size of the GEM DAG itself, for example.

We approximate the working set size of the compiler from the resulting source code, in particular
by looking at the amount of memory taken up by the temporaries.

Importantly, we must ensure that the behaviour of Slate does not change. We need to check
that the generated code after optimisation implementation gives us an error not larger than after
our optimisations have been implemented.

4.2 Analysis of the optimisation using modelling

We investigate various operations to determine a model for the change in working set size. We
perform experiments before and after the optimisations have been applied.

The experiments are done on a "typical" laptop (exact speci�cation provided in the appendix).
We begin by investigating simple, minimal examples, as seen in the previous chapter and then

look into larger, more involved examples to see how working set size scales. We want to particularly
focus on common and signi�cant types of problems.

An important use case for Slate is hybridization so that methods such as static condensation and
local post-processing can be employed, leading to systems that can be solved more easily. Therefore
we use our model to predict the memory taken by temporaries for a hybridization example, see
4.2.6.

We start by �guring out how much memory in bytes is taken up by temporaries in a loopy
kernel. This is as below:

memory size of temporaries =
∑

t∈temporaries

∏
s∈shape of t

s ∗ data type size (4.1)

The data type in our case is always �oat64 so will be 8 bytes. The only things that can change for
us are the shape of the temporaries and the number of temporaries.

In �gure 4.1 we include a diagram showing the relationship between the key objects that can
a�ect the shape of temporaries as implemented in Firedrake. The e�ects of these will be discussed
in more detail in later parts of this chapter.
Note the implementation of FiniteElement has the same structure as Ciarlet's de�nition 2.1.3:
cell here is the domain of the �nite element (related to K); degree is the maximum degree of the

31

Figure 4.1: Firedrake implementation of FunctionSpace, FiniteElement and Mesh.

polynomials in the space (related to P); family is the �nite element family, i.e. the type of �nite
element (related to N). The full list of elements supported in Firedrake can be found at [54].

We begin by analysing the below example (same as model problem 3.1 in chapter 3):

1 # Discontinuous Helmholtz equation on cell integrals

2 mesh = UnitSquareMesh(5, 5)

3 V = FunctionSpace(mesh, "DG", 1)

4 u = TrialFunction(V)

5 v = TestFunction(V)

6 f = Function(V)

7 x, y = SpatialCoordinate(mesh)

8 f.interpolate((1+8*pi*pi)*cos(x*pi*2)*cos(y*pi*2))

9 a = (dot(grad(v), grad(u)) + v * u) * dx

10 L = f * v * dx

Listing 4.1: UFL for setting up discontinuous Helmholtz on cell integrals

We get the following kind of information about the temporaries in the loopy kernel.

1 T0: type: np:dtype('float64'), shape: (10, 10), dim_tags: (N1:stride:10, N0:stride:1)

scope:local

2 t0: type: np:dtype('float64'), shape: (10, 10), dim_tags: (N1:stride:10, N0:stride:1)

scope:local

3 t2: type: np:dtype('float64'), shape: () scope:local

4 t3: type: np:dtype('float64'), shape: (10), dim_tags: (N0:stride:1) scope:local

Listing 4.2: Example of the information given about temporaries in Loopy kernel.

4.2.1 Operation type

We hypothesise that the types of operations determine the number of temporaries. We also hy-
pothesise that our model can accurately predict the number of temporaries required for a sequence
of operations from the temporaries needed for each basic operation that needs to be performed as
part of that set of operations. This relates to our earlier hypothesis, 3.3, where we predict that by
reducing the memory for temporaries in the basic building-block operations, we will also reduce
the memory for more complex expressions.

Operation table We include in table 4.1 below the number and shape of temporaries needed
for basic Slate operations, both as individual operations and when stacked with other operations,
before and after optimisation.

Here we introduce a new notation that we will using in this thesis: a notation for the number
of temporaries of a certain shape. We let n be the number of temporaries of the given shape, and
the second part denote the shape of temporaries, as below:

• n (.,.) where (.,.) denotes a matrix temporary with a shape that is a 2-tuple;

• n (.) where (.) denotes a vector temporary with a 1-tuple shape;

• n () where () denotes a scalar quantity i.e. just a number.

32

In the table, with a and L as in 4.1

u = Function(V) (4.2)

A = Tensor(a) (4.3)

F = AssembledV ector(assemble(L)) (4.4)

b = AssembledV ector(Function(assemble(L))) (4.5)

The expressions in square brackets are a simple representation of the operation intended to
aid understanding, these are not full, valid UFL expressions (for example, since they do not call
assemble()).

The stacked before/after columns represent the number of additional temporaries that are
needed when that operation is added to a sequence of operations. This can be used to account for
the stacking e�ect in which some temporaries are re-used by the compiler from previous optimi-
sations. Its important to note that such stacking results in a smaller number of temporaries, and
sometimes in di�erent shaped temporaries, than would be expected by treating the operations in
isolation.

Operation Temps before Stacked before Temps after Stacked after 1

Tensor 2 (.,.) 2 (.,.) 1 (.,.) 1(.,.)2

AssembledVector 1 (.) 1 (.) 0 0
Negative [-A] 3 (.,.) 1 (.,.) 1 (.,.) variable 3

Transpose [A.T] 3 (.,.) 1 (.,.) 1 (.,.) 0
Inverse local [A.inv] 3 (.,.) 1 (.,.) 2 (.,.) 1 (.,.)

Addition of matrices [A+A] 3 (.,.) 1 (.,.) 1 (.,.) 0
Addition of vectors [b+b] 3 (.,.) 1 (.) 1 (.,.) 0

Multiplication Matrix-Vector 5: 2 (.,.) + 3 (.) 2 (.) 1 (.,.) variable 3

Multiplication Matrix-Matrix 6 (.,.) 2 (.,.) 2 (.,.) variable 3

Global Solve [solve(A, u, F)] 5: 2 (.,.) + 3 (.) 1 (.) 1 (.,.) 0
Local solve [A.solve(F)] 6: 3 (.,.) + 3 (.) 1 (.,.) + 1 (.) 2 (.,.) 1 (.,.) + 1 (.)

Blocks 0 0 0 0

Table 4.1: The number and shape of temporaries needed for basic Slate operations, both as
individual operations and when stacked with other operations, before and after optimisation.

1 N.b. The last operation that needs to be performed can be done so directly outputting into the
output bu�er, hence doesn't need a temporary.
2 This is of the form Tn with n a number. This is a necessary temporary.
3 Some operations have several possible numbers of temporaries depending on the stacking context
of the operation. These operations are discussed in the following section.

In table 4.2 we include some simple examples of stacked operations to demonstrate the stacking
e�ect.

Operation Temps before Temps after
Negative stacked [-(-A)] 4 (.,.) 1 (.,.)

Transpose stacked [(A.T).T] 4 (.,.) 1 (.,.)
Addition stacked [A+(A+A)] 4 (.,.) 1 (.,.)

-A.inv.T 5 (.,.) 2 (.,.)
(-A.T + A) * b 8: 5 (.,.) + 3 (.) 1 (.,.)

Table 4.2: Table of the number and shapes of temporaries for several simple stacked operations.

Context-speci�c temporaries

The number and shape of temporaries post-optimisation for some operations is context-dependent.
We outline these below, taking A, B, F, and G as de�ned in 4.14.

33

Negation The number and size of temporaries can be summarised as follows:

if negation before a matrix-matrix multiplication:

if only 1 negation:

then that negation adds 1 ()

if > 1 negation:

1 () temporary needed for the negation absorbed into the multiplication

+ 1 (.,.) for all other negations (i.e. num negation - 1 of (.,.))

elif negation on the vector in a matrix-vector multiplication:

1 (.) for any number of negations on the vector

else:

0 new temporaries

Listing 4.3: Algorithm for determining the number and size of temporaries for stacked negation
post-optimisation

For some illustrative examples:

• No mutiplications: -A.inv.T*F has 1 temporary needed for the inverse only, no tempo-
raries needed for negation.

• Mat-mat multiplication, one negation: -A*A needs 1 () temporary for negation, t0, and
1 (.,.), T0, for storing A. As we see with the output below, the negation is absorbed into the
loop for the multiplication, thus yielding a temporary of shape ().

1 for i_0, i

2 t0 = (-1.0)*T0[i, i_0] {id=insn, priority=2}

3 for i_1

4 output[i, i_1] = output[i, i_1] + t0*T0[i_0, i_1] {id=insn_0, priority=1}

5 end i_0, i, i_1

Listing 4.4: Optimised output for -A*A

• Mat-mat multiplication, multiple negations: -A*-A*-B includes two multiplications
and three negations. We see one multiplication is performed on line 13, resulting in 1 (.,.)
temporary, t3. The other multiplication is performed on the last line with the output heading
straight to the output bu�er, hence creates no temporaries. One of the negations is 'absorbed'
into one of the multiplications, resulting in 1 () temporary, t2. The other 2 negations are
performed in lines 2 and 5, with each one resulting in 1 (.,.) temporary.

1 for i, i_0

2 t0[i, i_0] = (-1.0)*T1[i, i_0] {id=insn, priority=6}

3 end i, i_0

4 for i_2, i_1

5 t1[i_1, i_2] = (-1.0)*T0[i_1, i_2] {id=insn_0, priority=5}

6 end i_2, i_1

7 for i_3, i_4

8 t3[i_4] = 0.0 {id=insn_1, priority=4}

9 end i_4

10 for i_5

11 t2 = (-1.0)*T1[i_3, i_5] {id=insn_2, priority=3}

12 for i_6

13 t3[i_6] = t3[i_6] + t2*t0[i_5, i_6] {id=insn_3, priority=2}

14 end i_5, i_6

15 for i_7, i_8

16 output[i_3, i_8] = output[i_3, i_8] + t3[i_7]*t1[i_7, i_8] {id=insn_4,

priority=1}

17 end i_3, i_7, i_8

Listing 4.5: Optimised output for -A*-A*-B

By comparing this code to that of -B*-A*-A*-B we see that despite already �nding -B and
saving this in temporary t0 in line 2, we again �nd -B and save it to a di�erent temporary
t1 in line 5, thus creating unneccessary temporaries. This means that no matter what the

34

negation is in front of, even if it has been negated before, it will be follow the rules for the
number of temporaries mentioned in the summary above.

Secondly, we see that only one multiplication "absorbs" one negation. So no matter how
many multiplications there are following the negation, the rules outlined above still apply.

1 for i, i_0

2 t0[i, i_0] = (-1.0)*T1[i, i_0] {id=insn, priority=9}

3 end i, i_0

4 for i_1, i_2

5 t1[i_1, i_2] = (-1.0)*T1[i_1, i_2] {id=insn_0, priority=8}

6 end i_1, i_2

7 for i_3, i_4

8 t2[i_3, i_4] = (-1.0)*T0[i_3, i_4] {id=insn_1, priority=7}

9 end i_3, i_4

10 for i_5, i_6

11 t4[i_6] = 0.0 {id=insn_2, priority=6}

12 end i_6

13 for i_7

14 t3 = (-1.0)*T0[i_5, i_7] {id=insn_3, priority=5}

15 for i_8

16 t4[i_8] = t4[i_8] + t3*t0[i_7, i_8] {id=insn_4, priority=4}

17 end i_7, i_8

18 for i_9

19 t5[i_9] = 0.0 {id=insn_5, priority=3}

20 end i_9

21 for i_11, i_10

22 t5[i_11] = t5[i_11] + t4[i_10]*t1[i_10, i_11] {id=insn_6, priority=2}

23 end i_11, i_10

24 for i_12, i_13

25 output[i_5, i_13] = output[i_5, i_13] + t5[i_12]*t2[i_12, i_13] {id=insn_7,

priority=1}

26 end i_5, i_12, i_13

Listing 4.6: Optimised output for -B*-A*-A*-B

• Mat-vec multiplication, any number of negations: A*-(-F) results in the introduction
of temporary t0 of shape (.) which is used to negate the vector F .

1 for i

2 t0[i] = (-1.0)*(-1.0)*VecTemp0[i] {id=insn, priority=2}

3 end i

4 for i_0, i_1

5 output[i_0] = output[i_0] + T0[i_0, i_1]*t0[i_1] {id=insn_0, priority=1}

6 end i_0, i_1

Listing 4.7: Optimised output for A*-(-F)

Matrix-Matrix multiplication The number and size of temporaries can be summarised as
follows:

if mat-mat multiplication before an inverse OR includes a tranpose and not the final

operation:

1 (.,.)

else:

1 (.)

Listing 4.8: Algorithm for determining the number and size of temporaries for stacked matrix-
matrix multiplication post-optimisation

• Mat-mat multiplication, followed by inverse: (A*B).inv uses 1 (.,.) for the inverse,
and since the inverse operation works on square matrices only, the input temporary into it,
i.e. the temporary output from (A*B) needs to be a matrix, i.e. of shape (.,.).

35

• Mat-mat multiplication, not before inverse and no transposes: (B*A)*G, with B, A
matrices and G a vector, uses 1 (.), t0, for the matrix-matrix multiplication, as we see in 4.9

1 for i, i_0

2 t0[i_0] = 0.0 {id=insn, priority=3}

3 end i_0

4 for i_2, i_1

5 t0[i_2] = t0[i_2] + T1[i, i_1]*T0[i_1, i_2] {id=insn_0, priority=2}

6 end i_2, i_1

7 for i_3

8 output[i] = output[i] + t0[i_3]*VecTemp0[i_3] {id=insn_1, priority=1}

9 end i, i_3

Listing 4.9: Optimised output for (B*A)*G

Matrix-Vector multiplication The number and size of temporaries can be summarised as
follows:

if mat-vec mult includes an odd number of tranposes on the matrix OR any number of

negations on the vector:

1 (.)

else:

1 ()

Listing 4.10: Algorithm for determining the number and size of temporaries for stacked matrix-
vector multiplication post-optimisation

• Odd number of transposes: B.T.T.T*G + F and B.T*G + F have the same output code.
The +F is included here just so that the last operation is not the operation of interest, i.e.
the multiplication, since if it was then no temporary would be created for it. The reason
the code is the same is because the ultimate operations to be performed are the same, e.g.
3 transposes are the same as 1 transpose and the compiler is smart enough to just do 1
tranpose rather than 3. An odd number of tranposes one after another results in just one
tranpose operation needing to be done.

The line of code responsible for the matrix-vector multiplication between matrix B tranposed
some number of times and vector G is also the one in which the transpose of B happens.

1 for i

2 t0[i] = 0.0 {id=insn, priority=3}

3 end i

4 for i_0, i_1

5 t0[i_1] = t0[i_1] + T0[i_0, i_1]*VecTemp1[i_0] {id=insn_0, priority=2}

6 end i_0, i_1

7 for i_2

8 output[i_2] = output[i_2] + t0[i_2] + VecTemp0[i_2] {id=insn_1, priority=1}

9 end i_2

Listing 4.11: Optimised output for B.T*G + F. Same code as for B.T.T.T*G

• Even number of transposes For comparison, when we consider B.T.T*G + F, or this with
any even number of tranposes on the matrix B we �nd that, though similar logic as above,
no transposes need to be done. For these operations, we get the code below, where t0 is a
temporary of shape ().

1 for i

2 t0 = 0.0 {id=insn, priority=3}

3 for i_0

4 t0 = t0 + T0[i, i_0]*VecTemp1[i_0] {id=insn_0, priority=2}

5 end i_0

6 output[i] = output[i] + t0 + VecTemp0[i] {id=insn_1, priority=1}

7 end i

Listing 4.12: Optimised output for B*G + F, B.T.T*G + F, B.T.T.T.T*G + F, etc.

36

Interestingly, when we compare the codes for the odd 4.11 and even 4.12 cases, it raises the
question of why the temporary in the odd case has the larger size of (.). We provide the
following explanation: that for 4.11, because of the need to perform the tranpose operation on
the matrix, the code generated has been split into separate loops for all parts of the process,
whereas for 4.12 these loops have all been nested thus leading to a smaller temporary needed.
Since the tranpose happens within the same instruction as the multiplication with the vector,
there is no need for the for loops to have been separated. Hence the code we would want
here would look something like 4.13 below, with t0 a () shaped temporary.

1 for i

2 t0 = 0.0 {id=insn, priority=3}

3 for i_0

4 t0 = t0 + T0[i_0, i]*VecTemp1[i_0] {id=insn_0, priority=2}

5 end i_0

6 output[i] = output[i] + t0 + VecTemp0[i] {id=insn_1, priority=1}

7 end i

Listing 4.13: The code we wish to be outputed for B.T*G + F

From this we see that our optimisation has not reduced the memory needed by temporaries to
the optimal level and there are still improvements that can be done with respect to this. The
improvement for this example does not seem very signi�cant, so may not be worth pursuing
unless we come across an example that performs many transposes that needs to minimise
the working memory as much as possible.

4.2.2 Temporary type

The size of the shape tuple depends on the type of tensor being stored in the temporary. For ma-
trices, temporaries have a 2-tuple for shape, while AssembledVectors, which are one dimensional
vectors, have a 1-tuple for shape. There are also temporaries that have a shape of (), which take
up just 8 bytes of memory and correspond to just a scalar number, usually 0, and can be seen in
some cases of multiplications.

4.2.3 Finite element family

Figure 4.2: Showing the e�ect of having a di�erent �nite element family. Left is Lagrange; right
is Hermite. If K and P match, as they do here, then the number of degrees will be the same. We
note that �nite element families di�er by N and by P .

The values in the shape tuple of the temporaries, i.e. the extent of the temporary in each
dimension, is in each dimension equal to the degrees of freedom on a cell.

P is a polynomial space, which may not necessarily be all the polynomials of a particular degree.
Finite element families can di�er by the nodes N and also by the space P . [55]

If K and P match, the number of degrees of freedom will be the same. This is because the
number of the degrees of freedom is equal to the number of entries in the nodal basis, which is
a basis for P . It is known that, for a given vector space, all bases for the space have the same
number of elements.

37

(a) Lagrange elements on triangle. From left to
right, the degree is 1, 2, 3.

(b) Lagrange elements on tetrahedra.
From left to right, the degree is 1, 2.

Figure 4.3: Lagrange elements on simplices.

4.2.4 Mesh and degree of �nite element

The degrees of freedom on a cell, and hence the extent of the temporary in each dimension, depends
on:

1. The cell shape i.e. triangle vs quadrilateral (or extensions of these structures in more
dimensions). This is determined by the mesh.

2. The dimension of the cell (e.g. interval, triangle, tetrahedron). This depends on the mesh.
This a�ects the shape of temporaries by a�ecting the number of coe�cients in a polynomial
of degree p on dimension d.

3. The degree of the polynomials we wish to represent on the cell. Degree k means we are
dealing with P a space of k+1 dimensional polynomials on K.

We discuss the e�ect of the mesh and the degree together since these both a�ect the number
of degrees of freedom per cell and their e�ects are linked. For example, a triangular cell has fewer
nodes than a quadratic cell of the same degree and dimension.

Simplices For simplices (lines, triangles, tetrahedra), see 4.3 for examples, we know the number
of degrees of freedom is the number of coe�cients of a polynomial of degree p in d dimensions,
which is

(
p+d
d

)
. I.e. for simplices:

degrees of freedom =

(
degree + dimension

dimension

)
(4.6)

For example for Transpose for the discontinuous Helmholtz 4.1, the degree p is 1 and the
dimension d is 2 (from the construction of the mesh). A 1 degree polynomial in 2D has the form
a + bx + cy with

(
1+2

2

)
which is 3 coe�cients a, b and c. Hence each value in the shape tuple of

the temporaries in this problem is 3.

Quadrilaterals For a quadrilateral mesh, the relationship between degree, dimension and de-
grees of freedom is:

degrees of freedom = (degree + 1)dimension (4.7)

This formula is easy to see when considering the 3D example as several layered 2D squares,
each square with the appropriate number of nodes for the degree. See 4.4 for a clarifying example.

(a) Lagrange elements on quadrilaterals in 2D.
From left to right, the degree being 1, 2, 3.

(b) Lagrange elements on quadrilaterals in 3D.
From left to right, the degree being 1, 2, 3.

Figure 4.4: Lagrange elements on quadrilaterals.

We note that the popular serendipity �nite element spaces are not used. The span of a serendip-
ity space of degree p is the span of the Lagrange element of degree p together with the additional
monomials xpy and xyp.

38

Mixed function spaces Here we consider a mixed function space, i.e. a function space consisting
of several di�erent function spaces, all of which must be on the same mesh. The degrees of freedom
for a mixed function space is the sum of the degrees of freedom of all the function spaces that are
a part of it.

For example, if we have a mixed function space W = FS1 * FS2, with FS1 and FS2 two function
spaces, then we �nd the degrees of freedom per cell for each of FS1 and FS2 using the model
described above and sum these to get the degrees of freedom for W.

Trace spaces Trace spaces are used in hybridization so we brie�y discuss the most relevant di�er-
ence in terms of the degrees of freedom of these spaces from the usual spaces we have talked about
above. In table 4.3 we compare the shapes for temporaries for di�erent degrees for Discontinuous
Lagrange (DG) and the trace space HDiv Trace (HDivT). All values are for a UnitSquareMesh of
size 4x4.

Family Degree Shape example
DG 0 (1, 1)
DG 1 (3, 3)
DG 2 (6, 6)
DG 10 (66, 66)

HDivT 0 (3, 3)
HDivT 1 (6, 6)
HDivT 2 (9, 9)
HDivT 11 (36, 36)

Table 4.3: Comparing shape of temporaries for di�erent degrees for Discontinuous Lagrange (DG)
and the trace space HDiv Trace (HDivT)

We �nd that for the trace space, for simplices on a 2 dimensional mesh:

degrees of freedom = 3 ∗ (degree+ 1) (4.8)

When test and trial functions come from di�erent function spaces Consider a matrix A

= Tensor(a) where a is a form that uses test functions from function space FS1 and trial functions
from function space FS2. Since this tests every trail function against every test function, the
dimension of A will be (degrees of freedom of test space, degrees of freedom of trial space), so
(degrees of freedom for FS1, degrees of freedom for FS2).

4.2.5 Evaluating on examples: Aggressive unary op nesting

This example was used to test the model on highly nested and stacked expressions. The �ndings
from this example were used to improve the model's predictions for such operations.

This is a valuable example as e�ect of the stacking and nesting of expressions is the hardest one
to predict, since it depends on how the compiler is written and what optimisations have already
been implemented, rather than on the underlying mathematical properties.

In 4.14 we include the UFL setup code for this example. We should be able to predict to a
reasonable accuracy using our model the memory needed for the temporaries just from this UFL
setup code.

1 V = FunctionSpace(UnitSquareMesh(1, 1), "DG", 3)

2 f = Function(V)

3 g = Function(V)

4 f.assign(1.0)

5 g.assign(0.5)

6 F = AssembledVector(f)

7 G = AssembledVector(g)

8 u = TrialFunction(V)

9 v = TestFunction(V)

10

11 A = Tensor(u*v*dx)

12 B = Tensor(2.0*u*v*dx)

39

13

14 foo = (B.T*A.inv).T*G + (-A.inv.T*B.T).inv*F + B.inv*(A.T).T*F

15 result = assemble(foo)

Listing 4.14: Aggressive unary op nesting UFL setup code

Size and values of the shape of temporaries Let's �rst work out the shape and extents of the
temporaries. This will be the same before and after the optimisation. The mesh is a unit square
2D mesh with triangular elements. We have the DG family with degree 3. Hence the degrees
of freedom will be

(
degree+dimension

dimension

)
=
(

3+2
2

)
which is 10. Hence the shape for AssembledVector

temporaries will be (10) and for Tensors will be (10,10).

Before To �nd the number of temporaries before the optimisation, we simply add the number of
temporaries for each stacked operation, which we can get from the table of number of temporaries
above 4.1.

In table 4.4 we do a step-by-step outline how we make our prediction for the number of tem-
poraries. The actual output code, labelled with the operation each line corresponds to, is included
in the appendix under D.

Note that in all our derivation tables, including 4.4, the temporary names are the actual names
for the relevant temporaries in the output code, not predictions of the names of the temporaries.
These have been included for ease of reference to the output code.

Temp num Temp names Operation
2 (.,.) T0 + t0 Tensor() A
1 (.,.) t1 A.inv
2 (.,.) T1 + t3 Tensor() B
1 (.,.) t4 A.inv.T
1 (.,.) t5 -A.inv.T
1 (.,.) t6 B.T
2 (.,.) t7 + t12 -A.inv.T * B.T (mat-mat multiply)
2 (.,.) t8 + t13 B.T * A.inv (mat-mat multiply)
1 (.) t9 AssembledVector() G
1 (.) t10 AssembledVector() F
1 (.,.) t11 A.T
1 (.,.) t14 B.inv
1 (.,.) t16 (B.T * A.inv).T
1 (.,.) t17 (-A.inv.T*B.T).inv
1 (.,.) t19 (A.T).T
2 (.) t20 + t23 (-A.inv.T*B.T).inv * F (mat-vec multiply)
2 (.) t21 + t24 (B.T * A.inv).T*G (mat-vec multiply)
2 (.,.) t22 + t25 B.inv * (A.T).T (mat-mat multiply)
2 (.) t26 + t27 (B.inv * (A.T).T)*F (mat-vec multiply)
1 (.) t28 ((B.T*A.inv).T*G) + ((-A.inv.T*B.T).inv*F) (add)
1 (.) t29 ((B.T*A.inv).T*G + (-A.inv.T*B.T).inv*F) + (B.inv*(A.T).T*F) (add)

Table 4.4: Step-by-step derivation of the number and shapes on temporaries for the aggressive
unary op nesting, before optimisation

In total we predict 19 (.,.) + 10 (.), temporaries, giving a predicted memory requirement of
temporaries as: 8 * ((19 * 10 * 10) + (10 * 10)) = 16,000 bytes. This is exactly what we get from
the actual output code: our model is completely correct.

After We set out our step by step derivation of the predicted temporaries in table 4.5. Since
the predictions for post-optimisation are more complex and context-speci�c, for each operation we
also include the reasoning for the temporaries predicted. For a visual breakdown of what parts of
the output code relate to which temporaries, see the actual code annotated in the appendix under
D.

40

Temp num Temp names Operation Reason
1 (.,.) T0 Tensor() A
1 (.,.) T1 Tensor() B
1 (.,.) t0 A.inv inverse
1 () t2 -A.inv negation before mat-mat mult
1 (.,.) t3 -A.inv.T*B.T mat-mat mult before inv
1 (.,.) t4 B.T*A.inv mat-mat mult includes a tranpose
1 (.,.) t5 (-A.inv.T*B.T).inv inverse
1 (.,.) t7 B.inv inverse
1(.) t9 (B.T*A.inv).T*G mat-vec mult with 1 tranpose on the matrix
1 (.) t10 B.inv*(A.T).T mat-mat mult
1 () t11 (-A.inv.T*B.T).inv*F mat-vec mult
1 () t12 (B.inv*(A.T).T)*F mat-vec mult
0 add all parts �nal operation (straight to output bu�er)

Table 4.5: Step-by-step derivation of the number and shapes on temporaries for the aggressive
unary op nesting, after optimisation

Total number of temporaries predicted: 7 (.,.) + 2 (.) + 3 (). Thus, for the total memory size
of temporaries we estimate: 8 * ((7*10*10) + (2*10) + (3*1)) = 5784 bytes. This is exactly what
we �nd from the actual output: again our model is completely correct.

For this example we have found a reduction from 16,000 to 5784 bytes required for the tempo-
raries, i.e. a reduction of almost 64%.

4.2.6 Evaluating on examples: Hybridization

Hybridization is an important use case for Slate, as discussed in 2. It is a representative example
of the types of workloads handled by Slate. As such, it is valuable to consider the e�ects of
our optimisation on a hybridization example to show the e�ects of the optimisation in real-world
applications.

Below we complete a step by step analysis of one step within a hybridization example adapted
from [56]. This allows us to show our model in the more representative scenarios without laboring
the point with very similar, long derivations of all the series of operations taken in hybridization.

In 4.15 we include the UFL setup code for our example.

1 degree = 1

2 hdiv_family = "RT"

3 mesh = UnitSquareMesh(6, 6, quadrilateral=False)

4 RT = FunctionSpace(mesh, hdiv_family, degree)

5 DG = FunctionSpace(mesh, "DG", degree - 1)

6 W = RT * DG

7 sigma, u = TrialFunctions(W)

8 tau, v = TestFunctions(W)

9 n = FacetNormal(mesh)

10

11 # Define the source function

12 f = Function(DG)

13 x, y = SpatialCoordinate(mesh)

14 f.interpolate((1+8*pi*pi)*sin(x*pi*2)*sin(y*pi*2))

15

16 # Define the variational forms

17 a = (dot(sigma, tau) - div(tau) * u + u * v + v * div(sigma)) * dx

18 L = f * v * dx - 42 * dot(tau, n)*ds

19

20 # Hybridized solution

21 w = Function(W)

22 params = {'mat_type': 'matfree',

23 'ksp_type': 'preonly',

24 'pc_type': 'python',

25 'pc_python_type': 'firedrake.HybridizationPC',

26 'hybridization': {'ksp_type': 'preonly',

41

27 'pc_type': 'lu'}}

28 solve(a == L, w, solver_parameters=params)

Listing 4.15: Extract from simple hybridization example UFL setup code [56]

As mentioned above, we will analyse one of the series of operations that form part of the
hybridization example. The series of operations we will consider are those that assemble the Schur
complement operator and right-hand side.

In listing 4.16 we include modi�ed extracts from the the hybridization method to show what
kinds of tensors and operations we are dealing with, such that the temporaries created can be
predicted and understood.

1 # Determine shape of K

2 tdegree = 0 # Comes from RT1

3 TraceSpace = FunctionSpace(mesh, "HDiv Trace", tdegree)

4 gammar = TestFunction(TraceSpace)

5 n = ufl.FacetNormal(mesh)

6 sigma = TrialFunctions(V_d)[self.vidx]

7 Kform = (gammar('+') * ufl.jump(sigma, n=n) * ufl.dS)

8 K = Tensor(Kform)

9

10 # Determine shape of Atilde

11 broken_elements = ufl.MixedElement(...)

12 V_d = FunctionSpace(mesh, broken_elements)

13 arg_map = {test: TestFunction(V_d), trial: TrialFunction(V_d)}

14 Atilde = Tensor(replace(self.ctx.a, arg_map))

15

16 # Determine shape of AssembledVector b_r

17 self.broken_residual = Function(V_d)

18 b_r = AssembledVector(self.broken_residual)

19

20 # Schur right-hand side

21 K * Atilde.inv * b_r

22

23 # Schur complement operator

24 K * Atilde.inv * K.T

Listing 4.16: Modi�ed extracts from the hybridization example. [56] Comments have been added
for clarity.

Size and values of the shape of temporaries From 4.15 we see that the mesh is 2D and
consists of triangular elements. W is a mixed function space and our trial, test and solution function,
w, all live in this space. We calculate the degrees of freedom:

• For RT1:
(

1+2
2

)
= 3,

• For DG =
(

0+2
2

)
= 1,

• Hence we �nd the degrees of freedom for W = RT*DG = 3 + 1 = 4.

From 4.16, we see that V_d is a space like W but discontinuous, it is the space of 'broken' RT1 x
'broken' DG0. It has the same degrees of freedom as W, so 4.

K is the Tensor of the Kform which is a form that uses test functions from the trace space RT1
and trial functions from the V_d space. Since this tests every trail function against every test
function, the dimension of K will be (degrees of freedom of test space, degrees of freedom of trial
space), so (3,4).

Atilde is the bilinear form de�ning the matrix. This is in space W, which we have above
determined to have 4 degrees of freedom. Hence temporaries storing Atilde will have the shape
(4,4). Also, this means Atilde.inv, for example, will also be of shape (4,4).

b_r is an AssembledVector living in the V_d space, hence will have shape (4).
We can derive that the multiplication of K * Atilde.inv, i.e. a (3,4) matrix with a (4,4)

matrix will result in a (3,4) matrix. Similarly, a (3,4) matrix (K*Atilde.inv) multiplied by a
vector of shape (4) (b_r) will yield a vector of shape (3).

42

Schur right-hand side, K * Atilde.inv * b_r

Before the optimisation, from 4.6 we see that in total we predict 7 (.,.) + 3 (.), for a total memory
of 8*(3*4*4 + 4*3*4 + 4 + 2*3) = 848 bytes. This is exactly what we �nd is the true value from
the actual outputted code.

Temp num Temp Name Temp shape Operation
2 (.,.) T1 + t3 (3,4) Tensor() K
2 (.,.) T0 + t0 (4,4) Tensor() Atilde
1 (.) t6 (4) AssembledVector() b_r
1 (.,.) t1 (4,4) Atilde.inv
2 (.,.) t4 + t5 (3,4) K * Atilde.inv
2 (.) t7 + t8 (3) (K * Atilde.inv) * b_r

Table 4.6: Derivation of the number and shapes on temporaries for the schur right-hand side K *

Atilde.inv * b_r, before optimisation

After the optimisation, from 4.7 we predict 3 (.,.) + 1 (.) for a total memory of 8 * (2*4*4 + 3*4
+ 4) = 384 bytes, which is what we �nd.

Temp num Temp names Temp shape Operation
1 (.,.) T1 (3,4) Tensor() K
1 (.,.) T0 (4,4) Tensor() Atilde
1 (.,.) t0 (4,4) Atilde.inv
1 (.) t2 (4) K * Atilde.inv
0 (K * Atilde.inv) * b_r (straight to output)

Table 4.7: Derivation of the number and shapes on temporaries for the schur right-hand side K *

Atilde.inv * b_r, after optimisation

So the di�erence in memory for the Schur right-hand side has been a reduction from 848 to 384
bytes, i.e. a reduction by almost 55%.

Schur-complement, K * Atilde.inv * K.T

Before the optimisation, from 4.8 we predict 10 (.,.) for a total memory size of 8*(4*4*4 + 6*3*4)
= 1088 bytes, which is what we �nd.

Temp num Temp Name Temp shape Operation
2 (.,.) T0 + t1 (3,4) Tensor() K
2 (.,.) T1 + t0 (4,4) Tensor() Atilde
1 (.,.) t2 (4,4) Atilde.inv
2 (.,.) t4 + t5 (3,4) K * Atilde.inv
1 (.,.) t6 (4,3) K.T
2 (.,.) t7 + t8 (3,3) (K * Atilde.inv) * K.T

Table 4.8: Derivation of the number and shapes on temporaries for the schur complement, K *

Atilde.inv * K.T, before optimisation

After the optimisation, from 4.9 we predict 3 (.,.) + 1(.), for a total memory of 8 * (2*4*4 + 3*4
+ 4) = 384 bytes, which is what we actually get from the output too.

43

Temp num Temp Name Temp shape Operation
1 (.,.) T0 (3,4) Tensor() K
1 (.,.) T1 (4,4) Tensor() Atilde
1 (.,.) t0 (4,4) Atilde.inv
1 (.) t2 (4) K * Atilde.inv
0 (K * Atilde.inv) * K.T (straight to output)

Table 4.9: Derivation of the number and shapes on temporaries for the schur complement, K *

Atilde.inv * K.T, after optimisation

The di�erence in memory needed for temporaries for the Schur-complement has been a reduction
from 1088 to 384 bytes, i.e. a reduction by almost 65%.

Summary of the entire hybridization example
We have seen large reductions in memory for the above parts of hybridization. Below we summarise
the overall e�ects of the optimisation by considering the di�erences in temporaries before and after
the optimisation for the entire hybridization and solving process.

Before:
Total memory taken up by temporaries: 848+1008+1080+936+776= 4648.
Total number of temporaries: 93.
Shapes: {61 (.,.), 32 (.)}.

After:
Total memory taken up by temporaries: 384+384+408+416+280= 1872.
Total number of temporaries: 36.
Shapes: {22 (.,.), 9 (.), 5 ()}.

We see far fewer temporaries being created of all sizes, and a memory reduction from 4648 to 1872
bytes - almost 60% reduction in the memory required to store temporaries.

Such memory saving can quickly add to up be very signi�cant, especially for larger, more
complex examples.

4.3 Evaluation of optimisation to remove unneccessary tem-
poraries

In this part of the project we aimed to reduce the number of temporaries needed for performing
Slate operations, thus reducing the working set size for the resulting instructions.

This was achieved through manipulations of the GEM expression DAG, namely through the
elimination of ComponentTensors. Performing this transformation here has been inspired by the
use of such a transformation in TSFC for easier code generation.

On balance, we consider this optimisation to have been successful since it led to many unnec-
cessary temporaries not being created when performing operations on tensors.

Below we discuss some of the key limitations and strengths of our optimisation.

4.3.1 Limitations

Recomputation of di�erently substituted expressions The most notable disadvantages of
our optimisation is it can result in the recomputation of expressions that are substituted di�er-
ently. An example of this is given in 4.2.1. In this example we discuss how, for the example of
calculating -B*-A*-A*-B, -B is calculated twice and is stored in a di�erent temporary each time,
thus performing unneccessary computations and creating unneccessary temporaries. Because of
this, one may wish to turn o� this optimisation for certain types of operations, which can be done
by passing a �ag in the function that preprocesses the GEM DAG.

44

Memory not reduced to optimal amount The elimination of ComponentTensors has not
led to preventing memory from being used unneccessarily for storing temporaries. In 4.2.1, we
discuss how an odd number of tranposes results in a vector temporary rather than a scalar one.
This unneccessarily uses memory due to a lack of nesting of for loops in the code generated. This
is done in the case where there are an even number of transposes. Hence, we see this optimisation
has not reduced the memory needed to the optimal levels, and there are still improvements that
can be done. As the di�erence in memory needed is not large, its likely not a signi�cant di�erence.

4.3.2 Strengths

Reduction of memory needed This optimisation achieved the objective of reducing the amount
of memory needed to store temporaries. It achieved a reduction in memory of 55% - 65%, with
the representative hybridization example discussed in 4.2.6 having a reduction by 60%.

Most operations use the minimal number of temporaries possible In many instances,
the number of temporaries required for the given operation is now the minimum number possible,
taking into account the one temporary of form Tn that is used to store the tensor itself. One
such example is transposition, which formerly needed 3 temporaries and now only needs the 1
neccessary Tn temporar.

Simpler expression graphs Through the removal of ComponentTensors in the GEM expression
DAGs, we have greatly simpli�ed these DAGs, thereby making them easier to understand and work
with.

4.4 Evaluation of model for amount of memory needed for
temporaries

4.4.1 Limitations

Possible unaccounted-for stacking e�ects We found that the number and types of tempo-
raries could be determined solely by the operations performed on a tensor, however there were
stacking e�ects which resulted in di�erent numbers (and sometimes shapes) of temporaries needed
if operations were performed in a certain order. We investigated these stacking e�ects in a variety
of examples. We note that there may be combinations of operations that are not included in these
examples which stack in a way our model does not predict. This would result in slightly di�erent
memory requirements for the tensors.

Predictions need to be done manually A disadvantage of our model is the time needed to
manually apply the model to the given case, especially the derivation of the number and shapes
of temporaries from the operations performed. This process is tedious and long, so if this model
is used frequently or for large, complex examples, then automating this model using a computer
program might be bene�cial.

Does not cover all cases For things like mesh and �nite element, our model includes only
common choices and those related to this project, as this was su�cient for our use case of the
model. There are other values of these that the model has not been built or tested with. These
might be of interest to some users, and their inclusion is a possibility for future work.

4.4.2 Strengths

Predictions close to the real values We have found that the model's predictions tend not to
be too far o� the correct answer � the accuracy is su�cient for the purpose of making predictions
for roughly the memory required for a set of operations. Therefore, the model is also suitable for

45

comparing two di�erent sets of operations, such as those for two di�erent approaches to a problem,
or before and after an optimisation or other code change.

Insight into e�ect of choice of mesh and �nite element The model gives insight into why
the number, shapes and extents of temporaries are needed, and hence how the choices of mesh and
�nite element can a�ect the amount of memory needed for temporaries.

4.5 Summary

In this chapter we investigated the speci�c e�ects that a reduction in temporaries has in reducing
the memory overhead. This was done to better understand the e�ects of our optimisation on the
memory required. We did this by developing a model for the amount of memory required by the
temporaries to perform operations on tensors.

We hypothesised that the number of temporaries could be determined solely through the set
of operations that were being performed. We found that by assuming this, we were able to get
accurate predictions for the number of temporaries for the examples we tested. When analysing
what a�ects the temporaries being created, we found no other factors a�ecting the number of
temporaries. Hence, there is insigni�cant evidence to say that we can't determine the number of
temporaries soley through the operations.

We also hypothesised that our model can accurately predict the number of temporaries required
for a sequence of operations from the temporaries needed for each basic operation that needs to
be performed as part of that set of operations. If this hypothesis were true it would also imply
that our hypothesis in the previous chapter 3.3, is also true: that by optimising the basic building-
block operations we would be optimising the evaluation of more complex expressions too. We
experimented with predicting the number of temporaries for a sequence by adding the contributions
from each basic operation performed. We found that this yielded large overpredictions, both before
and after our optimisation. This led us to discover stacking e�ects, in which some temporaries are
re-used by the compiler from previous optimisations. We explored these e�ects and found that they
impact not only the number of temporaries, but also the shape of the temporaries. In summary,
we conclude there is no evidence to suggest our hypothesis is wrong, hence our model predicts the
number of temporaries from the basic operations only.

We found that the shape of the temporaries depends on the type of tensor being stored (e.g.
a 2-tuple for shape for matrices, 1-tuple for vectors). However, the type of tensor being stored,
could be a�ected by the stacking e�ects, resulting in a di�erently shaped temporary to what was
expected.

We found that since �nite element families can di�er by the polynomial space P , they can e�ect
the extent of the temporary in each dimension. The mesh and degree had interconnected e�ects,
which we discuss in more detail in 4.2.4.

From the work done in this chapter and by applying the model for various examples before
and after our optimisation we were able to better understand the e�ects and limitations of our
optimisation. For example, we found that our optimisation did not remove all unneccessary memory
associated with temporaries due to it resulting in the need to recompute di�erently substituted
expressions.

We conclude this part of the project by saying that, on balance, we consider that our optimi-
sation has been successful � it led to many unneccessary temporaries to be removed, yielding a
reduction in memory of 55% - 65% as per our objectives.

46

Chapter 5

Part 2: Structured Sparse Local

Tensors

5.1 Introduction

There are many zeros in the tensors involved in the assembly process of the �nite element method
- both in the local and the global tensors. It is very ine�cient to store these zeros and to perform
calculations on them.

In Firedrake, the sparsity of the global matrices is already accounted for and handled through
the use of sparsity-aware storage formats such as compressed row storage. However, the local
tensors are also sparse, and this is not accounted for in Firedrake.

The aim of this part of the project was to implement sparse local tensors. This task was broken
down into two separate stages:

1. Implement sparsity in local kernels
This involved ensuring that:

• The space taken up by the local tensor was only the space of the non-zeros. We will call
the structure storing these values the bu�er. This also meant needing to �nd a mapping
from the bu�er back to the original tensor, i.e. a mapping of where the non-zeros go in
the original tensor.

• The operations on the tensor where performed only on the zeros. This was already
being done.

2. Propagate the local tensor sparsity
Find a way to propagate the sparsity information to things using the local tensor such that
the sparsity can be taken advantage of.

To aid in the understanding of the work done in this chapter, we now brie�y discuss the types
of sparsity we encounter, why local tensor sparsity arises and the di�erent ways one can index a
sparse tensor.

5.2 Context: Sparsity and indexing strategies

5.2.1 Structured and unstructured sparsity

It is important to note that local tensors have a di�erent type of sparsity to that of the global
tensors. The sparsity of global tensors is unstructured, in that its known that it is mainly composed
of zeros but one can't derive where the non-zeros are. This is because the sparsity is driven by the
connectivity of the mesh. Hence, to work with such tensors, we need to store the non-zero values
as well as a mapping to say where each non-zero value is within the tensor.

Local tensors, on the other hand, have structured sparsity, meaning that the position of the
non-zeros can be derived through a closed-form formula.

47

5.2.2 How local tensor sparsity arises

Figure 5.1: Element of the (CG1)2 vector space.

We will demonstrate the source of the sparsity through an example.

Let ē be the canonical basis of R2, i.e.
(
1 0

)T
,
(
0 1

)T
.

Assume a (CG1)2 vector function space, call it V .

Hence our elements are triangles, we evaluate two vector components at each node and there is a
node at each of the three vertices of the triangle for a total of 6 degrees of freedom per cell (and
hence 6 basis functions), see �gure 5.1.
Take the vector basis function for V as

φ̄iα = φiēα (5.1)

with φi a scalar value, ēα the αth canonical basis of R2, i = {0, 1, 2} the index for the vertices and
α = {0, 1} the index for the x and y components at each node.

If we take the βth entry of the iαth basis vector:

φ̄iα|β = φiēα|β = φiδαβ (5.2)

For example, letting φ0 = x, φ̄00 = φ0ē0 =
(
x 0

)T
and φ̄00|0 = x, φ̄00|1 = 0.

Take a local tensor, A, de�ned as

Aijα1α2 =

∫
φ̄iα1 · φ̄jα2dx ∀i, α1, j, α2 (5.3)

For given i, j, α1, α2,

Aijα1α2 =
∑
β

φiδα1βφjδα2β (5.4)

which is only non-zero when α1 = α2 = β. This is known as delta cancellation.
This results in the local tensor having a form like that in �gure 5.2, or the transpose of that,

which would look like the checkerboard seen in 5.3a.

Figure 5.2: Local matrix zeros structure. The dark grey represents non-zero entries, while the
white represents zero entries.

48

5.2.3 Di�erent indexing strategies

We will demonstrate the di�erent ways of indexing a structurally sparse tensor through a simple
example. For brevity we will refer to matrices indexed by n indices as n-tensors. Take A, a 6x6
a 4-tensor indexed by I, J, M and N, as shown in �gure 5.3a. Note how the non-zeros occur only
when M and N take on the same value. Since we are only interested in the non-zero values, we can
represent the M and N value by a single index, call it α. So now we see how we can represent A as
a 3-tensor, indexed by i, j and α, as in �gure 5.3b.

From 5.3b we can easily see how we can think of A as a 2-tensor, accessible by row and column
index, call the indices R and C. We observe how in this case R= 2j + α and C= 2i+ α.

(a) 4-tensor view of A, indexed by I, J, M and N. (b) 3-tensor view of A indexed by i, j and α.

Figure 5.3: Di�erent ways of indexing a 6x6 structurally sparse local tensor A. The dark grey
represents non-zero entries, while the white represents zero entries.

5.3 Implementing sparsity in local kernels

To motivate and test our implementation we consider the example in 5.1. Note how a, and thus
A, is the same as 5.3, the A in the sparsity discussion above. Hence we see that this tensor is going
to be structurally sparse.

In 5.1, mat_type='aij' indicates that we are assembling matrix A as a monolithic matrix, as
opposed to the default for this case which is as a block matrix.

1 mesh = UnitTriangleMesh() # A mesh of a single triangle

2 V = VectorFunctionSpace(mesh, "CG", 1)

3 u = TrialFunction(V)

4 v = TestFunction(V)

5 a = inner(u,v) * dx

6 A = assemble(a, mat_type='aij')

Listing 5.1: UFL code for structured sparsity example

5.3.1 Before

In 5.2 below, we include relevant extracts of the original loopy kernel for our example. For the full
original loopy kernel, see E.1.

1 ARGUMENTS:

2 A: type: np:dtype('float64'), shape: (6, 6), dim_tags: (N1:stride:6, N0:stride:1) aspace:

global

49

3 coords: type: np:dtype('float64'), shape: (6), dim_tags: (N0:stride:1) aspace: global

4 ---

5 DOMAINS:

6 { [j0] : 0 <= j0 <= 2 }

7 { [k0] : 0 <= k0 <= 2 }

8 { [ip] : 0 <= ip <= 2 }

9 { [j0_0] : 0 <= j0_0 <= 2 }

10 { [k0_0] : 0 <= k0_0 <= 2 }

11 { [j0_1] : 0 <= j0_1 <= 2 }

12 { [k0_1] : 0 <= k0_1 <= 2 }

13 ---

14 INSTRUCTIONS:

15 ...

16 for k0_1, j0_1

17 A[0 + j0_1*2, 0 + k0_1*2] = A[j0_1*2, k0_1*2] + t7[j0_1, k0_1] {id=insn_6, priority

=2}

18 A[1 + j0_1*2, 1 + k0_1*2] = A[1 + j0_1*2, 1 + k0_1*2] + t7[j0_1, k0_1] {id=insn_7,

priority=1}

19 end k0_1, j0_1

Listing 5.2: Extracts of original local kernel. '...' indicates that there is more content that has not
been included here for brevity.

ARGUMENTS are data that carry information into and out of the loopy kernel. For our example
we have an argument named A which corresponds to the local tensor whose sparsity we want to
take advantage of. The shape of A is 6x6, and it has the same shape and sparsity structure as the
tensor discussed in section 5.2.3. The argument coords represents the 6 coe�cients of the nodes,
and is just a normal dense tensor.

The DOMAINS section states the values each index can take.
We see that the index accesses into A are of the form A[2j0_1 + α, 2k0_1 + α], where α, is

unrolled into separate statements rather than being included as a loop over an index. This matches
the 2-tensor indexing we saw in 5.2.3. Considering the 3-tensor view in 5.3b, which has indices i, j
and α, we can deduce the correspondence between the code indices and those used in our indexing
example as: j0_1 maps to j, and k0_1 maps to i. Since α is implicitly included, there is no named
index to which it corresponds.

To summarise, we are storing a 6x6 tensor in memory, which in this case has half its values
as zeros. This is ine�cient. In terms of work done on the tensor, at the local kernel stage: from
the 2-tensor indexing used we are only accessing non-zero values, hence we are not performing
unneccessary calculations on zeros at this stage - thus we are taking advantage of the sparsity.

When we use that local tensor somewhere else, such as in global assembly, the information
about sparsity is lost. Hence, we waste memory storing many zeros, and need to do calculations
on all values, including on zeros.

5.3.2 After

In 5.3 we have the key extracts from the �nal local loopy kernel, after our changes have been
implemented. For the full version of the �nal local loopy kernel, see E.2.

1 ARGUMENTS:

2 A: type: np:dtype('float64'), shape: (2, 3, 3), dim_tags: (N2:stride:9, N1:stride:3, N0:

stride:1) aspace: global

3 coords: type: np:dtype('float64'), shape: (6), dim_tags: (N0:stride:1) aspace: global

4 ---

5 DOMAINS:

6 ...

7 { [j1] : 0 <= j1 <= 1 }

8 ---

9 INSTRUCTIONS:

10 ...

11 for j1, j0_1, k0_1

12 A[0 + j1, 0 + j0_1, 0 + k0_1] = A[j1, j0_1, k0_1] + t7[j0_1, k0_1] {id=insn_6,

priority=1}

50

13 end j1, j0_1, k0_1

Listing 5.3: Extracts of �nal local kernel. '...' indicates that there is more content that has not
been included here for brevity.

Argument shape We note that the number of entries in A is 18, exactly the number of non-zeros
needed. The bu�er we desire should have total size equal to the number of non-zeros, but we there
is no clear preferrable shape to achieve this (e.g. for our case we could have had shape (18) or
(9,2)).

Since the total size needed can be calculated from the domains of the indices indexing into the
local tensor, we chose to have the shape length equal to the number of indices, with the extent
in each dimension equal to the number of possible values each index can take (knowing that the
values indices can take are integers). By doing this, it not only simpli�es the process of indexing
into the local tensor (since now we can just index into it using the indexes directly with no further
transforms needed) but it also means we retain some information about the number and extents
of the indexes.

We have made it such that the indices a�ected by delta elimination are the slowest changing,
and thus for our choice of shape format will be the ones in the �rst positions in the shape tuple.
This has been done to bring the local tensor into the order expected by PyOP2 for global assembly.

5.3.3 Implementation details

The implementation involved creating a new type of GEM node, which we called a Structured-

SparseVariable.

Initial approach Our initial approach saw us attempting to have the kernel builder initialise the
object representing A as a StructuredSparseVariable. This would behave like the Variable node
and its FlexiblyIndexed wrapper that are currently being used, such that optimisations could
be applied in the usual way. However as delta eliminations and other possible index changing
operations were performed on it, it would keep a record such that it would have all the information
during the code generation stage to map between the bu�er and the original tensor.

We ultimately chose against this as this would cause unneccessary duplication and complication
of the code involving in determining all the parts of the kernel, especially the optimisations.

Using FlexiblyIndexed nodes We found that we could repurpose an existing construct. A
FlexiblyIndexed node has an attribute dim2idxs which contains all the information about in-
dexing the tensor: the o�set, index and stride. We give an example of a FlexiblyIndexed node
in 5.4.

The information in dim2idxs has already been a�ected by all the index-changing optimisations.
We only care about what e�ect the optimisations had on the indexes and not about what the
optimisations applied were themselves. Hence, we can simply use the information in dim2idxs to
determine the mapping from bu�er to original tensor.

1 FlexiblyIndexed(

2 Variable('A', (6, 6)),

3 (# dim2idxs below

4 (0, ((Index(3), 2), (Index(4), 1))),

5 (0, ((Index(5), 2), (Index(4), 1)))

6)

7)

Listing 5.4: FlexiblyIndexed node for the local tensor A from our structures sparsity example.
Refering to Index(n) as In, this corresponds to the indexing A[0 + I3*2 + I4*1, 0 + I5*2 + I4*1].
The repeated index (I4) imposes a delta cancellation.

51

Solution We decided to use the FlexiblyIndexed nodes.
To facilitate this, we undid the unrolling of the index corresponding to α, and thus added in

an explicit loop over a new index j1, with 0 ≤ j1 ≤ 1, as seen in 5.3.
Our solution involved keeping the initial part of the code generation process the same, thus

creating the required FlexiblyIndexed nodes: declaring an ordinary dense tensor as before, ap-
plying all the optimisations desired and creating the expression tree representing the kernel. Then,
after this expression tree is fully completed, and before it is traversed to generate the actual
code, we pass through the list of arguments and wrap the ones corresponding to local tensors
(these will be the FlexiblyIndexed nodes that have had delta cancellations applied to them)
in StructuredSparseVariables so that the later code generation stage knows to treat them as
sparse.

Hence, ultimately the StructuredSparseVariable node works like a wrapper for a Flexibly-
Indexed node. The StructuredSparseVariable captures the notion of a dense tensor with delta
cancellations applied to it and serves to enter a di�erent code path in the generation of code for
sparse local tensors.

We perform all the structured-sparse speci�c actions at the code generation stage, i.e. we
calculate and set the shape of the argument, as well as setting the indices into the bu�er. The code
generation stage is the earliest and most convenient time at which we have all the information we
need to create the full structured-sparse object.

5.4 Propagating the local tensor sparsity

Once a local kernel is created, it must either be assembled into the global matrix or have operations
performed on it through Slate. Since the common use case is simply to assemble the local tensor,
this is the one we focused on in this project. An extension to this project would therefore be to
extend Slate to handle such sparse tensors, see 6.2 for more.

We will now discuss how global assembly, how it is currently performed in Firedrake and what
would need to be changed to support structured sparse local tensors. We also discuss PyOP2, as
this is the part of Firedrake responsible for taking the local kernels, e�ciently executing these on
each element in the mesh and performing global assembly with them.

5.4.1 Global assembly procedure details

Figure 5.4: Visual representation of the global assembly procedure. The dark grey represents
non-zero entries, while the white represents zero entries.

In 5.5, we include the high-level view of the global assembly procedure for our ongoing example.
A visual representation of this is included in 5.4.

At each cell we calculate the cell's contribution (i.e. the local tensor) to the global tensor. The
(i, j)th entry of the local tensor for cell c is added to (M(c, i),M(c, j))th entry of the global tensor.

52

1 Aij = 0
2 for c in cells:

3 for 0 <= i < N:

4 for 0 <= j < N:

5 AM(c,i),M(c,j)+ =
∫
c
(Φi · Φj)|J | dx

Listing 5.5: Global assembly procedure for Aij =
∫

Ω
φi · φj dx.

where

• N is the number of nodes per element, in our case N=6.

• |J| is the absolute value of determinant of the Jacobian matrix given by Jαβ = ∂xα
∂Xβ

with X

the local coordinates, x the global coordinates.

• M(c, ζ) the cell-node map giving the global node number for the local node ζ in cell c.

5.4.2 PyOP2 concepts

Here we will include a brief discussion of key PyOP2 concepts related to the global assembly
process. [57, 58]

• Set: Some number of mesh entities or degrees of freedom.

• Map(iterset, toset, arity, values, vertical_o�set): Connectivity between two sets.

• DataSet(iterset): A data set. Subclass of Set. Used in Dat to specify the dimension of
the data.

• Dat: Associates a DataSet with data.

• Sparsity(dsets, maps): Represents the non-zero structure of a matrix. De�ned from
DataSets for the left and right function spaces it is mapping between. The non-zero structure
is derived from the outer product of the Map objects. The number of rows is equal to the size
of the input Set, the number of columns is equal to the size of the output Set.

• Mat(sparsity): This represents a matrix and can be viewed as something that takes in a
Dat on a Dataset and outputs a Dat on a di�erent Dataset. Mats are de�ned on a Sparsity
pattern and have a value for each entry in the Sparsity. The size of the Mat is de�ned from
the dimensions of input and output Datasets. Mats are stored using Compressed Sparse
Row (CSR) format.

To aid in understanding, we have included below an example modi�ed from Bercea 2017 [57].
Take the mesh as in �gure 5.5.

Figure 5.5: Simple mesh with 2 triangular cells and 4 vertices.

Below in listing 5.6 we include some simple example uses of the PyOP2 constructs outlined
above.

1 vertices = Set(4)

2 verticesDataSet = DataSet(vertices, dim=2) # 2 values per vertex for the x & y coordinates

3 coordinates = Dat(verticesDataSet, [[0, 1], [1, 1], [1, 0], [0, 0]])

4

5 cells = Set(2)

53

6 cell2vertices = Map(cells, vertices, 3, [[0, 1, 2], [0, 2, 3]])

7

8 sparsity = Sparsity((verticesDataSet, verticesDataSet), [(cell2vertices cell2vertices)])

9 matrix = Mat(sparsity, dtype=float)

Listing 5.6: Simple example of using PyOP2 objects

PyOP2 parallel loops (par_loop), which are just invocations of a kernel, perform global assem-
bly. The input to these is the kernel to be executed, the iteration set (set over which the kernel
should be executed) and access descriptors, Args.

Args are made from a data object (e.g. Dat, Mat), access modes (saying how the kernel will
access the data) and optionally maps which dictate how the Arg is to be accessed. The Args are
the global data structures which will be accessed by the kernel. [57]

PyOP2 uses petsc4py to access sparsity formats and methods for adding in local contributions.

5.4.3 Assembly implementation in PyOP2

As mentioned above, it is the PyOP2 par_loops that perform global assembly. In our example,
in the par_loops, the kernel is of the form inner(u, v) ∗ dx and is the local kernel we discussed
earlier. The iteration space is over cells, since dx represents a cell integral.

A local tensor is assembled for each element in the iteration set using the kernel. The wrapper
function then adds these local contributions to the global tensor. The global matrix is represented
by a PyOP2 Mat.

The non-zero structure for the global matrix is de�ned using local-to-global degree of freedom
mappings: the row and column maps (rowmap and colmap respectively). These store the mapping
from the local to the global degrees of freedom.

The sparsity of the global matrix is built by doing the outer product of rowmap and colmap.
This means that PyOP2 assumes there are values for all combinations of these maps. This is
equivalent to treating the local tensor as dense. We can see this in 5.7, which is a modi�ed extract
from the original code generated by PyOP2 to perform global assembly. For the full code, see E.3.

1 void wrap_form00_cell_integral_otherwise(int32_t const start, int32_t const end, Mat const

mat0, double const *__restrict__ dat0, int32_t const *__restrict__ map0)

2 {

3 ...

4 double t1[3 * 2 * 3 * 2]; // Dense local tensor

5

6 for (int32_t n = start; n <= -1 + end; ++n)

7 {

8 // Local tensor initialised to zero

9 for (int32_t i2 = 0; i2 <= 2; ++i2)

10 for (int32_t i3 = 0; i3 <= 1; ++i3)

11 for (int32_t i4 = 0; i4 <= 2; ++i4)

12 for (int32_t i5 = 0; i5 <= 1; ++i5)

13 t1[12 * i2 + 6 * i3 + 2 * i4 + i5] = 0.0;

14

15 // Packing coords

16 for (int32_t i0 = 0; i0 <= 2; ++i0)

17 for (int32_t i1 = 0; i1 <= 1; ++i1)

18 t0[2 * i0 + i1] = dat0[2 * map0[3 * n + i0] + i1];

19

20 // Inlined local kernel

21 ...

22 for (int32_t form_k0_1 = 0; form_k0_1 <= 2; ++form_k0_1)

23 for (int32_t form_j0_1 = 0; form_j0_1 <= 2; ++form_j0_1)

24 {

25 t1[12 * form_j0_1 + 2 * form_k0_1] = t1[12 * form_j0_1 + 2 * form_k0_1] + form_t7

[3 * form_j0_1 + form_k0_1];

26 t1[...] = t1[...] + form_t7[3 * form_j0_1 + form_k0_1];

27 }

28

29 // Add local contributions from t1 to global matrix mat0

54

30 MatSetValuesBlockedLocal(mat0, 3, &(map0[3 * n]), 3, &(map0[3 * n]), &(t1[0]),

ADD_VALUES);

31 }

32 }

Listing 5.7: Modi�ed extracts from original code generated from PyOP2 wrapper. Comments
beginning with // have been inserted for clarity. '...' indicates that there is more content that has
not been included here for brevity.

The call to MatSetValuesBlockedLocal is what adds the local contribution to the global
matrix. The �rst argument mat0 is the global matrix. The 2nd argument '3' indicates that 3 rows
will be a�ected in the global matrix, and the indexes of these in the global matrix are given by
argument 3. In this case the rows a�ected will be map0[3*n], map0[3*n]+1 and map0[3*n]+2.
Arguments four and �ve are similar but these indicate the columns that will be a�ected. Hence
we are adding a 3x3 array into mat0. The sixth argument indicates the �rst address where the
values to add will be taken from. In this case, this just means the �rst entry of t1, our local tensor.
Implicitly in mat0 there is information that says that a 2x2 block of values should be taken from
t1.

5.4.4 Adapting PyOP2 assembly to support structured sparse local ten-
sors

How this can be done
As mentioned above, PyOP2 currently assumes it knows what the local data structure is and that
it is dense. We would need to change it to accept as input a local data structure and a way to
work with that data structure. This way we could relay the information of sparsity such that we
remove unneccessary calculations on zeros.

With this information we would adapt the way we build the sparsity that the global matrix is
built upon, such that only non-zeros are assembled.

The information we would need to pass to PyOP2 would be that within the FlexiblyIndexed
nodes, the same information as discussed above. This is because from this information we can derive
the bu�er to dense tensor representation of the local tensor. This can then be used in conjunction
with the existing constructs in PyOP2, namely the local-to-global mappings, to perform global
assembly just on the non-zeros stored in the bu�er.

In particular the parts of PyOP2 that would need to be changed would be the packing and
unpacking of Args done in the wrapper function. It is these parts that are responsible for extracting
the information needed and calling the petsc4py function(s) to add the local contributions to the
global matrix (via MatSetValuesBlockedLocal or MatSetValuesLocal etc.).

Designing a proof of concept
For this project we have not implemented global assembly for sparse local tensors since this would
involve large changes in PyOP2 that could not have been done in the time available to us. What
we have done instead is completed a proof of concept, to demonstrate how this could be done.

We have hand written and tested the code we want to be generated from PyOP2 for our running
example. This is included in listing 5.8. A �gure to aid understanding of the code and how PyOP2
could be changed to support sparse tensors is included in 5.6.

The veri�cation that this code is correct and is in fact what we want to see was done through
passing in a sparse local tensor, as created in 5.3, and comparing that the resulting global matrix
created was the same as the one created from considering the local tensor as dense at each stage
(as has been done until now).

1 void wrap_form00_cell_integral_otherwise(int32_t const start, int32_t const end, Mat

const mat0, double const *__restrict__ dat0, int32_t const *__restrict__ map0)

2 {

3 ...

4 double t1[2 * 3 * 3]; // Sparse local tensor

5

6 for (int32_t n = start; n <= -1 + end; ++n)

7 {

8 // Local tensor initialised to zero

55

9 for (int32_t i2 = 0; i2 <= 2; ++i2)

10 for (int32_t i3 = 0; i3 <= 1; ++i3)

11 for (int32_t i4 = 0; i4 <= 2; ++i4)

12 t1[6 * i2 + 3 * i3 + i4] = 0.0;

13

14 ...

15 // Inlined local kernel

16 ...

17 for (int32_t form_k0_1 = 0; form_k0_1 <= 2; ++form_k0_1)

18 for (int32_t form_j1 = 0; form_j1 <= 1; ++form_j1)

19 for (int32_t form_j0_1 = 0; form_j0_1 <= 2; ++form_j0_1)

20 t1[3 * form_j0_1 + form_k0_1 + 9 * form_j1] = t1[3 * form_j0_1 + form_k0_1 + 9

* form_j1] + form_t7[3 * form_j0_1 + form_k0_1];

21

22 // Add local contributions from t1 to global matrix mat0

23 const PetscInt x_indices[] = {2*map0[3 * n], 2*(map0[3 * n]+1), 2*(map0[3 * n]+2)};

24 const PetscInt y_indices[] = {2*map0[3 * n]+1, 2*(map0[3 * n]+1)+1, 2*(map0[3 * n

]+2)+1};

25

26 MatSetValuesLocal(mat0, 3, &(x_indices), 3, &(x_indices), &(t1[0]), ADD_VALUES);

27 MatSetValuesLocal(mat0, 3, &(y_indices), 3, &(y_indices), &(t1[9]), ADD_VALUES);

28 }

29 }

Listing 5.8: Modi�ed extracts from the desired code generated from PyOP2 wrapper. Comments
beginning with // have been inserted for clarity.'...' indicates that there is more content that has
not been included here for brevity.

Figure 5.6: Figure to demonstrate relationship between the bu�er, the dense representation of the
local tensor and the global matrix for our ongoing example 5.1. The dark grey represents non-zero
entries, while the white represents zero entries.

For the code in 5.8, note how the size of temporary t1 storing the local tensor is 2*3*3, exactly
the shape of the non-zero bu�er of this tensor. Comparing to the code generated before, 5.7, we
see that the initialisation of the local tensor and the local kernel operation is much simpler.

Lines 23 and 24 are where we use the information from dim2idxs to map from the bu�er we have
to the dense tensor the assembly process expects. In these lists of indices, we are giving the explicit
indexes into the global matrix that we wish to a�ect. These are the same indices as were a�ected
before, but here they have had a transformation applied to them (*2 for x_indices) and (*2 then
+1 for y_indices) which handles the transformation from bu�er to the dense representation of
the local tensor.

56

5.5 E�ect

From 5.2.2 we can deduce that, for a 2D tensor, the representation of local tensors as sparse cuts the
space and calculation by just under 50%. This is because half the entries in the matrix are zeros,
however there is some memory and extra calculation that must be done to handle the mapping
from bu�er to dense tensor.

By similar reasoning, in 3D memory and calculation are cut by just under 66% since 2/3 of the
tensor are zero and accounting for the bu�er-dense tensor mapping. At higher dimensions, larger
and larger percentages of the tensors are zeros so the reduction in memory and calculation are
even larger.

5.6 Evaluation

5.6.1 Limitations

Sparse local tensors cannot be globally assembled or manipulated in Slate Once a
local kernel is created, it must either be assembled or have operations performed on it through
Slate. We focused on global assembly in PyOP2 since the common use case for most Firedrake
users is assembling the local tensor. We found that due to assumptions made in PyOP2 about the
structure of the local tensors, adapting this to support sparse tensors would be a big change which
we did not have time to do in this project.

Because there is no support for sparse tensors in PyOP2 or Slate, there is nothing that can be
done to the sparse local tensors in the local kernel.

O�set unsupported Currently the sparse local tensors only support indexing via indexes and
strides, and it is only for tensors indexed with these that we have developed the global assembly
for. However, in some cases, the dense local tensor might be indexed with a non-zero o�set as well
as the indexes and their strides.

Because these o�sets are not currently supported, we may get weird behaviour or errors if we
attempt to make StructuredSparseVariables out of tensors with o�sets in their indexes.

We will need to experiment with some examples and develop a way to include o�sets in our
local bu�er representation, as well as modifying the upstream operations that will be done upon
the bu�er (such as global assembly) to handle the o�set.

For more details about this, see future work under 6.2.

5.6.2 Strengths

Sparse local tensors in local kernels We have successfully represented sparse local tensors as
bu�ers with only the non-zeros stored. We have found a way of mapping between the bu�er and
the dense tensor using FlexiblyIndexed nodes.

Proof of concept showing how PyOP2 global assembly can support sparse tensors
PyOP2 assumes that there are values for all combinations of the local-to-global degree of freedom
maps. We found that this assumption was not correct. This assumption led to the hardcoding of
behaviour which is undesireable in the case of sparse local tensors. This is undesireable because it
does not allow the needed �exibility to determine how the local data structure is handled.

We developed a solution to show how PyOP2 could be adapted to support sparse tensors. This
involved manually writing the code we wanted to be generated from PyOP2, which we veri�ed
the correctness of by comparing to the global matrix created from the current method of handling
local tensors as dense throughout. We discussed how the information needed in this code could be
passed in to PyOP2 through attaching metadata to the local kernel, and that the all the information
required can be found on the FlexiblyIndexed node we use to create the bu�er in the local kernel.

57

Better understanding of Firedrake and its handling of the structure of things An
important contribution of this work is that of discovering more about how the structure of math-
ematically key constructs interplays across Firedrake systems and the limitations involved. In our
example, we looked into the structure of local tensors, particularly in relation to sparsity, and how
properties of these could be represented and taken advantage of to improve Firedrake. We found
that TSFC, although complex and interlinked, could be adapted quite easily in several ways to
support our new structure. PyOP2 on the other hand, was not as easy to adapt to support such
things. Here we are touching upon the current limitations of the PyOP2 system.

5.7 Summary

In this chapter we discussed our work on implementing structured sparse tensors in Firedrake.
We successfully implemented sparse local tensors in local kernels, representing the dense tensor

by a bu�er and using the information in the local tensor's FlexiblyIndexed nodes to map between
the bu�er and the dense tensor.

We demonstrated that the PyOP2 global assembly of structured sparse tensors was possible and
discussed how PyOP2 could be adapted to do this. This led to us discovering that the assumption
made by PyOP2 is incorrect and that there are not values for all combinations of the local-to-global
degree of freedom maps.

We deduce that through implementing sparse local tensors we could reduce the memory and
calculation on the local tensors to reduce by over 50% for 2D tensors and over 66% for 3D tensors.

58

Chapter 6

Conclusion

6.1 Conclusions

The aim of this project was to optimise the layer in Firedrake responsible for tensor computations.
This was divided into the following objectives:

1. Reducing the amount of memory needed by temporaries to perform operations on tensors.

2. Taking advantage of the sparsity of local tensors to reduce memory and computation.

6.1.1 Reducing the amount of memory needed by temporaries to per-
form operations on tensors

Our �rst step to achieve the above was to implement a new optimisation to reduce the number of
temporaries created when performing operations on tensors through smart indexing. This optimi-
sation involves passing through the GEM expression DAG before code generation and eliminating
the ComponentTensor nodes.

We wanted to understand the speci�c e�ects that a reduction in temporaries (as our optimisa-
tion does) has in reducing the memory overhead. We developed a model for the amount of memory
required by the temporaries to perform operations on tensors. This involved an exploration into
the stacking e�ects of di�erent operations, and analysis of the e�ects of the choice of �nite element
family, mesh. etc.

We found that our optimisation still created some unneccessary memory associated with tem-
poraries, but it did reduce the amount of memory needed by 55% - 65%, with the representative
hybridization example discussed in 4.2.6 having a reduction by 60%. Thus to a greater extent we
have achieved our �rst objective.

6.1.2 Taking advantage of the sparsity of local tensors to reduce memory
and computation.

We successfully implemented sparse local tensors in local kernels, representing the tensors as a
bu�er of the non-zero values and a mapping from bu�er to the original dense tensor, which was
derived from the information in the tensor's FlexiblyIndexed node.

Unfortunately, we found that due to an assumption made in PyOP2 about the structure of the
local tensors, adapting this to support sparse tensors would be a big change, and we didn't have
time to do this during this project. PyOP2 assumes that there are values for all combinations
of the local-to-global degree of freedom maps, hence all local data strutures are hardcoded to be
treated as dense. This means there is no �exibility for us to de�ne a di�erent way in which PyOP2
should handle the data.

Instead, we developed a solution to show how PyOP2 could be adapted to support sparse
tensors. This involved manually writing the code we wanted to be generated from PyOP2. We
veri�ed the correctness of this code by comparing it's global matrix to the actual global matrix
which we got from running the non-sparse version of the code. Developing a solution involved
deducing the information that would need to be passed to PyOP2 and suggestions on what parts
of the code need to be changed.

59

Although we have not been able to change Firedrake such that local tensor sparsity can be
taken advantage of, we have taken a signi�cant step towards achieving this. We have also deduced
that by completing the implementation of sparse local tensors we could reduce the memory and
calculation on the local tensors to by over 50% for 2D tensors and over 66% for 3D tensors. This
would further advance achieving our �rst objective.

6.2 Future work

Further reductions in memory required for temporaries More can be done to reduce the
unneccessary memory for temporaries. An example of this is discussed in 4.2.1. We have not come
across many cases of unneccessary temporary creation still in the system, and the example given
in 4.2.1 would yield a very small reduction in memory. Hence, it is most likely not a signi�cant
change.

Another way we can reduce the memory required is by �nding a way to stop needing to recalcu-
late di�erently indexed expressions. An example where we have seen this occur is the recalculation
of -B in -B*-A*-A*-B (see 4.2.1).

Further investigation into stacking e�ects More can be done to investigate the stacking
e�ects of operations as discussed in our model. Even if there are stacking e�ects unaccounted for
in our model, it is likely that the number and shape of temporaries is not a�ected very signi�cantly.
Therefore, such stacking e�ects may cause the model to slightly over or under predict. For the
foreseeable use cases of this model, inaccuracies in the prediction that are this small are acceptable.

Extend the model to handle more possible cases Our model currently includes only com-
mon choices for things like mesh and �nite element, as this was su�cient for our use cases. There
are other values of these that the model has not been built or tested with. Thus extending the
model to predict the memory used for these cases might be of interest to some users.

Automation of making predictions using the model for memory needed for temporaries
The automation of the model using a computer program may be bene�cial, depending on how the
model is used. This would avoid the tediousness of making predictions manually, especially for
long or complex sets of operations.

Support for sparse local tensors in PyOP2 Adding support for structurally sparse local
tensors into PyOP2 would allow sparse tensors in local kernels to be assembled into global tensors,
hence allowing useful work to be done with them. Since most users of Firedrake do global assembly
rather than going through Slate, this is where the initial e�orts would be most e�ective.

For details on how this could be achieved see 5.4.4.

Support for sparse local tensors in Slate Adding support for working with structured sparse
local tensors in Slate would mean the usual Slate operations could then be performed on these local
tensors. This would give the bene�ts of Slate with the reduced memory and calculation from using
these sparse tensors.

Adding support for non-zero o�sets in sparse local tensors Currently, the sparse local
tensor and global assembly solutions support only indexing via indexes and strides. They do not
support indexing with a non-zero o�set.

To support non-zero o�sets we would need to develop a way to include o�sets in the local bu�er
representation, as well as modifying the upstream operations that will be done upon the bu�er
(such as global assembly) to handle the o�set.

One way of implementing o�sets is to add another dimension in the bu�er, whose extent would
be the number of unique o�sets used. Information could then be passed from the local kernel to
PyOP2 about the mapping between the o�set value and its index in the o�set dimension.

60

Appendix A

Notation, Acronyms and Glossary

A.1 Notation

n (.,.)
OR n (.)
OR n ()

Used when discussing the temporaries needed as a part of performing operations on tensor.
n is the number of temporaries of this shape, (.,.) denotes a matrix temporary with a
shape that is a 2-tuple, (.) denotes a vector temporary with a 1-tuple shape, () denotes a
scalar temporary, i.e. just a number.

A.2 Acronyms and Shorthands

DAG Directed acyclic graph
DSL Domain Speci�c Language
FEM Finite Element Method
Flops Floating-point operations
mat-mat Matrix-matrix multiplication
mat-vec Matrix-vector multiplication
PDE Partial Di�erential Equation
UFL Uni�ed Form Language

61

A.3 Glossary

Dense linear al-
gebra

Involves matrices with mostly non-zero values. This is in comparision to sparse
linear algebra.

DSL Domain Speci�c Language. A language specialized for a particular �eld of study.
Facet A feature of a geometric structure, usually of one dimension fewer than the structure

itself. For example, for a polyhedron a facet is any polygon whose corners are vertices
of the polyhedron and that is not a face. [59]

Flux The (perceived) �ow of something over or through something.
Geometry Geometry (e.g. of a mesh) is characterized by the coordinates describing where the

parts of a structure (e.g. vertices) are in space. [60]
Kernel A single function call.
Mesh The partioning of a domain into polytopes.
Mesh entities Local mesh entities of a triangle are the vertices, the edges and the triangle itself.

Global mesh entities of a mesh are all the vertices, edges and triangles in the mesh.
Multilinear An object in multiple variables is 'multilinear' if it is linear in all its variables

separately.
OP2 A library for writing parallel programs to do computations on unstructured meshes.

[3]
Polytope A geometric object with "�at" sides. This is an n-dimensional generalisation of a

2-dimensional polygon and a 3-dimensional polyhedron
Preconditioner Preconditioning means applying a transformation, called the preconditioner, that

changes a problem into a more appropriate form for solving using numerical meth-
ods. A more appropriate form usually means a form that is equivalent to the original
system but which converges quicker for iterative methods.

Stacking e�ects When several operations on tensors are performed in a sequence which allows tem-
poraries to be re-used beween operations. This can result in a smaller number of
temporaries, and sometimes in di�erent shaped temporaries, than would be expected
from treating the operations in isolation.

Tensor An n-dimensional container for data, e.g. matrices (2D tensors), vectors (1D ten-
sors), scalars (0D tensor). Tensors also describe linear transformations between
tensors, e.g. dot product (maps two vectors to a scalar).

Topology Topology (e.g. of a mesh) includes the parts of a structure (e.g. cells, edges, vertices)
and the adjacency relationships between them (e.g. vertices to edges). [60]

UFL Uni�ed Form Language. A DSL for representing weak forms of PDEs.

62

Appendix B

Speci�cation of testing hardware

1 Architecture: x86_64

2 CPU op-mode(s): 32-bit, 64-bit

3 Byte Order: Little Endian

4 CPU(s): 12

5 On-line CPU(s) list: 0-11

6 Thread(s) per core: 2

7 Core(s) per socket: 6

8 Socket(s): 1

9 NUMA node(s): 1

10 Vendor ID: GenuineIntel

11 CPU family: 6

12 Model: 158

13 Model name: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

14 Stepping: 10

15 CPU MHz: 800.030

16 CPU max MHz: 4100.0000

17 CPU min MHz: 800.0000

18 BogoMIPS: 4416.00

19 Virtualisation: VT-x

20 L1d cache: 32K

21 L1i cache: 32K

22 L2 cache: 256K

23 L3 cache: 9216K

24 NUMA node0 CPU(s): 0-11

25 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat

pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm

constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid

aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg

fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave

avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single pti ssbd

ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1

avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec

xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear

flush_l1d

Listing B.1: Basic hardware speci�cation of computer used for experiments

63

Appendix C

Code before and after removing

unneccessary temporaries

Code before and after removal of unneccessary temporaries. Unless otherwise speci�ed, the expres-
sions on which the following operations are performed are those from the discontinous Helmholtz
equation on cell integrals:

a =

∫
∇v · ∇u+ vu dx

L =

∫
fv dx

f =
(
1 + 8π2

)
cos (2πx) cos (2πy)

(C.1)

C.1 AssembledVector

1 for i0

2 t0[i0] = VecTemp0[i0] {id=insn, priority=2}

3 end i0

4 for i

5 output[i] = output[i] + t0[i] {id=insn_0, priority=1}

6 end i

Listing C.1: Original assemble(AssembledVector(Function(assemble(L))))

1 for i

2 output[i] = output[i] + VecTemp0[i] {id=insn, priority=1}

3 end i

Listing C.2: Optimised assemble(AssembledVector(Function(assemble(L))))

C.2 Negative

For the arithmetic negation of a (i.e. -a), this is the original code:

1 for i1, i0

2 t0[i0, i1] = T0[i0, i1] {id=insn, priority=3}

3 end i1, i0

4 for i6, i5

5 t1[i5, i6] = (-1.0)*t0[i5, i6] {id=insn_0, priority=2}

6 end i6, i5

7 for i, i_0

8 output[i, i_0] = output[i, i_0] + t1[i, i_0] {id=insn_1, priority=1}

9 end i, i_0

64

Listing C.3: Original assemble(-Tensor(a))

We can see we produce t0 and t1 as unneccessary temporaries. We again remove the Component-
Tensor nodes and associated Indexed nodes and this yields the below code:

1 for i_0, i

2 output[i, i_0] = output[i, i_0] + (-1.0)*T0[i, i_0] {id=insn, priority=1}

3 end i_0, i

Listing C.4: Optimised assemble(-Tensor(a))

This outcome also applies to stacked negations, with the optimised code output being only one
line of code with one necessary temporary.

C.3 Inverse local

1 for i0, i1

2 t0[i0, i1] = T0[i0, i1] {id=insn, priority=4}

3 end i0, i1

4 for i5, i6

5 t1[i5, i6] = t0[i5, i6] {id=insn_0, priority=3}

6 end i5, i6

7 SubArrayRef((i7, i8), (t1[i7, i8])) = inv(SubArrayRef((i5, i6), (t1[i5, i6]))) {id=insn_1

, priority=2}

8 for i_0, i

9 output[i, i_0] = output[i, i_0] + t1[i, i_0] {id=insn_2, priority=1}

10 end i_0, i

Listing C.5: Original Tensor(a).inv

1 for i6, i5

2 t0[i5, i6] = T0[i5, i6] {id=insn, priority=3}

3 end i6, i5

4 SubArrayRef((i7, i8), (t0[i7, i8])) = inv(SubArrayRef((i5, i6), (t0[i5, i6]))) {id=insn_0

, priority=2}

5 for i, i_0

6 output[i, i_0] = output[i, i_0] + t0[i, i_0] {id=insn_1, priority=1}

7 end i, i_0

Listing C.6: Optimised Tensor(a).inv

C.4 Addition

1 for i0, i1

2 t0[i0, i1] = T0[i0, i1] {id=insn, priority=3}

3 end i0, i1

4 for i6, i5

5 t1[i5, i6] = t0[i5, i6] + t0[i5, i6] {id=insn_0, priority=2}

6 end i6, i5

7 for i, i_0

8 output[i, i_0] = output[i, i_0] + t1[i, i_0] {id=insn_1, priority=1}

9 end i, i_0

Listing C.7: Original assemble(Tensor(a) + Tensor(a))

1 for i, i_0

2 output[i, i_0] = output[i, i_0] + T0[i, i_0] + T0[i, i_0] {id=insn, priority=1}

65

3 end i, i_0

Listing C.8: Optimised assemble(Tensor(a) + Tensor(a))

C.5 Multiplication

C.5.1 Matrix-Vector multiplication

1 for i1, i2

2 t0[i1, i2] = T0[i1, i2] {id=insn, priority=6}

3 end i1, i2

4 for i0

5 t1[i0] = VecTemp0[i0] {id=insn_0, priority=5}

6 end i0

7 for i

8 t2[i] = 0.0 {id=insn_1, priority=4}

9 for i_0

10 t2[i] = t2[i] + t0[i, i_0]*t1[i_0] {id=insn_2, priority=3}

11 end i, i_0

12 for i6

13 t3[i6] = t2[i6] {id=insn_3, priority=2}

14 end i6

15 for i_1

16 output[i_1] = output[i_1] + t3[i_1] {id=insn_4, priority=1}

17 end i_1

Listing C.9: Original Tensor(a) * AssembledVector(Function(assemble(L)))

1 for i_0, i

2 output[i] = output[i] + T0[i, i_0]*VecTemp0[i_0] {id=insn, priority=1}

3 end i_0, i

Listing C.10: Optimised code for Tensor(a) * AssembledVector(Function(assemble(L)))

C.5.2 Matrix-matrix

Here we multiplied a together with a2 =
∫
∇v · ∇u dx

1 for i2, i3

2 t0[i2, i3] = T1[i2, i3] {id=insn, priority=6}

3 end i2, i3

4 for i0, i1

5 t1[i0, i1] = T0[i0, i1] {id=insn_0, priority=5}

6 end i0, i1

7 for i, i_0

8 t2[i, i_0] = 0.0 {id=insn_1, priority=4}

9 end i_0

10 for i_1, i_2

11 t2[i, i_2] = t2[i, i_2] + t0[i, i_1]*t1[i_1, i_2] {id=insn_2, priority=3}

12 end i, i_1, i_2

13 for i12, i9

14 t3[i9, i12] = t2[i9, i12] {id=insn_3, priority=2}

15 end i12, i9

16 for i_4, i_3

17 output[i_3, i_4] = output[i_3, i_4] + t3[i_3, i_4] {id=insn_4, priority=1}

18 end i_4, i_3

Listing C.11: Original Tensor(a)*Tensor(a2)

66

1 for i_0, i, i_1

2 output[i, i_1] = output[i, i_1] + T1[i, i_0]*T0[i_0, i_1] {id=insn, priority=1}

3 end i_0, i, i_1

Listing C.12: Optimised code for Tensor(a)*Tensor(a2)

C.6 Solve

For the below example, the UFL setup code is as follows:

1 _A = Tensor(a)

2 A = assemble(A)

3 _F = AssembledVector(assemble(L))

4 F = assemble(_F)

5 u = Function(V)

C.6.1 Global solve: solve(A, u, F, solver_parameters={'ksp_type':'cg'})

1 for i2, i1

2 t0[i1, i2] = T0[i1, i2] {id=insn, priority=6}

3 end i2, i1

4 for i0

5 t1[i0] = VecTemp0[i0] {id=insn_0, priority=5}

6 end i0

7 for i

8 t2[i] = 0.0 {id=insn_1, priority=4}

9 for i_0

10 t2[i] = t2[i] + t0[i, i_0]*t1[i_0] {id=insn_2, priority=3}

11 end i, i_0

12 for i6

13 t3[i6] = t2[i6] {id=insn_3, priority=2}

14 end i6

15 for i_1

16 output[i_1] = output[i_1] + t3[i_1] {id=insn_4, priority=1}

17 end i_1

Listing C.13: Original output code for global solve

1 for i_0, i

2 output[i] = output[i] + T0[i, i_0]*VecTemp0[i_0] {id=insn, priority=1}

3 end i_0, i

Listing C.14: Optimised output code for global solve

C.6.2 Local solve: assemble(_A.solve(_F))

1 for i1, i2

2 t0[i1, i2] = T0[i1, i2] {id=insn, priority=8}

3 end i1, i2

4 for i7, i6

5 t1[i6, i7] = t0[i6, i7] {id=insn_0, priority=7}

6 end i7, i6

7 SubArrayRef((i8, i9), (t1[i8, i9])) = inv(SubArrayRef((i6, i7), (t1[i6, i7]))) {id=insn_1

, priority=6}

8 for i0

9 t3[i0] = VecTemp0[i0] {id=insn_2, priority=5}

10 end i0

67

11 for i

12 t4[i] = 0.0 {id=insn_3, priority=4}

13 for i_0

14 t4[i] = t4[i] + t1[i, i_0]*t3[i_0] {id=insn_4, priority=3}

15 end i, i_0

16 for i10

17 t5[i10] = t4[i10] {id=insn_5, priority=2}

18 end i10

19 for i_1

20 output[i_1] = output[i_1] + t5[i_1] {id=insn_6, priority=1}

21 end i_1

Listing C.15: Original assemble(Tensor(a).solve(AssembledVector(assemble(L))))

1 for i6, i7

2 t0[i6, i7] = T0[i6, i7] {id=insn, priority=3}

3 end i6, i7

4 SubArrayRef((i8, i9), (t0[i8, i9])) = inv(SubArrayRef((i6, i7), (t0[i6, i7]))) {id=insn_0

, priority=2}

5 for i_0, i

6 output[i] = output[i] + t0[i, i_0]*VecTemp0[i_0] {id=insn_1, priority=1}

7 end i_0, i

Listing C.16: Optimised assemble(Tensor(a).solve(AssembledVector(assemble(L))))

C.7 Blocks

No unneccessary temporaries for this operation. Here we let A = Tensor(inner(u,w) ∗ dx+ p ∗ q ∗
dx− div(w) ∗ p ∗ dx+ q ∗ div(u) ∗ dx).

1 for i, i_0

2 output[i, i_0] = output[i, i_0] + T0[i, 3 + i_0] {id=insn, priority=1}

3 end i, i_0

Listing C.17: Original and optimised code for A.blocks[0,1]

1 for i, i_0

2 output[i, i_0] = output[i, i_0] + T0[3 + i, 3 + i_0] {id=insn, priority=1}

3 end i, i_0

Listing C.18: Original and optimised code for A.blocks[1,1]

C.8 Hybridization

1 # Temporaries and code for Schur right-hand side

2 TEMPORARIES:

3 T0: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

4 T1: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

5 t0: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

6 t1: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

7 t3: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

8 t4: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

68

9 t5: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

10 t6: type: np:dtype('float64'), shape: (4), dim_tags: (N0:stride:1) scope:local

11 t7: type: np:dtype('float64'), shape: (3), dim_tags: (N0:stride:1) scope:local

12 t8: type: np:dtype('float64'), shape: (3), dim_tags: (N0:stride:1) scope:local

13 ---

14 INSTRUCTIONS:

15 for i2, i1

16 t0[i1, i2] = T0[i1, i2] {id=insn, priority=12}

17 end i2, i1

18 for i20, i19

19 t1[i19, i20] = t0[i19, i20] {id=insn_0, priority=11}

20 end i20, i19

21 SubArrayRef((i21, i22), (t1[i21, i22])) = inv(SubArrayRef((i19, i20), (t1[i19, i20]))) {

id=insn_1, priority=10}

22 for i3, i4

23 t3[i3, i4] = T1[i3, i4] {id=insn_2, priority=9}

24 end i3, i4

25 for i, i_0

26 t4[i, i_0] = 0.0 {id=insn_3, priority=8}

27 end i_0

28 for i_1, i_2

29 t4[i, i_2] = t4[i, i_2] + t3[i, i_1]*t1[i_1, i_2] {id=insn_4, priority=7}

30 end i, i_1, i_2

31 for i23, i26

32 t5[i23, i26] = t4[i23, i26] {id=insn_5, priority=6}

33 end i23, i26

34 for i18

35 t6[i18] = VecTemp0[i18] {id=insn_6, priority=5}

36 end i18

37 for i_3

38 t7[i_3] = 0.0 {id=insn_7, priority=4}

39 for i_4

40 t7[i_3] = t7[i_3] + t5[i_3, i_4]*t6[i_4] {id=insn_8, priority=3}

41 end i_3, i_4

42 for i27

43 t8[i27] = t7[i27] {id=insn_9, priority=2}

44 end i27

45 for i_5

46 output[i_5] = output[i_5] + t8[i_5] {id=insn_10, priority=1}

47 end i_5

48

49 # Temporaries and code for Schur-complement

50 TEMPORARIES:

51 T0: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

52 T1: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

53 t0: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

54 t1: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

55 t2: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

56 t4: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

57 t5: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

58 t6: type: np:dtype('float64'), shape: (4, 3), dim_tags: (N1:stride:3, N0:stride:1) scope:

local

59 t7: type: np:dtype('float64'), shape: (3, 3), dim_tags: (N1:stride:3, N0:stride:1) scope:

local

69

60 t8: type: np:dtype('float64'), shape: (3, 3), dim_tags: (N1:stride:3, N0:stride:1) scope:

local

61 ---

62 INSTRUCTIONS:

63 for i2, i3

64 t0[i2, i3] = T1[i2, i3] {id=insn, priority=12}

65 end i2, i3

66 for i1, i0

67 t1[i0, i1] = T0[i0, i1] {id=insn_0, priority=11}

68 end i1, i0

69 for i18, i17

70 t2[i17, i18] = t0[i17, i18] {id=insn_1, priority=10}

71 end i18, i17

72 SubArrayRef((i19, i20), (t2[i19, i20])) = inv(SubArrayRef((i17, i18), (t2[i17, i18]))) {

id=insn_2, priority=9}

73 for i, i_0

74 t4[i, i_0] = 0.0 {id=insn_3, priority=8}

75 end i_0

76 for i_1, i_2

77 t4[i, i_2] = t4[i, i_2] + t1[i, i_1]*t2[i_1, i_2] {id=insn_4, priority=7}

78 end i, i_1, i_2

79 for i24, i21

80 t5[i21, i24] = t4[i21, i24] {id=insn_5, priority=6}

81 end i24, i21

82 for i26, i25

83 t6[i26, i25] = t1[i25, i26] {id=insn_6, priority=5}

84 end i26, i25

85 for i_3, i_4

86 t7[i_3, i_4] = 0.0 {id=insn_7, priority=4}

87 end i_4

88 for i_6, i_5

89 t7[i_3, i_6] = t7[i_3, i_6] + t5[i_3, i_5]*t6[i_5, i_6] {id=insn_8, priority=3}

90 end i_3, i_6, i_5

91 for i27, i30

92 t8[i27, i30] = t7[i27, i30] {id=insn_9, priority=2}

93 end i27, i30

94 for i_8, i_7

95 output[i_7, i_8] = output[i_7, i_8] + t8[i_7, i_8] {id=insn_10, priority=1}

96 end i_8, i_7

Listing C.19: Modi�ed extract of original output for hybridization example.

1 # Temporaries and code for Schur right-hand side

2 TEMPORARIES:

3 T0: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

4 T1: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

5 t0: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

6 t2: type: np:dtype('float64'), shape: (4), dim_tags: (N0:stride:1) scope:local

7 ---

8 INSTRUCTIONS:

9 for i20, i19

10 t0[i19, i20] = T0[i19, i20] {id=insn, priority=5}

11 end i20, i19

12 SubArrayRef((i21, i22), (t0[i21, i22])) = inv(SubArrayRef((i19, i20), (t0[i19, i20]))) {

id=insn_0, priority=4}

13 for i, i_0

14 t2[i_0] = 0.0 {id=insn_1, priority=3}

15 end i_0

16 for i_2, i_1

17 t2[i_2] = t2[i_2] + T1[i, i_1]*t0[i_1, i_2] {id=insn_2, priority=2}

70

18 end i_2, i_1

19 for i_3

20 output[i] = output[i] + t2[i_3]*VecTemp0[i_3] {id=insn_3, priority=1}

21 end i, i_3

22

23

24 # Temporaries and code for Schur-complement

25 TEMPORARIES:

26 T0: type: np:dtype('float64'), shape: (3, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

27 T1: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

28 t0: type: np:dtype('float64'), shape: (4, 4), dim_tags: (N1:stride:4, N0:stride:1) scope:

local

29 t2: type: np:dtype('float64'), shape: (4), dim_tags: (N0:stride:1) scope:local

30 ---

31 INSTRUCTIONS:

32 for i18, i17

33 t0[i17, i18] = T1[i17, i18] {id=insn, priority=5}

34 end i18, i17

35 SubArrayRef((i19, i20), (t0[i19, i20])) = inv(SubArrayRef((i17, i18), (t0[i17, i18]))) {

id=insn_0, priority=4}

36 for i, i_0

37 t2[i_0] = 0.0 {id=insn_1, priority=3}

38 end i_0

39 for i_2, i_1

40 t2[i_2] = t2[i_2] + T0[i, i_1]*t0[i_1, i_2] {id=insn_2, priority=2}

41 end i_2, i_1

42 for i_3, i_4

43 output[i, i_4] = output[i, i_4] + t2[i_3]*T0[i_4, i_3] {id=insn_3, priority=1}

44 end i, i_3, i_4

Listing C.20: Modi�ed extract of optimised output for hybridization example.

71

Appendix D

Aggressive unary op nesting output

D.1 Before optimisation

72

Figure D.1: Annotated output from aggressive unary op nesting example, before optimisation

73

D.2 After optimisation

Figure D.2: Annotated output from aggressive unary op nesting example, after optimisation

74

Appendix E

Appendix for Structured Sparse

Local Tensors

E.1 Local kernel

1 KERNEL: form00_cell_integral_otherwise

2 ---

3 ARGUMENTS:

4 A: type: np:dtype('float64'), shape: (6, 6), dim_tags: (N1:stride:6, N0:stride:1) aspace:

global

5 coords: type: np:dtype('float64'), shape: (6), dim_tags: (N0:stride:1) aspace: global

6 ---

7 DOMAINS:

8 { [j0] : 0 <= j0 <= 2 }

9 { [k0] : 0 <= k0 <= 2 }

10 { [ip] : 0 <= ip <= 2 }

11 { [j0_0] : 0 <= j0_0 <= 2 }

12 { [k0_0] : 0 <= k0_0 <= 2 }

13 { [j0_1] : 0 <= j0_1 <= 2 }

14 { [k0_1] : 0 <= k0_1 <= 2 }

15 ---

16 INAME IMPLEMENTATION TAGS:

17 ip: None

18 j0: None

19 j0_0: None

20 j0_1: None

21 k0: None

22 k0_0: None

23 k0_1: None

24 ---

25 TEMPORARIES:

26 t0: type: np:dtype('float64'), shape: (3, 3), dim_tags: (N1:stride:3, N0:stride:1) scope:

local

27 t1: type: np:dtype('float64'), shape: () scope:local

28 t2: type: np:dtype('float64'), shape: () scope:local

29 t3: type: np:dtype('float64'), shape: () scope:local

30 t4: type: np:dtype('float64'), shape: (3), dim_tags: (N0:stride:1) scope:local

31 t5: type: np:dtype('float64'), shape: () scope:local

32 t6: type: np:dtype('float64'), shape: () scope:local

33 t7: type: np:dtype('float64'), shape: (3, 3), dim_tags: (N1:stride:3, N0:stride:1) scope:

local

34 ---

35 INSTRUCTIONS:

36 t1 = (-1.0)*coords[0] {id=insn, priority=9}

37 t2 = (-1.0)*coords[1] {id=insn_0, priority=8}

75

38 t3 = abs((t1 + coords[2])*(t2 + coords[5]) + (-1.0)*(t1 + coords[4])*(t2 + coords[3])) {

id=insn_1, priority=7}

39 for k0, j0

40 t7[j0, k0] = 0.0 {id=insn_2, priority=6}

41 end k0, j0

42 for ip

43 t5 = t4[ip]*t3 {id=insn_3, priority=5}

44 for j0_0

45 t6 = t0[ip, j0_0]*t5 {id=insn_4, priority=4}

46 for k0_0

47 t7[j0_0, k0_0] = t7[j0_0, k0_0] + t0[ip, k0_0]*t6 {id=insn_5, priority=3}

48 end ip, j0_0, k0_0

49 for k0_1, j0_1

50 A[0 + j0_1*2, 0 + k0_1*2] = A[j0_1*2, k0_1*2] + t7[j0_1, k0_1] {id=insn_6, priority

=2}

51 A[1 + j0_1*2, 1 + k0_1*2] = A[1 + j0_1*2, 1 + k0_1*2] + t7[j0_1, k0_1] {id=insn_7,

priority=1}

52 end k0_1, j0_1

53 ---

Listing E.1: Full original output for local kernel

1 KERNEL: form00_cell_integral_otherwise

2 ---

3 ARGUMENTS:

4 A: type: np:dtype('float64'), shape: (2, 3, 3), dim_tags: (N2:stride:9, N1:stride:3, N0:

stride:1) aspace: global

5 coords: type: np:dtype('float64'), shape: (6), dim_tags: (N0:stride:1) aspace: global

6 ---

7 DOMAINS:

8 { [j0] : 0 <= j0 <= 2 }

9 { [k0] : 0 <= k0 <= 2 }

10 { [ip] : 0 <= ip <= 2 }

11 { [j0_0] : 0 <= j0_0 <= 2 }

12 { [k0_0] : 0 <= k0_0 <= 2 }

13 { [j0_1] : 0 <= j0_1 <= 2 }

14 { [k0_1] : 0 <= k0_1 <= 2 }

15 { [j1] : 0 <= j1 <= 1 }

16 ---

17 INAME IMPLEMENTATION TAGS:

18 ip: None

19 j0: None

20 j0_0: None

21 j0_1: None

22 j1: None

23 k0: None

24 k0_0: None

25 k0_1: None

26 ---

27 TEMPORARIES:

28 t0: type: np:dtype('float64'), shape: (3, 3), dim_tags: (N1:stride:3, N0:stride:1) scope:

local

29 t1: type: np:dtype('float64'), shape: () scope:local

30 t2: type: np:dtype('float64'), shape: () scope:local

31 t3: type: np:dtype('float64'), shape: () scope:local

32 t4: type: np:dtype('float64'), shape: (3), dim_tags: (N0:stride:1) scope:local

33 t5: type: np:dtype('float64'), shape: () scope:local

34 t6: type: np:dtype('float64'), shape: () scope:local

35 t7: type: np:dtype('float64'), shape: (3, 3), dim_tags: (N1:stride:3, N0:stride:1) scope:

local

36 ---

37 INSTRUCTIONS:

38 t1 = (-1.0)*coords[0] {id=insn, priority=8}

76

39 t2 = (-1.0)*coords[1] {id=insn_0, priority=7}

40 t3 = abs((t1 + coords[2])*(t2 + coords[5]) + (-1.0)*(t1 + coords[4])*(t2 + coords[3])) {

id=insn_1, priority=6}

41 for k0, j0

42 t7[j0, k0] = 0.0 {id=insn_2, priority=5}

43 end k0, j0

44 for ip

45 t5 = t4[ip]*t3 {id=insn_3, priority=4}

46 for j0_0

47 t6 = t0[ip, j0_0]*t5 {id=insn_4, priority=3}

48 for k0_0

49 t7[j0_0, k0_0] = t7[j0_0, k0_0] + t0[ip, k0_0]*t6 {id=insn_5, priority=2}

50 end ip, j0_0, k0_0

51 for j0_1, j1, k0_1

52 A[0 + j1, 0 + j0_1, 0 + k0_1] = A[j1, j0_1, k0_1] + t7[j0_1, k0_1] {id=insn_6,

priority=1}

53 end j0_1, j1, k0_1

54 ---

Listing E.2: Full �nal output for local kernel

E.2 Code generated from PyOP2 wrapper

1 #include <math.h>

2 #include <petsc.h>

3 #define LOOPY_CALL_WITH_INTEGER_TYPES(MACRO_NAME) \

4 MACRO_NAME(int8, char) \

5 MACRO_NAME(int16, short) \

6 MACRO_NAME(int32, int) \

7 MACRO_NAME(int64, long)

8 #define LOOPY_DEFINE_FLOOR_DIV_POS_B(SUFFIX, TYPE) \

9 inline TYPE loopy_floor_div_pos_b_##SUFFIX(TYPE a, TYPE b) \

10 { \

11 if (a<0) \

12 a = a - (b-1); \

13 return a/b; \

14 }

15 LOOPY_CALL_WITH_INTEGER_TYPES(LOOPY_DEFINE_FLOOR_DIV_POS_B)

16 #undef LOOPY_DEFINE_FLOOR_DIV_POS_B

17 #undef LOOPY_CALL_WITH_INTEGER_TYPES

18 #include <stdint.h>

19 #include <stdint.h>

20

21 void wrap_form00_cell_integral_otherwise(int32_t const start, int32_t const end, Mat

const mat0, double const *__restrict__ dat0, int32_t const *__restrict__ map0)

22 {

23 double const form_t0[3 * 3] = { 0.6666666666666669, 0.16666666666666663,

0.16666666666666666, 0.16666666666666674, 0.16666666666666663, 0.6666666666666665,

0.16666666666666669, 0.6666666666666666, 0.16666666666666663 };

24 double form_t1;

25 double form_t2;

26 double form_t3;

27 double const form_t4[3] = { 0.16666666666666666, 0.16666666666666666,

0.16666666666666666 };

28 double form_t5;

29 double form_t6;

30 double form_t7[3 * 3];

31 double t0[3 * 2];

32 double t1[3 * 2 * 3 * 2];

33

34 for (int32_t n = start; n <= -1 + end; ++n)

77

35 {

36 for (int32_t i2 = 0; i2 <= 2; ++i2)

37 for (int32_t i3 = 0; i3 <= 1; ++i3)

38 for (int32_t i4 = 0; i4 <= 2; ++i4)

39 for (int32_t i5 = 0; i5 <= 1; ++i5)

40 t1[12 * i2 + 6 * i3 + 2 * i4 + i5] = 0.0;

41 for (int32_t i0 = 0; i0 <= 2; ++i0)

42 for (int32_t i1 = 0; i1 <= 1; ++i1)

43 t0[2 * i0 + i1] = dat0[2 * map0[3 * n + i0] + i1];

44 /* no-op (insn=form__start) */

45 form_t1 = -1.0 * t0[0];

46 form_t2 = -1.0 * t0[1];

47 form_t3 = fabs((form_t1 + t0[2]) * (form_t2 + t0[5]) + -1.0 * (form_t1 + t0[4]) * (

form_t2 + t0[3]));

48 for (int32_t form_k0 = 0; form_k0 <= 2; ++form_k0)

49 for (int32_t form_j0 = 0; form_j0 <= 2; ++form_j0)

50 form_t7[3 * form_j0 + form_k0] = 0.0;

51 for (int32_t form_ip = 0; form_ip <= 2; ++form_ip)

52 {

53 form_t5 = form_t4[form_ip] * form_t3;

54 for (int32_t form_j0_0 = 0; form_j0_0 <= 2; ++form_j0_0)

55 {

56 form_t6 = form_t0[3 * form_ip + form_j0_0] * form_t5;

57 for (int32_t form_k0_0 = 0; form_k0_0 <= 2; ++form_k0_0)

58 form_t7[3 * form_j0_0 + form_k0_0] = form_t7[3 * form_j0_0 + form_k0_0] +

form_t0[3 * form_ip + form_k0_0] * form_t6;

59 }

60 }

61 for (int32_t form_k0_1 = 0; form_k0_1 <= 2; ++form_k0_1)

62 for (int32_t form_j0_1 = 0; form_j0_1 <= 2; ++form_j0_1)

63 {

64 t1[12 * form_j0_1 + 2 * form_k0_1] = t1[12 * form_j0_1 + 2 * form_k0_1] +

form_t7[3 * form_j0_1 + form_k0_1];

65 t1[36 * ((7 + 12 * form_j0_1 + 2 * form_k0_1) / 36) + 12 * (1 + form_j0_1 +

loopy_floor_div_pos_b_int32(-5 + 2 * form_k0_1, 12) + -3 * ((7 + 12 * form_j0_1 + 2 *

form_k0_1) / 36)) + 6 * (-1 + (1 + 2 * form_k0_1) / 6 + -2 *

loopy_floor_div_pos_b_int32(-5 + 2 * form_k0_1, 12)) + 2 * (form_k0_1 + -3 * ((1 + 2 *

form_k0_1) / 6)) + 1] = t1[36 * ((7 + 12 * form_j0_1 + 2 * form_k0_1) / 36) + 12 * (1

+ form_j0_1 + loopy_floor_div_pos_b_int32(-5 + 2 * form_k0_1, 12) + -3 * ((7 + 12 *

form_j0_1 + 2 * form_k0_1) / 36)) + 6 * (-1 + (1 + 2 * form_k0_1) / 6 + -2 *

loopy_floor_div_pos_b_int32(-5 + 2 * form_k0_1, 12)) + 2 * (form_k0_1 + -3 * ((1 + 2 *

form_k0_1) / 6)) + 1] + form_t7[3 * form_j0_1 + form_k0_1];

66 }

67 /* no-op (insn=statement3) */

68 MatSetValuesBlockedLocal(mat0, 3, &(map0[3 * n]), 3, &(map0[3 * n]), &(t1[0]),

ADD_VALUES);

69 }

70 }

Listing E.3: Original code generated from PyOP2 wrapper.

1 #include <math.h>

2 #include <petsc.h>

3 #include <stdint.h>

4 #include <stdint.h>

5

6 void wrap_form00_cell_integral_otherwise(int32_t const start, int32_t const end, Mat const

mat0, double const *__restrict__ dat0, int32_t const *__restrict__ map0)

7 {

8 double const form_t0[3 * 3] = { 0.6666666666666669, 0.16666666666666663,

0.16666666666666666, 0.16666666666666674, 0.16666666666666663, 0.6666666666666665,

0.16666666666666669, 0.6666666666666666, 0.16666666666666663 };

9 double form_t1;

78

10 double form_t2;

11 double form_t3;

12 double const form_t4[3] = { 0.16666666666666666, 0.16666666666666666,

0.16666666666666666 };

13 double form_t5;

14 double form_t6;

15 double form_t7[3 * 3];

16 double t0[3 * 2];

17 double t1[2 * 3 * 3];

18

19 for (int32_t n = start; n <= -1 + end; ++n)

20 {

21 for (int32_t i2 = 0; i2 <= 2; ++i2)

22 for (int32_t i3 = 0; i3 <= 1; ++i3)

23 for (int32_t i4 = 0; i4 <= 2; ++i4)

24 t1[6 * i2 + 3 * i3 + i4] = 0.0;

25 for (int32_t i0 = 0; i0 <= 2; ++i0)

26 for (int32_t i1 = 0; i1 <= 1; ++i1)

27 t0[2 * i0 + i1] = dat0[2 * map0[3 * n + i0] + i1];

28 /* no-op (insn=form__start) */

29 form_t1 = -1.0 * t0[0];

30 form_t2 = -1.0 * t0[1];

31 form_t3 = fabs((form_t1 + t0[2]) * (form_t2 + t0[5]) + -1.0 * (form_t1 + t0[4]) * (

form_t2 + t0[3]));

32 for (int32_t form_k0 = 0; form_k0 <= 2; ++form_k0)

33 for (int32_t form_j0 = 0; form_j0 <= 2; ++form_j0)

34 form_t7[3 * form_j0 + form_k0] = 0.0;

35 for (int32_t form_ip = 0; form_ip <= 2; ++form_ip)

36 {

37 form_t5 = form_t4[form_ip] * form_t3;

38 for (int32_t form_j0_0 = 0; form_j0_0 <= 2; ++form_j0_0)

39 {

40 form_t6 = form_t0[3 * form_ip + form_j0_0] * form_t5;

41 for (int32_t form_k0_0 = 0; form_k0_0 <= 2; ++form_k0_0)

42 form_t7[3 * form_j0_0 + form_k0_0] = form_t7[3 * form_j0_0 + form_k0_0] +

form_t0[3 * form_ip + form_k0_0] * form_t6;

43 }

44 }

45 for (int32_t form_k0_1 = 0; form_k0_1 <= 2; ++form_k0_1)

46 for (int32_t form_j1 = 0; form_j1 <= 1; ++form_j1)

47 for (int32_t form_j0_1 = 0; form_j0_1 <= 2; ++form_j0_1)

48 t1[3 * form_j0_1 + form_k0_1 + 9 * form_j1] = t1[3 * form_j0_1 + form_k0_1 + 9 *

form_j1] + form_t7[3 * form_j0_1 + form_k0_1];

49 /* no-op (insn=statement3) */

50

51 const PetscInt x_indices[] = {2*map0[3 * n], 2*(map0[3 * n]+1), 2*(map0[3 * n]+2)};

52 const PetscInt y_indices[] = {2*map0[3 * n]+1, 2*(map0[3 * n]+1)+1, 2*(map0[3 * n]+2)

+1};

53

54 MatSetValuesLocal(mat0, 3, &(x_indices), 3, &(x_indices), &(t1[0]), ADD_VALUES);

55 MatSetValuesLocal(mat0, 3, &(y_indices), 3, &(y_indices), &(t1[9]), ADD_VALUES);

56 }

57 }

Listing E.4: Full desired code generated from PyOP2 wrapper.

79

Bibliography

[1] David Ham. Finite element course. https://www.youtube.com/playlist?list=PLh_

UinHuMhzJlmqHU6LcFJ8YT9mRivz4J, 2019.

[2] J E Marsden, L Sirovich, S S Antman, G Iooss, P Holmes, D Barkley, M Dellnitz, and
P Newton. The Mathematical theory of �nite element methods, volume 46. 2003.

[3] Graham Robert Markall. Multilayered Abstractions for Partial Di�erential Equations. 2013.

[4] Thomas H. Gibson, Lawrence Mitchell, David A. Ham, and Colin J. Cotter. Slate: extending
Firedrake's domain-speci�c abstraction to hybridized solvers for geoscience and beyond. pages
1�40, 2018.

[5] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, An-
drew T.T. McRae, Gheorghe Teodor Bercea, Graham R. Markall, and Paul H.J. Kelly. Fire-
drake: Automating the �nite element method by composing abstractions. ACM Transactions
on Mathematical Software, 43(3), 2016.

[6] Eigen is a c++ template library for linear algebra: matrices, vectors, numerical solvers, and
related algorithms. http://eigen.tuxfamily.org/index.php?title=Main_Page.

[7] Andreas Klöckner. Loopy documentation. https://documen.tician.de/loopy/.

[8] Loopy github. https://github.com/inducer/loopy.

[9] Andreas Klockner. Loo.py: Transformation-based code generation for GPUs and CPUs. Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 82�87, 2014.

[10] Francis P. Russell, Michael R. Mellor, Paul H.J. Kelly, and Olav Beckmann. An active linear
algebra library using delayed evaluation and runtime code generation. Science of Computer
Programming, 76(4):227�242, 2011.

[11] Miklos Homolya, Lawrence Mitchell, Fabio Luporini, and David A. Ham. TSFC: A structure-
preserving form compiler. SIAM Journal on Scienti�c Computing, 40(3):C401�C428, 2018.

[12] Wikipedia. Finite element method. https://en.wikipedia.org/wiki/Finite_element_

method, 2019.

[13] IEEE. The advantages of the �nite element method. https://innovationatwork.ieee.org/
the-advantages-of-fem/, 2019.

[14] Manor Tool. The bene�ts of �nite element analysis in manufacturing. https://www.

manortool.com/finite-element-analysis.

[15] Douglas H. Norrie. A �rst course in the �nite element method, volume 3. 1987.

[16] Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N. Wells.
Uni�ed form language: A domain-speci�c language for weak formulations of partial di�erential
equations. ACM Transactions on Mathematical Software, 40(2), 2014.

[17] Ajay Harish. Finite element method - what is it? fem and fea explained. https://www.

simscale.com/blog/2016/10/what-is-finite-element-method/, 2019.

80

https://www.youtube.com/playlist?list=PLh_UinHuMhzJlmqHU6LcFJ8YT9mRivz4J
https://www.youtube.com/playlist?list=PLh_UinHuMhzJlmqHU6LcFJ8YT9mRivz4J
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://documen.tician.de/loopy/
https://github.com/inducer/loopy
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Finite_element_method
https://innovationatwork.ieee.org/the-advantages-of-fem/
https://innovationatwork.ieee.org/the-advantages-of-fem/
https://www.manortool.com/finite-element-analysis
https://www.manortool.com/finite-element-analysis
https://www.simscale.com/blog/2016/10/what-is-finite-element-method/
https://www.simscale.com/blog/2016/10/what-is-finite-element-method/

[18] David Ham and Colin Cotter. Finite elements analysis and implementation.

[19] Galerkin method. https://en.wikipedia.org/wiki/Galerkin_method.

[20] Method of mean weighted residuals. https://en.wikipedia.org/wiki/Method_of_mean_

weighted_residuals.

[21] Discontinuous galerkin method. https://en.wikipedia.org/wiki/Discontinuous_

Galerkin_method.

[22] University of Cambridge. Nodes, elements, degrees of freedom and bound-
ary conditions. https://www.doitpoms.ac.uk/tlplib/fem/node.php under
https://creativecommons.org/licenses/by-nc-sa/2.0/uk/.

[23] University of Cambridge. Nodes, elements, degrees of freedom and boundary conditions.
https://doitpoms.admin.cam.ac.uk/tlplib/fem/node.php?printable=1.

[24] Various authors. In �nite element analysis, what exactly is the di�er-
ence between degrees of freedom and nodes? https://www.quora.com/

In-Finite-Element-Analysis-what-exactly-is-the-difference-between-degrees-of-freedom-and-nodes.

[25] Wikipedia. Lagrange multiplier. https://en.wikipedia.org/wiki/Lagrange_multiplier.

[26] Guyan reduction. https://en.wikipedia.org/wiki/Guyan_reduction.

[27] What is deal.ii? https://www.dealii.org/about.html.

[28] Febio software suite. https://febio.org/.

[29] A. Logg, K. A. Mardal, and G. Wells. Automated Solution of Di�erential Equations by the
Finite Element Method: The FEniCS Book (Lecture Notes in Computational Science and
Engineering). 2012.

[30] Freefem: A high level multiphysics �nite element software. https://freefem.org/.

[31] Getdp: A general environment for the treatment of discrete problems. http://getdp.info/.

[32] Kevin Long. Sundance 2.0 Tutorial @ Sandia National laboratories. (July), 2004.

[33] Robert C. Kirby. Algorithm 839: FIAT, a new paradigm for computing �nite element basis
functions. ACM Transactions on Mathematical Software, 30(4):502�516, 2004.

[34] Miklós Homolya, Robert C. Kirby, and David A. Ham. Exposing and exploiting structure:
optimal code generation for high-order �nite element methods. 2017.

[35] Neil MacDonald, Elspeth Minty, Joel Malard, Tim Harding, Simon Brown, and Mario Anto-
nioletti. Writing Message Passing Parallel Programs with MPI. (1.8.2).

[36] Sophia Vorderwuelbecke. Discussion about the latest slac developments. Personal communi-
cation.

[37] Faq: How does eigen compare to blas/lapack? http://eigen.tuxfamily.org/index.php?

title=FAQ.

[38] Khaled Z. Ibrahim, Samuel W. Williams, Evgeny Epifanovsky, and Anna I. Krylov. Anal-
ysis and tuning of libtensor framework on multicore architectures. 2014 21st International
Conference on High Performance Computing, HiPC 2014, 2014.

[39] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel. Cyclops tensor framework: Reduc-
ing communication and eliminating load imbalance in massively parallel contractions. In 2013
IEEE 27th International Symposium on Parallel and Distributed Processing, pages 813�824,
2013.

[40] Various authors. Tensor�ow. https://www.tensorflow.org/.

81

https://en.wikipedia.org/wiki/Galerkin_method
https://en.wikipedia.org/wiki/Method_of_mean_weighted_residuals
https://en.wikipedia.org/wiki/Method_of_mean_weighted_residuals
https://en.wikipedia.org/wiki/Discontinuous_Galerkin_method
https://en.wikipedia.org/wiki/Discontinuous_Galerkin_method
https://www.doitpoms.ac.uk/tlplib/fem/node.php
https://doitpoms.admin.cam.ac.uk/tlplib/fem/node.php?printable=1
https://www.quora.com/In-Finite-Element-Analysis-what-exactly-is-the-difference-between-degrees-of-freedom-and-nodes
https://www.quora.com/In-Finite-Element-Analysis-what-exactly-is-the-difference-between-degrees-of-freedom-and-nodes
https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Guyan_reduction
https://www.dealii.org/about.html
https://febio.org/
https://freefem.org/
http://getdp.info/
http://eigen.tuxfamily.org/index.php?title=FAQ
http://eigen.tuxfamily.org/index.php?title=FAQ
https://www.tensorflow.org/

[41] Markus Püschel, José M.F. Moura, Jeremy R. Johnson, David Padua, Manuela M. Veloso,
Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Ga£i¢, Yevgen Voronenko, Kang Chen,
Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code generation for DSP transforms.
Proceedings of the IEEE, 93(2):232�273, 2005.

[42] Charisee Chiw, Gordon L Kindlman, and John Reppy. EIN : An Intermediate Representation
for Compiling Tensor Calculus. Compilers for Parallel Computing, 2016.

[43] Charisee Chiw, Gordon Kindlmann, John Reppy, Lamont Samuels, and Nick Seltzer. Diderot:
A parallel DSL for image analysis and visualization. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 111�120,
2012.

[44] Dune numerics. https://www.dune-project.org/.

[45] Dominic Kempf, René Heÿ, Ste�en Müthing, and Peter Bastian. Automatic Code Generation
for High-Performance Discontinuous Galerkin Methods on Modern Architectures. 2018.

[46] Lawrence Mitchell and Eike Hermann Müller. High level implementation of geometric multi-
grid solvers for �nite element problems: Applications in atmospheric modelling. Journal of
Computational Physics, 327:1�18, 2016.

[47] Tianjiao Sun, Lawrence Mitchell, Kaushik Kulkarni, Klockner Andreas, David A. Ham, and
Paul H.J. Kelly. A study of vectorization for matrix-free �nite element methods. 2019.

[48] Lapack� linear algebra package. http://www.netlib.org/lapack/.

[49] Wikipedia: Basic linear algebra subprograms. https://en.wikipedia.org/wiki/Basic_

Linear_Algebra_Subprograms.

[50] Benchmark. http://eigen.tuxfamily.org/index.php?title=Benchmark.

[51] Paul S. Wang. FINGER: A Symbolic System for Automatic Generation of Numerical Programs
in Finite Element Analysis. Journal of Symbolic Computation, 2(3):305�316, 1986.

[52] Francis R. Russell and Paul H.J Kelly. Optimized Code Generation for Finite Element Local
Assembly Using Symbolic Manipulation. ACM Transactions on Mathematical Software, 39(4),
2013.

[53] John Ellson, Emden Gansner, Yifan Hu, Erwin Janssen, and Stephen North. Graphviz.
https://graphviz.org/.

[54] Firedrake. Firedrake: Supported �nite elements. https://www.firedrakeproject.org/

variational-problems.html#supported-finite-elements.

[55] David Ham. Discussion about �nite element families. Personal communication, June 2020.

[56] Firedrake github. https://github.com/firedrakeproject.

[57] Gheorghe-Teodor Bercea. Improving high performance computing using code generation and
compilation techniques. page 254, 2017.

[58] pyop2 package. https://op2.github.io/PyOP2/pyop2.html.

[59] Facet (geometry). https://en.wikipedia.org/wiki/Facet_(geometry).

[60] Gheorghe Teodor Bercea, Andrew T.T. McRae, David A. Ham, Lawrence Mitchell, Florian
Rathgeber, Luigi Nardi, Fabio Luporini, and Paul H.J. Kelly. A structure-exploiting num-
bering algorithm for �nite elements on extruded meshes, and its performance evaluation in
Firedrake. Geoscienti�c Model Development, 9(10):3803�3815, 2016.

[61] Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe Teodor Bercea, J. Ra-
manujam, David A. Ham, and Paul H.J. Kelly. Cross-loop optimization of arithmetic intensity
for �nite element local assembly. ACM Transactions on Architecture and Code Optimization,
11(4), 2014.

82

https://www.dune-project.org/
http://www.netlib.org/lapack/
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
http://eigen.tuxfamily.org/index.php?title=Benchmark
https://graphviz.org/
https://www.firedrakeproject.org/variational-problems.html#supported-finite-elements
https://www.firedrakeproject.org/variational-problems.html#supported-finite-elements
https://github.com/firedrakeproject
https://op2.github.io/PyOP2/pyop2.html
https://en.wikipedia.org/wiki/Facet_(geometry)

[62] Francis Russel. Exploring symbolic manipulation and other code generation techniques for
�nite element local assembly.

[63] Fabio Luporini, David A. Ham, and Paul H.J. Kelly. An algorithm for the optimization of
�nite element integration loops. ACM Transactions on Mathematical Software, 44(1):1�25,
2017.

[64] Rolf Stenberg. Postprocessing schemes for some mixed �nite elements. ESAIM: Mathematical
Modelling and Numerical Analysis, 25(1):151�167, 1991.

[65] A�ne transformation.

[66] Wikipedia. Krylov subspace. https://en.wikipedia.org/wiki/Krylov_subspace.

[67] Brendan Gregg. Working set size estimation. http://www.brendangregg.com/wss.html.

83

https://en.wikipedia.org/wiki/Krylov_subspace
http://www.brendangregg.com/wss.html

	Introduction
	Context: Automating the finite element method
	Objectives
	Contributions
	Thesis structure

	Background
	Finite element method
	The steps in FEM: A simple example hamYoutubeFem,femBook, MarkallThesis
	More details about FEM
	FEM implementation

	Hybridization, Static Condensation, Local Post-Processing
	Background mathematical concepts
	Hybridization Gibson2018
	Static condensation
	Local post-processing

	FEniCS
	Firedrake
	Firedrake architecture Rathgeber2016

	Slate and Slac Gibson2018
	Eigen eigenMain
	Loopy loopyDocumentation,loopyGithub, Klockner2014
	Other Related Work
	Dune-FEM and deal.II
	BLAS and LAPACK
	EXCAFE Russell2011

	Summary

	Part 1: Reducing Unneccessary Temporaries
	GEM and UFL terminology Homolya2018
	Slate/Slac terminology Gibson2018, Homolya2018
	First steps
	Model problem
	Tensor
	Transpose
	Other basic Slate operations

	Implementation
	Relation to existing work
	Summary

	Part 1: Reducing Unneccessary Temporaries: Evaluation and Results
	Aims
	Analysis of the optimisation using modelling
	Operation type
	Temporary type
	Finite element family
	Mesh and degree of finite element
	Evaluating on examples: Aggressive unary op nesting
	Evaluating on examples: Hybridization

	Evaluation of optimisation to remove unneccessary temporaries
	Limitations
	Strengths

	Evaluation of model for amount of memory needed for temporaries
	Limitations
	Strengths

	Summary

	Part 2: Structured Sparse Local Tensors
	Introduction
	Context: Sparsity and indexing strategies
	Structured and unstructured sparsity
	How local tensor sparsity arises
	Different indexing strategies

	Implementing sparsity in local kernels
	Before
	After
	Implementation details

	Propagating the local tensor sparsity
	Global assembly procedure details
	PyOP2 concepts
	Assembly implementation in PyOP2
	Adapting PyOP2 assembly to support structured sparse local tensors

	Effect
	Evaluation
	Limitations
	Strengths

	Summary

	Conclusion
	Conclusions
	Reducing the amount of memory needed by temporaries to perform operations on tensors
	Taking advantage of the sparsity of local tensors to reduce memory and computation.

	Future work

	Notation, Acronyms and Glossary
	Notation
	Acronyms and Shorthands
	Glossary

	Specification of testing hardware
	Code before and after removing unneccessary temporaries
	AssembledVector
	Negative
	Inverse local
	Addition
	Multiplication
	Matrix-Vector multiplication
	Matrix-matrix

	Solve
	Global solve: solve(A, u, F, solver_parameters={'ksp_type':'cg'})
	Local solve: assemble(_A.solve(_F))

	Blocks
	Hybridization

	Aggressive unary op nesting output
	Before optimisation
	After optimisation

	Appendix for Structured Sparse Local Tensors
	Local kernel
	Code generated from PyOP2 wrapper

