
MASTER’S THESIS

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

Operational Semantics for
Distributed Atomic Transactions: a

‘Perfect’ Understanding

Author:
Boaz Francis

Supervisor:
Prof. Philippa Gardner

Second Marker:
Dr. John Wickerson

June, 2020

Abstract

We provide a forward-looking reformulation of the interleaving centralised opera-
tional semantics for capturing the client-observable behaviour of distributed atomic
transactions of Xiong et al. [Data Consistency in Transactional Storage Systems: a
Centralised Approach, 2019], and prove its equivalence to the original formulation.
Our formalism operates on minimal views, which capture the knowledge a client
has of the key-value store immediately after committing a transaction. We focus on
the causal consistency model because it allows us to think about client views with-
out associating them with a particular transaction. Using our minimal views, we
demonstrate a systematic way for extending client views to incorporate information
from the environment, eliminating the backwards analysis required by the original
semantics. We apply the concept of minimal views to snapshots and present an al-
gorithm for producing all the obtainable stores given a client program under causal
consistency.

We first evaluate the work of Xiong et al. from an implementation perspective and
identify the challenging parts. We introduce our revised formalism and show that it
is equivalent to the original. Using minimal views to alter the definition of snapshots,
we suggest several approaches for extending client views in a forward way, focusing
on the causal consistency model. Last, we present an algorithm for implementing
our approach and suggest potential optimisations.

ii

Acknowledgements

I would like to thank Shale Xiong for his insights and constant technical support
throughout this project. Also, I thank John Wickerson and Petar Maksimović for
their advice and suggestions in the early stages.

My biggest thanks go to my supervisor, Philippa Gardner, for her continuous inspira-
tion and direction throughout the course of the project.

Contents

1 Introduction 1

1.1 Project Creation and Evolution . 3

1.2 Contributions . 3

1.3 Outline . 4

2 Background 5

2.1 Consistency Models . 5

2.2 Declarative Semantics: Dependency Graphs and Abstract Executions 7

2.3 Litmus Tests . 8

2.3.1 Examples of Litmus Tests . 8

2.3.2 Automatically Generating Litmus Tests 9

2.4 Operational Semantics . 10

3 Operational Model 12

3.1 Abstract States . 13

3.2 The CATOMICTRANS Rule . 15

3.3 Execution Tests . 19

4 Identifying the Gaps 22

4.1 NextTxID . 22

iii

CONTENTS Table of Contents

4.2 vShift . 23

4.3 Transactional Update and View Shift 24

5 Reformulating the Semantics 35

5.1 Redefining CATOMICTRANS . 35

5.2 Preserving MR and RYW . 36

5.2.1 Monotonic Read (MR) Properties 37

5.2.2 Read Your Writes (RYW) Properties 37

6 Consistency Models Using NewUpdateKV 40

6.1 Models with vShiftMR∪RYW . 40

6.2 Other Models . 41

7 Implementation 42

7.1 Overview . 42

7.2 Implementing CATOMICTRANS . 43

7.3 Causal Consistency (CC) . 44

8 Exploring Causal Consistency (CC) 45

8.1 Transactional Update . 46

8.2 Between Transactions . 47

8.3 Environment Information . 47

9 Conclusions and Future Work 55

Bibliography 56

A Command and Program Semantics 60

iv

List of Figures

3.1 The semantics of an atomic transaction under execution test ET . . . 15

3.2 Execution tests of well-known consistency models 16

3.3 An example of UpdateKV . 18

3.4 Dependency relations on key-value stores 20

4.1 An example of NewUpdateKV . 25

4.2 Single step confluence . 28

4.3 One side confluence . 30

4.4 An example of NewUpdateKV with a single view 33

5.1 The new semantics of an atomic transaction under execution test ET 36

8.1 Union of CC views for client cl . 50

A.1 The semantics of transactional commands 60

A.2 The semantics of sequential commands and programs 60

v

List of Definitions and Proofs

3.1 Definition (Client and transactional identifiers) 13

3.2 Definition (Session order) . 13

3.3 Definition (Kv-stores) . 13

3.4 Definition (Well-formed kv-store) . 13

3.5 Definition (Views) . 14

3.6 Definition (Configurations) . 14

3.7 Definition (View snapshots) . 15

3.8 Definition (Fingerprints) . 15

3.9 Definition (Visible transactions) . 17

3.10 Definition (Prefix closure) . 17

3.11 Definition (Next transaction identifiers) 17

3.12 Definition (Transactional update) . 18

3.13 Definition (Execution tests) . 20

3.14 Definition (Consistency models) . 20

3.15 Definition (Dependency relations on kv-stores) 20

4.1 Definition (Fresh transaction identifier) 22

4.2 Proposition (FreshTxid is in NextTxID) 23

4.3 Definition (Client Read Your Writes) 24

4.4 Definition (New transactional update) 24

vi

Table of Contents LIST OF DEFINITIONS AND PROOFS

4.5 Definition (NewUpdateKV semantics) 25

4.6 Proposition (Well-formed NewUpdateKV result) 26

4.7 Lemma (Single step confluence) . 28

4.8 Lemma (One side confluence) . 30

4.9 Lemma (Confluence) . 30

4.10 Theorem (Well-defined NewUpdateKV) 31

4.11 Definition (UpdateKV semantics) . 31

4.12 Theorem (Well-defined UpdateKV) 32

4.13 Proposition (NewUpdateKV kv-store equals UpdateKV) 32

4.15 Proposition (New update satisfies vShiftMR) 34

4.16 Proposition (New update satisfies vShiftRYW) 34

4.17 Theorem (New update satisfies vShiftMR∩RYW) 34

5.1 Definition (Minimal view-shift) . 35

5.2 Proposition (NewUpdateKV minimal view-shift) 36

5.3 Proposition (New update preserves RYW) 37

5.4 Proposition (Advancing view preserves RYW) 38

5.5 Definition (Later kv-store) . 39

5.6 Proposition (Later kv-store preserves RYW) 39

8.1 Proposition (NewUpdateKV preserves CC) 46

8.2 Proposition (Later kv-store and CC) 47

8.3 Definition (Union of views) . 48

8.4 Proposition (Union of CC views) . 48

8.5 Definition (Max of snapshots) . 51

8.6 Definition (Version-snapshots) . 51

8.7 Definition (Max of version-snapshots) 52

vii

LIST OF DEFINITIONS AND PROOFS Table of Contents

8.8 Definition (Transactional update on version-snapshots) 52

viii

Chapter 1

Introduction

Transactions are the de facto synchronisation mechanism in modern distributed data-
bases [1]. Distributed databases often implement weak transactional consistency
guarantees known as consistency models, allowing them to achieve scalability and
performance. Many consistency models were designed by engineers to meet appli-
cation requirements in industry and specified using informal definitions specific to
particular real-world reference implementations, e.g. [2, 3, 4, 5, 6, 7, 8, 9]. In recent
years, general definitions of consistency models have been defined independently of
particular implementations, either declaratively or operationally [10]. Xiong et al.
[10] define a general operational semantics for weak consistency models. Our aim
is to reformulate their semantics into a forward-looking specification that can be
implemented efficiently.

Significant work has been done on declarative semantics for defining consistency
models, with the most popular approaches being dependency graphs [11] and ab-
stract executions [12, 13]. The operational approach for defining consistency mod-
els, unlike the declarative approach, has not been studied much [10]. Crooks et
al. [14] proposed a state-based trace semantics over a global centralised store for
describing weak consistency models [1]. Using their semantics, they demonstrate
that multiple definitions of snapshot isolation (SI) are equivalent [1]. Nagar and
Jagannathan [15] proposed a fine-grained interleaving operational semantics on ab-
stract executions, building a model-checking tool for proving robustness results for
client programs [1]. Kaki et al. [16] proposed an operational semantics for SQL
transactions over an abstract, centralised, single-version store [10]. They develop a
program logic and prototype tool for reasoning about client programs, but cannot
capture models such as parallel snapshot isolation (PSI) and causal consistency (CC)
which are important for distributed databases [1]. Xiong et al. [10] introduced an
interleaving operational semantics directly updating abstract states. No work has
been done on implementing operational semantics for distributed databases to au-
tomatically generate litmus tests. Hence, this was our initial goal. Recognising that
the semantics of Xiong et al. [10] required a lot of work before this was possible, we
focus on advancing the theory.

1

Chapter 1. Introduction

Xiong et al. [10] introduce an interleaving operational semantics for describing the
client-observable behaviour of atomic transactions updating distributed key-value
stores. Their semantics is formed around a notion of abstract states consisting of a
centralised key-value store (kv-store) with multi-versioning and a client view [10]. A
kv-store is global in that it records all versions of a key; and a client view is partial
in that a client may see only a subset of the versions [10]. They use execution
tests to capture the conditions determining whether a client can commit the next
transaction. An execution step depends only on the abstract state, the read-write set
of the atomic transaction, and an execution test [10]. These execution tests induce
different consistency models. Rather than having to examine the whole execution
trace, execution tests depends only on the current abstract state [10].

From a theoretical point of view, the work of Xiong et al. [10] successfully provides
a compelling abstract interface between distributed databases and clients. Their
semantics can be used to both verify reference implementations and analyse the
behaviour of client programs with respect to a particular consistency model [10].
However, their use of execution tests on abstract states to commit transactional up-
dates requires a lot of backwards analysis on past versions of the state. Despite
their operational approach, this backwards analysis undermines the ‘forwardness’
advantage of more traditional operational semantics. Thus, from an implementation
perspective, it is exceedingly complex. We aimed to improve on their approach.

We successfully give a forward-looking reformulation of the transactional update
rule, identifying the notion of minimal views, and prove its equivalence to the origi-
nal formulation. Still there is an inefficiency in the the shifting of the client view to
incorporate environment steps when starting a transaction. We recognise this view
shift as a key step to developing an elegant implementation.

We choose to focus on the causal consistency (CC) model rather than the full gener-
ality of the operational semantics of Xiong et al. [10]. The CC model states that, if a
version written by transaction t is included in the view of a client before committing
a transaction, then all versions that t observes must also be in the client view [10].
This model is unique in that it captures only the dependencies associated with the
executing client, and does not depend on the specific transaction being executed.
Causal consistency intuitively has a ‘forwards feel’, which is reflected in its execution
test definition in [10]. In particular, given a client view in CC (that satisfies the CC

execution test), then the minimal view resulting from an update of a transaction is
also in CC. This property cannot hold for other consistency models, such as PSI and
SI, which depend on the transaction being committed.

We clearly demonstrate how to directly incorporate the environment steps to obtain
all the possible extended CC views of a client when starting a transaction in a forward
way, given the minimal view after an update. We extend the idea of minimal views to
snapshots, and illustrate an approach for using an altered definition of a snapshot to
obtain all the snapshots of meaningful views (extended views that result in a newer
snapshot) of a client executing a transaction. Last, we provide an algorithm for

2

Chapter 1. Introduction 1.1. PROJECT CREATION AND EVOLUTION

implementing our approach.

1.1 Project Creation and Evolution

As this is a research-based project, a key aspect throughout has been finding the in-
teresting questions to answer. This process of creative thinking constantly improved
at each stage of the project, and an intuition for identifying the questions to investi-
gate was gradually developed.

The project started with the goal of building an implementation of the operational
semantics of Xiong et al. [10] and using that implementation to develop ways for
automatically generating litmus tests. As the depth of understanding of the seman-
tics grew and the most important parts were recognised, it seemed more prudent
to focus first on the reformulation of the semantics to exploit properties of opera-
tional semantics and specific consistency models. Thus, the project evolved from an
implementation project to a theory-focused project.

1.2 Contributions

We provide a forward-looking reformulation of the semantics of an atomic transac-
tion under an execution test in chapter 5, which we show is equivalent to the orig-
inal. This is the result of our evaluation of the backwards analysis of transactional
updates in the semantics of Xiong et al. [10].

We provide the foundations for an efficient future implementation in chapter 7 and
recognise the most challenging components of the semantics from the point of view
of an implementation.

We demonstrate a systematic way for extending client views to incorporate informa-
tion from the environment under causal consistency in chapter 8, utilising the notion
of minimal views produced by our reformulation.

Building upon our minimal views approach, we alter the definition of snapshots and
present an algorithm for producing all kv-stores obtainable by executing a client
program under causal consistency in section 8.3. Following our algorithm are sug-
gestions for potential optimisations, both theoretical and implementation specific.

In chapter 9 we conclude our results and propose future extensions to this project.

3

1.3. OUTLINE Chapter 1. Introduction

1.3 Outline

Chapter 2 provides the technical background for understanding this project, giving
an overview of some well-known consistency models, declarative and operational
approaches, and previous work for litmus test generation.

Chapter 3 evaluates the semantics of Xiong et al. [10], focusing on the semantics of
an atomic transaction and introducing the use of execution tests to describe consis-
tency models.

In chapter 4 we look at the work of Xiong et al. [10] from an implementation per-
spective and identify areas to optimise. We suggest improvements to the semantics
to eliminate the backwards analysis of transactional updates.

We use our new definitions to give a forward-looking reformulation of the semantics
of an atomic transaction under an execution test in chapter 5, and show that it is
equivalent to the original.

In chapter 6 we discuss the effect of using our new transactional update definition
on consistency models with different view shift conditions.

Chapter 7 explains our original aim of developing an implementation and the first
steps we took before deciding to move our focus to advancing the theory.

In chapter 8 we explore the causal consistency (CC) model. We focus on updating
client views with environment information in a forward way and demonstrate how
it can be done using our minimal views from chapter 5.

The conclusions of this project are summarised in chapter 9, including proposals for
future work.

4

Chapter 2

Background

This chapter provides the technical background for understanding the project and its
creation process. In section 2.1 we explain the role of consistency models and give
examples of some well-known models. We discuss the main declarative formalisms
in section 2.2. In section 2.3 we present litmus tests, giving examples of some well-
known tests (section 2.3.1) and introducing previous work on automatic litmus test
generation (section 2.3.2). We give a summary of previous work on operational
semantics in section 2.4.

2.1 Consistency Models

A consistency model describes the set of all states reachable by executing client
programs starting from a consistent state. It does so by defining the guarantees a
distributed store provides on the ordering of read and write operations across the
nodes of the system. In other words, a model describes the set of all valid histories
of transactions.

Databases use transactions, allowing programmers to think about blocks of actions
as executing in isolation [17]. A transaction groups multiple operations into an in-
dependent unit and ensures that consistency is maintained. In distributed systems,
data is often replicated and partitioned over many geo-distributed nodes. Ensuring
serialisability of distributed transactions is thus a very expensive task with a signifi-
cant performance cost.

Many modern distributed databases implement weaker consistency models trading
off consistency for performance. Reasoning about and designing such consistency
models is difficult due to their complex and counter-intuitive behaviour [18].

The semantics of a model can be captured either by a reference implementation or
described by its non-serialisable behaviours, called anomalies.

5

2.1. CONSISTENCY MODELS Chapter 2. Background

Serialisability (SER) This is the strongest and most intuitive consistency model. It
requires that transactions execute in a total sequential order. That is, transactions ap-
pear to happen in an instant, one after another, without interleaving sub-operations
from different transactions [1]. The first definitions of the serialisability model were
given in terms of implementation strategies using locks [19, 20]. The idea of his-
tory was later introduced, defined as the trace of fine-grained read and write op-
erations. Serialisability was then formally defined [19]: there exists an equivalent
history where transactions are executed sequentially. This means that even when
executed concurrently, the history would be equivalent to a history of the transac-
tions if they were executed sequentially on a single machine (single-node database).
Since distributed transactions may execute on different nodes/replicas, a transac-
tion may read a stale value that has been updated by an earlier transaction whose
changes have not propagated. For this reason, serialisability additionally requires
that a transaction t would observe the effect of all transactions ordered before t [1].

SQL isolation levels Berenson et al. summarised the four SQL isolation levels in
[4]: Read uncommitted, read committed, repeatable read and serialisability.

1. Read uncommitted allows transactions to read uncommitted values.

2. Read committed restricts transactions to only read committed values but allows
reads in the same transaction of the same object to be different.

3. Repeatable read requires that a transaction read the same value for reads of
the same object.

These SQL isolation levels were defined in ANSI SQL-92 based on phenomena each
level excludes. This had the goal of providing implementation independent defini-
tions, as opposed to specific lock-based implementations of the four isolation levels
[21]. Berenson et al. [4] claimed that these are ambiguous. Adya [11] proposed
using dependency graphs to specify consistency models and formalised the four def-
initions to disambiguate them. These isolation levels are still commonly used in
centralised databases, even though they are tightly related to lock-based implemen-
tations [1]. In the distributed databases world, however, implementing these consis-
tency models comes at a performance cost: read uncommitted, read committed and
repeatable read all support the interleaving of sub-operations between transactions,
requiring more complex synchronisation mechanisms between sites [1]. Serialisabil-
ity requires consensus between all nodes, limiting the number of transactions that
can be executed in parallel.

Snapshot Isolation (SI) Snapshot isolation is a common consistency model sup-
ported by many centralised databases alongside the four SQL isolation levels. Snap-
shot isolation takes a different approach to that of lock-based implementation, oper-
ating using a multi-versioning approach. Berenson et al. [4] provide an English

6

Chapter 2. Background
2.2. DECLARATIVE SEMANTICS: DEPENDENCY GRAPHS AND ABSTRACT

EXECUTIONS

description of snapshot isolation implementation in a centralised database using
transaction snapshot time and commit time. A transaction takes a snapshot of the
database at the snapshot time. It then operates on this snapshot, reading values from
the snapshot rather than the database itself. At commit time, the transaction checks
that no write conflicts have happened since the snapshot time and commits the fi-
nal state of the snapshot to the database, discarding any intermediate values [1].
The multi-versioning approach, with each transaction working on its own snapshot,
naturally works well in distributed databases due to their architecture. Snapshot iso-
lation has been implemented in many distributed database systems including both
replicated and partitioned databases [1].

Parallel Snapshot Isolation (PSI) Despite SI fitting well to the architecture of
distributed databases, it still enforces that concurrent transactions view the updates
from other transactions in the same order, requiring that transactions executing at
different sites agree on the relative order of operations [1]. This coordination pro-
cess could carry significant penalties on performance. Sovran et al. [9] proposed a
weaker model, parallel snapshot isolation (PSI), to tackle this synchronisation prob-
lem. Their implementation strategy is based on ideas from the SI implementation.
Transactions consist of three stages: snapshot, internal execution and commit. The
difference from SI is that rather than taking a snapshot of the entire database, a
transaction takes a snapshot of a single site. The commit is then done locally, with
the changes propagating non-deterministically to the other replicas. Synchronisa-
tion delays may result in transactions executing at different sites observing updates
in different orders. Saeida Ardekani et al. [2] formalised PSI using constraints on
read and write operations of a transaction. They further provide a better multi-
versioning replicated database implementation of PSI (NMSI), where each version
holds a dependency set of metadata (dependence vector).

Many consistency models were devised to meet a specific application need and de-
fined by a reference implementation. This makes it harder to reason about and
compare consistency models, for example to determine whether one is more permis-
sive than another or to prove equivalence of different implementations of the same
model. The problem posed by specificity of implementation details lead researchers
to formalise consistency model specifications using general semantics which are ex-
pressive enough to capture many consistency models in a unified way.

2.2 Declarative Semantics: Dependency Graphs and
Abstract Executions

Dependency graphs and abstract executions are the two main general declarative
formalisms.

7

2.3. LITMUS TESTS Chapter 2. Background

Adya [11] proposed the first approach that applies techniques for specifying consis-
tency conditions using graphs and different types of dependencies to defining ANSI
and commercial isolation levels in an implementation-independent manner. Depen-
dency graphs have nodes representing transactions which are connected by directed
edges representing dependencies between the transactions. Earlier locking-based
definitions and their equivalent graph-based definition are restricted in their gener-
ality.

In [12], abstract executions were introduced for specifying eventual and causal con-
sistency. They used a visibility relation (VIS) and an arbitration relation (AR) to
represent the transactions observable by another transaction and the order in which
transactions take effect. If (t, t′) ∈ VIS then the effects of t can be observed by t′. If
(t, t′) ∈ AR then the versions written by t′ override the versions written by t. Abstract
executions were adapted to atomic transactions in [13].

2.3 Litmus Tests

The initial goal of this project was implementing the operational semantics of Xiong
et al. [10], and using it to construct litmus tests. The background research therefore
included investigating existing methods to generate litmus tests. Although the focus
of the project has shifted away from litmus test generation, we provide examples of
litmus tests in section 2.3.1, and describe past approaches for automatic generation
of litmus tests in section 2.3.2, to support future work.

2.3.1 Examples of Litmus Tests

Litmus tests are small parallel programs that illustrate subtle differences between
consistency models by demonstrating behaviours observable under one consistency
model and not another.

Example 2.1. Consider the client program PLU:

PLU
def
= cl1 : [x := [k] ; [k] := x+1] || cl2 : [x := [k] ; [k] := x+1]

The lookup operation x := [k] reads the value of k in local variable x, and the mutation
operation [k] := x+1 writes x+1 to k. Transactions that execute atomically are wrapped
in square brackets.

We have two clients, cl1 and cl2, each executing a single atomic transaction. Assume
that each client executes its transaction on a different replica of a replicated database
with a single key k. The initial value of key k is 0 in both replicas.

Under serialisability (SER) we expect the final value of k to be 2, as each client incre-
ments it by 1 and the transactions execute atomically. However, under some weaker

8

Chapter 2. Background 2.3. LITMUS TESTS

consistency models such as causal consistency (CC), it is possible that both cl1 and cl2
read 0 as the value for k and update it to 1 at their replicas. The updates eventually
propagate to other replicas, resulting in the final state having 1 as the value for k in
both.

This behaviour is known as the lost update anomaly.

Example 2.2. Consider the client program PLF:

PLF
def
= cl1 :

[
x := [k1] ; [k1] := x + 1

]
;
[
y := [k2] ; [k2] := y + 1

]
|| cl2 :

[
x := [k1] ; y := [k2]

]
|| cl3 :

[
x := [k1] ; y := [k2]

]
Assume that we are using a replicated database with multi-versioning with only two
keys, k1 and k2. Suppose that client cl1 executes its transactions first, updating both k1
and k2 with the value 1. Our database now has two versions for each key, the first with
value 0 and the second 1. The second client cl2 executes next, using a view that includes
both versions of k1 but only the first version of k2. The values read by cl2 are 1 for k1
and 0 for k2. cl3 executes its transaction last, using a view that includes both versions of
k2 but only the first version of k1. This means that cl3 reads 0 for k1 and 1 for k2. That
is, client cl2 sees the increment of k1 before that of k2, while cl3 sees the increment of k2
before that of k1.

This is known as the long fork anomaly.

Due to the many subtle differences between consistency model specifications, it is
difficult to manually identify these differences and construct appropriate litmus test
to capture them.

2.3.2 Automatically Generating Litmus Tests

We discuss multiple approaches for automatic generation of litmus tests, all of which
are based on declarative semantics. No work has been done on operational seman-
tics implementations for automatic litmus test generation for distributed databases.
Hence, this was the initial goal of this project.

Jade Alglave et al. [22] use a combination of hand-written tests and some additional
sources such as [23] as a test base. They also generate new tests which are mostly
variations of some existing tests. Their approach is based on systematic enumeration
of sequences of intra-thread relations from one memory access to the next, includ-
ing address dependencies, data dependencies, control dependencies and identity of
addresses [24].

In [18], John Wickerson et al. demonstrate an approach to automatically com-
pare memory consistency models (MCMs) using a constraint solver. They identify
four questions involved in designing and understanding memory consistency models

9

2.4. OPERATIONAL SEMANTICS Chapter 2. Background

and show that these four questions correspond to instances of a general constraint
satisfaction problem whose solution involves finding litmus tests (programs and a
state). As the problem is intractable when phrased over programs, they rephrase
the constraints to be over program executions, making them computationally fea-
sible. While earlier tools typically produce all candidate executions given an input
program and a memory consistency model [18], they use the executions found to
construct litmus tests that have executions that capture interesting MCM properties
as their candidate executions.

Sela Mador-Haim et al. [25] also use a SAT solver in their approach for generating
litmus tests to distinguish memory consistency models. It works by systematically
generating all possible multi-threaded programs up to a specified size bound given
two specifications of MCMs, and then checking whether one model allows a be-
haviour that the other does not. If this is the case, they produce a minimal litmus
test which demonstrates the difference. Unlike Wickerson’s approach where a SAT
solver is used to generate litmus tests, they only use it to check the behaviour of
pre-generated tests [18].

2.4 Operational Semantics

Unlike declarative approaches, very little work has been done on operational seman-
tics for defining weak consistency models for distributed atomic transactions. The
works of Xiong et al. [10] and Xiong [1] identify [14, 15, 16] as the key papers.

Crooks et al. [14] proposed a state-based trace semantics over a global centralised
store for describing weak consistency models [1]. Their semantics introduces con-
cepts called read states and commit tests, which are similar to the client views and
execution tests of Xiong et al. [10]. A single reduction step in their semantics de-
pends on the entire history of the execution trace [10]. Using their semantics, they
show the equivalence of multiple definitions of snapshot isolation [1].

Nagar and Jagannathan [15] proposed a fine-grained interleaving operational se-
mantics on abstract executions [10]. They build a model-checking tool for proving
robustness results for client programs [1]. To achieve this, they convert abstract ex-
ecutions to dependency graphs and check robustness violations on the dependency
graphs [10].

Kaki et al. [16] proposed an operational semantics for SQL transactions over an ab-
stract, centralised, single-version store [10]. Their semantics uses the consistency
models given by the standard ANSI/SQL isolation levels [4]. Using their seman-
tics, they develop a program logic and prototype tool for reasoning about client
programs [10]. Since changes to the global store are immediately available to all
clients under their framework, they cannot capture models such as PSI and CC that
are important for distributed databases [1].

10

Chapter 2. Background 2.4. OPERATIONAL SEMANTICS

Implementation work of operational semantics for automatic litmus test generation
has not been done. Hence, this was the original aim of this project. As we began to
explore the interleaving operational semantics of Xiong et al. [10], we realised that
a lot of work on the theory was required before an implementation was possible.
Thus, we shifted our focus to improving the theory.

11

Chapter 3

Operational Model

Xiong et al. [10] suggest an interleaving operational semantics for describing the
client-observable behaviour of atomic transactions on distributed key-value stores.
The semantics is based on a notion of abstract state which comprises a centralised
key-value store (kv-store) with multi-versioning, which is global in the sense that it
records all the versions of a key, and client views, which are partial in the sense that
clients see only a subset of the versions. An execution step depends simply on the ab-
stract state, the read-write set of the atomic transaction, and an execution test which
determines if a client with a given view is allowed to commit the transaction [10].

In section 3.1 we introduce the main definitions and ideas used in the semantics
of Xiong et al. [10]. We explore the semantics of an atomic transaction under an
execution test ET in section 3.2, and explain the use of execution tests to describe
consistency models in section 3.3.

Notation We use A 3 a to denote that elements of A are ranged over by a and
its variants a′, a1, · · ·.. The notation [A] denotes the set of lists of A, and [a0, · · · , an]
denotes a list. Given two lists l, l′ ∈ [A], the notation l :: l′ denotes the concatenation
of the two lists. Given an element a ∈ A and a list l ∈ [A], the notation l :: a denotes
appending the element to the end of the list. The notation |l| denotes the size of
the list. The notation l [i 7→ a] denotes the update of (i + 1)th component to a. The
notation A → B, A −⇀ B and A

fin−⇀ B denotes the set of total, partial and partial finite
functions from A to B respectively. For a function f ∈ A → B, (similarly for A −⇀ B

and A
fin−⇀ B), a ∈ A and b ∈ B, the notation f [a 7→ b] denotes the update of the

function defined by:

f [a 7→ b] (a′)
def
=

{
b if a′ = a,

f(a′) otherwise.

Given relations r, r′ ⊆ A × A, we write: r ?, r+ and r∗ for its reflexive, transitive
and reflexive-transitive closures of r, respectively; r−1 for its inverse; a1

r−→ a2 for

12

Chapter 3. Operational Model 3.1. ABSTRACT STATES

(a1, a2) ∈ r; and r; r′ for {(a1, a2) | ∃a. (a1, a) ∈ r ∧ (a, a2) ∈ r′}.

3.1 Abstract States: Key-Value Stores and Client Views

A kv-store comprises key-indexed lists of versions which record the history of the
key with values and meta-data of the transactions that accessed it: the writer and
readers [10].

Definition 3.1 (Client and transactional identifiers). The set of client identifiers,
CLIENTID 3 cl, is a countably infinite set. The set of transaction identifiers, TXID 3 t,
is defined by TXID

def
= {t0}] {tncl | cl ∈ CLIENTID ∧ n ≥ 0}, where t0 denotes the ini-

tialisation transaction and tncl identifies a transaction committed by client cl with n
determining the client session order (definition 3.2).

Subsets of TXID are ranged over by T, T ′, · · ·. We let TXID0
def
= TXID \ {t0}.

Definition 3.2 (Session order). The session order relation, SO ⊆ TXID×TXID, is de-
fined by SO

def
= {(t, t′) | ∃cl, n,m. t = tncl ∧ t′ = tmcl ∧ n < m}.

Definition 3.3 (Kv-stores). Assume a countably infinite set of keys, KEY 3 k, and a
countably infinite set of values, VALUE 3 v, which includes the keys and an initialisation
value v0. The set of versions, VERSION 3 ν, is defined by VERSION

def
= VALUE × TXID ×

P(TXID0). A kv-store is a function K : KEY → List (VERSION), where List (VERSION) 3 V
is the set of lists of versions.

As in [10], versions have the form ν=(v, t, T), where v is a value, the writer t iden-
tifies the transaction that wrote v, and the reader set T identifies the transactions
that read v. We use val(ν), w(ν) and rs(ν) to project the individual components of
ν. Given a kv-store K and a transaction t, we write t ∈ K if t is either the writer or
one of the readers of a version included in K, |K (k)| for the length of the version list
K (k), and K (k, i) for the ith version of k.

Definition 3.4 (Well-formed kv-store). A kv-storeK is well-formed, written WfKvs (K),
if and only if

∀k. val(K (k, 0)) = v0 (3.1)
∀k, i, j. (rs(K (k, i)) ∩ rs(K (k, j)) 6= ∅ ∨ w(K (k, i)) = w(K (k, j)))⇒ i = j (3.2)

∀k, i, j, t, t′. t = w(K (k, i)) ∧ t′ ∈ rs(K (k, i))⇒ (t′, t) /∈ SO ? (3.3)

∀k, i, j, t, t′. t = w(K (k, i)) ∧ t′ = w(K (k, j)) ∧ i < j ⇒ (t′, t) /∈ SO ? (3.4)

where R? denotes the reflexive closure of R. Let KVS 3 K denotes the set of well-formed
kv-stores.

13

3.1. ABSTRACT STATES Chapter 3. Operational Model

Equation (3.1) states that the version list for each key has an initialisation version
carrying the initialisation value v0, under the assumption that the initialisation ver-
sion is written by the initialisation transaction t0 and initially has an empty reader
set. The second condition (eq. (3.2)) is called the snapshot property and ensures
that a transaction reads and writes at most one version for each key. Equations (3.3)
and (3.4) ensure that the kv-store agrees with the session order of clients. That is,
a client cannot read a version of a key that has been written by a future transaction
within the same session, and the order in which versions are written by a client must
agree with its session order.

A global kv-store provides an abstract centralised description of updates associated
with distributed kv-stores that is complete in that no update has been lost in the de-
scription [10]. By contrast, in both replicated and partitioned distributed databases,
a client may have incomplete information about updates distributed between ma-
chines [1]. Xiong et al. [10] model this incomplete information by defining a view
of the kv-store which provides a partial record of the updates observed by a client.
They require that a client view be atomic in that it can see either all or none of the
updates of a transaction.

Definition 3.5 (Views). A view of a kv-store K ∈ KVS is a function u ∈ VIEWS (K)
def
=

KEY → P(N) such that, for all i, i′, k, k′:

0 ∈ u (k) ∧ (i ∈ u (k)⇒ 0 ≤ i < |K (k)|) (3.5)
i ∈ u (k) ∧ w(K (k, i)) = w(K (k′, i′))⇒ i′ ∈ u (k′) . (3.6)

Given two views u, u′ ∈ VIEWS (K), the order between them is defined by u v u′
def⇔∀k ∈

dom(K). u (k) ⊆ u′(k). The set of views is VIEWS
def
=
⋃
K∈KVS VIEWS (K). The initial

view, u0, is defined by u0(k) = {0} for every k ∈ KEY.

A view is well-formed, written WfView (K, u), if it contains the initial version of each
key (eq. (3.5)), the indices are in range (eq. (3.5)), and it is atomic, meaning that a
client can observe either all or none of the updates of a transaction (eq. (3.6)).

The operational semantics updates pairs comprising a kv-store and a function de-
scribing the views of a finite set of clients, called configurations.

Definition 3.6 (Configurations). A configuration, Γ ∈ CONF, is a pair (K,U) with K ∈
KVS and U : CLIENTID

fin−⇀ VIEWS (K). The set of initial configurations, CONF0 ⊆ CONF,
contains configurations of the form (K0,U0), where K0 is the initial kv-store defined by
K0(k)

def
= (v0, t0, ∅) for all k ∈ KEY.

Given a configuration (K,U) and a client cl, if u = U (cl) is defined then, for each
k, the configuration determines the sub-list of versions in K that cl sees. If indices

14

Chapter 3. Operational Model 3.2. THE CATOMICTRANS RULE

CATOMICTRANS
u v u′′ σ = snapshot (K, u′′) (s, σ, ∅), T ∗ (s′, ,F), skip canCommitET (K, u′′,F)

t ∈ NextTxID (cl,K) K′ = UpdateKV (K, u′′,F , t) vShiftET (K, u′′,K′, u′)

cl ` (K, u, s),
[
T
] (cl,u′′,F)−−−−−→ET (K′, u′, s′), skip

Figure 3.1: The semantics of an atomic transaction under execution test ET [10]

i, j ∈ u (k) and i < j, then client cl sees the values carried by versions K (k, i) and
K (k, j), and it also sees that the version K (k, j) is more up-to-date than K (k, i). This
allows to associate a snapshot with the view u, which identifies, for each key k, the
last version included in the view. This definition assumes that the database satisfies
the last-write-wins resolution policy, employed by many distributed key-value stores.

Definition 3.7 (View snapshots). Given K ∈ KVS and u ∈ VIEWS (K), the snapshot of
u in K is a function, snapshot (K, u) : KEY → VALUE, defined by:

snapshot (K, u)
def
= λk. val(K (k,max<(u (k))))

where max<(u (k)) is the maximum element in u (k) w.r.t. the natural order < over N.

The effects of executing a transaction T on a snapshot σ of kv-store K are captured
in a fingerprint. A fingerprint of T on snapshot σ captures the first values T reads
from σ, and the last values T writes to σ and intends to commit to K.

Definition 3.8 (Fingerprints). Let OP denote the set of read (R) and write (W) opera-
tions defined by OP

def
= {(l, k, v) | l ∈ {R, W} ∧ k ∈ KEY ∧ v ∈ VALUE}. A fingerprint F is

a set of operations, F ⊆ OP, such that: ∀k ∈ KEY, l ∈ {R, W} . (l, k, v1), (l, k, v2) ∈ F ⇒
v1 = v2.

A fingerprint can have at most one read operation and at most one write operation
for a given key. This follows the snapshot property assumption: reads are taken from
a single snapshot of the kv-store; and only the last write of a transaction to each key
is committed to the kv-store.

We focus on the semantics of an atomic transaction, described by the CATOMICTRANS

rule. All rules for command and program semantics are provided in appendix A.

3.2 The CATOMICTRANS Rule

The CATOMICTRANS describes the steps of execution of an atomic transaction under
the execution test ET. We explain the premises of the rule and identify areas that can
be improved to make an implementation of the rule more computationally forward.

15

3.2. THE CATOMICTRANS RULE Chapter 3. Operational Model

ET canCommitET (K, u,F)
def
= closed(K, u,RET) vShiftET (K, u,K′, u′)

MR true u v u′

RYW true ∀t ∈ K′ \ K. ∀k, i. (w(K′(k, i)), t) ∈ SO ? ⇒ i∈u′(k)
CC RCC

def
= SO ∪WRK vShiftMR∩RYW (K, u,K′, u′)

UA RUA
def
=
⋃

(W,k,)∈FWW−1K (k) true

PSI RPSI
def
= RUA ∪RCC ∪WWK vShiftMR∩RYW (K, u,K′, u′)

CP RCP
def
= SO;RWK

? ∪WRK;RWK
? ∪WWK vShiftMR∩RYW (K, u,K′, u′)

SI RSI
def
= RUA ∪RCP ∪ (WWK;RWK) vShiftMR∩RYW (K, u,K′, u′)

SER RSER
def
= WW−1K true

Figure 3.2: Execution tests of consistency models defined by canCommit and vShift

predicates [10], where SO is as given in definition 3.2

Advancing the view The first premise allows the executing client to advance its
view u to a newer view u′′ to incorporate environment information. For example,
suppose that a client cl has the initial view u0 over a kv-store K and is about to
execute a transaction incrementing the value of key k. It might be that another
client cl′ has committed a newer version to k. Advancing the view allows client cl
to have a more up-to-date view of the kv-store. To advance our view to u′′ it must
be allowed under the execution test ET as determined by the canCommit predicate
(section 3.2).

Snapshot and fingerprint Using the advanced view u′′, a snapshot of the kv-store
K is taken. This snapshot is used to accumulate the fingerprint F and update the
stack as the transaction executes locally to completion. Once the effect ot the trans-
action is recorded in the fingerprint, the snapshot is no longer needed.

The rules for extending the fingerprint are described by the combination operator
<C : P(OP) × (OP] {ε}) → P(OP) (fig. A.1). This is part of the TPRIMITIVE rule on
primitive transactions. A read operation from k is added if F contains no entry for
k, and a write operation to k is always added to F , removing previous writes to k.
This ensures that the snapshot property (eq. (3.2)) is satisfied.

Can-commit check The canCommitET (K, u′′,F) premise checks whether the finger-
print F of the transaction is compatible with the kv-store K and the client view u′′

under the execution test ET. If it is, then the transaction can commit. canCommit

is parametric in the execution test ET, meaning that the conditions checked upon
committing depend on the consistency model under which the transaction is to com-
mit. Definitions of canCommit for several execution tests associated with well-known
consistency models are given in fig. 3.2.

The canCommitET predicate requires that the view of the executing client is closed
with respect to a relation R on transactions in the kv-store K. This is defined by the

16

Chapter 3. Operational Model 3.2. THE CATOMICTRANS RULE

prefix-closure on the set of visible transactions.

Definition 3.9 (Visible transactions). The set of visible transactions of a kv-store K
and a view u is defined by:

visTx (K, u)
def
= {w (K (k, i)) | i ∈ u (k)} .

That is, visTx (K, u) is the set of all writers of versions that are included in the view
u.

Definition 3.10 (Prefix closure). Given a binary relation on transactions, R ⊆ TXID×
TXID, a view u is closed with respect to a kv-store K and R, written closed (K, u, R),
if and only if:

visTx (K, u) =
(
(R∗)−1 (visTx (K, u))

)
\ {t | ∀k ∈ K, i. t 6= w (K (k, i))} .

That is, if transaction t is visible in u, (t ∈ visTx (K, u)), then all writing trans-
actions t′, (not read-only t′ /∈ {t′′ | ∀k, i. t′′ 6= w (K (k, i))}), that are R∗-before t,
(t′ ∈ (R∗)−1 (t)), are also visible in u, (t′ ∈ visTx (K, u)).

Computing the prefix-closure every time a transaction is executed is very computa-
tionally expensive. Moreover, any candidate view from the first premise (section 3.2)
needs to be checked to determine its compatibility before the transaction can com-
mit. In chapter 8 we investigate different approaches to cleverly advance a view in
a way that guarantees canCommit is satisfied under causal consistency.

Next transaction identifier The client cl with view u′′ over the kv-store K is now
ready to commit the transaction with fingerprint F to the kv-store. The next premise
makes use of the set NextTxID (cl,K) to pick the next transaction identifier.

Definition 3.11 (Next transaction identifiers). Given a kv-store K ∈ KVS, the set of
next available transaction identifiers for a client cl, written NextTxID (cl,K), is defined
by:

NextTxID (cl,K)
def
= {tncl | tncl ∈ TXID ∧ ∀m ∈ N.∀tmcl ∈ TXID. tmcl ∈ K ⇒ m < n} .

That is, pick any transaction identifier that is greater than all previous transactions
committed by client cl. This ensures that session order SO can be determined by the
transaction identifiers.

Notice that allowing any transaction identifier greater than previously committed
transactions of the executing client to be picked as the next transaction identifier
introduces unnecessary non-determinism. In section 4.1 we define the FreshTxid
function to deterministically select the next consecutive available transaction identi-
fier for a client.

17

3.2. THE CATOMICTRANS RULE Chapter 3. Operational Model

k 7→ 0
t0

{t′}
1
t′

∅
k 7→ 0

t0

{t′, t}
1
t′

∅
(a) An example of UpdateKV (K, u, {(R, k, 0)}] F , t) (view u is highlighted)

k 7→ 0
t0

{t′}
1
t′

∅
k 7→ 0

t0

{t′, t}
1
t′

∅
2
t

∅
(b) An example of UpdateKV (K, u, {(W, k, 2)}] F , t) (view u is highlighted)

Figure 3.3: An example of UpdateKV [1]

Transactional update The function UpdateKV (K, u,F , t) describes the effect of
executing transaction t with fingerprint F under view u on kv-store K. 1. for each
read (R, k, v) ∈ F , it adds t to the reader set of the last version of k in u (fig. 3.3a);
2. for each write (W, k, v) ∈ F , it appends a new version (v, t, ∅) to K (k) (fig. 3.3b).

Definition 3.12 (Transactional update). The function UpdateKV (K, u,F , t) is defined
by:

UpdateKV (K, u, ∅, t) def
= K

UpdateKV (K, u, {(R, k, v)}] F , t) def
= let i = max <(u (k)) and (v, t′, T) = K (k, i) in

UpdateKV (K [k 7→ K (k) [i 7→ (v, t′, T] {t})]] , u,F , t)

UpdateKV (K, u, {(W, k, v)}] F , t) def
= let K′ = K [k 7→ K (k) :: (v, t, ∅)] in UpdateKV (K′, u,F , t)

where, given a list of versions V = ν0 :: · · · :: νn and an index i : 0 ≤ i ≤ n, then
V [i 7→ ν]

def
= ν0 :: · · · :: νi−1 :: ν :: νi+1 :: · · · :: νn.

At each step we choose an operation from the fingerprint, in any order, apply it to the
kv-store to reflect its effect and recursively call UpdateKV with the updated kv-store
and the rest of the fingerprint, with the operation removed.

View shift The vShift predicate is used to check whether a view shift is permitted
under execution test ET. It is used to restrict the permitted views of a client over
the resulting kv-store after an application of a transaction. Given an initial kv-store
K and a view u ∈ VIEWS (K), and the resulting kv-store K′ and view u′ ∈ VIEWS (K′)
after a transactional update, vShiftET (K, u,K′, u′) determines if shifting the client
view from u to u′ is allowed under ET. Notice that vShift is parametric in the
execution test ET, meaning that the conditions checked depend on the consistency
model, similarly to canCommit. Definitions of vShift for several execution tests
associated with well-known consistency models are given in fig. 3.2.

18

Chapter 3. Operational Model 3.3. EXECUTION TESTS

Note that the vShift check does not define how to obtain a new view that satis-
fies the view-shift conditions (section 3.2). To find such a view, we would need to
generate candidate views and discard those for which the conditions do not hold.

Many consistency models define vShift as the conjunction of the MR and RYW session
guarantees (fig. 3.2). We are therefore particularly interested in looking at vShiftMR
and vShiftRYW.

View shift - Read Your Writes (RYW) This consistency model is explained in [10]
as follows:

This consistency model states that a client must always see all the ver-
sions written by the client itself. The vShiftRYW predicate thus states that
after executing a transaction, a client contains all the versions it wrote in
its view. This ensures that such versions will be included in the view of
the client when committing future transactions.

The predicate is defined on the difference of kv-stores before and after executing a
transaction using SO:

vShiftRYW (K, u,K′, u′) def
= ∀t ∈ K′ \ K.∀k, i. (w(K′(k, i)), t) ∈ SO ? ⇒ i∈u′(k).

That is, given an initial kv-store K and view u ∈ VIEWS (K), and the resulting kv-store
after a transactional update K′, the view shift from the initial view to u′ ∈ VIEWS (K′)
is allowed under RYW. Notice that because K′ is the result of a transactional update,
the set difference K′ \ K contains only a single element - the committed transaction.

With this definition, we are restricted to reasoning about RYW associated with a single
transactional update. We define a new predicate RYW(cl,K, u) (definition 4.3) in
section 4.2 to decouple the RYW guarantees from a specific transactional update.

View Shift - Monotonic Read (MR) The Monotonic Read consistency model states
that a client cannot lose information when committing. That is, a client can only
observe more up-to-date versions from a kv-store, expanding its view. The vShift

predicate for MR is therefore defined as vShiftMR (K, u,K′, u′) def
= u v u′.

3.3 Execution Tests and Consistency Models

Xiong et al. use the notion of an execution test, specifying whether a client is allowed
to commit a transaction in a given kv-store.

19

3.3. EXECUTION TESTS Chapter 3. Operational Model

ti

tj

t

WR

WW

RW

(a) An example of dependencies between transactions with respect to the time line of the starts and
commits of these transactions (dashed line can be stretched)

k1 7→
t0

{t1}

t2

∅
WR

WW

RW

(b) Dependencies of transactions in kv-stores (values omitted)

Figure 3.4: Dependency relations on key-value stores [10]

Definition 3.13 (Execution tests). An execution test, ET, is a set of tuples, ET ⊆
KVS×VIEWS×FP×KVS×VIEWS, such that for all (K, u,F ,K′, u′)∈ ET: 1. u∈ VIEWS (K)
and u′∈ VIEWS (K′); 2. canCommitET (K, u,F); 3. vShiftET (K, u,K′, u′); and 4. for all
k∈K and v∈VALUE, if (R, k, v)∈F then K (k,max <(u (k))) =v.

Intuitively, (K, u,F ,K′, u′) ∈ ET captures that, under the execution test ET, a client
with initial view u over kv-store K can commit a transaction with fingerprint F to
obtain the resulting kv-store K′ while shifting its view to u′ [10]. The last condition
in definition 3.13 enforces the last-write-wins policy: a transaction always reads the
most recent writes from the initial view u.

An execution test ET induces a consistency model as the set of kv-stores obtained by
having clients non-deterministically commit transactions, so long as the constraints
imposed by ET are satisfied [10]. Definitions of canCommit and vShift for multiple
consistency models are given in fig. 3.2.

Definition 3.14 (Consistency models). The consistency model induced by an execu-
tion test ET is defined as: CM(ET)

def
=
{
K
∣∣ ∃K0,U0, E , P. (K0,U0, E), P −→∗ET (K, ,),

}
.

We provide definitions for the dependency relations write-read (WR), write-write
(WW), and read-write (RW). These, together with the session order (SO) relation
(definition 3.2) are used to define the canCommit and vShift conditions of consis-
tency models (fig. 3.2).

Figure 3.4b shows dependency relation between transactions on an example kv-
store.

Definition 3.15 (Dependency relations on kv-stores). Given a kv-store K, a key k
and indexes i, j such that 0 ≤ i < j < |K (k)|, if there exists ti, Ti, t such that
K (k, i) =(, ti, Ti), K (k, j) =(, tj,) and t ∈ Ti, then for every key k:

20

Chapter 3. Operational Model 3.3. EXECUTION TESTS

1. there is a Write-Read dependency from ti to t, written (ti, t) ∈ WRK (k);

2. there is a Write-Write dependency from ti to tj, written (ti, tj) ∈ WWK (k); and

3. if t6=tj, then there is a Read-Write anti-dependency from t to tj, written (t, tj)∈
RWK (k).

Item 1 intuitively means that ti commits before t starts, as depicted in fig. 3.4a;
Item 2 intuitively means that ti commits before tj commits, as depicted in fig. 3.4a;
and item 3 intuitively means that t starts before tj commits, as depicted in fig. 3.4a.

21

Chapter 4

Identifying the Gaps

We identify areas to optimise in the semantics and suggest improvements and mod-
ifications to allow for a smarter and more efficient implementation.

In section 4.1 we suggest a deterministic alternative to the NextTxID function for
selecting the next transaction identifier for a client. We explain the ‘backwardness’
of the vShift predicate in section 4.2, and update our implementation of a trans-
actional update to address this backwardness in section 4.3. We use our new defi-
nitions to reformulate the CATOMICTRANS rule in section section 5.1, and prove its
equivalence to the original rule.

4.1 NextTxID

We notice that the definition of NextTxID allows for a non-deterministic choice of a
new transaction identifier as any n greater than the existing transaction identifiers of
the client can be selected. As we aim to advance towards a more implementable se-
mantics we would like to, as much as possible, take a ‘forward’ approach to reasoning
about executions. Therefore, we choose to define instead a function FreshTxid (cl,K)
to return a fresh transaction identifier, rather than a set, for client cl. We intend to
use this new definition to make the implementation of selecting a new transaction
identifier deterministic.

Definition 4.1 (Fresh transaction identifier). Given a kv-store K ∈ KVS and a client
identifier cl, the function FreshTxid (cl,K) returning the next available transaction
identifier for client cl is defined by:

FreshTxid (cl,K)
def
=

{
t0cl, if ∀n. tncl /∈ K
tn+1
cl , if tncl∈K ∧ ∀m. tmcl ∈ K ⇒ m ≤ n

22

Chapter 4. Identifying the Gaps 4.2. vShift

The first case deals with the first transaction committed by client cl, where no pre-
vious transactions are in K. The second case handles any following transaction by
incrementing the largest (latest) transaction executed by cl by one.

By selecting the next consecutive identifier for a new client transaction we eliminte
the non-determinism and simplify our reasoning, for example when looking at clo-
sure properties as knowing the maximum transaction for a client is enough to infer
all of its previous transaction.

We show that our new definition is allowed in the original rule by demonstrating
that the transaction identifier returned by FreshTxid (cl,K) is a member of the set
NextTxID (cl,K). In particular, using FreshTxid (cl,K) is equivalent to selecting the
minimum transaction identifier in the original NextTxID (cl,K) definition.

Proposition 4.2 (FreshTxid is in NextTxID). Given a client identifier cl and a kv-
store K, the transaction identifier returned by FreshTxid (cl,K) is a member of the set
NextTxID (cl,K), FreshTxid (cl,K) ∈ NextTxID (cl,K).

Proof. We have two cases to consider:

Case ∀n. tncl /∈ K. The antecedent in definition 3.11 is false in this case, making
the set returned by NextTxID equal to S = {tncl | n ∈ N}. FreshTxid returns t0cl, the
minimum transaction identifier in S.

Case ∃n. tncl ∈ K. Let tmcl be the latest transaction executed by client cl on K. The
set returned by NextTxID contains all transaction identifiers tncl with n ≥ m + 1 by
definition. FreshTxid returns tm+1

cl , the minimum transaction identifier in NextTxID.

We have shown that

FreshTxid (cl,K) = min
<

(NextTxID (cl,K))

where min<(NextTxID (cl,K)) is the minimum element in NextTxID (cl,K) w.r.t. the
natural order < over N.

4.2 vShift

Observe that the vShift check does not define how to obtain a new view that sat-
isfies the view-shift conditions (section 3.2). This means that to find such a view,
we would need to generate candidate views and eliminate those for which the con-
ditions do not hold. Moreover, since the check is parametric in the execution test
ET, the conditions differ between different consistency models. However, Xiong et
al. [10] define vShift for CC, CP, PSI and SI as the conjunction of the MR and RYW

session guarantees (fig. 3.2).

23

4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT Chapter 4. Identifying the Gaps

Using the current definition of vShiftRYW we can only talk about RYW properties with
respect to an update of a single transaction. However, we would like to be able to
determine whether RYW session guarantees are satisfied given any client cl with view
u over a kv-store K.

We define a new predicate RYW(cl,K, u) to check whether RYW session guarantees are
met given a client cl with view u over kv-store K.

Definition 4.3 (Client Read Your Writes). Given a client identifier cl, a kv-store K,
and a view over the store u ∈ VIEWS (K), the client view is valid under RYW if it satisfies

RYW(cl,K, u)
def
= ∀n ∈ N. ∀tncl ∈ TXID0.

(
∀k, i.w(K (k, i)) = tncl ⇒ i∈u (k)

)
.

Intuitively, given a kv-store K and a view u for client cl, all versions written by client
cl’s transactions are observable in its view.

Since clients can advance their view at the beginning of a new transaction it is
enough to shift the view of a client after a transactional update to the minimal view
that satisfies the vShift check as we show in section 5.1 (definition 5.1).

4.3 Transactional Update and View Shift

The CATOMICTRANS in fig. 3.1 uses the vShift predicate to define what view-shifts
are allowed under an execution test ET. Currently, finding a view that satisfies the
vShift predicate requires generating some view u′ and computing whether the shift
from the initial view to u′ satisfies the view-shift conditions. In our implementation
we prefer to avoid backward computations and instead aim to take advantage of the
operational semantics properties to calculate ahead.

The vShift conditions for CC, CP, PSI and SI are all defined by vShiftMR∩RYW, the
conjunction of the vShiftMR and vShiftRYW conditions. We suggest a new implemen-
tation of UpdateKV incorporating the vShiftMR∩RYW (K, u,K′, u′) immediately (defini-
tion 4.4). Using our new definition, we redefine the CATOMICTRANS rule (fig. 5.1)
and prove its equivalence to the original rule for these consistency models.

Definition 4.4 (New transactional update). Given a kv-store K ∈ KVS, views ur, uw ∈
VIEWS (K), a fingerprint F , and a transaction identifier t ∈ TXID0, the transactional
update function NewUpdateKV (K, ur, uw,F , t) is defined by:

NewUpdateKV (K, ur, uw, ∅, t)
def
= (K, uw)

NewUpdateKV (K, ur, uw, {(R, k, v)}] F , t) def
=

24

Chapter 4. Identifying the Gaps 4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT

k 7→ 0
t0

{t′}
1
t′

∅
k 7→ 0

t0

{t′, t}
1
t′

∅
(a) An example of NewUpdateKV (K, ur, uw, {(R, k, 0)}] F , t)

k 7→ 0
t0

{t′}
1
t′

∅
k 7→ 0

t0

{t′, t}
1
t′

∅
2
t

∅
(b) An example of NewUpdateKV (K, ur, uw, {(W, k, 2)}] F , t)

Figure 4.1: An example of NewUpdateKV (ur in gray, uw in green)

let i = max <(ur (k)) and (v, t′, T) = K (k, i) in

NewUpdateKV (K [k 7→ K (k) [i 7→ (v, t′, T] {t})]] , ur, uw,F , t)

NewUpdateKV (K, ur, uw, {(W, k, v)}] F , t) def
=

let K′ = K [k 7→ K (k) :: (v, t, ∅)] and u′w = uw [k 7→ uw (k)] {|K (k)|}] in

NewUpdateKV (K′, ur, u′w,F , t)

where, given a list of versions V = ν0 :: · · · :: νn and an index i : 0 ≤ i ≤ n, then
V [i 7→ ν]

def
= ν0 :: · · · :: νi−1 :: ν :: νi+1 :: · · · :: νn.

Now, instead of updating the kv-store using UpdateKV and then checking for the
view shift with vShift as before, we update both the kv-store and the client view at
the same time: 1. for each read (R, k, v) ∈ F , it adds t to the reader set of the last
version of k in ur (ur remains unchanged throughout execution); and 2. for each
write (W, k, v), it appends a new version (v, t, ∅) to K (k) as well as add the position
of the new version |K (k)| to the new view u′w.

We show the the effect of applying a read operation (R, k, v) and a write operation
(W, k, v) in figs. 4.1a and 4.1b respectively. Notice the difference of the final view in
fig. 4.1b (highlighted in green) compared to the view in UpdateKV in fig. 3.3b.

The function NewUpdateKV is well-defined in that for any K, ur, uw,F , t, cl such that
K and F are well-formed, ur, uw ∈ VIEWS (K) and t = FreshTxid (K, cl), the resulting
kv-store and the resulting view NewUpdateKV (K, ur, uw,F , t) are a well-formed kv-
store and a well-formed view, and are uniquely defined.

We give a reduction semantics of NewUpdateKV and prove the well-formedness of
the resulting kv-store-view pair by induction on the length of the evaluation path.
We prove the uniqueness of the kv-store and view using a confluence argument.

Definition 4.5 (NewUpdateKV semantics). The small-step semantics for NewUpdateKV
has a judgment of the form

ur, t ` (K, uw,F) −→n (K′, u′w, ∅) for |F| = n

25

4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT Chapter 4. Identifying the Gaps

and is defined inductively by

ur, t ` (K, uw, ∅) −→0 (K, uw, ∅)
ur, t ` (K, uw,F) −→n+1 (K′, u′w, ∅) if ∃o ∈ F ,K′′, u′′w. such that

ur, t ` (K, uw,F) −→ (K′′, u′′w,F \ {o}) and
ur, t ` (K′′, u′′w,F \ {o}) −→n (K′, u′w, ∅)

where the relation −→ is defined by

ur, t ` (K, uw, {(R, k, v)}] F) −→ (K′, uw,F) where i = max <(ur (k)), (v, t′, T) = K (k, i) and
K′ = K [k 7→ K (k) [i 7→ (v, t′, T] {t})]]

ur, t ` (K, uw, {(W, k, v)}] F) −→ (K′, u′w,F) where u′w = uw [k 7→ uw (k)] {|K (k)|}] and
K′ = K [k 7→ K (k) :: (v, t, ∅)]

We write NewUpdateKV (K, ur, uw,F , t) = (K′, u′w)⇔ ur, t ` (K, uw,F) −→|F| (K′, u′w, ∅).

Proposition 4.6 (Well-formed NewUpdateKV result). Given a well-formed kv-store
K ∈ KVS, views on the kv-store ur, uw ∈ VIEWS (K), a well-formed fingerprint F ∈
FP, and a fresh transaction identifier t = FreshTxid(K, cl) for a client cl, let ur, t `
(K, uw,F) −→n (K′, u′w, ∅) for |F| = n, then the updated kv-store K′ is well-formed,
and the updated view u′w is well-formed with respect to K′.

Proof sketch. Intuitively, the fingerprint F contains at most one read and one write
per key, so the resulting kv-store must be uniquely defined. The fresh transaction
identifier t is strictly greater than any existing identifiers in K for the same client cl,
and the view ur is a well-formed view on the kv-store K, so the resulting kv-store
must be well-formed. Similarly, since each write operation in F adds the new version
to the write-view, and the original write-view uw is well-formed, then the resulting
view must be well-formed.

Proof. We prove proposition 4.6 by showing the following result

WfKvs (K) ∧ ur ∈ VIEWS (K) ∧ uw ∈ VIEWS (K)∧
∀t′ ∈ K. (t, t′) /∈ SO ∧ ∀k ∈ KEY. ∀v ∈ VALUE. ∀cl ∈ CLIENTID.(

(R, k, v) ∈ F ⇒ ∀i′. t /∈ rs(K (k, i′))
)

∧
(
(W, k, v) ∈ F ⇒ ∀i′. t 6= w(K (k, i′))

)
∧ ∀i ∈ u (k) . t 6= w(K (k, i))

⇒ WfKvs (K′) ∧ ur ∈ VIEWS (K′) ∧ u′w ∈ VIEWS (K′) (4.1)

26

Chapter 4. Identifying the Gaps 4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT

We prove eq. (4.1) by induction on n.

1. Base Case n = 0. By definition 4.5 uw = u′w andK = K′. Therefore WfKvs (K′)∧
ur ∈ VIEWS (K′) ∧ u′w ∈ VIEWS (K′) as required.

2. Inductive Case n = k + 1. Now ur, t ` (K, uw,F) −→k+1 (K′, u′w, ∅).
By definition 4.5 there exist o ∈ F ,K′′, u′′w such that ur, t ` (K, uw,F) −→
(K′′, u′′w,F \ {o}) and ur, t ` (K′′, u′′w,F \ {o}) −→k (K′, u′w, ∅). Let F ′ = F \ {o}.
The operation o can be either a read or a write.

(a) Case o = (R, k, v). The write-view uw is unchanged u′′w = uw. Let index
i = Max< (ur (k)), old version (v, t′, T) = K (k, i), and new version list
V = K (k) [i 7→ (v, t′, T] {t})]. The intermediate kv-store K′′ is defined by
K′′ = K [k 7→ V].
Since the original kv-store K satisfies eq. (4.1), the fingerprint has at most
one read per key, the fresh transaction identifier t 6∈ rs(K (k, i′)) for all i′

such that 0 ≤ i′ < |K (k)|, and therefore K′′ satisfies the well-formed
condition eq. (3.2) in definition 3.4.
Because (t, t′) 6∈ SO for any t′ ∈ K, and t 6= w(K (k′′, i′′)) for k′′, i′′ such
that i′′ ∈ ur (k′′), it cannot be that (t′, t) ∈ SO for some t′ = w(K (k, i′))
where i′ ∈ ur (k). Therefore K′′ satisfies eq. (3.3).
eqs. (3.1) and (3.4) are trivially true for K′′. We have shown that the
intermediate kv-store K′′ is well-formed, WfKvs (K′′).
It is easy to see that both eqs. (3.5) and (3.6) hold for the read- and
write-view with respect to K′′ giving ur ∈ VIEWS (K′′) ∧ u′′w ∈ VIEWS (K′′).
Since F is well-formed, it follows that (R, k, v′) 6∈ F ′, which means that
ur, t,K′′, u′′w,F ′ satisfy the invariant eq. (4.1).
By the inductive hypothesis the final kv-store K′ is well-formed, and the
updated view u′w is well-formed with respect to K′.

(b) Case o = (W, k, v). Let new version list V = K (k) :: [(v, t, ∅)]. The interme-
diate kv-store K′′ is defined by K′′ = K [k 7→ V].
Since the original kv-store K satisfies eq. (4.1), the fingerprint has at most
one write per key, the fresh identifier t 6= w(K (k, i′)) for all i′ such that
0 ≤ i′ < |K (k)|, and therefore K′′ satisfies eq. (3.2).
Because (t, t′) 6∈ SO for any t′ ∈ K, and t wrote the last version for k in K′′,
it cannot be that (t′, t) ∈ SO for some t′ in K (k). Therefore K′′ satisfies
eq. (3.4).
eqs. (3.1) and (3.3) are trivially true for K′′. We have shown that the
intermediate kv-store is well-formed, WfKvs (K′′).
The intermediate write-view is defined by u′′w = uw [k 7→ uw (k)] {|K (k)|}].
Since |K′′| = |K| + 1, eq. (3.5) holds for u′′w on K′′. Since |K| is added to
u′′w(k) for every write operation in F , eq. (3.6) also holds for u′′w on K′′
giving u′′w ∈ VIEWS (K′′). It is clear that ur ∈ VIEWS (K′′).

27

4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT Chapter 4. Identifying the Gaps

o1

o2

o1

o2

Figure 4.2: Single step confluence (lemma 4.7)

As F is well-formed, it follows that (W, k, v′) 6∈ F ′, which means that
ur, t,K′′, u′′w,F ′ satisfy the invariant eq. (4.1).
By the inductive hypothesis the final kv-store K′ is well-formed, and the
updated view u′w is well-formed with respect to K′.

We prove the uniqueness of the resulting kv-store-view pair using a confluence ar-
gument.

Lemma 4.7 (Single step confluence). Let ur, t ` (K, uw,F] {o1, o2}) −→ (K′, u′w,F]
{o2}) and ur, t ` (K, uw,F] {o1, o2}) −→ (K′′, u′′w,F] {o1}) then ∃Ko, uow. such that
ur, t ` (K′, u′w,F] {o2}) −→ (Ko, uow,F) and ur, t ` (K′′, u′′w,F] {o1}) −→ (Ko, uow,F).

Proof sketch. We have four cases to conside: read-read, write-write, read-write, and
write-read. Since the fingerprint F contains at most one read and one write per
key, the order of application of the read-read and write-write cases does not matter
and we get the same kv-store and view. For the other two cases the keys might be
the same. Since reads are done from the read-view ur that remains unchanged, the
index of the version to which we add t as a reader is the same regardless of the order
of application, and satisfies the last-write-wins condition. Only the write operation
modifies the write-view, hence the resulting view is the same. The write-read case is
similar to the read-write case.

Proof. Let fingerprint F ′ = F] {o1, o2}. There are four cases to consider:

1. Case o1 = (R, k, v) and o2 = (R, k′, v′) . By definition 3.8, F ′ contains at
most one read per key so the keys must be different k 6= k′. Let indices
i = Max< (ur (k)) and i′ = Max< (ur (k′)), versions (v, t′, T) = K (k, i) and
(v′, t′′, T ′) = K (k′, i′). Let the new version lists V = K (k) [i 7→ (v, t′, T ∪ {t})]
and V ′ = K (k′) [i 7→ (v′, t′′, T ′ ∪ {t})]. Neither operation affects uw.

We have

ur, t ` (K, uw,F] {o1, o2}) −→ (K [k 7→ V] , uw,F] {o2})

and
ur, t ` (K, uw,F] {o1, o2}) −→ (K [k′ 7→ V ′] , uw,F] {o1}).

28

Chapter 4. Identifying the Gaps 4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT

We get
ur, t ` (K [k 7→ V] , uw,F] {o2}) −→

(K [k 7→ V] [k′ 7→ V ′] , uw,F)

and
ur, t ` (K [k′ 7→ V ′] , uw,F] {o1}) −→

(K [k′ 7→ V ′] [k 7→ V] , uw,F).

Since k 6= k′, it is easy to see that K [k 7→ V] [k′ 7→ V ′] = K [k′ 7→ V ′] [k 7→ V].
These imply lemma 4.7.

2. Case o1 = (W, k, v) and o2 = (W, k′, v′) . By definition 3.8, F ′ contains at most
one write per key so the keys must be different k 6= k′. Let version lists V =
K (k) :: (v, t, ∅) and V ′ = K (k′) :: (v′, t, ∅). Let sets Sk = uw (k)] {|K (k)|} and
Sk′ = uw (k′)] {|K (k′)|}.
We have

ur, t ` (K, uw,F] {o1, o2}) −→
(K [k 7→ V] , uw [k 7→ Sk] ,F] {o2})

and
ur, t ` (K, uw,F] {o1, o2}) −→

(K [k′ 7→ V ′] , uw [k′ 7→ Sk′] ,F] {o1}).

We get
ur, t ` (K [k 7→ V] , uw [k 7→ Sk] ,F] {o2}) −→

(K [k 7→ V] [k′ 7→ V ′] , uw [k 7→ Sk] [k′ 7→ Sk′] ,F)

and
ur, t ` (K [k′ 7→ V ′] , uw [k′ 7→ Sk′] ,F] {o1}) −→

(K [k′ 7→ V ′] [k 7→ V] , uw [k′ 7→ Sk′] [k 7→ Sk] ,F).

Since k 6= k′, it is clear that

K [k 7→ V] [k′ 7→ V ′] =

K [k′ 7→ V ′] [k 7→ V] .

It is also the case that
uw [k 7→ Sk] [k′ 7→ Sk′] =

uw [k′ 7→ Sk′] [k 7→ Sk] .

These imply lemma 4.7.

3. Case o1 = (R, k, v) and o2 = (W, k′, v′) . In this case k and k′ may be the same
key.

(a) Case k 6= k′. Let index i = Max< (ur (k)) and version (v, t′, T) = K (k, i).
Let the new version list V = K (k) [i 7→ (v, t′, T ∪ {t})]. Because k 6= k′,

K [k 7→ V] [k′ 7→ K (k′) :: (v′, t, ∅)] = K [k′ 7→ K (k′) :: (v′, t, ∅)] [k 7→ V] .

For the views, only the write operation updates uw,

(uw) [k′ 7→ uw (k′)] {|K (k′)|}] = (uw [k′ 7→ uw (k′)] {|K (k′)|}]).

29

4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT Chapter 4. Identifying the Gaps

o1 o2 oi = o oi+1 on+1

o1 o2 oi+1 on+1

o o o o

Figure 4.3: One side confluence (lemma 4.8)

(b) Case k = k′. Let index i = Max< (ur (k)), version list V = K (k) and
version (v, t′, T) = V(i). Since ur ∈ VIEWS (K) and remains unchanged,
the index i must be in bound, that is, 0 ≤ i < |K (k)|, therefore(
V [i 7→ (v, t′, T ∪ {t})]

)
:: (v′, t, ∅) =

(
V :: (v′, t, ∅)

)
[i 7→ (v, t′, T ∪ {t})] .

The argument for views is the same as when the keys are different.

Both cases imply lemma 4.7.

4. Case o = (W, k, v) and o′ = (R, k′, v′) . This case is the same as item 3.

Lemma 4.8 (One side confluence). Let ur, t ` (K, uw,F) −→n+1 (K′, u′w, ∅) for |F| =
n + 1 and let ur, t ` (K, uw,F) −→ (K′′, u′′w,F \ {o}) then ur, t ` (K′′, u′′w,F \ {o}) −→n

(K′, u′w, ∅).

Proof. We prove lemma 4.8 by induction on n.

1. Base Case n = 0. The fingerprint size |F| = 1 so it must be that F = {o}.
We have ur, t ` (K, uw,F) −→1 (K′, u′w, ∅). By definition 4.5 there exist o′ ∈
F ,Ko, uow such that ur, t ` (K, uw,F) −→ (Ko, uow,F\{o′}) and ur, t ` (Ko, uow,F\
{o′}) −→0 (K′, u′w, ∅). But o = o′ and we have that ur, t ` (K, uw,F) −→
(K′′, u′′w,F \ {o}) so K′′ = Ko and u′′w = uow. Substituting in we get ur, t `
(K′′, u′′w,F \ {o}) −→0 (K′, u′w, ∅) as required.

2. Inductive Case n = k + 1. We have that ur, t ` (K, uw,F) −→(k+1)+1 (K′, u′w, ∅)
and ur, t ` (K, uw,F) −→ (K′′, u′′w,F \ {o}).
By definition 4.5 there exists o1 ∈ F ,K1, u1w such that ur, t ` (K, uw,F) −→
(K1, u1w,F \ {o1}) and ur, t ` (K1, u1w,F \ {o1}) −→k+1 (K′, u′w, ∅).
By lemma 4.7 there existsKo, uow such that ur, t ` (K1, u1w,F\{o1}) −→ (Ko, uow,F\
{o1, o}) and ur, t ` (K′′, u′′w,F \ {o}) −→ (Ko, uow,F \ {o1, o}).
From this and the inductive hypothesis we get ur, t ` (K′′, u′′w,F \ {o}) −→k+1

(K′, u′w, ∅) as required.

Lemma 4.9 (Confluence). Let ur, t ` (K, uw,F) −→n (K′, u′w, ∅) and ur, t ` (K, uw,F) −→n

(K′′, u′′w, ∅) then K′ = K′′ and u′w = u′′w.

30

Chapter 4. Identifying the Gaps 4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT

Proof. We prove lemma 4.9 by induction on n.

1. Base Case n = 0. We have ur, t ` (K, uw,F) −→0 (K′, u′w, ∅) and ur, t `
(K, uw,F) −→0 (K′′, u′′w, ∅). By definition 4.5 K = K′, K = K′′ and uw = u′w,
uw = u′′w. We get K′ = K′′ and u′w = u′′w as required.

2. Inductive Case n = k + 1. We have ur, t ` (K, uw,F) −→k+1 (K′, u′w, ∅).
By definition 4.5 there exists o ∈ F ,Ko, uow such that ur, t ` (K, uw,F) −→
(Ko, uow,F \ {o}) and ur, t ` (Ko, uow,F \ {o}) −→k (K′, u′w, ∅).
We also have ur, t ` (K, uw,F) −→k+1 (K′′, u′′w, ∅). By lemma 4.8 ur, t ` (Ko, uow,F\
{o}) −→k (K′′, u′′w, ∅). K′ = K′′ and u′w = u′′w by the inductive hypothesis as re-
quired.

Theorem 4.10 (Well-defined NewUpdateKV). Given a well-formed kv-store K ∈ KVS,
views on the kv-store ur, uw ∈ VIEWS (K), a well-formed fingerprint F ∈ FP and a fresh
transaction identifier t = FreshTxid (K, cl) for a client cl,

let (K′, u′w) = NewUpdateKV (K, ur, uw,F , t), then the pair (K′, u′w) is uniquely defined,
where K′ is a well-formed kv-store, and u′w is a well-formed view with respect to K′.

Theorem 4.10 is the result of putting together our well-formdness result of the func-
tion NewUpdateKV (proposition 4.6) and the uniqueness result that follows from the
confluence property shown in lemma 4.9.

We prove that the resulting kv-store from our definition of NewUpdateKV is equal to
that returned from the original transactional update function UpdateKV. Similarly
to definition 4.5, we give a reduction semantics for UpdateKV.

Definition 4.11 (UpdateKV semantics). The small-step semantics for UpdateKV has a
judgment of the form

u, t ` (K,F) −→n (K′, ∅) for |F| = n

and is defined inductively by

u, t ` (K, ∅) −→0 (K, ∅)
u, t ` (K,F) −→n+1 (K′, ∅) if ∃o ∈ F ,K′′. such that

u, t ` (K,F) −→ (K′′,F \ {o}) and
u, t ` (K′′,F \ {o}) −→n (K′, ∅)

where the relation −→ is defined by

u, t ` (K, {(R, k, v)}] F) −→ (K′,F) where i = max <(u (k)), (v, t′, T) = K (k, i) and
K′ = K [k 7→ K (k) [i 7→ (v, t′, T] {t})]]

31

4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT Chapter 4. Identifying the Gaps

u, t ` (K, {(W, k, v)}] F) −→ (K′,F) where K′ = K [k 7→ K (k) :: (v, t, ∅)]

We write UpdateKV (K, u,F , t) = K′ ⇔ u, t ` (K,F) −→|F| (K′, ∅).
Theorem 4.12 (Well-defined UpdateKV). Given a well-formed kv-store K ∈ KVS, a
view on the kv-store u ∈ VIEWS (K), a well-formed fingerprint F ∈ FP and a fresh trans-
action identifier t ∈ NextTxID (K, cl) for a client cl, the new kv-storeK′ = UpdateKV (K, u,F , t)
is a uniquely defined and well-formed kv-store.

Proof of theorem 4.12 is given in [1].

The lemmas analogous to lemma 4.7, lemma 4.8, and lemma 4.9 hold for UpdateKV.

Proposition 4.13 (NewUpdateKV kv-store equals UpdateKV). Given a kv-store K ∈
KVS, views ur, uw ∈ VIEWS (K), a fingerprint F ∈ FP, and a transaction identifier
t ∈ TXID0,

Let ur, t ` (K, uw,F) −→n (K′, u′w, ∅) and ur, t ` (K,F) −→n (K′′, ∅) then K′ = K′′.

Proof sketch. Intuitively, since all read operations are done using ur, which remains
unchanged throughout execution, the effect of reads is the same. Since uw is never
read, the addition of new versions written by t to the write-view in NewUpdateKV
does not affect the kv-store. Since there is at most one write per key in F , the effect
of write operations on the kv-store under both functions is the same. Therefore, the
resulting kv-stores are equal.

Proof. We prove proposition 4.13 by induction on n.

1. Base Case n = 0. By definition 4.5 K′ = K. By definition 4.11 K′′ = K. We get
K′ = K′′ as required.

2. Inductive Case n = k + 1. By definition 4.5 there exist o ∈ F ,Ko, uow such that
ur, t ` (K, uw,F) −→ (Ko, uow,F\{o}) and ur, t ` (Ko, uow,F\{o}) −→k (K′, u′w, ∅).
By definition 4.11 there exist o′ ∈ F ,Ko′ such that ur, t ` (K,F) −→ (Ko′ ,F \
{o′}) and ur, t ` (Ko′,F \ {o′}) −→k (K′′, ∅).
We have shown that for NewUpdateKV operations can be applied in any order.
A similar result for UpdateKV is shown in [1]. Therefore, it is enough to show
that applying the operations in the same order results in equal kv-stores o = o′.
The next operation o can be either a read or a write operation.

(a) Case o = (R, k, v). Since no step modifies ur in either function, the index
i = Max< (ur (k)) is the same for both functions. Let version (v, t′, T) =
K (k, i) and new version list V = K (k) [i 7→ (v, t′, T] {t})]. It is easy to see
that the intermediate kv-stores are both defined by Ko = K [k 7→ V] = Ko′

as required.

32

Chapter 4. Identifying the Gaps 4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT

k 7→ v0
t0

∅
(a) Initial kv-store and view

k 7→ v0
t0

{t}
(b) Kv-store and view, read
first

k 7→ v0
t0

{t}
v1

t

∅
(c) Kv-store and view, read
followed by write

k 7→ v0
t0

∅
(d) Initial kv-store and view

k 7→ v0
t0

∅
v1

t

∅
(e) Kv-store and view, write
first

k 7→ v0
t0

∅
v1

t

{t}
(f) Kv-store and view, write
followed by read

Figure 4.4: Wrong update: the effect of updating a single view on a kv-store in transac-
tional updates

(b) Case o = (W, k, v). Since the write-view uw is never read, modifications
to it do not affect the resulting kv-store. Let new version list V = K (k) ::
(v, t, ∅). The intermediate kv-stores are both defined by Ko = K [k 7→ V] =
Ko′ as required.

The reason for having two views, a read-view ur and a write-view uw, is to allow
operations from the fingerprint to be chosen in any order in a way similar to the
original UpdateKV definition described in section 3.2. We demonstrate the need for
two views with an example.

Example 4.14. Consider the following incorrect definition using a single view:

WrongUpdateKV (K, u, ∅, t) def
= (K, u)

WrongUpdateKV (K, u, {(R, k, v)}] F , t) def
=

let i = max <(u (k)) and (v, t′, T) = K (k, i) in

WrongUpdateKV (K [k 7→ K (k) [i 7→ (v, t′, T] {t})]] , u,F , t)

WrongUpdateKV (K, u, {(W, k, v)}] F , t) def
= let K′ = K [k 7→ K (k) :: (v, t, ∅)]

and u′ = u [k 7→ u (k)] {|K (k)|}] in

WrongUpdateKV (K′, u′,F , t)

Now consider the kv-store presented in fig. 4.4 and a client cl with the initial view
u0. Client cl is executing transaction t with fingerprint F = {(R, k, v0), (W, k, v1)}. We
provide a step-by-step breakdown of the call to WrongUpdateKV, choosing the read
operation first followed by the write operation and the other way around. Grey versions
are in the view of client cl. As seen in fig. 4.4a and fig. 4.4d, the initial view and kv-store

33

4.3. TRANSACTIONAL UPDATE AND VIEW SHIFT Chapter 4. Identifying the Gaps

are identical. Applying the read first (fig. 4.4b), we add t to the reader set of the latest
version in the view - ν0 with value v0. Next, we apply the write operation, appending
version ν1 with value v1 to K (k) and updating our view (fig. 4.4c). fig. 4.4e shows the
updated kv-store and view when applying the write first. Since we update the view as
we go to satisfy RYW, version ν1 with value v1 written by t is included in cl’s view. There
are two possible cases to consider.

1. Case v0 = v1.

Applying the read operation results in the kv-store and view as shown in fig. 4.4f.
We have transaction t in the reader set of a version written by t itself, which is not
allowed by the semantics as it violates the well-formedness conditions of a kv-store
(eq. (3.3)).

2. Case v0 6= v1.

The update fails in this case. When applying the read operation, i = max <(u (k))
sets i = 1 and (v, t′, T) = K (k, i) breaks as the values are not equal.

Another possible solution would be to define the function in a way that applies read
operations first. Although this would result in the same kv-store-view pair, it would
mean that we lose the ability to choose and apply any operation from the fingerprint
in any order. Since we would like to keep the implementation close to the original
definitions, with a fingerprint being a set of opertions, we choose to use the read-
view and write-view approach.

Proposition 4.15 (New update satisfies vShiftMR). Given a kv-store K ∈ KVS, a view
u ∈ VIEWS (K), a fingerprint F ∈ FP, and a transaction identifier t ∈ TXID0,

(K′, u′) = NewUpdateKV (K, u, u,F , t)⇒ vShiftMR (K, u,K′, u′) .

Proof. It is immediate from definition 4.4 that no step removes information from the
view. Therefore, the resulting view u′ satisfies u v u′ as required.

Proposition 4.16 (New update satisfies vShiftRYW). Given a kv-store K ∈ KVS, a view
u ∈ VIEWS (K), a fingerprint F ∈ FP, and a transaction identifier t ∈ TXID0,

(K′, u′) = NewUpdateKV (K, u, u,F , t)⇒ vShiftRYW (K, u,K′, u′) .

Proof. For each (W, k, v) ∈ F we add the length of K (k) to the write-view uw, where
K is the kv-store before writing the new version. Clearly, |K (k)| is the index of the
new version, so all versions written by t are in the resulting view u′ as required.

Theorem 4.17 (New update satisfies vShiftMR∩RYW). Given a kv-store K ∈ KVS, views
ur, uw ∈ VIEWS (K), a fingerprint F ∈ FP, and a transaction identifier t ∈ TXID0,

RYW(cl,K, uw)∧(K′, u′) = NewUpdateKV (K, ur, uw,F , t)⇒ vShiftMR∩RYW (K, uw,K′, u′) .

Proof. From propositions 4.15 and 4.16 we get RYW(cl,K′, u′) ∧ uw v u′ as required.

34

Chapter 5

Reformulating the Semantics

In this chapter we use our definitions from chapter 4 to update the semantics of an
atomic transaction, previously given in section 3.2. Section 5.1 present an updated
CATOMICTRANS rule, which we show to be equivalent to the original rule, and iden-
tifies the notion of minimal views with respect to an update. In section 5.2 we prove
that the RYW and MR properties hold throughout execution, so we can eliminate their
checks.

5.1 Redefining CATOMICTRANS

We have shown that using our new transactional update (definition 4.4) results in
the same kv-store as that returned by the original UpdateKV function. We have also
shown that the view returned by NewUpdateKV satisfies vShiftMR∩RYW. In fig. 5.1 we
redefine the CATOMICTRANS rule (fig. 3.1) using our new definitions.

In order to show that our new rule is equivalent to the original, we need first to
define what it means for the rules to be equivalent. With the end goal of using
our implementation of the semantics to find litmus tests (section 2.3), our main
focus is on the kv-store states obtainable by executing client programs. Therefore,
we define the rules as being equivalent if the set of kv-stores reachable by applying
transactions using either rule is the same. This is consistent with the definition of
consistency models for kv-stores (definition 3.14).

To prove that the rule in fig. 5.1 allows obtaining the same kv-stores, we show
that the set of views allowed by using UpdateKV and vShiftMR∩RYW is not restricted
when using NewUpdateKV. We do this by showing that the view shift done by
NewUpdateKV is minimal with respect to vShiftMR∩RYW.

Definition 5.1 (Minimal view-shift). Given kv-stores K, K′, and views over the stores
u ∈ VIEWS (K) and u′ ∈ VIEWS (K′), for a client cl, the minimal view shift with respect

35

5.2. PRESERVING MR AND RYW Chapter 5. Reformulating the Semantics

CATOMICTRANS
u v u′′ σ = snapshot (K, u′′) (s, σ, ∅), T ∗ (s′, ,F), skip canCommitET (K, u′′,F)

t = FreshTxid (cl,K) (K′, u′) = NewUpdateKV (K, u′′, u′′,F , t)

cl ` (K, u, s),
[
T
] (cl,u′′,F)−−−−−→ET (K′, u′, s′), skip

Figure 5.1: The updated semantics of an atomic transaction under execution test ET

to vShiftMR∩RYW, written vShiftMinMR∩RYW (K, u,K′, u′), is defined by

vShiftMinMR∩RYW (K, u,K′, u′) def
= vShiftMR∩RYW (K, u,K′, u′)
∧ ∀u′′. vShiftMR∩RYW (K, u,K′, u′′)⇒ u′ v u′′

Intuitively, all and only versions written by the committed transaction are added to
the new view to satisfy RYW(cl,K′, u′).

Proposition 5.2 (NewUpdateKV minimal view-shift). Given a kv-storeK ∈ KVS, views
ur, uw ∈ VIEWS (K), a fingerprint F ∈ FP, and a transaction identifier t, (K′, u′) =
NewUpdateKV (K, u, u,F , t)⇒ vShiftMinMR∩RYW (K, u,K′, u′)

Proof. It is easy to see that the view-shift applied by NewUpdateKV (definition 4.4)
is minimal.

We call the view of client cl immediately after t has been committed the minimal
view of t.

NewUpdateKV is more forward-looking than the old UpdateKV implementation in
that it incorporates the minimal view shift into the update. Instead of updating
the kv-store and then generating views and eliminating them if they do not satisfy
the vShiftMR∩RYW predicate, NewUpdateKV adds the versions written by the executing
client to its view during the update. Because the new view has to satisfy RYW, we
know that these versions must be in all views that satisfy vShiftMR∩RYW. By not taking
information away from the view, the new view is guaranteed to be ordered after the
initial view of the client before executing the update, u v u′. In this way we create
the minimal view shift required to satisfy the vShiftMR∩RYW predicate.

5.2 Preserving MR and RYW Properties

The vShift predicate of many consistency models is defined by vShiftMR∩RYW. We
have identified that by updating the client view during a transactional update we
can incorporate the minimal view-shift into the update function (NewUpdateKV) and
eliminate the vShift check, thus making it more forward.

36

Chapter 5. Reformulating the Semantics 5.2. PRESERVING MR AND RYW

If we can show that the RYW and MR properties are preserved throughout execution
we can safely eliminate the checks for these properties. Clearly, the initial view u0
on the initial kv-store K0 satisfies RYW guarantees for every client. There are three
points in execution that we need to consider:

1. After applying a transactional update.

2. When advancing the view at the beginning of a transaction while satisfying
canCommit to incorporate environment information (section 3.2).

3. Between transactions.

5.2.1 Monotonic Read (MR) Properties

We have shown that NewUpdateKV satisfies MR (proposition 4.15). Trivially, advanc-
ing the view satisfies MR. Since no information is taken away from the view between
transactions, MR is always satisfied.

5.2.2 Read Your Writes (RYW) Properties

Transactional Update

We show that given a view u that satisfies client read your writes (definition 4.3)
with respect to a kv-store K, the resulting view u′ from NewUpdateKV satisfies RYW

with respect to the updated kv-store K′.

Proposition 5.3 (New update preserves RYW). Given a kv-store K ∈ KVS, views
ur, uw ∈ VIEWS (K), a fingerprint F ∈ FP, and a transaction identifier t ∈ TXID0,

RYW(cl,K, uw) ∧ (K′, u′) = NewUpdateKV (K, ur, uw,F , t)⇒ RYW(cl,K′, u′)

where RYW(cl,K, uw) is defined in definition 4.3.

Proof sketch. Since the original view satisfies RYW(cl,K, uw), we know that all previ-
ous versions committed by cl are included in the view. Intuitively, for each (W, k, v) ∈
F we add the length of K (k) to the write-view uw, where K is the kv-store before
writing the new version. Clearly, |K (k)| is the index of the new version, so all ver-
sions written by t are in the resulting view u′. We get that all versions written by
transactions of client cl are in the view as required.

Proof. We prove proposition 5.3 by induction on the size of the fingerprint F :

37

5.2. PRESERVING MR AND RYW Chapter 5. Reformulating the Semantics

1. Base Case |F| = 0.

In this case we know that F = ∅. proposition 5.3 trivially holds as u′ = uw and
K′ = K by definition 4.4.

2. Inductive Case |F| > 0.

Now F = {o}] F ′ for some operation o ∈ OP and fingerprint F ′ ∈ FP where o
is either a read or a write.

(a) Case F = {(R, k, v)}] F ′. (read operation)
Let index i = Max< (ur (k)), old version (v, t′, T) = K (k, i), and new ver-
sion list V = K (k) [i 7→ (v, t′, T] {t})]. The intermediate kv-store K∗ is
defined by K∗ = K [k 7→ V]. Since the original kv-store and write-view
satisfy RYW(cl,K, uw), and because adding t to the reader set does not
influence the antecedent of the inner condition in definition 4.3, the in-
termediate kv-store and write-view satisfy RYW(cl,K∗, uw) as required.

(b) Case F = {(W, k, v)}] F ′. (write operation)
Let the new version list V = K (k) :: [(v, t, ∅)]. The intermediate kv-store
K∗ is defined by K∗ = K [k 7→ V]. Let the intermediate write-view u∗w =
uw [k 7→ uw (k)] {|K (k)|}]. Since RYW(cl,K, uw), we only need to consider
the difference between the original and intermediate kv-store and write-
view. The only difference is the |K (k)|th version of key k. Since it is added
to u∗w, the predicate RYW(cl,K∗, uw) holds as required.

Environment Information

We show that given a view u that satisfies RYW(cl,K, u) for a client cl and kv-store K,
if we advance the view to u v u′ then the new view u′ satisfies RYW(cl,K, u′).

Proposition 5.4 (Advancing view preserves RYW). Given a client identifier cl, a kv-
store K, and views over the kv-store u, u′ ∈ VIEWS (K), RYW(cl,K, u) ∧ u v u′ ⇒
RYW(cl,K, u′) holds.

Proof. By definition 3.5 we have that

u v u′
def⇔∀k ∈ dom(K). u (k) ⊆ u′(k)

⇔ ∀k ∈ dom(K).∀i. i ∈ u (k)⇒ i ∈ u′(k) (5.1)

By definition 4.3 of RYW(cl,K, u) we also have that

RYW(cl,K, u)
def
=

∀n ∈ N.∀tncl ∈ TXID0.
(
∀k, i.w(K (k, i)) = tncl ⇒ i∈u (k)

)
(5.2)

From (5.1) and (5.2) we get RYW(cl,K, u′) as required.

38

Chapter 5. Reformulating the Semantics 5.2. PRESERVING MR AND RYW

Between Transaction

Now, suppose that client cl has view u over kv-store K. It is possible that other
clients commit transactions to K between cl’s transactions. We define an ordering
between kv-stores and prove that updates to K by other clients do not break the RYW

conditions for client cl’s view.

Definition 5.5 (Later kv-store). Given two kv-stores K,K′ ∈ KVS, the order between
them is defined by:

K v K′def⇔ ∀k ∈ dom(K). ∀i ∈ [0, |K (k)|).w(K (k, i)) = w(K′(k, i))
∧ val(K (k, i)) = val(K′(k, i))
∧ rs(K (k, i)) ⊆ rs(K′(k, i))

Intuitively, all versions in K are also in K′ and potentially have additional readers.
Since kv-stores are total functions from keys to lists of versions definition 3.3, we do
not need to explicitly specify that the domains are equal, dom(K) = dom(K′). It also
follows from the definition that version lists in K′ may have subsequent versions for
a key ∀k ∈ dom(K). |K (k)| ≤ |K′(k)|.

Proposition 5.6 (Later kv-store preserves RYW). Given a client identifier cl, kv-stores
K, K′, and a view u ∈ VIEWS (K),

RYW(cl,K, u) ∧ K v K′ ∧ ∀n. tncl /∈ K′ \ K ⇒ RYW(cl,K′, u).

Proof. From u ∈ VIEWS (K) and K v K′ we know that u ∈ VIEWS (K′). From ∀n. tncl /∈
K′ \ K and definition 5.5 we get that ∀n. tncl ∈ K ⇔ tncl ∈ K′. Combining the above
we get RYW(cl,K′, u) as required.

39

Chapter 6

Consistency Models Using
NewUpdateKV

Our NewUpdateKV implementation incorporates vShiftMR∩RYW into a transactional up-
date, updating the client view during the update of the kv-store by adding the ver-
sions written by the executing client to its view, as a step towards a more forward-
looking model.

In section 6.1 we discuss the effect of using the new transactional update definition
on consistency models whose vShift predicate is defined by vShiftMR∩RYW (fig. 3.2)
such as Causal Consistency (CC), Snapshot Isolation (SI), and Parallel Snapshot Iso-
lation (PSI) . We give the example of the Update Atomic (UA) consistency model
as one with a different view-shift condition (fig. 3.2) and compare the outcomes of
using NewUpdateKV on such model in section 6.2.

6.1 Models with vShiftMR∪RYW

Apart from the improvement gained by not having to check the vShift condition
when using NewUpdateKV, models with the vShiftMR∩RYW view shift condition are
uninfluenced by our new definition.

As shown by proposition 4.13, the resulting kv-store from NewUpdateKV is the same
as that returned by UpdateKV. We have also shown that the view-shift applied
by (K′, u′) = NewUpdateKV (K, u, u,F , t) is minimal, vShiftMinMR∩RYW (K, u,K′, u′) in
proposition 5.2. This means that any view u′′ that satisfies vShiftMR∩RYW (K, u,K′, u′′)
must be more advanced u′ v u′′. Since a client’s view may be advanced at the be-
ginning of a new transaction before obtaining a snapshot, using NewUpdateKV to
apply transactional updates under consistency models with vShiftMR∩RYW saves us
the vShift check without changing the set of reachable kv-stores compared with the

40

Chapter 6. Consistency Models Using NewUpdateKV 6.2. OTHER MODELS

original transactional update definition.

6.2 Other Models

The view-shift condition for the Update Atomic (UA) consistency model is defined
by vShiftUA

def
= true. That is, a client may lose information about the kv-store after

committing a transaction. Since NewUpdateKV satisfies vShiftMR∩RYW, it is clear that
the views allowed, and therefore kv-stores reachable, are affected by NewUpdateKV.

The UA model is not considered a useful model. It was introduced for the purpose
of defining SI compositionally from UA and CP (consistent prefix). A variation of UA
using the vShiftMR∩RYW condition is suggested in [1], which can be improved by using
our new transactional update definition.

41

Chapter 7

Implementation

This project started as an implementation project, with the initial goal to implement
the semantics of Xiong et al. [10], and investigate ways to use that implementation
for automatic litmus test generation.

An implementation of the semantics involves simulating the execution of client pro-
grams on a kv-store and identifying candidate programs that capture differences in
behaviour under different consistency models. This might be done by examining
all final kv-store states obtained by executing a program under different consistency
models and spotting states that are only reachable under one of the models.

Throughout the development process, our most fundamental goal has been to create
an implementation that is not only computationally efficient, but also elegant in the
way it exploits properties of the semantics and specific consistency models.

In section 7.1 we give an overview of our original plan. Section 7.2 explains the first
steps we took towards implementing the CATOMICTRANS rule. We decided to focus
on the causal consistency CC model because a view that satisfies the CC closure prop-
erty remains in CC after a transactional update. We explain how our implementation
works under CC in section 7.3.

7.1 Overview

Our vision for the final product is a program that, given an input client program, gen-
erates all reachable kv-stores under two given consistency models, compares them
to find the execution paths that result in a state that is reachable under one model
but not the other, and returns that information. This information would be analysed
to construct a litmus test.

Because of similarities in structure, and familiarity of the research group, OCaml was

42

Chapter 7. Implementation 7.2. IMPLEMENTING CATOMICTRANS

the natural language choice for the group and the research community.

The first step is modelling components of the semantics using appropriate data struc-
tures. We explain our choices for the main components: kv-stores, fingerprints, and
views.

We choose to model a kv-store using a mutable hash table from keys (integers)
to lists of versions, where a list is stored in reverse order to allow fast access to
newer versions. Each version is represented by a record carrying a value, a transac-
tion (record), and a mutable and initially empty set of transactions representing the
reader set. This allows updates to a kv-store to be reflected globally.

A fingerprint is a set of tuples, each with three elements corresponding to (W, k, v):
the type of operation (W or R), the key, and the value.

Views are hash tables from keys to sets of integers representing indices of versions
in the kv-store.

7.2 Implementing CATOMICTRANS

Starting to implement the CATOMICTRANS rule, we decided to focus first on applying
a single transactional update given a kv-store K and a transaction t with fingerprint
F , skipping the first three premises.

We provide an implementation of the original UpdateKV function (definition 3.12),
as well as the NewUpdateKV function which updates the write-view (definition 4.4).
Both functions use a transaction identifier t obtained from our implementation of
the NextTxID function (definition 3.11) that returns the next available transaction
identifier for a client cl given a kv-store K.

As we developed our understanding of the semantics we adapted our implemen-
tation to support our ideas. This is demonstrated by our implementation of the
NewUpdateKV and NextTxID functions.

It became clear that while a kv-store will be shared between multiple clients, the
various possibilities for interleaving transactions and using different initial views for
the same transaction mean that multiple versions of the kv-store must be stored and
shared between clients.

To allow saving histories and using different views to obtain all possible kv-stores
reachable by executing a given program, we create a copy of the kv-store before
applying an update. Similarly, when NewUpdateKV is called we create a copy of the
client view to represent the write-view uw to which we add the new versions. This
is another instance where the implementation has been affected by our evolving
understanding.

43

7.3. CAUSAL CONSISTENCY (CC) Chapter 7. Implementation

7.3 Causal Consistency (CC)

Our implementation allows a full step by step run of a program under CC.

As explained in section 4.3, the implementation of NewUpdateKV incorporates the
minimal view shift that satisfies vShiftMR∪RYW. Since the CC closure relation is defined
by RCC

def
= SO ∪WRK, if we choose not to advance client views at the beginning of

a transaction (section 3.2) we would always read our writes, and the WRK relation
would be a subset of the SO relation.

Next we considered generating fingerprints from programs, and computing the clo-
sure of the canCommit predicate. We provide an implementation of the combination
operator (explained in section 3.2) to generate a well-formed fingerprint given op-
erations.

An interesting property of causal consistency is that its canCommit check does not
depend on the fingerprint of the executing transaction. This opens up possibilities
for advancing the client view when starting a transaction in a forward way that
reduces the computation of, and possibly eliminates, the canCommit check in a way
similar to our NewUpdateKV implementation eliminating the need for vShift.

Recognising that a naive implementation would be very cumbersome and computa-
tionally complex, we agreed that advancing the theory first by exploiting this prop-
erty, and other properties of the semantics and different consistency models, would
be better both from a research contribution perspective and for providing the foun-
dations for an efficient, and elegant, future implementation.

44

Chapter 8

Exploring Causal Consistency (CC)

We choose to focus on the causal consistency model. Causal consistency states that, if
a version written by transaction t is included in the view of a client before committing
a transaction, then all versions that t observes must also be in the client view [10].
This model is unique in that it captures only the dependencies associated with the
executing client, and does not depend on the specific transaction being executed.
This is reflected in the canCommitCC predicate (fig. 3.2), which does not depend on
the fingerprint F but only on the kv-store and the client’s view over the store. In
particular, given a client view in CC (that satisfies the CC execution test), then the
minimal view resulting from an update of a transaction is also in CC. Recall that the
closure relation for CC is RCC

def
= SO ∪WRK. We can therefore explore CC properties

and think about closed(K, uw, RCC) (definition 3.10) without associating it with a
particular transactional update.

Observe that, as with other properties (section 5.2), showing that a CC view remains
closed after a transactional update (section 8.1), between transactions (section 8.2),
and when advancing the view at the start of a transaction to incorporate environ-
ment steps not done by the client (section 8.3), would allow us to eliminate the need
for the canCommit check under causal consistency.

We identify that understanding how to incorporate environment information into
the client view when starting a transaction is key to developing an elegant imple-
mentation. Using our notion of minimal views (section 5.1), we devise a systematic
way of extending client views to incorporate information from the environment in
section 8.3. We extend our approach to snapshots and provide an algorithm for
obtaining all possible kv-stores using an altered definition of a snapshot.

45

8.1. TRANSACTIONAL UPDATE Chapter 8. Exploring Causal Consistency (CC)

8.1 Transactional Update and CC

We show that when applying a transactional update using NewUpdateKV on a view
that is closed with respect to a kv-store and RCC, the resulting view is closed with
respect to the updated kv-store and RCC.

Proposition 8.1 (NewUpdateKV preserves CC). Given a kv-store K ∈ KVS, views
ur, uw ∈ VIEWS (K), a fingerprint F ⊆ OP, and a transaction identifier t ∈ TXID0,

closed(K, uw, RCC) ∧ (K′, u′) = NewUpdateKV (K, ur, uw,F , t)⇒ closed(K′, u′, RCC)

where closed(K, u, R) is given in definition 3.10.

Proof sketch. Intuitively, the CC closure is about observations of the client session
order and its reads. Since the initial view is in CC, all previous transactions by cl
and their reads are in the view. If the executing transaction reads a version, that
version must have been in the initial view (snapshot property) and all transactions
R∗CC-before its writer are in the visibility set. Since we add our writes to the write
view, SO is also maintained.

Proof. We prove proposition 8.1 by induction on the size of the fingerprint F .

1. Base Case |F| = 0.

In this case F = ∅. proposition 8.1 trivially holds as u′ = uw and K′ = K by
definition 4.4.

2. Inductive Case |F| > 0.

Now F = {o}] F ′ for some operation o ∈ OP and fingerprint F ′ ∈ FP where o
is either a read or a write.

(a) Case F = {(R, k, v)}] F ′. (read operation)
Let index i = max<(ur (k)) and version (v, t′, T) = K (k, i). Let K′′ =
K [k 7→ K (k) [i 7→ (v, t′, T ∪ {t})]]. There is no change to visTx (K, uw) as
uw is unchanged, visTx (K, uw) = visTx (K′′, uw).
We have that (t′, t) ∈ WRK′′ (k). Since t′ is in visTx (K, uw), all transactions
that are R∗CC-before t and are not read-only are in visTx (K, uw).
We get that the closure

visTx (K, uw) =

visTx (K′′, uw) ={
t′
∣∣ t ∈ visTx (K′′, uw) ∧ t′ ∈ (R∗CC)

−1 (t)
}
\ {t | ∀k, i. t 6= w (K′′(k, i))}

as required.

46

Chapter 8. Exploring Causal Consistency (CC) 8.2. BETWEEN TRANSACTIONS

(b) Case F = {(W, k, v)}] F ′. (write operation)
Let K′′ = K [k 7→ K (k) :: (v, t, ∅)] and u′w = uw [k 7→ uw (k)] {|K (k)|}]. As
we are looking at the reflexive-transitive closure of RCC, it is clear to see
that new transactions do not affect previous closures. Therefore, we only
need to look at the new transaction. By adding the new version to u′w the
executing transaction t is included in visTx (K′′, u′w). The only transaction
added to the set of R∗CC-before t is t itself. We get that

visTx (K′′, u′w) ={
t′
∣∣ t ∈ visTx (K′′, u′w) ∧ t′ ∈ (R∗CC)

−1 (t)
}
\ {t | ∀k, i. t 6= w (K′′(k, i))}

as required.

8.2 Between Transactions

We show that updates to the kv-store by other clients do not affect the closure of a
view u of client cl.

Proposition 8.2 (Later kv-store and CC). Given kv-stores K,K′ ∈ KVS, and a view
u ∈ VIEWS (K) for a client cl,

closed(K, u, RCC) ∧ K v K′ ∧ ∀n. tncl /∈ K′ \ K ⇒ closed(K′, u, RCC).

Proof sketch. Intuitively, once a view u is closed with respect to a kv-store K and RCC

future transactions cannot affect the session order before visible transactions in u.
Similarly, once a transaction has been committed it cannot read new versions, so
future transactions do not affect the write-read dependencies of visible transactions
in u.

8.3 Environment Information and CC

We have proved that applying a transactional update using NewUpdateKV on a kv-
store K and view u in CC results in the updated kv-store K′ and view u′ satisfying
closed(K′, u′, RCC), where u′ is the minimal view after the transaction.

We have also shown that the view u over a kv-store K of client cl remains in CC when
other clients update the kv-store between cl’s transactions.

We show that our minimal views are sufficient to progress client views to reflect the
effect of the environment on the kv-store in a forward way. We consider multiple
ways for achieving this.

47

8.3. ENVIRONMENT INFORMATION Chapter 8. Exploring Causal Consistency (CC)

A naive way for extending the client view u at the start of a transaction would be to
generate all possible views u′′s that are u v u′′, and discarding views that are not in
CC by computing their closure. In the same way that we incorporated vShiftMR∩RYW
into our transactional update, we are interested in understanding what it means to
find such u′′s cleverly in a forward way.

We explore different ways to advance the view of a client. We look at the question
from two separate points of view: implementation and client.

• Implementation knowledge: it is reasonable to assume that the implementa-
tion has complete knowledge of the kv-store and all client views and their
histories. This means that from this point of view, we are able to determine the
views and snapshots of any transaction.

• Client knowledge: a client has knowledge of its current view on the kv-store
and access to the kv-store.

By looking at the question from these perspectives we aim to find a balance between
the amount of information needed to be stored and the complexity of computation.

We start by looking at combining views from different clients to advance a view.

Definition 8.3 (Union of views). Given two views u, u′ ∈ VIEWS (K), the union of the
views is defined by

(u t u′)(k) = u (k) ∪ u′(k)

for every k ∈ dom(K).

By taking the union of two views we are able to create a new view that is more
advanced than either view. We prove that the union of two CC views u, u′ ∈ VIEWS (K)
on a kv-store K is still in CC.

Proposition 8.4 (Union of CC views). Given a kv-store K and views u, u′ ∈ VIEWS (K),

closed(K, u, RCC) ∧ closed(K, u′, RCC)⇒ closed(K, u t u′, RCC).

Proof sketch. Intuitively, since both views are closed we need to show that relations
between transactions from visTx (K, u) and visTx (K, u′) do not expand the closure
(clearly, the union of the closures is⊆ the closure of the union). Take t ∈ visTx (K, u),
then all the transactions t′ that are R∗CC-before t, i.e. t′ ∈ (R∗)−1 (t), and are not
read-only transactions t′ /∈ {t′′ | ∀k, i. t′′ 6= w (K (k, i))}, are also visible in u, i.e. t′ ∈
visTx (K, u). Similarly for t ∈ visTx (K, u′).

Proof. We want to show

visTx (K, u t u′) =
(
(R∗CC)

−1 (visTx (K, u t u′))
)
\ {t | ∀k, i. t 6= w (K (k, i))}

48

Chapter 8. Exploring Causal Consistency (CC) 8.3. ENVIRONMENT INFORMATION

We have that

visTx (K, u) =
(
(R∗CC)

−1 (visTx (K, u))
)
\ {t | ∀k, i. t 6= w (K (k, i))} (8.1)

visTx (K, u′) =
(
(R∗CC)

−1 (visTx (K, u′))
)
\ {t | ∀k, i. t 6= w (K (k, i))} (8.2)

If we union eq. (8.1) and eq. (8.2) we get

visTx (K, u) ∪ visTx (K, u′) =((
(R∗CC)

−1 (visTx (K, u))
)
\ {t | ∀k, i. t 6= w (K (k, i))}

)
∪((

(R∗CC)
−1 (visTx (K, u′))

)
\ {t | ∀k, i. t 6= w (K (k, i))}

)
From definition (ref visTx def), it is clear to see that visTx (K, u t u′) = visTx (K, u)∪
visTx (K, u′). So we get

visTx (K, u t u′) =((
(R∗CC)

−1 (visTx (K, u))
)
∪
(
(R∗CC)

−1 (visTx (K, u′))
))
\ {t | ∀k, i. t 6= w (K (k, i))}

All that remains to be shown is(
(R∗CC)

−1 (visTx (K, u t u′))
)
\ {t | ∀k, i. t 6= w (K (k, i))} =((

(R∗CC)
−1 (visTx (K, u))

)
∪
(
(R∗CC)

−1 (visTx (K, u′))
))
\ {t | ∀k, i. t 6= w (K (k, i))}

Unfolding the definitions(
(R∗CC)

−1 (visTx (K, u t u′))
)
\ {t | ∀k, i. t 6= w (K (k, i))} ={

t′
∣∣ t ∈ visTx (K, u t u′) ∧ t′ ∈ (R∗CC)

−1 (t)
}
\ {t | ∀k, i. t 6= w (K (k, i))} ={

t′
∣∣ t ∈ (visTx (K, u) ∪ visTx (K, u′)) ∧ t′ ∈ (R∗CC)

−1 (t)
}
\ {t | ∀k, i. t 6= w (K (k, i))} ={

t′
∣∣ (t ∈ visTx (K, u) ∨ t ∈ visTx (K, u′)) ∧ t′ ∈ (R∗CC)

−1 (t)
}
\ {t | ∀k, i. t 6= w (K (k, i))} ={

t′
∣∣ (t ∈ visTx (K, u) ∧ t′ ∈ (R∗CC)

−1 (t)
)
∨
(
t ∈ visTx (K, u′) ∧ t′ ∈ (R∗CC)

−1 (t)
)}

\ {t | ∀k, i. t 6= w (K (k, i))} ={
t′
∣∣ t ∈ visTx (K, u) ∧ t′ ∈ (R∗CC)

−1 (t)
}
∪
{
t′
∣∣ t ∈ visTx (K, u′) ∧ t′ ∈ (R∗CC)

−1 (t)
}

\ {t | ∀k, i. t 6= w (K (k, i))} =((
(R∗CC)

−1 (visTx (K, u))
)
∪
(
(R∗CC)

−1 (visTx (K, u′))
))
\ {t | ∀k, i. t 6= w (K (k, i))}

as required.

Consider the implementation perspective where, for every transaction identifier t
in K, we record the transaction pair (t, u) where u is the immediate view after t
has been committed, which we know is in CC (proposition 8.1). The view u is the
minimal view with respect to the update (definition 5.1).

49

8.3. ENVIRONMENT INFORMATION Chapter 8. Exploring Causal Consistency (CC)

k 7→ v0
t0

∅
v1
t0cl

∅
v2
t0
cl′

∅
v3
t1
cl′

∅
v4
t1cl

∅
(a) View u of client cl

k 7→ v0
t0

∅
v1
t0cl

∅
v2
t0
cl′

∅
v3
t1
cl′

∅
v4
t1cl

∅
(b) View u′ of client cl′

k 7→ v0
t0

∅
v1
t0cl

∅
v2
t0
cl′

∅
v3
t1
cl′

∅
v4
t1cl

∅
(c) The view u′′ = u t u′

Figure 8.1: Union of CC views where neither subsumes the other resulting in the same
snapshot for client cl

Now consider client cl which previously committed t with the update view u: that is,
the pair (t, u) in CC. The problem is to find the possible u′′ in a forward way, without
having to compute the closure.

We use i1, i2, · · · ∈ {1, . . . , n} to represent clients cl1, cl2, . . . , cln in a kv-store. We use
j1, j2, · · · ∈ {1, . . . ,m} to represent the transaction identifier number e.g. tj2i1 means
the j2th transaction of client cli1.

First approach Let client cl have a view u over the kv-store K. Consider all the
(tj1i1 , ui1j1) pairs in the store for clients cli1 with i1 ∈ {1, . . . , n} and j1 ∈ {1, . . . ,m}.
Now form (t tj1i1 , u t ui1j1) where u t ui1j1 in CC is the union of views and t tj1i1 is
some identifier used to represent the transactions used for all combinations of i1
and j1 in the kv-store. Now form (t tj1i1 t

j2
i2 , (u t ui1j1) t ui2j2) for i2 ∈ {1, . . . , n} and

j2 ∈ {1, . . . ,m} and (u t ui1j1) t ui2j2 in CC. Keep going until no new views are
created.

Have we found all possible u′′? Since we are working with minimal views (sec-
tion 5.1), we are able to find all possible u′′s using this approach. Moreover, this
approach is forward in the way that all resulting views are known to be in CC. How-
ever, it is clear that this is not an ideal approach.

We observe that the union of some views is more interesting than others. As a
simple example, if we union the view u of client cl with a view u′ that is ordered
before u′ v u then the resulting view u = utu′ is the same. Furthermore, advancing
a view u to a view u′ that is strictly greater than u does not necessarily mean that
the snapshot of the transaction would change. This is demonstrated in fig. 8.1. If the
snapshot is the same, then the effect of the transaction on the kv-store would be the
same, because read operations access the same versions. We are therefore interested
in finding meaningful views, meaning views that result in a different snapshot.

50

Chapter 8. Exploring Causal Consistency (CC) 8.3. ENVIRONMENT INFORMATION

For this reason, we do not need to work with all transaction identifiers in the store.
We consider only transaction identifiers to the right of the snapshot of cl’s view. That
is, writers of versions committed to the kv-store after the newest version client cl
observes in its view.

Second approach (better) Let client cl have a view u over the kv-store K. Now
consider all the (tj1i1 , ui1j1) pairs in the store to the right of the snapshot of u on K,
σ = snapshot (K, u), for clients cli1 with i1 ∈ {1, . . . , n} and j1 ∈ {1, . . . ,m}. As
before, form (t tj1i1 , u t ui1j1) where u t ui1j1 in CC is the union of views and t tj1i1 is
some identifier used to represent the transactions used for all combinations of i1
and j1 in the kv-store to the right of σ. Now form (t tj1i1 t

j2
i2 , (u t ui1j1) t ui2j2) for

i2 ∈ {1, . . . , n} and j2 ∈ {1, . . . ,m} and (u t ui1j1) t ui2j2 in CC. Continue until no
new views are created.

Have we found all meaningful u′′? We know that the union of client cl’s view u
with views of transactions to the right of the snapshot σ will generate a view with a
new snapshot. Using this approach we are able to find all meaningful u′′s. As with
our previous approach, all resulting views are known to be in CC.

We notice that what actually matters for analysing kv-stores is the snapshot, not the
view. This is because the fingerprint, and therefore the effect, of a transaction on the
kv-store is determined by its snapshot (section 3.2). We consider using our approach
on snapshots rather than views.

Definition 8.5 (Max of snapshots). Given snapshots σ = snapshot (K, u) and σ′ =
snapshot (K, u′) for a kv-store K and views u, u′ ∈ VIEWS (K), the max of the snapshots
is defined by the snapshot of the union u t u′ in K, snapshot (K, u t u′)

where snapshot (K, u) is defined in definition 3.7.

But this still requires storing the full view.

Recall that a snapshot is a function from keys to the most up-to-date values a client
can observe in the kv-store, and that the fingerprint is obtained from the snapshot.
When we obtain the snapshot of the union of two views we effectively update the
most up-to-date value of each key to the newest value that either of the views in-
cluded. But if we know that there exists a view in CC that results in some snapshot,
then knowing the whole view does not change the effect of a transaction. We alter
the definition of a snapshot to take advantage of this property.

We define a new notion of a snapshot, version-snapshot, that is a function from key
k to value v as before, but also to the index of the version whose value is v.

Definition 8.6 (Version-snapshots). Given K ∈ KVS and u ∈ VIEWS (K), the version-
snapshot of u in K is a function, verSnapshot (K, u) : KEY → VALUE × N, that is defined
by:

verSnapshot (K, u) (k)
def
= (i, val(K (k, i)))

51

8.3. ENVIRONMENT INFORMATION Chapter 8. Exploring Causal Consistency (CC)

for all k ∈ KEY, where i = max<(u (k)), the maximum element in u (k) w.r.t. the
natural order < over N.

Definition 8.7 (Max of version-snapshots). Given version-snapshots σv and σ′v, the
max of the version-snapshots is defined by:

max(σv, σ
′
v)(k)

def
= max

≤
(σv(k), σ′v(k))

for all k ∈ KEY.

Notice that we use max≤ because the index-value pair for some keys might be the
same in both version-snapshots.

Let the initial version-snapshot for all clients σv0 = verSnapshot (K0, u0) where K0 is
the initial kv-store and u0 is the initial view on K0.

For each version-snapshot σv, we know that there exists some view u on the kv-store
K such that σv = verSnapshot (K, u). We can now consider a third approach, maxing
version snapshots.

Third approach (better) Consider all the (t, σv) pairs in the store where σv is the
version-snapshot of u in the transaction pair (t, u). We follow the same approach
as before, but instead of taking all possible unions of views of transactions to the
right of the snapshot of client cl’s view, we max the version snapshot σv with all
possible version snapshots to the right in the kv-store. We continue until no new
version-snapshots are created.

Have we found all snapshots of meaningful u′′? Since we know the existence of
a view on the kv-store for each version-snapshot, we are able to find all version-
snapshots of meaningful u′′ with this approach. As with our previous approach, all
resulting version-snapshots are known to have views in CC.

Taking this a step further, we can redefine our transactional update to work on
version-snapshots, rather than views, with a read-snapshot for read operations and
a minimal version-snapshot constructed by updating the index-value pair for key k
for each (W, k, v) ∈ F to be (|K (k)| , v), similarly to our write-view.

Definition 8.8 (Transactional update on version-snapshots). Given a kv-store K ∈
KVS, version-snapshots σvr, σvw, a fingerprint F , and a transaction identifier t ∈ TXID0,
the transactional update function on version-snapshots VSnUpdateKV (K, σvr, σvw,F , t)
is defined by:

VSnUpdateKV (K, σvr, σvw, ∅, t)
def
= (K, σvw)

52

Chapter 8. Exploring Causal Consistency (CC) 8.3. ENVIRONMENT INFORMATION

VSnUpdateKV (K, σvr, σvw, {(R, k, v)}] F , t) def
=

let (i, v) = σvr(k) and (v, t′, T) = K (k, i) in

VSnUpdateKV (K [k 7→ K (k) [i 7→ (v, t′, T] {t})]] , σvr, σvw,F , t)

VSnUpdateKV (K, σvr, σvw, {(W, k, v)}] F , t) def
=

let K′ = K [k 7→ K (k) :: (v, t, ∅)] and σ′vw = σvw [k 7→ (|K (k)| , v)] in

VSnUpdateKV (K′, σvr, σ′vw,F , t)

Intuitively, each version-snapshot has exactly one corresponding snapshot. There
may be more than one view resulting in that snapshot, but it is enough to know the
existence of a view on the kv-store with the newest version for each key correspond-
ing to the version-snapshot as the effect of the transaction would be the same.

We give an overview of a possible algorithm for implementing our approach. We
start with the initial kv-store K0 and initial version-snapshot for each client σv0.
Imagine that this is the root of a tree whose branches represent possible execution
paths. Starting from the root, we apply all possible first transactions given the input
client program. For each transaction, we create a new child node with the resulting
kv-store after update, and carry the version snapshots for all clients from the previ-
ous node. We max each version-snapshot with the minimal version-snapshot of the
committed transaction, as well as keep the previous version snapshot. This results in
one version-snapshot for the committed transaction, and two possible version snap-
shots for each of the other clients. Similarly to our first step, we apply all possible
next transactions at each node. If the next transaction we apply is committed by
some client cl, then we compute its fingerprint on each possible version-snapshot
of that client, thus creating a new child node for each possible update. As before,
the committed transaction has one version-snapshot in each child node, the min-
imal version-snapshot of its update. We carry the previous version-snapshots and
max with the resulting one to create all possible version-snapshots for the latest
transaction by each client. We continue in this way until all transactions have been
committed, resulting in all kv-stores and possible version-snapshots on the store.

To simulate a single execution path, follow the same approach but only compute the
fingerprint for a transaction by client cl on one of its possible version-snapshots in
the node, ignoring the rest.

In chapter 9 we suggest looking into optimising this strategy by analysing the keys
with which a transaction interacts to avoid repeating branches. Specific implemen-
tation optimisations can be considered, for example ‘forgetting’ about old versions of
a key in the kv-store after all version-snapshots of all clients in the node have newer
versions of that key in their version-snapshot.

In our suggested approach, the implementation should keep the minimal version-
snapshot after each update. This seems to be quite reasonable considering the po-
tential performance gain. We suspect that it might be possible to store even less
information by analysing the fingerprints of transactions and only considering sub-

53

8.3. ENVIRONMENT INFORMATION Chapter 8. Exploring Causal Consistency (CC)

sets of the keys that the client observes. However, we believe this is more relevant
in models whose closure relation depends on the fingerprint.

54

Chapter 9

Conclusions and Future Work

On balance, this project was a resounding success. This report demonstrates that it
clearly fulfils our aims of reformulating the semantics of Xiong et al. in a forward-
looking way, and went further to explain the behaviour of transactions under causal
consistency as well as provide an algorithm for directly incorporating environment
information to obtain all reachable kv-stores.

Xiong et al. [10] introduced an interleaving centralised operational semantics for
capturing the client-observable behaviour of distributed atomic transactions. We
evaluate their semantics from an implementation perspective and recognise that the
backwards analysis required for transactional updates is too complicated. We give a
forward-looking reformulation, following the spirit of more traditional operational
semantics, and prove that it is equivalent to the original. We provide and explore
an implementation of some of the main components of the semantics. Realising
that a key step to developing an elegant implementation is understanding how to
incorporate environment steps not done by the client into its view when starting a
transaction, we choose to investigate specific consistency models.

We focus on the causal consistency (CC) model, and propose two different perspec-
tives for looking at the view shift question. We identify the notion of minimal views
and use it to demonstrate a systematic way to incorporate the environment infor-
mation to obtain all the possible extended CC views for a client. We modify the
definition of a snapshot and provide a more efficient way to directly obtain all the
snapshots of meaningful views of a client executing a transaction. We provide an
algorithm for implementing our approach. We believe that our approach provides a
good balance between computational efficiency and space complexity. We propose
future extensions to this project.

As discussed in chapter 8, causal consistency is unique in that transactional updates
result in minimal CC views, as the closure relation, RCC, does not depend on the
fingerprint. This is not the case with other models such as PSI and SI. In the same
way that we explored causal consistency, future work may wish to investigate other

55

Chapter 9. Conclusions and Future Work

consistency models to design efficient approaches for their implementations.

Future work may wish to implement our approach (section 8.3) and CC algorithm
(section 8.3). By implementing another model, either serialisability (SER) or a
weaker model such as parallel snapshot isolation (PSI), research focus can shift back
to automatic litmus test generation. As a first step, by reproducing known anomalies
such as the lost update anomaly (example 2.1) disallowed by PSI and SI but allowed
under CC, and the long fork anomaly (example 2.2) disallowed under SER and SI but
allowed under PSI and CC. Then, by looking into recognising ‘interesting’ candidate
execution paths and focusing on them instead of producing all obtainable kv-stores.

We believe that further optimisations to our version-snapshots approach (section 8.3)
can be made by looking at subsets of the snapshot, based on the fingerprint. From
the implementation perspective, we suggest investigating the effect of maxing the
client version-snapshot with the version-snapshots of transactions to the right of the
client snapshot in the kv-store only for the keys with which the transaction interacts
(reads from or writes to). Further, implementation optimisations to our algorithm
can be considered, for example ‘forgetting’ about old versions of a key in the kv-store
after all version-snapshots of all clients in the node have newer versions of that key in
their version-snapshots (section 8.3). From the client perspective, we suggest look-
ing into working out the partial minimal snapshots of transactions in the kv-store by
examining their reads and writes to reduce the amount of computation needed to
compute the closure. This applies to CC but is even more relevant for models that
depend on the fingerprint e.g. PSI and SI.

56

Bibliography

[1] Xiong S. Parametric Operational Semantics for Consistency Models. Imperial
College London; 2021. Available from: http://www.shalexiong.com/thesis.
pdf. pages 1, 6, 7, 10, 14, 18, 32, 41

[2] Ardekani MS, Sutra P, Shapiro M. Non-Monotonic Snapshot Isolation: Scalable
and Strong Consistency for Geo-Replicated Transactional Systems. In: Proceed-
ings of the 2013 IEEE 32nd International Symposium on Reliable Distributed
Systems. SRDS ’13. USA: IEEE Computer Society; 2013. p. 163–172. Available
from: https://doi.org/10.1109/SRDS.2013.25. pages 1, 7

[3] Bailis P, Fekete A, Ghodsi A, Hellerstein JM, Stoica I. Scalable Atomic Visibility
with RAMP Transactions. ACM Trans Database Syst. 2016 July;41(3). Available
from: https://doi.org/10.1145/2909870. pages 1

[4] Berenson H, Bernstein P, Gray J, Melton J, O’Neil E, O’Neil P. A Critique of ANSI
SQL Isolation Levels. In: Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data. SIGMOD’95. ACM; 1995. p. 1–10. pages
1, 6, 10

[5] Binnig C, Hildenbrand S, Färber F, Kossmann D, Lee J, May N. Distributed
Snapshot Isolation: Global Transactions Pay Globally, Local Transactions Pay
Locally. The VLDB Journal. 2014 December;23(6):987–1011. pages 1

[6] Du J, Elnikety S, Zwaenepoel W. Clock-SI: Snapshot Isolation for Partitioned
Data Stores Using Loosely Synchronized Clocks. In: Proceedings of the 32nd

Leibniz International Proceedings in Informatics (LIPIcs). SRDS’13. Washing-
ton, DC, USA: IEEE Computer Society; 2013. p. 173–184. Available from:
https://doi.org/10.1109/SRDS.2013.26. pages 1

[7] Lloyd W, Freedman MJ, Kaminsky M, Andersen DG. Don’t Settle for Eventual:
Scalable Causal Consistency for Wide-Area Storage with COPS. In: Proceed-
ings of the Twenty-Third ACM Symposium on Operating Systems Principles.
SOSP ’11. New York, NY, USA: Association for Computing Machinery; 2011.
p. 401–416. Available from: https://doi.org/10.1145/2043556.2043593.
pages 1

[8] Raad A, Lahav O, Vafeiadis V. On Parallel Snapshot Isolation and Release/Ac-
quire Consistency. In: Ahmed A, editor. Proceedings of the 27th European Sym-

57

http://www.shalexiong.com/thesis.pdf
http://www.shalexiong.com/thesis.pdf
https://doi.org/10.1109/SRDS.2013.25
https://doi.org/10.1145/2909870
https://doi.org/10.1109/SRDS.2013.26
https://doi.org/10.1145/2043556.2043593

BIBLIOGRAPHY BIBLIOGRAPHY

posium on Programming. Cham: Lecture Notes in Computer Science; 2018. p.
940–967. pages 1

[9] Sovran Y, Power R, Aguilera MK, Li J. Transactional Storage for Geo-replicated
Systems. In: Proceedings of the 23rd ACM Symposium on Operating Systems
Principles. SOSP’11. New York, NY, USA: ACM; 2011. p. 385–400. Available
from: http://doi.acm.org/10.1145/2043556.2043592. pages 1, 7

[10] Xiong S, Cerone A, Raad A, Gardner P. Data Consistency in Transactional Stor-
age Systems: a Centralised Approach. arXiv preprint arXiv:190110615. 2019;.
pages 1, 2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 23, 42, 45, 55, 60

[11] Adya A. Weak Consistency: A Generalized Theory and Optimistic Implementa-
tions for Distributed Transactions. Massachusetts Institute of Technology. Cam-
bridge, MA, USA; 1999. Available from: http://pmg.csail.mit.edu/papers/
adya-phd.pdf. pages 1, 6, 8

[12] Burckhardt S, Fahndrich M, Leijen D, Sagiv M. Eventually Consistent Trans-
actions. In: Proceedings of the 21nd European Symposium on Programming.
Springer; 2012. . pages 1, 8

[13] Cerone A, Bernardi G, Gotsman A. A Framework for Transactional Consistency
Models with Atomic Visibility. In: Aceto L, de Frutos Escrig D, editors. 26th
International Conference on Concurrency Theory (CONCUR 2015). vol. 42 of
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik; 2015. p. 58–71. Available
from: http://drops.dagstuhl.de/opus/volltexte/2015/5375. pages 1, 8

[14] Crooks N, Pu Y, Alvisi L, Clement A. Seeing is Believing: A Client-Centric
Specification of Database Isolation. In: Proceedings of the 2017 ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing. PODC’17. New
York, NY, USA: ACM; 2017. p. 73–82. pages 1, 10

[15] Nagar K, Jagannathan S. Automated Detection of Serializability Violations
Under Weak Consistency. In: Proceedings of the 29th International Conference
on Concurrency Theory; 2018. p. 41:1–41:18. Available from: https://doi.

org/10.4230/LIPIcs.CONCUR.2018.41. pages 1, 10

[16] Kaki G, Nagar K, Najafzadeh M, Jagannathan S. Alone Together: Composi-
tional Reasoning and Inference for Weak Isolation. Proceedings of the ACM on
Programming Languages. 2017 December;2(POPL):27:1–27:34. pages 1, 10

[17] Beillahi SM, Bouajjani A, Enea C. Checking Robustness Against Snapshot Isola-
tion. CoRR. 2019;abs/1905.08406. Available from: http://arxiv.org/abs/

1905.08406. pages 5

[18] Wickerson J, Batty M, Sorensen T, Constantinides GA. Automatically compar-
ing memory consistency models. In: ACM SIGPLAN Notices. vol. 52. ACM;
2017. p. 190–204. pages 5, 9, 10

58

http://doi.acm.org/10.1145/2043556.2043592
http://pmg.csail.mit.edu/papers/adya-phd.pdf
http://pmg.csail.mit.edu/papers/adya-phd.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/5375
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
http://arxiv.org/abs/1905.08406
http://arxiv.org/abs/1905.08406

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Papadimitriou CH. The Serializability of Concurrent Database Updates. J ACM.
1979 October;26(4):631–653. pages 6

[20] Eswaran KP, Gray JN, Lorie RA, Traiger IL. The notions of consistency
and predicate locks in a database system. Communications of the ACM.
1976;19(11):624–633. pages 6

[21] Gray JN, Lorie RA, Putzolu GR, Traiger IL. Readings in database systems. chap-
ter Granularity of Locks and Degrees of Consistency in a Shared Data Base.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA; 1988. pages 6

[22] Alglave J, Maranget L, Tautschnig M. Herding Cats: Modelling, Simulation,
Testing, and Data Mining for Weak Memory. ACM Trans Program Lang Syst.
2014 July;36(2). Available from: https://doi.org/10.1145/2627752. pages
9

[23] Quick reference for litmus test families;. Available from: https://www.cl.

cam.ac.uk/~pes20/ppc-supplemental/test6.pdf. pages 9

[24] Experimental validation of our axiomatic power model;. Available from: http:
//moscova.inria.fr/~maranget/AXIOM/description.html. pages 9

[25] Mador-Haim S, Alur R, Martin MM. Generating litmus tests for contrasting
memory consistency models. In: International Conference on Computer Aided
Verification. Springer; 2010. p. 273–287. pages 10

59

https://doi.org/10.1145/2627752
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
http://moscova.inria.fr/~maranget/AXIOM/description.html
http://moscova.inria.fr/~maranget/AXIOM/description.html

Appendix A

Command and Program Semantics

TPRIMITIVE

(s, σ)
Tp

(s′, σ′) o = op (s, σ, Tp)

(s, σ,F), Tp (s′, σ′,F <C o), skip

F <C (R, k, v)
def
=

{
F ∪ {(R, k, v)} if ∀l, v′. (l, k, v′) /∈F
F otherwise

F <C (W, k, v)
def
= (F\{(W, k, v′) | v′ ∈ VALUE})∪{(W, k, v)}

F <C ε def
= F

(s, σ) x:=E (s [x 7→ JEKs] , σ) (s, σ)
assume(E)

(s, σ) where JEKs 6= 0

(s, σ)
x:=[E]

(s [x 7→ σ (JEKs)] , σ) (s, σ)
[E1]:=E2

(s, σ [JE1Ks 7→ JE2Ks])

op (s, σ, x := E)
def
= ε op (s, σ, assume (E))

def
= ε

op (s, σ, x := [E])
def
= (R, JEKs, σ (JEKs)) op (s, σ, [E1] := E2)

def
= (W, JE1Ks, JE2Ks)

Figure A.1: The semantics of transactional commands [10]

CPRIMITIVE

s
Cp
s′

cl ` (K, u, s), Cp
(cl,ι)−−→ET (K, u, s′), skip

s x:=E s [x 7→ JEKs]

s
assume(E)

s where JEKs 6= 0

CATOMICTRANS
u v u′′ σ = snapshot (K, u′′) (s, σ, ∅), T ∗ (s′, ,F), skip canCommitET (K, u′′,F)

t ∈ NextTxID (cl,K) K′ = UpdateKV (K, u′′,F , t) vShiftET (K, u′′,K′, u′)

cl ` (K, u, s),
[
T
] (cl,u′′,F)−−−−−→ET (K′, u′, s′), skip

PPROG

u = U (cl) s = E (cl) C = P (cl) cl ` (K, u, s), C λ−→ET (K′, u′, s′), C′

` (K,U , E), P
λ−→ET (K′,U [cl 7→ u′] , E [cl 7→ s′]), P [cl 7→ C′])

Figure A.2: The semantics of sequential commands and programs [10]

60

	1 Introduction
	1.1 Project Creation and Evolution
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Consistency Models
	2.2 Declarative Semantics: Dependency Graphs and Abstract Executions
	2.3 Litmus Tests
	2.3.1 Examples of Litmus Tests
	2.3.2 Automatically Generating Litmus Tests

	2.4 Operational Semantics

	3 Operational Model
	3.1 Abstract States
	3.2 The CAtomicTrans Rule
	3.3 Execution Tests

	4 Identifying the Gaps
	4.1
	4.2
	4.3 Transactional Update and View Shift

	5 Reformulating the Semantics
	5.1 Redefining CAtomicTrans
	5.2 Preserving and
	5.2.1 Monotonic Read () Properties
	5.2.2 Read Your Writes () Properties

	6 Consistency Models Using
	6.1 Models with
	6.2 Other Models

	7 Implementation
	7.1 Overview
	7.2 Implementing CAtomicTrans
	7.3 Causal Consistency ()

	8 Exploring Causal Consistency ()
	8.1 Transactional Update
	8.2 Between Transactions
	8.3 Environment Information

	9 Conclusions and Future Work
	Bibliography
	A Command and Program Semantics

