
INDIVIDUAL PROJECT REPORT

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

MEng Individual Project
Mobile Medical Image Analysis

Author:
Isaac Hutt

Supervisor:
Dr Bernhard Kainz

Second Marker:
Professor Daniel Rueckert

June 15, 2020

Submitted in partial fulfillment of the requirements for the MEng Computing
Degree of Imperial College London

Abstract

Over the last decade we have watched the rise of the cheap and portable smartphone
as the world’s computer, simultaneously seeing breakneck advances in computer vi-
sion capabilities. Despite these trends, current proliferation of machine imaging
techniques into the mobile market largely consists of camera filters. This project
takes recent medical image analysis models and enables their use on an Android
device.

The result of the project is a multipurpose Android app that can hook itself over
other apps, such as those used by mobile ultrasound scanners. This app can be used
to perform tasks such as classification on the output of other apps, while providing
a modular design to easily allow future medical or non medical models to be added.

An extensive qualitative and quantitative evaluation is carried out, commenting on
the project’s usefulness and usability. Potential future work is then discussed with
wide ranging implications in both medical and non medical areas.

2

Acknowledgements

I would like to thank my supervisor Dr Bernhard Kainz for his support, as well as
his help tailoring the initial project idea to my skill-set. Special thanks to my second
marker Professor Daniel Rueckert for his feedback on my ideas. Also to Jeremy Tan
and Sam Budd for supporting my work and helping explain the details behind some
of the papers which I relied on.

Finally I would like to thank my family for their support throughout my education,
especially with the unfortunate global health situation over the last few months.

3

Contents

1 Introduction 7
1.1 Context and Motivation . 7
1.2 Related Work . 8
1.3 Objectives and Contributions . 9

2 Background 11
2.1 Android Platform . 11

2.1.1 Services . 11
2.1.2 Screen Capture . 12
2.1.3 Screen Overlay . 12

2.2 Convolutional Neural Networks . 13
2.2.1 Convolutional Layers . 13
2.2.2 Pooling Layers . 14
2.2.3 Fully Connected Layers . 14
2.2.4 VGG16 . 14
2.2.5 ImageNet and MobileNets . 15
2.2.6 Theano and Lasagne . 15
2.2.7 Data Augmentation . 15
2.2.8 Artistic Style Transfer . 16

2.3 TensorFlow . 16
2.3.1 TensorFlow 1.x . 16
2.3.2 TF 2.x and Keras . 17

2.4 TFLite . 17
2.4.1 Android Interpreter . 17

2.5 Network Translation . 18
2.5.1 ONNX . 18
2.5.2 Manual Translation . 18

2.6 Network Optimization . 19
2.6.1 Pruning . 19
2.6.2 Quantization . 19

2.7 Ultrasound Analysis . 20
2.7.1 Ultrasound . 20
2.7.2 SonoNet . 20
2.7.3 Detection . 21
2.7.4 Localisation . 22
2.7.5 Results . 22

2.8 Ultrasound Biometrics Collection . 22
2.8.1 Segmentation . 23
2.8.2 Calculation . 23
2.8.3 Results . 23

3 Mobile Optimization of Models 25
3.1 Methodology and Tools . 25
3.2 SonoNet Conversion . 25

3.2.1 Recreating the Model . 26
3.2.2 Data . 26
3.2.3 Training . 27
3.2.4 Pruning . 28
3.2.5 TFLite Conversion . 28
3.2.6 Localisation . 30

4

CONTENTS CONTENTS

3.3 Biometrics Conversion . 31
3.3.1 Data . 31
3.3.2 Training . 32
3.3.3 TFLite Conversion . 32
3.3.4 Calculation . 33

4 The Analysis App 34
4.1 Methodology and Tools . 34
4.2 Android Foundations . 34

4.2.1 Screen Capture . 34
4.2.2 Screen Overlay . 35
4.2.3 Processing Pipeline . 36
4.2.4 View-finding . 36
4.2.5 Overlaying on the Input . 36

4.3 Model Implementation . 39
4.3.1 Image Classification . 39
4.3.2 Object Detection . 39
4.3.3 SonoNet . 40
4.3.4 Biometrics . 40
4.3.5 GPU Delegate . 41
4.3.6 Style Transfer . 42

4.4 The Final App . 42

5 Evaluation 43
5.1 Model Optimization . 43

5.1.1 SonoNet TF 2.X . 43
5.1.2 SonoNet TFLite . 47
5.1.3 Biometrics TF 2.x . 47
5.1.4 Biometrics TFLite . 48
5.1.5 Pruning . 48

5.2 The Android Wrapper . 50
5.2.1 Software Compatibility . 50
5.2.2 Device Selection . 50
5.2.3 Pipeline Performance . 51
5.2.4 On Screen Overlay . 51

5.3 The Final App . 52
5.3.1 Device Specific Performance . 53
5.3.2 APK Structure and Size . 54
5.3.3 User Feedback . 56
5.3.4 SonoNet Specific Feedback . 58

6 Conclusion 60
6.1 Summary . 60
6.2 Future Work . 60

References 62

Appendices 68

A User Guide 68

B App Screenshots 70

C Additional Tables 75

D Model Listings 76

5

List of Figures

2.1 Activity and Service Lifecycles [31][25] . 12
2.2 Facebook Messenger Chat Head on top of the YouTube App . 13
2.3 Twilight Blue Light Filter . 13
2.4 The VGG16 Architecture [34] . 14
2.5 ImageNet Model Performance Evaluation [36] . 15
2.6 A Style Transfer Model Architecture [12] . 16
2.7 The SonoNet Architecture [3] . 21
2.8 SonoNet Localisation [3] . 21
2.9 SonoNet Evaluation [3] . 22
2.10 Biometrics FCN Architecture [57] . 23
2.11 Red Ground Truth and Yellow Prediction Ellipsis for Biometrics [57] . 23
2.12 Biometrics Results [57] . 24

3.1 SonoNet Loss and Accuracy Trained on Incorrect Data . 27
3.2 SonoNet Loss and Accuracy Trained on Correct Data . 27
3.3 SonoNet Pruning Accuracy, Sparsity and and Threshold . 29
3.4 SonoNet 32 Quantization Results . 31
3.5 Segmentation Loss and Accuracy . 32
3.6 SonoNet 32 Quantization Results . 32

4.1 Average Pixel Component Information Loss by Overlay Alpha . 38
4.2 Real Time Overlay FPS Limit . 39

5.1 Old and New SonoNet 32 Stats . 45
5.2 Old and New SonoNet 32 Confusion Matrices . 46
5.3 SonoNet 32 Desktop Inference FPS . 47
5.4 Biometrics Comparison. Value (Standard Deviation) . 48
5.5 HC Bland Altman Plots (Original and TF 2.x) . 49
5.6 BPD Bland Altman Plots (Original and TF 2.x) . 49
5.7 TF 2.X Pruning Effects . 49
5.8 Android Evaluation Devices . 51
5.9 Android Frame Rates . 52
5.10 On Screen Overlay Flame Graph . 53
5.11 TFLite FPS by Thread Count . 54
5.12 SonoNet TFLite Android Frame Rates . 55
5.13 Segmentation TFLite Android Frame Rates . 55
5.14 Segmentation TFLite Android Frame Rates (No Overlay) . 55
5.15 APK Components . 56
5.16 Mobile ultrasound scanners combined with intelligent software have the potential to improve patient experience 59
5.17 The ability to capture additional images or video beyond standard planes is important to me. 59
5.18 An app like this could be helpful in a training setting. 59

B.1 MEng Project Play Store Listing . 70
B.2 Model Selection in Full and Generic Flavours . 71
B.3 System Permission Dialogs . 71
B.4 Object Detection . 72
B.5 Viewfinding over an Image of an ultrasound scan . 72
B.6 Brain Segmentation and Metric Calculation . 73
B.7 View-finding over A Real Ultrasound App . 73
B.8 Style Transfer Template and Examples . 74

C.1 SonoNet Integer Quantization Results . 75

D.1 A Simple Sequential Implementation of SonoNet 32 in Keras . 76
D.2 A Non Sequential Keras Model for Segmentation in Head Biometrics . 77

6

1. Introduction

1.1 Context and Motivation

As smartphones have become more ubiquitous in modern life, the hardware and soft-
ware underpinning them have been advancing at record pace. Technologies such as
Google Lens, which have the capability to classify objects in images from the cam-
era, have been around in some form or another for a number of years. Amazon’s
X-Ray feature can detect which actors are present on screen during a movie or TV
Show. Most of these tools did, until recently rely on a cloud server to perform the
actual processing, with the mobile device simply sending the images and receiving
the classification back. Today modern devices have the capability to do this process-
ing locally and offline.

Apps such as Snapchat and Instagram are already making use of this modern tech-
nology with “filters” that allow manipulation of the camera feed in realtime beyond
what would have been possible just a few years ago. While the tech behind this is
undoubtedly cool, it is currently limited to a direct feed from the camera. What if
we could enable augmentation directly over any app currently on the screen of a
phone? What if we could use this tech to do something slightly more impactful than
taking a fun selfie?

Despite fetal developmental issues arising during pregnancy being one of the main
risks of perinatal mortality, the detection rate of abnormalities is still low and varies
dramatically by region [35]. 2D ultrasound provides a safe and quick means of
screening. Fortunately, as well as improvements in smartphones, other technologies
have also been evolving. Recently released mobile compatible ultrasound scanners
have the capability to improve front-line access to ultrasound across the world.

Ultrasound is not without its issues. High amounts of noise and frequent image
artefacts, combined with poor positioning can make differentiating features a chal-
lenge. Guiding an ultrasound reader to capture specific fetal features and correctly
interpreting them is a job that can require years of experience. The work done on a
network named SonoNet [3], a convolutional neural network (CNN), has attempted
to mitigate these challenges by detecting a set number of standard fetal views in a
live video feed, helping sonographers with their scans.

This is just one of a variety of cutting edge medical imaging networks that target a
specific area of medicine. Applying machine learning to medical imaging is a boom-
ing speciality and researchers around the globe are working on tackling everything
from cancer screening to cardiovascular abnormalities [33].

Currently, SonoNet and most of these other game changing models, require a high
powered desktop graphics card to evaluate their input stream (ultrasound data for

7

1.2. RELATED WORK Chapter 1. Introduction

SonoNet). Transmitting the video feed to the computer in a reasonable time-frame
is often not feasible. In the last few years, cheap Android devices have become far
more prevalent in developing nations. These areas are also more likely to suffer
from a poor network connection and therefore have the potential to benefit most
from using SonoNet, offline and on a mobile device.

This project will focus on bringing CNNs like SonoNet to Android. It will create
an application to allow CNNs that perform detection and localisation operations to
operate in real-time on the screen output of currently open Android applications.
The whole process will happen offline and entirely on-device. This allows analysis
to take place almost anywhere and without a network connection. For ultrasound
images, a scan could be captured in a remote location and the app would automat-
ically save key images from the scan. These could be uploaded at a later time once
an internet connection was available, for review by an expert.

This project will be implemented by running a background service on Android and
making use of screen recording and overlay functionality provided by modern An-
droid versions. TFLite will be used for image processing. Optimizations that can be
made to networks will be researched, with the purpose of getting them as close to
real time performance as is feasible given reasonable accuracy constraints.

A successful project will in the general case provide an app and examples of con-
verted CNNs that can be run over Android apps. In the specific case, it will provide
a useful tool that, when used in conjunction with an Android ultrasound probe, will
aid the capturing of key information from the fetal scan.

1.2 Related Work

When looking for related work on this project, attempts to find examples of apps
that performed realtime processing of a screen recording or any other work done
in this area were fruitless. Technology has only very recently advanced to the point
where it has been feasible to do so, both from a software and hardware perspective.
Despite this, there has been a considerable amount of work on running neural net-
works on mobile devices that has been outlined below.

There have been a variety of papers focused on optimising CNNs for mobile de-
vices. However, as TFLite is a relatively new framework the majority of papers deal
with conversion before this Google backed approach was available. One such pro-
posed method was to convert a CNN in the Caffe [4] framework to C. This could
then be run natively on iOS/Android using a tool such as the Android NDK (Native
Development Kit) and using the JNI (Java Native Interface) to coordinate with a UI
written in Java [59]. This approach does not allow the network to run on a GPU,
leading to lackluster performance.

In two other papers, researchers propose (non TFLite) CNN frameworks that can

8

Chapter 1. Introduction 1.3. OBJECTIVES AND CONTRIBUTIONS

use Android GPUs [47] [38]. Again, these papers were published before TFLite was
announced in 2017. Little work has been done in this area since then as Google con-
trols the direction of the Android ecosystem. This allows them to promote hardware
and software features which make their own approach considerably more efficient.

The paper “AI Benchmark: Running Deep Neural Networks on Android Smartphones”
[41] evaluates various mobile frameworks and the devices on which they run. It was
published before TFLite had matured to the extent it has now and therefore it ad-
vises to use TF Mobile (a precursor to TFLite). The devices tested are also a few
years older than might be found today, but overall it provides some information re-
garding the variations in speed between different Android devices running CNNs,
which would be useful when planning this project’s evaluation.

While we were unable to find any papers dealing specifically with the optimization
of a CNN using TFLite, there has been some very recent work that has used TFLite
in a scientific context for image analysis [58] [10], some of which was in a medical
context. However, TFLite is still maturing, and in a few years there will be many
more resources in this area.

With regards to the specific area of mobile ultrasound analysis, there has been one
publication which aimed to do a similar task to SonoNet on the Kidneys [60]. The
paper describes an attempt to detect and localise abnormalities. There was no effort
to apply this in real-time or on videos and took 2.3 seconds to process an image with
resolution of 678 x 542. This stunted performance can be explained by the use of a
considerably older device and framework.

The background section will cover the two papers whose models this project op-
timizes in more detail. They will also be mentioned here due to their significance.
The optimization section of the project is based on the methods and models that
“SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in
Freehand Ultrasound” [3] (referred to as SonoNet) and “Human-level Performance
On Automatic Head Biometrics In Fetal Ultrasound Using Fully Convolutional Neural
Networks” [57] (referred to as Biometrics) set out.

1.3 Objectives and Contributions

The original milestone objectives laid out for this project and set in early discussions
were to:

1. Build out a simple Android pipeline to allow future models to run over other
apps.

2. Get an off-the-shelf CNN such as image classification working with the pipeline.

3. Research and experiment with a process to convert a simple model to run on
Android.

9

1.3. OBJECTIVES AND CONTRIBUTIONS Chapter 1. Introduction

4. Successfully convert the SonoNet model to run over other apps on Android.

These objectives were met and exceeded fairly quickly, as this report will show. After
almost nine months of work, I am very pleased with what has been accomplished.
The key contributions, to be laid out in the body of this report are as follows:

• An Android app that allows models to run on-top of the current screen and
output a classification.

• A mechanism for overlaying data on-top of the screen while losing minimal
information, allowing realtime automated annotation.

• A description and evaluation of recent techniques for optimally porting models
to Android.

• An implementation of two medical models, SonoNet and Biometrics on An-
droid.

These achievements combine to form an Android app that has great potential, both
in medical and other areas of realtime image analysis.

10

2. Background

Mobile image analysis requires both insight into mobile specific paradigms combined
with knowledge of modern machine inference techniques and how they translate to
a mobile setting. In addition to presenting information on these topics, we will
briefly cover the context of the ultrasound use case.

2.1 Android Platform

The Android operating system is the leading mobile operating system by installs,
with almost 90% of the smartphones running Android [39]. As well as smartphones,
Android runs on devices ranging from tablets to cars and is prevalent across the
globe.

Since the explosive growth of Android as an operating system, the ecosystem of
Android devices has also grown. Flagship devices now feature multiple powerful
cameras and it is possible for additional peripherals such as infrared and ultrasound
sensors to be plugged in and used with a downloaded app [53].

Android as an operating system is still maturing and one of the more recent changes
has been a tightening of security with regard to how much system access apps have.
Apps have always been sand-boxed but they have had access to system API calls to
perform actions beyond their scope. Recently, Google have sought to crack down
on a lot of these permissions, removing them all together or requiring explicit user
approval, in the form of a system popup [14].

2.1.1 Services

One of the key features of Android is the way that it structures its applications. Appli-
cations spawn activities which are the main windows that users interact with. These
activities are paused when the user switches between apps and they might even be
kicked out of memory. Activities are not allowed to run in the background [23].

To allow applications to do background work, a Service [25] must be used. This
is a process that runs in the background, but it can still be killed by the OS. In order
to reduce the odds of being killed, an app can place a permanent notification in the
notification bar and become a Foreground Service. Some examples of Activity and
Service lifecycles are included in Figure 2.1.

Services (and Activities) are initiated with an Intent object. Intent objects are mes-
saging objects which describe which Activity/Service is started when passed as a
parameter to startActivity()/startService() and their variants, as well as carrying ad-
ditional serialized data [17].

11

2.1. ANDROID PLATFORM Chapter 2. Background

Figure 2.1: Activity and Service Lifecycles [31][25]

2.1.2 Screen Capture

Screen capture on Android must be handled by calling a string of system APIs. This
ensures that the user has explicitly authorized the screen recording. The key system
API is the MEDIA PROJECTION SERVICE, which can be used to get a callback for a
screenshot. This screenshot can then be converted to a bitmap before being pro-
cessed in the callback.

There are a variety of parameters that can be used to customize the process. Ev-
erything from the resolution and pixel format of the captured image to the target
frame capture rate can be specified. Screen capture should also be possible on iOS
[2] but it is considerably less documented.

2.1.3 Screen Overlay

Android allows applications to draw over the current activity. The most common use
of this is Facebook Messenger Chat Heads (Figure 2.2). These allow users to talk
to their friends without leaving the app that they are in. This is an example of an
interactive overlay, as the user can interact with it as if it were an Android Activity.
Another common overlay is Twilight, which is a simple overlay designed to remove
a screens blue light at night by overlaying a translucent red mask on top (Figure 2.3).

In order for a service to draw on top of the current activity it must use specific API
calls. Android has been getting more and more protective of these over the years.
This is because there is the potential of using these to trick a user into accidentally

12

Chapter 2. Background 2.2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.2: Facebook Messenger Chat Head on top of the YouTube App

Figure 2.3: Twilight Blue Light Filter

divulging a banking password while they think that they are typing into their bank’s
app. Despite this, there is still a surprising amount of freedom available to develop-
ers once the user has granted permission. On iOS this would simply not be possible
without jailbreaking the device due to the increased sand-boxing of iOS apps [40].

2.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of deep neural network used to
process images. CNNs use multiple different types of neuron layers to classify images
[45].

2.2.1 Convolutional Layers

Convolutional layers perform a convolution on images. They have a few parameters,
the main parameter being the kernel size. This specifies the area that the convolu-

13

2.2. CONVOLUTIONAL NEURAL NETWORKS Chapter 2. Background

Figure 2.4: The VGG16 Architecture [34]

tion operates over and allows for features to be learnt and then built up. Another
important parameter is the number of input channels such as red, green and blue.

An example of a classical convolution might be a Gaussian kernel (used to blur im-
ages), which sets a pixel’s value to the sum of n layers of surrounding pixels weighted
by their distance and plugged into a Gaussian function. This kernel can be repre-
sented as a matrix of multiplying factors. When these are centered over the pixel
in question and summed, the desired output will be obtained. In machine learning
these multiplying factors are parameters to be learned.

2.2.2 Pooling Layers

Pooling layers are used to reduce the dimensionality of the data by grouping multiple
neurons into a single neuron. This is useful to reduce the number of parameters that
will eventually need to be learnt in the network, while ensuring that specific features
are learnt. One technique to perform pooling is called Max Pooling. This gives the
maximum value of a group of neurons as the output.

2.2.3 Fully Connected Layers

A fully connected layer connects each output neuron with every input neuron. An
example of this might be a final classification layer, determining the likelihood of
an image being of a particular class by summing the previous neurons weighted
according to learned parameters.

2.2.4 VGG16

A popular example of a CNN is VGG16 (Figure 2.4). VGG16 derives its name from
VGG, which was the paper’s authors’ team name in the 2014 ImageNet challenge
[54] and 16 which is the sum of the 13 convolutional layers and the 3 fully con-
nected layers in the network [56]. As can be seen in the figure, the network com-

14

Chapter 2. Background 2.2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.5: ImageNet Model Performance Evaluation [36]

prises groups of convolutional layers with 3x3 kernels and an increasing number of
kernels inter-spaced between a total of 5 max-pooling layers.

After these convolutional layers, there are 3 fully connected layers. The last of which
has 1000 channels corresponding to the 1000 classes in the ImageNet challenge. The
final layer is a softmax layer, which outputs the final class probabilities.

2.2.5 ImageNet and MobileNets

ImageNet is a collection that groups images that represent the words in a structured
hierarchy collated by concept [8]. Google’s Mobile approach to solving ImageNet
using ”MobileNets” makes use of ”Depthwise Separable Convolutions”. These are
8-9 times more computationally efficient than standard convolutions, while only
resulting in a small loss of accuracy (Figure 2.5) [36]. This performance speedup
is impressive, but such radical changes to model architecture were out of the scope
of this project, which focused more on direct porting and making use of other less
radical approaches to model optimization.

2.2.6 Theano and Lasagne

Theano is a Python library primarily for evaluating mathematical expressions, effi-
ciently making use of GPU hardware if available [7]. Theano has not seen a release
since the end of 2017 due to the rise of popular competing frameworks such as
TensorFlow. Lasagne is a machine learning library designed to train neural networks
using Theano [46]. It supports CNNs via layers that allow specification of parameters
such as kernel size. Support for Lasagne has petered out in line with the depreciation
of Theano. This can make it difficult to run older models due to Python dependency
updates.

2.2.7 Data Augmentation

Often one of the limiting factors on the accuracy of a machine learning model is
the amount of data available to train with. If the pool of training data is too small,
then the model is likely to fit to features that discriminate adequately in the training
data, but inadequately during validation. In order to reduce the likelihood of the
model over-fitting, additional data can be generated from existing data via various
image operations such as rotation, flipping or blurring. By adding images with (for
example) different rotations, the model is less likely to fit on features that might only

15

2.3. TENSORFLOW Chapter 2. Background

Figure 2.6: A Style Transfer Model Architecture [12]

be vertical in training data. This allows the model to also distinguish those features
at varied angles [18].

2.2.8 Artistic Style Transfer

Artistic Style Transfer involves generating an image (called a pastiche) based on two
input images. One image representing the desired style and the other the desired
content [12]. In the method proposed by Google (Figure 2.6), the content image is
passed into a model along with the output of a second model. This second model
is a dedicated style prediction model that takes the image representing the outputs
desired style as input. A two model approach speeds up the inference time as a large
portion of processing only needs to be done once and not per image.

2.3 TensorFlow

TensorFlow is a machine learning system that operates at large scale and in hetero-
geneous environments. TensorFlow uses data-flow graphs to represent its computa-
tions, shared states and state change operations. When run on a single device these
graphs can be mapped across multiple computation devices such as CPUs, GPUs and
other specifically designed machine inference hardware know as TPUs (Tensor Pro-
cessing Units) [1].

Often a higher level API will be used with TensorFlow to increase ease of use such
as Keras [44] allowing the user to write simple lines of code to perform common
operations.

2.3.1 TensorFlow 1.x

In TensorFlow 1.x a user first must build a computational graph then create a session
to execute it. This two step process can be rather jarring and forms a divide between
a model and its input/output. Additional many useful functions in TF 1.x were in

16

Chapter 2. Background 2.4. TFLITE

external python packages. For model data flow TF 1.x requires the use of placehold-
ers, dummy variables that the session will later use to interact with the model, but
which are included in the computational graph [43].

2.3.2 TF 2.x and Keras

TensorFlow 2.x was a major improvement on the usability and performance of Ten-
sorFlow 1.x. TF 2.x incorporates a high level Keras API that allows models to be
easily built and saved in just a few lines, while retaining the options that a more cus-
tom approach provides. This is supported by Eager Execution mode, which removes
the need for a user created session. TF 2.x also brings a lot of external packages into
the main package and greatly simplifies the data pipeline allowing more natural IO.
Finally (and most importantly for this project) TF 2.x supports the SavedModel and
Keras model file formats, allowing one line TF 2.x model conversion to TFLite [15].

2.4 TFLite

TFLite (TensorFlow Lite) is an “open source deep learning framework for on-device
inference”. TFLite consists of a set of tools to run TensorFlow models on mobile,
embedded and IoT devices. In this project it allows compact, low latency, offline,
machine learning inference on Android [27].

There are two main components to TFLite. The interpreter and the converter. These
convert TensorFlow models to their TFLite form and then allow interpretation of
the new optimized models. The advantages of offline inference with a tool such as
TFLite are multi-fold, mainly centering around improved latency, privacy and acces-
sibility in areas with limited network connectivity.

TFLite also features, cross platform compatibility, multiple API languages, the possi-
bility of hardware acceleration on supported devices and a small and portable model
format called FlatBuffer. A typical TFLite workflow would involve converting a Ten-
sorFlow model to a TFLite model, deploying it and then attempting to optimize its
on device performance.

There are however a few catches. Firstly TFLite only supports a subset of Tensor-
Flow operators which have already been optimized. Some additional operators can
be added to the TFLite binary, but there might be some issues with the more experi-
mental among them. TFLite also does not currently support on-device training, but
that is unlikely to be an issue for this project.

2.4.1 Android Interpreter

The TFLite Android interpreter is designed to be lean and fast. It uses static graph
ordering and its own memory allocator to reduce latency across the board. The
TFLite Android interpreter supports both Java/Kotlin calls as well as C++ via the

17

2.5. NETWORK TRANSLATION Chapter 2. Background

JNI. Input and Output is handled by Native ByteBuffers.

One of TFLite Android’s key advantages is its support for hardware acceleration
of models. On Android there are three main possible execution delegates. First the
CPU, on which multiple threads can be used to make use of modern multi-core ar-
chitectures. Then there is the GPU and finally the NNAPI (Neural Networks API)
which allocates tasks to specialized device hardware such as the GPU, DSP (Digital
Signal Processor) or the NPU (Neural Processing Unit) if such devices are available.
Out of these three delegates the GPU normally performs best if supported by the
model being run, as it is able to run operations with a greater degree of parallelism
than the CPU and the NNAPI only really adds overhead on devices that do not have
specialised DSP or NPU hardware.

While TFLite is at the cutting edge of mobile inference it is far from complete. Many
features that would greatly improve performance or compatibility are not yet im-
plemented. features such as Sparse Model Execution and GPU execution of integer
quantized models are still on the road-map [28].

2.5 Network Translation

Network translation is the process of translating from one Neural Network format to
another, either manually or programmatically, possibly via a number of intermediary
networks. There are a variety of frameworks out there [48] but in order to end up
with a standard TFLite model for use with Android we will first need to convert the
given model to be of that form.

2.5.1 ONNX

ONNX (Open Neural Network eXchange) is an open format designed to represent
machine learning models. It defines common operators and a common file format
[52]. ONNX was developed by Microsoft and Facebook to “create [an] open ecosys-
tem for AI model interoperability” [49].

When converting from one framework to another ONNX can be used as a bridge be-
tween ML libraries and their underlying computational graphs. Unfortunately ONNX
does not support Theano/Lasagne [61] as these frameworks are now considered to
be legacy. This means ONNX can not be used for this project despite potentially
being highly useful.

2.5.2 Manual Translation

Manual translation is the process of converting a model from one framework to
another by hand. Each layer in the old model must be created in the new model.
Once this has been done a user can either retrain the model using the original data
(easier but slow to train), or attempt to translate the old weights (can be tricky

18

Chapter 2. Background 2.6. NETWORK OPTIMIZATION

especially with older frameworks). While manual translation can be slow it also
allows for more modern framework features to be used rather than performing a
direct translation; this could result in improved performance.

2.6 Network Optimization

In order to increase the frame rate at which neural networks run it may be necessary
to perform optimisations on them with the aim of reducing the network size without
noticeably effecting accuracy. There are a number of optimisations that can be made
with wide ranging effects. As TFLite is a light weight framework simply translating a
network to it has the potential to reduce raw network size and improve performance.

2.6.1 Pruning

Pruning is a process to reduce the size of a network. It can also be used to reduce
over-fitting in a network. One simple approach to prune is to remove all connec-
tions with weights below that of a specific threshold and then retrain on the new
sparse network. One such approach was able to reduce the parameters in AlexNet
and VGG16 by 9x and 13x respectively [32].

A second pruning approach is one which attempts to include the size of the model in
the optimization function for the CNNs weights [50]. The approached outlined takes
a trained network and then attempts to work out the importance of neurons during
training using the squared change in loss when removing a particular neuron to drop
the unimportant ones. This approach produced similar results on the networks that
it was applied to.

2.6.2 Quantization

Another standard optimisations is quantization. Quantization is the process of reduc-
ing the size of floating point values in the network (ideally down to 8 bit integers)
and is one of the few optimisations that is specifically mentioned on the TFLite site.
Quantization can be performed in TFLite relatively easily [22] and there are multiple
degrees of quantization that can be performed.

The most basic level of quantization is to limit the model weights (originally float32s)
to float16 types. This shrinks the network size in half and still allows GPU accelera-
tion of the model. If GPU acceleration is not required than the network parameters
can be quantized to integers. This should make the network about 25% smaller than
the original and also give a 2-3x performance speedup.

Finally if a representative data-set is available then both the parameters and ac-
tivations can be quantized to integers. This results in potentially an even larger
speedup, with the bonus that if a model can be converted to exclusively utilize in-
tegers then it can also be run on hardware devices such as Edge TPUs very efficiently.

19

2.7. ULTRASOUND ANALYSIS Chapter 2. Background

As quantization by TFLite is conventionally done post training there is the poten-
tial for some accuracy loss. Users must be aware of implications and potentially
re-evaluate the new quantized model. If the accuracy loss is deemed to be too high
then there is the potential to instead use ”Quantization Aware Training”.

Quantization Aware Training emulates the quantization that would be there dur-
ing inference and can (for most simple models) be performed by simply passing the
original model into a TensorFlow library function before compiling and training. It
does however result in less flexibility in the generated model as it will never be able
to regain the precision that would have been in a non quantized, trained model.
Quantization Aware Training is well built out in TensorFlow so it is even possible to
define custom quantization functions [24], however this would require substantial
knowledge of the framework beyond that of a standard Keras model.

2.7 Ultrasound Analysis

Both the SonoNet and Biometrics model are designed to operate on fetal ultrasound
images. This section provides some context to their respective use cases and explains
how these models work in detail.

2.7.1 Ultrasound

Ultrasound scans (also called sonograms) are procedures that use high-frequency
sound waves to capture images of inside of the body. In an ultrasound scan a probe
emits sound waves (inaudible to humans) and detects their return as they bounce
off the object being imaged [51]. During pregnancy, an ultrasound scan is normally
carried out between weeks 18 and 22 of gestation. Images are taken of a variety
of standard scan planes; these planes are then used to calculate biometric measure-
ments such as head circumference. The measurements can be used to date the fetus
and evaluate the potential for abnormalities [9].

Recently mobile ultrasound scanners such as Philips Lumify [53] have allowed for
app based ultrasound scans that allow patients to be met at the point-of-care fa-
cilitating faster diagnosis. In the future, healthcare is likely to shift further in this
direction as technology in general becomes more mobile.

2.7.2 SonoNet

SonoNet is a CNN architecture (Figure 2.7) built to detect the 13 fetal standard
planes required by the UK FASP guidelines for mid pregnancy-ultrasound [9]. The
system can be used to analyse specific frames or to retrieve the standard planes
from a longer video of a freehand ultrasound scan. Weak supervised learning has
also been used to implement localisation. This improves scan accessibility for non-
experts. Figure 2.8 shows an example of detection and localisation using SonoNet.

20

Chapter 2. Background 2.7. ULTRASOUND ANALYSIS

Figure 2.7: The SonoNet Architecture [3]

Figure 2.8: SonoNet Localisation [3]

The training data for SonoNet consisted of 2694 2D ultrasound exams of volun-
teers with gestational ages that were between 18 and 22 weeks. These exams were
labeled by sonographers according to the UK FASP handbook. The use of a variety
of scan styles means that the data set should be representative of the range of possi-
ble styles that could be used by sonographers. The labeled data set contains 27731
images of the ”standard” planes and 6856 of other views such as the bladder, cervix
etc.. There was not an equal amount of images for each of the planes, ranging from
500-5000. This was due to some of the scans containing multiple images of the same
plane while others missed certain planes.

There were also 2638 video recordings of fetal exams, the majority of which were
associated with scan image sets. These videos were used as the sole method of eval-
uation (as they were a more realistic scenario) as well as to bridge a small domain
gap between images and video. The data was pre-processed using a series of steps
culminating in splitting it into training and test sets. 80% of the data was used for
training and 20% was used for testing.

2.7.3 Detection

Various numbers of kernels were used to produce SonoNet, resulting in: SonoNet-16,
32 and 64. All have 13 convolution layers, 2 adaption layers and then a classifica-
tion layer. SonoNet was trained using mini-batch gradient descent with 20% of the
training data used for validation.

21

2.8. ULTRASOUND BIOMETRICS COLLECTION Chapter 2. Background

Figure 2.9: SonoNet Evaluation [3]

Frames were classified based on a softmax layer producing the confidence for each
class for each frame.

2.7.4 Localisation

SonoNet uses weakly supervised localisation to learn how to identify features. In
order to generate bounding boxes a confidence map is generated from a saliency
map. A saliency map can be computed by determining how much each pixel in an
input influences the predicted class. Class score weightings are used to improve the
output of the saliency map.

A confidence map is generated by blurring the saliency map with a 5x5 Gaussian
kernel. Once the confidence map reaches a threshold, a bounding box can be gener-
ated and outputted to the user.

2.7.5 Results

Figure 2.9 shows the classification scores and frame rates that the various SonoNet
architectures achieved. From these tables we can see that there are clear diminishing
returns for larger network size. Small increases in accuracy result in a hefty frame
rate penalty.

2.8 Ultrasound Biometrics Collection

As well as plane classification, work has also been done by researchers (some at
Imperial) on calculating key metrics such as measurements of fetal Head Circumfer-
ence (HC) and Biparietal Diameter (BPD) [57]. These measurements can be auto-
matically calculated given an appropriate input image. Measurements such as these

22

Chapter 2. Background 2.8. ULTRASOUND BIOMETRICS COLLECTION

Figure 2.10: Biometrics FCN Architecture [57]

Figure 2.11: Red Ground Truth and Yellow Prediction Ellipsis for Biometrics [57]

(as well as measurements of the abdomen and femur) can be used to estimate fetal
properties such as age and weight as well as allowing early diagnosis of abnormali-
ties such as Down’s syndrome.

2.8.1 Segmentation

In the Biometrics paper, the standard trans-ventricular (TV) brain view is used as
input. A CNN that has been trained on almost 2000 images is then run on the input
with the task of segmenting two classes, brain and background. The result is a 2
channel output with one channel being the likelihood of a pixel being part of the
brain and the other the likelihood of not being part of the background (Figure 2.10).

2.8.2 Calculation

Once an image has been segmented an ellipsis is fitted [11] over the segmentation
(Figure 2.11). From this ellipsis, it is possible to calculate HC and BPD measure-
ments using simple equations. These metrics are captured in pixels so must be mul-
tiplied by the dimensions of a pixel in order to obtain the appropriate measurements
in millimeters.

2.8.3 Results

In order to effectively evaluate their model, the researchers first compared their
model’s output with the dataset’s measurements that had been annotated by the
original sonographers. In addition to this, they also conducted an Intra- and Inter-
observer study on 100 of the randomly sampled test images. This gave insight into
the variability of human measurement when comparison with that of the model. The
results can be seen in Figure 2.12. This table shows Mean Absolute Error (MAE),
Mean Error (ME) and Dice coefficients. Two experts were consulted for the study,

23

2.8. ULTRASOUND BIOMETRICS COLLECTION Chapter 2. Background

Figure 2.12: Biometrics Results [57]

with the Intra expert columns representing the difference between each of the ex-
perts’ predictions and the original recorded measurements. The mean inter expert
columns quantifies the difference between the two experts and the mean model
expert column specifies the mean difference between the model and the experts’
predictions. The table shows that the difference between the model and the experts
is approximately what might be expected from the difference between two experts.

24

3. Mobile Optimization of Models

This chapter details the work done on porting models to the TFLite format for infer-
ence on supported mobile platforms. It also outlines steps taken to optimize these
models for performance. TFLite supports interpreters on a variety of platforms, in-
cluding both Android and iOS. The model conversion and optimization portion of
this project is largely device agnostic. In order to show that this project has rele-
vance beyond that of a single model, in this chapter both the SonoNet and Biometrics
models are optimized.

3.1 Methodology and Tools

After the initial planning and research phase, the first task to complete was setting
up a productive development and evaluation environment that could serve a useful
purpose throughout the project timeline. To this end, a GitLab Git repository was
setup for source control and it was shared with the project’s stakeholders. Further-
more, access was requested to codebases and data for a handful of projects relating
to the models that were due to be converted. This was important because research
papers often lack some key implementation details and data is not published. In this
case, a lot of the ultrasound data was protected under NDA. Slack was also set up,
where it was possible to connect with others who had worked on related topics.

After the foundations were in place and experimentation with the existing models
had occurred, a Jupyter Notebook was created. This allowed rapid iteration on ideas
and easier exploration of data. Using notebooks extensively on Industrial Placement,
provided evidence for the positive impact they could make on productivity. A variety
of compute resources were utilised during the project. Initially, one of my supervi-
sor’s machines was used but later we migrated to a GPU machine in labs. This was
because it was under less load and would be less catastrophic if it crashed during the
Covid-19 campus closure. /vol/bitbucket was used to store data and the multitude
of virtual environments that needed to be created to allow running of older models.

The main TensorFlow version used was originally a nightly TF build, but this was
then upgraded to TF 2.2 when it was released some additional fixes were needed.
TensorBoard was used extensively to track model performance, along with external
packages on the Python side such as OpenCV, matplotlib and numpy.

3.2 SonoNet Conversion

Having setup my environment the project’s first objective was to convert SonoNet
to the TFLite format. SonoNet has a variety of configurations that trade accuracy
for speed so, when selecting which configuration to use, a balance had to be met.
Looking at the results presented in Figure 2.9 SonoNet 32 was the obvious choice

25

3.2. SONONET CONVERSION Chapter 3. Mobile Optimization of Models

as it had decent performance while maintaining high accuracy. Both of the original
SonoNet models used as a springboard for the project (Theano and TF 1.x based)
also defaulted to SonoNet 32 and this cemented its selection.

3.2.1 Recreating the Model

Once the specifications of the network to convert had been decided upon, the next
step was figuring out a set of steps to convert it to the TensorFlow 2.x format (a
necessary step before conversion to TFLite).

Two SonoNet versions were available, one Lasagne/Theano and one TensorFlow
1.x. Right from the start, it became clear that ML libraries had been evolving at a
breakneck pace and backward compatibility had clearly been an afterthought.

Various ways to translate the networks had been researched, but in the end it became
clear that simply recreating the network in TensorFlow 2.x and retraining would be
a much simpler and quicker endeavor than attempting to programmatically con-
vert the model. Too much had been happening too quickly in the field for backwards
compatibility in tooling to have been emphasized. The time taken to effectively write
a tool to convert between two frameworks would have been enormous and required
weeks of research into each frameworks specific design decisions. As this tool would
in all likelihood only work for a small subset of the versions of each framework, it
would not have been a useful allocation of time.

Fortunately, the SonoNet structure is fairly simple and it was easy to quickly build an
equivalent network in TF 2.x (Figure D.1). At this point porting the weights from the
original model was again researched. Both models had the same number of parame-
ters and the same structure. However, there was an issue with the interface between
Theano and TF. Specifically the weight ordering was not the same when linking a
convolutional layer and a dense layer.

Converting the TF 1.x weights was postulated, but this would also have been chal-
lenging and as they were not the weights used for the original paper, it would not
have provided a benefit in evaluation. In the end it was decided that the best course
of action was to retrain the newly constructed model.

3.2.2 Data

In order to retrain the new model, data as close that that used in the original paper
was needed. A hdf5 file was available that contained this data, but it was configured
in a rather confusing manor. This led to a week of wasted training time as the model
was effectively, accidentally being trained on primarily background images. While
this did still give the opportunity to build the training and testing pipeline, it was
not ideal to have spent valuable time training on the wrong data. The results of this
incorrect training can be see in Figure 3.1.

26

Chapter 3. Mobile Optimization of Models 3.2. SONONET CONVERSION

Figure 3.1: SonoNet Loss and Accuracy Trained on Incorrect Data

Figure 3.2: SonoNet Loss and Accuracy Trained on Correct Data

Once the data error was corrected, the data augmentation specified by the SonoNet
paper was implemented. A Python library named imaug [42] was used to achieve
this without having to write large amounts of custom code.

The original SonoNet paper used a large amount of background frames for their
testing. However, during this project we were unable to clarify which sections of
the dataset were used for this evaluation. As training an identical model was not
the pure goal of this project, it was agreed that the discrepancy in the dataset while
unfortunate would not have too large an impact. Each class had a fair amount of im-
ages and so should have been representative even if there was a significant mismatch
between the two datasets. This discrepancy did result in a much lower support for
the background class, but the discrimination between planes was still as expected.

3.2.3 Training

Minibatch gradient descent was used for training in the original paper. However,
TF 2.x is structured around epochs and so, to replicate this approach a large epoch
count was chosen, while still sampling mini-batches with a replacement strategy.
This emulated the original paper as much as possible. Using the same minibatch size
of the original paper and 576 batches per epoch (epochs are an arbitrary amount of
minibatches): 200 epochs (About 24 hours of training) was the optimal train time.

Unfortunately, at this point a memory leak during tensor creation occurred. This
was worked around by using an older TF build before migrating to a new release
when it became available. At last a decent model was trained and TensorBoard was
used to monitor the training. This is shown in Figure 3.2.

27

3.2. SONONET CONVERSION Chapter 3. Mobile Optimization of Models

3.2.4 Pruning

When looking to increase a model’s baseline performance, the most intuitive ap-
proach is to reduce the model’s complexity and as such the number of calculations
required during inference. Doing this without majorly refactoring the model is know
as pruning.

TensorFlow helpfully has an entire sub-site dedicated to model optimization [29],
but as with so many only resources utilised during this project, it was not up to date
with the latest information. After piecing together clues to figure out its inner work-
ings, Batch Normalization during pruned model creation was found to be the issue
[13]. Fortunately, this was fixed in TF 2.2.0 release a few days after the issue arose
and Google provided useful support on GitHub during this time. The pruning library
works by automatically working out which layers it is capable of pruning. There are
a number of parameters in the function which allow finer grained control of how
exactly you want pruning to occur.

The TensorBoard output of a 14 epoch prune is shown in Figure 3.3. These graphs
show accuracy starting strong, but then dropping as pruning kicks in and sparsity
increases. Then after the initial drop, even as sparsity continued increasing (till flat-
tening out at 50%) the model was able to regain its accuracy as it continued training.
As the model sparsity increased the activation threshold for pruning also increases
and this is shown by the third graph.

Despite having implemented pruning, no performance increase was observed. Scour-
ing both the TensorFlow documentation and GitHub, a feature request calling for
the inference engine to support performance improvements enabled by the sparsity
introduced by pruning was found[26]. This issue and further comments on other
issues like it suggest that full support for pruning will not be implemented until at
least Q3 2020. As such we decided to cease our work on pruning (except for a short
evaluation of the current state) and move on to other potential performance gains.

3.2.5 TFLite Conversion

Once a Keras model was built, it was easy to perform a direct conversation to TFLite.
There were often memory issues with conversion due to a limited amount of GPU
RAM available, but these could normally be solved with a Python kernel restart. On
a few occasions it was necessary to instruct TensorFlow to use the CPU not the GPU
as GPU ram was more limited.

Testing the converted TFLite file was possible with 4 lines of code by using the python
TFLite interrupter. The results were identical results to the TensorFlow Model.
from tensorflow import lite

converter = lite.TFLiteConverter.from_keras_model(model)

tflite_model = converter.convert ()

open("model.tflite", "wb").write(tflite_model)

28

Chapter 3. Mobile Optimization of Models 3.2. SONONET CONVERSION

Figure 3.3: SonoNet Pruning Accuracy, Sparsity and and Threshold

There are multiple optimisation parameters that can be used to configure quantiza-
tion. They are configured by setting properties of the converter object as follows:
Float 16 Quantization

converter.optimizations = [tf.lite.Optimize.DEFAULT]

converter.target_spec.supported_types = [tf.float16]

Dynamic Range Quantization

converter.optimizations = [tf.lite.Optimize.DEFAULT]

Full Integer Quantization

converter.optimizations = [tf.lite.Optimize.DEFAULT]

converter.representative_dataset = representative_dataset_gen

In order to make measured decisions on the best parameters to optimize the SonoNet
model’s usability, it was necessary to evaluate all four possible settings. For speed
and reproduction reasons the ideal evaluation environment would have been the
TFLite Python interpreter running on a desktop machine. However, this threw up
several major issues. The first being that the TFLite Python interpreter does not cur-
rently support the GPU. This is not mentioned in any documentation, but there are
multiple comments online regarding the lack of mainstream support for the non mo-
bile interpreter. Without GPU support, evaluation of runtime improvements would
not be fair. Secondly, support for quantization is also limited on the interpreter.
Dynamically quantized models ran 6x slower on the Python interpreter and integer
quantized models ran an unbelievable 190x slower than a non quantized model.
This is due to many operations in TFLite (specifically around quantization) only be-
ing optimized for ARM processors using ”ARM Advanced SIMD (Single Instruction
Multiple Data)”, also known as NEON. While some operations have been ported to

29

3.2. SONONET CONVERSION Chapter 3. Mobile Optimization of Models

x86 correctly, many require serial processing and slow memory access requests.

While unable to effectively use the python interpreter to evaluate speed, it was pos-
sible to use it to evaluate the accuracy impact of the quantization parameters. There
was still an issue with full integer quantization though. A 160x penalty was simply
too high and would have resulted in processing F1 statistics for the test data taking
about a week of solid processing. This was simply too long to rely on a machine
staying on for so an alternative approach needed to be found.

The full raw dataset was 12GB so it would have been impractical to transfer it to
a mobile device. Finding and exporting a specific subset would have also been chal-
lenging mapping the mobile output to the original data would have posed a chal-
lenge. Instead the dynamic nature of Python Notebook’s was used to setup a web
server that interactively served the test image pixel values encoded into binary, while
reading a GET header that denoted the previous images classification. Combining
this with a quick Android loop and connecting a phone to the Imperial VPN and
pointing it at the notebook, allowed the phone to classify the images using the in-
teger quantized model in around 2 hours rather than the week that it would have
otherwise taken.

Figure 3.4 shows the effects of the various quantization parameters of the model
being run on the Android TFLite interpreter of a local Galaxy S8 on native inference
time. There are a couple of interesting takeaways from this table. The first is that,
while predictions are slightly different, accuracy is not noticeably reduced by quanti-
zation in the SonoNet model. A full breakdown and confusion matrix for full integer
quantization can be seen in Figure C.1. Given this fact accuracy conscious quantiza-
tion techniques such as quantization aware training were not pursued further.

Using the table shown in the quoted figure, it was clear that the best choice for
quantization was float16 quantization as it still enabled GPU processing while halv-
ing model size and maintaining accuracy. In a production application it would make
sense to include a full integer quantization model as well as float16 model as if GPU
inference was not supported then the additional quantization provided by full inte-
ger would result in a significant performance boost while only adding 50% to model
size. Both models combined are still only 75% of the file size of the not quantized
model.

3.2.6 Localisation

In the SonoNet paper a specific method is discussed that uses saliency maps to lo-
calize features in an unsupervised manor. While the details are laid out in the paper,
without a working example it proved to be infeasible to replicate in this project.
Some preliminary work was done, looking at using feature maps based on pixel ac-
tivations, but the results were not consistent in the tests that were carried out. Most
activated regions often correlated more with negative space than with the fetal fea-
ture itself. An algorithm attempting to work out a bounding box might have been

30

Chapter 3. Mobile Optimization of Models 3.3. BIOMETRICS CONVERSION

Quantization Model Size CPU (ms) GPU (ms) Average F1
1 Thread 8 Thread

No Quantization 14523KB 839.0 348.4 91.3 0.93
Float16 7277KB 806.8 321.8 82.9 0.93

Dynamic Range 3650KB 650.1 309.4 N/A 0.93
Full Integer 3722KB 547.3 191.2 N/A 0.93

Figure 3.4: SonoNet 32 Quantization Results

possible, although it would have been a slow and plane specific process to imple-
ment. In conversations with others working in the area it became clear that more
modern research was surpassing the methods originally outlined in the SonoNet pa-
per and so it was not considered to be critical to copy this localisation technique.
Instead efforts were focused on the Android side of localisation, building out en-
abling tools that would not just support localisation but also object detection and
segmentation.

3.3 Biometrics Conversion

Once SonoNet had been converted and and work was underway on the Android
side of the project it was suggested that the project might also benefit from con-
verting ”Head Biometrics in Fetal Ultrasound” [57] to TFLite. This model was more
complicated than the SonoNet model as it was not sequential (some layer outputs
were consumed multiple times in the model). The model segments an image of the
brain; then an ellipsis can be fitted to calculate measurements using classical meth-
ods. While we briefly looked at how a more modern end to end model might work
the point of this project was to convert existing models, so we did not go in that
direction.

Using a PyTorch implementation of the paper’s model to recreate a TF 2.x version
was quickly completed. As the model is not sequential, instead of adding layers to
a model object and then compiling the model, instead we initialize the layers which
will be used and then define a forward pass function, which takes an input and
passes it though. The final step is defining the model by passing it an input layer and
the result of the forward pass function applied to that input (Figure D.2).

3.3.1 Data

A hdf5 file containing pixel intensity values was used for training, validation and
testing on ultrasound images (all of dimension 384x320 pixels). Also available were
ground truth segmentation masks of these images as well as the isotropic (same size
vertically as horizontally) pixel sizes in millimeters and ground truth HC and BPD
measurements in pixels. The paper implemented data augmentation in the form of
flipping horizontally so this was also added to the training environment.

31

3.3. BIOMETRICS CONVERSION Chapter 3. Mobile Optimization of Models

Figure 3.5: Segmentation Loss and Accuracy

Quantization Model Size CPU (ms) GPU (ms) Average Dice
1 Thread 8 Thread

No Quantization 30833KB 17703.5 9935.3 841.0 0.982
Float16 15434KB 17258.0 8420.3 833.1 0.982

Dynamic Range 7748KB 10018.6 3768.0 N/A 0.964
Full Integer 7825KB 7911.2 2534.5 N/A 0.959

Figure 3.6: SonoNet 32 Quantization Results

3.3.2 Training

The original paper used weights from training on ImageNet before training on the
ultrasound data. However, this would have added additional complexity to the train-
ing process and it was deemed non essential to the project. Instead we directly
trained on the data and found 100 epochs (5 and a half hours training) to be a good
stopping point, shown in Figure 3.5.

The model was quickly tested on the SonoNet brain TV data to qualitatively in-
spect the results. The conclusion was that the model seemed to work but was not
as accurate and there were much more prevalent segmentation artifacts. This result
paved the way to potentially running both SonoNet and Biometrics if an image is
classified as Brain-TV by SonoNet.

3.3.3 TFLite Conversion

As with SonoNet, once a working TensorFlow model had been built, converting to
TFLite was trivial. Using a similar evaluation technique as described for SonoNet,
with the results in Figure 3.6, the dice score remains relatively unchanged through-
out the various quantization configurations.

As with SonoNet it is clear that the best course of action is to use float 16 quantiza-
tion where a GPU is available and full integer quantization where it is not. Packing
both into an APK file is still feasible so that was the decided final configuration.

32

Chapter 3. Mobile Optimization of Models 3.3. BIOMETRICS CONVERSION

3.3.4 Calculation

After the neural network has segmented the image of the brain, the final step is to
calculate the HC and BPD measurements. This is done in the paper by fitting an
ellipsis to the segmented image using the least squares method.

Unfortunately the paper was fairly vague on the exact specifics of this approach, so
using an external library seemed to be the best solution. The OpenCV Python library
was first used to find the segmentation mask contours (the borders of contiguous
regions). Then the largest contour was taken (assuming only minor segmentation
artifacts this is always going to be the brain) and OpenCV was again used, to fit an
ellipses to this contour. This approach ignored disjointed segmentation artifacts and
appeared to work well given the data that was available. The code for ellipsis fitting
is as follows:
z = model.predict(data).argmax(axis=-1)

image , contours = cv2.findContours(z.astype(np.uint8),cv2.RETR_TREE ,cv2.

CHAIN_APPROX_SIMPLE)

c = max(image , key=lambda item: len(item))

(xx , yy), (minor , major), angle = cv2.fitEllipse(c)

OpenCV returns the major and minor axis radii of the ellipsis in pixels (a and b),
which can then be used along with the isotropic pixel size in millimeters (sxy) to
calculate BPD and HC in millimeters using the following formula:

BPD = bsxy

HC = π(a+ b)(1 + 3h
10+
√
4−3h)sxy

where h = (a−b)2
(a+b)2

Bringing together the segmentation model and the ellipsis fitting allows an image of
the brain to be used to calculate the BPD and HC as detailed in the original paper.

33

4. The Analysis App

Parallel to the process of converting and optimizing models is the Android app, which
allows these models to analyse the output of other applications. This app is the major
novel contribution of this project. In order to achieve my objectives, an application
that would be able to process the screen and output classifications needed to be built.
Furthermore, it was necessary to research techniques to overlay bounding boxes and
segmentation colouring without blocking the capture of the original underlying im-
age. The final task was to build a process for extracting captured planes for viewing
by an expert.

4.1 Methodology and Tools

Android Studio was chosen for this project as it is the standard IDE for Android.
Kotlin was chosen to be the the main Android language of this project for a number
of reasons, but mainly due to Google (the maker of TFLite and Android) pushing the
language over Java in recent years [6]. In addition to this many of the more recent
TFLite examples are written entirely in Kotlin. Despite having very little experience
with Kotlin in the past, Kotlin was easy to pickup and a breeze to use, incorporating
many of the best aspect of Java, while fixing some flaws.

APKs were built and tested locally on the whole. Only part of the evaluation was
performed on cloud devices in order to evaluated broad performance. Due to this a
full cloud build pipeline was not needed and deployment was done manually. Test-
ing was considered but beyond a few very basic tests it was not widely performed as
only a single developer was working on the App and the codebase was changing too
rapidly to make writing tests a productive endeavor.

4.2 Android Foundations

This section deals with the general technical barriers that had to be overcome to
enable models to preform as intended. Namely how to capture the screen, how to
output results intuitively and how to run models as fast as possible on less powerful
processors.

4.2.1 Screen Capture

The first challenge we face when analysing other running apps is obtaining a stream
of bitmap images from the devices screen as fast as the system allows. Ideally one
image for each updated frame. On Android this can be achieved with a MediaPro-
jection API call, but (reasonably so) special permission are required for this. Every
time we wish to record, we must first instruct the system to ask the user if recording
is acceptable (with an option to auto allow) and wait for the decision (Figure B.3).

34

Chapter 4. The Analysis App 4.2. ANDROID FOUNDATIONS

Once permission has been granted, capturing frames at a reasonable pace (greater
than a frame or two a second) required creating a new thread. This thread loads and
processes images from the image buffer exposed by the MediaProjection API. When
creating this buffer, the caller is allowed to specify its size and often on lower end
devices the app was liable to be killed for memory if this buffer size was too large.
Conversely if it was too small, then it could be depleted, causing an app crash. A
buffer size of 3 was the smallest that could reliably work without the app crashing.
When using threads there was an issue when a reference to the image capture object
was destroyed. The system had garbage collected the image capture object. As the
object was gone it stopped notifying the image capture thread that there were new
images. This stalled frame capture and processing. Fortunately, simply moving the
image capture objects declaration outside of the function was enough to fix this issue.

When images are available other information (including the actual capture times-
tamp is also obtainable) and this would turn out to be useful. While not attempting
an implementation research was done into saving the stream of images as a video or
broadcasting it as a live feed. It should be possible to also attach a MediaRecorder
object to the same recording surface that is used for image capture. This would allow
the contents of the screen to be streamed over the network.

4.2.2 Screen Overlay

The second obstacle to overcome was the ability to output data intuitively and in
a timely manor to the user without being in the foreground. One approach to this
would have been to update a system notification with information. This would have
necessitate the user swiping down from the status bar to see the app’s output and
would have no possibility for realtime annotation or augmentation. Instead we make
use of an innovative Android feature, the screen overlay. Just like screen recording,
a special permission is required for an app to be permitted to overlay over other
apps. This has to be granted in the settings activity (Figure B.3). The app first makes
a system call to check if we have the permission. If we do not, we can direct the user
to the exact page in settings where they are able to grant it.

Once it has been granted we have the power to add an arbitrary number of windows
to the screen. There are specific window flags which determine whether a window
is interactive or not and the order in which windows are added determines which
window receives input first. Newer windows have the potential to block older win-
dows receiving this input. This is a very powerful tool which allows everything from
opaque interactive UI elements to semi-transparent, passive overlays which blend
with the screens content. The base overlay for this app is an opaque box centered at
the bottom of the screen which contains buttons, areas for text output and a space
for an image output. The majority of the screen is left free from overlay with the
vast majority of the overlain app still interactable (Figure B.4).

35

4.2. ANDROID FOUNDATIONS Chapter 4. The Analysis App

4.2.3 Processing Pipeline

A basic processing pipeline was the key to link the input and the output portions
of the app. This processing needed to happen in a Service so it could run in the
background. One challenge to achieving this was the Android permission request
structure. In Android, to request permission to view the screen the user must accept
a system dialog that will make a callback to a specific Activity method with a speci-
fied result code. This callback contains an intent that can then be exchanged for an
object allowing screen recording. The issue is this object can not be passed to the
service as is not serializable, neither can the callback signal the Service directly as
it is not an Activity. Fortunately Services can be started with Intents. This makes it
possible to add the callback’s Intent to an Intent created to start the Service. This
intent can then be passed to the system to obtain the ability to record.

To demonstrate that the pipeline was working a simple ”red counter” model was
implemented. This model inefficiently iterated though the pixels on screen and clas-
sified the image as ”Red” if over half the pixels had a large red component or ”Not
Red” if not. This text was written to the screen overlay along with the FPS rate of
classification. While this model was not complicated it formed the base for all future
models and demonstrated that the projects aims were possible.

4.2.4 View-finding

While occasionally the user might desire analyse the whole screen, in most cases
only a specific portion of the screen would be relevant to the analysis task at hand.
In an ultrasound use case a large section of the screen might be UI elements. The
actual analysis should only take place on the window dedicated for output.

How could we allow user flexibility in scale and location (aspect ratio is often fixed
by the model so we keep it fixed as well) of the input view to be analysed? The
approach taken was to add a translucent green box that could be dragged around
and resized before being hidden. This box would be used to crop the image obtained
from the system and this cropped image would be passed into the model. The user
guide (Appendix A) explains in further detail how to manipulate the box.

4.2.5 Overlaying on the Input

The Android app makes use of an opaque intractable overlay for input and output.
More complex analysis often involves either identifying and locating specific objects
or segmenting regions of an image. While this is provided for in the form of a ”pic-
ture in picture” image in the control box, it is a very small mirror of the screen. It
would be difficult to read the object classifications in an object detection model as
they would be very small. A far better solution would be drawing output directly
over the input at the real scale in the real location.

Unfortunately, this approach has an inherent issue. If we draw an overlay on the

36

Chapter 4. The Analysis App 4.2. ANDROID FOUNDATIONS

screen then it will be captured later when input is being captured for analysis. This
would be liable to mess up our processing and produce garbage output. There is
a mechanism in Android for disallowing screen capture that is made use of in apps
such as mobile banking. It allows a developer to mark a surface as ”SECURE”, black-
ing it out in screenshots and recordings. This is useless in this context though, as
blocking out our overlay would just leave a black box over the input image. No apps
currently on the market appear to advertise this capability and we found no solu-
tions to this challenge online.

The first approach towards tackling this would only work if the input was a black
and white image. In this case a 50% transparent red box could be drawn over the
screen. Pixel intensities could be sampled using the theoretically unaffected blue or
green components in order to process the original black and white image. Thinking
in terms of information loss there would not be a large amount of information loss
when a transparent overlay was drawn as the output pixels depended on both the
original image and the overlaid image. We can see that it should be possible to re-
verse an image overlay.

While not explicitly mentioned in the documentation, by reading up on various stack
overflow questions the formula which Android uses to calculate each pixel colour
components was discovered. With p as the output pixel, o as the original pixel, n as
the overlaid pixel and a as the overlaid alpha (between 0 and 255) then:

p =
o(255− a) + na

255

In order to work out the original pixel value given the other variables we can rear-
range to get:

o =
255p− 255n

255− a
or

p− n

1− a

255

We can then work out how much information about the average original pixel is lost
for varying levels of overlaid alpha using this information. Given an alpha a for the
overlay, then 255− a is the range into which the original pixel must be compressed.
This would mean that for a 50% transparent overlay the 255 possible pixel colour
component intensity values would need to be compressed down to only 128 values.
This implies that 50% of the time a pixel would be rounded to ±1 of its original
value, leading to an average loss of 0.5 per pixel component.

If however an alpha of 253 was used then the original pixel would be compressed
into only a range of 2 (either 0 or 255). This means that 253 of the possible inputs
would be incorrect. We can form an equation to work out how far on average we
would be from the correct pixel depending on the alpha of the overlay being used.

d =

⌈
1

2

(
256

256− a
− 1

)⌉
a

256
for 0 <= a <= 255

37

4.2. ANDROID FOUNDATIONS Chapter 4. The Analysis App

Figure 4.1: Average Pixel Component Information Loss by Overlay Alpha

Plotting a graph of this (Figure 4.1) we can see that the information loss starts really
kicks in between an alpha of 220 and 240 and it rapidly spikes. This is good news
as it means that even relatively opaque overlays can be used while still maintaining
enough of the original images information to reverse engineer its approximate pixel
colour components to a decent degree of accuracy.

Once we had shown that restoring the original image should be mathematically pos-
sible we needed to implement it in an algorithm. The key to all of this was timing.
As multiple threads are involved the current overlay might not be the overlay that
was being overlaid in the image currently being processed. There might have been
a draw update since then. Attempting to subtract the wrong overlay from an image
would not just not work, but would alter the image even more from the original pre-
overlaid state. In order to match images with their overlay it was necessary to save a
queue of overlay images and the time that they were drawn. Then when processing
an image we can work out which overlay image was on screen at the timestamp at
which the image was taken. We can also delete all overlays from before that point
from the queue and use the selected overlay that was onscreen to obtain the original
image. This worked for slower FPS rates but there was an issue with faster models.
The time at which an overlay is told to be drawn, is not the time that it is actually
drawn. There is a delay.

To solve this we can delay frame processing until the draw update completes by
using a Future [16] that would be set itself to the current time via a lambda. This
lambda would be posted to the UI thread after instructing the overlay draw and then
the futures value would be requested in the image processing thread. This results
in a Hard FPS cap (listed for various devices in Figure 4.2). There should be a way
to remove this cap by utilising multiple threads but it would get rather fiddly. There
were some occasional issues on the S10 and Note10 even with this technique and
sometimes the overlay would slip though. This is likely due to the increased FPS of

38

Chapter 4. The Analysis App 4.3. MODEL IMPLEMENTATION

Device FPS Limit
Galaxy Note10 6.82

Galaxy S10 8.05
Galaxy Tab S4 1.97
Galaxy S8 * 3.68
Nexus 5X * 1.30

Figure 4.2: Real Time Overlay FPS Limit

these devices leading to an increased likelihood of the race condition triggering.

Once this process was working, in order to achieve performance gains a ByteBuffer
was used instead of the array iteration originally taking place. This resulted in a
significant speed up but there was still considerable overhead to reversing an over-
lay. Drawing an overlay is hardware accelerated and can run on the GPU. It might
be possible to perform the overlay un-drawing on the GPU as well. We expected it
might be possible to approximate the pixel maths using standard draw commands
but were ultimately unable to get any of the equations to match.

4.3 Model Implementation

After the basics of the app were built we were able to move onto getting real models
working on Android. General models that Google used in TFLite examples were
easier to implement so that is where we will start before refocusing on the medical
models which we have previously covered.

4.3.1 Image Classification

The first CNN that was hooked into the pipeline was Google’s MobileNets for clas-
sification of the ImageNet challenge. This model is freely available to download
from Android resource pages and there are even helpful demo projects with source
code. These show how the model hooks into the output of a devices camera. Using
these examples to learn how model interaction worked, it was easy to modify it to
instead to use the bitmaps generated from the screen by the processing pipeline im-
plemented earlier. The end result worked perfectly, displaying the classification for
the object currently on the screen and validating the concept of running a CNN on
the screen contents of a device.

4.3.2 Object Detection

In order to test the work done on drawing over input, an Object Detection model
was implemented. Taking a more advanced version of MobileNets (also published
by Google) that also incorporated object detection into the mix, the app would not
just return a single classification but instead a list of boxes, classifications for the

39

4.3. MODEL IMPLEMENTATION Chapter 4. The Analysis App

objects in the boxes, and certainty of each boxes classification. As we also had an
example of this model being used with Android it was also fairly easy to configure it
to work with this custom pipeline.

The most confident classification was used as the text output for the main box, but
in addition to this, a transparent bitmap of the same size as the input was created.
Using the android Canvas API to draw semi transparent red boxes with the same co-
ordinates as outputted by the model, it was possible to localize the detected objects.
Then, by drawing text on the bitmap beneath the boxes with the box’s classification
it is possible for us to read the classification of each box. Passing this bitmap as an
overlay into the processing pipeline resulted in a complete success.

There was one slight issue with the way that overlapping boxes were drawn. Due to
the implementation of overlaps in Android, overlapping boxes caused issues with the
formula to obtain the original image, due to the way that the semi transparent boxes
were rendered. The PorterDuff.Mode [21] setting of canvas painting in Android de-
scribes how images are blended. The default setting also blends alpha values which
means that two semi transparent objects become less transparent when they over-
lap. This throws off the formula to find the original image. By using the ”DST ATOP”
mode, we can ensure that the resulting blended alpha is fixed. An example of this
model in action can be seen in Figure B.4.

4.3.3 SonoNet

Once these off the shelf models had been hooked into the pipeline the next step
was to do the same with the first medical model, SonoNet. SonoNet was different
in that it only had one channel input not a three channel input like MobileNets.
SonoNet takes a gray-scale image but bitmaps are in the argb (alpha, red, green,
blue) format. As gray-scale images should have identical RGB values, it was possible
to simply chose to take the red value as the single channel. Previous models had
been using the helpful TensorImage class to do most of the buffer manipulation,
but it only supported 3 channel input so some of its functions had to be rewritten
for 1 channel. After doing this a correct input was able to be passed into TFLite
for processing. The output was set to the classification and the model was finally
working.

4.3.4 Biometrics

With SonoNet implemented, the next task was implementing a second medical model
to show that this project could be more widely useful than a single use case. Taking
the converted Biometrics model which had been converted and starting the process
of hooking it up to the pipeline. The first steps were very similar to SonoNet in that
the input was 1 channel, but for this model it was the output which posed a new
challenge.

40

Chapter 4. The Analysis App 4.3. MODEL IMPLEMENTATION

The Biometrics model outputs two values for each pixel, one representing the con-
fidence it is the brain and one that it is the background. This information needed
to somehow be converted into a measurement. By performing similar operations to
those done in Python, we can obtain a single channel by taking just one of the two
output channels and rounding it to get a 1 or 0. To enable drawing the resulting
segmentation a transparent bitmap image was generated and then each of its pixels
were set to be either green or not green based on the segmentation. This image
could then be passed into the pipeline and drawn on the screen.

The next step was to fit an ellipsis around the segmentation and then calculate major
and minor axis lengths. To achieve this OpenCV was used, as had be done in Python.
This was challenging though as the OpenCV android library requires a fairly fiddly
installation process to allow calling its native API via Java/Kotlin. Once this was
done we were able to find the contours of the segmentation map and as with python
take the longest contour to represent the brain.

Using OpenCV to fit an ellipse around around this contour allowed the needed radii
to be captured. The ellipsis centroid and angle (also provided by OpenCV) were use-
ful to to draw vertical and horizontal lines on the segmentation. This demonstrated
the exact measurements being taken, providing confidence to the end user that the
metrics were correct (Figure B.6)

As there was no way to know what the isotropic pixel size being displayed would
be, it was not possible to directly output HC and BPD measurements. Instead it
was best to output the length of the radii as a percentage of the viewfinder box that
they were measured in. This would then allow end users to fit the view finder box
to their probes output. The user should know the dimensions of the probes out-
put box in millimeters and so this information could be used (given the formulas
in the previous chapter) to calculate HC/BPD. A box to allow users to input pixel
size so that calculations could be performed by the app might be useful, but finding
out how useful this might be in a clinical environment should be researched be fore
implementation.

4.3.5 GPU Delegate

While the all intended models were now working, their performance was not yet op-
timal. To this end the default setting of the pipeline was reconfigured to use a devices
GPU if available. Switching to the GPU had massive performance improvements as
seen in Figure 3.4. The pipeline was also instructed to use an equivalent number of
CPU threads to device cores if running on the GPU was not supported. This also saw
a significant performance improvement. Finally reasarch and testing was perfomed
on the using the NNAPI delegate rather than directly using the GPU, but according
to Google’s TFLite benchmarks [20] and supported by the small amount of testing
carried out, the NNAPI was not yet more optimal at inference than the GPU.

41

4.4. THE FINAL APP Chapter 4. The Analysis App

4.3.6 Style Transfer

While the medical applications of this project’s Android app stand on their own feet,
it was felt that there was the potential to easily show the potential for future work
by implementing a non medical model. As any work would take away time from the
main section of the project a few days were scheduled to built something cool that
would show of the full capabilities of the app.

Some potential non medical ideas included making a ”treasure hunt” game based
on image recognition or possibly some sort of Google Lens style app that was con-
stantly running. In the end a simple style transfer algorithm was chosen as it was
readily available online [12] and it was visually appealing. The implementation was
largely based off the work previously done on segmentation so did not require a
huge amount of alteration of the pipeline. The objective of this tangent was to show
that the app could perform a more general task. It is capable of capturing a user
selected portion of the (or the whole) screen, running a CNN on it and outputting
the results blended with the original image. All while also being able to reverse the
overlay on the next frame in order to continue the process without the output in
frame. The results were impressive and can be seen in Figure B.8.

4.4 The Final App

Once the SonoNet model was working, there was also a desire to add some key addi-
tional features to it. One key objective was to augment the pipeline to automatically
tick required images off a checklist as captured. Then once all images had been cap-
tured, to put these in an email that could be sent to an expert.

To do this detected classes were tracked and the bitmap corresponding to the highest
confidence of that class was stored. A mechanism for users to see the list of captured
classes was added. Classes were added to this list once a frame had met a minimum
threshold value for that class. Users could then choose to send the images as an
email using their favourite email app with a single click of a button. The images
would then be added as attachments and the email app opened.

Another additional task was the task of combining the SonoNet and Biometrics
models so that the Biometrics model would segment all ”BRAIN-TV” classed planes.
Fortunately due to the architecture of the app these two complex models could be
cohesively combined with ease. Both models could even use the GPU at the same
time so there was no need to relegate one to the CPU.

The non medical portions of the app were also published in an unlisted form to
the Google Play Store to allow for easier distribution to potential testers. Google is
currently taking a long time to review new apps due to the Covid-19 situation but
after a week they approved the app for internal testing.

42

5. Evaluation

To conduct a holistic evaluation of the project, it was necessary to consider both its
individual components in addition to its final manifestation. The evaluation begins
with a review of the TFLite conversions in Python. This is followed by an examina-
tion of the specifics that comprise the Android wrapper app. Finally, the end to end
app is both qualitatively and quantitatively scrutinised.

Unfortunately, due to the Covid-19 outbreak, it was not possible to test the app
in a clinical setting. This has resulted in a more limited qualitative evaluation than
was originally intended. However, real user feedback from friends and family mem-
bers has been obtained and a video of the SonoNet app was shown to a group of
sonographers to appraise.

5.1 Model Optimization

In this section we will analyse how the converted TF 2.x model recreations (and their
derived TFLite models) compare with the models that were evaluated in their orig-
inal papers. As mentioned in the implementation section, while ideally we would
have used the weights used in the original papers, it was not feasible to use them in
the time frame of the project. Instead the models were rebuilt in Keras and retrained
using as close to the same data as possible. This approach was advantageous as it
shows that this process can be done even if the original model weights are not pub-
lished. Research papers are often lacking useful implementation details that would
be very helpful to speed up the optimization process though.

Both models that were converted had the same number of trainable parameters as
the template models and the structure of the layers was the same. The only differ-
ences might be in the “under the hood” implementation of certain operations, due
to the random nature of data selection during training or due to inconsistencies in
training data.

5.1.1 SonoNet TF 2.X

We start the evaluation with a comparison between the Theano/Lasagne SonoNet
model and this project’s TF 2.x model. The results can be seen in Figure 5.1 and
Figure 5.2 (see Figure 2.9 for the paper’s F1 score). At first glance the TF 2.x model
seems to perform much better across the board then the original model, with an F1
score of 0.93 vs the paper’s 0.80. This was an issue as such as large difference in
accuracy could not be explained by simply a different framework. Both models were
of the same architecture. We might at first glance assume that a mistake had been
made in calculating these metrics, but closer inspection of the confusion matrices
reveals the key difference between the two trained models.

43

5.1. MODEL OPTIMIZATION Chapter 5. Evaluation

Both models have a very similar shaped confusion matrix with a strong diagonal
and almost no erroneous classifications outside of 2 key areas. The first area being
the 3VV and RVOT classes. Neither model is able to distinguish between these two
views of the heart very well. This makes perfect sense as these are very visually sim-
ilar views. The second area where the models fall down is the background. If either
model miss-classifies, it is most likely to be related to the background class. This also
makes sense due to the nature of ultrasound scans. Often background images may
still contain components of the standard planes as the probe is moved around.

It is with the background class that the discrepancy in F1 score can be seen. Due
to differences in data the background set that the TF 2.x version of SonoNet was
trained and tested on is considerably smaller than the original papers background
set. The result of this is that the original paper’s model is going to include a fair
amount more images labeled as background which are very close to those of the
other classes. This will have effected both training and testing with the end result
being both more background class images classed as standard planes and more stan-
dard planes classed as background. This would impact both precision and recall,
resulting in a reduced F1 score.

As is elaborated on in the implementation section we can see this discrepancy in the
data from the outset. In the end however, it can be seen from the confusion matrix
that the TF 2.x model was just as good at classifying the non-background standard
planes. If the input data was not representative enough of the background then the
result would be an over eagerness to classify a plane and an under-classification of
the background. This would ideally not have too large an impact as the class likeli-
hood of a real plane of that class should be greater than that of a background plane
so the images selected to save from the scan would still be the correct images. As the
model could easily be trained with new data in the future and the statistical impact
on the end result was not too broad, more time was not spent looking at this.

In addition to accuracy, we can also compare the frame rates of the three models
we can now evaluate, in order to evaluate differences in framework performance.
To generate the data for this comparison, a lab machine running a GeForce GTX Ti-
tan Black GPU with the Nvidia 435.21 Driver was used. To obtain the Frame Rate
for the original paper’s models their sampling code was modified to also output a
frame rate. As well as this, we need to ensure that images are processed sequentially
rather than in batches as this is the scenario in which the models would be used.
The results can be seen in Figure 5.3.

This data shows some interesting variation. Theano and TF 1.x appear faster than TF
2.x on the GPU (possibly due to the eager execution changes in TF 2.x) however TF
2.x outperforms on the CPU. This comparison is insightful and shows just how much
the framework (or at least a framework’s default configuration) can effect FPS.

44

Chapter 5. Evaluation 5.1. MODEL OPTIMIZATION

Figure 5.1: Old and New SonoNet 32 Stats

45

5.1. MODEL OPTIMIZATION Chapter 5. Evaluation

Figure 5.2: Old and New SonoNet 32 Confusion Matrices

46

Chapter 5. Evaluation 5.1. MODEL OPTIMIZATION

Classification FPS
GPU CPU

Theano 106.1 2.13
TF 1.0 103.6 6.55
TF 2.0 63.9 8.66
TFLite N/A 15.30

Figure 5.3: SonoNet 32 Desktop Inference FPS

5.1.2 SonoNet TFLite

Looking again at Figure 5.3 we can see that TFLite runs approximately twice as fast
on a desktop CPU as the TF 2.x model does. However, notably the TFLite python
interpreter does not support running on a GPU and this means that a fair compari-
son between the two frameworks on a desktop simply is not possible. The GPU (as
expected) vastly outperformed all CPU runs. In the final section of this chapter we
will cover runtime performance on device and so we will not touch on it here.

We find accuracy of the TF 2.x and TFLite model’s to be identical as expected with-
out quantization and the effects of quantization have already been evaluated during
its implementation in order to find the ideal parameters.

5.1.3 Biometrics TF 2.x

The other model that was converted and optimized for Android was the Biomet-
rics model. Unlike SonoNet which was concerned with classification this model is
ultimately attempting to output a continuous length. To this end it was evaluated
differently and so we will also evaluate the converted in this way by using mean
absolute error (MAE), mean error (ME) and dice score.

First looking at the results in table form (Figure 5.4), BPD and Dice Scores seem
to be fairly similar between the models, but HC seems to be much less accurate for
the TF 2.x Model. Looking at the Bland-Altman plots confirm this (Figures 5.5 and
5.6), with the HC plots being much more spread out than the BPD plots.

When we look closely at the results for BPD and HC we can see that the mean
absolute error and mean errors are almost identical. This implies that the measure-
ment is off by a constant factor. When we pair this with the fact that the original and
TF 2.x BPD standard deviations are fairly similar as well as the similarities in dice
score: we can conclude that the TF 2.x is slightly but consistently over-segmenting
in a manor which could be compensated for by a fixed offset. The reason why the
HC errors are significantly higher in the TF 2.x model is likely due to this constant
factor being exaggerated by HC formula; specifically the h component which uses
the square of the difference between major and minor axis radii. This also has a
similar knock on effect on standard deviation that can be seen in the table.

47

5.1. MODEL OPTIMIZATION Chapter 5. Evaluation

Original Paper TensorFlow Model
HC MAE (mm) 1.80 4.35

(1.49) (4.91)
HC ME (mm) 0.54 4.34

(2.28) (4.92)
BPD MAE (mm) 0.68 1.01

(0.62) (0.89)
BPD ME (mm) 0.13 0.99

(0.91) (0.92)
Dice Score 0.981 0.982

(0.007) (0.021)

Figure 5.4: Biometrics Comparison. Value (Standard Deviation)

Even with this correction however, the TF 2.x model undoubtedly has more out-
liers, both in BPD and HC metrics. We can be fairly certain that the training data
used was the same for this model and that the models were the same architecture.
We can therefore hypothesis that it was likely the training procedure which caused
the difference with the original paper using weights that had been pre-trained on
ImageNet, something which was not implemented in the TF 2.x model.

5.1.4 Biometrics TFLite

As with SonoNet, conducting a fair evaluation of the TFLite model’s performance
outside of its intended setting on device would be ineffective. It will be left to the
final subsection of this chapter to discus device performance. Accuracy was again
the same between TF 2.x and TFLite models as was to be expected based on what
we have seen with SonoNet.

5.1.5 Pruning

In the implementation section, pruning was touched upon and after performing a
quick evaluation, it was found to have no impact on performance. Despite this,
pruning did have an impact on the SonoNet model’s accuracy and size. The results
in Figure 5.7 show these impacts. For SonoNet we can evaluate 50% ,75% and 90%
model sparsity and it appears that accuracy is only very slightly diminished for all
levels of pruning. The counter-intuitive part is that all three levels of sparsity pro-
duced models of approximately the same size. We can see reference to this anomaly
in a GitHub issue [19], but the TensorFlow developers have yet to provide us with
an answer. As such we should treat these results with a high degree of skepticism, it
is highly likely that this is one of the areas where the TensorFlow framework is still
maturing.

48

Chapter 5. Evaluation 5.1. MODEL OPTIMIZATION

Figure 5.5: HC Bland Altman Plots (Original and TF 2.x)

Figure 5.6: BPD Bland Altman Plots (Original and TF 2.x)

Pruning % Model .h5 Size Average F1
No Pruning 44755KB 0.929

50% 14996KB 0.919
75% 14997KB 0.921
90% 14997KB 0.926

Figure 5.7: TF 2.X Pruning Effects

49

5.2. THE ANDROID WRAPPER Chapter 5. Evaluation

5.2 The Android Wrapper

This section deals with the evaluation of the pure Android side of the project without
looking at potential models. It analyses various aspects of the app and and looks
at how the app might operate with theoretically perfect models that do not make
mistake and return results instantly.

5.2.1 Software Compatibility

Android is one of the most widely available OSs in the world, but it is also very frag-
mented as an ecosystem. Google releases a new Android version each year, often
adding or depreciating popular APIs. When building this app a decision was made
to limit it to more modern Android versions (Android Oreo (2017)) onward. While
it would have been possible to support older devices, it would have required refac-
toring some key components, such as how screen recording and screen overlay are
initiated.

The majority of the changes that make backwards compatibility difficult on Android
are based around adding additional required permissions to features in later versions
of Android. If in the future it became clear that there was demand to extend this app
to older devices then it might be worth doing the necessary work but for this project
it was deemed out of scope.

Finally if the user is using a screen overlay such as Twilight that draws over the
screen, this would be invariably captured by any running models. This has the po-
tential to reduce accuracy or completely throw off models that might be running. As
such users should be warned to turn off all other overlays when using this app.

5.2.2 Device Selection

In order to evaluate how my project performed we need to chose a selection of de-
vices to get a broad view of performance. In order to achieve this we use 4 cloud
devices (real devices with their screen being broadcast) to evaluate this project, as
well as a local Galaxy S8 and Nexus 5X. We use the Samsung Remote Test Lab [55]
to source the cloud devices as it allows multiple hours of manual app tests for free.

We needed to be aware of potential overhead in using an online service but but
as can be seen in Figure 5.9 in the comparison between my local S8 and the cloud
S8: the performance impact, while measurable is not enormous. The range of free
devices in the farm are somewhat limited so the variety of devices chosen for evalu-
ation is not as broad as it might have been. We also aim to choose devices that are
certified with the Lumify portable ultrasound scanner and fortunately this largely
encompassed Samsung devices anyway.

Full details on the devices chosen can be seen in Figure 5.8. Screen sizes range

50

Chapter 5. Evaluation 5.2. THE ANDROID WRAPPER

Name Manufacturer OS API Version CPU GPU Screen Size Screen Resolution Lumify Certified
Galaxy Note10 Samsung 10 29 Exynos 9825 Mali-G76 MP12 6.3” 1080 x 2220 Yes

Galaxy S10 Samsung 9 28 Exynos 9820 Mali-G76 MP12 6.1” 1440 x 3040 Yes
Galaxy Tab S4 Samsung 9 28 Snapdragon 835 Adreno 540 10.5” 1600 x 2560 Yes

Galaxy S8 Samsung 9 28 Exynos 8895 Mali-G71 MP20 5.8” 1440 x 2960 No
Galaxy S8 * Samsung 9 28 Exynos 8895 Mali-G71 MP20 5.8” 1440 x 2960 No
Nexus 5X * Google 8.1 27 Snapdragon 808 Adreno 418 5.2” 1080 x 1920 No

Figure 5.8: Android Evaluation Devices

from 5.2” to 10.5” and screen resolutions are varied. A range of operating system
versions from 8.1 - 10 are present and a mixture of CPU and GPU chip-sets.

5.2.3 Pipeline Performance

Once we have decided on our devices we can move on to analyse the theoretical
maximum performance that a generic model could achieve on these devices. We do
this by looking at the base overhead that capturing and overlaying the screen impose
on performance.

In order to conduct this evaluation we utilize the flexibly of the code base to build
a simple ”model” that returns a single static prediction. We then augmented the
code with metrics capturing the frame rate and the frame processing time. We might

expect that Frame Processing Time =
1

FPS
but this is not the case as there is a

significant section of the frame processing time that is not captured by these metrics
as it is either screen capture code or overlay update code that is not able to be mea-
sured by app code.

To calculate this frame overhead we can run the base model on a random YouTube
video. If frames are not updating it can slow the FPS as the ImageReader does not
see new frames to capture so the input must be moving. By timing for two minutes
and then recording the FPS over this period as well as the average Frame Process

Time of my code, it is then possible for us to calculate Frame Time by
1

FPS
and

work out the frame overhead. We get this by subtracting Frame Process Time from
Frame Time. The results are show in Figure 5.9.

Given how close the FPS rate is to the screen refresh rate for the majority of the
devices tested, it is likely that the processing of frames is able to be carried out in
realtime on each frame. This means that performance on a theoretically instant in-
ference model could be carried out in realtime at the same frame rate as the devices
refresh rate.

5.2.4 On Screen Overlay

While as mentioned in the implementation section there is potential for performance
improvements in the on screen overlay area in this section we will quickly evaluate
the quantitative effects that these improvements can make by looking at a flame

51

5.3. THE FINAL APP Chapter 5. Evaluation

FPS Frame Process Time Frame Time Frame Overhead
Galaxy Note10 59.9 2.90ms 16.7ms 13.8ms

Galaxy S10 60.0 2.44ms 16.7ms 14.3ms
Galaxy Tab S4 50.1 4.78ms 20.0ms 15.2ms

Galaxy S8 45.4 5.33ms 22.0ms 16.7ms
Galaxy S8 * 59.3 4.47ms 16.9ms 12.4ms
Nexus 5X * 30.5 8.34ms 32.8ms 24.5ms

Figure 5.9: Android Frame Rates

graph of the current frame processing loop running on a Galaxy S8 (Figure 5.10).

The slowest portion of the code (almost half the loop or 150ms per frame) was
spent reversing the screen overlay. The bottlenecks seems to be reading from the
ByteBuffer and performing the unsigned integer comparison necessary to work out
if a pixel needs to be corrected. In order to optimize this, we would need to move
a large chunk of this code to native C++ that would be able to operate much more
efficiently on the ByteBuffer. While this might take some time the payoff would be
considerable.

In addition to this it seems that creating bitmap images is rather inefficient, specif-
ically creating a cropped bitmap from an input. This in general took 25% of pro-
cessing time or 75ms. In order to optimize this we would need to research why
specifically this was taking so long and look to use another API or custom code to
work around it.

Finally waiting for the UI to update with the Future get request that ensures that
an update has been drawn before processing the next frame, only adds about 10%
or 30ms to the loop. Given that at 60FPS the expected delay to draw a frame would
be at least 17ms this seems to be in the right region. As such we can anticipate that
if this code was able to moved out of the main loop into a separate thread and if it
turned out that 30ms intervals were the highest degree of specificity for the currently
drawn overlay image then an overlay update rate of 30FPS would be technically pos-
sible while maintaining the information about the original image.

By using a technique such as a single coloured pixel in the corner of the screen who’s
colour would indicate the overlay frame number modulus a constant, it should be
possible to even achieve a frame rate equal to that of the refresh rate (60FPS+) if
the two bottlenecks already mentioned were to be solved.

5.3 The Final App

In this section we evaluate the end result of combining optimized models with the
Android wrapper to form a fully functional app. We approach this task with both

52

Chapter 5. Evaluation 5.3. THE FINAL APP

Figure 5.10: On Screen Overlay Flame Graph

a quantitative approach to performance and qualitative techniques to gain feedback
from potential users. Before reading this section reviewing the User Guide (Appendix
A) might be helpful.

5.3.1 Device Specific Performance

As mentioned in earlier sections for all the models used: accuracy was not notice-
ably impacted by the transition to Android. Given that the Android models are just
as accurate as their desktop counterparts the key to determining their usability is
their speed. TFLite does provide a bench-marking program that can be used over
the ADB (Android Device Bridge) to profile models directly, but as TFLite now pro-
vides a native inference time property it is possible to get the direct model inference
time without any overhead. This also allows more representative data to be easily
passed as input, so we will solely us this approach for evaluation.

If we take the output of this method then we can use it to calculate the TFLite
FPS (Figure 5.12). In this table Real FPS is the FPS recorded by the app, TFLite Time
is the inference time reported by the TFLite library. Frame Time is the reciprocal of
Real FPS, Calculated Overhead is Frame Time - TFLite Time and TFLite FPS is the
reciprocal of TFLite Time. We can make a quick comparison between TFLite FPS
rates and those of a desktops CPU (Figure 5.3). By doing this we can see that the
most modern devices GPUs are capable of a similar FPS rate to a desktop CPU when
running SonoNet. Compared to the desktop GPUs the model seems to be 3-5x slower.

During the testing the Nexus 5X device had an issue with running models on its
GPU. By doing a quick test on a Galaxy S7 edge running the same OS version the
issue being OS related was ruled out so it can be assumed to be the hardware. It
was likely to be an error in the OpenGL TFLite implementation, a theory supported
by an issue open on GitHub [30]. In order to remedy this it was necessary to add a
fallback mechanism to use the CPU (and so also the integer quantized model) when
running on the GPU threw an error (Listing 5.1).

53

5.3. THE FINAL APP Chapter 5. Evaluation

Figure 5.11: TFLite FPS by Thread Count

Looking at Figures 5.13 and 5.14 we can also see again the effect that overlaying
directly on the input has on performance with the TFLite FPS rates being almost
identical but there being 2-3x as much non TFLite overhead in the direct overlay
configuration. In the original biometric paper a desktop GPU rate of 15 FPS was
quoted on a Nvidia Titan Xp GPU. This matches the SonoNet model in that top of
the line devices are about 3-5x worse in terms of performance.
java.lang.IllegalArgumentException: Internal error: Failed to run on the given

Interpreter: OpenCL library not loaded - dlopen failed: library "libOpenCL -

pixel.so" not found

Falling back to OpenGL

TfLiteGpuDelegate Invoke: Write to buffer failed. Source data is larger than

buffer.

Node number 49 (TfLiteGpuDelegateV2) failed to invoke.‘‘‘

Listing 5.1: The error thown when attemping to use the GPU on a Nexus 5X

Finally, while the difference between CPU and GPU were presented in the imple-
mentation section dealing with quantization (Figure 3.4) we only briefly looked at
the impact of using multiple threads. In order to complete this evaluation we can
measure FPS with varying thread counts on a Galaxy S8 and plot the results for the
SonoNet model (Figure 5.11). From this graph it can be seen that 6 threads seemed
to be the optimal amount for performance. Any more than this decreases perfor-
mance. Up until 6 FPS there seems to be a difference between an odd or even thread
count, we can conclude this is down to the architecture of the CPU. Finally while
the device only had 8 physical cores it is still possibly to use 9+ threads but this just
appears to add overhead and reduce performance.

5.3.2 APK Structure and Size

This is good point to spend some time evaluating the contents of a generated app
and its size. Using the Android Studio APK analysis tool we can get a breakdown
(Figure 5.15). While the full APK is close to 200MB the actual download size for

54

Chapter 5. Evaluation 5.3. THE FINAL APP

Real FPS TFLite Time Frame Time Calculated Overhead TFLite FPS
Galaxy Note10 9.16 64.7ms 109.2ms 44.5ms 15.46

Galaxy S10 11.22 49.5ms 89.1ms 39.6ms 20.20
Galaxy Tab S4 6.26 72.9ms 159.7ms 107.5ms 13.72
Galaxy S8 * 4.45 93.7ms 224.7ms 136.3ms 10.67
Nexus 5X ** 0.81 1021.6ms 1234.5ms 212.9ms 0.98

* Local Device, ** Local Device using CPU

Figure 5.12: SonoNet TFLite Android Frame Rates

Real FPS TFLite Time Frame Time Calculated Overhead TFLite FPS
Galaxy Note10 1.60 312ms 625ms 313ms 3.21

Galaxy S10 1.59 305ms 629ms 324ms 3.28
Galaxy Tab S4 0.75 524ms 1333ms 809ms 1.91
Galaxy S8 * 0.77 836ms 1299ms 463ms 1.20
Nexus 5X ** 0.12 6906ms 8333ms 1427ms 0.14

* Local Device, ** Local Device using CPU

Figure 5.13: Segmentation TFLite Android Frame Rates

Real FPS TFLite Time Frame Time Calculated Overhead TFLite FPS
Galaxy Note10 2.37 317ms 422ms 105ms 3.15

Galaxy S10 2.57 304ms 389ms 85ms 3.29
Galaxy Tab S4 1.41 518ms 709ms 191ms 1.93
Galaxy S8 * 1.00 822ms 1000ms 178ms 1.22
Nexus 5X ** 0.14 6454ms 7143ms 689ms 0.15

* Local Device, ** Local Device using CPU

Figure 5.14: Segmentation TFLite Android Frame Rates (No Overlay)

55

5.3. THE FINAL APP Chapter 5. Evaluation

Figure 5.15: APK Components

a user using an arm chip would be much closer to 55MB due to the need to only
download the arm native binary files for TFLite and OpenCV as well as the benefits
of compression. When this is taken into account about 75% of the download size
would be the models (in the asset directory). This includes both integer and float
quantized versions of the SonoNet and Biometrics models (which are about 75% of
the models by size) as well as a single float quantized version of the MobileNets,
Object Detection, and Style Transfer Models. The actual source code and other re-
sources make up 4% of the app.

While this app is certainly on the larger side and does unfortunately break the Google
Play store file size limit; this could be worked around by only supporting the arm64
architecture, which is realistically going to be most modern devices. This would
bring the raw APK size down to around 75MB while still maintaining broad app
compatibility. The other alternative which was utilized for obtaining user feedback
is using flavours (customizable subsets of assets and code) to only include a subset
of models for each release.

5.3.3 User Feedback

Unfortunately due to the effects of the Covid-19 pandemic it was not possible to
evaluate this app in a clinical setting. While we were able to successfully able to
evaluate the success of network translation though quantitative means, the feel and
experience of the overall app requires a more qualitative approach. While some
feedback was gained from sonographers, it is also important to gain a more detailed
view of how a potential user might interact with the app. That could only be gained

56

Chapter 5. Evaluation 5.3. THE FINAL APP

from watching users use the app themselves. To gain feedback from, this viewpoint
friends and family locally and via video call were asked to participate in a short study.

While willing to participate, these non medical users would neither understand or
be interested in ultrasound scans. To work around this we instead gain feedback on
the more general models running on the app, the TFLite, Object Detection and Style
Transfer models. These models are fun to use and don not require any prior medical
knowledge. They also solved a distribution issue in that without OpenCV (needed
for ellipsis calculation in the brain segmentation model) the app size was under the
100MB required by the play store and so could be distributed by an internal release
build.

The obvious disadvantages of taking this approach is that we can not critique di-
rect feedback on the usability of the medical models specifically, but we can still
draw on non medical users to obtain general feedback. 5 people interacted with the
non medical flavour of the app, talking though their thought processes as they went
though the user guide, with myself asking them questions along the way.

In general the feedback was widely positive. Users were able to quickly perform
tasks as instructed. General feedback was that the app was in general smooth and
well structured with a clean aesthetic. One user suggested switching to NHS blue
for the medical variant of the app.

There are certainly areas where improvement could be made. One common theme
was about making the reasoning behind the permission requests more clear. While
users were on the whole OK with granting overlay access, many paused for thought
when granting screen record permissions especially as Android does not allow a
more fine grained approach and it is an all or nothing request. Suggestions on how
to increase their trust when granting the permission were generally aimed towards
providing a deeper explanation. Another common issue was the button icons. The
use of the same icon with different colours (while clean), confused a few users. It
was not clear to them which specific combination of icons would best represent the
implied actions. More work is needed to study this in a larger sample of potential
users.

Another piece of feedback was the ability to change the viewfinder aspect ratio.
This had been fixed as most of the models this project uses required a fixed aspect
ratio and we wanted to avoid skewing, but there is certainly an argument to allow a
more variable aspect ratio. While users found the user guide helpful, one suggested
a popup tutorial explaining everything in app and this could work well. A few users
suggested additional non medical uses such as emulating popular camera filters such
as hair colour changers.

57

5.3. THE FINAL APP Chapter 5. Evaluation

5.3.4 SonoNet Specific Feedback

While this user feedback was very useful in the broad case we want to also get feed-
back on the more specific SonoNet use case. Due to the Covid-19 pandemic there
was limited opportunity for interaction with busy medical professionals. However,
it was possible to make a video demonstrating SonoNet’s features [37] and then ask
them three questions based using the Likert scale. We will evaluate the answers to
these three questions from 10 sonographers while also looking at the small amount
of additional feedback provided.

First we need to get a picture of how sonographers viewed the potential for mo-
bile ultrasound scanners to disrupt current tech and improve patient experience.
With mobile ultrasound scanners comes the benefits of additionally processing scans
on device (the use case for SonoNet). As seen in Figure 5.16, 90% of sonographers
either agreed or strongly agreed that mobile scanners could improve patient experi-
ence with 1 being neutral. This reaffirms the need for an app like SonoNet to help
with processing.

Secondly it would be useful to gauge if sonographers would like the option to cap-
ture additional images or video as well as the standard planes. This is not something
that is implemented at the moment but it is something that could easily be imple-
ment in the future (Figure 5.17). This question received a more mixed response,
although half of the sonographers questioned felt it would be useful. As something
like this might be personal to each sonographer, adding the option to capture addi-
tional images/video would be a good idea.

Finally it would be helpful to know if sonographers saw potential for this app in
a training setting (Figure 5.18). There is the potential to add features that might
help during training such as additional hints and a realtime showing of confidence
for each plane. As with the first question, 90% of sonographers saw potential in this
with 1 being neutral. Based on this the addition of a “Training Mode” could be a
good future feature.

Five of the sonographers also gave additional feedback on the video that they were
shown. Some additional requested features were the ability to select a specific im-
age from a selection rather than 100% relying on the CNN and also defaulting the
view-finding box to a standard location for the scan. Two sonographers emphasized
the impact that this app could have on tele-medicine by allowing experts to review
scans remotely.

Overall feedback was very positive. In the future an extended app based on this
project would have a real possibility of making an impact in the area of fetal ultra-
sound.

58

Chapter 5. Evaluation 5.3. THE FINAL APP

Figure 5.16: Mobile ultrasound scanners combined with intelligent
software have the potential to improve patient experience

Figure 5.17: The ability to capture additional images or video
beyond standard planes is important to me.

Figure 5.18: An app like this could be helpful in a training setting.

59

6. Conclusion

6.1 Summary

This project has demonstrated that medical CNN architectures can be ported to work
efficiently on Android devices. It has also built an original application to run models
on the contents of a phone’s screen and overlay information on top of this input in
realtime.

During quantitative evaluation, mobile model performance and accuracy have been
shown as comparable to the paper versions which they were based on. Throughout
qualitative evaluation, valuable feedback has been obtained, confirming the end re-
sult was both useful and usable.

Despite the project’s many successes, a potential weakness is the failure to find a
method to directly translate models to TFLite. As explained previously, machine
learning frameworks are simply moving at too quick a pace to allow a sustained
degree of backwards compatibility. Unfortunately, this proved infeasible to work
around. However, by overcoming significant challenges in documentation and data
availability, converting and optimising both SonoNet and the Biometrics model was
still accomplished.

Overall this project has met and exceeded its original objectives. It has shown that
the power of image analysis and augmentation is not just limited to powerful desk-
top PCs and I am excited to see where the ideas and implementations developed in
this project might lead.

6.2 Future Work

Working on this project was an enjoyable experience and it is interesting to consider
its potential to act as a foundation for future impactful developments. Some of these
prospects are listed below:

SonoNet

There is the potential to further improve and evaluate the SonoNet model’s use in a
clinical settings. Some possible improvements include updating the older SonoNet
architecture to a more modern design, reevaluating the training data used and eval-
uating the app in greater depth within a clinical context.

Medical Models

While two medical models were covered by this project, there is the potential to look
at converting other medical models that might benefit from a similar app. Research

60

Chapter 6. Conclusion 6.2. FUTURE WORK

in this area is advancing at a tremendous pace and opening up other new models for
use on mobile platforms could prove to be very impactful. Mobile analysis of ultra-
sound images was enabled by the commercialisation of mobile ultrasound scanners
and so as other imaging methods become more mobile, the ability to process their
outputs offline will become more important.

“Fun” Models

Finally, the work done in this project has the potential for a variety of fun and inter-
esting applications. As shown with the Style Transfer model, it is possible to alter
the contents of the screen using a model. This could easily be taken even further.
By implementing a model such as StarGAN [5], it could be possible to alter the ap-
pearance of every person appearing on your device, be it on YouTube or Instagram.
While the FPS rate of this might be limited to single digits today, as hardware and
models improve it is likely this will be possible in realtime in the next few years. In
the future, users might choose how they want to view the world and their smart-
phone will cater to that preference despite the ethical concerns this ability might
raise today.

61

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon
Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zhang. Tensorflow: A system for large-scale
machine learning. CoRR, abs/1605.08695, 2016. pages 16

[2] Apple. Replaykit — apple developer documentation. https://developer.

apple.com/documentation/replaykit. (Accessed on 05/28/2020). pages 12

[3] Christian F. Baumgartner, Konstantinos Kamnitsas, Jacqueline Matthew, Tara P.
Fletcher, Sandra Smith, Lisa M. Koch, Bernhard Kainz, and Daniel Rueckert.
Sononet: Real-time detection and localisation of fetal standard scan planes
in freehand ultrasound. IEEE Trans. Med. Imaging, 36(11):2204–2215, 2017.
pages 6, 7, 9, 21, 22

[4] Caffe. Caffe — deep learning framework. https://caffe.berkeleyvision.

org/. (Accessed on 01/23/2020). pages 8

[5] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and
Jaegul Choo. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8789–8797, 2018. pages 61

[6] Tech Crunch. Kotlin is now google’s preferred language for android
app development — techcrunch. https://techcrunch.com/2019/05/07/

kotlin-is-now-googles-preferred-language-for-android-app-development/.
(Accessed on 05/28/2020). pages 34

[7] deeplearning.net. Welcome — theano 1.0.0 documentation. http://

deeplearning.net/software/theano/. (Accessed on 06/01/2020). pages 15

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009. pages 15

[9] Public Health England. Nhs fetal anomaly screening programme handbook,
2018. pages 20

[10] José Faria, João Almeida, Maria João M Vasconcelos, and Lúıs Rosado. Auto-
mated mobile image acquisition of skin wounds using real-time deep neural
networks. In Annual Conference on Medical Image Understanding and Analysis,
pages 61–73. Springer, 2019. pages 9

62

https://developer.apple.com/documentation/replaykit
https://developer.apple.com/documentation/replaykit
https://caffe.berkeleyvision.org/
https://caffe.berkeleyvision.org/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/

REFERENCES REFERENCES

[11] Andrew Fitzgibbon, Maurizio Pilu, and Robert B Fisher. Direct least square
fitting of ellipses. IEEE Transactions on pattern analysis and machine intelligence,
21(5):476–480, 1999. pages 23

[12] Google. Artistic style transfer with tensorflow lite. https://www.tensorflow.
org/lite/models/style_transfer/overview. (Accessed on 06/01/2020).
pages 6, 16, 42

[13] Google. Batchnorm not in pruneregistry · issue #386 · tensorflow/model-
optimization. https://github.com/tensorflow/model-optimization/

issues/386. (Accessed on 06/05/2020). pages 28

[14] Google. Behavior changes: all apps. https://developer.android.

com/about/versions/pie/android-9.0-changes-all. (Accessed on
01/21/2020). pages 11

[15] Google. Effective tensorflow 2. https://www.tensorflow.org/guide/

effective_tf2. (Accessed on 06/02/2020). pages 17

[16] Google. Future. https://developer.android.com/reference/kotlin/java/
util/concurrent/Future. (Accessed on 06/01/2020). pages 38

[17] Google. Intents and intent filters. https://developer.android.com/guide/

components/intents-filters. (Accessed on 06/01/2020). pages 11

[18] Google. Machine learning foundations: Ep #7 - image augmentation and
overfitting. https://www.youtube.com/watch?v=QWdYWwW6OAE. (Accessed on
06/01/2020). pages 16

[19] Google. model pruning: Why 50% and 90% zeros of the stripped models are
the same size? · issue #32805 · tensorflow/tensorflow. https://github.com/
tensorflow/tensorflow/issues/32805. (Accessed on 06/11/2020). pages
48

[20] Google. Performance benchmarks. https://www.tensorflow.org/lite/

performance/benchmarks. (Accessed on 06/01/2020). pages 41

[21] Google. Porterduff.mode. https://developer.android.com/reference/

android/graphics/PorterDuff.Mode#SCREEN. (Accessed on 06/10/2020).
pages 40

[22] Google. Post-training quantization. https://www.tensorflow.org/lite/

performance/post_training_quantization. (Accessed on 01/22/2020).
pages 19

[23] Google. Processes and application lifecycle. https://developer.android.

com/guide/components/activities/process-lifecycle. (Accessed on
01/21/2020). pages 11

63

https://www.tensorflow.org/lite/models/style_transfer/overview
https://www.tensorflow.org/lite/models/style_transfer/overview
https://github.com/tensorflow/model-optimization/issues/386
https://github.com/tensorflow/model-optimization/issues/386
https://developer.android.com/about/versions/pie/android-9.0-changes-all
https://developer.android.com/about/versions/pie/android-9.0-changes-all
https://www.tensorflow.org/guide/effective_tf2
https://www.tensorflow.org/guide/effective_tf2
https://developer.android.com/reference/kotlin/java/util/concurrent/Future
https://developer.android.com/reference/kotlin/java/util/concurrent/Future
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://www.youtube.com/watch?v=QWdYWwW6OAE
https://github.com/tensorflow/tensorflow/issues/32805
https://github.com/tensorflow/tensorflow/issues/32805
https://www.tensorflow.org/lite/performance/benchmarks
https://www.tensorflow.org/lite/performance/benchmarks
https://developer.android.com/reference/android/graphics/PorterDuff.Mode##SCREEN
https://developer.android.com/reference/android/graphics/PorterDuff.Mode##SCREEN
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
https://developer.android.com/guide/components/activities/process-lifecycle
https://developer.android.com/guide/components/activities/process-lifecycle

REFERENCES REFERENCES

[24] Google. Quantization aware training comprehensive guide. https:

//www.tensorflow.org/model_optimization/guide/quantization/

training_comprehensive_guide. (Accessed on 06/06/2020). pages
20

[25] Google. Services overview. https://developer.android.com/guide/

components/services. (Accessed on 01/21/2020). pages 6, 11, 12

[26] Google. Sparsity runtime integration with tf/tflite for latency improve-
ments · issue #173 · tensorflow/model-optimization. https://github.com/

tensorflow/model-optimization/issues/173. (Accessed on 06/05/2020).
pages 28

[27] Google. Tensorflow lite. https://www.tensorflow.org/lite. (Accessed on
01/15/2020). pages 17

[28] Google. Tensorflow lite roadmap. https://www.tensorflow.org/lite/

guide/roadmap. (Accessed on 05/28/2020). pages 18

[29] Google. Tensorflow model optimization. https://www.tensorflow.org/

model_optimization. (Accessed on 06/05/2020). pages 28

[30] Google. tflitegpudelegate invoke write to buffer failed source data is larger
than buffer · issue #33410 · tensorflow/tensorflow. https://github.com/

tensorflow/tensorflow/issues/33410. (Accessed on 05/28/2020). pages
53

[31] Google. Understand the activity lifecycle. https://developer.android.

com/guide/components/activities/activity-lifecycle. (Accessed on
01/21/2020). pages 6, 12

[32] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015. pages 19

[33] healthitanalytics.com. Top 5 use cases for artificial intelligence
in medical imaging. https://healthitanalytics.com/news/

top-5-use-cases-for-artificial-intelligence-in-medical-imaging.
(Accessed on 06/06/2020). pages 7

[34] Heuritech. https://web.archive.org/web/20160305154644/http://blog.heuritech.com/2016/02/29/a-
brief-report-of-the-heuritech-deep-learning-meetup-5/. https://web.

archive.org/web/20160305154644/http://blog.heuritech.com/2016/

02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/.
(Accessed on 01/22/2020). pages 6, 14

[35] GD Hill, JR Block, JB Tanem, and MA Frommelt. Disparities in the prenatal
detection of critical congenital heart disease. Prenatal diagnosis, 35(9):859–
863, 2015. pages 7

64

https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide
https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide
https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://github.com/tensorflow/model-optimization/issues/173
https://github.com/tensorflow/model-optimization/issues/173
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/guide/roadmap
https://www.tensorflow.org/lite/guide/roadmap
https://www.tensorflow.org/model_optimization
https://www.tensorflow.org/model_optimization
https://github.com/tensorflow/tensorflow/issues/33410
https://github.com/tensorflow/tensorflow/issues/33410
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://healthitanalytics.com/news/top-5-use-cases-for-artificial-intelligence-in-medical-imaging
https://healthitanalytics.com/news/top-5-use-cases-for-artificial-intelligence-in-medical-imaging
https://web.archive.org/web/20160305154644/http://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://web.archive.org/web/20160305154644/http://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://web.archive.org/web/20160305154644/http://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

REFERENCES REFERENCES

[36] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. pages 6, 15

[37] Isaac Hutt. Ultrasound app evaluation - youtube. https://www.youtube.com/
watch?v=spbX4Ulr3qY&feature=youtu.be. (Accessed on 06/13/2020). pages
58

[38] Loc Nguyen Huynh, Rajesh Krishna Balan, and Youngki Lee. Deepsense: A
gpu-based deep convolutional neural network framework on commodity mo-
bile devices. In Proceedings of the 2016 Workshop on Wearable Systems and
Applications, pages 25–30, 2016. pages 9

[39] IDC. Smartphone market share - os. https://www.idc.com/promo/

smartphone-market-share/os. (Accessed on 01/21/2020). pages 11

[40] idownloadblog.com. How to enable facebook chat heads anywhere in ios
7. https://www.idownloadblog.com/2014/03/31/messagebox-ios-7/. (Ac-
cessed on 05/28/2020). pages 13

[41] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley,
and Luc Van Gool. Ai benchmark: Running deep neural networks on android
smartphones. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 0–0, 2018. pages 9

[42] imgaug.readthedocs.io. imgaug — imgaug 0.4.0 documentation. https://

imgaug.readthedocs.io/en/latest/. (Accessed on 06/01/2020). pages 27

[43] Ajit Jaokar. Tensorflow 1.x vs 2.x. – summary of changes - data
science central. https://www.datasciencecentral.com/profiles/blogs/

tensorflow-1-x-vs-2-x-summary-of-changes. (Accessed on 06/02/2020).
pages 17

[44] Keras. Home - keras documentation. https://keras.io/. (Accessed on
01/20/2020). pages 16

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012. pages 13

[46] lasagne.readthedocs.io. Welcome to lasagne — lasagne 0.2.dev1 docu-
mentation. https://lasagne.readthedocs.io/en/latest/. (Accessed on
06/01/2020). pages 15

[47] Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin Hashemi, and Soheil
Ghiasi. Cnndroid: Gpu-accelerated execution of trained deep convolutional
neural networks on android. In Proceedings of the 24th ACM international con-
ference on Multimedia, pages 1201–1205, 2016. pages 9

65

https://www.youtube.com/watch?v=spbX4Ulr3qY&feature=youtu.be
https://www.youtube.com/watch?v=spbX4Ulr3qY&feature=youtu.be
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.idownloadblog.com/2014/03/31/messagebox-ios-7/
https://imgaug.readthedocs.io/en/latest/
https://imgaug.readthedocs.io/en/latest/
https://www.datasciencecentral.com/profiles/blogs/tensorflow-1-x-vs-2-x-summary-of-changes
https://www.datasciencecentral.com/profiles/blogs/tensorflow-1-x-vs-2-x-summary-of-changes
https://keras.io/
https://lasagne.readthedocs.io/en/latest/

REFERENCES REFERENCES

[48] Jiayi Liu, Jayanta Dutta, Nanxiang Li, Unmesh Kurup, and Mohak Shah. Us-
ability study of distributed deep learning frameworks for convolutional neural
networks. Deep Learning Day at KDD, 2018. pages 18

[49] Microsoft. Microsoft and facebook create open ecosystem for ai
model interoperability. https://azure.microsoft.com/en-us/blog/

microsoft-and-facebook-create-open-ecosystem-for-ai-model-interoperability/.
(Accessed on 01/22/2020). pages 18

[50] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Im-
portance estimation for neural network pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 11264–11272,
2019. pages 19

[51] NHS. Ultrasound scan - nhs. https://www.nhs.uk/conditions/

ultrasound-scan/. (Accessed on 05/30/2020). pages 20

[52] ONNX. Onnx. https://onnx.ai/. (Accessed on 01/20/2020). pages 18

[53] Philips. Portable ultrasound machine — philips lumify. https://www.philips.
co.uk/healthcare/sites/lumify. (Accessed on 01/21/2020). pages 11, 20

[54] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of com-
puter vision, 115(3):211–252, 2015. pages 14

[55] Samsung. Remote test lab - distribute — samsung developers. https:

//developer.samsung.com/remote-test-lab. (Accessed on 06/12/2020).
pages 50

[56] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. pages 14

[57] Matthew Sinclair, Christian F Baumgartner, Jacqueline Matthew, Wenjia Bai,
Juan Cerrolaza Martinez, Yuanwei Li, Sandra Smith, Caroline L Knight, Bern-
hard Kainz, Jo Hajnal, et al. Human-level performance on automatic head
biometrics in fetal ultrasound using fully convolutional neural networks. In
2018 40th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 714–717. IEEE, 2018. pages 6, 9, 22, 23,
24, 31

[58] Burhanudin Syamsuri and Gede Putra Kusuma. Plant disease classification
using lite pretrained deep convolutional neural network on android mobile de-
vice. International Journal of Innovative Technology and Exploring Engineering,
9(2):2278–3075, 2019. pages 9

66

https://azure.microsoft.com/en-us/blog/microsoft-and-facebook-create-open-ecosystem-for-ai-model-interoperability/
https://azure.microsoft.com/en-us/blog/microsoft-and-facebook-create-open-ecosystem-for-ai-model-interoperability/
https://www.nhs.uk/conditions/ultrasound-scan/
https://www.nhs.uk/conditions/ultrasound-scan/
https://onnx.ai/
https://www.philips.co.uk/healthcare/sites/lumify
https://www.philips.co.uk/healthcare/sites/lumify
https://developer.samsung.com/remote-test-lab
https://developer.samsung.com/remote-test-lab

REFERENCES REFERENCES

[59] Ryosuke Tanno and Keiji Yanai. Caffe2c: A framework for easy implementation
of cnn-based mobile applications. In Adjunct Proceedings of the 13th Interna-
tional Conference on Mobile and Ubiquitous Systems: Computing Networking and
Services, pages 159–164, 2016. pages 8

[60] Pallavi Vaish, R Bharath, Pachamuthu Rajalakshmi, and Uday B Desai. Smart-
phone based automatic abnormality detection of kidney in ultrasound images.
In 2016 IEEE 18th International Conference on e-Health Networking, Applica-
tions and Services (Healthcom), pages 1–6. IEEE, 2016. pages 9

[61] Ysh329. deep-learning-model-convertor — the convertor/conversion of
deep learning models for different deep learning frameworks/softwares.
https://ysh329.github.io/deep-learning-model-convertor/. (Accessed
on 05/30/2020). pages 18

67

https://ysh329.github.io/deep-learning-model-convertor/

A. User Guide

Once the app has been installed (Figure B.1) and opened for the first time, permis-
sion must be given for the app to operate. The app will automatically open in the
settings window. You must allow the app permission to appear on top of other apps
for the app to function (Figure B.3). Once this permission has been given you can
click the back button to return to the app.

Next you can click one of the prototype models to start experimenting (Figure B.2).
This will bring up a second permission dialog asking to allow access to capture the
screen (Figure B.3). This is essential for the app to be able to process other app’s
content. Clicking start now allows the app to start up its analysis engine.

Once this is done you are free to exit the app as you would normally and the bottom
UI element will still stay in place over other apps. To get rid of it and exit hold down
the right hand camera shaped button.

To start the analysis press the right hand button to start and press it again to stop.
The left hand button brings up a box that can be dragged around the screen (Figure
B.5). It can also be resized by dragging your finger left/right outside of the box. This
box determines where on the screen the app will analyse (if the orange box is not
pressed it will analyse the whole screen). To use the new capture area simply press
the left button again to hide the box then stop and start the recording.

A small amount of additional information is given for each model as follows:

TFLite

This model is a simple MobileNets model that will classify images presented to it
into 1000 classes.

Detect

This model is a step above TFLite in that it can detect multiple objects and will draw
boxes around them with labels (Figure B.4).

Style

This model performs artistic style transfer on the section of the screen being analysed
(Figure B.8).

SonoNet

This model will classify the fetal plane in the view. It also stores the best match for
each plane and holding down the orange button will bring up a checklist of planes

68

Chapter A. User Guide

collected. Clicking send will then allow these best images to be attached to an email
(Figure B.5).

Segmentation

This model will draw a brain/background segmentation over the Brain-TV fetal
plane. It will also draw the major and minor axis on the ellipse generated by this
segmentation and output the percentage of the view taken up by the major/minor
axis lines (Figure B.6).

69

B. App Screenshots

Figure B.1: MEng Project Play Store Listing

70

Chapter B. App Screenshots

Figure B.2: Model Selection in Full and Generic Flavours

Figure B.3: System Permission Dialogs

71

Chapter B. App Screenshots

Figure B.4: Object Detection

Figure B.5: Viewfinding over an Image of an ultrasound scan

72

Chapter B. App Screenshots

Figure B.6: Brain Segmentation and Metric Calculation

Figure B.7: View-finding over A Real Ultrasound App

73

Chapter B. App Screenshots

Figure B.8: Style Transfer Template and Examples

74

C. Additional Tables

Figure C.1: SonoNet Integer Quantization Results

75

D. Model Listings

tf.keras.backend.set_image_data_format("channels_last")

model = tf.keras.Sequential ()

model.add(layers.Conv2D (32, 3, padding=’same’, use_bias=False , input_shape =(height ,width , 1)))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D (32, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.MaxPool2D(2, 2))

model.add(layers.Conv2D (64, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D (64, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.MaxPool2D(2, 2))

model.add(layers.Conv2D (128, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D (128, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D (128, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.MaxPool2D(2, 2))

model.add(layers.Conv2D (256, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D (256, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D (256, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.MaxPool2D(2, 2))

model.add(layers.Conv2D (256, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D (256, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D (256, 3, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D (128, 1, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.ReLU())

model.add(layers.Conv2D(num_classes , 1, padding=’same’, use_bias=False))

model.add(layers.BatchNormalization(center=False , scale=False))

model.add(layers.GlobalAvgPool2D ())

model.add(layers.Softmax ())

model.compile(optimizer=tf.keras.optimizers.Adam (0.01) ,

loss=tf.keras.losses.CategoricalCrossentropy(from_logits=False),

metrics =([’accuracy ’, tf.keras.metrics.CategoricalAccuracy ()]))

Figure D.1: A Simple Sequential Implementation of SonoNet 32 in Keras

76

Chapter D. Model Listings

from tensorflow.keras.models import Sequential

def double_conv(out_channels):

return Sequential ([

layers.Conv2D(out_channels , 3, padding=’same’),

layers.ReLU(),

layers.BatchNormalization(center=False , scale=False),

layers.Conv2D(out_channels , 3, padding=’same’),

layers.ReLU(),

layers.BatchNormalization(center=False , scale=False),

])

class UNet():

def __init__(self):

self.dconv_down1 = Sequential ([

layers.Conv2D (32, 3, padding=’same’),

layers.ReLU(),

layers.Conv2D (32, 3, padding=’same’),

layers.ReLU()

])

self.dconv_down2 = double_conv (128)

self.dconv_down3 = double_conv (256)

self.dconv_down4 = double_conv (512)

self.maxpool = layers.MaxPool2D(2, 2)

self.upsample = layers.UpSampling2D(size=(2, 2), interpolation=’bilinear ’)

self.dconv_up3 = double_conv (256)

self.dconv_up2 = double_conv (128)

self.dconv_up1 = double_conv (64)

self.conv_last = layers.Conv2D(2, 1, padding=’same’)

self.dropout = layers.Dropout (0.6)

self.softmax = layers.Softmax ()

def forward(self , x):

conv1 = self.dconv_down1(x)

x = self.maxpool(conv1)

conv2 = self.dconv_down2(x)

x = self.maxpool(conv2)

conv3 = self.dconv_down3(x)

x = self.maxpool(conv3)

x = self.dropout(x)

x = self.dconv_down4(x)

x = self.upsample(x)

x = layers.concatenate ([x, conv3], axis=-1)

x = self.dconv_up3(x)

x = self.upsample(x)

x = layers.concatenate ([x, conv2], axis=-1)

x = self.dconv_up2(x)

x = self.upsample(x)

x = layers.concatenate ([x, conv1], axis=-1)

x = self.dconv_up1(x)

return self.softmax(self.conv_last(x))

net = UNet()

input1 = layers.Input ((height ,width , 1))

model = Model ([input1], [net.forward(input1)])

model.compile(optimizer=tf.keras.optimizers.Adam (0.00001) ,

loss=tf.keras.losses.CategoricalCrossentropy(from_logits=False),

metrics =([’accuracy ’]))

Figure D.2: A Non Sequential Keras Model for Segmentation in Head Biometrics

77

	1 Introduction
	1.1 Context and Motivation
	1.2 Related Work
	1.3 Objectives and Contributions

	2 Background
	2.1 Android Platform
	2.1.1 Services
	2.1.2 Screen Capture
	2.1.3 Screen Overlay

	2.2 Convolutional Neural Networks
	2.2.1 Convolutional Layers
	2.2.2 Pooling Layers
	2.2.3 Fully Connected Layers
	2.2.4 VGG16
	2.2.5 ImageNet and MobileNets
	2.2.6 Theano and Lasagne
	2.2.7 Data Augmentation
	2.2.8 Artistic Style Transfer

	2.3 TensorFlow
	2.3.1 TensorFlow 1.x
	2.3.2 TF 2.x and Keras

	2.4 TFLite
	2.4.1 Android Interpreter

	2.5 Network Translation
	2.5.1 ONNX
	2.5.2 Manual Translation

	2.6 Network Optimization
	2.6.1 Pruning
	2.6.2 Quantization

	2.7 Ultrasound Analysis
	2.7.1 Ultrasound
	2.7.2 SonoNet
	2.7.3 Detection
	2.7.4 Localisation
	2.7.5 Results

	2.8 Ultrasound Biometrics Collection
	2.8.1 Segmentation
	2.8.2 Calculation
	2.8.3 Results

	3 Mobile Optimization of Models
	3.1 Methodology and Tools
	3.2 SonoNet Conversion
	3.2.1 Recreating the Model
	3.2.2 Data
	3.2.3 Training
	3.2.4 Pruning
	3.2.5 TFLite Conversion
	3.2.6 Localisation

	3.3 Biometrics Conversion
	3.3.1 Data
	3.3.2 Training
	3.3.3 TFLite Conversion
	3.3.4 Calculation

	4 The Analysis App
	4.1 Methodology and Tools
	4.2 Android Foundations
	4.2.1 Screen Capture
	4.2.2 Screen Overlay
	4.2.3 Processing Pipeline
	4.2.4 View-finding
	4.2.5 Overlaying on the Input

	4.3 Model Implementation
	4.3.1 Image Classification
	4.3.2 Object Detection
	4.3.3 SonoNet
	4.3.4 Biometrics
	4.3.5 GPU Delegate
	4.3.6 Style Transfer

	4.4 The Final App

	5 Evaluation
	5.1 Model Optimization
	5.1.1 SonoNet TF 2.X
	5.1.2 SonoNet TFLite
	5.1.3 Biometrics TF 2.x
	5.1.4 Biometrics TFLite
	5.1.5 Pruning

	5.2 The Android Wrapper
	5.2.1 Software Compatibility
	5.2.2 Device Selection
	5.2.3 Pipeline Performance
	5.2.4 On Screen Overlay

	5.3 The Final App
	5.3.1 Device Specific Performance
	5.3.2 APK Structure and Size
	5.3.3 User Feedback
	5.3.4 SonoNet Specific Feedback

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	References
	Appendices
	A User Guide
	B App Screenshots
	C Additional Tables
	D Model Listings

