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Abstract

When was the last time you watched a film?

Probably not too long ago. In watching a film you have taken part in a tradition that, since the
early 20th century, has had a profound influence on politics, fashion and economics and is no less
significant an influence today. The proliferation of the Internet has made films more visible and
accessible to infinitely more people than before and has seen the industry evolve and diversify.
Nowadays, films tap many sources of revenue from the traditional and familiar theatrical release,
to DVD and more recently, Video on Demand. The ability to predict a movie’s performance before
and during the early days of its release can significantly reduce the financial risk. However, a film
is not just about its story: the actors, the director(s) and many other factors also need to be just
right to create a financial success. In this project, we predict film performance using parameters
such as these.

Our contributions are twofold. Firstly, we look into predicting film performance prior to its release.
We begin with a classification problem – how to determine whether a film will be profitable in
advance of release and identify the key factors that contribute to profitability. We then propose a
regression problem: one where we design Machine Learning models to make concrete predictions of
revenue generated by films in several regions. This is followed by performing model interpretation as
an investigation into the dependencies and relationships between the performance of regions, which
sheds light on the interconnectedness of film markets and the level to which our models leverage
diverse features. We find that geographically close regions, such as Germany and France, exhibit
a large amount of interdependence, with films that perform well in one country also performing
well in the other. We also find more latent relationships, such the relationship between Germany
and Japan where film performance is correlated despite the countries being geographically distant
and not sharing a common language, thus suggesting that there is an inherent similarity in their
box office markets and the expectations and preferences of their audiences. We then analyse the
performance of our models and explain the observations we have made. We show that our models
record a performance improvement over existing models, with our Neural Network model achieving
a Coefficient of Determination of 0.851 for predictions on final box office gross.

Secondly, we model how to predict film performance after the release of a film. We propose thinking
of a film release as similar to an epidemic using Ordinary Differential Equations, and develop models
to use data as it is collected to fit model parameters. We also explore how Machine Learning can
be applied to the problem, using time-series data along with other features that describe a film.
With these models, we show how they can be applied to forecast film performance, firstly for one
week ahead at a time and secondly, for several weeks in the future. Finally, we evaluate the merits
of each model, finding a Mean Forecast Error of approximately $842 000 for the best performing
model. We identify similarities in the performance of the two models containing LSTM units and
investigate why, showing that most of the information required to forecast revenue is obtained
from a few trailing weeks of information thus more complex models offer a lower improvement in
performance.
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Chapter 1

Introduction

I don’t know any other business that tells
you not to go in and buy their product.

Jack Valenti. Former President of the
MPAA on the film rating system, 1985

1.1 Motivation

Figure 1.1: Back to the Future, the ’Parking Lot’ scene. Credit: YouTube

Films constitute a high profile, multi-billion dollar industry that sees its origins in the late 19th
century with the invention of the kinetiscope by Thomas Edison and William Dickson [57]. In-
novation propelled cinema technologies forward, and by 1915 an entire industry had developed,
being centred in a suburb of Los Angeles where land was cheap and the weather favourable: Holly-
wood. The industry grew in size and influence, entering its Golden Age and becoming a champion
of creativity, culture, and during periods of war, a tool for propaganda. The success of Holly-
wood spawned industries in several other countries, which in 2018 were estimated to be worth a
staggering $41.1 billion [1] worldwide.
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Figure 1.2: Leading Box Office Markets by Revenue, 2019. Credit: Statista

With such large amounts of money at stake, people involved in making films place high value on
a predictive model that gives them an idea of the returns they will receive. In practice, profit
sharing amidst people involved in the film process is quite complex. A Rental Contract includes
the duration an exhibitor will show a film, an agreement on how revenue will be shared between
exhibitor and distributor, as well as potential exclusivity clauses. The first few weeks of screening
is when a film makes the most money with the distributor taking the lion’s share (60-70%) of
revenue. For the remaining period, the split is often reversed with the exhibitor taking the larger
cut. Adding further complexity to the matter is the house nut – if the film makes more money in a
given week than a predetermined amount, then 90% of this goes to the distributor. In this project,
we ignore the potential variables of such contracts and focus instead on how much raw box office
gross a film will make. After all, it is film performance we are interested in and the revenue (or
gross, used interchangeably), which is what we predict and, which is what the distributor receives
after the exhibitor has taken their share.

Films can make money beyond the confines of a cinema – Video on Demand (VoD), TV and DVD
are all supplementary sources of revenue for films. VoD, in particular, is one of the fastest growing
methods of viewing content, recording a 161% growth between 2011 and 2015 [2] in Europe alone.
The VoD market itself is split into subsections to include Transactional VOD (TVoD), Subscription
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VoD (SVoD) and Advertising VoD (AVoD), with many players in the market operating on both
regional and international scales. Examples of market players in VoD are Netflix (SVoD) and
iTunes(TVoD). On a more recent note, COVID-19 has spurred the growth of the VoD market as
a whole; Comscore reports a significant increase (Figure 1.3) in the number of transactions in the
VoD market corresponding to the imposition of lockdown in many countries.

Figure 1.3: Average Growth of VoD Transactions. Credit: Comscore

It is thought that this is only the beginning of a new trend for films to be released far earlier into
VoD markets, such as was done for the film Trolls World Tour, which Universal Pictures released
into theatres and the VoD market simultaneously in April 2020. The film went on to generate
around $100 million in rental fees alone within the first three weeks (source: The Wall Street
Journal). However, VoD providers do not release details of sales or revenue generated by films and
as a result, we consider only the theatrical and DVD/Blu-ray revenues in our investigation into
box office performance.

Of the 37 472 films made in the US between 1999 and 2018 only 5.7% were made by the largest five
studios and 90.3% of films in this period saw no theatrical release, yet only 3.4% of film ventures
reported a profit. Of the films that made a loss, the majority had one thing in common: they were
films made by independent studios [3]. Clearly, the industry would benefit from a tool that can
provide insight into film profitability.
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1.2 Objectives
The goals for this project are as follows:

• Understand how to model the box office performance of films and the Key Performance
Indicators of success;

• Develop models to predict the revenue of films from various sources on a per-country basis
at strategically informative points in time;

• Produce and evaluate models for use both prior to a film’s release as well as during, using
live data;

• Apply models to data and characterise the uncertainty in the fit of the model.

This project is run in collaboration with FilmChain, a startup that manages end-to-end financial
transactions for creative industries and as a service, delivers insights into film revenue using Machine
Learning.

1.3 Contributions
Key Performance Indicators Prior to Release We explore how to predict whether or not a
film will be profitable in advance of its release and extract the Key Performance Indicators to gain
an insight into what drives profitability.

Granular Regression of Performance Prior to Release Having good quality estimates of
how a film will fare revenue wise is invaluable to the beneficiaries of its revenue. Previous research
tackles the problem of predicting only final gross, but having information on the structure of
that gross, that is to say, the cumulative gross at various points in time will allow more accurate
calculation of how much of the proceeds individuals are likely to receive according to terms of
distribution agreements. To make this more relevant and informative, we predict these grosses on
a country by country basis allowing even more accurate estimates following the terms of individual
country agreements.

Ordinary Differential Equations for Revenue Prediction We develop a set of coupled
Ordinary Differential Equations explaining the intuition behind them and explain how to and
apply these to the modelling of films both prior to release as well as during release.

Revenue Forecasting During Release Performing regression during the pre-release stage
alone is insufficient. Hence, we also explore how to use data available after a film’s release as
it is collected to provide even more granular and up to date predictions of future performance.
This means considering a film not as a static entity, but as a dynamic object for which the future
outcome is affected by current events, many of which are caused by the whims and fancies of the
general film-loving populace.
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1.4 Project Outline
The remainder of this dissertation is organised as follows:

Chapter 2 performs a literature survey, introducing the types of models developed till now and
introduces the techniques and models we use in the remainder of the project.

Chapter 3 introduces the data used in our modelling. We comment on where and how the data
was collected, how features are related to one another and how this influences the way in which
we perform feature engineering on the data. We also comment on the nature and characteristics
of the final datasets and highlight some aspects of the integrity of the data.

Chapter 4 poses the pre-release problem, first of all tackling the question of profitability before
moving on to perform regression. Firstly, we investigate the factors that affect profitability and
evaluate these profitability models against each other and against models in literature. We then
introduce the regression problem and the models we use to solve it, show what predictions are like
and how the models interpret features for each regressand and identify key relationships between
features. Finally, we evaluate these models and comment on the reasons behind the observed
performance.

Chapter 5 explores the problem of modelling post-release performance at the box office using a
set of coupled Ordinary Differential Equations, presenting the development and intuition behind
these equations as well as seeing the capabilities of this modelling technique. We base our work on
the approach taken by Edwards and Buckmire, developing our own original model and investigating
the uncertainty associated with it.

Chapter 6 develops Machine Learning models to model post-release at box office as a time-
series forecasting task. We explore different methods of forecasting and show performance on
individual samples before formally evaluating the performance and commenting on reasons behind
observations.

Chapter 7 concludes this project, with a summary of work, reflection on the achievements as
well as directions for future work.
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Chapter 2

Background

Elementary, my dear Watson.

The Adventures of Sherlock Holmes, 1939

The problem of quantitatively modelling box office dynamics has spawned interesting and fruitful
research. Smith and Smith [4] in Applied Economics described cinema as "one of the best examples
of the differentiated product envisioned in conventional models of monopolistic competition". Most
existing research explores cinema as a problem to be solved with either probabilistic and statistical
approaches or as a Machine Learning problem.

2.1 Ordinary Differential Equation Models
This section lays down the basis for modelling the box office performance of a film using an Ordinary
Differential Equation (ODE).

ODE Models have been used extensively in various fields for modelling purposes, such as in epi-
demics where Kermack and McKendrick [10] suggested a method of using ODEs to model such
phenomena, developing the notable Susceptible, Infected, Recovered (SIR) model.

2.1.1 Bass Model
One of the earliest consumer behaviour models that can be applied to modelling box office perfor-
mance of a film is through the Bass Model [5]. The Bass Model employs an Ordinary Differential
Equation which relates how new products are adopted in a population:

f(t)

1− F (t)
= p+ qF (t) (2.1)

Where

• f(t) is the rate of change of the installed base fraction

• F (t) is the installed base fraction

• p is the coefficient of innovation

• q is the coefficient of limitation

The solution to this system yields the famous S-curve (Figure 2.1) which represents the rate of
adoption of a product over time. This model has been one of the most influential and frequently
cited papers in the history of Management Science.
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Figure 2.1: S-Curve showing Cumulative Sales over Time.

2.1.2 Behaviour Models
Sawney and Eliashberg [6] presented a model utilising a two parameter exponential distribution
and three parameter gamma distribution which modelled the process by which a person would
decide to see a movie in two stages – firstly, as the time taken to decide whether or not to see a
movie, and secondly, to model the time taken to act on that decision.

In further work, Eliashberg et al. [7] designed a program to predict box office gross for a film using
only pre-release data. Specifically, it is able to predict the box office for a film based by modelling
the behaviour of consumers using Interactive Markov Chains [8] where the transition probabilities
depend on the number of people already in the other states. In MOVIEMOD, the program that
Eliashberg et al. develop, they consider the effect of positive and negative word of mouth, the
duration of this effect and the frequency at which people talk about their opinions of a film.

The primary difficulty in using probabilistic approaches – especially those that attempt to model
behaviour – is the problem of choosing an appropriate distribution for the process being mod-
elled.

2.1.3 Edwards Buckmire Model
The success of the Bass Model motivated the use of ODEs to model film box office performance.
Edwards and Buckmire [9] presented a model developed using the same tools, in the IMA Journal
of Management Mathematics.

Edwards and Buckmire developed a system of coupled ODEs to model the box office performance on
a film after release. The Edwards Buckmire (EB) model takes a deterministic approach, employing
governing equations with the rate of change of gross at time t, initially given by:

dG

dt
= S̃Ã (2.2)

dÃ

dt
= −αAÃ (2.3)

dS̃

dt
= −αSS̃ (2.4)

where

G̃, Ã and S̃ are the gross, amount of money earned per screen per week and the number of screens
on which the film is presented, respectively. P is the ticket price. Conditions include G̃(0) = 0
and G̃(∞) =

∫∞
0
S̃Ã dt.

The EB model is then further developed, attempting to model negative human response (H̃, with
the percentage of people who hate a film given by H%) to a film governed by:
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dH̃

dt
=
H%S̃Ã

P
(2.5)

This assumes previous knowledge of the total number of people who will watch the movie and
knowledge of the number of people who dislike it – which is impractical in the real world. The
EB model is further developed allowing for people to watch a film multiple times, adding parameters
for consideration of genre, the amount spent on advertising and the effectiveness of advertising.
As they note, many of these parameters must be estimated in real-time.

The EB model yielded promising results for a number of movies such as the graphs for the param-
eters in Figures 2.2, 2.3 and 2.4.

Figure 2.2: Gross for At First Sight. Prediction Curve [9]

Figure 2.3: Attendance for At First Sight. Prediction Curve [9]

Figure 2.4: Screens for At First Sight. Prediction Curve [9]
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2.1.4 Stochastic Approximation Methods
The box office performance of films is a stochastic process. The gross of a film is determined by
the number of theatres that are exhibiting the film and the number of people that go to watch it.
There is randomness in this and stochastic models attempt to simulate this randomness.

Stochastic processes can be modelled using Markov Chains where the next step is dependent only on
the present state. A Markov Process is memoryless – it has no knowledge of how the present state
was reached or at what time it was reached at. For example, given n states S = {s1, s2, ..., sn}, the
Markov process can transition from one state to another with the probability Pij (in a discrete-time
process). An illustration of a Markov Chain is in Figure 2.5.

Figure 2.5: A Three State Markov Chain

The Markov Chain can model the revenue behaviour of individual theatres but translating this to
a macroscopic view of the entire system can be challenging. Modelling several individuals using
Markov Chains results in the state space explosion problem [11] which can make this approach
unviable.

We can approach this from a deterministic point of view, modelling the stochastic process using
ODEs [12, 13]. This means we lose the discrete states of a Markov Chain model, but, we gain a
model that is far easier to simulate than several Markov processes. However, ignoring the stochastic
effects can mean that in some cases the ODEs generate a significant error [14, 15].

As the step size of jumps in a stochastic simulation tends to zero, the impact of oscillations due
to the stochastic nature of the process decrease as well [16]. A visualisation in Figure 2.6 of this
shows the effect of halving the time step and doubling population from an original graph.
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Figure 2.6: Visualisation of Deterministic Approximation Theorems with Large (a) and Small (b)
Step Size [16]

2.2 Machine Learning Models
Machine Learning (ML) is a subset of the field of Artificial Intelligence (AI) that develops al-
gorithms which can learn from data. Supervised ML involves a model learning a function from
labelled training data.

In the case of predicting film performance, historical data containing information such as budget,
language etc. can be used to train samples. Feature Engineering of data is a crucial part of
developing an effective ML model.

The problem posed here is one of regression where the output data will be a real-valued number,
such as the total box office gross of a film.

Predicting box office gross has been tackled as a classification problem with some success [28] and is
potentially a sensible approach to the problem if regression is unable to yields good results.

The techniques presented here are algorithms which have either been applied to similar problems,
or whose properties are particularly interesting for the modelling this problem.

2.2.1 Linear Regression
Linear Regression analysis is an approach to modelling the relationship between independent vari-
ables and dependent variables.

Given a data set {yi, xi1, xi2, ..., xin}ni=1 a model can be defined that takes the form:

yi = β0 + β1xi1 + ...+ βnxin + ε = xTi β + ε (2.6)

Where ε is a noise term. This can be rewritten in matrix form as:

y = Xβ + ε (2.7)

In Maximum Likelihood Estimation [23] we attempt to find Θ that minimises the log likeli-
hood:

arg min
θ

− log L(θ) (2.8)

= arg min
θ

− log P (y|X,Θ) (2.9)

Where X is a design matrix. A closed form solution can be found as:
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ΘML = (XTX)−1XT y (2.10)

If the derivative cannot be calculated then an iterative solution can be found through Gradient
Descent, or when using a large data set through Stochastic Gradient Descent [23, 24].

Gopinath et al. [25] applied regression to a data set of film information (e.g. indicators such as the
number of theatres a film is released in, advertising budget etc.) to find the relationship between
pre-release factors on opening box office performance, and both pre and post release factors on
performance after one month. Their work shed light on how films could be released to ensure
exposure to the top US local area markets.

Almadi [26] too applied Linear Regression to predict the box office of films and found important
post-release relationships between post-release media and gross, and awards and gross.

2.2.2 Neural Networks
A Neural Network (NN) is a system inspired by structure of biological neural networks. NN’s can
be structured to have several layers with each neuron connected to each neuron in the following
layer (except for the input layer).

Figure 2.7: Illustration of a Three Layer Neural Network (Credit: Dataiku)

Each neuron has associated with it a weight, which the neuron uses along with its inputs to
calculate an output value. An activation function can be applied to the sum of the weighted inputs
from the previous layer. The activation function that is applied is a hyperparameter than must
be chosen. Neural Networks are fitted to a training dataset using the back propagation algorithm
which can use optimisation algorithms such as Stochastic Gradient Descent which present further
parameters to optimise including learning rate and batch size.

Dropout

Dropout [51] is a regularisation technique where every neuron in a given layer has a probability, p,
of being temporarily removed during training. This results in successive layers in the NN model
having to compensate for neurons that are missing at random thus forcing layers to consider data
from a wider variety of neurons in the previous layer. Dropout is typically not used in the output
layer as this is where predictions are generated from.
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Monte Carlo Dropout for Uncertainty Estimation

Neural Networks are an effective and flexible method of modelling complex functions with data
that is both high dimensional and numerous. However, they are prone to being overconfident [53]
in their predictions which leads to the key question: just how uncertain are they?

Before we explore how to quantify uncertainty, we must understand what uncertainty is in the
first place. In modelling, uncertainty is of two types: aleatoric uncertainty and epistemic uncer-
tainty.

Aleatoric uncertainty, visualised in Figure 2.8, refers to the uncertainty in the data itself. For
example, when predicting house price using floorspace only, there may be multiple prices for houses
of the same size.

Figure 2.8: Example of Aleatoric Uncertainty

Epistemic uncertainty is the uncertainty of the model itself, often caused by a lack of data. Epis-
temic uncertainty can be reduced by increasing the amount of data available and by optimising
model parameters. However, in many cases the epistemic uncertainty is ignored and instead mod-
els are fitted by minimising/maximising a performance metric. Nevertheless, having a means of
obtaining the model’s uncertainty would be a key informative piece of information.

Dropout, as described previously, is a technique used to perform regularisation and reduce overfit-
ting. Gal and Gahramani (2015) [52, 59] introduced a method of using dropout during inference to
estimate the model’s uncertainty. They use a Bayesian interpretation of dropout to show that using
dropout in training and prediction is sufficient to approximate a deep Gaussian Process.

We begin from maximising the Evidence Lower Bound (ELBO) (see Section 2.2.3 for more infor-
mation) during Variational Inference (VI):

LV I(ω) =

∫
qω(θ) log(P (Y |X, θ))dθ −KL(qω(θ)||p(θ)) (2.11)

This integral is not tractable for almost all q, therefore we perform Monte Carlo integration to yield
an the approximation in Equation 2.12 where L̂ is an unbiased estimator of L. To optimise L̂, we
sample one θ̂ from qω(θ), then perform the optimisation step on ω, which is then repeated.

L̂V I(ω) = log(
qω(θ)

P (Y |X, θ̂)
)−KL(qω(θ)||p(θ)) (2.12)

Each layer of the Neural Network with layers [1, ..., L] has weight matrix Wi and we define qω(θ) =∑L
i=1 pMi

(Wi), where Mi is the mean weight matrix for layer i.
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Mi = mean(Wi) (2.13)
qMi

= Mi diag([zij ]) (2.14)
zij ∼ Bernoulli(pi) (2.15)

Wi ∼ qMj
(Wi) (2.16)

Sampling the diagonals of z, which is Bernoulli distributed, means that columns ofMi are randomly
set to zero vectors, which is analogous to dropout where outputs of random neurons are set to
zero.

Performing multiple (hundreds) of inferences on the same input with dropout enabled means we
obtain several samples. The mean and standard deviation of these samples can be calculated
yielding an approximation of a Gaussian distributed, predictive posterior. This procedure is known
as Monte Carlo (MC) dropout.

Long Short-Term Memory

Neural Networks are powerful tools capable of modelling complex equations. But what happens
when the data being modelling is temporally related? One solution is to use a Recurrent Neural
Network (RNN). The brain is an RNN – it closely resembles layers of neurons with feedback
connections that can exploit temporal relationships between data. Consequently, RNN’s are in-
herently better suited to modelling temporally related data than feed forward Neural Networks in
areas such as Natural Language Processing and time-series prediction. The primary disadvantage
of RNN’s is the inability to use from a long time ago, so during back propagation earlier layers
may only receive a small gradient update, effectively preventing further learning.

Long Short-Term Memory (LSTM) is a solution created to solve this. LSTMs have the ability
to retain or forget information thus allowing earlier information to make it to later stages if it is
useful. An illustration of an LSTM is in Figure 2.9.

Figure 2.9: Illustration of an LSTM Cell [54]

Estimating model uncertainty using dropout is possible with LSTMs as well, as demonstrated by
researchers, Zhu & Laptev [55] at Uber.

Applications of Neural Networks

Sharda and Delen [28] used a NN, treating the problem as one of classification, classifying movies
into nine different, ranged categories based on budget. An illustration of their model is in Fig-
ure 2.10. On their data set, the model achieved a 37% correct classification with 75% of classi-
fications being within one category of the correct one. They compared the results (Figure 2.11)
of this to other Machine Learning methods, and demonstrated a performance improvement when
using Neural Networks.
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Figure 2.10: Sharda and Delen Model [28]

Figure 2.11: Sharda and Delen comparison of Various ML Techniques [28]

2.2.3 Gaussian Processes
A Gaussian Process (GP) is a class of model that defines a distribution over functions, with
predictions taking the form of a full predictive posterior [31]. This allows them to be used to
perform non-parametric regression as well as classification tasks while also providing true model
uncertainty.

At their core, Gaussian Processes rely on Bayes Theorem (Equation 2.17), using Bayesian Inference
to generate a predictive posterior distribution.

p(f |D) =
p(D|f) p(f)

p(D)
(2.17)

Gaussian Processes have been shown to be equivalent to a one layer neural network with infinite
width [33] and that the function approximated by a NN is a function drawn from a Gaussian
Process [34]. In other words, a Neural Network is a realisation of a Gaussian Process.

Definition of a Gaussian Process

A GP is a continuous stochastic process with a set of inputsX = {x1, x2, ..., xN} and a correspond-
ing set of functions f = {f1, f2, ..., fN} where any set of random function variables are distributed
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as multivariate Gaussian:

p(f |X) = N(µ,K) (2.18)

The marginal distributions are expected to be consistent:

p(f1) =

∫
p(f1, f2)df2 (2.19)

Given a dataset, X,Y , a GP looks to predict the posterior distribution that captures the most
probable parameters given the observed data.

p(θ|X,Y ) =
p(Y |θ,X) p(θ)

p(Y |X)
(2.20)

The denominator term, p(Y |X) is the marginal likelihood which normalises the posterior distribu-
tion. It is computed by integrating over all parameters weighted by their probabilities:

p(Y |X) =

∫
p(Y |θ,X)p(θ)dθ (2.21)

Gaussian Process Covariance

The covariance (or kernel) matrix, K, is necessary when defining a GP prior, along with the mean
(usually assumed to be zero), that defines the GP model. The covariance function is a crucial
parameter that determines how well the model generalises.

A covariance function, K(x,x
′), describes the correlations between different points in the process.

The covariance matrix must be positive semi-definite. There are several options for covariance
functions such as Squared Exponential (SE) covariance, Polynomial covariance and Neural Network
covariance. Covariance functions can be combined via summing, multiplication and convolution,
to form more complex kernels [32].

Sparse Gaussian Process

Several considerations must be made when using a Gaussian Process:

• Choice of Kernel. The choice of kernel is a crucial hyperparameter as it determines how well
the model learns useful features of data.

• Computational complexity. GP’s require matrix inverses to be computed for the covariance
matrix which has asymptotic complexity of O(N3) which makes dealing with large datasets
impractical. Methods exist to perform approximate inference [35, 36].

A Sparse Gaussian Process (Sparse GP) is a class of model that enables GP’s to be trained on
large amounts of data. Initial forays into scaling GP’s to work on larger datasets involved selecting
subsets of a dataset [37] to approximate the true covariance matrix and then proceed to train the
GP. Snelson and Ghahramani (2006) [36] proposed using ’pseudo-inputs’ or inducing points where
selected samples did not necessarily have to be part of the training data.

Titsias, 2009 [38] proposed constructing a variational approximation of the posterior by minimis-
ing the Kullback-Leibler (KL) divergence (Equation 2.22). This procedure is called Variational
Inference (VI). During VI we approximate the posterior [60] from Equation 2.20 using a sim-
ple distribution, qω(θ), and minimise the KL divergence between this distribution and the true
posterior with respect to the parameters ω.
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KL(qω(θ)||p(θ|X,Y )) =

∫
qω(θ) log(

qω(θ)

p(θ|X,Y )
)dθ = Eq [log(qω(θ))− log(p(θ|X,Y ))] (2.22)

Minimising KL divergence maximises the Evidence Lower Bound (ELBO), a lower bound on the log
marginal likelihood with respect to ω. The best ω that maximises the ELBO is given by Equation
2.23.

LV I(ω) =

∫
qω(θ) log(

qω(θ)

P (Y |X, θ)
)dθ −KL(qω(θ)||p(θ)) (2.23)

Most importantly, Sparse GPs have a much reduced computational complexity of O(NM2) where
M is the number of inducing points, a hyperparameter that can be chosen.

Deep Kernel Processes

A Deep Kernel Process (Deep KP) combines the expressiveness of a Neural Network with the
non-parametric flexibility of a Gaussian Process. Structurally, a Deep KP consists of a Neural
Network input, to whose outputs a kernel function can be applied following which it is fed into a
layer Gaussian Process that produces the final prediction. This means that rather than computing
the covariance of raw data, the covariance is calculated on the latent representation output of a
Neural Network. A Neural Net kernel can be applied to a Sparse Gaussian Process as well, when
using large amounts of training data.

2.3 Model Fitting
Fitting a model to data is an important procedure that forms the basis of modern Machine Learning.
The goal is to find a vector of weights for each parameter that enables the model to conform to
the observations as best as possible. The extent of the fit can be defined in many ways and
can include other parameters to penalise certain qualities of the weights vector such as LASSO
Regression [17], the Akaike Information Criterion [18] (AIC) or the Bayesian Information Criterion
[19] (BIC).

2.3.1 Least Squares Method
The approach that Least Squares takes is to minimise the sum of the squared errors between the
model estimates and the observed data.

Least Squares can be represented as an optimisation problem with solution found by solving:

arg min
θ

∑
(yi − f(xi, θ))

2 (2.24)

Where yi is the ith observed value and f(xi, θ) is the ith prediction by the model. This is the
same as using a Mean Squared Error (MSE) function.

Implementing and performing the computation for this is simple and allows us to find solutions
for a system with more unknowns than variables. Least Squares provides the maximum likelihood
solution and if Gauss-Markov Conditions apply, then it yields the best unbiased estimator.

Least Squares is especially sensitive to outliers as these can end up making a much larger contribu-
tion to the penalty. Least Squares also tends to overfit data, and using techniques such as LASSO
[17] or Ridge [20] regression can reduce this.
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2.3.2 Nelder-Mead Optimisation
Nelder-Mead [22] (NM) is a multidimensional global optimisation algorithm that can be applied
to nonlinear optimisation problems where the derivatives may not be known.

NM works by creating a simplex (an n dimensional version of a triangle) containing n+1 vertices in
an n dimensional problem. At every stage, NM moves the simplex towards an optimal region in the
domain. In the last few iterations, this would shrink to the optimal point inside the simplex.

The stages in each iteration can be summarised as follows:

1. Sort points from worst to best and note the indices for the worst, second worst and best
points.

2. Compute centroid for all but the worst point.

3. Transform the simplex as a reflection, expansion or contraction.

4. Redefine the entire simplex keeping only the best point, thereby shrinking the simplex.

The advantage of NM is that at each step it needs at most two function evaluations, therefore
making it efficient compared to many other n-dimensional optimisation algorithms.

2.3.3 Confidence Intervals
Confidence Intervals are an important part of modelling as it indicates how reliable the estimate
for a given parameter is. Normal approximation confidence intervals [29] provide a good indication
of the probability that an interval contains the true value of the parameter:

estimate ± (percentile× SE(estimate)) (2.25)

where SE is the standard error, σ√
n
, with σ, the standard deviation, and n the number of sam-

ples.

2.4 Analysis, Interpretation and Evaluation

2.4.1 Coefficient of Determination
The Coefficient of Determination, R2, is the proportion of the variance in the dependent variable
that can be attributed to the independent variables. R2 is commonly used as a measure of how well
regression models manage to fit data and typically range from 0 to 1 with 1 indicating a perfect
fit, although it can be negative in cases where SSres > SStot. R2 is defined as:

R2 = 1− SSres
SStot

(2.26)

where

SSres =
∑
i

(yi − fi)2 (2.27)

SStot =
∑
i

(yi − ȳi)2 (2.28)

21



2.4.2 Shapley Values
In game theory, Shapley values are a method for distributing costs and gains to players of a game in
situations where contributions are not equal but where players work in cooperation to achieve the
same end. This can be extended to find the average marginal contribution of a feature value across
all coalitions and so find to what extent and how a feature contributes to the outcome.

The Shapley value of a feature represents its contribution to the prediction, weighted and summed
[39, 40] over all feature combinations:

φj(val) =
∑

S⊆{x1,x2,...,xp}\{xj}

|S|!(p− |S| − 1)!

p!
(val(S ∪ {xj})− val(S)) (2.29)

where S is a subset of the features used in the model, x is a vector of the feature values with p
features. val(S) is the the prediction for feature values in set S that are marginalised over features
that are not included in the set:

val(S) =

∫
f̂(x1, ..., xp)dPx/∈S − Ex(f̂(X)) (2.30)

In practice, we have to exclude each possible feature from S and hence end up computing multiple
integrals for each excluded feature. Performing this for even medium sized datasets is computa-
tionally expensive as there are 2k possible combinations of feature values. We can estimate the
Shapley value of each feature by performing Monte Carlo sampling [40, 41] and limiting the number
of iterations by using a smaller subset of data to compute Shapley values.

2.4.3 Analysis of Variance
Analysis of Variance (ANOVA) is a collection of statistical models and their associated estimation
procedures that can be used to analyse the difference in means of groups. One-way ANOVA
is a version of ANOVA that is used to determine whether there are any statistically significant
differences between the means of three or more independent groups. This means we can use
ANOVA to check whether features separated by a categorical variable have means different enough
to be significant.

As with many other hypothesis tests, a Null Hypothesis, H0, is defined as:

H0 : µ1 = µ2... = µn (2.31)

for n groups.

ANOVA makes several assumptions:

1. The dependent variable is normally distributed within each group.

2. Variances are homogeneous ie. the variances of each population group is the same

3. Observations in each population are independent

In practice, ANOVA is relatively robust against violations of normality.
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Chapter 3

Feature Extraction

Gentlemen, you can’t fight in here! This
is the war room!

Dr. Strangelove or: How I Learned to
Stop Worrying and Love the Bomb, 1964

3.1 Sourcing Data
Films have several defining features: some of the most well known features include the genre, the
cast and crew and the budget. IMDb is a popular repository of film data, containing information on
the core features of a film and maintaining a set of ratings where users are allowed to rate films on
a scale of 1 to 10. Box Office Mojo, owned by IMDb, is another collection of film information that
focuses on quantitative data on releases of a film in various regions/territories including the release
date, the number of theatres showing the film and revenue on a more granular level – usually at
weekly intervals.

IMDb provides open datasets [42] containing basic information on films, their initial release year
and cast and crew names. However, this alone is insufficient: more data is needed on releases,
revenues and theatres on a country by country basis, and data on revenue from non-theatrical
sources.

Using films from the IMDb datasets, we scraped information from Box Office Mojo, TMDb and JP
Box-Office using Python packages Scrapy and Selenium, ensuring that all prices were in USD. We
then assembled the data into the pre-release and post-release datasets. We also collected several
datasets containing history on actors, directors and production companies from The Numbers,
which we use when feature engineering. In total, we use data containing information on 30 770
films. We summarise our data sources in Table 3.1.

Table 3.1: Summary of Data Sources

Data Type Source

Genre, Director, Actors, IMDb Rating IMDb
Region, Language, Runtime IMDb, TMDb

Production Companies, Budget TMDb
Revenue, Theatres, Release Dates Box Office Mojo

Physical Media JP Box-Office
Extra Information on Actors, Directors and Production Companies The Numbers

3.2 Availability of Data
Revenues streams for films include the well known theatrical means, as well as income from sales
of copies of DVDs and Blu-rays. Other means include rental or digital sales revenue from TVoD,
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as well as broadcasting rights from SVoD and TV. Data pertaining to revenue from VoD is not
released by the market players nor is it available from third party, paid data sources. Similarly,
data for revenue from TV rights sales too is not available. As a result, we use the data that is
available to us: theatrical gross for several countries and sales of units and revenue from physical
media.

3.3 Which Features are Considered?
We are faced with two distinct tasks: firstly, to make predictions on performance prior to a film’s
release; and secondly, to use data as it is collected post-release and make short term predictions
on performance.

In both tasks we consider performance across several countries or regions and as a result the data
used must be free of country-specific characteristics and nomenclature. For example, the use of
an Motion Picture Association of America (MPAA) rating would be inappropriate and redundant
as it is an organisation that (optionally) provides ratings for films released in the USA. Other
countries have their own rating bodies, such as British Board of Film Classification in the UK and
the Australian Classification Board for Australia. Rating criteria for each of these bodies is unique
for each institution and no equivalent conversions between these exist. Furthermore, we consider
many films that do not see release in countries with reported ratings and hence we ensure our
models perform inference independent of such age/content ratings. We consider the core features
described in Table 3.2.

Table 3.2: Overview of Core Features

Feature name Feature description

Genre The genres of the film, limited to the top three
Region Region(s) in which the film originates

Language The languages the film is released in
Director The director(s) of the film
Actor 1 The lead actor in the film
Actor 2 The secondary actor in the film
Actor 3 The third leading actor in the film
Budget The film’s budget

Production Companies The production companies involved in the film
Runtime The total length of the film in its primary country of release

Country Release Date Release date in each country
Country Beginning Theatres Number of theatres showing the film per country

IMDb Rating Community rating between 1 and 10 on the quality of a film

3.4 Data Visualisation and Analysis
In this section we analyse the relationship between some key factors and the total box office gross
of films. We explore the importance of strategic relationships and implications of data.

3.4.1 Budget
Budget is a reasonable indicator of the quality of production of a film as well as the extent and
scale of its marketing. The marketing budget does not form part of the film’s budget, rather it is a
separate expenditure that can sometimes be as large as the film’s budget itself. A film’s true budget
can be hard to come by as many studios do not release this information and reported budgets
are often just estimates. The marketing budget is even less available and although potentially
informative, is not included in this analysis.
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Figure 3.1: Budget vs Gross Plot

Figure 3.2: Budget Distribution

Figure 3.1 shows the plot of budget against the gross. There is a clear positive, although non-linear,
relationship between the two. Looking at the distribution of budgets in Figure 3.2 we see that
there are very few films with large budgets of over $100 million and the vast majority of films have
a budget of less than $50 million which skews the distribution. Despite it being representative of
real world film budgets, the skewness could result in there being very few samples of high budget
film to model.

3.4.2 Genre
We now turn our attention to genre; Figure 3.3 shows the mean and standard deviation of the
gross by genre. Adventure films and Sci-Fi films tend to gross more on average as compared with
some genres such as Documentaries which see very small revenues. But what are budgets like for
each genre? From the bar plot of genre and budget in Figure 3.4 we see that in general, the budget
for each genre is proportional to the gross it generates on average.
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Figure 3.3: Average Gross by Genre

Figure 3.4: Average Budget by Genre
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3.4.3 Production Company
Production companies are the powerhouses behind films, providing management, oversight, crew
and then marketing the film to exhibitors. Involvement of a major studio is a reasonable indicator
that a film will have a high production value and is expected to be successful. Looking at the market
share of the top production companies in Figure 3.5 we see that the top ten production companies
account for a disproportionate 20% of market share with the top thirty companies combined taking
nearly a third of market share. This suggests that from this set of 10 340 companies, the involvement
of a top production company is indicative of a high grossing film.

Figure 3.5: Market Share of Top Production Companies

Looking into the regions in which production companies are based, of the top thirty production
companies, 90% are based in the USA and correspondingly films originating in the USA tend to
have a higher average revenue.

We see similar trends with directors and actors too. Similarly, among 7296 unique directors there
are a few, high performers that account for a much larger market share than the others. It is
clear that the entities involved in the making of the film are a good indicator of financial success
and incorporating a measure of past performance of these entities is likely to be a powerful and
informative feature to predict box office success.

3.4.4 Theatres
As one of the feature inputs to the pre-release model, we provide the number of screens a film
is exhibited in, in each country. Looking at how the initial number of theatres affects gross
(Figure 3.6) we don’t initially see any pattern. There are films that have made a lot of money
despite releasing in relatively few theatres, just as there are films that have released in around
5000 theatres with some high grosses. There are also films that have released in around 25 000
theatres and yet made comparatively little! This occurs because we are looking at releases from
all countries; some countries such as China and India have a large number of theatres but the
final gross of these films may be low compared to the revenues of Hollywood films. We see peaks
of profitability with a few hundreds of theatres as well with around 5000 theatres because of the
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nature of releases: Wide releases indicate high budget films that are exhibited in many screens at
release and stand to make a lot of money and hence we observe a range of grosses, many high for
releases of this nature. There are Limited releases where a film potentially has a lower budget
and is screened in fewer theatres. A combination of the film’s popularity and competition with
other releases can result in it being more widely screened after release. Films that become more
popular after release generate more revenue but are also rarities.

Next, we inspect the correlations between the number of theatres and the final gross per country
in Figure 3.7 which displays correlations for a subset of countries. There is a positive correla-
tion between the number of theatres a film is released in and the final gross of a film in that
country. Also, notice that the grosses for some countries are highly correlated, such as between
Italy and Germany. We learn more about these relationships and how they relate to modelling in
Section 4.3.6.

Figure 3.6: Initial Number of Theatres vs Gross
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Figure 3.7: Starting Theatres and Final Gross Pearson Correlation

3.4.5 Year of Release
Included in the unprocessed dataset is the year of release of each film. We do not want to use
year of release in our modelling as models should be able to perform inference independently of
the year in which film was released. But before we remove this feature, we use ANOVA to explore
the relationships between year of release and the grosses of films released in that year.

To perform ANOVA, we first check whether the assumption that groups are normally distributed
is met. At a 5% significance level both the D’Agostino and Pearson, and the Jarque-Bera tests
report that none of the groups are normally distributed. The distribution for the year 2001 is in
Figure 3.8. Looking at the quantile-quantile (Q-Q) plot for 2001 (Figure 3.9), we see significant
skew away from the mean. Applying a log transformation to gross and conducting the normality
tests shows normality for almost all the years. An inspection of the distribution and Q-Q plots
(Figures 3.10, 3.11) suggests a far more normal looking distribution.
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Figure 3.8: Gross Distribution for 2001

Figure 3.9: Q-Q Plot for Gross for 2001

Figure 3.10: Log Gross Distribution for 2001
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Figure 3.11: Q-Q plot for Log Transformed Gross for 2001

With the assumptions of ANOVA satisfied, we run the one way ANOVA test with a 5% significance
level yielding an F-statistic of 20.314. The corresponding p-value is less than the 5% significance
hence, we reject the null hypothesis and the means are not equal.

If the means are not equal then there must external factors that cause the mean to shift year on
year. The most likely reason is inflation; inflation can be adjusted by discounting or compounding
prices so that they are comparable.

Discounting for inflation as described in Section 3.5.2 and repeating the one tail ANOVA test still
results in a rejection of the null hypothesis which suggests that factors other than inflation are at
play. These factors may come from films earning revenue from different markets and in different
currencies. Currencies can have rates of inflation that are not the same as for USD leading to
non-uniform changes in exchange rates. Growth of other film markets too can have an effect, such
as the rapid growth of the Chinese Box Office [47] which has grown disproportionately compared
to the US box office market.

3.4.6 Clustering Analysis
In Clustering Analysis, we pose an unsupervised learning problem and attempt to group sets of
samples using clustering algorithms. Clustering analysis can provide an insight into the data as
well as explore the feasibility of a clustering based approach to missing value imputation.

We minimise the Sum of Squared Distances (SSD) between samples and centroids using the K-
Means algorithm using a subset of approximately 10 000 samples with non-zero budgets. Using the
Elbow method, we see in Figure 3.12 that SSD decreases as the number of centroids increases. The
optimal number of centroids seems to be at around the 2 000 mark where there will be an average
of five samples per cluster. There are likely too few samples per centroid to perform missing
value imputation. This also suggests that samples in this dataset do not form well populated
groups.
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Figure 3.12: Clustering Sum of Squared Distances for K clusters

3.4.7 Post-release Time Series
When modelling post-release revenue and theatres exhibiting a film, we need to understand the
nature of the series being forecast.

Film releases are generally of two types: wide releases and limited releases. A film with a wide
release is released into a large number of theatres and typically is a high budget film with extensive
marketing. Kate & Leopold is characteristic of this type of release with both the number of theatres
and revenue per week again surpassing the release week’s (Figure 3.13) numbers.
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(a) Weekly Revenue for Kate & Leopold

(b) Theatres Exhibiting Kate & Leopold

Figure 3.13: Theatres and Revenue for Kate & Leopold in North America

A limited release, on the other hand, describes films released into a small number of theatres. A
positive response and promise of high gross are likely to result in exhibitors increasing the number
of theatres showing the film resulting in both the number of displaying theatres and revenue
collected peaking after the initial release. Chicken Run (Figure 3.14) is an example of this type of
release.
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(a) Weekly revenue for Chicken Run

(b) Theatres showing Chicken Run

Figure 3.14: Theatres and Revenue for Chicken Run in North America

Neither of these release types are stationary time-series; even when applying the conditions for a
Wide Sense Stationary (WSS) process, where we demand stationarity in the mean and variance
only the raw time series does not satisfy. A common technique to obtain a WSS time-series is to
compute the differences between raw values. But once again, the differences in Figure 3.15 are not
WSS. This is, in fact, the case for all revenue and theatre sequences. Hence we conclude that we
model only non-stationary time-series.

Figure 3.15: Kate & Leopold Differenced Weekly Revenue
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3.5 Data Preprocessing

3.5.1 Dealing with Categorical Variables
In this dataset there are two types of categorical variables. Firstly, there are variables with a
fixed upper limit on the number of possible states e.g. countries, languages etc. Variables such as
these can be One Hot Encoded (OHE) as it is known beforehand the number of vectors needed to
represent them.

There are also variables with no such upper limit on the number of unique values such as the
production companies, directors and actors. The number of unique values for these variables are
summarised in Table 3.3.

Table 3.3: Number of Unique Values for Variables with No Upper Limit

Feature Number of unique values

Production Companies 18 635
Directors 18 351
Actors 49 016

Using OHE this type of data could result in large, sparsely encoded matrices. An alternative
technique, Label Encoding, does not cause large and sparse matrices. However, Label Encoding
does not allow the model to learn relationships between features. Furthermore, these encoding
methods often assume a large number of samples for each unique value which is not true for actors
and directors where individuals may have only a few credits. We confirm this by looking at the
Violin plot for credits for all actors in Figure 3.16 where the majority of actors, credited as either
actor 1, 2 or 3, have been in fewer than ten films.

Figure 3.16: Violin Plot of Number of Acting Credits for all Actors

Multiple techniques have been proposed for handling encoding when faced with this type of problem
[43, 44] such as encoding only the top n categories uniquely, with one more category dedicated
to any values that do not fall into the top n. Another method proposed by Galvão & Henriques
(2018) [44] is to split actors into ’stars’ and ’non-stars’ and encode actors as binary variables. This
is a broad generalisation which ignores characteristics of individuals and does not allow the model
to learn the characteristics of an actor.

An alternative to OHE for is to represent them with a measure of star power [45] or social media
popularity [46] as a means of quantifying their appeal and cinematic performance. IMDb maintains
an up to date Starmeter ranking system for actors crew going back over twenty years, but this
data lacks granularity when looking at rankings from a long time ago.

We propose providing raw metrics to the model and let it form its own latent representation of how
these metrics interact. We use secondary datasets collected from The Numbers, which contains
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information on the number of films and total box office gross for actors, directors and production
companies. For actors and directors, we encode each actor and director with the number of films
they have starred in or directed, respectively, as well as the average revenue generated per film.
For Production Companies – for which there are often multiple companies involved per film – we
encode each film using the total number of films released by all companies involved as well as the
average revenue per film generated by all the companies. Examples of this encoding relationship
are in Table 3.4. We indicate any actors or directors not found in the secondary dataset by a
further column such as actor_1_is_experienced which is set to zero when an actor or director has
no valid history.

The advantage of using this representation is that it does not result in the loss of information
– classes of actors can still be recognised by models. More importantly, it does not have the
disadvantages of an OHE approach. As actors are defined by their past information, and not
uniquely without any measure past performance as with OHE, we do not face the penalty of large
and sparse matrices or a lack of training samples for individual actors. Rather we expect a model
to construct a latent representation of actors using their essential statistics. This technique can
also be extended to suggest ideal actors from a selection of similar actors which we discuss in
Section 7.3.2.

Table 3.4: Variable Encoding for Actors, Directors and Production Companies

Name Total number of films Average Box Office Gross ($)

Tom Cruise 42 238 449 585
Christopher Nolan 12 394 311 461

Warner Bros. 249 176 630 668

3.5.2 Adjusting for Inflation
Inflation is defined as a continuing rise in the general price level usually attributed to an increase
in the volume of money and credit relative to available goods and services (Credit: Merriam Web-
ster). The average annual rate of inflation of the US Dollar between 2000 and 2019 is shown in
Figure 3.17.

Figure 3.17: Annual US Dollar Inflation Rate 2000-2019

36



Figure 3.18: Cumulative US Dollar Inflation Rate 2000-2019

Our dataset contains films released from the year 2000. To ensure prices are comparable, we
discount all monetary values to 2000’s prices. We do this by calculating the cumulative rate of
inflation using 2000 as the baseline price. The cumulative rate of inflation is shown in Figure 3.18.
Prices can be corrected to 2000’s prices by discounting with the formula:

Corrected price =
Price

Cumulative inflationyear
(3.1)

3.5.3 Missing Data
Missing Core Characteristics

Of the entire dataset, which contains 29 839 samples there are a few columns that have missing
data. Figure 3.19 shows values missing as a percentage of the total number of values per column.
The region and production_companies columns contain the second and third highest proportion
of missing values. Missing values in these columns are inherently related as production companies
produce films for the country they are headquartered in and as a result, we can impute some
missing values in the region column.

Figure 3.19: Percentage of Values Missing per Feature

Dealing with Missing Budgets

The budget column has the largest proportion of missing values – removing all rows with missing
budgets would reduce the number of available samples by two-thirds. Removing all samples with
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missing budgets would also mean excluding an important subset of data. Figure 3.20 shows that
the grosses of films with missing budget tend to be low – excluding these would mean ignoring a
large and important demographic of the dataset.

Figure 3.20: Gross of Films with Missing and Known Budgets

Inspecting the missing budgets by region in Figure 3.21, we see that the majority of samples
with missing budgets films not made in the USA. The aim of the project is to predict grosses for
films generated from several countries and removing this data would lead to the loss of valuable
information on non-US made films. Following the results of the clustering analysis in Section 3.4.6,
we should not impute missing values using clustering either. Instead we zero impute these values
and introduce an indicator binary variable, budget_known, which informs the model whether the
budget is known for a particular sample or not.

Figure 3.21: The Regions of Films with Missing Budgets

Missing Physical Sales Data

Part of the total revenue generated by a film includes income from sales of DVDs and Blu-Rays.
Information on the revenue from this income source, as well as the total (estimated) sales of units
in North America was obtained from JP Box-Office. However, of all the samples in the dataset
only 1100 samples have valid data for physical media sales. As a very small subset of samples
contain this information, imputing sales data for over 95% of samples is not possible. Therefore,
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we introduce a binary variable, a feature that indicates whether a physical release occurred for a
particular film. We only expect models to make predictions for samples which indicate a physical
release.

3.5.4 Final Datasets and Notes
Using the feature engineering techniques outlined previously, we can create the pre-release and post-
release datasets. We only model performance for a subset of countries (summarised in Table 3.5)
for which we have sufficient data.
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Table 3.5: Countries used in Modelling

Country Pre-release Post-release

North America Yes (as Domestic) Yes (as Domestic)
Russia/CIS Yes Yes

United Kingdom Yes Yes
France Yes No
Mexico Yes Yes
Brazil Yes Yes
Japan Yes No

Germany Yes Yes
South Korea Yes Yes

Italy Yes Yes
Turkey Yes Yes

Netherlands Yes No
Poland Yes No
Romania Yes No
Ukraine Yes No

Czech Republic Yes No
Slovakia Yes No
Norway Yes No

New Zealand Yes Yes
South Africa Yes No
Portugal Yes Yes
Bulgaria Yes Yes
Lithuania Yes No
Iceland Yes No
Slovenia Yes No
Australia Yes No
Spain Yes Yes
Taiwan Yes No
Belgium Yes Yes
Denmark Yes No
Sweden Yes No
Colombia Yes No

United Arab Emirates Yes No
Hong Kong Yes No
Hungary Yes No
Peru Yes No

Argentina Yes Yes
Finland Yes No
Austria Yes Yes
Greece Yes No

Singapore Yes No
Thailand Yes No
Chile Yes No

Malaysia Yes No
Lebanon Yes No
Bolivia Yes No
Uruguay Yes No
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Pre-release dataset

We create two types of datasets – one containing raw prices and the other containing log trans-
formed prices. Each dataset contains 412 features which we summarise in Table 3.6.

Table 3.6: Summary of Pre-release Data Features

Feature Name Description Scaling/Transformation

Budget The film’s budget (+ indicator) S, LTS
Runtime Film length in minutes S
Region Region of origin, 89 unique values OHE

Language Languages of release, 95 unique values OHE
Country Release Indicates release in a country OHE

Country Beginning Theatres Initial theatres into per country S
Country Release Day Day of week of release in country S

Country Release Month Month of release in country S
Actor 1 Num Films Actor 1 number of films S

Actor 1 Average Gross Actor 1 average gross S, LTS
Actor 2 Num Films Actor 2 number of films S

Actor 2 Average Gross Actor 2 average gross S, LTS
Actor 3 Num Films Actor 3 number of films S

Actor 3 Average Gross Actor 3 average gross S, LTS
Director Num Films Director number of films S

Director Average Gross Director average gross S, LTS
Studio Films Production Company number of films S
Studio Gross Production Company average gross S, LTS

S = Scaled
LTS = Log Transformed then
Scaled
OHE = One Hot Encoded
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Post-release dataset

The post-release dataset shares many features with the pre-release one. Only features that are
most relevant after release are present, such as the languages, budget, runtime and the actor,
director and studio encoded variables. Each sample also contains the previous week’s revenue,
number of theatres, rank in the country and the IMDb rating for the film. The country for which
the sample corresponds to is indicated by a One Hot Encoded set of variables. This results in 231
input features which we summarise in Table 3.7.

The time-series data for many countries contains missing values. As a result, several countries with
significant amounts of missing data are removed. When a small amount of data is missing, we fill
in the gaps using linear imputation.

Table 3.7: Summary of Post-release Data Features

Feature Name Description Scaling/Transformation

Budget The film’s budget (+ indicator) S
Runtime Film length in minutes S
Country Country to which current sample corresponds OHE
Region Region of origin, 89 unique values OHE

Language Languages of release, 95 unique values OHE
Actor 1 Num Films Actor 1 number of films S

Actor 1 Average Gross Actor 1 average gross S
Actor 2 Num Films Actor 2 number of films S

Actor 2 Average Gross Actor 2 average gross S
Actor 3 Num Films Actor 3 number of films S

Actor 3 Average Gross Actor 3 average gross S
Director Num Films Director number of films S

Director Average Gross Director average gross S
Studio Films Production Company number of films S
Studio Gross Production Company average gross S

Previous Week Gross Gross in the previous week S
Previous Week Theatres Number of screens in previous week S

S = Scaled
OHE = One Hot Encoded

Quality of Data

Most of the data collected is from Box Office Mojo and IMDb where data for North American and
European films is generally well reported and detailed. However, for films made in countries outside
of these regions, data is far harder to come by and in some cases is incomplete. For example, we
expect the Indian film Ashoka the Great1 to have its largest market in India. However, only data for
North America and the UK is reported and some data clearly is incorrect – for the third weekend
of the theatrical run in the UK, the number of theatres showing the film is reported as 731 698. This
is impossible because as of 2018, the UK had fewer than 800 film theatres (source: Statista) in the
entire country! We filter out some values that are clearly anomalous during preprocessing.

Poor reporting of data for non North American and European countries is a common issue as some
of these countries/regions do not have official box office tracking bodies. As a result, some of the
largest film markets such as China and India are not included in final datasets.

1https://www.boxofficemojo.com/releasegroup/gr3742913029/
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Chapter 4

Pre-release Modelling

Pay no attention to that man behind the
curtain!

The Wizard of Oz, 1939

4.1 Motivation
Having discussed some modelling techniques and the nature of the data we are considering, we
now begin modelling how a film will perform in advance of its release. Prior to release, there is no
way of knowing how critics and film fans will react to a film and to further complicate matters,
positive response from one group doesn’t necessarily translate to a positive response from the
other. We begin by exploring the profitability of films as a concept in and of itself before modelling
performance at a granular level.

4.2 What Determines Film Profitability?

4.2.1 Introduction
The first question we ask ourselves is this: what makes a film profitable? Films need to earn
approximately twice their budget at the box office [3] in order to be profitable. As discussed in
Section 3.5.3, the pre-release dataset contains several samples with an apparent zero budget and
so, for this task we consider films with non-zero budgets only.

Before considering the full regression problem, we tackle a classification task – predicting whether
a film will be profitable. Most importantly, we look at identifying the Key Performance Indicators
(KPI) of profitability.

4.2.2 Dataset Division
We define a profitable film as one that earns at least 1.8 times its original budget. Samples that
satisfy this condition, the profitable films, are denoted with a 1, and unprofitable films are denoted
by a zero. This results in a binary classification problem.

We shuffle and separate the dataset using 90% of data to create the training set, with the remaining
10% functioning as a test set. This results in approximately 9000 training samples and 1000 test
samples.

Cross validation is a technique that can be used to assess how well a model generalises, or to
determine optimal hyperparameters. It works by separating a dataset into k batches of which one
batch is used as a test set with the remaining k-1 batches used to train a model. The performance
on the test batch is recorded and the procedure repeated where every other batch is used as a test set
exactly once. This technique has a crucial disadvantage; k -fold cross-validation is computationally
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expensive as the model has to be retrained for every fold before testing. As a result, we do not use
cross validation in this modelling task.

4.2.3 Modelling Profitability & Key Performance Indicators
Description of the Models

We consider two models: Logistic Regression and XGBoost.

Logistic Regression optimises a vector of n+ 1 parameters, taking in n inputs and uses one further
linear offset parameter, β0, to map the given features to a probability of profitability:

P (profitable) = σ(z) (4.1)

where σ(z) is the sigmoid function:

σ(z) =
1

1 + e−z
(4.2)

and z is:

z = β0 + β1x1...+ βnxn (4.3)

where βi is the feature weight for feature i.

XGBoost is a tree based model used for supervised learning problems where the task is one of
classification or univariate regression. XGBoost uses the concept of boosting, where several models
are trained in sequence to fit on the error of the previous model and weighted sums of predictions
of all models are used to generate an overall prediction.

Key Performance Indicators

In this section we are primarily concerned with gaining an insight into the factors that indicate
profitability. We value simplicity of interpretation and this is a key reason for using transpar-
ent models such as logistic regression that, despite their often lower accuracy compared to more
complex tree based models, offer clarity and interpretability.

For the logistic regression model, the plot of the top twenty feature weights in Figure 4.1 show
that budget, by far, has the largest impact on profitability. Many of the other important features
are binary variables which indicate whether a film is released in a particular country, the most
significant of which is the Domestic_release feature which indicates release in North America.
This suggests that films stand to make a lot of revenue from the North American market and that
this release here is a key consideration in profitability. Also considered important are the number
of theatres the film is exhibited in initially in North America, Brazil, Germany and Japan. It
comes as a surprise that the release indicator variables see a more significant weighting than the
profiles of directors, production companies and actors. To try and explain this, we look to the field
of Modern Portfolio Theory: Markowitz Minimum Variance portfolios can achieve returns with the
lowest possible risk [56] and in the same vein, release into several markets indicates diversification
that results in more consistent profitability.
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Figure 4.1: Logistic Regression Feature Weights

The primary weakness of looking only at the coefficients of a logistic regression model is the lack
of information on how magnitude affects the outcome – the feature weights would suggest that a
budget of any magnitude is detrimental to profitability. We require a more granular interpretation
of the model and for that we calculate Shapley values for the models.

Figure 4.2: Logistic Regression Input Feature Shapley Values

As we observed when inspecting the weights of the logistic regression model, budget has the most
impact. On a more granular level we see that high budgets have have a large negative impact
on profitability; this seems counter-intuitive as generally high budget films have more production
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value, more marketing, wider releases and make a lot of money at the box office. However, films
with large budgets of over $100 million generate a higher proportion of revenue from non-theatrical
sources1. As we fail to capture a large proportion of alternative revenue streams for large films,
this can lead to the model believing that high budget films are less likely to be profitable.

The initial number of theatres a film is screened in, in key markets such as North America has
a positive impact on profitability. We attribute this to the wide release effect (see Section 3.4.4)
wherein in a film receives high exposure prior to release. Particularly surprising is the effect of the
average_revenue_per_film_studio feature which suggests that films made by studios with large
average revenues have a negative impact on profitability. This is likely linked to the high budget
where such films often generate large portions of revenue from non-theatrical sources.

We shift our attention to the XGBoost model for which Shapley values are shown in Figure 4.3
which shows striking similarity with the Shapley values for the logistic regression model. Looking
at the budget feature we see much more nuance – only extremely high budgets have a large
negative impact on profitability. The XGBoost model also seems to understand the effect of wide
and limited releases, with a more pronounced penalty for releasing in very few theatres in North
America.

Figure 4.3: XGBoost Input Feature Shapley Values

4.2.4 Evaluation
We now answer the question: how well can our models predict the profitability of a film? We
explore in detail how the models perform on unseen test data and compare them to models from
previous work in the field.

1https://stephenfollows.com/how-movies-make-money-hollywood-blockbusters/
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Comparing Logistic Regression and XGBoost

To compare logistic regression and XGBoost we consider two performance metrics: Logarithmic-
Loss (log-loss) and Classification Rate (or Accuracy, used interchangeably). Figure 4.4 shows
these performance metrics for the two models. XGBoost achieves a lower log-loss and a higher
classification rate than logistic regression on unseen test data. Inspection of confusion matrices for
the logistic regression and XGBoost models in Figures 4.5 and 4.6, shows the raw number of correct
classifications and mis-classifications using which we calculate detailed performance metrics for each
model in Figure 4.7. The recall rate for both models for the Profitable class is low suggesting that
many films predicted to be profitable are in fact not so. This in turn results in the corresponding
F1 ratio being low. Both model suffer from this problem which indicates that the models face
difficulty in determining profitability from pre-release data alone.

Figure 4.4: Logistic Regression and XGBoost Model Performance

Figure 4.5: Logistic Regression Confusion Matrix
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Figure 4.6: XGBoost Confusion Matrix
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(a) Logistic Regression Performance Metrics

(b) XGBoost Performance Metrics

Figure 4.7: Profitability Models Performance Metrics

Comparison with Existing Work

We now consider how our model performs against those in literature; Rhee & Zulkernine (2018)
[46] developed a Neural Network and a Support Vector Machine (SVM) to predict film profitability.
Much of the data they consider is similar to the features used in this project. In addition they
use some data only available post-release such as film ratings from website such as IMDb and
Rotten Tomatoes. We summarise the comparison in Table 4.1. Considering we use no post-release
information, our models fare well against Rhee & Zulkernine’s.

Table 4.1: Our Profitability Models Comparison with Rhee et al.’s Models

Model Number of Input Features Classification Rate(%)

Rhee et al. NN 375 0.888
Rhee et al. SVM 375 0.842

Our Logistic Regression 411 0.832
Our XGBoost 411 0.897
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4.3 Pre-release Regression

4.3.1 Introduction
We turn our attention to the core problem in pre-release modelling: regression. Models must
make granular predictions for key sources of income at strategically significant stages. The re-
sults of these predictions can be used in conjunction with the terms of various agreements such
as the Rental Contract to enable those involved in the filmaking process to calculate their own
remuneration.

4.3.2 Target Description
The pre-release models take as input a vector, x, containing the features outlined in Section 3.5.4.
These features constitute essential information about the film as well as key factors such as the
release date of a film in a particular country. Models must make several predictions, therefore, this
is a multiple regression task. We provide an overview of the targets in Table 4.2.

Table 4.2: Outline of Pre-release Regressands

Name Description

One Week Gross Revenue generated per country one week after release
One Month Gross Revenue generated per country after four weeks
Three Month Gross Revenue generated per country after twelve weeks

Final Gross Total revenue generated per country
Number of Weeks in Theatres Number in weeks exhibited for per country

Physical Sales Total units sold of physical media
Physical Sales Revenue Total revenue generated from physical media sales

In total, this equates to 237 regressands.

When the expected theatrical run of a film in a country is, for example, more than four weeks and
less than twelve weeks, we expect the three month gross and the final gross for that country to be
identical.

4.3.3 Dataset Division
The complete pre-release dataset contains approximately 30,000 samples. We split data into train-
ing and test sets with 90% of data being allocated for training and the remaining 10% for testing.
To ensure no information is leaked from training to test data, feature scalers are fitted on the
training data and then used to transform test data.

We do not use multi fold cross validation because for k fold cross validation, each fold must be used
as the test set once with the remaining k-1 folds acting as training data. This results in the model
having to be trained from scratch k times. Although cross validation has the advantage of being
able to better assess how well a model generalises and offers lower variance for model evaluation,
it has a large computational impact. This would be particularly expensive considering the models
we use and the volume of data. We consider the number of samples we have to be sufficient to test
generalisation performance and hence do not use cross validation.

We also consider another variation of the dataset: a version in which prices are log transformed
before scaling. Applying a log transformation reduces the variance of the data and can reduce the
skewness of some distributions.

As outlined in Section 3.5.2, all budgets and all box office predictions are in 2000’s USD prices.

4.3.4 Overview of the Models
For this section we specify five models of increasing complexity: a Linear Regression Model, two
Neural Networks, a Gaussian Process and a Deep Kernel Process.
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Linear Regression

Linear regression is an algorithm that attempts to model relationships between independent and
dependent variables by fitting an equation to observed data with n features.

y = β0 + β1x1...+ βnxn (4.4)

Linear regression is only able to model linear relationships between variables. We use this model
for its transparency and to provide a baseline measure of performance. Most importantly, linear
regression is able to find the exact solution to an equation which differentiates it from the other
model considered.

Neural Network

Neural Networks can model more complex functions between inputs and outputs that may other-
wise be ignored in a setting modelling only linear relationships. NN’s have had a huge impact in
modelling due to their ability to model complex relationships and handle sparse data.

Despite their advantages, NN’s have some key disadvantages. NN’s have many hyperparameters
that need to be optimised such as the network architecture, learning rate and activation function(s).
Determining optimal hyperparameters is itself an immense task with techniques such as Random
Search and Bayesian Optimisation often used. NN’s can also take a long time to train compared to
linear regression as they use Gradient Descent or related forms of it to converge on optimal weights
and biases for all neurons. This can occasionally lead to the optimisation algorithm becoming stuck
in local optima with no guarantee of ever reaching the global optimum.

For this task we design two Neural Networks: one trained on the raw scaled data and the other
trained on the log transformed, then scaled data. Both models employ identical architectures and
hyperparameters.

The activation function we choose is the Softplus activation which applies the function

σ(z) = ln (1 + ez) (4.5)

For both models, the error function used is the Mean Squared Error (MSE), with learning rate
0.0001 and a batch size of 256 samples per batch. Figure 4.8 depicts the architecture of our Neural
Network models.

Figure 4.8: Pre-release Neural Network Model
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To reduce over-fitting and to enable uncertainty estimation using MC dropout (refer to Sec-
tion 2.2.2) we set dropout rate to 0.1 for all layers except the output layer for both models.
When making predictions we use MC dropout, where dropout is enabled during inference and
200 predictions are obtained for the same data from which the mean and standard deviation are
calculated, yielding a Gaussian distributed predictive posterior.

Gaussian Process

Gaussian Processes use a measure of similarity between points in training data, obtained using
the kernel function to predict the value of an unseen point. The output takes the form of a
predictive posterior Gaussian distribution, or in this use case, a multivariate predictive posterior
Gaussian distribution as we perform multiple regression. The most important factor when using
a GP is selection of the covariance kernel function, as discussed in Section 2.2.3. For our model
we choose a Radial Basis Function (RBF) (also called a Squared Exponential Kernel) which takes
two parameters: the lengthscale, l, and output variance, σ2. The lengthscale determines the
length of the perturbations of the function and output variance controls the average distance of
the function from the mean, acting as a scale factor. Other kernels were tried such as a polynomial
kernel, periodic kernel with limited success. We set the lengthscale parameter, l, to 0.1 and σ2 to
2.0.

The computational complexity of fitting a Gaussian Process model is O(N3 with N training points.
This is infeasible with tens of thousands of training points, so instead we use a Sparse Gaussian
Process (see Section 2.2.3) where the training complexity is reduced to O(N2M) where we choose
M , the number of inducing points, to be 400. We maximise the Evidence Lower Bound (ELBO)
and use a learning rate of 0.01.

This model is referred to hereafter as the GP model.

Deep Kernel Process

Deep Kernel Processes (Deep KP) combine the non-parametric capability of a GP and the ex-
pressiveness of a NN. The input feature vector x is fed into a Neural Network which forms and
outputs a latent representation of the data. A kernel function is then applied to the representation
offered by the NN before being fed into a Gaussian Process which performs final inference. Finding
optimal hyperparameters for a Deep KP entails finding optimal parameters for both the NN input
as well as the GP output’s covariance kernel. For this model a single layer NN was used with a
single hidden layer using a Leaky ReLU activation function:

f(x) =

{
x if x > 0,

0.01x otherwise.
(4.6)

The NN layer is followed by an RBF kernel with lengthscale parameter, l, set to 0.1 and variance,
σ2, set to 1.0. We make use of a Sparse Gaussian Process output layer with inducing size set to
50 and a learning rate of 0.001. The Deep KP architecture is described in Figure 4.9.
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Figure 4.9: Pre-release Deep Kernel Process Model

4.3.5 Results
Each model predicts 237 variables as outlined in Section 4.3.2. For clarity, we group individual
predictions as described in Table 4.2 and visualise predictions for entire subsets.

Number of Weeks in Theatres

Knowing how long a film will be displayed in theatres beforehand allows distributors and exhibitors
to make more informed decisions about the terms of the Rental Contract. It also allows beneficiaries
of revenue to more accurately estimate how much money they are likely to earn from the box office
gross.

Figure 4.10: Number of weeks High Crimes will play in theatres in each country, for a subset of
countries. Linear Regression model on raw data.

Figure 4.10 shows the linear regression model’s prediction for how long the film High Crimes will
stay in theatres for a subset of countries.

In general films rarely tend to be exhibited in theatres for more than twenty weeks. Continued
screening of a film beyond twenty weeks is subject to a combination of factors such as public
response to a film, releases of other major films and the value gained from continued showing.
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Physical Media Sales

Next, we look at the revenue and units sold from sales of Blu-ray/DVDs in North America. Sales
of physical media mark one of the highest margin sources of revenue for films and make up a large
proportion of total revenue.

Figure 4.11: Revenue from Sales of Physical Media. GP model.

Figure 4.11 shows the true revenue plotted against the predicted revenue on test data with predic-
tions made by the Gaussian Process model. Many predictions exhibit large errors which we put
down to the very few training samples available for this regressand. We discuss this in further
detail during evaluation.

Box Office Revenue

The models also predict box office gross at the one, four and twelve week marks, as well as the
final gross. Figure 4.12 shows the predicted gross after one week and the final gross for the film
Men in Black 3 in a few countries.

Figure 4.12: Men in Black 3 gross per country. NN model trained on raw data.

Prediction Uncertainty

Finally, we look at how the models can make predictions and characterise uncertainty. We inspect
the North American final gross predicted by the NN raw data model on a few unseen films in
Figure 4.13. Also shown are the 95% error bounds.

With knowledge of parameters of the distribution, the predictive posterior can also be plotted,
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as in Figures 4.14, 4.15 and 4.16. Using the parameters of a predictive posterior we can plot a
distribution and state the likelihood of achieving certain values.

Figure 4.13: North America Final Gross predictions with uncertainty for unseen films. NN model
trained on raw data.

Figure 4.14: High Crimes Predictive Posterior

Figure 4.15: Dracula Untold Predictive Posterior
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Figure 4.16: The BFG Predictive Posterior

4.3.6 Model Interpretation
Most of the models considered for this task are black box models and provide no insight into how
they work. In a bid to understand more about the models and discover important relationships
between variables, we compute and inspect the Shapley values for each output and identify key
and sometimes surprising relationships between features. We display and analyse a few of the most
interesting feature importance plots.

Model interpretation is performed on unseen test data as feature importance is often performed
on model estimates of error. This means if importance is evaluated on training data, the model
will appear to work better than it does in reality. Furthermore, overfitting on particular features
in training data can yield incorrect estimates of true importance.

North American Final Gross

The North American market represents the largest box office by revenue, generating 11.4 billion
dollars in 2019. For many films released in it, North America represents a significant source of
revenue and creators make a concerted effort to appeal to and optimise for the North American
audience.

We consider the feature importance for the final box office gross for North America plotted in
Figure 4.17. This is obtained from the NN model trained on raw data.
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Figure 4.17: North American Final Gross Feature Importance. NN model trained on raw data.

Domestic_beginning_theatres – the number of theatres a film is released in initially in North
America – unsurprisingly, has the largest impact on the final gross. The number of theatres is
representative of the nature of the release and by extension, the level of marketing and developed
public anticipation for the film. The model also leverages relationships between markets in other
countries, taking into account the beginning theatres in large film markets such asMexico Germany
and Japan.

Surprisingly, the physical_release feature has a positive impact on final box office gross. This
relationship may be due to the nature of the dataset – only a small number samples have valid
data for a physical media release. These tend to be for films that already have high budgets and
consequently are likely to have higher grosses. Acquisition of more data for physical media releases
and further modelling would confirm whether these factors are truly related.

Contrasting these importances against the feature importances for the NN model trained on log
transformed data in Figure 4.18, we see a significant difference. The Domestic_beginning_theatres
feature is still regarded as the most important, but we see far fewer strong relationships between
the final gross and other input features. This means that the log transformed NN model is not
exploiting other relationships to the same extent.

57



Figure 4.18: North American Final Gross Feature Importance. NN model trained on log trans-
formed data.

France Final Gross

Inspecting Shapley values for the final gross in France in Figure 4.19 yields insights into the
relationships between geographically close markets. Similar to what we saw in North America,
France_beginning_theatres has a significant impact on final gross, as does whether or not a film
is released in French (language_fr) and to a lesser extent, English (language_en).

The initial number of theatres in Germany has a significant impact on final gross in France which is
surprising as Germany does not share a common language with France. This suggests a geograph-
ical relationship. But does France have a similar impact on final gross in Germany? Figure 4.20
shows the Shapley values for final gross in Germany where we see that this relationship is in fact
reciprocated, as is Germany ’s relationship with many other European countries.

In general, in both Figures 4.19 and 4.20 we see strong relationships between both geographically
related countries (i.e. the European countries) as well as between regions that share similar lan-
guages, such as Chile (whose official language is Spanish, a European language) in the Chile_release
in Figure 4.19. The model also seems to infer relationships when countries are neither related by
geography nor language – Japan_release has an impact on Germany’s final gross in Figure 4.20
which suggests that the film preferences of people and the markets in both countries are related.
Identifying key relationships between seemingly unrelated markets can shed insight into how con-
tent creators can more effectively optimise for revenue across countries.
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Figure 4.19: France Final Gross Feature Importance. NN model trained on raw data.
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Figure 4.20: Germany Final Gross Feature Importance. NN model trained on raw data.

Physical Media Sales

Finally, we inspect feature importance for non-theatrical regressands. Figure 4.21 shows Shap-
ley values for the total unit sales of physical media. There are many features, such as Nor-
way_release_month, for which no logical relationship seems to exist with total sales. Perhaps
most informative is the genre_Adventure feature which suggests that Adventure films tend to sell
many units. Domestic_beginning_theatres, the initial number of theatres a film is released into
in North America is not considered important by the model at all suggesting that there are too
few samples of Blu-ray/DVD unit sales data for the model to identify and build relevant relation-
ships.
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Figure 4.21: Physical Media Sales. NN model on raw data.

4.3.7 Evaluation Methodology
Choice of evaluation metric is a key aspect of understanding the performance of a model. Different
metrics can lead to different insights. We discuss the choice of performance metrics as well as
implications of their use.

Evaluation Metrics

We use two evaluation metrics: the Coefficient of Determination R2 and the Mean Absolute Error
(MAE).

As explained in Section 2.4.1, R2 provides a measure of how well observations are replicated by
the model, based on the proportion of total variation of predictions explained by the model. R2

treats over-predictions and under-predictions in the same way as both are considered equally as
bad. R2 is related to the Fraction of Variance Unexplained (FRU) which is the fraction of variance
of the dependent variable not explained by input features by:

FRU = 1−R2 (4.7)

MAE and RMSE provide measures of the average error per prediction. RMSE is given by:

RMSE =

√√√√ n∑
i=0

(yi − f(xi))2

n
(4.8)

61



MAE is given by:

MAE =

n∑
i=0

| (yi − f(xi))

n
| (4.9)

MAE measures the average absolute error where all errors are equally weighted whereas with
RMSE, larger errors have a higher weighting as errors are squared. Why use MAE over RMSE?
RMSE does not increase with the variance of errors, it only increases with the variance of the
frequency distribution of error magnitudes. As a result we can put an upper bound on MAE:
MAE ≤ RMSE and more specifically, if all errors have the same magnitude then RMSE = MAE.
This means MAE is a useful metric when we want a true and interpretable idea of the average
error.

To ensure predictions made by all models are comparable, all predictions are unscaled and inverse
transformed, if necessary, to yield raw values which are used to calculate performance metrics. As
this is a multiple regression problem there are can be samples for certain outputs are not required.
For example, some films may not be released in Germany and hence evaluating the error on these
points would serve to skew the error metric. To prevent this we calculate the metrics only on
samples where the true value is not zero.

A Note on Log Transformed Data Models

Applying a logarithmic transformation to a feature reduces the variance of the feature. This can
lead to different interpretation of data as seen in Figures 4.18 and 4.17. After a such a log-predicting
model makes a prediction, to obtain raw prices the predictions must be unscaled and exponentiated
which can magnify the effect of small log prediction errors.

The NN trained on log transformed prices is especially affected by this as small log term errors
can end up amounting to a large absolute error when exponentiated. This manifests as predictions
that are very large and far from the expected value. The R2 metric is especially susceptible to the
presence of even a few large errors and this can result in negative R2 terms for a set of points. An
example of the log data trained NN model displaying this behaviour is shown in Figure 4.22.

Figure 4.22: Russia/CIS Final Gross. NN Model trained on log transformed data.

To ensure evaluation graphs remain clear, for some graphs containing an R2 less than zero a
threshold is applied and such values are raised to zero. We state whenever we apply this.
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4.3.8 Evaluation
Having trained five different models, four on scaled data with raw prices and one on log transformed
and scaled price data, we must find how well the models perform. Each model is trained on the
same training samples and evaluated on the same previously unseen samples. Where available, we
also compare the performance of our models against those developed in previous work.

Comparing hundreds of regressands individually would be cumbersome so instead we compare
groups of similar variables as outlined in Table 4.2. For categories containing a large number of
individual regressands, we plot the error metrics and proceed to summarise the comparison using
metrics calculated over the whole class.

We extract and use only the specific regressand from our models that are considered by the models
from previous works, ensuring we are directly comparing regressand performance.

Number of Weeks in Theatres

We begin by evaluating the predictions for how long a film will be exhibited in theatres per
country in Figure 4.23. The Deep KP model exhibits a significantly lower R2 than the other
models suggesting more unexplained variance. In fact, there are countries for which the R2 of the
Deep KP model fall below zero, such as South Korea. These have been thresholded at zero for
clarity as described previously. An R2 less than zero suggests an exceptionally poor fit which is
reflected in the MAE comparison where the Deep KP model suffers from a higher error than other
models for almost all the countries.
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(a) R2 for predicted time in theatres per country

(b) MAE for predicted time in theatres per country

Figure 4.23: Performance metrics per country for number of weeks in theatres

Except for the Deep KP, models show consistent MAE and R2 performance across most countries.
There is a significantly higher MAE for Domestic, the North American prediction, which can
be attributed to both a larger range of values present for North America and the fact that the
true length of exhibition, especially for non-wide release films is heavily dependent factors such
as competition for screens, awards, word of mouth, reviews and perceived value of exhibition by
exhibitors. These factors are only available after theatrical release.

We summarise the overall fit metrics for predicting the number of weeks in theatres in Table 4.3
where we confirm the poor performance of the Deep KP model and observe the other models
performing very similarly in both metrics. The linear regression model is able to compete and
perform well against more complex models.

Physical Media Sales

We next evaluate performance on the regressands with the fewest available training samples: rev-
enue and sales of Blu-ray/DVDs. Having very few training samples can lead to problems in the
ability of a model to generalise well to unseen data as it hasn’t had enough training to learn the
modelling function in the first place.

In Figure 4.24 we visualise the performance metrics for both sales and revenue and observe that
the NN model trained on log transformed data performs poorly with a high MAE and a negative
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Table 4.3: Model Comparison: Number of Weeks in Theatres Summary

Model R2 MAE (weeks)

Linear Regression 0.736 0.257
Neural Network (raw data) 0.721 0.268

Gaussian Process 0.748 0.252
Deep Kernel Process 0.524 0.347

Neural Network (log transformed data) 0.750 0.252

R2. The cause of such a low R2 is due to a few very large errors which can be seen in Figure 4.25.
The Deep KP model too exhibits a small negative R2. The remaining three models manage to
achieve an R2 of approximately 0.3 for both regressands. The R2 of even these models suggests a
lot of unexplained variance in prediction. The MAE for revenue prediction is unacceptably large
with all models achieving an MAE of greater than $20 million. We consider performance of this
calibre to be incredibly weak and attribute this to limited availability of diverse data.

We inspect the violin plots of log-budget and log-gross for films that have had physical media release
data in Figure 4.26 where we see that in general, films that are released in Blu-ray/DVD have both
higher grosses and higher budgets compared to films that are not. We have also found evidence
that the models are not able to identify logical relationships with input features in Figure 4.21,
which further suggests that we have too few samples to enable the models to generalise well.

65



(a) Revenue R2

(b) Revenue MAE

(c) Sales R2

(d) Sales MAE

Figure 4.24: Evaluation metrics for Physical Media Sales

66



Figure 4.25: Physical Media Revenue. NN Model trained on log transformed data.

(a) Violin plot of log Gross for Films with and without Physical
Media Release data

(b) Violin plot of log Budget for Films with and without Physical
Media Release data

Figure 4.26: Comparing the log Gross and log Budget of Films with and without a Physical Media
Release
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Box Office One Week Gross

The opening weekend gross is defined as the revenue collected for the first week of release of a film
in a country. The opening weekend often marks the highest revenue generating period of a film’s
release, making up a third of the box office total. In many cases, a good opening weekend can
determine entirely whether or not the film is profitable at all.

Figure 4.27 shows the performance metrics per country for the first week gross. Both the Deep
KP and the log transformed data trained NN occasionally achieve R2 less than zero (which have
been thresholded). Inspection of the MAE plot shows the Deep KP model producing large errors.
The log NN model performs well, exhibiting a low MAE in line with the others.

(a) R2 for first week gross

(b) MAE for first week gross

Figure 4.27: Performance metrics per country for number of weeks in theatres

There are spikes in MAE for a handful of countries such as Australia, Brazil and the Domestic
(North American) markets which is caused by a combination of these countries having few training
samples and several instances of missing data for films released in these countries. For example, only
around 2300 samples are available for Japan and 4000 for Australia. Looking at the distribution
of grosses for Australia in Figure 4.28, there are fewer than 20 films that grossed more than $15
million in the first week.
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Figure 4.28: Australia First Week Gross Distribution

We summarise the model fit metrics of overall class fit in Table 4.4 where both NN models achieve a
much lower MAE than other models while maintaining a similar R2 to the GP and linear regression
models.

Table 4.4: Model Comparison: First Week Gross Summary

Model R2 MAE($)

Linear Regression 0.779 512 013.37
Neural Network (raw data) 0.742 433 846.10

Gaussian Process 0.794 498 252.44
Deep Kernel Process 0.613 749 123.88

Neural Network (log transformed data) 0.710 440 949.18

Box Office One and Three Month Grosses

One month and three month grosses are good indicators of film performance in the long run. We
combine the evaluation of these classes as often there is overlap between these predictions, such
as when a film is exhibited in theatres for less than four weeks. This most commonly occurs with
limited release films.

Graphs showing per country performance for both one and three month grosses are in Figures 4.29
and 4.30.
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(a) R2 for one month gross

(b) MAE for one month gross

Figure 4.29: Performance metrics per country gross after one month predictions
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(a) R2 for three month gross

(b) MAE for three month gross

Figure 4.30: Performance metrics per country gross after three month predictions

Models perform similarly for both classes of predictions. The Deep KP and log transformed NN
models’ R2 occasionally fall below zero (thresholded for clarity) and spikes in MAE for both occur in
the same countries. In fact the MAE’s for both classes of predictions are so similar that it suggests
that most films grosses at the four week and twelve week marks are similar and, by extension
that most films are in theatres for no more than twelve weeks. We look at the distribution of the
number of weeks films spend in theatres in all countries in Figure 4.31 which indicates that the
vast majority of films are exhibited for no longer than four weeks.
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Figure 4.31: Number of Weeks Spent in Theatres in All Countries Violin Plot

To quantify the similarity between samples of four and twelve grosses, we compute the Bhattacharya
Distance (Equation 4.10) – an approximate measure of the overlap between two sets of samples
– to be 0.4986. This suggests a reasonable degree of similarity between the two samples which
agrees with our observations from the Violin plot of distribution.

DB(p, q) = − ln (BC(p, q)) (4.10)

BC(p, q) =
∑
x∈X

√
p(x)q(x) (4.11)

We summarise the class performance metrics in Table 4.5 which predominantly shows a marked
drop in R2 from the one month predictions, to the four month predictions, and a corresponding
increase in MAE. Both NN models exhibit similar levels of performance with the GP and linear
regression models trailing slightly.

Table 4.5: Model Comparison: One Month and Three Month Gross Summary

Model One Month
R2

One Month
MAE($)

Three Month
R2

Three Month
MAE($)

Linear Regres-
sion

0.815 1 170 698.15 0.791 1 425 649.80

Neural Network
(raw data)

0.816 997 000.01 0.771 1 253 102.59

Gaussian Pro-
cess

0.823 1 111 591.45 0.788 1 383 767.96

Deep Kernel
Process

0.406 1 999 625.09 0.473 2 239 654.66

Neural Network
(log transformed
data)

0.719 1 044 569.68 0.674 1 253 805.90

Box Office Final Gross

Finally, we evaluation performance for the final gross prediction per country. Final gross is the
number that is often quoted as the number than qualifies success of a film. We look at the
breakdown of performance per country in Figure 4.32 where there are few spikes in the MAE
plot, such sharp increases in MAE being limited to Domestic (North America) and Japan. As in
previous sections, any R2 below zero are thresholded. We see the raw data NN model, the GP
and linear regression models performing similarly across all countries, almost always with a high
R2.

72



(a) R2 for final gross

(b) MAE for final gross

Figure 4.32: Performance metrics per country for final gross predictions

We summarise class performance in Table 4.6 where, as for the previous section, we see both NN
models delivering similar performance followed by the GP and linear regression models. Perhaps
most surprising is how similar the MAE’s for both NN models are despite their significantly different
R2 metrics. Considering that both NN models exhibit similar performance across most classes of
regressands it must be that the log transformed data NN model produces smaller errors across most
samples, and occasional large errors whereas the raw data NN model produces more ’consistent’
proportional errors. Such divergent and good overall performance leads us to suggest an Ensemble
Modelling approach as potential future work in Section 7.3.1.

Table 4.6: Model Comparison: Final Gross Summary

Model R2 MAE($)

Linear Regression 0.791 1 425 649.80
Neural Network (raw data) 0.771 1 252 471.91

Gaussian Process 0.788 1 383 767.96
Deep Kernel Process 0.473 2 239 654.66

Neural Network (log transformed data) 0.675 1 254 589.83

73



We now move on to comparing our models against those developed by other researchers. There
have been two approaches to modelling final box office: proposing it as a classification problem,
often multi-class such as the Sharda-Delen model [28] (see Section 2.2.2) or as a regression problem
[26, 48, 49, 50]. We consider three comparable regression models: Dey’s [49] model, Pangarker et
al.’s [50] model and Simonoff’s [48] model.

Dey presented a linear regression model to predict gross revenue from the USA box office using
features available prior to release such as release date, MPAA rating and genre. Dey’s chosen
performance metric is the Coefficient of Determination and we directly compare the R2 of North
American gross regressand from our models with this in Figure 4.33 where both NNs as well as
the GP and linear regression models achieve a much greater R2. We attribute this to our models
leveraging relationships between countries as well as the method of encoding used to include actors,
directors and production companies, whose track record can indicate the potential performance of
a film.

Figure 4.33: Developed Models compared to Dey’s Regression Model

Pangarker et al. [50] developed a linear regression model to predict global box office revenue
using a range of information, some of which is only known post-release such as the number of
awards a film was nominated for and ratings from critics. These researchers use the Coefficient of
Determination as their chosen performance metric. Our models do not perform inference for the
total global gross of a film. To obtain a prediction of a total global gross, we sum the predicted
grosses from individual countries and calculate the R2 for summed predictions and summed true
gross. Figure 4.34 shows our models’ performance compared to Pangarker et al.’s model. We
observe a slight improvement in R2 for all of our models except the Deep KP. This once again
implies that our models are able to capture and use dependencies between countries’ markets and
actors, directors and production companies effectively even in a pre-release setting.
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Figure 4.34: Developed Models compared to Pangarker et al.’s Regression Model

Simonoff developed a linear regression model for predicting the final gross of a film in the USA using
post-release information such as the first week gross and Rotten Tomatoes ratings. The model was
trained only on wide release films with 125 films in forming the training set and a further 22 used
for evaluation. Simonoff does not provide the R2 or MAE metrics but he does provide the names of
the films in the test set, as well as true final gross and the predictions made by his model. We use
the reported predictions and true values to calculate the Coefficient of Determination and MAE
for Simonoff’s model.

Simonoff uses only films that received a wide release and the lowest grossing film in his test made
over $7 million in revenue. We, however consider both wide and limited releases and the MAE
between our models and Simonoff’s wouldn’t be comparable.

To ensure comparable results we retrain our models, holding out samples that correspond to the
films Simonoff used for testing and compute performance metrics using these only. As a result
the evaluation metrics in Table 4.7 for both our models and Simonoff’s model are calculated using
predictions made on the same films – using samples the models have not previously seen. We
observe that that most of our models, with the exception of the Deep KP, exhibit very similar
performance. In fact, both NN’s and the GP have almost identical MAEs; despite using using only
pre-release data these achieve a lower error than Simonoff’s model. Our linear regression model too
performs well with an R2 in line with our more complex models and a competitive MAE.

Table 4.7: Model Comparison: Comparing our Models to Simonoff’s

Model R2 MAE($)

Our Linear Regression 0.596 20 344 236.85
Neural Network (raw data) 0.604 17 352 162.23

Gaussian Process 0.669 17 782 225.43
Deep Kernel Process 0.082 27 193 087.37

Neural Network (log transformed data) 0.692 17 864 618.21
Simonoff’s Linear Regression 0.740 24 991 222.27
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4.4 Conclusion
In this chapter we began by asking ourselves: what makes a film profitable? To answer this ques-
tion, we used a logistic regression model and powerful, tree based XGBoost model to analyse the
characteristics of profitable films and identify how the magnitudes of features affect profitabil-
ity.

We then considered five different models to predict pre-release box office performance of films: a
linear regression model, two Neural Networks, a Gaussian Process and a Deep Kernel Process. We
interpreted the inner workings of some of the black box models to identify relationships between
regressands and input features. We have also shown the results of some point predictions from
the models, as well as the predictive posteriors of models designed to provide model uncertainty.
Although intended as a baseline performance level, the linear regression model was found to be
a powerful model during evaluation, often competing well against the more complex models. In
fact, we find very little performance difference between all the model, except for the Deep Kernel
Process, with the Neural Network models exhibiting slightly lower mean absolute error on most
regression tasks.
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Chapter 5

Post-release Modelling: Ordinary
Differential Equations

Toto, I’ve a feeling we’re not in Kansas
anymore.

The Wizard of Oz, 1939

5.1 Motivation
The first step in the process of solving the problem is to explore methods that show promise to
this end. Looking at the graphs of how average revenue per theatre and the number of theatres
playing the movie change over time (Figure 5.1 shows data for the film The House at the End of
the Street), we note similarities with the models of an epidemic (Figure 5.2). We begin by taking
an approach similar to that of the Edwards Buckmire [9] (EB) model.

This chapter constitutes an exploratory analysis of the application of ODEs to modelling post-
release box office performance. We end the chapter (Section 5.5) by highlighting considerations
and reasons for not pursuing this modelling approach.
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Figure 5.1: Visualisation of theatres and daily revenue over time for The House at the End of the
Street

Figure 5.2: Visualisation of the SIR Model. Credit: TU Delft
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5.2 Data Format
We begin by looking at daily reported data from The Numbers. The Numbers provides day to
day, North American data for films, with records of daily total revenue, revenue per theatre and
the number of theatres showing the film.

5.3 Developing the Model

5.3.1 Governing Equations
If the total gross of a film at time t is given by G(t), we want to find G(∞). We consider modelling
the number of theatres playing the film (T (t)), as well as the average revenue per theatre (R(t)).
Thus we define,

dG

dt
= RT (5.1)

dR

dt
= −αRR (5.2)

dT

dt
= −αTT (5.3)

where G(0) = 0 and R(0) and T (0) are positive real numbers.

G(∞) can be computed by integrating total daily revenue over all time, therefore

G(∞) =

∫ ∞
0

RTdt (5.4)

5.3.2 Extending the Model
In the real world, movies are released in theatres in one of two ways. In a ’limited release’ a movie is
released on a small number of screens and positive word of mouth can prompt exhibitors to increase
the number of screens it is played in. Case in point, the film Mission Impossible: Ghost Protocol
actually saw maximum theatre showing a few days after release (Figure 5.3). In a ’wide release’ a
film is released in a large number of theatres initially which does not increase over time.

The original model is not able to handle this as it assumes all theatres show the film on day of
release and the number of theatres decays monotonically from there. This prompts a modification
of the model for T (t).

If the number of screens is small but the daily average revenue is high then the number of theatres
that play the film must increase up to a value Tmax. If T > Tmax then the number of theatres
should decrease monotonically. Hence, the equation modelling rate of change of T is modified
to:

dT

dt
= αT1

RT

Tmax
− αT2T (5.5)

In Equation 5.5 we assume that T depends not only on itself, but R as well. This is because for
the exhibitor, the revenue from the film is the main factor in deciding whether to continue showing
the film. The disadvantage of this is that it ignores the relative stability of screening afforded by
the rental contract, where the number of theatres stays stable for several weeks at a a time.

5.3.3 Parameter Estimation
This model requires two types of parameters:
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Figure 5.3: Theatres showing Mission Impossible: Ghost Protocol

1. Fixed parameters such as the opening day average revenue, opening day number of theatres
and maximum number of theatres that show the film. These can be determined a priori using
machine learning techniques taking values from an existing database of movies, potentially
using clustering algorithms.

2. Free parameters such as the αi’s, the decay rates. For pre-release prediction these are global
terms fitted to model a large data set of movies. For post-release, as data is collected the
model can then be fitted to the new data for up to date predictions. Sawney and Eliashberg
[6] implement just such a technique to a probabilistic model.

5.4 Modelling Post-release Box Office Performance
Modelling films, unlike modelling viral phenomena [29], have well defined start points – the date
of release. With post-release prediction we are primarily concerned with fitting a model using the
collected, real world data.

As data is collected on a daily basis, we require measures of the average revenue collected as well
as the number of theatres the film is being shown in. The model can then be fitted to the data
collected thus far.

As the equations governing the model can’t be solved analytically, the odeint function in the
scipy.integrate package can be used to solve the system of equations numerically. Using this
requires providing suitable initial conditions such as a time sequence array for which an output is
needed, as well as values for the decay parameters. After solving the ODEs, the model must be
fitted to provided data for which we use the Nelder-Mead method. The residual function used here
is the Least Squares Method. Since we are fitting both T (t) and R(t) in the model, the residual
function returns the weighted average of errors for both T (t) and R(t).

Fitting on a daily basis yielded promising results. Graphs generated from post-release models are
in Figure 5.4.
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(a) Gross after one day (b) Gross after four days

(c) Average revenue after one day (d) Average revenue after four days

(e) Number of theatres after one day (f) Number of theatres after four days

Figure 5.4: Results of model after fitting with one day and four days of data

All predictions were made for up to 90 days. The results of this show that by day four, the model
prediction is reasonably accurate – and it continues refining the prediction as more data becomes
available and is refitted. There are two significant drawbacks to this method. Firstly, in order to
enable fitting, data values are interpolated from the last known data point up to the 90 day mark as
linearly decaying points. This accounts for the poor prediction capability with just one day of data.
Further work is needed to interpolate with quasi-exponential decay which will trace the curve of
the true data much more accurately. The other disadvantage arises due to the discrepancy between
average revenues on Monday–Thursday and Friday–Sunday. Generally, the Friday-Sunday revenues
are much higher, especially in the first few weeks leading the model to periodically over-predict or
under-predict depending on the latest day it is fitted to. This cyclical nature also leads to large
confidence intervals, as can be seen in Figure 5.4d. An approach to stabilising the model against
this is to model Friday–Sunday and Monday–Thursday revenues separately and interpolating the
values in between. This could be achieved by finding peaks in the daily revenue and filtering out
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the peak with the values to either side (thus separating Friday–Sunday from Monday–Thursday)
to obtain two arrays, then interpolating the intermediate values in each.

5.5 Feasibility of this Modelling Technique
Modelling using coupled ODEs thus far has relied on the availability of highly granular, daily
revenue and theatre data. In practice we find that this data is only consistently available for films
released in North America that have high budgets. This leads to there being very few samples
which are also unrepresentative of the box office releases in the country as a whole. Releases in
other regions, such the in the UK and India, lack the granularity offered by the North American
Box Office and rather follow at best weekly or weekend frequency reporting.

Normally, this wouldn’t be an issue alone as the ODE model can be adapted to fit weekly interval
data. However, modelling on a weekly basis means that some films in some countries may only
have been exhibited for a short period of time – many for less than two weeks.

We find that the lack of available data renders this modelling technique infeasible. Pursuing this
approach means that we do not meet our project objectives and as a result, we use other modelling
techniques instead.
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Chapter 6

Post-release Modelling: Machine
Learning

Just when I thought I was out, they pull
me back in.

The Godfather: Part III, 1990

6.1 Motivation
Prior to a film’s release we are limited to using only the core characteristics of a film – such as
budget, genre, actors etc. – and more importantly, we have no information on how audiences
will respond to a film. However, post-release, new data about the film comes flooding in. Reviews,
ratings and more importantly, figures on revenue and screenings can provide a true indication of
how an audience will react to a film which we use to predict the number of theatres that will screen
the film in consecutive weeks as well as the future revenue.

This is a task that involves the modelling of several, short time series that are unrelated and non-
stationary (see Section 3.4.7). Films can generally stay in theatres for anywhere from one week to
an entire year (such as E.T. the Extra-Terrestrial).

6.2 Release Pattern Terminology
Films released are usually of two types: wide releases or limited releases each with their own
characteristic curves as we have seen before in Section 3.4.7. To clarity and consistency in our
modelling, we define three different types of release curve. Firstly, a Wide release pattern is so
called as the revenue it generates per week and the number of theatres screening it, generally decline
over time with the maximum for both occurring at release. Secondly, a Limited, Then Wide release
pattern is one where the number of theatres and revenue reach their peak after release, following
which both decline. Finally, a Complex release pattern follows neither of these trends and can in
fact have several distinct peaks in both theatres and revenue post release. It is important to note
that these definitions are descriptors of the shape release curves and do not relate to the actual
values of revenues or theatres that occur.

6.3 Target Description
In post-release modelling we are concerned with predicting how much revenue will a film generate
in the next week, and how many theatres will still be screening the film in a week’s time.

The models will take in k previous periods’ features (see Section 3.5.4) containing the k previous
weeks’ theatres and revenues as well as constant features such as encoded actors, encoded directors,
genres etc.
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6.4 Dataset Division
In pre-release modelling each sample corresponds to a film where prices are inflation adjusted and
information is not time-varying. With post-release modelling, however, a film’s release can generate
multiple samples; one for each week of release and with information varying with time. We use
an 90-10 split with 90% of data used for training and 10% for testing. We take an Out of Sample
approach to testing the performance of these models primarily due to the computational complexity
of performing k -fold cross validation which is especially high for the LSTM based models.

6.5 Overview of the Models
This is a distinct time-series prediction problem where we model several different, short time-series
and expect the model to learn trends and quickly which release pattern a film will follow: a Wide
Release, a Limited, Then Wide Release or a Complex Release.

We propose two approaches to modelling: firstly, using non time-series machine learning models
which are provided with only the previous week information; and secondly, more complex models
that make use of Long Short-Term Memory and are provided with more previous weeks of informa-
tion. We use two LSTM models each with different numbers of LSTM units and being designed to
use different sequence lengths of data. The LSTM models are also designed to be able to estimate
uncertainty (see Section 2.2.2) using MC dropout.

6.5.1 Ridge Regression
We first consider a linear model: Ridge Regression [20] (RR). With RR, we minimise the squared
error between predictions and observations, and in addition, penalise the squared magnitude of
weights. As a result the optimal coefficients are given by:

βRidge = arg min
β
||y −Xβ||22 + λ||β||22 (6.1)

where is a tuning parameter that determines the significance of the penalisation term. We use
Ridge Regression to ensure that no single wight is over-fitted upon. The tuning parameter, λ, is
set to 1 for this model.

6.5.2 Neural Network
The second model is a Neural Network. NN’s can model non-linear relationships between variables
and can model far more complex functions than is possible with a linear model like RR. This comes
with an associated cost of increased training time, an inability to find exact optimal parameters
exactly, a much larger number number of parameters to optimise and potential non-convergence
during training. We designed a NN with three hidden layers and a Softplus activation function
applied to outputs of all layers. The Softplus activation function is defined as:

σ(z) = ln (1 + ez) (6.2)

A description of the NN architecture for this model is in Figure 6.1. We set dropout rate to 0.1
and the model is trained with a batch size of 4096 samples and a learning rate of 0.001.
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Figure 6.1: Post-release Neural Network Architecture

6.5.3 LSTM Neural Network 1
We now design complex models more suited for time-series prediction. The first of these models
is a Neural Network which employs the architecture described in Figure 6.2. A Tanh activation
function is applied to the output of final LSTM layer and the output of this layer is fed to a linear
output layer. The Tanh function is defined as:

σ(z) =
2

1 + e−2x
− 1 (6.3)

We provide as input into this model only the previous two weeks of data, with zero padding when
a full two weeks of data is not available. To reduce overfitting and enable prediction of uncertainty
we set dropout to 0.2. We use a batch size of 512 and a learning rate of 0.001.

We refer to this model as the LSTM 1 model in future chapters.
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Figure 6.2: Post-release LSTM 1 Model Architecture

6.5.4 LSTM Neural Network 2
The second LSTM based model is once again based on a two hidden layer NN with the architecture
descibed in Figure 6.3 and with a Tanh activation applied. This model has the ability to remember
longer sequences, hence we also provide as input more past data points - this time data for the
past six weeks is used and if necessary, zero padded. As with the previous LSTM model, dropout
is set to 0.2 and a batch size of 512 is used with a learning rate of 0.001.

This model will be referred to in subsequent sections as the LSTM 2 model.

Figure 6.3: Post-release LSTM 2 Model Architecture
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6.6 Ridge Regressor Model Interpretation
The primary advantage of using the Ridge regression model is that, as a linear model, its weights
are easily interpreted we gain a clear insight into how the model works. We look at the top twenty
largest weights in magnitude in Figure 6.4 where we see that the most significant features are
the previous_week_theatres and previous_week_gross. Surprisingly, the previous week’s theatres
is more highly weighted than the gross which seems counterintuitive as the number of theatres
often remains steady for long periods. However, as we find out in Section 6.7.1, the number of
theatres is a very good indicator of future revenue. The Ridge regression model doesn’t assign
much importance to the other features, with some of the more important ones being whether the
film is released in the English language (language_en) as well as the IMDb rating. However, the
low importance assigned to the IMDb rating is unexpected – we would think that the rating would
prove more informative about performance – so we plot IMDb rating against gross in Figure 6.5
where there are many films with an IMDb rating between 4 and 8, and the gross of films in this
range are higher than for other scores. As a result, the IMDb rating is more likely to serve as a
filter that likely indicates low performance i.e. a rating less than of less than 4 for greater than 8
could signal a film that generates lower revenue.

Figure 6.4: Ridge Regressor Feature Weights

Figure 6.5: IMDb Rating Plotted Against Gross
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6.7 Forecasting
To demonstrate the application of the LSTM 1 and LSTM 2 models to forecasting, we explore how
well they apply to both long term and short term prediction. We perform two types of forecasting:
firstly showing how the models can be applied to predict for one week ahead at a time; and secondly,
how well the models can predict for several weeks ahead.

6.7.1 One Week Ahead Predictions
A Typical Wide Release Pattern

Performing one-week ahead predictions provides the most accurate predictions possible as the
LSTM models can use real, collected data to base forecasts on. Figures 6.6 and 6.7 show the one
week ahead revenue and theatre for each model for the film Pitch Black.

Pitch Black was a film released in 2000 in North America only and follows the revenue pattern
of a wide release film. We observe good quality forecasting from both models, with the LSTM 1
model under-predicting revenue after the 10 week mark.

(a) LSTM 1 Revenue Forecast for Pitch Black

(b) LSTM 2 Revenue Forecast for Pitch Black

Figure 6.6: North America Revenue Forecast for Pitch Black
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(a) LSTM 1 Theatres Forecast for Pitch Black

(b) LSTM 2 Theatres Forecast for Pitch Black

Figure 6.7: North America Theatres Forecast for Pitch Black

A Limited, Then Wide Release Pattern

We’ve seen an example of how the model is able to forecast for a typical wide release pattern
– but what about when a film releases in a limited capacity and becomes more widely exhibited
post-release? The Dancer Upstairs had such a release in North America. Plotting the one week
ahead forecast for revenue and gross yields the results in Figures 6.8 and 6.9. Both models are able
to model the revenue well, especially as revenue has a more gradual build up to a peak whereas
for the theatres plot, both models predict the peak to be shifted in time by one week. The limited
ability of the models to predict peaks well is occurs as we consider only a few post-release features:
better results could likely be obtained by considering more sources of post-release information that
better capture popular appeal such as social media data.
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(a) LSTM 1 Revenue Forecast for The Dancer Upstairs

(b) LSTM 2 Revenue Forecast for The Dancer Upstairs

Figure 6.8: North America Revenue Forecast for The Dancer Upstairs
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(a) LSTM 1 Theatres Forecast for The Dancer Upstairs

(b) LSTM 2 Theatres Forecast for The Dancer Upstairs

Figure 6.9: North America Theatre Forecast for The Dancer Upstairs

A Complex Release Pattern

We now look at forecasting for films that cannot be described as neither a Wide Release nor a
Limited, Then Wide Release. Nowhere In Africa is a film with especially convoluted revenue and
theatre streams. Modelling its’ weekly revenue and theatres in North America generates the results
in Figures 6.10 and 6.11.

Both models find it difficult to fit the nature of this release as there is no indication of when
and why ups and downs in theatres and revenue occur. After week 15, both models consistently
over-predict the revenue, however, the theatres predictions are far closer to the true values.

We inspect the cross-correlation for the true revenue and true theatres sequences in Figure 6.12
where we see revenue and theatres being correlated at a slightly negative time lag – in other words,
a change in theatres precedes a corresponding change in revenue. This is the likely explanation for
why the models are able to predict the peak for revenue so well; the theatres indicate this change
beforehand. This is also why we see the peak theatre prediction for a Limited, Then Wide release
to be delayed by a week whereas the revenue is modelled well.
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(a) LSTM 1 Revenue Forecast for Nowhere In Africa

(b) LSTM 2 Revenue Forecast for Nowhere In Africa

Figure 6.10: North America Revenue Forecast for Nowhere In Africa
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(a) LSTM 1 Theatres Forecast for Nowhere In Africa

(b) LSTM 2 Theatres Forecast for Nowhere In Africa

Figure 6.11: North America Theatres Forecast for Nowhere In Africa

Figure 6.12: Nowhere In Africa Revenue and Theatres Cross-Correlation
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6.7.2 Multi-Week Ahead Predictions
We next look at how the models can perform multi-week ahead forecasting: a typical use case
would be when the first week gross and theatres are known and we wish to predict how these will
change over the next several weeks. Hence, any predictions made by a model are fed back into it
to be used as the basis for future predictions.

We perform a complete forecast for Star Wars: Episode III - Revenge of the Sith beginning from
the true opening week revenue and using predictions as future inputs. The results of this forecast
are shown in figures 6.13 and 6.14.

(a) LSTM 1 Revenue Forecast for
textitStar Wars: Episode III - Revenge of the Sith

(b) LSTM 2 Revenue Forecast for Star Wars: Episode III - Revenge of the Sith

Figure 6.13: North America Revenue Forecast for Star Wars: Episode III - Revenge of the Sith
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(a) LSTM 1 Theatres Forecast for
textitStar Wars: Episode III - Revenge of the Sith

(b) LSTM 2 Theatres Forecast for Star Wars: Episode III - Revenge of the Sith

Figure 6.14: North America Theatres Forecast for Star Wars: Episode III - Revenge of the Sith

This is an especially good quality forecast with the models closely forecasting over twenty weeks of
revenue and theatres with just the first week’s information. However, this seems to be the exception
rather than the rule; performing a multi-week forecast for the film Intolerable Cruelty ’s release in
Germany (Figures 6.16 and ??) we find far less encouraging results. Curiously, the LSTM 1 and
LSTM 2 model forecast very differing release types with LSTM 1 indicating a decrease in both
revenue and theatres suggesting a Wide release pattern whereas LSTM 2 predicts an increase in
both theatres and revenue akin to a Limited, Then Wide release.
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(a) LSTM 1 Revenue Forecast for Intolerable Cruelty

(b) LSTM 2 Revenue Forecast for Intolerable Cruelty

Figure 6.15: Germany Revenue Forecast for Intolerable Cruelty
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(a) LSTM 1 Theatres Forecast for Intolerable Cruelty

(b) LSTM 2 Theatres Forecast for Intolerable Cruelty

Figure 6.16: Germany Revenue Forecast for Intolerable Cruelty

6.8 Evaluation

6.8.1 Methodology
During pre-release regression in Section (4.3.7), the Coefficient of Determination and the Mean
Absolute Error were used as evaluation metrics. The Coefficient of Determination of a measure of
the variance that can be explained by the model. This is not a good measure of performance for
a time-series prediction model as it does not take into account the type of data being modelled
- time-series data tend to be correlated in time and consequently a relationship exists between
a sequence and a time-shifted version of itself. A common error of many time-series forecasting
models is that they predict values with a small time lag. If the R2 was calculated for this data
it would likely end up indicating well explained variance when in truth this does not reflect the
performance of the model.

When evaluation these model we focus on quantifying the size and nature of the error: MAE is
a metric that calculates the mean magnitude of error over all predictions, and is an intuitive and
interpretable metric.
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When time-series models make forecasts, the forecast errors can be positive or negative. The
Mean Forecast Error (MFE) (Equation 6.4) is an error metric that aims to quantify both the
magnitude and sign of the error, which indicates whether the model tends to over-predict or
under-predict.

MFE =

n∑
i

yi − f(xi)

n
(6.4)

A negative MFE indicates that the model tends to over-predict and any small number close to zero
indicates a over/under prediction small in magnitude.

6.8.2 Comparing Model Performance
We now compare the performance of our specified models, having trained them on the same
training set and obtained predictions on the same test set. Each model makes two predictions: one
prediction about the number of theatres showing the film in the next week and another prediction
on the revenue expected in the following week. We evaluate performance on each regressand
separately.

Theatre Forecast

Knowledge of the following week’s theatres playing a film in every country enables production
companies to gauge the long term financial and public impact of a film and optimally schedule
release of the film in non-theatrical media. If a film is projected to have a better theatrical run than
initially anticipated then better terms can be negotiated for both continued theatrical exhibition
as well as for the non-theatrical release.

(a) Model Theatres MFE Comparison

(b) Model Theatres MAE Comparison

Figure 6.17: MFE and MAE Comparison of Theatre Forecast

Figure 6.17 shows the MFE and MAE metrics for all the models. The MFE metrics for all the
models are positive implying that all the models tend to under-predict; this is preferable to over-
predicting as it gives a more ’worst-case’ forecast. Most surprisingly, the NN model achieves a
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lower MFE than any other model - given the nature of the problem one would expect the LSTM
models to perform better. However, the nature of MFE metric means that having roughly equal
numbers of positive and negative errors equal in magnitude, even if magnitudes are large, can
result in a low MFE.

We confirm this by looking to the MAE of the models where the NN exhibits the largest MAE and
suggests that the errors of the NN model are in fact larger in magnitude on average. Both the LSTM
1 and LSTM 2 models achieve a far lower MAE than the Ridge regressor and NN. This is expected
as the LSTM models are able to use previously seen inputs when making a prediction. What is
surprising though is the similarity of their MAEs - provided with more time lagged samples and
the ability to remember and use longer sequences we would expect LSTM 2 to perform better than
LSTM 1 yet we see almost no difference in performance. This suggests that having knowledge
of more past data points makes very little difference. Inspecting theatre autocorrelation plots
(Figure 6.18) for the films How the Grinch Stole Christmas and The Dancer Upstairs which are
Wide and Limited, Then Wide release patterns, respectively, we see that despite the two being of
different shapes most of the correlation occurs within a five week period and information beyond
five weeks is far more weakly correlated. As the LSTM 1 model already captures and uses the most
important information, we conclude that it should perform similarly to the LSTM 2 model.

(a) How the Grinch Stole Christmas Autocorrela-
tion, a Wide release

(b) The Dancer Upstairs Autocorrelation, a Lim-
ited, Then Wide release

Figure 6.18: Theatres Autocorrelation plots for Wide and Limited, Then Wide release patterns

Revenue Forecast

Accurate revenue forecasts enable all involved in the film making process to better estimate how
much they are likely earn from the release of a film. Early indication of under-performance can
enable studios to cut their losses on films that make less money than anticipated - a poor financial
performance could lead to the film’s theatrical run being reduced and other means of revenue
generation tapped earlier. Figure 6.19 shows the performance metrics for the models for revenue
forecasting. The MFEs for most models are positive indicating general under-prediction. The
LSTM 1 model, however, exhibits a negative MFE suggesting over-prediction which, although
small in magnitude, is nonetheless undesireable. The MAE comparison shows a clear advantage
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for both LSTM models, with both achieving a significant error reduction over the Ridge regressor
and NN models. As with the theatres forecasting, however, both LSTM models achieve very similar
performance as the revenue autocorrelation in Figure 6.20 too suggests that even a small window
of past data captures most of the important information.

(a) Model Revenue MFE Comparison

(b) Model Revenue MAE Comparison

Figure 6.19: MFE and MAE Comparison of Revenue Forecast
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(a) How the Grinch Stole Christmas Autocorrela-
tion, a Wide release

(b) The Dancer Upstairs Autocorrelation, a Lim-
ited, Then Wide release

Figure 6.20: Revenue Autocorrelation plots for Wide and Limited, Then Wide release patterns

6.9 Conclusion
In this chapter, we have explored how to model the post-release box office performance of films.
After identifying that the short time-series that make up a film’s box office performance are non-
stationary, we categorised the release patterns of films into three types. We then designed four
models to forecast future performance and visualised how forecasts behave for each of these types
of release patterns, and identified reasons for their behaviour. We noticed very similar performance
between the LSTM 1 and LSTM 2 models, despite LSTM 2 using more LSTM cells that allow it
to remember more past data points. We investigated the cause of this and concluded that most
of the highly correlated information occurs very shortly before the time of forecast and as a result
even models with limited memory capability can perform well, leading to diminishing performance
returns as more LSTM cells are added.
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Chapter 7

Conclusion

Hasta la vista, baby.

Terminator 2: Judgment Day, 1991

7.1 Summary of Achievements
The aim of this project was to investigate which factors affect the profitability of a film, and develop
models to predict film performance in both pre-release and post-release settings. We have explored
how to best feature engineer raw data and designed models to answer the Yes or No question
about profitability, as well as make concrete predictions of box office performance before and after
release.

We solved a classification problem to predict a film will be profitable using data available prior to
release using a Logistic Regression and an XGBoost Model. Inspection of the coefficient terms of
the logistic regression model showed general insight into which features had a negative or positive
impact on profitability and. We performed extended analysis to obtain more informative Shapley
values for both models and showed how values of certain features impact profitability. Comparing
Shapley feature plots for the logistic regression and XGBoost mostly concurred on the importance
and effects of features, with the XGBoost plot yielding more insight into the effects of magnitudes
of values. We identified surprising trends identified during model evaluation and suggested reasons
why they may be, recognising that can be other sources of revenue that we do not consider, that
contribute to profitability.

In order to make more insightful predictions about film revenues we proposed a regression task to
predict revenues per country at key stages in the release, along with length of time the film will
spend in theatres per country, and revenues from sales of Blu-rays and DVDs in North America.
We designed five different models for this task, with most models also capable of generating a
predictive posterior. We calculated Shapley values of input features for each of the regressands and
found some very interesting relationships such as the link between geographically close countries
despite differences in language, as well as relationships that suggest similarity in the preferences
of audiences in even geographically distant countries that do not share a common language. We
showed that the box office prediction regressands generally produced high quality estimates and
identified a weakness of the models in predicting sales and revenue for Blu-rays and DVDs. We
identified the likely cause for this weakness and related this to how well the models were able to
utilise relevant features during regression. Finally, we evaluated the performance of these models
and compared them with existing models from previous work where we showed that our models
perform well despite using only pre-release features.

A technique to model post-release box office using a set of Ordinary Differential Equations was
developed and applied to some data. This technique showed promising performance on a few initial
data samples. However, we quickly identified limitations of this approach in its’ inability to use
categorical and quantitative features of films as well as there being insufficient data to pursue this
method of modelling.
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We developed models that could overcome these limitations to predict post-release performance
time-series, two of which employed Long Short-Term Memory units to predict revenue and theatres
screening a film a week in the future. On inspecting the feature weights for the Ridge Regression
model we found that the number of theatres in the previous week was considered the most infor-
mative feature, and that ratings data which was initially considered to be of great value was in fact
not as useful. We showed applications of the LSTM based models in predicting for both one week
ahead at a time, as well for forecasting for several weeks in the future. We identified interesting
features of forecasts and investigated the reasons for these. We evaluated the models and found
both LSTM based models outperforming other methods and recognised that the LSTM models
exhibited similar performance. The cause of this was further investigated and identified.

7.2 Reflection

7.2.1 Alternative Revenue Streams
Alternative revenue streams include any non-theatrical revenue such as DVD/Blu-Ray, Video on
Demand and TV. Major VoD firms often buy the rights to sell/stream films in bulk and do not
release detailed breakdowns of sales or views at all. As a result we were not able to obtain any
data on sales or revenue from VoD sources. As VoD represents one of the fastest growing revenue
streams for films with highly successful films earning huge amounts of money from these sources,
we missed out on the opportunity to understand how VoD can affect film revenues. Furthermore,
a large proportion of films released see no theatrical release and instead rely on generating revenue
from alternative sources in entirety. VoD companies such as Netflix produce films, sometimes with
very high budgets and may only offer a limited or no theatrical release. The lack of information on
these types of films represents a lost opportunity to gain an insight into this revenue stream.

The one alternative revenue stream we have modelled is the sales of DVDs/Blu-rays for which only
limited data was available, primarily being available for films that were already successful at the
box office and only for North America. The lack of data and the limited diversity of the data we
did have was a hindrance in modelling this aspect of revenue.

7.2.2 Box Office Tracking
Many large markets such as India have no bodies performing box office tracking and as a result the
data collected sees many countries underrepresented enough that they offer far too few samples to
model. This means that potentially key sources of revenue are omitted entirely. Incomplete tracking
of figures greatly affects post-release modelling as having several incomplete release information
samples means having to use linear imputation to fill in missing values, which is not representative
of real world changes in values.

7.2.3 Model Interpretation
We have primarily made use of Neural Networks and Gaussian Process based models which offer
no insight into the reasoning behind the model. Although Shapley feature importance offers some
explanation of the inner workings of black box models, they are by no means as informative as
inspection of the parameters of a linear regression model would be. As we cannot view the reasoning
of black box models we are forced to accept their predictions and evaluate their merits purely on
performance in a test scenario.

7.3 Future Work

7.3.1 Combined Models
As we observed in the evaluation of pre-release models, all the models show different levels of
performance across each category of regressand. Machine Learning can be used to combine several
models in a Stacking approach where predictions from multiple base models can be used as inputs
to another, higher level model. The higher level model learns the weaknesses of each base model
and uses the base set of predictions to make its own prediction.
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7.3.2 Cast/Crew Recommendation
We have tackled the task of predicting performance given some fixed factors, such as the director.
But what if we could also recommend actors or directors to maximise performance in something
as specific as a single country?

Our method of encoding actors and directors (see Section 3.5.1) can be extended to include more
features such as the number of awards received, social media follower counts and product endorse-
ment history. Clustering algorithms can be applied to this data to form groups of similar people.
When looking for recommendations, characteristics of a an initially suggested person could be
assigned to a cluster and alternatives suggested from both within the cluster, as well as nearby
clusters. As a result a selection of people can be suggested for a particular job. Work in this
direction is already being explored by the startup, Cinelytic1.

7.3.3 Using Unstructured Data
A key limitation of our pre-release models is that it does not know anything about the film which
it is predicting for. Any metric that quantify the quality of a film prior to release is generated by a
human evaluating a film. An interesting extension to our work would be to use a Natural Language
Processing model to analyse the script or a Computer Vision model to evaluate the quality of a
feature film or trailer and use these in combination with quantitative data for to create a combined
model that understands both the structured characteristics of a film as well as the qualitative
reasoning about the content to interpret not only how well a film will perform, but also assess how
an audience will react to it. Previously, Zhou et al. [58] have used film posters to predict movie
box office performance using Convolutional Neural Networks and we believe that building on this
approach by analysing trailers, films or scripts could better enable the model to understand what
constitutes a successful film and potentially be extended to indicate potential drawbacks or suggest
changes to the film.

7.3.4 Search Volumes
An interesting method of gauging the effectiveness of marketing and public interest and anticipation
for a film is to look at search query volumes for terms relating to that film. Google published
a whitepaper in 2013 (which has since been removed) citing over 90% accuracy in predicting
performance. We scraped and attempted to use data from Google Trends2 for each film. In
Google Trends, for search query, the search volumes are normalised to be between 0-100 within
a data range. As a result, this doesn’t reveal true query numbers. We attempted to reverse the
scaling using reference queries that have constant search volumes, but this yielded little success or
insight into film performance. However, we believe that using search query volumes can provide
great insight into the anticipation for a film that can provide more relevant insight than metrics
collected from social media. We maintain that this is an exciting avenue for future research.

1https://www.cinelytic.com
2https://trends.google.com
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