Imperial College
London

MENG INDIVIDUAL PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Data Mining Calibration Points from
Qilfield Documents

using Natural Language Processing
and Machine Arguing

Supervisor:

Author: Prof. Lucia Specia

Athithan Dharmaratnam Second Marker-

Dr. Pedro Baiz

June 15, 2020

Abstract

Daily Drilling Reports where drilling activities are entered as free text contain a wealth of infor-
mation which is underutilised. Manual screening of Daily Drilling Reports (DDRs) is a tedious
time-consuming exercise undertaken by engineers where only one particular focus is extracted leav-
ing potential data insights undiscovered.

This project investigates one such data insight called calibration points which are extracted from
similar wells in a field in order to generate Mechanical Earth Models (MEMs) for downstream field
planning. This project demonstrates a complete automated workflow from taking in the raw DDR
data sets to producing a calibration point output file using data mining with natural language
processing techniques and machine arguing for feature analysis. The application framework forms
an ensemble system which has been implemented as three stages: extracting features from free
text, mapping normalised features using semantic triples to argumentation cases and formulating
an explanation for a data insight using abstract argumentation for case-based reasoning.

The implemented workflow improves upon a prior lower bound method for calibration point ex-
traction and shows results which exceed the manual benchmark for calibration point extraction
for some calibration points. This project has novel contributions in demonstrating a practical
implementation of machine arguing research in a new domain. The three-stage application frame-
work while applied to calibration points, can generalise to any data insight for textual data given
appropriate domain inputs and engineered features for the new problem domain.

Acknowledgements

I would like to thank my project supervisor Professor Lucia Specia for her advice and support
throughout the course of this project. Thank you for helping me to widen my horizons to the
diverse field of Natural Language Processing.

I would also like to thank Schlumberger and the supporting team who are my manager, Fran-
cisco Gomez and my domain expert, Ivan Diaz Granados. It is only due to your continual support
and valuable domain knowledge that I was able to complete this project.

Special thanks goes to my friends who kept me sane during the lockdown period. I also greatly
appreciate my sister Abina for her moral support and her kind offer to proof read my rather long
report. Finally, I would like to thank my mother without whom I would have never made it so far
in my education. She has always and will always be my strongest support in all the challenges I
face.

Contents

Introduction
1.1 Motivations oL e
1.2 Objectives o e
1.2.1 Structured Data Extraction
1.2.2 Feature Extraction L
1.2.3 Feature Analysis
1.2.4 Data Insights Delivery
1.3 Challenges e
Background
2.1 Oilfield Domain Knowledge o o
2.1.1 Daily Drilling Reporto
2.1.2 Calibration Points oL
2.2 Datasets e
2.3 Data Mining
2.3.1 Pipeline Processes e
2.3.2 Data Analysis Methods L
2.3.3 Exploratory Data Analysis
2.3.4 Pre-Processing o
2.4 Named Entity Linking00 oo
2.5 Abstract Argumentation for Case-Based Reasoning
2.6 Evaluation Metrics Lo e

Literature Review

3.1 Supervised Learning L L
3.2 Unsupervised Learning L
3.3 Feature Engineering Lo L
3.4 Emnsemble Method
Project Implementation
4.1 Minimum Viable Product (MVP) L
4.2 Experimentation Architecture and Workflow
4.3 General APT Design e
4.3.1 Configuration APT o
4.3.2 Data Layer APT
4.3.3 Workflow APT
4.3.4 DataLoader APT
4.3.5 Logging e
4.4 Exploratory Data Analysis.
4.4.1 Data Set Summary Statistics oo oL
4.4.2 Uni-variate Visualisations
4.4.3 Bi-variate Visualisations oo
4.5 Pre-Processing e
4.5.1 Basic Tokenisation
4.5.2 Token Normalisation
4.5.3 Token Reduction
4.5.4 Token Expansion e

10
10
10
11
11
11

13
13
13
14
15
15
16
16
17
17
18
18
18

20
20
21
22
22

5 O Q @ »

4.6 Measurement Syntactic Parser 0 Lo 0oL

4.7 Statistical NLP Parser e
4.7.1 Phrase Feature
4.7.2 Domain Phrases
4.7.3 Part of Speech Feature
4.7.4 Negation Phrase Feature L.

4.8 Named Entity Linking
4.8.1 Knowledge Base e
4.8.2 Name Dictionary e
4.8.3 Surface Mentions e
4.8.4 Candidate Entity Generation
4.8.5 Candidate Entity Ranking Scores
4.8.6 Candidate Entity Composite Ranking
4.8.7 Unlinkable Mention Prediction
4.8.8 Linked Entities Feature oo oo

4.9 Abstract Argumentation for Case-Based Reasoning
4.9.1 Cases
4.9.2 Abstract Argumentation Framework
4.9.3 Grounded Extension oL
4.9.4 Dispute Tree e
4.9.5 Argumentation Explanation o000
4.9.6 Automated Cases
4.9.7 Bulk Processing Comments

4.10 Calibration Point Generation L.

Evaluation

5.1 ACCUTACY . . v v v o e e e
5.1.1 Stuck Pipe
5.1.2 Kick . . . oo
5. 1.3 LOSSES e e
514 Cavings oo e e
5.1.50 Tight Hole
51.6 FIT o e
5.1.7 All Drilling Events

5.2 COVETAZE . . v v v v v e i e e e
5.2.1 Schlumberger Version One Data Set
5.2.2 Schlumberger Version Two Data Set
523 All Data Sets e

5.3 Performance

Conclusion

6.1 Key Achievements

6.2 Limitations and Future Research oL
6.2.1 Structured Data Extraction L.
6.2.2 Domain Knowledge Improvements
6.2.3 Supervised Feature Improvements
6.2.4 Entity Linking Improvements 0L
6.2.5 Machine Arguing Framework Improvements
6.2.6 User Experience Improvements

Daily Drilling Reports

Daily Drilling Reports Comments

Performance Optimisations

Configuration

External Libraries

62
62
63
64
65
66
67
68
69
70
71
71
72
72

75
(0]
76
76
7
7
7
7
78

79

82

85

88

92

F Exploratory Data Analysis Visualisations

Bibliography

93

96

List of Figures

1.1
1.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44

High-Level Workflow 0o o 10
Three-Stage Implementation Workflow 10
MVP modules 24
Data Tables for Data / Feature Extraction 25
Data Tables for Feature Analysis / Data Insights Delivery 26
High-Level Code Architecture with example BERT experiment 27
Experiment Workflow L o 27
API Function Code Format 28
Data flows through the Data Layer APT 29
Data Set Uploading through the Data Loader APT 30
File Summary Statistics for the Training Data Set 31
Pre-Processing Configuration Example 32
Measurement Extraction Example 0oL 34
Measurement Feature Table Example 35
Noun Phrase Extraction Exampleo 0000 37
Verb Phrase Extraction Exampleo o000 37
Phrase Feature Table Example 38
Domain Phrase Feature Table Example 39
Domain Phrase Extraction Example 0. 39
False Positive Examples o 40
Formation Integrity Test (FIT) False Positive Example 40
Part of Speech Feature Table Example 41
Negation Phrase Feature Table Example 42
Leak Off Test Definition Example 43
Name Dictionary Example o 43
Surface Mention Example 0oL 44
Candidate Entity Generation Example oo 0L 45
Candidate Entity Ranking Scores Configuration 45
Candidate Entity Ranking Scores Example 45
Candidate Entity Composite Ranking Scores Configuration 46
Candidate Entity Composite Ranking Scores Example 46
Unlinkable Mention Prediction Example 47
Linked Entity Feature Table Example 48
Data Enrichment Example oo oo 48
Cases Example 49
Case to Case Feature Mapping Configuration Example 50
New Case Example o 51
Argumentation framework file definitions L. 51
Argumentation Graph for Stuck Pipe Example 53
Argumentation Graph Example Case Table (Left) and Example Feature Table (Right) 53
Grounded Extension Example 0oL 54
Dispute Tree Example 55
Generate Explanation Example 0L 56
Average Feature Case Score per Case 58
Filtered Average Feature Case Score per Case 58
Positive and Negative Case Feature Score 59

4.45
4.46

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

5.16

5.17
5.18

Al
A2
A3

B.1
B.2
B.3
B.4
B.5
B.6

C1
C.2
C.3
C4
C.5

D.1
D.2
D.3
D4
D.5
D.6

F.1
F.2
F.3
F4
F.5
F.6

Argumentation Explanation Table Example 60

Calibration Point Table Example 60
Confusion Matrix for Stuck Pipe Evaluation 63
Confusion Matrix for Kick Evaluation 64
False Negative Example Comment for Kick 64
False Positive Example Comment for Kick 65
Confusion Matrix for Losses Evaluation 65
False Negative Example Comment for Losses 65
False Positive Example Comment for Losses 66
Second False Positive Example Comment for Losses 66
Confusion Matrix for Cavings Evaluation 66
Confusion Matrix for Tight Hole Evaluation 67
False Negative Example Comment for Tight Hole 68
Second False Negative Example Comment for Tight Hole 68
Confusion Matrix for FIT Evaluation 68
False Positive Example Comment for FIT 69
A graph to show drilling event precision for the project implementation and keyword

index implementation Lo 69
A graph to show drilling event F'1-Score for the project implementation and keyword

index implementation oL 70
A graph to show drilling event precision for two data sets 72
Performance Optimisation Graph for 1000 comments 73
Public Australian dataset sample L 0oL 79
Public Forge dataset sampleo o oo 80
Public Historical dataset sample 81
Training Data Set Comment Sample One 82
Training Data Set Comment Sample Two 82
Public Australian Data Set Comment Sample One 83
Public Australian Data Set Comment Sample Two 83
Schlumberger Version One Data Set Comment Sample One 83
Schlumberger Version One Data Set Comment Sample Two 84

Performance Optimisation pStats output for Optimisation One with 1000 comments 85
Performance Optimisation pStats output for Optimisation Two with 1000 comments 86
Performance Optimisation pStats output for Optimisation Three with 1000 comments 86
Performance Optimisation pStats output for Optimisation Four with 1000 comments 87
Performance Optimisation pStats output for Optimisation Five with 1000 comments 87

Configuration File for the general settings 88
Configuration File for the data insights delivery settings 88
Configuration File for the feature extraction settings 88
Configuration File for the feature analysis settings 89
Configuration File for the data extraction settings 90
Configuration File for the workflow orchestration settings 91
Automated Readability Graph for Schlumberger Training Data Set 93
Flesch Reading Ease Graph for Schlumberger Training Data Set 93
Negative Sentiment Analysis Score for Schlumberger Training Data Set 94
Phrase Chunker Word Clouds for Schlumberger Training Data Set 94
Most Common Noun and Verb Phrases for Schlumberger Training Data Set 95
Token Frequency Counts for Schlumberger Training Data Set 95

List of Tables

4.1
4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

4.26
4.27

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

A table showing the settings for the configuration file.
A table showing the composite token reduction patterns
A table showing the schema for the measurement feature table
A table showing the proportion of measurement character statistics in the training
dataset L
A table showing the schema for the phrase feature table
A table showing the regular expression grammar used for phrase chunking
A table showing the definitions of the regular expression symbols
A table showing the definitions of the part of speech tags
A table showing the schema for the domain feature table
A table showing the schema for the processed domain phrase table
A table showing the schema for the part of speech feature table
A table showing the schema for the domain feature table
A table showing the schema for the knowledge base entities
A table showing the schema for the name dictionary
A table showing the schema for the surface mention table
A table showing the schema for the candidate entity generation table
A table showing the schema for the candidate entity ranking scores table.
A table showing the candidate ranking method definitions
A table showing the schema for the candidate entity composite ranking scores table
A table showing the schema for the unlinkable mention prediction table
A table showing the schema for the linked entities table
A table showing the schema for the unlinkable mention prediction table
A table showing the default cases format for drilling events
A table showing the new cases format for comments
A table showing the attack relations conditions for abstract argumentation with
case-based reasoningo
A table showing the schema for the argumentation explanation table
A table showing the schema for the calibration point table

A table showing the stuck pipe classification results for both extraction methods on
the test dataset L L
A table showing the kick classification results for both extraction methods on the
test dataset L
A table showing the losses classification results for both extraction methods on the
test data set L L L
A table showing the cavings classification results for both extraction methods on
the test dataset L
A table showing the tight hole classification results for both extraction methods on
the test dataset L
A table showing the FIT classification results for both extraction methods on the
test dataset oL
A table showing the coverage classification results for the Schlumberger Version One
Data Set L
A table showing the coverage classification results for the Schlumberger Version Two
Data Set e
A table to show the results of the batch size experiments.

35
36
36
36
36
38
38
39
41
42
43
44
44
45
45
46
47
47
49
50
50

52

59
60

63

64

65

67

67

68

71

E.1 A table showing the external libraries used in the development of the project . . . 92

Chapter 1

Introduction

1.1 Motivations

Oil companies have a strong incentive in acquiring different kinds of data necessary to understand
their reservoirs and produce hydrocarbons more efficiently [DS19]. A report by Mckinsey has
shown that drilling and completion operations constitute 40% to 50% of the expenditure of an
average offshore Oil and Gas operator [ABJ15]. Therefore, companies have a financial incentive to
exploit the wealth of historical drilling activity data in order to reduce the cost of drilling activities.
Improving drilling operation efficiency can be done through better planning to identify potential
risks for similar offset wells [ST10]. In addition, historical data in combination with real-time data
from the well can be used to identify latent patterns to make predictions for non-productive time
drilling events. [SCS15].

This project aims to provide an automated solution to analyse calibration points from daily drilling
reports which are a 24-hour record of drilling activities (defined formally in Section 2.1.1) using
Natural Language Processing techniques [MM20]. The automated solution will be broadly de-
signed such that it can be generalised to extract other data insights from free text in different
oilfield documents. The daily drilling report contains free text comments which may contain cali-
bration points which can be used to calibrate mechanical earth models. A mechanical earth model
is used in the planning phase of oil field development and calibration points increase the accuracy
of the model. A more accurate model mitigates the risks of non-productive time drilling events
and thus increases the efficiency of the drilling operation [Afs+09].

Extracting calibration points from daily drilling reports is traditionally a manual exercise con-
ducted by a domain expert done as part of a review before planning a new oil well using best
practices [NS19]. This process is quite time-consuming often taking weeks for a single offset well
and is also a tedious process. A complete analysis is often not possible due to time constraints
which results in plenty of missed data insights as the analysis focus is normally limited to a subset
of drilling events in the case of calibration points extraction. A study by Brule has shown that
generally, half an engineer’s and geo-scientist time is spent trying to collate unstructured data into
a structured format in order to be able to extract useful data insights traditionally done through
manual analysis [BI15]. This is further supported by a survey conducted at Schlumberger which
shows that 60% to 80% of project time for the extraction of calibration points is utilised for data
collection rather than more valuable data analysis [DS19]|. Therefore an automated solution is
preferred as it will reduce the time taken for offset well analysis and will potentially unearth unex-
pected data insights which can be reused in similar problems. Therefore the aim of this project is
to create an automated workflow that ingests free text data from daily drilling reports to extract
calibration points.

1.2 Objectives

The complete workflow for this project is made up of four modules in a linear flow as shown in
Figure 1.1. The high-level workflow represents a complete solution starting from the raw data
inputs to the presentation of the data insights in a user-friendly form.

Structured Data Data Insights
Extracion » Feature Extraction » Feature Analysis Delivegry

Y

Figure 1.1: High-Level Workflow

However, the core focus of the research in this project is the three-stage implementation workflow
in the feature extraction and feature analysis modules shown in Figure 1.2. Structured data
extraction and data insights delivery are not fully developed in this project as they fall out of the
scope of the research goals of this project but the general workflow of these modules will still be
outlined for future research.

Stage One Stage Two Stage Three
Mapping normalised Formulating an explanation
Extracting features from .| features to argumentation o using abstract
free text 7 cases using semantic " argumentation for case
triples based reasoning

Figure 1.2: Three-Stage Implementation Workflow

1.2.1 Structured Data Extraction

The first step of the workflow is to extract the free-text comments into a structured format. The
daily drilling reports come in a variety of formats depending on the company and date of publica-
tion as shown in the Appendix A. Formats include PDF, scanned documents, WITSML, CSV or
stored in databases within internal company servers. Given the breadth of input formats, struc-
tured data extraction poses a significant challenge in handling the various different file formats.
Furthermore, the challenge escalates when considering the lack of a standardised industry format
of a daily drilling report between companies and drilling periods.

The primary goal of this project is to analyse calibration points from free-text comments. There-
fore, this problem will be shelved as the current data sets (described in Section 2.2) already have
free-text comments in a structured CSV format.

1.2.2 Feature Extraction

The second step would be to extract useful features from the comment data. The free-text com-
ments in the data sets exist in a structured format but they have to be pre-processed in order
to standardise them into a consistent internal format across different input data sets. The data
quality challenges (defined in Section 1.3) have to be handled in the pre-processing of the raw
comment data. There are many techniques for pre-processing the data (defined in Section 2.3.4)
and different feature extraction methods such as noun phrase chunking and measurement parsing
will have different degrees of pre-processing conducted on the raw text data.

The first feature extraction method that can be used is deep learning. This approach is a coarse
approach as it seeks to directly extract the drilling event from lightly pre-processed text data. This
involves using a neural network architecture such as sequence classification with BERT to take the
pre-processed text data as an input and then output a binary classification of a possible drilling
event. Given the drilling event sparsity problem it is more efficient to start with a single drilling
event before moving on to categorical classification of at most fifteen potential drilling events. This
method has been experimented with but not integrated into the final application due to problems
with the labels in the training data set being mislabelled.

10

The second feature extraction method that can be used is a pseudo-dimensionality reduction
method to reduce the pre-processed text tokens to more relevant tagged entities. This approach is a
fine-grained analysis approach on the textual data. This process can involve using domain-specific
Named Entity Recognition (NER) model to extract relevant named entities in the pre-processed
text data. However, this project does not have access to a domain-specific labelled data set for
the training of the NER model. Standard NER libraries have been trained to extract general enti-
ties but the focus of this project is heavily reliant on oilfield domain-specific entities therefore the
NER approach is not feasible within the scope of this project. Another approach is to use phrase
chunking to extract noun phrase features as a substitute to named entities. The factual descriptive
nature of the drilling comments means that particular noun phrases, which will be referred to as
domain phrases in this project, are likely to co-occur with drilling events.

The extracted features from the aforementioned feature extraction method will be used in com-
bination with measurement entities extracted with a syntactic parser. Measurement data is more
standardised than variable textual data so a custom parser will be adequate to extract numerical
values and unit values. The unit definition will be defined externally using a standard oilfield unit
glossary.

1.2.3 Feature Analysis

Having extracted relevant features for stage one of the three-stage workflow shown in Figure 1.2,
the next step is to analyse them to extract calibration points with an explanation of the reasons
behind the extraction. The feature analysis module contains two important research areas which
are entity linking and abstract argumentation for case-based reasoning.

The entity linking system provides a way of removing some of the data quality challenges such
as disparate comment data. It acts as a way to normalise certain features such as the extracted
noun phrase so that the features can be comparable to other features. The normalised features
can then be mapped into cases for the argumentation framework using semantic triples from the
Resource Description Framework [RDF14]. The feature converted cases can be inputted into a
pre-defined argumentation framework model which will logically ascertain the presence of a cali-
bration point while providing the reasons why it occurred through the arguments satisfied. The
predefined argumentation framework model will rely heavily on domain knowledge provided by a
domain knowledge expert. A recent study suggests one of the main points for a successful Big
Data project is the collaboration in an interdisciplinary team of computer scientists and petroleum
engineers [MT18]. The choice of the argumentation framework model will vary dependent on the
features that can be extracted from the textual data but will initially be an abstract argumentation
framework.

1.2.4 Data Insights Delivery

A non-core aspect of the workflow is delivering the data insights extracted from the analysed
features in a user-friendly interface. The complete workflow would constitute a complete prototype
and hence delivering and more importantly explaining the extracted calibration points to a client is
a key aspect in an industry project. However, since the main research goals of the project are quite
labour intensive this aspect of the high-level workflow will be limited to generating a calibration
point file with generated explanations for the scope of this project.

1.3 Challenges

Data quality is often the main issue with machine learning projects especially in the exploration
and production industry [CA14]. Furthermore, the data sourcing and preparation often takes up a
significant amount of project time as most of the untapped data is unstructured and distributed in
different formats and files [JG15]. The main sources of unstructured data in the oil and gas indus-
try are well logs, daily drilling reports and CAD drawings [MT18]. In order to extract useful data
insights from this unstructured data, it needs to be streamlined into a consistent structured format
for a program to analyse. The only industry-standard format for daily drilling reports is WITSML
[Enel7|. However, most companies have PDFs of daily drilling reports with varying structures

11

which pose a challenge to extract the relevant comment data from in a generalised manner.

The main challenges involved with this project are listed below:

1.

10.

11.

Disparate comment data

The writing style of the free-text comments varies between company, era and personal. The
quality of the comments ranges from complete English sentences to noisy error-prone sen-
tences as shown in Appendix B.

Disparate metadata

The contents of daily drilling reports are varied between companies. Different companies
and operators have varying concerns and standards which leads to the daily drilling report
having varying metadata bar the core operations table of the drilling operations as shown
in Appendix A. The metadata is useful as a form of quality control and additional features
for the data analysis but is limited in usefulness given the lack of consistency across different
data sets.

Data Sparsity

The drilling events are an important target to extract. However, these events are often sparse
within a single well history. Calibration points are normally extracted at the occurrences of
drilling events which normally represent an unwanted event in the operation of the drilling
well. Therefore, these drilling events often do not occur regularly which leads to data sparsity
issues when using some methods especially unsupervised machine learning methods such as
topic modelling.

Noise

Pre-processing is a key aspect of this task as there are artefacts within the provided data sets
provided after having been parsed into a structured format in some data sets. After removing
the irrelevant artefacts, there still exists valid text which provides semantic noise and thus
invalidates certain naive methods from being used such as keyword indexing [CA14] [NS19].

Uncertainty
The reports are written by humans and thus are prone to human error which creates uncer-
tainty especially given that some of the measurements taken are subsurface [MT18] [Enel7].

Distributed data
Existing daily drilling reports are stored in legacy systems which have to be retrieved [DV14].

Technical Symbols

The contents of the comments are filled with useful technical symbols such as measurements.
However, for some processes such as noun phrase chunking, these technical symbols are noise
and need to be removed.

Acronyms

One issue is the prevalence of acronyms used by the operators when writing the daily drilling
reports. Acronyms can be expanded in order to increase the accuracy of some processes but
the expansion process may be flawed which leads to issues in other processes.

Missing Data
Some daily drilling reports do not record key information and there may be gaps in the
reports which need to be inferred.

Data Volume

The volume of the data in some of the data sets is quite large reaching hundreds of thousands
of comments. Intermediate storage of the results from the various stages in the pipeline will
be necessary to reduce processing time.

Surface Mention Ambiguity
There are a lot of terms within the sentences which have multiple meanings and without
contextual information, it is difficult to understand the correct sense of the word [AlI88].

12

Chapter 2

Background

2.1 Oilfield Domain Knowledge

This project involves data mining in the oil and gas industry. Therefore, an understanding of the
oilfield domain is necessary to develop some of the pipelines such as the abstract argumentation
pipeline. The main oilfield domain knowledge necessary is the understanding of the manual pro-
cess of the extraction of calibration points from daily drilling reports to define the cases for the
argumentation framework for case-based reasoning.

2.1.1 Daily Drilling Report

A daily drilling report is an industry-standard report of drilling activities on the drilling rig. It
is a 24-hour summary report of the prior day’s operations to keep the interested parties aware
of the operations and issues on the rig [MM20]. It is used for a variety of needs such as logging
drilling data or tracking drilling performance dependent on the operator [TAD18]. The format of
the daily drilling report has been paper form for decades resulting in historical daily drilling reports
being scanned PDF. Daily drilling reports in recent decades have evolved to be more digital as
the industry tries to move towards the goal of smart reporting [Enel7]. The current generation of
the daily drilling report is now a combination of automatic inputs from sensor data and manually
inputted comments about the drilling activities. Daily drilling reports come in many different
formats dependent on operation area, drilling type and company culture.

Appendix A shows daily drilling report samples where Figure A.l is a sample from the public
Australian dataset, Figure A.2 is a sample from a geothermal well and Figure A.3 is a historical
scanned sample.

Appendix B shows the daily drilling report comment samples from three of the data sets used.
Figures B.1 and B.2 for the Schlumberger Training data set show the noisy nature of the comments.
Figures B.3 and B.4 represent a more formal language used when writing operational comments
for the Public Australian data set. Figures B.5 and B.6 show the short nature of some comments
from the Schlumberger Version Two Data Set.

While the contents vary, there are some common aspects which are relevant to the project listed
below [19].

e Report Date
The daily drilling report is generated in a 24-hour period and hence this is useful identifying
metadata.

e Well Name
The format of the well name is dependent on the company and can be either an internal
name or a legal well name but is nonetheless useful identifying metadata.

¢ Header Summaries
The header of the report contains other useful summary information such as measured depth

13

and true vertical depth which can be used as quality control parameters for the extracted
measurements in the drilling report summary.

e Blowout Preventer
Some reports have a section to record tests on this safety device which is vital to monitor
lead-ups to a catastrophic failure event called a blowout.

e Mud
Mud tables listing various properties of the mud in the drilling operation are useful as mud
weight is an important calibration point and can be used to quality control the automated
measurement extraction. Furthermore, fluid loss recorded in the mud tables may also be a
measurement which is useful to validate drilling event such as losses.

e Time Breakdown Section
This is the key aspect of the daily drilling report for this project. This section constitutes
around a quarter of the report but takes half the effort to generate as it is done manually
[Enel7]. It is usually in the form of a table with varying columns dependent on the operator.
The target column is the operation comments which are free text comments written by the
rig supervisor summarising the drilling activities. The operation comments are the primary
target to analyse using the implementation workflow to extract calibration points.

2.1.2 Calibration Points

Calibration points are used to calibrate parameters of a mechanical earth model which is "a numer-
ical representation of the state of stress and rock mechanical properties for a specific stratigraphic
section in a field or basin" [Kn616]. A mechanical earth model is a useful model generated to better
understand the geomechanics in the well construction region to reduce potential drilling risks and
thus forms an essential part of well planning [Afs+09]. The calibration parameters for the mechan-
ical earth model can be mined from drilling data including daily drilling reports. The parameters
are normally in the form of a drilling event and a corresponding measurement value mined from
the operation free-text comments. Drilling events such as a leak off test or formation integrity test
in combination with measurements such as mud weights are an example of a calibration point.

Drilling Events

Drilling events are extreme events that may occur during drilling activities. A total of fifteen
drilling events have been specified for extraction by the domain expert but within this project,
only six of them will be considered. These six drilling events have been chosen as they are the
most valuable events for a calibration point and they occur in the public Australian data set and
thus can be evaluated. It is worth noting that the majority of the fifteen events do not occur within
some data sets making a supervised method to extract these drilling events difficult. Furthermore,
the general definition of these drilling events may vary between different operators and engineers.

e Formation Integrity Test "is a test of the strength and integrity of a new formation"
[AS05]. This measurement is especially useful as it is a field measurement so it can be used
for field development planning of offset wells. This test usually results in non-productive
time so it does not occur regularly.

e Kick "is a well control problem in which pressure found within the drilled rock is higher
than the mud hydrostatic pressure action on the borehole" [20b]. Kicks are usually a result
of insufficient mud weight and therefore an important calibration point.

e Cavings are loose debris that arise from drilling operations but are not removed with the
drill bit [20a]. They occur in various shapes and are recorded as drilling events often being
an indicator of well bore instability [Osil2].

e Stuck Pipe is a drilling event where a "pipe cannot be freed from the hole without damaging
the pipe" [OBM99]. This is an especially costly drilling event normally due to related lost
circulation events which can be used as early warning indicators.

14

e Losses "is the uncontrolled flow of whole mud into a formation" [20d]. There are varying
degrees of lost circulation that can occur during drilling operations and the occurrence of
lost circulation can be a good indicator of formation issues for calibration points.

e Tight Hole "is a section of a well bore where drilling tools with large diameters face resis-
tance" [20e]. The occurrence of a tight hole is an indicator of well bore stability problems
due to formations.

e Leak Off Test "is a test carried out to determine the pressure of fracture of an open
formation" [20c|. Leak off tests happen very rarely but should occur at least once during
the operation of a drilling rig and the measured value is the mud weight for the test. Leak
off tests are not labelled in the Public Australian data set and therefore are not evaluated
but are still an important drilling event to consider as they are closely related to formation
integrity tests.

Measurements

In addition to the drilling events, measurements are also necessary for a calibration point. Mea-
surements can be any numerical data in the free text comment but with regard to calibration
points, the key measurements are mud weight, depth and time. In some daily drilling reports, time
and depth are directly noted down as a column in the operation table or they may be embedded
in the free text. The units used for the measurements vary between regions and also the format
of the measurements differ in notation. One example is using commas to denote thousands in one
data set which may not be used in other data sets.

2.2 Datasets

This project is done in collaboration with an oilfield service company called Schlumberger who have
provided company data sets as well as the help of a domain expert in understanding the domain
associated with the problem. The data sets used for this project will be operational comments of
the drilling activities with some identifying metadata in a CSV format. While daily drilling reports
are normally in a PDF format, this project mainly seeks to research into the feature extraction
and analysis aspect of the core workflow listed in Section 1.2. Therefore, the data sets initially
used in this project will be structured and already extracted from PDF form. The current list of
data sets used in this project is shown below.

e Schlumberger Training Data Set This data set contains around 56,000 comments across
146 wells with drilling event labels for six drilling events. This data set will be used as the
training data set for the application.

e Public Australian Data Set This data set contains around 6,000 comments for 11 wells
with drilling events labels for six drilling events. This data set will be used as a test data set
for evaluating the accuracy of calibration point extraction.

e Schlumberger Version One Data Set This data set contains around 32,000 unlabelled
comments from North Sea Wells. This data set will be used as a test data set for evaluating
the coverage of calibration point extraction.

e Schlumberger Version Two Data Set This data set contains around 300,000 unlabelled
comments from North Sea Wells. This data set will also be used as a test data set for
evaluating the coverage of calibration point extraction.

2.3 Data Mining

Data Mining is the study of extracting data insights using processes such as data collection, data
cleaning and data analysis. The data insights extracted are dependent on the application-specific
goals but generally need to be concise and actionable. The process of data mining works in a
pipeline where each stage transforms the data into a more useful format. Real-world data is often
unstructured and noisy. Therefore, the majority of project time is often devoted to data pre-
processing before any analysis work can take place. Given the breadth of the field, data mining

15

is an umbrella term and can be applied to a variety of domains [Aggl5]. In the context of this
project, data mining will be utilised in the oil and gas domain.

One also needs to consider the type of data, which in this case is dependency-oriented data as
there exists a temporal relationship between the free-text comments. The free-text comments are
a discrete time series data type as each comment is an ordered sequence of described operational
drilling activities. The format of the text data as an input is a string but some language processing
models such as deep learning require the text data to be converted into a vector space representa-
tion such as a document term matrix or word vectors. In addition, the data is multidimensional
as there are contextual attributes which define the free text comment such as a time range or a
spatial value (depth).

Another issue to consider with data mining projects is scalability issues especially with the large
volume of data in some of the data sets. The data in this project is static once collected so some
of the issues such as concept drift will not be relevant, especially considering that the target data
sets are historical daily drilling reports [Aggl5].

2.3.1 Pipeline Processes

The general stages of the data mining process are shown below [Aggl5].

e Data Collection is the process of aggregating the relevant data sources for the project. In
the context of this project, this process has mainly been reformatting the aforementioned
data sets into the correct input format. The formatted data sets collected can then be stored
in a database.

e Data Pre-Processing is the process of transforming the collected data into a more suitable
application-specific format for feature extraction. Real-world data is often noisy and needs
to be reduced into a token format for processing. Data quality challenges such as missing
data also have to be tackled in this stage. The output of this process will be a structured
data set which should be uniform across all input data sets. Data transformation is also an
important consideration as some data needs to be converted to a more standardised form
such as acronyms.

e Feature Extraction is an application-specific process but involves extracting informative
features in the processed data set. The data is normally high dimensional which may not be
favourable to some data mining methods and hence feature extraction can act as a dimen-
sionality reduction method. There will be a lot of irrelevant data in the data set which hold
no value to the target data insights so filtering them out in this stage reduces processing time
downstream and also increases the accuracy of the final extraction.

e Feature Analysis is also application-specific and for complex applications can consist of
several language processing models in the form of building blocks which contribute to an
overall ensemble system. This project has several language processing models for feature
extraction which form an ensemble system where the outputs of the feature extraction process
are aggregated and analysed with the abstract argumentation framework. The output of this
stage is normally the final data insights given to the interested party to evaluate which in
this project is the domain expert.

e Feedback Loop this is an important stage conducted by the domain expert where the data
insights are evaluated and improvements to the previous stages are implemented to generate
better quality data insights.

2.3.2 Data Analysis Methods

There are various techniques that data mining encompasses that can be applied to the extracted
features in feature analysis listed below [Aggl5].

e Association Pattern Mining is a form of mining that seeks to identify trends within
entities with the most popular version being frequent pattern mining. In the context of
this project, once the features have been extracted it would be useful to identify patterns

16

of extracted features in relations to calibration points using association rule mining across
and within comments. This stage can be used as an intermediate step to produce automated
cases for other language processing models.

e Data Classification is the main focus of the project where the extracted features are
mapped to particular drilling events. This is a supervised problem as the mapping of a
set of features have to be learned with training data both with machine learning methods or
with domain knowledge using the feedback loop.

2.3.3 Exploratory Data Analysis

Exploratory data analysis is an approach to exploring data sets [Fill3]. It involves a variety of
techniques in order to gain a better understanding of the data sets to guide the development of
the application through the direct insights discovered. Techniques include testing underlying as-
sumptions, uncovering underlying structures and detecting outliers and anomalies. Data surveying
is an important part of the project especially in the oil and gas industry where there are a lot of
challenges with data quality [ZHO03]. It helps survey whether there is sufficient information within
the data set to answer the problem statement which in this project is to extract calibration points.
There are several techniques that can be used to visualise the data listed below [Lil9].

e Data Set Summary Statistics provides low-level information regarding the data set which
helps estimate processing times as well as get basic statistics of the data set for comparison

e Uni-variate visualisations examine a single characteristic and are mainly frequency charts
such as histograms based on feature counts. It is helpful to analyse the distribution of
extracted statistical features across the different levels of the data set to identify patterns or
areas of interest in subsets of the data set.

e Bi-variate visualisations examine the correlation between two features on a single plot
and identify relationships which can be further explored to generate a better hypothesis.
The focus for the feature comparison would be the target drilling event if available, the
location and also report date to see if there are patterns across sequential comments using
time series plots.

2.3.4 Pre-Processing

There are several pre-processing steps shown below that can be used in order to clean the raw
free text comments before either converting them into vector form through word embedding or to
process them further into tokens for feature extraction [Ganl9].

e Stop Word Removal is the removal of frequent words that have no value in relation to the
extraction task. The stop words are normally defined in an external lookup list and includes
terms such as conjunctions or prepositions.

e Lower Casing is a standard pre-processing step where the input textual data is converted
into lower case. Some string matching algorithms rely on the comparison being in the same
case so this step is essential.

e Stemming is a form of normalising words by reducing them to their common base form.
Stemming is a heuristic process that removes the end of the word such as by cutting of pre-
fixes. This aggressive method runs the risk of the word losing its original meaning [MRSO08].

e Lemmatisation is also a form of normalising words by reducing them to their common base
form. However, lemmatisation aims to reduce the inflexion endings of words to return the
lemma form of a word [MRSO08].

e Punctuation Removal involves removing any punctuation symbols in the text. This pro-
cess is useful as some processes such as phrase chunking would yield better results without
punctuation noise in the text.

o Artefact Removal is the process of removing noise in the text that may come about as
a result of converting between different text formats. These artefacts hold no value to the
extraction process.

17

e Text Augmentation (Part of Speech Tagging) augments the text with useful features
that help other processes such as phrase chunking. Part of speech tags are the grammatical
part of speech labels assigned to each word in the input text.

2.4 Named Entity Linking

Named Entity Linking is the process of linking named entity mentions to entities stored in a knowl-
edge base and is normally used as a form of data enrichment. Named Entity Linking is defined
in three-stages which are candidate entity generation, candidate entity ranking and unlinkable
mention prediction. Each stage is designed to successively filter out candidate entities for a single
surface mention in the text until the last stage where the best candidate entity is outputted or
NIL is outputted if the candidate entity doesn’t have an adequate confidence score. Named entity
mentions are usually entities extracted from the free text using Named Entity Recognition. In this
project, named entity linking is used with noun phrases and pre-defined domain phrases due to
the problems described in Section 1.2.2 and will thus be referred to as Entity Linking.

Wei Shen et al provides a survey of entity linking that can be found in the paper titled "En-
tity Linking with a Knowledge Base: Issues, Techniques, and Solutions" [SWH15]. This survey
defines all the processes of entity linking as well as the algorithms used for each stage in entity
linking which are described in more detail in Section 4.8 with a practical example implementation.

2.5 Abstract Argumentation for Case-Based Reasoning

One of the key problems with machine learning problems is that with methods such as deep learn-
ing, it is hard to explain the results of the output of the neural network. Abstract argumentation
tackles this problem by helping understand why an outcome has been reached for a framework
consisting of a set of arguments with relations defined between the arguments. Decision trees also
implement a level of explainability through the decision nodes evaluated when traversing the tree
but lack the natural point and counterpoint nature of arguments that machine arguing frameworks
provide.

Dung defines an argumentation framework in his paper titled "On the acceptability of arguments
and its fundamental role in non-monotonic reasoning, logic programming and n-person games"
published in 1995 [Dun95]. The basis of abstract argumentation framework used in this project
including the definitions of the set semantics such as the grounded extension has been defined in
this paper.

Since then many extensions have built upon this original work including the main extension used
in this project which has been defined in a paper titled "Abstract Argumentation for Case-Based
Reasoning" by Kristijona Cyras et al published in 2016 [CST16]. The definitions of the case-based
reasoning framework can be found in this paper including the formal definitions of the rules such
as concision used to construct the framework as implemented in the project.

The implementation of the abstract argumentation for case-based reasoning framework described
in Section 4.9 provides a practical example of the framework and a more in-depth description of
the details defined in these papers and thus provide a better understanding of the concepts behind
abstract argumentation.

2.6 Evaluation Metrics

There are several standard evaluation metrics used in order to evaluate the success of the project
shown below:

e True Positive (TP) is an outcome where the model correctly predicts the positive class
[Goo20c].

e False Positive (FP) is an outcome where the model incorrectly predicts the positive class
[Goo20c¢].

18

False Negative (FIN) is an outcome where the model incorrectly predicts the negative class
[Goo20c¢].

True Negative (TN) is an outcome where the model correctly predicts the negative class
[Goo20c].

Confusion Matrix is a NxN table which shows the correlation between the true label and
the model’s classification where N represents the number of classes [Goo20d]. One axis of
the matrix is the predicted label and the other is the actual label.

Precision is the proportion of positive identifications that were correct as shown in the
formula below [Goo20b]:

TP

Precision = ——————
rectsion TP n Fp

Recall is the proportion of actual positives that were identified correctly as shown in the
formula below [Goo20b]:

TP

Recall = m

F1-Score is the harmonic mean of the precision and recall score as shown in the formula
below [Wik20a]:

Precision + Recall

P-4 (Precision * Recall)

Matthews Correlation Coefficient is a measure of the quality of binary classifications
which is used when classes are of different sizes defined in the formula below [Wik20b]:

TP+TN —FPxFN

MCC =
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

Classification Accuracy is the fraction of predictions that the model correctly classified
as shown in the formula below [Goo20a:

TP+ TN
TP+TN+FP+ FN

Accuracy =

19

Chapter 3

Literature Review

Analysing documents using text mining techniques is a mature field in industries such as the Health
Industry where a survey conducted shows increasing publications of text mining research papers
in the last decade especially in cancer research [Luq+19] [ARG17]. In the Oil and Gas Industry,
text mining is a developing field having garnered more research interest in recent years especially
in the analysis of daily drilling reports to extract various entities such as depths, hole sizes and
drilling events [NS19] [Hof+18]. An analysis of related research into text mining in the Oil and
Gas Industry using different methodologies is summarised in the following section.

3.1 Supervised Learning

This work uses supervised learning methods and is titled "Using Classified Text and Deep Learn-
ing Algorithms to identify risk and provide early warning" [Brel6]. This work is not specifically
restricted to the oil and gas industry as it aims to create a text classifier to identify risks in internal
communications which could lead to potential litigation. The interesting point regarding this work
is that it tries to create a deep learning algorithm which learns the latent pattern which leads to
litigation with the aim to proactively avoid it through an early warning system.

The author utilises subject matter experts in order to find appropriate labelled data sets to train
a deep learning algorithm for a chosen category of risk. The data set was then processed to reduce
the amount of unnecessary metadata in the documents to reduce the noise in training data. The
authors augment the training data with unrelated negative data (e.g. random text from Wikipedia)
which do not overlap with other categories but allows the system to have a more representative
accuracy score as the output. The author encodes the words using word vectors and therefore the
distance between the positive category events and the negative category events will be a sufficient
metric for an accuracy score.

The choice of neural network architecture is a recurrent neural network. The author utilises the
Receiver Operating Characteristic graph to calculate the Area Under the Curve score as this score
gives a good indication of true positives vs false positives which is an important measure in this
work. The author trains several recurrent neural networks for binary classification of the presence
of the risks in test data. This methods of having several neural networks may be more beneficial
than one neural network with categorical classification. However, the author did not explore this
hypothesis. The author also suggests a continual machine learning system such that when risks
are flagged, subject matter experts can validate these risks as false or true positives which when
sufficient data has been collected can be used to augment the training data with client-specific data.

The author notes that in order for the deep learning algorithm to generalise well, the training
samples have to be in the thousands. In experimental results, the author trained the deep learning
algorithm with increasing training data sizes and found that the number of false positives decreased
proportionally.

Another work explored deep learning methods as well in the context of daily drilling reports and
is titled "Sequence Mining and Pattern Analysis in Drilling Reports with Deep Natural Language

20

Processing" [Hof+18]. This work advances on the previous methods this time using deep learning
methods in order to classify sentences in the daily drilling report with three labels (event, symptom
and action). The authors suggest that the use of deep learning is beneficial over traditional n-gram
statistics for text mining as deep learning provides greater advantages in finding a latent semantic
relationship in the corpus for a greater volume of data.

The authors conducted exploratory data analysis on the data set they received in the context
of analysing reports with regards to productive time or non-productive time. Non-productive time
is a good indicator of the occurrences of drilling events. The authors found that 63% of wells anal-
ysed had non-productive time drilling reports. Furthermore, the authors noted that the style of
reports varied between productive and non-productive time reports. This work also uses standard
pre-processing techniques in addition to custom ones such as regular expressions to handle the
noisy symbols in the text corpus.

In order to utilise deep learning methods, the authors manually labelled extracted sentences from
the corpus with the three aforementioned labels which resulted in an unbalanced labelled training
dataset with a greater weight towards the action label. Furthermore, for the input to the deep
learning neural network, the authors utilised word embedding to create word vectors as input
features. The authors, however, only utilised the basic Word2Vec algorithm without exploring
other word embedding methods such as Glove. After experimenting with different neural network
architectures, the authors found the LSTM provided the best classification accuracy with a mean
accuracy of 82.7%. LSTM neural networks are optimal for natural language processing tasks as
they capture contextual information. Another approach that the authors didn’t analyse is a hybrid
machine learning methods such as a CNN-LSTM neural network rather than a standalone LSTM
and CNN.

The work analysed the whole dataset using the classifier trained for the three labels and found
that there were variations in the reporting behaviour based on the operator reporting, the drilling
stage and well location. The authors noted that to improve the accuracy of the network, more
balanced training data is necessary.

3.2 Unsupervised Learning

This work utilises an unsupervised learning approach and is titled "Augmented Text Mining for
Daily Drilling Reports using Topic Modelling and Ontology" [ARG17]. This work focuses on util-
ising text mining techniques most notably topic modelling using Latent Dirichlet Allocation to
extract entities relevant to drilling events. This work also tries to provide insight into drilling risks
by creating a domain-based ontology to link symptoms and drilling events.

The sample size of daily drilling reports was relatively small using only 230 daily drilling reports
across five offset wells. The authors briefly describe standard pre-processing steps used on the text
corpus extracted from the daily drilling reports such as removal of stop words and a stemmer.
Though from the generated tri-gram word cloud in the work, acronyms seem to be left compact
rather than expanded. It is worth noting that the authors allowed bi-gram phrases as singular
tokens.

In the exploratory data analysis stage, the authors generated a Term Document Matrix in or-
der to generate graphical representations of the text corpus based on term frequency using Bag of
Words or Histograms. Exploratory data analysis was an important step as it allowed the authors
to manually reduce common domain-specific phrases that yielded little value to the extraction task.

In order to account for word order in their language model, the authors used Topic Modelling
with Latent Dirichlet Allocation as the Dirichlet distribution is a good measure of word distribu-
tions. Latent Dirichlet Allocation is an iterative process that assigns words to topics and generates
a mixture of the topics to a document. Given that Latent Dirichlet Allocation is an unsupervised
method the algorithm generated topics which were not meaningful in the context of the work
goals. Therefore, the authors manually refined their Latent Dirichlet Allocation parameters from
an initial 20 topics and 100 terms extracted to nine relevant topics with five terms. A limitation

21

with the method proposed in this work is that extracted topics may also not directly correspond
to desired drilling events, once again due to the unsupervised nature of the method.

A novel concept proposed by the authors was the use of a domain-based ontology to represent
the links between extracted topics and identifying metadata for the text corpus such as Well
Numbers as well associated unit data such as loss volume. The authors have not mentioned imple-
menting a unit parser to extract unit data from the text corpus so it is assumed that the unit data
is extracted from the metadata in the daily drilling report. A limitation to the use of the ontology
in the paper is that it was done manually with subject matter experts rather than an automated
process from the data though it has value in being a good visual demonstration of drilling risks
and causes.

3.3 Feature Engineering

This work utilises feature engineering to handcraft features which are then classified using a su-
pervised learning method. This work is titled "Automated Operations Classification using Text
Mining Techniques" [Esm+10]. This work also analyses daily drilling reports with the aim of
classifying normal drilling operations rather than drilling events in the text corpus. The authors
similar to other works note that the Bag of Words representation is not sufficient to represent the
text. However, they argue that the short sentence length in the text corpus will not yield enough
co-occurrence information for other methods. Instead, the authors designed a feature vector with
three sub-features parsed from the text corpus. The classification method utilises a Support Vec-
tor Machine with the extracted feature vector. The authors guided their feature design using
exploratory data analysis to identify that measurements entities and operation verbs entities are
the most informative in the text. Common key phrases were also found to be a distinctive indicator
of an operation.

The authors utilise a three-phase process for the workflow with pre-processing steps dispersed
within the whole workflow. The first phase subdivides the document text at a sentence level using
punctuation. The second phase extracts the three sub-features and the last phases performs clas-
sification on the feature vector. An important aspect of this work is the use of external sources to
validate semantics in the text such as a measurement dictionary to normalise units to a base unit
when extracting the measurement sub-features using regular expressions. It is important to have
a comprehensive unit dictionary, especially when working in a specific domain like the oil and gas
industry. The authors used a WordNet dictionary to label stemmed words in the corpus to tag with
part of speech which was then filtered to only extract the most frequent verbs for the keywords
sub-feature. For phrase sub-feature extraction, the authors created a grammatical syntax tree with
the part of speech tagged text keeping noun phrases as the features. A limitation of this work is
that the authors did analyse the degree of overlap between extracted phrase sub-features across
the drilling operations. This is important as it gives a weighting to the utility of the sub-features.

Activities classification with the composite feature vector utilised a Support Vector Machine where
the kernel hyperparameter after some experimental results was found to be best served with the
use of a linear kernel rather than an RBF kernel. The authors had an 80% classification accuracy
with the linear kernel with a large dataset size of 87470 samples classifying 19 drilling operations.
This work considered drilling operations rather than drilling events.

3.4 Ensemble Method

This work utilises an ensemble method for the language processing models and is titled "Natural
Language Processing For Extracting Conveyance Graphs" [Bat+15]. This work aims to extract
conveyance records from unstructured text documents using Natural Language Processing tech-
nique to improve a manual process with the aim of determining mineral rights to a plot of land in
the oil and gas industry.

The input of this process involves documents in various formats and the authors try to streamline
the extraction of the free-text comments in this work through the use of OCR with additional

22

metadata in the document. Given the domain of the documents having origins in different states,
the authors have suggested a design which tailors the language processing models using term fre-
quencies as indicators of different regions.

The authors suggest different language processing models where the output of the models are
the parameters of interests (e.g. oil and gas lease, mineral deed, lot number, etc.). One challenge
that is tackled in this work is semantic noise where the authors translate post-processing tokens
of similar semantic meaning into canonical form. The authors also suggest a two-fold language
processing model where the analysis of the document through the first language model identifies pa-
rameters which choose a specialised second language model to extract the final parameters. This is
an interesting approach as the system will dynamically choose the best language processing model
using an initial pass guided by heuristic methods thus increasing the final extraction accuracy.

The authors suggest several natural language processing models such as named entity recogni-
tion to extract relevant entities in the free text which can be further augmented with relationship
labels between entities. Word windows are used to help determine the relationships between words
with hard coded rules. The authors also suggest for some parameters such as dates, simple regular
expressions are sufficient to extract them using decision trees. Machine learning is also suggested
with manually labelled documents. The authors suggest extracting rules from labelled documents
where they identify n-gram tokens within a certain threshold distance of the manually identified
conveyance record parameters. The n-gram tokens would then be weighted with frequency in all
labelled documents to create a rule-set for unlabelled documents.

A final interesting point in this work is the ranking of multiple candidate values for a parame-
ter with a likelihood score through a language processing model to be manually reviewed by a
human reviewer. The authors find that this partial solution is still better than a fully manual
process.

Another work that utilises an ensemble method is titled "A Hybrid multiple classifier system
for recognising usual and unusual drilling events" [Esm-+12]. This work develops on the previous
paper by the same author with an ensemble system approach for classifying drilling events. The
authors suggest that a single language processing model would be outperformed by a hybrid ma-
chine learning approach while recognising the main fault would be additional computation time.
The authors proposed to use three classifiers exploiting two different data sources where the final
classification is the maximum product of each classifier class label output.

The authors utilise Support Vector Machines for two base classifiers including the text data clas-
sifier for the daily drilling report data source. The text feature design is the same as the previous
work by the same author. The data sets analysed only considered two types of unusual drilling
events which were stuck pipe and overpull. The experimental results showed that using multiple
classifiers increased the classification accuracy from 80% to 87.9%.

23

Chapter 4

Project Implementation

4.1 Minimum Viable Product (MVP)

The MVP is a thin vertical slice of the core functionality which lays the groundwork for future
improvements. The core functionality is a complete workflow from taking in the raw Daily Drilling
Report data sets to producing a calibration point output file. The focus of the project is imple-
menting the core application framework shown in Figure 1.2 which is the three high-level stages:
extracting features from free text, mapping normalised features using semantic triples to argumen-
tation cases and formulating an explanation for a data insight using abstract argumentation for
case-based reasoning. These three-stages are split across the four library folders which represent
the four core data mining processes shown in Figure 1.1. Each of the different modules in the
folders can have their components replaced or extended in the workflow as the MVP has been
designed in a modular fashion. The modules implemented in the MVP are shown in Figure 4.1
with their corresponding section numbers in the report. Table E.1 in Appendix E shows all the
external libraries used in the development of the project.

NLP Library
Folders
util Data Extraction Feature Exiraction Feature Analysis Data Insights Delivery
Data Layer Ezxploratory Data Statistical Features Abstract Calibration Point
APl Analysis API API Argumentation API Extraction API
(Section 4.3.2) (Section 4.4) (Section 4.7) (Section 4.9) (Section 4.10)
Modules Configuration AP Pre Processing API Measurements Entity Linking API
ion 4.3. ction 4.5 - ctior
(Section 4.3.1) (Section 4.5) (Section 4.6) (Section 4.8)
Workdlow API Data Loader API
(Section 4.3.3) (Section 4.3.4)
Visualisation API
(Section 4 4.2}

Figure 4.1: MVP modules

The data tables produced in each major pipeline of the application is shown in Figures 4.2 and
4.3.

24

Input

Module

Output

Data Extraction:

Raw Comments

Comments Table

Statistical NLP

Domain Keyword
Features Table

Measurements
Features Table

Feature Extraction:
Statistical NLP

Features Table

MNegation Phrase
Features Table

]]
| |
i]
| i
| |
i]
| i
| i
i i
|l ' t
Data set CSV c Data Loader e Table
| |
i]
| i
| i
| |
i]
| |
Raw Comments | o Data Extraction: . FProcessed
Table 7 | Pre processing v 7| Comments Table
i i
]]
i i
]]
| |
| 1
Processed | _o| Feature Extraction: . Measurements
Comments Table i 7| Measurements i Features Table
| 1
| ,
]]
| i
y i
| i
| |
Processed | |
Comments Table i :
]]
| |
] Data Extraction: | o| Measurement Free
: Pre processing i "l Comments Table
i]
| i
Measurements i :
Features Table ! !
! i
]]
| |
]]
Measurement Free ; «| Feature Extraction: | | Phrase Features
Comments Table 7l statistical NLP T Table
]]
i i
| |
i]
| |
]]
Measurement Free i | Feature Extraction: i .| Domain Keyword
Comments Table v 7| Statistical NLP ¢ 7| Features Table
i i
| |
i]
)]
i]
| |
Measurement Free i | Feature Extraction: [Part of Speech
i =] -
| i
| |
i]
)]
| ,
]]
| |
i]
)]
| ,
]]
| |
i]
)]
| ,
]]
]]
| |
i]
| i
| i
| |
i]
| i
| i
i i

Figure 4.2: Data Tables for Data / Feature Extraction

25

Input

Module

Output

Phrase Features
Table

Feature Analysis:

Entity Linking

Linked Entity
Features Table

Phrase Features
Table

Measurements
Features Table

Fart of Speech
Features Table

Feature Analysis:
Argumentation

Explanation Feature
Table

h 4

Megation Features
Table

Domain Phrase
Features Table

Linked Entity
Features Table

Raw Comments
Table

Dafa Insights
Delivery:
Calibration Points

Measuremenis
Features Table

+| Calibration Points
Table

h

Explanation Feature
Table

Figure 4.3: Data Tables for Feature Analysis / Data Insights Delivery

4.2 Experimentation Architecture and Workflow

The architecture of the NLP application is separated into two sections as shown in Figure 4.4.
The first section is the experimentation testbed which is a Jupyter Notebook which calls all the
NLP pipeline functions for an experiment workflow. The second section is local NLP library
modules which contain all the NLP pipeline functionality interfaced with the Jupyter notebook via
module class APIs. An interface between the Jupyter notebook experiment and module functions
is necessary as it promotes a separation of concerns between the experimentation code and the
reusable NLP application functionality. The development process for the NLP application was API-
driven as it ensured that the NLP application is modular and will be inherently cloud-friendly for
future extensions that involve deploying the application as a web app instead of a CLI application.

26

Jupyter Experimentation
Testbed

NLP Library Modules

BERT Embedding
Experiment in Jupyter
notebook

Embedding class

Y

APl

EERT module
functions

Figure 4.4: High-Level Code Architecture with example BERT experiment

This design choice for the separation between the experiments and NLP functions was also moti-
vated by the need to have some data versioning for the machine learning models and data and also
a way to keep track of the history and results of experiments for reproducibility. The workflow for
the experimentation is shown in Figure 4.5. An experiment is created using a CLI command which
takes in a configuration file for the experiment parameters. A folder titled with the experiment
name is generated when running the setup command and stored in the Experiments folder in the

project directory and has the following contents:

e Logs

— Contains the debug logs from running the experiment in the Jupyter notebook

— This includes error messages, experiment running times and a history of the library API

calls

Results

— Contains the results saved at the end of the experiment

— This includes configuration parameters, performance metrics generated by the experi-

ment, models and any intermediate data (CSV) files.

Configuration file

— Contains the parameters for the whole experiment workflow

— The database stores any intermediate data processed in the pipeline, not including the

SQLite3 Database

models

Experiment Jupyter Notebook

— Testbed for running the pipelines and storing the outputs

Run the main file with the

‘Work in the Jupyter Notebook

AP

Initialise
Configuration AP|

Log History

Metrics

Results Summary

: configuration file as an to call relevant pipeline Save the results in the Results
OVe rview argument to generate the modules and evaluate the folder once finished
experiment results in the notebook
Workfl ow Start Experiment ——» Setup Experiment Run Experiment Save Experiment End Experiment
II
Start Logging Run NLP Pipelines Configuration Intermediate CSV
Parameters Results
Initialise Data Layer
Processes Evaluate Results

Figure 4.5: Experiment Workflow

27

A possible alternative was to use a platform called Data Version Control (DVC) which provided
an interface similar to Git to handle data and models [Ite20]. However, the additional complexity
to the project when integrating and using this platform was not worth the trade-off in the benefits
gained. DVC worked best when using cloud storage while in this project everything was done
through local files and the project only had one developer which reduced the need for data version
control for collaboration during the project development phase. The reproducible experiments
mainly mattered for knowledge transfer after the project finished as this is an industry project.

4.3 General API Design

The APIs for each module presents a consistent interface for the experiment notebook to run mod-
ule functions. The interface design was an abstraction of some elements of web APIs as a possible
extension would be to lift the CLI application to a web application. Therefore, the public-facing
APT interface consists of GET, PUT, POST, DELETE based functions for a specified resource such
as the raw data set table, the summary stats of the data set and the measurements in the comments.

The HTTP based functions can also take in parameters which are validated dependent on the
module function in order to prevent malformed or malicious inputs. HTTP status codes were
also returned dependent on the outcome in the execution of the module function. For example, a
HTTP status code of 201 was returned on a successful PUT request while a status code of 500 was
returned for an internal application error when running the module functions. The class APIs can
communicate with each other by calling the public class API functions. Intra API communication
mainly occurs between the Data Layer API and the NLP library APIs as a way to post and fetch
data tables stored in the SQLite3 Database. Furthermore, each API function is documented loosely
following the OpenAPI specification as shown in Figure 4.6 [Sma20].

{HTTP_METHOD} {FUNCTION_ NAME}(, resource, parameters,

won

.log.info(f" {HTTP_METHOD

return status code, objects

Figure 4.6: API Function Code Format

4.3.1 Configuration API

A configuration file was used to handle the settings of the application and the hyperparameters in
the experiments. The configuration file is a YAML file that is taken as an input for a command-line
argument to the setup function in the main file. An alternate option to a YAML file is to use a
JSON file but YAML files are generally better suited to configuration and are designed for editing
[20g]. The high-level settings for the configuration file are defined in Table 4.1.

The Configuration API class in the Util folder is a Singleton Class. It handles the loading and
validation of the configuration file to ensure that the configuration for the experiment has correct
inputs. It exposes parts of the configuration settings in the configuration to other modules and
the Jupyter notebook via getter functions in a consistent interface such that any refactoring to the
configuration file format will have minimal impact in the rest of the code-base.

28

Configuration Setting Description Appendix Example
General The experiment folder setup settings D.1
Data Extraction The settings for the input data such as domain files and pre-processing settings | D.5
Feature Extraction The resource names for the features as well some parameters D.3
Feature Analysis The entity linking and argumentation parameters and resources D.4
Data Insights The calibration point output settings D.2
Workflow Orchestration | The input data set-specific settings such as labels and file paths D.6

Table 4.1: A table showing the settings for the configuration file

4.3.2 Data Layer API

The Data Layer API in the Util folder is also a Singleton Class. It handles the creation of the
SQLite3 Database for an experiment through the setup function in the main file. It also acts as an
interface between the SQLite3 Database and the modules / Jupyter notebook as shown in Figure
4.7.

Database Per Experiment

Results CSV Data

Folder SQLite3 Database

Wi - .
Save CSV Files Write Operation Read Operation

h

Data Layer API

T L

Request Files Get Files

Save CSV Files Upload Files Update Files

Jupyter Motebook

Upload Files

File Generator
Module

File Consumer
Module

.

Request Files

Get Fil

Figure 4.7: Data flows through the Data Layer API

The choice of SQLite for the database was chosen because SQLite has an easy setup and is stored
locally as a database file. The usage is fine for development purposes and switching to more
feature-rich Relational Database Management System would not pose too much of an issue when
all the database functions are encapsulated in the Data Layer API. The design choice of having a
database per experiment does yield problems of duplicated storage for common pipelines used in
the experiments. A potential solution is to have a single data store with a smarter data layer API
to manage SQL queries but this adds coding overhead in the API and the storage problem is not
a major issue within this project.

4.3.3 Workflow API

The Workflow API provides a way to chain API calls in one single API call. During the experimen-
tation, it is helpful to individually call and examine each of the pipelines in the Jupyter notebook
in order to visualise the intermediate results. However, at the end of the project, a single API call
to run the entire workflow or particular sub workflows is necessary. The Workflow API takes the

29

processes defined in the configuration file as shown in Appendix D.6. The chosen processes are then
validated and run in a pre-defined order of operations with the outputs of each operation updating
the SQLite3 Database. The parameters for each operation are fetched from the configuration file.

4.3.4 Data Loader API

The Data Loader API handles the initial loading of all the data sets and the domain files such
as the measurements definition JSON into the SQLite3 Database. This API is necessary as it
abstracts all complexities of loading the different input file formats into one API class away from
the experimentation testbed with the Jupyter notebook. Figure 4.8 shows the workflow for the
loading of the raw data sets.

Raw Local Data SQLite3

Set CSV Files Database

Validate Raw Files Load Raw Files Upload Dataset Refrive Dataset

Data Loader API POST Dataset Data Layer API

POST Raw Dataset Response code status
Retrieve Raw Dataset

GET Raw Dataset

Jupyter Notebook

Figure 4.8: Data Set Uploading through the Data Loader API

4.3.5 Logging

Logging was implemented in this project in order to get a history of pipeline operations for the
results summary and as a way to debug issues. Rather than print debugging in place within
the code, logging error messages assumes defensive coding practises through catching errors in try-
except blocks. Performance of the code is also captured in the logs through timing operations. The
python standard library has a logging system which was used as it provided adequate granularity
for logging messages as well as formatting options for the log messages.

4.4 Exploratory Data Analysis

Exploratory Data Analysis (EDA) aims to better understand the data to get an intuition of which
NLP models and methods can best solve the problem. It is necessary to perform a thorough ex-
ploratory analysis of the data as it will help reveal features of interest in the data set which are
not likely visible through traditional close reading [Sall8]. It can also help assess the data quality
by revealing outliers and any missing values as well as highlighting data bias. The process involves
an iterative cycle which generates more insightful questions about the data.

EDA was conducted on the training data set on three different levels which are sentence, com-
ment and daily drilling report level. Furthermore, analysis of the training data set also took into
account different levels of pre-processing steps such as before and after removing stop words which
helped assess the quality of the pre-processing functions.

30

4.4.1 Data Set Summary Statistics

Data set summary statistics shown below were generated as they are low-level information regarding
the training data set which helps estimate processing times as well as get basic statistics of the
data set for comparison to other data sets. Figure 4.9 shows an example data set summary for the
training data set.

1.

® N o ot N

Name of the file

Vocabulary size

Total number of lines

Total number of words

Total number of characters

The number of characters / words in the longest line
The number of characters / words in the shortest line

The size of the data set

{'file name': 'training',
'file size': 13355672,
'max_line num_char': 16814,
"max_line num_word': 211,
'min_line num_char': 1,
'min_line num _word': 1,
‘num_characters': 8211584,
"num_comments': 57264,
"num_words': 1867948,
'vocab_size': 122193}

Figure 4.9: File Summary Statistics for the Training Data Set

4.4.2 Uni-variate Visualisations

Uni-variate visualisations were generated for the training data set considering the following statis-
tical features shown below:

Character Text Length

Letter frequency

Word count length

N-gram counts

Sentiment polarity scores

Named Entities

Extracted feature tokes (Decimal Token, Range token etc....)
Readability metrics (Flesch-Kincaid, Smog Index, etc....)
Part of speech tags

Measurements

Noun phrases

Verb phrases

The graphical visualisations from the exploratory data analysis results for these statistical features
were generated in the Visualisation API which was responsible for plotting generic diagrams such
as word clouds for variable input data. Appendix F contains some visualisations produced from
the EDA process.

31

4.4.3 Bi-variate Visualisations

Bi-variate visualisations were examined between the aforementioned uni-variate visualisation and
the occurrence of the six drilling events labels in the training data set as well as other meta-data
labels such as time and depth of the comment.

The bi-variate visualisation helped with different data exploration areas (shown below) which
in turn informed feature engineering and model choices.

e Find characteristic terms and their associations with time segments or locations as a feature
to represent those segments.

e Detect outlier comments in the visualisations to account for special / edge cases.
e Word association analysis via word co-occurrence in document term matrices.

e Word clustering analysis plotted with cluster dendrograms

4.5 Pre-Processing

Pre-processing is a vital aspect of the workflow to clean and transform the raw textual data into
an appropriate format for the modules downstream such as feature extraction. The pre-processing
library implemented allowed a variety of pre-processing functions to be used on different data sets
depending on an input configuration. The implementation also allows the same the data set to
be processed incrementally with different levels of pre-processing should different processes require
different pre-processing functions.

A multi-parse approach to the pre-processing pipeline was implemented where a compulsory cus-
tom tokenisation process would first occur on the data set resulting in tokenised comments. The
optional pre-processing functions would then be composed into a chain of functions parsing suc-
cessive processed tokenised comments in the order defined by the configuration. This approach
applies a pre-processing function on a whole set of comments rather than the alternative approach
of applying the whole set of pre-processing functions on a single comment. The alternative ap-
proach is inefficient due to the overhead in creating data frames using Pandas for each comment
rather than a single data frame for the whole set of comments in the first approach. An example
configuration is shown in Figure 4.10.

pre_process_config = {

"lower_case": {
"use": True,
"parameters": None,

}J

"tokenise_reduce": {
"use": True,
"parameters": []

}J

"remove_numbers": {
"use": False,
"parameters": ["Number", "Decimal", "Fraction", "CommaNumber™, "Time", "Range"],

}J

"remove_symbols": {
"use": False,
"parameters": ["Symbol"]

}J

Figure 4.10: Pre-Processing Configuration Example

The pre-processing functions are grouped into four categories which are basic tokenisation, token
normalisation, token reduction and token expansion.

32

4.5.1 Basic Tokenisation

Custom basic tokenisation is a compulsory process that occurs with every pre-processing pipeline
which cleans that input text. The tokens are initially separated by white space and then converted
into ’pure’ tokens (Number, Word, Symbol) consisting of only those character elements. This step
is necessary as the initial whitespace separated tokens are sometimes malformed due to data quality
issues such as words being concatenated next to artefacts. Therefore a separation process needs to
happen to convert the tokens into their most basic instance before they can be processed on.

4.5.2 Token Normalisation

Token normalisation functions are pre-processing functions that apply a one to one transformation
of the input tokens in the comment. The normalisation functions currently implemented are shown
below:

e Lowercase the comment to standardise the text
e Stemming to reduce the token "Word’ to their root form
e Lemmatization to reduce the token "Word’ to their root form while still being an actual

defined word

4.5.3 Token Reduction

Token reduction functions are pre-processing functions that apply a many to one transformation
of the input tokens in the comment. The reduction functions currently implemented are shown
below:

e Composite Token Reduction which reduces defined token patterns to singular tokens
using rolling windows across the token stream as shown in Table 4.2.

¢ Remove "Number’ tokens in order to increase the accuracy of processes such as part of
speech tagging

e Remove 'Symbol’ tokens in order to increase the accuracy of processes such as phrase
chunking

e Remove repeating words to clean the input comment stream

e Remove repeating pairs of words to clean the input comment stream

Composite Token | Singular Token
Number ’.” Number | Decimal

Number ’> Number | Time

Number ’/” Number | Fraction

Number ’” Number | Comma Number
Number - Number | Range

Decimal -’ Decimal | Range

Number ’-* Decimal | Range

Decimal -’ Number | Range

Table 4.2: A table showing the composite token reduction patterns

4.5.4 Token Expansion

Token expansion functions are pre-processing functions that apply a one to many transformations
of the input tokens in the comment. The expansion functions currently implemented are shown
below:

e Acronym expansion so that shorthand expansions are less ambiguous for some of the
feature extraction methods such as phrase extraction

33

Currently, acronym expansion is limited as it relies on a lookup list in order to define an acronym
in the input token stream. This method is flawed as key domain terms such as 'FIT’ occur as
acronyms for formation integrity test. However, there are a lot of surface mentions of the word
'fit’” as a verb. Therefore, more research needs to be conducted in order to implement an algorithm
that can reliably identify acronyms for expansion.

4.6 Measurement Syntactic Parser
The measurement syntactic parser extracts the measurements data from the processed comments.

Measurement data consists of a unit and its corresponding values. The measurement feature table
schema is shown in Table 4.3.

Column Description
Comment ID The internal comment identification number from which the measurement has been extracted
Unit Type The format of the unit of the measurement which can be a Single Unit or Composite Unit
Start Character | The starting character index in the comment of the measurement
End Character The ending character index in the comment of the measurement
Unit The measurement unit
Minimum Value | The measurement in case the measurement was recorded as a range
Maximum Value | The measurement in case the measurement was recorded as a range

Table 4.3: A table showing the schema for the measurement feature table

The extraction of the measurement data utilises an external dictionary to define units called DELFI
measurements which is ingested as a JSON file. The data loader initially loads and extracts the
units in the DELFI measurement JSON file. The pre-processing module then processes the ex-
tracted units to clean them of redundant artefacts such as leading numbers and reducing the units
to singular units such as metres and feet as opposed to composite units such as metres per hour.

The measurement modules utilise the units defined in the measurements dictionary to index the
processed comments. If a singular unit has been found then it is validated in a context window
around the unit in case of false positives such as ’'at’ being defined as a unit but also being a
preposition. The context window is a left word window which in order to be a valid measurement
should contain a numerical value.

Furthermore, a parse of the singular units is conducted to see if they are part of a composite
unit using a rolling window and regular expressions of the comment tokens flagged as units, words
or symbols. This stage in the extraction tackles the problem of overlapping units, as singular units
overlap to form composite units, by choosing the longest composite unit in the overlap in case of
a conflict of overlapping measurements. The start and end character location of the measurement
data is also captured in the measurement extraction process so that pipelines further downstream
can gain contextual information about the measurement.

An example of the extracted measurements for a single comment is shown in Figure 4.11 where
the measurements are highlighted in the comment. There are still minor extraction inaccuracies
such as ‘17’ not being captured as a value in ‘17 1/2 "’. This particular example could be fixed by
adding a combine continuous numbers stage as a pre-processing step.

index CommentID UnitType StartChar EndChar Unit MinValue MaxValue
89 39 8 Unit 12 17 " 1/2 1/2
90] 8 Unit 12 21 bit 1/2 1/2
91 91 8 Unit 44 49 m 652 652
92 92 8 Unit 89 95 sg 1.1 1.1
93 93 8 Unit 103 109 sg 1.2 1.2
94 94 8 Unit 120 126 psi 93 93
95 95 8 Unit 148 158 minutes 15 15
96 96 8 Unit 148 164 ok 15 15
position 17 [EUEEE bit inside casing shoe at i% closed bop and perform sbt with mud [FEENEEE to emw [EHED

. applied [EENEEM surface pressure for 1% ok

Figure 4.11: Measurement Extraction Example

The output of the measurement parser is a measurement feature table shown in Figure 4.12.

34

CommentiD UnitType StartChar EndChar Unit MinValue MaxValue

0 0 Unit 8 12 " 23 23
1 0 Unit 23 28 m 406 406
2 0 Unit 32 37 m 448 448
3 0 Unit 52 85 Ipm 3400 3600
4 0 Unit 75 88 psi 1450 1550
5 0 Unit 101 113 mw 1.1 1.1
[0 Unit 120 126 sg 1.1 1.1
7 0 Unit 135 152 rpm 10 20
8 0 Unit 173 181 ft 5 9
9 0 CompositeUnit 206 215 m/hrs 7 7
10 0 CompositeUnit 235 244 mihrs 9 9
1 0 Unit 337 2340 m [} 6
12 0 Unit 390 406 at 3 3
13 0 Unit 435 438 m 2 2
14 0 Unit 603 807 % 40 40
15 0 Unit 624 628 Yo 20 20
16 0 Unit 645 649 % 30 30
17 1 Unit 8 12 " 23 23
18 1 Unit 23 28 m 448 448
19 1 Unit 32 37 m 495 495
20 1 Unit 52 65 Ipm 3500 3600

Figure 4.12: Measurement Feature Table Example

4.7 Statistical NLP Parser

The statistical NLP parser extracts handcrafted features from the comments and outputs the fea-
tures as feature tables in the SQLite3 Database. The output feature tables are then used in feature
analysis processes such as entity linking and abstract argumentation. The handcrafted features
are those chosen in the exploratory data analysis stage to be the most informative in relation to
drilling events. The input to the statistical NLP parser is the pre-processed comment data set with
two additional processing steps. The first processing step removes all measurements found in the
Measurement Syntactic Parser pipeline (Section 4.6) which constitutes a noticeable proportion of
the data sets as shown in Table 4.4 where the average proportion of measurement data is 12%.
The second processing step utilises the pre-processing pipeline to remove numbers and symbols
from the comments to leave only the words in the data set. The two-step post-processing improves
the accuracy of feature extraction processes such as part of speech tagging as the measurements
are often inserted as statements between descriptive sentences in the data set rather than being
part of natural sentence constructions. This style of writing in training data set hinders the part
of speech tagging process.

The comment with the highest proportion of measurement data is '1230-1240-1253-1254-1269 -
wash t / 1273 m’ in the training data set. This comment is an edge case where the writer specifies
a series of drilling depths for a particular action which in this case is wash. This comment is also
an example of the disparate writing styles that occur in different data sets.

Max 0.78
Mean 0.12
Min 0.00
Standard Deviation | 0.11
Variance 0.01

Table 4.4: A table showing the proportion of measurement character statistics in the training data
set

35

4.7.1 Phrase Feature

Phrase features are n-gram verb and noun phrases extracted using the NLTK Chunker and a
regular expression grammar as shown in Table 4.6 [BKL09]. The phrase feature consists of the
extracted phrase with its identifying character index span in the comment in order to uniquely
identify each phrase in the comment and compare the extracted feature with other features such
as the part of speech feature. The phrase feature table schema is shown in Table 4.5.

Column Description
Comment ID The internal comment identification number from which the phrase has been extracted
Phrase Type The type of the phrase which can be either a Noun Phrase or Verb Phrase
Phrase The extracted phrase
Start Character | The starting character index in the comment of the phrase
End Character | The ending character index in the comment of the phrase

Table 4.5: A table showing the schema for the phrase feature table

The meaning of the symbols used in the grammar are defined in Table 4.7 and the part of speech
tags are defined in Table 4.8 [Rex20] [20f].

NP: {<DT>? <JJ>* <NN>*}
PP: {<IN><NP>}
VP: {<VB.*><NP | PP | CLAUSE>+}

{<NP | PP | CLAUSE>+ <VB.*>}
CLAUSE: {<NP><VP>}

Table 4.6: A table showing the regular expression grammar used for phrase chunking

The first rule parses noun phrases which are defined as a sequence of zero or one determiners
followed by a sequence of zero or more adjectives and zero or more nouns. The second rule parses
prepositions which are defined as a single preposition part of speech tag followed by a single noun
phrase. The third rule parses verb phrases which can be any number of repetitions of verb bases
followed by at least one of either a noun phrase, a preposition or a clause. The third rule alternative
reverses the order of the previous one. The fourth rule parses a clause which is defined as a single
noun phrase followed by a verb phrase.

Symbol | Meaning

{} Rule body group
<> Part of speech tag
? Once or none

Zero or more times

Any number of repetitions
| OR operand

+ One or more

Table 4.7: A table showing the definitions of the regular expression symbols

Part of Speech Tag | Meaning Example

NP Noun Phrase A yellow house
DT Determiner A

JJ Adjective Yellow

NN Noun House

IN Preposition In

PP Preposition Phrase | In the house
VP Verb Phrase Drilling a hole
VB Verb Base Drilling
CLAUSE Clause Oil leaked

Table 4.8: A table showing the definitions of the part of speech tags

36

The NLTK chunk parser for the user-defined regular expression grammar takes a tokenised com-
ment with part of speech tags as an input and generates a simple tree structure with nodes being
the defined grammar and leaves being the comment tokens. A traversal of the subtree chunks of
the extracted syntax tree yields the noun and verb phrases. However, the default NLTK regular
expression parser does not have the capability to capture the character index span of the comment
tokens. Therefore a two parse approach of the tree was implemented with a pre-computed token
span dictionary where comment token indexes are keys and character index spans are values for
each comment. In the first parse of the tree, the comment token index was embedded in the
comment token string of the tree leaves assuming in order traversal of the tree leaves. The second
parse traversed the subtrees capturing the verb and noun phrases where the character spans of
the phrases were extracted using the embedded character token index in the leaves and the lookup
token span dictionary for the comment.

PhraseType Phrase StartChar EndChar
198490 NounPhrase rih scraper bha 0 15
198491 NounPhrase theoretical displacement 27 51
198492 NounPhrase actual displacement 52 7
198493 NounPhrase every stands &7 99

rih scraper bhajfRigeiI S Mtheoretical displacementflactual displacementRbUNRETTNES 4Nl

Figure 4.13: Noun Phrase Extraction Example

PhraseType Phrase StartChar EndChar
196364 \VerbPhrase installed Kill line coflex line bell nipple 8 Ll
198365 \erbPhrase tightened all 70 83
196366 \VerbPhrase performed pressure test for quick connector laich 101 150
196367 VerbPhrase screw connection with min 151 176
196368 \VerbPhrase witnessed by wss 180 196
196369 \VerbPhrase performed maintenance of tds 229 257

DL installed kill line coflex line bell nipple ERGIRSIWIRETIRETTR+ichicened al AL EELIN SN e rformed pressure test
for quick connector latcH ak and z fod wss function bop test

and draw works

Figure 4.14: Verb Phrase Extraction Example

An example of the extracted phrases for a single comment is shown in Figure 4.13 where the noun
phrases are highlighted in the comments and Figure 4.14 where the verb phrases are highlighted in
the comments. Figure 4.13 shows the limitations in the phrase extraction as it treats acronyms as
nouns without expansion. For example, ‘rih’ stands for ‘Rotate in Hole’ which should be tagged as
a verb phrase. This can be fixed with an acronym expansion process in the pre-processing using a
pre-defined domain acronym lookup list. A comment is constructed of one or more sentences, but
the pre-processing stage of removing symbols removes full stop identifiers for sentence boundaries.
Part of speech tagging may yield better tags for the regular expression grammar parser if full
stops were exempt from symbol removal as the sentences would be better formed. However, for
the initial implementation simplicity in other pipelines such as abstract argumentation, multiple
sentence comments were treated as a single sentence. The output of the phrase parser is a phrase
feature table shown in Figure 4.15.

37

CommentlD PhraseType Phrase StartChar EndChar

145 50 NounPhrase no downhole loss 164 180
146 50 NounPhrase nptp 0 5
147 50 VerbPhrase oil leaked from the chamber lay 113 144
148 51 NounPhrase actual displacement m 50 KAl
149 51 NounPhrase npt cont rih bha 0 16
150 51 NounPhrase theoretical displacement 25 49
151 52 NounPhrase last 58 62
152 52 NounPhrase foc 39 42
183 52 VerbPhrase tagtoc 35 42
154 53 NounPhrase wob 45 48
158 53 VerbPhrase trq wob 4 48
156 53 VerbPhrase flow rate 27 36
167 54 NounPhrase every connection 114 130
158 54 NounPhrase middle 151 157
159 54 VerbPhrase drilled cement formation 4 28
160 55 VerbPhrase confirm hole inclination 43 73
161 55 VerbPhrase totco survey 33 45
162 55 NounPhrase circulation 130 141
183 56 NounPhrase every connection 85 101
184 56 VerbPhrase flow rate 37 48
165 56 NounPhrase dolomite 162 170

Figure 4.15: Phrase Feature Table Example

4.7.2 Domain Phrases

The domain phrases are phrases that commonly occur with drilling events as specified by a domain
expert. The domain phrase feature table schema is shown in Table 4.9.

Column Description
Comment ID The internal comment identification number from which the domain phrase has been extracted
Domain Event The drilling event that the keyword is associated with
Label The level of importance of the keyword to the drilling event which can be either Primary or Secondary
Feature The domain phrase
Start Character | The starting character index in the comment of the phrase
End Character | The ending character index in the comment of the phrase

Table 4.9: A table showing the schema for the domain feature table

The domain phrases are defined in a CSV file and loaded into the SQLite3 database using the
Data Loader API. In order for the keyword search algorithm to work, the input domain phrases
require the same pre-processing steps such as lowercasing as the comment data set. Therefore,
the raw input domain phrases are also pre-processed with the PreProcessing API. The processed
domain phrase schema is shown in Table 4.10 and an example domain phrase is shown in Figure
4.16. The extraction of the domain phrases utilises a regular expression search on the word only
data set which can extract multiple occurrences of a domain phrase within a comment while also
adding character spans to uniquely identify the domain phrase.

Column Description
Domain Event | The drilling event that the keyword is associated with
Label The level of importance of the keyword to the drilling event which can be either Primary or Secondary
Feature The domain phrase

Table 4.10: A table showing the schema for the processed domain phrase table

38

CommentlD StartChar EndChar DomainEvent Label Feature

B&7 1192 19 23 StuckPipe Primary work
B&8 1192 30 96 StuckPipe Primary unable
869 1192 67 T3 StuckPipe Primary torque
870 1192 4 9 StuckPipe Primary stuck
871 1192 38 49 StuckPipe Primary circulation
872 1192 26 32 StuckPipe Primary string
873 1192 60 66 StuckPipe Primary rotate
874 1192 50 66 StuckPipe Primary unable to rotate
875 1192 94 98 StuckPipe Primary free

Figure 4.16: Domain Phrase Feature Table Example

The domain phrase table is a useful feature as the nature of drilling event comments is factual
and scientific. Therefore if a drilling event occurs there is a high likelihood that the corresponding
domain phrase terms will co-occur within the same comment. However, simply using these domain
phrase terms without any contextual information would yield false positives as these terms are not
unique to the drilling events. For example for stuck pipe, a common domain phrase for stuck pipe
is ‘string’ which may be a shorthand for drill string in the comment. However, the report writer
may be referring to other operations with a drill string rather than a stuck pipe event. ‘Unable
to rotate’ is also another false positive as it may refer to drilling equipment such as a Whipstock
which is not related to stuck pipe events. While domain phrases will increase the true positive rate
it will have also increase the false positives at a much greater rate. Figure 4.17 shows an example
extraction and the false positive problem where neither a leak off test or a stuck pipe occur in the
comment but the associated domain phrase does.

DomainEvent Feature StartChar EndChar

50585 StuckPipe string 6 12
50586 StuckPipe string 57 63
50584 StuckPipe bled " 9B

50587 LeakOffTest pressure 100 108

check weight s and set well commissioner with sow weight up slack off weight off from to by psi ste
ps

Figure 4.17: Domain Phrase Extraction Example

4.7.3 Part of Speech Feature

Part of Speech features are the part of speech tags for each comment token with the identifying
character index span for each comment. The NLTK part of speech tagger is used to tag comment
tokens generated by splitting comments on white space from the word only comment data set. The
part of speech feature table schema is shown in Table 4.11 [BKL09].

Column Description
Comment ID The internal comment identification number from which the part of speech tag has been extracted
Part of Speech Tag | The part of speech tag from the Universal POS tagset
Token Content The tagged token
Start Character The starting character index in the comment of the phrase
End Character The ending character index in the comment of the phrase

Table 4.11: A table showing the schema for the part of speech feature table

The part of speech tags are useful features as they can help reduce false positives for the extraction
of drilling events such as leak off tests (LOT) and formation integrity tests (FIT) as shown in
Figure 4.18.

39

Off Line Operations

corrosion cap to tree H4 — FIT
Mandrel WAC-07.

Mixed and pumped a second

4.8mA? (30bbls) Hi-Vis sweep

and circulated out, [a Tot Tess] . LOT
sand observed at the shakers

on second sweep. Boosted

riser with 1.1mA3/min

(300gpm).

Figure 4.18: False Positive Examples

When a leak off test or formation integrity test occurs it is generally stated formally in the drilling
report as it is a planned drilling event rather than an unplanned one such as a stuck pipe. Report
authors often state a leak off test has occurred in the report using its abbreviated form, ‘LOT’ and
‘FIT’. With other features such as domain phrase features, a false positive could occur with the
domain phrase feature ‘lot” where the context could be a leak off test or ‘a lot of’. Therefore, having
the part of speech feature could reduce this ambiguity as a leak off test ‘lot” would be tagged as a
noun and the ‘lot’” in ‘a lot of” would be tagged as an adjective. Figure 4.19 shows two comments
with ‘fit’ identified while being tagged with a different part of speech tags to differentiate between
a false positive formation integrity test event.

CommentlD PartOfSpeech TokenContent StartChar EndChar

140978 7091 Verb fit 95 98

npt attempt to n u new bell nipple observed the bell nipple out let union connection would not the flow line 1 d same to we
1d another out let average d hole losses fluid lost this period m

CommentlD PartOfSpeech TokenCentent StartChar EndChar
170692 8372 Noun fit 62 65

position inside casing shoe at closed annular bop and perform with mud to emw pressure dropped from to time emw sg test per
formed with mud pump

Figure 4.19: Formation Integrity Test (FIT) False Positive Example

The NLTK part of speech tagger by default uses the Penn Treebank part of speech tags which is
a list of 36 tags. However, the simpler Universal tag set was chosen instead which is a list of 12
coarser tags for the NLTK part of speech tagger as the pre-processing steps such as lemmatisation
would invalidate the different variations of the base tag in the universal tag set that the Penn
Treebank tag set offers [20f]. Furthermore, a more general tag set would enable better feature
comparisons would other feature extracted from different natural language libraries such as Spacy.
Figure 4.20 shows the part of speech tags extracted for an example comment with the Universal
tag set.

40

CommentlD PartOfSpeech TokenContent StartChar EndChar

954412 43726 Adverb npt 0 3
954413 43726 Verb circulated 4 14
954414 43726 Particle to 15 17
954415 43726 Verb evaluate 18 26
954416 43726 Adjective dynamic 27 34
954417 43726 Moun loss 35 39
954418 43726 MNoun rate 40 44
954419 43726 MNoun flow 43 49
954420 43726 MNoun rate 50 54
954421 43726 Verb spp 95 28
954422 43726 Adverb down 59 63
954425 43726 Adjective hole 64 658
954424 43726 MNoun losses 69 75
954425 43726 MNoun loss 75 80
954426 43726 MNoun rate 81 82
954427 43726 MNoun hr 86 88

Figure 4.20: Part of Speech Feature Table Example

4.7.4 Negation Phrase Feature

The negation phrase features are the domain phrases that have been flagged in the comment
augmented with a negation flag which dictates whether the domain phrase is a negative mention.
The negation phrase feature table schema is shown in Table 4.12.

Column Description
Comment ID The internal comment identification number from which the negation phrase has been extracted
Domain Event The drilling event that the keyword is associated with
Negation The negation keyword associated with the domain phrase
Feature The domain phrase
Start Character | The starting character index in the comment of the phrase
End Character | The ending character index in the comment of the phrase

Table 4.12: A table showing the schema for the domain feature table

The negation phrases are captured by indexing on the character spans of the extracted domain
phrases and searching for a pre-defined negative word set in a left context window around the
captured domain phrase. The size of the left context window is a hyperparameter that was tuned
to avoid false positives in the negation phrases. Figure 4.21 shows the negation table for some
example comments.

41

CommentlD StartChar EndChar DomainEvent Negation Feature

0 0 150 156 Losses no losses
1 1 97 103 Losses no losses
2 2 a7 103 Losses no losses
3 23 29 42 Losses no static losses
4 23 36 42 Losses no losses
5 24 52 73 TightHole no obstruction
6 92 63 72 Losses no pump
7 93 84 88 Losses no pump
8 109 410 415 TightHole avoid tight

Figure 4.21: Negation Phrase Feature Table Example

The negation phrases are useful to extract as they represent a simple contextual check that reduces
a lot of false positives, especially for the losses drilling event. The frequent phrase ‘downhole losses’
is captured by the domain phrase feature extraction but leads to false positives when the context
of the mention is ‘no downhole losses’. Therefore, the negative keyword ‘no’ needs to captured in
the negation feature table to avoid the false positive.

Currently, the implementation of the negation phrase feature looks only at pre-defined negative
words which is not scale-able across different data sets. A better implementation would be to
capture the sentence in which the domain phrase occurs and conduct sentiment analysis on the
sentence to get a sentiment score for the context. If the score is negative then the domain phrase
would be flagged as a negative mention.

4.8 Named Entity Linking

Named Entity Linking is a process that assigns a unique identity to entities mentioned in the text
and links those entities in the comments with their corresponding articles in a knowledge base.
The overall system design of the named entity linking is split into three stages which are candidate
entity generation, candidate entity ranking and unlinkable mention prediction. Before these three
stages, the entities which need to be mapped i.e. the surface mentions, need to be extracted from
the text which is done with a predefined knowledge base and name dictionary. The output of the
entity linking pipeline is a linked entity feature table which is a more reliable feature table than
the domain phrase feature table which relies on naive string search.

4.8.1 Knowledge Base

The knowledge base is defined as a key-value pairing between an entity and its definitions stored
in a CSV file where the columns are defined in Figure 4.13.

Column Description
Entity The object of interest that can found in the data set
Filename | The filename of the JSON file containing the definition of the entity

Table 4.13: A table showing the schema for the knowledge base entities

The contents of the definitions in this project is a glossary article of the definition of the entity
with a list of possible aliases of the entity. The definition file is stored as a JSON file as it can easily
be converted to a python dictionary within the NLP application and is easily extensible to add
new properties for the definitions such as hierarchical relationships between entities. An example
definition file for a leak off test entity is shown in Figure 4.22.

42

"entity”:
"alias": ["1

"article": 0T, a ¢ g test. A LOT is intended to o e the point of le ff. Compare to FIT."

Figure 4.22: Leak Off Test Definition Example

The source of the glossary articles was taken from the open-source Schlumberger Glossary [Sch20].
PetroWiki is also another good source as it is a specialised wiki for the oil and gas domain but
there may be licensing issues when using this encyclopedia so it was not used in the current imple-
mentation [Soc20]. These knowledge sources have been chosen as they are reliable sources closely
associated with the oil and gas domain bearing in mind that the data set comments are heavily
domain-specific. The current knowledge base consists of hand-picked entities closely associated
with the drilling events. The definitions of these entities have been manually extracted from the
knowledge sources rather than building an automatic web crawler to extract all the domain entities
as the entity linking aspect of this project was implemented as a proof of concept.

4.8.2 Name Dictionary

The name dictionary is an offline dictionary used in the candidate entity generation stage as a way
of mapping the possible surface mentions aliases in the comments to the entities in the knowledge
base. The name dictionary schema is shown in Table 4.14. The mapping is a one to one / many
mapping where the key column is the list of possible name variations and the value is a set of
named entities that could match to it.

Column Description
Variation The alias of the candidate entity
Candidate Entities | The set of possible entities that could match to the surface mention variation

Table 4.14: A table showing the schema for the name dictionary

The aliases of the entities are shown in Figure 4.22 for a leak off test. These include name variations
(leakoff test), abbreviations (lot), confusable names (leak off pressure), spelling variations (leak-off
test) and shorthand variations (leak-off). An example name dictionary is shown in Figure 4.23.

Variation CandidateEntities

0 lot leak off test
1 leak-off leak off test
2 leakoff test leak off test
3 leak-off test leak off test
4 leak-off pressure leak off test
5 leak off test leak off test
6 stuck stuck pipe
7 stuck tool stuck pipe
8 mechanical stuck stuck pipe
9 differential stuck siuck pipe
10 differential stick siuck pipe
1 stuck pipe stuck pipe
12 fishing tool jar
13 slickling Jar
14 jar jar

Figure 4.23: Name Dictionary Example

4.8.3 Surface Mentions

The surface mentions are entities within the text that are chosen to be linked to their corresponding
entities in the knowledge base. The surface mentions are extracted from the phrase feature table
generated in the feature extraction pipeline. The phrases that are mapped to linked entities are only

43

the noun phrases rather than the verb phrases as they represent defined entities in the knowledge
base. The surface mention schema is shown in Table 4.15.

Column Description
Comment 1D The internal comment identification number from which the mention has been extracted
Mention The noun phrases that represent the surface mentions of the entities in the knowledge base

Start Character | The starting character index in the comment of the phrase
End Character | The ending character index in the comment of the phrase

Table 4.15: A table showing the schema for the surface mention table

An example surface mention table is shown in Figure 4.24. The surface mentions extracted relies
on the accuracy of entity extraction in the noun phrases chunker. Shorthand phrases and acronyms
such as ‘ge’ in ‘the rig floor ge’ will add noise to the entity linking process but the various algorithm
used in candidate entity generation help disambiguate and the noise, as well as the surface mentions
style of writing.

CommentiD Mention StartChar EndChar
12030 1234 pism 0 4
12031 1234 start esp installation p 12 36
12032 1234 u esp equipment a7 52
12033 1234 the rig floor ge 56 72
12034 1234 crew 73 77
12035 1234 assemble 78 85
12036 1234 hole unit pump motor 92 112
12037 1234 seal 13 117
12038 1234 pass assembly 121 134
12039 1234 multi sensor 145 158

Figure 4.24: Surface Mention Example

Normally surface mentions are generated from named entities extracted from named entity recog-
nition run on the input text. However, the accuracy of the named entity recognition parser using
the off the shelf model in Spacy was poor after experimenting with different pre-processing steps.
A more fine-tuned named entity recognition model for the domain-specific text is necessary before
the surface mentions can be generated from the named entity recognition process.

4.8.4 Candidate Entity Generation

Candidate entity generation takes the surface mentions extracted from the comments and matches
them with the name variations in the name dictionary to generate candidate entities using string-
based methods. The process filters out irrelevant entities in the knowledge base and the surface
mentions which cannot be matched against the name dictionary. The schema for the candidate
entity generation process output is shown in Table 4.16.

Column Description
Comment ID The internal comment identification number from which the mention has been extracted
Mention The noun phrases that represent the surface mentions of the entities in the knowledge base
Start Character The starting character index in the comment of the mention
End Character The ending character index in the comment of the mention
Candidate Entities | The set of possible entities that could match to the surface mention variation

Table 4.16: A table showing the schema for the candidate entity generation table

An example candidate entity generation table is shown in Figure 4.25. In comment ‘19442’ there
are three surface mentions found which map to the name dictionary variations columns. The
surface mentions are then mapped to the entities in the knowledge base which are ‘stuck pipe’ and
‘jar’ in a singular set in the candidate entities column.

44

CommentlD Mention StartChar EndChar CandidateEntities

299 19442 stuck pipe 25 35 stuck pipe
300 19442 stuck 53 58 stuck pipe
301 19442 jar 208 21 jar

Figure 4.25: Candidate Entity Generation Example

4.8.5 Candidate Entity Ranking Scores

Candidate entity ranking scores is a process which assigns a score to each candidate entity based
on various matching algorithms. The ranking methods evaluate the mapping between the surface
mention and the candidate entity using different kinds of evidence. The schema for the candidate
entity ranking scores process output is shown in Table 4.17.

Column Description
Comment ID The internal comment identification number from which the mention has been extracted
Mention The noun phrases that represent the surface mentions of the entities in the knowledge base
Start Character The starting character index in the comment of the mention
End Character The ending character index in the comment of the mention
Candidate Entity The candidate entity that could match to the surface mention variation
Exact Match Rank | The ranking score for the exact string matching algorithm
Prefix Match Rank | The ranking score for the prefix string matching algorithm

Table 4.17: A table showing the schema for the candidate entity ranking scores table

The candidate entity ranking scores process takes a configuration which defines the ranking meth-
ods to use shown in Figure 4.26. The configuration is divided into levels with the first level being
the type of evidence being considered which currently is only context-independent. The second
level is the matching algorithms implemented based on the type of evidence. The matching algo-
rithms flatten the set of candidate entities in the candidate entities columns into one to one rows
of mentions to candidate entities.

ranking_scores_config = {
"context independent™: {
"use": True,
"parameters": ["exact string match", "prefix match"],

¥,

Figure 4.26: Candidate Entity Ranking Scores Configuration

The output candidate entity ranking scores table is a variable column length table which generates
columns for each matching algorithm run based on the configuration as shown in Figure 4.27.

CommentlD Mention StartChar EndChar CandidateEntity ExactMatchRank PrefixMatchRank

299 19442 stuck pipe 25 35 stuck pipe 1 1
300 19442 stuck 53 58 stuck pipe 0 1
301 19442 jar 208 N jar 1 1

Figure 4.27: Candidate Entity Ranking Scores Example

Since the named entity linking process was implemented as a proof of concept, the matching
algorithms were simple string-based matching algorithms (i.e. context-independent features) as
shown in Table 4.18.

Ranking Method Description
Exact Match Rank | Binary score (0, 1) for the exact string match of the surface mention and candidate entity
Prefix Match Rank | Binary score (0, 1) for the prefix string match of the surface mention and candidate entity

Table 4.18: A table showing the candidate ranking method definitions

45

Context independent features only take into account the direct relationship between the mention
and the candidate entity without looking at the context of the sentence. The one-to-one matching
algorithms used also does not take into account coherent entities. Coherent entities are entities
with hierarchical relationships such as the entity ‘jar’ which has a relationship with the event ‘stuck
pipe’. Due to the limitations of the knowledge base which does not have hierarchical relationships
defined, coherent entities were not implemented.

4.8.6 Candidate Entity Composite Ranking

Candidate entity composite ranking aggregates the ranking scores for each extraction algorithm
with a weighting based on the importance of the ranking algorithm. The candidate entity with the
maximum composite score for each surface mention is chosen to generate the output table with
the schema shown in Table 4.19.

Column Description
Comment ID The internal comment identification number from which the mention has been extracted
Mention The noun phrases that represent the surface mentions of the entities in the knowledge base
Start Character The starting character index in the comment of the mention
End Character The ending character index in the comment of the mention

Candidate Entity | The candidate entity that has been matched to the surface mention variation
Composite Score | The composite score for the matching algorithms
Duplicate Max A flag to check if there duplicate maximum composite score for the surface mention

Table 4.19: A table showing the schema for the candidate entity composite ranking scores table

The weightings for each of the string matching algorithms are defined in a configuration dictionary
passed into the candidate entity ranking process as shown in Figure 4.28. The weightings are
user-defined parameters in the range zero to one where one is the maximum weighting.

ranking config = {
"norm_range": [@, 1],
"weights": {
"exact string match": 1,
"prefix _match": 1,

Figure 4.28: Candidate Entity Composite Ranking Scores Configuration

The output of the candidate entity ranking process has to be a singular confidence score which is
comparable across candidate entities for a singular surface mention. Therefore the scores are nor-
malised within a specified range defined in the configuration before and after they are aggregated.
The normalisation formula used is shown below:

x; — min(z)

maz(x) — min(zx)

wherex = (x1,....,xy) is the column ranking scores and z; is the normalised data

In the case where there is a duplicate maximum composite score value for the surface mention,
the surface mention is chosen at random but a duplicate maximum flag is raised for filtering in
processes downstream as shown in the example output in Figure 4.29.

CommentiD Mention StartChar EndChar CandidateEntity CompositeScore DuplicateMax

299 19442 jar 208 211 jar 1.0 False
300 19442 stuck 53 58 stuck pipe 05 False
301 19442 stuck pipe 25 35 stuck pipe 1.0 False

Figure 4.29: Candidate Entity Composite Ranking Scores Example

46

4.8.7 Unlinkable Mention Prediction

Unlinkable mention prediction validates the candidate entity composite ranking score using a
threshold value. It is a simple heuristic based filtering process that removes all candidate entities
generated in the candidate entity composite ranking process below the user-defined threshold value
to generate an output table with the schema shown in Figure 4.21.

Column Description
Comment 1D The internal comment identification number from which the mention has been extracted
Mention The noun phrases that represent the surface mentions of the entities in the knowledge base
Start Character The starting character index in the comment of the mention
End Character The ending character index in the comment of the mention

Candidate Entity | The candidate entity that has been matched to the surface mention variation
Composite Score | The composite score for the matching algorithms
Duplicate Max A flag to check if there duplicate maximum composite score for the surface mention

Table 4.20: A table showing the schema for the unlinkable mention prediction table

The output unlinkable mention prediction table is a left join of the initial surface mention table
input and the results of the candidate entity composite score process after filtering with the thresh-
old value. The NaN values are then filled with a NIL placeholder for the surface mentions that do
not have a verified mapping at the end of the entity linking process as shown in Figure 4.30.

CommentiD Mention StartChar EndChar c i Dupli
128065 19442 stuck pipe 25 35 stuck pipe 10 Faise
128065 19442 stuck 53 58 stuck pipe 05 False
128067 19442 p siack 64 7 NIL 00 False
128068 19442 wtwih 7 82 NIL 00 False
128069 19442 no rotation 83 o4 NIL 0.0 Faise
128070 19442 rotation 116 124 NIL 00 False
128071 19442 max 130 133 NIL 0.0 False
128072 19442 rhtorque 141 150 NIL 00 False
128073 19442 different 176 185 NIL 0.0 False

128074 19442 jar 208 21 jar 10 False

Figure 4.30: Unlinkable Mention Prediction Example

This is an important stage in the entity linking pipeline as the optimally chosen entity in the
candidate entity set may not be correct if the set of candidate entities have a low score generally.
This stage provides a filter for accepting only candidate entities with a reasonable confidence score.

4.8.8 Linked Entities Feature

The linked entity features are the non NIL candidate entities found in the unlinkable mention
prediction output. The linked entity feature table schema is shown in Table 4.21.

Column Description
Comment 1D The internal comment identification number from which the mention has been extracted
Mention The noun phrases that represent the surface mentions of the entities in the knowledge base
Start Character The starting character index in the comment of the mention
End Character The ending character index in the comment of the mention
Candidate Entity | The linked entity that has been matched to the surface mention

Table 4.21: A table showing the schema for the linked entities table

The output linked entity table has been generated by filtering out the NIL values in the candidate
entity column as shown in Figure 4.31.

47

CommentlD Mention StartChar EndChar CandidateEntity

268 19446 stuck pipe 14 24 stuck pipe
269 19446 jar 149 152 jar
270 19446 stuck pipe 294 304 stuck pipe

Figure 4.31: Linked Entity Feature Table Example

The goal of entity linking in this project is to mainly reduce false positives with a sub-goal of
enriching the comments with definitions. The algorithms involved with the three main stages can
use contextual knowledge to extract the linked entities which reduce ambiguity by mapping the
surface mentions to their correct definition. It helps differentiate between ambiguous surface men-
tions such as for the domain phrase ‘jar’. Jar can be a container or a tool and for ‘stuck pipe’
events, the jar mention is only needed for the instance where it is a tool.

Furthermore, the process of data enrichment can help a domain expert with understanding the
entities within a comment. A domain expert will still have limitations in their own knowledge espe-
cially when working with new data sets which may have unfamiliar terms. This scenario occurred
when discussing the comment shown in Figure 4.32 where the term ‘castellation’ was unfamiliar to
the domain expert. With the entity linking system, the term would be linked to an article definition
which would help resolve any confusion about the meaning of the terms for the end-users.

CommentiD Comment
RIH and land off on castellationd€™s, setting down 2.3 to 4 6tonne (5 to 10kibs). Unable to rotate string. Picked up weight to aid rotation. Unable to rotate string
4206 4206 unless all weight off which in turn prevents string from dropping in to slots. Picked up clear of SSTT latch body and reset string. RIH and land off on

castellationd€™s setting down 2.3tonne (5kibs). Unable to rotate string. Inched up weignt to aid rotation.

Figure 4.32: Data Enrichment Example

4.9 Abstract Argumentation for Case-Based Reasoning

Abstract argumentation provides a framework to evaluate arguments in relation to a default out-
come label such as a drilling event. The abstract argumentation framework is adapted for case-
based reasoning, where a pre-defined set of cases generated from a domain expert and automated
methods on a labelled data set is used to generate an argumentation graph. The argumentation
graph is then augmented with a new query case from which a set semantic is calculated which
assigns the query case with either a support or attack polarity with regards to the default outcome
of the argumentation graph. The augmented argumentation graph can then be converted into a
subgraph called a dispute tree which contains a set of arguments that provide an explanation for
the new case either supporting or attacking the default outcome.

4.9.1 Cases

The basis of case-based reasoning is in the definition of the cases. A generic case in the context
of this project is a set of translated features extracted in processes such as phrase extraction and
entity linking grouped together with an outcome with respect to an argumentation framework
based around a default case. There are also two special types of cases which are the default case
and the new case.

Feature to Case Feature Mapping

The raw features extracted in the feature extraction pipeline and entity linking pipeline are too
varied in order to fit into a tractable argumentation framework. It is also difficult to define rela-
tionships between the features and compare them in their extracted form. Therefore, a mapping
between the raw features into a consistent format was implemented in order to remove these limi-
tations.

The chosen format for the case features is a semantic triple based on the Resource Description

48

Framework (RDF) data model [RDF14]. The RDF model triple consists of a subject, predicate
and object which in addition to identifying metadata and a polarity defined with respect to the
default outcome forms the case format schema shown in Table 4.22.

Column Description

Argument | The name of the overall argument that the framework is debating

Case The identification number of the case

UID The identification hash of the case feature

Subject The subject is a feature that has been extracted such as a phrase or character span range.
Predicate | The predicate is the relationship between features such as ‘found in’ or ‘is a’.

Object The object is another feature such as ‘Verb’ or a feature table such ‘measurement’.

Level The context level of the case feature which can be sentence or report

Polarity The polarity of the case feature which is defined with respect to the default outcome

Table 4.22: A table showing the schema for the unlinkable mention prediction table

The case features defined in a single case have the same case identification number and polarity as
a single case either supports or attacks the default outcome. The case features also have the same
UID hash if they have the same subject, predicate, object and level combination. The level of the
case feature was implemented in order to compare case features at different context levels. For
example, a stuck pipe may have been found in a particular comment but persists in subsequent
comments in the daily drilling report without a direct mention. A stuck pipe drilling event feature
case can be created at the report level to account for this case. An example set of cases is shown
for the stuck pipe argument in Figure 4.33.

Argument Case UID Subject Predicate Object Level Polarity
0 stuck pipe 0 default stuck pipe notfound in comment comment -
1 stuck pipe 1 A stuck pipe found in linked entity comment +
2 stuck pipe 2 B stuck found in domain phrase comment +
3 stuck pipe 2 A stuck pipe found in linked entity comment +
4 stuck pipe 3 © psi foundin measurement comment +
5 stuck pipe 3 D jar found in linked entity comment +
6 stuck pipe 3 A stuck pipe found in linked entity comment +
7 stuck pipe 4 E jar found in domain phrase comment +

Figure 4.33: Cases Example

The feature to case feature mapping process iterates through the input features tables and calls a
feature table-specific conversion function which uses Numpy Vectorisation to iterate through the
feature table. The conversion function is dependent on the feature table. For example, the domain
phrase conversion function outputs two case features for each input feature table row which are
a ‘is a’ semantic triple between the character span and the domain phrase as well as a ‘found in’
semantic triple between the domain phrase and the feature table.

Default Case

The default case is a case that contains only a singular case feature which is the default outcome
of the argumentation framework debate. For the purposes of calibration extraction, the argumen-
tation frameworks are defined for drilling events with a fixed default case in the format shown in
Table 4.23.

49

Column Description Format

Argument | The drilling event (Stuck Pipe, Kick, Tight Hole, ...)
Case The default case number 0

UID The default case feature UID default

Subject The drilling event Stuck Pipe, Kick, Tight Hole
Predicate | The default case opposing predicate | not found in

Object The lowest context level comment

Level The lowest context level comment

Polarity The default case negative polarity -

Table 4.23: A table showing the default cases format for drilling events

The default case is always identified with a case identification number of zero with a UID iden-
tification hash of ‘default’. The default case sets up the drilling event argumentation framework
with a premise of the drilling event not being in the comment as drilling events are extreme rare
events. The subsequent case arguments try to counter and support this default stance which has
a negative default polarity since the default case is arguing for a negative event presence. This
can easily be interchanged with a positive polarity as long as the subsequent case arguments are
consistent.

New Case

A new case is generated using the feature to case feature mapping process from the feature tables
defined in a configuration dictionary for a query set of comments. The configuration dictates
which feature tables to convert as well as any custom parameters to use to filter the number of
case features produced. An example part of a configuration dictionary for the feature mapping
process is shown in Figure 4.34.

feature_table_config = {
"phrase_table": {
"use": True,
"parameters": {
"name": phrase_table_welltrack_GB8K,
})
}J
"domain_phrase_table": {
"use": True,
"parameters™: {
"name": domain_phrase_table welltrack_sixty,
"argument": "StuckPipe"
})
}J

Figure 4.34: Case to Case Feature Mapping Configuration Example

The new case has the same schema as shown in Table 4.22 but with the argument column replaced
by the comment identification number. However, similar to the default case, the identification
metadata is fixed as shown in Table 4.24.

Column Description Format
Comment ID | The comment identification number | Integer number
Case The new case New
UID The unassigned UID None
Level The lowest context level comment
Polarity The unassigned polarity ?

Table 4.24: A table showing the new cases format for comments

The case number is assigned a special keyword ‘New’ to differentiate it from the integer cases
numbers in the generic cases. Since this is a new case, the UID hash and the polarity are unknown
as they are defined relative to the pre-defined argumentation cases and the argumentation frame-
work default outcome respectively. An example new case table is shown in Figure 4.35 with the
aforementioned format.

50

CommentlD Case UID Subject Predicate Object Level Polarity

29 1192 New None torque isa Noun comment ?
59 1192 New None stuck foundin domain phrase comment ?
20 1192 New MNone at isa Adposition comment ?
56 1192 New None work found in domain phrase comment ?
32 1192 New None and isa Conjunction comment ?

Figure 4.35: New Case Example

Predefined Argumentation Cases

The argumentation framework is constructed around pre-defined argument cases created manually
with the help of a domain expert and stored in CSV files. A table of defined argumentation
frameworks is loaded into the SQLite3 Database using the Data Loader API with an example
table shown in Figure 4.36. This process enables the application to keep track of the potential
arguments that can be reasoned about in the subsequent pipelines.

Argument FileName

0 stuck pipe StuckPipe.csv

-

cavings Cavings.csv

2 fit FIT.csv
3 kick Kick.csv
4 losses Losses.csv
5 tighthole TightHole.csv

Figure 4.36: Argumentation framework file definitions

The defined argumentation frameworks are then parsed to generate a case table with the schema
defined in Table 4.22. The process of loading the cases in this two-step process ensures that all
the pre-defined cases are collected before reassigning the UID alphabetical hash for the case table
to avoid a hash conflict in the argumentation CSV files.

4.9.2 Abstract Argumentation Framework

The abstract argumentation framework consists of arguments as nodes and attack relations between
the arguments as edges in the directed argumentation graph. The arguments for the framework
are the cases extracted from the pre-defined argumentation cases and a new case generated for a
query comment. The arguments are represented by their case number for simplicity in processing
and visualising in graphical outputs.

The attack relations for the framework are a tuple of a case and its polarity attacking a dif-
ferent tuple of a case and its polarity. For example an attack relation could be for cases 0 and 1
with polarities -’ and ‘4 respectively: (0, -’) attacks (1, ‘+’). The attack relations are defined by
four conditions based on different case sets of pre-defined cases and new cases which are shown in
Table 4.25 [CST16].

51

Attack Relation | Description Case Set
Different Outcomes | The polarities of the cases are | pre-defined cases

different

Specificity The attacked case features are | pre-defined cases
a subset of the attacker case
features

Concision The attacker case feature set | pre-defined cases

must be the subset minimal
potential attacker case feature
with the same attacker polar-
ity

Irrelevance The attacked feature set is not | pre-defined cases and the new
a subset of the new case fea- | case

ture set when the new case is
the attacker

Table 4.25: A table showing the attack relations conditions for abstract argumentation with case-
based reasoning

The argumentation graph is constructed in two stages. The first stage builds the graph with the
first three attack relations for pre-defined cases only. The nodes of the graph are taken as the cases
defined in the pre-defined cases for the argumentation graph (e.g. stuck pipe). The graph edges are
then defined recursively starting from the root of the argumentation graph which is the default case.

The first recursion takes the default case as the current case and the list of all cases as an ar-
gument. Each recursion generates an attack edges by successively filtering the given list of cases
using the first three attack relation conditions. Different outcomes cases are calculated by remov-
ing the cases with the same polarity as the current case from the given case list in the recursion.
Specificity cases are calculated by finding all the cases in the different outcome cases with case
features that are a subset of the current case in the recursion. Concision cases are generated by
iterating over the specificity cases and removing all cases which are not subset minimal with respect
to the other specificity cases.

The directed attack edges for the case in the recursion can now be added using the cases left
in the concision cases and the recursion case. The recursion continues with the cases in the con-
cision set being the new recursion cases and the case list argument being the same as the input
case list bar the current case in the recursion. The recursion terminates when the input case list
is empty or there are no concision cases that are generated. Since every recursion reduces the case
list, the recursion is guaranteed to terminate.

The constructed argumentation graph defined by the directed edges and cases as nodes can be
used to query a comment for the default outcome by adding the new case generated from that
comment into the argumentation graph in a second stage with the fourth attack relation condition.
Before the second stage, the new cases are labelled with a UID which matches the UID for the
pre-defined cases so that the case features are consistently labelled and comparable in the down-
stream processes. The second stage simply iterates through all the cases in the pre-defined case
set and adds attack relation edges based on the irrelevance attack relation condition. The attack
edge between the new case and the pre-defined case is added if the pre-defined feature case is not
a subset of the new case feature set and the pre-defined case is not the default case. The default
case feature set is the empty set in the argumentation framework and since the empty set is always
a subset of the new set, there cannot be a direct attack relation between the default case and the
new case.

An example argumentation graph for stuck pipe and a query comment is shown in Figure 4.37.
The nodes show the case numbers which are defined with the corresponding case features in Figure
4.38. The node colour green represents a positive polarity while the node colour red represents
a negative polarity. The new case does not have a colour since its polarity is unassigned. The
directed edge shows the attack relation between cases.

52

Case Polarity Features

0 0 - default
1 1 + A
2 2 + B.A
4 3 + CDA
7 4 + E.B
8 5 + FB
9 6 + G,B
10 7 + H.B
1 8 + 1.B
12 9 + J.B
13 10 + K.B
14 1" + LB
15 12 + M,B
16 13 + N,B
17 14 + OB
18 15 + B
19 16 + CcB
20 17 + QB
21 18 + RB

AA Graph for the stuck pipe argument, Comment: [1192]

3
Figure 4.37: Argumentation Graph for Stuck Pipe Example

Argument Level Object Predicate Subject uiD

0 stuck pipe comment comment not found in stuck pipe default
1 stuck pipe comment linked entity found in stuck pipe A
2 stuckpipe comment domain phrase found in stuck B
4 stuck pipe comment measurement found in psi cC
5 stuckpipe comment linked entity found in jar D
7 stuck pipe comment domain phrase found in jar E
8 stuck pipe comment domain phrase found in backream F
9 stuckpipe comment domain phrase found in torque G
10 stuck pipe comment domain phrase found in spike H
11 stuck pipe comment domain phrase found in free |
12 stuck pipe comment domain phrase found in work J
13 stuck pipe comment domain phrase found in string K
14 stuck pipe comment domain phrase found in circulation L
15 stuck pipe comment domain phrase found in pipe i
16 stuck pipe comment domain phrase found in bleed N
17 stuck pipe comment domain phrase found in bled o]
18 stuck pipe comment measurement found in ton P
20 stuck pipe comment measurement found in apm Q
21 stuck pipe comment measurement found in Ipm R

Figure 4.38: Argumentation Graph Example Case Table

4.9.3 Grounded Extension

The grounded extension is the set of unattacked case arguments in the argumentation graph union
the set of arguments that the unattacked case arguments set defends [CST16]. The grounded
extension is chosen as the set semantic for evaluating the argumentation framework as it is always
guaranteed to exists and also provides a unique set of arguments to evaluate the polarity of the

new case with respect to the default outcome.

Since the new case argument is unattacked by the definition of irrelevance it is always in the

53

(Left) and Example Feature Table (Right)

grounded extension and the grounded extension provides a set of coherent arguments. Therefore,
the polarity of the new case is determined by whether it is in the grounded extension with the
default case or not. If the new case and default case occur in the grounded extension together than
they have the same polarity. For the drilling event argumentation frameworks, this would mean
that the drilling event does not occur in the query comment. In the opposite scenario where the
new case and default case do not occur in the grounded extension, the polarity of the new case
would be opposite to the default case. Therefore, the drilling event would be in the query comment.

An example grounded extension is shown in Figure 4.39 for the argumentation graph in Fig-
ure 4.37. In this example, since the default case is not in the grounded extension, the drilling event
stuck pipe does occur in the example comment.

{‘16‘_. INIJ Ij.ll_, 1Er, r8|J lglJ 1161J 11?1}

Figure 4.39: Grounded Extension Example

Two contrasting approaches were used when calculating the grounded extension with the inputs
being the nodes and edges of the argumentation graph.

Exhaustive Grounded Labelling Algorithm

The first approach was a top-down approach concerned with exhaustively calculating the grounded
extension. The approach involved computing all the successive argumentation set semantics which
constitutes the definition of the grounded extension. The arguments were labelled as either in,
out or undecided for each of the set semantics required to satisfy the definition of the grounded
extension set. This method starts with the computation of all conflict-free sets which are defined
as sets of arguments which do not attack themselves. The set of conflict-free sets are reduced to
admissible sets which are defined as conflict-free and are sets which attack each attacking argu-
ment. The set of the admissible sets would then be reduced to only complete sets which are defined
as admissible sets which contain all arguments the set defends. Finally, the complete sets would
be reduced to the unique grounded extension which is defined as the minimally complete set with
respect to subset inclusion.

Initially, with a small case set, this method was computable but the calculation of the complete sets
relied on generating power sets of the admissible sets in order to calculate all possible permutations
of complete sets. This approach was not able to scale due to the intractability of calculating the
power sets of large case sets. Therefore, this approach was not chosen as the case sets needed to
be scale-able in order to handle complex argumentation frameworks.

Fixpoint Grounded Labelling Algorithm

Given the intractability of the first approach when scaling up the number of cases in the argumen-
tation framework, an alternative approach had to be implemented. The fixpoint algorithm takes
the approach from the bottom up in the sense it builds up the grounded extension from cases which
are guaranteed to be in the grounded extension [Dun95].

Before the fixpoint algorithm starts, the input edges representing the attacks are pre-processed
into an attack dictionary which has the attacker nodes as a key and a list of attacked nodes as a
value. The set of unattacked arguments is calculated next which is the set difference between the
set of all nodes and the set of attacked nodes which can be calculated through the taking all the
second values in the attack tuples.

The set of unattacked arguments becomes the in set and an empty set is initialised as the out
set. A two-step iterative process is then conducted until there is no change in the grounded ex-
tension i.e. a fixpoint is reached. The first step is adding all arguments attacked by the in set
arguments to the out set. The second step is adding all arguments attacked by the new out set
to the in set. When there is no change in the size of the in and out set, the resultant sets form
the grounded labelling of the argumentation graph with the nodes not in the in and out set being

54

labelled undecided. The construction of the argumentation framework ensures that the grounded
extension is unique and exists and hence this iterative process will always terminate. The in set
then represents the grounded extension.

4.9.4 Dispute Tree

A dispute tree for the default case is a subtree of the argumentation graph where every case is
labelled either a proponent or opponent node [CST16]. The root of the tree which is the default
case is always a proponent node. For every proponent node, all attacks against it are added to
the dispute tree where the attacking cases are labelled opponent nodes. For every opponent node,
there is at most one proponent node attacker.

When the new case has the same polarity as the default case, an admissible dispute tree which
has the aforementioned properties can be generated. However, when the new case has a different
polarity to the default case, an admissible dispute tree will not be possible. In which case, a
maximal dispute tree can be generated instead where all opponent nodes which are leaves in the
dispute tree have no attackers as shown in Figure 4.40 generated from the dispute tree in Figure
4.37. The green coloured nodes are proponent nodes while the red coloured nodes are opponent
nodes and the new case is left white as a special case.

Dispute tree for the stuck_pipe_dispute_tree, Comment: [1192]

) 9
8
6
14
16
¥

N

Figure 4.40: Dispute Tree Example

The dispute tree is computed through traversing the argumentation graph recursively starting with
the default case. The traversal visits the nodes alternating between labelling adjacent nodes as
proponents and opponent nodes. If the current recursion node is an opponent node and there is
more than one proponent attacker, only a single proponent attacker can be chosen to satisfy the
admissible dispute tree constraints. While any choice of proponent attacker will yield a dispute
tree, a depth-first search is conducted on the successor nodes of the current recursion nodes in
order to choose the proponent attacker which has the greatest depth. A weighting is added to
nodes which contain the new case in the depth-first search as the final explanation will be better
in the context of the query comment. This does add to the computation time of the dispute tree
but yields a better explanation as the more cases in a path for the dispute tree, the better the
generated debate regarding the default outcome will be. In all other cases of recursion node, the
successors nodes are recursed with the node identity (proponent or opponent) being switched.

55

While the grounded extension is enough to calculate the polarity of the new case and hence,
the presence of the drilling event in the comment, it does not provide a satisfactory explanation
beyond the other nearest cases in the grounded extension. The grounded extension is transparent
as it shows supporting and conflicting nearest cases but it does not show the argumentative trace
across similar cases which provides a better explanation. Traversing the dispute tree generates a
set of cases which argue for and against the default case providing a more informative explana-
tion of the argument premise with a hierarchical relation between cases rather than a flat set of
transparent cases [CST16].

4.9.5 Argumentation Explanation

The value in this machine arguing methodology is in the generation of natural explanations to
reason about the default case for the argumentation framework. Since the case features are RDF
semantic triples, they can be converted very easily into natural language which is one of the main
motivations of encoding the extracted features into the RDF semantic triple format. An example
explanation generated for the dispute tree in Figure 4.40 is shown in Figure 4.41.

stuck pipe not found in comment is False as

stuck found in domain phrase and torque found in domain phrase and free found in domain phrase and work found in domain phrase
and string found in domain phrase and circulation found in domain phrase and psi found in measurement and gpm found in measurem
ent

Figure 4.41: Generate Explanation Example

Only a proof of concept implementation was created for this explanation process in the argumen-
tation pipeline. The current implementation of the explanation generator traverses each level of
the dispute tree extracting the natural language format of the RDF semantic triple and outputting
at different levels connected by conjunctions.

4.9.6 Automated Cases

The focal point of the argumentation pipeline is in the definition of the argumentation framework
cases by a domain expert. The case-based reasoning framework is designed so that the domain
expert can knowledge transfer their insights when reasoning about the presence of drilling events
in a natural way. However, while the domain expert defined cases cover most of the drilling event
cases, there may be some underlying case features that correspond to drilling events that are not
covered. Therefore, an automated case extraction solution was attempted in order to augment the
case set for a drilling event argumentation framework.

Test Train Split

The training data set evaluation CSV file with labels for four drilling events including ‘stuck pipe’
was loaded into the SQLite3 Database. In order to evaluate the performance of the automated
case generation, the training data set was split into a test and train set with 80% of the data set
being the train data set.

Comment Case Extraction

A process in the Argumention API computes the cases defined per comment by extracting the case
features from the feature tables defined in a configuration shown in Figure 4.34. A label mapping
is necessary to translate the training data set event labels to the internal application drilling event
labels as the event labels across different data sets may have different styles of writing. Once the
case features have been extracted for all comments in the train data set, they are assigned a unique
UID hash as well as a new case id which does not conflict with the predefined cases for the query
argument. Using the event labels, a binary polarity is assigned to the extracted cases based on the
query argument.

Case Scoring

The number of cases generated from the training data set train set was too large to add directly to
the argumentation framework as it increased the processing time of the argumentation generation

56

pipeline and would result in extreme overfitting. Therefore, the number of cases and case features
needed to be filtered to only retain the most relevant ones in relation to the argument drilling
event. Two case scoring approached were implemented which are term frequency inverse document
frequency (TF-IDF) and case feature frequency counts.

The case feature frequency count approach involved counting the cases for positive and nega-
tive polarity comments with respect to the presence of the drilling event argument. The thousand
most common case features for each polarity were then kept and converted into cases to be inputted
into the pre-defined cases for the argument. This method did not yield a significant improvement
over the domain defined only cases as it generated too many false positives and simply increased
the processing time for the argumentation pipeline significantly. The approach did not take into
account the contextual case features of the most common case features which is necessary to form
a more representative case argument.

Term frequency inverse document frequency is normally used to evaluate how important a word is
to a document in a corpus. In this approach, the TF-IDF score was used to give a weighting to
how important case features are relative to cases in the data set. TF-IDF is a good case score as
it accounts for varying length cases in terms of the number of case features as well as weighting
down frequent case features and scaling up rare case features. The importance of the case feature
increases proportionally to the number of times it appears in a case offset by the frequency of the
case in the data set.

The formula used to calculate term frequency which is a measure of the frequency of a case feature
in a case is shown below [Wik20c]:

Number of times case feature c appears in a case

TF(c) =

Total number of case features in the case

The formula used to calculate inverse document frequency which is a measure of the importance
of a case feature in the data set is shown below [Wik20c]:

IDF(¢) = log, (Total number of cases)

Number of cases with case feature cin it

The TF IDF case feature score is calculated for two subsets of the training data set which are
sets of positive polarity and negative polarity cases. The desired case feature score is a singular
case feature score across all input cases rather than a case feature score in relation to each case.
Therefore, the case feature score for each case was aggregated using the mean case feature score.
Other aggregation functions such as min and max case feature scores were experimented with
but yielded worse results. The aggregated case feature score for the negative polarity set is then
subtracted from the case feature score for the positive polarity set to create a case feature score
for all case features in the training data set. At this point, there are three aggregated case feature
score sets: the positive cases only case feature score, the negative cases only case feature score and
the all cases weighted case feature score. The cases and case features of the whole data set can
then be filtered using the three aggregated case feature scores sets.

Case Filtering

The cases are iterated through three levels of filtering. The first level of filtering looks at a score for
a case rather than a case feature to get a measure of the uniqueness of the case weighted towards
the positive polarity. The case score is defined as the average case feature score using the all cases
weighted case feature score. The average aggregation function yielded better results than the min
or max aggregation function in the calculation of the case score. For negative polarity cases, the
case score was filtered to be in the range 0 and -0.1. For positive polarity cases, the case score was
filtered to be in the range 10 and -10. These values were chosen after experimentation to yield the
most common cases while limiting the number of case features generated. The number of positive
polarity cases is far fewer than the negative polarity cases, hence why the threshold limit has a
greater range. Figure 4.42 shows the average feature case score before using the filtering thresholds
while figure 4.43 shows the average feature case score for the selected cases after filtering.

57

Average Feature Case Score per Case

® Negative Cases
. . . ® o Positive Cases

Average Case Feature Score

0 10000 20000 30000 40000 50000 60000

Figure 4.42: Average Feature Case Score per Case

Filtered Average Feature Case Score per Case

@ Negative Cases
® Positive Cases

'S
.

Average Case Feature Score

[} 10000 20000 30000 40000 50000
Case ID

Figure 4.43: Filtered Average Feature Case Score per Case

The second level of filtering looks at the positive cases only case feature score and the negative
cases only case feature score to try to choose case features which are the most unique, weighted
towards a positive polarity and a negative polarity respectively. For positive cases, a case feature
is chosen if it has a positive cases only case feature score of greater than 0. For negative cases, a
case feature is chosen if it has a negative cases only case feature score of greater than 3.0. These
threshold values were chosen after experimentation to balance the number of case features chosen
and the processing time of the argumentation pipeline. Figure 4.44 shows the positive and negative
case feature scores of the case features that have been chosen.

58

Positive and Negative Case Feature Score

® Negative Feature Cases
101 @ Positive Feature Cases

Case Feature Score

0 20000 40000 €0000 80000 100000
Case Feature ID

Figure 4.44: Positive and Negative Case Feature Score

The final level of filtering converts then chosen cases and case features into useful case arguments.
A case is not useful if it only has a single feature, therefore only cases that have more than one
feature are chosen. Furthermore, the number of case features per case is set to a maximum of 6
which has been chosen after experimentation. The case features with the maximum positive case
feature score or negative case feature are chosen.

The filtering process reduces the number of cases chosen from 44140 to 2071 and the number
of case features from 97098 to 7895 in the training data set. The final filtered cases can then be
added to the pre-defined cases for the query argument which in the examples was ‘stuck pipe’.

4.9.7 Bulk Processing Comments

The classification of the polarity of the new case generated from a comment as well as the generation
of an explanation of the outcome encompasses all the aforementioned argumentation processes.
Scaling up the process for all 56,000 comments in the training data set required optimisations in
order to finish the computation in a reasonable time. The bulk processing process produces an
explanation table which has the schema shown in Table 4.26.

Column Description
Comment 1D The internal comment identification number from which the argument explanation has been extracted
Argument The name of the argumentation framework processed
Agree? Boolean value to state whether the explanation agrees with the default outcome of the argument
Explanation The natural language explanation generated from the dispute tree
Grounded Extension | The grounded extension of case numbers for the argumentation framework

Table 4.26: A table showing the schema for the argumentation explanation table

In order to avoid out of memory issues for larger data sets, the input query data set of comments
is divided into batches of 20,000 comments for processing. Each batch output updates a table
generated using a PUT API request to the Data Layer API for the query argument and data set.
The case features for the set of query comments are pre-computed and stored in a table dictionary
to be indexed when iterating over the query comments to generate explanations for them. The
argumentation graph for the predefined cases is also pre-computed and only the list of nodes and
edges are kept so that they can be augmented with a new case for each comment iteration. The
main explanation loop iterates through the query comments to generate the new case augmented
argumentation framework, the grounded extension, the dispute tree and finally the explanation.
An example output argumentation explanation table is shown in Figure 4.45.

59

CommentlD Argument Agree? Explanation GroundedExtension

stuck pipe not found in comment is False asinstuck found in domain phrase and torque found in domain phrase (16N, "1, 6, '8

1192 1192 stuck pipe False and free found in domain phrase and work found in domain phrase and string found in domain phrase and T g 7‘}'
circulation found in domain phrase and psi found in measurement and gpm found in measurementin T

. stuck pipe not found in comment is True as'nterque found in domain phrase and psi found in measurement and N

12312 12312 stuck pipe True Ipm found in measurementinlpm found in measurement {0, NG

12518 12518 stuck pipe True stuck pipe not found in comment is True as\nstring found in domain phrase\nstring found in domain phrase {0, "N

stuck pipe not found in comment is False as\nstuck found in domain phrase and free found in domain phrase [16,'9, N, '8, 8!

13065 13065 stuck pipe False and work found in domain phrase and circulation found in domain phrase and psi found in measurement and T '11‘j

Ipm found in measurementin

Figure 4.45: Argumentation Explanation Table Example

4.10 Calibration Point Generation

The main output of the application is calibration points which are a combination of a drilling event
and measurements such as mud weight or depth measurements. The majority of the work has been
done in the upstream processes which results in the calibration point pipeline mainly being used
to process the previous process outputs into the desired output schema which is defined in Table
4.27. The rows are formatted such that there is a single measurement in each row as there can be
many measurements extracted for a single comment. There can also be many explanations for each
comment as the comment could be queried for different drilling event which would each have their
own explanation. However, for the sake of simplicity a separate calibration point output table will
be generated for each drilling event argument.

Column Description
Comment ID The internal comment identification number from which the argument explanation has been extracted
Location The location of the drilling operation which is normally a borehole or a well name
Start Date The starting date of the drilling operation described in the comment
Start Time The starting time of the drilling operation described in the comment
End Date The end date of the drilling operation described in the comment
End Time The end time of the drilling operation described in the comment
Comment The raw input comment
Argument The name of the argumentation framework processed
Agree? Boolean value to state whether the explanation agrees with the default outcome of the argument
Explanation The natural language explanation generated from the dispute tree
Grounded Extension | The grounded extension of case numbers for the argumentation framework
Unit Type The format of the unit of the measurement which can be a Single Unit or Composite Unit
Start Character The starting character index in the comment of the measurement
End Character The ending character index in the comment of the measurement
Unit The measurement unit
Minimum Value The measurement in case the measurement was recorded as a range
Maximum Value the measurement in case the measurement was recorded as a range

Table 4.27: A table showing the schema for the calibration point table

The calibration point generation process takes the raw comment, the measurements table and the
explanations table for the query data set. It also takes a unit list parameter which is a list of units
to retain from the measurements table. For calibrations points, the unit list contains depth units
such as 'm’, ’ft’ as well as mud weight units such as 'mw’, ’sg’ and 'ppg’. The process then does a
left join between the raw comments and explanations table on the comment identification number.
Then another left join is done using the output from the first join and the measurements table on
the comment identification number again. An example output for the calibration point generation

pipeline is shown in Figure 4.46.

CommentlD Location StartDate StartTime EndDate EndTime Comment Argument
ABJF- Got stuck at 7090 while reaming up stand. Worked string with circulation (unable to
2048 1192 256 27110/2014 00:00:00 27/10/2014 01:00:00 rotatei’ torque higher them 15 kib.ft) and GOT FREE - Partial pack-off 350 GPMi% stuck pipe
3700 PSlivs out of bottom.- Pumped 10 bbl Lo and 10 bbl Hi-Vis
Agree? Explanation GroundedExtension UnitType StartChar EndChar Unit MinValue MaxValue
stuck pipe not found in comment is False as\nstuck found in demain
phrase and torque found in domain phrase and free found in domain 16, N, 1,6, '8
2048 False phrase and work found in domain phrase and string found in domain T g o T‘}' Unit 115.0 126.0 ft 15 15

phrase and circulation found in domain phrase and psi found in

measurement and gpm found in measurementin

Figure 4.46: Calibration Point Table Example

60

The final output of the workflow is the calibration point CSV file which is generated by simply
using the Data Layer API save function which fetches a table such as the calibration point table
into a Pandas dataframe. The dataframe can then be outputted directly using a Pandas function
into a CSV file saved in the Results folder of the current experiment.

61

Chapter 5

Evaluation

This chapter aims to present the results of the application evaluated with the data sets shown in
Section 2.2. The goal of this application is to replace the traditionally manual process of calibration
point extraction with an automated solution. Therefore, the main form of evaluation for this project
is through comparison between the automated application and the traditional manual analysis
for calibration point extraction in three key areas which are accuracy, coverage and performance.
Another sub-goal of this project is to improve upon the results achieved by a different methodology
implemented for calibration point extraction which is naive keyword indexing. The nature of the
comments being scientific statements of fact results in domain keywords being a highly informative
feature for drilling event extraction. Naive keyword indexing string searches for these domain
keywords in a processed data set and thus provides a good lower bound evaluation method to
compare the current implementation framework against. However, naive keyword indexing results
in a lot of false positives being generated as contextual information is not taken into account when
extracting the domain keywords.

5.1 Accuracy

Calibration points consist of a measurement and a drilling event. The accuracy evaluation for
calibration points is examined only for the drilling event aspect of calibration points as calibration
points only occur when there is the presence of certain drilling events. The drilling event labelled
comments represent on average less than 3% of the total comments in a given data set. Once a
comment with a drilling event has been flagged, a domain expert can lookup the comment and
extract the correct measurement from the generated measurement table in the application. There-
fore evaluating measurement extraction is not necessary and only the results of the drilling event
classification will be evaluated.

The classification metrics used to assess the accuracy of extraction are defined in Section 2.6.
The classification of drilling events is done as a binary classification for each query drilling event
with the extraction result being the drilling event or a no event. The design of the workflow results
in a calibration point file generated for each drilling event as a binary classification due to the
use of the argumentation framework being a binary classification method in feature analysis. The
drilling events that are assessed in the evaluation are stuck pipe, kick, tight hole, losses, cavings
and FIT. The definitions of these drilling events can be found in Section 2.1.2. These drilling events
are chosen as they are found in the labelled test data set and also represent the most informative
drilling events for calibration points.

Generally, the drilling event extraction differentiates between drilling event comments (true posi-
tives) and null drilling events comments (true negatives) quite well. Given the heavily unbalanced
nature of the data set where drilling events are extreme events in the data set, the general classifi-
cation accuracy score is not an informative evaluation metric as it is too sensitive to class imbalance
with the true negatives far outweighing the true positives.

A better classification metric would be recall and precision as well as F1-score as they are asymmet-
ric to class imbalance due to the fact they ignore true negatives and only consider true positives,

62

false positives and false negatives. Precision is an important metric for evaluation as a goal of this
project is to reduce the false positive rate which is high in the naive keyword extraction method.
Recall is a more important evaluation metric as false positives can always be manually refined by
a domain expert from the calibration point output of the application. However, false negatives
cannot be reduced for unlabelled data sets and given the rarity of drilling event occurrence in the
data set, every missed drilling event affects the calibration of the downstream geomechanics model.

Matthews correlation coefficient is an informative evaluation metric as it is a balanced evaluation
measure for the unbalanced data set with regards to drilling event occurrence. The correlation
coefficient between the true drilling event and the predicted drilling event is captured and the
symmetric evaluation metric accounts for all four metrics in the confusion matrix.

The public Australian data set is a data set with 5868 comments which has been manually la-
belled by a domain expert and has been used as a test data set to evaluate the accuracy of the
drilling events extraction for calibration points. The extracted feature tables and domain phrases
have been developed to maximise the accuracy for the training data set only to get an unbiased
evaluation on the test set. The manually labelled dataset will represent the upper bound (the gold
standard) in the accuracy evaluation bearing in mind that there may be human errors in the la-
belling of the public Australian data set. Furthermore, the lower bound in the accuracy scores will
be the naive keyword indexing methods which will also be evaluated against the public Australian
manually labelled data set. The goal of the project implementation is to meet the gold standard
of extraction while at least exceeding the evaluation metrics of the naive keyword method.

5.1.1 Stuck Pipe

The confusion matrix for Stuck Pipe extraction is shown in Figure 5.1 and the evaluation metrics are
shown in Table 5.1 for both the project implementation and the keyword indexing implementation.

Confusion Matrix for stuck pipe using the Keyword Indexing Implementation Confusion Matrix for stuck pipe using the Project Implementation

5000 5000
No Event 19 No Event 2
4000 4000
3 :
2 3000 = 3000
3 3
£ =
2000 2000
stuck pipe o 1 stuck pipe 1] 1
1000 1000
0 T 0
+ *
b‘e. \ﬁﬂc ‘G\é\ @ﬂz
< 5 WP £+
& A &
Predicted label Predicted label

Figure 5.1: Confusion Matrix for Stuck Pipe Evaluation

Project Implemen- | Keyword Indexing
tation Implementation

Precision 0.33 0.05

Recall 1.00 1.00

F1-Score 0.50 0.09

Matthews Correlation Coefficient 0.57 0.22

No. of Events 1.00 1.00

Classification Accuracy (all comments) | 99.96 99.67

Table 5.1: A table showing the stuck pipe classification results for both extraction methods on the
test data set

The public Australian data set for evaluating stuck pipe events is limited as it only has one stuck
pipe event. However, the consequence of stuck pipe events is quite severe in terms of financial
loss, especially in offshore drilling. Should they occur, they are clearly stated in the drilling report

63

rather than having an ambiguous surface mention of the key domain phrases so false negatives are
unlikely to occur with the current methodology using domain phrases feature. The main goal with
stuck pipe extraction is to reduce the number of false positives. This project implementation is
successful in achieving this goal compared to the keyword indexing implementation as the precision
score is much higher relative for the project implementation. The low precision score for the
project implementation of 0.33 is mainly due to there being only one stuck pipe event. The two
false positives generated for the project implementation are within the scope of a domain expert
to refine.

5.1.2 Kick

The confusion matrix for Kick extraction is shown in Figure 5.2 and the evaluation metrics are
shown in Table 5.2 for both the project implementation and the keyword indexing implementation.

Cenfusion Matrix for kick using the Keyword Indexing Implementation Confusion Matrix for kick using the Project Implementation
5000 5000
N Event 23 Mo Event 3
4000 A000
3 -
2 3000 % 3000
w u
2 3
2000 . 2000
kick 1 4 kick 1 4
1000 1000
& o +
‘C’F o Q'_.f'o \'ﬁ'
w® W«
Predicted label Predicted label

Figure 5.2: Confusion Matrix for Kick Evaluation

Project Implemen- | Keyword Indexing
tation Implementation

Precision 0.57 0.14

Recall 0.8 0.8

F1-Score 0.66 0.25

Matthews Correlation Coefficient 0.67 0.34

No. of Events 5 5

Classification Accuracy (all comments) | 99.93 99.59

Table 5.2: A table showing the kick classification results for both extraction methods on the test
data set

Kick events also show improvement in reducing the false positive rate with the precision for the
project implementation being far greater than the keyword indexing implementation. However,

there is no improvement in the reduction of the false negative shown in Figure 5.3.

CommentiD Comment

596 277 Observed an increase of 1.19m3 (12bbis) in active system. P/ U off bottom, shut down mud pumps, spaced out and menitored well on the trip tank. Informed
NDSV and Toolpusher. Confirmed all crane operations and mud transferring stopped. Flow checked, well static

Figure 5.3: False Negative Example Comment for Kick

The false negative is missed due to a surface mention variation (‘increase’) for one of the domain
phrases (‘gain’) extracted from the comment which was not accounted for in the kick argumenta-
tion pre-defined cases. The best solution to avoiding this false negative would be the utilise the
entity linking system to map the surface mention variation to a linked entity domain phrase rather
than hard coding the surface mention variation in the pre-defined cases. This solution would result
in better coverage and avoid overfitting the domain phrases to a particular data set.

64

The false positives generated were due to an unforeseen case where the possibility of a kick event
was tested for with a flow check on the trip tank but resulted in a loss event instead shown in
Figure 5.4.

CommentiD Comment

Observed gain in active system. Flow checked well on trip tank, 3bblfhr
939 470 losses. Confirmed loss rate with GeoService. Offline operations: added
defoamer to mud pits.

Figure 5.4: False Positive Example Comment for Kick

The way of reducing this false positive is to add a counter-argument to the flow check case in
the pre-defined cases for the kick event to account for the negative result. This highlights in the
incompleteness of the current set of domain cases and therefore more knowledge transfer from the
domain expert is needed to fully develop the pre-defined domain cases.

5.1.3 Losses

The confusion matrix for Losses extraction is shown in Figure 5.5 and the evaluation metrics are
shown in Table 5.3 for both the project implementation and the keyword indexing implementation.

Confusion Matrix for losses using the Keyword Indexing Implementation Confusion Matrix for losses using the Project Implementation
5000 5000
Mo Even 34
o Event 4000 No Event 52 4000
£ 000 2 1000
3 El
= 2000 = 2000
losses L3 68 losses 1 LE]
1000 1000
& & &]
& of £ of
o £ - 5
o b t\u“' A
Predicted label Predicted label

Figure 5.5: Confusion Matrix for Losses Evaluation

Project Implemen- | Keyword Indexing
tation Implementation

Precision 0.23 0.22

Recall 0.98 0.91

F1-Score 0.38 0.36

Matthews Correlation Coefficient 0.47 0.44

No. of Events 74 74

Classification Accuracy (all comments) | 96.02 95.91

Table 5.3: A table showing the losses classification results for both extraction methods on the test
data set

Losses occur far more frequently than the other drilling events which enables a better evaluation
for the drilling event extraction process. A significant improvement is in the reduction of the false
negative rate in the new implementation method compared to the keyword indexing implementation
shown in the increased recall score. The false negatives with the project implementation method
are due to the losses event being resolved within the same comment shown in Figure 5.6.

CommentiD Comment

481 295 M/U TDS and washed to bottom from 1.52MPa (220psi). Observed a loss of returns at 3,057m, picked up string and full retums established. No further losses.
S/0 weight trending down from: 145.15 MT (320kIbs) to 127.0MT (280kIbs).

Figure 5.6: False Negative Example Comment for Losses

65

The argumentation framework does flag the comment as having a loss event but another case ar-
gues against the loss event if it has been resolved. The fix for this problem would be having a case
which attacks the resolution case if the drilling event occurs in the same comment.

Both implementations flag a lot of false positives as shown by the confusion matrix and low
precision scores. On examination of the flagged false positives for losses with the domain expert,
the vast majority of them were true positives that were mislabelled. Once a loss event occurs, the
loss mentions in the comments generally persist over successive comments. Domain experts are
prone to miss these successive mentions which has led to the mislabelling of the loss events as they
have to parse through thousands of comments which is a tedious process. Therefore, for losses, the
project implementation exceeds the performance of the manual labelling.

Of course, there are examples of verified false positives such as the ambiguous surface mention
of loss being confused with a tool rather than a loss event shown for in Figure 5.8. The solution
for this case is to use entity linking to correctly map the surface mention to its correct entity based
on the contextual information.

CommentiD Comment

Confirmed deck count with completion tally: 16 Screens and 18 Blanks remaining, OK. Changed elevators to 127mm

(5") drill pipe. P/U and M/ U Lower Completion Assembly B:70-14-17-08: 1 x 140mm (5 1/2") 25 4kg/m (17ppf) JFE

Bear pup joint, crossover and 140mm (5 1/2") 25_4kg/m {17ppf) JFE Bear pup joint to 178mm (7") 43.2kg/m (29ppf)

846 310 JFE Bear, 178mm (7") pup joint, EGF Fluid Loss Control Flapper assembly s/n2622296-08 and 178mm (7") pup joint
M/U connection to 10kNm (7.4kfLIbs). Recorded P/U weight 86.18MT (190kibs) and S/O weight 85.45MT (195kibs).

Landed 178mm (7") elevators on C-plate in rotary table. Broke out top half of MUS and handling sub. Rigged up split

bushings, MLT C-Plate, TS100 Bowls, 73mm (2 7/8") slips and dog collar. Laid out MUS and handling sub.

Figure 5.7: False Positive Example Comment for Losses

Another example of a verified false positive is due to a loss event occurring but not being a drilling
event for a calibration point. The loss event, in this case, occurs in the casing of the well and cannot
be used as a calibration point. The solution for this false positive is to expand the pre-defined
cases to account for this edge case.

P/U a single of 127mm (5&€) DS50 drill pipe and installed PS16 auto slips. Continued to POOH with Whipstock on
9614 5502 127mm (3&€) DS50 DP at 4min/sid to prevent swabbing from 2,450m to 2,062m. Monitored well on irip tank. Average
down hole losses: 0.64mA¥hr (4bbls/nr). Trip Speed POOH 127mm (5") DS50 (whipstock): 259m/hr.

Figure 5.8: Second False Positive Example Comment for Losses

5.1.4 Cavings

The confusion matrix for Losses extraction is shown in Figure 5.9 and the evaluation metrics are
shown in Table 5.4 for both the project implementation and the keyword indexing implementation.

Confusion Matrix for cavings using the Keyword Indexing Implementation Confusion Matrix for cavings using the Project Implementation
5000 5000
No Event 4 No Event 4
4000 4000
2 2
= 3000 5 3000
o v
H]
2 g
2000 = 2000
cavings o 19 cavings o 19
1000 1000
0 0
& o * -
‘G‘" _‘\(A ‘01"(‘ ‘,\(‘g
& & &® &
Predicted label Predicted label

Figure 5.9: Confusion Matrix for Cavings Evaluation

66

Project Implemen- | Keyword Indexing
tation Implementation

Precision 0.82 0.82

Recall 1.0 1.0

F1-Score 0.90 0.90

Matthews Correlation Coefficient 0.90 0.90

No. of Events 19 19

Classification Accuracy (all comments) | 99.93 99.93

Table 5.4: A table showing the cavings classification results for both extraction methods on the
test data set

The extraction of cavings was fairly accurate shown by the high Fl-score for both the keyword
indexing implementation and the project implementation. The project implementation performed
identically well to the keyword indexing implementation. However, that was due to both methods
performing optimally for caving extraction as on examination with the domain expert for the
four false positives generated, they were found to be mislabelled. So in fact both implementations
performed better than the manual benchmark and achieved an F1-Score of 1.0 for caving extraction.

5.1.5 Tight Hole

The confusion matrix for Tight Hole extraction is shown in Figure 5.10 and the evaluation metrics
are shown in Table 5.5 for both the project implementation and the keyword indexing implemen-
tation.

Confusion Matrix for tight hole using the Keyword Indexing Implementation Confusion Matrix for tight hole using the Project Implementation

5000

No Event 177 E
v 4000 Mo Event

z Z
2 000 = 000
= 2
2000 = 2000
tight hole 6 3 tight hole 6 6
I 1000 1000
T
‘v—it’& \‘O\L 5'9‘ &
o -,-§_ o &
b < w <
Predicted label Predicted label

Figure 5.10: Confusion Matrix for Tight Hole Evaluation

Project Implemen- | Keyword Indexing
tation Implementation

Precision 0.42 0.03

Recall 0.5 0.5

F1-Score 0.46 0.06

Matthews Correlation Coefficient 0.46 0.12

No. of Events 12 12

Classification Accuracy (all comments) | 99.76 95.88

Table 5.5: A table showing the tight hole classification results for both extraction methods on the
test data set

Tight hole is the most difficult drilling event to extract using the current set of features. While
the project implementation method greatly reduces the number of false positives, the false nega-
tives occur at a similar rate to the keyword indexing implementation. Upon examination with the
domain expert, the false negatives occurred due to a variety of reasons.

The prevailing reason was a missing key case argument for the pre-defined cases when reason-
ing about the presence of a tight hole shown in Figure 5.11. The missing case was a ‘pull out

67

of hole’ operation resulting in ‘drag’ exceeding a certain threshold being recorded. The solution
would be to use features from the linked entities and measurement table to encode this case in the
tight hole argumentation framework.

CommentID Comment

98 50 POOH racking back 140mm (5 1/2") drill pipe from 1,197m to 989, drag 40-50kIbs from 1,060-1,050m wiped away clean without pumps or rotary.
Figure 5.11: False Negative Example Comment for Tight Hole

The next reason was due to surface mention ambiguity of a domain phrase (Slack Off) that was
written as shorthand (S/O) shown in Figure 5.12. The solution for this problem would be to use
entity linking to resolve the surface mention to the correct linked entity.

Backreamed out of hole from 2.318m to 1,320m, 10 minutes a stand slip to slip. Observed occasional torque spikes to 27.1kNm (20kft-Ibs). Only hole issue

8279 483 observed while backreaming was at 1,700m, unable to S/O, reciprocated stand for 30 minutes until hole good and continued to backream. Recorded pick up and
slack off weights every 5 stands. Flow Rate: 4,353Lpm (1,150gpm) Pump Pressure: 25.51MPa (3,700psi) Rotary: 160rpm (High gear) Torque off bottom: 13.56

10 20.34kNm (10 to 15kit-Ibs) ECD: 1.28 to 1.29sg

Figure 5.12: Second False Negative Example Comment for Tight Hole

The final reason was due to wrongly assigning the tight hole event to a preceding comment in the
labels by the domain expert in the test data set.

5.1.6 FIT

The confusion matrix for FIT extraction is shown in Figure 5.13 and the evaluation metrics are
shown in Table 5.6 for both the project implementation and the keyword indexing implementation.

Confusion Matrix for fit using the Keyword Indexing Implementation Confusion Matrix for fit using the Project Implementation
5000 5000
Mo Event 14 No Event 3
@000 4000
B 2
= 3000 = 3000
w o
= =2
= =
2000 2000
fit o 6 fit o 3
1000 1000
o T 1]
‘.‘ao‘ L & @
e"% ®
Predicted label Predicted label

Figure 5.13: Confusion Matrix for FIT Evaluation

Project Implemen- | Keyword Indexing
tation Implementation

Precision 0.66 0.3

Recall 1.0 1.0

F1-Score 0.8 0.46

Matthews Correlation Coefficient 0.81 0.54

No. of Events 6 6

Classification Accuracy (all comments) | 99.94 99.76

Table 5.6: A table showing the FIT classification results for both extraction methods on the test
data set

Formation integrity test was extracted accurately with the project implementation method as
shown by the high Matthews Correlation Coefficient score. The project implementation also re-
duced the false positive rate compared with the keyword indexing implementation as shown by the
higher precision score. The false positives that remained with the project implementation are still
valid FIT mentions but not calibration points as they do not have associated measurement value

68

shown in Figure 5.14. This issue can be solved by refining the pre-defined domain cases to look for
associated measurements.

CommentiD Comment .

3960 2246 Pulled into shoe 1,181m, circulated and cycled MWD to record FIT data.

Figure 5.14: False Positive Example Comment for FIT

5.1.7 All Drilling Events

Overall the project implementation shows a reduction in false positives in comparison to the
keyword indexing implementation especially when looking at tight hole events as shown in Figure
5.15.

A graph to show precision for extracted drilling events using
two implementation methods

PRECISION

Tight Hole
DRILLING EVENT

Praoject implementation Keyword Implementation

Figure 5.15: A graph to show drilling event precision for the project implementation and keyword
index implementation

The overall evaluation accuracy as shown by the Fl-score in Figure 5.16 is generally greater than
0.4 for all drilling events bar losses due to the mislabelling of the data set which show that losses ex-
traction exceeds the manual benchmark. Cavings shows the best extraction results while tight hole
needs refining in the pre-defined domain cases. Most of the false negatives that occur in the drilling
event can be solved with better defined domain cases in combination with a full implementation
of entity linking to reduce the surface mention ambiguity.

69

A graph to show Fl-score for extracted drilling events using
two implementation methods

Tight Hole
DRILLING EVENT

Project Impleme ntation Ki Implementatios

Figure 5.16: A graph to show drilling event F1-Score for the project implementation and keyword
index implementation

The results show that the current project implementation is an improvement over the naive key-
word indexing method mainly due to the scope to account for the false negatives and false positives
in the current project implementation with the argumentation framework and entity linking. Fur-
thermore, the project implementation exceeds the manual extraction benchmark especially in losses
and cavings while falling behind in events such as kick. Badly performing events can be improved
with better knowledge transfer to the domain inputs but manual labelling will always show mis-
takes especially with large data sets. Furthermore, manual labelling will never be done on very
large data sets for all drilling events whereas the project implementation has shown that compa-
rable results can be achieved to the manual benchmark and therefore, it is reliable to run on the
very large data sets.

5.2 Coverage

The coverage of the application is a measure of how well the application generalises across different
data sets. The current project implementation involves extracting features from the comments
such as domain phrases which may occur in various forms in different data sets due to different
writing styles or company standards. The variations leading to surface mention ambiguity can
be solved with entity linking replacing the domain phrase features in future iterations. For the
current implementation, coverage is important to assess in order to see if the application extraction
methods have overfitted on the training data set through the domain defined features or the pre-
defined cases for the argumentation framework. In order to get an estimate of the coverage, the
application was run on two unlabelled data sets. The extracted drilling events were then labelled
by a domain expert to evaluate the coverage of the application.

Given the heavily unbalanced nature of the data set regarding the proportion of drilling event
comments to non-drilling event comments, only the extracted events were labelled by the domain
expert. This means that only true positives and false positives and by extension precision could be
evaluated. The number of extracted events from one coverage test data set is 92 comment events
in a data set size of 32000 comments. Therefore, taking a small random sample of non-drilling
event comments to check for false negatives and true negatives would be meaningless as there is a
very low likelihood of randomly sampling a drilling event from the data set.

70

5.2.1 Schlumberger Version One Data Set

The Schlumberger version one data set was used as a test coverage data set. The data set contains
around 32,000 comments and 92 extracted drilling events were evaluated by a domain expert.
Table 5.7 shows the evaluation metrics for each drilling event.

Drilling Event | No. of Events | True Positive False Positive | Precision
Cavings 9 9 0 1

FIT 14 13 1 0.92

Kick 20 7 13 0.35
Losses 21 19 2 0.90
Stuck Pipe 13 8 5 0.61

Tight Hole 15 11 4 0.73

Table 5.7: A table showing the coverage classification results for the Schlumberger Version One
Data Set

The precision scores for the drilling event extraction were quite high for all events bar kick which
yielded a lot of false positives in comparison to true positives. Upon analysis of the kick false
positives, the current limitations with the approach were shown mainly in the underdeveloped
pre-defined cases and the lack of a mature entity linking system.

The lack of a developed knowledge base for the entity linking system results in false positives
due to a surface mention ambiguity for the domain phrases and overfitting to the training data set.
One example for kick false positives is a surface mention variation for well static which signifies a
negative outcome for a flow check test for kick events in a comment. The convention in the training
data set was to specify negative outcomes for a flow check test with ‘well static’. The convention
in the test coverage data set was to specify ‘well static’ as ‘well stable’.

Another set of false positives were due to underdeveloped pre-defined cases sets for the drilling
event argumentation framework. One false positive for kick was when there was a ‘gain’ which
should signify a kick event. However, the gain was due to air in the mud which is not a calibration
point as gain is valid for a kick event only if it is from a reservoir fluid. While the instance of
this scenario is quite rare, the argumentation case which would solve this doesn’t have to be this
explicit scenario. It can be a case that attacks the gain false positive argument by restricting it to
only reservoir fluids rather than encoding the gain due to air feature case.

5.2.2 Schlumberger Version Two Data Set

The Schlumberger version two data set was also used as a test coverage data set. The data set
contains around 290,358 comments and a random sample of 300 extracted drilling events were
evaluated by a domain expert. Table 5.8 shows the evaluation metrics for each drilling event.

Drilling Event | No. of Events | True Positive False Positive | Precision
Cavings 50 46 4 0.92

FIT 50 41 9 0.82

Kick 50 38 12 0.76
Losses 50 43 7 0.86

Stuck Pipe 50 35 15 0.7

Tight Hole 50 48 2 0.96

Table 5.8: A table showing the coverage classification results for the Schlumberger Version Two
Data Set

The coverage results from this data set are quite good with all events having a precision greater
than 0.7. Since there is a larger sample of drilling events to evaluate, the higher precision scores are
more representative of the coverage of the project implementation than the Schlumberger Version
One data set. Kick and Stuck pipe are still the worst performing drilling events relative to the
other drilling events and thus will need more work put into the pre-defined domain cases.

71

5.2.3 All Data Sets

Figure 5.17 shows the precision scores per drilling event for the public Australian data set, the
Schlumberger Version One data set and the Schlumberger Version Two data set using the current
implementation method.

A graph to show precision using the project
implementation method for all test data sets

03 ||
PRECISION 0.6 B
|
0.4 Bl
—
N i

Cavings FIT Kick Losses Stuck Pipe Tight Hole
DRILLING EVENT

Schlumberger Version One ® Public Australian m Schlumberger Version Two

Figure 5.17: A graph to show drilling event precision for two data sets

All drilling events bar Kick perform consistently well between the two coverage data sets. The
public Australian data set shows a major difference in losses and tight hole mainly due to some
mislabelling as well as the low sample size for events. There is a slight drop in precision for Cavings,
FIT and Losses from coverage test set one to two which shows that even for cases that perform
well on the test accuracy data set, there will be generalisation issues when examined on larger data
sets where there is more variance.

5.3 Performance

The automated solution will always be much faster than a manual approach as it takes roughly
20 mins to manually process a drilling report with 5 comments. However, the automated solution
still needs to execute in a reasonable time when scaling up in order to be viable for the iterative
process of improving the accuracy of the calibration point extraction process with new features
and domain knowledge improvements. Furthermore, the end-user experience will be impacted by
a long processing time especially on larger data sets exceeding 50,000 comments. Since both the
entity linking and abstract argumentation frameworks were created from scratch, the performance
of these two pipelines especially needs to be assessed. However, entity linking without a complete
knowledge bank was as implemented as a proof of concept mainly to show how contextual informa-
tion could be used to reduce surface mention ambiguity. Therefore, the performance of the entity
linking pipeline will not be assessed as scalability issues will not occur with the current number of
entities in the knowledge bank.

Scaling up the application for the abstract argumentation pipeline involves adding new cases and
case features for the abstract argumentation framework to process. The initial implementation
of the bulk processing abstract argumentation pipeline was simply chaining the initial proof of
concept sub-processes such as argumentation framework generation, dispute tree generation and
explanation generation. A single iteration for these unoptimised processes computed within sec-
onds for a single query comment and a small pre-defined case feature set. However, testing on
1000 comments with the same pre-defined case feature set without any optimisations took around
one hour which when scaled up to 50,000 comments for the training data set which would not
be a reasonable computation time. A target was set to reduce the computation time of a 1000
comments to within one minute. The list below shows the successive optimisations implemented
labelled by their optimisation number to achieve this target performance goal with the results of

72

the optimisation shown in Figure 5.18.

The performance analysis was done through the python standard library profiler, ‘cProfile’. The
results were analysed using another python standard library called ‘pstats’. These two libraries
enabled bottleneck analysis through profiling various performance statistics of the application such
as cumulative time and the number of calls for functions.

A graph showing the performance improvements of
the abstract argumentation pipeline for 1000
comments

COMPUTATION TIME _
[SECONDS)

2

2 3

PERFORMANCE OPTIMISATION NUMBER

Figure 5.18: Performance Optimisation Graph for 1000 comments

e Performance Optimisation One

The pre-defined argumentation framework for each new comment was computed every iter-
ation unnecessarily as only the addition of the new case had to be computed each iteration
so it was moved out of the comment iteration loop. The new comment features were also
computed every iteration which created an unnecessary overhead in the new data frame con-
struction when using the Pandas library. Therefore, the comment features for the set of query
comments was pre-computed as a lookup table rather than computing the new comment fea-
tures in the iteration loop. This optimisation reduced the computation time from around an
hour to around 15 minutes with the new bottlenecks shown in Appendix C in Figure C.1.

e Performance Optimisation Two

The initial implementation of the argumentation pipeline used a graph library called Net-
workx which was used to define a directed graph structure for the argumentation framework
and dispute tree. However, the overhead in using the library was slowing down the iterations
in the creation of the directed graphs in each iteration with the functions ‘add nodes from’
and ‘add edges from’ as well as the ‘reverse’ graph function used in the dispute tree and
explanation generation. The library Networkx was useful in some calculations such as the
longest child path for choosing a proponent attacker in the dispute tree generation. How-
ever, the representation as a Networkx directed graph was unnecessary and only having the
nodes and edges passed through as parameters between the argumentation pipeline processes
was sufficient and more optimal. Therefore, the Networkx implementation functions such as
‘reverse’ were removed from the argumentation graph sub-processes resulting in a perfor-
mance improvement from 15 minutes to around 10 minutes with the new bottlenecks shown
in Appendix C in Figure C.2.

e Performance Optimisation Three
The next optimisation was to completely remove the Networkx integration from the dis-
pute tree generation resulting in a performance improvement from around 10 minutes to 8.5
minutes with the new bottlenecks shown in Appendix C in Figure C.3.

e Performance Optimisation Four
The generation of the explanations was relying on iterating through the cases in the differ-
ent levels of the dispute tree and string concatenating a natural language translation of the

73

semantic triple from the case features in each node traversal. The string concat function was
inefficient to generate the natural language translation as it was done inplace within the iter-
ation for each case feature added to the explanation. Therefore, the explanation generation
algorithm was refactored to remove the string concat function and make the traversal more
optimal. Furthermore, iterating through a Pandas dataframe with itertuples and iterrows is
inefficient. These loops were replaced with vectorised operations in optimised C code by us-
ing Numpy vectorisation. These optimisations resulted in a performance improvement from
around 8.5 minutes to 3.4 minutes with the new bottlenecks shown in Appendix C in Figure
C.4.

e Performance Optimisation Five
At this point having analysed the performance of the application using the profiler, unseen
bugs in the argumentation implementation were found such as a bug which resulted in the list
of edges linearly increasing with each iteration. Fixing these bugs resulted in a performance
improvement from around 3.4 minutes to around 40 seconds which meets the goal of reducing
the argumentation processing time to less than a minute for 1000 comments. The final
performance analysis for 1000 comments is shown in Appendix C in Figure C.5.

While the performance for a 1000 comments has been optimised to a reasonable time, scaling up
to 50000 comments was still an issue with regards to memory problems. The current methodology
relies on loading case features for all new comments in the query data set and using the resulting new
case feature table as a lookup table. However, this speed optimisation results in increased memory
usage. Therefore, batch processing on the query data set was implemented to reduce memory usage
while also improving the computation time for larger data set sizes. Table 5.9 shows the results
of different experiments run to find the optimal batch size with regards to computation time for
different data set sizes.

Experiment Data Set Size (No. | Batch Size (No. of | Computation
of Comments) Comments) Time (Seconds)

1 1000 100 142.883

2 1000 1000 40.640

3 10000 1000 351.536

4 10000 10000 258.393

5 57270 10000 1532.889

6 57270 5000 1672.855

7 57270 57270 1820.388

Table 5.9: A table to show the results of the batch size experiments

From the experiments, it is clear that batch processing only has a positive performance gain in
terms of computation time at data set sizes greater than 10,000. The optimal batch size for
processing the whole training data set is shown in experiment five with a batch size of 10,000.

74

Chapter 6

Conclusion

This project demonstrates a complete automated workflow from taking in the raw comment data
sets to producing a calibration point output file using traditional data mining and natural language
processing techniques.

An extract transform load pipeline has been implemented in the data extraction module to ex-
tract the raw comments, pre-process them into a clean data set and load them into the SQLite3
Database. Exploratory data analysis was conducted on the Schlumberger training data set in or-
der to understand which features to extract for calibration point extraction as well as any hidden
correlations between drilling events and the explored features.

The feature extraction module contains statistical features that have been hand-engineered based
on the exploratory data analysis to increase the accuracy of the extraction of calibration points.
Statistical features include part of speech tags, noun phrases and domain keywords. A syntactic
parser has also been implemented to extract measurement data from the comments for the mea-
surement aspect of the calibration points.

A proof of concept implementation for entity linking has been developed to provide a way to
reduce surface mention ambiguity as a way of reducing false positives. The viability of applying
abstract argumentation with case-based reasoning as a feature analysis method to evaluate the
drilling events aspect of calibration points has also been demonstrated.

Finally, the calibration points were aggregated from the upstream pipelines to generate the cal-
ibration point file in the data insights module. A calibration evaluation pipeline has also been
implemented in the data insights module to assess the success of this project in terms of accuracy,
coverage and performance which have been largely achieved.

6.1 Key Achievements

The main achievement of this project was to create a framework for data mining which justifies
the outputs of the mining process through generated explanations.

The framework has been implemented for the extraction of calibration points through three stages:
extracting features from free text, mapping normalised features using semantic triples to cases and
formulating an explanation for a data insight using abstract argumentation for case-based reason-
ing. While the focus of this implementation is calibration points, the framework can be utilised for
any data insight in textual data. Furthermore, the framework allows the user to not only extract
calibration points from comments more accurately as shown in the evaluation results but also to
understand why the calibration points were extracted. Explain-ability is an important factor in
presenting the output to the user and this framework provides a basis to formulate thorough ex-
planations.

This project has novel contributions in demonstrating a practical implementation of machine argu-
ing research in a new domain. The problem with abstract argumentation with case-based reasoning

(0]

is finding a mapping from extracted variable features in the text to fixed predefined cases to formu-
late an explanation which is understandable. The aforementioned second stage in the framework
provides the missing link between extracted feature tables and the abstract argumentation frame-
work in a way that allows the relations to be clearly reasoned about in the framework. The second
stage is the feature analysis module consisting of the entity linking pipeline and the feature to case
(semantic triples) translations in the argumentation pipeline. The use of semantic triples in the
web resource description framework as the format for the cases allows relations to be easily defined
and reasoned with both across and within cases. The semantic triple also translates nicely into
natural language for explanation generation. The implementation of entity linking not as a form
of data enrichment but as a way to reduce the variability of surface mentions is key to the success
of the framework when generalising the domain inputs to the application across different data sets.

In terms of the success of the framework implementation with regard to calibration point ex-
traction, the results discussed in the accuracy evaluation show that across all drilling events there
have been improvements in precision, recall and fl-score when compared against the keyword in-
dexing implementation. In terms of meeting the gold standard of the manual benchmark, the
number of false positives was reduced to an acceptable level for manual refinement for all events.
The project implementation improved upon the results of some of the drilling events such as losses
and cavings in comparison to the manual benchmark by capturing missed drilling events.

However, there is still improvement to be made regarding tight hole extraction due to the low
precision score. Coverage scores were quite positive in terms of precision for all events bar kick
events. The performance of the project implementation for abstract argumentation with case-based
reasoning was also considerably improved from hours to less than a minute for a batch of 1000
comments. This performance improvement helped achieve the goal of implementing a practical
algorithm for the argumentation pipeline especially when considering that the whole pipeline was
implemented from scratch. Running the application on the Schlumberger Version Two Data Set
which had around 300 thousand comments was completed within a few hours and generated 18786
drilling events which constitute around 6.46% of the data set. Without this application, there is
no possibility of manually parsing all 300 thousand comments for the six drilling events and the
coverage results for this data set show that the proportion of actual drilling events is quite high
within the subset of comments extracted.

6.2 Limitations and Future Research

The three-stage framework established the groundwork for this project which many improvements
can be developed on. The main bottleneck in improving the accuracy and coverage of calibration
point extraction was to establish an efficient complete application in order to be able to experiment
with different methods and parameters. Now that the application workflow has been completed
more experiments can be conducted in each of the pipelines to tackle the limitations of the current
project implementation. There are two current limitations that can be solved by developing the
three-stage framework which are the incomplete predefined cases and proof of concept entity linking
implementation. Furthermore, neglected modules that were not the focus of research can also be
developed with the MVP now in place.

6.2.1 Structured Data Extraction

The scope of this project was limited to working with structured CSV file inputs for daily drilling
report comments. However, for future research, the structured data extraction modules could
be developed to extract tabular data from PDF documents to complete the high-level workflow.
Most of the daily drilling reports will be in a PDF format with free text comments in tables so a
possible solution would be to use a custom computer vision method to identify tabular structures
within the PDF document in combination with an open-source OCR library to extract the free-text
comments. There do exist various open-source python libraries that do tabular extraction directly
from PDF but these solutions are not robust as they sometimes miss tables in the document and
also have errors in extracting complete words over line breaks in one instance.

76

6.2.2 Domain Knowledge Improvements

The success of the abstract argumentation framework relies on the completeness of the predefined
cases for each drilling event. From the coverage results, there are still general cases that can be
captured in the predefined domain cases. Improvements to the domain knowledge inputs including
the predefined cases, in general, were difficult due to communication issues with the domain expert
created by remote working as a result of the Covid-19 pandemic during the course of the project.
While the general cases can be tackled through more complete domain cases, there may exist
unique edge cases for drilling events per data set that will be difficult to account for with only
textual information contained in the comment. To solve this in future iterations, the inputs to the
three-stage framework can be augmented with additional data from the drilling operation. This
additional support evidence can be analysed to extract features from, in order to support the cases
arguing for a drilling event occurrence in future iterations.

6.2.3 Supervised Feature Improvements

Better features can be explored in the feature extraction modules as a way to generate better cases.
The general supervised machine learning problem area of this project is extreme event detection.
Some supervised features such as a feature table of drilling event predictions from a model trained
using sequence classification with BERT were experimented with during the course of the project.
However, due to time limitations, they were not fully implemented and during the experimentation,
it was found that the training data set was mislabelled which significantly reduced the potential
accuracy of a supervised model. In future iterations with a better-labelled data set, the supervised
feature tables can be explored. Unsupervised learning methods to extract such as topic modelling
were also experimented with but not implemented in the framework due to the extreme event
nature of drilling event occurrence in the data sets.

6.2.4 Entity Linking Improvements

The current implementation relies on domain phrases as a key case feature in the predefined cases.
However, as the coverage results have shown, surface mention ambiguity for domain phrases leads
to false positives and false negatives. Therefore, a significant improvement would be fleshing out
the entity linking pipeline especially in the development of the knowledge base. Knowledge bases
do exist for general entity linking such as DBpedia but a domain-specific knowledge base is nec-
essary as the comments contain terms which are heavily domain-specific [SWH15]. A web parser
which trawls through Petro Wikipedia articles would populate the knowledge base with enough
entities to increase the extraction accuracy once the licensing issues are solved [Soc20]. In this
improvement, the domain phrase feature would be phased out and replaced by the normalised
linked entity equivalent of the domain phrases removing surface mention ambiguity.

The algorithms within entity linking can also be improved especially in candidate entity ranking
where a graph-based algorithm which enables collective ranking would result in better candidate
entity ranking scores as it would take into account contextual information in the comment and
with the other candidate entities.

6.2.5 Machine Arguing Framework Improvements

The machine arguing framework is currently limited to an abstract argumentation for the initial
implementation. There are extensions that can be added to the abstract argumentation framework
such as different definitions of attacks. Currently, an attack is a simple binary relation between
two cases but it can be augmented to have weights based on the case feature scores within the two
cases. Another extension could be to add preferences to certain sets of cases based on the sources
of the case features such as objects in the semantic triple or the contextual level of the case feature.
Preferences allow prioritising cases or rejecting an attack if a lower preference level case attacks a
higher preference level case.

7

6.2.6 User Experience Improvements

The final set of improvements is to improve the usability of the application. Currently, the ap-
plication is implemented as a series of library modules that are exposed via several module class
APIs. The APIs are called by a Juptyer notebook with the general experiment parameters such as
data set and argument set through a configuration file. The architectural design of the application
was done in order to be able to refactor the code with minimal effort into a web application where
the python library modules can be put in a Flask back end. A web application can be created
which ingests the data set specific aspects of the project such as the raw data set files and data set
labels. The value of the user interface would be in creating a page which allows cases to defined
for arguments in a more intuitive way than defining case features lines in a CSV file. This web
application would also allow the data insights to be visualised in a graphical format. A graph for
each well location of depth and mud weight could be plotted with the data points being calibration
points.

78

Appendix A

Daily Drilling Reports

APACHE ENERGY LIMITED

Page 10of 3
C'pﬂ(ﬁ(' Daily Drilling Report
WELLBORE NAME DATE
Con-10H 14-02-2013
APl # 24 HRS PROG TD VD REFT NO
0o {m) (m) (m) 1
RIG FIELD NAME BUTHTMD PLANNED DOW DoL DFS WATER DEFTH
ATWODD FALCON CONISTON 422300 (m) 48,88 (0ays| 034 {a3ys) 000(gays) |3T7IE (M)
WB KO DATE WELLSPUD DATE | RIG RELEASE UPERVISOR 1 FETMD
18-02-2013 11:30 13-02-2013 11:30 02-11-2014 16:00 ERRY HODVER | CRAIG MITCHELL/BILL McNAUGTEHVE STENZEL
REGION DISTRICT STATE I PROV RIG PHONE NO RIG FAX NO
AUSTRALIA CARNARVON BASIN WESTERNAUSTRALIA
AFE #17-1240108-PD-031 [#FE CosTs DAILY COSTS [cumuLemve cosTs
DESCRIPTION: DHe: 35,000,388 DHC 2,086,360 DHC: 2,056,860
Con-10H (Bi-Lateral) Dril and Comglete pcc: 23425183 pec pec:
Supp 1 cwe: =1 WG
others: Others: |others:
TOTAL 58434571 TOTAL: 2,086,360 TOTAL: 2,056,860
DEFAULT DATUM ELEVATION LAST SAFETY MEETING [BLOCK C3G# [TARGET FORMATION [BHA HRS OF SERVICE
ACTUAL FALCON RTE /22.25 {m) 1022013 Ae35L BARROW
LAST SURVEY LAST CSG SHOE TEST (EMW) | LAST casing HEXT CASING
MD 0.00(m) NC 000t LM 000 762.000 mm @ 465.80 m

24 HR SUMMARY:

24 HR FORECAST:

(CURRENT OPERATIONS: Stand Dy waitng 7or Far SKy 1o amve on lacaton.

Moved Atwood Faicon from Nov-4H to Con- 10H. Ran anchors #2 & 6. 17:32 hours brake falled on anchor winch #3, anchor chain dropped to sea bed.
Anchar operations stopped to wait on Far Sky to amive on locaton ETA 05:00 hours.
Stand by, wat for Far Sky to transfer to Tow bridie. Skandl Alantc wil rasume Anchor deployment.

OPERATION SUMMARY

From To

HRS Op Phass Op Code

PTMPT

NPT CODES

ACTIVITY SUMMARY

400 | 1800

18:00 0:00

250 R-MOB-DEMOB ANCHOR

1400(R-MOB-DEMOS ANCHOR

600 R-MOB-DEMOB

=

=

CN

MODUA

[operations commenced on Con-10 on Fedniary 14t 2013 3t 01:30 howrs.

Hauled In anchor chain to 370 coanection compieted 3t 02:25 his. Hawked In chain to
[28m (750°)from rig.

[Moved Atwood Faleon from Nov=3H Iocation to Con-10H with Far Strait hokling #6
fanchor.

[p2:50 hours: Far Strat commenced running Anchor $5 pakd out 1,308m (4,203) of
3N, compieted X/Over 3t DE:24 WS, SNCHOF on Dottom a1 0720 s CNased back
[PCC secured 3t DE-S0 hes. Langtn of wire and chain paid out 2,135m (7,004

[Fassed PCC #2 to Far Stralt, fig paid out 1,251m {4,207 of ehain, compisted Xiover
[t 11:18 frs, anenor on botiom at 12:03 s, chasad D3ck PCC Secured at 13:21E,
|Langtn af wire and chain pakd out 2,038m (5,587

13:45 hours: Passed PCC #7 to Far Siralt, pald out chain and Far Strailt decked #7
[ancnor. Far Strait disconnected &7 anchor. DAamaged aNChor was ransered Dack 1o
stwood Falcon for repairs at 15:10 hrs.

15:03 hours: Passed #3 PCC to Far Siralt, pald out chain to X/Over paint 1,310m
2.300°). At 17:32 NFS #3 aNChor winch brake Taled and chain spodled off 1o 523 bed.

[SKaNDI ATEMIC MANTaNINg rig pOSTIoN . Far SKy will ArMve on I0CaNon anound 09:00 Nrs.
[Far Sky il replace Mie Skandl ATantic on the tow bridie and the Skand Atiantic wil

FEsume Ancnor geployment.

22.50 = Total Hours Toaay

Printed: 0200212015 2:44:03FM

Figure A.1: Public Australian dataset sample

79

@ Scientific Drilling:

ORMAT
Carson Field

Drilling Run Report for Forge 21-31 BHA #5

Drillstring Components (12 1/4 BHA #5)

- B Fishing | Fishing
) Outside | Inside Total
trem - Serial : Neck Neck Top Length
’ Description Vendor No. Diameter Dlal_nehel oD Length Coni jon 1#) Length
(im} fin) {in) () (ft)
4 [3x6125=aDCs Faul Graham NIA 512 234 0 0.00[% 172 %M 0134 D
16 [20x4 117 HWDP Faul Graham NIA 5z 0 0.00[% 12 %M 1032 07406
Mud Properties
Bit Mud Yield | Plastic | Funnel - .) BotHole | Flow
Date | Time | Depth | Weight | Point | Viscosity | Viscosity c’(‘:’""]‘s BH I?i; f‘;: s:";z‘l" 5"“';‘]" Line Temp. Temp.
) {ppa) | (BA00FE) | (cp) (Secs) pm) R
20Feb2018) 08:30| 33000 02 180 120 45| 1D0000| 1030 000|000 025 500 0.00 [00
21Feb2018] 00:00] 48000 o1 100 12.00] 40| 1o0o0] 1oo] ooa] o0o0] o025 o0 0.00 1560 1480
Activity Breakdown
st End Course | Rate of
Date | Start Depth | Length | Penetrn Activity Comment
") [{Fhr)
30 Feb 2018 0000 238000 Change BHA Fick up and scrbe motor, wait on new Bit choice
20Fen 2018 0230 438000 [Rig Repar ‘Accumulator & BOP stack frozen
20Fen 2018 0430 438000 Change BHA Fick up non mag anl callars out of the demck
20 Feb 2018 05:00 4,380.00 Change BHA Scnibe collar, Heat collar and orient MWD tools to scribe
30 Fen 2018 0548 438000 Change BHA Fick up shook sub
[N 235000 Trpng I Trie i ol win remaining BHA 35 (DC's, Jars, HWDP) o the
20Fen 2018 0815 338000 Gither Wud pumps froze up. Thaw mud pumgs
20Feb2018| 0830 1000| 050| 4238000| 438000 Circulate andior Condiion Mug | b PPe Gredate and test MWD No pressurs on transducr.
20Fen2018| 1000| 10-13] 025 438000| 438000 Circulate anaior Condition Mud | Changs transducer, test MWD, Good test
J0Feb201E| 10-15| 1400 375| 438000 438000 Circulate andior Condifion Mud | Circulate with pump #1 while working on pump 52
20Fen 2018 1400) 1505 108 438000 Trippng In Trip in hole to 3000° MD. il pipe.
o0Feb201s| 1505 1700 182 4238000 Circulate andlor Candition Mud | CTeuIate with 2 pumps, test MIVD, check temp. MWD temp =
| 20Fen2018] 17:00| 435000 Tripping In Trip in el to 4320° ND
20Fe52018| 1730| 1800] 050 438000 [Reaming Ream Iast fwo joints from 4320° to 4360°
20Fen2018) 1800) 1818) 030 438700 7.00 23.33|Rotating
20Fen2018| 1818 238700 Survey & Connecion MWD temp = 138° F
20Fen 2018 1828 228000 7300 13.18| Rotating
21Fen 2018 0000 248000 00 17.14| Rotating MIND termp = 165° F
21Feb 2018| 01:10 4.480.00 Survey & Connection Fix mud cooler
Z1Fen 2018 0120 354000 50,00 22 50| Rotating MWD ternp = 138° F

Figure A.2: Public Forge dataset sample

80

CALIFEHNIé ENe..8Y CD.,INC.-DAILY DRILLINE .EPORT

WELL ND.__TCH 48-11 “° : 4 1/2" CSG-_475°
REPORT NO.__ 10 DATE_10/04/93 AFE NO. E4BWL1S " CSB.
CONTRACTOR LONGYEAR. RIG ND._ &02 " CSG. o
RIG DAYS_ 09 - _DRILLING DAYS_ 08 - " LNR.
DEPTH @ 2300 HRS. 490" FODTAGE DRILLED 0 _ B
ACCUM DRLBG HRS. SINCE LAST INSP. BLODIE LM VLVH
HRS. DRILLED HRS. TRIPPED = HRS. OTHER _
S E S EEsssSE=scssssssss=SS===—o===== oo ommm==a
MUD WT. 8.4 VISC. 44 W.L. CK. 1.0 PH. 3.5 CHL. 150
GELS SAND SOLIDS %LOST CIRC. MTL. TEMP IN_
-_-=======::—-v===1'====.—'k======!:===:ZE========E==::=======I=
PUMPS LINER STROKE SPM. GPM. PSI. TOTAL BPM MOZZILE VEL
1 2 1/4 4n 80 3 OPEN
B =
AIR COMPS, CFM PSI TEMP F. PRESSURE IN _out__
CHEMICALS RATE
“ORMATION DRILLED ..MUD COOLER YES __NO___nNO.
==Z====::============-=====.======Z==E‘r=========:ﬂ:l==‘_‘==='.!=====.=:::‘_‘::Z::::
BIT SIZE MAKE TYPE SER.# JETS IN QUT FT HRS WT RPM COND.
402 8 1/2 SLT ' OPEN _ L 12 100 T__ B G
_ I T T Tl
- —_ I - -
DRLE. ASSY._128° — 6" D.C. 139" - 4 1/2° D.C.
STRING WT.- 14,000 UP-WT. DN WT._ ROT TORQ.
=..'-'===‘—-z=======1:::==ﬂ--====!!=====z========a:======:======z=.—.===:z=:::==:z==
24 HR SUMMARY: , MUD ADDITIVES
PRODUCT AMOUNT
MA00—0ZG0__POOH__LAY _DOWN D.C CEMENT
0300-04630__R. 1 CASING o KWIK BEN -
430—0B30__CIRCULATE HOLE _ DETERBENT
0830-0920 RIG UP_HAL IBURTON PAPER -
0920-2200 W.0.C MABMAFIBER
2200-2400 NIFFLE UP B.0.P DAILY MUD COST_ 1
' ACC COST
WELL COSTS ____
FORWARD
ACC COST____ 57,972
AFE. $ 299,050
SUP. AFE_______
OPERATIONS @ 0500 HRS._ - CONTRACTOR ACCIDENTS:
. s YES NO___ X
REMARKS
================Eﬂ===.===‘.======I================ll=======-B==============‘_—==
M.D. ANGLE DIR. T.V.D. V.SEC. N-S CORR. E-W CORR. D.L.S. TARGET.
e _ _DEPTH_____
- o MUD MTR HRS

ACC MUD MTR HR
~ MONEL NO.

o LENGTH
OPF ON LOC.,SIZE HE JT8 82 SI17E ITS
FUEL ON HAND USED REC'D DRLG. SUPERVISOR 1. HHASSE

Figure A.3: Public Historical dataset sample

81

Appendix B

Daily Drilling Reports Comments

NPT: REAMED DOWN FROM 2405 M TO 2491 M .FLOW RATE:
1500 LPM 1% SPP : 690 PSI 1% 120 RPMRECORDED SCR @ 2491
M FOR PUMP 2 & 3 :SPM SPP(PSI)----- -~ 30

24040 30050 380

Figure B.1: Training Data Set Comment Sample One

Drilled 12-1/4{£ hole from 3940 ft to 4817 ft Sliding Mode:- Flow Rate =

RPM = 40+203 (Sur+Motor), TQ= 4.5-10 KIb-ft* Avg on bottom Sliding
ROP = 21.7 ft/hr. * Avg on bottom Rotating ROP = 54.3 ft/hr. * Avg.
overall ROP = 36.6ft/hr- MWin = 68PCF MWout = 68PCFSliding
interval:4280'-4295'1a 4363'-4390'1V4 4431'-44411% 4460'-4480'1
4520'-4535"4 4747'-4764" Sliding percentage: 12%.Av. ROP (From
3144)= 33.62ft/hr. - Last survey @ 4666ft: inc=40.7degi%

45384 MW: 68pciP1: 30spm 320psi / 50spm 420psiP3 : 30spm 300psi
/ 50spm 400psConducted fire drill and fire pump test @ 15:00. Good
response.

Figure B.2: Training Data Set Comment Sample Two

82

With ROV observing bullseye, slacked -off conductor string
weight in 13.6MT (30klbs) increments. No slump or bullseye
movement observed. Backed out CART and recovered CART
complete with inner string to moonpool (flushed through
string with wiper ball with stinger above wellhead). GE hand
removed the 4 x lock down bolts from CART. Recovered CART
through rotary table. Inspected seals - all good. Racked back
CART assembly and inner string in the derrick . Neptune
completed final survey & issued final location report
(summarized below): Easting 196,445.84m Northing
7,636,346.83m 1.37m on a bearing of 32.9° True from target
location. PGB orientation: 321.9° Grid LP housing elevation
above virgin seabed = 2.28m Commenced kedging rig at
10:30hrs. Operations transferred to Coniston-12H.

Figure B.3: Public Australian Data Set Comment Sample One

POOH with 216mm (8 1/2") BHA on 127mm (5a€0Vam EIS
drill pipe from 4,059m to 3,776m at 4.0 min/std. Average
P/Up weight 113.4MT (250klbs), max overpull observed 4.5-
SMT (10-20klbs). Hole condition good.

Figure B.4: Public Australian Data Set Comment Sample Two

Test motor. Motor passed the test, tested at 300 GPM
showing 350 PSI.

Figure B.5: Schlumberger Version One Data Set Comment Sample One

83

Drilled 12-1/4;+ hole from 3940 ft to 4817 ft Sliding Mode:- Flow Rate =

RPM = 40+203 (Sur+Motor); TQ= 4.5-10 KIb-ft* Avg on bottom Sliding
ROP = 21.7 ft/hr. * Avg on bottom Rotating ROP = 54.3 ft/hr. * Avg.
overall ROP = 36.6ft/hr- MWin = 68PCH MWout = 68PCFSliding
interval:4280'-4295'T4 4363'-4390'1a 4431'-44417% 4460'-4480'1V4
4520'-4535" T 4747'-4764" Sliding percentage: 12%.Av. ROP (From
3144)= 33.62ft/hr. - Last survey @ 4666ft: inc=40.7degi4

4538V MW: 68pctP1: 30spm 320psi / 50spm 420psiP3 : 30spm 300psi
/ 50spm 400psConducted fire drill and fire pump test @ 15:00. Good
response.

Figure B.6: Schlumberger Version One Data Set Comment Sample Two

84

Appendix C

Performance Optimisations

Mon May 25 18:19:08 2028 pstats
1339567890 function calls (1305284510 primitive calls) in 910.286 seconds

Ordered by: cumulative time, function name
List reduced from 1477 te 20 due to restrictien <28>

ncalls tottime percall cumtime percall filename:lineno(function)
87003/1 42.174 9.90@ 912.654 912.654 {built-in method builtins.exec}
1 8.171 B8.171 912.654 912.654 argumentationAPI.py:1348(post_srgumention_sxplanations)
1 8.79@ 8.799 912.435 912.435 argumentationAPI.py:8%4(_ generate_dataframe_explanations)
1e8a 4.615 B.985 331.426 8.331 argumentationAPL.py:811(_ generate_explanation)

1eae 8.811 8.908 288.765 8.281 argumentationAPI.py:736(_ compute dispute_tree)

28000,/1008 3.811 f.00@ 280.584 0.281 argumentationAPI.py:755(recurse_child)
94988 B8.917 B.@0a 277.17@ 8.803 digraph.py:1181(reverse)
87002 1.625 ?.989 195.638 2.882 frame.py:849(itertuples)

1686 3.668 8.084 198.867 ©8.198 argumentationAPL.py:281(_ add_new_cases_arg_graph)
1931166/1627889 3.148 ©.808 177.568 0.800 indexing.py:12485(_ getitem_)
55792156/31745204 65.809 B.8028 150.°984 B.800 copy.py:132(deepcopy)

549668 3.934 a.ega 147.772 888 frame.py:2893(__getitem_)

96988 34.454 2.900 141.893 .881 digraph.py:643(add_edges_from)

95989 28.274 8.808 133.175 881 digraph.py:428(add nodes_from)
214213 1.243 ?.989 127.889 .881 frame.py:2952(_getitem_bool_array)
1824565 2.793 9,908 11%.897 .88 indexing.py:2205(getitem_axis)
217582 2.284 9.8 110.995 ©.801 generic.py:3323(take)

1383213/1382213 7.266 ©.808 110.619 0.800 series.py:152(init_)

119865 8,299 8.888 187,738 8.881 {method 'extend® of 'list' objects}
BE9@16 1.637 2.989 187.491 @.088 frame.py:919(<genexpr>)

[~ R

Figure C.1: Performance Optimisation pStats output for Optimisation One with 1000 comments

85

Tue May 26 11:87:12 2828 pstats
835548057 function calls (828337574 primitive calls) in 683.707 seconds

Ordered by: cumulative time, function name
List reduced from 1433 to 20 due to restriction <2@>

ncalls tottime percall cumtime percall filename:lineno(function)
B878@3/1 3B8.154 8.200 605.880 605.882 {built-in method builtins.exec}
1 8.179 B.179 605.879 605.879 argumentationAPI.py:1239(post_argumention_explanations)
1 G848 6.848 605.64% 685.649 argumentationAPIL.py:785(_ generate_dataframe_explanations)
1888 4,142 8.884 392 488 ©.382 argumentationAPI.py:693(_ generate_explanation)
87802 1.539 9.890 179.854 2.9082 frame.py:849(itertuples)
996166,/982889 2,606 2.e0@ 138.710 9.008 indexing.py:1485(_ getitem_)
16088 ©.908 B8.801 124.163 8.124 argumentationAPI.py:618(_ compute_dispute tree)
2888 B4.65@ 8.842 188.666 9.854 digraph.py:643(add_edges_from)
111735/111729 9.284 9.800 100.451 2.081 {method 'extend' of 'list’ objects}

8690816 1.546 B.808 108.177 8.000 frame.py:919(<genaxpr:)
782018 8. 604 B.288 91.292 2.900 indexing.py:2141(_getitem_tuple)
899565 2.184 8.208 34.395 2.000 indexing.py:2205(_getitem axis)
301668 2.111 B.288 70.366 9.200 frame.py:2893(__getitem_)
782818 5.798 9,288 59,949 8.000 indexing.py:968(_getitem_lowerdim)
1 3.329 3.32% ©68.643 68.643 argumentationdPI.py:965(_ generate argument cases)
lees 51.219 8.251 658.198 9.0628 argumentationAPI.py:545(_ compute_grounded extension)
89213 8.519 B.808 56.446 8.001 frame.py:2952(_getitem_bool_array)
92582 @.921 B8.808 51.525 28.801 peneric.py:3323(_take)
37802 3.854 e.e@@ 508.933 @.881 _ init_ .py:357(namedtuple)
Jae1ese7 21.579 B.288 49.634 @.0080 {built-in method builtins.isinstance}

Figure C.2: Performance Optimisation pStats output for Optimisation Two with 1000 comments

Tue May 26 12:24:29 2820 pstats
732506331 function calls (723794863 primitive calls) in 511.610 seconds

Ordered by: cumulative time, function name
List reduced from 1417 to 28 due to restriction <2@>

ncalls tottime percall cumtime percall filename:lineno(function)

B7003/1 35.189 @.908 513.650 513.650 {built-in method builtins.exec}
1 8.172 ®.172 513.658 513.650 argumentationAPI.py:1257(post_argumention_explanations)
1 5.132 5.132 513.428 513.428 argumentationAPI.py:B803(__generate_dataframe_explanations)
1008 3.854 2.804 286.845 8.287 argumentationAPL.py:711(_ generate_explanation)
87002 1.557 9.800 171.849 08.082 frame.py:849(itertuples)

906166/902880 2.458 ©.808 132.632 0.800 indexing.py:1485(_ getitem_)

111453 B.2608 9.988 96.2081 8.801 {method 'extend' of "list' objects}
869016 1.425 @.908 95.942 8.088 frame.py:919(<genexpr>)
782018 8.767 2.086 87.535 8.808 indexing.py:2141(_ getitem tuple)
BY9565 2.894 ?.900 B80.684 8.000 indexing.py:2205(petitem axis)
7820618 5.577 2.006 67.184 8.808 indexing.py:968(getitem_ lowerdim)
301668 1.91@ 2.000 66.189 B.000 frame.py:2893(_ getitem)
lo@a 48.B88% B.84% 65.460 B.865 argumentationAPI.py:545(_ compute_grounded_extension)
1 3.181 3.181 65.281 65.281 argumentationAPIL.py:987(__generate_argument_cases)
le8e 17.584 8.818 55.911 B8.856 argumentationAPL.py:618(__compute_dispute_tree)
89213 8.465 B.200 53.875 8.801 frame.py:2952(getitem_bool_array)
92582 8.847 B8.086 AB.682 6.081 generic.py:3323(_take)
TBBA1389 21.081 2.000 47.981 8.880 {built-in method builtins.isinstance}
87682 2.B43 2.086 A7.063 8.881 _ init__.py:357(namedtuple)
92582 0.963 @.908 42.783 8.000 managers.py:1329(take)

Figure C.3: Performance Optimisation pStats output for Optimisation Three with 1000 comments

86

Tue May 26 15:@83:58 2020 pstats
398630201 function calls (388842977 primitive calls) in 2085.919 seconds

Ordered by: cumulative time, function name
List reduced from 1391 to 20 due to restriction <2@>

ncalls tottime percall cumtime percall filename:lineno{function)
2883/1 @, 504 @.088 2065.228 206.228 {built-in method builtins.exec}
1 a.136 @.136 206.228 286.228 argumentationdPI.py:1252(post_argumentiocn_explanations)
1 3.839 3.839 206.047 206.847 asrgumentationAPI.py:798(_ penerate_dataframe_explanations)
1 3.128 3.128 64.564 64.564 argumentationdPI.py:982(_ generate_argument_cases)
1888 12,881 @9.813 47.223 0.@847 argumentationAPIL.py:619(_ compute_dispute tree)
1880 33,728 @.,834 45,577 8.0846 argumentationdPL.py:546(_ compute_grounded_extension)
226850/222231 9.479 0.008 42.481 0.008 indexing.py:1485(getitem)
BBEE36 B.278 @.088 36.864 8.080 notebook.py:216(_ iter_)
888636 1.513 ©.888 36.504 8.800 std.py:1896(iter)
131565 @.188 @.ee8 33.811 8.080 indexing.py:2285(_ getitem axis)
114271 @.232 @.ee8 32.251 9.099 ops.py:134({get_iterator)
114271 ©.287 ©.880 32.818 ©.000 ops.py:811{ iter)
114268 @.314 @.008 31.463 8,098 ops.py:B62(_chop)
114269 @.258 @.688 38.683 98.88@ indexing.py:2178(_get_slice_axis)
114269 2.188 @.988 28.87B 9.800 indexing.py:148(_slice)
114269 @.667 @.088 28.770 9,080 pgeneric.py:3155(slice)
114269 e.781 @088 26.374 9.88@ managers.py:684(get_slice)
B8090 /1080 14.543 g.990 22.999 8.922 argumentationAPL.py:665(recurse_child)
253898258534 3.115 a.88e 19.216 2.282 base.py:252(__new_)
244222 @.395 @.898 19.243 B8.800 numeric.py:67(_shallow_copy)

Figure C.4: Performance Optimisation pStats output for Optimisation Four with 1000 comments

Thu May 28 14:24:27 2020 pstats_med
37285592 function calls (36663583 primitive calls) in 40,640 seconds

Ordered by: internal time, function name
List reduced from 1275 to 20 due to restriction <20>

ncalls tottime percall cumtime percall filename:lineno(function)

19 4,358 @.229 4.358 0.229 {method 'fetchall' of 'sglite3.Cursor' objects}
38413 2.185 @.e00 2.185 9.080 {pandas._libs.lib.maybe_convert_objects}

5898394 1.947 0.000 4.527 0.008 {built-in method builtins.isinstance}
3859617,/3855%941 1.637 a.e08 1.682 9.288 {built-in method builtins.getattr}

2004/1 @8.955 @.000 40.687 40.687 {built-in method builtins.exec}

2674862 2.938 9.e98 2.132 2.088 generic.py:7(_check)
5527@ 2.682 9.ee8 1.886 9.008 {pandas._libs.lib.infer_dtypel}
344934/316509 @.546 .00 1.192 @.2000 {built-in method numpy.array}

412328 8.521 2.e88 1.118 9.088 common.py:1845(_is_dtype_type)

897003 2.515 9.008 8.522 9.008 {built-in method builtins.hasattr}
1928851/1647473 9.449 9.e08 8.772 .28 {built-in method builtins.len}
24315/21848 8.423 9.980 2.742 ©.860 base.py:253(__new_)

1768321 2.491 9.e00 2.481 2.008 {built-in method builtins.issubclass}

498876 0.400 9.000 2.288 9.000 base.py:75(is_dtype)

1727@3 9.356 .00 8.977 @.080 _dtype.py:312(_name_get)

168815/1734 B.341 B.808 208.625 8.812 function_base.py:2882(func)
268830 9,348 @.000 8.662 ©.088 dtypes.py:68(find)
322828 8.336 @.e00 8.587 ©.088 abc.py:188(__instancecheck__)
87289 8.324 8,008 B.675 6.000 indexing.py:18081(_is_scalar_access)
16616 98.313 @.000 8.746 @.088 managers.py:186(_rebuild_blknos_and_blklocs)

Figure C.5: Performance Optimisation pStats output for Optimisation Five with 1000 comments

87

Appendix D

Configuration

Figure D.1: Configuration File for the general settings

"calibration points’

Figure D.3: Configuration File for the feature extraction settings

88

'name_dictionary"”

Figure D.4: Configuration File for the feature analysis settings

89

Figure D.5: Configuration File for the data extraction settings

90

"stuck pipe”
../ ../Data/Datasets/training.csv
../ ../Data/Evaluation/training_eval

“no event”
"tight hole

vant

Figure D.6: Configuration File for the workflow orchestration settings

Appendix E

External Libraries

Library Description Reference
numpy (1.16.3) Used for optimised scientific calculations in most pipelines CVW11|
pandas (0.24.2) Used as the main data structure in all pipelines McK10]
PyYAML (5.1) Used to parse the configuration file Sim20]
nltk (3.4.5) Used in the statistical features pipeline BLO02|
textstat (0.6.0) Used to generate readability metrics for Exploratory Data Analysis BA20|
spacy (3.1.0) Used to experiment with Named Entity Recognition HI17|
transformers (2.11.0) | Used to experiment with sequence classification with BERT Wol+19]
tensorflow (2.2.0) Used to experiment with supervised machine learning neural networks | [Aba+15]
torch (1.5.04-cul01) Used to experiment with supervised machine learning neural networks | [Pas+19]
scikit-learn (0.23.1) Used to generate evaluation metrics Ped+11]
networkx (2.4) Used to visualise argumentation graphs HSS08|
tqdm (4.31.1) Used to track progress of loops Cos19]
notebook (6.0.3) Used as the experimentation test bed Klu+16]
nbformat (5.04) Used to auto generate Jupyter Notebooks in experiment setup Klu+16
ipywidgets (7.5.1) Used for tqdm to work with Jupyter Notebooks Klu+16
wordcloud (1.6.0) Used to visualise word frequency counts Mue20|
matplotlib (3.0.3) Used to visualise graphical plots Hun07]

Table E.1: A table showing the external libraries used in the development of the project

92

Appendix F

Exploratory Data Analysis
Visualisations

Readability Score per comment —

120

100

Readability Score

0 10000 20000 30000 40000 50000 60000
Comment ID

Figure F.1: Automated Readability Graph for Schlumberger Training Data Set

Readability Score per comment —— FleschReadingEase

200

100

0
[

§ =100
z

8 -200
2
3
&

=300

—400

-500

0 10000 20000 0000 20000 50000 60000
Comment ID

Figure F.2: Flesch Reading Ease Graph for Schlumberger Training Data Set

93

Sentiment Score per comment —— NegativeScore

o8

06

04

Sentiment Score

o2

oo

o 10000 20000 30000 40000 50000 60000
Comment ID

Figure F.3: Negative Sentiment Analysis Score for Schlumberger Training Data Set

Word Cloud for NounPhrase
every stand every

trip tank

=1 - Nno .

YOOh
rlhoflt);rrf t
n?ole

m_C O dow

Word Cloud for VerbPhrase

flow rate pressure differential pressure

observed no down hole flow rate

wob torque_avg rop o b rop mw

drilled- hole

illed directional hole se in rotary mode
Figure F.4: Phrase Chunker Word Clouds for Schlumberger Training Data Set

94

NounPhrase

I

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

bha': 1416,

every stand': 1711,
flow rate': 1835,
hole': 4356,

m': 2923,

mud': 1438,

no': 3783,

no downhole': 2378,
pressure’: 1487,
rate’: 4246,

rih': 1383,

rop': 1483,
static': 1914,
surface': 1628,
top': 1282,

trip tank': 1883,
u': 1293,

'hole': 3747,
'poch': 2322,
'rih': 1988}

VerbPhrase

{':

1

1
1
1

9877,
downhole rop on bottom avg rop': 245,

every stand drilled': 288,

flow rate': 2599,

flow rate pressure differential pressure': 318,

' lost for this period m': 224,

1
1
1
1

1

observed no down hole': 261,

running tool': 293,

tq me': 274,

wob torque avg rop o b rop mw': 648,

I flow rate pressure differential pressure': 242,

'drill hole': 243,

'drill production hole f': 367,

'drilled directional hole': 268,

'drilled directional hole section in rotary mode': 444,
'drilled hole': 2929,

'drilling hole': 2286,

'flow rate': 982,

'performed flow check': 219,

'performed survey with mwd at depth': 258}

Figure F.5: Most Common Noun and Verb Phrases for Schlumberger Training Data Set

CommentCount 2639959
kordCount
NumberCount 260947
SymbolCount 739391
DecimalCount 61732
FractionCount 28435
TimeCount
CommahNumberCount =)
Rangelount 48173

1567526

1755

Figure F.6: Token Frequency Counts for Schlumberger Training Data Set

95

Bibliography

[A1188]

[Dun95]

[OBM99)]

[BLO2|

ZH03|

[ASO05]

[HunO7]

[HSS08]

[MRS08]

[Afs+09]

[BKLO9)

[Esm-+10]

[McK10]

James Allen. Natural Language Understanding. 2nd. USA: Benjamin-Cummings Pub-
lishing Co., Inc., 1988. 1sBN: 0805303308.

Phan Minh Dung. “On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games”. In: Artificial Intel-
ligence (1995). 1sSN: 00043702. DOI: 10.1016/0004-3702(94)00041-X.

S. Ottesen, S. Benaissa, and J. Marti. “Down-Hole Simulation Cell for Measurement
of Lubricity and Differential Pressure Sticking”. In: SPE/IADC Drilling Conference.
Amsterdam: Society of Petroleum Engineers, Apr. 1999. pOI: https://doi.org/10.
2118/52816-MS. URL: http://www.onepetro.org/doi/10.2118/52816-MS.

Steven Bird and Edward Loper. NLTK: the Natural Language Toolkit. 2002. DOTI:
https://doi.org/10.3115/1118108.1118117. URL: https://dl.acm.org/doi/10.
3115/1118108.1118117.

Georg Zangl and Josef Hannerer. Data Mining Applications in the Petroleum Industry.
Round Oak Pub, 2003. 1SBN: 0967724813. URL: https://searchworks . stanford.
edu/view/5806917.

Jay Akers and Jay Sellers. “Use of Pressure-While-Drilling Tools to Improve Formation
Integrity Test Interpretation”. In: SPE/IADC Drilling Conference. Amsterdam: Society
of Petroleum Engineers, Apr. 2005. DOI: https://doi.org/10.2118/91852-MS. URL:
http://wuw.onepetro.org/doi/10.2118/91852-MS.

John D Hunter. Matplotlib: A 2D Graphics Environment. 2007. DOI: DOI:10.1109/
MCSE.2007.55. URL: https://matplotlib.org/.

Aric A Hagberg, Daniel A Schult, and Pieter J Swart. Ezploring Network Structure,
Dynamics, and Function using NetworkX. 2008. URL: http://conference. scipy.
org/proceedings/SciPy2008/paper_2/.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to In-
formation Retrieval. 1st. New York: Cambridge University Press, 2008. 1SBN: 0521865719.
URL: https://dl.acm.org/doi/book/10.5555/1394399.

M Afsari et al. “Mechanical Earth Model (MEM): An Effective Tool for Borehole
Stability Analysis and Managed Pressure Drilling (Case Study)”. In: SPE Middle East
Oil and Gas Show and Conference. Manama: Society of Petroleum Engineers, 2009,
pp. 15-18. DOL: https://doi.org/10.2118/118780 - MS. URL: https : //www .
onepetro.org/conference-paper/SPE-118780-MS.

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
First. Sebastopol: O’Reilly, 2009, pp. 261-286. URL: http://www.datascienceassn.

org/sites/default/files/Natural’20Language’20Processing}20with,20Python.
pdf.

Bilal Esmael et al. “Automated Operations Classification using Text Mining”. In:
The 3rd International Conference on Computational Intelligence and Industrial Ap-
plication. Huazhong: Research Gate, 2010. URL: https://www.researchgate.net/
publication/233382409.

Wes McKinney. Data Structures for Statistical Computing in Python. 2010. URL: https:
//pandas.pydata.org/pandas-docs/stable/index.html#.

96

https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/https://doi.org/10.2118/52816-MS
https://doi.org/https://doi.org/10.2118/52816-MS
http://www.onepetro.org/doi/10.2118/52816-MS
https://doi.org/https://doi.org/10.3115/1118108.1118117
https://dl.acm.org/doi/10.3115/1118108.1118117
https://dl.acm.org/doi/10.3115/1118108.1118117
https://searchworks.stanford.edu/view/5806917
https://searchworks.stanford.edu/view/5806917
https://doi.org/https://doi.org/10.2118/91852-MS
http://www.onepetro.org/doi/10.2118/91852-MS
https://doi.org/DOI:10.1109/MCSE.2007.55
https://doi.org/DOI:10.1109/MCSE.2007.55
https://matplotlib.org/
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
https://dl.acm.org/doi/book/10.5555/1394399
https://doi.org/https://doi.org/10.2118/118780-MS
https://www.onepetro.org/conference-paper/SPE-118780-MS
https://www.onepetro.org/conference-paper/SPE-118780-MS
http://www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20with%20Python.pdf
http://www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20with%20Python.pdf
http://www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20with%20Python.pdf
https://www.researchgate.net/publication/233382409
https://www.researchgate.net/publication/233382409
https://pandas.pydata.org/pandas-docs/stable/index.html#
https://pandas.pydata.org/pandas-docs/stable/index.html#

[ST10]

[CVW11]

[Ped+11]

[Esm+12]

[Osi12]

[Fil13]

[CA14]

[DV14]

[RDF14]

[Aba+15]

[ABJ15]

[Aggl5]

[Bat+15]

[BI15]

JG15]

Catheryn Staveley and Paul Thow. “Increasing Drilling Efficiencies Through Improved
Collaboration and Analysis of Real-Time and Historical Drilling Data”. In: SPE In-
telligent Energy Conference and Exhibition. Utrecht: Society of Petroleum Engineers,
2010, pp. 23-25. DOI: https://doi.org/10.2118/128722-MS.

S. Chris Colbert, Gaél Varoquaux, and Stéfan van der Walt. The NumPy Array: A
Structure for Efficient Numerical Computation. 2011. DOI: DOI:10.1109/MCSE.2011.
37. URL: https://numpy.org/.

Fabian Pedregosa et al. Scikit-learn: Machine Learning in Python. 2011. URL: http:
//jmlr.org/papers/v12/pedregosalla.html.

Bilal Esmael et al. “A hybrid multiple classifier system for recognizing usual and un-
usual drilling events”. In: 2012 IEEE International Instrumentation and Measurement
Technology Conference Proceedings. IEEE, May 2012, pp. 1754-1758. I1SBN: 978-1-4577-
1772-7. DOI: 10.1109/I2MTC.2012.6229541. URL: http://ieeexplore.ieee.org/
document/6229541/.

Samuel O Osisanya. Practical Approach to Solving Wellbore Instability Problems. Tech.
rep. Norman: The University of Oklahoma, 2012. URL: https://www.spe.org/dl/
docs/2012/osisanya.pdf.

James J Filliben. NIST/SEMATECH e-Handbook of Statistical Methods. Ed. by Carroll
Croarkin and Paul Tobias. NIST/SEMATECH, 2013, p. 1. URL: http://www.itl.
nist.gov/div898/handbook/.

David Cameron and Steria As. “Big Data in Exploration and Production: Silicon Snake-
Oil, Magic Bullet, or Useful Tool?” In: SPE Intelligent Energy Conference € Exhibition.
Utrecht: Society of Petroleum Engineers, 2014, pp. 1-3. DOI: https://doi.org/10.
2118 /167837 - MS. URL: https://www . onepetro . org/conference - paper / SPE -
167837-MS.

Colin Dawson and Harry Verkuil. “SPE-167846-MS From a Daily Drilling Report to a
Data and Performance Management Tool”. In: From a Daily Drilling Report to a Data
and Performance Management Tool. Vol. 2. Society of Petroleum Engineers, 2014,
p. 167846. DOL: https://doi.org/10.2118/167846-MS.

RDF Working Group. Resource Description Framework (RDF). 2014. URL: https:
//www.w3.org/RDF/.

Martin Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous sys-
tems. 2015. URL: tensorflow.org.

Guus Aerts, Anders Brun, and Marte Jerkg. How to achieve 50 percent reduction in
offshore drilling costs. 2015. URL: https://www.mckinsey.com/industries/oil-
and-gas/our-insights/how-to-achieve-50-percent-reduction-in-offshore-
drilling-costs#.

Charu C Aggarwal. Data Mining The Textbook. eng. 1st ed. 2015. Springer Interna-
tional Publishing, 2015. 1SBN: 3-319-14142-2. pOI: 10.1007/978-3-319-14142-38.
URL: https://www.springer.com/gp/book/9783319141411.

David T Bateman et al. Natural Language Processing For FEaxtracting Conveyance
Graphs. 2015. URL: https://patents.google.com/patent/US9251139B2/en.

M R Brulé and IBM Software Group. “The Data Reservoir: How Big Data Technologies
Advance Data Management and Analytics in E&P Introduction-General Data
Reservoir Concepts”. In: SPE Digital Energy Conference and Ezxhibition. Woodlands:
Society of Petroleum Engineers, 2015, pp. 3-5. DOI: https://doi.org/10.2118/
173445-MS. URL: https://www.onepetro.org/conference-paper/SPE-173445-MS.

J Johnston and A Guichard. “New Findings in Drilling and Wells using Big Data
Analytics”. In: Offshore Technology Conference. Houston: Offshore Technology Con-
ference, 2015, pp. 4-7. DOIL: https://doi.org/10.4043/26021-MS. URL: https:
//www.onepetro.org/conference-paper/0TC-26021-MS.

97

https://doi.org/https://doi.org/10.2118/128722-MS
https://doi.org/DOI:10.1109/MCSE.2011.37
https://doi.org/DOI:10.1109/MCSE.2011.37
https://numpy.org/
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1109/I2MTC.2012.6229541
http://ieeexplore.ieee.org/document/6229541/
http://ieeexplore.ieee.org/document/6229541/
https://www.spe.org/dl/docs/2012/osisanya.pdf
https://www.spe.org/dl/docs/2012/osisanya.pdf
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
https://doi.org/https://doi.org/10.2118/167837-MS
https://doi.org/https://doi.org/10.2118/167837-MS
https://www.onepetro.org/conference-paper/SPE-167837-MS
https://www.onepetro.org/conference-paper/SPE-167837-MS
https://doi.org/https://doi.org/10.2118/167846-MS
https://www.w3.org/RDF/
https://www.w3.org/RDF/
tensorflow.org
https://www.mckinsey.com/industries/oil-and-gas/our-insights/how-to-achieve-50-percent-reduction-in-offshore-drilling-costs#
https://www.mckinsey.com/industries/oil-and-gas/our-insights/how-to-achieve-50-percent-reduction-in-offshore-drilling-costs#
https://www.mckinsey.com/industries/oil-and-gas/our-insights/how-to-achieve-50-percent-reduction-in-offshore-drilling-costs#
https://doi.org/10.1007/978-3-319-14142-8
https://www.springer.com/gp/book/9783319141411
https://patents.google.com/patent/US9251139B2/en
https://doi.org/https://doi.org/10.2118/173445-MS
https://doi.org/https://doi.org/10.2118/173445-MS
https://www.onepetro.org/conference-paper/SPE-173445-MS
https://doi.org/https://doi.org/10.4043/26021-MS
https://www.onepetro.org/conference-paper/OTC-26021-MS
https://www.onepetro.org/conference-paper/OTC-26021-MS

[SWH15]

[SCS15]

[Brel6]

[CST16]

[Klu-+16]

[Kno16]

[ARG17]

[EnelT]

[HI17]

[Hof+18]

[IAD18]

[MT18]

[Sal18|

[Cos19]

[DS19)

Wei Shen, Jianyong Wang, and Jiawei Han. “Entity linking with a knowledge base:
Issues, techniques, and solutions”. In: IEEE Transactions on Knowledge and Data En-
gineering 27.2 (Feb. 2015), pp. 443-460. po1: 10.1109/TKDE . 2014 . 2327028. URL:
https://ieeexplore.ieee.org/document/6823700.

Mohamed Sidahmed, Christopher J Coley, and Shawn Shirzadi. “ Augmenting Opera-
tions Monitoring by Mining Unstructured Drilling Reports”. In: SPE Digital Energy
Conference and Ezhibition. BP. Woodlands: Society of Petroleum Engineers, 2015,
pp. 3-5. DOL: https://doi.org/10.2118/173429-MS. URL: https://www.onepetro.
org/conference-paper/SPE-173429-MS.

Nelson E Brestoff. Using Classified Text and Deep Learning Algorithms to identify
risk and provide early warning. 2016. URL: https://patents.google.com/patent/
US9552548B1/en.

Kristijona§ Cyras, Ken Satoh, and Francesca Toni. “ Abstract Argumentation for Case-
Based Reasoning”. In: Proceedings of the Fifteenth International Conference on Prin-
ciples of Knowledge Representation and Reasoning. Cape Town: AAAI Press, 2016,
pp- 549-552. DOI: 10.5555/3032027 .3032100. URL: https://dl.acm.org/doi/10.
5555/3032027.3032100.

Thomas Kluyver et al. Jupyter Notebooks — a publishing format for reproducible com-
putational workflows. 2016. DOI: 10.3233/978-1-61499-649-1-87.

Leonard Knoll. “The Process of Building a Mechanical Earth Model Using Well Data”.
Leoben, 2016. URL: https://pure.unileoben. ac.at/portal/files/ 1868591/
AC13436690n01vt.pdf.

Sethupathi Arumugam, Shebi Rajan, and Sanjay Gupta. “ Augmented Text Mining for
Daily Drilling Reports using Topic Modeling and Ontology”. In: SPE Western Regional
Meeting. Bakersfield: Society of Petroleum Engineers, 2017. DOI: https://doi.org/
10.2118/185711-MS. URL: https://www.onepetro.org/conference-paper/SPE-
185711-MS.

Energistics. The Solution Lean Automated Reporting Powered by WITSML Data. 2017.
URL: https://www.energistics. org/wp- content/uploads/2018/01/2017ids-
case-study.pdf.

Matthew Honnibal and Montani Ines. spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing. 2017. URL:
https://github.com/explosion/spaCy.

Julio Hoffimann et al. “Sequence Mining and Pattern Analysis in Drilling Reports
with Deep Natural Language Processing”. In: Sequence Mining and Pattern Analysis in
Drilling Reports with Deep Natural Language Processing. Dallas: Society of Petroleum
Engineers, 2018, pp. 24-26. DOI: 10.2118/191505-MS. URL: https://www.onepetro.
org/conference-paper/SPE-191505-MS.

TIADC. Daily Drilling Report based on Sensor Data. Tech. rep. International Association
of Drilling Contractors, 2018. URL: https://www.iadc.org/wp-content/uploads/
2018/05/IADC-Daily-Drilling-Report_RevA.pdf.

Mehdi Mohammadpoor and Farshid Torabi. “Big Data analytics in oil and gas industry:
An emerging trend”. In: Petroleum (2018). DOI: https://doi.org/10.1016/j.
petlm.2018.11.001. URL: http://www.sciencedirect.com/science/article/
pii/S2405656118301421.

Zoé Wilkinson Saldana. Sentiment Analysis for Exploratory Data Analysis. 2018. URL:
https://programminghistorian.org/en/lessons/sentiment-analysis.

Casper O da Costa-Luis. tgdm: A Fast, Extensible Progress Meter for Python and CLI
2019. DOI: https://doi.org/10.21105/joss.01277. URL: https://joss.theoj.
org/papers/10.21105/joss.01277.

Athithan Dharmaratnam and Schlumberger. Information Extraction from Daily Drilling
Reports Using Machine Learning. 2019.

98

https://doi.org/10.1109/TKDE.2014.2327028
https://ieeexplore.ieee.org/document/6823700
https://doi.org/https://doi.org/10.2118/173429-MS
https://www.onepetro.org/conference-paper/SPE-173429-MS
https://www.onepetro.org/conference-paper/SPE-173429-MS
https://patents.google.com/patent/US9552548B1/en
https://patents.google.com/patent/US9552548B1/en
https://doi.org/10.5555/3032027.3032100
https://dl.acm.org/doi/10.5555/3032027.3032100
https://dl.acm.org/doi/10.5555/3032027.3032100
https://doi.org/10.3233/978-1-61499-649-1-87
https://pure.unileoben.ac.at/portal/files/1868591/AC13436690n01vt.pdf
https://pure.unileoben.ac.at/portal/files/1868591/AC13436690n01vt.pdf
https://doi.org/https://doi.org/10.2118/185711-MS
https://doi.org/https://doi.org/10.2118/185711-MS
https://www.onepetro.org/conference-paper/SPE-185711-MS
https://www.onepetro.org/conference-paper/SPE-185711-MS
https://www.energistics.org/wp-content/uploads/2018/01/2017ids-case-study.pdf
https://www.energistics.org/wp-content/uploads/2018/01/2017ids-case-study.pdf
https://github.com/explosion/spaCy
https://doi.org/10.2118/191505-MS
https://www.onepetro.org/conference-paper/SPE-191505-MS
https://www.onepetro.org/conference-paper/SPE-191505-MS
https://www.iadc.org/wp-content/uploads/2018/05/IADC-Daily-Drilling-Report_RevA.pdf
https://www.iadc.org/wp-content/uploads/2018/05/IADC-Daily-Drilling-Report_RevA.pdf
https://doi.org/https://doi.org/10.1016/j.petlm.2018.11.001
https://doi.org/https://doi.org/10.1016/j.petlm.2018.11.001
http://www.sciencedirect.com/science/article/pii/S2405656118301421
http://www.sciencedirect.com/science/article/pii/S2405656118301421
https://programminghistorian.org/en/lessons/sentiment-analysis
https://doi.org/https://doi.org/10.21105/joss.01277
https://joss.theoj.org/papers/10.21105/joss.01277
https://joss.theoj.org/papers/10.21105/joss.01277

[Gan19] Kavita Ganesan. All you need to know about text preprocessing for NLP and Machine
Learning. 2019. URL: https://towardsdatascience.com/all-you-need-to-know-
about-text-preprocessing-for-nlp-and-machine-learning-bc1c5765f£67.

[Li19] Susan Li. A Complete Exploratory Data Analysis and Visualization for Text Data.
2019. URL: https://towardsdatascience.com/a- complete-exploratory-data-
analysis-and-visualization-for-text-data-29fb1b96fb6a.

[Lug+19] Carmen Luque et al. An advanced review on text mining in medicine. May 2019. DOL:
10.1002/widm.1302. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/

widm.1302.

[19] National Data Repository. 2019. URL: https://en.wikipedia.org/wiki/National_
Data_Repository.

[NS19] Christine Noshi and Jerome Schubert. “A Brief Survey of Text Mining Applications for

the Oil and Gas Industry”. In: International Petroleum Technology Conference. Beijing:
International Petroleum Technology Conference, 2019. DOI: https://doi.org/10.
2523/19382-MS. URL: https://www . onepetro . org/conference - paper /IPTC -
19382-MS.

[Pas+19] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. 2019. URL: http://papers .neurips. cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[Wol+19] Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. 2019. URL: https://arxiv.org/abs/1910.03771.

[BA20] Shivam Bansal and Chaitanya Aggarwal. textstat. 2020. URL: https://pypi . org/
project/textstat/.

[20a] Cavings. 2020. URL: https://www.glossary.oilfield.slb.com/en/Terms/c/
cavings.aspxX.

[Goo20a] Google Developers. Classification: Accuracy. 2020. URL: https://developers.google.
com/machine-learning/crash-course/classification/accuracy.

[Goo20b] Google Developers. Classification: Precision and Recall. 2020. URL: https://developers.
google.com/machine-learning/crash-course/classification/precision-and-
recall.

[Goo20c|] Google Developers. Classification: True vs. False and Positive vs. Negative. 2020.
URL: https ://developers . google . com/machine - learning / crash - course /
classification/true-false-positive-negative.

[Goo20d] Google Developers. Confusion Matriz. 2020. URL: https://developers.google.com/
machine-learning/glossary#confusion_matrix.

[Ite20] DVC Iterative.ai. Versioning Data and Model Files. 2020. URL: https://dvc.org/
doc/use-cases/versioning-data-and-model-files.

[20b] Kick. 2020. URL: https://petrowiki.org/index.php?title=Kicks&oldid=48073.

[20c] Leakoff Test. 2020. URL: https://www.petropedia.com/definition/2223/leakoff-
test.

[20d] Lost circulation. 2020. URL: https://petrowiki . org/index . php?title=Lost _

circulation&oldid=48286.

[MM20] Bob Malone and Malone Petroleum Consulting. Daily Drilling Report. 2020. URL:
https : //www . malonepetroleumconsulting . com/ articles /daily _drilling _
report.

[Mue20] Andreas Mueller. WordCloud. 2020. URL: https : //amueller . github . io/word_
cloud/.

[Rex20] RexEgg. Regex Cheat Sheet. 2020. URL: https://www.rexegg.com/regex-quickstart.
html.

[Sch20] Schlumberger. Schlumberger Oilfield Glossary. 2020. URL: https://www.glossary.
oilfield.slb.com/maincredits.aspx.

99

https://towardsdatascience.com/all-you-need-to-know-about-text-preprocessing-for-nlp-and-machine-learning-bc1c5765ff67
https://towardsdatascience.com/all-you-need-to-know-about-text-preprocessing-for-nlp-and-machine-learning-bc1c5765ff67
https://towardsdatascience.com/a-complete-exploratory-data-analysis-and-visualization-for-text-data-29fb1b96fb6a
https://towardsdatascience.com/a-complete-exploratory-data-analysis-and-visualization-for-text-data-29fb1b96fb6a
https://doi.org/10.1002/widm.1302
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1302
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1302
https://en.wikipedia.org/wiki/National_Data_Repository
https://en.wikipedia.org/wiki/National_Data_Repository
https://doi.org/https://doi.org/10.2523/19382-MS
https://doi.org/https://doi.org/10.2523/19382-MS
https://www.onepetro.org/conference-paper/IPTC-19382-MS
https://www.onepetro.org/conference-paper/IPTC-19382-MS
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1910.03771
https://pypi.org/project/textstat/
https://pypi.org/project/textstat/
https://www.glossary.oilfield.slb.com/en/Terms/c/cavings.aspx
https://www.glossary.oilfield.slb.com/en/Terms/c/cavings.aspx
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/glossary#confusion_matrix
https://developers.google.com/machine-learning/glossary#confusion_matrix
https://dvc.org/doc/use-cases/versioning-data-and-model-files
https://dvc.org/doc/use-cases/versioning-data-and-model-files
https://petrowiki.org/index.php?title=Kicks&oldid=48073
https://www.petropedia.com/definition/2223/leakoff-test
https://www.petropedia.com/definition/2223/leakoff-test
https://petrowiki.org/index.php?title=Lost_circulation&oldid=48286
https://petrowiki.org/index.php?title=Lost_circulation&oldid=48286
https://www.malonepetroleumconsulting.com/articles/daily_drilling_report
https://www.malonepetroleumconsulting.com/articles/daily_drilling_report
https://amueller.github.io/word_cloud/
https://amueller.github.io/word_cloud/
https://www.rexegg.com/regex-quickstart.html
https://www.rexegg.com/regex-quickstart.html
https://www.glossary.oilfield.slb.com/maincredits.aspx
https://www.glossary.oilfield.slb.com/maincredits.aspx

[Sim20] Kirill Simonov. PyYAML - The next generation YAML parser and emitter for Python.
2020. URL: https://github.com/yaml/pyyaml.

[Sma20] SmartBear. OpenA PI Specification. 2020. URL: https://swagger.io/docs/specification/
basic-structure/.

[Soc20] Society of Petroleum Engineers. Petro Wiki Permissions. 2020. URL: https://petrowiki.
org/index.php?title=PetroWiki:Permissions&oldid=49608.

[20¢] Tight Hole. 2020. URL: https://www.petropedia.com/definition/3948/tight -
hole.

[20f] Universal POS tags. 2020. URL: https://universaldependencies.org/u/pos/all.
html.

[Wik20a] Wikipedia contributors. F1 score. 2020. URL: https://en.wikipedia.org/w/index.
php?title=F1_score&oldid=961198411.

[Wik20b] Wikipedia contributors. Matthews correlation coefficient. 2020. URL: https://en.
wikipedia.org/w/index.php?title=Matthews_correlation_coefficient&oldid=
958781090.

[Wik20c|] Wikipedia contributors. Tf-idf. 2020. URL: https://en.wikipedia.org/w/index.
php?title=T{%E27,80%931df&01did=962443067.

[20g] YAML vs JSON. 2020. URL: https://www.json2yaml.com/yaml-vs-json.

100

https://github.com/yaml/pyyaml
https://swagger.io/docs/specification/basic-structure/
https://swagger.io/docs/specification/basic-structure/
https://petrowiki.org/index.php?title=PetroWiki:Permissions&oldid=49608
https://petrowiki.org/index.php?title=PetroWiki:Permissions&oldid=49608
https://www.petropedia.com/definition/3948/tight-hole
https://www.petropedia.com/definition/3948/tight-hole
https://universaldependencies.org/u/pos/all.html
https://universaldependencies.org/u/pos/all.html
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=961198411
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=961198411
https://en.wikipedia.org/w/index.php?title=Matthews_correlation_coefficient&oldid=958781090
https://en.wikipedia.org/w/index.php?title=Matthews_correlation_coefficient&oldid=958781090
https://en.wikipedia.org/w/index.php?title=Matthews_correlation_coefficient&oldid=958781090
https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&oldid=962443067
https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf&oldid=962443067
https://www.json2yaml.com/yaml-vs-json

	Introduction
	Motivations
	Objectives
	Structured Data Extraction
	Feature Extraction
	Feature Analysis
	Data Insights Delivery

	Challenges

	Background
	Oilfield Domain Knowledge
	Daily Drilling Report
	Calibration Points

	Datasets
	Data Mining
	Pipeline Processes
	Data Analysis Methods
	Exploratory Data Analysis
	Pre-Processing

	Named Entity Linking
	Abstract Argumentation for Case-Based Reasoning
	Evaluation Metrics

	Literature Review
	Supervised Learning
	Unsupervised Learning
	Feature Engineering
	Ensemble Method

	Project Implementation
	Minimum Viable Product (MVP)
	Experimentation Architecture and Workflow
	General API Design
	Configuration API
	Data Layer API
	Workflow API
	Data Loader API
	Logging

	Exploratory Data Analysis
	Data Set Summary Statistics
	Uni-variate Visualisations
	Bi-variate Visualisations

	Pre-Processing
	Basic Tokenisation
	Token Normalisation
	Token Reduction
	Token Expansion

	Measurement Syntactic Parser
	Statistical NLP Parser
	Phrase Feature
	Domain Phrases
	Part of Speech Feature
	Negation Phrase Feature

	Named Entity Linking
	Knowledge Base
	Name Dictionary
	Surface Mentions
	Candidate Entity Generation
	Candidate Entity Ranking Scores
	Candidate Entity Composite Ranking
	Unlinkable Mention Prediction
	Linked Entities Feature

	Abstract Argumentation for Case-Based Reasoning
	Cases
	Abstract Argumentation Framework
	Grounded Extension
	Dispute Tree
	Argumentation Explanation
	Automated Cases
	Bulk Processing Comments

	Calibration Point Generation

	Evaluation
	Accuracy
	Stuck Pipe
	Kick
	Losses
	Cavings
	Tight Hole
	FIT
	All Drilling Events

	Coverage
	Schlumberger Version One Data Set
	Schlumberger Version Two Data Set
	All Data Sets

	Performance

	Conclusion
	Key Achievements
	Limitations and Future Research
	Structured Data Extraction
	Domain Knowledge Improvements
	Supervised Feature Improvements
	Entity Linking Improvements
	Machine Arguing Framework Improvements
	User Experience Improvements

	Daily Drilling Reports
	Daily Drilling Reports Comments
	Performance Optimisations
	Configuration
	External Libraries
	Exploratory Data Analysis Visualisations
	Bibliography

