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Abstract

Virtual Reality therapy for treatment of anxiety and depression is a scalable and
effective therapy. Remote mental health assessments are becoming a necessity due
to the current COVID-19 pandemic. These therapies and remote assessments would
benefit from accurate, live (real-time), automated emotion recognition.

Existing emotion recognition neural network models have limited application to the
subset of emotions they are trained on. The best models available require data pre-
processing and cannot operate on live inputs or have limited performance capability.
This project aims to create a model which addresses those issues.

In this project we discuss a live speaker-independent emotion recognition model
that can be applied to any subset of the emotions it was trained on. We also in-
troduce contextual memory of the speaker’s emotional state across numerous ut-
terances while still supporting the live evaluation of utterances. Through this, we
achieve state-of-the-art results on prediction of the emotions angry, happy, sad, and
neutral and improve on other models that don’t require data pre-processing.
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Chapter 1

Introduction

Depression and anxiety are very common mental health disorders with an estimated
global prevalence of 4.4% and 3.6% respectively [1]. These percentages only take
into account major depressive episodes and major anxiety disorders, and do not
consider mild or moderate rates which will be even higher. Face to face therapy can
have long waiting times, or people can often feel too ashamed, due to the stigma
surrounding mental health, to seek out help.

The COVID-19 pandemic has brought the idea of remote mental health assessment
and automated therapy into the spotlight, if not necessitated it. Along with this,
it is argued that both the rates and severity of anxiety and depression have in-
creased among the global population due to COVID-19 and the resulting lockdowns

[2].

The utilisation of computers to assist in the administering of therapy is therefore
essential. The use of Virtual Reality (VR) in therapy has the potential to improve the
accessibility of therapy. With only a mobile phone and some hardware, VR therapy
is possible without a therapist or visit to the doctors. However, a lot of existing VR
therapies require a therapist to administer the therapy itself, and the VR is merely a
tool used by the therapist. An Artificial Intelligence (AI) therapist would, therefore,
be useful to make therapy entirely accessible for everyone with no waiting times.
However, recognising emotions is often useful for effective face to face therapy. As
it stands existing VR therapies do not utilise automatic emotion recognition or Al
therapists.

In this project, we work with the goal of emotion recognition within an existing VR
application in mind. This application will be developed to support the treatment of
mental health disorders through Self-Attachment Therapy [3]. An essential aspect
of this VR application, and of the therapy itself, is the user’s emotions and projecting
these emotions onto a self-child avatar.

The next steps towards making therapy fully automated, and therefore more acces-
sible, is to build an Al therapist which can ask questions that elicit specific emotions
from the user. Then the Al must continuously recognise the emotions in order to
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Chapter 1. Introduction

modify the VR therapy experience. I focus my work on continuous and accurate
emotion recognition that is compatible with a range of tools such as Al therapists,
VR therapy, and remote mental health consultations.




Chapter 2

Background

2.1 Virtual Reality Therapy

Virtual Reality (VR) is a powerful tool which can be used to improve the quality of
therapies offered to patients. An intuitive example of VR for therapy is exposure
therapy. Patients can be exposed to their phobias in a gradual and controlled setting
with a therapist able to monitor and potentially control the virtual environment as
appropriate.

2.1.1 Attachment Theory and Self-Attachment Therapy

A child, whilst growing up, develops attachments with their primary caregiver. There
are four types of attachment; [4; 5].

1. Secure Attachment

2. Ambivalent Attachment
3. Avoidant Attachment

4. Disorganised Attachment

Insecure attachments such as ambivalent, avoidant, and disorganised attachment
can lead to a vulnerability to mental health conditions later in life, such as anxiety
and depression. [4].

Self-Attachment therapy is, therefore, based on attachment theory. Attachment the-
ory theorises a person has an adult self and an inner child, which through therapy
sessions, can bond and form a secure attachment to allow for better emotional self-
regulation [4; 5]. The result of being able to regulate emotions better should lead to
improved mental health.

A currently developed VR environment supports self-attachment therapy [3; 6]. At
the moment, the VR application presents the user with information regarding self-
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attachment therapy. The user then has a virtual avatar which is customised to re-
semble the child-self. When the user then comforts the child and virtually embraces
the child avatar, the application improves the child-self’s mood from sad to neutral
and then happy [6]. The addition of emotion recognition and an Al therapist will
allow the child-self to accurately represent the feelings of the user and project their
feelings onto the avatar when they enter the VR environment. As the user comforts
the child-self, extracted emotion could then change the child-self avatar’s emotion
as the user’s emotions improve.

2.1.2 Existing VR Therapies

VR therapy has proven to be successful in the treatment of Post-Traumatic Stress
Disorder (PTSD) in soldiers by exposing them to phobias, for example, explosions or
helicopter fly overs [7; 8]. By using VR, it is possible to expose patients to phobias
which a therapist realistically cannot expose them to in real-life.

More interestingly VR can be used to implement self-counselling [9]. A patient can
talk about their problems, and can then switch to a counsellor body where they listen
to their problems and provide advice to themselves. They have experimented with
using either a lookalike body or a Sigmund Freud body as the therapist. They found
that mood was improved the most when the therapist was Sigmund Freud, and the
patient had the illusion of body ownership of the therapist.

Other research has found that self-compassion towards oneself can be improved
using VR [10]. The application recorded the patient providing compassion towards a
distressed child. The patient then embodied the child and experienced the recorded
compassion themselves. The VR environment was a reconstruction of the real-life
experiment room, and this, combined with a first-person perspective and a mirror
to reflect the patient’s virtual body, most likely strengthened the illusion of body
ownership.

A comparison of VR exposure therapy and VR cognitive therapy showed that cog-
nitive therapy could lead to an improvement in patients with persecutory delusions
more than just exposure therapy alone [11].

2.1.3 Mental Health Assessment

An ambitious extension to the project following successful emotion recognition could
be to implement an Al therapist that utilises the emotion recognition. Existing VR
therapy applications use a multitude of methods to assess improvements in mental
health. The AI therapist component would intend to probe the user and elicit emo-
tions from them to understand their feelings. However, existing applications often
use a collection of scales and questionnaires. Most patients can present neutrally
until the therapist starts to talk with the patient about specific experiences and feel-
ings they have. The Al therapist will, therefore, need to continue to assess and delve
deeper into subjects when talking to the patient dependent on their responses.
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The World Health Organisation Schedules for Clinical Assessment in Neuropsychi-
atry (WHO-SCAN) [12] provides a series of questions which help with the assess-
ment of many mental health disorders. The WHO-SCAN interview provides a series
of questions, which often build on top of previous questions based on symptoms
present in the patient that the therapist can notice from previous answers. If the Al
therapist can recognise affirmative or negative statements, even just “yes” and “no”,
then using the relevant parts of the WHO-SCAN the intention would be for the Al
therapist to then elicit emotion from the patient.

2.2 Machine Learning

Machine learning (ML) is the process which enables a computer to automatically
perform a specific task without being explicitly programmed to do so. The computer
“learns” how to perform this specific task, and the learning model is programmed at
a higher level.

There are three primary models for machine learning: supervised learning, unsuper-
vised learning, and reinforcement learning.

Supervised learning, in particular, concerns the use of labelled data. That is for
every input we have the corresponding expected output, or classification, of that
input. In this project, supervised learning will be used with labelled data to train an
ML algorithm to classify the emotion currently present in the user of a Virtual Reality
(VR) therapy application.

Related work in this area uses a range of different models and methods to approach
a solution, and the next few sections will outline these underlying networks and
methods to enable us to better approach the existing literature.

2.2.1 Artificial Neural Network (ANN)

The idea behind ANNs is to imitate the networks of interconnected neurons found in
a human brain. A graph, therefore, represents the ANN with each node representing
a neuron. Each neuron will take a fixed number of inputs which are each multiplied
by a weight associated with that input and then summed together. An activation
function is then applied to the resulting value to determine how activated the neuron
is and thus decide the signal this neuron should output.

The neurons in the network create layers. If one compares this network to a human
brain, then related neurons should activate each other. With this in mind, each layer
connects only to the layer immediately before and after.

The network should have an input layer, an output layer, and any number of hidden
layers in between. A network made using only a combination of these linear layers
and activation functions is called a Multilayer Perceptron (MLP).
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Figure 2.2: An overview of a full CNN for digit recognition [14]

2.2.2 Convolutional Neural Network (CNN)

A CNN is an adaptation of an ANN and is commonly used for learning from images.
The predominant adaptation is the addition of convolutional layers and pooling lay-
ers.

The convolutional layer uses matrices which act as filters. They move across the
height and width of the two-dimensional input computing the dot product of the
filter and the underlying inputs. Each filter then introduces an extra dimension
(depth) after passing over the two-dimensional inputs. The ML algorithm then learns
the values in each filter. The filters then learn to activate upon passing over some
feature.

The pooling layer reduces the size of the two-dimensional inputs while maintaining
the depth. The idea behind pooling is to split the two-dimensional inputs into a grid
of regions and then extract features identified by the convolutional layer, which are
in this region. An example of a pooling layer is max pooling, which extracts the
maximum value in each region.

Standard linear layers used in MLPs are called fully connected layers in a CNN.
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2.2.3 Recurrent Neural Networks (RNN)

An RNN uses a memory of previous inputs to influence the output of a given input.
If a sequence of inputs is likely to be related, then the memory of previous inputs
in the sequence will be useful for accurate prediction. Facial expressions, body lan-
guage, and voice are continuous inputs. If these modalities were segmented into
consecutive slices and used as inputs, then the context of this sequence will likely be
useful for the prediction of emotion, which may explain why we will see the use of
RNNs in some of the previous work.

In essence, given a series of inputs, an RNN will work as a standard ANN on each
input consecutively. However, it also keeps track of a context, and each input updates
the context used in calculating the output for following inputs in the sequence.

2.2.4 Deep Neural Networks (DNN)

A DNN is a type of ANN which contains many hidden layers. The DNN may be a
standard neural network or a more complex model such as a CNN. Since the lay-
ers in neural networks extract vital features that relate the input to the output, by
having many layers, it causes the network to be more successful at finding more
sophisticated features. Intuitively this is because each of the layers can learn partial
features which create the final output of the network.

2.2.5 Generative Adversarial Network (GAN)

A GAN uses two neural networks in an adversarial competition against one another.
The networks consist of a discriminative network and a generative network. The
discriminative network attempts to determine whether or not the generative network
generated the input, or if it is a real data sample. The generative network trains to
increase the error of the discriminative network resulting in the generation of inputs
which are more likely to be mistaken as real.

The discriminative network is trained on real samples until it has good accuracy.
The generative network then trains by treating inputs which fool the discriminative
network as a success and other inputs as failed.

2.2.6 Domain Adaptation

An area of difficulty in ML can arise due to significant differences between the data
available for training the model and the data that will be available at the time of
testing. When the time comes to predict using the model, the performance will
be impaired due to the difference in data. We include discussion of this because
a potential risk is encountering an issue of domain mismatch between the actor
conversation dataset, and real interview dataset.

If the target data we want to predict and the source data we trained on are related,
then we can apply domain adaptation to help tackle the issue. In this project, we
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may find that training on high-quality data from a select group of individuals differs
too much from real data which the VR app records from the user.

Adversarial Discriminative Domain Adaptation (ADDA) [15] showed promising work
in using labelled photographs of numbers, for example from houses, as a source do-
main and adapting the domain to work with unlabelled handwritten numbers.

The way this was done was by training a CNN and classifier on the photographed dig-
its. As discussed earlier, the CNN should have learned the useful features to extract
from the photographs. They then implemented a GAN, where the extracted features
from the trained CNN were used as the “real” data values to train the discriminator.
The generative part of the GAN is a CNN which was applied to the handwritten digit
images. In this way, the generative CNN should have learned to extract the same
features from handwritten digits as the features extracted by the CNN trained on
photographed digits. Since both CNNs extracted the same features from different
domains, the classifier trained on the photographed digits will work in conjunction
with the CNN trained on handwritten digits without training a classifier specifically
for the handwritten digits. This method is beneficial because the handwritten digits
are unlabelled and training a classifier would be inconvenient without any labels to
identify the true value of the digits.

If we find that the existing labelled data that we train our emotion recognition on
fails to generalise well to real-world data, then it would be worth investigating this
approach. Failure to generalise could be due to the difference in the domain between
the existing high fidelity data and the potentially noisy data obtained from real-
world observation by the VR application. The experimental results found in this
paper show a promising improvement of the accuracy by using ADDA over just the
source domain’s classifier.

Alternatively, domain adaptation can also be used to change the label space [16]. If
the desired emotional states for the child avatar in the VR application differs from
the labels available in existing training data, this would be a useful approach to take
to improve the quality of these existing datasets. By using transfer learning and
a multi-layer discriminator, this study shows that it is possible to modify the label
space in classification and possibly use the trained network to perform a different
task altogether.

2.2.7 Natural Language Processing (NLP)

NLP, at its core, is the study of how a computer can understand human language.
With spoken language, an idea can be expressed through countless phrases, and
minute inflections can change the meaning of a sentence entirely. NLP aims to study
how a computer can navigate these intricate details and understand language.

Often, a pre-trained ML model is taken for NLP and applied to speech to produce
numerical data. This data can then be incorporated into a larger network and fine-
tuned to be specific to a particular task. The choice of words or the way that words
are spoken and connected could be a reliable indicator of emotion. For example,
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particular inflections on an otherwise neutral statement could be evidence of irrita-
tion.

2.2.8 Attention

Attention is a technique used in neural networks to reduce and remove sequences
of values. As part of the network, an understanding is learnt about how to decide
which parts of a sequence are important. The model can then ‘pay attention’ to those
parts of the sequence.

The idea behind attention is to create an alignment score, which scores the relation-
ship between the features and final output of the model. Applying softmax to these
alignment scores creates a weight which can be used as the attention. For example,
these could be used in a weighted-sum manner to the features. This alignment score,
for example, could be a learned parameter in the form of a single fully connected
layer with softmax activation.

2.2.9 Transformer

The core component of the Transformer is Multi-Head Attention. Transformers use
several attention layers in parallel. The layer outputs are concatenated and passed
through a linear layer in order to get the output of the Multi-Head Attention. They
also use Scaled Dot-Product Attention for the attention layers [17], along with in-
terpreting attention as a mapping of three vectors, which represent the query and
a key-value pair to an output. The Scaled Dot-Product Attention is then the matrix
multiplication of the query and key vectors. Softmax is applied to the (optionally
masked) scaled output of this multiplication, and the resulting vector is matrix mul-
tiplied with the value vector [17]. Relating this to the explanation above the query
and key are aligned. This alignment is used to pay attention to the value.

The model works in an encoder-decoder fashion with these Multi-Head Attention
layers used in between. The values for the queries come from the decoder network,
while keys and values are from the encoder [17]. Additionally, both the encoder and
decoder models use self-attention, whereas the queries, keys, and values, all come
from the previous layer in the model [17].

As discussed in the original paper, the Transformer can be trained faster than tradi-
tional recurrent/convolutional layers [17].

2.2.10 Bidirectional Encoder Representations from Transformers
(BERT)

BERT is a language representation model that creates a numerical vector represent-
ing useful features from some input text. This vector can then be used like normal
numerical input data to any type of neural network to tackle NLP tasks [18]. BERT
achieves state of the art performance on several NLP tasks by simply fine-tuning the
output of the model to fit the NLP task [18].
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BERT makes improvements to previous pre-trained language representation models
by introducing bidirectional learning allowing the model to look left as well as right
down the text sequence [18]. The authors also show that a fine-tuned implementa-
tion of BERT can often be even better than task-specific models. Considering this,
BERT should work well at emotion prediction with potentially less time needed to
construct the model while still achieving excellent performance [18].

The BERT architecture uses blocks of bidirectional Transformers pre-trained on two
different language tasks [18].

BERT has previously been fine-tuned to tackle emotion recognition of text with
good results, and so it could be an excellent starting point for NLP on transcripts
[19].

2.3 Emotion Recognition

2.3.1 Databases
The Interactive Emotional Dyadic Motion Capture (IEMOCAP) Database

When creating models for emotion recognition, there is a limited amount of useful
data available. The IEMOCAP database is specifically designed to deal with this
issue.

The database contains well-labelled data on speech, facial expressions, and hand
gestures of a particular subject during conversations. The subjects consisted of ten
actors in two-party conversations [20]. The actors performed three scripted sessions
and two improvised sessions which were designed to express specific emotions. In
each session, an actor wore a headband with 53 facial markers and a wristband in
order to track their motion during the actions [20].

The discrete labels used in the database represent the general emotion and will
be relevant to this project. It may be hard to get this level of quality from face
tracking performed without markers on the face. However, it should be possible to
downsample the data in IEMOCAP to match the real data. It will also be essential to
ensure that there is no overfitting. With only ten subjects in the database, it would
potentially be easy to incorrectly fit the model to the mannerisms of the specific
subjects.

Database of Elicited Mood in Speech (DEMoS)

DEMoS is an extensive labelled audio database in Italian from a large sample of 68
speakers. Similar to IEMOCAP, it contains relevant discrete categories [21]. The
database uses Mood Induction Procedures to capture real emotions as opposed to
using acted speech [21].

The large number of speakers in this database could be useful to prevent overfitting
on IEMOCAP. Additionally, the Italian language could help identify overfitting. The
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network should extract emotion from the way someone speaks, not solely from the
language used, so a network trained on multiple languages has the potential to
generalise better.

Some emotions are more easily detected through speech, while others are conveyed
through facial expressions and hand gestures. This concept could be a limitation of
DEMoS which only contains audio. This limitation could be overcome by training
multiple networks, one to interpret the visual communication channel, and another
for audio. However, the visual and audio communication channels work together
to convey emotion; therefore, a network that interprets them together is ideal. As
discussed earlier, it may be possible to adapt a network trained on the DEMoS audio
and transfer it to work on combined audio and visual input with domain adapta-
tion.

Extended Distress Analysis Interview Corpus (E-DAIC)

The E-DAIC was released as part of the AVEC 2019 challenge, and it is a subset of
the DAIC dataset [22; 23]. The DAIC contains a series of interviews to assess both
the severity of PTSD and depression of the interviewee. The type of interviews con-
ducted include a portion which is conducted by an automated speaker, both acting
autonomously and remotely controlled from another room [22]. This dataset does
not contain emotional labels on the utterances; however, the dataset does contain
real interviews with unscripted dialogue [22]. Additionally, the interviews which
were conducted by an automated speaker represent the exact environment in which
emotion recognition would be used.

The E-DAIC consists of interviews conducted by the automated interviewer, and they
provide the Personal Health Questionnaire (PHQ) 8, PHQ 9, and PTSD severity
scores [23]. The transcripts provided are automatically transcribed using Google
Cloud [23], and therefore mimic the data that would be available to an Al inter-
viewer.

2.3.2 Previous Work on Emotion Recognition

Attention-Augmented End-to-End Multi-Task Learning for Emotion Prediction
from Speech

Previous studies have been designed to avoid hand-picked features and learn bet-
ter and more useful features by implementing an End-to-End network along with
multi-task learning to improve issues with overfitting [24]. This is achieved by us-
ing the raw waveform of speech in the IEMOCAP database. A CNN operates on the
raw waveform with that idea that it will perform feature extraction. This CNN then
feeds the extracted features into an RNN to perform sequence modelling. The net-
work then uses an attention layer to evaluate which parts of the sequence contribute
the most to the prediction. Finally, the network outputs the predictions of arousal,
valence, and dominance. The reasoning for predicting three properties with one net-
work is to prevent overfitting. The results of this experiment demonstrate that this
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multi-task learning approach does increase the performance of the network.

The network is not directly applicable to the problem as they only use audio as
inputs, and they do not predict the general emotion, but instead related properties
of the speech. The paper also shows that the use of attention layers and multi-task
learning can improve the generalisation of the network.

End-to-End Multimodal Emotion Recognition using Deep Neural Networks

An applicable approach to the problem at hand uses both visual and audio inputs
to a network to predict emotion [25]. The network is split into three distinct parts,
the visual network, the speech network, and a two-layer RNN which consumes the
output of the visual and speech networks. The visual network is a DNN which takes
the raw video cropped down to the face as input. The speech network works on
the raw waveform of speech, In order to prevent overfitting, they use dropout with
a 50% probability. The output of the visual and speech network have their output
features concatenated and fed into a two-layer RNN.

This network provides an excellent example of prediction using both visuals and au-
dio together, although they predict arousal and valence instead of general emotion.
Since only raw pixels of the face are used, it might be possible to improve on this
network by performing an estimation of the positions of the facial features relative
to one another and using this as inputs.

Multimodal Emotion recognition on IEMOCAP Dataset using Deep Learning

Speech, text, and motion capture data for the hands and face can be used to per-
form classification of emotion on the IEMOCAP dataset [26]. The approach taken is
to train a network for each of the inputs and then merge their features with concate-
nation and feed it forward into a standard dense layer with a Rectified Linear Unit
(ReLU) activation function and then an output layer to combine them.

We may want to expand on the label space used here as they only feature four
emotions. The inputs to the motion capture network may be too precise for it to
function well without modification. The video feed of the user of the VR application
is unlikely to be able to accurately track the motion of parts of the face and hands as
precisely as IEMOCAP. They use Global Vectors for Word Representation (GLoVe) on
the text transcript, this converts words to vectors which enables an ML algorithm to
learn features such as word similarity. The use of GLoVe seems like a good idea as we
will be doing speech analysis, and adding some kind of speech to text recognition
to the software should not add much complexity. It would also enable the use of
Natural Language Processing (NLP) at a later stage.

In their results, they also managed to obtain relatively high accuracy on emotion
recognition, predicting anger, excitement, neutral and sadness; they manage to score
71.04% accuracy. This accuracy may decrease due to the addition of more emo-
tions and the constraints that will need to be implemented to the motion capture
inputs.
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Deep Learning based Emotion Recognition System Using Speech Features and
Transcriptions

Similarly to previous discussed work, they only predict four emotions; in this case,
anger, happy, sad, and neutral. The results may not extrapolate well when predicting
a larger subset of the emotions available in IEMOCAP [27].

Several different combinations of feature inputs, models, and combinations of fea-
ture inputs are experimented with, providing helpful insight into which features will
be especially useful for emotion recognition [27]. The paper discusses that the con-
text of a sentence is significant for making the correct prediction of the emotion of
utterances. One example they provide is that a word such as “good”, may seem pos-
itive, but surrounding context could change that positive connotation to a negative
one [27].

In their first model, utterances are embedded to vectors, and a CNN is used to try
and learn the surrounding context of words in the utterances. In the second and
third models, they use a CNN with max pooling on the audio spectrograms and
Mel Frequency Cepstral Coefficients (MFCCs) respectively. An additional model 2B
was trained which experimented with additional parallel convolution layers. The
following models are then fusions of models 1 to 3. Fusion is done by concatenating
the output layers from each model before passing it through a fully connected layer.
These fused models are denoted as 4A - fused spectrogram and MFCC models, 4B -
fused spectrogram and text models, 4C - fused MFCC and text models.

Performance is then calculated on the 4 emotions. The reported overall accuracies
are

e Model 1 - 64.4% e Model 4A - 73.6%
e Model 2A - 71.2% e Model 4B - 75.1%
e Model 2B - 71.3% e Model 4C - 76.1%

e Model 3 - 71.6%

This information could suggest that on single modalities, using extracted features
from audio as the input is going to have a better performance than text. However, a
combination of both is even better.

Multimodal Speech Emotion Recognition Using Audio and Text

In line with other work, we again consider the use of RNNs on both text and audio
features from the IEMOCAP dataset.

Initially, models are produced on the single modalities of audio and text. For audio,
the use of MFCC as the input to the RNN is implemented, which is then combined
with prosodic features using concatenation to make a prediction. Similarly, for text,
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words are embedded as vectors and are encoded using an RNN just as they did with
the MFCC features [28].

More interesting is the multimodal aspect of the paper. They perform standard fu-
sion using concatenation on the output of these models for the first model, but in
the second, they use attention to do this fusion. For the fusion part, they take the
concatenation of the prosodic features and MFCC RNN outputs, along with the se-
quence of hidden states from the text RNN, and multiply them to get the attention
weights that are applied to the hidden states of the RNN. This attention on the text
hidden states is then concatenated with the output of the audio model (same as the
single modality model) to make a final prediction [28].

They assessed the models using the weighted average precision on angry, happy
(merged with excitement), sad, and neutral. They found the normal concatenation
(0.718 WAP) to outperform the attention-based fusion (0.690 WAP) when consider-
ing the Weighted Average Precision (WAP). They, however, suspect it is due to the
lack of data the more complex model parameters cannot be learned as easily [28].
It could be because of the way they have chosen to fuse the parameters. They are
certainly learning to pay attention to the most relevant parts of the textual RNN, but
they still use the audio vector as usual.

Multimodal Speech Emotion Recognition and Ambiguity Resolution

Consideration has been taken into how handcrafted features in combination with
a series of different non-neural network ML techniques compare with end-to-end
deep learning implementations. The assessment of the different models is based
on IEMOCAP utilising upsampling techniques to balance the dataset predicting six
emotions:- anger, happy, sad, fear, surprise, and neutral. They find that non-neural
network models perform similarly to deep learning models depending on the feature
inputs they are given [29].

Additionally, they can conclude the most important features from the audio, text,
and video features they extracted and rank them. For a model which learns from
pre-defined features, this could be incredibly useful to reference which features will
likely give the best results. They also found that fusing audio and text modalities
saw a good improvement in the scores [29].

Multimodal Sentiment Analysis using Hierarchical Fusion with Context Model-
ing

By investigating methods of fusion, there is evidence that a hierarchical type of fu-
sion outperforms plain concatenation of the different modalities [30]. Their ap-
proach first fuses two modalities by first ensuring both modalities features are the
same dimension size, and then applying a fully connected layer mapping each pair of
features to one output feature [30]. For each time step, they take the corresponding
feature from each modality and learn weights that map it to one fused feature.

After fusion of each combination of the audio, video, and text features, these fused
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features, at a later stage in the model, are then fused once again with the other fused
vectors, in this respect the fusion is hierarchical. By using the emotions of anger,
happy, sad, and neutral for evaluation, their results show that modalities involving
text performed significantly better, and that fusion of all three modalities did not
perform significantly better than the use of only audio and text fusion [30]. The
best model was the audio, video, and text model with an accuracy of 76.5%, closely
followed by the audio and text model (76.1%) [30].

DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition
in Conversation

DialogueGCN produces state of the art results on the prediction of the six emotions,
happy, sad, neutral, angry, excited, and frustrated with a weighted average accuracy
of 65.25% using only the single modality of text [31].

The key idea behind this work is that during a conversation, the emotions of a per-
son is dependent on themselves. However, they also depend on the other parties
involved in the conversation and how they influence the other parties’ emotions
[31]. This may not be entirely fitting for the model we aim to achieve, as an Al
therapist may not model well with its influences on the other speaker, though the
concepts may be useful for self-dependency.

As with other models, they encode the text transcripts to word vectors and extract
text features of the utterances using a CNN. These utterance level features are then
used throughout the rest of the model [31]. Since conversations are sequential, they
attempt to model this with a Sequential Context Encoder, which is a bidirectional
RNN [31]. They then try to model the speaker contexts, how a speaker influences
their own emotions, and other parties’ emotions, using a directed graph trying to
capture the relationship between participants and their sequentially encoded utter-
ances [31]. Graph convolution is then used to make their predictions. The two
main issues with this implementation in our use case are that preprocessing of the
audio is needed to construct the graph and that the theory behind it relies on the
understanding of the conversation, which may not be true in a therapeutic setting,
or when talking with an Al therapist.

2.3.3 Previous Work on Prediction of Depression

Multi-level Attention Network using Text, Audio and Video for Depression Pre-
diction

This paper was the winner of the AVEC 2019 depression detection challenge. This
model works on the three modalities of audio, video, and text. They use a selection
of extracted features from the audio, such as MFCC, for the audio modality. For
text, they use word embeddings with zero paddings for shorter utterances, so they
are all of the same lengths. Since the AVEC dataset does not include the raw video
of interview, but instead provides extracted features from the video, they use these
features for the visual modality [32].
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Similarly to emotion recognition models, they implement the use of bidirectional
RNNs, specifically Long Short-Term Memory units (LSTMs), to learn from each
modality. Their method of fusion is by applying attention at different points through-
out the network, both to learn which parts of audio and video features are important,
but also in the fusion of the three modalities [32].

Their final result on the prediction of PHQ 8 scores is a Root Mean Squared Error
(RMSE) of 4.28 [32]. This is state of the art for PHQ 8 regression. It is interesting to
note that they looked at combinations of only two modalities and found that audio
and text performed better than video and text, with the full three modality fusion
only slightly improving on the audio and text fusion [32].

A Multimodal Hierarchical Recurrent Neural Network for Depression Detec-
tion

This was the runner up to the AVEC 2019 challenge, and it is worth considering how
they achieved their impressive results. Once again the use of bidirectional RNNs is
apparent, with a hierarchical format to the RNN layers. The first hierarchy is the
feature extraction performed on the audio and video features, using each second as
a timestep [33]. In order to use 1 second as the time step, they average each of the
extracted audio and video features, provided as part of the challenge, over 1 second.
The audio features are reduced in dimension to be only of size 50 [33]. They use
an encoder-decoder style network to reduce the dimensionality to keep the utility of
the data while removing redundancy contained within it [33].

When it comes to the text processing, they use a mean-max autoencoder which takes
advantage of multi-head self attention [33], similarly to the Transformer [17]. Then
they use a lexicon to look up the emotional connotation and the strength of this
connotation of words in the transcript. This word emotion vector could indicate an
emotion recognition tool could improve quality of depression detection and may be
inspired by the fact that word choice could be influenced by a person’s underlying
emotions [33].

2.3.4 Related Work on Audio and Text Tasks

Attention-based Atrous Convolutional Neural Networks: Visualisation and Un-
derstanding Perspectives of Acoustic Scenes

This paper uses MFCCs as the input instead of the raw waveform [34].

This paper intends to classify the acoustic setting that audio was recorded in, and
visualise the feature maps, so it is not entirely relevant to emotion recognition from
speech. The idea of using attention layers that occurred in the previous paper ap-
pears again. More importantly, we are introduced to the idea of atrous CNNs [34].
An atrous CNN works by dilating the filter by a particular rate. This rate introduces
a gap between the pixels considered by the filter of the CNN. The use of atrous CNNs
is done to remove the pooling layers which reduce the size of the feature maps which
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would be detrimental for visualisation of the features. The atrous CNNs had a higher
accuracy than standard CNNs.

Augment to Prevent: Short-Text Data Augmentation in Deep Learning for Hate-
Speech Classification

The goal of classification of hate speech is a hard, and somewhat subjective task.
In this study, the accuracy of classification is improved on tweets by augmenting the
texts without changing the meaning [35]. One augmentation is to convert the words
to vectors and use the cosine similarity to switch words with sufficiently similar
words. Additionally, given sentences are of differing length, inputs to the neural
network can end up with much zero-padding, which can distort a network.

This approach could potentially be applied to the text transcript to determine emo-
tion. Similar to hate speech, it can be challenging to understand emotion through
text. However, by following this approach, we should be able to achieve a reasonable
understanding of emotion from the text. It could be possible to combine this with the
approaches above to produce an even better method of emotion recognition.
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Chapter 3

Databases and Data Collection

3.1 IEMOCAP

The IEMOCAP data is the best available dataset for emotion learning. The data
contains raw audio, raw video, text transcripts, and motion capture information,
along with rigorously labelled emotions on each utterance [20]. Additionally, other
emotional information of speech is labelled, which would allow the model to also
learn about the arousal, valence, and dominance of speech [20].

3.1.1 Data Pruning

The dataset contains ten emotion categories; these are labelled as neutral, happy,
sad, angry, surprised, fearful, disgust, frustration, excitement, and other [20]. Since
there is not always full agreement between the human evaluators, only the utter-
ances where there is majority evaluator agreement is considered, the resulting data
distribution can be seen in Table 3.1.

Emotion Count

Angry 1103
Happy 595
Sad 1084

Surprised 107

Neutral 1708
Frustrated 1849
Excited 1041

Fearful 40

Disgust 2

Other 3
Table 3.1

We can see from the table that the dataset is relatively imbalanced. Since disgust has
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such a small number of examples, and other is an undefined emotion, I have chosen
to remove these from the dataset, and thus train the model on the eight remaining
emotions.

Fearful is an important emotion for therapeutic settings, but it is still very uncom-
mon with only 40 examples in this pruned dataset. Upsampling might be a useful
method to combat the still imbalanced dataset (see Figure 3.1 for histogram) how-
ever I have opted to use weighting during calculation of the loss function while
training instead. This is simple in PyTorch as a weight for each class can be provided

when constructing the loss function. Each class during training is given a weight of
size of class
size of largest class *

Histogram of Emaotion Classes in Full Dataset
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ang hap sad sur neu fru exc fea
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Figure 3.1: Balance of emotion in the pruned full IEMOCAP dataset.
The labels in the diagram represent ang = Angry, hap = Happy, sad = Sad, sur =
Surprised, neu = Neutral, fru = Frustrated, exc = Excited, fea = Fearful.

Similar imbalances are found in the arousal, valence, and dominance classes, as
shown in Figure 3.2. Similarly, I have decided to weight these during training.

3.1.2 Training-Test Split

The IEMOCAP dataset does not define a pre-determined train-test split, so this must
be established. The model must not overfit to the speakers it trains on. As such, the
test training-test split is important. Each of the sessions in IEMOCAP consists of two
speakers, with the full dataset containing a total of ten speakers [20]. With this in
mind, the dataset is split, using the first four sessions as the training data and session
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Figure 3.2: Balance of arousal, valence, dominance classes in the pruned full IEMOCAP
dataset.

The labels in the diagram represent neg = Negative, neu = Neutral, pos = Positive.
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five as a test set. This split ensures that the results on the test set represent unseen
speakers, and it has been done before to ensure speaker-agnostic results [26].

The resulting train and test splits follow similar distributions of the emotion labels,
demonstrated in the Table 3.2 and Figure 3.3. The test set should, therefore, pro-
duce results which are a good representation of the dataset. Additionally, the results
should be speaker-agnostic and represent the performance of how the model gener-
alises to new speakers.

Emotion  Train Set Count Percentage Emotion Test Set Count Percentage

Angry 933 15.9% Angry 170 10.3%
Happy 452 7.7% Happy 143 8.7%
Sad 839 14.3% Sad 245 14.8%
Surprised 89 1.5% Surprised 18 1.1%
Neutral 1324 22.5% Neutral 384 23.3%
Frustrated 1468 25.0% Frustrated 381 23.1%
Excited 742 12.6% Excited 299 18.1%
Fearful 30 0.5% Fearful 10 0.6%

Table 3.2: Distribution of Emotion Classes in the Training Set and Test Set.

No cross-validation split was performed. However, in future work, to validate the
results of the model, it would be possible to do cross-validation split across the five
sessions using 80% for training and 20% for test. Taking the average across all of
these would show that the model is reliable and reproducible.

3.2 AVEC 2019 E-DAIC

There is concern that the dataset will overfit to actors in some way. IEMOCAP con-
sists of both improvised scenes and scripted scenes; however, in both cases, the
participants are still acting [20]. There is a concern that the acted emotions are not
the same, and may manifest differently, to real emotions. To make sure that this is
not the case, we need to take advantage of other datasets for the evaluation of the
model.

Initially, we had planned to collect interviews manually by leveraging mood induc-
tion [36] similarly to the DEMoS dataset [21]. Then we could verify the performance
of the emotion recognition model on individual subjects speaking to a computer. The
proposed method of collecting these emotional interviews was the use of film induc-
tion and self-statement induction, followed by specific questions to encourage the
volunteer to speak naturally. However, based on initial experiments with a couple of
volunteers, the results were not promising.

Fortunately, the E-DAIC dataset can be used in place of this dataset. While we can-
not evaluate the emotions on this dataset, we can use the emotion recognition pre-
dictions to improve a baseline depression detection model. This will show that the
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emotional understanding learned by the emotion recognition model is valid and that
this understanding can be used to improve related emotional tasks.

3.2.1 Data Pruning

In this case, we have a series of interviews which contain numerical labels used
for regression [22]. However some of the transcripts made by Google Cloud are
inaccurate, or the timings do not match up correctly. Some timestamps are invalid;
to mitigate this, we only consider utterances that are between one and ten seconds
long, and with a confidence value of more than 0.85.

3.2.2 Data Usage

Loading of the data is somewhat tricky. We want to make predictions on the full
interview, but we also want to utilise per utterance predictions using the emotion
recognition model. This issue complicates how the data can be loaded.

The decided solution was to treat a single interview as a sample in a batch. When
a batch is loaded, we return ten interviews and the corresponding labels. These
interviews that are loaded within a batch contain a PyTorch DatalLoader object which
provides iteration of each utterance within that interview. By doing this, we can
shuffle the interviews and can allow the use of the pre-defined training-test split of
the data.

3.3 COVID-19 Interviews

There is limited data available on the study of modelling and prediction of general
anxiety disorders by neural networks [37]. As part of the extension of emotion
recognition, we look at depression and anxiety prediction with transfer learning
from emotion recognition.

As discussed in the introduction, anxiety in the general population has increased
during the COVID-19 pandemic. As such, we conduct interviews discussing various
aspects of the COVID-19 pandemic to elicit various emotional responses.

3.3.1 Data Collection

31 healthy volunteers with no physical or mental health conditions agreed to par-
ticipate in interviews through the medium of online teleconferencing software. The
interviews consisted of discussions about the volunteer’s feelings of sadness, anxi-
ety, and anger regarding the current COVID-19 situation. To finish the interview, a
brief discussion occurred about positive experiences and things to look forward to
post-lockdown.

The volunteers provided GAD 7 questionnaire answers, and a Likert scale rating
for how strongly they felt angry, happy, sad, and anxious, during the interview. In
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addition to this, two Consultant Psychiatrists independently rated their opinion of
the strength of emotion displayed during the interview using the same Likert scale
rating.

3.3.2 Training-Test Split

Since the dataset is small, it can only be used to fine-tune the outputs of another
model. With this in mind, we split the data to use five interviews to train, and the
remaining 26 interviews for evaluation of performance.

Choice of the training set is made manually, as randomly selecting five interviews
may not represent the full spread of values in the dataset well enough. For example
if five interviews which each represent no anxiety are chosen, then any fine-tuning
will not learn anything about anxiety.
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Emotion Recognition Model

4.1 Model Design

4.1.1 Model Requirements

The main idea behind this project is that traditional therapy is not scalable, and
Al that can reliably detect emotion can conduct therapies such as self-attachment
therapy. With this in mind, the first clear objective for the emotion recognition
model is for the recognition to work live, on a per utterance level of prediction.
A model which only predicts utterance level emotions after the conversation has
concluded is unable to feed information to an Al therapist while it speaks with a
patient. Additionally, this model could be used to aid professionals in conducting
remote assessments of patients, but again would need to be delivered in real-time to
be clinically useful. Emotional predictions given after the conversation will not help
a professional who may not remember exact utterances made by the patient.

For application in therapy, accuracy is important. A core aspect of self-attachment
therapy is the projection of emotions onto the child avatar; poor emotion recognition
will fail to map the correct emotions onto the avatar. Confusion of core emotions
such as happy, sad, and angry, would be a fundamental flaw in the model. However,
confusion of emotions such as disgust, or emotions that are very similar, such as
angry and frustrated, would be undesirable, but still likely to be useful therapeuti-
cally.

The predictions need to be reliable and not speaker-dependent. When training the
model, there is a risk that it will overfit to the speakers in the training data and
fail to be reliable and valid when applied to new speakers. Additionally, as most
available data consists of American speakers, there is a potential risk that the model
may overfit to the American accent and dialect. In order to mitigate this, the model
will need to model each new speaker’s way of speaking somehow and how their
emotions fluctuate. The predictions also need to be valid and accurately model
emotions. There is a risk that the model could learn intonation as opposed to the
underlying emotion.
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Unlike other implementations, such as DialogueGCN [31], we do not want to rely
on inter-speaker dependency. The way that parties in a conversation influence one
another’s emotions may be useful for modelling emotion in conversation. However,
when we model the emotions between a single person and an Al therapist the de-
pendency may not hold. The model needs to model one speaker without relying on
the inputs of other parties within a conversation or any other outside factors.

It is important to consider the use of all the available modalities, such as the audio,
video, and contents of the speech, which all factor into how we, as humans, recog-
nise emotions. In order to achieve this, we must investigate the fusion of modalities
and how to extract useful features from each modality used.

Finally, when the completed model is produced, the model should be easily applied
to predict any subset of the emotions that the model was trained on. For example,
as a therapy application is developed, there may only be a desire to predict angry,
happy, neutral, and sad. Additionally, this allows us to compare the model’s per-
formance with previous attempts at emotion recognition which often report their
performance on a different set of emotions.

4.1.2 Design Choices

A critical decision for this model was which modalities to take into account. Avail-
able for IEMOCAP, we had raw audio, raw video, transcripts of speech, and motion
capture information [20]. Initially, we considered using audio and video primarily,
and attempt to use the motion capture information if, and only if, the data could be
reliably obtained in an interview session. Since the concept of emotion recognition
is to work in a VR application as well, the modalities we train with need to be ob-
tainable during the VR session. Of course, video data could be unrealistic with a VR
helmet obscuring the view of the user’s face.

Additionally, previous work on emotion recognition seems to suggest that audio and
text are significantly more important than video. In papers where different combi-
nations of modalities are considered, audio-text outperforms audio-video [30; 38].
This phenomenon seems to also apply in other, related, paralinguistic tasks such as
depression prediction [32]. With all this in mind, we decided to prioritise the use of
text/transcripts over the use of video.

In order to predict any subset of the emotions, we decided that the best approach is
to train the model across all the available emotions and then predict only a subset.
For example, if we only wanted to predict the emotions happy or sad, we would
predict as usual and using a wrapper around the model, predict happy or sad based
on which of the two had a higher probability out of all emotion predictions made by
the model.

Emotions are complex qualia that cannot be reduced into a specific set of criteria
to measure. In this way reducing the audio signal to a smaller handcrafted feature,
such as MFCC or the audio spectrogram, might lose important low-level information
contained within the raw audio. We aim to replicate the human understanding of
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emotion. In this way, we have decided to construct the model end to end with as
minimal reductions to input data as possible.

4.2 Audio Modality

4.2.1 Initial Model Decision

As part of the model requirement, we want to develop an end-to-end neural network
to perform emotion recognition. One of the models used for arousal, valence, and
dominance prediction was an end-to-end network operating on only the raw audio
and had impressive results [24]. It was adapted for emotion classification [39]. For-
tunately, we were able to obtain a version of this modified for emotion recognition
model implemented in TensorFlow from Georgios Rizos. However, previous experi-
ence with PyTorch led to the decision to reimplement this code into PyTorch, which
did require some changes.

For example, in this modified model, Peephole LSTMs are used instead of GRUs, and
cell state clipping is performed on these LSTMs. Each of these is not implemented
as default in PyTorch. The decision was made to use normal LSTMs since research
into the usefulness of Peephole LSTMs indicates the performance difference is in-
significant [40; 41]. We then implemented an LSTM stack using PyTorch LSTM cells
and clipped the state manually after each state. In the end, however, cell state clip-
ping was found to be relatively insignificant, and we opted to use the LSTM stack
provided by PyTorch. The only other modification made by this implementation
was the removal of the dropout layer. I also had to change the kernel size of the
convolutions to an odd number in order to replicate the “same” padding found in
TensorFlow.

Additionally, after investigation, a fairly significant improvement was found in the
audio-only model by massively increasing the size of the feature maps in the convolu-
tion layers. The feature maps of the convolutions are 256, 512, and 1024, following
each convolution with a max-pooling layer with kernel size and stride equal to 10.
The bidirectional LSTM on top of this CNN then uses a hidden size of 1024. It then
uses attention on the output just as in the original paper. The final CNN and bidi-
rectional LSTM audio model components can be seen in Figure 4.1 and Figure 4.2
respectively. We will refer to these as the Audio CNN Model and the Audio BiLSTM
Model from here.

4.2.2 Validation of Model

After constructing the pure audio model, we wanted to confirm that the knowledge
learned by the audio model would generalise and work on interviews of real people,
and not just the scripted conversations in IEMOCAP. Fortunately, the E-DAIC dataset
almost perfectly replicates the hypothesis.

Since the E-DAIC [23] consists of real interviews with patients talking to an Al in-
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Figure 4.1: The final audio CNN model used.
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Figure 4.2: The final audio bidirectional LSTM model used.
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terviewer, if we can successfully apply the emotion recognition audio model to this,
we can conclude that it generalises well enough for this model to be accepted. The
labels provided with this dataset, however, do not give details on the utterance level
emotions. We decided the most reasonable decision was to apply the emotion recog-
nition for happy, angry, and sad, on each utterance in the dataset, and manually
verify that the model has good enough performance on the dataset. To do this, we
took the top 30 most likely predictions for each utterance and investigated these.
There was undoubtedly some overfitting to a specific speakers voice, but the per-
formance was good enough to get a feeling that issues with overfitting to scripted
IEMOCAP speakers were not an issue, and that this model would work in an un-
scripted interview setting with an Al

4.2.3 Limitations of Model

Of course, the main issue is uncertainty whether the audio model is overfitting to the
speakers in the training data. However, given the manual verification, when com-
bined in the larger model utilising multi-task learning the model should generalise
well.

Another issue is caused by the use of raw audio and the large feature map size in the
convolution layers. The amount of memory required during training builds up very
quickly; thus, a very small batch size with frequent loss calculations was required to
free up the memory used for backpropagation. In order to mitigate this, the weights
are only updated after enough small batches have been processed, adding up to the
true batch size.

It was considered that a multi-modal autoencoder based on text and audio could
produce an underlying latent space which could then be used for prediction. How-
ever, it became clear that to do this end to end would use far too much GPU memory,
and ultimately was not possible. This autoencoder idea has been investigated in the
past and produced impressive results [42]. The only way to make this work with the
GPU resources available would be to run the model with half-precision. It is likely
the performance would be much worse in this case, and it is not justified to follow
through with this idea.

4.3 Text Modality

4.3.1 BERT
Choice of BERT

BERT is a relatively new language model developed in 2018, but its performance on
a variety of language tasks is very impressive [18]. It has been successfully applied
for emotion recognition on text/social media [19] and there is additional evidence
that fine-tuning BERT on IEMOCAP will work well [43].

30



Chapter 4. Emotion Recognition Model 4.3. TEXT MODALITY

BERT should also be straight forward to implement since it is a pre-trained language
model that only requires fine-tuning to the task [18]. The approach would consist of
deciding on which BERT architecture to use, preparing it for fine-tuning, and then
training as part of the multi-modal model. Additionally, since BERT is bidirectional,
it should be able to learn the dependencies in both directions that influence the
perceived emotions of a person.

4.3.2 Choice of BERT Architecture

In order to determine which variant of BERT would best suit emotion recognition,
we constructed a straightforward model that could quickly be trained. We then
chose the best performing of the architectures. The models all consisted of a pre-
trained BERT architecture from the Python library Transformers by HuggingFace,
followed by a ReLU fully connected layer, and an output layer with no activation
function.

To follow is a brief description of each of the variants of BERT architecture tested
in this simple model and how well they performed at the emotion recognition task
over ten epochs.

BERT-base

BERT-base is the standard model outlined in the original BERT paper [18]. This
model has 12 layers of Transformer blocks, consisting of 12 self-attention heads, with
a hidden size of 768 resulting in 110 million parameters in the model [18].

BERT-large

BERT-large is the significantly larger model outlined in the original BERT paper
[18]. This model has 14 layers of Transformer blocks, consisting of 16 self-attention
heads, with a hidden size of 1024 resulting in 340 million parameters in the model
[18].

RoBERTa

RoBERTa builds off and aims to improve BERT by analysing and modifying the
pre-training methods used, carefully changing training configurations and the pre-
training task. They manage to achieve a state of the art performance over BERT on
a handful of language tasks [44]. A RoBERTa-base is used in this example, which
has the same parameters and architecture as BERT-base, but following the RoBERTa
training.

DistilBERT

DistilBERT is a distilled version of BERT, managing to retain almost all of its lan-
guage understanding while being significantly smaller and faster than BERT [45].
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Model Epoch with Best Accuracy Accuracy Macro F1
BERT-base 9 45.9% 0.414
BERT-large 10 48.2% 0.424
RoBERTa 10 41.0% 0.339
DistilBERT 8 43.8% 0.370

Table 4.1: Table comparing the best performance across the different BERT architectures
for emotion recognition.

Distillation is the process of training a smaller model on the output of larger mod-
els. The DistilBERT model uses similar parameters to BERT-base, with half as many
layers.

Comparison and Choice

A comparison of the best performance achieved for each model can be seen in Ta-
ble 4.1. From this we can see that quite significantly the best performance was
with BERT-large. Surprisingly, RoOBERTa had the worst performance across the archi-
tectures. DistilBERT does an excellent job being such a smaller model and is very
comparable to BERT-base.

Additionally, the full graphs of Accuracy (Figure 4.3) and Macro F1 (Figure 4.4)
show that BERT-large was not just an outlier with one good epoch and is consistently
at the top after only a few epochs. The graphs suggest that RoOBERTa was starting
to look much better towards the end. However, unless we fine-tune the model and
then freeze it and substitute this into the emotion recognition model, RoBERTa will
not have time to mature to perform as well as BERT-base or BERT-large. DistilBERT
shows satisfactory performance and will be much lighter on memory, so it is worth
considering as a replacement for BERT-large or BERT-base if it becomes essential to
reduce memory in the full model.

It looks like with further training RoOBERTa may become more competitive, however,
the full emotion recognition model will have began to overfit by 10 epochs. Since
we are training in an end-to-end method RoBERTa is not applicable, however, if
RoBERTa was fine-tuned outside the model and inserted into the emotion recognition
model afterwards this may be even better than BERT-large.

Based on these results, we decided to use BERT-large. Fortunately, PyTorch is very
modular, and future work on NLP would simply need to change the NLP module
inside the emotion recognition model to replace BERT-large with another pre-trained
NLP model completely.

The final NLP model can be seen in Figure 4.5. From now on any mentions of the
NLP model will refer to this figure.
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Figure 4.3: Accuracy of the different BERT architectures during training.
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Figure 4.4: Macro F1 score of the different BERT architectures during training.

33



4.4. FINAL MODEL Chapter 4. Emotion Recognition Model

Transcript Attention
IDs Mask

. '

BERT-large

Return only the CLS token
Only the first state returned by BERT large

BERT CLS
token output

Figure 4.5: The final NLP model used, BERT-large can be swapped with DistilBERT to
save memory.

4.3.3 Limitations

BERT-large is an incredibly heavy model, with 340 million parameters. Downloading
the pre-trained model is over 1 gigabyte in size. Therefore the storage space of the
trained model config, and the memory needed to run the model, are increased by a
significant amount. It is found that during the evaluation of the model, this is not an
issue, but while training the memory usage can be huge.

A solution to mitigate memory usage if storage space and memory becomes criti-
cal, would be to swap the NLP model with DistilBERT as performance should be
comparable while significantly reducing the memory and storage required.

Since VR applications may be used with special goggles and smartphones, it is es-
sential to preserve memory, and then in a DistilBERT implementation of the model
may be superior to the BERT-large model.

4.4 Final Model

4.4.1 Fusion of Modalities

The fusion of the modalities is a fascinating problem, and gives an interesting in-
sight into how speech and text can be utilised in tandem to facilitate emotional
learning.

Initial attempts to fuse the models was a simple concatenation and linear layer out-
put, as we see in some of the previous models [26; 27; 28]. It is found that this late
fusion-based model had almost no improvement over text and audio individually. It
was investigated if this was due to a difference in the outputs. In order to test this
hypothesis, it was ensured the vectors were normalised and the same length before
concatenation. However, the model still failed to learn a relationship between the
text and audio.
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Since the model could not learn any meaningful relationship, it is clear the fusion
needs to occur earlier. With this in mind we tried a kind of early fusion, where we
concatenated the features early on in the model and then applied the bidirectional
LSTMs and then fully connected layers after the concatenation. Then we fully con-
nect layers after the concatenation. This implementation resulted in an improvement
over the late fusion model and is seen in the previous work [25].

The model was further improved by making two changes. The first change was
to use fusion to choose between the text feature vector, and speech feature vector,
to produce a new feature space which hopefully learns to pick out the key aspects
of each feature. This idea has been used in other fusion models for both emotion
recognition [28] and depression prediction [32]. Additionally, a method similar to
attention has been used as a Hierarchical Fusion method, where a standard linear
layer is used with a single feature from each modality to produce one output feature.
In this way they also learn which modality feature is important [30]. The second
fundamental change was to apply the bidirectional LSTMs only to the speech vector
and then use attention to choose between this vector and the text vector.

The different fusion architectures can be seen in Figure 4.6.
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RelU Layer
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(a) Late Fusion

Figure 4.6: The 3 Different Fusion Architectures.
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4.4.2 Multi-task Learning

By training a model to solve more than one related task on the same data, we can
prevent overfitting and improve the model’s ability to generalise and adapt to new
data. The prediction of arousal, valence, and dominance, on a single model, has
shown to improve generalisation [24]. With this in mind, we implemented the pre-
diction of arousal, valence, and dominance, as a secondary task to improve general-
isation. The prediction of emotion is weighted such that it is loss function has three
times the value of the loss for arousal, valence, and dominance.

Multi-task learning had little impact on the accuracy of the emotion prediction in
the model, so it was kept. It did not make the model worse in any capacity, but
it improved the potential use of the model as it can predict arousal, valence, and
dominance, of speech with little difficulty.

4.4.3 Speaker-Level Memory and Self-Dependency

As discussed in previous work on emotion recognition, an essential task of mod-
elling the emotions of speech is to consider the way each speaker influences their
emotions [31]. Considering this, it seems important to have memory specific to the
speaker, modelling their previous emotional states and how these will impact future
predictions.

The context surrounding words in an utterance is crucial for understanding the emo-
tions of an utterance [27; 30; 31]. This idea was extended to say that the emotional
state of surrounding utterances is another critical aspect to the prediction of accurate
emotion prediction. The original idea here was to use a bidirectional LSTM on the
hidden state of the emotion prediction model since this can learn the dependencies
and surrounding emotional contexts in the conversation. However, this could not
run in real-time and would require a full conversation to generate all the hidden
states which model emotions first.

Instead, we were able to implement a real-time compatible memory on previous
emotional states by using a modified LSTM. When the model is provided with a
batch of inputs, alongside this, a batch of speakers is given. Towards the end of
the model, before the model head makes predictions on emotion state, the hidden
state is passed through a custom LSTM. This custom LSTM treats the entire batch
as a sequence, just as it would in a normal LSTM. But, when the speaker changes,
the cell state is reset to 0. Since LSTMs have been shown to model short term, and
long term memory, this LSTM enables the model to hang onto long term memory
of the hidden state which models emotion inside the LSTM cell state. The cell state
is forgotten when the speaker changes to improve the ability to train on multiple
speakers.

This caused many complications in training since there needed to be a guarantee
that each utterance from a conversation is loaded in the correct order, with only a
single speaker. For example, given a conversation with two participants speaking
intertwined with one another, uncoupling the utterances into the different speakers
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was necessary, and ensure the same speaker’s utterances were loaded together, in
the correct order.

The significant advantage of this method is primarily that no pre-processing is re-
quired. Additionally, the memory is on a speaker level, and so it can be used on
a single speaker. Other methods, such as the graph convolution, rely on both the
speakers to accurately model the emotion fluctuations. These would rely on the Al
therapist in an automatic therapy session [31].

The complete emotion recognition model can be seen in Figure 4.7.
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Figure 4.7: The full emotion recognition model.
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4.5 Attention

4.5.1 Different Attention Methods

At the point of fusion, the model has a vector of length 1024, representing the text
model output, and another vector of identical length representing the audio model
output. An important decision to make regarding the attention is whether to gen-
erate separate attentions for the two main tasks. Shared attention might perform
better due to improved generalisation as it prevents the attention from overfitting to
the emotion prediction and tending to rely on text fully. On the other hand based
on work reviewed during model design, it is reasonable to assume that text is much
more valuable for emotion prediction and that audio is likely to be more valuable
for arousal, valence, and dominance prediction. Perhaps performance would be im-
proved by allowing the models to learn how much to focus on text/audio for each
task.

A second option is whether the attention should choose just two weights, which it
can then use for the entire vector, or should it predict 1024 pairs of weights allowing
the model to learn which parts of the NLP/Audio features are more important than
others, and vary these choices.

Based on both the accuracy and macro F1 score, the shared models outperform the
split model for emotion prediction. The average accuracy and macro F1 can be seen
in Figure 4.8.

When considering only the shared models, with frequent evaluations over six train-
ing epochs, the full 1024 attention vector seems to trend just above the simple two
attention vector. This can be seen in Figure 4.9. Regardless, we will explore how
both the two attention vector, and the 1024 attention vector, choose between the
text and audio models.

4.5.2 Attention Representation

The attention in the model should represent how important text and audio are for
different emotions. Investigating this, we should be able to see if any emotions trend
towards text or audio. Since visualisation will be more transparent with the model
that only uses two attention values, we will start by initially discussing this model,
before briefly considering the full 1024 attention model.

By considering each utterance exclusively in the test set (Figure 4.10), we can see
that angry utterances are much more likely to increase the weight of the audio
modality significantly. Additionally, excited and surprised, are somewhat higher in
the average weighting of the audio modality. This may not be a perfect represen-
tation; however, since incorrect predictions may also cause the attention not to be
applied as expected.

If we instead filter this to only the instances where the predicted emotion in the
model was correct (Figure 4.11), we can get a more accurate picture of what the
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Figure 4.8: Averages for the shared and split attentions on emotion prediction.
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Figure 4.10: Average attention weights for each (true) emotion of the utterances.
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Figure 4.11: Average attention weights for each emotion when the prediction of utter-
ance emotion by the model was correct.
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model has learned. It is evident that angry, excited, and surprised, rely much more
heavily on the audio modality for prediction, and something about these emotions
must make it harder to detect purely from the text. On the other hand, we see that
sad and neutral in particular are almost entirely reliant on the text modality.

Arousal, Valence, and Dominance Counts by Emotion
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Figure 4.12: Arousal, valence, and dominance class counts per emotion in IEMOCAP
dataset.

If we look at how common the arousal, valence, and dominance is for each emotion,
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and consider that angry, excited, and surprised, required more reliance on audio, it
may be possible to see what features of the speech cannot be detected from audio
and are important for emotion.

First, it is important to discuss what the negative, neutral, and positive categories
mean based on the ANVIL ratings used in IEMOCAP [20]. For arousal, negative
will represent that there is no excitement/activation in the voice, while positive will
represent a lot of activity and excitement in the voice [20]. For valence, the rating
is determined from a negative to positive sound in the voice. For example, sad
should have a negative valence while happy will be positive valence [20]. Finally,
for dominance, the rating uses negative to mean a small, or quieter, voice, while a
positive dominance indicates a dominant and louder voice.

Graphing the counts for each category of the arousal, valence, and dominance sepa-
rated by the emotion (Figure 4.12), we can see a similarity between the angry and
excited emotions, especially. Angry, excited, and frustrated all tend to positive dom-
inance and positive valence more often than other emotions. Additionally, surprised
is more likely to tend to positive valence, but not positive dominance. It seems that
in general, emotions with a stronger positive reaction in either valence and domi-
nance tend to require more weight on the audio modality. Frustration is an exception
to this rule, however.

This is further verified when we consider the correctly predicted arousal, valence,
and dominance, and their corresponding average attention weights (Figure 4.13).
Evidently, audio becomes far more important when the valence or dominance is
positive. Arousal seems to influence somewhat when it is negative or positive. How-
ever, this may be because angry is overwhelmingly negative in arousal, and excited
is similarly very positive arousal.

Visualising the 1024 attention vector is somewhat less useful. The model is now free
to pick and choose which aspects of each modality is important. Without precisely
knowing what the 1024 audio features and 1024 text features truly represent, we
may not be able to reach a conclusion. However, if we consider the box and whisker
plot of the average 1024 weights for the audio modality (Figure 4.14), we can see
that the range of common values fluctuates more for different emotions. We can see
the emotions which needed to look more at the audio vector, especially angry and
excited, have a larger interquartile range, and the third quartile point occurs at a
higher audio attention weight.

Considering both the 2 attention vector (Figure 4.11) and the 1024 attention vec-
tor (Figure 4.14) there is a significant disagreement. In the 1024 attention vector
there seems to be no significant difference between emotions and how they utilise
modalities. However, the 2 attention vector clearly favours certain modalities for
each emotion. One could hypothesise that this is because particular features in the
audio modality are important for reducing confusion, and when there are only 2
attentions the model is forced to increase the weight of the entire audio modality to
understand these features. Meanwhile, the 1024 attention model is able to extract
only the important features from audio, and can continue to rely on text for the
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Figure 4.13: Attention weights for each modality based on correct predictions of
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Bar and Whisker Chart of the Average Attention Vector
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Figure 4.14: Average audio attention weight vector box and whisker plots for each
correctly predicted emotion.

majority of the features.

It is worth noting that surprise does not feature in this graph, as the 1024 feature
vector fails to predict surprise at all correctly. While the overall accuracy is slightly
higher in the 1024 feature vector model, we lose understanding of how the modal-
ities are fused, with relatively insignificant performance increase, as can be seen in
Figure 4.9.
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Chapter 5

Depression and Anxiety Prediction

5.1 Depression and PTSD

5.1.1 Theory

We intend to show that the emotion model can be used to improve the accuracy of
depression prediction models and that the accuracy of the emotion model generalises
to interviews with non-actor speakers.

To demonstrate the former, we intend to show that information learned about emo-
tion can be applied in a cross-corpus manner to improve depression predictions. In
this section we train a baseline model on the E-DAIC dataset [22; 23] to predict PHQ-
8 scores primarily, but also the PTSD severity as a secondary objective. Following this
we train the same architecture, but with a simple fusion with the hidden state from
the emotion recognition model, and compare how this affects performance.

If information from the emotion recognition model makes improvements to the qual-
ity of depression prediction, we assume that the information extracted by the emo-
tion recognition model is valid. If the emotion recognition model introduced mean-
ingless noise it would not aid the model. Additionally, we investigate the relationship
between the emotion recognition model predictions and the predictions on each ut-
terance, as well as for the interview as a whole.

5.1.2 Model

In order to look at per utterance results, we intend to construct the model such that
we can visualise per utterance predictions, but make a final prediction considering
the entire interview.

Since we intend to keep the model straight forward, we opted to use a modification
of the emotion recognition model to extract features from each utterance. Then,
using the entire list of features extracted from each utterance in an interview, we
use a second model to aggregate these and make a prediction for each utterance.
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Then, we use attention based weighting with this to reach the final prediction for
the interview.

Architecture

The first model is the feature extractor. This model extracts a feature vector from
each utterance in the interview. Since the emotion recognition model showed very
strong signs of modelling emotional states so well, we hypothesise that a similar ar-
chitecture will have capacity to model features from speech about depression. Look-
ing at the architecture in Figure 5.1 it is clear only minor changes have been made
from the emotion recognition model in Figure 4.7.

We then have a model which can take the list of all utterance features, and the list of
emotion recognition hidden states, to produce predictions for the full interview. For
this model, we decided to approach it in a manner that would allow investigation
into the relationship of utterance level predictions and final predictions, as well as
into the weight applied to different parts of the interview. To do this, we use a linear
layer to make utterance level predictions, and then use an attention based weighting
to create a final prediction for the full interview. This can be seen in Figure 5.2.

As a baseline for comparison we use the same overall architecture as above, how-
ever, the aggregator takes only the extracted features as input. Thus, the concate-
nation layer is missing and the corresponding vector sizes throughout the model are
halved.

Training

Ideally when training the model we could generate the feature vector for each ut-
terance, then create a label with the aggregator and backward propagate through
both models, and take this as a single sample. However, due to memory constraints,
this is not possible as the gradients tracked in the calculation of the feature vectors
rapidly builds up.

To mitigate this, I decided to train in sub-batches of utterances. Every four utter-
ances in an interview, I use the aggregator to make a prediction, and then back
propagate through the networks. This allows the gradients associated with the pre-
vious utterances to be freed. In order to make this as accurate as possible, I attach
the previously freed feature vectors such that they influence the final prediction from
the aggregator, but they do not influence the training of the feature extractor.

For example, after three sub-batches, during the fourth batch we will have twelve
feature vectors with no gradient, and four feature vectors with gradients. The ag-
gregator model takes these sixteen vectors to make a prediction for the “interview”
consisting of sixteen utterances. The loss function then back propagates through the
aggregator network, using the sixteen vector inputs to calculate updates made to
the network parameters. Then, the four feature vectors with attached gradients, will
continue to back propagate through the feature extractor network updating these.
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Figure 5.1: Feature extractor trained on PHQ 8 and PTSD severity labels.
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Figure 5.2: Aggregator used to make final interview level predictions.
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This is best explained in Figure 5.3, a simple example using six utterances and sub-
batch size of two.
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Utterances Extracted Features
Back propagation

- "
Back propagation Calculate error (loss)
_ and train networks
fJ%

utterance 3
. True Labels for
= predictions |
Current Interview
utterance 4
utterance 5
utterance 6
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utterance 1 Back propagation Calculate error (loss)
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utterance 2 .
Back propagation
<

R

utterance 5
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Utterances Extracted Features

Back propagation Calculate error (loss)
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utterance 1
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utterance 3

icti True Labels for
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Current Interview

utterance 4
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-

=

Figure 5.3: Training example with an interview consisting of six utterances, with a
sub-batch size of two.

5.1.3 Results

Comparison with Baseline

Ideally, we hope to see that the emotion recognition model does significantly better
at the prediction of PHQ 8 scores. However, we can see from Table 5.2 that taking
the average over five runs only achieves an improvement of 0.02 in the RMSE.

There is a consistent, slight, improvement here. In addition, if we graph the average
RMSE at each evaluation point while training each model five times for two epochs
(Figure 5.4), we can see that the amount of data required before the model with
emotion states reaches the optimum is significantly less. To show this more clearly, I
train each model again for 1 epoch using significantly more evaluation points during
training; this can be seen in Figure 5.5.
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Model

RMSE

MSE MAE

Baseline
Baseline with Emotion States

6.494
6.475

42.173 5.564
41.922 5.569

Table 5.1: Table comparing the average performance on PHQ 8 score regression on the
test split after training the model for two epochs five times.
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Figure 5.4: RMSE on test set of both PHQ 8 scores and PTSD severity scores averaged
over 5 runs. Results are reported on RMSE, Mean Squared Error (MSE), and Mean

Average Error (MAE).
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Figure 5.5: RMSE on test set of both PHQ 8 scores and PTSD severity scores on 1
training epoch with frequent evaluations on the test set.
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5.1.4 Limitations

There is evidence that the depression model benefits from emotion inputs, however,
the quality of what is learned about depression is questionable. The range of pre-
dictions made, for both PHQ 8 scores and PTSD severity scores, is quite small, and
seems to tend towards the average labels in the training set. The mean PHQ 8 and
PTSD severity scores in the test set are 6.66 and 35.60 respectively. During evalua-
tion on the test set, the mean PHQ 8 prediction is 7.56 and the mean PTSD severity
prediction is 35.82. Evaluation on the validation set similarly produces mean pre-
dictions of 7.55 and 35.79. The similarity in these numbers indicates very limited
understanding of the underlying data.

Additionally, if we consider the utterance level predictions made by the aggregator,
there is some fluctuation, but as seen in Figure 5.6, the values are floating around
the interview level prediction.

Bar and Whisker Chart of PHQ Utterance Predictions
Divide by Interview Prediction

PHQ Utterance
Predictions by | | |
Interview PHQ | ‘

prediction

0.85 0.90 0.95 1.00 1.05 1.10 1.15
PHQ Score

Figure 5.6: Box and whisker plot of the utterance level predictions, divided by the
interview level prediction. A value of 1.0 indicates the utterance had the same prediction
as the interview as a whole.

This behaviour is consistent for both PHQ and PTSD predictions. I would hypothesise
that this is a consequence of training the feature extractor in conjunction with the
aggregator. I suspect that the aggregator fails to extract adequate features from the
data, but it gradually begins to learn something about PHQ, hence why we see some
slight variation in PHQ prediction while PTSD just matches the mean value. The
implementation which uses emotion states can use the information extracted from
the utterances by the emotion recognition model to begin training the aggregator
while the feature extractor is failing to extract anything meaningful. This might
explain why the model with input from the emotion model trains much faster.
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5.2 COVID-19 Interviews

5.2.1 Anxiety Fine-tuning

Since there is very limited data available for anxiety prediction, we take advantage
of cross-corpus understanding and take the best performing depression prediction
model defined above. We then add an additional head to this model, and freeze
the feature extractor model and most layers in the aggregator. Information learned
about depression, PTSD severity, and emotional states, should allow training on anxi-
ety using a very small training set. The modified aggregator can be seen in Figure 5.7
and indicates which layers have frozen parameters preventing any training.

Utterance Level Hidden States from
Extracted Features Emotion Recognition

Parameters in these
layers are frozen
preserving PHQ and
PTSD predictions

v ¥

Concatenate

Input Size: 2 vectors of length Ux1024
Output Size: 1 vector of length Ux2048

U s the count of utterances in the interview

Softmax Layer Softmax Layer Softmax Layer

Multiply and Sum

Multiply Joined Gutput and Attention welghts|
Sum along Joined dimension
Output Size: 1024

Interview level PHQ
8 prediction

Multiply and Sum

Multiply Joined Output and Attention weights
‘Sum along joined dimension

Output Size: 1024

Interview level PTSD
severity prediction

Multiply and Sum

Multiply Joined Output and Attention weights|
5um along joined dimension

Output Size: 1024

Interview level PTSD
severity prediction

Figure 5.7: Aggregator with added head and frozen, pre-trained, layers.

Since the feature extractor is no longer being trained in this case, training is straight
forward. First we freeze the layers as indicated above, then we use the feature ex-
tractor and emotion recognition on each utterance in the interview. The aggregator
will then produce PHQ and PTSD predictions as normal, and an additional GAD 7
prediction.
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Model RMSE MSE MAE

Baseline 2.27 5.15 1.73
Baseline with Emotion States 2.26 5.12 1.77

Table 5.2: Table comparing the performance on GAD 7 prediction between the baseline
model, and the model with emotion state input.

5.2.2 Results

To create a baseline to compare to, we use the baseline depression model and fine-
tune this on GAD 7. The behaviour of the depression is replicated again, where we
see that the model with emotion states trains faster, but has little improvement to
the RMSE of the values.

Graphing the GAD 7 RMSE against epochs trained (Figure 5.9) confirms that the
capacity of each model is very similar, but the additional information gained from the
emotional states helps to train faster. This is particularly interesting, since the model
pre-trained on depression without emotional state input takes longer to train.

3.1

—— Emotion State Model
3.0 Baseline Model

2.9

2.8

2.7 1

2.6

2.5

2.4

2.3 —_—

2 4 6 8 10 12
Figure 5.8: GAD 7 RMSE against epochs trained for anxiety fine-tuning models.

Similar behaviour to the depression model is seen in the anxiety model as well. I
hypothesise that this is due to the feature extraction model not having learnt enough
information about depression. The automatic transcription of these interviews was
not perfect, and could have been a source of incorrect emotional understanding,
which could also have contributed towards a worse understanding of anxiety by the
model.

Considering the clinician assessed Likert scores of anxiety, it appears there could be
a correlation indicating some level of understanding by the model. However, it may
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be due to less data on the upper and lower ends of the Likert scales, and by chance
the model has predicted higher/lower on these few samples.
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Figure 5.9: Predicted GAD 7 scores against clinician assessed anxiety Likert scores.
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Chapter 6

Evaluation

6.1 Emotion Recognition

6.1.1 Comparison with Previous Work

Since many state-of-art implementations of IEMOCAP report their results on differ-
ent subsets of emotions, the performance is considered in relation with each sub-
set.

Additionally, results on both versions of modality attention are reported on in this
model. We refer to the model which generates two weights for each audio and
text modality as the 2-attn model. Similarly, the model with 1024 weights choos-
ing between each extracted audio and text feature will be referred to as 1024-attn
model.

When comparing with other models that have produced models for multiple modal-
ities, we consider only their best-performing modalities.

Additionally, it is worth noting that the different models compared throughout this
section have used different training-test splits on the IEMOCAP dataset.

In the following sections we adjust the model to predict subsets of the full 8 emotions
from IEMOCAP. This allows us to compare our model against several different state
of the art models which operate on different sets of emotions.

Anger, Happiness, Neutral State, and Sadness

Comparing my model with previous state-of-art emotion recognition models pre-
dicting anger, happiness, neutral state, and sadness, shows that both the 2-attn and
1024-attn models are competitive. Table 6.1 shows that the models significantly out
perform previous models on accuracy and weighted average precision. Additionally
Table 6.2 compares the class specific performance on previous models which report
these results.

59



6.1. EMOTION RECOGNITION

Chapter 6. Evaluation

Model Modalities Accuracy Weighted Average
Precision

MDRE [28]* Text + Audio - 0.718

Combined Model [26]* Text + Audio + Video 71.04% -

bc-LSTM [46] Text + Audio + Video 76.1% -

Text and MFCC [27] Text + Audio 76.1% -

CHFusion [30] Text + Audio + Video 76.5% -

2-attn Text + Audio 80.3% 0.808

1024-attn Text + Audio 80.0% 0.801

Table 6.1: Table comparing overall performance with state-of-art models. Best perfor-

mances are highlighted in bold.

* These models have treated excitement as happiness and either joined the two emo-

tions, or used excitement as the happiness label.

Neutral

Sad

Accuracy Accuracy

Model Anger Happy
Accuracy Accuracy
MDRE [28]* 78.85%  79.08%
bc-LSTM [46] 77.98%  79.31%
Text and MFCC [27] 63.41%  49.24%
CHFusion [30] 79.6% 74.3%
2-attn 74.7% 66.4%
1024-attn 83.5% 62.2%

76.76%
78.30%
84.06%
75.6%
81.6%
84.4%

66.67%
69.92%
81.30%
78.4%
86.9%
81.2%

Table 6.2: Table comparing class performance with state-of-art models. Best perfor-

mances are highlighted in bold.

* These models have treated excitement as happiness and either joined the two emo-

tions, or used excitement as the happiness label.
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Model Modalities Accuracy
E2 [29] Text + Audio 70.1%
2-attn Text + Audio 77.1%

1024-attn Text + Audio 77.7%

Table 6.3: Table comparing overall performance with state-of-art model. Best perfor-
mances are highlighted in bold.

Model Anger Happy Neutral = Sad Fearful Surprise
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

E2 [29] 52.2% 59.0% 44.1% 77.7% 100.0% 98.8%
2-attn 74.7% 66.4% 83.3% 86.9% 0.0% 0.1%
1024-attn 83.5% 62.2% 84.4% 81.2% 0.0% 0.0%

Table 6.4: Table comparing class performance with state-of-art models. Best perfor-
mances are highlighted in bold.

When considering both the overall accuracies and the individual class accuracies, the
model remains highly competitive outperforming most models in both. However, it
is worth noting that the happy accuracy is significantly lower than the other three
classes, and of these four classes happiness was the least well represented in the
dataset, suggesting that some kind of upsampling may result in a better performance
for the happy class.

Anger, Happiness, Neutral State, Sadness, Fearful, and Surprised

Compared with the best-reported model on this emotion set, both models appear to
demostrate an improvement, as seen in Table 6.3. However, when we consider the
accuracy in each class, a significant disparity emerges.

As we can see in Table 6.4, there are significant improvements across angry, happy,
sad, and neutral, however the fearful and surprise predictions are very inaccurate,
with 1024-attn never predicting fearful or surprised. The data imbalance is a likely
significant factor, as in the test set I have used there are only 18 examples of surprised
and 10 examples of fearful. This would probably be improved if the examples of
surprised and fearful could be upsampled.

Anger, Happiness, Neutral State, Sadness, Excited, and Frustrated

Considering both the overall and individual class performance, the models perform
very similarly. The 1024-attn model shows much confusion with happiness and
scores only 6.99% accuracy, which is significantly worse than both other models.
However, it makes significant improvements in the excited accuracy. This confusion
is likely between happy and excitement due to excited being much more common in
the dataset.
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Model Modalities Accuracy
DialogueGCN [31] Text 65.25%
2-attn Text + Audio 62.27%
1024-attn Text + Audio 64.00%

Table 6.5: Table comparing overall performance with state-of-art model. Best perfor-
mances are highlighted in bold.

Model Anger Happy Neutral Sad Excited Frustrated
Acc. Acc. Acc. Acc. Acc. Acc.
DialogueGCN [31] 67.53% 40.62% 61.92% 89.14% 65.46% 64.18%
2-attn 57.06% 39.86% 78.13% 82.86% 51.84% 51.97%
1024-attn 50.59% 6.99%  76.56% 68.16% 78.93% 64.30%

Table 6.6: Table comparing class performance with state-of-art models. Best perfor-
mances are highlighted in bold.

Model Anger Happy Neu. Sad Excited Fru.  Weighted
F1 F1 F1 F1 F1 F1 Average F1
DialogueGCN [31] 64.19 42.75 63.54 84.54 63.08 66.99 64.18
2-attn 60.82 38.26 67.04 73.02 61.39 59.02 61.83
1024-attn 57.53 12.27 67.74 71.06 72.28 61.95 61.76

Table 6.7: Table comparing F1 class performance with state-of-art models. Best perfor-
mances are highlighted in bold.
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Model Modalities Accuracy

2-attn Text + Audio 61.2%
1024-attn Text + Audio 62.9%

Table 6.8: Table comparing accuracy over all trained emotions. Best performances are
highlighted in bold.

While DialogueGCN slightly outperforms both 2-attn and 1024-attn, it requires
pre-processing of the full audio/conversation to make its predictions, because it
must first construct a graph where each utterance is represented as a node [31].
Both 2-attn and 1024-attn do not require any pre-processing of data and would
be compatible with live, real-time audio. Given audio for an utterance and the
transcript for this audio, which could be generated with Google Cloud, 2-attn and
1024-attn can return a prediction for this utterance and hidden state, which can be
tracked throughout any potential Al therapy session or phone interview.

6.1.2 Full Results
Accuracy and F1 Scores

We can see in Table 6.8 that the 1024-attn model is slightly more accurate than the
2-attn model. But this is likely due to the poor balancing of the data. Looking at ac-
curacy of individual classes (Table 6.9) we can see that the way 1024-attn achieves
this increase in accuracy is by massively increasing the number of predictions of
excited and frustrated at the detriment of happy, angry, and sad classes.

If we recall Figure 3.1, frustrated is the most over-represented class in the dataset,
and additionally excited is much more common than happy, and it raises suspicions
that the 1024-attn model has not learned as much about the emotions as the 2-attn
model. With this in mind, it is possible to conclude that using a single attention value
for each modality in the fusion (thereby forcing the model to consider all features
in the vector to decide importance), actually improves its ability to learn multiple
emotions, rather than learning individual emotional features.

There is much confusion between happy and excited, and similarly between sad,
angry, and frustrated. By giving the model the freedom to pick combinations of
attentions, the model seems to be detecting small indicators of the most common
emotion and predicting this. For example, happy and excited both have a lot in
common. By allowing the model to choose which features are important it may
learn to only pay attention to features that are shared with happy and excited. At
each point in the vector, we have one audio feature and one text feature. One can
hypothesize that the model is paying attention to whichever of these two features is
common in excited utterances due to the weighting of excited in the dataset. This
attention results in features that differentiate happy and excited being ignored in
favour of features that happy and excited share. The restriction imposed by listening
to the entire modalities prevents the dataset overfitting to the larger classes in the
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Model Anger Happy Neu. Sad Excited Fru. Sur.  Fear
Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.

2-attn 57.1% 39.9% 77.9% 829% 51.8% 52.0% 5.6% 0.0%
1024-attn 50.6% 7.0% 76.6% 68.2% 78.9% 64.3% 0.0% 0.0%

Table 6.9: Table comparing class performance over all trained emotions. Best perfor-
mances are highlighted in bold.

Model Anger Happy Neu. Sad Excited Fru. Sur. Fear Weighted
F1 F1 F1 F1 F1 F1 F1 F1 Avg. F1

2-attn 60.6 38.3 66.4 71.9 60.8 586 5.6 0.0 60.3
1024-attn 57.3 123 67.3 70.3 71.5 61.3 0.0 0.0 60.2

Table 6.10: Table comparing F1 class performance over all trained emotions. Best
performances are highlighted in bold.

dataset. We can see further evidence of this in the F1 scores in Table 6.10.

Confusion Matrix

Confusion Matrix Confusion Matrix
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sad sad
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neutral neutral
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Figure 6.1: Confusion Matrix over all trained emotions.

We can see a lot of confusion among the classes with very little weight in the orig-
inal dataset when we consider the confusion matrix across all classes (Figure 6.1).
Additionally, from this matrix, it is clear that the 1024-attn model is predicting the
most common classes more, rather than learning something emotionally meaning-

ful.
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Confusion Matrix Confusion Matrix

angry angry

happy happy

True Labels
True Labels

sad sad

neutral neutral
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(a) 2-attn (b) 1024-attn

Figure 6.2: Confusion Matrix over angry, happy, sad, and neutral.

When we reduce the confusion matrix to only angry, happy, sad, and neutral, we see
that the confusion is massively reduced and the model is very accurate (Figure 6.2).
As discussed earlier, we reduce our model’s prediction to a subset of the emotions by
predicting all trained emotions and then only using the predictions for the emotion
subset we are predicting. The performance is remarkably similar in this case. It
indicates that the 1024-attn model usually predicts happy as the second-highest
probability after excitement.

6.1.3 COVID-19 Interviews

The collected COVID-19 interviews are a small corpus of data, designed in the hope
of eliciting core emotions. We have both self-assessed and clinician-assessed Likert
scores which rate how strong emotions are felt throughout the interviews. We use
these scores to evaluate the performance of the model.

In order to directly compare utterance level emotion predictions and Likert scale
emotion ratings, we have opted to plot the proportion of utterances spoken in the
interview against the Likert scores for each emotion rated. For example, if half the
utterances are angry, then the y-value will be 0.5, and the x-value will be the Likert
scale value.

Other approaches were considered, such as using the probabilities of emotions to
equate likelihood to emotion strength, or splitting the interviews into sections asso-
ciated with the elicitation of different emotions. However, these approaches are not
as simple to implement, and there is no guarantee that they would provide any real
relationship between the Likert ratings.
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Figure 6.3: Proportion of Utterance Emotion Predictions against Self-assessed Likert

Ratings.
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6.1. EMOTION RECOGNITION

Figure 6.4: Proportion of Utterance Emotion Predictions against Clinician-assessed Lik-
ert Ratings. The clinician assessments are averages between two assessments.
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The relationships in the graphs, both clinician-assessed and self-assessed, are not
very strong. We hypothesize this is due to the automatic transcription of the inter-
views and the actual setting of the interviews. The format requires a single speaker
to talk for a long time, and this does not make sense for utterance level emotion
prediction.

A lot of utterances in this dataset are over 60 seconds in length, and emotions will
fluctuate over that length of time. The proposed emotion recognition model sup-
ports long sequences; however, the results are less accurate, as shown by these in-
terviews.

In future, it is important to consider the length of utterances or to manually tran-
scribe interviews such that small pauses can split the utterances.

6.1.4 Limitations and Improvements

In an attempt to deal with the imbalance in the training data, weighting to the
loss functions was provided in PyTorch which weights the contribution of different
classes during training. The weight applied to each class is defined as %
gest class
This solution did not mitigate the issues with the class imbalance. Thus in future, us-
ing upsampling methods or supplementing the smaller classes with data from other

datasets may be more fruitful.

The reported results are reproducible, evidenced by the similar performance be-
tween 2-attn and 1024-attn. However, in order to rigorously prove that the model
is reproducible and consistently better than existing models, one should either per-
form 10-fold validation on the ten speakers or 5-fold validation on the five sessions
in the dataset. Then, one could take the average performance across all of these runs
as the model performance.

The size of the attention vector seems to make a significant difference to the confu-
sion of the model. Further investigation into the meaning of the features, and exactly
why extra freedom in the attention causes a decrease in average class performance,
would be fascinating.

Due to the use of BERT-large and the extensive feature maps in the audio part of the
model, the memory usage during training is significant. While the memory usage
seems to be fine when evaluating the network, there needs to be evaluation into
how heavy the model is. If there is an intention to deploy this model onto mobile
phones, memory may be incredibly valuable. Similarly running this on devices with
weak GPUs or no CUDA compatible GPU may impact the speed. In future, it would be
useful to benchmark the speed and memory usage of the model during evaluation.
In future, it may be useful to investigate how much impact smaller NLP models,
such as DistilBERT, have on the performance of the model and the overall memory
usage.

An improvement to the training part of the model would be a modification to how
we remove data from the training set. At the moment, utterances are removed if
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there is no majority agreement of the human evaluators; and in addition, the minor-
ity votes are ignored. Training on the confusion between the evaluators may learn
a notable relationship between emotions. A good example is between happy and
excited. If two evaluators determine the audio to be excited, and one thinks it is
happy, the current model only learns that this audio is excited. However, learning
that it is two-thirds excited and one-third happy may be more useful and reduce con-
fusion between happy and excited. Additionally, since memory between utterances
is an essential part of the model, removing utterances from the dataset is potentially
hindering the model.

Fine-tuning the hyperparameters and perhaps investigating which optimiser to use
could improve the model. Implementing some kind of cross-validation would prob-
ably result in a better and more consistent model.

6.1.5 Strengths

The model achieves state-of-art performance on some subsets of emotion prediction,
and when considering models that can be performed live, it achieves state-of-art
performance across the board. With data imbalance mitigation, there is evidence to
suggest this model will perform even better.

Attention fusion of modalities significantly outperforms concatenation based late
fusion and early fusion. Additionally, by restricting how much control attention has
and forcing it to choose the entire modality to pay attention to rather, than allowing
attention to be calculated on a per attention basis, we find that there is less confusion
in the model.

The modified LSTM improves speaker-independent accuracy and enables modelling
the fluctuations in emotion without the need to process every utterance and then use
an LSTM on this. The modelling introduced will only represent left to right depen-
dency of emotion states. Additionally, memory on the emotion hidden state allows
modelling the speaker’s emotional state as learned and extracted by the model.

Training on all the emotions is valid, even if the particular emotion results in bad
performance. When we use the output of the model to predict a subset of emotions,
accuracy is very high, and it generalises to any subset of the emotions the model is
trained on.

6.2 Depression and Anxiety Prediction

6.2.1 Depression Model

A comparison against the established baselines and the winners from the AVEC 2019
challenge [23] can be seen in Table 6.11.

The poor performance in the depression model is likely due to utterance level fea-
tures extracting bad features due to the sub-batch training method implemented to
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Model RMSE (Test set) RMSE (Dev set)
AVEC 2019 Baseline (fusion) [23] 6.37 5.03
AVEC 2019 Runner-up [33] 5.50 4.94
AVEC 2019 Winner [32] 4.73 (Text only) 4.28
Proposed Model 6.51 5.70

Table 6.11: Table comparing the performance on PHQ 8 prediction between a multi-
modal baseline established as part of the AVEC 2019 challenge [23], and the two best
performers of the challenge.

avoid exceeding memory constraints during training.

Future Work

The primary limitation of the depression prediction model is the utterance level
feature extraction. As demonstrated by the emotion lexicon used in the runner-up
model [33] emotional context of words and statements should have a significant
impact on the prediction of depression. However, emotional understanding of utter-
ances is not sufficient alone, and the model needs to be able to gradually learn other
underlying features which can be combined with the emotional understanding.

A possible solution would be training a model on an utterance level of depression
prediction, and then taking the final hidden state of this utterance level model as the
feature extraction model in our proposed depression prediction model.

A different output layer could also improve the performance of the model, using a
sigmoid activation before multiplying by 28 would ensure the model outputs in the
range of PHQ 8 labels.

6.2.2 Anxiety Model

Anxiety prediction is very similar to the depression prediction. The RMSE on the test
set is only 2.27, though this could be an optimistic score due to the limited range of
GAD 7 scores in the dataset.

The anxiety model does show a relationship between predictions when we graph the
predicted GAD 7 scores against the true scores (Figure 6.5). However, this relation-
ship may be caused by limited results on the higher end of the GAD 7 scores and
coincidence has caused this relationship.

Future Work

Using an underlying depression prediction model with better results before fine-
tuning would likely yield more informative results as to how well anxiety can be
predicted using transfer learning from a depression model.
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Scatter plot of Predicted GAD 7 Scores against True GAD 7 Scores
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Figure 6.5: Predicted GAD 7 scores against true GAD 7 scores. True scores are hidden
to ensure no re-identification of participants scores.

There seems to be evidence that information about anxiety can be learned using a
model trained on depression. The average GAD 7 score in the training set is 2.6, with
a median of 1, and the average GAD 7 prediction on the test set is 6.10, which is
significantly different to the training set. There is evidence of overfitting after based
on the RMSE graph (Figure 5.4), but this does not happen until a significant level of
training is reached. With a small training set, fine-tuning is essential. Training for
a long time will very rapidly overfit to the small dataset. With this in mind, further
work with a better depression model should yield positive results with regards to the
prediction of anxiety despite limited data.
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Conclusions and Future Work

This project tackles some problems associated with fully autonomous and remote
therapy. For VR therapy applications, such as self-attachment therapy, accurate emo-
tion recognition with the capacity for live evaluation is necessary. During remote au-
ditory assessments, or when facial expressions are obscured by masks, audio-based
emotion recognition during mental health consultations provides an additional use-
ful tool to assist with people who may have emotional difficulties during remote
consultations.

The proposed multi-task emotion recognition model introduces speaker-level depen-
dency modelling without data pre-processing. Using a modified LSTM applied to the
emotion prediction hidden state, we model the long-term memory of left-to-right
self-dependency on the speaker’s emotions and introduce emotion context from pre-
vious utterances. By doing this instead of first extracting features from all utterances
and then learning the context between these features, we can make predictions per
utterance. This difference allows emotion recognition to take place without the
need for a conversation to conclude. This approach significantly outperforms other
state-of-the-art models on the recognition of angry, happy, sad, and neutral emo-
tions.

We found that attention-based fusion of audio and text modalities to be significantly
better than concatenation based methods. By restricting the attention choice to
be a binary choice as opposed to allowing attention to apply across all features in
each modality, the confusion is reduced, and attention on the audio modality is
increased.

Training on all the emotions available in the dataset and making predictions on a
subset by only considering the logits from this subset produces considerable results
without the need to retrain on each subset of emotions. This allows a heavier model,
with significant memory requirements during training, to be trained once on all
available emotion classes and be applied seamlessly to different applications with
different requirements for emotion prediction.

It would be worth looking into improving the training of the model. Since we rely
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on left-to-right speaker dependency, removing utterances from the IEMOCAP dataset
during training is not desirable. Training in a multi-label fashion may produce better
results as more items in the dataset would be considered, since human evaluator
consensus would not be required. Additionally, human confusion can be learned.
Human evaluators can confuse similar emotions, such as anger and frustration, or
happiness and excitement. Rather than learning an input mapping to the majority
decision of the evaluators, we could learn two thirds towards the majority, and one
third towards the minority emotion.

Additionally, upsampling the smaller emotion classes in IEMOCAP would almost cer-
tainly improve the quality of the model, especially when predicting larger subsets of
emotions. Supplementing these classes with another emotional dataset may provide
even better results than upsampling methods.

An issue highlighted shows that longer utterances become much harder to classify
correctly since a range of emotions may be experienced and cannot have a single la-
bel applied to them. Applications of the model should keep this in mind, and further
work could be done to look into breaking these utterances down during emotion
prediction, such that the model can return a range of more accurate emotions for a
single long utterance input.

Future VR therapy applications, in particular self-attachment therapy, and Al ther-
apists should make use of automatic emotion recognition tools, and we provide a
powerful, live, real-time emotion recognition tool for use in these settings. Also,
further work into the depression and anxiety prediction models could be extremely
beneficial to therapy based applications.
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