Imperial COIIege The Institute of
London IC_ Cancer Research

Accelerating XD-GRASP MR
Image Reconstruction

Author:

Thomas YUNG Supervisors:

tyo16 Prof. Wayne Luk
Dr. Andreas Wetscherek

CID: Marco Barbone

01203300

Submitted in partial fulfillment of the requirements for the MEng degree in
Computing of Imperial College London

Dedicated to my Grandfather, Brian Yung.
Unaversity taught me how to be good with computers,
but you taught me how to be a good man.

Abstract

There is a large time delay between the acquisition of MRI scans
and images being reconstructed, during which the anatomy of the
patient may change. Given its clinical importance, there have been
efforts to make this process faster. Specialised hardware can be used
to accelerate XD-GRASP image reconstruction of MRI scan data,
by taking advantage of the fine-grained optimisations possible. This
project introduces a CPU, GPU and FPGA implementation of the
XD-GRASP algorithm to produce 4D MR images and explores what
the hardware requirements are for real-time 4D MRI reconstruction.
Identifying and resolving bottlenecks and optimisations to the main
body of the algorithm achieve a 4.05x speed-up over the original MAT-
LAB implementation and a 1.54x speed-up over a baseline C++ im-
plementation executing homogeneously on a CPU. Further hardware
(GPU) is used to accelerate the largest computational burden of the
algorithm, the non-uniform Fast Fourier Transform, to yield a 1.88x
performance increase over the C++ implementation and a reduction
of the MATLAB XD-GRASP execution time from 65.118s to 9.811s,
a 6.63x speed-up.

Acknowledgments

I give my thanks to my supervisors Wayne Luk (ICL) and Andreas
Wetscherek (ICR) for their support and guidance through the project.
Their knowledge and expertise has been invaluable.

I reserve special thanks to Marco Barbone (Maxeler) for his assistance,
advice and suggestions from the start and for committing his time to
ensuring the project could be successful.

I would also like to thank my close friends and family for their continuous
support and belief in me. At times it felt like you carried me through.

I thank the Mathematics Department at Urmston Grammar School who
gave up their unpaid time to teach me Further Maths and allow me to
pursue my career despite changing my path so late. Without them, none of

this would have been possible.

Lastly, I thank my sister, Louisa, and Nana, Diane, who have stuck by me

through the best and worst of times and are the people I treasure most in
my life.

i

Contents

(1 _Introduction|

[2 Background|

[2.2.1 Non-Uniform Fast Fourier Transform (NUFFT)
[2.3 Supporting Mathematical Processes|

[2.3.3 Conjugate Gradient Method|
[2.3.4 Backtracking Line Search|

2.5 Image Similarity Measures|
[2.5.1 Mean Squared Error|
[2.5.2 Structural Stmilarly|.

2.6 Field Programmable Gate Arrays
2.6.1 Components|
[2.6.2 Optimisation largets
[2.6.3 Optimisation Strategies|.
[2.6.4 Xilinx®) VU9P|

[3 Design Flow and Performance Modelling]
(3.1 Design Flow|

(3.4 Modelling the Algorithm|

[3.4.1 Modelling Examplel
(3.5 Modelling the FPGA|, ...
3.6 Model Limitsl

[4 Optimisation|
4.1 Data Precisionl
4.2 Maximising CPU Utilisation|
4.3 Explicit Actions| oL
4.4 Flatten, Merge, Repeat|.

iii

(4.5 Data Localityl
4.6 Replicating Hardware|.
4.7 Optimal Parameters for GPU|

[Implementation|

[7.1.2 Pipelining Slices|.

[7.1.3 Further FPGA Optimisation|.

[A Aerial View of the FPGA Implementation|

(B.2 MultiplicationKernel|

(.3 ObjectiveKernel|.

[B.4 PostNUFFTIype2Kernel]

[B.5 UpdateKernel|.

1 Introduction

Britons once voted cancer as being the most feared disease [1], with statistics
showing that ‘every 2 minutes’ a person in the UK is diagnosed with a form
of cancer [2]. The need for a fast, efficient way of treating cancer has never
been more important.

In radiotherapy, a cancer treatment in which doses of radiation are tar-
geted at an area of cancerous cells in order to kill them, physicists and
dosimetrists plan a radiation dose using a three-dimensional image of the
patient’s interior, which reveals the size, shape and location of the tumour.
However, during the delay between scanning the patient and executing the
plan, which is typically in the order of weeks, the tumour may grow and the
anatomy of the patient may change (due to weight loss), causing doses to be
given on the side of safety — they are weaker and, consequently, multiple are
given throughout a therapy course.

In order to address the problems presented by the time delay, adaptive
radiotherapy aims to provide a real-time dose recommendation requiring cal-
culations, in this case the image reconstruction, to complete fast enough for
the suggestion to be applied whilst the patient is in treatment. Henceforth,
the objective of this project is to accelerate MR image reconstruction and to
learn whether it is possible for MRI reconstruction to execute fast enough
for adaptive radiotherapy.

For the patient, alongside speed, the comfort of the treatment is also
important. Physical movement in the patient, from breathing, causes re-
constructed MR images to be blurred when a time-indifferent reconstruction
algorithm is used and, whilst the patient could be instructed to hold their
breath, this is not always a practical or possible solution. In addition, a
scan taken during a breath-hold produces images only valid for that specific
breath-hold, meaning the patient would have to be instructed to reproduce
the same breath-hold during the treatment, for the images were to be used
reliably — a further impracticality. Physiological motion can also cause vari-
ation in the location of the tumour, motivating the need for MR images with
temporal resolution (an additional dimension to 3D images). XD-GRASP
[3] offers the ability to reconstruct 4D MRI scan images from data obtained
under free-breathing, which allows the patient to be as comfortable as possi-
ble during an emotionally stressful process, making the algorithm a suitable

choice for optimisation.
Thus, this project accelerates XD-GRASP by using an FPGA and a GPU

in order to provide the best treatment possible to the patient. To achieve
this, this report outlines the following work:

e Section [3} Design Flow and Performance Modelling

— A software model was implemented to provide a baseline perfor-
mance and framework for optimisation validity-checking

— A performance model was produced to identify bottlenecks and
anticipate the effects of optimisations

e Section [Optimisation

— Bottlenecks are mitigated by maximising parallelism and hard-
ware utilisation

e Section 5.1} Implementation

— An FPGA is used to accelerate XD-GRASP

— Additional hardware (a GPU) is added to explore further acceler-
ation

e Section [t Performance Evaluation

— The limits of the used hardware are assessed for 4D MRI recon-
struction

— Hardware requirements for real-time 4D MRI reconstruction are
discussed

XD-GRASP brings new difficulties to MRI reconstruction as the extra
dimension, time, multiplies the effort required to produce a complete recon-
struction. In order to qualify as real-time reconstruction, the extra dimen-
sion would have to be handled such that the algorithm execution time is
comparable to time-indifferent reconstruction algorithms (see Section [2.7)).
Additionally, the reconstruction for each respiratory phase is not isolated
from others, ruling out segmented parallel reconstructions for each phase.
A temporal variation operator is used frequently, making use of data from
multiple phases.

Preliminary tests show a reconstruction of a 4D image comprised of
320x320 2D images, with a depth of 147 and 8 time steps, takes 9577 seconds

(equivalently around 159 minutes or 2.66 hours). This time is an approxima-
tion to the total running time of the existing XD-GRASP implementation, as
the algorithm make take longer or shorter depending on the image data and
whether or not it requires a larger number of iterations (determined by the
algorithm) to construct clear images. Acceleration of this algorithm should
aim to achieve a similar reconstruction in the order of minutes, to be used in
adaptive radiotherapy.

Ultimately, producing a system capable of executing XD-GRASP in sat-
isfactory time (approaching real-time) for adaptive radiotherapy is the goal.
This project aims for iteratively reconstructed, respiratory-resolved (4D) MR,
images in the order of seconds. Once achieved, adaptive radiotherapy may
allow cancer treatment to be completed during fewer treatment sessions and
thus reduce the turmoil endured by the patient.

2 Background

This section introduces the key concepts and algorithms used in present day
MRI data processing. It begins by outlining the basic principals behind MRI
data collection and transformation to images usable by doctors, physicists
and dosimetrists. Following this, detail is provided on the underlying math-
ematical concepts which help achieve such transformations. The algorithm
to be accelerated, Golden-angle Radial MRI with Reconstruction of Extra
Motion-State Dimensions Using Compressed Sensing (XD-GRASP) [3], is
outlined along with the basic components of FPGAs and the performance
benefits they bring.

2.1 MRI

The invention of magnetic resonance imaging (MRI) allowed doctors to per-
form non-invasive observations of their patients’ internal organs and tissues
[4]. The scanner performs the scan (the mechanics of which go beyond the
scope of this project) to produce data that can be reconstructed into a 3D
image.

An MRI scanner detects signal from hydrogen atoms bound in biological
tissue to obtain a signal [5]. This signal is then measured using receiver coils
and reflects the interior of the patient.

The data obtained from MRI scanners is obtained in the frequency do-
main referred to as k-space. A location in k-space is represented by its dis-
tance from the origin and angle (anticlockwise from the positive real-axis).
The intensity found at a location in k-space data reflects the corresponding
wave’s (in image space) contribution to the image [6] (see Figure [1)).

Figure 1: A location in k-space with distance d from the origin and angle 6.

The correspondence between k-space and image space is best illustrated
by considering a pair of related locations in k-space. A given location in
k-space corresponds to a wave in image space, as seen in Figure[2l The angle
of the point in k-space reflects the direction of the wave in image space and
the distance of a k-space location from the origin reflects the frequency of
the wave in image space. Comparing a location (Figure [2, (a)) with another
k-space location (Figure [2[(b)) at equal angle but larger distance (from
the origin), the direction of the wave is the same however the periodicity is
smaller (or equivalently the frequency is higher).

(a) (b)

Figure 2: Image space realisations of one data location with amplitude d from the origin
(a) and with amplitude 2d from the origin (b).

The intensities of the k-space locations are used to perform a weighted
sum of the waves, producing an image, as can be seen in Figure [3|

(a) (b)

Figure 3: Corresponding representations of the same MRI data in image space (a) and
k-space (b).

2.2 Fourier Transform

As described, there is a correspondence between k-space (the data the MRI
scanner measures) and image space (human process-able images). In order
to translate between the two, Fourier Transform is used:

S(E) = [MwBi(r)e 0

Where r denotes the image space, k denotes the k-space, M represents
the image and B; represents the coil sensitivity.

Joseph Fourier (1768 - 1830) famously observed that a complex signal can
be decomposed into a sum of plain sinusoidal waves [7] (a Fourier series) and
since this discovery, initially applied to the solving of differential equations,
has been utilised in a broad range of applications such as sound analysis and
medical imaging.

Fourier Transforms has many forms (types) and uses which are beyond the
scope of this project but are used in XD-GRASP. In optimising the algorithm,
the original mathematics of it do not change and thus it is non-essential
to cover them here. This section gives an overview of the libraries used to

execute non-uniform Fast Fourier Transform, a variant of the aforementioned
Fourier Transform.

2.2.1 Non-Uniform Fast Fourier Transform (NUFFT)

In the case when the data is not uniformly sampled (in either or both the
time or frequency domain), the ordinary discrete Fourier Transform cannot
be used. In MRI, in order to shorten the acquisition time of MRI signals, data
are undersampled. Non-Cartesian sampling has the advantageous property of
incoherent undersampling artefacts, which is exploited in compressed sensing
reconstructions [§]. However, it requires an alternative approach to Fourier
Transforms: the non-uniform Fast Fourier Transform [9].

FFTW [I0], a state-of-the-art C++ library for Fast Fourier Transform,
aims to perform the operation faster by allowing a pre-transform planning
step which aims to build a more efficient plan to calculate the Fourier Trans-
form, taking into account the input size and contents. In addition, the prin-
cipals of Fast Fourier Transform have been applied to the non-uniform case
too, with the FINUFFT library [I1] being the C++ tool used for this (which
in turn calls the FFTW library). This library evaluates the following equa-
tions, in the 2D case [12], whilst bringing greater precision and speed over a
naive implementation. Here x[j] and y[j] are the k-space locations for sam-
ple j, ki and ko are image space locations and c[j] is the source strength of
sample 7j:

e Type 1:
N—-1
flka ko] = clj] - el & kel @)
7=0
e Type 2:
i) = Y flkr ko] - kbl + kel -

k1,k2

As the computation of the NUFFT is on a high volume of floating-point
numbers, it lends itself to being performed on graphical processing units
(GPUs) which have specialised hardware for these calculations. Thus came
the creation of the gpuNUFFT library [13], which utilises NVidia’s CUDA
[14] to produce a NUFFT implementation taking advantage of GPUs.

8

2.3 Supporting Mathematical Processes

This section introduces mathematical processes which will be of use and
describes their role in XD-GRASP.

2.3.1 L2-Norm

The L2-Norm [I5] provides a reduction of a complex vector = to a single
value based upon the norms of its coefficients:

|2 =

Where (for complex number zy = a + bi):
|zk| = Va? + b2

The L2-Norm is used in XD-GRASP for the objective function during the
conjugate gradient method (Section [2.3.3)) and in the decision to early-return
from the conjugate gradient method.

2.3.2 Gradient Descent

Before covering the conjugate gradient method, it is useful to first introduce
gradient descent, to illustrate the broad mechanics of the two algorithms.

Cauchy (1789 — 1857) proposed an algorithm for finding a local minimum
(local to an initial guess) of a function [16]. By computing the gradient for
a set of parameters, the values of these parameters can be shifted in the
direction which leads to the greatest decrease in the function’s result. For
example, in two-dimensional space (axes x and y) with a function, f, giving
the height of terrain at its input coordinates (f(x,y) = z), gradient descent
finds a local minimum from an initial input point (see Figure {4).

In order to limit the running time of this algorithm, a gradient threshold
is set such that descent terminates if the absolute value of the maximum
negative gradient is lower than the threshold. Alternatively, only a predefined
number of iterations may be allowed.

DA% 3
s

£
TN
o)

i

08 o5

(a) Contour view (b) Surface view

Figure 4: Gradient descent performed with 12 iterations. (Image ref: [I7])

When the initial guess is in a region with relatively neutral gradient (for
example as in Figure {4)), gradient descent is slow to converge on a minimum.
However, since this drawback is data-dependent, it is not possible to gener-
alise about the number of iterations to limit the algorithm to. In addition,
gradient descent does not indicate the magnitude of a parameters shift — only
in which direction. For this reason gradient descent is used in conjunction
with other algorithms to determine the magnitude of the parameters update

(see Section [2.3.4).

2.3.3 Conjugate Gradient Method

One weakness seen in gradient descent is that the zig-zag path it takes to
converge on a local minimum is slow and can take many more interactions
than the n dimensions of the data. An alternate approach, the conjugate
gradient method [I8], overcomes this by searching n directions such that
progress towards the minimum in one direction does not affect progress in
any of the other directions.

10

7 7 —

Gradient descent —

Conjugate gradient method

\ 4

Figure 5: The conjugate gradient method (red) is more direct than gradient descent (green)
in finding a minimum.

The conjugate gradient method is used in XD-GRASP to perform itera-
tive improvements to the reconstruction.

2.3.4 Backtracking Line Search

Backtracking line search is an algorithm used to determine the magnitude of
a step in a given direction (changing inputs) in order to minimise a function
[19]. Tt refines an initial step size estimate by backtracking/reducing it un-
til the function output decreases by at least some threshold amount which
is computed using the local gradient of the function (the Armijo-Goldstein
condition [20]).

Essentially, the search is performed by reducing an initial step size by
a factor of 7 (a search parameter) until the Armijo-Goldstein condition is
fulfilled. This means the performance of the algorithm can be poor when 7
is not chosen well. A step size is considered adequate when, for function f,
initial position x, direction p, step size o and further search parameter ¢, the
Armijo-Goldstein condition is satisfied:

f(z +ap) < f(z) + acm ()

11

Where:
m =V f(z)"p

The key benefit that backtracking line search brings is alleviating the load
on computational resources. When searching for the optimal parameters with
respect to a cost function, backtracking line search avoids a large number of
small steps by beginning with larger steps and then reducing the step size.
The cost function for this project is given in Section [2.4] Equation [0} as the
task at hand is posed as an optimisation problem.

As with gradient descent and the non-linear conjugate gradient method,
this algorithm may be terminated early by constraining it to a maximum
number of iterations.

2.4 XD-GRASP

Feng et al. proposed the use golden-angle radial sampling, compressed sens-
ing (GRASP) [2I] (a technique for reconstructing a signal from fewer sam-
ples), and parallel imaginéf] to produce an algorithm capable of processing
an MRI signal into an image under free-breathing.

Building on the algorithm proposed by iGRASP [23], Feng et al. refined
their approach further by exploiting sparsity along other eXtra Dimensions
(XD), such as the total difference/variation between different phases of the
respiratory cycle [3].

Data is obtained as radial samples/spokes, a vector along which measure-
ments are taken, on a stream of k-space data in three dimensions (2D radial
samples are stacked at even intervals in the z-dimension). Consequently
each spoke corresponds to a different time. In order to group these spokes
by the stage in the respiratory cycle in which they were taken, XD-GRASP
includes a pre-processing step, in which a respiratory signal is obtained from
the k-space data observed.

As per the golden-angle sampling scheme, the spokes intersect where k, =
k, = 0 (k-space coordinates) — this point is the central profile of the spoke
(Figure @ The central profiles are taken for every spoke at each z-dimension
interval and used to determine the respiratory motion signal using principal
component analysis [24].

1Using multiple receiver coils in the MRI scan [22].

12

Initial Spoke

‘5<‘

Figure 6: Golden-angle sampling of a 2D area. The placement of spokes depend on the
the previous spoke, with the new orientation of the spoke being that of the previous spoke
plus 111.25°. Samples are taken along a spoke.

With this signal, a sample spoke can be categorised by the stage of res-
piratory motion it was taken at, thus grouping the data. Here, sorting is
performed according to the phase of the respiratory cycle instead of the time
of acquisition. As seen in Figure[7] the goal is to group the spokes that were
sampled in the same respiratory phase — denoted by the coloured dashed
boxes.

Respiratory Motion

Figure 7: Respiratory motion over time with the amplitude gating denoted by the dashed
boxes.

13

XD-GRASP then aims to find d which minimises the following:
d=arg min{||F-C-d—ml|3+ \|S-R-d|:} (6)

Where d is the image series (one image reconstructed from each temporal
frame), S is the sparsifying transform applied along the extra respiratory-
state, m is the k-space data, C' is the coil-sensitivities and F' is the non-
uniform Fourier Transform operator (Section . A is a search parameter
which controls the weighting given to the sparsifying transform.

As before, the conjugate gradient method (Section is used to achieve
this minimisation.

Note that in the paper [3], the minimisation function stated is for the
cardiac imaging use case and thus includes a further sparsifying transform
in the cardiac motion dimension, which is not the focus of this project and
therefore omitted.

2.5 Image Similarity Measures

It is useful to compare two images statistically when evaluating the perfor-
mance of this project. Detailed below are the two most popular metrics
[25].

2.5.1 Mean Squared Error

By linearly ordering the pixels of an image, of which there are p, the squared
pixel intensity differences between corresponding pixels in images a and b
can be summed to produce a single value (note: the ith pixel of image a is
denoted by a;):

p

1 2
MSE = E;(ai_bi) (7)

Further, it is possible to normalise the mean squared error by dividing by
the square of the range of values a pixel can take, R:

1
nMSE = = MSE (8)

Whilst simple and intuitive, it has been shown to be misleading [26] and
can be shown to give more positive results for images with poor quality.

14

(a) nMSE = 0 (b) nMSE = 0.0151 (c) nMSE = 0.0056

Figure 8: Normalised mean squared error, rounded to four decimal places, ranks image
(c¢) (a pixelated version of the reference image (a)) above (b) (a brighter version of the
reference image).

2.5.2 Structural Similarly

Zhou Wang et al. [27] address the weaknesses of mean squared error with
a quality index @ which combines the correlation, mean luminance (pixel
intensity) and image contrast to produce a score in the interval [—1,1]:

Oab 2&6 20—(10-17
_ . . 9
e U R Y
40'ab(fl_)
= - 10
2T oD @+ O 1o
Where:
1 & B
CL:NZ(IZ', b:Nsz
=1 =1
- 1 &
2 —\2 2 2
%—m;(az—a% Ub—m;(bz—@
1 N
Tab = 377 Z(ai —Z)(bi — 7))
i=1

In images the output of this quality index (and likewise the relationship
between pixels) is space variant — pixels in a similar region are more likely

15

to be similar. Thus in order to apply this metric to an image, rather than
processing the whole image in one calculation, it is more appropriate to
obtain local quality indexes through a sliding window, producing M local
quality indexes. The overall quality index is an average of the local indexes:

1 M
Q=37 20 (1)

Wang’s findings showed the quality index ordering of distorted images was
equivalent with the mean ranking of the same images when shown, alongside
the original, to human subjects. Whilst the subject ordering is subjective, it
displays that the quality index can characterise the features humans consider
when analysing images.

For the same images as tested for the mean squared error, the results for
SSIM accurately reflect the similarity between the images:

(a) SSIM = 1 (b) SSIM = 0.92 (c) SSIM = 0.57

Figure 9: Structural similarity ranks image (b) above (c) when either is compared to the
reference image (a).

2.6 Field Programmable Gate Arrays

This section explains the key concepts of field programmable gate arrays
(FPGAs) and discuss the Xilinx® VU9P [2§], the specific board in use for
this project, to implement custom accelerators for XD-GRASP. This detailed
take on optimisation yields performance improvements up to several order of
magnitude.

However this speed-up comes at a cost. Synthesising an algorithm on an
FPGA takes a long time, often days, and the platform does not lend itself

16

to easy debugging. To this end, Maxeler [29] provide MaxCompiler, a tool
which abstracts hardware details into a high-level description language and
further, a simulator to allow the validity of hardware without the need for
synthesis.

In this project an FPGA is used to accelerate the non-NUFFT parts of
the algorithm, as it allows a custom architecture to be designed which can
take advantage of parallelism in the algorithm design [30], something less
possible on general-purpose hardware such as CPUs and GPUs.

2.6.1 Components

There are four key hardware components on an FPGA, according to Maxeler
terminology.

e LUT (Lookup Table) Rather than having physical logic gates on
the FPGA, it instead saves a lookup table reflecting the outputs for
given inputs. This table is a truth table for three inputs meaning any
circuit for three inputs and one output can be represented.

e DSP DSPs are the hardware for multiplication. They are rectan-
gular multipliers, accepting two inputs of size 18 bits and 27 bits on
the VU9P, with pre- and post-adders, to allow additions with no fur-
ther computational burden. If multiplication for higher dimensions is
required, DSPs are used in combination with one another.

e Flip Flop Flip flops are circuitry implementations of registers, capable
of storing values.

e B/URAM BRAM and URAM are the on-board memory (equivalent
to the cache of a CPU)

In addition to on-board memory there is external memory, DRAM, which
is slower to access (equivalent to RAM in conventional computers). Sequen-
tial accesses to on-board memory perform considerably better than random
access. The FPGA in use, the VU9P, is on a MAX5 board with DRAM
mounted on the PCB (printed circuit board).

17

2.6.2 Optimisation Targets

When optimising an algorithm for an FPGA, there are two main bottlenecks
to consider: communication and computation.

Accesses to on-board memory are fast, regardless of sequential or random
locations. However, accesses to DRAM are relatively slow. The memory
controller generated by MaxCompiler defines a unit of access to DRAM,
referred to as the ‘burst size’.

In accessing DRAM, attention must be given to the size of data being
accessed (preferably utilising a whole burst at a time) and access pattern
(sequential vs random). Should fewer bits than a burst be required, a full
burst is read and the excess bits are discarded, an inefficiency.

In order to run efficiently, the algorithm should aim to maximise the
utilised hardware resources. In the case of DSPs, for example, if there are
100 DSPs on the board, it is possible to achieve 100 multiplications in one
clock cycle.

2.6.3 Optimisation Strategies

There are a number of strategies that can be employed in order to optimise
an algorithm on an FPGA.

e Pipelining In order to increase the throughput of the board (time
between two inputs), pipelining is used. The algorithm is split into
disjoint stages and data flows through them. Once a portion of data
has completed the initial stage, regardless of its progress through the
algorithm as a whole, a second portion can begin processing in the ini-
tial stage. This strategy is also applicable as a programming paradigm,
in order to best utilise resources.

e Double Buffering During the time in which one data chunk is
being used in the computation, a second chunk can be loaded from
DRAM so that it is ready to be processed immediately after the first
chunk has completed. This idea can be applied to the output of
an algorithm whereby the output is written to DRAM as the algo-
rithm computes a different output. This strategy allows the time
costs of communication and computation to overlap, such that exe-
cution time, ¢, is the maximum of the communication and computa-
tion time (t = max(tcompute, ttransfer)) instead of the sum of the two

(t = tcompute + ttransfer)-

18

2.6.4 Xilinx® VU9P

For this project, the architecture is implemented using MaxCompiler version
2019.2 and Vivado 2018.3. The FPGA device targeted is a Maxeler’s MAX5C
Dataflow Engine (DFE). The MAX5CDFE is based on the Xilinx VU9P
14nm/16nm FinFET FPGA, consisting of:

e LUTs: 1,182,240
e FF's: 2,364,480
e BRAMs: 2,160
e DSPs: 6,840

2.7 Related Work

Previous studies have shown how FPGAs can be utilised for MRI reconstruc-
tion in real-time, with [31] demonstrating reconstruction of a 256x256 pixel
image in 0.164ms using an implementation of SENSE [32] on a Xilinx®)
Virtex-6 ML605 board operating at 200MHz. Further work [33] enables
the reconstruction of 128x128 images at 400 frames per second (equivalently
0.0025s per reconstruction) on a XC6SLX45 chip operating at 40MHz.

Alternatively, GPU implementations of 3D MRI reconstruction exist with
[34] achieving a 128x128x128 reconstruction in 49 seconds using an NVIDIA®)
Quadro FX 5600.

Normalising these reconstruction times by the number of pixels allows the
following comparison, Table [1} to be drawn. Whilst this project implements
a 4D reconstruction algorithm, benchmarks were produced for 8 2D images,
one for each respiratory phase, each of size 320x320. This makes the effective
dimension, for comparison purposes, 3D (width, height, time).

Total Recon. . Number of | Time per
Tmpl. Hardware Time (s) Dim. Pixels Pixel (s)
[31] FPGA 0.164 2D 65536 0.000002502
[33] FPGA 0.0025 2D 16384 0.000000153
[34] GPU 49.0 3D 2097152 0.000023365
This CPU/GPU
project | /FPGA 9.7836 3D 819200 0.000011943

Table 1: A comparison of MRI reconstruction implementations.

19

Whilst this work could be used for adaptive radiotherapy, the reconstruc-
tion algorithms implemented do not support radial sampling schemes, such
as that used in XD-GRASP, and further have limited temporal resolution.

20

3

Design Flow and Performance Modelling

Before optimisations can be made, it is important to identify the areas of
the algorithm which consume the most time and thus give an indication of
the bottlenecks. To this end, a software model and a performance model
were produced to provide a framework for strategies to be evaluated upon,
assisting the planning phase of this project. The model also maximises the
speed-up whilst minimising the code-written to achieve said speed-ups and
is parametric making it easily extended to other (even future) platforms.

3.1

Design Flow

In order to design the system using a CPU, FPGA and GPU, the following
design flow was used:

MATLAB Implementation: The XD-GRASP demo [35] from the orig-
inal paper serves as a reference for image accuracy.

Software Model: A C++ implementation provides a performance base-
line and, further, a platform to trial optimisations to ensure image
accuracy does not degrade.

Performance Model: This captures the timing characteristics of the
XD-GRASP algorithm implementation on the FPGA, CPU and GPU
and therefore highlights the bottlenecks. Further, the total resource
utilisation can be checked to ensure the design fits onto the FPGA.

Optimise: Using the software model to check validity, the bottlenecks
highlighted by the performance model can be addressed using the op-
timisations described in Section [4l

Simulating the FPGA Behaviour: The software model is modified to
simulate the FPGA behaviour, including the communication between
the CPU and the FPGA. This may expose further optimisations to be
made.

Predict the FPGA Performance: Using the performance model, the
performance of the FPGA implementation can be predicted and the
hardware resources can be prioritised for bottlenecks.

21

e Implement on the FPGA: The optimised design can be implemented in
MaxJ (Maxeler’s high-level description language) and synthesised onto
the FPGA.

3.2 XD-GRASP

Excluding the pre-processing step of the algorithm, which sorts the data into
respiratory phases, the following steps of XD-GRASP were to be accelerated:

e Compute an initial reconstruction, for each respiratory phase

e Perform the conjugate gradient method to make iterative improvements
to the reconstructions (see Section [2.3.3))

— Compute the gradient of the reconstruction
— Perform backtracking line search (see Section [2.3.4))

— Apply the gradient to the reconstruction, using the step size found
in backtracking line search

— Iterate the previous steps until a maximum number of iterations
or the L2Norm (see Section of the gradient is lower than
some threshold (i.e. the improvements made to the image are not
significant enough)

3.3 Software Model

A C++ implementation of the XD-GRASP demo code [35] was implemented,
providing the aforementioned framework to test the validity and performance
of optimisations to be tested upon. This implementation also acted as a pre-
liminary optimisation in-itself as the lower-level control offered by C++ over
the original abstracted (and interpreted) MATLAB implementation allows
for better use of computation resources (see Section [f] for results and discus-
sion).

The C++ implementation was optimised to provide a reliable baseline
for the accelerated implementation to be compared to.

22

3.4 Modelling the Algorithm

The performance model reflects the dataflow of the algorithm through para-
metric equations and the orchestration of parallel computation on the hard-
ware used.

With an initial C++ implementation, an initial performance model could
be produced to model the algorithm steps (steps which would be ported onto
an FPGA). This brought the ability to observe the time cost for different
stages of the algorithm and therefore highlight those which held back the
execution time the most. Once these bottlenecks were identified, the algo-
rithm design was changed, with validation from a modified software model,
to mitigate the bottlenecks.

The optimisations made to the algorithm, for acceleration on an FPGA,
do not necessarily accelerate a CPU implementation. Reducing the num-
ber of multiplications does not map to the same performance increment on
different platforms. Therefore, rather than implementing changes in the soft-
ware model and measuring performance of the it executing, the performance
model was used to predict the performance increase or decrease of changes
to both the algorithm and parameters of execution (such as the data-type
and hardware resources). The software model only checked the correctness of
optimisations. Unlike a C+-+ implementation, the performance model could
also anticipate how the hardware characteristics impact the execution time
as the FPGA execution time is predictable and runs for a manually set, fixed
number of clock cycles.

Following the model of a C+4 implementation of XD-GRASP, the mod-
elled FPGA kernels (Section were incorporated along with their compute
times. Thus the orchestration of the FPGA kernels and NUFFT had to be
emulated in the performance model to arrive at an overall algorithm execu-
tion time estimate, which took into account concurrent execution of the CPU
and FPGA (discussed further in Section [4).

When determining a predicted execution time for the algorithm, bench-
marks for the NUFFT had to be measured for both the CPU and GPU
implementations. These are discussed further in Section [6.1] These times
highlighted the NUFF'T as a large bottleneck, with a comparison of the total
NUFFT time (= #invocations x benchmark) and the measured C++ im-
plementation performance revealing that 64.96% of the total execution time
is spent on the NUFFT.

23

3.4.1 Modelling Example

For example, to model the initial reconstruction, the following algorithm
steps are considered:

e (FPGA: MultiplicationKernel) Element-wise multiply kdatau and
wu (further detail on these datasets is given in Section [5.1]) for every
respiratory phase and coil

e (CPU/GPU) Perform a type 1 NUFFT on the output vector of each
multiplication from the previous step

e (FPGA: CombineAcrossCoilsKernel) For each respiratory phase, com-
bine the results of the NUFFT for each coil

Naively, these steps would be performed sequentially in the performance
model and the execution time would be the sum of the times taken to com-
plete each step. As shown in Figure (a), the NUFFT operations begin
after all of the multiplication results are obtained (t;) and the combining
begins after the NUFFT is fully complete (5).

However, after optimisations outlined in Section [} the computation is
overlapped to increase the utilisation of the CPU and FPGA (see Figure
(b)). In this case, the NUFFT operations begin as soon as the first
multiplication result is output, (¢;), and the remaining multiplication outputs
can be computed during the time it takes the NUFFT operations to complete.
The model can be used to check that, aside from the first invocation of the
NUFFT, the input is always available for a NUFFT operation when it is
ready to begin (i.e. immediately after the last NUFFT).

Following this, when all of the NUFFTs for a coil have been computed,
the results can be combined on the FPGA, starting at (¢2), when the FPGA
has no more multiplications to do — something which can occur during the
NUFFT operations, so long as all the required data has been output by the
NUFFT. The final combine-across-coils operation can only begin once the
final NUFFT operation has completed, t5.

24

Multiplication
Kernel

NUFFT

i

i

]

i

i

]

i

i

]

]

i

) '

. >

i
Combine- - —
AcrossCoils- i

« —
Kernel i

:
i
i Time

L

I t;

(a) A naive implementation.

Multiplication | N

Kernel

[,
-

NUFFT

o
]

L

AcrossCoils-
Kernel

i i
' '
i i
i i
i i
i i

i
i i
i i
i i
i i
i i
i i
' '
i i
i i
I= i
i i
i i
i i
i i
i i
i i
i i
i i

Combine- | |

Time

¥

fy Iz I3

(b) A hardware utilisation optimised implementation.

Figure 10: A comparison of a naive and optimised implementation to compute the initial
reconstruction.

3.5 Modelling the FPGA

With the CPU resources and XD-GRASP algorithm steps benchmarked, the
FPGA can be analysed and modelled. For this, the algorithm, this time
incorporating an FPGA, was modelled similarly to the C4++ code, with its
own C++ implementation to simulate the porting of functionality onto an
FPGA.

Modelling an FPGA required more rigorous planning, with data transfer
and orchestration incurring new costs. FPGAs require manual coordination
of data in the on-chip memory, a level of control only partially possible on a
CPU. As the kernels in use were fully pipelined (since no elements were re-
input into the computation), the compute time of kernel could be estimated

25

using:

+ Fill Time (12)

Tcompute ~
C- L.

Where E is the number of elements to be processed, E, is the number
of elements processed per clock cycle and C' is the clock frequency, in Hertz.
The fill time, the time taken for the FPGA pipeline to fill with data, is
assumed to be negligible in this calculation. It remains constant for various
input sizes, so becomes negligible as the input size grows.

Since, on an FPGA for this algorithm’s workload, the number of DSPs is
a more constraining resource than LUTs or FF's, the compute time equation,
Equation (12 can be simplified. This calculation can be performed by con-
sidering the number of (effective) multiplications performed during a kernel
execution and the number of DSPs allocated to the kernel (as this reflects
how many multiplications can occur simultaneously in one clock cycle). Sim-
plifying Equation (12| gives:

T Ny #Multiplications
compute ™ 4 DSPs Allocated x Clock Frequency

This model setup provided insight into which kernels demanded the most
time and hardware resources and further allowed the quick evaluation of
FPGA configurations which allocated fewer or greater resources to particu-
lar kernels. Thus, in planning the design of the algorithm components on
the FPGA, the bottlenecks could be mitigated by re-allocating hardware re-
sources, in most cases DSPs and B/URAM, to them. The effectiveness of
DSP allocation was enabled by the hardware replication optimisation out-
lined in Section 4

The communication time required for kernel inputs and outputs to be
transferred to and from the FPGA was modelled by dividing the size of
the data by the PCle 3 data rate (15700MB/s), as shown in Equation [14]
After the introduction of explicit actions, explained in Section [4.3] this cost
was omitted. The explicit actions API gave finer control, allowing, with
an asynchronous call, the communication cost of one kernel to overlapped
with the compute time of another kernel invocation. The introduction, of
explicit actions meant the compute time shifted from being I/O bound to
being compute bound.

(13)

Data Size _ Data Size
Data Transfer Rate 15700

(14)

Tcommunicate =

26

As the model is parametric, it can be used to anticipate the performance
achieved with different hardware. The model characterises the influence that
the FPGA’s hardware components have on the kernel execution times and
therefore can be used to predict the hardware required to achieve a particular
performance.

As with modelling the algorithm, modelling the FPGA usage was itera-
tive, following the optimisations discussed in Section [}

3.6 Model Limits

Analysis can be done to explore the limits of the performance model. As
discussed in Section [most of the FPGA work is completed during the
same time that the CPU or GPU is performing NUFFT. Thus, in order for
the current model to be valid, in cases where simultaneous work occurs, the
NUFFT must not overtake the currently planned FPGA work.

Consider Figure in which a timeline of arbitrary overlapping CPU
and FPGA work is presented, with arbitrary kernels A and B. Each NUFFT
operation uses the output of a Kernel A operation and, likewise, each Kernel
B operation requires the output of a NUFFT operation. Whilst the scale
and kernels are not directly from the designed system, the concept and cal-
culations appear in a similar form throughout the performance model.

In the first sub-figure, (a), the model calculates the time taken for the
total computation by summing the time taken for one invocation of Kernel
A, three NUFFT operations and one invocation of Kernel B. This is because
the time taken to perform the NUFFT covers the time taken to execute the
kernels, where both the NUFFT and FPGA can run simultaneously. On
the other hand, if the NUFFT becomes shorter than the kernel, the same
calculation no longer applies, as shown by the second sub-figure, (b).

27

|
i
Kemel A |€— wd—pt— >

NUFET <« e e
Kemel B i Ir-i—-i- ii—i- ii—i-
i i Time N
f1 ty v
(a)
Kemel A [€——»id—— pia—»!
NUFFT «——> > >
Kemel B i ii—bd—b{—h-
I1 £} "
(b)

Figure 11: In sub-figure (a), the NUFFT can only begin after the first output of Kernel A
is produced, at t;. Similarly, Kernel B can only begin after the first output of the NUFFT
has completed, at t5. Sub-figure (b) holds the same constraint for ¢; however Kernel B
cannot begin until all of the tasks for Kernel A have completed (t2), invalidating the a
performance model used for (a).

By inspecting each case like this in the performance model, a bound for
the maximum speed-up of the NUFFT that the model is still valid for can be
calculated. To achieve this, consider Figure [11| (a). When speeding up the
NUFFT, or equivalently shortening the arrow for it, there will come a point
where the overall execution time is no longer equal to the time taken for
one invocation of Kernel A, three NUFFT operations and one invocation of
Kernel B. It is a this point that the performance model calculation is invalid.

Note that the CPU NUFFT and GPU NUFFT implementations of XD-
GRASP both use the same calculations for overall execution time in the per-
formance model. Therefore, the maximum speed-up of the NUFFT which
the model is still valid for can be mapped to either case. The speed-up bound
for the CPU NUFFT is: 136x. In other words, if the NUFFT operations ac-
celerate by less than 136 times, the performance model will still be valid. The

28

performance model can be used to identify cases where the time taken for
kernels and the NUFFT is similar and thus highlight potential bottlenecks
to be addressed once NUFFT no longer dominates time.

The modelling phase of the project draws focus to the slower parts of the
algorithm which are constrained by memory or computation demands. Fur-
ther it provided a platform for speculative improvements and optimisations
to be made.

29

4 Optimisation

In order to achieve the desired speed-up of the algorithm, the strategies
outlined in this section were enacted. The data precision was reduced in
order to reduce the size of the data and computation required. The hardware
utilisation was increased by paralleling the CPU and FPGA. Data transfer
times were addressed by improving data locality and using explicit actions.
The compute time was reduced by merging multiple functionalities into a
single FPGA kernel, allowing them to be executed in parallel, and replicating
hardware. Lastly, optimal library parameters were found to balance the
trade-off between image accuracy and performance.

4.1 Data Precision

One simple optimisation that can be made is to reduce the precision of the
data. Originally in double precision (64 bits per floating point value), the
data could be reduced to a single precision representation (32 bits per floating
point value). From image analysis it was apparent that the extra bits did
not affect the final images noticeably, therefore the extra effort required to
compute with more bits was not necessary. Quicker mathematical operations
on fewer bits and shorter data transfer times lead to shorter execution times
and quicker build times for FPGA synthesis, making it a more convenient
choice too. Lastly the resource demands are exponential in the number of
bits used in the representation.

When making this change, it is important that it does not result in a
loss for the integrity of the image. Using the metrics outlined in Section
2.5 the images from the reference and a single precision implementation of
XD-GRASP were compared. Doing so revealed there is minimal difference
in the accuracy of the reconstruction, with a strong SSIM score of 0.9971,
MSE of 0.7367 and nMSE of 0.00001124.

4.2 Maximising CPU Utilisation

As revealed by the performance model (Section [3)), the computation of the
non-uniform Fast Fourier Transform was accountable for approximately 64.96%
of the CPU execution time (the calculation for which is covered in Section
. The goal became to minimise the proportion of the overall execution time
that was accounted for by non-NUFFT computations. To achieve this, other

30

parts of the algorithm were accelerated using an FPGA and were executed
in parallel with the NUFFT. Therefore, the total time spent on the NUFFT
acts as a lower bound to the total execution time. This means, if the NUFF'T
is accelerated, the XD-GRASP system proposed by this project will accom-
modate these accelerations, bringing down the total execution time with no
further changes necessary. The bounds for this are discussed in Section [6]

There are, inevitably, times when the CPU cannot be computing NUFFT
results as the input for the operation is not yet available. To minimise this
stalling time, the workload of appropriate FPGA kernels were reduced such
that they output the minimum data required to allow a NUFFT operation
to begin (in cases where the kernel output was one of the NUFFT inputs).
Not only does this reduce the idle time of the CPU, but it also increases the
proportion of the time the FPGA and CPU are computing simultaneously,
meaning the time cost of the FPGA can be covered by the NUFFT time,
bring down the length of the overall execution.

Once CPU computation time was maximised, and consequently a major-
ity of FPGA work occurring at the same time as the NUFFT, the proportion
of algorithm time spent performing the NUFFT rose to 99.77% (as antici-
pated by the performance model).

4.3 Explicit Actions

When invoking kernels from the CPU, a high-level MaxCompiler API, called
actions, provides an interface to control the FPGA. With it are checks for
the validity of actions, including the number of ticks for the kernel, the input
data and the output data. Actions result in the overheads of communica-
tions (data transfer) and computation (kernel functionality) being incurred
simultaneously in one call and carry the overhead of checking the necessary
parameters are set for each kernel call.

On the other hand, explicit actions were used in order to reduce the
total FPGA time. By using these, the data transfer of one kernel task can
be executed in parallel with the computation of another kernel task, thus
reducing the overall time required for the work to be done on the FPGA.
Further, there are no validity checks, reducing the overheads associated with
a kernel invocation.

31

4.4 Flatten, Merge, Repeat

Following on from the CPU utilisation optimisations, when determining the
functionality required for the FPGA kernels, it became important for the
FPGA to compute as much as possible whilst the NUFFT was executing. To
achieve this, the following steps were applied to the original C++ code:

1. Flatten: Inline methods, starting with the deepest method calls for
chains of nested calls

2. Merge: Combine adjacent operations. This includes, but is not limited
to:

(a) Equivalently sized iterations over data

(b) Evaluating the effect of multiple transformations on the data to
produce one transformation which has the same overall effect

3. Repeat: Flatten and merge again, until no further code reductions are
possible

This kind of optimisation is not possible for the original MATLAB im-
plementation, unless all of the operators are re-implemented, showing the
necessity of a C++ implementation of XD-GRASP in addition to the com-
putation overhead of MATLAB itself.

The optimisations compound over iterations, as the flatter code can be-
come simpler (in terms of the number of statements), making it easier to
merge with other code. In some cases for XD-GRASP, such as for the to-
tal variation operator (the understanding of which is not required for this
project), the effective transformation could be computed by hand to reduce
a two step process to one.

All of this, however, comes at a cost. The resulting code is often unrecog-
nisable from the original algorithm as the boarders between mathematical
operations become blurred. Whilst this puts maintainability at risk, this
optimisation opens the door to a similar process for FPGA kernels.

32

int main() {
int *myArray = multiply(a, b, size);
int main() {
int max = arrayMax(myArray, size);
int main() {
int *myArray = new int[size];
3
for (int i = 0; i < size; i++) { int *myArray = new int[size];
int *multiply(int *a, int *b, int size) { res[i] = a[i] * b[i]; int max = INT_MIN;
int *res = new int[size];

for (int i = 0; i < size; i++) { FLATTEN. % for (int i = 0; i < size; i++) {
res[i] = a[i] * b[i]; int max = INT_MIN; int v = a[i] * b[i];
res[i] = v;
for (int i = 0; i < size; i++) { max = v > max ? v @ max;
return res; int v = myArray[i]; }
3 max = v > max ? v : max;

3
int arrayMax(int *a, int size) { }
int max = INT_MIN;

for (int i = 0; i < size; i++) {
max = a[i] > max ? a[i] : max;

¥

return max;

}

Figure 12: A simple case of flattening and merging for example code.

FPGAs are able to perform computations, even within the same kernel,
simultaneously. To fully utilise this dataflow parallelism, the kernels’ func-
tionalities were increased to include extra computation for purposes beyond
the original use of the kernel. For example, when computing an array result,
the kernel may accumulate the sum of the elements in the resulting array
in parallel, to avoid a second iteration over the data. The ‘extra’ function-
ality pushed onto a kernel arose from a similar flattening approach as was
used for the C++ code. However in this case, rather than merging loops of
code, kernels with similar iteration patterns over the same data had their
functionalities merged, outputting two results in parallel.

4.5 Data Locality

As learned from the performance model, the communication cost between
the CPU and FPGA incurs a significant time penalty, often with it domi-
nating the time for an FPGA task to complete. In order to overcome this,
the frequently-used, fixed datasets required by XD-GRASP had to be per-
sisted as-close-as-possible to the FPGA compute hardware. For the FPGA
architecture, this meant persisting data in large memory (DRAM). Not only
does this data persistence reduce the amount of data transported per kernel
invocation, but it also frees PCle bandwidth for the, reduced, data to use.
In most of the kernels which use LMem-persisted datasets, there is always
an equally-sized dataset streamed from the CPU. This means that the time

33

taken to transfer data from LMem to the kernel is covered by the time taken
to transfer data from the CPU to the kernel as the architecture has been
optimised such that both transfers occur at the same time. Since the datasets
are the same size, this property can be confirmed by a comparison of the
bandwidths from CPU to FPGA (via the PCle bus) and from DRAM to
B/URAM. These bandwidths are 15750MB/s and 45000MB/s. Therefore,
it was possible to overlook double buffering here (Section as it did not
yield any benefit. The exception to this is MultiplicationKernel which
has both inputs streamed from LMem. However this is called relatively few
times and has a low time cost. Thus double buffering its inputs and outputs
was not a priority.

In addition, the data stored in LMem is organised such that the reads
are sequential, the most efficient access pattern, avoiding the cost of random
access.

Whilst it would have been most optimal to store the datasets in FMem,
due to the quicker access time than LMem, the memory requirements of the
kernel computations were prioritised over persisting data, as this would allow
for greater replicated hardware (Section . Further, there is an FMem
requirement for the FIFO queues used for dataflow scheduling. In order for a
kernel to compute, it requires its inputs at the same time. In order to ensure
the inputs are ready simultaneously, FIFO queues are used to equalise the
latencies of the inputs, as demonstrated in Figure

34

X

(from LMem @ (from PCle @
45000 MB/s) 15700 MBi/s)

O Data element

Figure 13: The use of FIFO queues by an FPGA to ensure data arrives at a kernel at the
same time.

4.6 Replicating Hardware

Whilst porting sections of code onto an FPGA brings one level of speed-
up, this factor can become multiplicative if the hardware of the kernel is
replicated. In the architecture design, a parameter, pFactor, is defined for
each kernel, dictating the level of hardware replication in the kernel, thus
increasing the parallelism. For pFactor = p, the compute hardware of the
FPGA kernel is replicated p times and p elements are read from the input
stream per tick. The latter operation requires that the pFactor must then
also be a factor of the number of elements in the input stream. For XD-
GRASP, this meant padding arrays to fit this factor.

The effect of various pFactors were predicted using the performance
model (Section and thus an optimal allocation of DSPs and FMem could
be allocated to kernels which completed the slowest. Thus the approximate

35

compute time previously stated (Equation becomes:

N E
°™ pFactor-C - E,

+ Fill Time (15)

Where FE is the number of elements to be processed, E,. is the number
of elements processed per clock cycle and C' is the clock frequency, in Hertz.
In some cases, increasing the pFactor increased the memory (B/URAM) re-
quirement of the kernel as memories had to be replicated to allow for parallel
reads and writes. Future work may entail mitigating this effect.

4.7 Optimal Parameters for GPU

In an effort to push the acceleration, a GPU was added to the system to
increase the NUFFT performance. The library used, gpuNUFFT [13], offers
a variety of parameters to fine tune the library to the use case. Experiments
with the parameters, the results of which are shown in Table [2 highlighted
a performance/accuracy trade-off which could be taken advantage of. As
the result show, a kernel width of 1 (the minimum it can be) lead to the
greatest performance increase, but consequently at the largest accuracy cost.
What is, perhaps, surprising is the accuracy offered by a kernel width of 3
and an oversampling factor of 2, whilst bringing comparable performance.
Whilst the most optimal, with regard to time, configuration could have been
chosen, the final configuration (highlighted with in bold in Table [2]) offers a
compromise of high accuracy and performance.

Note that in measuring the ‘NUFFT Time’ during XD-GRASP under the
configuration, the cumulative anticipated time spent performing both types
of the NUFFT on representatively-sized data was calculated from bench-
marked NUFFT types on the same hardware used in the performance eval-

uation (Section [6.3).

36

KW | OSF | SW | MSE nMSE | SSIM Total Time
1 1.25 | 16 | 3.3308 | 0.0001 | 0.9322 | 8.5147
1 1.25 | 24 | 3.3407 | 0.0001 | 0.9319 | 8.8257
1 2.0 16 | 3.3967 | 0.0001 | 0.9173 | 8.8512
1 1.25 | 8 3.3308 | 0.0001 | 0.9322 | 8.9768
1 2.0 |24 |3.3967 | 0.0001 |0.9173 | 9.3052
1 20 |8 3.3967 | 0.0001 | 0.9173 | 9.3349
3 2.0 |16 | 0.9791 | 0.0000 | 0.9918 | 9.7737
3 1.25 | 16 | 1.8403 | 0.0000 | 0.9708 | 9.8679
3 1.25 | 8 1.8403 | 0.0000 | 0.9708 | 10.3848
3 20 |8 0.9791 | 0.0000 | 0.9918 | 10.4832
3 1.25 |24 | 1.84 0.0000 | 0.9708 | 10.5530
3 2.0 |24 |0.9791 | 0.0000 | 0.9918 | 11.2008
7 2.0 16 1.2521 | 0.0000 | 0.9915 | 16.4491
7 20 |8 1.2521 | 0.0000 | 0.9915 | 16.6098
7 1.25 | 8 3.2759 | 0.0000 | 0.9627 | 18.3329
7 2.0 |24 |1.2521 | 0.0000 | 0.9915 | 18.3366
7 1.25 | 16 | 3.2758 | 0.0000 | 0.9627 | 18.5891
7 1.25 | 24 | 3.2759 | 0.0000 | 0.9627 | 20.7342

Table 2: The NUFFT benchmarks, along with SSIM scores, for different gpuNUFFT
configurations of kernel widths (KW), sector widths (SW) and oversampling factors (OSF),
ordered by ‘Total Time’.

It can be seen that the biggest influence of time is the kernel width,
with it consistently being inversely proportional to the time. There does not
seem to appear to be a strong connection between the other parameters and
the accuracy or time and thus once a kernel width of 3 was selected as a
compromise between accuracy and speed, the most accurate configuration
was chosen. The respective scores for the pixel intensity differences, MSE
and nMSE, were all small enough to disregard and use SSIM (Section [2.5)) as
the sole indicator of accuracy. The parameter search space was as follows:

e Kernel width: 1, 3, 7
e Oversampling factor: 1.25, 2.00

e Sector width: 8, 16, 24

37

It is worth noting that, during the parameter search, the MSE and SSIM
scores reflect a closeness to the reference, reconstructed using its own NUFFT
parameters. Weaker scores do not necessarily reflect a poor image, as can
be confirmed by qualitative analysis, however stronger scores provide more
robust evidence that the image quality has not been compromised.

By and large, the optimisations discussed in this section are applicable to
other algorithms being accelerated on an FPGA, with the exception of the
optimal GPU parameters, which is more to specific to projects making use
of external libraries.

38

5 Implementation

With the optimisations to XD-GRASP outlined in Section [4] this section
describes how the various hardware was used to build the accelerated XD-
GRASP system, capable of reconstructing 320x320 images for 8 respiratory
phases.

Implementing the two types of NUFFT on an FPGA would have been
infeasible for this project’s time-frame and therefore existing alternative ac-
celerators for it, namely a GPU, were sought out instead. Further, the
NUFFT entails a convolution which, if implemented via a matrix multiplica-
tion, GPUs become unbeatable at executing, due to their SIMT architectures.

5.1 Systems

Using a CPU for the NUFFT operations and an FPGA for everything else,
the algorithm was spread across these components and coordinated by the
CPU to make the two-prong heterogeneous system. As mentioned in Section
[, one large factor in achieving the speedup was to utilise the CPU as much
as possible.

The CPU triggers a set of asynchronous FPGA tasks, which are executed
sequentially on the FPGA, and waits for the completion of tasks before per-
forming NUFFT operations. Following the completion of a single NUFFT,
the CPU then triggers the next FPGA tasks (corresponding to the output of
the NUFFT) and, again, waits for the result. In some cases, the CPU waits
for a full batch of FPGA tasks to complete, as there is no available work to
do (NUFFTs).

The addition of a GPU does not change the orchestration mechanics of
the two-prong heterogeneous system. In this case, rather than performing the
NUFFT itself, the CPU unloads this work onto the GPU synchronously, to
give a three-prong heterogeneous system. There is no benefit to asynchronous
NUFFT calls as the execution time is still dominated by the NUFFT. Thus
a simple swap of NUFFT operator is required, with no further changes to
the code.

To produce a 4D reconstruction (with dimensions in width, height, depth
and time), 2D images (width and height) are reconstructed for all the respira-
tory phases (the time dimension) at once. The missing dimension (depth) is
obtained through sequential runs of the 2D-+time system on data for different
slices of the scan data.

39

The pre-processing step of XD-GRASP has been omitted as effort is better
spent accelerating the part of the algorithm which is executed for every slice
(2D image) of the 4D reconstruction.

An aerial view of the FPGA implementation, produced by MaxCompiler,
is available in Appendix [A]

5.2 Coordination

In order to orchestrate the concurrent computation of the FPGA and CPU, a
synchronisation primitive was added (Listing(l)) which allowed FPGA tasks to
be called asynchronously and the resources of which to be freed once waited-
for. Using this, the CPU could batch-trigger FPGA tasks and then proceed
to begin the NUFFT operations as soon as possible, using async_task_t to
ensure the input to the NUFFT was ready.

typedef struct {

// The thread to wait for
std::thread *run;

// The arrays to be freed once ‘run‘ completes

void *xfreeableDependents;

// The size of the freeableDependents entry
int nFreeableDependents;

// Ad-hoc identifier to instruct how to free an array
int *dependentsTypes;

3 } async_task_t;

Listing 1: Synchronisation primitive

5.3 Kernel Breakdown

This subsection gives an overview of the kernel functionalities and the para-
metric equations used by the performance model (Section [3|) to characterise
their performance.

There are four inputs to XD-GRASP (excluding data required for any
pre-processing steps) to consider:

e bl: Coil sensitivities for the MRI scanner the signal is measured by

e kdatau: The sorted (by respiratory phase) raw signal data

40

e ku: The sorted (by respiratory phase) k-space trajectory
e wu: The sorted (by respiratory phase) density compensation weights

Note that the u suffix reflects data which has been sorted by respiratory
phase and when the above datasets are used by kernels, access to them is
offset to allow the appropriate values to be read.

In addition, there are several dimensions are defined here, to be used in
the mathematical definitions of kernels:

e ntres: The number of respiratory phases for the reconstruction
e nc: The number of receiver coils for MRI data acquisition

e nSamples: The number samples acquired by each coil for one respira-
tory phase (nSamples = nx - nline)

e nPizels: The number of pixels in the image (nPizels = npx - npy)
e nx: The number of samples per spoke acquired in radial sampling
e nline: The number of spokes acquired in radial sampling

e npx: The horizontal pixel dimension of the image

e npy: The vertical pixel dimension of the image

As the kernels combine maximal functionality between NUFFT opera-
tions, there is often not a direct correspondence between the computation of
a kernel and a step in the XD-GRASP algorithm.

Two of the more complex kernels are outlined below. The rest of the
kernel details are in Appendix [B]

5.3.1 CombineAcrossCoilsKernel

During the transformation from k-space to image space, the measurements
taken across multiple receiver coils during one respiratory phase on the MRI
scanner are combined by this kernel. The input data, x is transposed before
the computation is performed, making use of FMem to do so. To achieve

41

this, there are nc separate memories in use, to allow nc parallel reads and
writes.

nc

> [olicl?

=0
out; = —° -C
Z tmpZ,C ’ b1i7c
c=0
tmp = x!
nT-m ———
67:: 2-nline halve ===
s otherwise
nline

e Input:

— x: The output of a type 1 NUFFT across all coils, for a respiratory
phase

— bl: As stated above

— halve: A flag to dictate whether or not each coefficient of the
result is halved (halving is enabled if halve === 1)

e Output:
— out: Image space data for a respiratory phase
e Hardware requirements:

— DSPs: 167 (does not support variable pFactor)
— FMem: 6.5536MB

CPU

CombineAcross-

Coilskemel aut—> CRU

LMem /

Figure 14: The dataflow of CombineAcrossCoilsKernel.

42

5.3.2 TransposedMultiplicationKernel

As the name suggests, the inputs and multiplied together before being output
in a transposed ordering. In addition, the temporal variance between x and
xNext is output.

out;. = tmp, .- bl;.

tmp = x'
nPizels
TVOut = » +/|v- o[+ 11Smooth
i=0
)0 r === nires
v xNext — x otherwise

e Input:

— x: Image space reconstruction for respiratory phase r

xNext: The reconstruction for respiratory phase rye,; = min(r +
I, MAX_RESP_PHASE)

— bl: As stated above
— r: The index of the current respiratory phase (= r)

— ¢: The index of the current coil

11Smooth: A conjugate gradient smoothing parameter
e Output:

— out: The element-wise multiplication of x and the corresponding
coil entry of bl

— TVOut: The temporal variance between x and xNext
e Hardware requirements:

— DSPs: 19 x pFactor + 1
— FMem: ~6.5536MB*

43

*As pFactor grows, the number of reads per kernel memory increases caus-
ing MaxCompiler to replicate the memory during compilation. This is a
side effect to be mitigated in the future however, as such, means a definite
relationship for the FMem requirement and pFactor cannot be given.

CPU

Transposed-

MuliplicationKernel ceu

LMem /

Figure 15: The dataflow of TransposedMultiplicationKernel.

The kernels can be summarised as follows:

Kernel DSP Eq. Memory Req. (MB)
CombineAcrossCoils 167 6.5536

Grad 42 X pFactor 0

Multiplication 6 x pFactor 0

Objective 12 x pFactor 0

PostNUFFTType2 12 X pFactor 0
TransposedMultiplication | 19 X pFactor + 1 | =6.5536

Update 24 x pFactor 0

Table 3: A summary of the implemented kernels.

5.4 Dataflow

The dataflow for the algorithm implementation is shown here for the three-
prong system. In order to understand the dataflow for the two-prong system,
with no GPU, the division between CPU and GPU can be removed and these
sections merged.

Note that in these diagrams, crossing a dashed line denoting the boundary
between CPU and FPGA means a PCle data transfer. Only more significant
datasets are shown.

44

GPU CPU FPGA

DRAM

{2 MultiplicationkKemel

| o C ——

1: Read Data

\

F

3: NUFFT (Type 1) —

-

— 1

S | 4 CombineAcross-
Coilskemnel

_ i\

recon
{ s

v v
5: Find max Key
coeficient \ Dataflow —

\ Algorithm flow ——»
- |
/“"Wrﬁ\/’ >

6. Conjugate gradient method "
< (uses CPUIGPUIFPGA) (‘see other diagrams)

recon

7: Write images 4/

Figure 16: The overall system dataflow.

45

FPGA

GPU CPU
/,_-—-_H\ DRAM
KU /"_'_'\‘\ /‘_'_"*“\
kr/ KDATAU wu
,QE”/ T
ALL DATA
0: START
< 1 grad B
(uses CPUIGPUIFPGA) ; “K-__q____hx”
\\
g ;
kr/ (Duplicate input &s & dummy)
= X
H —
H T—1* 2 UpdateKernel \
\
— \
/i\ i J \I'l
|
' Key II
3: objective Dataflow |
(uses CPUIGPUIFPGA) Algorithm flow ———»
|
.@ |
|II
4: objective] |
< (uses CPUIGPUIFPGA) (*see other diagrams) ."I
/
/
/
<: 5: objective
(uses CPUIGPUIFPGA) ,
"\ ?
' l y
— 1 _—
————» 6:UpdateKemel |——
: T
L T]

7 END

Figure 17: The conjugate gradient method dataflow.

46

CPU ' FPGA
/f_.___ﬁ‘\ DRAM
: KU I N
! H_/ ; Bl KDATAU wu
, ; oS
5 ~
E‘ 1: Transposed-
0: START 7| MultiplicationKermel
e : /
v 4 :
2: NUFFT (Type 2) ——— |
— - 5
“‘u-___e____ . 3. PostNUFFT-
Type2Kemel
l : s Key
4 NUFFT (Type 1) (¢ | Dataflow —_—
L \ Algorithm flow ———»
~— = l [arer]
' —_— L : 5: CombineAcross-
T CoilsKemel
6 GradKernel
7:END

Figure 18: The gradient method dataflow.

47

GPU CPU FPGA

C o OC omu D

oD Y
T

!"‘r/ } i

DRAM

Key
0: START » 1 UpdateKernel
Dataflow —_—
Algorithm flow ——»
LA 4 ; -
_Kernel
2: Transposed-
MultiplicationKernel
T
v J —
3: NUFFT (Type 2) [« — = - =

— »| 3. ObjectiveKernel

|
/

S

4: END [

Figure 19: The objective method dataflow.

This system, both the two- and three-prong implementations, is reflected
in the models (Section [3). These implementations will accommodate a faster
NUFFT, should one be added to the project, as the async_task_t mechanism
prevents operations executing without the necessary input. The kernels often
compute two functions, in parallel, as a result of the ‘Flatten, Merge, Repeat’
optimisation outlined in Section [4]

48

6 Performance Evaluation

In order to assess the success of this project, both the accuracy of the recon-
struction and the computation time must be considered. A solution which
produces clear images in a satisfiably short amount of time is regarded as
successful.

Results in this section consider the reconstruction of a 2D image, for 8
respiratory phases. For each implementation below, the expected 4D recon-
struction time can be calculated by multiplying the given reconstruction time
by the depth of the 3D image.

There are four classes of algorithm implementation to consider (to be
referred to by letter ID):

(a) Demo MATLAB implementation (the reference)
(

b) Homogeneous C++ implementation

)

(c) CPU/GPU implementation

(d) Two-pronged CPU/FPGA implementation (see Section

(e) Three-pronged CPU/FPGA/GPU implementation (see Section [5.1)
Performance is evaluated using two datasets:

e Dataset 1: The demo data included in the XD-GRASP demo code
(Feng et al., [35]) (producing images with dimensions 256x256)

e Dataset 2: Data generously provided by the Institute of Cancer Re-
search [36] (producing images with dimensions 320x320)

6.1 Benchmarking

First, the methods for measuring the execution of the FPGA, and conse-
quently using these results to compute an execution time for XD-GRASP,
need to be outlined.

Each kernel was executed and timed independently 200 times during each
benchmark run, and, after 8 benchmark runs, the mean execution time and
variance could be calculated.

The benchmarks for the CPU and GPU NUFFT operations were mea-
sured similarly.

49

Using these mean times and the number of invocations of each kernel
for XD-GRASP and the NUFFT, whether on the CPU or GPU, the total
execution time of XD-GRASP was calculated. This calculation followed the
performance model calculations closely, with a simple replacement of kernel
execution times producing a valid result for implementations (d) and (e).

The NUFFT benchmarks are displayed here (Table . The kernel bench-
marks are discussed in Section 6.4l

CPU (FINUFFT) | GPU (gpuNUFFT)
Type 1 Time (s) 0.00258800 0.00186400
Type 2 Time (s) 0.00247200 0.00146900

Table 4: Benchmarks for the NUFFT on the CPU and GPU

To see whether or not the GPU NUFFT could be accelerated further,
benchmarks for a more powerful GPU, a NVidia®) Titan Xp, were obtained.
However, the gpuNUFFT library is not optimised, meaning changing the
GPU leads to no performance improvement. The GPU utilisation for both
the Titan Xp and 1080 Ti is around %39 for the type 1 NUFFT and %19
for the type 2 NUFFT. Thus a 1080 Ti was used as a machine was available
with it with no other users, meaning less interference during testing.

In theory the multiplicative cost of a type 1 NUFFT is 2.66E+406 and
1.11E+06, approximated using the C source for exponential operationsﬂ.
Taking this, and the 1080 Ti’s 345.4 GigaFLOP capabilities, give a theo-
retical NUFFT computation time of 7.51E-7 (type 1) and 3.14E-7 (type 2)
seconds. In reality, the communication cost, which is omitted from the previ-
ous calculation, increases this time. This theoretical time demonstrates the
potential of the GPU used, with an over estimation in the communication
cost still leading to NUFFT times three orders of magnitude smaller than
those measured.

6.2 Image Accuracy

As the output of XD-GRASP is intended for use in sensitive decisions, such
as radiation dose planning, the clarity and validity of the produced images
should not be compromised. The measures outlined in Section become of

Zhttps://code.woboq.org/userspace/glibc/sysdeps/ieee754 /1dbl-128 /e_expl.c.html

50

use here, providing statistical evidence that the algorithm has been correctly
implemented and optimisations have not led to incorrect reconstructions.

Whilst the inconsistencies between different hardware’s floating point
handling lead to small differences, it can be seen from the results (Table
that this bears minimal influence on the output. Values are produced
from the mean of the scores across all respiratory phases. Results are not
available for configurations utilising an FPGA with Dataset 1 as the im-
plementation and optimisations are specific to the dimensions of Dataset 2.
To adjust the XD-GRASP implementation for the dimensions of Dataset 1,
the FPGA implementation would have to be redesigned to accommodate the
different data sizes, since the hardware utilisation has been maximised for a
specific set of dimensions.

Impl. 1D Dataset 1 (Demo) Dataset 2

' MSE | nMSE SSIM | MSE | nMSE SSIM
(a) (vef.) | O 0 1 0 0 1
(b) 0.4500 | 0.00000687 | 0.9999 | 0.7365 | 0.00001124 | 0.9971
(c) 0.9791 | 0.00001494 | 0.9906 | 1.2601 | 0.00001923 | 0.9879
) N/A 07369 | 0.00001124 | 0.9971
(e)! 1.2601 | 0.00001923 | 0.9879

Table 5: Metrics (Section [2.5)) collected for various implementations of XD-GRASP.
("Practical results not obtainable, see Section)

Qualitative assessment of the images gives similar results as can be seen

in Figures [20]

51

(a) SSIM = 1 (b) SSIM = 0.9999 (c) SSIM = 0.9906

Figure 20: The comparisons of the XD-GRASP implementations, outlined in Section @
with the corresponding SSIM scores when compared to the reference, (a), for Dataset
1. Results are not available for configurations utilising an FPGA with Dataset 1 as the
implementation is specific to the dimensions of Dataset 2.

(a) SSIM = 1 (b) SSIM = 0.9971 (¢) SSIM = 0.9879

(d) SSIM = 0.9971

Figure 21: The comparisons of the XD-GRASP implementations, outlined in Section @,
with the corresponding SSIM scores when compared to the reference, (a), for Dataset 2.

52

As can be seen from the image comparisons, the accuracy of the recon-
structions has not been compromised during acceleration, with qualitative
judgement matching quantitative analysis.

6.3 Performance Improvements

In order to achieve real-time adaptive radiotherapy, it is necessary that the
algorithm running on an FPGA completes in a satisfiably short amount of
time and meets real-time requirements. Table [0] gives an overview of the
execution times. For the CPU benchmarks, a 12-core 14nm Intel® Core
i7-8700K was used, running at 3.20GHz with boost clock frequency 4.3GHz.
For GPU results, a NVidia® GeForce GTX 1080 Ti was used. Lastly, the
FPGA used in the performance model was the Xilinx® VU9P running at
200MHz.

In order to produce a valid comparison, any early-stopping in backtrack-
ing line search and the conjugate gradient method was disabled, forcing the
worst-case execution time. This ensures that, across all the implementa-
tions, equivalent work is done. In practical use, early-stopping is re-enabled,
leading to shorter execution times.

It was not possible to assemble a system with the benchmark CPU and
FPGA, due to the Covid-19 pandemic and lockdown measures, so the per-
formance model, along with kernel execution time benchmarks were used to
calculate the execution time for (d) and (e) (details in Section [6.1)).

Impl. ID | Description Reconstruction Time (s)
(a) MATLAB (ref) 65.118
(b) CPU 24.722
(c)! CPU/GPU 18.435
@y CPU and FPGA 16.071
() CPU, GPU and FPGA | 9.7836

Table 6: The reconstruction time of different XD-GRASP implementations. (*See Section
calc) (*Practical results not obtainable, see Section)

The speed increase from MATLAB to pure C++ is over 2.6x, consistent
with the expectation from the finer-grained control enabled by the language.
Further still, utilising an FPGA, with the NUFFT on the CPU, resulted in
a 1.54x speed-up against the CPU implementation, with the NUFFT being

53

the bottleneck. A more detailed breakdown of the execution times shown in
Table [7| reveals that 0.06% of the total execution time is incurred solely by
the FPGA, with the bulk of the time coming from the NUFFT execution on
CPU — one of the aims during optimisation.

In an effort to reduce the NUFFT time requirement further, the addition
of a GPU, using optimal parameters discussed in Section[d], pushes the speed-
up to 2.53x (when compared with the CPU-only implementation) and 1.88x
(when compared with the CPU/GPU implementation). Despite the perfor-
mance increase with the extra hardware, the execution of the algorithm is
still dominated by the NUFFT time requirement, incurring the same non-
NUFFT time cost as with CPU-based NUFFT.

Impl. ID Time for One NUFFT | Total Total Non-
Type 1 | Type 2 NUFFT Time | NUFFT Time

(b) 0.002558 | 0.002472 16.06067 13.07212

(c)f 0.001864 | 0.001469 9.77370 13.07212

(d)* 0.003307 | 0.002035 16.06067 0.00991

(e) 0.001864 | 0.001469 9.77370 0.00991

Table 7: The reconstruction time breakdown different XD-GRASP implementations. (*See
Section (TPractical results not obtainable, see Section)

The performance of the proposed system, implementation (e), when re-
constructing 2D+time images can be extrapolated to find the worst-case
reconstruction time for 4D reconstruction of an image depth of 147. In this
case, the worst-case reconstruction time is 1436.73 seconds, around 24 min-
utes. Practically, this time is likely to be shorter as the early-stopping condi-
tions of the algorithm are re-enabled. As mentioned, this performance can be
pushed further through improvement of the GPU NUFFT implementation.

6.3.1 Armdahl’s Law

Armdahl’s Law can be used to measure the speed-up of the acceleration:

Original time of accel’d code = (Total exec. time)
— (Total NUFFT time)
= 24.72233 — 16.06067
= 8.66166

(16)

o4

Original time of accel’d code

- f I’ =
Speed-up of accel'd code Accel’d time of accel’d code

~ 8.66166 (17)

©0.11223
=77.18

Using [I7] the theoretical speed-up and limit of theoretical speed-up can
be obtained:
(For CPU NUFFT)

Non-NUFFT Time

Total Time
R.66166 (18)

= 24.72233
— 0.3504

Prop’n of time occupied by accel’d code =

1
(1—0.3504) + %3204 (19)
— 1.5286

Theoretical speed-up =

1
1—0.3504 (20)
— 1.5393

Limit of theoretical speed-up =

(For GPU NUFFT)
Non-NUFFT Time

Prop’n of time occupied by accel’d code =

Total Time
_ 8.66166 (21)
~18.43535
= 0.4698
' 1
Theoretical speed-up = (1= 0.4698) © 046983 (22)
: 77.18

= 1.8648

95

1
1 — 0.4698 (23)
— 1.8862

Limit of theoretical speed-up =

According to Armdahl’s Law [37], applied to the CPU and FPGA imple-
mentation (d), in comparison with the C++ implementation (b), the the-
oretical speedup is 1.4698. Further, the limit of the theoretical speed-up
is 1.5393, which the observed speed-up (1.5241) lies beneath. If the data
transfer times are omitted, the anticipated speed-up rises to 1.5383. The
calculations for this are shown in Equations [I8] [I9) and [20]

As a machine with the same CPU and GPU used for benchmarking was
not available (discussed in Section[6.6]), Armdahl’s Law can only be applied
as an approximation. In this case, the theoretical speed-up is 1.7502 and
the limit of the theoretical speed-up is 1.8862. The observed speed-up is
1.8558. If the data transfer times are omitted, the anticipated speed-up rises
to 1.8843. The calculations for this are shown in Equations 21} 22 and 23]

The current system is limited by the performance of the NUFFT as this is
not accelerated by an FPGA. This would be the next focus for optimisation
when accelerating XD-GRASP further. Even with the maximum speed-up
attainable, the system cannot achieve real-time reconstruction as the time
demand of the NUFFT is too high.

If, however, the NUFFT operations completed in 0 time, the total execu-
tion time becomes 0.1122s, a speed-up of 580x over the MATLAB implemen-
tation and 220x over the C++ implementation, satisfying real-time recon-
struction. This suggests that no additional FPGA acceleration is required
and supports that the NUFFT should be accelerated next, to bridge the gap
between the current execution time and desired real-time performance.

6.4 Kernel Performance

By benchmarking the executions of kernels, both the FPGA and CPU imple-
mentations, insight into the kernel performance can be obtained (see Table

8).

56

Kernel CPU FPGA Perf. Model

Bench. (s) | Bench. (s) | Expected (s)
CombineAcrossCoils 0.022510 | 0.00000778 0.00068675
Grad 0.007986 | 0.00000604 0.00000763
Multiplication 0.000038 | 0.00000710 0.00000891
Objective 0.000395 | 0.00000912 0.00001113
PostNUFFTType?2 0.000076 | 0.00000995 0.00001113
TransposedMultiplication 0.002824 | 0.00000917 0.00010708
Update 0.000972 | 0.00000735 0.00002133

Table 8: A comparison of kernel benchmarks and expectations.

In most cases, the difference between the expected and observed kernel
execution times is reasonably small and can be attributed to the generali-
sations the performance model makes about kernel execution. However, for
CombineAcrossCoils the difference is surprisingly large and requires further
investigation into why this kernel completes in such an impressive time, in

comparison to the performance model expectation.

To ensure the validity of the FPGA kernel benchmarks, the variance for

each kernel was computed (Table [9).

Kernel ggﬁﬁ (s) Variance
CombineAcrossCoils 0.00000778 | 1.77E-12
Grad 0.00000604 | 7.39E-13
Multiplication 0.00000710 | 4.51E-12
Objective 0.00000912 | 4.58E-12
PostNUFFTType2 0.00000995 | 3.17E-12
TransposedMultiplication | 0.00000917 | 1.70E-12
Update 0.00000735 | 2.17E-13

Table 9: The mean and variance for kernel benchmarks.

6.5 FPGA Utilisation

The hardware utilisation of the FPGA used in this project, the Xilinx(®)
VU9P, is given in Table [10] Despite aiming for 80% resource utilisation,
the actual utilisation of the hardware is relatively low. This is due to higher

o7

pFactor configurations causing the FPGA compilation to fail to meet timing
at 200MHz without architecture specific optimisation aimed to shorten the
critical path, the path hardware with the largest delay’| Meeting timing
requires an FPGA layout to be found such that the hardware components,
and the connections between them, can be placed in such a configuration
that meets timing requirements, such as inputs of a hardware component
arriving at the same time.

Component | Total Available | Total Used
LUTs 1182240 451266
FFs 2364480 803075
BRAMs 2160 1598

DSPs 6840 1865

Table 10: The FPGA hardware utilisation.

6.6 GPU Results

It was not possible to execute the three-prong heterogeneous system on hard-
ware as there was not a machine with both GPU and FPGA capabilities
available and, due to the Covid-19 pandemic and lockdown measures, it was
not possible to access the data center to assemble one. Thus results for
the image accuracy and performance were derived from measurements taken
from a CPU/FPGA implementation (i.e. implementation (d)) and GPU
benchmarks.

In the case of image accuracy, there appears to be negligible differences be-
tween the CPU and CPU/FPGA implementations ((b) and (d) respectively).
Therefore, the image accuracy for a CPU/FPGA/GPU, (e), is approximated
using the image accuracy of the CPU/GPU implementation.

On the other hand, to obtain a execution time for (e), the performance
model prediction is used, taking into account the observed kernel benchmarks
to produce an execution time, as explained in Section [6.1}

An execution time for a CPU and GPU implementation of XD-GRASP,
(¢), is calculated from the sum of the NUFFT time, using the GPU bench-
marks, and the non-NUFFT time observed from an observation of CPU-only
XD-GRASP measured in implementation (b).

3This path can be between state elements, inputs and outputs.

58

6.7 Bridging the Gap

The performance difference between the proposed system and a system ca-
pable of real-time reconstruction is one that can be closed. As mentioned,
the acceleration of the NUFF'T would be one way in which the total recon-
struction time could be dramatically reduced. In terms of hardware, this
would not require any changes to the system, since the GPU used is signif-
icantly under-utilised (less than 40% utilisation at its peak). Thus, rather
than hardware changes, software changes would unlock the full potential of
the system.

However, since the power demands of CPUs and GPUs are larger than
that of an FPGA [31], it may be desirable to transfer all of the computa-
tion onto an FPGA, for uses when a low-power solution is required (such as
portable reconstruction). In this case, the FPGA would likely require more
hardware resources, mainly B/URAM, as this is became a more scarce re-
source in the current system.

These results support that real-time 4D MRI reconstruction is possible,
should the NUFFT be accelerated, whilst maintaining the image accuracy
when compared to the original XD-GRASP source. The work completed
pushes towards the theoretical speed-up limit provided by Armdahl’s Law.

59

7 Conclusion and Future Work

This report presents the modelling and optimisation approach for accelerat-
ing XD-GRASP using an FPGA and, further, a GPU. The use of FPGAs have
successfully reduced the execution time of XD-GRASP and consequently pro-
vided a framework for the NUFFT to be optimised for, in this use case. The
speed-up reaches 4.05x, when compared to the original MATLAB implemen-
tation, and 1.5384x over a C++ implementation, which lies close to the limit
posed by Armdahl’s Law, 1.5393. Likewise, the addition of a GPU achieves
speed-ups of 6.63x (against MATLAB) and 1.8843x (against a CPU/GPU
implementation) approaching the limit of 1.8862x. The work alleviates the
computation burden of the processes of XD-GRASP, excluding NUFFT, by
performing them in parallel with the largest bottleneck of the algorithm.

7.1 Future Work

This project demonstrates the potential for real-time MRI reconstruction,
made possible by the use of an FPGA. To close the gap between the cur-
rent and desired reconstruction time, the ideas in this subsection should be
investigated.

7.1.1 NUFFT Acceleration

The current system does not achieve an execution time close enough to real-
time, missing the real-time reconstruction target, but such performance can
be obtained from the system should the NUFFT be accelerated. As modelled
in Sections [3] and confirmed by the results in Section [0, the NUFFT is the
main bottleneck for the current system.

Accelerating the NUFFT will have a significant, direct impact on the
execution time of full reconstruction, since the NUFFT is such a large bot-
tleneck as a result of the work done. As described, the performance model
will be valid for a NUFFT acceleration of up to 136x, meaning a new NUFFT
implementation can be evaluated ahead of its use in the system.

7.1.2 Pipelining Slices

In the same way that, on a micro level, the computation performed by kernel
is pipelined, the reconstruction of 2D images can be pipelined on a macro

60

level. Thus, a 4D reconstruction can be achieved in quicker time, rather
than sequentially reconstructing 2D images for the respiratory phases as the
current system does. In addition, this would better utilise the hardware, as
multiple kernels could operate at a given time.

To make this reconstruction more user-friendly, the system could output
the initial reconstruction as soon as possible, for preliminary viewing by the
doctors, whilst the iterative improvements are made to the reconstruction
(updating the view after each iteration).

7.1.3 Further FPGA Optimisation

There are cases where the FPGA functionality is not the most efficient it
could be, as mentioned in the report. These can be addressed to maximise
the performance of the system, but do not yield as much performance benefit
as the previous future work suggestions do.

61

Appendices

A Aerial View of the FPGA Implementation

e

i ElEEBIBHIEIBIHBIEIJKHEIBIBEKB i ‘

Performance Conr

MAXERER

Technologies

Ma

age

. MemoryControllerPro0

4
3
T
2
]

Site Types

B Further Kernel Detalils

The kernels not covered in Section [B£.1] are discussed below.

B.1 GradKernel

This kernel performs the the final step of calculating the gradient during
the conjugate gradient method, for one respiratory phase. Simultaneously,
it computes the sum of the element-wise multiplication of the coefficients of
res and their conjugates (the dot product of res and its conjugate).

In the cases where x == xPrev or x == xNext, the input denoting the
respiratory phase, r, ensures the correct calculation, which does not make
use of the equivalent input (i.e. xPrev and xNext respectively).

res; = L2Grad; + TVWeight_diml - v
— 0y r ===
V= vy r === nitres
U1 — Uy otherwise
v1 = f(x; — xPrev;)
v = f(xNext; — x;)

x
€Tr) =
/(@) V& - T + 11Smooth
nPizels
conjMultRes = Z res; - res;|
=0

e Input:
— L2Grad: The output of a prior CombineAcrossCoilsKernel exe-
cution, for respiratory phase r
— x: The reconstruction for respiratory phase r

— xPrev: The reconstruction for respiratory phase rpye, = max(0, r—
1)

— xNext: The reconstruction for respiratory phase rye,; = min(r +
I, MAX_RESP_PHASE)

63

— 1r: The index of the current respiratory phase (= r)
— 11Smooth: A conjugate gradient smoothing parameter

— TVWeight_diml: A conjugate gradient parameter for the weight
of the temporal variance in calculation

e Output:

— res: The gradient for a respiratory phase

— conjMultRes: The dot product of res and its conjugate
e Hardware requirements:

— DSPs: 42 x pFactor
— FMem: 0

CPU Hﬁ“‘“a_“HEQGrad
ﬁhﬁ“ﬁh‘xPr:Gh‘“Hahhh*

XNext
-..__*

I Es.

E—

conjMultRes—»

11smaoth

GradKemnel CPU

TWWeight_dim

LMem

Figure 22: The dataflow of GradKernel.

B.2 MultiplicationKernel
This kernel simply multiplies its inputs to produce the input for the type 1

NUFFT which produces the initial reconstruction.
out; = kdatau, - wy;

e Input:

— kdatau: As stated above, for one respiratory phase and coil only

— wu: As stated above, for one respiratory phase only

64

e Output:
— out: The element-wise multiplication of the inputs
e Hardware requirements:

— DSPs: 6 x pFactor
— FMem: 0

CPU

out—m» CPU

MultiplicationKernel

LMem /

Figure 23: The dataflow of MultiplicationKernel.

B.3 O0ObjectiveKernel

As the final step of the objective function in backtracking line search, this
kernel produces a single score for the output of the type 2 NUFFT, for one
respiratory phase and coil.

nSamples

out = E 2i*Z;

i=0
z; = X; - wu; — kdatau;

e Input:

— x: The output of a type 2 NUFF'T for a respiratory phase and coil
— kdatau: As stated above, for one respiratory phase and coil only

— wu: As stated above, for one respiratory phase only
e Output:

— out: An objective cost for the input

65

e Hardware requirements:

— DSPs: 12 x pFactor
— FMem: 0

CPU
\\\x

Objectivekernel aut——mw CPU

LMem /

Figure 24: The dataflow of ObjectiveKernel.

B.4 PostNUFFTType2Kernel

During the computation of the gradient, this kernel is used to process the
output of the type 2 NUFFT.

out; = (Xi - WUu; — kdataui) - WY,

e Input:

— x: The output of a type 2 NUFF'T for a respiratory phase and coil
— kdatau: As stated above, for one respiratory phase and coil only

— wu: As stated above, for one respiratory phase only
e Output:

— out: Element-wise results for the input
e Hardware requirements:

— DSPs: 12 x pFactor
— FMem: 0

66

CPU
\\\x

PostNUFFT-

Type2Kemel out cPu

LMem /

Figure 25: The dataflow of PostNUFFTType2Kernel.

B.5 UpdateKernel

Element-wise, this kernel produces the sum of the element of a, scaled by
scaleA, and b, scaled by scaleB. Further, the sum of element-wise multipli-
cations between a and the result, out, is output.

The name for this kernel derives from its most common use, updating
the reconstruction using the gradient. However, the uses of this kernel go
beyond this.

out; = a; - scaleA + b, - scaleB

nPixels
conjMultRes = Z out; - a;
i=0
e Input:
— a: A vector

— scaleA: A scalar
— b: A vector

— scaleB: A scalar
e Output:

— out: The element-wise addition of the scaled inputs

— conjMultRes: The dot product of res and a

e Hardware requirements:

67

— DSPs: 24 x pFactor

CPU

— FMem: 0
CPU a
scalea
sc:aleBb
\ ut_________‘_p
UpdateKemel
conjMultRes

LMem

Figure 26: The dataflow of UpdateKernel.

68

References

1]

[9]

[10]

YouGov;. Date accessed: 17/01/2020. Available from:
https://yougov.co.uk/topics/lifestyle/articles-reports/
2011/08/15/cancer-britons-most-feared-disease.

UK CR;. Date accessed: 17/01/2020. Available from:
https://www.cancerresearchuk.org/health-professional/
cancer-statistics/incidence.

Feng L., Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-
GRASP: Golden-angle radial MRI with reconstruction of extra motion-
state dimensions using compressed sensing. Magnetic Resonance in
Medicine. 2016;75(2):775-788. ID: TN_wj10.1002/mrm.25665.

Damadian R. Tumor detection by nuclear magnetic resonance. Science
(New York, NY). 1971;171(3976):1151. ID: TN _medline5544870.

Ramani R. Functional MRI : basic principles and emerging clinical ap-
plications in anesthesiology and the neurological sciences. Oxford Uni-
versity Press; 2019. ID: 44IMP_ALMA _DS51115923850001591; Includes
bibliographical references and index.

Mezrich R. A perspective on K-space. Radiology. 1995 May;195(2):297—
315. Available from: https://www.ncbi.nlm.nih.gov/pubmed/
T724743.

Gallagher TA, Nemeth AJ, Hacein-Bey L. An introduction to the Fourier
transform: relationship to MRI. AJRAmerican journal of roentgenology.
2008;190(5):1396. ID: TN_medline18430861.

Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of com-
pressed sensing for rapid MR imaging. Magnetic Resonance in Medicine.
2007;58(6):1182-1195.

Ruiz-Antolin D, Townsend A. A nonuniform fast Fourier transform
based on low rank approximation; 2017. 1701.04492.

Frigo M, Johnson SG. FFTW;. Date accessed: 17/01/2020. Available
from: http://www.fftw.org/.

69

https://yougov.co.uk/topics/lifestyle/articles-reports/2011/08/15/cancer-britons-most-feared-disease
https://yougov.co.uk/topics/lifestyle/articles-reports/2011/08/15/cancer-britons-most-feared-disease
https://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence
https://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence
https://www.ncbi.nlm.nih.gov/pubmed/7724743
https://www.ncbi.nlm.nih.gov/pubmed/7724743
http://www.fftw.org/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Barnett A, Magland J. FINUFFT;. Date accessed: 17/01/2020. Avail-
able from: Thttps://finufft.readthedocs.io/en/latest/index.
html.

Barnett A, Magland J. FINUFFT: Usages;. Date accessed:
17/01/2020. Available from: https://finufft.readthedocs.io/en/
latest/usage.htmll

Schwartzl A, Knoll F. gpuNUFFT;. Date accessed: 17/05/2020. Avail-
able from: https://github.com/andyschwarzl/gpuNUFFT.

NVidia. CUDA;. Date accessed: 24/05/2020. Available from: https:
//developer.nvidia.com/cuda-zone.

Weisstein EW. L2-Norm;. Date accessed: 17/01/2020. Available from:
http://mathworld.wolfram.com/L2-Norm.html.

Cauchy A. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp Rend Sci Paris. 1847;25.1847:536-538.

Gradient descent;. Date accessed: 17/01/2020. Available from: https:
//en.wikipedia.org/w/index.php?title=Gradient_descent!

Chen X. Inverse Scattering Problems of Small Scatterers; 2018. ID:
TN _wilbooks10.1002/9781119311997.ch4.

Dennis JE. Numerical methods for unconstrained optimization and non-
linear equations; 1996. ID: 44IMP_ALMA _DS5153880780001591; In-
cludes bibliographical references (p. 364-370) and indexes.

Armijo L. Minimization of functions having Lipschitz continu-
ous first partial derivatives. Pacific JMath. 1966;16(1):1-3. ID:
TN _euclideuclid.pjm /1102995080.

Donoho DL. Compressed sensing. IEEE Transactions on Information
Theory. 2006;52(4):1289-1306. ID: TN _ieee_s1614066.

Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imag-
ing. Journal of Magnetic Resonance Imaging. 2012;36(1):55-72. ID:
TN_wj10.1002 /jmri.23639.

70

https://finufft.readthedocs.io/en/latest/index.html
https://finufft.readthedocs.io/en/latest/index.html
https://finufft.readthedocs.io/en/latest/usage.html
https://finufft.readthedocs.io/en/latest/usage.html
https://github.com/andyschwarzl/gpuNUFFT
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
http://mathworld.wolfram.com/L2-Norm.html
https://en.wikipedia.org/w/index.php?title=Gradient_descent
https://en.wikipedia.org/w/index.php?title=Gradient_descent

23]

[24]

[26]

[27]

28]

[29]

[30]

[31]

Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, et al.
Golden-angle radial sparse parallel MRI: Combination of compressed
sensing, parallel imaging, and golden-angle radial sampling for fast and
flexible dynamic volumetric MRI. Magnetic Resonance in Medicine.
2014;72(3):707-717. ID: TN_wj10.1002/mrm.24980.

Pang J, Sharif B, Fan Z, Bi X, Arsanjani R, Berman DS, et al. ECG
and navigator-free four-dimensional whole-heart coronary MRA for si-

multaneous visualization of cardiac anatomy and function. Magnetic
Resonance in Medicine. 2014;72(5):1208-1217.

Palubinskas G. Image similarity/distance measures: what
is really behind MSE and SSIM? International Jour-
nal of Image and Data Fusion. 2017;8(1):32-53. ID:

TN_informaworld_s10-1080-19479832_2016_1273259.

Wang Z, Bovik AC. Mean squared error: Love it or leave it? A new
look at Signal Fidelity Measures. IEEE Signal Processing Magazine.
2009;26(1):98-117. ID: TN _ieee_s4775883.

Wang Z, Bovik AC. A universal image quality index. IEEE Signal
Processing Letters. 2002;9(3):81-84. ID: TN _ieee_s995823.

Xilinx VU9P Manual;. Available from: https://www.
xilinx.com/support/documentation/selection-guides/
ultrascale-plus-fpga-product-selection-guide.pdf.

Maxeler. Maxeler Website;. Date accessed: 02/06,/2020. Available from:
http://maxeler.com/.

Wang Y, He Y, Shan Y, Wu T, Wu D, Yang H. Hardware computing for
brain network analysis. In: 2nd Asia Symposium on Quality Electronic
Design (ASQED); 2010. p. 219-222.

Siddiqui MF, Reza AW, Shafique A, Omer H, Kanesan J. FPGA imple-
mentation of real-time SENSE reconstruction using pre-scan and Emaps
sensitivities. Magnetic Resonance Imaging. 2017;44:82 — 91. Avail-
able from: http://www.sciencedirect.com/science/article/pii/
S0730725X17301674.

71

https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
http://maxeler.com/
http://www.sciencedirect.com/science/article/pii/S0730725X17301674
http://www.sciencedirect.com/science/article/pii/S0730725X17301674

32]

[33]

[34]

[35]

[36]

[37]

Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE:
Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine.
1999;42(5):952-962. ID: TN_wjAID-MRM16;3.0.CO; ID: 2-S.

Li L, Wyrwicz AM. Design of an MR image processing module on an
FPGA chip. Journal of Magnetic Resonance. 2015;255:51-58.

Stone SS, Haldar JP, Tsao SC, Hwu WMW, Sutton BP, Liang ZP. Ac-
celerating advanced MRI reconstructions on GPUs. Journal of Parallel
and Distributed Computing. 2008;68(10):1307-1318.

Feng L, Axel L, Chandarana H, Block KT, Sodickson DK,
Otazo R. XD-GRASP Demo Code (MATLAB);. Date accessed:
24/05/20. Available from: https://cai2r.net/resources/software/
xd-grasp—matlab-codel

ICR. The Institute of Cancer Research Website;. Date accessed:
24/05/2020. Available from: https://www.icr.ac.uk/.

Wikipedia. Wikipedia - Armdahl’s Law;. Date accessed: 02/06/2020.
Available from: https://en.wikipedia.org/wiki/Amdahl%27s_law.

72

https://cai2r.net/resources/software/xd-grasp-matlab-code
https://cai2r.net/resources/software/xd-grasp-matlab-code
https://www.icr.ac.uk/
https://en.wikipedia.org/wiki/Amdahl%27s_law

	Introduction
	Background
	MRI
	Fourier Transform
	Non-Uniform Fast Fourier Transform (NUFFT)

	Supporting Mathematical Processes
	L2-Norm
	Gradient Descent
	Conjugate Gradient Method
	Backtracking Line Search

	XD-GRASP
	Image Similarity Measures
	Mean Squared Error
	Structural Similarly

	Field Programmable Gate Arrays
	Components
	Optimisation Targets
	Optimisation Strategies
	Xilinx® VU9P

	Related Work

	Design Flow and Performance Modelling
	Design Flow
	XD-GRASP
	Software Model
	Modelling the Algorithm
	Modelling Example

	Modelling the FPGA
	Model Limits

	Optimisation
	Data Precision
	Maximising CPU Utilisation
	Explicit Actions
	Flatten, Merge, Repeat
	Data Locality
	Replicating Hardware
	Optimal Parameters for GPU

	Implementation
	Systems
	Coordination
	Kernel Breakdown
	CombineAcrossCoilsKernel
	TransposedMultiplicationKernel

	Dataflow

	Performance Evaluation
	Benchmarking
	Image Accuracy
	Performance Improvements
	Armdahl's Law

	Kernel Performance
	FPGA Utilisation
	GPU Results
	Bridging the Gap

	Conclusion and Future Work
	Future Work
	NUFFT Acceleration
	Pipelining Slices
	Further FPGA Optimisation

	Appendices
	Aerial View of the FPGA Implementation
	Further Kernel Details
	GradKernel
	MultiplicationKernel
	ObjectiveKernel
	PostNUFFTType2Kernel
	UpdateKernel

