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Abstract

When looking to buy a product, consumers often look for written reviews to gain insight into its
various features. However, many reviews are cluttered with irrelevant information, which makes
reading through them an arduous task. Some systems have been proposed to alleviate this task in
specific review domains such as film reviews, but a general solution remains to be implemented. We
present ADA-X, a general-domain review aggregation system that is able to provide feature-based
explanations for any product’s reviews via a conversational interface. The generality of ADA-X
is enabled by a novel domain-independent ontology extraction method using the state-of-the-art
language model BERT, which we have shown to obtain product ontologies with an F1-score multiple
times higher than the state-of-the-art general knowledge networks of ConceptNet and WordNet.

ADA-X has been demonstrated to be capable of providing conversational feature-based review
explanations for any Amazon product, and its methodology could be extended to any review
domain with sufficient amounts of data. User evaluation has demonstrated that the explanations
provided by ADA-X improve the user experience of product review inspection.
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Chapter 1

Introduction

In this chapter, we will first discuss the motivations behind the project and then specify its main
objectives and contributions.

1.1 Motivations
People spend an ever growing share of their earnings online, from purchasing daily necessities
on e-commerce sites such as Amazon to streaming movies on services such as Netflix. As the
market shifts online, people’s purchase decisions are increasingly based on product reviews either
accompanying the products on e-commerce sites, or on specialised review websites, such as Rotten
Tomatoes1 for movies. These reviews can be written by fellow consumers who have purchased the
product or by professional critics, such as in the latter example, but what unites most online review
platforms is the massive number of individual reviews: a single wrist watch can have more than
20,000 reviews on Amazon2. As people cannot possibly go through all of the individual reviews,
purchase decisions are often based on various kinds of review aggregations. The presentation of a
review aggregation must be concise and intuitive in order to be effective, but it must also retain
some nuances of the original reviews, so that consumers can understand why a product is considered
good or bad and if the arguments align with their individual preferences.

Explanations of review aggregations are also relevant to e-commerce site recommender systems,
as their recommendations are often based on existing consumer reviews. It has been shown that
explanations can help to improve the overall acceptance of a recommender system [7], and therefore
insightful explanations of review aggregations are important to their effectiveness.

1.2 Objectives
Some systems have already been proposed to improve explanations for review aggregations, a few
of which are discussed in Chapter 2. One such system is what is called an Argumentative Dialogical
Agent (ADA), proposed by Cocarascu et al. in [3], which has been explored in the movie and hotel
review domains of Rotten Tomatoes [3] and Trip Advisor3 [2], respectively. ADA provides the
user with insight about reviews for a particular product through conversation centred around the
product’s features. Cocarascu et al. provide the following example of a conversation about the film
The Post :

User: Why was The Post highly rated?
ADA: The movie was highly rated because the acting was great, although the

writing was poor.
User: Why was the acting considered to be great?
ADA: Its acting was considered to be great because Meryl Streep was great.
User: What did critics say about Meryl Streep being great?
ADA: "...Streep’s hesitations, rue, and ultimate valor are soul-deep..."

1https://www.rottentomatoes.com/
2https://www.amazon.co.uk/Casio-Collection-Unisex-Adults-F-91W-1YER/dp/B000J34HN4
3https://www.tripadvisor.com/
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In order to participate in such dialog, ADA has to have knowledge about the ontology of the
product (i.e. acting is a sub-category of film and Meryl Streep is a sub-category of acting), as well
as knowledge about the reviewers’ sentiments towards the various aspects of the film. ADA obtains
some of this knowledge from the review texts using natural language processing (NLP) methods.
In the papers by Cocarascu et al., the ontologies for films and hotels are mostly given, although
mining some aspects from the review texts was also experimented with. The opinions of reviewers
were extracted from the review texts using sentiment analysis (SA) methods.

The objective of this project is to extend upon the work of Cocarascu et al. in order to design
and implement a generalised ADA to provide explanations for any product reviews on Amazon.
As Amazon contains reviews for products ranging from pet supplies to digital music and car
parts, this involves taking a more unsupervised and domain-independent approach to the various
NLP tasks within the agent, as well as considering the effects of such variance on the dialogue
between the user and the agent. Furthermore, ADA’s complex methodology has never before
been implemented within a fully developed end-to-end system, presenting a considerable software
engineering challenge.

1.3 Contributions
The main contributions of this project are threefold:

1. We propose and implement a novel method for domain-independent product ontology extrac-
tion, which allows us to build a feature-based representation of any product in an unsupervised
manner, an example of which is shown in Figure 1.1 for wrist watches. The ontologies ex-
tracted with this method obtain significantly higher F-1 scores when compared to the widely
used manually and autonomously annotated semantic networks WordNet and ConceptNet,
respectively.

2. We implement a modified version of the method by Gao et al. [6] for feature-level sentiment
analysis, which allows us to assess the reviewers’ sentiment towards the various features of
the product, whilst improving upon the accuracy of the phrase-level sentiment analysis in
[3].

3. We implement ADA for the first time and from scratch as a fully developed system, with
a backend agent including the aforementioned enhancements and a user-facing iOS chat
application, which is exemplified for a wrist watch in Figure 1.2.

For both 1. and 2. we use BERT, a language model proposed by Devlin et al. [4], which has
produced state-of-the-art results in a wide variety of different NLP tasks. We call the resulting
system ADA-X for its ability to generalise for any product X.

watch

band

links leather clasp

face

size color numbers hands

price quality design battery . . .

Figure 1.1: Ontology for a wrist watch
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Figure 1.2: A conversation between the user and ADA-X on the iOS app about a wrist watch
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Chapter 2

Background

We begin this chapter by detailing the methodology of the ADA proposed by Cocarascu et al. [3].
We then evaluate the limitations of ADA in relation to Amazon reviews, and suggest extensions to
address them. Then, we look into current research in the fields of ontology extraction and feature-
dependent sentiment analysis in order to establish a basis for our enhancements to the agent. We
conclude this chapter with a discussion about the current research on conversational systems.

2.1 Argumentative Dialogical Agent

ADA is designed around a feature-based conceptualisation of products. Rather than simply report-
ing the general sentiment of reviewers towards a product, ADA builds a more intricate understand-
ing of why a product is (dis-)liked by inspecting the reviewers’ sentiments towards its features. For
example, rather than stating that a movie is mostly well-received, ADA can discern that reviewers
appreciated its acting and themes, while its cinematography was found subpar.

Figure 2.1 presents an overview of how ADA works in the movie review domain. It takes as
input reviews snippets for a particular movie, and outputs a dialectical strength measure for the
movie along with dialogical explanations for the proposed strength. The ADA pipeline can be
divided into three main functions:

1. ADA uses Natural Language Processing (NLP) methods to mine a review aggregation (RA)
for the movie, which consists of a set of votes V expressing the reviewers’ sentiments on the
movie and its features.

2. The review aggregation is used to generate a Quantitative Bipolar Argumentation Framework
(QBAF), which summarises the reviewers’ general consensus on each of the features.

3. Gradual semantics are applied to the QBAF to calculate the strength measure and provide
dialogical explanations.

Figure 2.1: ADA as proposed by Cocarascu et al. for the Rotten Tomatoes movie review domain
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Considering a more generic domain, we will from now on refer to the object under review as a
product p. Furthermore, as reviewers can have opinions on the product as a whole or the product’s
features F , we refer to A = {p} ∪ F as the set of arguments upon which votes can act.

In the following sections, we will go through the different aspects of ADA in more detail. We
will conclude section 2.1 by discussing the limitations of ADA with specific regards to Amazon
reviews.

2.1.1 Feature-based representation
ADA is designed around a feature-based characterisation of products:

Definition 2.1 (Feature-based characterisation). A feature-based characterisation of a
product p is a set F of features with sub-features F ′ ⊂ F such that each f ′ ∈ F ′ has a unique
parent p(f ′) ∈ F ; for any f ∈ F\F ′, we define p(f) = p.

This feature-based characterisation can be predetermined, i.e. obtained from metadata. For
example, for a digital camera p, we could use metadata to obtain F = {fI , fL, fB}, where fI is
image quality, fL is lens, and fB is battery, as these are features that are present in most, if not all,
digital cameras. Features can also be mined from the reviews themselves using more sophisticated
methods, such as the semantic network ConceptNet1 to identify related terms to either the product
or its known features, in order to obtain further sub-features. For our camera example, we could
mine the sub-features f ′

L1 for zoom and f ′
L2 for autofocus. Figure 2.2 shows the full feature-based

representation for our running example.

p

fL

fI fB

f ′
L1 f ′

L2

Figure 2.2: Feature-based representation for a digital camera

2.1.2 Review aggregation
ADA mines votes for and against the arguments in A from the review snippets, which together
form a review aggregation for the product:

Definition 2.2 (Review aggregation). A review aggregation for product p is a tuple R(p) =
〈U ,V〉 where U is a finite, non-empty set of users (reviewers) and V : U ×A → {−,+} is a partial
function, with V(u,α) representing the vote of user u on argument α.

The mining is performed on each review snippet individually, and follows a three-step process
of tokenisation, argument detection, and sentiment analysis detailed below.

Tokenisation The review snippet is tokenised into sentxences, which are further split into
phrases at specific keywords (but, although, though, otherwise, however, unless, whereas, de-
spite). Each phrase can then possibly constitute a negative or a positive vote for one or multiple
arguments.

1http://conceptnet.io/
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Argument detection ADA determines the arguments on which a vote acts using a glossary
G of words related to each argument. For our earlier digital camera example, the glossary could
be as follows:

G(p) = {camera, device, product};
G(fI) = {image, picture, photo};
G(fL) = {lens};
G(fB) = {battery};
G(f ′

L1) = {zoom};
G(f ′

L2) = {autofocus}.

A phrase constitutes a vote towards an argument α if the phrase contains a word from G(α).
Sub-features take precedence over their parents, so for example a phrase with words from both
G(f) and G(p) will constitute a single vote for f . A phrase that contains words corresponding
to multiple unrelated features results in a vote for each of the corresponding features.

Sentiment analysis ADA uses NLP methods to determine whether the vote is for or against
the argument(s). In their paper, Cocarascu et al. compared two different NLP methods for
this purpose, Sentiment Analysis (SA) and Argument Mining (AM), finding that SA performed
slightly better than AM. Furthermore, SA is a more established field of research than AM, which
supports our decision to use SA for this project. The ADA for Rotten Tomatoes used an off-the-
shelf classifier on movie reviews for its SA, which calculates a sentiment polarity for the phrase
in [−1, 1], with −1 and 1 denoting universally negative and positive sentiments respectively. A
phrase with a highly positive (negative) polarity forms a vote for (against) the argument(s),
while a phrase with an absolute polarity less than a pre-set polarity threshold of 0.6 is filtered
out as neutral.

To illustrate review aggregation, consider this digital camera review from user u:

The picture quality was great, although the zoom wasn’t as good as advertised.

ADA extracts two phrases, p1: The image quality was great and p2: the zoom wasn’t as good as
advertised. ADA then connects p1 with fI and p2 with fB as picture ∈ G(fI) and zoom ∈ G(f ′

L1).
ADA then obtains the sentiment polarities (p1, 0.863) and (p2,−0.629). As the polarity for both
surpass the threshold of ±0.6, ADA assigns two votes of V(u, fI) = + and V(u, f ′

L1) = − for the
phrase.

Augmented review aggregation

Online reviews are often brief: Amazon reviews have a median length of just 82 words according
to a 2013 study [15]. This can result in sparsely populated review aggregations. To fix this issue,
the review aggregation can be augmented as follows:

Definition 2.3 (Augmented review aggregation). Given a review aggregation R0(p) =
〈U ,V0〉, an augmented review aggregation R(p) = 〈U ,V〉 is such that for all u ∈ U and α ∈ A:

• if V0(u,α) is defined then V(u,α) = V0(u,α); else

• if |{β ∈ A|p(β) = α∧ V0(u,β) = +}| > |{γ ∈ A|p(γ) = α∧ V0(u, γ) = −}| then V(u,α) = +;
else

• if |{β ∈ A|p(β) = α∧ V0(u,β) = +}| < |{γ ∈ A|p(γ) = α∧ V0(u, γ) = −}| then V(u,α) = −;
else

• V(u,α) is undefined.

The augmentation populates the review aggregation by exploiting the parent relation of argu-
ments and the fact that an argument can be seen as a sum of its sub-features. If an argument does
not have a vote from a user u, but its sub-features have primarily positive (negative) votes from
u, it will also gain a positive (negative) vote from u.

11



2.1.3 Quantitative Bipolar Argumentation Framework

ADA uses the review aggregation to generate a QBAF, which is a quadruple 〈A,L−,L+, τ〉 con-
sisting of a set A of arguments, binary child-parent relations L− (attack) and L+ (support) on A,
and a total function τ : A → [0, 1] representing the base score of the arguments. It is defined as
follows:

Definition 2.4 (QBAF). Let R(p) = 〈U ,V〉 be any (augmented) review aggregation for product
p. For any argument α ∈ A, let V+(α) = |{u ∈ U|V(u,α) = +}| and V−(α) = |{u ∈ U|V(u,α) =
−}| denote the number of votes for and against α. Then the QBAF corresponding to R(p) is
〈A,L−,L+, τ〉 such that:

L− ={(α,β) ∈ F2|β = p(α) ∧ V+(β) > V−(β) ∧ V+(α) < V−(α)}∪
{(α,β) ∈ F2|β = p(α) ∧ V+(β) < V−(β) ∧ V+(α) > V−(α)}∪
{(α, p) ∈ F × p|p = p(α) ∧ V+(α) < V−(α)};

L+ ={(α,β) ∈ F2|β = p(α) ∧ V+(β) > V−(β) ∧ V+(α) > V−(α)}∪
{(α,β) ∈ F2|β = p(α) ∧ V+(β) < V−(β) ∧ V+(α) < V−(α)}∪
{(α, p) ∈ F × p|p = p(α) ∧ V+(α) > V−(α)};

τ(p) = 0.5 + 0.5 · V
+(p)− V−(p)

|U| and ∀f ∈ F , τ(f) =
|V+(f)− V−(f)|

|U| .

The QBAF represents attack and support relations between the various arguments, as well as
a base score for each argument. An attack in L− is defined between a sub-feature with primarily
positive (negative) votes and its parent feature with primarily negative (positive) votes, or from
a feature with primarily negative votes towards the product p. A support in L− is defined cor-
respondingly between a sub-feature and its parent feature both with primarily positive (negative)
votes, or from a feature with primarily positive votes towards the product p.

The base score of an argument is related to the general sentiment towards it, and is defined
differently for the product and its features. For the product itself, a base score of 0.0 (1.0) represents
a completely negative (positive) sentiment from every user, while a base score of 0.5 represents a
completely neutral sentiment. For features, the base score represents the magnitude of the positive
or negative sentiment towards it, with 0.0 representing a neutral sentiment and 1.0 representing a
fully negative or positive sentiment.

Figure 2.3 shows an example of a QBAF for a digital camera, with the arrows representing
attacks (−) and supports (+), and the base scores τ shown next to each argument.

2.1.4 Gradual semantics

Reviews often integrate a numerical user rating in addition to the review text, such as a rating out
of 5 stars. The rating can be averaged across reviews to find a quantitative measure for the general
sentiment towards the product. It is beneficial to calculate a similar objective measure based on
the QBAF to compare with the average user rating, in order to evaluate the accuracy of ADA. To
calculate such a measure, we need to define a gradual semantics for the QBAF.

p σ : 0.71
τ : 0.57

fL

σ : 0.27
τ : 0.14

fI
σ : 0.29
τ : 0.29

fB
σ : 0.14
τ : 0.14

f ′
L1

σ : 0.29
τ : 0.29

f ′
L2

σ : 0.43
τ : 0.43

+

+ −

− +

Figure 2.3: QBAF for a digital camera annotated with base scores τ and DF-QuAD strengths σ
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Cocarascu et al. evaluated three different gradual semantics for this purpose: QuAD, DF-
QuAD, and Restricted Euler-based semantics (REB). DF-QuAD performed best in comparison
to the ground truth, while REB performed worst. However, REB satisfies the property of strict
monotonicity, which was hypothesised to be ’more suitable for applications with a large number
of attackers or supporters’. Since the most popular Amazon products have thousands of reviews
as opposed to a few hundred reviews on the most popular movies on Rotten Tomatoes2, we will
use both DF-QuAD and REB in this project in order to evaluate this claim.

Let σ(α) ∈ [0, 1] represent the dialogical strength measure for argument α. For a QBAF
〈A,L−,L+, τ〉 and argument α ∈ A, let L−(α) = {β ∈ A|(β,α) ∈ L−} be the set of attack-
ers of α and L+(α) = {β ∈ A|(β,α) ∈ L+} be the set of supporters of α. Then DF-QuAD and
REB are used to calculate σ as follows:

Definition 2.5 (DF-QuAD). For k arguments with strengths σ1,σ2, · · · ,σk, we define the ag-
gregate strength measure

F(σ1,σ2, · · · ,σk) = 1−
k!

i=1

(1− σi).

Then for an argument α ∈ A with n attackers with strengths σa1,σa2, · · · ,σan and m supporters
with strengths σs1,σs2, · · · ,σsm, where σa = F(σa1,σa2, · · · ,σan) and σs = F(σs1,σs2, · · · ,σsm):

• if σa = σs then σ(α) = τ(α); else

• if σa > σs then σ(α) = τ(α)− τ(α) · |σs − σa|; else

• σ(α) = τ(α) + (1− τ(α)) · |σs − σa|.

Definition 2.6 (REB). For any argument α ∈ A:

σ(α) = 1− 1− τ(α)2

1 + τ(α) · eE

where E =
"

β∈L+(α) σ(β)−
"

γ∈L−(α) σ(γ).

For a product p, a low (high) σ(p) signifies a negative (positive) overall sentiment towards the
product and its features, while σ(p) = 0.5 signifies a neutral sentiment. Therefore, σ(p) can be
compared with the average user rating for p in order to evaluate the accuracy of ADA.

The QBAF in figure 2.3 is annotated with DF-QuAD strengths for its arguments. Since p(σ) =
0.71, users have an overall positive sentiment towards the camera.

2.1.5 Dialogical explanations
ADA can generate dialogical explanations for arguments based on the extracted QBAF. Its tem-
plate based argumentation dialogue was first introduced in [3] and extended in [2]. The dialogue
consists of explanation requests Q(α) for α ∈ A from the user, to which ADA responds with
explanations X (α). It is defined as follows, with use of the auxiliary functions in Figure 2.4:

r+a (α) = {because (the) α was/were good};
r−a (α) = {because (the) α was/were poor};
r+b (α) = {although (the) α was/were good};
r−b (α) = {although (the) α was/were poor};

r+a (∅) = r−a (∅) = r+b (∅) = r−b (∅) = {}.

Figure 2.4: Auxiliary functions for argumentation dialogue.

2https://www.rottentomatoes.com/m/star_wars_the_rise_of_skywalker
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Definition 2.7 (Argumentation dialogue). For any S ⊆ A, if S = ∅ let max(S) = ∅; else
let max(S) = argmaxs∈Sσ(s). Then the dialogue is such that for any α ∈ A:

• if α = p and σ(α) > 0.5 and ∃β ∈ L−(α) ∪ L+(α) s.t. σ(β) > 0:

Q(α) = {Why was α highly rated?}
X (α) = {This product was highly rated}+ r+a (max(L+(α))) + r−b (max(L−(α)));

• else if α = p and σ(α) < 0.5 and ∃β ∈ L−(α) ∪ L+(α) s.t. σ(β) > 0:

Q(α) = {Why was α poorly rated?}
X (α) = {This product was poorly rated}+ r−a (max(L+(α))) + r+b (max(L−(α)));

• else if α ∈ F and V+(α) > V−(α) and ∃β ∈ L−(α) ∪ L+(α) s.t. σ(β) > 0:

Q(α) = {Why was/were (the) α considered to be good?}
X (α) = {(The) α was/were considered to be good}+ r+a (max(L+(α))) + r−b (max(L−(α)));

• else if α ∈ F and V+(α) < V−(α) and ∃β ∈ L−(α) ∪ L+(α) s.t. σ(β) > 0:

Q(α) = {Why was/were (the) α considered to be poor?}
X (α) = {(The) α was/were considered to be poor}+ r−a (max(L+(α))) + r+b (max(L−(α)));

• else if V+(α) > V−(α) and ∃β ∈ L−(α) ∪ L+(α) s.t. σ(β) > 0:

Q(α) = {What did users say about (the) α being good?}
X (α) = {[phrase from u ∈ U constituting V(u, a) = +]};

• else if V+(α) < V−(α) and ∃β ∈ L−(α) ∪ L+(α) s.t. σ(β) > 0:

Q(α) = {What did users say about (the) α being poor?}
X (α) = {[phrase from u ∈ U constituting V(u, a) = −]}.

When a user requests an explanation for the sentiment towards an argument α, ADA responds
by providing another argument β that supports α, and possibly also contrasts it with a third ar-
gument γ that attacks α. A user can also request a direct quote from one of the reviewers on an
argument. For example, a conversation between a user and ADA on the Canon IXUS 185 digital
camera3 could take the following form:

User: Why was the Canon IXUS 185 highly rated?
ADA: The product was highly rated because the lens was good, although the battery was poor.
User: Why was the lens considered to be good?
ADA: The lens was considered to be good because the autofocus was good, although the zoom

was poor.
User: What did users say about the zoom being poor?
ADA: "...the zoom wasn’t as good as advertised..."

2.1.6 ADA for Amazon reviews
We will conclude this section by discussing the limitations of ADA in the Amazon review domain.
To illustrate the differences between Amazon and Rotten Tomatoes reviews, let us take examples
of a positive and a negative review from each site:

3https://www.amazon.co.uk/Canon-IXUS-185-Digital-Camera/dp/B01N6JP07Y
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Amazon reviews

Canon IXUS 185 Digital Camera - Black
rated 4/5 stars

About the size of a box of 10 cigarettes. Re-
ally light fits into any trousers pocket good
quality picture better than any of the cheaper
models with the same specs. I love ot be-
cause its a high enough quality to make it
worth while taking it everywhere and archi-
tecture being my interest ∼I Take pic-
tures of buildings all the time.

Rotten Tomatoes reviews

Star Wars: The Rise of Skywalker (2019)
rated Fresh4

The pacing in the first act leaves something
to be desired but at the end of the day, the joy
I felt watching this beloved story come to its
conclusion could not be diminished. The ac-
tion, the characters, and the overall world
won me over one last time.

Philips Sonicare Electric Toothbrush
rated 2/5 stars

So, I really enjoy how clean my teeth feel af-
ter using this toothbrush. It has a built in
2 minute timer which is also nice and the
battery stays charged for several days. My
complaint is that when I changed the head of
the toothbrush after the 3 month suggested
timeframes, there was was mold in the han-
dle of the base. I am considering purchasing
something else because using something that
contains mold close to my mouth isnt very
appealing.

A Rainy in New York (2019)
rated Rotten

Woody, too old to flirt with a pretty young
thing, has split up the chore amongst multi-
ple older characters, as if that would some-
how dilute the ick factor.

The Amazon reviews are for the Canon IXUS 185 digital camera and the Philips Sonicare
electric toothbrush, and the Rotten Tomatoes reviews are for the movies Star Wars: The Rise of
Skywalker (2019) and A Rainy Day in New York (2019). We notice some key differences between
the Amazon Reviews and the Rotten Tomatoes reviews:

Features Because all Rotten Tomatoes reviews are on movies, there are features such as
characters, found in both of the movie reviews, that are common to all movies. On the other
hand, Amazon has reviews for a large variety of different products, and therefore the main
features might be very different from one item to another. For example, the feature cleanliness
is very important to an electric toothbrush but not to a digital camera, and vice versa for image
quality. The vast amount of products limits the possibility of having predetermined features,
and emphasises the importance of unsupervised feature extraction.

Writing style As the reviews on Rotten Tomatoes are written by critics, the style of writing
tends to be similar across all reviews. On the other hand, Amazon reviews can be written
by anyone who has purchased the product, so the style is more individualistic. For example
in the review for the Canon IXUS 185 digital camera, the user comments on their personal
interests. Colloquial language (’specs’) and spelling mistakes (’ot’) are also common. Due to
these differences, using the same off-the-shelf movie review classifier for sentiment analysis on
Amazon reviews would not be sensible. Although ADA was explored in the user-written review
domain of Trip Advisor in [2], this paper focused on expanding the conversational aspect of
ADA with no consideration of its NLP methods.

Based on these two differences, we propose two extensions to ADA in order to accommodate
Amazon reviews:

1. An unsupervised and generic method of feature extraction that will work for any product.

2. A method for sentiment analysis in Amazon’s more heterogeneous review domain.

4Individual reviews on Rotten Tomatoes are rated Fresh (positive) or Rotten (negative).

15



2.2 Feature-level sentiment analysis

In this section, we will examine the state-of-the-art research in aspect-level sentiment analysis [27],
which attempts to determine people’s opinions on entities and their aspects. We have already been
introduced to aspect-level sentiment analysis in ADA’s review aggregation, where the entities are
products and the aspects are their features. For consistency, we will refer to entities as products and
aspects as features. Further research into this area will guide our implementation of the extensions
proposed in Section 2.1.6.

Consider the following review for a particular model of the Philips Sonicare electric toothbrush
range:

Trust me, as someone who has owned several terrible
Sonicare toothbrushes before: this model is great.

Since ADA would associate Sonicare toothbrush with terrible, it would incorrectly extract a negative
vote for the product. This is because ADA:

1. cannot distinguish that the toothbrush under review is referred to as this model;

2. will calculate only a single sentiment for the entire phrase, while it actually represents a
negative sentiment towards other Sonicare toothbrushes and a positive sentiment towards
this particular toothbrush.

The first error has to do with feature extraction, which accounts for the first part of feature-level
sentiment analysis where the agent extracts features from the text. In our case, we wish to extract
also the relations between the various features, so we will concern ourselves with ontology extraction.
The second error has to do with feature-dependent sentiment analysis, where the extracted features
are assigned with sentiment polarities. The following sections evaluate research in these two areas
in hopes of finding a way to resolve these errors.

2.2.1 Ontology extraction

In order to obtain an ontology for a product in an unsupervised manner, we must have a way to
extract the features and their relations to one another from some source of information about the
product, such as metadata or its review texts. As the availability of metadata on Amazon varies
greatly from one product category to another, we shall focus our analysis on feature extraction from
the review texts in order to not limit the set of Amazon products supported by our implementation.

Opinion target extraction

In order to construct an ontology for a product, we wish to extract the features of the product
towards which the reviewers often have an opinion. In the field of opinion target extraction, various
NLP methods are used to extract such words from natural language. Most studies on this topic
can be categorised into rule-based methods or supervised machine learning based methods [5]. The
former relies on lexical data or syntactic rules to detect features, such as in [22], while the latter
models the problem as a sequence labelling task, often with the use of Conditional Random Fields
(CRFs) [12]. More recently, deep learning methods have also been proposed for the problem, an
overview of which can be found in [27].

When it comes to Amazon review texts, the issue with many of these methods is that they are
domain-dependent. Particularly for the machine learning methods, the models work well on the
domain on which they are trained on, but may face a performance drop of up to 40% when tested
in different domains [5]. Therefore, a model trained on digital camera reviews might not perform
well on reviews for garden hoses. On the other hand, it would be impossible to obtain manually
labelled data that would be representative of the whole selection of millions of Amazon products.

Some cross-domain feature extraction methods have been proposed [5], but these still perform
significantly worse than the single-domain methods discussed above. Furthermore, none of these
methods look for semantic relationships between the product and its features, but search for opinion
targets in the absence of any existing product information.
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Common-sense knowledge bases

Semantic information can be obtained from ConceptNet [24], which is a common-sense knowledge
graph connecting words and phrases with labelled and weighted edges expressing semantic relations
between the words. As our goal is to obtain features of a product, we are most interested in the
HasA relation. For example, the term watch5 is related by the HasA relation to a hand that
counts minutes. However, many reviews for watches comment on the watch’s face or its band,
neither of which are terms related to watches on ConceptNet. Furthermore, the knowledge on
ConceptNet is loosely structured as natural language descriptions, whereas ADA requires more
structured information: for a watch, we require the feature hand instead of a hand that counts
minutes.

Some methods have been proposed for automatic common-sense completion, which aims to
structure the information in common-sense knowledge graphs such as ConceptNet. Common-
sense Transformers (COMeT) proposed by Bosselut et al. [1] is one such state-of-the-art method,
which uses the Transformer architecture described in Section 2.3 to generate structured knowledge
based on ConceptNet. However, even COMeT appears incomplete in terms of the HasA relation,
as it is missing many of the same features of the term watch 6 as ConceptNet.

WordNet [19], a large manually constructed lexical database, is another popular source for
common-sense lexical information. Although WordNet includes fewer relations than ConceptNet,
it includes the relation of meronymy, which denotes a word being a constituent part of another
word, similar to the HasA and MadeOf relations in ConceptNet. For example, the term electric
toothbrush7 has a single meronym of electric motor. As with ConceptNet, the list of relations on
WordNet is incomplete, as it fails to include relevant meronyms such as the timer.

Due to the low recall of ConceptNet and WordNet in obtaining product features, our approach
to ontology extraction must take advantage of the review texts as a source of information about
the product. However, we can evaluate our implementation against ConceptNet and WordNet, or
possibly take a hybrid approach to ontology extraction where features are mined from review texts
to complement the existing semantic information on ConceptNet and WordNet.

2.2.2 Feature-dependent sentiment analysis
After we have extracted the features of a product, we wish to discern whether the opinions towards
the features in reviews are positive or negative through sentiment analysis. Perhaps the main
difficulty in feature-dependent sentiment analysis is to distinguish which opinions are acting on
which arguments.

ADA attempts to tackle this issue by dividing the review into phrases at specific keywords, such
as the word but in I liked the acting, but the cinematography was dreadful, after which it assumes
each phrase contains at most one sentiment. However, there are many cases where such a simple
method will not work, like the example at the start of this section. This is particularly true for
Amazon reviews where the language tends to be less formal compared to Rotten Tomatoes reviews
written by professional critics.

Various machine learning methods have been proposed for feature-dependent sentiment anal-
ysis, although the task is deemed difficult and there is currently no dominating technique for
this purpose [27]. More traditional approaches, such as SVM-dep proposed by Jiang et al. [10],
use hand-crafted syntactic features alongside word embeddings in support-vector machine (SVM)
classifiers. More recently, various methods using deep learning have been proposed, such as TD-
BERT by Gao et al. [6], which uses the BERT language model detailed in Section 2.3 to obtain
state-of-the-art performance in the task.

However, both of these methods were trained and tested in the same domain including tweets or
reviews about celebrities, companies and consumer electronics. The performance would likely drop
substantially in a separate domain, as the sentiment polarity of a word can be highly dependent
on context: for example the adjective hard has a positive connotation when describing a protective
case, but a negative connotation when describing an armchair.

5http://conceptnet.io/c/en/watch
6https://mosaickg.apps.allenai.org/comet_conceptnet/?l=watch&r=HasA
7http://wordnetweb.princeton.edu
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2.3 BERT

Both of the two NLP tasks relevant to ADA, feature extraction and feature-dependent sentiment
analysis, become more difficult to perform in a general domain, which is crucial to applying ADA
for all Amazon products. BERT [4], which stands for Bidirectional Encoder Representations from
Transformers, is a state-of-the-art language representation model, which uses pre-training to learn
language representations from large amounts of unlabelled text, which can then be fine-tuned for
more specific NLP tasks. Because the unlabelled text used to pre-train BERT comes from a general
domain corpus such as Wikipedia, the knowledge in a pre-trained BERT model is especially well-
suited for domain-independent NLP tasks such as ours. This section will provide a brief overview of
the BERT architecture and the underlying Transformer network, shown in Figure 2.5. The paper
presents two model sizes for BERT, BERT-base and BERT-large, which differ in terms of the size
of various hyperparameters. In this paper, we will use the former due to memory constraints.

Figure 2.5: Overview of the BERT architecture

2.3.1 Tokeniser

The first step of BERT is to tokenise the input text in order to prepare it for the Transformer
network, where each token follows its own path through the network. The tokenisation step in
Figure 2.5 is a bit simplified, as BERT uses WordPiece tokenisation, which divides words into a
limited set of common sub-word units, improving the handling of rare words. The first token is
always the [CLS] token, which is used in the output as representative of the whole sequence of
tokens. The [SEP] token is used to mark the end of the first sentence in tasks with two sentences,
such as Sentence Pair Classification. Finally, the sequence of tokens is padded to a fixed length
of up to 512 tokens, which enables BERT to handle batches including texts of varying sizes. The
tokens are mapped to numerical IDs using a static mapping, after which the token IDs are passed
onto the Embedding layer of the Transformer network.
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2.3.2 Transformer network
The pre-trained network of BERT is based on an Embedding layer followed by a stack of Trans-
former encoders, proposed by Vaswani et. al. [25].

Embedding layer

Each token ID from the tokeniser is passed through an embedding layer, which outputs a vector
En ∈ RH of hidden size H (768 for BERT-base). The embedding is a sum of the token embedding,
a position embedding for the token’s position in the sequence, and a segment embedding which is
used to distinguish between the first and second sentences in Sentence Pair Classification. The
embeddings for each token are then passed onto the first encoder in the encoder network.

Encoder network

The Encoder network for BERT-base consists of a stack of 12 identical encoders. The input to the
first encoder are the embeddings, and the output from the (n − 1)th encoder is used as input to
the nth encoder for n ∈ [2, 12]. Figure 2.6 shows a more detailed diagram of a single encoder in
the encoder network. Each encoder consists of two parts, a self-attention layer and a feed-forward
neural network.

Although the representations for each token follow their own path through the network, the
self-attention layer is where they interact with each other in order to build a context-aware rep-
resentation for each token. Let Xn−1 ∈ RT,H be a matrix containing the inputs to the encoder,
where T is the number of tokens. Each self-attention layer learns three weight matrices, WQ, WK ,
and WV used to calculate the Q (query), K (key), and V (value) matrices respectively:

Q = Xn−1 ×WQ

K = Xn−1 ×WK

V = Xn−1 ×WV .

Then, the outputs Z of the self-attention layer are calculated with the formula

Z = softmax(
Q×KT

√
dk

)× V,

where dk an arbitrary constant used to stabilise the gradient. The calculation Q × KT returns
for each token position (row of the matrix) the query vector of that position multiplied with the
key vectors of all of the positions. The softmax operation then normalises the resulting rows so
that each sums up to one; intuitively, the resulting rows represent how much each token position
is expressed at the position of the row. Finally, we multiply the softmax probabilities for each
position with the corresponding value vectors, in order to obtain the output Z. In essence, each row
of Z is a weighted combination of all of the value vectors in V where the weights are determined
by Q and K.

Figure 2.6: A single encoder
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BERT implements multi-headed attention, which means that each self-attention layer has in fact
12 (16 for BERT-large) sets of query, key, and value matrices which are all randomly initialised
and learn a different representation subspace. Therefore, we end up with 12 output matrices
Z1, . . . , Z12 which are concatenated and multiplied with an additional weight matrix WO to obtain
the final output matrix Z which captures information from all of the attention heads. Multi-headed
attention improves the performance of the self-attention layer by allowing the model to focus on
different positions in different representation subspaces.

The outputs of the self-attention layer are used as inputs to the feed-forward neural network,
which returns outputs Xn ∈ RT,H used as inputs to the next encoder. The same network is
independently applied to each position, so the interaction between positions happens in the self-
attention layer only.

2.3.3 Fine-tuning BERT

The outputs from the last encoder, which are denoted in Figure 2.5 as C for the [CLS] token
position and Tn for the nth text token, are used as inputs to a classifier network depending on the
specific NLP task. Many sentence-level classification tasks use simply the output C, which is con-
sidered representative of the whole sequence of tokens, while the outputs Tn are more representative
of the nth token position.

While the weights for BERT can be loaded from pre-trained models, the classifier is trained
from scratch for each task in what is called fine-tuning the model. Often, the weights in BERT
are also fine-tuned alongside training the classifier, although the changes are minimal and BERT
mostly relies on its pre-trained knowledge, which it passes onto the classifier.

2.4 Conversational systems

The main innovation of ADA lies in its ability to provide dialogical explanations for review aggre-
gations, which help the user understand why a product is liked or disliked. This is a beneficial
feature for example in the recommender system domain, where it has been shown to improve the
general acceptance, perceived quality, and effectiveness of the system [7].

Although an argumentation dialogue has been defined for ADA, a conversational user interface
through which a user can participate in this dialogue remains to be implemented. In this section,
we will investigate two novel approaches to designing such an interface: Botplications proposed
by Klopfenstein et al. [11] for textual interfaces and Quantised Dialog proposed by Gunasekara et
al. [8] for speech interfaces. We will conclude by evaluating the two methods using the RRIMS
properties proposed by Radlinski et al. [23] for conversational search systems.

2.4.1 Botplications

Klopfenstein et al. define a Botplication as "an agent that is endowed with a conversational interface
accessible through a messaging platform, which provides access to data, services, or enables the
user to perform a specific task". To extend ADA with such functionality, we would implement
a messaging interface through which the user can request review explanations in line with the
argumentation dialogue in Definition 2.7. Instead of demanding the user to type out a request, the
interface might implement structured message forms, such as preset replies or an interactive list of
available commands. The advantage of structured messages is that they constrain the conversation
into a limited number of expected outcomes and assist the user in using the interface.

The alternative to structured messages would be to use NLP methods to extract commands
and intent from the user’s messages. However, Klopfenstein et al. argue that for a single bot,
natural language should be avoided where possible, as "going after AI is mostly excessive and
counterproductive, when the same results can be obtained with simple text commands using a
limited structured language".
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2.4.2 Quantised Dialogue
In a speech interface, structured messages are no longer possible. Although advances in deep
learning have recently enabled speech recognition to reach human parity8, understanding the intent
behind the extracted natural language continues to be a challenging task and an active area of
research. Many approaches to this problem in conversational systems are based on heuristics and
handcrafted rules, which may not adapt well to unexpected input.

Gunasekara et al. recently proposed the more general method of Quantised Dialogue as a way to
tackle this issue. It relies on the semantic quantisation and clustering of the user’s requests in order
to reduce the otherwise limitless interaction space of natural language dialog. It is then possible
to teach a neural network in this simplified dialog space to predict the appropriate response to a
query.

2.4.3 Evaluation using the RRIMS properties
Radlinski et al. propose that a conversational search system should satisfy the following five prop-
erties, termed the RRIMS properties:

• User Revealment The system helps the user express, and possibly discover, their true
information need.

• System Revealment The system reveals to the user its capabilities and commands, building
the user’s expectations of what it can and cannot do.

• Mixed Initiative Both the system and the user can take initiative as appropriate.

• Memory The user can reference past statements, which implicitly also remain true unless
contradicted.

• Set Retrieval The system can reason about the utility of sets of complementary items.

ADA’s argumentation dialogue fairs well in terms of user revealment, as it allows the user to
request additional information about the product and its features. ADA also provides additional
information to contrast with the requested information via its secondary although. . . phrases,
allowing the user to discover more about the product. For the user interface methods, Botplications
perform better than Quantised Dialogue in terms of the system revealment and memory properties.
In terms of system revealment, the structured messages of a Botplication provide more information
about the system’s capabilities. In terms of memory, the chronological log of past interactions
kept by Botplications’ messaging interface again seems more useful. We will not concern ourselves
with the mixed initiative and set retrieval properties, as we will not be implementing ADA as a
full-fledged conversational search system in this project.

As a Botplication evaluates better Quantised Dialogue in terms of fulfilling the RRIMS prop-
erties, the only reason we should implement the latter is if we specifically want a speech interface.
Such an interface could be useful in for example a smart speaker, which could then provide the
user with explainable product recommendations in situations where they are unable to interact
with a physical device, such as while cooking. However, since the main focus of this project is
implementing ADA in the general-domain, we will concentrate our efforts on developing a single
Botplication interface.

8https://www.microsoft.com/en-us/research/blog/microsoft-researchers-achieve-new-conversational-speech-
recognition-milestone/
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Chapter 3

Ontology extraction

Since there does not exist a domain-independent common-sense ontology that would suit our
purposes, we will extract the ontology ourselves from the review texts using NLP methods. In
this paper, we will limit the extraction of features to unigram, bigram, and trigram nouns, as the
vast majority of terms for products and features fall into these categories. Although not strictly
necessary, this will greatly help limit our search for features within the review texts with little
effect on the recall of our model. Furthermore, we limit the maximum depth of the ontology tree
to two, as was the case in the paper of Cocarascu et al.

3.1 Implementation
Our method of ontology extraction is a multi-step pipeline using both hand-crafted grammatical
features and two BERT-based models trained using distantly supervised learning. The only input
to the system are review texts for the product for which we wish to extract an ontology. The first
BERT model is used for named-entity recognition (NER) of the various features of the product,
while the second model is used for relation extraction (RE) in order to extract sub-feature relations
between the recognised features. In addition, we use a Word2Vec [17] model to extract word vectors,
which are used to group the features into sets of synonyms, or synsets, using a method proposed
by Leeuwenberg et al. [13]. The pipeline is structured as follows:

1. Noun extraction

2. Feature extraction

3. Synonym extraction

4. Ontology extraction.

In this section, we will first detail the annotation method used to obtain the training data for the
two BERT-based models, after which we will go through the different pipeline steps in detail.

3.1.1 Annotation of training data for masked BERT
Annotating training data that would be representative of the whole set of Amazon products would
be nearly impossible due to the sheer number of different product categories on Amazon. However,
in review texts, certain grammatical constructs stay the same regardless of the product. Take for
example the two review sentences:

I love the lens on this camera and I love the material of this sweater.

Clearly, lens is a feature of camera and material is a feature of sweater. If we mask the entities
mentioned in the two sentences, we obtain:

I love the e1 on this e2 and I love the e1 of this e2,

which are nearly identical. So while the entities in review texts are domain-specific, the context is
often largely domain-independent. Therefore, using the masked sentences, it would be possible to
train a classifier to recognise that e1 and e2 are both entities, or that e1 is a sub-feature of e2.
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In fact, BERT has inbuilt support for masking, as it plays a central role in its pre-training
phase. One of the two tasks on which BERT is pre-trained is masked language modelling, in which
randomly chosen words are replaced with a [MASK] token and the model is asked to predict the
masked words in a large corpus of text.

Of course, the above example is an idealised scenario. If we mask the entities in the following
review sentences:

The camera housing is made of shiny black plastic but it feels nicely weighted and solid
and

It’s a lovely warm jumper that has a nice feel to it,

we obtain the masked sentences:

The e1 is made of shiny black e2 but it feels nicely weighted and solid
and

It’s a lovely warm e1 that has a nice e2 to it,

which still contain some rather domain-specific terms such as shiny, weighted, and warm. However,
these words are less likely to be product-specific, but are often common to wider categories of
products, such as electronics or clothing. Therefore, there is no need to annotate each and every
product to represent the whole set of Amazon products, but a small and varied set of products
should be enough to train a domain-independent classifier.

Even annotating texts for just a few products would still require the annotation of at least
thousands of texts in order to obtain a sufficiently large dataset. However, we can reduce the
amount of work substantially by taking advantage of distantly supervised learning, where rather
than annotating each and every sentence by hand, we automatically annotate a large amount of
text using predetermined heuristics. In our case, the heuristic will be a manually labelled ontology
for the product: using this ontology, an automated process can search review texts for terms that
appear in the ontology and label as well as mask them correctly. This will allow us to easily
annotate data for multiple products, as we will only have to annotate their ontologies, which
usually consist of no more than a few dozen terms.

Notice that distant supervision is made possible here by the masking of the terms in the
ontologies. We are annotating a much smaller set of terms than the size of the resulting training
set, which means that the training set will be highly saturated with the annotated terms. Therefore,
if the words weren’t masked, the classifier would simply learn to recognise the terms in the ontology
and completely ignore their context. However, due to the masking of the terms, the classifier is
forced to rely solely on their context, which is more varied.

Figure 3.1: Entity annotator interface

A program was written to ease the annotation of the ontologies, the interface of which is
shown in Figure 3.1, exemplified for sweaters. The program takes as input review sentences for a
given product category such as sweaters, and counts the number of times each noun occurs in the
sentences using the same method as the ontology extractor, which is detailed in Section 3.1.2. It
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then displays the nouns one by one to the annotator in descending order of count, and for each
noun, the annotator will label it as either the root of the ontology tree (the product), a sub-feature
or a synonym of an existing node in the tree, or nan for nouns that are not an argument (for
example daughter in the review text my daughter loves it). In order to simplify the annotation
process, a noun with a lower count can only be annotated as a sub-feature of a noun with a higher
count, as the reverse is rarely true. The annotation of nan nouns is important as it allows us to
obtain negative samples for the training data.

Once the annotator has labelled a sufficient number of nouns, the program can use the annotated
ontology to label the entire set of review sentences to be used as training data for either the feature
or relation extraction models.

For the feature extraction training data, the program will select sentences with exactly one of
the annotated nouns and label the sentence with a binary label representing if the masked word
is an argument or not. Although selecting only a subset of the sentences will limit the amount
of training data, it allows us to reduce the NER task to a binary classification problem instead
of a sequence-labelling problem. Furthermore, even relatively small product categories have large
amounts of review data available, so we can afford to prune some of it in order to improve the
precision of our model. Table 3.1 shows a positive and a negative example.

text noun is_argument

"I love this sweater." "sweater" 1
"My daughter loves it!" "daughter" 0

Table 3.1: Example training data for feature extraction

For the relation extraction training data, the program will select sentences with exactly two of
the annotated nouns, and mask both of the nouns as well as label the sentence with one of three
labels: 0 for no relation between the masked nouns, 1 if the second masked noun is a feature of the
first masked noun, and 2 if the first masked noun is a feature of the second masked noun. A noun
n1 is considered a feature of noun n2 iff n1 is a descendant of n2 in the annotated ontology tree.
For example, fabric is considered a feature of both sweater and material based on the ontology tree
in Figure 3.1. Table 3.2 shows examples for each of the labels.

text noun_1 noun_2 relation_label

"I like the colour and the material." "colour" "material" 0
"My daughter loves this sweater." "daughter" "sweater" 0
"The sweater’s fabric is so soft." "sweater" "fabric" 1

"The colour of the sweater is beautiful." "colour" "sweater" 2

Table 3.2: Example training data for relation extraction

We used the program to obtain training data for a variety of five randomly selected products:
digital cameras, backpacks, laptops, guitars, and cardigans. The categorised review data was
obtained from a public repository1 by Jianmo et al. [20]. For each of these products, we annotate
the 200 most common nouns, as we observe that most of the relevant features of the product will
be included within this range. After resampling to balance out the number of instances for each
of the classes, we obtained the training data shown in Table 3.3.

Number of training instances
per product total

Feature extraction 56,526 282,630
Relation extraction 25,110 125,550

Table 3.3: Training data counts for ontology extraction

1https://nijianmo.github.io/amazon/index.html
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3.1.2 Noun extraction
The first step of our ontology extraction method is to extract the most commonly appearing nouns
in the review texts, which will be candidates for features in the following step.

The review data is divided into review texts, many of which are multiple sentences long, so we
first split the texts into sentences. In this paper, we will treat each sentence as an individual unit
of information, independent from other sentences in the same review text. We will then tokenise
the sentences, and use an out-of-the-box implementation of a method by Mikolov et al. [18] to join
common co-occurrences of tokens into bigrams and trigrams. This step is crucial in order to detect
multi-word nouns such as operating system, which is an important feature of computer. After this,
we use a part-of-speech tagger to select the nouns within the tokens, and count the number of
occurrences for each of the nouns. Finally, as for the annotation method detailed in Section 3.1.1,
we select the 200 most common nouns and pass them onto the feature extraction step.

3.1.3 Feature extraction
For the feature extraction step, we obtain review sentences that mention exactly one of the nouns
obtained in the previous step, and pass the sentences through a BERT-based classifier to obtain
votes for whether the noun is an argument or not. In the end, we aggregate these votes for each
of the nouns and filter a list of extracted arguments.

BERT for feature extraction

Figure 3.2 shows the architecture of the BERT-based classifier used for feature extraction. The
classifier takes as input a review sentence, as well as the noun which we wish to classify as an
argument or a non-argument. The tokenisation step masks the tokens associated with the noun
(’operating’ and ’system’) with the [MASK] token. The tokens are passed through the transformer
network, and the output used for classification is taken from the positions of the masked tokens.
The input to the linear classification layer is always of the dimension of a single BERT hidden
layer output, so if there are several masked tokens, a max-pooling operation is performed on their
outputs. The linear layer is followed by a softmax operation, which outputs the probabilities p0
and p1 of the masked noun being a non-argument or an argument, respectively.

For each of the nouns, we take the mean of its p1 votes, and accept it as an argument if the
mean is above 0.65, a hyperparameter tuned through validation to strike a good balance between
precision and recall of the feature extraction. Using the raw output probabilities from the network
rather than binary votes allows us to bias the aggregate towards more certain predictions of the
model.

Figure 3.2: BERT for feature extraction
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Training the model

We trained the model on the feature extraction data shown in Table 3.3, setting aside 5% of the
data for validation. The final model was trained for 3 epochs with a batch size of 32. We used the
Adam optimiser with standard cross entropy loss. The model was trained on a NVIDIA GeForce
GTX 1080 GPU with 16GB RAM and took 3 hours and 16 minutes. The final accuracy and macro
F1-score on the validation set were 89.70 and 89.39, respectively.

3.1.4 Synonym extraction
Reviewers can refer to the same argument using many different terms; for example the argument
laptop can be referred to with the terms computer, device, and product. In order to construct an
ontology tree, we must be able to group all of these terms under the same node. However, terms like
laptop and product are not synonyms in the strict sense of the word, even if they are interchangeable
within the review texts. Therefore, we cannot use a pre-existing synonym dictionary to group the
arguments.

However, since the terms are interchangeable within the review texts, we can once again utilise
the context of the words to group words with similar contexts into synsets. In order to compare the
contexts of words, we must obtain context-based representations for them. One such representation
is called a word embedding, which is a high-dimensional vector in a vector space where similar words
are close to each other. We can obtain review-domain word embeddings by training a Word2Vec
model on the review texts. The Word2Vec model learns the word embeddings by attempting to
predict each word in the text corpus from a window of surrounding words.

We use a relatively small window of 4 words, exemplified by the following two review sentences
where the window is underlined for the terms laptop and product :

I would recommend this laptop to my friends, although the keyboard isn’t perfect
and

I would recommend this product to my friends, as it is the best purchase I’ve ever made.

The windows for laptop and product are identical, which means that their word embeddings will be
similar. The small window ensures that the focus is on the interchangeability of the words, rather
than their relatedness on larger scale. As the above two sentences illustrate, the terms laptop and
product might be used in slightly different contexts on a larger scale, but their meaning, which is
expressed in the nearby text, stays the same. Furthermore, the small window size prevents sibling
arguments from being grouped together based on their association with their parent argument, as
exemplified in these two review texts:

I like this lens because of the convenient zoom functionality which works like a dream
and

I like this lens because the quality of its glass takes such clear pictures.

Although both zoom and glass are mentioned in association with their parent argument lens, their
nearby contexts are very different.

Once we have obtained the word embeddings, we can use the relative cosine similarity of the
vectors to group them into synsets, as proposed by Leeuwenberg et al. in [13], who showed that
relative cosine similarity is more accurate of a measure for synonymy than cosine similarity. The
cosine similarity relative to the top n most similar words between word embeddings wi and wj is
calculated with the following formula:

rcsn(wi, wj) =
cosine_similarity(wi, wj)"

wc∈TOPn
cosine_similarity(wi, wc)

,

where TOPn is a set of the n most similar words to wi. In this paper, we use n = 10. If
rcs10(wi, wj) > 0.10, wi is more similar to wj than an arbitrary similar word from TOP10, which
was shown in [13] to be a good indicator of synonymy.

Let arguments a1 and a2 be synonyms if rcs10(a1, a2) + rcs10(a2, a1) ≥ 0.21. Then we group
the arguments A into synsets S where

∀a1, a2 ∈ A. ∀s ∈ S. rcs10(a1, a2) + rcs10(a2, a1) ≥ 0.21 ∧ a1 ∈ s =⇒ a2 ∈ s,

and
∀a ∈ A. ∃s ∈ S. a ∈ s.
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3.1.5 Ontology extraction

The synsets obtained in the previous step will form the nodes of the ontology tree. In this step,
we will extract the sub-feature relations that will allow us to construct the shape of the tree. In
order to do this, we obtain review sentences that mention a word from exactly two synsets, and
pass the sentences through a BERT-based classifier to obtain votes for whether the arguments are
related, and if they are, which of the arguments is a feature of the other. In the end, we aggregate
these votes within each of the synsets to obtain a relatedness measure between each of the synset
pairs, which we use to construct the ontology.

BERT for relation extraction

Figure 3.3 shows the architecture of the BERT-based classifier we use for relation extraction. The
classifier takes as input a review sentence, as well as the two arguments a1 and a2 for which we
wish to obtain one of three labels: 0 if a1 and a2 are not related, 1 if a2 is a feature of a1, and
2 if a1 is a feature of a2. The tokenisation step masks the tokens associated with the arguments
(’laptop’, ’operating’, and ’system’) with the [MASK] token. The tokens are passed through the
transformer network, and the output used for classification is taken from the positions of the
masked tokens for the two arguments. If an argument consists of several tokens, a max pooling
operation is performed on the outputs for each of the tokens such that we obtain a single vector for
both arguments. The vectors are then concatenated and passed onto a linear classification layer
with an output for each of the three labels. The linear layer is followed by a softmax operation,
which outputs the probabilities p0, p1, and p2 of the three labels.

Figure 3.3: BERT for relation extraction

Training the model

We trained the model on the relation extraction data shown in Table 3.3, setting aside 5% of the
data for validation. The final model was trained for 3 epochs with a batch size of 16. We used the
Adam optimiser with standard cross entropy loss. The model was trained on a NVIDIA GeForce
GTX 1080 GPU with 16GB RAM and took 2 hours and 5 minutes. The final accuracy and macro
F1-score on the validation set were 83.40 and 82.03, respectively.

Ontology construction from votes

Let N be the number of synsets and V ∈ NN×N be a matrix where we accumulate the relation
votes between each of the synsets. V is initialised with zeroes, and for each vote (p0, p1, p2) on
arguments belonging to synsets sn and sm we accumulate the element vm,n of V by p1 and the
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element vn,m by p2. In the end, element vi,j of V contains the sum of votes for si being a feature
of sj .

Let ni,j be the total number of input sentences to the relation classifier with arguments from
si and sj . Then

v̄i,j =
vi,j
ni,j

is the mean vote for si being a feature of sj . However, this is not a reliable measure of relatedness
on its own, as many unrelated arguments might only appear in a few sentences together, which is
not enough data to guarantee an accurate representation of their relatedness. On the contrary, if
a1 is a feature of a2, a1 is likely to appear often in conjunction with a2. We can use this observation
to improve the accuracy of the relatedness measure.

Let ci be the total count of occurrences of an argument from si in the review texts. Then

τi,j =
ni,j

ci

is a relative measure for how often an argument from si appears in conjunction with an argument
from sj . If we scale v̂i,j by τi,j , we obtain a more accurate measure for relatedness,

ri,j = v̂i,j × τi,j =
vi,j
ci

.

Using this formula, we define the relation matrix

R = V / c,

where c is a vector containing the counts ci for each si ∈ S.
We know that the product itself forms the root of the ontology tree, so we do not have to

consider the product synset being a sub-feature of another synset. For each of the remaining
synsets si, we calculate its super-feature ŝi using row ri of the relation matrix, which contains the
relatedness scores from si to the other synsets. For example, the row corresponding to the synset
of numbers for the product watch could be as follows:

watch dial band battery numbers quality
0.120 0.144 0.021 0.041 - 0.037

Clearly, numbers appears to be a feature of dial, as the relatedness score for dial is higher than for
any other feature. Also the relatedness score for the product watch is high, as is expected for any
feature since any descendant of a product in the ontology is considered its sub-feature, as defined
in Section 3.1.1. Based on experimentation, we define ŝi = sj where j = argmax(ri), although
other heuristics could work here as well.

Using the super-feature relations, we build the ontology tree from the root down with the
function shown in pseudocode in Figure 3.4.

def get_tree(R, synsets):
root = synsets.pop(product) # set product synset as root

# insert all direct children of product
for s in synsets if s.super == product:

add_child(root , synsets.pop(s))

for s in synsets sorted in descending order by R[s][s.super ]:
if descendant(tree , s.super):

# super -feature of s already in tree
if depth(s.super) < 2:

add_child(s.super , s)
else:

# max depth would be exceeded so set as sibling instead
add_child(parent(s.super), s)

else:
# super -feature of s not yet in tree
add_child(root , synsets.pop(s.super))
add_child(s.super , s)

return root

Figure 3.4: Function for constructing the ontology tree

28



3.2 Evaluation
In this section, we evaluate our ontology extraction method against ontologies extracted using
WordNet and COMeT using human annotation. Furthermore, we evaluate the generality of the
masked BERT models by experimenting with the number of the product categories used for their
training.

3.2.1 Ontology evaluation
We evaluate five ontologies extracted for a variety of randomly selected products which were not
included in the training data for the classifier: watches, televisions, necklaces, stand mixers, and
video games. For each product, we use 200,000 review texts as input to the ontology extractor,
except for stand mixer, for which we could only obtain 28,768 review texts due to it being a more
niche category.

We also extract ontologies for the five products from WordNet2 and COMeT3 for comparison.
For WordNet, we build the ontology top-down starting from the product term. A term tf is con-
sidered a feature of tp, if tf is a meronym of either tp or one of its direct hyponyms (specialisations
of tp, for example camera and digital camera). Using the web interface for COMeT, we are only
able to obtain five directly related terms for the product with the HasA relation, which means
that the ontologies for COMeT will not include any second-level sub-features of features (mining
sub-features of features independently of the product context would lead to inaccurate results, as
for example face has other meanings apart from its meaning in the context of the product watch).

The number of relations in each extracted ontology are shown in Table 3.4, while the full
ontologies are included in Appendix A.

watch television necklace stand mixer video game total
Our method 26 22 20 17 7 92

WordNet 6 7 1 6 0 20
COMeT 5 5 5 5 5 25

Table 3.4: Number of extracted relations for the three ontology extraction methods

Precision

Since it is difficult to define a "complete" ontology for a product, we concentrate our measurement
on the precision of the extracted ontologies. We will measure the precision of an ontology by the
aggregated precision of its individual relations, which we will obtain by human annotation.

We present each of the 137 has feature relations in the ontologies to 3 human annotators, and
ask them to annotate the relation as either true of false in the context of Amazon products. The
context is important, as features such as price might not otherwise be considered a feature of a
product. All three annotators agreed for 70.8% of the relations. Using the majority vote among
the annotators, we calculate the precision for each of the three methods and five products, and
present the results in Table 3.5 along with the total precision calculated for all 137 relations.

watch television necklace stand mixer video game total
Our method 88.46 86.36 70.00 88.24 100.00 84.78

WordNet 100.00 100.00 100.00 83.33 - 95.00
COMeT 60.00 40.00 60.00 40.00 20.00 44.00

Table 3.5: Precision scores for the three ontology extraction methods

Our method achieves a total precision of 84.78, which is comparable to the in-domain validation
accuracies of the entity and relation extractors (89.70 and 83.40, respectively). We note that the
precision for the stand mixer ontology is equivalent to the rest of the ontologies despite using less
data, which suggests that our method is effective even for products with relatively little review
data.

2http://wordnetweb.princeton.edu/perl/webwn
3https://mosaickg.apps.allenai.org/comet_conceptnet
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WordNet obtains the highest total precision score of 95.00, which is expected since its knowledge
has been manually annotated by human annotators. However, WordNet extracted on average only
4 relations for each ontology, while our method extracted on average 18.4 relations. Part of this
could be due its outdatedness, as its last release was nine years ago in June 20114, although many
of the products included in the comparison are quite timeless (necklace, watch). Furthermore, we
observe that many of the terms extracted from WordNet, although correct, are scientific rather
than common-sense (electron gun, field magnet), and therefore unsuitable for use in the Amazon
review context.

The precision of our method is almost twice as good as the precision of the top five terms
extracted by COMeT. Most of the erroneous relations for COMeT are either remnants of the un-
structured information on ConceptNet (game–effect of make you laugh), or incorrectly categorised
relations (watch–hand and wrist). Note that the precision of COMeT should not be affected by its
limitation to direct features of the product.

Relative recall and F1-score

Let Rp,m be a set containing the relations labelled as true by the majority in the ontology extracted
by method m ∈ [Ours, WordNet, ConceptNet] for product p ∈ [watches, televisions, necklaces, stand
mixers, and video games]. Assume the true ontology Op for a product p is defined as follows:

∀p,m. (a1, a2) ∈ Rp,m ⇐⇒ (a1, a2) ∈ Op.

Using this assumption, we calculate the relative recall Am,p for a method m and product p as:

Am,p =
|Rp,m|
|Op|

.

Although Op might not represent the entire ontology for the product, we propose that Am,p is a
good measure of relative recall between each of the methods, as any additions to Op would decrease
Am,p for all m. We calculate the relative recall for each of the three methods and five products,
and present the results in Table 3.6 along with the total relative recalls. As we did not extract any
sub-features for COMeT, we will only include direct features of the products in the Op used for its
recall calculations.

The total relative recall of our method is over four times greater than those of the other two
methods. This suggests that while WordNet has a slightly higher precision than our method, it
misses many of the key features of the products.

watch television necklace stand mixer video game total
Our method 88.46 79.17 77.78 71.43 87.50 80.41

WordNet 19.23 20.83 5.56 23.81 0.00 19.59
COMeT 17.65 11.11 23.08 16.67 14.29 16.42

Table 3.6: Relative recall scores for the three ontology extraction methods

Finally, to measure the overall performance of each method, we use the precision and relative
recall scores to calculate F1 scores for each method. The results are shown in Table 3.7 alongside
the macro-averaged F1 score across all five categories of products. We notice that the macro-
F1 score of COMeT (23.64) actually surpasses that of WordNet (22.86), due to WordNet’s poor
recall in the necklace and video game categories. Our method is clearly superior than the other
two methods, as its macro-F1 score (83.41) is nearly four times as high as those of the the other
methods.

watch television necklace stand mixer video game macro-F1
Our method 88.46 82.62 73.69 78.95 93.33 83.41

WordNet 32.26 34.48 10.53 37.04 0.00 22.86
COMeT 27.28 17.39 33.34 23.53 16.67 23.64

Table 3.7: F1 scores for the three ontology extraction methods

4https://wordnet.princeton.edu/news-0
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Annotation reliability

In order to assess the reliability of agreement between the annotators, we calculate the Fleiss’ kappa
measure κ, which calculates the degree of agreement over the degree expected by chance. The value
of κ ranges from −1 to 1, with value 1 signalling total agreement and −1 total disagreement. The
kappa measure is generally thought of being a more reliable measure of inter-rater reliability than
simple percent agreement, as it takes into account the probability of agreement by chance. We
obtain κ = 0.417, which in a well-known study of the coefficient [16] was interpreted to signify a
weak level of agreement. This suggests that accurately determining feature of-relations is difficult
even for humans, which validates the high precision score obtained by our method.

3.2.2 Generalisation evaluation
In this section, we evaluate the ability of our masked BERT method to generalise for the whole
domain of Amazon products. In order to do this, we train the entity and relation classifiers with
five incremental datasets t1 . . . t5, where tn includes reviews from n different categories of products.
The products included in each dataset are shown in Table 3.8. We evaluate the models using an
unseen dataset we, which we have labelled for a sixth domain (watches). In addition, we train
entity and relation classifiers on a separate watch dataset wt, which can be evaluated with we to
obtain an in-domain score. Each of the datasets contains a total of 50,000 instances, and all models
were trained with the hyperparameter values used in Sections 3.1.3 and 3.1.5.

Dataset Products included
t1 cameras
t2 cameras, backpacks
t3 cameras, backpacks, laptops
t4 cameras, backpacks, laptops, acoustic guitars
t5 cameras, backpacks, laptops, acoustic guitars, cardigans
we watches
wt watches

Table 3.8: Products included in each of the datasets

The evaluation accuracies for each of the classifiers trained on the five datasets t1 . . . t5 are
plotted in Figure 3.5. The in-domain accuracies obtained by the classifiers trained using the
dataset wt are plotted as dashed lines. The accuracies for both entity and relation extraction
increase significantly when trained with reviews for two products instead of just one, after which
the accuracies appear to stay somewhat constant around 5 percentage units below the in-domain
accuracies. The initial increase of accuracy with number of training products is expected, since a
product-specific dataset will encourage the classifier to learn product-specific features. However,
it is surprising to note that training the classifier with just two products (camera and backpack) is
enough to raise its accuracy to its domain-independent optimum.

It appears that the domain-specific classifier has an advantage of around 5 percentage units
over the domain-independent classifier. This can be attributed to various domain-specific context
features the classifier can learn to take advantage of, such as domain-specific adjectives like swiss
or waterproof for watch.5

5It is interesting to note that the domain-independent optimum lies approximately halfway between the initial
accuracy and the domain-specific accuracy. When the classifier is trained on several products, it ’forgets’ its domain-
specific knowledge, which results in worse accuracy in its own domain but better accuracy in the unseen domain, as
its knowledge becomes more general. It makes intuitive sense that the point of context-independence lies in between
the two context-specific opposites.
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Figure 3.5: Accuracies on the we test set for masked BERT models trained with datasets t1 . . . t5
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Chapter 4

Feature-dependent sentiment
analysis

Unlike for our ontology extraction task, there already exists sufficiently accurate methods for our
feature-dependent sentiment analysis purposes. In this paper, we have chosen to implement the
state-of-the-art method of TD-BERT proposed by Gao et al. [6], trained on the SemEval-2014 Task
4 [21] data for Aspect Based Sentiment Analysis. Since the data is domain-specific, we experiment
with modifications to TD-BERT in order to improve its general domain performance.

4.1 Availability of data
As opposed to its sentence-level counterpart, feature-dependent sentiment analysis is a word-level
task, which means that obtaining data for it is highly difficult. In practise, the sentiment towards
each entity mention in the data has to be manually labelled by several human annotators, as the
correct label is not always evident. As training a neural network requires extensive amounts of
training data, we do not have the resources to annotate this data ourselves, but have to rely on an
external source of data.

The most well-known available data for the task comes from Task 4 of the SemEval-2014
evaluation series, which was based around feature-dependent sentiment analysis. The data1 consists
of manually annotated customer review sentences for laptops and restaurants, with the training
and testing data counts shown in Table 4.1. An example from the laptop dataset is shown in Table
4.2.

Dataset
Number of sentences
training testing

laptops 3045 800
restaurants 3041 800
combined 6086 1600

Table 4.1: SemEval-2014 Task 4 data counts

sentence term polarity from to
"I charge it at night and skip taking the cord

with me because of the good battery life."
"cord" "neutral" 41 45

"battery life" "positive" 74 86

Table 4.2: Example of SemEval-2014 Task 4 data

Each aspect term in the data is labelled with one of four labels according to the sentiment
expressed towards it: neutral, positive, negative, or conflict. The conflict label is given to terms
such as screen in "small screen somewhat limiting but great for travel", where both positive and

1Available at http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
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negative sentiments are expressed. Only a small proportion of the training data is annotated with
the conflict label (45 for laptops), so it will be difficult for the classifier to learn to accurately
predict this category.

This dataset suits our purposes as it is in the domain of user reviews, particularly the dataset
for laptops, since they are consumer products that can be found on Amazon. However, the dataset
is quite small for training a neural network, so we include also the restaurant dataset in our
evaluation. Furthermore, our experiments in Section 3.2.2 showed that training a classifier on just
two domains can significantly improve its performance in the general domain.

4.2 Implementation
In this section, we will detail our implementation of the TD-BERT architecture. In addition, we
will propose an extension similar to the masking method used in Sections 3.1.3 and 3.1.5 in hopes
of improving the general domain performance of TD-BERT.

4.2.1 TD-BERT
The architecture of TD-BERT, shown in Figure 4.1, is similar to the two BERT architectures we
have seen so far, in that it max pools the output at the positions of the tokens we are interested
in. In this case, we select the output at the position(s) of the feature for which we wish to obtain
a sentiment. The pooling is followed by a linear classification layer and a softmax operator, which
outputs the the probabilities for the four possible cases: pneut for neutral sentiment, ppos for
positive sentiment, pneg for negative sentiment, and pconf for conflicted sentiment.

Masked TD-BERT

Because we will be training the model with data for only laptop and restaurant reviews, we expect
for it to be biased towards those domains. In attempt to alleviate this bias, we propose the addition
of entity masking to TD-BERT. As for the BERT models used for ontology construction, we replace
the tokens for the entity with [MASK] tokens. For example, in Figure 4.1, tokens battery and life
would be masked.

Figure 4.1: TD-BERT architecture

Training the models

We trained a total of four different models on the SemEval training data shown in Table 4.1. We
trained two models each for both unmasked and masked TD-BERT, one with training data for
just laptops, and one with a combined training dataset for both laptops and restaurants.
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We used the same hyperparameters as Gao et al.: each model was trained for 6 epochs with
a batch size of 32, using the Adam optimiser with standard cross entropy loss. The models were
trained on a NVIDIA GeForce GTX 1080 GPU with 16GB RAM.

4.3 Evaluation
We evaluate the models using the in-domain SemEval-2014 testing data shown in Table 4.1, as
well as a general domain review dataset we annotate ourselves for a selection of Amazon product
reviews.

4.3.1 Annotation of Amazon sentiment analysis data
We write a simple program, shown in Figure 4.2, to help us annotate Amazon review data for the
evaluation of the sentiment analysis models. Using this program we annotate a set of 100 Amazon
reviews consisting of 20 reviews from five product categories: watches, televisions, necklaces, stand
mixers, and video games. We annotate a total of 285 entities across 481 sentences, obtaining the
data shown in Table 4.3.

Sentiment Number of entity instances

neutral 71
positive 133
negative 65
conflict 16

Table 4.3: Amazon sentiment analysis evaluation data counts

Figure 4.2: Entity sentiment annotator interface

4.3.2 Results
We evaluate each of the four models on both the SemEval-2014 testing data as well as the Amazon
data, and display the accuracies and macro-F1 scores in Table 4.4. For the SemEval-2014 testing
data, we use the laptop testing data to evaluate the models trained on the laptop training data,
and similarly for the combined data, in order to evaluate the in-domain performance of the models.

We note that the macro F-1 scores are significantly lower than the accuracy scores for all
cases. This is due to the little training data available for the conflict category: none of the models
predicted any conflict labels so the recall for the category was zero.
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Method Training data
SemEval-2014 Amazon

Accuracy Macro-F1 Accuracy Macro-F1

Unmasked
laptops 77.22 56.44 74.65 52.85

combined 79.92 55.84 78.52 58.41

Masked
laptops 75.54 54.79 77.82 58.26

combined 79.92 56.20 75.00 55.54

Table 4.4: TD-BERT sentiment analysis evaluation results

In-domain evaluation with SemEval-2016 data

We note that for both models, performance is significantly higher when trained and tested on the
combined set of laptops and restaurants as opposed to just laptops. This is likely due to restaurant
reviews being an easier domain for sentiment classification. As expected, the unmasked method
performs better than the masked method when trained and evaluated in-domain with laptops. For
the combined case, the two methods performed equally well in terms of accuracy, while the masked
method obtained a slightly higher Macro-F1 score. This echoes the claim from Section 3.2.2 that
the in-domain advantage of the unmasked method is lost even in a domain of just two different
products.

Out-of-domain evaluation with Amazon data

The model trained on the combined data with the unmasked method appears to perform best in
the out-of-domain evaluation, achieving an accuracy of 78.52, which is not far behind its state-of-
the-art accuracy of 79.92 for the in-domain evaluation. The accuracy is significantly higher than
that of the unmasked model trained on the laptop data alone (74.65), which suggests that the
unmasked model generalises well with just two training domains.

The accuracy of the masked model trained on the laptop domain (77.82) is quite high as well,
and significantly higher than the accuracy of the unmasked model trained on the same domain,
indicating that for a single domain, the masking helps improve the generality of the model. How-
ever, the same is not true in the dual-domain, where the accuracy of the masked model drops to
75.00. This suggests that the unmasked model trained in a dual-domain has already reached its
general-domain optimum (as proposed in Section 3.2.2), and therefore the masking only decreases
its performance by hiding information.

Based on these results, we decide to use the unmasked model trained on the combined data for
the sentiment analysis task in our ADA-X system.
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Chapter 5

ADA-X System

In this chapter, we introduce the system architecture of our general ADA-X implementation,
including an interactive front-end application based on the Botplication design principles proposed
by Klopfenstein et al. [11]. We conclude by evaluating the performance and usability of our system.

5.1 Architecture

The full ADA-X system architecture diagram is shown in Figure 5.1. The diagram provides an
example of a full pass of the system for a camera product, although ADA-X works for any product.
We will refer to this diagram in the following sections.

5.1.1 Back-end

The back-end of the system consists of three distinct processes:

1. Ontology extraction,

2. QBAF extraction, and

3. a conversational agent that handles interaction with the front-end application.

Data flows on the diagram from left to right: the ontology for cameras is used to extract a QBAF
for the Canon EOS 200D camera model, and the QBAF for the model is used in the conversational
agent to communicate information about the model to the user via the front-end application.

While the conversational agent interacts with the user in real-time, the ontology and QBAF
extraction processes run autonomously, and interact with the rest of the system only through their
respective databases where they store the extracted data. This is the case for two reasons:

1. The ontology and QBAF extraction processes mine information from a large number of
reviews, which takes a substantial amount of time. Therefore, implementing these processes
in real-time would lead to unacceptable delays for the user, who expects fluid interaction
with the system.

2. The extracted ontology and QBAF data is often re-used by multiple processes: the same
ontology for cameras can be used to extract a QBAF for any camera model, and the same
QBAF for a particular model can be used in conversations about the model with a number
of different users. Therefore, extracting an ontology or QBAF from scratch each time would
waste a lot of computational power.

Ontology extraction process

The ontology extraction process uses Amazon user reviews to extract ontologies for product cat-
egories with the method detailed in Chapter 3. As each ontology requires mining thousands of
review texts (around 30,000 reviews was deemed sufficient in Section 3.2.1), extracting ontologies
for each of the thousands of product categories on Amazon requires a large computational effort.
However, once an ontology for a product category such as cameras has been extracted, there is
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no need to update the ontology for a while assuming it is accurate. Although the composition
or meaning of products can change over time, for most product categories, any changes usually
happen slowly over the course of several years. Therefore, we propose that an ontology is ini-
tially extracted once for each product category, after which a background process can update the
ontologies for categories with lots of new products when needed.

QBAF extraction process

The QBAF extraction process uses Amazon user reviews, the extracted ontologies, and the senti-
ment analysis method detailed in Chapter 4 to extract QBAFs for product models with the method
detailed in Section 2.1. As for ontology extraction, the initial extraction of QBAFs for all Amazon
products is a costly process. However, unlike for the ontology extraction, it is important that the
QBAF for a product is updated for each new review, in order for the explanations to accurately
reflect the entire set of reviews for the product. Therefore, the QBAF extraction requires a contin-
uous background process. Note, however, that this background process is not as expensive as the
initialisation of the QBAFs, as the computationally heavy tasks of feature detection and sentiment
analysis will only have to be performed for the single new review instance.

Conversational agent

The conversational agent is responsible for the dialogue between the user and system. The user
can initiate a conversation by requesting information about a particular product on the front-end
application. The conversational agent then loads the QBAF for the product from the QBAF
database, which it uses to direct the conversation. For each query from the user, the agent returns
both a response for the query, as well as options for follow-up questions about the entities mentioned
in its response. By only allowing the user to select from a pre-defined set of query options, the
agent guides the conversation so that it stays in the familiar domain of the argumentation dialogue
detailed in Section 2.1.5.

Multiple users can use the system at the same time, so the agent processes each request on its
own thread in order to minimise the response time. The agent keeps track of the conversations by
assigning each user a unique identifier.

5.1.2 iOS Botplication

Based on the evaluation of conversational methods in Section 2.4.3, we chose to implement a
Botplication front-end for ADA, which we call ADABot. To contrast with the conversational
interface of ADABot, we also implement an app with a graph-based interface called ADAGraph.
Both of the apps interact with the same back-end via a network connection. Figure 5.2 shows
screenshots from the applications.

The first screenshot 5.2a shows a simple product selection screen, which the user uses to browse
products in both of the applications. As our resources our limited, we cannot mine ontologies and
QBAFs for the whole set of Amazon products, so the product selection screen displays only a small
selection of products; a fully developed system would include a product search functionality.

The lower screenshots 5.2c and 5.2d are from the ADABot application. Once the user has
selected a product they are interested in, ADABot initiates the conversation by asking the user
what they would like to know about the product. The user can tap on any of ADABot’s messages
to reveal a set of possible questions determined by the argumentation dialogue. The subjects of
these questions are the arguments mentioned in the message, which are highlighted in bold. For
example, in 5.2c, the user can ask about either the mixer, the motor, or the bowl, for which two
query options are presented.

An example of a short conversation between the user and ADABot is shown in 5.2d. The
conversation starts from a general view of the reviewers’ sentiment towards the product, and from
there delves deeper into more specific aspects of the product by utilising its ontology. Through this
conversation, the user not only gains a better understanding of why the product was highly rated,
but possibly also discovers more about the importance of the various aspects of the product, which
supports the user revealment property introduced in Section 2.4.3. To explore various aspects of
the product, the user can at any point return to a previous point in the conversation by tapping
on a previous message, which is one key advantage of the message-based Botplication design.
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(a) Product selection screen (b) ADAGraph

(c) ADABot user controls (d) Example of a conversation with ADABot

Figure 5.2: Screenshots from the ADA front-end applications
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The user interface of ADAGraph is shown in screenshot 5.2b. Unlike ADABot, ADAGraph is
non-conversational, instead allowing the user to freely investigate the product’s various aspects.
The positively viewed arguments are shown in green, while the negatively viewed arguments are
shown in red. The user can tap on an argument to reveal a phrase from user reviews that exemplifies
its sentiment, corresponding to the "What did users say about ?" query of ADABot.

5.2 Evaluation
We evaluate both the performance and the usability of our system. To investigate its performance,
we measure and evaluate various quantitative and qualitative aspects including throughput, server
response time, and scalability. To investigate the usability of our system, we carry out user testing
with the two front-end applications.

5.2.1 Performance
Throughput

We evaluate the throughput of the ontology and QBAF extraction processes, as they make up
the computationally heavy part of our system. We measure the average computation times for
the various subtasks of the two systems, as well as the total average computation time. We use
the standard dataset sizes of 30,000 reviews for the ontology extraction and 1,000 reviews for the
QBAF extraction. All other computations were performed on an Intel Core i7-6700K 4.00GHz
CPU except for the neural network passes, which were performed on a NVIDIA GeForce GTX
1080 GPU. For each of the CPU computations, we implemented multiprocessing across four CPU
cores. The results are shown in Table 5.1 for the ontology extraction and Table 5.2 for the QBAF
extraction.

We note that the ontology extraction takes a lot longer than the QBAF extraction, further
supporting the decision to separate the two processes. In each of the two processes, the neural net-
work passes take up a majority of the computing time, although the token processing tasks of noun
extraction and feature detection take up a significant amount of time as well. The QBAF construc-
tion task takes a minimal amount of time compared to the rest of the QBAF extraction process,
which supports our claim that updating the QBAF with new reviews is not a computationally
heavy task.

Calculating the system throughputs using the total computation times and assuming constant
review set sizes, we obtain 13.30 ontologies per hour and 423.23 QBAFs per hour.

Task Time in seconds

Noun extraction 41.59
Feature extraction 171.88

Synonym extraction 3.45
Ontology extraction 53.67

Entire process 270.59

Table 5.1: Average computation times for the ontology extraction process with 30,000 reviews,
extracting on average 18.4 features per ontology, with 0.448 synonyms per feature

Task Time in seconds

Feature detection 0.676
Sentiment analysis 7.732
Review aggregation 0.097
QBAF construction 0.001

Entire process 8.506

Table 5.2: Average computation times for the QBAF extraction process with 1,000 reviews
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Response time

We measure the response time of the server to the main requests from the front-end applications,
and show the results in Table 5.3. As expected, loading the QBAF for a product from the database
takes slightly longer (87.5 ms) than using it to respond to messages (11.5 ms). However, all response
times are no more than 0.1 seconds, which is considered an acceptable response time in order for
a real-time system to feel "instantaneous" for the user.

Application Task Time in ms

ADABot
Load product 87.5

Reply to message 11.5
ADAGraph Load graph 98.8

Table 5.3: Mean response times for the system’s various interactive tasks

Scalability

With the throughputs calculated earlier in this Section, the ontology and QBAF extraction pro-
cesses would take years to complete for the entire set of products on Amazon. However, these
throughputs were calculated for only a single machine, where in reality the processes could easily
be performed in parallel on hundreds of machines. This is due to the high intra- and inter-
separability of the ontology and QBAF extraction processes: within the processes, reviews can
largely be processed independently of each other, while processes for different products can be sep-
arated altogether. The separable nature of the processes suggests that the system is well-scalable
through parallelisation.

5.2.2 User evaluation
We evaluate the explanation interfaces of ADABot and ADAGraph through a user trial. The goal
of the trial is to evaluate the performance of two interfaces in explaining customer reviews to the
user. Therefore, in addition to presenting users with product review explanations using the two
interfaces, we include a third explanation method of showing the user the two most recommended
customer reviews by Amazon for the product. The aim of this is to emulate the conventional user
experience, where users read only a subset of the entire set of reviews. We will call this explanation
interface TOP-2.

Our user trial is inspired by that of Gedikli et al. [7], who aimed to evaluate explanation types
for recommender systems. The procedure is as follows:

Procedure 1 User trial for explanation methods
1: procedure User trial
2: P = Set of products to explain
3: E = Set of explanation interfaces
4: for all (p, e) in randomly paired P×E do:
5: Present product p with interface e to the user.
6: Ask the user to rate p on a scale from 1 to 7.
7: end for
8: for all p in P do:
9: Present Amazon page for product p to the user.

10: Ask the user to rate p again on a scale from 1 to 7.
11: end for
12: Ask the user to rate the explanation interfaces.
13: end procedure

For our experiments, we use a product set P of six wrist watches due to their prevalence in
every-day life. Each user is shown explanations for all six watches, which means that two products
are shown with each of the three explanation interfaces. We use the above procedure to measure
two aspects of the explanation interfaces:
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1. Effectiveness - The effectiveness of an explanation interface can be defined as its ability to
give the user an accurate image of the product. We measure effectiveness of the explanation
interfaces by the difference in the ratings for a product given by a user using the interface
(line 6 of the procedure), and after seeing more detailed information about the product on
its Amazon page (line 10). The smaller the difference between the two ratings, the more
effective we consider the explanation interface.

2. Satisfaction - We ask the users to rate their satisfaction with the three explanation interfaces
at the end of the trial (line 12). This gives us an idea of the users’ perceived effectiveness of
the interface and the quality of its explanations.

When we present the explanation interfaces to the user (line 5), we reveal as little additional
information about the product as possible. This includes hiding the product title, image, and
rating from the ADABot and ADAGraph interfaces. The experimental interfaces are shown in
Figure 5.3.

(a) ADABot (b) ADAGraph

(c) TOP-2

Figure 5.3: The experiment set-up for each of the interfaces, with all product information such as
titles and ratings hidden.
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We perform the trial with a group of three users. Due to COVID-19 restrictions, the users
operate the applications through a video call via spoken commands, which might reflect on their
user experience. After the procedure, we interview each participant about their opinions on the
interfaces. The aggregated results for effectiveness and satisfaction are shown in Table 5.4.

Interface Mean absolute rating difference Mean satisfaction
ADABot 1.833 5.00

ADAGraph 1.500 4.67
TOP-2 1.667 3.00

Table 5.4: User interface trial results

We observe that ADAGraph obtains the lowest mean rating difference between the users’ ratings
using the interface and the users’ ratings with complete information about the product. This
suggests that ADAGraph is the most effective out of the three interfaces at providing the user with
an accurate view of the product. In the interviews, two participants commented that ADAGraph’s
colourful node visualisation gave them a clear idea of the overall sentiment towards the product,
which might have helped in this aspect. ADABot appears to be the least effective in this aspect;
one participant commented that ADABot’s dialogue does not reveal enough information about the
product.

However, ADABot achieved the best performance in the satisfaction category. The participants
seemed to be divided into two groups: one participant favoured ADAGraph due to the accessibility
of its information, while two participants favoured ADABot’s interface, as they thought its con-
versational interface was more readable. Based on the interviews, ADABot appeared to be most
user-friendly out of the three interfaces. The plain review texts of TOP-2 performed worst in the
mean satisfaction category; two participants commented that they felt like they got a biased view
of the products from reading just two reviews. One participant also disliked having to go through
the entire review texts to find the information that was relevant to them.

The results and interviews suggest that the explanations of ADABot and ADAGraph improve
the user experience over simply reading the individual review texts. While ADAGraph provides
more information which might lead to a more accurate image of the product, ADABot appears to
be more user-friendly.
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Chapter 6

Conclusion

In this project, we have extended the work of Cocarascu et al. [3] by proposing a general-domain
conversational review explanation system, ADA-X, and implementing it as a server-client appli-
cation with a user-facing messaging interface. The generality of ADA-X is provided by a novel
domain-independent ontology extraction method using the state-of-the-art language model BERT,
which we have shown to obtain ontologies with an F1-score multiple times higher than the state-
of-the-art general knowledge networks of ConceptNet and WordNet. Furthermore, we have im-
plemented a state-of-the-art feature-based sentiment analysis method, which we have shown to
perform with near-optimal accuracy when applied in the general-domain despite being trained on
domain-specific data.

ADA-X has been shown to be capable of providing dialogical feature-based explanations for
any Amazon product, and its methodology could be extended to any review domain with sufficient
amounts of data. Our user experiments have shown that the explanations provided by ADA-X
improve the user experience of browsing product reviews, and that they can be communicated via
different user interfaces for different purposes.

6.1 Future work

The focus of this project has been largely theoretical, as a large part of the project was spent
experimenting with general-domain NLP. The theoretical aspects have left us little time to perfect
ADA-X as a practical product. In this section, we propose some possible extensions to improve
the practicality of ADA-X, as well as discuss its potential industry applications.

6.1.1 Extending the conversational aspect

The current argumentation dialogue of ADA-X is quite simple, relying on just two unique query
templates in which arguments are embedded. One way to make the conversations with ADA-X
more varied would be to increase the number of different queries in the dialogue. For example, one
could easily extend the dialogue by adding the query "What were the most polarising features of

?"
Furthermore, the phrase examples given by ADA could be more effective if we could highlight

the portion of the text where the sentiment is expressed. For example, in the relatively long review
phrase

"...Bought this for my friend’s daughter who was turning seven and it’s great that this brand
makes beautiful and fun watches for young kids to learn to tell time..."

it would be helpful if we could highlight "this brand makes beautiful and fun watches", as this
portion is directly related to the sentiment towards the brand aspect. Due to the positional token
embeddings of the Transformer encoder, this could in theory be possible by observing the attention
values between each of the tokens and the brand token. However, the explainability of the attention
mechanism is still an open debate: while Jain et al. claimed in early 2019 that Attention is not
explanation [9], later that year Wiegreffe et al. responded with a paper titled Attention is not not
explanation [26].
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6.1.2 Recommender system
Perhaps the most practical application of ADA-X would be within a recommender system, where
it could provide the user with feature-based explanations for why a product was recommended to
them. It has been shown that such explanations can help improve the effectiveness of a recom-
mender system [7].

But rather than just basing its explanations on the features of products, an entire recom-
mendation system could be built on the feature-based representations that ADA-X is capable of
extracting. To this day, Amazon’s recommendation system is still largely based on Item-to-Item
Collaborative Filtering [14], a method invented at Amazon in 1998. This method is based on corre-
lations between products in terms of customers’ purchase histories, and although focusing on such
a singular view of products used to make sense in terms of computational costs, high-performance
computing has come far since twenty years ago.

The focus on products as singular entities ignores any feature-level preferences of users: for
example, one group of people might be more interested in the design of items, while a more
practically-minded group might look for durability. Furthermore, unlike products, many features
are relevant across several product categories; a feature-based recommendation system could take
advantage of such inter-categorical connections. For these reasons, we propose that a feature-to-
feature approach to collaborative filtering using the feature-based product representations that
ADA-X is capable of extracting could improve the accuracy of Amazon’s recommender system.
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Appendix A

Extracted ontologies

video game, game, product, title

graphics gameplay controls price storyline sound

music

(a) Extracted ontology

video game, computer game, virtual reality

(b) WordNet ontology

video game

win or lose effect of make you laugh winner fun win

(c) COMeT ontology

Figure A.1: Full ontologies for video game
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