
MENG INDIVIDUAL PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Type-safe Web Programming Using
Routed Multiparty Session Types in

TypeScript

Author:
Anson Miu

Supervisor:
Prof. Nobuko Yoshida

Second Marker:
Dr. Iain Phillips

June 18, 2020

Abstract

Modern web programming involves coordinating interactions between web browser
clients and a web server. Typically, the interactions are informally described, making
it difficult to verify communication correctness in web-based distributed systems.

Multiparty Session Types (MPST) are a typing discipline for concurrent processes
that communicate via message passing. MPST theory can ensure communication
safety properties and protocol conformance. Existing work in session-typed web
development over WebSocket transport is incompatible with modern web program-
ming practices and is limited to supporting communication protocols that implement
the server-centric network topology.

We address limitations in the current state of the art by: (1) implementing SES-
SIONTS, a code generation toolchain for session-typed web development over Web-
Socket transport using TypeScript; and (2) presenting ROUTEDSESSIONS, a new mul-
tiparty session type theory that supports routed communications.

SESSIONTS provides developers with TypeScript APIs generated from a communi-
cation protocol specification based on multiparty session type theory. Our work is
compatible with modern web programming industrial practices. The generated APIs
build upon TypeScript concurrency practices, complement the event-driven style of
programming in full-stack web development, and are compatible with the Node.js
runtime for server-side endpoints and the React.js framework for browser-side end-
points. We evaluate the expressiveness of SESSIONTS for modern web programming
using case studies of protocols found in web services, and analyse the performance
overhead through running benchmarks against a baseline implementation.

ROUTEDSESSIONS can express interactions to be routed via an intermediate partic-
ipant. Using ROUTEDSESSIONS, we propose an approach for supporting peer-to-peer
communication between browser-side endpoints through routing communication via
the server in a way that avoids excessive serialisation and preserves communication
safety. We evaluate the correctness of ROUTEDSESSIONS by proving communication
safety properties, such as deadlock freedom.

Acknowledgements

I would like to thank Prof. Nobuko Yoshida, Fangyi Zhou and Dr. Francisco Ferreira
for their continuous support, encouragement and motivation during the project. I
extend my gratitude to the members of the Mobility Reading Group. Their regular
meetings have been a source of inspiration for me, and helped me spark new ideas
to incorporate into the project. I would also like to thank Prof. Peter Pietzuch for
supporting me as my personal tutor throughout the degree.

I would like to thank all the friends I have made throughout my time at Imperial.
In particular, to the friends under the namespace labelled Reply 404 at the time of
writing: I am forever grateful for every bit of shared memory over the past four years.

Finally, I would like to thank my family for their unconditional love and support
throughout my life, and encouraging me to pursue a degree abroad.

Contents

List of Figures 5

List of Tables 6

Listings 7

1 Introduction 9
1.1 Motivation . 9
1.2 Objectives . 11
1.3 Contributions . 13

2 Background 15
2.1 Session Types . 15

2.1.1 Process Calculus . 16
2.1.2 Binary Session Types . 17
2.1.3 Multiparty Session Types . 22

2.2 Related Work . 24
2.2.1 Scribble and Endpoint API Generation 25
2.2.2 Session Types in Web Development 29

2.3 TypeScript . 31

I Implementing Server-Centric Topologies over WebSockets 33

3 SESSIONTS: Session Type API Generation for TypeScript 34
3.1 Development Workflow . 34

3.1.1 Protocol Specification with Scribble 35
3.1.2 From Scribble to EFSM . 36
3.1.3 API Generation . 36

3.2 Implementation . 38
3.3 Testing . 39

4 NODEMPST: Back-End Session Type Web Development 41
4.1 Challenges . 42
4.2 Approach . 42
4.3 EFSM Encoding . 42

4.3.1 Roles, Labels, Messages . 42

1

CONTENTS

4.3.2 Handler APIs . 44
4.3.3 Wrapping Handlers in “Implementations” 45

4.4 Runtime . 48
4.4.1 Managing Connections . 49
4.4.2 Executing the EFSM . 50
4.4.3 Sending Messages . 53
4.4.4 Receiving Messages . 54
4.4.5 Handling Termination . 59

4.5 Alternative Designs . 61
4.6 Limitations . 62
4.7 Summary . 62

5 REACTMPST: Front-End Session Type Web Development 63
5.1 Challenges . 64
5.2 Approach . 64

5.2.1 The React Framework . 65
5.3 EFSM Encoding . 66

5.3.1 Send States . 67
5.3.2 Receive States . 70
5.3.3 Terminal States . 72

5.4 Runtime . 73
5.4.1 Connecting to the Session . 75
5.4.2 Executing the EFSM . 75
5.4.3 Sending Messages . 76
5.4.4 Receiving Messages . 78
5.4.5 Handling Termination . 79

5.5 Alternative Designs . 79
5.6 Limitations . 80
5.7 Summary . 80

6 Extensions 81
6.1 Supporting Asynchronous Implementations 81

6.1.1 Motivation . 81
6.1.2 API Extension . 83
6.1.3 Runtime Extension . 84
6.1.4 Limitations . 85

6.2 Error Handling . 85
6.2.1 Motivation . 86
6.2.2 API Extension . 87
6.2.3 Runtime Extension . 88
6.2.4 Caveats with Asynchronous Operations 92
6.2.5 Limitations . 92

2

CONTENTS

II Implementing Arbitrary Topologies over WebSockets 93

7 Motivation: Supporting Peer-to-Peer Interactions 94
7.1 TWO BUYER Protocol . 94
7.2 Proposal: Server as a Router . 95
7.3 Challenges . 96

8 ROUTEDSESSIONS: A Theory of Routed Multiparty Session Types 98
8.1 Syntax for Global and Local Types . 98

8.1.1 Global Types . 98
8.1.2 Local Types . 99
8.1.3 Projection . 101
8.1.4 Well-formedness . 102

8.2 Labelled Transition System (LTS) Semantics 103
8.2.1 LTS Semantics over Global Types 104
8.2.2 LTS Semantics over Local Types 105

8.3 LTS Soundness and Completeness with respect to Projection 107
8.3.1 LTS Semantics over Configurations 108
8.3.2 Extending Projection for Configurations 109
8.3.3 Trace Equivalence . 110
8.3.4 Deadlock Freedom . 114

8.4 From Canonical MPST to ROUTEDSESSIONS 120
8.4.1 Router-Parameterised Encoding 120
8.4.2 Preserving Well-formedness 122
8.4.3 Preserving Communication 124

8.5 Summary . 127

9 Implementing ROUTEDSESSIONS in SESSIONTS 128
9.1 Extending NODEMPST . 128
9.2 Extending REACTMPST . 129

III Evaluation and Conclusion 131

10 Evaluation 132
10.1 Multiparty Sessions: NOUGHTS AND CROSSES 133

10.1.1 Game Server . 133
10.1.2 Game Players . 135
10.1.3 Summary . 135

10.2 Routed Multiparty Sessions: TWO BUYERS 136
10.3 Performance Benchmarks . 137

10.3.1 Setup . 138
10.3.2 Execution Pattern . 140
10.3.3 Overhead . 141

10.4 Summary . 143

3

CONTENTS

11 Conclusion 145
11.1 Contributions . 145
11.2 Future Work . 146

Bibliography 148

A Lemmas and Proofs 153
A.1 Lemmas and Proofs for Chapter 8 . 153

B Artefacts for Evaluation 155
B.1 Implementation for NOUGHTS AND CROSSES 155
B.2 Package Dependencies for Benchmarks 156

4

List of Figures

1.1 Message-Passing Architecture of Web-Based Flight Booking Service . 10

2.1 Syntax of Asynchronous π-calculus 17
2.2 Syntax of Session Calculus with Branching, Selection and Recursion . 18
2.3 Syntax of Session Types . 19
2.4 Syntax of Global Types . 22
2.5 Definition of Merging Operator . 23
2.6 Type Checking with Multiparty Session Types 25
2.7 Adder Protocol in Scribble . 26
2.8 Server EFSM for Adder protocol . 27

3.1 Overview of SESSIONTS Development Workflow 35

4.1 Svr Endpoint FSM in ADDER Protocol 41
4.2 “Message Passing” Abstraction of EFSM Execution for Server Endpoints 53
4.3 Possible Orderings for Receiving Message and Registering Handler . . 58
4.4 Comparing Alternative NODEMPST Design using ONE ADDER Protocol 61

5.1 Client Endpoint FSM in ADDER Protocol 63

6.1 Adapting Send Operations in NODEMPST using a Thunk 85
6.2 WebSocket Close Codes for Session Cancellation 89

8.1 Global Types in ROUTEDSESSIONS 99
8.2 Global Types in ROUTEDSESSIONS 100
8.3 LTS Labels in ROUTEDSESSIONS . 103
8.4 LTS Semantics over Global Types in ROUTEDSESSIONS 105
8.5 LTS over Local Types in ROUTEDSESSIONS 106
8.6 Projection of Buffer Contents from Global Type in ROUTEDSESSIONS 109

10.1 User Interface of Client Endpoint in PING PONG Protocol 139
10.2 Comparison of Execution Pattern for 10,000 Ping-Pongs 141
10.3 Comparing Average Time per Ping-Pong Across Implementations . . 142
10.4 Comparison of bare and mpst Implementations for PING PONG Svr . 144

5

List of Tables

2.1 Duality of Binary Session Types Involving Participants p and q 20
2.2 Definition of Participants in Global Types 24

5.1 Implementing Model Types as React Components 67

10.1 Comparison of Execution Time for 100, 1,000 and 10,000 Ping-Pongs 142

6

Listings

3.1 The ADDER Protocol . 35
3.2 The Endpoint API . 36
3.3 Example Jinja Template for SESSIONTS API Generation 37
3.4 Implementing CodeGenerationStrategy 38
3.5 Entry Point for SESSIONTS . 39
3.6 Main logic in SESSIONTS system testing test case 39
4.1 Structure of Generated EFSM Encoding for Server Endpoint 43
4.2 Generated Label Enums for Svr endpoint 43
4.3 Generated Message Type Definition for State 54 44
4.4 Generated Type for Svr Send State in ADDER protocol 45
4.5 Generated Type for Svr Receive State in ADDER protocol 45
4.6 Example Handler Signature Compatible with Spread Syntax 45
4.7 Approximating Type Dependency using Conditional Types 46
4.8 EFSM Transition Function using Conditional Types 47
4.9 Discriminated Unions in EFSM for Server-Side Endpoints 48
4.10 Handling Connections in Server Endpoint 49
4.11 Conceptual EFSM Transition Function for Server-Side Endpoint . . . 51
4.12 Class Definitions for Implementation API 51
4.13 Final EFSM Transition Function for Server-Side Endpoint 52
4.14 Generated Code for Implementation API for Send State 54
4.15 Attempt to Dynamic WebSocket Message Event Listener 55
4.16 Generated Code for Implementation API for Receive State 56
4.17 Modified Session class to correctly handle message receive events . 60
5.1 Simple Counter in React . 65
5.2 Developer Implementation for Client Send State in ADDER protocol 68
5.3 Snippet of the React.DOMAttributes Interface 69
5.4 Extracting Function Properties from TypeScript Interface 70
5.5 Generated Type for Client Send State in ADDER Protocol 71
5.6 Generated Label and Message Types in REACTMPST 72
5.7 Generated Code for Client Receive State S42 in ADDER Protocol . . 73
5.8 EFSM Transition Function for Browser-Side Endpoint 77
5.9 Higher-Order Factory Function in Browser-Side Runtime 78
5.10 Receive Handler Registration and Message Handler in REACTMPST . 79
6.1 The TWO FACTOR AUTHENTICATION Protocol 82
6.2 Implementing Svr in 2FA using Callbacks, Promises and async/await 84
6.3 Generating Runtime Linearity Checks for React Send States 86

7

LISTINGS

6.4 Example Cancellation Handler for Server Endpoint 87
6.5 Example Cancellation Handler for Browser Endpoint 88
6.6 Modified Connection Management in Server Endpoint with Cancellation 90
6.7 WebSocket Close Event Listener in Browser Endpoints 90
6.8 Propagating Session Cancellation Events in Server Endpoint 91
7.1 The TWO BUYER Protocol . 94
9.1 Modified onmessage Event Listener for NODEMPST for Routing . . . 129
9.2 Runtime Extensions for REACTMPST to Implement ROUTEDSESSIONS 130
10.1 The NOUGHTS AND CROSSES Protocol 133
10.2 Implementing NOUGHTS AND CROSSES Game Server 134
10.3 Safely Binding Send Actions to NOUGHTS AND CROSSES Game Board 136
10.4 Two Buyer Seller Implementation . 137
10.5 Developer Implementation of Peer-to-Peer Interaction in Two Buyer . 137
10.6 The PING PONG Protocol . 138
10.7 Preventing Channel Linearity Violation in bare_safe PING PONG . . 143

8

Chapter 1

Introduction

1.1 Motivation

Modern interactive web applications aim to provide a highly responsive user experi-
ence by minimising the communication latency between clients and servers. Whilst
the HTTP request-response model is sufficient for retrieving static assets, applying
the same stateless communication approach for interactive use cases introduces un-
desirable performance overhead from having to frequently set up new connections
for client-server interactions. Developers have since adopted other communication
transport abstractions over HTTP connections such as the WebSockets protocol [17]
to enjoy low-latency full-duplex client-server communication in their applications
over a single persistent connection. Enabling more complex communication pat-
terns caters for more interactive use cases, but introduces additional concerns to the
developer with respect to implementation correctness.

Communication Safety in Interactive Web Applications Consider a flight book-
ing service between a Traveller and a FlightServer. The Traveller queries the
FlightServer about prices to a particular destination. If there is still availability, the
FlightServer will reserve a seat and respond with the price, to which the Traveller

confirms or rejects the purchase; the latter choice will notify the FlightServer to
release the seat. Otherwise, the FlightServer notifies the Traveller that all flights
are full. The Traveller can proceed to query for another destination.

We can implement the flight booking service as a web application. FlightServer
can be a web server running on the Node.js JavaScript runtime [43]. Traveller can
run on the web browser as a single-page application (SPA) written in a popular frame-
work like React.js [10]. SPAs feature a single HTML page and dynamically renders
content via JavaScript in the browser. The Traveller connects to the FlightServer

using a WebSocket connection and they enjoy bi-directional communication to exe-
cute the flight booking operations outlined above. We visualise the interactions in
Figure 1.1

Whilst WebSockets make this web-based implementation possible, it introduces
the developer to a new family of communication errors (in addition to the usual
testing for application logic correctness), even for this simple example:

9

1.1. MOTIVATION

Figure 1.1: Message-Passing Architecture of Web-Based Flight Booking Service

• Deadlocks: how can we prevent both sides waiting for each other to respond
at the same time?

• Communication mismatches: what if the FlightServer sends a string to the
Traveller who is expecting the price to be a numeric value?

• Channel linearity: if the FlightServer takes time to respond to a query from
the Traveller, what if the Traveller sends the same query twice? Given that
the FlightServer reserves a seat on a “successful” query, violating channel
linearity would hold up seats unnecessarily.

The complexity of these errors, which correlate to the complexity of tests required
against these errors, scale with the complexity of the communication patterns in-
volved. Over-reliance on integration testing to attempt to expose communication-
related bugs will also slow the development process, not to mention that the time
taken for these integration tests would scale with the number of roles involved. A
localised, static way for verifying communication correctness is highly desirable.

Formalising Interactions with Multiparty Session Types Multiparty Session Types
(MPST) [58] provide a framework for formally specifying a structured communica-
tion pattern between concurrent processes and verifying implementations for cor-
rectness with respect to the communications aspect.

By specifying the client-server interactions of our flight booking service as a pro-
tocol and verifying the implementations against the protocol for well-formedness,
MPST theory guarantees well-formed implementations to be free from communica-
tion errors.

Limitations of State-of-the-Art Session-Typed Web Development Existing work
[19, 32] that adapt the MPST framework for web development acknowledge the
limitations of JavaScript – the language of the browser – in providing static type-
level guarantees for communication safety, and proceed to use languages equipped
with stronger type systems that compile to JavaScript instead.

10

1.2. OBJECTIVES

With respect to the end goal of offering developers a development workflow that
provides communication safety guarantees in modern web programming through
multiparty session types, we observe two main limitations from the state-of-the-art:

L1: Incompatibility with modern web programming practices The current
state-of-the-art succeeds in statically providing communication safety guarantees,
but requires the developer to compromise by adapting to programming paradigms
and practices that are not conventional for modern web programming. Fowler [19]
requires developers to implement their web applications in a functional paradigm
using the Links web programming language [5]. King et al. [32] also endorses func-
tional web programming by requiring developers to write PureScript [47] applica-
tions, but also enforces user interfaces to be written using sequential UI frameworks.

PureScript and Links are not interoperable with the ever-growing universe of
JavaScript libraries for web development. It is also unclear whether these tools sup-
port idiomatic practices in event-driven programming, such as callbacks and asyn-
chronous implementations. Whilst communication safety guarantees provided by
Fowler [19] and King et al. [32] are based on canonical MPST theory, they are not
contextualised for the dynamic web-based environment. Going back to the flight
booking service as an example, [19, 32] do not handle premature disconnections;
if the Traveller receives a quote and closes their browser prematurely and the
FlightServer is not notified of this event, the reserved seat will not be released.
These compromises limit the usability of the MPST framework in modern web pro-
gramming.

L2: Limited expressiveness of communication protocols The current state of
the art leverage the WebSocket protocol as the communication transport between
roles, which is simple to reason about and straightforward to relate to session type
theory. However, WebSocket transport enforces a server-centric network topology,
so [19, 32] enforces the same constraint on the range of communication protocols
supported: server-centric protocols feature exactly one server role that is involved in
all interactions.

This limits the types set of communication topologies that can be implemented by
session-typed web development proposals. Suppose we extend the flight booking
service as follow: we introduce a TravelAgent role, which runs on the browser; the
Traveller first asks for a quote from the TravelAgent before carrying out the usual
interactions with the FlightServer, so the Traveller can compare between both
options. The current state of the art cannot implement this extended flight booking
service, as the described communication interactions are no longer server-centric.

1.2 Objectives

The objective of this project is to provide developers with a development workflow
that provides communication safety guarantees in modern web programming through
multiparty session types.

11

1.2. OBJECTIVES

We tackle the limitations of the current state of the art with two solutions:

S1: SESSIONTS We implement an end-to-end framework for writing full-stack
TypeScript applications that statically conform to a communication protocol.

Developers specify their communication protocol using the Scribble protocol de-
scription language [57] which is based on multiparty session type (MPST) theory
[58]. The Scribble protocol is used as a basis for generating TypeScript APIs targeted
for the Node.js server-side runtime and React.js browser-side framework. By imple-
menting the generated APIs in their full-stack applications, developers can enjoy
static guarantees with respect to communication safety: there will not be any dead-
locks or communication mismatches, and channel linearity will be respected.

S2: ROUTEDSESSIONS We present an extension of the canonical MPST theory
that supports routed communication. We prove that ROUTEDSESSIONS also extends
the communication safety properties of the canonical MPST theory, so processes that
implement ROUTEDSESSIONS also enjoy guarantees of deadlock-freedom and the
absence of communication mismatches.

Through ROUTEDSESSIONS, we can express interactions to be routed via an inter-
mediate endpoint. By defining an encoding from canonical MPST theory to ROUTED-
SESSIONS, we show that we do not lose expressiveness using routed communication.
We also extend SESSIONTS to implement ROUTEDSESSIONS. SESSIONTS generates
APIs that provide channel linearity by construction, and the extended implementa-
tion to support ROUTEDSESSIONS enjoys the same benefits.

By solution S1, we address the limitation L1. Our work provides the same com-
munication safety guarantees as the current state of the art, but is compatible with
modern web programming tools and idioms. Among the languages that compile to
JavaScript, we select TypeScript as it is arguably the most intuitive to use, given it
is a superset of JavaScript [2]. It provides developers with type-safety through its
gradual, structural type system, and is also interoperable with existing JavaScript
libraries that the developer may incorporate into their application. Whilst some
[19] point out that this limits its usability for encoding multiparty session types,
we believe that the language offers sufficient features that we can use to provide
developers with communication safety guarantees whilst preserving a flexible, nat-
ural and idiomatic workflow. The TypeScript APIs we generate also support idioms
commonly found in modern web development (such as callbacks and asynchronous
operations), and provide an error handling mechanism tailored to the dynamic web-
based environment (where roles can disconnect prematurely).

In solution S2, we show that routing communication interactions through an in-
termediate role, such as a web server, preserves the communication safety properties
and the semantics from the original interactions. By extending SESSIONTS to imple-
ment ROUTEDSESSIONS, our workflow can implement protocols of arbitrary commu-
nication structures over a server-centric network topology using WebSockets; this
tackles limitation L2.

12

1.3. CONTRIBUTIONS

1.3 Contributions

We present an implementation of the MPST framework for developing interactive
web applications over WebSocket transport. We also present a theory of routed mul-
tiparty session types, which forms the basis for supporting arbitrary communication
structures over a server-centric WebSocket-based network topology.

Related work [5, 19, 20, 32] requires the developer to implement their applica-
tion using tools that are unconventional for web development, and only support
communication protocols that adhere to the WebSocket network structure. To the
best of our knowledge, this is the first work on multiparty session type-safe web de-
velopment that provides the same communication safety guarantees using familiar
industry tools in TypeScript and React, and supports peer-to-peer browser interac-
tions over WebSockets.

In Chapter 2, we introduce the core session type theory and provide an overview
of related work on integrating session types into application development, with a
focus on the state-of-the-art proposals for session-typed web development. We also
introduce TypeScript and highlight the defining features of the language.

The remainder of the report is organised in three parts as such:

Part I We present an end-to-end workflow for generating TypeScript APIs for server-
centric communication protocols over WebSockets.

In Chapter 3, we introduce the system architecture for SESSIONTS. The imple-
mentation integrates with the Scribble toolchain to generate handler style APIs that
the developer can use to write their web applications to guarantee protocol confor-
mance by construction.

We present two code generation strategies for back-end and front-end TypeScript
web development as NODEMPST and REACTMPST in Chapter 4 and Chapter 5
respectively.

In Chapter 6, we extend SESSIONTS to support advanced practices commonly
found in full-stack web development, in a way that preserves communication safety.
We modify the API generation strategies to support asynchronous implementations
and introduce how to gracefully handle errors and session cancellation in the context
of interactive web applications.

Part II We present a method to relax the server-centric constraint over WebSocket
transport in order to support peer-to-peer interactions amongst client roles, through
the concept of routing.

In Chapter 7, we introduce the TWO BUYER multiparty protocol to motivate our
proposal of providing the server role with routing responsibilities, in addition to its
existing interactions specified in the protocol.

In Chapter 8, we introduce a variant of multiparty session type theory with rout-
ing. We prove that our extensions preserve properties required for communication
safety, session fidelity and deadlock freedom. We provide an encoding for global

13

1.3. CONTRIBUTIONS

types into routed multiparty session type theory, and prove the preservation of well-
formedness and communication. Detailed lemmas and proofs in this chapter can be
found in Appendix A.1.

In Chapter 9, we demonstrate how our API generation strategies implement our
routed session type theory to support arbitrary communication topologies.

Part III In Chapter 10, we evaluate our work through case studies of commu-
nication protocols implemented as webservices. Through examples of multiparty
sessions and routed multiparty sessions, we demonstrate how the developer may im-
plement the generated APIs and consider the compatibility of our work with respect
to modern web programming practices. We perform benchmarks on a web applica-
tion built using our generated APIs against a baseline implementation to evaluate
the overhead of our implementation.

Finally, we summarise our work in Chapter 11 and propose potential areas of
improvement and future work.

Remark. A part of this project was published as Generating Interactive WebSocket
Applications in TypeScript in Volume 314 of the Electronic Proceedings in Theoret-
ical Computer Science (EPTCS) [40], in which I am the first and lead author.

The materials in Chapters 3 to 5 are expanded from [40]. The materials in Chap-
ters 6 to 10 are developed exclusively in this project by myself.

14

Chapter 2

Background

In this chapter, we introduce the theory of session types (Section 2.1), discuss related
work in the area of applying session types for application development (Section 2.2),
and provide background on the TypeScript language (Section 2.3).

2.1 Session Types

Web applications are one of many examples of distributed systems in practice. Dis-
tributed systems are built upon the interaction between concurrent processes, which
can be implemented using the two main communication abstractions in shared mem-
ory and message passing.

Shared memory provides processes with the impression of a logical single large
monolithic memory but requires programmers to understand consistency models in
order to correctly reason about the consistency of shared state.

Message passing interprets the interaction between processes as the exchange of
messages. This best describes the communication transports found in web applica-
tions, ranging from the stateless request-response client-server interactions via HTTP
to full-duplex communication channels via the WebSocket protocol [17].

The process algebra π-calculus introduced by Milner [38] formalises the message
passing abstraction in terms of the basic building blocks of sending and receiving
processes. The composition of these primitives allow us to describe more complex
communication sessions. Session types define the typing discipline for the π-calculus
and provide reliability guarantees for communication sessions; the latter addresses
a key challenge when reasoning about the correctness of distributed systems.

Practical application of session types in software engineering range from develop-
ing languages providing native session type support [55] to implementing session
types in existing programming languages across different paradigms. Implementa-
tions of the latter approach differ by how they leverage the design philosophy and
features provided by the programming language. For example, King et al. [32]
leveraged the expressive type system of PureScript to perform static session type
checking, whilst Neykova [42] introduced dynamic approaches to check the confor-
mance of Python programs with respect to session types. We discuss these related
work, among others, in Section 2.2.

15

2.1. SESSION TYPES

2.1.1 Process Calculus

The π-calculus models concurrent computation, where processes can execute in par-
allel and communicate via shared names. We first consider the asynchronous π-
calculus introduced by Honda and Tokoro [24]. Among the many flavours of the
calculus which vary depending on the application domain, we outline the variant as
presented in [56].

We define the syntax of processes in Figure 2.1; the asynchrony comes from the
lack of continuation in the output process.

• 0 is the nil process and represents inactivity.

• u〈v〉 is the output process that will send value v on u.

• u(x).P is the input process that, upon receiving a message on u, will bind the
message to x and carry on executing P under this binding.

• P | Q represents the parallel composition of processes executing simultane-
ously.

• !P represents the parallel composition of infinite instances of P ; more specifi-
cally, !P ≡ P | !P .

≡ represents the structural congruence equivalence relation on processes, mean-
ing that !P is indistinguishable from P | !P . We inherit the definition of struc-
tural congruence from [56].

• (νa) P represents a name restriction where any occurrence of a in P is local
and will not interfere with other names outside the scope of P .

The operational semantics model the interaction between parallel processes. We
inherit the full operational semantics presented by Yoshida [56], and highlight the
[COMM] reduction rule which specifically models message passing: if the parallel
composition of an input process and output process share the same name, the com-
position reduces to the continuation of the input process, substituting the variable x
with the message received v. We omit the definitions of substitution, free variables
and free names, α-equivalence and structural congruence; the interested reader may
refer to [56].

[COMM]
a〈v〉 | a(x).P −→ P [v/x]

We additionally define a process P to be stuck if P is not the nil process and P
cannot be reduced any further. For example, the process P = a(x).0 | b〈v〉 is stuck
as the parallel composition of an input process and an output process that do not
share the same name cannot be reduced using [COMM] . In practice, a stuck process
contains communications that will never be executed.

16

2.1. SESSION TYPES

2.1.2 Binary Session Types

A session represents the sequence of send and receive actions of a single participant.
A binary session describes a session with two distinct participants. In the context of
web applications, a binary session may describe the interactions between client and
server.

We introduce a synchronous session calculus in Figure 2.2, inspired by [58]. We
briefly discuss the main components and how it differs from the variant introduced
in [56]:

• Synchronous communication: Output processes have a continuation that will
be executed upon a successful send.

• Polyadic communication: More than one value can be communicated at once.
We refer to these as a vector of values, ~v.

• Branching and selection: A branching process can offer a set of branches,
each defined by its own label identifier and continuation process. A selec-
tion process can select a branch by sending the corresponding label identifier
alongside the payload to the branching process.

• Labelled messages: A label identifier is attached to all messages; the input
process in Figure 2.1 is generalised as a branching process offering one branch.

The [COMM] rule in the operational semantics for this calculus exemplifies these
new additions: given a binary session between distinct participants p and q where q

P ,Q ::= Processes

0 Nil Process

| u〈v〉 Output

| u(x).P Input

| P |Q Parallel Composition

| !P Replication

| (νa) P Restriction

u,v ::= Identifiers

a,b,c, . . . Names

| x,y,z, . . . Variables

Figure 2.1: Syntax of Asynchronous π-calculus

17

2.1. SESSION TYPES

offers a set of labelled branches, if p selects a label offered by q and sends a vector of
expressions e1, . . . , en that evaluate1 to the corresponding vector of values v1, . . . , vn,
the session reduces to a session with the continuation from the selection process
composed with the continuation from the selected branch of the branching process.
The branching process binds the received values v1, . . . , vn to the variables x1, . . . ,xn.

∃j ∈ I.
(
lj = l ~xj = x1, . . . ,xn e1 ↓ v1 . . . en ↓ vn

)
p , q

[COMM]
p :: q� l〈e1 . . . en〉. P | q :: p�

{
li(~xi) :Qi

}
i∈I −→ p :: P | q ::Qj[vk/xk]nk=1

v ::= n | true | false Values

e,e′ ::= Expressions

v Values

| x Variables

| e+ e′ | e − e′ Arithmetic Operators

| e = e′ | e < e′ | e > e′ Relational Operators

| e∧ e′ | e∨ e′ | ¬e Logical Operators

| e⊕ e′ Non-Determinism

p ::= Client, Server Participant

P ,Q ::= Processes

0 Nil Process

| p� l〈~e〉. P Selection

| p�
{
li(~xi) : Pi

}
i∈I Branching

| if e then P else Q Conditional

| µX.P Recursive Process

| X Process Variable

l, l′ ::= ‘‘str’’ Label Identifiers

M ::= p :: P | q ::Q Binary Session

Figure 2.2: Syntax of Session Calculus with Branching, Selection and Recursion

Additionally, the calculus introduces:
1We adopt the operational semantics for expression evaluation e ↓ v as defined in [56].

18

2.1. SESSION TYPES

• Conditionals: If e ↓ true, the process if e then P else Q reduces to P ; if
e ↓ false, the process if e then P else Q reduces to Q.

• Recursion: Following the equirecursive approach, the occurrence of the process
variable X in the recursive process can be expanded into the process transpar-
ently; more specifically, µX.P ≡ P [(µX.P)/X].

Session types represent the type theory for our session calculus. We define the
syntax of session types for binary sessions in Figure 2.3. ~U denotes a vector of sorts.

U ::= int | bool Sorts

T ::= Session Types

end Termination

| p&
{
li(~Ui) : Ti

}
i∈I

Branching

| p⊕
{
li(~Ui) : Ti

}
i∈I

Selection

| µt.T Recursive Type

| t Type Variable

Figure 2.3: Syntax of Session Types

We derive the type of a process with a typing judgement of the form Γ ` P : S,
which reads, under the typing context Γ , process P has session type S. The typing
context records typing assumptions used as part of the derivation: in the case of
binary session types, the context maps expressions to sorts, and process variables to
session types. A typing judgement is constructed in terms of inference rules defined
inductively on the structure of processes and expressions.

We present the rules for [TY-SEL] and [TY-BRA] ; the remaining rules follow from
[56] and can be trivially defined as they leverage the syntactic similarities between
session types and our session calculus.

Γ ` e1 :U1 . . . Γ ` en :Un Γ ` P : T
[TY-SEL]

Γ ` p� l〈e1 . . . en〉. P : p⊕ l(U1, . . . ,Un) : T

∀i ∈ I.
(
~xi = x1, . . . ,xn ~Ui =U1, . . . ,Un Γ ,x1 :U1, . . . ,xn :Un ` Pi : Ti

)
[TY-BRA]

Γ ` p�
{
li(~xi) : Pi

}
i∈I : p&

{
li(~Ui) : Si

}
i∈I

The definition of stuck processes from Section 2.1.1 motivate the discussion of
communication errors that may occur during interactions among participants. We
outline two of the main classes of errors:

19

2.1. SESSION TYPES

• Deadlock: Progress cannot be made when the two participants expect to be
receiving a message from each other at the same time.

• Communication mismatch: Progress cannot be made when the selection pro-
cess sends a message with a label identifier not offered by the branching pro-
cess; likewise, the payload sent must be compatible with the sort expected by
the branching process for the selected branch.

Session types ensure that well-typed binary sessions are guaranteed to be free
from these communication errors through the concept of duality. Duality defines a
notion of compatibility between processes: two session types are dual with respect to
each other if the communication between them (i.e. pairs of sending and receiving
actions) always match (i.e. with respect to the selected label and message payload
type). We define S as the dual type of S in Table 2.1; message payload types are
omitted for brevity.

end = end

p& {li : Ti}i∈I = q⊕
{
li : Ti

}
i∈I

p⊕ {li : Ti}i∈I = q&
{
li : Ti

}
i∈I

µt.T = µt.T

t = t

Table 2.1: Duality of Binary Session Types Involving Participants p and q

Consequently, a binary session is well-typed if the participating processes are typed
to be dual with respect to each other: we illustrate this in [MTY] .

· ` P : T · `Q : T
[MTY]` p :: P | q ::Q

The definition of duality alone restricts the definition of well-typed binary sessions
to those where the two processes are derived to be exactly dual types of one another.
Consider the pair of session types below:

TClient = Server⊕ Succ(nat). Server& Succ(int). end

TServer = Client&

Succ(int) : Client⊕ Succ(int). end
Quit() : end

Whilst TClient , TServer, this pair of session types is intuitively compatible as the
client is selecting a branch offered by the server, where the session types for the con-
tinuations of this branch for both participants are indeed dual. Regarding payload,
the server is expecting int, but the client sends nat, which is a subtype of int.

20

2.1. SESSION TYPES

This motivates the concept of subtyping in session types, which allows a process to
be typed by its “supertype” when required. ≺2 defines the subtyping relation: T ≺ T ′
reads T is a subtype of T ′, and is defined coinductively on the structure of T .

We present the inference rules for [SUB-SEL] and [SUB-BRA] inspired by [58]
but adapted for polyadic communication; the intuition behind subtyping and sub-
sorting is outlined below:

• Selection: The supertype of a selection process offers a superset of the internal
choices and can send more generic types of payload; intuitively, if a process
sends a nat, the payload is compatible with receivers expecting a more generic
int payload.

• Branching: The supertype of a branching process offers a subset of the branches
and expects more specific types of payload; intuitively, if a process expects to
receive an int, it can handle a nat payload.

∀i ∈ I.
(
~Ui =U1, . . . ,Un ~U ′i =U

′
1, . . . ,U

′
n U1 ≺U ′1 . . . Un ≺U ′n Ti ≺ T ′i

)
[SUB-SEL]

p⊕
{
li(~Ui) : Ti

}
i∈I
≺ p⊕

{
li(~U ′i) : T

′
i

}
i∈I∪J

∀i ∈ I.
(
~Ui =U1, . . . ,Un ~U ′i =U

′
1, . . . ,U

′
n U ′1 ≺U1 . . . U

′
n ≺Un Ti ≺ T ′i

)
[SUB-BRA]

p&
{
li(~Ui) : Ti

}
i∈I∪J

≺ p&
{
li(~U ′i) : T

′
i

}
i∈I

We also introduce subsumption in [TY-SUB] to incorporate the subtyping relation
into the typing judgement.

Γ ` P : T T ≺ T ′ [TY-SUB]
Γ ` P : T ′

This allows us to construct a derivation to show that the binary session

M = Client :: PClient | Server :: PServer

is well-typed, assuming PClient and PServer are typed TClient and TServer respectively.

...
· ` PClient : TClient

...
· ` PServer : TServer

...

TServer ≺ TClient [TY-SUB]
· ` PServer : TClient [MTY]` Client :: PClient | Server :: PServer

2The ≺ operator is also an overloaded relation on sorts to express subsorting, i.e. nat ≺ int.

21

2.1. SESSION TYPES

2.1.3 Multiparty Session Types

Whilst binary session types provide communication guarantees between exactly 2
participants, distributed systems generally involve more parties in practice. This is
equally relevant in interactive web applications, as motivated by the Battleships game
example in [32] where the server coordinates interactions between two players.

Whilst there is a natural syntactical extension to our session calculus for describing
multiparty sessions3 as

M ::= p1 :: P1 | p2 :: P1 | . . . | pn :: Pn

the same cannot be said for the binary session typing discipline, particularly with
respect to duality. The same notion of duality does not extend to the decomposi-
tion of multiparty interactions into multiple binary sessions: Yoshida and Lorenzo
[58] presents counterexamples of well-typed binary sessions that, when composed
to represent a multiparty session, results in communication errors thus violating
guarantees of well-typed sessions.

Honda et al. [25] presents multiparty session types to extend the binary ses-
sion typing discipline for sessions involving more than 2 participants, whilst redefin-
ing the notion of compatibility in this multiparty context. Multiparty session types
(MPST) are defined in terms a global type, which provides a bird’s eye view of the
communication protocol describing the interactions between pairs of participants.
Figure 2.4 defines the syntax of global types inspired by [58]; we omit message
payload types for brevity.

G ::= Global Types

end Termination

| p→ q : {li : Gi}i∈I Message Exchange

| µt.G Recursive Type

| t Type Variable

Figure 2.4: Syntax of Global Types

To check the conformance of a participant’s process against the protocol specifi-
cation described by the global type, we project the global type onto the participant
to obtain a session type that only preserves the interactions described by the global
type that pertain to the participant. Projection is defined by the � operator, more
commonly seen in literature in its infix form as G � p describing the projection of
global type G for participant p. Intuitively, the projected local type of a participant
describes the protocol from the viewpoint of the participant.

3We also adopt the shorthandM ::=
∏n
i=1 pi :: Pi as used in the literature.

22

2.1. SESSION TYPES

More formally, projection can be interpreted as a partial function � :: G × p⇀ S,
as the projection for a participant may be undefined for an ill-formed global type;
Yoshida [56] presents examples of where this is the case, and Yoshida and Lorenzo
[58] presents the formal definition of projection. We focus on the definition of pro-
jection for the message exchange global type given below:

p→ q : {li : Gi}i∈I � r =

q⊕ {li : Gi � p}i∈I if r = p

p& {li : Gi � q}i∈I if r = q

u
i∈I

Gi � r otherwise

The third case describes that, for a participant not involved in the communication,
the projections of the continuations Gi � r do not necessarily have to be the same,
but they need to be “compatible”. The u syntax denotes the merging operator. It is a
partial function on local types allows us to construct a projection that is compatible
with the projections on the continuations. We use the inductive definition presented
by Scalas and Yoshida in [50] Definition 3.3, shown in Figure 2.5.

enduend = end [MERGE-END]

tut = t [MERGE-RECVAR]

µt.T uµt.T ′ = µt.T uT ′ [MERGE-REC]

p⊕ {li : Ti}i∈I up⊕ {li : Ti}i∈I = p⊕ {li : Ti}i∈I [MERGE-SEL]

p& {li : Ti}i∈I up&
{
lj : T ′j

}
j∈J

= p&
{
lk : T ′′k

}
k∈I∪J

[MERGE-BRA]

where T ′′k =

Tk if k ∈ I \ J

T ′k if k ∈ J \ I

TkuT ′k if k ∈ I ∩ J

otherwise undefined

Figure 2.5: Definition of Merging Operator

The notion of compatibility in multiparty session types is still captured by [MTY] ,
but adapted to consider the local projections for all participants as supposed to dual
types in the binary case.

∀i ∈ I. (· ` Pi : G � pi) pt (G) ⊆ {pi | i ∈ I} [MTY]
`
∏
i∈I

pi :: Pi : G

23

2.2. RELATED WORK

For a multiparty sessionM =
∏
i∈I pi :: Pi to be well-typed by a global type G:

1. All participant processes piPi are well-typed with respect to their correspond-
ing well-defined projection G � pi, and

2. G does not describe interactions with participants not defined in M. pt (G)
denotes the set of participants in the global type G, defined inductively on G
as shown on Table 2.2.

pt (end) = ∅

pt (t) = ∅

pt (µt.G) = pt (G)

pt (p→ q : {li : Gi}i∈I) = {p,q} ∪
⋃
i∈I

pt (Gi)

Table 2.2: Definition of Participants in Global Types

Well-typed multiparty sessions enjoy the following communication guarantees as
outlined in [6]:

• Communication safety: The types of sent and expected messages will always
match.

• Protocol fidelity: The exchange of messages between processes will abide by
the global protocol.

• Progress: Messages sent by a process will be eventually received, and a process
waiting for a message will eventually receive one; this also means there will
not be any sent but unreceived messages.

This motivates an elegant, decentralised solution for checking protocol confor-
mance in practice: once the global type for the protocol is defined, local processes
can verify their implementation against their corresponding projection in isolation,
independent of each other. We illustrate this in Figure 2.6.

2.2 Related Work

Whilst session type theory represents the type language for concurrent processes, it
also forms the theoretical basis for proposals introduced to implement session types
for real-world application development: the Scribble project is one such proposal. We
discuss related work that implement session types for software engineering using the
Scribble project in Section 2.2.1, and focus on existing work for session-typed web
development in Section 2.2.2.

24

2.2. RELATED WORK

Figure 2.6: Type Checking with Multiparty Session Types

2.2.1 Scribble and Endpoint API Generation

Scribble [57] is a platform-independent description language for the specification of
message-passing protocols. The language describes the behaviour of communicating
processes at a high level of abstraction: more importantly, the description is inde-
pendent from implementation details in the same way that the type signature of a
function declaration is decoupled from the corresponding function definition.

A Scribble protocol specification describes an agreement of how participating sys-
tems, referred to as roles, interact. The protocol stipulates the sequence of structured
messages exchanged between roles; each message is labelled with a name and the
type of payload carried by the message.

We present an example of a Scribble protocol in Figure 2.7 adapted from [28].
The protocol specifies an arithmetic web service offered by a Server to a Client. The
Client is permitted to either:

• Send two ints attached to an Add message, where the server will respond with
an int in a message labelled Res, and the protocol restarts; or,

• Send a Quit message, where the server will respond with a Terminate message
and the protocol ends.

The platform-independent nature of Scribble can be observed from the type decla-
ration on Line 1: the developer has the freedom to specify message payload formats

25

2.2. RELATED WORK

1 type <java > "java.lang.Integer" from "rt.jar" as int;

2

3 global protocol Adder(role C, role S) {

4 choice at C {

5 Add(int , int) from C to S;

6 Res(int) from S to C;

7 do Adder(C, S);

8 } or {

9 Quit() from C to S;

10 Terminate () from S to C;

11 }

12 }

Figure 2.7: Adder Protocol in Scribble

and data types from the target language of the implementation – in this case, aliasing
the built-in Java integer as int throughout the protocol.

To observe the parallels between MPST theory and the Scribble language, we
present the corresponding global type for the ADDER protocol below.

GAdder = µt.C→ S :

Add(int, int) : S→ C : Res(int) . t
Quit() : S→ C : Terminate() . end

The protocol specification language is a component of the broader Scribble toolchain
initiated by Honda et al. [57], through which the toolchain also facilitates the de-
velopment of endpoint applications that conform to user-specified protocols.

A Scribble global protocol can be projected to a role, or endpoint, to obtain a
local protocol which represents the global protocol viewed from the perspective of
the endpoint. This allows the endpoint to verify their implementation against their
local protocol for conformance, independent of other endpoints. The communication
safety guarantees from MPST theory also apply here: if the implementation for each
endpoint is verified against their local protocol, the distributed system as a whole
will conform to the global protocol.

The Scribble toolchain can convert the local protocol into an endpoint finite state
machine (EFSM). An EFSM encodes the control flow of the local protocol into a
communication automaton: there is a well-defined initial state, and each transition
from some state to a successor state corresponds to a valid communication action
(i.e. sending or receiving a message) permitted at that endpoint at that state.

We show the EFSM of the Server for the ADDER protocol in Figure 2.8. We use
this as an example to walk through the components that build up the EFSM.

• Role Identifiers: The set of roles that the endpoint interacts with. For Fig-
ure 2.8, this is the singleton set { Client }.

• Label Identifiers: The set of message labels that the endpoint sends or expects
to receive. For Figure 2.8, this is set { Add,Res,Quit,Terminate }.

• Payload Types: The set of message payload data types that the endpoint sends
or expects to receive. For Figure 2.8, this is singleton set { int }.

26

2.2. RELATED WORK

Figure 2.8: Server EFSM for Adder protocol

• Actions: The set of send and receive actions permitted for the endpoint. An
action is defined in terms of a role identifier, label identifier and a vector of
payload types. For Figure 2.8, this is the set of visible transitions as illustrated.

Client!Terminate() denotes a send action that sends the Terminate message
with no payload to Client.

Client?Add(int,int) denotes a receive action that receives the Add message
with two int values as payload from Client.

• State Identifiers: For Figure 2.8, this is the set { S1,S2,S3,S4 }.

• State Transition Function: The partial function, denoted δ in the literature,
which maps state identifiers and actions to successor state identifiers. It is a
partial function because not all tuples of state identifiers and actions constitute
valid transitions permitted in the state machine.

For Figure 2.8, (S1, Client?Add(int,int)) is in the domain of δ; the succes-
sor state is S3. Conversely, δ(S1, Client!Res(int)) is undefined.

We also inherit the characteristics of EFSMs derived from well-formed protocols,
as presented in [28]:

• There is exactly one initial state (S1 in Figure 2.8).

An initial state has no incoming transitions. Formally, the state identifier of the
initial state is not in the range of δ.

• There is at most one terminal state (S2 in Figure 2.8).

A terminal state has no outgoing transitions. Formally, the state identifier of
the terminal state is not in the domain of δ.

27

2.2. RELATED WORK

• Every non-terminal state is either a send state or a receive state.

A send state only has send actions in its outgoing transitions. S3 and S4 are the
send states in Figure 2.8.

A receive state only has receive actions in its outgoing transitions. S1 is the
only receive state in Figure 2.8.

Developers can use the EFSM to verify their implementation for protocol confor-
mance with respect to an endpoint in the global protocol. Endpoint API generation is
a common approach [27, 28, 32, 42, 49]: these proposals generate APIs in the target
language which the developer can use to implement their endpoint application and
enjoy the following guarantees:

• Behavioural typing: The execution trace of messages sent and received by the
application is accepted by the EFSM, which means it conforms to the commu-
nication structure of the global protocol;

• Channel linearity: Each transition in the EFSM represents one channel re-
source. The application transitions from some state S to some successor state
S ′ once and only once, after which it must no longer be able to access a refer-
ence (e.g. have an alias) to S.

We highlight two distinct proposals for endpoint API generation that differ by how
they leverage features in the target language to guarantee the above properties.

Hybrid Session Verification in Java [28]

Hu and Yoshida implemented a workflow that performs hybrid verification of com-
munication protocol conformance for Java applications. The “hybrid” concept is
composed of the two main components below:

Static session typing The EFSM is interpreted under the object-oriented paradigm
as follow: (1) states are represented as classes; (2) supported transitions on each
state are represented as instance methods, parameterised by the role, label and pay-
load involved in the message exchange. A send method takes the payload to send
as a parameter, whilst a receive method is a blocking call that requires the caller
to allocate a Buf<T> wrapper on the stack (where T is the expected payload type),
then the receive method populates the payload into the wrapper and returns upon
receiving from the channel. These instance methods return a new instance of the
successor state class.

Runtime channel linearity checks By exposing send and receive actions as in-
stance methods, the developer can keep aliases of EFSM state instances and invoke
the IO action more than once. Java does not have a linear type system, and hence
cannot statically verify linear usage; this means linearity checks need to be done at
runtime. Each state keeps track of its usage in a private boolean flag and throws an

28

2.2. RELATED WORK

exception when the instance method is called twice. Similarly, the SessionEndpoint

class keeps track of whether the connection is open or close, and throws an excep-
tion when program execution exits the scope of the session endpoint and a terminal
state has yet to be reached.

We find that this proposal strikes a good balance between maximising static com-
munication safety guarantees whilst providing an intuitive set of APIs for developers
to efficiently write their applications. For example, the EFSM encoding takes ad-
vantage of the type system to statically enforce valid transitions; whilst this exposes
channel resources and linear usage needs to be monitored dynamically to compen-
sate for the lack of linear types, the generated APIs complement the imperative style
of application code written in Java

Runtime Monitors in Python [42]

Neykova targeted the MPST methodology for Python programs and proposed to gen-
erate runtime monitors from the EFSM. These monitors expose APIs for sending and
receiving messages, which is used by the developer in their implementation. The
runtime monitor is an abstraction between the developer’s implementation and the
actual communication channel, and “executes” the EFSM internally to ensure proto-
col conformance. When the developer sends a message (with some label and pay-
load) using the API, the runtime monitor checks whether this send action conforms
to the current EFSM state, and if so, performs the send and advances to the suc-
cessor state. Likewise, when the developer invokes a receive, the runtime monitor
verifies that this is permitted at the current EFSM state before returning the received
payload.

We observe that this approach complements the dynamic typing nature of the
Python language, which makes it sensible to perform behavioural typing at runtime.
As the send and receive IO primitives are made available to the developer, there are
no “instances” of channel resources created, so the developer cannot explicitly hold
a reference to some state in the EFSM (let alone keep aliases), so channel linearity
is trivially guaranteed here.

2.2.2 Session Types in Web Development

We discuss the current state-of-the-art proposals for session-typed web development.

API Generation in PureScript [32]

King et al. presented an approach for integrating multiparty session types into web
development using the PureScript language [47]. PureScript is a strongly typed
functional language that compiles to JavaScript. This proposal takes advantage of
its expressive type system to provide static guarantees for protocol conformance. We
outline the main components of their EFSM encoding:

29

2.2. RELATED WORK

Actions as type classes The semantics of the state transition function in the
EFSM express that a (state, action) tuple uniquely defines a successor state.
These semantics can be expressed by multi-parameter type classes (MPTC) with func-
tional dependencies: class Send r s t a | s -> t r a defines Send as a MPTC
parameterised by recipient r, current state s, successor state t and payload type a;
s -> t r a expresses the functional dependency that, for an instance of this type
class, the current state uniquely determines the successor state, the recipient and
payload type. These type classes are independent of the EFSM.

Transitions as instances of type classes By encoding states as data types, valid
EFSM transitions are encoded as instances of the type classes. If S1 is an output state,
sending an Int to Svr with successor state S2, the PureScript encoding would be
instance SendS1 :: Send Svr S1 S2 Int. Because of the functional dependency,
the developer cannot instantiate an invalid transition (e.g. Send Svr S1 S3 Bool,
since S1 uniquely determines the other type parameters. PureScript statically re-
solves these type constraints at compile time.

Channel linearity by construction Whilst PureScript does not support linear
types, this proposal carefully designed the session runtime using a collection of com-
munication combinators to conceal the channel resource, which guarantees channel
linearity by construction.

This proposal is relevant to the problem we are tackling. In particular, the fi-
nal point about guaranteeing channel linearity by construction is something we can
build upon in our solution, since linear types is a feature left to be desired in “main-
stream” programming languages. We also observe the challenges of session-typed
GUI programming, as shown by the careful choice made in [32] to use the Concur UI
framework [30] which builds UI elements sequentially to model sequential sessions.
Not doing so would make channel linearity violation possible (e.g. by binding a send
transition to a button click event, the button may still be active after the transition
is complete; clicking on it again will reuse the channel resource). Whilst King et
al. [32] supports multiparty session types, the communication protocol must de-
scribe all interactions to go through a centralised server role to respect the network
topology enforced by WebSocket transport.

As motivated in Section 1.1, the functional paradigm and sequential UI frame-
work are necessary features for the proposal to statically provide communication
safety guarantees, but this type of workflow is not compatible with modern web
programming practices and compromises on usability.

Session-Typed GUI Programming using Links [19]

Fowler presented the first formal integration of session typing and GUI program-
ming. His work formalised the Model-View-Update (MVU) architectural pattern for
GUI development. An MVU application features a model encapsulating application
state, a view function rendering the state on the user interface, and an update function

30

2.3. TYPESCRIPT

handling messages produced by the rendered model to produce a new model. Fowler
introduces the concept of model types to express type dependencies between these
components: a model type uniquely defines a view function, set of messages and
update function – rather than producing a new model, the update function defines
valid transitions to other model types. This approach guarantees channel linearity
for GUI programming: the update function transitions to a successor model, which
only renders an interface with the set of messages unique to that model, so channel
actions from the predecessor model are not rendered, which makes reuse impossi-
ble. The core MVU calculus is also extended with commands and linearity required
to express communication actions in session type theory.

Fowler’s proposal [19] is implemented using the Links web programming language
[5]. Links is a strict, typed, functional language that can be used to write full-
stack web applications; and similar to PureScript, it is compiled to JavaScript. As it
has a linear type system, session types can be implemented using native language
features to monitor linear channel usage. Links also supports error handling for
session types, as introduced in [20]; given side-effects must be made explicit in
functional programming, Fowler et al. [20] introduces a session cancellation operator
to ensure that channel resources are closed after handling side-effects, such as errors.

This work succeeds in retaining the declarative approach for writing web in-
terfaces, as the view function incorporates standard Hyper-Text Mark-up Language
(HTML). The novel approach of guaranteeing channel linearity in GUI programming
through the model type abstraction is something we can build upon. However, Links
does not support multiparty session types, and similar to [32], it can only express
server-centric communication structures over WebSocket transport.

2.3 TypeScript

We introduce the TypeScript language [2] as our choice of target language for session
type API generation. Developed by Microsoft Research, TypeScript is an extension
to JavaScript to address the deficiencies of the latter in developing and maintaining
large-scale complex applications. Syntactically, TypeScript is a superset of JavaScript,
so every JavaScript program is a TypeScript program. The TypeScript Compiler is
used to compile a TypeScript program into JavaScript source code, with full type
erasure.

We introduce specific language features used to implement our API generation
solution throughout the report as needed; here, we highlight the key properties of
the type system implemented in the language.

Structural Typing In a structural type system, type equivalence is determined by
shape rather than by name (which is the case in a nominal type system).

Consider the following TypeScript code:

1 class ThisSquare {

2 constructor(public side: number) { }

3 };

4

31

2.3. TYPESCRIPT

5 class ThatSquare {

6 constructor(public side: number) { }

7 };

8

9 const area = (sq: ThisSquare) => sq.side * sq.side;

10

11 area(new ThisSquare (2)); // ok

12 area(new ThatSquare (2)); // ok

13 area({ side: 2 }); // ok

The area function takes a ThisSquare as parameter. Under a structural type sys-
tem, Lines 12 and 13 will type-check, because ThatSquare and the object literal
created from scratch matches the shape of ThisSquare – all of them have a side

property typed number.
In languages (e.g. Java) that use a nominal type system, Line 12 will not type-

check because ThatSquare is not named ThisSquare.

Gradual Typing In a gradual type system, a program can have parts that are stat-
ically typed and other parts are dynamically typed [51]. TypeScript distinguishes
dynamically typed code using the any type.

1 // Invoke remote API

2 fetch(’https :// jsonplaceholder.typicode.com/todos /1’)

3 // Convert to JavaScript Object Notation

4 .then((response: Response) => response.json ())

5 .then((json: any) => {

6 // Up to the developer to correctly deserialise;

7 // incorrect implementations will cause

8 // runtime type error.

9 });

The rationale for this decision in [2] is that, JavaScript programs tend to inter-
act with data of unspecified types (such as fetching data from API calls over the
network); these parts need to be dynamically typed in order to give developers a
smooth transition into TypeScript, and for TypeScript to be usable in a distributed
system setting.

Based on the compatibility of TypeScript with JavaScript, we believe that TypeScript
API generation for session-typed web development best achieves our objective of
providing developers with a workflow that provides communication safety guaran-
tees in modern web programming through multiparty session types. We argue that the
type system of TypeScript, along with other language features we introduce through-
out the course of the report, is sufficient for implementing session type theory in a
manner that complements idiomatic web development practices.

32

Part I

Implementing Server-Centric
Topologies over WebSockets

33

Chapter 3

SESSIONTS: Session Type API
Generation for TypeScript

In this chapter, we present SESSIONTS, a toolchain for generating TypeScript APIs
that developers can use to write web applications that conform to their specified
communication protocol. The toolchain is publicly available at [39].

SESSIONTS supports communication protocols that define server-centric topolo-
gies, meaning that: (1) there is exactly one participant executed on the Node.js
runtime; (2) all other participants run on the web browser; and (3) all non-server
participants only communicate with the server. An example would be the NOUGHTS

AND CROSSES multiplayer game (Listing 10.1). We relax this assumption in Part II.

3.1 Development Workflow

We motivate our development workflow from previous work [28, 32, 49] by ex-
tending the Scribble toolchain and generating APIs that integrate the developer’s
application logic into the execution of the communication automata.

We visualise the workflow in Figure 3.1 and provide a brief overview:

1. The developer supplies the communication protocol written in Scribble (Sec-
tion 3.1.1), stating the role (hereafter endpoint) to generate APIs for, and the
code generation target (i.e. whether the role runs on the back-end web server
or the front-end web browser).

2. SESSIONTS delegates to the Scribble toolchain for verifying the well-formedness
of the protocol and expects to receive a DOT graph representation of the end-
point FSM (Section 3.1.2). SESSIONTS parses the endpoint’s interactions from
the DOT graph and generates TypeScript APIs for the developer (Section 3.1.3)
tailored to the specified target.

3. The developer implements their web application using the generated APIs. Im-
plementations that pass the type-checking phase of the TypeScript Compiler
are guaranteed to be free from communication errors by session type theory.

34

3.1. DEVELOPMENT WORKFLOW

Figure 3.1: Overview of SESSIONTS Development Workflow

3.1.1 Protocol Specification with Scribble

We use the Scribble protocol description language, as presented in [57], for formalis-
ing the communication structure. This is inspired by existing work on implementing
session type theory in mainstream programming languages [28, 32, 42, 49]. We use
the variant of the Scribble language discussed in Section 2.2.1.

Type declaration statements Specific to SESSIONTS, the developer is not re-
quired to explicitly add type declaration statements for built-in types. Listing 3.1
is a syntactically correct Scribble protocol as far as SESSIONTS is concerned. In-
ternally, SESSIONTS inspects the protocol file and parses existing type declarations
using regular expressions (or regex) – this is necessary to extract any custom data
types that will appear in the communication (for example, Listing 10.1), and allows
SESSIONTS to inject “boilerplate” type declarations for built-in TypeScript types be-
fore calling Scribble.

1 global protocol Adder(role Client , role Svr) {

2 choice at Client {

3 ADD(number , number) from Client to Svr;

4 RES(number) from Svr to Client;

5 do Adder(Client , Svr);

6 } or {

7 QUIT(string) from Client to Svr;

8 choice at Svr {

9 THANKS () from Svr to Client;

10 } or {

11 TERMINATE () from Svr to Client;

12 }

13 }

14 }

Listing 3.1: The ADDER Protocol

We will use the ADDER protocol as a running example to demonstrate how our

35

3.1. DEVELOPMENT WORKFLOW

work performs TypeScript API generation. This describes a binary session between
Client and Svr: if Client asks Svr to ADD two numbers, Svr responds with the
RESult; this loop continues until Client kindly asks to QUIT with a message, where
Svr either responds kindly with THANKS, or just says TERMINATE, but both choices will
close the session.

3.1.2 From Scribble to EFSM

Given the protocol and endpoint, we use Scribble to validate the well-formedness
of the protocol and extract information from the protocol relevant for the endpoint.
The latter is expressed as a finite state machine where each state restricts the pos-
sible transitions, and transitions between states are represented by communication
actions, i.e. the sending or receiving of a message.

Scribble expresses the EFSM using the DOT graph description language [23], with
each communication action encoded as the label of the corresponding state tran-
sition. SESSIONTS uses the pydot library [48] to parse the graph into an internal
representation of the EFSM. We define an EfsmBuilder class with APIs designed for
constructing the EFSM representation by iterating over the state transitions from the
DOT representation.

1 @dataclass

2 class Endpoint:

3 protocol: str

4 role : str

5 server : str

6 efsm : EFSM

7 types : typing.Iterable[DataType]

Listing 3.2: The Endpoint API

As the code generation process requires additional information, we define an
Endpoint dataclass1 (Listing 3.2) to contain the EFSM representation, along with
the information passed in from the command line (protocol, role, server) and the
custom type declarations (types) parsed from the protocol specification.

3.1.3 API Generation

Formally, API generation is a function of the constructed Endpoint instance and the
target specified in the command line. We use a different code generation strategy for
implementations running on the server (Chapter 4) versus the browser (Chapter 5),
hereafter referred to as server-side endpoints and browser-side endpoints respectively.
In this subsection, we explain how we perform API generation at a higher level of
abstraction.

1A Python dataclass uses the @dataclass decorator to generate “boilerplate” methods, such as the
constructor, based on the properties listed in the annotations.

36

3.1. DEVELOPMENT WORKFLOW

Traditional methods of code generation involve applying the Visitor pattern on
the internal representation. In the context of the MPST framework, this may involve
defining a Visitor class that implements a generate() operation to be performed on
the EFSM states, such that the generate() implementation specialises to the type of
EFSM state, i.e. send, receive or terminal. This is not straightforward in Python, as
method overloading is not supported, so the “visit” methods would need different
names. More importantly, it is less straightforward to visualise the structure of the
generated code, as the string interpolation aspect is likely to be interleaved with
source code implementing additional logic for code generation.

For SESSIONTS, we leverage the Jinja [31] template engine library for code gen-
eration. We first construct templates for the TypeScript files we wish to generate,
specifying placeholders for dynamic content (to be extracted from the Endpoint ob-
ject); we then provide Jinja with the template path and the Endpoint object, and the
template engine renders the TypeScript code by filling in the dynamic placeholders.
We show an example in Listing 3.3.

efsm.ts.j2
1 export namespace Message {

2 {% for state in endpoint.efsm.nonterminal_states %}

3 {% for action in state.actions -%}

4 export type S{{ state ~ action.label }} = {

5 label: Labels.S{{ state }}.{{ action.label }},

6 payload: [{{ action.payloads|join(’, ’) }}],

7 };

8 {% endfor %}

9 export type S{{ state }} = {% for action in state.actions -%}

10 | S{{ state ~ action.label }}{% endfor %};

11 {% endfor %}

Listing 3.3: Example Jinja Template for SESSIONTS API Generation

Jinja provides lightweight syntax for injecting content and markup for simple con-
trol structure: {{ state }} denotes a placeholder for Jinja to render the state vari-
able, and the {% %} syntax is used for conditionals and control structures (such as for
loops, to dynamically render the enclosing “sub-template” by iterating over a collec-
tion). The main advantage that Jinja brings is that it decouples the “presentation”
from the “content” and makes it quick to prototype and extend the generated code,
usually without modifications to the code generator.

As we generate a different set of TypeScript artefacts depending on the specified
target, we structure the different code generators using the Strategy design pattern.
Each target extends the abstract base class CodeGenerationStrategy and imple-
ments its own generate() method to return a list of (path, content) tuples. Each
tuple specifies the content of the generated code, and the file path where which to
save the TypeScript code. We define a CodeGenerator class that is parameterised
by target: when instantiated, it will select and perform the specialised generate()

method based on target, before formatting and committing the generated code to
the file system. We implement a subclass hook in CodeGenerationStrategy (List-

37

3.2. IMPLEMENTATION

1 class CodeGenerationStrategy(ABC):

2

3 target_to_strategy = {}

4

5 def __init__(self):

6 super (). __init__ ()

7

8 @classmethod

9 def __init_subclass__(cls , *, target):

10 CodeGenerationStrategy.target_to_strategy[target] = cls

11 return super (). __init_subclass__ ()

12

13 @abstractmethod

14 def generate(self , endpoint: Endpoint):

15 pass

16

17 # Register the code generator to the

18 # command line interface using the ‘node’ identifier.

19 class NodeCodeGenerationStrategy(target=’node’):

20 ...

21

22 class BrowserCodeGenerationStrategy(target=’browser ’):

23 ...

Listing 3.4: Implementing CodeGenerationStrategy

ing 3.4), such that each derived class must provide the target name to “register”
with the base class (Line 10), and the base class keeps an internal mapping of the
concrete strategies (Line 3); CodeGenerator accesses this mapping to select the ap-
propriate strategy.

3.2 Implementation

SESSIONTS is written in Python. It offers flexible syntax, a rich standard library, and
a healthy ecosystem of DOT graph parsers and template engines, making it a suitable
choice for implementing our code generator. Its rich standard library also simplifies
many tasks: we use the argparse package to generate an informative command line
interface (CLI) for developers to supply the correct information (Listing 3.5) to use
SESSIONTS and the subprocess package to invoke external tools, such as Scribble
and the TypeScript Compiler.

We use Docker [37] to encapsulate our code generator and its dependencies – we
found the canonical Python virtual environment solution to be insufficient, as the
Scribble toolchain is a standalone Java executable with non-trivial setup procedures.
The Dockerfile builds a Docker image with Scribble and the Python dependencies
all pre-configured, and the provided build.sh script instantiates the image as a
container for development. The start.sh script enters the Docker container devel-
opment environment and mounts the local project directory onto the container as a
volume to synchronise changes between the two environments.

38

3.3. TESTING

1 root@mpst_ts :/home# python3 .7 -m mpst_ts --help

2 usage: __main__.py [-h] [-s SERVER] [-o OUTPUT]

3 filename protocol role {browser ,node}

4

5 positional arguments:

6 filename Path to Scribble protocol

7 protocol Name of protocol

8 role Role to project

9 {browser ,node} Code generation target

10

11 optional arguments:

12 -h, --help show this help message and exit

13 -s SERVER , --server SERVER

14 Server role (only applicable for browser targets)

15 -o OUTPUT , --output OUTPUT

16 Output directory for generation

Listing 3.5: Entry Point for SESSIONTS

3.3 Testing

The challenge for testing SESSIONTS is to verify that the generated code is valid
TypeScript code. Here, we detail our methodology for system testing – executing
SESSIONTS end-to-end and testing the generated code.

We implement a test suite on top of unittest APIs for verifying that SESSIONTS
generates valid TypeScript code. This is especially useful as our templates contain
both TypeScript syntax and Jinja markup, so we cannot easily make sure that each
template generates valid code, let alone checking that the collection of templates
generate a valid TypeScript project altogether.

1 def test_code_generation(self):

2 flags = [scr , protocol , role , target]

3 if svr is not None:

4 flags.append(’-s’)

5 flags.append(svr)

6

7 rc = mpst_ts.main(flags)

8 self.assertEqual(rc , 0)

9

10 completion = subprocess.run(self.npm_test_cmd , shell=True)

11 self.assertEqual(completion.returncode , 0)

12

13 shutil.rmtree(self.output_dir)

Listing 3.6: Main logic in SESSIONTS system testing test case

We provide a collection of Scribble protocols under protocols/ to generate test
cases, one per protocol participant. For each test case, the test suite (Listing 3.6)
will:

39

3.3. TESTING

1. Invoke SESSIONTS to generate the TypeScript project (Line 7), expecting a zero
exit code (Line 8);

2. Run the TypeScript Compiler on the generated directory (Line 10), passing the
noEmit flag to purely perform type-checking, and expecting a zero exit code
(Line 11).

As the generated TypeScript code makes assumptions about the environment in
which it is used (for example, having the ws WebSocket package installed on server-
side endpoints), we require a sandbox environment to type-check the generated
code. The sandbox contains the minimal boilerplate required for testing – this in-
volves having the WebSocket package installed for server-side endpoints, the React.js
framework (Chapter 5) instantiated for browser-side endpoints, and corresponding
tsconfig.json files for both targets to be picked up by the TypeScript Compiler.

For convenience, we extend the Dockerfile and build.sh script to set up the sand-
box environments. We also make use of the optional --output flag exposed by the
SESSIONTS CLI to redirect the generated code to the correct sandbox environment
to simply the testing process.

40

Chapter 4

NODEMPST: Back-End Session Type
Web Development

In this chapter we present NODEMPST, our session type API generation strategy for
server-side endpoints implemented on the Node.js runtime [43]. We continue to use
the running example of the ADDER protocol (Listing 3.1), and refer to the FSM of
the Svr endpoint (Figure 4.1) throughout this chapter.

We discuss the challenges of implementing session types on the Node.js runtime
(Section 4.1) and motivate our approach (Section 4.2). We explain our design
choices for encoding the EFSM for server-side endpoints (Section 4.3), and present a
session runtime designed to execute the EFSM on Node.js (Section 4.4). We conclude
by analysing some alternative designs (Section 4.5) and evaluating the limitations
of our approach (Section 4.6).

Figure 4.1: Svr Endpoint FSM in ADDER Protocol

41

4.1. CHALLENGES

4.1 Challenges

Our goal with NODEMPST is to generate session type implementations that provide
as much static communication safety guarantees as possible, in a manner suitable for
both the TypeScript language and the single-threaded event loop model in Node.js
TypeScript’s type system is neither affine nor linear, so we need to work around the
language’s limitations to enforce linear channel usage. We also aim to provide the
developer with idiomatic event-driven APIs commonly found in server-side Type-
Script development.

4.2 Approach

We motivate our approach from [27, 32] to generate handler-style APIs to be im-
plemented by developers. This aligns with idiomatic TypeScript practices of defining
callbacks in the application logic. We type the parameters and return values of the
handlers to reflect the message types specified in the protocol. By strictly specify-
ing handlers for send and receive actions, we do not expose send and receive APIs
to the developer, contrary to [27], making it impossible for the developer to reuse
channels, hence saving the need for linearity checks.

The responsibility of guaranteeing linear channel usage now falls under the run-
time that executes the EFSM. As we generate this for the developer, we can provide
static linearity guarantees by construction.

When executing NODEMPST to generate code for the Svr endpoint specifying the
node target, the developer obtains the following files:

• EFSM.ts: TypeScript types constructed for the EFSM encoding (Section 4.3);

• Svr.ts: Session runtime for executing the EFSM (Section 4.4).

4.3 EFSM Encoding

We show the structure of the generated EFSM.ts file in Listing 4.1. Note that the
formal definition of the EFSM in Section 2.2.1 contains more than just states and the
state transition function, so we encode the additional information as well. Each type
of information is grouped into their own namespace, and are collectively exported in
the EFSM module for the developer to use.

4.3.1 Roles, Labels, Messages

We generate TypeScript constructs for these pieces of information so they can be
reused throughout the generated code, and in particular, the runtime.

42

4.3. EFSM ENCODING

EFSM.ts
1 // Section 4.3.1

2 export namespace Roles {...}; // for roles in protocol

3 export namespace Labels {...}; // for message labels

4 export namespace Message {...}; // for message structure

5

6 // Section 4.3.2

7 export namespace Handler {...}; // for handler APIs

8

9 // Section 4.3.3

10 abstract class ISend {...};

11 abstract class IReceive {...};

12 abstract class ITerminal {...};

13 export namespace Implementation {...};

Listing 4.1: Structure of Generated EFSM Encoding for Server Endpoint

Roles The runtime needs to know the identifiers of participants involved in the
session, and who to send/receive from depending on the EFSM state. We generate
string enumerations, or enums, for each participant in the protocol, excluding the
first person endpoint. The enum appropriately groups the collection of participants
involved and scales for multiparty sessions, whilst making it simple to derive other
types, e.g. a mapping from participants (indexed by the enum) to WebSockets.

Labels The runtime needs to decide which handler to invoke, based on the label
of the received message. Similarly, the developer needs to provide handlers spec-
ifying their internal choice (e.g. which message label to send) and how to handle
external choice (e.g. how to handle received message with particular label). For
the same reason, we also generate string enums for message labels, one enum per
state. Enums are compatible with switch statements, which can be used to dispatch
messages to the correct handlers in the runtime based on the message label. We give
an example in Listing 4.2.

1 // Inside the Labels namespace ...

2 export enum S51 { ADD = "ADD", QUIT = "QUIT", };

3 export enum S53 { RES = "RES", };

4 export enum S54 { THANKS = "THANKS", TERMINATE = "TERMINATE", };

Listing 4.2: Generated Label Enums for Svr endpoint

Messages The handler APIs that we generate for developers need to refer to
the label identifier and payload type: we refer to this as the message structure.
Each message structure is expressed as an interface with properties for the label and
payload. These interfaces are grouped based on the EFSM state they belong using

43

4.3. EFSM ENCODING

union types. We illustrate this in Listing 4.3. By expressing the payload type as a
tuple1, we easily generalise our type definition to polyadic payloads.

1 // Inside the Message namespace ...

2 export interface S54THANKS {

3 label: Labels.S54.THANKS ,

4 payload: [string],

5 };

6 export interface S54TERMINATE {

7 label: Labels.S54.TERMINATE ,

8 payload: [],

9 };

10

11 export type S54 = | S54THANKS | S54TERMINATE;

Listing 4.3: Generated Message Type Definition for State 54

4.3.2 Handler APIs

Handler APIs act as the seams of the EFSM. A seam is “a place where one can alter
the behaviour in the program without editing in that place” [15]. The developer
implements handlers to define what message to send and how to process a received
message, without accessing the send and receive APIs that are used to execute the
EFSM. We collect these APIs under the Handler namespace. We introduce the gen-
erated handlers for sending and receiving states. These are non-terminal states that
will involve the encoding of its successor state. The reader will notice that, in the
listings below, the successor state is stated to be under the Implementation names-
pace: we explain in Section 4.3.3, but for now, it is sufficient to acknowledge that
those refer to the encoding of the successor state. As a design choice, we do not gen-
erate handlers for terminal states, because the semantics of inactivity mean there is
nothing to handle.

Send We model selections using a union type to encapsulate the possible send
actions, as shown in Listing 4.4. Each send action is encoded as a tuple of the
label, the payload, and the successor state encoding. We see some benefits from
defining Message Types as interfaces: TypeScript supports index type queries to ex-
tract named property types, so Message.S54THANKS[’payload’] would resolve to
[string], based on the interface definition in Listing 4.3.

We generalise deterministic send actions as a trivial selection, as motivated from
the theory (Figure 2.4), so the encoding for State 53 in the Svr FSM would be the
union of a single tuple.

Receive We model branching using an interface to enumerate the possible branches,
as shown in Listing 4.5. As with send states, we generalise deterministic receive ac-
tions as a trivial branch, which would be an interface with one property.

1In TypeScript, a tuple is an array with fixed size and known types for elements at each position.

44

4.3. EFSM ENCODING

1 // Inside the Handler namespace ...

2 export type S54 =

3 | [Labels.S54.THANKS , Message.S54THANKS[’payload ’],

4 Implementation.S52]

5 | [Labels.S54.TERMINATE , Message.S54TERMINATE[’payload ’],

6 Implementation.S52];

Listing 4.4: Generated Type for Svr Send State in ADDER protocol

1 // Inside the Handler namespace ...

2 export interface S51 {

3 [Labels.S51.ADD]: (... payload: Message.S51ADD[’payload ’]) =>

4 Implementation.S53 ,

5 [Labels.S51.QUIT]: (... payload: Message.S51QUIT[’payload ’]) =>

6 Implementation.S54 ,

7 }

Listing 4.5: Generated Type for Svr Receive State in ADDER protocol

The interface properties are defined by the labels of the permitted receive actions:
the square-bracket notation means that the property name is derived from the value
of the enclosing variable, so [Labels.S51.ADD] resolves to the ’ADD’ string.

The interface values are functions parameterised by the message payload, and
must return the successor state encoding. We see another benefit of defining the
payload in the message structure interface as a tuple: we can define the receive
handler parameter using the spread syntax, which allows the tuple expression to be
expanded into a list of function arguments. More concretely, as shown in Listing 4.6,
it allows the developer to pattern match on the individual payload values (Line 2)
rather than defining their function to expect a tuple and manually destructing it
(Line 5), so the former is more intuitive.

1 // More intuitive

2 const withSpread = (x: number , y: number) => {...}

3

4 // Needs manual destructuring

5 const withoutSpread = (payload: [number , number]) => {...}

6

7 const handler1: Handler.S51 = { ADD: withSpread , ... }; // OK

8 const handler2: Handler.S51 = { ADD: withoutSpread , ... }; // OK

Listing 4.6: Example Handler Signature Compatible with Spread Syntax

4.3.3 Wrapping Handlers in “Implementations”

The behaviour of the runtime is dependent on the current state, so the runtime
needs a way to distinguish between all the different states – one can think of this
as implementing the state transition function from the theory, which is analogue to

45

4.3. EFSM ENCODING

overloading a next() method for each state. TypeScript does not support method
overloading, so the next() method would need to be defined on some base type
assignable to all states, and the implementation of the next() method can use a
switch statement to distinguish between the different states. Currently, the state is
only determined by the handler to be implemented by the developer, so the switch
statement and base type would have to be defined on the handler APIs.

Unfortunately, this is not practical. Handlers for send states are union types and
handlers for receive states are interfaces, both of which are not supported by the
instanceof operator.

Distinguishing Handlers using Conditional Types

We attempt to address this by defining an enum of state identifiers for each type
of state (i.e. an enum for send states, an enum for receive states) upon which to
execute the EFSM. This can solve the switch statement problem. Now, we are left
with defining a mapping between the state identifier enum to the handler type. This
construct would be analogue to dependent types, which again, is not a feature of the
TypeScript type system.

We try to define type dependencies using conditional types in TypeScript. A condi-
tional types is a type-level expression

T extends U ? X : Y;

which reads, if T is assignable to U, then the type is X; otherwise, the type is Y.
Combined with generic constraints2, we can approximate the dependency between

the state identifier enum and the generated handler API using something similar to
Listing 4.7.

1 enum SendState { S53 , S54 };

2 enum ReceiveState { S51 };

3 type State = SendState | ReceiveState;

4

5 type SendHandler <S extends SendState > =

6 S extends SendState.S53 ? Handler.S53 :

7 S extends SendState.S54 ? Handler.S54 : never ;

8

9 type ReceiveHandler <S extends ReceiveState > =

10 S extends ReceiveState.S51 ? Handler.S51 : never;

Listing 4.7: Approximating Type Dependency using Conditional Types

We intend to use this construct when defining the EFSM transition function for
the runtime, for each type of state, so the method signature for transitioning to send
states would resemble Listing 4.8

Unfortunately, this approach does not work for the simple fact that conditional
types were not designed to be exploited in this manner. The main limitation of

2<T extends U> defines a generic type T and enforces that it must be a type assignable to U.

46

4.3. EFSM ENCODING

declare function transitionToSend <S extends SendState >(

stateId: S, handler: SendHandler <S>

);

Listing 4.8: EFSM Transition Function using Conditional Types

conditional types is its distributivity when the type parameter is an union type (which
is the case for enums, as S = SendState.S53 | SendState.S54 | ...), where

(T1 | T2) extends U ? X : Y

results in the conditional type being distributed among each constituent,

(T1 extends U ? X : Y) | (T2 extends U ? X : Y)

so the type expression returns to an union type,

X | Y

Returning to Listing 4.8, the type of handler will end up being a union type, rather
than the “dependent type” construct we were hoping for.

Distinguishing Handlers using Discriminated Unions

Instead, we leverage discriminated unions: all members of the union type share a
common property (the discriminant) of which they each define an unique value for,
so that the TypeScript Compiler can refine the union to the specific constituent upon
checking the value of the discriminant (e.g. applying a switch statement).

We illustrate this with an example below. A Shape is either a Circle or Square.
Both define a property name type, which is the discriminant property, along with
properties unique to their shape (i.e. radius for circles, side lengths for squares).
The area() function uses the discriminant property (here, in a switch statement) to
narrow the type of s and perform operations specific to that shape.

1 // The ‘type ‘ property is the discriminant

2 interface Circle { type: ’Circle ’, radius: number };

3 interface Square { type: ’Square ’, side: number };

4 type Shape = Circle | Square;

5

6 function area(s: Shape) {

7 switch (s.type) {

8 case ’Circle ’: return 3.14 * s.radius; // s: Circle

9 case ’Square ’: return s.side * s.side; // s: Square

10 }

11 }

For the time being, it is sufficient to understand that for each EFSM state, in
addition to the API defined under the Handler namespace, it also has a wrap-
per API defined under the Implementation namespace (Listing 4.9), which defines
the type discriminant property internally (via inheritance). This explains why the
successor state encodings in Listings 4.4 and 4.5 were defined as such. The type
Implementation.Type is the discriminated union, which is used by the runtime.

47

4.4. RUNTIME

1 // The ‘type ‘ property is the discriminant

2 abstract class ISend { type: ’Send’ = ’Send’; ... }

3 abstract class IReceive { type: ’Receive ’ = ’Receive ’; ... }

4 abstract class ITerminal { type: ’Terminal ’ = ’Terminal ’; ... }

5

6 export namespace Implementation {

7 export type Type = ISend | IReceive | ITerminal;

8

9 export class S51 extends IReceive {

10

11 // Stores the handler defined by the developer

12 // as a private property

13 constructor(private handler: Handler.S51) { super (); }

14 ...

15 }

16 ...

17 };

Listing 4.9: Discriminated Unions in EFSM for Server-Side Endpoints

We discuss our runtime implementation shortly (Section 4.4), where we disclose
more details regarding the role of the Implementation wrapper API in the runtime.

4.4 Runtime

We define the session runtime for the Svr endpoint of the ADDER protocol in Svr.ts,
named after the endpoint. It exposes a public API with seams for the developer
to pass in the WebSocket server and application logic (i.e. implementations of the
handler APIs). It is developer’s responsibility to construct the WebSocket server and
set it up to listen for incoming connections. Internally, it keeps a private API for
executing the EFSM, when all participants have joined the session.

1 // Exported to developer

2 export class Svr {

3 constructor(wss: WebSocket.Server ,

4 initialState: Implementation.S51) { ... }

5 ...

6 }

7

8 // Not exported to developer

9 class Session {

10 private wss: WebSocket.Server;

11 private initialState: Implementation.S51;

12 private roleToSocket: RoleToSocket;

13 ...

14 }

The role of the public API is to manage incoming connections and wait for all
participants to join the session (Section 4.4.1), before handing off to the private API
to execute the EFSM (Section 4.4.2).

48

4.4. RUNTIME

4.4.1 Managing Connections

The constructor of the public API class sets up the framework for mapping incoming
WebSocket connections to participants. The main challenge is to wait for all partic-
ipants to connect to the server endpoint before EFSM execution begins. We address
this by defining an internal protocol for managing session joining – since we gener-
ate the runtime for both server and browser endpoints, we can implement this in a
way that is transparent to the developer.

1 const waiting: Set <Roles.Peers > = new Set([Roles.Peers.Client]);

2

3 // Mapping of roles to WebSocket connections

4 const roleToSocket: Partial <RoleToSocket > = {

5 [Roles.Peers.Client]: undefined ,

6 };

7

8 // Invoked when a connection request is received

9 const onSubscribe = ({ data , target: socket }) => {

10

11 // Deserialise connection request message

12 const { connect: role } = JSON.parse(data)

13 as Message.ConnectRequest;

14

15 // Ignore if role is already taken

16 if (! waiting.has(role)) { return socket.close (); }

17

18 // Map the role in the connection request to this WebSocket

19 roleToSocket[role] = socket;

20 waiting.delete(role);

21

22 // Start executing EFSM when all roles have joined

23 if (waiting.size === 0) {

24 new Session(wss , roleToSocket as RoleToSocket , initialState);

25 }

26 };

27

28 // For every new connection , process message with ‘onSubscribe ‘

29 wss.addEventListener(’connection ’, ws => {

30 ws.onmessage = onSubscribe;

31 });

Listing 4.10: Handling Connections in Server Endpoint

We show this in Listing 4.10 and walk through the main parts:

1. The server keeps track of the participants that have yet to join the session – this
is initialised to the complete set of non-server endpoints at the start (Line 1).

2. Browser endpoints request to join the session by sending a connection request
with the role identifier as payload (Line 13). We generate role enums for
browser targets in the same way, so the server can correctly interpret the mes-
sage. We listen to connection requests by overriding the onmessage event lis-
tener for every new connection (Line 30).

49

4.4. RUNTIME

3. If the role is already occupied, then the server responds by closing the connec-
tion (Line 16).

4. Otherwise, the role is not occupied, so the server binds the WebSocket (which
the message was received from) to the role (Line 19). This is accumulated in
an interface type, mapping each role to an optional3 WebSocket property – for
roles who have not yet connected, we do not know the WebSocket binding, so
the WebSocket for these roles are undefined, as initialised at the start (Line 4).

5. When the server is no longer waiting for any participants, it notifies all other
roles through the bounded WebSocket connections that the session will start,
and delegates EFSM execution to the private API by constructing an instance
of the Session class (Line 24). The notification process is managed by the
Session class.

Object.values(roleToSocket). forEach(socket => {

socket.send(JSON.stringify(Message.ConnectConfirm));

});

6. We define the interfaces and factories for connection messages in the generated
EFSM.ts file under the Message namespace.

// Inside the Message namespace ...

export interface ConnectRequest { connect: Role.Peers };

export const ConnectConfirm = { connected: true };

4.4.2 Executing the EFSM

The Session class executes the EFSM. We define a transition function, next(), pa-
rameterised by the current state, The constructor of the Session class explicitly calls
next() with the initial state implementation provided by the developer to start EFSM
execution. next() invokes the handler defined by the developer and performs the
required channel actions for non-terminal states.

• For send states, the handler will return the label and payload to be sent, along
with the successor state implementation. The transition function should con-
struct and send the message, and transition to the successor state.

• For receive states, we change the message event listener on the WebSocket
to pass the incoming message to the handler. The handler will return the
successor state, which the runtime can transition to.

We conceptualise this in Listing 4.11. The discriminated union lets the runtime
figure out the type of the current state.

However, we still face problems with resolving types, as highlighted. Just because
we know that the current state is a send state, we do not know which particular

3TypeScript provides utility types for common type transformations: Partial<T> constructs a type
with all properties of T set to optional.

50

4.4. RUNTIME

1 next(state: Implementation.Type) {

2 // Distinguish between states using discriminant property

3 switch (state.type) {

4 case ’Send’: {

5 const [label , payload , succ]: ??? = state.handler;

6 this.send(???, label , payload); // Who to send to?

7 return this.next(succ);

8 }

9 case ’Receive ’: {

10 // Handle incoming messages using this anonymous function

11 this.wss.onmessage = ({ data }) => {

12

13 // Which message structure to use to deserialise?

14 const { label , payload } = JSON.parse(data) as ???;

15 const succ: ??? = state.handler[label](... payload);

16 return this.next(succ);

17 }

18 }

19 case ’Terminate ’: { return; }

20 }

21 }

Listing 4.11: Conceptual EFSM Transition Function for Server-Side Endpoint

state it is, so we cannot accurately type the handler (Line 5). The same problem
is amplified for the receive state: we need to know the specific receive state in
order to correctly serialise the message (Line 14) and interpret the successor state
(Line 15). We see another problem with handling send states: because we do not
know the specific send state, we do not know which participant to send the message
to (Line 6).

1 abstract class ISend {

2 type: ’Send’ = ’Send’;

3 abstract performSend(

4 next: EfsmTransitionHandler ,

5 send: (role: Roles.Peers , label: string , payload: any [])

6 => void ,

7): void;

8 };

9

10 abstract class IReceive {

11 type: ’Receive ’ = ’Receive ’;

12 abstract prepareReceive(

13 next: EfsmTransitionHandler ,

14 register: (from: Roles.Peers , messageHandler: MessageHandler)

15 => void ,

16): void;

17 };

Listing 4.12: Class Definitions for Implementation API

51

4.4. RUNTIME

These all reduce to the same core problem: the runtime needs to know the specific
state at compile-time4. We solve this through runtime polymorphism instead, since
the specific type of state is known at runtime. For each type of state, we define
a common API that can be invoked by the EFSM transition function. To achieve
runtime polymorphism, each concrete state must provide a specific implementation:
this motivates our design for defining the discriminated union using abstract classes
with abstract methods (Listing 4.12).

1 next(state: Implementation.Type) {

2 switch (state.type) {

3 case ’Send’: // recall Listing 4.9 Line 2

4 return state.performSend(this.next , this.send);

5 case ’Receive ’: // recall Listing 4.9 Line 3

6 return state.prepareReceive(this.next , this.register);

7 case ’Terminal ’: // recall Listing 4.9 Line 4

8 return;

9 }

10 }

Listing 4.13: Final EFSM Transition Function for Server-Side Endpoint

Using this approach, we can pass the transition function and channel actions from
the Session runtime class to the individual state Implementation classes: these are
also generated by NODETS, so we guarantee linear usage of channel resources by
construction as well. This significantly simplifies the design of the runtime (List-
ing 4.13), because the transition function no longer needs to know the type of the
specific state at compile-time.

By passing the specific functions defined in the runtime to the individual EFSM
states, we can visualise our runtime as a message passing abstraction (Figure 4.2):
the runtime uses the common performSend() or prepareReceive() API to delegate
to the specialised implementation, which will in turn ask the runtime to perform
specialised channel actions using the parameterised methods, and finally delegate
back to the runtime to transition to the specific successor state.

Remark. We need to be careful when passing instance methods as function arguments
– namely, the semantics of this is different. In short, we have to explicitly bind()

the Session object to the instance methods that we pass as function arguments:
1 // Inside the Session class constructor ...

2 this.next = this.next.bind(this);

3 this.send = this.send.bind(this);

4 this.register = this.register.bind(this);

Not doing so will result in this taking a different value (either the global object
or undefined).

We elaborate on how this mechanism handles the sending and receiving of mes-
sages in Sections 4.4.3 and 4.4.4 respectively.

4Whether TypeScript “compiles” or “transpiles” (or even “transcompiles” [16]) to JavaScript is not
relevant to our work; we stick with compilation and keep our terminology consistent.

52

4.4. RUNTIME

Figure 4.2: “Message Passing” Abstraction of EFSM Execution for Server Endpoints

4.4.3 Sending Messages

This is rather straightforward: we show the generated code in Listing 4.14.

We get the label, payload and successor implementation directly from the handler
implemented by the developer, accurately typed by how we define the handler API
in EFSM.ts. The developer does not need to specify which role to send to: this is
a sensible design choice, as we know this from the Scribble protocol, so we do not
need the developer to specify separately. As a result, we generate the code to send
the message to the correct role (Line 10). We use the send() method passed down
by the runtime to commit our communication action: the runtime will handle how
to serialise the message and perform the send. We guarantee that send() is called
exactly once by construction, thus channel linearity is never violated. Finally, we
use the parameterised EFSM transition handler to notify the runtime which specific
state to transition to.

53

4.4. RUNTIME

1 export class S54 extends ISend {

2 constructor(private handler: Handler.S54) { super (); }

3

4 performSend(

5 next: EfsmTransitionHandler ,

6 send: (role: Roles.Peers , label: string , payload: any [])

7 => void

8) {

9 const [label , payload , successor] = this.handler;

10 send(Roles.Peers.Client , label , payload);

11 return next(successor);

12 }

13 }

Listing 4.14: Generated Code for Implementation API for Send State

Sending through WebSockets We define message structures as interfaces, which
are represented by objects. By convention in SESSIONTS, we serialise messages
into JavaScript Object Notation (or JSON) [46] using the built-in JSON.stringify()

method.

1 send(role: Roles.Peers , label: string , payload: any []) {

2 this.roleToSocket[role].send(JSON.stringify ({

3 label , payload

4 });

5 }

They are decoded using the same interface schema on the receiving end using
JSON.parse(). Whilst the method return type is the dynamic any type, we guarantee
type safety by construction as we performed the serialisation in the first place, so we
can safely interpret the deserialised content using a concrete type.

4.4.4 Receiving Messages

We need to update the message event listener on the WebSocket to use the devel-
oper’s handler – specific to the current state – to process the message. Our approach
is to keep the WebSocket message event listener untouched, but define it in a way
that allows dynamic behaviour. We walk through the concept implemented in (List-
ing 4.15):

1. Session keeps track of the current message receive handler (Line 5). The ?

syntax denotes it is an optional type: not every state is a receive state, so there
does not have to be an active message handler.

2. The receive handler does not need a specialised type (Line 1). The receive
handler is defined in the Implementation class of the concrete receive state, so
it will deserialise the message to the correct form.

3. The register() method (Line 19) is passed to the Implementation class of
the concrete receive state, which will construct the message handler around

54

4.4. RUNTIME

the developer’s handler implementation and register it with the runtime.

4. When a message is received from the channel, we dynamically process it with
the current registered handler (Line 30). We encapsulate this dynamic be-
haviour in an instance method and bind it as an event listener (Line 12) for
the WebSocket connection of each non-server endpoint.

1 type MessageHandler = (message: any) => void;

2

3 class Session {

4 // Optional type , same as ‘MessageHandler | undefined ‘

5 private handler ?: MessageHandler;

6

7 constructor (...) {

8 ...

9 // Process incoming messages from each WebSocket

10 // using ‘this.receive()‘

11 Object.values(this.roleToSocket).

12 .forEach(ws => ws.onmessage = this.receive.bind(this));

13

14 // Initialise handler as undefined

15 this.handler = undefined;

16 }

17

18 // Set the handler to be used to handle the next receive event

19 register(handler: MessageHandler) { this.handler = handler; }

20

21 receive ({ data }: WebSocketMessage) {

22 const handler = this.handler;

23

24 // ‘Unregister ‘ the current receive handler

25 this.handler = undefined;

26

27 // ‘handler ‘ has an optional type , so we first

28 // check if there is a value set , then invoke the handler.

29 // Same as ‘if (handler !== undefined) { handler(data); }‘

30 handler ?.(data);

31 }

32 }

Listing 4.15: Attempt to Dynamic WebSocket Message Event Listener

We also show the generated code for the Implementation class of the receive state
in Listing 4.16 – this should appear consistent with the explanation above.

Ideally, a more succinct (and direct) representation would be

1 (message: any) => {

2 const decoded = JSON.parse(message) as Message.S51;

3 const successor =

4 this.handler[decoded.label](... decoded.payload);

5 return next(successor);

6 }

55

4.4. RUNTIME

1 export class S51 extends IReceive {

2

3 constructor(private handler: Handler.S51) { super (); }

4

5 prepareReceive(

6 next: EfsmTransitionHandler ,

7 register: (from: Roles.Peers , messageHandler: MessageHandler)

8 => void

9) {

10 // Define dynamic WebSocket message event listener

11 const messageHandler = (message: any) => {

12

13 // Deserialise message

14 const decoded = JSON.parse(message) as Message.S51;

15

16 // Discriminate between messages using label

17 switch (decoded.label) {

18 case Labels.S51.ADD: {

19 // Invoke handler to get successor state

20 const successor =

21 this.handler[decoded.label](... decoded.payload);

22

23 // Invoke callback to advance EFSM

24 return next(successor);

25 }

26 case Labels.S51.QUIT: {

27 const successor =

28 this.handler[decoded.label](... decoded.payload);

29 return next(successor);

30 }

31 }

32 }

33

34 // Register the message handler under the

35 // WebSocket bound to the ‘Client ‘ role

36 register(Roles.Peers.Client , messageHandler);

37 }

38 }

Listing 4.16: Generated Code for Implementation API for Receive State

But this expresses a type dependency between label and payload which, as dis-
cussed (Section 4.3.3), cannot be implemented. However message structures pre-
cisely define a discriminated union (the label acts as the discriminant to distinguish
between payload types), so we handle this with a switch statement, at the cost of
having the same code in each case – TypeScript does infer the correct specific type
in each case statement, so code duplication here does serve a functional purpose.

Returning to Listing 4.15, note that the type of the handler property is optional –
this hints at a problem: how do we know that this.handler is set when a message is
received? The types imply that we do not, and this is indeed the case. In fact, when
we consider a multiparty context, our approach with receive handler registration

56

4.4. RUNTIME

using an optional value actually fails to guarantee correctness. We motivate the
problem with a worked example.

Example: “Out-of-order” message receives
Recall that Node.js is a single-threaded event loop runtime, so when a message ar-
rives, the onmessage event is queued, and current execution is not pre-empted.

Now consider a multiparty session specified by the global type

A→ S : M1(string). B→ S : M2(number). end

Suppose S is the server endpoint. We describe a possible execution flow for the
protocol that breaks our implementation:

1. S transitions to its initial state, “receive M1(string) from A”. The receive han-
dler for M1 is registered.

2. M2 arrives at S, so the onmessage handler is queued. This is perfectly plausible:
there is no causal relation between M1 and M2.

3. M1 arrives at S, so the onmessage handler is queued.

4. The onmessage handler for M2 is executed. The registered handler expects
M1(string), but it is called with M2(number), which raises a runtime type error.

This exposes a problem: the order of message arrivals may not correspond with
the order of receiving messages as specified in the protocol, so the message may ar-
rive before its corresponding handler is registered.

We observe that message arrivals do not have to be causally related. However, if
we consider a similar binary example

A→ S : M1(string). A→ S : M2(number). end

then M1 must arrive before M2, since this is sent through the WebSocket connection
between A and S, and FIFO guarantees are respected for each individual WebSocket
connection. We visualise the possible orders of message receive events in Figure 4.3.

We observe that defining the handler using an optional type is insufficient. We
need a similar mechanism for handling messages waiting for handlers, and we can-
not assume an ordering on the arrival of messages that are not causally related.

We proceed to generalise our approach from one optional-type handler to two
mappings: (1) a mapping from endpoint to message queues5, and (2) a mapping
from endpoint to handler queues. To simply put, if an incoming message is waiting
for its handler, it gets enqueued in the message queue labelled by the sender of the
message; when the handler is created, it pops the message off the queue and directly

5TypeScript arrays have built-in O(1) time complexity shift() and push() operations, which can
be used as a queue.

57

4.4. RUNTIME

(a) Message processed before transitioning to receive state

(b) Message processed after transitioning to receive state

Figure 4.3: Possible Orderings for Receiving Message and Registering Handler

processes it; the same logic applies for a handler waiting for its message. We could
have used a mapping from endpoint to optional type, but queue operations elegantly
hides the mechanics of Lines 22, 25 and 30 in Listing 4.15.

We outline the changes made to the Session class, as shown in Listing 4.17:

1. We construct types for these two mappings (Lines 1 and 2), using a generic
mapped typed defined below.

1 // Inside the Roles namespace ...

2 export type PeersToMapped <Value > = { [Role in Peers]: Value };

2. Empty queues are initialised for both mappings (Lines 19 and 20).

58

4.4. RUNTIME

3. Each endpoint has a different onmessage event listener, which will interact
with the message queue and handler queue corresponding to that endpoint.
We achieve this by changing the receive() method to be parameterised on
the role instead (Line 25), so it generates an event listener (Line 31) tailored
for receiving messages from that particular role.

4. The register() method now also takes the role as a parameter (Line 42) in
order to check the corresponding pair of queues.

Each endpoint must have consistency between its message queue and handler
queue. We get the consistency from the simple fact that Node.js is a single-threaded
runtime and execution is never pre-empted, so there is no need to worry about
atomic queue operations or locking data structures.

We walk through how this design addresses the problems in the previous example.

Example: Revisiting “out-of-order” message receives
Consider the same multiparty session specified by the global type

A→ S : M1(string).B→ S : M2(number).end

We show that our modified implementation addresses the problem:

1. S transitions to its initial state, “receive M1(string) from A”. The message queue
for A is empty, so the receive handler for M1 is registered under the handler queue
for A.

2. M2 arrives at S, so the onmessage handler is queued.

3. M1 arrives at S, so the onmessage handler is queued.

4. The onmessage handler for M2 is executed. The handler queue for B is empty, so
M2 is added to the message queue for B.

5. The onmessage handler for M1 is executed. The handler queue for A is non-empty,
so the handler is popped off the front of the queue and processes M1.

6. S transitions to the successor state, “receive M2(number) from B”. The message
for B is non-empty, so M2 is popped off the queue and processed by the handler.

This execution is free of communication mismatches.

4.4.5 Handling Termination

WebSocket connections should be closed when the session terminates, and both the
browser endpoint and the server endpoint are capable of closing connection. As we
generate code for both, we define a convention that the browser endpoint will close
the WebSocket connection, so we do nothing for this state at Listing 4.13.

59

4.4. RUNTIME

1 type RoleToMessageQueue = Roles.PeersToMapped <any[]>;

2 type RoleToHandlerQueue = Roles.PeersToMapped <MessageHandler []>;

3 type RoleToSocket = Roles.PeersToMapped <WebSocket >;

4

5 class Session {

6 ...

7 private roleToSocket: RoleToSocket;

8 private messageQueue: RoleToMessageQueue;

9 private handlerQueue: RoleToHandlerQueue;

10

11 constructor (...) {

12 ...

13 Object.values(Roles.Peers). forEach(role => {

14 const socket = this.roleToSocket[role];

15 socket.onmessage = this.receive(role).bind(this);

16 });

17

18 // Set up empty queues

19 this.messageQueue = { [Roles.Peers.Client]: [], };

20 this.handlerQueue = { [Roles.Peers.Client]: [], };

21

22 this.next(initialState); // Advance to initial state

23 }

24

25 receive(from: Roles) {

26

27 // Return a WebSocket message event listener

28 // that looks at the message/handler queue

29 // specific to the ‘from ‘ role

30

31 return ({ data }) => {

32 // Array.shift() can return undefined if empty

33 const handler = this.handlerQueue[from].shift ();

34 if (handler !== undefined) {

35 handler(data);

36 } else {

37 this.messageQueue[from].push(data);

38 }

39 }

40 }

41

42 register(from: Roles.Peers , handler: MessageHandler) {

43 const message = this.messageQueue[from].shift ();

44 if (message !== undefined) {

45 handler(message);

46 } else {

47 this.handlerQueue[from].push(data);

48 }

49 }

50 }

Listing 4.17: Modified Session class to correctly handle message receive events

60

4.5. ALTERNATIVE DESIGNS

4.5 Alternative Designs

The main alternative EFSM encoding would be similar to those presented in [28],
which encodes each EFSM state in its own class and expose communication APIs
(e.g. send and/or receive) for permitted state transitions. We would still a session
runtime to provide abstractions over the WebSocket APIs and handle the “out-of-
order” arrival of non-causally-related messages.

We conceptualise this alternative design (Figure 4.4) using the ONE ADDER pro-
tocol (Figure 4.4a), a simplified version of the ADDER protocol but with curried ad-
dition and without recursion. An implementation using the alternative API design
(Figure 4.4b) could have the state transition API return a tuple of payload and con-
tinuation, and we could express the event-driven nature of a receive action using
built-in async/await concurrency primitives. But ultimately, exposing channel re-
sources without a linear type system means that the developer could violate channel
linearity (i.e. by un-commenting Line 7), so we would need runtime checks as part
of the session runtime.

1 global protocol OneAdder(role Client , role Svr) {

2 NUM1(number) from Client to Svr;

3 NUM2(number) from Client to Svr;

4 SUM(number) from Svr to Client;

5 }

(a) The ONEADDER Protocol
1 const logic = async (init) => {

2 const [x, num2] =

3 await init.receive ();

4 const [y, sum] =

5 await num2.receive ();

6

7 // init.receive ();

8 return sum.send(x + y);

9 }

(b) Alternative API Design

1 const logic = new S4({

2 NUM1: (x) => new S6({

3 NUM2: (y) => ([

4 Labels.S7.SUM ,

5 [x + y],

6 new S5(),

7]),

8 }),

9 });

(c) Current API Design

Figure 4.4: Comparing Alternative NODEMPST Design using ONE ADDER Protocol

Looking at alternative designs for the runtime, we could adopt the approach pre-
sented in [22], which eliminates the need for our Implementation wrapper API by
pushing the workload back to the runtime in the form of a dense switch statement
enumerating all EFSM states. This may simply the developer API (by removing the
need for the Implementation wrapper), but results in a session runtime that in-
creases in complexity as the size of the EFSM increases.

61

4.6. LIMITATIONS

4.6 Limitations

Providing static communication safety guarantees have come at a cost of providing
relatively verbose APIs to the developer, which introduces a learning curve. In par-
ticular, the distinction between the Implementation and Handler API should be an
internal detail, but the developer still needs to use the Implementation API in their
logic.

Our APIs also rely on state identifiers, which also does not help code readability,
as it is neither apparent nor self-documenting what S51 refers to – the work of Hu
and Yoshida [28] augment the state identifiers with the channel action and labels
involved (e.g. S51_Receive__Add_Number__Quit_String).

Using handler-style APIs also mean that we require nested scoping to propagate
values between states, which does not scale elegantly as the levels of nesting in-
crease. For example, the following implementation of the ONE ADDER protocol
would be invalid if we define the handlers for the continuations separately, because
the received payload are no longer in scope (Line 3).

1 const first = new S4({ NUM1: (x) => secondOperand , });

2 const second = new S6({ NUM2: (y) => sum , });

3 const sum = [Labels.S7.SUM , ???, new S5()];

However, the developer may choose to propagate values between states through
persistent storage APIs (such as storing values in a database and retrieving them
for handlers of continuation states), so our generated APIs do not strictly enforce
scoping to be the only way to propagate values in the application logic.

4.7 Summary

In this chapter, we have presented our session type API generation strategy which
targets the Node.js runtime for server-side endpoints.

We motivated our approach of generating handler-style APIs that act as seams in
the session runtime which executes the EFSM. By doing so, the mechanism for send-
ing and receiving messages are not exposed to the developer, which makes channel
reuse impossible by construction.

We discussed our session runtime implementation in great depth and iterated
upon the design to arrive at a minimal runtime implementation that executes the
EFSM using a message-passing abstraction internally as well. In particular, we moti-
vated how to handle message receives in a way that preserves the message ordering
specified in the communication protocol.

Developers that implement their Node.js endpoint application using the generated
APIs enjoy protocol conformance by construction: the TypeScript type system will
prevent type mismatches in the handlers defined by the developer (e.g. sending a
string instead of a number, or using a message label that is not defined on the EFSM
state), and the handler-style APIs themselves conceal channel resources to prevent
channel reuse.

62

Chapter 5

REACTMPST: Front-End Session Type
Web Development

In this chapter, we present REACTMPST, our session type API generation strategy for
browser-side endpoints implemented using React [10]. We will refer to the FSM of
the Client endpoint (Figure 5.1) from the ADDER protocol throughout this chapter.

We highlight the challenges of session-typed GUI programming (Section 5.1) and
motivate our approach (Section 5.2) for adapting the proposal from [19] for the Re-
act.js framework, along with a brief introduction to the framework. We proceed to
explain how we leverage React to encode the EFSM (Section 5.3) and implement the
session runtime (Section 5.4), focusing on our novel approach for preventing chan-
nel reuse in GUI programming using React. We conclude by analysing alternative
designs (Section 5.5) and evaluating the limitations of our approach (Section 5.6).

Figure 5.1: Client Endpoint FSM in ADDER Protocol

63

5.1. CHALLENGES

5.1 Challenges

Our goal with REACTMPST is to generate session type implementations for the web
browser. Integrating session types into user interfaces is inherently difficult – assum-
ing channel actions are bound to user interface events (i.e. clicking a button sends
a message), how does one formalise channel linearity? How do we guarantee that,
if the button triggers a send at some EFSM state, that it triggers not more than one
channel action, and the user cannot trigger the action at another EFSM state?

We recap how existing work (as discussed in Section 2.2.2) tackle browser-side
session typing. Fowler [19] introduced the concept of model types to prevent chan-
nel linearity violation in his proposal for integrating session types with GUI program-
ming, but it uses the Links web programming language [5] which lacks compatibility
with the ecosystem of JavaScript libraries that one might use in front-end develop-
ment as well. The session type-safe web development framework presented by King
et al. [32] generates APIs for a functional target language in PureScript, and relies
on the Concur UI framework that constructs UIs sequentially.

As motivated in Section 1.1, we find these proposals to come at the cost of limit-
ing developer productivity by adopting unconventional practices that may require a
learning curve. Through our work, we aim to distil the key concepts from [5, 19, 32]
that provide session type safety for web-based GUI programming, and implement
them using mainstream front-end web development tools (specifically TypeScript
and React), to provide developers with an intuitive way to implement browser-side
endpoints that guarantee communication safety.

5.2 Approach

We motivate our approach from [19] by extending their work on multiple model types
motivated by the Model-View-Update architecture (MVU), introduced in Section 2.2.
The concept of model types express type dependencies between these components:
a model type uniquely defines a view function, set of messages and update function –
rather than producing a new model, the update function defines valid transitions to
other model types.

We leverage the correspondence between model types and states in the EFSM:
each state in the EFSM is a model type, the set of messages represent the possi-
ble channel actions available at that state, and the update function defines which
successor state to transition to, given the supported channel actions at this state.

We implement model types for the EFSM on top of the React.js (React) frame-
work developed by Facebook [10]. React is widely used in industry to create scalable
single-page web applications, so this makes our workflow beneficial in an industrial
context. The framework defines a way for data to flow between UI elements, and
empowers the UI to subscribe and “react” to data changes; we introduce the frame-
work in Section 5.2.1. We aim to implement similar behaviour with respect to the
EFSM: the UI should react to EFSM state transitions, so we can statically ensure that
the channel actions “present” on the browser at any given time are those permitted
by the current EFSM state.

64

5.2. APPROACH

When executing REACTMPST to generate code for the Client endpoint specifying
the browser target, the developer obtains the following groups of files:

• S[40-43].tsx1: Developer APIs for implementing EFSM states (Section 5.3);

– EFSM.ts, Message.ts, Roles.ts: Utility types for EFSM encoding;

• Client.tsx: Session runtime for executing the EFSM (Section 5.4);

– Session.ts, Types.ts: Utility types for session runtime.

5.2.1 The React Framework

We introduce the key features of the framework through illustrating a web-based
counter in Listing 5.1. The browser shows a counter (initialised to zero) and an
“Increment” button: when the user clicks on the “Increment” button, the count is
incremented and the UI shows the updated count.

1 type Props = { count: number };

2 class Count extends React.Component <Props >{

3 render () {

4 return {this.props.count};

5 }

6 }

7

8 type State = { count: number };

9 class App extends React.Component <{}, State >{

10 constructor(props: {}) {

11 super(props);

12 this.state = { count: 0 };

13 }

14

15 increment () { this.setState ({ count: this.state.count + 1 });

16

17 render () {

18 return (<div >

19 <button onClick ={this.increment.bind(this)}>

20 Increment

21 </button >

22 <Count count={this.state.count} />

23 </div >);

24 }

25 }

Listing 5.1: Simple Counter in React

1The .tsx file extension allows for embedding JSX [9] elements inside the file. JSX is a XML-like
syntax extension to JavaScript for elements and components.

65

5.3. EFSM ENCODING

Components A component is a reusable UI element which contains its own mark-
up and logic. Components implement a render() method which returns a React
element, the smallest building blocks of a React application. This is analogue to
the view function in the MVU architecture. React uses the JSX syntax extension [9]
to interpolate TypeScript logic (enclosed in curly braces) within HTML mark-up: in
Line 3, the Count component evaluates the TypeScript expression this.props.count

and renders it in bold on the web page.
Components can render other components, which give rise to a tree of UI ele-

ments. Line 17 shows that our Count component is rendered by the App component.

Uni-directional Data Flow User-defined components derive from the abstract base
class React.Component<P, S>, which is an abstract base class with generic type pa-
rameters <P, S> for props (short for properties) and state respectively.

The App component maintains count in its state (Line 12). Clicking on the in-
crement button updates the state (Line 15), which invokes a re-render, so the UI
“reacts” to state change.

Data flows from parent components down to their children, in the form of props.
The App component passes the count from its state to the Count component (Line 22),
which accesses it via this.props. Because App is re-rendered when the count is in-
cremented, the Count child component will also be re-rendered with updated props.

Virtual DOM (VDOM) and Reconciliation The render() methods give the devel-
oper a declarative API to specify what should be rendered. React uses a virtual DOM
abstraction, where the tree of React elements are rendered on the virtual DOM, and
React internally runs a reconciliation algorithm to update the browser DOM accord-
ingly using minimal operations.

For example, the <button> will not be re-rendered on the browser DOM on every
counter increment as it does not depend on the updated state.

5.3 EFSM Encoding

We encode each EFSM state as a React component. This encoding is consistent with
the semantics of model types, as outlined in Table 5.1. REACTMPST generates an
abstract React component class for each EFSM state. The developer implements the
generated API by extending the abstract class to define their own view function and
implement any abstract methods required by the EFSM state.

Our EFSM encoding for browser-side endpoints remain consistent with those for
server-side endpoints, in the sense that channel resources are abstracted away from
the APIs generated for the developer, so it is impossible to trigger channel actions
more than once at any given EFSM state, by construction.

66

5.3. EFSM ENCODING

Model Type Property Equivalent Abstraction for EFSM

View Function Each EFSM state is a React component with its own
render() method.

Set of Messages The permitted channel actions are defined either as com-
ponent props (for send states) or abstract instance meth-
ods (for receive states).

Update Function EFSM state components are rendered by a session run-
time, so they notify the runtime to trigger a transition.

Table 5.1: Implementing Model Types as React Components

5.3.1 Send States

For React components implementing send states, we need to guarantee that the
channel actions on the DOM precisely correspond to the permitted transitions. We
require that send actions can only be invoked by user-triggered events on UI ele-
ments, such as clicking a button or typing in a textbox – this generally aligns with
idiomatic front-end web development practices.

Without REACTMPST, an implementation of state S40 from Figure 5.1 may re-
semble the following, where the developer attaches event listeners on UI elements
to trigger channel actions:

<button onClick ={ev => Add(this.state.num1 , this.state.num2)}>

Add

</button >

<button onMouseOver ={ev => Quit(this.state.message)}>

Quit

</button >

If we directly provide the highlighted channel actions (i.e. via props), we cannot
guarantee linear usage in the code without a linear type system.

What we want to work towards is something similar to the following, where the
highlighted component encapsulates the required information: (1) what event to
react to, and (2) what payload to send when the event is triggered. <AddOnClick>

should guarantee, by construction, that clicking on any child element will send the
ADD message with the specified payload.

<AddOnClick payload={[this.state.num1, this.state.num2]}>
<button >Add </button >

</AddOnClick>;

This elegantly hides channel actions, but at the same time, we cannot make ex-
cessive assumptions about the event (onClick) and UI element (<button>) that the
send action will be attached to – these should be left as implementation details that
the developer can customise for their application.

Instead, we present a novel approach for binding channel actions to UI elements
in a way that never exposes channel resources:

67

5.3. EFSM ENCODING

1. The abstract send state React component defines factory properties that al-
low the developer to generate React components for performing send actions,
such that the API lets the developer specify which UI event should trigger the
channel action, and the payload to send. It defines one factory property per
permitted send action at that state.

2. The runtime provides a factory method which allows the abstract send state
component to generate the aforementioned factory properties for the channel
actions supported at that state.

We walk through the implementation details by working backwards: showing how
the developer would use the API first, before deriving the type signatures that we
need to generate for the abstract send state component inherited by the developer.

Developer API

We show the developer’s implementation of a send state for the Client endpoint
from the ADDER protocol in Listing 5.2. Component state is an implementation
detail that is not related to EFSM execution, so we allow the developer to customise
this through specifying an interface (Line 2) as the generic type.

1 // UI component keeps track of data entered by user

2 type State = { num1: number , num2: number , message: string };

3

4 class InputWindow extends S40 <State > {

5 render () {

6 const { num1 , num2 , message } = this.state;

7

8 // Generate React component that , when clicked ,

9 // sends ADD message with ‘num1 ‘ and ‘num2 ‘.

10 const Add = this.ADD(’onClick ’,

11 (ev: React.MouseEvent) => [num1 , num2]);

12

13 // Generate React component that , when hovered ,

14 // sends QUIT message with ‘message ‘ string.

15 const Quit = this.QUIT(’onMouseOver ’,

16 (ev: React.MouseEvent) => [message]);

17 return (<div >

18 // Omitting <input >s for entering numbers , message

19 <Add><button >Sum </button ></Add>

20 <Quit><button >Quit </button ></Quit>

21 </div >);

22 }

23 }

Listing 5.2: Developer Implementation for Client Send State in ADDER protocol

The factory API for binding send actions to UI elements appear on Lines 10 and 15.
For example, Line 10 reads: build a React component that sends the ADD message
with [num1, num2] as payload, when the user clicks on it. ADD is the factory API we

68

5.3. EFSM ENCODING

generate: it takes an event identifier and an event handler which must return the
payload – appropriately typed with respect to the Scribble protocol – for sending the
ADD message. Swapping Lines 11 and 16 will result in a compile time type error due
to invalid payload types, which is the intended behaviour.

We will define the factory API implementation in a way that calls the event handler
to obtain the payload, sends the payload message, and transitions to the successor
state, such that the send action is never performed more than once.

Typing the Abstract Send Component

Referring back to Listing 5.2, a first attempt for typing ADD could be

(ev: string , handler: (e: any) => [number , number])

=> Constructor <React.Component >

However, the type of ev depends on the value of event – for example, an onClick

event is handled by a React.MouseEvent handler. React defines the supported event
handlers under the React.DOMAttributes interface (Listing 5.3). We can use an
index type query to express the dependency, and type inference in conditional types2

to extract the function argument types:

<K extends keyof React.DOMAttributes >

(ev: K, handler: (e: FunctionArguments <React.DOMAttributes[K]>)

=> [number , number])

=> Constructor <React.Component >)

Contrary to our discussions about modelling dependent types in Section 4.3.3,
we can do this here because: (1) we are using index type queries instead of condi-
tional types, and (2) we know the type of ev at compile time from the developer’s
implementation, so we are not resolving index type queries with union types.

interface DOMAttributes <T> {

children ?: ReactNode;

onChange ?: FormEventHandler <T>;

onClick ?: MouseEventHandler <T>;

...

};

Listing 5.3: Snippet of the React.DOMAttributes Interface

However, React.DOMAttributes also contains non-function properties – on List-
ing 5.3 Line 2, “children” is not a valid event. We define utility types under Types.ts
to extract function properties from an interface (Listing 5.4): we first extract the
names of function properties into an union type by mapping property names of non-
function properties to never (Line 2) and performing an index type query (Line 3)

2We can infer type variables inside the extends clause of a conditional type. Specifically,
FunctionArguments<T> = T extends (...args: infer R) ? R : never.

69

5.3. EFSM ENCODING

to obtain an union type of function property names3 which removes all never con-
stituents; then extract the properties from the interface that are indexed by the fil-
tered names (Line 4)

1 type FunctionPropertyNames <T> = {

2 [K in keyof T]: T[K] extends Function | undefined ? K : never;

3 }[keyof T];

4 type FunctionProperties <T> = Pick <T, FunctionPropertyNames <T>>;

5 type DOMEvents = FunctionProperties <React.DOMAttributes <any >>;

Listing 5.4: Extracting Function Properties from TypeScript Interface

We construct a generic type parameterised on the payload type, which lets us
define the ADD and QUIT factory property easily.

type EventHandler <Payload , K extends keyof DOMEvents > =

(event: FunctionArguments <DOMEvents[K]>) => Payload;

type SendComponentFactory <Payload > = <K extends keyof DOMEvents >

(event: K, handler: EventHandler <Payload , K>) =>

Constructor <React.Component >;

The factories are instantiated by the abstract class as protected properties, in
order to allow access by the developer’s subclass implementation. Channel resources
are managed by the runtime, so we need the runtime to pass a “higher-order factory”
(a factory method that generates a factory) which lets the send state component
generate the required component factories (i.e. ADD and QUIT) with channel actions
pre-injected into the component. We discuss the runtime in Section 5.4, but for
now, it is sufficient to understand that the generated send component abstract class
receives the higher-order factory as a prop, and that this prop binds the channel
action into the factory that it returns.

Now we are in a position to accurately type the abstract send component S40 in
Listing 5.5. We hint at the usage of the higher-order factory on Lines 16 and 19:
just using Line 16 as an example, the send component asks the runtime to gener-
ate a component factory for sending a message labelled ’ADD’ with payload typed
[number, number], then transition to the ReceiveState.S42 successor state.

5.3.2 Receive States

We also encode receive states as abstract React components, and leverage props to
ensure channel resources are not exposed to the developer.

According to the EFSM, a receive state means the endpoint is “waiting for the
message”, and the actual receive event represents a transition to a successor state.
This means that the developer’s implementation will define what to render on the
DOM when the endpoint is waiting for the message, rather than updating the DOM
with the received message. Referring to Figure 5.1 again, S42 (preceding state) will

3The union type technically contains never as the names for non-function properties, but Type-
Script removes never from union types in the same way that A∨⊥ ≡ A.

70

5.3. EFSM ENCODING

S40.tsx
1 // Expect to receive ‘factory ‘ function passed in by runtime

2 type Props = { factory: SendComponentFactoryFactory };

3

4 abstract class S40 <State > extends React.Component <Props , State > {

5

6 // Allow developer implementation subclass to use factories

7 protected ADD: SendComponentFactory <[number , number]>;

8 protected QUIT: SendComponentFactory <[string]>;

9

10 constructor(props: Props) {

11 super(props);

12

13 // Generate a factory that generates React components

14 // which sends an [ADD] message along with two numbers ,

15 // then transitions to State S42.

16 this.ADD = props.factory <[number , number]>(

17 ’ADD’, ReceiveState.S42);

18

19 this.QUIT = props.factory <[string]>(

20 ’QUIT’, ReceiveState.S43);

21 }

22 }

Listing 5.5: Generated Type for Client Send State in ADDER Protocol

be rendered when the endpoint is waiting for RES, but once received, S40 (successor
state) will be immediately rendered. The developer will need to manage the flow
of stateful application data between UI components separately – REACTMPST only
generates code for managing the communication automaton.

We generate an abstract method for each permitted receive transition, which is
used as the receive handler. This allows the developer to intercept the message and
perform operations – such as updating application state – before the successor state
is rendered. Specifying receive handlers as abstract methods mandate the developer
to provide a concrete implementation.

We demonstrate below how the developer could implement receive state S42 –
here, the developer manages stateful application data using the sessionStorage API
[36] available on the browser.

1 class WaitScreen extends S42 {

2 render () { return <h1 >Waiting </h1 >; }

3 RES(n: number) {

4 sessionStorage.setItem(’result ’, n);

5 }

6 }

Receive states in REACTMPST work in a similar way as with NODEMPST. The
runtime will invoke the RES method implemented by the developer upon receiving
the message through the WebSocket. In order to do so, the S42 component needs to
register the handler with the runtime.

71

5.3. EFSM ENCODING

Recall that React supports an uni-directional data flow, so there is no direct way
to pass the handler back up to the parent component. We overcome this limitation
by allowing the runtime to pass a register function to the receive state component
as a prop; once the receive state component is mounted on the DOM, it proactively
registers the handlers with the runtime.

This raises questions about the type signature for the register function, as the
receive handler identifiers and type signatures differ between receive states. We
adopt the same strategy as with NODEMPST: the receive handler registered by the
receive state to the runtime also performs the message parsing, so all receive states
register a “general handle function” typed

type MessageHandler = (message: any) => State;

and define their own MessageHandler to handle state-specific message parsing
and processing. We construct similar types for the state-specific labels and message
structures. This is illustrated in Listing 5.6) – we use state S43 from Figure 5.1
hereafter to show how our approach scales with multiple branches.

1 enum Labels { THANKS = ’THANKS ’, TERMINATE = ’TERMINATE ’ };

2 interface THANKSMessage {

3 label: Labels.THANKS ,

4 payload: [string],

5 };

6 interface TERMINATEMessage {

7 label: Labels.TERMINATE ,

8 payload: [],

9 };

10 type Message = | THANKSMessage | TERMINATEMessage;

Listing 5.6: Generated Label and Message Types in REACTMPST

We generate the handle() method for each abstract receive state component for
state-specific message parsing and processing. We show the full generated code for
state S42 in Listing 5.7. Unlike NODEMPST, the handle() method (Line 20) returns
the successor state identifier to the runtime to make the transition. We leverage the
discriminated union from our generated message types (Listing 5.6) to invoke the
correct receive handler (Line 22).

Again, due to language limitations, we are unable to simplify the message pro-
cessing step as

this[parsedMessage.label](... parsedMessage.payload);

because this is implicitly expressing a type dependency over union types, and
parsedMessage.label is unknown at compile-time.

5.3.3 Terminal States

To be consistent with the conventions defined for NODEMPST the browser endpoint
proactively closes the connection at its terminal state. We generate an abstract React

72

5.4. RUNTIME

1 // Expect to receive ‘register ‘ function passed in by runtime

2 type Props = {

3 register: (handle: ReceiveHandler) => void

4 };

5

6 abstract class S42 <S> extends React.Component <Props , S> {

7

8 // Developer must implement receive handlers

9 // for possible messages received at this state.

10 abstract THANKS(payload1: string): void;

11 abstract TERMINATE (): void;

12

13 // When component is mounted on DOM ,

14 // and the register function is available ,

15 // register the message handler with the runtime.

16 componentDidMount () {

17 this.props.register(this.handle.bind(this));

18 }

19

20 handle(message: any): State {

21 const parsedMessage = JSON.parse(message) as Message;

22 switch (parsedMessage.label) {

23 case Labels.THANKS:

24 this.THANKS (... parsedMessage.payload);

25 return TerminalState.S41;

26 case Labels.TERMINATE:

27 this.TERMINATE (... parsedMessage.payload);

28 return TerminalState.S41;

29 }

30 }

31 }

Listing 5.7: Generated Code for Client Receive State S42 in ADDER Protocol

component for terminal states to allow the developer to customise what to render

upon protocol termination.

1 type Props = { terminate: () => void };

2 abstract class S41 <State > extends React.Component <Props , State > {

3 componentDidMount () { this.props.terminate (); }

4 }

When the component is mounted on the DOM, it notifies the runtime (via the
received terminate prop) to terminate the session.

5.4 Runtime

There are many parallels between the runtime we generate for REACTMPST com-
pared to that of NODEMPST. We focus on the details unique to React endpoints.

We define the public API for the session runtime as a React component. The
developer provides implementation details via props. We show the public API for

73

5.4. RUNTIME

the Client endpoint of the ADDER protocol below.

1 type Props = {

2 endpoint: string , // WebSocket URL to connect to

3 states: { // mapping of state identifier

4 S40: Constructor <S40 >, // to EFSM state components

5 S42: Constructor <S42 >, // implemented by developer

6 S43: Constructor <S43 >,

7 S41: Constructor <S41 >,

8 },

9 waiting: React.ReactNode , // render when waiting to start

10 connectFailed: React.ReactNode , // render if connection failed

11 };

12

13 export class Session extends React.Component <Props > { ... }

The developer provides the WebSocket URL for the runtime to instantiate the con-
nection. As for the EFSM state implementations derived from the abstract classes,
the developer constructs an object to map state identifiers to concrete implementa-
tions. The developer only needs to pass the constructor function, as the runtime will
instantiate the React components separately and pass the required props based on
the type of state. Additionally, the developer needs to define what to render whilst
waiting for the session to begin, and possibly an error screen if the connection has
failed. We show an example below.

1 // Developer implementations

2 class InputWindow extends S40 { ... };

3 class QuitReceived extends S41 { ... };

4 class WaitScreen extends S42 { ... };

5 class PendingQuit extends S43 { ... };

6

7 // Main application component

8 class MainApp extends React.Component {

9 render () {

10 return <div >

11 <h1 >Adder Client </h1 >

12 <Session

13 endpoint=’ws:// localhost :8080 ’

14 states ={{

15 S40: InputWindow ,

16 S41: QuitReceived ,

17 S42: WaitScreen ,

18 S43: PendingQuit ,

19 }}>

20 waiting={<h1 >Pending Connection </h1 >}

21 connectFailed ={<p>Connection Failed </p>}

22 />

23 </div >;

24 }

25 }

When the session starts, the private API takes over and executes the EFSM by
rendering the React component corresponding to the current EFSM state, as well as
performing channel actions that adhere to the protocol.

74

5.4. RUNTIME

5.4.1 Connecting to the Session

We connect to the session by creating a new WebSocket. Traditionally, this would be
done in the constructor, but for React components, the constructor may be invoked
more than once depending on how reconciliation works. For this reason, we create
the WebSocket in the componentDidMount4 method as it is guaranteed to be only
called once. In fact, under React’s Strict Mode, constructors are explicitly invoked
twice to prevent impure constructors [13].

This means the WebSocket must have optional type as it is strictly undefined on
construction. To avoid having to deal with an optional WebSocket value in the EFSM
execution (even though we know for sure that it has been instantiated when we use
it), we define the public API (the React component named Session) to manage the
(possibly undefined) WebSocket in its state, and the private API (the React compo-
nent named after the role – in this case, Client) after as a separate non-exported
class with the WebSocket available via props. Once the WebSocket is instantiated in
the Session component, it renders the Client component, passing the non-optional
WebSocket value via props.

1 type Transport = { ws: WebSocket };

2 class Session extends React.Component <Props , Partial <Transport >> {

3 componentDidMount () {

4 this.setState ({ ws: new WebSocket(this.props.endpoint) });

5 }

6

7 render () {

8 const { ws } = this.state;

9 return ws === undefined ? this.props.waiting

10 : <Client ws={ws} {... this.props} />;

11 }

12 }

13 export default Session;

The connection phase is managed in the same way as NODEMPST: when the
Client component is mounted, it sends a connection request to the server and over-
rides the onmessage event handler to listen for the connection confirmation, before
advancing the EFSM to the initial state to begin executing the protocol.

5.4.2 Executing the EFSM

Unlike NODEMPST, our EFSM state encoding does not define continuation states
using the actual implementation. This is because state encodings are React com-
ponents that need to be instantiated by the runtime. Instead, as previewed in List-
ings 5.5 and 5.7, we define an enum-based abstraction for specifying successor state,
and this is also used for executing the EFSM. Our enum-based abstraction defines a
string enum for each type of EFSM state, and collects all state identifiers in an union
type.

4The componentDidMount method is part of the “commit” phase in the lifecycle of a React compo-
nent. This is when the component is mounted on the browser DOM and methods in the phase are
guaranteed to be called exactly once.

75

5.4. RUNTIME

enum SendState { S40 = ’S40’ };

enum ReceiveState { S42 = ’S42’, S43 = ’S43’ };

enum TerminalState { S41 = ’S41’ };

type State = ReceiveState | SendState | TerminalState;

The React runtime component also defines a transition function parameterised by
the current state’s enum. The runtime renders the current EFSM state component
with different props depending on the type of the current state.

• For send states, the runtime provides the higher-order factory method to allow
the send state to construct its own send component factory properties for each
permitted send transition.

• For receive states, the runtime provides the register function to let the de-
veloper pass back the receive handlers for each permitted receive transition,
which is used to process incoming messages received via the WebSocket.

• For the terminal state, the runtime provides the terminate function to close
the WebSocket connection.

Enum unions cannot be used in the same manner as discriminated unions to distin-
guish between SendState and ReceiveState, so we provide utility functions under
EFSM.ts that define type guards to narrow the type of State.

function isReceiveState(state: State): state is ReceiveState {

return Object.values(ReceiveState). includes(state)

}

We use these type guards in the transition function, as shown in Listing 5.8. The
choice of a string enum for state identifiers allow us to use it to index into the
EFSM state component mapping provided by the developer, as seen on Lines 3, 8
and 13. Note that the value of state can be an union type (depending on the
possible values in the enum), so the type of View may also be union types. We can
still deterministically pass props and render the component, as all states of each
particular type agree on what props to receive.

We keep track of the current EFSM state in the state of the private Client com-
ponent. This enables the UI to be re-rendered, and therefore “react”, to EFSM state
transitions, which is precisely the goal of REACTMPST.

5.4.3 Sending Messages

Messages are sent through the WebSocket in the same way as NODEMPST (see Sec-
tion 4.4.3) – objects marked with label and payload are serialised into JSON. The
process of sending is always followed by a transition to the successor state, so we
define the sendMessage() method on the runtime to also take the successor state as
a function argument, so it can make that transition immediately after.

76

5.4. RUNTIME

1 private advance(state: State) {

2 if (isSendState(state)) {

3 const View = this.props.states[state];

4 this.setState ({

5 elem: <View factory ={this.buildFactory} />

6 });

7 } else if (isReceiveState(state)) {

8 const View = this.props.states[state];

9 this.setState ({

10 elem: <View register ={this.registerReceiveHandler} />

11 });

12 } else if (isTerminalState(state)) {

13 const View = this.props.states[state];

14 this.setState ({

15 elem: <View terminate ={this.terminate} />

16 });

17 }

18 }

Listing 5.8: EFSM Transition Function for Browser-Side Endpoint

private sendMessage(label: string , payload: any , next: State) {

this.props.ws.send(JSON.stringify ({ label , payload }));

this.advance(next);

}

We focus on the higher-order factory that the runtime passes to the send compo-
nent as a prop. The implementation shown in Listing 5.9 is less straightforward, so
we will walk through the steps.

The prop allows the send component to build factory functions for sending mes-
sages with a particular label followed by a transition to some successor state
(Line 1). The higher-order factory relies on closures to bind the channel action into
the generated component. Here, buildFactory returns a (factory) function that
builds an anonymous React component which wraps the component’s children into
a <div> with special props (Line 14). The props for this anonymous React compo-
nent comprises of a new event listener bound to the UI event (ev) specified by the
developer (such as ’onClick’). This new event listener is defined in terms of the
handler from the developer’s implementation: (1) it invokes the handler to obtain
the payload to send (Line 10), which is constrained by the generic type parame-
ter to ensure it matches the protocol specification; then, (2) it sends the message,
which triggers the EFSM to advance to the successor state. We cannot directly call
this.sendMessage inside the generated React component because this refers to the
anonymous class; instead, we define a partially applied version of the sendMessage

method as a local variable (Line 4).

77

5.4. RUNTIME

1 private buildFactory <T>(label: string , successor: State) {

2 return <K extends keyof DOMEvents >

3 (ev: K, handler: EventHandler <E, K>) => {

4 const send = (payload: T) =>

5 this.sendMessage(label , payload , successor);

6 return class extends React.Component {

7 render () {

8 const props = {

9 [ev as string]: (e: FunctionArguments <DOMEvents[K]>) => {

10 const payload = handler(e);

11 send(payload);

12 }

13 };

14 return <div {... props}>{this.props.children}</div >

15 }

16 }

17 }

18 }

Listing 5.9: Higher-Order Factory Function in Browser-Side Runtime

5.4.4 Receiving Messages

We take the same approach as NODEMPST – the runtime keeps track of the “ac-
tive” receive handler, and the onmessage event listener for the WebSocket is defined
to dynamically process the incoming message using the active receive handler. We
also need to address the same consistency problem, since a message arrival event
can be handled before the receive handler is registered. The receive handler is reg-
istered when the receive state component is rendered on the DOM, which occurs
when this.setState is invoked in the transition function. this.setState may be
asynchronous as React will internally batch multiple calls into a single update for
performance [12], so it is possible for the WebSocket message event to be queued
(and hence, processed) before the receive handler is registered.

We address this problem using a pair of queues to keep track of messages waiting
for handlers, and handlers waiting for messages. Unlike NODEMPST, we do not
need a mapping of queues because browser-side endpoints only receive from the
server.

private messageQueue: any [];

private handlerQueue: MessageHandler [];

This lets us define the WebSocket onmessage event listener and the register func-
tion (which we pass as a prop to the receive state component) in a similar way
compared with NODEMPST – we show this in Listing 5.10. Recall that the message
handler registered by the receive state component returns the successor state, so we
invoke the transition function on the result directly (Lines 3 and 9).

78

5.5. ALTERNATIVE DESIGNS

1 private register(handler: MessageHandler) {

2 const message = this.messageQueue.shift ();

3 if (message !== undefined) { this.advance(handler(message)); }

4 else { this.handlerQueue.push(handler); }

5 }

6

7 private receive ({ data }: MessageEvent) {

8 const handler = this.handlerQueue.shift ();

9 if (handler !== undefined) { this.advance(handler(data); }

10 else { this.messageQueue.push(data); }

11 }

Listing 5.10: Receive Handler Registration and Message Handler in REACTMPST

5.4.5 Handling Termination

The terminal state component notifies the runtime (through the terminate function
passed down as a prop) to close the connection. The implementation is straightfor-
ward – we simply invoke the close() method on the WebSocket.

private terminate () {

this.props.ws.close ();

}

5.5 Alternative Designs

For send states, a simpler approach would be to provide the developer with a send()

function for each permitted selection. The factory approach would still apply – the
runtime could pass something of the form

declare function buildSend <T>(label: string): (payload: T) => void

as a prop to the send state component. This allows the send state component to
build a handler, bound to the payload type and label identifier, that performs a send
action when called with the payload value. This provides more flexibility for the
developer’s implementation, but this clearly exposes channel resources and comes
at the cost of not being able to provide guarantees on affine channel usage.

An alternative design for receive states would be to define message receive han-
dlers on the successor state. Using Figure 5.1 as an example, the receive handler for
RES(number) would be defined on state S51 instead – in fact, it wouldn’t be defined
as a callback, but the runtime would simply pass the received payload to S40 via
props. This allows the developer to render UI changes based on received messages
more easily, but comes at the cost of less robust typing: the RES prop would have to
be an optional value, as an EFSM state can be preceded by more than one receive
state, so the developer has to implement logic (i.e. checking for undefined props) to
determine whether the predecessor state was a receive state (and if so, which receive
state) and render accordingly.

79

5.6. LIMITATIONS

5.6 Limitations

Our EFSM encoding provides affine channel usage guarantees for send states as
supposed to linear usage guarantees. Suppose we bind a send action to a button
click event – strictly speaking, even if we guarantee that the button can be clicked
exactly once, we cannot guarantee that the button will ever be clicked by the user.
However, existing work [19, 32] share the same limitation, and we view this as an
inherent limitation in front-end development, since there is a limit to the types of
assumptions we can make about how the user interacts with the browser. Redefin-
ing the definition of channel linearity for GUI programming use cases would be an
interesting discussion.

Our runtime implementation also limits the developer from passing data into their
EFSM state component through props. This is because the runtime takes full control
of which state component to render, and by definition, what props are passed to
the EFSM state components. However, we equally view this as a way to encourage
developers to decouple communication state management from business logic state
management, in the spirit of separating concerns. In Chapter 10, we present ex-
amples of developer implementations that use separate abstractions (e.g. the React
Context API) for propagating stateful application data in Chapter 10.

5.7 Summary

In this chapter, we have presented our session type API generation strategy which
targets the React framework for browser-side endpoints.

We motivated our approach of implementing the concept of model types intro-
duced in [19] using a popular front-end framework in React. We define an interpre-
tation of model types using the EFSM obtained from a Scribble protocol.

We discussed how to prevent channel reuse in GUI programming in React. We
build upon the design choices implemented in NODEMPST by concealing channel
resources in the session runtime and exposing seams for the developer to customise
what interface to render at each EFSM state, what user interface events are allowed
to trigger a send action, and how to handle messages received from the channel.

80

Chapter 6

Extensions

In this chapter, we extend SESSIONTS to address concerns specific to modern web
programming practices. We focus on two key areas: supporting asynchronous imple-
mentations (Section 6.1), and handling session cancellation in a web-based context
(Section 6.2).

6.1 Supporting Asynchronous Implementations

Asynchronous APIs are commonplace in modern web programming; typical uses
range from database operations to third-party API calls. We motivate the need
for supporting asynchronous operations through an authentication protocol in Sec-
tion 6.1.1, demonstrate how we support asynchronous APIs through extending the
generated APIs (in Section 6.1.2) and runtime (in Section 6.1.3), and highlight the
limitations of our approach in Section 6.1.4.

6.1.1 Motivation

Consider a basic example of two-factor authentication (2FA) in Listing 6.1 motivated
from [20]: Client tries to log in to Svr, which either authorises or denies the login
attempt. If Client is logging in from a new device, the Svr sends a challenge key
and waits for a response code before proceeding.

The developer’s implementation on Lines 3 and 9 is likely to query a database for
credential verification. Database operations are implemented using asynchronous,
non-blocking APIs; it is recommended that IO-bound operations do not block the
main execution, so a typical JavaScript database API may require a callback to prop-
agate the return value when it is available. A server endpoint implementation of
Listing 6.1 may resemble the following:

1 new Implementation.S40({

2 Login: (username: string , password: string) => {

3 db.lookup(username , password , (result) => {

4 // returns Implementation.S42 here

5 });

6 }

7 });

81

6.1. SUPPORTING ASYNCHRONOUS IMPLEMENTATIONS

1 global protocol 2FA(role Svr , role Client) {

2 Login(string , string) from Client to Svr;

3 choice at Svr {

4 Authorised () from Svr to Client;

5 do Main(Svr , Client); // Details are not important

6 } or {

7 Challenge(string) from Svr to Client;

8 Response(number) from Client to Svr;

9 choice at Svr {

10 Authorised () from Svr to Client;

11 do Main(Svr , Client);

12 } or {

13 AccessDenied () from Svr to Client;

14 }

15 } or {

16 AccessDenied () from Svr to Client;

17 }

18 }

Listing 6.1: The TWO FACTOR AUTHENTICATION Protocol

Callbacks are commonplace in dealing with asynchronous APIs in JavaScript [44];
we will go over other widely-used concurrency primitives shortly. Whatever the
case may be, asynchronous developer implementations using our generated APIs will
not type-check as the function returns immediately (hence, has return type void),
even though the callback function has the expected return type. The developer will
encounter the following type error message:

Type ’(username: string , password: string) => void ’ is not

assignable to type ’(payload_0: string , payload_1: string) => S42 ’.

The same scenario is also possible for browser-side implementations: when the
user invokes a UI event, the browser-side logic may first consult a third-party API
for additional information (which is not part of the communication protocol) before
performing a send action; the Fetch API [34] for making API calls is asynchronous.

In order to make SESSIONTS more relevant and compatible with modern web
programming practices, it is important to support asynchronous developer imple-
mentations as part of our generated APIs and runtime.

This means we should support the concurrency patterns built into TypeScript:

Callbacks Callback-based APIs are higher-order functions – they take functions
as parameters and invoke them when the asynchronous operation is complete. For
example, the setTimeout(fn, delay) function available on the browser waits for
delay milliseconds before invoking fn() – or more precisely, before queuing the exe-
cution of fn(). As a result, the code listing below prints ’Second!’ before ’First!’,
even though setTimeout was called with 0ms delay.

setTimeout (() => console.log(’First!’, 0));

console.log(’Second!’);

82

6.1. SUPPORTING ASYNCHRONOUS IMPLEMENTATIONS

Promises A Promise formalises the “completion” callback and its error handling
construct. The developer passes a “success” callback and “error” callback, conven-
tionally named “then” and “catch” respectively, to construct a Promise. This is ana-
logue to the Future interface in Java [45]. The Promise will invoke the correct
handler on completion. The benefits of Promises in our context is that TypeScript
allows us to specify the type of payload that the Promise resolves to.

declare function promise(n: number): Promise <number >

const promise = (n: number) =>

new Promise ((resolve , reject) => {

if (n < 10) resolve(n));

else reject(’Number too big!’);

});

declare function handleNumber(n: number) { ... }

declare function handleError(err: string) { ... }

promise (10). then(handleNumber). catch(handleError)

Async/Await The async/await construct is syntactic sugar for Promises. An
async function always returns a Promise, and marking await for the identifier of the
return value for a function returning a Promise “unwraps” the resolved payload. A
downside is that error handling reverts to the try ... catch construct.

const asyncSum = async (x: number , y: number) => {

return (await promise(x)) + (await promise(y));

}

asyncSum(1, 2); // returns Promise <number > that resolves to 3

6.1.2 API Extension

To support asynchronous implementations in the generated APIs, we use a type sig-
nature that allows the developer to use Promises. We construct a generic union
type, MaybePromise<T>, to specify that the type parameter might be wrapped in a
Promise, and leverage type inference in conditional types to define a generic type,
FromPromise<T>, to extract the wrapped type.

type MaybePromise <T> = T | Promise <T>;

type FromPromise <T> = T extends MaybePromise <infer R> ? R : never;

Now we change the type signatures of our generated APIs to use MaybePromise<T>.
For example, if the handler of a receive state generated by NODEMPST must return
Implementation.S42, it is now permitted to return a Promise that resolves to a value
of type Implementation.S42. The same logic applies to other types of EFSM states
in both NODEMPST and REACTMPST.

Hence, the asynchronous Svr implementation for the 2FA protocol shown in List-
ing 6.2 now type-checks. Note that, because async functions return Promises, we
also support this newer piece of syntactic sugar. Moreover, our generated APIs work

83

6.1. SUPPORTING ASYNCHRONOUS IMPLEMENTATIONS

with both synchronous and asynchronous developer implementations transparently,
as is the convention one would expect from modern JavaScript APIs.

1 new Implementation.S40({

2 Login: async (username: string , password: string) => {

3 const result = await db.lookup(username , password);

4 if (result.valid)

5 return new Implementation.S42(’Authorised ’, ...);

6 else if (result.unauthorised)

7 return new Implementation.S42(’AccessDenied ’, ...);

8 else

9 return new Implementation.S42(’Challenge ’, ..., challenger);

10 }

11 });

12

13 const challenger = (key: number) => {

14 return new Promise((resolve , reject) => {

15 keychain.check(key , ok => {

16 if (ok)

17 resolve(new Implementation.S44(’Authorised ’, ...);

18 else

19 resolve(new Implementation.S44(’AccessDenied ’, ...);

20 });

21 });

22 }

Listing 6.2: Implementing Svr in 2FA using Callbacks, Promises and async/await

6.1.3 Runtime Extension

Generally, minimal changes are required for the runtime. The key observation is
that the “concrete” types for the any handlers are the same; the payload may simply
be wrapped in a Promise construct. To handle potential Promises, we wrap existing
logic into a delayed computation, colloquially known as a thunk [52]. We show an
example in Figure 6.1 of how we adapt the performSend() function generated by
NODEMPST to support optional Promises:

1. We wrap the original logic in Figure 6.1a into a function (Figure 6.1b Line 1)
to delay the computation.

2. We distinguish asynchronous implementations from synchronous ones using
the instanceof operator.

• If the implementation is a Promise, we pass the thunk as the resolve func-
tion invoked on completion.

• Otherwise, we directly invoke the computation.

Similar changes apply to other types of states in both NODEMPST and REACTMPST.
For REACTMPST, channel-related functions in the runtime return the successor state

84

6.2. ERROR HANDLING

1 const [label , payload , succ] = this.handler;

2 send(label , payload);

3 next(succ);

(a) Original performSend() Implementation
1 const thunk = (label , payload , succ) => {

2 send(label , payload);

3 next(succ);

4 };

5

6 if (this.handler instanceof Promise) {

7 this.handler.then(thunk);

8 } else {

9 thunk(this.handler);

10 }

(b) New performSend() for Optional Promises

Figure 6.1: Adapting Send Operations in NODEMPST using a Thunk

identifier. Hence, aside from wrapping the functions to delay computation using
thunks, the functions themselves need to return MaybePromise<State> instead to
propagate the asynchrony to the execution of the EFSM – the transition occurs after
the developer’s handler finishes execution.

6.1.4 Limitations

Supporting asynchronous logic on top of our existing implementation in REACTMPST
comes at a cost of losing affine linearity guarantees. If the send action handler is
asynchronous, then the UI event handler returns before the runtime transitions, so
the UI event that can trigger the send action is still active, which means the user
can trigger a channel linearity violation. This means we need a boolean flag to keep
track of channel usage, as done in [28]. We illustrate this in Listing 6.3, with the
linearity checks highlighted.

Referring back to the sendMessage() method defined in Section 5.4.3, if we de-
couple the send() from the advance() function, we could advance to the succes-
sor state immediately before handling the asynchronous return value. This restores
affine channel linearity guarantees, but results in the UI being inconsistent with the
channel actions.

6.2 Error Handling

A robust error handling framework is critical in a distributed setting. It is naive to
assume that endpoint implementations are entirely free from exceptions. As Fowler
pointed out in [20], session type implementations that do not account for failure are
of limited use in distributed programming.

85

6.2. ERROR HANDLING

1 let used = false;

2 ...

3 return class extends React.Component {

4 render () {

5 const props = {

6 [eventLabel as string]: (event) => {

7 if (used) return;

8 used = true;

9

10 const result = handler(event);

11 if (result instanceof Promise) {

12 result.then(send);

13 } else {

14 send(result);

15 }

16 }

17 }

18 }

19 }

Listing 6.3: Generating Runtime Linearity Checks for React Send States

We motivate the need for handling a variety exceptions in modern web program-
ming in Section 6.2.1 and demonstrate how we implement a structured error han-
dling framework through extending the generated APIs (in Section 6.2.2) and run-
time (in Section 6.2.3). We highlight the caveats of our error handling framework
when dealing with asynchronous operations (in Section 6.2.4), and conclude by ex-
plaining the limitations of our framework in Section 6.2.5.

6.2.1 Motivation

Using the 2FA example from Listing 6.1, the database lookup function might rely on
a cloud service, and will throw an exception if the cloud service cannot be reached.
This may cause Svr to crash. From the perspective of session types, we need to
ensure that Client isn’t blindly waiting for the session to continue if Svr threw an
exception.

We classify this as an example where Svr terminates the session because of a
logical error in its implementation. Existing work [20, 41] on error handling for
session types address this through extending the process calculus with an explicit
cancellation operator to ensure that channel resources are closed during exception
handling.

However, the context of modern web programming introduces new possibilities for
session cancellation that are not addressed by existing work. Browser-side endpoints
can disconnect from the session due to network connectivity issues or simply by
closing the browser. Similarly, the server may also face connectivity issues. In order
to deliver a robust error handling framework tailored for integrating session types in
modern web programming, we must also take these variants of session cancellation
into account.

86

6.2. ERROR HANDLING

We also need a novel approach for defining cancellation handlers. The work by
Fowler et al. [20] integrates exception handling for session types in a functional lan-
guage, where their design of exception handlers build upon existing work on effect
handlers. Our work targets a non-functional language in TypeScript, which means
any piece of code can be “effectful”, so the exception handler API we generate for
developers need to respect this property. Exception handlers should also be well pa-
rameterised to empower the developer to handle cancellations more effectively – for
instance, if the developer knows which endpoint emitted the cancellation, appropri-
ate clean-up operations (such as reverting database changes or application-specific
logging) can be performed.

6.2.2 API Extension

We extend the generated APIs to allow developers to provide a session cancellation
handler. The runtime will invoke this to handle local exceptions (e.g. exception
thrown by application logic) and global session cancellations (e.g. other endpoint
disconnecting).

The session cancellation handler is uniformly parameterised by the role which
emitted the cancellation, and some arbitrary reason. For exceptions thrown by local
application logic, the reason argument is populated with the thrown exception. Be-
cause the try / catch block is not typed, we give the reason parameter the dynamic
type of any to give developers the autonomy for handling the exceptions they throw
locally.

Consider a binary session protocol specifying interactions between an ATMSvr and
ATMClient. We demonstrate how the developer may choose to define the session
cancellation handlers in the context of this protocol.

Server (Listing 6.4): The ATMSvr may need to handle internal server errors
(Line 3) as a result of exceptions thrown by its implementation. If the ATMClient

disconnects prematurely, ATMSvr can also notify the database to revert the transac-
tion (Line 7). Note that session cancellation handlers can be asynchronous, as we
appreciate that any required “clean-up” operations may need to use asynchronous
APIs provided by databases or other persistent storage solutions. The cancellation
handler is passed into the runtime via the constructor of the public API.

1 new ATMSvr(wss , logic , async (role: Roles.All , reason: any) => {

2 if (role === Roles.Self) {

3 // Handle internal server error

4 } else {

5 // Handle client error:

6 // revert incomplete transactions from database

7 await db.revertTransactions(role);

8 }

9 });

Listing 6.4: Example Cancellation Handler for Server Endpoint

87

6.2. ERROR HANDLING

Client (Listing 6.5) Session cancellation handlers for REACTMPST are also pa-
rameterised by the role and reason for cancellation, but they must return a ReactNode

for the runtime to render upon session cancellation, which guarantees that no chan-
nel actions will be rendered when a session is cancelled. Here, the developer renders
a header depending on which role emitted the cancellation, and directly shows the
reason in a paragraph. The cancellation handler is passed into the runtime via a
prop defined on the public API.

1 <ATMClient

2 ...

3 cancellation ={(role: Roles.All , reason: any) => (

4 <div >

5 // Customise heading to show which role cancelled

6 {role === Roles.Self

7 ? <h1>Internal Error </h1>

8 : <h1>Server Error </h1 >}

9 <p>{ reason}</p> // Render reason in paragraph

10 </div >

11)}

12 />

Listing 6.5: Example Cancellation Handler for Browser Endpoint

6.2.3 Runtime Extension

The generated session runtime is extended with the capability of emitting session
cancellation and handling session cancellation. We define session cancellation over
WebSocket transport by invoking the close() method to emit cancellations, and
overriding the onclose event listener to handle cancellations.

The WebSocket close() method accepts a close code, which is analogue to exit
codes for executables. We extend this mechanism to distinguish between the dif-
ferent variants of session cancellation, as motivated in Section 6.2.1. As shown
in Figure 6.2, we define unique close codes for different types of session cancel-
lation under Cancellation.ts for both server-side (Figure 6.2a) and browser-side
endpoints (Figure 6.2b) respectively. To respect the convention specified in the Web-
Socket Protocol [17] that the 1xxx close codes are reserved for internal use, we
define our custom close codes from 4000 onwards. The enum values are named in
a self-explanatory way.

The session runtime features two phases: (1) the connection phase, when the
server accepts incoming connections from session participants; and (2) the execution
phase, when all participants execute their EFSM. Cancellation can occur in both
phases, and we outline how the runtime handles cancellation in each phase.

Cancellations during Connection Phase

As the global protocol has not began at this phase, any cancellations that occur here
do not terminate the connection phase; the endpoints that have already joined just

88

6.2. ERROR HANDLING

1 export enum Receive {

2 NORMAL = 1000,

3 CLIENT_BROWSER_CLOSED = 1001,

4 LOGICAL_ERROR = 4001,

5 };

6

7

8 export enum Emit {

9 CLIENT_BROWSER_CLOSED = 4000,

10 LOGICAL_ERROR = 4001,

11 ROLE_OCCUPIED = 4002,

12 };

(a) Close Codes for NODEMPST

1 export enum Receive {

2 NORMAL = 1000,

3 SERVER_DISCONNECT = 1006,

4 CLIENT_DISCONNECT = 4000,

5 LOGICAL_ERROR = 4001,

6 ROLE_OCCUPIED = 4002,

7 };

8

9 export enum Emit {

10 NORMAL = 1000,

11 LOGICAL_ERROR = 4001,

12 };

(b) Close Codes for REACTMPST

Figure 6.2: WebSocket Close Codes for Session Cancellation

simply continue waiting for the remaining participants to connect.
The server endpoint can emit a ROLE_OCCUPIED close event to the browser end-

point if the role is already taken. We know if a role is occupied if the payload of the
incoming connection request message is not one of the roles that the server endpoint
is waiting on.

It is possible for a browser endpoint to have already joined the session but is still in
the connection phase, because the server endpoint is waiting on other participants.
If this browser endpoint disconnects prematurely (e.g. the user closes the browser),
the server endpoint detects this and adds the role back to the set of roles it is waiting
on. To do this, we keep a mapping of socket to role identifier; this is populated when
the endpoint sends the connection request message, so if the endpoint disconnects
prematurely, the server knows which role to wait for again. We show the changes
made to the connection management logic generated by NODEMPST in Listing 6.6.

Cancellations during Execution Phase

Any cancellation event that occurs during the execution of the EFSM will terminate
the protocol for all roles. We see the concept of recovery to be an implementation
detail unique to each application, so we do not build recovery mechanisms in our
session cancellation framework. There are four possible ways for a cancellation
event to be emitted during this phase.

Server endpoint experiences logical error: This is when the developer’s im-
plementation for the server endpoint throws an uncaught exception. We wrap the
runtime EFSM execution methods in try/catch blocks, and handle the error with
a cancel() method we generate for the runtime in NODEMPST. The cancel()

method invokes the close() method on all browser endpoints, then executes the
user-defined cancellation handler.

Browser endpoints detect this through the onclose WebSocket event listener. We
extend the runtime generated by REACTMPST to handle this event in the corre-

89

6.2. ERROR HANDLING

1 // Inside constructor of session runtime for server -side endpoint

2

3 const socketToRole = new Map <WebSocket , Roles.Peers >();

4

5 // Invoked when socket is closed

6 const onClose = ({ target: socket }) => {

7 // Wait for the role again

8 waiting.add(socketToRole.get(socket));

9 }

10

11 // Invoked when server receives connection request.

12 const onSubscribe = (event) => {

13 ...

14 // Update role -WebSocket mapping.

15 roleToSocket[role] = socket;

16 socketToRole.set(socket , role);

17 waiting.delete(role);

18 ...

19 }

Listing 6.6: Modified Connection Management in Server Endpoint with Cancellation

sponding case of a switch statement defined on the close code, as shown in List-
ing 6.7.

1 private onClose ({ code , reason }: CloseEvent) {

2 switch (code) {

3 case Cancellation.Receive.NORMAL: { ... }

4 case Cancellation.Receive.SERVER_DISCONNECT: {

5 // Server role disconnected

6 this.processCancellation(Roles.Server , ’server disconnected ’)

7 return;

8 }

9 case Cancellation.Receive.CLIENT_DISCONNECT: { ... }

10 case Cancellation.Receive.LOGICAL_ERROR: { ... }

11 default: { ... }

12 }

13 }

Listing 6.7: WebSocket Close Event Listener in Browser Endpoints

Browser endpoints process the session cancellation by simply rendering the UI
element generated by the user-supplied session cancellation handler.

1 private processCancellation(role: Roles.All , reason ?: any) {

2 this.setState ({

3 // Calls the user -specified cancellation handler ,

4 // which returns a React node to render on DOM

5 elem: this.props.cancellation(role , reason);

6 });

7 }

90

6.2. ERROR HANDLING

Server endpoint disconnects: This follows the same logic as the above, except
for the fact that the server does not emit the cancellation through code, since it
simply disconnects.

Browser endpoint experiences logical error: This is when the developer’s im-
plementation for the browser endpoint throws an uncaught exception. The runtime
for the browser endpoint will catch the exception and emit the cancellation to the
server using the corresponding close code.

The server endpoint will detect the cancellation event using an onclose Web-
Socket event listener similar to that defined in Listing 6.7, Then, the server propa-
gates the cancellation to the other endpoints. We present the propagation implemen-
tation in Listing 6.8. The “payload” of the propagated cancellation is also structured
as an object with the role and reason as properties, so the browser endpoint can parse
and handle using the same framework presented in Listing 6.7. After propagating
the cancellation to other endpoints, runtime invokes the user-defined session cancel-
lation handler, then restarts the runtime to accept new connections once again. Any
exceptions thrown by the developer’s session cancellation handler will be ignored.

1 private propagateCancellation(cancelled: Roles.Peers , reason ?: any)

2 {

3 // Construct cancellation message as object

4 // with role and reason as properties

5 const message = Cancellation.toChannel(cancelled , reason);

6

7 // Emit cancellation to other roles

8 Object.entries(this.roleToSocket)

9 .filter (([role , _]) => role !== cancelled)

10 .forEach (([_, socket]) => {

11 socket.removeAllListeners ();

12 socket.close(Cancellation.Emit.LOGICAL_ERROR ,

13 JSON.stringify(message));

14 });

15

16 try {

17 // Execute user -defined cancellation handler

18 const doCancel = this.cancellation(cancelled , reason);

19 if (doCancel instanceof Promise) {

20 doCancel.then(this.restart).catch(this.restart);

21 } else {

22 this.restart ();

23 }

24 } catch {

25 this.restart ();

26 }

27 }

Listing 6.8: Propagating Session Cancellation Events in Server Endpoint

91

6.2. ERROR HANDLING

Browser endpoint disconnects: This follows the same logic as the above, except
for the fact that the browser does not emit the cancellation through code, since it
simply disconnects.

6.2.4 Caveats with Asynchronous Operations

Implementing session cancellation whilst preserving support for asynchronous oper-
ations introduces subtle caveats.

Consider the case where the developer implements some asynchronous logic for a
send state on the server endpoint. Whilst the Promise is being resolved, a cancella-
tion event occurs concurrently. The session will be cancelled, but the asynchronous
logic will not be pre-empted; it will run to completion, and proceed to try perform
the send action on a WebSocket that has already been closed.

Traditionally, this will throw an error. However, the semantics of cancellation
should dominate any asynchronous operations from the developer, so we need to
work around the lack of pre-emption. We do this by defining a custom error handler
for the WebSocket send action: in short, if a send action fails due to the session being
cancelled prior, then there is nothing to worry about.

6.2.5 Limitations

The expressiveness of our error handling framework is limited by the expressive-
ness of the try / catch mechanism in TypeScript. Unlike languages like Java, we
cannot enforce the type of exceptions being thrown, so we have to resort to typ-
ing the reason of the cancellation as any to be compatible with exception handling
constructs defined by the developer.

We could change the session cancellation handler to an object with specific han-
dlers for each of the custom WebSocket close codes we defined, but it clutters the API
which increases the learning curve for the developer, and also makes it more difficult
to share cancellation handling logic across different WebSocket close codes.

92

Part II

Implementing Arbitrary Topologies
over WebSockets

93

Chapter 7

Motivation: Supporting Peer-to-Peer
Interactions

In this chapter, we demonstrate how to support peer-to-peer interactions through
routing communications between web browser endpoints over WebSocket transport,
thus relaxing the server-centric topology assumption from Part I.

We motivate the problem using the TWO BUYER protocol (Section 7.1), outline our
approach (Section 7.2), and discuss the challenges we need to address (Section 7.3)
in order to validate the correctness of our approach.

7.1 TWO BUYER Protocol

We present the TWO BUYER protocol in Listing 7.1 – the canonical example for peer-
to-peer interactions in literature [25, 26] – which describes a protocol between two
buyers A, B and a Seller. We assume that the Seller runs on the server, and the buyers
run on the browser.

1 global protocol TwoBuyer(role A, role B, role S) {

2 title(string) from A to S;

3 quote(number) from S to A;

4 quote(number) from S to B;

5 split(number) from A to B;

6 choice at B {

7 accept () from B to A;

8 buy() from A to S;

9 } or {

10 reject () from B to A;

11 cancel () from A to S;

12 }

13 }

Listing 7.1: The TWO BUYER Protocol

In the protocol, A asks the Seller for the quote of a book title. Seller sends the
quote to both buyers A and B. A privately asks proposes a split with B. Now, B must

94

7.2. PROPOSAL: SERVER AS A ROUTER

make a choice: either B can accept the split, where A confirms to buy from the Seller;
otherwise, B will reject the split, which cancels the purchase.

Lines 5, 7 and 10 illustrate that the TWO BUYER protocol does not implement a
server-centric communication topology, since these lines reference communication
actions between the two client browsers. As a result, SESSIONTS cannot correctly
generate APIs that support the specified interactions for buyers A and B.

7.2 Proposal: Server as a Router

We acknowledge that peer-to-peer browser interactions could be achieved via differ-
ent transport abstractions, such as the WebRTC framework [53]. However, WebRTC
has its own “protocol” for establishing connections and exchanging network infor-
mation, which isn’t formalised in session type theory. This setup phase generally
requires a signalling server [35], which brings our problem full circle, as it can be
implemented over WebSocket transport. Extending API generation to also include
the boilerplate for initialising WebRTC connections could be an option, but would
introduce complications in the session runtime and error handling (e.g. how to han-
dle cancellations during the connection phase?). We believe that adopting WebRTC
deviates from the focus of project in implementing type-safe web services.

Hence, for the purpose of our work in this part, we establish that WebSocket
transport is an invariant, and proceed to build up our approach. We start by breaking
down the concept of “peer-to-peer communication”. Focusing on Listing 7.1 Line 5,
we can say that the interaction satisfies three properties:

1. As far as A is concerned, A is sending a message that will be received by B.

2. As far as B is concerned, B is receiving a message that was sent by A.

3. The Seller is not involved in this interaction.

We proceed to relax point 3: for the Seller to be not involved in the interaction, it
suffices to guarantee that the Seller cannot intervene or hijack the communication.
This allows Seller to “oversee” the communication.

On this basis, we motivate our approach to empower the server endpoint to act as
a router. That is to say, if the server endpoint receives a message of which it isn’t the
intended recipient for, it routes the message to the intended recipient. Based on the
WebSocket transport invariant, all browser endpoints must join the session through
the server. This means that the server has information about all browser endpoints,
and is capable to perform the routing.

Returning to Listing 7.1 Line 5, A sends the split message through its existing
WebSocket connection (with Seller on the other side), noting that B is the intended
recipient; Seller receives this through the WebSocket bound to A, and routes the
message to B, who receives it through its existing connection with Seller. It is trivial
that the three properties1 listed previously are still satisfied:

1Here, we use the relaxed version of point 3 mentioned previously.

95

7.3. CHALLENGES

1. As far as A is concerned, A is sending a message that will be received by B – the
intended recipient is specified in the message.

2. As far as B is concerned, B is receiving a message that was sent by A – the original
sender is specified in the message.

3. Seller cannot intervene or hijack the communication – this remains true, as Seller
simply receives the message from the WebSocket bound to A and sends it
through the WebSocket bound to B.

7.3 Challenges

We need to formalise our concept of routing by extending session type theory, such
that, given a communication protocol implementing an arbitrary topology, we can
encode it into our extended theory and prove that safety properties (e.g. well-
formedness, deadlock freedom) are preserved, and that communication traces are
preserved. This must be done very carefully, as naive definitions of routing risk over-
serialising the original communication, thereby not preserving all communication
traces.

Example: Naive definition of routing in global types
Consider the global type

A→ B : M1.S→ B : M2.end

By existing LTS semantics over global types introduced in Definition 3.2 of [7], then
SB!M2 is a prefix of a valid execution trace. If we define our routing construct sim-
ply by replacing every single A → B : M interaction with A → S : M.S → B : M, we
transform the global type into

A→ S : M1.S→ B : M1.S→ B : M2.end

our naive definition of routing has over-serialised the protocol since SB!M2 can no
longer occur first because S is forced to send M1 first, which it cannot do so until re-
ceiving from A. This implies that we need to handle routing interactions differently
from “normal” send/receive actions.

There is existing work [3, 4, 49] that resembles our routing proposal through
decomposing multiparty sessions into a collection of binary sessions, but these ap-
proaches specify an endpoint to exclusively carry out routing responsibilities and
act as a centralised orchestrator for the multiparty session. Our proposal recognises
that, in the context of web applications, there is a need for server-side endpoints to im-
plement business logic, so enforcing the server to be an exclusive orchestrator makes
our work incompatible with web service protocols; we also argue that the server can
still participate in the multiparty session and concurrently perform its routing duties

96

7.3. CHALLENGES

in a way that is transparent to non-server endpoints, and crucially, does not overse-
rialise the permitted interactions. We introduce our extension as ROUTEDSESSIONS,
and proceed to prove these claims in Chapter 8.

Likewise, the implementation of routed session types in SESSIONTS needs to ac-
curately reflect the theory. It also needs to be as transparent to the developer as
possible to minimise the learning curve overhead demanded by complicating the
generated APIs. We document our extensions to SESSIONTS in Chapter 9.

97

Chapter 8

ROUTEDSESSIONS: A Theory of Routed
Multiparty Session Types

In this chapter, we present ROUTEDSESSIONS, an extension of the canonical mul-
tiparty session type (MPST) theory with a message routing mechanism. We build
upon the variant of MPST theory introduced in [50] (which we have also discussed
in Section 2.1.3), and extend it with constructs for communication actions that are
routed through a participant.

ROUTEDSESSIONS provide the theoretical basis for allowing developers to imple-
ment protocols with browser-to-browser interactions (such as the TWO BUYER pro-
tocol introduced in Section 7.1) over a server-centric network topology which uses
WebSocket transport. We introduce the extended syntax for types in Section 8.1,
and give semantics of our syntax extensions in Section 8.2. Regarding the extended
semantics on routed session types, we prove the soundness and completeness of the
extended semantics in Section 8.3. In Section 8.4, we define a router-parameterised
encoding for canonical MPST theory into ROUTEDSESSIONS and prove the preserva-
tion of well-formedness and communication. We proceed to extend SESSIONTS to
implement ROUTEDSESSIONS in Chapter 9.

8.1 Syntax for Global and Local Types

We extend the syntax for global types in Section 8.1.1 and local types in Section 8.1.2
to express routed communication. The same conventions introduced in Section 2.1.3
apply here: we omit message payload types, and deterministic send and receive ac-
tions are represented by single selection and single branching constructs respectively.
With these syntax extensions, we appropriately extend the definition of projection
and well-formedness in Sections 8.1.3 and 8.1.4 respectively.

8.1.1 Global Types

Global types range over G,G′,Gi , . . . As motivated by Section 7.3, we need to handle
routed communication separately from direct send and receive actions. We define

98

8.1. SYNTAX FOR GLOBAL AND LOCAL TYPES

the syntax of global types for ROUTEDSESSIONS in Figure 8.1, and explain the new
construct for expressing routed communication.

G ::= Global Types

| end Termination

| t Type Variable

| µt.G Recursive Type

| p→ q : {li : Gi}i∈I Direct Communication

| p −→
s
q : {li : Gi}i∈I Routed Communication

Figure 8.1: Global Types in ROUTEDSESSIONS

The new construct p −→
s
q : {li : Gi}i∈I reads, “the communication interaction from p

to q is routed by s” . To be more verbose, p offers q a set of choices {li}i∈I , q sends
their choice to s, so p receives the selection li made by q via s, and the communica-
tion system proceeds with continuation Gi . We refer to s hereafter as the router. s

ranges over the set of roles p,q,r, . . . , but we use s by convention as the server end-
point is usually the router. Just as it is assumed that p , q for direct communication,
we also assume that p , q , s for routed communication.

We inherit the definitions of the participants function, pt (G), introduced in Ta-
ble 2.2; we extend it in Definition 8.1 to formalise that the router participates in the
routed communication.

Definition 8.1 (Participants). The set of roles involved in the communication inter-
actions specified by G, written pt (G), is:

pt

(
p −→

s
q : {li : Gi}i∈I

)
= {p,q,s} ∪

⋃
i∈I

pt (Gi)

8.1.2 Local Types

Local types range over T ,T ′,Ti , . . . Local types are obtained from global types via
projection, so we also need new constructs to express routed communication from
the local perspective of individual endpoints. We explain the extensions to projection
in Section 8.1.3.

We define the syntax of local types for ROUTEDSESSIONS in Figure 8.2, and walk
through the new constructs below from the perspective of some arbitrary role r.

99

8.1. SYNTAX FOR GLOBAL AND LOCAL TYPES

T ::= Local Types

| end Termination

| t Type Variable

| µt.T Recursive Type

| p⊕ {li : Ti}i∈I Selection

| p& {li : Ti}i∈I Branching

| p ↪→ q : {li : Ti}i∈I Routing Communication

| pq ⊕ {li : Ti}i∈I Routed Selection

| pq& {li : Ti}i∈I Routed Branching

Figure 8.2: Global Types in ROUTEDSESSIONS

• Routed Communication:

If r has local type p ↪→ q : {li : Ti}i∈I , r is routing the communication between
p and q. r routes the message li sent by p to the intended recipient q and
proceeds with continuation Ti .

• Routed Selection:

If r has local type pq ⊕ {li : Ti}i∈I , r is making a selection from the intended
recipient p, but the selection is sent to the intermediate router q., instead of to
p directly. r sends their internal choice li to q and proceeds with continuation
Ti .

• Routed Branching:

If r has local type pq& {li : Ti}i∈I , r is offering a choice to the intended sender p,
but the message is received from the intermediate router q, instead of from p

directly. r receives the external choice li from q and proceeds with continuation
Ti .

As a general comment, the new local types of routed selection and routed branch-
ing should “behave” as normal selection and receive types with respect to their in-
tended recipient and sender respectively. We keep track of the router role in the
syntax to allow us to distinguish between routing communications from normal send
and receive interactions.

100

8.1. SYNTAX FOR GLOBAL AND LOCAL TYPES

8.1.3 Projection

In Definition 8.2, we extend the projection operator to be defined on routed com-
munication.

Definition 8.2 (Projection). The projection of G onto r, written G � r, is extended
as:

(
p −→

s
q : {li : Gi}i∈I

)
� r =

qs ⊕ {li : (Gi � r)}i∈I if r = p

ps& {li : (Gi � r)}i∈I if r = q

p ↪→ q : {li : (Gi � r)}i∈I if r = s

u
i∈I
Gi � r otherwise

As shown in the last (4th) case, the same concept of merging applies for routed
communication: when projecting a routed communication onto a non-participant,
the projections of all continuations must be “compatible”, namely they can be merged
using the the merging operator, u. As the merging operator is defined on local types,
we extend the merging operator (introduced in Figure 2.5) to be defined on the
extended syntax in Definition 8.3.

Definition 8.3 (Merging Operator). The merging operator u on local types is ex-
tended as:

pq ⊕ {li : Ti}i∈I upq ⊕ {li : Ti}i∈I = pq ⊕ {li : Ti}i∈I

pq& {li : Ti}i∈I upq&
{
lj : T ′j

}
j∈J

= pq&
{
lk : T ′′k

}
k∈I∪J

where T ′′k =

Tk if k ∈ I \ J

T ′k if k ∈ J \ I

TkuT ′k if k ∈ I ∩ J

otherwise undefined

Recall that routed selection and routed branching behave in the same way as their
“non-routed” counterparts – the merging operator reflects this similarity.

101

8.1. SYNTAX FOR GLOBAL AND LOCAL TYPES

8.1.4 Well-formedness

Recall that well-formedness is a predicate defined solely on the global type in canon-
ical MPST theory: a global type G is well-formed if a projection is defined for all its
participants.

wellFormed (G) ⇐⇒ ∀p ∈ pt (G). G � p exists

In ROUTEDSESSIONS, we need to express that a global type is well-formed with
respect to the role s acting as the router.

We need to define the characteristics that s must display in G to prove that it is
a router. We formalise this as an inductively defined relation, G ~ s, which reads
“s is a centroid in G”. The intuition is that s is at the centre of all communication
interactions. We define what it means to be a centroid in Definition 8.4.

Definition 8.4 (Centroid). Let G~ s denote that s is the centroid of G.

[~-END]
end~ s

[~-RECVAR]
t~ s

G~ s [~-REC]
µt.G~ s

s ∈ {p,q} ∀i ∈ I. Gi ~ s [~-COMM]
p→ q : {li : Gi}i∈I ~ s

r = s ∀i ∈ I. Gi ~ s [~-ROUTECOMM]
p −→

r
q : {li : Gi}i∈I ~ s

• [~-COMM] : For direct communication, s must be a participant and a centroid
of all continuations.

• [~-ROUTEDCOMM] : For routed communication, s must be the router and be a
centroid of all continuations.

Now we are in a position to formalise the definition of well-formedness in ROUT-
EDSESSIONS. We present this in Definition 8.5.

Definition 8.5 (Well-formedness). Let wellFormed (G,s) denote that the global type
G is well-formed with respect to the router s.

wellFormed (G,s) ⇐⇒ (∀p ∈ pt (G). G � p exists)∧G~ s

We also assume that the syntax of G is contractive, i.e. that type variables are
guarded.

102

8.2. LABELLED TRANSITION SYSTEM (LTS) SEMANTICS

8.2 Labelled Transition System (LTS) Semantics

We define the labelled transition system (LTS) semantics over global types (Sec-
tion 8.2.1) and local types (Section 8.2.2) for ROUTEDSESSIONS, building upon the
work of Deniélou and Yoshida [7]. We show the soundness and completeness of
projection with respect to the LTSs through proving the trace equivalence of a global
type and the collection of local types projected from the global type (Section 8.3.3).
We then use this result to conclude that ROUTEDSESSIONS provide the same com-
munication safety guarantees from canonical MPST theory for well-formed global
types, namely deadlock freedom (Section 8.3.4).

First, we extend the label in the LTS, as shown in Figure 8.3, to distinguish the
direct sending (and reception) of a message from the sending (and reception) of a
message via an intermediate routing endpoint. Labels range over l, l′, . . . We highlight
and explain the new labels.

l ::= Labels

| pq!j Direct Send

| pq?j Direct Receive

| vias(pq!j) Routed Send

| vias(pq?j) Routed Receive

Figure 8.3: LTS Labels in ROUTEDSESSIONS

• Routed Send:

The label vias(pq!j) represents the sending (performed by p) of a message
labelled j to q through the intermediate router s.

• Routed Receive:

The label vias(pq?j) represents the reception (initiated by q) of a message la-
belled j send from p through the intermediate router s.

Labels represent communication actions, so we refer to l as labels and actions
interchangeably, as is the case in the literature.

Building upon [7], the subject of a label is the role that initiates the action. In-
tuitively, the actions for routed send and routed receive are still initiated by the
original sender and recipient respectively; we extend the definition of subjects in
Definition 8.6 to reflect this.

Definition 8.6 (Subject). The subject of a LTS label, or subj(l), is defined as:

103

8.2. LABELLED TRANSITION SYSTEM (LTS) SEMANTICS

subj(vias(pq!j)) = subj(pq!j) = p

subj(vias(pq?j)) = subj(pq?j) = q

8.2.1 LTS Semantics over Global Types

The LTS semantics presented in [7] models asynchronous communication, which is
consistent with our proposal. In order to define LTS over global types for asyn-
chronous communication, we need to represent intermediate states (i.e. messages
in transit) within the grammar of global types. Deniélou and Yoshida [7] added the
construct p q. j : {li : Gi}i∈I to represent that the message lj has been sent by p but
not yet received by q.

We add a similar construct p
s

q. j : {li : Gi}i∈I to represent that the message lj
has been sent from p to the router s but not yet routed to q. We extend the projection
operator to support this new construct.

p
s
q. j : {li : Gi}i∈I � r =

ps& {li : Gi � r}i∈I if r = q

p# q. j : {li : Gi � r}i∈I if r = s

Gj � r otherwise

Because the router s holds Because the router holds a “global perspective” on the
routed communication, we also need to represent the intermediate state (at which
the message is being routed by the router) within the grammar of local types. We
extend the grammar of local types with the construct p# q. j : {li : Ti}i∈I to represent
that, from the local perspective of the router, the message lj has been received from
p but not yet routed to q.

Because routed communication is treated differently from direct send and receive
actions, the notion of asynchrony differs between the two types of communication
too. This definition allows us to extend the LTS semantics from [7] more naturally.

We define the LTS semantics over global types, denoted by G
l−−→ G′, in Figure 8.4.

We highlight and explain the new rules.

• [GR6] and [GR7] are analogue to [GR1] and [GR2] for describing the
emission and reception of messages in routed communication, but uses the
“routed in-transit” construct instead.

• [GR8] and [GR9] are analogue to [GR4] and [GR5] in the sense that we
only enforce the syntactic order of messages for the participants involved in
the action l.

An important observation from [GR8] and [GR9] is that, for the router, the
syntactic order of routed communication can be freely interleaved between the syn-

104

8.2. LABELLED TRANSITION SYSTEM (LTS) SEMANTICS

[GR1]
p→ q : {li : Gi}i∈I

pq!j
−−−−−−−−−→ p q. j : {li : Gi}i∈I

[GR2]
p q. j : {li : Gi}i∈I

pq?j
−−−−−−−−−→ Gj

G[µt.G/t]
l−−→ G′

[GR3]
µt.G

l−−→ G′

∀i ∈ I. Gi
l−−→ G′i subj(l) < {p,q}

[GR4]
p→ q : {li : Gi}i∈I

l−−−−−−−−−→ p→ q :
{
li : G′i

}
i∈I

Gj
l−−→ G′j subj(l) , q ∀i ∈ I \ {j}. G′i = Gi

[GR5]
p q. j : {li : Gi}i∈I

l−−−−−−−−−→ p q. j :
{
li : G′i

}
i∈I

[GR6]
p −→

s
q : {li : Gi}i∈I

vias(pq!j)−−−−−−−−−→ p
s
q. j : {li : Gi}i∈I

[GR7]
p

s
q. j : {li : Gi}i∈I

vias(pq?j)−−−−−−−−−→ Gj

∀i ∈ I. Gi
l−−→ G′i subj(l) < {p,q}

[GR8]
p −→

s
q : {li : Gi}i∈I

l−−−−−−−−−→ p −→
s
q :

{
li : G′i

}
i∈I

Gj
l−−→ G′j subj(l) , q ∀i ∈ I \ {j}. G′i = Gi

[GR9]
p

s
q. j : {li : Gi}i∈I

l−−−−−−−−−→ p
s
q. j :

{
li : G′i

}
i∈I

Figure 8.4: LTS Semantics over Global Types in ROUTEDSESSIONS

tactic order of direct communication. This is a crucial result for proving that the
router does not over-serialise communication – we show this in Section 8.4.3.

8.2.2 LTS Semantics over Local Types

We define the LTS semantics over local types, denoted by T
l−−→ T ′, in Figure 8.5.

We highlight and explain the new rules.

105

8.2. LABELLED TRANSITION SYSTEM (LTS) SEMANTICS

[LR1]
q⊕ {li : Ti}i∈I

pq!j
−−−−−−−−−→ Tj

[LR2]
q& {li : Ti}i∈I

qp?j
−−−−−−−−−→ Tj

T [µt.T /t]
l−−→ T ′

[LR3]
µt.T

l−−→ T ′

[LR4]
qs ⊕ {li : Ti}i∈I

vias(pq!j)−−−−−−−−−→ Tj

[LR5]
qs& {li : Ti}i∈I

vias(qp?j)−−−−−−−−−→ Tj

[LR6]
p ↪→ q : {li : Ti}i∈I

vias(pq!j)−−−−−−−−−→ p# q. j : {li : Ti}i∈I

[LR7]
p# q. j : {li : Ti}i∈I

vias(pq?j)−−−−−−−−−→ Tj

∀i ∈ I. Ti
l−−→ T ′i subj(l) < {p,q}

[LR8]
p ↪→ q : {li : Ti}i∈I

l−−−−−−−−−→ p ↪→ q :
{
li : T ′i

}
i∈I

Tj
l−−→ T ′j subj(l) , q ∀i ∈ I \ {j}. T ′i = Ti

[LR9]
p# q. j : {li : Ti}i∈I

l−−−−−−−−−→ p# q. j :
{
li : T ′i

}
i∈I

l = vias(·) subj(l) , q ∀i ∈ I. Ti
l−−→ T ′i [LR10]

q⊕ {li : Ti}i∈I
l−−−−−−−−−→ q⊕

{
li : T ′i

}
i∈I

l = vias(·) subj(l) , q ∀i ∈ I. Ti
l−−→ T ′i [LR11]

q& {li : Ti}i∈I
l−−−−−−−−−→ q&

{
li : T ′i

}
i∈I

Figure 8.5: LTS over Local Types in ROUTEDSESSIONS

We walk through rules [LR4] and [LR5] from the perspective of role p.

• [LR4] and [LR5] are analogue to [LR1] and [LR2] for sending and

106

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

receiving messages respectively. The exception is that the new rules pattern-
match on the router role s on the local type and the routed label.

We walk through rules [LR6] , [LR7] , [LR10] and [LR11] from the perspective
of role s.

• [LR6] and [LR7] are analogue to [GR1] and [GR2] . Intuitively, the router s
holds a “global” perspective on the interaction between p and q, which explains
the correspondence with the LTS semantics over global types.

• [LR10] and [LR11] allow the router to perform routing actions before han-
dling their own direct communication. The syntax l = vias(·) means that the
label l is “of the form” of a routing action, i.e. there exists some p,q, j such
that l = vias(pq!j) or l = vias(pq?j). The constraint of subj(l) , q prevents the
violation of the syntactic order of messages sent and received by q.

Curious readers can consider the examples G1 � s and G2 � s to see why this
constraint is needed.

G1 = s→ r : M1 . r −→
s
q : M2 . end

G1 � s = r⊕ M1. r ↪→ q : M2 . end

G2 = s→ r : M1 . p −→
s
r : M2 . end

G2 � s = r⊕ M1. p ↪→ r : M2 . end

As for the remaining rules, [LR8] and [LR9] are analogue to [GR4] and
[GR5] because the router holds a “global” perspective on the communication, so
transitions that do not violate the syntactic order of messages between roles p and q

are allowed.

8.3 LTS Soundness and Completeness with respect to
Projection

We work towards proving the soundness and completeness of our LTS semantics
with respect to projection. Our approach is motivated from [7]:

1. We first extend the LTS semantics to a collection of local types (hereafter re-
ferred to as a configuration to be consistent with the literature) in Section 8.3.1;

2. Then, we extend the definition of projection to obtain the configuration of a
global type (hereafter referred to as the projected configuration) in Section 8.3.2;

3. Finally, we prove the trace equivalence between the global type and its pro-
jected configuration in Section 8.3.3.

We use the trace equivalence result to prove deadlock freedom in Section 8.3.4.

107

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

8.3.1 LTS Semantics over Configurations

Let P denote the set of participants in the communication automaton. Also let Tp
denote the local type of a participant p ∈ P .

A configuration describes the state of the communication automaton with respect
to each participant p ∈ P . By definition of our LTS semantics, this includes interme-
diate states, so a configuration would also need to express the state of messages in
transit.

We inherit the definition from [7], restated in Definition 8.7.

Definition 8.7 (Configuration). A configuration s = (~T ; ~w) of a system of local types
{Tp}p∈P is defined as a pair of:

• ~T = (Tp)p∈P is the collection of local types. Tp describes the communication
structure from the local perspective of participant p ∈ P .

• ~w = (wpq)p,q∈P is the collection of unbounded buffers. The unbounded buffer
wpq represents a (FIFO) queue of messages sent by p but not yet received by q.

Remark. The subtyping relation defined on local types (see Section 2.1.2) can be
extended to configurations:

~w = ~w′ ∀p ∈ P . Tp ≺ T ′p
(~T ; ~w) ≺ (~T ′; ~w′)

We proceed to define the LTS over configurations in Definition 8.8, highlighting
the extensions required for ROUTEDSESSIONS.

Definition 8.8 (LTS Semantics over Configurations). The LTS semantics over con-

figurations is defined by the relation sT
l−−→ s′T .

Let sT = (~T ; ~w) and s′T = (~T ′; ~w′). We define the specific transitions on ~T and ~w by
case analysis on the label l.

• l = pq!j

Then Tp
l−−→ T ′p because p initiates the action, so T ′

p′ = Tp′ for all p′ , p.

The message j is in transit from p to q, so w′pq = wpq · j (j is appended to the
queue of in-transit messages sent from p to q), and unrelated buffers w′

p′q′ =
wpq are untouched for all p′q′ , pq.

• l = pq?j

Then Tq
l−−→ T ′q because q initiates the action, so T ′

p′ = Tp′ for all p′ , q.

The message j is no longer in transit from p to q as it is received by q, so
wpq = j ·w′pq (j is removed from the front of the queue of in-transit messages
sent from p to q), and unrelated buffers w′

p′q′ = wpq are untouched for all
p′q′ , pq.

108

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

• l = vias(pq!j)

Then Tp
l−−→ T ′p because p initiates the action. Because the send action is

routed, we also need Ts
l−−→ T ′s. This means T ′

p′ = Tp′ for all p′ < {p,s}.
The message j is in transit from p to q, so w′pq = wpq · j and unrelated buffers
w′
p′q′ = wpq are untouched for all p′q′ , pq.

• l = vias(pq?j)

Then Tq
l−−→ T ′q because q initiates the action. Because the receive action is

routed, we also need Ts
l−−→ T ′s. This means T ′

p′ = Tp′ for all p′ < {q,s}.
The message j is no longer in transit from p to q as it is received by q, so
wpq = j ·w′pq, and unrelated buffers w′

p′q′ = wpq are untouched for all p′q′ , pq.

Routed actions are carried out by the router, so it makes sense for the local type of
the router to also makes a step. The semantics of the message buffers for routed ac-
tions are the same as their non-routed counterparts; the only difference is that these
message buffers are “managed” by the router, but this is a change of interpretation
which isn’t reflected in the theory.

8.3.2 Extending Projection for Configurations

When considering the grammar of global types G extended to include intermediate
states, we can obtain the projected configuration from a global type G with partici-
pants P :

〈G〉 =
(
{G � p}p∈P ; 〈G〉{ε}qq′∈P

)
The collection of local types is obtained by projecting G onto each participant

p ∈ P . The contents of the buffers is defined as 〈G〉{wqq′ }qq′∈P . We inherit the defini-
tions presented in [7], and introduce additional rules in Figure 8.6.〈

p
s
p
′. j : {li : Gi}i∈I

〉
{wqq′ }qq′∈P

=
〈
Gj

〉
{wqq′ }qq′∈P [wpp′ 7→wpp′ ·j]〈

p −→
s
p
′ : {li : Gi}i∈I

〉
{wqq′ }qq′∈P

= 〈Gi〉{wqq′ }qq′∈P for any i ∈ I

since ∀i, j ∈ I. 〈Gi〉{wqq′ }qq′∈P =
〈
Gj

〉
{wqq′ }qq′∈P

Figure 8.6: Projection of Buffer Contents from Global Type in ROUTEDSESSIONS

As explained in Section 8.3.1, the semantics of the message buffers for routed
actions are the same as their non-routed counterparts, so the projected contents
of the buffers for routed communication are the same as those under non-routed
communication.

109

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

8.3.3 Trace Equivalence

A sequence of transitions is known as a trace. We want to prove that the set of traces
that can be obtained from reducing a global type G is the same as those that can be
obtained from reducing its projected configuration 〈G〉.

Our approach is based on [7] – namely, proving that this is the case for a single
transition (i.e. step equivalence) is sufficient, as we can obtain trace equivalence as a
direct consequence.

Lemma 8.1 (Step Equivalence). For all global types G and configurations s, if 〈G〉 ≺ s,
then G

l−−→ G′⇐⇒ s
l−−→ s′ such that 〈G′〉 ≺ s′.

Proof. By induction on the possible transitions in the LTSs over global types (to prove
=⇒, i.e. soundness) and configurations (to prove⇐=, i.e. completeness).

Notation conventions We use the following notation for decomposing configura-
tions and projected configurations.

s = {Tq}q∈P , {wqq′ }qq′∈P

s′ = {T ′q}q∈P , {w′qq′ }qq′∈P

〈G〉 = {T̂q}q∈P , {ŵqq′ }qq′∈P

〈G′〉 = {T̂ ′q}q∈P , {ŵ′qq′ }qq′∈P

Soundness
By induction on the structure of LTS semantics over global types.

For each transition G
l−−→ G′, we take the configuration s = 〈G〉, derive G

l−−→ G′

and s
l−−→ s′ under the respective LTSs, and show that s′ ≺ 〈G′〉.

The proofs for rules [GR1-5] are the same as in [7]. We focus on the new rules
introduced for routing.

• [GR6] , where G = p −→
s
p′ : {li : Gi}i∈I ,G′ = p

s
p′. j : {li : Gi}i∈I , l = vias(pp′!j)

Then s = 〈G〉 where

Tp = p
′
s ⊕ {li : Gi � p}i∈I

Tp′ = ps&
{
li : Gi � p

′}
i∈I

Ts = p ↪→ p
′ : {li : Gi � s}i∈I

Tr = u
i∈I

Gi � r for r < {p,p′,s}

{wqq′ }qq′∈P = 〈Gi〉{~ε} for some i ∈ I

110

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

Global transition: We have

T̂ ′
p′ = ps&

{
li : Gi � p

′}
i∈I

T̂ ′s = p# p
′. j : {li : Gi � s}i∈I

T̂ ′r = Gj � r for r < {p′,s}

{ŵ′qq′ }qq′∈P = 〈Gi〉{~ε}[wpp′ 7→wpp′ ·j] for some i ∈ I

So, ŵ′qq′ = wqq′ for qq′ , pp′ and ŵ′pp′ = wpp′ · j.

Configuration transition: Take T ′r = Tr for r < {p,s}.

By [LR4] , Tp
l−−→ T ′p where T ′p = Gj � p.

By [LR6] , Ts
l−−→ T ′s where T ′s = p# p′. j : {li : Gi � s}i∈I .

Also, w′qq′ = wqq′ for qq′ , pp′ and w′pp′ = wpp′ · j.

Correspondence: We havew′qq′ = ŵqq′ for qq′ ∈ P and T ′q = T̂q for q ∈ {p,p′,s}.
For q < {p,p′,s}, we have

T ′q =u
i∈I

Gi � q ≺ Gj � q = T̂q

So, s′ ≺ 〈G′〉.

• [GR7] where G = p
s
p′. j : {li : Gi}i∈I ,G′ = Gj , l = vias(pp′?j)

Then s = 〈G〉 where

Tp′ = ps&
{
li : Gi � p

′}
i∈I

Ts = p# p
′. j : {li : Gi � s}i∈I

Tr = Gj � r for r < {p′,s}

{wqq′ }qq′∈P =
〈
Gj

〉
{~ε}[wpp′ 7→wpp′ ·j]

Global transition: We have

T̂ ′r = Gj � r for r ∈ P

{ŵ′qq′ }qq′∈P =
〈
Gj

〉
{~ε}

So, ŵ′qq′ = wqq′ for qq′ , pp′ and wpp′ = j · ŵ′pp′ .

111

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

Configuration transition: Take T ′r = Tr for r < {p′,s}.

By [LR5] , Tp
l−−→ T ′p where T ′p = Gj � p.

By [LR7] , Ts
l−−→ T ′s where T ′s = Gj � s.

Also, w′qq′ = wqq′ for qq′ , pp′ and wpp′ = j ·w′pp′ .

Correspondence: We have w′qq′ = ŵqq′ for qq′ ∈ P and T ′q = T̂q for q ∈ P .

So, s′ = 〈G′〉.

• [GR8] where G = p −→
s
p′ : {li : Gi}i∈I ,G′ = p −→

s
p′ :

{
li : G′i

}
i∈I

By hypothesis, ∀i ∈ I. Gi
l−−→ G′i and subj(l) < {p,p′}.

By induction, ∀i ∈ I. 〈Gi〉
l−−→

〈
G′i

〉
.

To show that 〈G〉 l−−→ 〈G′〉, it is sufficient to show that G � q
l−−→ G′ � q for

q = subj(l), since the projections for q′ , subj(l) remain the same.

We know G � q =u
i∈I
Gi � q and G′ � q =u

i∈I
G′i � q.

By induction,u
i∈I
Gi � q

l−−→u
i∈I
G′i � q, so G � q

l−−→ G′ � q.

• [GR9] where G = p
s
p′. j : {li : Gi}i∈I ,G′ = p

s
p′. j :

{
li : G′i

}
i∈I

By hypothesis, Gj
l−−→ G′j , p

′ , subj(l), and ∀i ∈ I \ {j}. G′i = Gi .

By induction,
〈
Gj

〉 l−−→
〈
G′j

〉
.

To show that 〈G〉 l−−→ 〈G′〉, it is sufficient to show that G � q
l−−→ G′ � q for

q = subj(l), since the projections for q′ , subj(l) remain the same.

We know G � q = Gj � q and G′ � q = G′j � q.

By induction, Gj � q
l−−→ G′j � q, so G � q

l−−→ G′ � q.

Completeness
By considering the possible transitions in the LTS over configurations, which is

defined by case analysis on the possible labels l.

For each transition s
l−−→ s′, we take the configuration s from the reduction rule,

infer the structure of the global type G such that s = 〈G〉, derive s
l−−→ s′ and G

l−−→ G′

under the respective LTSs, and show that s′ ≺ 〈G′〉.
The proofs for l = pq!j and l = pq?j are the same as in Appendix A.1 of [7]. We

focus on the new labels introduced for routing.

112

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

• l = vias(pq!j):

Then Tp = qs ⊕ {li : Gi � p}i∈I .
Also, Ts contains p ↪→ q : {li : Gi � s}i∈I as subterm. We denote this subterm T̃s.

By definition of projection, G has p −→
s
q : {li : Gi}i∈I as subterm. We denote this

subterm G̃.

Also by definition of projection, no action in G will involve p before G̃.

Configuration transition: By [LR4] , Tp
l−−→ T ′p, where T ′p = Gj � p.

By [LR6] , T̃s
l−−→ T̃ ′s, where T̃ ′s = p# q. j : {li : Gi � s}i∈I .

We get Ts
l−−→ T ′s by inversion lemma, as illustrated below.

[LR6]
T̃s

l−−→ T̃ ′s
... [LR8,9,10,11] as needed

Ts
l−−−−−−−−−→ T ′s

Global transition: By [GR6] , G̃
l−−→ G̃′, where G̃′ = p

s
q. j : {li : Gi}i∈I .

We get G
l−−→ G′ by inversion lemma, as illustrated below.

[GR6]
G̃

l−−→ G̃′

... [GR4,5,8,9] as needed
G

l−−−−−−−−−→ G′

Correspondence: Since the projections for p′ < {p,s} are unchanged, it is
sufficient to show that T ′p ≺ (G̃′ � p) and T̃ ′s ≺ (G̃′ � s).

G̃′ � p = Gj � p = T
′
p

G̃′ � s = p# q. j : {li : Gi � s}i∈I = T̃ ′s

• l = vias(pq?j):

Then Tq = ps& {li : Gi � q}i∈I .
Also, Ts contains p# q. j : {li : Gi � s}i∈I as subterm. We denote this subterm
T̃s.

By definition of projection, G has p
s
q. j : {li : Gi}i∈I as subterm. We denote

this subterm G̃.

Also by definition of projection, no action in G will involve q before G̃.

113

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

Configuration transition: By [LR5] , Tq
l−−→ T ′q, where T ′q = Gj � q.

By [LR7] , T̃s
l−−→ T̃ ′s, where T̃ ′s = Gj � s.

We get Ts
l−−→ T ′s by inversion lemma, as illustrated below.

[LR7]
T̃s

l−−→ T̃ ′s
... [LR8,9,10,11] as needed

Ts
l−−−−−−−−−→ T ′s

Global transition: By [GR7] , G̃
l−−→ G̃′, where G̃′ = Gj .

We get G
l−−→ G′ by inversion lemma, as illustrated below.

[GR7]
G̃

l−−→ G̃′

... [GR4,5,8,9] as needed
G

l−−−−−−−−−→ G′

Correspondence: Since the projections for p′ < {q,s} are unchanged, it is
sufficient to show that T ′q ≺ (G̃′ � q) and T̃ ′s ≺ (G̃′ � s).

G̃′ � q = Gj � q = T
′
q

G̃′ � s = Gj � s = T̃ ′s

Theorem 8.1 (Trace Equivalence). Let G be a global type with participants P = pt (G),
and let ~T = {G � p}p∈P be the local types projected from G. Then G ≈ (~T ,~ε).

Proof. Direct consequence of Lemma 8.1.

8.3.4 Deadlock Freedom

Lemma 8.2 (Preservation of Well-formedness). Let G be a global type. Suppose G is
well-formed with respect to some router s, i.e. wellFormed (G,s).

∀G′, l.
(
G

l−−→ G′ =⇒ wellFormed (G′,s)
)

Proof. By induction on the structure of G
l−−→ G′.

For each transition, we show the two conjuncts for wellFormed (G′,s): (1) G′ � r
exists for r such that G � r exists; and, (2) G′ ~ s.

• [GR1] , where G = p→ q : {li : Gi}i∈I , G′ = p q. j : {li : Gi}i∈I , l = pq!j.

114

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

(1) We know G � r by assumption. To show G′ � r, consider r by case:

– r = p: Then G � p = q⊕ {li : Gi � p}i∈I , so ∀i ∈ I. Gi � p exists.
G′ � p = Gj � p, which exists as j ∈ I .

– r = q: Then G′ � q = p& {li : Gi � q}i∈I G � q, which exists.

– r < {p,q}: Then G � r =u
i∈I
Gi � r, so ∀i ∈ I. Gi � r exists.

G′ � r = Gj � r, which exists as j ∈ I .

(2) We know G~ s by assumption. We deduce G′ ~ s by consequence.

G~ s =⇒ s ∈ {p,q} ∧
∧
i∈I
Gi ~ s =⇒ s ∈ {p,q} ∧Gj ~ s =⇒ G′ ~ s

• [GR2] , where G = p q. j : {li : Gi}i∈I , G′ = Gj , l = pq?j.

(1) We know G � r by assumption. To show G′ � r, consider r by case:

– r = p: Then G′ � p = Gj � p = G � p, which exists.

– r = q: Then G � q = p& {li : Gi � q}i∈I , so ∀i ∈ I. Gi � q exists.
G′ � q = Gj � q, which exists as j ∈ I .

– r < {p,q}: Then G′ � r = Gj � r = G � r, which exists.

(2) We know G~ s by assumption. We deduce G′ ~ s by consequence.

G~ s =⇒ s ∈ {p,q} ∧Gj ~ s =⇒ G′ ~ s

• [GR3] , where µt.G
l−−→ G′. By hypothesis, G[µt.G/t]

l−−→ G′.

We first show that wellFormed (G[µt.G/t],s).

(1) µt.G � r exists for some r.

Note that G � r exists regardless of r’s participation in G.

– If r ∈ pt (G), then µt.G � r = µt.G � r, so G � r exists.

– Otherwise, G � r = end, which exists.

Projection is homomorphic under recursion, so G[µt.G/t] � r exists.

115

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

(2) By assumption, (µt.G)~ s, so G~ s.

The ~ relation is also homomorphic under recursion, so we get G[µt.G/t]~s.

We conclude by induction to obtain wellFormed (G′,s).

• [GR4] , where G = p→ q : {li : Gi}i∈I , G′ = p→ q :
{
li : G′i

}
i∈I

.

By hypothesis, ∀i ∈ I. (Gi
l−−→ G′i) and p , q , subj(l).

If G � r exists, so does Gi � r for i ∈ I .

By assumption, G~ s, so s ∈ {p,q} ∧
∧
i∈I
Gi ~ s.

By induction, ∀i ∈ I. (G′i � r exists ∧G′i ~ s).

(1) To show G′ � r, consider r by case:

– r = p: Then G′ � p = q⊕ {li : G′ � p}i∈I .

– r = q: Then G′ � q = p&
{
li : G′i � q

}
i∈I

.

– r < {p,q}: Then G′ � r =u
i∈I
G′i � r. We know that G � r =u

i∈I
Gi � r exists.

By Lemma A.1,u
i∈I
G′i � r exists too.

(2) We have s ∈ {p,q} from assumption and
∧
i∈I
G′i~s from induction, so G′~s.

• [GR5] , where G = p q. j : {li : Gi}i∈I , G′ = p q. j :
{
li : G′i

}
i∈I

.

By hypothesis, Gj
l−−→ G′j , ∀i ∈ I \ {j}. G

′
i = Gi , and q , subj(l).

If G � r exists, so does Gi � r for i ∈ I .

By assumption, G~ s, so s ∈ {p,q} ∧Gj ~ s.

By induction on Gj
l−−→ G′j and hypothesis ∀i ∈ I \ {j}. G′i = Gi , we get ∀i ∈

I. (G′i � r exists ∧G′i ~ s).

(1) To show G′ � r, consider r by case:

– r = p: Then G′ � p = G′j � p.

– r = q: Then G′ � q = p&
{
li : G′i � q

}
i∈I

.

– r < {p,q}: Then G′ � r = G′j � r.

116

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

(2) We have s ∈ {p,q} from assumption and G′j ~ s from induction, so G′ ~ s.

• [GR6] , where G = p −→
t
q : {li : Gi}i∈I , G′ = p

t
q. j : {li : Gi}i∈I , l = vias(pq!j).

By assumption, wellFormed (G,s), so t = s.

(1) We know G � r by assumption. To show G′ � r, consider r by case:

– r = p: Then G � p = qs ⊕ {li : Gi � p}i∈I , so ∀i ∈ I. Gi � p exists.

G′ � p = Gj � p, which exists as j ∈ I .

– r = q: Then G′ � q = ps& {li : Gi � q}i∈I = G � q, which exists.

– r = s: Then G � s = p ↪→ q : {li : Gi � s}i∈I , so ∀i ∈ I. Gi � s exists.

G′ � s = p# q. j : {li : Gi � s}i∈I , which exists.

– r < {p,q,s}: Then G � r =u
i∈I
Gi � r, so ∀i ∈ I. Gi � r exists.

G′ � r = Gj � r, which exists as j ∈ I .

(2) We know G~ s by assumption. We deduce G′ ~ s by consequence.

G~ s =⇒ t = s∧
∧
i∈I
Gi ~ s =⇒ t = s∧Gj ~ s =⇒ G′ ~ s

• [GR7] , where G = p
t
q. j : {li : Gi}i∈I , G′ = Gj , l = vias(pq?j).

(1) We know G � r by assumption. To show G′ � r, consider r by case:

By assumption, wellFormed (G,s), so t = s.

– r = p: Then G′ � p = Gj � p = G � p, which exists.

– r = q: Then G � q = ps& {li : Gi � q}i∈I , so ∀i ∈ I. Gi � q exists.

G′ � q = Gj � q, which exists as j ∈ I .

– r = s: Then G � s = p# q. j : {li : Gi � s}i∈I , so ∀i ∈ I. Gi � s exists.

G′ � s = Gj � s, which exists as j ∈ I .

– r < {p,q,s}: Then G � r =u
i∈I
Gi � r, so ∀i ∈ I. Gi � r exists.

G′ � r = Gj � r, which exists as j ∈ I .

117

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

(2) We know G~ s by assumption. We deduce G′ ~ s by consequence.

G~ s =⇒ s ∈ {p,q} ∧Gj ~ s =⇒ G′ ~ s

• [GR8] , where G = p −→
t
q : {li : Gi}i∈I , G′ = p −→

t
q :

{
li : G′i

}
i∈I

.

By hypothesis, ∀i ∈ I. (Gi
l−−→ G′i) and p , q , subj(l).

If G � r exists, so does Gi � r for i ∈ I .
By assumption, G~ s, so t = s∧

∧
i∈I
Gi ~ s.

By induction, ∀i ∈ I. (G′i � r exists ∧G′i ~ s).

(1) To show G′ � r, consider r by case:

– r = p: Then G′ � p = qs ⊕ {li : G′ � p}i∈I .

– r = q: Then G′ � q = ps&
{
li : G′i � q

}
i∈I

.

– r = s: Then G′ � s = p ↪→ q :
{
li : G′i � s

}
i∈I

.

– r < {p,q,s}: Then G′ � r =u
i∈I
G′i � r. We know that G � r =u

i∈I
Gi � r exists.

By Lemma A.1,u
i∈I
G′i � r exists too.

(2) We have t = s from assumption and
∧
i∈I
G′i ~ s from induction, so G′ ~ s.

• [GR9] , where G = p
t
q. j : {li : Gi}i∈I , G′ = p

t
q. j :

{
li : G′i

}
i∈I

.

By hypothesis, Gj
l−−→ G′j , ∀i ∈ I \ {j}. G

′
i = Gi , and q , subj(l).

If G � r exists, so does Gi � r for i ∈ I .
By assumption, G~ s, so t = s∧Gj ~ s.

By induction on Gj
l−−→ G′j and hypothesis ∀i ∈ I \ {j}. G′i = Gi , we get ∀i ∈

I. (G′i � r exists ∧G′i ~ s).

(1) To show G′ � r, consider r by case:

– r = p: Then G′ � p = G′j � p.

– r = q: Then G′ � q = ps&
{
li : G′i � q

}
i∈I

.

– r = s: Then G′ � s = p# q. j :
{
li : G′i � s

}
i∈I

.

– r < {p,q,s}: Then G′ � r = G′j � r.

118

8.3. LTS SOUNDNESS AND COMPLETENESS WITH RESPECT TO PROJECTION

(2) We have t = s from assumption and G′j ~ s from induction, so G′ ~ s.

Lemma 8.3 (Progress for Well-formed Global Types). Let G be a global type. Suppose
G is well-formed with respect to some router s, i.e. wellFormed (G,s).

(G = end)∨∃G′, l. (G l−−→ G′)

Proof. The following is logically equivalent.

(G , end) =⇒∃G′, l. (G l−−→ G′)

We prove this by induction on the structure of G.
We do not consider G = end by assumption.
We also do not consider G = t as the type variable is not guarded.

1. G = µt.G′′

t must occur in G, so G[µt.G/t] , end.

By induction, ∃G′, l. (G[µt.G/t] l−−→ G′).

Apply [GR3] to get ∃G′, l. (µt.G l−−→ G′).

2. G = p→ q : {li : Gi}i∈I

Apply [GR1] to get G
pq!j

−−−−−−−−−→ p q. j : {li : Gi}i∈I .

3. G = p −→
r
q : {li : Gi}i∈I

By assumption, wellFormed (G,s), so r = s.

Apply [GR6] to get G
vias(pq!j)−−−−−−−−−→ p

s
q. j : {li : Gi}i∈I .

4. G = p q. j : {li : Gi}i∈I

Apply [GR2] to get G
pq?j

−−−−−−−−−→ Gj .

5. G = p
r
q. j : {li : Gi}i∈I

By assumption, wellFormed (G,s), so r = s.

Apply [GR7] to get G
vias(pq?j)−−−−−−−−−→ Gj .

Theorem 8.2 (Deadlock Freedom). Let G be a global type. Suppose G is well-formed
with respect to some router s, i.e. wellFormed (G,s).

∀G′.
(
G→∗ G′ =⇒ (G′ = end)∨∃G′′, l. (G′ l−−→ G′′)

)
Proof. Direct consequence of Lemmas 8.2 and 8.3.

119

8.4. FROM CANONICAL MPST TO ROUTEDSESSIONS

8.4 From Canonical MPST to ROUTEDSESSIONS

We present an encoding from canonical MPST theory to ROUTEDSESSIONS. This
encoding is parameterised by the router role (conventionally denoted as s); the in-
tuition is that we encode all communication interactions to involve s. For example,
as motivated in Chapter 7, we can encode the TWO BUYER protocol into routed mul-
tiparty session types with respect to the Seller role as the router. When we extend
SESSIONTS to implement ROUTEDSESSIONS in Chapter 9, the developer can imple-
ment the TWO BUYER protocol as an interactive web application over WebSocket
transport.

We define the encoding in Section 8.4.1. More importantly, we prove that the en-
coded routed communications preserve the communication safety properties (Sec-
tion 8.4.2) and communication structure (Section 8.4.3) of the original communica-
tion. This directly addresses the challenges discussed in Section 7.3

8.4.1 Router-Parameterised Encoding

We define the router-parameterised encoding on global types, local types and LTS
labels in the canonical MPST theory.

We start with global types, as presented in Definition 8.9. The main rule is [ENC-
G-COMM] : if the communication did not go through s, then the encoded communi-
cation involves s as the router. The remaining rules are self-explanatory.

Definition 8.9 (Encoding on Global Types).

~end, s� = end [ENC-G-END]

~t, s� = t [ENC-G-RECVAR]

~µt.G, s� = µt.~G, s� [ENC-G-REC]

~p→ q : {li : Gi}i∈I , s� =

p→ q : {li : ~Gi , s�}i∈I if s ∈ {p,q}

p −→
s
q : {li : ~Gi , s�}i∈I otherwise

[ENC-G-COMM]

Readers may observe striking similarities between the encoding on global types
and the definition of a centroid in routed communication (Definition 8.4). In fact,
the two are the same – the encoding on global types simply expresses the centroid
predicate as a function. We arrive at Lemma 8.4 – the proof is straightforward by
induction on global types.

Lemma 8.4 (Encoding Defines Centroid). Given an encoding of global type G with
respect to the router role s, the router role is the centroid of the encoded communication.

120

8.4. FROM CANONICAL MPST TO ROUTEDSESSIONS

~G, s�~ s

Proof. By induction on the structure of G.

We now define the encoding on local types in Definition 8.10. Local types express
communication from the perspective of a particular role, say q. We need to capture
this information in the encoding to accurately encode into the routed communica-
tion, so the encoding on local types is parameterised by two roles.

Definition 8.10 (Encoding on Local Types). The encoding of interpreting local type
T (from the perspective of role q) with respect to the router role s, or ~T , q, s�, is
defined as:

~end, q, s� = end [ENC-L-END]

~t, q, s� = t [ENC-L-RECVAR]

~µt.T , q, s� = µt.~T , q, s� [ENC-L-REC]

~p⊕ {li : Ti}i∈I , q, s� =

p⊕ {li : ~Ti , q, s�}i∈I if s ∈ {p,q}

ps ⊕ {li : ~Ti , q, s�}i∈I otherwise
[ENC-L-SEL]

~p& {li : Ti}i∈I , q, s� =

p& {li : ~Ti , q, s�}i∈I if s ∈ {p,q}

ps& {li : ~Ti , q, s�}i∈I otherwise
[ENC-L-BRA]

Similarly, if the original communication does not involve the router from a local
perspective, the local endpoint will carry out the communication through the router
s in the encoded local type. This is expressed in both [ENC-L-SEL] and [ENC-L-
BRA] .

We establish a correspondence between the encodings for global types and local
types.

∀r,s,G. (r , s =⇒ ~G, s� � r = ~G � r, r, s�)

We formalise this as Lemma A.6. The constraint r , s is necessary because we
would otherwise lose information on the right-hand side of the equality: the projec-
tion of s in the original communication will not contain the routed interactions,
so applying the local type encoding cannot recover this information. We prove
Lemma A.6 by induction on the structure of G; the proof is mechanical and is left in
Appendix A.1 for the interested reader.

121

8.4. FROM CANONICAL MPST TO ROUTEDSESSIONS

This correspondence lets us prove a more useful lemma about how our encoding
preserves the equality of projections, as presented in Lemma A.7.

We also encode LTS actions using the same idea. This is presented in Defini-
tion 8.11, and is required for proofs in Section 8.4.3.

Definition 8.11 (Encoding on LTS Actions).

~pq!j, s� =

pq!j if s ∈ {p,q}

vias(pq!j) otherwise
[ENC-L-OUT]

~pq?j, s� =

pq?j if s ∈ {p,q}

vias(pq?j) otherwise
[ENC-L-IN]

8.4.2 Preserving Well-formedness

We show that our encoding preserves the well-formedness of global types in Theo-
rem 8.3. Well-formedness in ROUTEDSESSIONS defines a constraint on the centroid
of the routed communication. As this directly follows from Lemma 8.4, it is suffi-
cient to prove that our encoding preserves projection (Lemma 8.5), then arrive at
Theorem 8.3 by consequence.

Lemma 8.5 (Encoding Preserves Projection). Let G be a global type. Take arbitrary
roles r,s.

G � r exists =⇒ ~G, s� � r exists

Proof. By induction on the structure of G.

1. G = end, G = t

As ~G, s� = G, if G � r exists, so does ~G, s� � r.

2. G = µt.G′

By assumption, µt.G′ � r exists. Note that G′ � r exists regardless of r’s partic-
ipation in G′.

By induction, ~G′, s� � r exists.

To show ~µt.G′, s� � r exists, consider r by case:

• r ∈ pt (~G′, s�):

~µt.G′, s� � r = µt.~G′, s� � r = µt.~G′, s� � r

As ~G′, s� � r exists, so does ~µt.G′, s� � r.

122

8.4. FROM CANONICAL MPST TO ROUTEDSESSIONS

• r < pt (~G′, s�):

~µt.G′, s� � r = µt.~G′, s� � r = end

3. G = p→ q : {li : Gi}i∈I
To determine ~G, s�, consider s by case:

• s ∈ {p,q}:
Then ~G, s� = p→ q : {li : ~Gi , s�}i∈I .
To show ~G, s� � r exists, consider r by case:

– r = p: Then G � p = q⊕ {li : Gi � p}i∈I .
By induction, ~Gi , s� � p exists for i ∈ I .
~G, s� � p = q⊕ {li : ~Gi , s� � p}i∈I .
As projections of the encoded continuations exist, so does ~G, s� � p.

– r = q: Follows similarly from above.
– r < {p,q}: Then G � r =u

i∈I
Gi � r, so the merge exists.

By induction, ~Gi , s� � r exists for i ∈ I .
~G, s� � r =u

i∈I
~Gi , s� � r, and this merge exists by Lemma A.8.

• s < {p,q}:
Then ~G, s� = p −→

s
q : {li : ~Gi , s�}i∈I .

To show ~G, s� � r exists, consider r by case:

– r = p: Then G � p = q⊕ {li : Gi � p}i∈I .
By induction, ~Gi , s� � p exists for i ∈ I .
~G, s� � p = qs ⊕ {li : ~Gi , s� � p}i∈I .
As projections of the encoded continuations exist, so does ~G, s� � p.

– r = q: Follows similarly from above.
– r = s: Then G � s =u

i∈I
Gi � s.

By induction, ~Gi , s� � p exists for i ∈ I .
~G, s� � s = p ↪→ q : {li : ~Gi , s� � s}i∈I .
As projections of the encoded continuations exist, so does ~G, s� � s.

– r < {p,q,s}: Then G � r =u
i∈I
Gi � r, so the merge exists.

By induction, ~Gi , s� � r exists for i ∈ I .
~G, s� � r =u

i∈I
~Gi , s� � r, and this merge exists by Lemma A.8.

Theorem 8.3 (Encoding Preserves Well-Formedness). Let G be a global type, and s

be a role.

wellFormed (G) =⇒ wellFormed (~G, s�,s)

Proof. Direct consequence of Lemmas 8.4 and 8.5 and Definition 8.5.

123

8.4. FROM CANONICAL MPST TO ROUTEDSESSIONS

8.4.3 Preserving Communication

We present a crucial result that directly addresses the pitfalls discussed in Section 7.3
– namely, that our encoding does not over-serialise the original communication. We
show this through proving that our encoding preserves the LTS semantics over global
types – or more precisely, we can use the encodings over global types and LTS actions
to encode all possible transitions in the LTS for global types in the canonical MPST
theory.

Theorem 8.4 (Encoding Preserves Semantics). Let G,G′ be global types such that

G
l−−→ G′ for some label l.

∀l,s.
(
G

l−−→ G′ =⇒ ~G, s�
~l, s�

−−−−−−−−−→ ~G′, s�
)

Proof. By induction on the structure of G
l−−→ G′. Take arbitrary router role s.

• [GR1] , where G = p→ q : {li : Gi}i∈I ,G′ = p q. j : {li : Gi}i∈I , l = pq!j.

To show ~G, s�
~l, s�

−−−−−−−−−→ ~G′, s�, consider s by case:

– s ∈ {p,q}: Then we have

~G, s� = p→ q : {li : ~Gi , s�}i∈I
~G′, s� = p q. j : {li : ~Gi , s�}i∈I
~l, s� = pq!j

The encoded transition is possible using [GR1] .

– s < {p,q}: Then we have

~G, s� = p −→
s
q : {li : ~Gi , s�}i∈I

~G′, s� = p
s
q. j : {li : ~Gi , s�}i∈I

~l, s� = vias(pq!j)

The encoded transition is possible using [GR6] .

• [GR2] , where G = p q. j : {li : Gi}i∈I ,G′ = Gj , l = pq?j.

We know ~G′, s� = ~Gj , s�

To show ~G, s�
~l, s�

−−−−−−−−−→ ~G′, s�, consider s by case:

124

8.4. FROM CANONICAL MPST TO ROUTEDSESSIONS

– s ∈ {p,q}: Then we have

~G, s� = p q. j : {li : ~Gi , s�}i∈I
~l, s� = pq?j

The encoded transition is possible using [GR2] .

– s < {p,q}: Then we have

~G, s� = p
s
q. j : {li : ~Gi , s�}i∈I

~l, s� = vias(pq?j)

The encoded transition is possible using [GR7] .

• [GR3] , where G = µt.G′′.

By hypothesis, G′′[µt.G′′/t]
l−−→ G′.

By induction, ~G′′[µt.G′′/t], s�
~l, s�

−−−−−−−−−→ ~G′, s�.
By Lemma A.3, ~G′′[µt.G′′/t], s� = ~G′′, s� [µt.~G′′, s�/t].

We know ~G, s� = ~µt.G′′, s� = µt.~G′′, s�.

The encoded transition is possible using [GR3] as shown:

~G′′, s� [µt.~G′′, s�/t]
~l, s�

−−−−−−−−−→ ~G′, s�
[GR3]

µt.~G′′, s�
~l, s�

−−−−−−−−−→ ~G′, s�

• [GR4] , where G = p→ q : {li : Gi}i∈I ,G′ = p→ q :
{
li : G′i

}
i∈I

.

By hypothesis, ∀i ∈ I. Gi
l−−→ G′i and subj(l) < {p,q}.

By induction, ∀i ∈ I.
(
~Gi , s�

~l, s�
−−−−−−−−−→ ~G′i , s�

)
.

By Definition 8.6, subj(~l, s�) < {p,q}.

To show ~G, s�
~l, s�

−−−−−−−−−→ ~G′, s�, consider s by case:

– s ∈ {p,q}: Then we have

~G, s� = p→ q : {li : ~Gi , s�}i∈I

125

8.4. FROM CANONICAL MPST TO ROUTEDSESSIONS

~G′, s� = p→ q :
{
li : ~G

′
i , s�

}
i∈I

The encoded transition is possible using [GR4] .

– s < {p,q}: Then we have

~G, s� = p −→
s
q : {li : ~Gi , s�}i∈I

~G′, s� = p −→
s
q :

{
li : ~G

′
i , s�

}
i∈I

The encoded transition is possible using [GR8] .

• [GR5] , where G = p q. j : {li : Gi}i∈I ,G′ = p q. j :
{
li : G′i

}
i∈I

.

By hypothesis, Gj
l−−→ G′j , p

′ , subj(l), and ∀i ∈ I \ {j}. G′i = Gi .

By induction, ~Gj , s�
~l, s�

−−−−−−−−−→ ~G′j , s�.

By Definition 8.6, subj(~l, s�) , q.

To show ~G, s�
~l, s�

−−−−−−−−−→ ~G′, s�, consider s by case:

– s ∈ {p,q}: Then we have

~G, s� = p q. j : {li : ~Gi , s�}i∈I
~G′, s� = p q. j :

{
li : ~G

′
i , s�

}
i∈I

The encoded transition is possible using [GR5] .

– s < {p,q}: Then we have

~G, s� = p
s
q. j : {li : ~Gi , s�}i∈I

~G′, s� = p
s
q. j :

{
li : ~G

′
i , s�

}
i∈I

The encoded transition is possible using [GR9] .

126

8.5. SUMMARY

We motivated the risk of over-serialising communication with a naive routing def-
inition in Section 7.3. We revisit the example and show that our encoding preserves
valid traces in the original communication.

Example: Encoding Preserves Semantics
Consider the global type

G = p→ q : M1 . s→ q : M2 . end

We apply our encoding with respect to the router role s

~G, s� = p −→
s
q : M1 . s→ q : M2 . end

Recall that l = sq!M2 can reduce G.

[GR1]
(s→ q : M2 . end)

l−−→ end subj(l) = s < {p,q}
[GR4]

(p→ q : M1 . s→ q : M2 . end)
l−−−−−−−−−→ (p→ q : M1 . s q : M2 . end)

We show that ~l, s� = l can reduce ~G, s�.

[GR8]
(s→ q : M2 . end)

l−−→ end subj(l) = s < {p,q}
[GR4](

p −→
s
q : M1 . s→ q : M2 . end

)
l−−−−−−−−−→

(
p −→

s
q : M1 . s q : M2 . end

)
sq!M2 is a prefix of a valid execution trace for G, given below.

G
sq!M2

−−−−−−−−−→
pq!M1

−−−−−−−−−→
pq?M1

−−−−−−−−−→
sq?M2

−−−−−−−−−→ end

Interested readers can verify that the encoded trace (given below) is a valid exe-
cution trace for ~G, s�.

~G, s�
sq!M2

−−−−−−−−−→
vias(pq!M1)−−−−−−−−−→

vias(pq?M1)−−−−−−−−−→
sq?M2

−−−−−−−−−→ end

8.5 Summary

We have presented ROUTEDSESSIONS, a variant of the canonical MPST theory to ex-
press routed communication. We introduced extensions to syntax and semantics, and
proved that our extended semantics are sound and complete, and preserve deadlock-
freedom for well-formed protocols. We defined an encoding from the canonical
theory onto ROUTEDSESSIONS, and proved the preservation of well-formedness and
communication.

127

Chapter 9

Implementing ROUTEDSESSIONS in
SESSIONTS

In this chapter, we explain how SESSIONTS is extended to implement ROUTEDSES-
SIONS. As motivated in Section 7.2, the routing mechanism is intended to be trans-
parent to the developer. Hence, there are no changes made to the generated APIs; we
only need to adapt how the session runtime of the respective endpoints perform send
and receive actions. We present the changes made to the session runtime generated
by NODEMPST and REACTMPST in Sections 9.1 and 9.2 respectively.

9.1 Extending NODEMPST

By enabling peer-to-peer communication between browser endpoints through the
server, not all messages received by the server are intended for the server role. We
distinguish these by requiring all messages sent by browser endpoints to specify the
intended recipient under the role property. We specify this through constructing
an interface defining the structure of a “general” message received by the server.
Since this interface must match both routed messages and messages intended for
the server, we have to respect the fact that the server does not need to know the
contents of routed messages, so the existing label and payload properties must be
loosely typed to respect this notion of privacy.

1 // Inside the Message namespace ...

2 export interface Channel {

3 role: Roles.All , label: string , payload: any[]

4 };

5

6 // Build message object to send through WebSocket

7 export const toChannel =

8 (role: Roles.All , label: string , payload: any[]) => ({

9 role , label , payload

10 });

We can now adapt the onmessage WebSocket event listener defined at the server
endpoint to route messages not intended for the server role, as shown in Listing 9.1.
By construction of our API generation strategy, the incoming message must match

128

9.2. EXTENDING REACTMPST

the interface defined above, so it is a safe deserialisation step. This preliminary
deserialisation allows the server to identify routed messages, and proceed to send it
to the intended recipient.

1 // Top -level parsing to distinguish between routed messages

2 const { role , label , payload } =

3 JSON.parse(data) as Message.Channel;

4 if (role !== Roles.Self) {

5 // Route message

6 this.send(role , label , payload , from);

7 } else {

8 // Invoke message handler as before , see Section 4.4.4

9 }

Listing 9.1: Modified onmessage Event Listener for NODEMPST for Routing

Browser endpoints also expect to receive messages with the original sender explic-
itly marked under the role property, so we modify the send() method generated for
the server endpoint to attach this extra piece of information. To maximise compati-
bility with the existing runtime implementation, we define the server as the default
argument for the from parameter of the send() method, as highlighted below.

1 send(to: Roles.Peers , label: string , payload: any[],

2 from: Roles.All = Roles.Self) {

3 const message = Message.toChannel(from , label , payload);

4 this.roleToSocket[to].send(JSON.stringify(message));

5 }

ROUTEDSESSIONS introduces an additional concern for managing the terminal
state of the server’s EFSM: when the server’s EFSM reaches its terminal state, it
does not mean other endpoints have reached their terminal state, as they can still
interact amongst themselves. The server will need to remain connected to perform
its routing duties. As our existing design choice already specifies that browser end-
points initiate the WebSocket close event when they reach their terminal state, we do
not need to worry about this additional concern as the server will remain connected
when it reaches its terminal state to carry out its routing duties anyway.

9.2 Extending REACTMPST

Similarly, the session runtime for browser endpoints need to specify the intended
recipient when sending a message through the WebSocket connection, in order for
the server endpoint to route the message accordingly. Likewise, when registering
receive handlers, the browser endpoint also needs to specify the role to receive from
in addition to the handler.

As explained in Section 5.4.4, the current implementation of REACTMPST has a
pair of queues for messages waiting for handlers and vice-versa. Because ROUT-
EDSESSIONS allows browser endpoints to interact with non-server endpoints, this
existing framework may lead to communication mismatch.

129

9.2. EXTENDING REACTMPST

For example, consider the sequence of routed interactions between server end-
point S and browser endpoints A, B and C:

A −→
S
B : M1(number).C −→

S
B : M2(string).end

From the perspective of B, B will register a receive handler expecting to process
M1(number) from A first. However, communication will be routed by some server
endpoint S, and by ROUTEDSESSIONS theory, S can route C’s M2(string) message to
B before A’s M1(number) message, so the existing message receiving framework will
use the receive handler defined for M1(number) to process the received M2(string),
which is a mismatch.

Hence, we need to implement the message receiving framework outlined in Sec-
tion 4.4.4 instead, which generalises the pair of message/handler queues to two
mappings to provide a pair of message/handler queues for each endpoint. The run-
time instantiates the two mappings of queues, and receive handler registration now
targets the pair of queues specified by the role to receive from. We illustrate this in
Listing 9.2

1 class Client extends React.Component <...> {

2 private messageQueue: RoleToMessageQueue;

3 private handlerQueue: RoleToHandlerQueue;

4

5 // Omitting unchanged methods

6

7 private registerReceiveHandler(

8 role: Roles.Peers , handle: ReceiveHandler) {

9 const message = this.messageQueue[role].shift ();

10 if (message !== undefined) {

11 // Message received already -- process as before

12 } else {

13 // No message received -- enqueue handler

14 this.handlerQueue[role].push(handle);

15 }

16 }

17 }

Listing 9.2: Runtime Extensions for REACTMPST to Implement ROUTEDSESSIONS

Referring to the previous example under this framework, S can route C’s message
to B first, but M2(string) will be stored under the message queue mapped to C,
so it will not be processed until B registers the receive handler for processing C’s
message. This cannot happen until B processes M1(number) from A, so the order of
communication specified in the global protocol is respected.

130

Part III

Evaluation and Conclusion

131

Chapter 10

Evaluation

In this chapter, we evaluate the expressiveness and performance of our generated
APIs with respect to the main objective of our project in providing developers with a
development workflow that offers communication safety guarantees in modern web
programming through multiparty session types.

Expressiveness

To evaluate the expressiveness of our work, we use two case studies of protocols
found in web services to demonstrate strengths and weaknesses of our work:

• NOUGHTS AND CROSSES Game, as introduced in [40]:

In Section 10.1, we implement a classic multiplayer game which involves a
game server and two players interacting with the game via the browser, to
show that our work is compatible with multiparty sessions, which is not the
case in [19, 20]. We show how our generated APIs are compatible with the
state management solution used by the game, and give examples of how the
generated APIs empower the developer to intuitively implement the game in-
terface.

• TWO BUYERS Protocol, as introduced in Section 7.1 and [25, 26]:

In Section 10.2, we walk through an implementation of the TWO BUYERS pro-
tocol. This cannot be implemented in [19, 20, 32], which illustrates the nov-
elty of our ROUTEDSESSIONS theory on routed multiparty session types. We
emphasise how the routing mechanism is transparent to the developer imple-
menting the protocol, which demonstrates the practicality of our extensions to
SESSIONTS to support ROUTEDSESSIONS.

Performance

To evaluate the performance of our work, we run micro-benchmarks on a variant of
the PING PONG protocol parameterised by the number of round trips to analyse the
overhead of our implementation, compared with implementations written without
using our generated APIs, as the number of round trips increase. We describe the
experiment methodology and comment on our findings in Section 10.3.

132

10.1. MULTIPARTY SESSIONS: NOUGHTS AND CROSSES

10.1 Multiparty Sessions: NOUGHTS AND CROSSES

We implement the classic turn-based board game of Noughts and Crosses between
two players, as introduced in [40]. Both players, identified by either noughts (O’s)
or crosses (X’s) respectively, take turns to place a mark on an unoccupied cell of a
3-by-3 grid until one player wins (when their markers form one straight line on the
board) or a stalemate is reached (when all cells are occupied and no one wins).

We formalise the game interactions using a Scribble protocol presented in List-
ing 10.1. The GAME protocol describes one turn: P1 makes a move by sending the
coordinates of a vacant cell on the game board to Svr, then Svr reports the out-
come of that move to both players. If another round is required to determine the
game result, the GAME protocol is recursively invoked (Line 18) with roles P1 and
P2 swapped.

1 module NoughtsAndCrosses;

2

3 // TypeScript definition:

4 // interface Point {x: number , y: number}

5 type <typescript > "Coordinate" from "./ Types" as Point;

6

7 global protocol Game(role Svr , role P1 , role P2) {

8 Pos(Point) from P1 to Svr;

9 choice at Svr {

10 Lose(Point) from Svr to P2;

11 Win(Point) from Svr to P1;

12 } or {

13 Draw(Point) from Svr to P2;

14 Draw(Point) from Svr to P1;

15 } or {

16 Update(Point) from Svr to P2;

17 Update(Point) from Svr to P1;

18 do Game(Svr , P2 , P1);

19 }

20 }

Listing 10.1: The NOUGHTS AND CROSSES Protocol

We focus on the implementation details that best illustrate the expressiveness of
our work; the interested reader can find the full implementation on GitHub1, and
consult README.md to navigate between the generated code and developer imple-
mentation.

10.1.1 Game Server

We set up the WebSocket server as an Express.js2 [18] application on top of the
Node.js runtime. We define our own game logic in a Board class to keep track of the

1https://github.com/ansonmiu0214/SessionTS-Examples/NoughtsAndCrosses
2Express is a commonly used library for writing lightweight web servers in JavaScript.

133

https://github.com/ansonmiu0214/SessionTS-Examples/NoughtsAndCrosses

10.1. MULTIPARTY SESSIONS: NOUGHTS AND CROSSES

game state and expose methods to query the result – the implementation for Board
is included in Appendix B.1. This custom logic is integrated into the handleP1Move

and handleP2Move handlers implemented by the developer, defined to handle the
moves made by P1 and P2 respectively. We illustrate this in Listing 10.2.

1 const handleP1Move = new Implementation.S13({

2 Pos: async (move: Point) => {

3 // ‘board ‘ manages game state;

4 // ‘board.P1 ‘ registers the move and returns the game result

5 const result = await board.P1(move);

6 switch (result) {

7 case MoveResult.Win: {

8 return new Implementation.S15([

9 // Send losing result to P2

10 [Labels.S15.Lose , [move], new Implementation.S16(

11 // Send winning result to P1

12 [Labels.S16.Win , [move], new Implementation.Terminal ()]

13)]

14]);

15 }

16 case MoveResult.Draw: { ... }

17 case MoveResult.Continue: {

18 return new Implementation.S15(

19 // Notify both players and proceed

20 // with next round using ‘handleP2Move ‘

21 [Labels.S15.Update , [move], new Implementation.S18(

22 [Labels.S18.Update , [move], handleP2Move]

23)]

24);

25 }

26 }

27 }

28 });

29

30 const handleP2Move = ... // Defined similarly as handleP1Move

31

32 const cancellation = (role: Roles.All , reason: string) => {

33 console.log(‘${role} cancelled because of ${reason }‘);
34 }

35

36 new Svr(

37 wss , // WebSocket server

38 handleP1Move , // Game logic

39 cancellation // Error handler

40);

Listing 10.2: Implementing NOUGHTS AND CROSSES Game Server

When the server receives a move, it notifies the game logic to update the game
state and return the game result caused by that move. The game logic is likely
to keep track of move history using a database; we simulate this with a delay, so
the game result returned by the game logic is a Promise. The expressiveness of
our generated APIs enable the developer to define the handlers as async functions

134

10.1. MULTIPARTY SESSIONS: NOUGHTS AND CROSSES

to use the asynchronous game logic API intuitively – this is something prevalent
in modern web programming, but not directly addressed in existing session type
implementations for web development [19, 32].

10.1.2 Game Players

For simplicity, our game uses the same implementation for both P1 and P2, although
they can be different in theory – the developer could implement P1 using a GUI and
provide P2 with a text-based game experience on the browser.

The main implementation detail for players is to make moves. Intuitively, the
developer implements a grid and binds a handler to the ’onClick’ event of each
vacant cell to send that cell’s coordinate in a Pos(Point) message to the game server.
A common source of bugs would be not preventing the user from selecting a second
cell when waiting for the game server’s response, which violates the game rules (and
the global protocol).

Our approach of providing component factories for send states in REACTMPST
makes this very intuitive and guarantees communication safety. First, it gives the
developer the flexibility to trigger the same send action (in this case, Pos(Point)
via multiple UI elements – the developer can generate a send action wrapper com-
ponent for each vacant cell on the game board. Moreover, each generated wrapper
component sends a different payload corresponding to the coordinates of the cell:
our generated APIs support this as the handler supplied to the send component fac-
tory can access the cell’s coordinates in the closure. Finally, the send action is always
followed by a transition to the receive state component, so the user cannot violate
channel linearity by selecting two cells.

We demonstrate how this works in Listing 10.3. The factory function for binding
the Pos(Point) send action is defined under this.props.Pos. For each x-y coor-
dinate on the game board, if the cell is vacant, we create a <SelectPoint> React
component from the component factory function (which reads “build a react compo-
nent that sends the Pos message with x-y coordinate as payload when the user clicks
on it”), and we wrap a <td> table cell (since the game board is rendered as an HTML
table) inside the generated component to bind the click event to the table cell.

The session cancellation handler allows the developer to render useful messages
to the player, since a different component can be rendered depending on whether
the server or the opposition has disconnected, and make application-specific inter-
pretations of the cancellation. For example, if the opposition has disconnected, the
developer can interpret this as a forfeit and render a winning message to the user.

10.1.3 Summary

We demonstrated how the developer can use the generated APIs from SESSIONTS to
implement a complex multiparty protocol which features branching, selection and
recursion. We highlighted specific features in the generated APIs for both server and
browser endpoints that allow the developer to intuitively implement their applica-
tion logic. In particular, we observed that the extensions introduced in Chapter 6

135

10.2. ROUTED MULTIPARTY SESSIONS: TWO BUYERS

1 // Inside some render () function ...

2 {board.map((row , x) =>

3 <tr >

4 {row.map((cell , y) => {

5 if (cell === Cells.VACANT) {

6 const sendPoint = (event: React.MouseEvent) => {

7 return { x, y };

8 });

9 const SelectPoint = this.pros.Pos(’onClick ’, sendPoint);

10 return <SelectPoint ><td >{cell}</td ></SelectPoint >

11 } else {

12 // Render nought or cross ,

13 // but clicking on this cell will *not* send anything

14 return <td >{cell}</td >

15 }

16 })}

17 </tr >

18)}

Listing 10.3: Safely Binding Send Actions to NOUGHTS AND CROSSES Game Board

play crucial roles in improving the usability of the generated APIs when compared
with existing work on session types for web development [5, 19, 32].

Code is available at https://github.com/ansonmiu0214/SessionTS-Examples/

NoughtsAndCrosses.

10.2 Routed Multiparty Sessions: TWO BUYERS

We implement the TWO BUYER protocol introduced in Section 7.1. This protocol
cannot be implemented using existing proposals [19, 32] for integrating session
types into web development. SESSIONTS overcomes the limitations of existing work
through implementing novel theory of routed multiparty session types formalised in
Chapter 8; the implementation of ROUTEDSESSIONS in SESSIONTS is explained in
Chapter 9.

We present the implementation of the Seller in Listing 10.4, and the implemen-
tation of the peer-to-peer interaction by buyer A in Listing 10.5 The main point to
note is that the routing mechanism is completely transparent to the developer, which
shows the elegance of our solution.

The ROUTEDSESSIONS implementation does not affect the compatibility of our
generated APIs with external libraries. The Seller endpoint is set up as an Express.js
application, and both buyers use the React Context API3 for application state man-
agement.

Interested readers can find the full implementations for the other endpoints along-
side the generated code on GitHub4.

3React Contexts allow components to pass data (such as application state) through the component
tree without having to propagate via props at every level.

4https://github.com/ansonmiu0214/SessionTS-Examples/TwoBuyer

136

https://github.com/ansonmiu0214/SessionTS-Examples/NoughtsAndCrosses
https://github.com/ansonmiu0214/SessionTS-Examples/NoughtsAndCrosses
https://github.com/ansonmiu0214/SessionTS-Examples/TwoBuyer

10.3. PERFORMANCE BENCHMARKS

1 new Implementation.Initial ({

2 [Labels.S32.title]: async (title) => {

3 const quote = await db.getQuote(title);

4 return new Implementation.S34([

5 Labels.S34.quote , [quote], new Implementation.S35([

6 Labels.S35.quote , [quote], new Implementation.S36({

7 [Labels.S36.buy]: () => {

8 return new Implementation.Terminal ();

9 },

10 [Labels.S36.cancel]: () => {

11 return new Implementation.Terminal ();

12 }

13 })

14])

15])

16 }

17 })

Listing 10.4: Two Buyer Seller Implementation

1 type State = { split: number };

2

3 class ProposeSplit extends S11 <State > {

4 state = { split: 0 };

5

6 render () {

7 const SendSplit = this.split(’onClick ’, ev => {

8 return [this.state.split];

9 });

10

11 return <div >

12 <input

13 type=’number ’

14 value ={this.state.split}

15 onChange ={ev => this.setState ({

16 split: Number(ev.target.value)

17 })}

18 placeholder=’Enter split ’

19 />

20 <SendSplit ><button >Propose </button ></SendSplit >

21 </div >;

22 }

23 }

Listing 10.5: Developer Implementation of Peer-to-Peer Interaction in Two Buyer

10.3 Performance Benchmarks

Whilst web applications implementing our generated APIs enjoy communication
safety guarantees, the presence of the session runtime acts as an additional layer
of abstraction between the application logic and the WebSocket transport, which

137

10.3. PERFORMANCE BENCHMARKS

presents a performance trade-off; we observe an increase in the time taken to per-
form each channel action, as a result of the session runtime intercepting channel
actions and performing additional logic to ensure that the endpoint conforms to the
protocol.

1 global protocol PingPong(role Client , role Svr) {

2 PING(number) from Client to Svr;

3 choice at Svr {

4 PONG(number) from Svr to Client;

5 do PingPong(Client , Svr);

6 } or {

7 BYE(number) from Svr to Client;

8 }

9 }

Listing 10.6: The PING PONG Protocol

To measure the overhead of our implementation, we compare the execution time
of web-based implementations of the Ping Pong protocol (Listing 10.6) with and
without our generated APIs.

We parameterise the PING PONG protocol by n > 0, the number of round-trip mes-
sages. This is standardised in the application logic across experiments. Upon estab-
lishing a connection, the experiment proceeds as follow:

1. Client sends PING(m:number) to Svr, with m = 0 initially.

2. Svr receives PING(m:number), and conditionally responds based on n:

(a) If m + 1 < n, then Svr replies PONG(m + 1). Client responds to PONG by
returning to step 1 with m set as the payload from PONG.

(b) Otherwise, m+1 = n, then Svr responds with BYE(m+1), as n round trips
have taken place. Client responds to BYE by closing the connection, thus
ending the experiment.

We note that the PING PONG protocol implements a binary session. It would
be interesting to observe the overhead in a multiparty context, but due to limited
time constraints, our benchmarking suite does not support multiple browser targets.
Benchmarking multiparty protocols would also require writing multiple distinct Re-
act applications using the generated APIs – as this is currently a manual process,
doing this for multiple roles requires more time than available.

10.3.1 Setup

In order to measure the overhead as accurately as possible, we outline the logic that
all implementations must follow:

138

10.3. PERFORMANCE BENCHMARKS

Figure 10.1: User Interface of Client Endpoint in PING PONG Protocol

PING PONG Client on React:

• All Clients implement the same user interface (Figure 10.1), rendering a
<button> which triggers the send, and a <div> captioned with the number
of PONGs received.

• Clients will use the React Context API [8] for application state management,
i.e. the number of PONGs received. We wrap the session logic in a <Benchmark>

component that acts as the ContextProvider using its component state.

• To automate the benchmark, we use the React Refs API [11] to access the DOM
<button> node programmatically, in order to simulate the click event and send
a PING message upon establishing the WebSocket connection, or upon receiving
a PONG.

• We use the production build generated by create-react-app [14] for all experi-
ments, which performs the compilation into JavaScript. We serve the produc-
tion build using the serve package [54] available on npm.

PING PONG Svr on Node:

• We use the built-in console.time function to record the execution time of all
experiments. The timer starts when a WebSocket connection has been estab-
lished at Server, and stops when on a CloseEvent.

• To observe the execution pattern, the Svr will log the running elapsed time for
every PING message received.

• All Svrs run the benchmarks without a real web browser, using headless brows-
ing functionality from the Zombie.js [1] package.

• Svr logic is parameterised by the number of round trips, n, configured through
an environment variable passed through the command line.

139

10.3. PERFORMANCE BENCHMARKS

• We use the compiled JavaScript versions of all Svrs for the experiments.

Code is available at https://github.com/ansonmiu0214/SessionTS-Benchmarks.
Interested readers may follow the README.md to run the benchmarks and visualise
the logs using the interactive notebook in the same directory.

We run the experiments under a network of latency 0.165ms (64 bytes ping), and
repeat each experiment 20 times. Execution time measurements are taken using a
machine equipped with Intel i7-4850HQ CPU (2.3 GHz, 4 cores, 8 threads), 16 GB
RAM, macOS operating system version 10.15.4, Node.js runtime version 12.12.0,
and TypeScript compiler version 3.7.4. We standardise all packages used in the
front- and back-end implementations across experiments. Details can be found in
Appendix B.2.

The benchmark compares three implementations of the PING PONG protocol:

bare: The bare implementation directly interfaces with WebSocket primitives for
sending and receiving. The implementation executes the PING PONG protocol, but
does not guarantee communication safety by construction – e.g. the user can click
the PING button multiple times before a PONG message is received, violating channel
linearity. This represents the typical developer implementation without using the
MPST framework.

bare safe: The bare_safe implementation also directly interfaces with Web-
Socket primitives for communication, but assumes the developer implements min-
imal viable workarounds to address the lack of communication safety. Here, the
developer renders an inactive version of the PING button when the PING message
has been sent but a response has yet to be received; a visible boolean flag is used
to explicitly manage which <button> to render.

mpst: The mpst implementation uses the APIs generated from SESSIONTS, so it
enjoys the communication safety guarantees from our methodology.

10.3.2 Execution Pattern

We compare the execution patterns of exchanging 10,000 Ping-Pongs throughout 20
repeated experiments across the three implementations. We visualise the elapsed
time with respect to the number of PINGs received in Figure 10.2: each line repre-
sents one execution of the benchmark.

Relative to the two bare implementations, the mpst version performs more con-
sistently, perhaps as a result of the session runtimes handling all WebSocket interac-
tions in a systematic way. The gradient of the graph represents the rate at which a
Ping-Pong round trip takes place. We observe a steeper gradient when the protocol
begins, which illustrates the overhead incurred in the session joining phase in our
generated APIs. Aside from these factors, all three implementations generally share
similar characteristics in their protocol execution.

140

https://github.com/ansonmiu0214/SessionTS-Benchmarks

10.3. PERFORMANCE BENCHMARKS

(a) bare (b) bare_safe

(c) mpst

Figure 10.2: Comparison of Execution Pattern for 10,000 Ping-Pongs

10.3.3 Overhead

The execution time is the total time taken for the Client to connect to the Server

and complete the parameterised number of round trips. We compare the total exe-
cution time (Exec. Time) and execution time per round trip (Exec. Time / Ping-Pong)
– averaged over 20 repeated experiments – across the three implementations, for
n ∈ {102,103,104}. We summarise the results in Table 10.1.

We note that the addition of a session runtime for all roles in the mpst imple-
mentation does incur a performance overhead. This is made apparent when looking
closely at Exe. Time / Ping-Pong; we visualise this in Figure 10.3.

The mpst implementation records greater round trip times compared to both bare

141

10.3. PERFORMANCE BENCHMARKS

n
Exec. Time Exec. Time / Ping-Pong

bare bare_safe mpst bare bare_safe mpst

102 89.64ms 107.09ms 186.23ms 0.90ms 1.07ms 1.86ms

103 642.92ms 663.91ms 1155.48ms 0.64ms 0.66ms 1.16ms

104 3542.16ms 3837.97ms 7015.25ms 0.35ms 0.38ms 0.70ms

Table 10.1: Comparison of Execution Time for 100, 1,000 and 10,000 Ping-Pongs

Figure 10.3: Comparing Average Time per Ping-Pong Across Implementations

and bare_safe variants. This is expected, as the runtime for each role performs
additional logic during both the sending and receiving of messages. For example,
receiving a message involves performing (albeit O(1) time complexity) operations
on the message queue and handler queue. As for browser-side implementations,
every EFSM transition invokes an updated render() on the VDOM, which requires
reconciliation internally by React to update the browser DOM accordingly.

We also observe that the (round trip time) performance gap between the mpst

implementation and the two bare implementations narrows as the number of round
trips increase. This suggests that the session joining logic in our implementation
yields greater overhead than the additional processing logic injected during commu-
nication, which is consistent with our findings in Section 10.3.2.

We interpret the overhead as a trade-off between maximising performance and
maximising the static communication safety guarantees for web applications. In
particular, the event-driven nature of browser-side logic makes it highly challenging
to guarantee communication safety, as having “active” channel actions on the DOM

142

10.4. SUMMARY

allows linearity to be violated by the user, even if one verifies linear channel usage
in the source code. The mpst implementation properly addresses the problem by
statically guaranteeing, by construction, that the UI component rendered on the
DOM will only contain channel actions permitted at that state in the EFSM execution.

One may argue that the bare_safe implementation also provides said guarantee
but adds negligible overhead. By inspecting the workaround in the bare_safe im-
plementation (Listing 10.7), it is clear that this does not scale for more complicated
protocols with larger EFSMs.

1 click() {

2 this.state.ws?.send(JSON.stringify ({

3 label: ’PING’,

4 payload: [this.context.count],

5 }));

6 this.setState ({ visible: false });

7 }

8

9 render () {

10 return this.state.visible

11 ? <button

12 ref={this.state.button}

13 onClick ={this.click.bind(this)}

14 >Ping </button >

15 : <button >Ping </button >;

16 }

Listing 10.7: Preventing Channel Linearity Violation in bare_safe PING PONG

The workaround is tailored to the PING PONG protocol and toggles the visible

flag to hide the button that triggers a send action when Client transitions to a
receive state. In fact, this “workaround” precisely generalises to our mpst implemen-
tation of having some form of wrapper component that renders the UI component
corresponding to the current EFSM state. Our API generation strategy formally im-
plements the EFSM for browser-side logic.

We also compare the server-side logic between the base and mpst implementa-
tions in Figure 10.4, and observe that our generated APIs (Figure 10.4b) allow the
developer to focus on the implementation detail, whilst the naive bare implemen-
tation (Figure 10.4a) chooses to interleave communication logic with application
logic, which arguably contributes towards a hidden source of bugs found when im-
plementing more complex protocols.

10.4 Summary

We have demonstrated the expressiveness of our generated APIs through implement-
ing two web services describing multiparty sessions. We highlighted how our ap-
proach towards session-typed GUI programming prevents channel reuse and makes
it intuitive to implement the game board of NOUGHTS AND CROSSES. We also showed

143

10.4. SUMMARY

1 socket.onmessage = ({ data }) => {

2 const { label , payload } = JSON.parse(data.toString ());

3 if (label === ’PING’) {

4 let count: number = payload [0];

5 console.timeLog(LABEL , ++ count);

6 if (count === MSGS) {

7 socket.send(JSON.stringify ({

8 label: ’BYE’,

9 payload: [count],

10 }));

11 } else {

12 socket.send(JSON.stringify ({

13 label: ’PONG’,

14 payload: [count],

15 }));

16 }

17 } else { throw new Error(‘Unrecognised label: ${label }‘); }

18 }

(a) bare Implementation of PING PONG Svr

1 const logic = new Implementation.S14({

2 PING: (count) => {

3 console.timeLog(LABEL , ++ count);

4 if (count === MSGS) {

5 return new Implementation.S16([

6 Labels.S16.BYE , [count], new Implementation.S15()

7]);

8 } else {

9 return new Implementation.S16([

10 Labels.S16.PONG , [count], logic

11]);

12 }

13 }

14 });

(b) mpst Implementation of PING PONG Svr

Figure 10.4: Comparison of bare and mpst Implementations for PING PONG Svr

that the extensions added to NODEMPST and REACTMPST to support ROUTEDSES-
SIONS are transparent to the developer.

Through performance benchmarks against a baseline implementation of the PING

PONG protocol, we analysed the overhead of our implementation and reasoned that
this overhead will minimise when compared with baseline implementations of more
complex, multiparty protocols involving routed communication.

144

Chapter 11

Conclusion

11.1 Contributions

In this project, we develop and present a novel MPST-based framework for develop-
ing full-stack interactive TypeScript applications over WebSocket transport.

We motivate our API generation approach from [28, 32] to generate TypeScript
APIs from a Scribble protocol specification. By writing their full-stack applications
using the generated APIs, developers enjoy communication safety guarantees in their
endpoint applications by construction. APIs generated for server-side endpoints are
compatible with the Node.js runtime, as detailed in Chapter 4. For browser-side
endpoints, we present a novel approach for integrating session types into web-based
GUI programming based on translating the theory on model types [19] to idiomatic
practices on the React.js framework; this is highlighted in Chapter 5. With respect
to session type theory, implementations using the generated APIs statically enjoy
linear channel usage guarantees and affine channel usage guarantees for back-end
and front-end targets respectively.

Compared to previous work [5, 19, 20, 32] on session-typed web development,
we are not only able to statically provide the same level of communication safety
guarantees, but we do so using modern web programming practices to increase
the relevance and usability of our work in industry: our work targets TypeScript,
Node.js and React.js, and we explain in Chapter 6 how we support advanced web
development idioms (such as asynchronous implementations) and handle premature
disconnections gracefully.

We also do not limit support to protocols that describe a server-centric topology:
we formalise ROUTEDSESSIONS, a theory of routed multiparty session types, in Chap-
ter 8 to prove that it is possible to relax the server-centric topology assumption over
WebSocket transport in a way that preserves communication along with the commu-
nication safety properties inherited from canonical session type theory.

Our work has received positive feedback from academia. The initial part of this
project was published as Generating Interactive WebSocket Applications in Type-
Script in Volume 314 of the Electronic Proceedings in Theoretical Computer Science
(EPTCS) [40], in which I am the first and lead author. The materials in Chapters 3
to 5 are expanded from [40]. The materials in Chapters 6 to 10 are developed ex-
clusively in this project by myself. We were also invited to present a part of this

145

11.2. FUTURE WORK

work at the 12th International Workshop on Programming Language Approaches to
Concurrency- & Communication-cEntric Software (PLACES 2020).

Overall, we offer an end-to-end solution for integrating multiparty session type
theory into modern full-stack web programming practices, in a way that actively en-
courages developers to design their application with communication safety in mind.
Our formalism of routed multiparty session types enables our API generation tool to
support a wider range of protocols, and further reveals the potential for implement-
ing dynamic communication structures over centralised network topologies.

11.2 Future Work

We highlight several areas of future work to support a wider range of communication
protocols for web applications and increase the industrial relevance of our work.

Session Delegation Delegation allows channels to be sent between endpoints. Us-
ing the NOUGHTS AND CROSSES game from Section 10.1, the developer may want the
Svr to send a private channel to both players to play the game, whilst concurrently
accepting new connections.

The API generation solution presented by Scalas et al. [49] supports distributed
multiparty delegation in Scala. Their work also uses the Scribble toolchain for pro-
tocol specification. Future work can apply the findings from [49] and extend SES-
SIONTS to support channel delegation in the generated handler-style APIs.

Explicit Connection Actions Hu and Yoshida [29] extended MPST theory with
explicit connection actions to support protocols with optional participants. Support-
ing optional participants is a relevant concept for web applications, particularly for
browser-side endpoints.

Our work defines a way to handle connection requests and detect disconnection
events. The implementation assumes that all participants join the session when
the protocol begins. We also focus on disconnection events as a result of session
cancellation rather than those stated in the protocol.

The work of Hu and Yoshida [29] uses a variant of the Scribble protocol language
that supports explicit connection actions. Future work can use that as a basis for
code generation, and generalise our existing mechanisms for session connection and
cancellation to support explicit connection actions.

Transport Abstraction The MPST-based web development framework presented
by King et al. [32] parameterises the transport mechanism in the session runtime
definition. The developer can run the session over different transportation, provided
that the custom transport implements the behaviour of the Transport type class.

Future work can generalise the session runtime for NODEMPST and REACTMPST
to provide similar abstractions. A successful implementation could possibly allow
direct interactions between two Node.js-based endpoints, but this will also require

146

11.2. FUTURE WORK

the routed MPST theory to be adapted accordingly to reason about such interactions
in a web-based context.

EFSM Encoding as Typestates The concept of typestates define the interface of an
object to be dependent on its private state, meaning it can change at runtime. This
is compatible with the EFSM abstraction from the MPST framework: the permitted
methods (i.e. channel actions) of the EFSM depend on its current state. In fact,
Kouzapas et al. [33] presents a way to generate typestate specifications for each
endpoint of a Scribble protocol; Gay et al. [21] proposes an encoding of session types
in object-oriented languages and discusses their approach with respect to typestates.

Future work can explore implementing typestates in TypeScript. A linear type
system would be useful towards implementing typestates, but this is lacking in Type-
Script. One interesting possibility for approximating this would be to combine deco-
rators with transformers: the former lets the developer define typestate-related meta-
data, whilst the latter can parse the metadata and transform the source code into
another TypeScript program that acts as an “intermediate representation”, such that
only implementations that respect the typestate specification will type-check with its
intermediate representation.

147

Bibliography

[1] ARKIN, A. assaf/zombie. Jun 2020. Accessed on 14th June 2020. pages 139

[2] BIERMAN, G., ABADI, M., AND TORGERSEN, M. Understanding TypeScript.
In ECOOP 2014 – Object-Oriented Programming (2014), R. Jones, Ed., Lecture
Notes in Computer Science, Springer, p. 257–281. Accessed on 24th November
2019. pages 12, 31, 32

[3] CAIRES, L., AND PÉREZ, J. A. Multiparty Session Types Within a Canonical
Binary Theory, and Beyond. In Formal Techniques for Distributed Objects, Com-
ponents, and Systems (2016), E. Albert and I. Lanese, Eds., Lecture Notes in
Computer Science, Springer International Publishing, p. 74–95. Accessed on
23rd April 2020. pages 96

[4] CARBONE, M., LINDLEY, S., MONTESI, F., SCHÜRMANN, C., AND WADLER, P.
Coherence Generalises Duality: A Logical Explanation of Multiparty Session
Types. In 27th International Conference on Concurrency Theory (CONCUR 2016)
(2016), J. Desharnais and R. Jagadeesan, Eds., vol. 59 of Leibniz International
Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, p. 33:1–33:15. Accessed on 23rd April 2020. pages 96

[5] COOPER, E., LINDLEY, S., WADLER, P., AND YALLOP, J. Links: Web Program-
ming Without Tiers, vol. 4709. Springer Berlin Heidelberg, 2007, p. 266–296.
Accessed on 21st January 2020. pages 11, 13, 31, 64, 136, 145

[6] COPPO, M., DEZANI-CIANCAGLINI, M., PADOVANI, L., AND YOSHIDA, N. A
Gentle Introduction to Multiparty Asynchronous Session Types. In 15th In-
ternational School on Formal Methods for the Design of Computer, Communica-
tion and Software Systems: Multicore Programming (2015), vol. 9104 of LNCS,
Springer, pp. 146–178. Accessed on 24th November 2019. pages 24

[7] DENIÉLOU, P.-M., AND YOSHIDA, N. Multiparty Compatibility in Commu-
nicating Automata: Characterisation and Synthesis of Global Session Types.
arXiv:1304.1902 [cs] (Apr 2013). arXiv: 1304.1902. Accessed on 5th May
2020. pages 96, 103, 104, 107, 108, 109, 110, 112

[8] FACEBOOK OPEN SOURCE. Context – react. https://reactjs.org/docs/

context.html. Accessed on 14th June 2020. pages 139

[9] FACEBOOK OPEN SOURCE. Introducing JSX – React. https://reactjs.org/

docs/introducing-jsx.html. Accessed on 22nd January 2020. pages 65, 66

148

https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html

BIBLIOGRAPHY

[10] FACEBOOK OPEN SOURCE. React – A JavaScript library for building user inter-
faces. https://reactjs.org/. Accessed on 21st January 2020. pages 9, 63,
64

[11] FACEBOOK OPEN SOURCE. Refs and the DOM – React. https://reactjs.org/
docs/refs-and-the-dom.html. Accessed on 14th June 2020. pages 139

[12] FACEBOOK OPEN SOURCE. State and Lifecycle – React. https://reactjs.org/
docs/state-and-lifecycle.html. Accessed on 7th June 2020. pages 78

[13] FACEBOOK OPEN SOURCE. Strict Mode – React. https://reactjs.org/docs/

strict-mode.html. Accessed on 7th June 2020. pages 75

[14] FACEBOOK OPEN SOURCE. facebook/create-react-app. Facebook, Jun 2020. Ac-
cessed on 14th June 2020. pages 139

[15] FEATHERS, M. Working Effectively with Legacy Code, 1 edition ed. Prentice Hall,
Oct 2004. Accessed on 12th June 2020. pages 44

[16] FENG, R. The Benefits of Migrating From JavaScript to Type-
Script - DZone Performance. https://dzone.com/articles/

the-benefits-of-migrating-from-javascript-to-types. Accessed on
4th June 2020. pages 52

[17] FETTE, I., AND MELNIKOV, A. The WebSocket Protocol. RFC 6455, RFC Editor,
December 2011. Accessed on 28th December 2019. pages 9, 15, 88

[18] FOUNDATION, N. Express - Node.js web application framework. https://

expressjs.com/. Accessed on 14th June 2020. pages 133

[19] FOWLER, S. Model-View-Update-Communicate: Session Types meet the Elm
Architecture. arXiv:1910.11108 [cs] (Jan 2020). arXiv: 1910.11108. Accessed
on 29th May 2020. pages 10, 11, 12, 13, 30, 31, 63, 64, 80, 132, 135, 136,
145

[20] FOWLER, S., LINDLEY, S., MORRIS, J. G., AND DECOVA, S. Exceptional Asyn-
chronous Session Types: Session Types without Tiers. Proceedings of the ACM
on Programming Languages 3, POPL (Jan 2019), 1–29. Accessed on 28th Jan-
uary 2020. pages 13, 31, 81, 85, 86, 87, 132, 145

[21] GAY, S. J., GESBERT, N., RAVARA, A., AND VASCONCELOS, V. T. Modular
session types for objects. Logical Methods in Computer Science 11, 4 (Dec 2015),
12. arXiv: 1205.5344. Accessed on 8th June 2020. pages 147

[22] GERBO, R., AND PADOVANI, L. Concurrent Typestate-Oriented Programming in
Java. Electronic Proceedings in Theoretical Computer Science 291 (Apr 2019),
24–34. arXiv: 1904.01286. Accessed on 3rd March 2020. pages 61

[23] GRAPHVIZ. The DOT Language. https://graphviz.org/doc/info/lang.

html. Accessed on 14th June 2020. pages 36

149

https://reactjs.org/
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/refs-and-the-dom.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/strict-mode.html
https://reactjs.org/docs/strict-mode.html
https://dzone.com/articles/the-benefits-of-migrating-from-javascript-to-types
https://dzone.com/articles/the-benefits-of-migrating-from-javascript-to-types
https://expressjs.com/
https://expressjs.com/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

BIBLIOGRAPHY

[24] HONDA, K., AND TOKORO, M. An object calculus for asynchronous commu-
nication. In ECOOP’91 European Conference on Object-Oriented Programming
(1991), P. America, Ed., Springer Berlin Heidelberg, p. 133–147. Accessed on
26th December 2019. pages 16

[25] HONDA, K., YOSHIDA, N., AND CARBONE, M. Multiparty Asynchronous Session
Types. In 35th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (2008), ACM, pp. 273–284. Accessed on 24th November
2019. pages 22, 94, 132

[26] HONDA, K., YOSHIDA, N., AND CARBONE, M. Multiparty Asynchronous Session
Types. Journal of the ACM 63 (2016), 1–67. Accessed on 25th November 2019.
pages 94, 132

[27] HU, R. Distributed Programming Using Java APIs Generated from Session
Types. 22. Accessed on 18th December 2019. pages 28, 42

[28] HU, R., AND YOSHIDA, N. Hybrid Session Verification through Endpoint API
Generation. In 19th International Conference on Fundamental Approaches to
Software Engineering (2016), vol. 9633 of LNCS, Springer, pp. 401–418. Ac-
cessed on 18th December 2019. pages 25, 27, 28, 34, 35, 61, 62, 85, 145

[29] HU, R., AND YOSHIDA, N. Explicit Connection Actions in Multiparty Session
Types, vol. 10202. Springer Berlin Heidelberg, 2017, p. 116–133. Accessed on
3rd January 2020. pages 146

[30] JAIN, A. ajnsit/concur. May 2020. Accessed on 5th June 2020. pages 30

[31] JINJA. Jinja — Jinja Documentation (2.11.x). https://jinja.

palletsprojects.com/en/2.11.x/. Accessed on 13th June 2020. pages 37

[32] KING, J., NG, N., AND YOSHIDA, N. Multiparty Session Type-safe Web De-
velopment with Static Linearity. Electronic Proceedings in Theoretical Computer
Science 291 (Apr 2019), 35–46. Accessed on 18th December 2019. pages 10,
11, 13, 15, 22, 28, 29, 30, 31, 34, 35, 42, 64, 80, 132, 135, 136, 145, 146

[33] KOUZAPAS, D., DARDHA, O., PERERA, R., AND GAY, S. J. Typechecking proto-
cols with Mungo and StMungo. In Proceedings of the 18th International Sympo-
sium on Principles and Practice of Declarative Programming - PPDP ’16 (2016),
ACM Press, p. 146–159. Accessed on 15th January 2020. pages 147

[34] MDN CONTRIBUTORS. Fetch API. https://developer.mozilla.org/en-US/

docs/Web/API/Fetch_API. Accessed on 10th June 2020. pages 82

[35] MDN CONTRIBUTORS. Signaling and video calling. https://developer.

mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_

calling. Accessed on 14th June 2020. pages 95

150

https://jinja.palletsprojects.com/en/2.11.x/
https://jinja.palletsprojects.com/en/2.11.x/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

BIBLIOGRAPHY

[36] MDN CONTRIBUTORS. Window.sessionStorage. https://developer.mozilla.
org/en-US/docs/Web/API/Window/sessionStorage. Accessed on 6th June
2020. pages 71

[37] MERKEL, D. Docker: lightweight Linux containers for consistent development
and deployment. Linux Journal 2014, 239 (Mar 2014), 2:2. Accessed on 12th
June 2020. pages 38

[38] MILNER, R. Communicating and Mobile Systems: The π-calculus. Cambridge
University Press, New York, NY, USA, 1999. Accessed on 26th December 2019.
pages 15

[39] MIU, A. ansonmiu0214/TypeScript-Multiparty-Sessions. Jun 2020. Accessed on
14th June 2020. pages 34

[40] MIU, A., FERREIRA, F., YOSHIDA, N., AND ZHOU, F. Generating Interactive
WebSocket Applications in TypeScript. Electronic Proceedings in Theoretical
Computer Science 314 (Apr 2020), 12–22. arXiv: 2004.01321. Accessed on
6th April 2020. pages 14, 132, 133, 145

[41] MOSTROUS, D., AND VASCONCELOS, V. T. Affine Sessions. Logical Methods in
Computer Science 14 (2018), Issue 4; 18605974. arXiv: 1809.02781. Accessed
on 11th June 2020. pages 86

[42] NEYKOVA, R. Session Types Go Dynamic or How to Verify Your Python Conver-
sations. Electronic Proceedings in Theoretical Computer Science 137 (Dec 2013),
95–102. arXiv: 1312.2704. Accessed on 20th December 2019. pages 15, 28,
29, 35

[43] NODE.JS. Node.js. https://nodejs.org/en/. Accessed on 22nd January 2020.
pages 9, 41

[44] OGDEN, M. maxogden/callback-hell. Jun 2020. Accessed on 10th June 2020.
pages 82

[45] ORACLE. Future (Java Platform SE 7). https://docs.oracle.com/javase/7/
docs/api/java/util/concurrent/Future.html. Accessed on 10th June 2020.
pages 83

[46] PEZOA, F., REUTTER, J. L., SUAREZ, F., UGARTE, M., AND VRGOČ, D. Founda-
tions of JSON schema. In Proceedings of the 25th International Conference on
World Wide Web (2016), International World Wide Web Conferences Steering
Committee, pp. 263–273. Accessed on 14th June 2020. pages 54

[47] PURESCRIPT. purescript/purescript. PureScript, Jun 2020. Accessed on 5th
June 2020. pages 11, 29

[48] PYDOT. pydot/pydot. pydot, Jun 2020. Accessed on 14th June 2020. pages 36

151

https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://nodejs.org/en/
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

BIBLIOGRAPHY

[49] SCALAS, A., DARDHA, O., HU, R., AND YOSHIDA, N. A Linear Decomposition of
Multiparty Sessions for Safe Distributed Programming. In 31st European Con-
ference on Object-Oriented Programming (ECOOP 2017) (Dagstuhl, Germany,
2017), P. Müller, Ed., vol. 74 of Leibniz International Proceedings in Informatics
(LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 24:1–24:31.
Accessed on 17th April 2020. pages 28, 34, 35, 96, 146

[50] SCALAS, A., AND YOSHIDA, N. Less Is More: Multiparty Session Types Revis-
ited. In 46th ACM SIGPLAN Symposium on Principles of Programming Languages
(2019), vol. 3, ACM, pp. 30:1–30:29. Accessed on 14th June 2020. pages 23,
98

[51] SIEK, J., AND TAHA, W. Gradual Typing for Objects. In ECOOP 2007 –
Object-Oriented Programming (2007), E. Ernst, Ed., Springer Berlin Heidelberg,
p. 2–27. Accessed on 17th June 2020. pages 32

[52] TECHOPEDIA. Thunk - Definition from Techopedia. https://www.techopedia.
com/definition/2818/thunk-computing. Accessed on 10th June 2020. pages
84

[53] UBERTI, J., AND THATCHER, P. Webrtc. https://webrtc.org/, 2011. Accessed
on 14th June 2020. pages 95

[54] VERCEL. vercel/serve 2020. Vercel (formerly ZEIT), Jun 2020. Accessed on
14th June 2020. pages 139

[55] XI, H. Applied Type System: An Approach to Practical Programming with
Theorem-Proving. Journal of Functional Programming (2016), 30. Accessed on
26th December 2019. pages 15

[56] YOSHIDA, N. Lecture Notes in CO406 Concurrent Processes, October 2019.
Accessed on 26th December 2019. pages 16, 17, 18, 19, 23

[57] YOSHIDA, N., HU, R., NEYKOVA, R., AND NG, N. The Scribble Protocol
Language. In 8th International Symposium on Trustworthy Global Computing
(2013), vol. 8358 of LNCS, Springer, pp. 22–41. Accessed on 18th December
2019. pages 12, 25, 26, 35

[58] YOSHIDA, N., AND LORENZO, G. A Very Gentle Introduction to Multiparty
Session Types. Accessed on 24th November 2019. pages 10, 12, 17, 21, 22, 23

152

https://www.techopedia.com/definition/2818/thunk-computing
https://www.techopedia.com/definition/2818/thunk-computing
https://webrtc.org/

Appendix A

Lemmas and Proofs

A.1 Lemmas and Proofs for Chapter 8

Lemma A.1 (Local LTS Preserves Merge). Let T1,T2 be local types. Suppose T1uT2
exists.

∀l,T ′1,T
′
2.

(
(T1

l−−→ T ′1)∧ (T2
l−−→ T ′2) =⇒ (T ′1uT

′
2) exists

)
Proof. By simultaneous induction on T1uT2, T1

l−−→ T ′1, and T2
l−−→ T ′2.

Lemma A.2 (Projection and Participation).

∀G,p. (G � p = end⇐⇒ p < pt (G))

Proof. Prove (=⇒) by induction on the structure of G. Prove (⇐=) using the contra-
positive (stated below) by induction on the derivation of pt (G).

p ∈ pt (G) =⇒ G � p , end

Lemma A.3 (Commutativity between Encoding and Substitution). Let G,G′ be global
types, and s be a role.

~G[G′/t], s� = ~G, s� [~G′, s�/t]

Proof. By induction on the structure of G.

Lemma A.4 (Encoding Preserves Participants).

∀G,s. (pt (G) ⊆ pt (~G, s�))

153

A.1. LEMMAS AND PROOFS FOR CHAPTER 8

Proof. The following is logically equivalent.

∀r,s. (r ∈ pt (G) =⇒ r ∈ pt (~G, s�))
We prove this by induction on the structure of G.

Lemma A.5 (Encoding Preserves Privacy). The encoding on global types will not in-
troduce non-server roles that were not participants of the original communication.

∀r,s,G. (r , s∧ r < pt (G) =⇒ r < pt (~G, s�))

Proof. The following is logically equivalent.

∀r,s,G. (r , s∧ r < pt (G) =⇒ r < pt (~G, s�))

We prove this by induction on the structure of G, assuming that r , s for arbitrary
roles r, s.

Lemma A.6 (Correspondence between Encodings on Global Types and Local Types).

∀r,s,G. (r , s =⇒ ~G, s� � r = ~G � r, r, s�)

Proof. By induction on the structure of G, Lemmas A.4 and A.5.

Lemma A.7 (Local Type Encoding Preserves Equality of Projection).

∀G1,G2,r,s. ((G1 � r) = (G2 � r)∧ r , s =⇒ ~G1, s� � r = ~G2, s� � r)

Proof. By consequence from Lemma A.6.
Take G1,G2,r,s arbitrarily. Assume (G1 � r) = (G2 � r) and r , s.
We need to show ~G1, s� � r = ~G2, s� � r, but by Lemma A.6, it is sufficient to

show
~G1 � r, r, s� = ~G2 � r, r, s�

Define an “inner” function f (z) = ~z, r, s�.
By definition, ∀x,y.(x = y =⇒ f (x) = f (y)).
We have (G1 � r) = (G2 � r) by assumption, so we can conclude.

(G1 � r) = (G2 � r) =⇒ f (G1 � r) = f (G2 � r)
=⇒ ~G1 � r, r, s� = ~G2 � r, r, s�

Lemma A.8 (Encoding on Global Types Preserves Merge). Take global types G1,G2
and roles r,s such that r , s. Suppose G1 � r and G2 � r exist.

(G1 � r)u (G2 � r) exists =⇒ (~G1, s� � r)u (~G2, s� � r) exists

Proof. By induction on the structure of T1uT2, Lemmas A.2 and A.7

154

Appendix B

Artefacts for Evaluation

B.1 Implementation for NOUGHTS AND CROSSES

1 /**

2 * User implementation of game board state.

3 * Export game board instance.

4 */

5

6 import { Coordinate as Point } from ’./Game/GameTypes ’;

7

8 enum Cell { Empty , P1 , P2 };

9 export enum MoveResult { Win , Draw , Continue };

10

11 class Board {

12

13 private _board: Array <Array <Cell >>;

14 private _emptyCellCount: number;

15

16 constructor () {

17 this._board = [[Cell.Empty , Cell.Empty , Cell.Empty],

18 [Cell.Empty , Cell.Empty , Cell.Empty],

19 [Cell.Empty , Cell.Empty , Cell.Empty]];

20 this._emptyCellCount = 9;

21 }

22

23 // Factory for generating a function that , given a player role ,

24 // places the marker and returns the game result with respect to

25 // that player.

26 private _makeMove = (marker: Cell) => ({ x: row , y: col }: Point)

27 => {

28 return new Promise <MoveResult >((resolve , _) => {

29 setTimeout (() => {

30 // Update board state

31 this._board[row][col] = marker;

32 this._emptyCellCount --;

33

34 // Check for winning move

35 if (this._board[row]. every(cell => cell === marker))

36 resolve(MoveResult.Win);

37

155

B.2. PACKAGE DEPENDENCIES FOR BENCHMARKS

38 /* Winning column */

39 if (this._board.every(row => row[col] === marker))

40 resolve(MoveResult.Win);

41

42 /* Placed middle marker - check corners */

43 if (row === 1 && col === 1)

44 if ((this._board [0][0] === marker

45 && this._board [2][2] === marker) ||

46 (this._board [0][2] === marker

47 && this._board [2][0] === marker))

48 resolve(MoveResult.Win);

49

50 /* Placed corner marker - check diagonals */

51 if (row !== 1 && col !== 1)

52 if (this._board [1][1] === marker

53 && this._board [2 - row][2 - col] === marker)

54 resolve(MoveResult.Win);

55

56 resolve(this._emptyCellCount === 0 ?

57 MoveResult.Draw : MoveResult.Continue);

58 }, 2000);

59 })

60

61 }

62

63 p1(move: Point) { return this._makeMove(Cell.P1)(move); }

64 p2(move: Point) { return this._makeMove(Cell.P2)(move); }

65

66 clear() {

67 this._board = [[Cell.Empty , Cell.Empty , Cell.Empty],

68 [Cell.Empty , Cell.Empty , Cell.Empty],

69 [Cell.Empty , Cell.Empty , Cell.Empty]];

70 this._emptyCellCount = 9;

71 }

72

73 }

74

75 // Initialise state

76 export const board = new Board ();

B.2 Package Dependencies for Benchmarks

Packages for Ping Pong Client
1 {

2 "dependencies": {

3 "@testing -library/jest -dom": "^4.2.4",

4 "@testing -library/react": "^9.3.2",

5 "@testing -library/user -event": "^7.1.2",

6 "@types/jest": "^24.0.0",

7 "@types/node": "^12.0.0",

8 "@types/react": "^16.9.0",

156

B.2. PACKAGE DEPENDENCIES FOR BENCHMARKS

9 "@types/react -dom": "^16.9.0",

10 "react": "^16.13.1",

11 "react -dom": "^16.13.1",

12 "react -scripts": "3.4.1",

13 "typescript": "~3.7.2"

14 },

15 "devDependencies": {

16 "@babel/preset -typescript": "^7.10.1",

17 "customize -cra": "^1.0.0",

18 "react -app -rewired": "^2.1.6"

19 }

20 }

Packages for Ping Pong Server
1 {

2 "dependencies": {

3 "express": "^4.17.1",

4 "ws": "^7.3.0",

5 "zombie": "^6.1.4"

6 },

7 "devDependencies": {

8 "@types/express": "^4.17.6",

9 "@types/ws": "^7.2.4",

10 "ts -node": "^8.10.2",

11 "typescript": "^3.9.3"

12 }

13 }

157

	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions

	2 Background
	2.1 Session Types
	2.1.1 Process Calculus
	2.1.2 Binary Session Types
	2.1.3 Multiparty Session Types

	2.2 Related Work
	2.2.1 Scribble and Endpoint API Generation
	2.2.2 Session Types in Web Development

	2.3 TypeScript

	I Implementing Server-Centric Topologies over WebSockets
	3 SessionTS: Session Type API Generation for TypeScript
	3.1 Development Workflow
	3.1.1 Protocol Specification with Scribble
	3.1.2 From Scribble to EFSM
	3.1.3 API Generation

	3.2 Implementation
	3.3 Testing

	4 NodeMPST: Back-End Session Type Web Development
	4.1 Challenges
	4.2 Approach
	4.3 EFSM Encoding
	4.3.1 Roles, Labels, Messages
	4.3.2 Handler APIs
	4.3.3 Wrapping Handlers in ``Implementations''

	4.4 Runtime
	4.4.1 Managing Connections
	4.4.2 Executing the EFSM
	4.4.3 Sending Messages
	4.4.4 Receiving Messages
	4.4.5 Handling Termination

	4.5 Alternative Designs
	4.6 Limitations
	4.7 Summary

	5 ReactMPST: Front-End Session Type Web Development
	5.1 Challenges
	5.2 Approach
	5.2.1 The React Framework

	5.3 EFSM Encoding
	5.3.1 Send States
	5.3.2 Receive States
	5.3.3 Terminal States

	5.4 Runtime
	5.4.1 Connecting to the Session
	5.4.2 Executing the EFSM
	5.4.3 Sending Messages
	5.4.4 Receiving Messages
	5.4.5 Handling Termination

	5.5 Alternative Designs
	5.6 Limitations
	5.7 Summary

	6 Extensions
	6.1 Supporting Asynchronous Implementations
	6.1.1 Motivation
	6.1.2 API Extension
	6.1.3 Runtime Extension
	6.1.4 Limitations

	6.2 Error Handling
	6.2.1 Motivation
	6.2.2 API Extension
	6.2.3 Runtime Extension
	6.2.4 Caveats with Asynchronous Operations
	6.2.5 Limitations

	II Implementing Arbitrary Topologies over WebSockets
	7 Motivation: Supporting Peer-to-Peer Interactions
	7.1 Two Buyer Protocol
	7.2 Proposal: Server as a Router
	7.3 Challenges

	8 RoutedSessions: A Theory of Routed Multiparty Session Types
	8.1 Syntax for Global and Local Types
	8.1.1 Global Types
	8.1.2 Local Types
	8.1.3 Projection
	8.1.4 Well-formedness

	8.2 Labelled Transition System (LTS) Semantics
	8.2.1 LTS Semantics over Global Types
	8.2.2 LTS Semantics over Local Types

	8.3 LTS Soundness and Completeness with respect to Projection
	8.3.1 LTS Semantics over Configurations
	8.3.2 Extending Projection for Configurations
	8.3.3 Trace Equivalence
	8.3.4 Deadlock Freedom

	8.4 From Canonical MPST to RoutedSessions
	8.4.1 Router-Parameterised Encoding
	8.4.2 Preserving Well-formedness
	8.4.3 Preserving Communication

	8.5 Summary

	9 Implementing RoutedSessions in SessionTS
	9.1 Extending NodeMPST
	9.2 Extending ReactMPST

	III Evaluation and Conclusion
	10 Evaluation
	10.1 Multiparty Sessions: Noughts and Crosses
	10.1.1 Game Server
	10.1.2 Game Players
	10.1.3 Summary

	10.2 Routed Multiparty Sessions: Two Buyers
	10.3 Performance Benchmarks
	10.3.1 Setup
	10.3.2 Execution Pattern
	10.3.3 Overhead

	10.4 Summary

	11 Conclusion
	11.1 Contributions
	11.2 Future Work

	Bibliography
	A Lemmas and Proofs
	A.1 Lemmas and Proofs for Chapter 8

	B Artefacts for Evaluation
	B.1 Implementation for Noughts and Crosses
	B.2 Package Dependencies for Benchmarks

