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Abstract

Having high-quality and reliable software is an increasingly stringent requirement
for most organisations. While traditional static program analysis techniques, such
as symbolic execution and formal verification, can help produce error-free software,
their successful application to large, rapidly-changing codebases has been limited.
In response to this, recent years have seen the development of a number of tools
that specifically target their analysis at real-world projects. At Facebook, the Infer
tool has been successfully deployed to find lightweight bugs in codebases spanning
millions of lines of code, by leveraging various continuous reasoning techniques.

This project extends Gillian, a multi-language platform for symbolic analysis
developed in the Verified Software group at Imperial, with continuous reasoning
foundations that substantially advance its applicability to real-world projects. In
particular, we have: extended its instantiations for C and JavaScript in order to
allow them to analyse multi-file projects; and incorporated a mechanism for re-
using previously-stored results in order to focus analysis on only the fragments of the
source program that have changed. Finally, by analysing two real-world JavaScript
and C projects, we have demonstrated the significant improvement in the usability
of Gillian by a general developer, as well as the correctness of our implementation.
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Chapter 1

Introduction

As the size and complexity of modern code continues to increase, so too does the
challenge of developing adequate program analysis tools in order to reason about its
safety, robustness and functional correctness. Bugs and vulnerabilities in programs
can result in major economic and reputational cost to companies, while failures in
safety-critical systems have resulted in fatalities in the past. Developers mitigate
against these predominantly through writing tests and conducting code reviews,
however these strategies require significant manual effort and are prone to human
error. As such, the development of static analysis tools has received growing atten-
tion from both academia and industry in the last few decades.

Tools such as ASTRÉE [16] and SLAM [1] have been successfully used to verify
programs spanning tens of thousands of lines of code, with the former being used
to prove the absence of runtime errors in C programs and the latter being used to
verify procedure calls in Windows device drivers. However, in general, applying for-
mal verification techniques in industrial environments poses significant challenges.
First, there is the question of scale: modern codebases typically span millions of
lines of code across a large variety of programming languages, making the cost of
traditional whole-program analysis prohibitive. Second, there is the challenge of in-
tegrating such analysis into the modern development workflow: large Internet com-
panies such as Facebook and Google embrace the practice of perpetual development
[19], where the software is not viewed as a finished product, and instead features
are continuously added and shipped to users by hundreds of engineers working con-
currently. For analysis results to be meaningful in such contexts, they need to be
provided automatically and in a timely manner. Finally, there is the challenge of
developer adoption: traditional verification tools require input from the user in the
form of specifications, a process that is time-consuming and non-trivial to complete,
or provide feedback that is difficult to understand without an extensive background
in formal methods [38].

Recent years have seen the development of a number of static analysis tools
aimed at addressing these challenges. The most prominent of these is Infer [11],
developed by Peter O’Hearn and his team at Facebook, which has been able to find
lightweight bugs such as null pointer dereferences and memory leaks in the com-
pany’s mobile applications, and can scale to millions of lines of code. At Imperial,
the Verified Software group, led by Philippa Gardner, has been developing Gillian
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4 Chapter 1. Introduction

[22], a platform for building analysis tools that supports several different types of
analysis, including whole-program symbolic execution, verification based on user-
provided specifications, and automatic compositional testing of bare programs.

By translating the source code into their own symbolic intermediate languages,
Infer and Gillian can both be used to analyse a variety of high-level programming lan-
guages, with the former restricted to static languages such as Java, C and Objective-
C, and the latter being able to be instantiated to support any target language. In
addition, both tools make extensive use of separation logic, a recent development
in program logics that can reason about the heap in a composable and therefore
scalable way. It is this formalism which paves the way for continuous reasoning
[37], whereby an analysis tool is able to reason about a large, continually changing
codebase and therefore be integrated into the perpetual development model out-
lined above. Infer achieves this by being run automatically as part of Facebook’s
continuous integration (CI) system upon each new code modification (i.e. diff ) sub-
mitted by a developer, using previous analysis results in order to detect potential
bugs introduced by the change and provide prompt feedback to the developer [37].

This project extends the implementation of Gillian with a similar continuous
reasoning mechanism that paves the way for it to be integrated into modern de-
velopment workflows and therefore reach wider adoption. The previous version of
Gillian could only analyse single-file projects and did not keep track of any infor-
mation obtained from previous analyses, thereby limiting its applicability to most
real-world projects. In particular:

• We add support within Gillian’s C instantiation for analysing multi-file C
projects (Chapter 3). With reference to standard compiler toolchains such as
GCC, we develop mechanisms for performing the equivalent of symbol resolu-
tion, linking, and loading, at the level of Gillian’s intermediate language.

• We add support within Gillian’s JavaScript instantiation for analysing projects
using CommonJS modules (Chapter 4). To do this, we build a mechanism to
emulate the runtime behaviour of Node’s module loader.

• For each of Gillian’s three analysis modes, we develop an incremental variant
that can leverage previously-stored results in order to focus analysis on only
the fragment of code that has changed between successive runs of Gillian
(Chapter 5).

• By applying Gillian’s analysis to two real-world projects, we demonstrate the
vast improvement in its usability by a general developer as a result of our work
(Chapter 6). In particular, we demonstrate the effectiveness of our import and
export mechanics, and show that, with additional caching, we can produce
analysis times that are within acceptable margins of those reported in the
published Gillian paper.



Chapter 2

Background

2.1 Analysing software systems

Software systems are abound with defects. The impacts of these range from the
mildly inconvenient, as in the case of Microsoft’s Zune music players freezing on 31
December 2008 due to an incorrect handling of leap years [2], to the catastrophic,
as in the case of the Therac-25 radiation therapy machines delivering fatal doses
to six patients in the 1980s in part due to concurrency bugs and arithmetic over-
flows [34]. Manual testing, in the form of developers writing unit, integration and
system tests, can go a long way in exposing such bugs and ensuring that they are
not re-introduced. However, no amount of testing can guarantee that a system
is free from defects.1 In addition, writing tests that achieve a high coverage of
the code is a time-consuming process, and developers may not always be able to
spot the intricate, unusual input combinations that can result in failure. For this
reason, more systematic methods of analysis have taken a foothold over the past
few years. Such methods are evaluated with respect to two key metrics [8]. The
first is soundness, which is the degree to which the analysis does not generate false
negatives—instances of bugs being reported to not exist when in fact they do. The
second is precision, which is the degree to which the analysis does not generate false
positives—instances of bugs being reported to exist when in fact they cannot occur.
The methods can be broadly categorised into two approaches.

Dynamic analysis [18, 8] involves executing a program, either directly or through
emulation, with a range of test inputs and collecting information about its execu-
tions. It encompasses techniques such as fuzzing, in which many randomly-generated
inputs are used in an attempt to exercise the program in interesting ways (for ex-
ample, to make it crash), and the use of compiler sanitizers, in which the program is
instrumented with checks that can expose safety violations, such as out-of-bounds
memory accesses, at run time. These benefit from being precise, since they will
never model a run of the program that cannot actually occur, and from being able
to scale to programs with many lines of code, since only a single execution path
is explored on each run. However, they can miss runs that lead to errors and are
therefore not sound. In addition, dynamic analysis typically requires access to the
entire system as well as an execution environment, making it hard to test small parts

1As Edsger Dijkstra famously put it [17]: “Testing shows the presence, not the absence of bugs.”
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6 Chapter 2. Background

of the code in isolation or during development.

In contrast, static analysis [18] does not require a program to be executed, and
instead uses its syntactic structure in order to derive properties that hold across all
control flow paths and therefore across all (or a large number of) possible execu-
tions. It allows for the discovery of logical errors, such as uninitialised variables, or
bad programming practices, such as unused variables. In addition, the information
obtained from a static analysis can be used as the basis for formal verification meth-
ods. Static analyses typically range between those that are precise, but extremely
expensive computationally, and those that are fast, but extremely imprecise [8].

2.2 Static program analysis

In this section, we discuss some of the static analysis techniques that underpin
current state-of-the-art program analysis tools such as Gillian and Infer, including
symbolic execution (§ 2.2.1), verification based on separation logic (§ 2.2.3), and
bi-abduction (§ 2.2.4).

2.2.1 Symbolic execution

Symbolic execution [32, 9] is a popular program analysis technique developed in
the 1970s. During concrete (i.e. regular) execution, a program is run with a set
of specific inputs, which means that only a single control flow path is followed. In
contrast, during symbolic execution, a symbolic interpreter runs the program with a
set of symbolic inputs that represent arbitrary values. As a result, program variables
and outputs are expressed as functions of the symbolic inputs.

Symbolic execution allows for the different control flow paths that the program
would take under different inputs to be explored at the same time. To do this,
the interpreter maintains as state a symbolic variable store, which maps program
variables to symbolic expressions, as well as a symbolic path condition π, which is a
first-order logic formula representing the accumulated constraints that the symbolic
inputs must satisfy in order for an execution to follow the current path. The path
condition is initialised to true (i.e. >). Upon reaching a conditional statement such
as if (e) then S1 else S2, the execution branches, with one new execution path for
each of the conditional branches. In the path that follows S1, the path condition is
updated to π′ = π∧e, while in the path that follows S2, it is updated to π′ = π∧¬e.
A constraint solver, such as an SMT solver, is used to check the satisfiability of the
updated path condition. If it is unsatisfiable, then the execution along that path
terminates. Otherwise, the execution continues until the path terminates normally
or with an error. At the end, each accumulated path condition can be solved using
the constraint solver in order to obtain specific input values that would lead a
concrete execution starting with those inputs to follow the same path [9]. Symbolic
execution can therefore be used to automatically generate test cases that achieve a
high statement and branch coverage of the code.

As an example, we consider the symbolic execution of the C function fizz buzz()

given in Figure 2.1, a simple variation of the solution to the popular coding inter-
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1 void fizz_buzz(int n) {

2 if (n % 3 == 0) {

3 printf("Fizz\n");

4 } else if (n % 5 == 0) {

5 printf("Buzz\n");

6 } else {

7 printf("%i\n", n);

8 }

9 }

Figure 2.1: fizz buzz() C example

Figure 2.2: Symbolic execution graph for fizz buzz()

view challenge of the same name.2 At the start, since the value of integer n is
unknown, it is assigned a symbolic value α. Upon reaching the first conditional
statement on line 2, the execution forks, with the execution following the if branch
being assigned the path condition α mod 3 = 0 and the execution following the else
branch being assigned α mod 3 6= 0. The first execution terminates upon reaching
the print statement on line 3. The second execution will once again fork upon reach-
ing the conditional statement on line 4, with the path conditions being updated to
(α mod 3 6= 0) ∧ (α mod 5 = 0) and (α mod 3 6= 0) ∧ (α mod 5 6= 0) for the paths
following the if and else branches, respectively. The final symbolic execution tree
is shown in Figure 2.2. We note that π is distinct in each terminal leaf node, and
that choosing the values 1, 3, and 5 for n as concrete test inputs would result in
all paths being taken and therefore a complete statement coverage of the code. In
practice, the number of paths to be explored grows exponentially with the size of
the code and, given the presence of unbounded loop iterations, may even be infinite.
This is known as the path explosion problem, and can be addressed by using search
heuristics to guide the path exploration process or by performing optimisations such
as pruning redundant paths [6].

2https://en.wikipedia.org/wiki/Fizz_buzz

https://en.wikipedia.org/wiki/Fizz_buzz
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2.2.2 Hoare logic

In the late 1960s, Tony Hoare introduced Hoare logic [29], a formalism for reasoning
about the correctness of simple imperative programs that alter the variable store. At
its core is the notion of a Hoare triple, represented as {P} C {Q},3 which describes
the effect of a command C in terms of first-order logic assertions P and Q; P is
referred to as C’s pre-condition and Q as its post-condition. The triple is read
informally as follows: if C is executed in a state satisfying P , then this execution
will not fault and, if it terminates, it terminates in a state that satisfies Q. Such
specifications can only be used to prove partial correctness of programs—a total
correctness specification, represented as [P ] C [Q], additionally requires that C
must terminate [27]. Hoare logic additionally defines a set of axioms and inference
rules [29] which can be used to build up proofs of programs. For example, there is
the assignment axiom:

`
{
P [E/x]

}
x := E

{
P
}

where P [E/x] denotes assertion P with all free occurrences of program variable x

replaced by expression E. A valid Hoare triple that uses the assignment axiom is:

`
{
y = 3

}
x := y

{
x = 3

}
.

While the assertion language of Hoare logic is useful for describing how a vari-
able store is changed by a program, it cannot be used to efficiently reason about
mutations to dynamic memory. This is because assertions are global : they describe
the whole heap. In the case of a command that accesses a single cell of memory, the
assertions used to describe its behaviour would have to include parts of the heap
that the command does not affect [26]. This is similar to the frame problem that
arises in artificial intelligence. Therefore, this type of reasoning does not scale for
programs written in real-world languages: for those, a formalism that supports local
reasoning [35] is required, where a specification and proof can concentrate only on
the cells in memory that are actually accessed by the program.

2.2.3 Separation logic

Building upon Hoare’s work, in 2001, O’Hearn, Reynolds and Yang introduced sep-
aration logic [35], a formalism that extends Hoare logic in order to efficiently reason
about programs that alter the heap. It allows for reasoning to be broken down
into smaller parts that correspond to local operations on memory (such as alloca-
tion, deallocation, mutation, and lookup), and provides the necessary mechanism
for these reasoning parts to be composed together. Assertions in separation logic
are built from the standard connectives and quantifiers of first-order logic as well
as the separating conjunction ∗, which is read as “and separately”, and the empty
assertion emp, which denotes the empty heap. In addition, they include the cell
assertion E1 7→ E2, read as “E1 points to E2”, that describes a cell with address
given by E1 and content given by E2.

3In [29], Hoare used the notation P {C} Q; we use the form that is now more common.
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In contrast to Hoare logic assertions, separation logic assertions are interpreted
over small sections of the whole program heap known as heaplets. A heaplet is
described by P ∗ Q when it can be separated into two disjoint heaplets, such that
one satisfies P and the other satisfies Q. For example, the assertion x 7→ 1 ∗ y 7→ 2
describes the heaplet consisting of exactly two cells, the first allocated at the address
given by variable x and containing the value 1, and the second allocated at the
address given by variable y and containing the value 2. We know that there are
precisely two cells because ∗ stipulates that x and y must not have the same value.

Proofs in separation logic are constructed from specifications known as local
Hoare triples [26]. These are also denoted as {P} C {Q}, but unlike in traditional
Hoare logic, P is a separation logic assertion which describes the sufficient resource
needed for command C to run (i.e. its footprint). Such local specifications can then
be extended to include portions of the heap that are unaltered by the execution of
command C through the frame rule:

`
{
P
}
C

{
Q
}

mod(C) ∩ fv(R) = ∅
`
{
P ∗ R

}
C

{
Q ∗ R

}
where the side condition mod(C) ∩ fv(R) = ∅ specifies that no variable modified
by C occurs free in R. This is the key mechanism in separation logic which allows
for local reasoning. For example,4 suppose we represent a switch by a cell with a
value of either 1 or 0, corresponding to the switch being on or off, respectively. In
addition, suppose that we have a function close switch() which takes as input a
switch that is in the ‘on’ state and sets it to the ‘off’ state. A simple specification
for close switch() might look like:

`
{
s 7→ 1

}
close switch(s)

{
s 7→ 0

}
.

Now assume that we have two switches, s1 and s2, and we close the first one of
them. As the two cells are disjoint, we know that s2 will remain unaltered, so we
can apply the frame rule to obtain the following program specification:

`
{
s1 7→ 1 ∗ s2 7→ 1

}
close switch(s1)

{
s1 7→ 0 ∗ s2 7→ 1

}
.

2.2.4 Bi-abduction

In his work [28], the philosopher Charles Peirce defined abductive inference, along-
side deductive and inductive inference, as one of the three main types of valid knowl-
edge inference, with human thinking as a result of a combination of them. Given an
assumption A and a goal G, abduction enables us to find the missing assumption
M that in conjunction with A explains G. Formally, we require the missing M
such that the entailment A ∧M ` G becomes true. In 2009, Calcagno et al. [13]
incorporated this principle into a general technique for synthesising separation logic
specifications of programs, which they named bi-abduction. It involves finding the
missing parts ?M and ?F in the entailment

A ∗ ?M ` G ∗ ?F

4Adapted from the examples given in the Infer documentation [41].
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where ?M is referred to as the anti-frame and ?F as the frame. If we consider G
to be the (known) pre-condition of a procedure, then bi-abduction consists of two
inference steps. The first is to abduce the anti-frame, which is akin to determining
the minimum missing state needed in order to entail G and therefore be able to per-
form the procedure call. Then, determining the frame is akin to finding the leftover
piece of state that was not ‘consumed’ by the procedure call. To illustrate how bi-
abduction works in practice, we build upon the example from § 2.2.3. Suppose that
we now wish to infer the pre- and post-conditions of a function close switches()

that has the following body:

close switch(s1); close switch(s2)

In addition, assume that the specification of close switch() as given in § 2.2.3
is known at the start; it could have been computed in a previous analysis or inputted
manually by the user. We start by executing the body of the function symbolically,
with our symbolic heap initialised to emp. When the reach the first command, we
need to solve the bi-abductive task

emp ∗ ?M ` s1 7→ 1 ∗ ?F.

Clearly, the simplest solution is to take ?M = s1 7→ 1 and ?F = emp. We
therefore infer that our starting state should have been s1 7→ 1 rather than emp,
and record it as a missing pre-condition. We can then proceed with with the function
call, with the result that the pre-condition of close switch() gets replaced by its
post-condition in the symbolic heap:{

s1 7→ 1
}
close switch(s1);

{
s1 7→ 0

}
close switch(s2).

When we process the second command, we arrive at the bi-abductive task

s1 7→ 0 ∗ ?M ` s2 7→ 1 ∗ ?F

which we can solve by taking ?M = s2 7→ 1 and ?F = s1 7→ 0. We therefore record
s2 7→ 1 as a missing assumption and proceed with the function call in a similar way
to before:{

s1 7→ 1
}
close switch(s1);

{
s1 7→ 0 ∗ s2 7→ 1

}
close switch(s2){

s1 7→ 0 ∗ s2 7→ 0
}
.

In addition, we know that the cell s2 7→ 1 is not touched by the command
close switch(s1). We can therefore apply the frame rule and thread this assertion
back to the start of the function body, making it part of the function’s pre-condition.
This leads us to obtain the following full specification for close switches():

`
{
s1 7→ 1 ∗ s2 7→ 1

}
close switch(s1); close switch(s2)

{
s1 7→ 0 ∗ s2 7→ 0

}
.

This example illustrates the main benefit of bi-abduction: we are able to anal-
yse and synthesise the specification of a small part of a program (in this case, an
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individual procedure) independently of its calling context. It therefore allows for
the analysis of incomplete programs which would have otherwise needed extra scaf-
folding code, such as main() method that calls the program’s procedures [13]. In
addition, bi-abduction paves the way for static analysis tools that embrace the prin-
ciple of compositional analysis outlined by O’Hearn in [37], where the analysis result
of a program fragment is defined as a combination of the analysis results of its parts.
These have a greater potential to scale to programs with millions of lines of code, as
analysis results, once computed and persisted on disk, do not need to be recomputed
for procedures that have not changed [13].

2.3 Related tools

The development of separation logic (SL) and bi-abduction has paved the way for
a number of static analysis tools that can efficiently reason about the heap, with
analysis ranging from full verification aimed at the specialist verifier to lightweight
bug-finding aimed at the general developer. These tools can be broadly categorised
into those that are automatic, which take as input bare programs and automatically
synthesise specifications, and those that are semi-automatic, which require the user
to annotate their programs with SL specifications, loop invariants, and proof tactics.
We begin this section by giving a timeline of this development (§ 2.3.1), which
culminates with the recent work on building multi-language tools that are able to
target different high-level languages. We then explore several of these in more depth,
including Infer (§ 2.3.2) and Gillian (§ 2.3.3).

2.3.1 Timeline

2005 • Berdine et al. [3] develop a mechanism for proving separation-logic
Hoare triples for basic loop-free programs using symbolic execution.
This forms the basis for Smallfoot [4], the first semi-automatic
verification tool based on SL, which can verify programs of a small
while language with user-provided pre-/post-conditions and loop
invariants. The assertion language is limited to built-in data structures
such as lists and trees.

2008 • Calcagno et al. develop SpaceInvader [12, 48], a tool that is able to
verify the absence of null pointer dereferences and memory leaks in
Linux and Windows device drivers (up to 10,000 lines of C code).
Unlike Smallfoot, it is also able to infer some loop invariants.

2009 • Calcagno et al. introduce Abductor [13], an extension of SpaceInvader
that works on bare C programs. It uses bi-abduction to automatically
infer pre-/post-conditions and loop invariants, and is therefore the first
tool to provide compositional analysis, enabling it to scale to millions of
lines of code. It leads to the creation of the startup Monoidics, which is
later acquired by Facebook [15].
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2010 • At KU Leuven, Jacobs et al. develop VeriFast [31, 30], a
semi-automatic verifier for Java and C that supports user-defined data
structures for both single- and multi-threaded programs. Users provide
their own SL specifications, invariants, and optional explicit proof
tactics that dictate when to fold and unfold predicates.

2011 • Adopting the principles of Abductor, the Monoidics team develop Infer.
Like Abductor, the early version [10] of Infer is able to automatically
verify memory safety properties of C code and produce a list of
lightweight bugs. At Facebook, Infer is extended [11] to be able to
analyse multiple high-level languages and is integrated into the
company’s code review system [37].

2018 • At Imperial, Fragoso Santos et al. develop the JavaScript Verification
Toolchain (JaVerT) [23], the first separation-logic-based tool for a
dynamic programming language. It is able to support the full language
semantics of ES5 strict (a restricted variant of JavaScript with
semantics that are less error-prone) by using its own intermediate
representation, the JavaScript Intermediate Language (JSIL).

2019 • Fragoso Santos et al. introduce JaVerT 2.0 [24], which unifies the
treatment of whole-program symbolic execution, verification based on
SL, and automatic compositional testing. This leads to the current
work on Gillian [22], a multi-language platform for building symbolic
analysis tools.

2.3.2 Infer

Infer [10, 42] is a fully-automatic static analysis tool originally developed by the
verification startup Monoidics and later, following its acquisition, by Facebook. It is
written in OCaml and comprises Infer.SL, the original separation-logic-based bug-
finding tool, as well as Infer.AI, a more general analysis framework based on abstract
interpretation that has been instantiated for other analysis domains such as security
and concurrency. While the original version of Infer aimed at proving the memory
safety of C programs, it has since evolved into becoming a multi-language tool, being
able to target a number of high-level static languages including Java, C, C++ and
Objective-C. It performs its analysis in two phases:

1. The capture phase, where the input files are parsed and translated into
Infer’s intermediate symbolic language. This output is stored in the results
directory, which by default is infer-out in the project root.

2. The analysis phase, performed by symbolically executing the intermediate
files in infer-out. All information, errors, and warnings reported by Infer are
stored within a text file (more precisely, a CSV file), and the errors which are
considered most likely to be real are propagated to the user.

Figure 2.3 show an example Java program that dereferences a null string, and
Figure 2.4 shows the summary produced by Infer after analysing the program. We
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1 class Example {

2 int test() {

3 String s = null;

4 return s.length ();

5 }

6 }

Figure 2.3: Example.java

Example.java :4: error: NULL_DEREFERENCE

object s last assigned on line 3 could be null and is

dereferenced at line 4.

2. int test() {

3. String s = null;

4. > return s.length ();

5. }

6. }

Figure 2.4: Analysis results for Example.java

can see that Infer was able to analyse the method test() even if it was not part of a
complete program (i.e. one with main() method). This is because Infer performs the
analysis in a bottom-up fashion: it uses bi-abduction in order to derive specifications
(as Hoare triples) of independent procedures at the bottom of the call graph, and
then composes these triples together in order to derive specifications for their callers.
Because the analysis is sound with respect to the underlying model of separation
logic, it can conclude that a procedure is memory-safe if it succeeds in computing
a Hoare triple for it. Otherwise, if it fails, it extracts from the failed proof the
possible reasons why it could not establish memory safety [10]. Furthermore, Infer
is incremental : it keeps track of the results obtained from analysing procedures,
enabling successive invocations of it to only re-analyse procedures that have changed.

Because of its composable and incremental analysis, Infer can successfully scale to
codebases spanning millions of lines of code. This has allowed it to have considerable
impact at Facebook, where it is currently deployed to continuously run on every code
modification made to the company’s Android and iOS applications [42].

2.3.3 Gillian

Generalising the work of JaVerT 2.0, over the past few years the Verified Software
group at Imperial has been developing Gillian [22, 21], a framework for building
symbolic analysis tools for real-world programming languages. Gillian is written in
OCaml and supports three types of analysis:

• whole program symbolic testing, where the user writes unit tests with symbolic
inputs and outputs, and uses simple first-order assertions to describe the prop-
erties that the outputs must satisfy, while Gillian tries to generate symbolic
traces that invalidate those assertions;
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• verification, where functions in the program are annotated by the user with
separation-logic pre- and post-conditions, loop invariants, and proof tactics,
and Gillian verifies that the functions meet their specifications;

• automatic compositional testing, where, in the style of Infer, the user pro-
vides a bare program with no annotations, and Gillian uses bi-abduction to
automatically generate specifications for the functions in the program up to a
pre-established bound.

As with other multi-language tools such as Infer, Gillian is underpinned by a
symbolic intermediate language that is used as a compilation target for a variety
of high-level languages. However, such tools typically require the user to encode
the memory model of the target language into the memory model of the tool’s in-
termediate representation, which limits the number of languages they can feasibly
support. In contrast, Gillian uses a symbolic intermediate language, GIL, that is
parametric on the memory model of the target language. The fundamental ways in
which programs of a particular target language interact with their concrete and sym-
bolic memories are captured by a set of actions, and these are implemented by the
developer during the instantiation of Gillian for that language. During compilation
to GIL, these interactions are then translated into invocations of their corresponding
actions. For example, in JavaScript, the mechanism specified in the standard for
looking up the value of an object’s property will at some point include a call to a
specific action that actually inspects the heap.

Gillian employs a modular architecture, with each reasoning component built on
top of another. This is shown in Figure 2.5. All components use the same underlying
semantics of GIL, which is a simple goto language with top-level procedures. At the
core of Gillian is a symbolic execution engine, with a state model that comprises the
concrete and symbolic memory models provided by the user and Gillian’s built-in
reasoning about the variable store. On top of this is the verification component,
which extends the state model with a set of user-defined core predicates. These are
separation-logic assertions that describe the atomic building blocks of the target
language’s memory, and are each implemented by a pair of actions, consisting of:
(i) a getter action, which removes the predicate’s footprint from the state, akin to
a ‘frame off’ operation in SL; and (ii) a setter action, which extends the state with
the predicate’s footprint, akin to a ‘frame on’ operation. Finally, the bi-abduction
component extends the state with an additional set of user-defined fixes, which,
whenever an action execution fails due to a incomplete state, describe the mechanism
for inferring the missing resource [21]. A compiler from the target language to GIL
is then the final user-provided component needed to complete the instantiation of
Gillian for that particular language.

Gillian has currently been instantiated to provide analysis tools for JavaScript, in
the form of Gillian-JS; C, in the form of Gillian-C; and WISL, a toy imperative lan-
guage with basic control flow constructs and pointers, in the form of Gillian-WISL.
Gillian-JS incorporates the JS-2-JSIL compiler from JaVerT and the JavaScript
memory model of JaVerT 2.0, along with a straightforward compilation step from
JSIL to GIL [22]. The current work done by the Verified Software group mainly re-
volves around extending Gillian to support reasoning about more complex language
features such as events and concurrency.
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Figure 2.5: Gillian architecture [25]

2.4 Continuous reasoning

Along with the research and engineering effort required to ensure that the analyses
produced are sound and precise, comes the more general challenge of developing
verification tools that can reach widespread adoption. This may not always be
the desired end goal for such tools, in particular when they are merely academic
endeavours, such as the early separation-logic-based tools we have seen in § 2.3,
or when they are principally designed for use by experts in formal methods, such
as tools used to verify safety-critical systems. However, as O’Hearn argues in [37],
shifting research focus towards creating tools that can be easily be integrated into
modern development environments can yield significant benefits, as it would allow
formal reasoning to reach many more programs and many more programmers. This
involves tackling several challenges: (i) developing tools that are able to scale to
millions of lines of code; (ii) ensuring that these can easily be integrated into existing
development workflows; and (iii) ensuring that they provide feedback that is of value
to developers, ideally in a timely manner.

In [37], O’Hearn suggests that tools can address these challenges by adopting
the principle of continuous reasoning, where formal reasoning is performed in a way
that mirrors the iterative, continuous model of software development widely prac-
tised in industry today. Technology companies have moved away from the waterfall
method, where development progresses successively from requirements to planning,
development and testing, to more agile methodologies, where new features are con-
tinually added and made available to end users, as this allows for the product to
start generating revenue earlier and for development to be shaped by user feedback.
This is enabled by the practice of continuous integration (CI), which ensures that
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there is always a stable, working version of the code as it evolves. After developers
implement changes on their local working copies of the codebase, they use a version
control system to submit their changes to a central repository that is often backed
by a CI system, which, upon each new change, automatically runs a build of the
codebase along with a series of tests. Any changes that cause the build to break
or tests to fail are promptly flagged and cause an alert to be sent to the developer
that introduced them. As tens, if not hundreds, of engineers are likely to be sub-
mitting changes to the codebase at the same tine, it is only a matter of time before
a local working copy falls behind, requiring the developer to update their copy to
the latest version before their change is submitted. For this reason, the practice
also encourages developers to integrate their changes frequently, for example, once
a day [20].



Chapter 3

Multi-file Analysis of C

C is a ubiquitous statically-typed programming language dating from the 1970s. As
with most languages, it allows for applications to be written as a series of smaller
modules which can be modified and compiled separately, allowing programs to easily
embrace the principle of separation of concerns and removing the need to recompile
modules that have not changed. Cross-references between such modules are resolved
by a process known as linking, which is responsible for combining these individual
pieces of code into a single file that can be loaded (copied into memory) and executed.
This process can be performed either statically, at compile time, or dynamically, at
run time. It also removes the need for programmers to continually re-implement
pieces of standard functionality (for example, routines for mathematical functions)
by allowing them to instead link their programs against specialised, well-tested third-
party libraries.

In this chapter, we detail the work done in extending Gillian-C to incorporate
a similar mechanism for linking separate C modules that allows it to analyse real-
world, multi-file projects. We begin by providing a more detailed but whirlwind
exploration of the linking mechanism found within standard compiler toolchains such
as GCC (§ 3.1). We then explore the existing architecture of Gillian-C, focusing on
the compilation of C to GIL (§ 3.2). Finally, we present our implementation in § 3.3.

3.1 Static linking in C

Static linking has traditionally been the most common mechanism for separate com-
pilation and code-reuse in C. It is also the simplest, and therefore forms a suitable
starting point to guide our extension of Gillian-C. We ground our discussion, where
relevant, in the context of a system running Linux and using the standard ELF ob-
ject file format, though we stress that the concepts of linking are universal, regardless
of the platform or file format used.

As an example, we consider the compilation of the C program consisting of the
files main.c and foo.c, as shown in Figure 3.1. It has a main function calling into
foo, which is defined in an external foo.c file. A user may compile the program by
using the compiler driver of a given compilation system. For example, if they were
using the GNU Compiler Collection (GCC), they may run the following commands

17
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1 #include <stdio.h>

2

3 int foo ();

4

5 int main() {

6 int x = foo();

7 printf("%d\n", x);

8 return 0;

9 }

(a) main.c

1 int foo() {

2 return 10;

3 }

(b) foo.c

Figure 3.1: A basic multi-file C program

to invoke its gcc driver, produce an executable called prog, and finally run the
program:

$ gcc main.c foo.c -o prog

$ ./prog

10

Not surprisingly, we can see from the output that the program was able to resolve
the references to foo and printf and branch to the correct function implementation
in each case. How was it able to do that?

Behind the scenes, the compiler driver is responsible for invoking the individ-
ual components of the compilation system and for linking their inputs and outputs
together [7]. The resulting compilation pipeline is shown in Figure 3.2. First, the
C preprocessor (cpp) is invoked on the main.c file in order to produce a prepro-
cessed main.i file. The preprocessor is responsible for finding and resolving any
preprocessor directives (lines beginning with the ‘#’ character) that are present. In
our example, the #include <stdio.h> directive on line 1 would be replaced by
the contents of the stdio.h file. Other examples include the expansion of macros
declared using the #define directive and the conditional inclusion of statements
nested within #ifdef...#endif directives. The preprocessed main.i is then com-
piled using the C compiler (cc1) to assembly code, which in turn is assembled into
a main.o relocatable object file by calling the assembler (as).

These three steps are then carried out in the exact same way for foo.c in order
to produce a foo.o relocatable object file. We note that the two input files are
preprocessed, compiled and assembled independently of each other and of any other
source files that may be part of the same program. Compilation occurs at the
unit of preprocessed files—hence why these are also termed translation units—and
they must individually contain sufficient type information to allow the compiler’s
semantic analysis to succeed. For example, all functions must have their prototype
(i.e. type signature declaration) included in the translation unit before any of their
usages or definitions. In our example, this is ensured by the inclusion of the stdio.h
header (which contains a prototype for the printf function) and the prototype for
foo at the beginning of main.c.

It is at this point that the linker (ld) presides over. Each relocatable object file
is a binary file comprising code and data in a form that allows it to be combined
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Figure 3.2: Linking process in C

with other relocatable object files in order to produce the final executable object file.
It consists of a number of different sections, including a section for the assembled
machine code, a section for initialised global variables, a placeholder section for any
uninitialised global variables, as well as an optional table mapping source file lines
to machine code instructions (present only if the compiler driver was invoked with
the debugging option -g). In addition, each file contains a symbol table. It is built
by the assembler using symbols exported by the compiler, and details all functions
and global variables that are defined and referenced within the translation unit [7].
We explore its structure in more depth when we discuss our implementation in § 3.3.
For now, it suffices to know that the symbol table for main.o would contain an entry
for main indicating that it is a locally-defined function, and other entries for foo and
printf indicating that they are undefined symbols of unknown type, as we cannot
yet determine whether they really are functions (as opposed to, for example, global
variables). foo.o’s symbol table, on the other hand, would only contain an entry
for foo indicating that it is a locally-defined function.

The linker then performs a left-to-right scan of the relocatable object files pro-
vided as its arguments. The order of these corresponds to the order in which the
initial source files were passed to the compiler driver. In addition, it is passed the
paths to a number of static libraries containing implementations of standard C func-
tions. On Unix systems, each static library is stored in an archive (.a) file format,
which contains a collection of concatenated relocatable object files. For example, the
definition of the standard printf function comes from a printf.o object file that
is, in turn, stored inside the libc.a archive. During the scan, the linker maintains
a set E of relocatable object files that will be merged to form the final executable,
a set U of unresolved symbols (i.e. symbols referenced but not yet defined), and a
set D of symbols that have been defined in previously seen object files, with all sets
initially being empty. Then, for each input file f, it updates the sets according to
the following rules [7]:



20 Chapter 3. Multi-file Analysis of C

1. If f is an object file, the linker adds f to E, and updates U and D to reflect
the symbol references and definitions in f .

2. Otherwise, if f is an archive file, the linker iterates through all the object files
contained within f . If an archive member m defines a symbol that resolves
a reference in U , then m is added to E, and U and D are updated to reflect
the symbol references and definitions in m. The process is repeated across
all member object files until a fixed point is reached where U and D stop
changing. Any archive members that are not used are then discarded.

At the end, if the set U is non-empty, the linker throws an error. Otherwise, it
merges all the object files in E to build the final prog executable. At this stage, the
linker is also responsible for writing the final runtime addresses for any labels used
within branching machine instructions as, during assembly, these have previously
been assigned placeholder addresses. This process is known as relocation; we omit
its details as it would not be relevant in the context of a symbolic execution tool.
However, we refer the interested reader to [7] for more details.

3.2 The Gillian-C compiler

Gillian-C is the instantiation of Gillian for the C language, which, as we have seen
in § 2.3.3, means that it provides an implementation of a concrete memory model,
a symbolic memory model, as well as a compiler to Gillian’s intermediate language
for analysis, GIL. As with many other program analysis tools, it uses a compiler
frontend in order to save on the otherwise substantial development effort required to
implement a correct parser and perform the necessary lexical and semantic analysis.
In particular, it incorporates the frontend of CompCert [33], a formally-verified
optimising compiler developed at INRIA and intended for use within the compilation
of safety- and mission-critical software. CompCert supports most of ISO C99 and
has been verified, using machine-assisted formal proofs, to produce executable code
that behaves exactly as specified by the semantics of the source C program. It
achieves this by performing a series of transformations of the source program that
have each been verified (using the Coq proof assistant) to be semantically-preserving,
beginning with the initial CompCert C abstract syntax tree (AST) and ending with
the AST of the target assembly language. This involves progressing through a total
of ten intermediate representations, each exposing an increasingly stack-based (and
therefore simplified) view of the program [33].

Gillian-C directly leverages the compiler from C to C#minor, the second of
the ten intermediate languages, by extracting OCaml modules from the original
CompCert code written in Coq. C#minor was chosen as it is low-level enough to
incorporate a number of useful simplifications of the original program but high-level
enough to not be too hard to translate to GIL—for example, it still has variables,
unlike the lower-level representations. In addition, it only deviates from the C
standard by fixing the order of argument evaluation. Gillian-C then provides an
additional compiler from C#minor to GIL as well as a compiler for translating, when
the tool is run in verification mode, user-defined separation-logic annotations and
proof tactics to GIL annotations and logic commands, respectively. The compilation
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Figure 3.3: Compilation process in Gillian-C

process to transform an input C file to GIL then consists of the following steps, as
illustrated in Figure 3.3:

1. Preprocessing of the source C file. This is done by invoking the system’s
preprocessor (e.g. cpp) to produce a preprocessed C file.

2. Parsing of the preprocessed file to produce a parse tree. Any lexical
errors that are detected at this stage are propagated back to the user.

3. Construction of a CompCert C AST. The AST is elaborated with type
information, and any semantic errors that are detected are propagated back to
the user. At this stage, a number of simplifications are made. These include
cleanups, such as collapsing multiple declarations of the same variable, as
well as source-to-source transformations aimed at removing constructs that
are not supported by CompCert, such as the pulling of local static variables
to the global scope (renaming them if needed to keep names unique) and the
emulation of bit fields in terms of bit-level operations [33].

4. Compilation of the CompCert C AST to Clight and C#minor. In the
first stage, side effects are pulled out of expressions (for example, function calls
become statements, not expressions). In the second stage, control flow con-
structs are simplified and types (for example, struct and union definitions)
are eliminated [33].

5. Compilation from C#minor to GIL. This forms the bulk of Gillian-C.
Control flow constructs are directly mapped to the ones in GIL, and mem-
ory interactions are formulated in terms of their respective actions on the C
memory model. Verification proof tactics, such predicate Fold, Unfold, and
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lemma Apply statements, as well as constructs specific to the tool’s symbolic
testing mode, such as Assume and Assert statements, are translated into
their corresponding GIL logic commands.

6. Extracting annotations from the source C file. In parallel, a custom
parser is invoked on the original unprocessed file to extract any separation-logic
annotations, which are declared using special C-style multi-line comments.
These can define predicates, lemmas as well as function specifications. The
latter consists of a function identifier as well as the SL pre- and post-conditions
of the function (or multiple pairs of these) that are to be verified. For example,
an annotated C function for allocating and initialising a new binary search tree
node is shown in Figure 3.4.

7. Translation of the parsed annotations to GIL annotations. This is
a straightforward translation step. In addition, the struct definitions that
were eliminated in step 4 are extracted directly from the Clight program and
converted to predicate definitions that may be used during the verification or
bi-abduction proof.

8. Annotation of the GIL program. All predicate and lemmas definitions
from step 7 are added to the bare GIL program created in step 5. In addition,
GIL procedures (which carry their names from the original C functions) are
annotated with any specifications that were defined for them. Finally, the
resulting GIL program is returned to Gillian for analysis.

1 #include <stdlib.h>

2

3 typedef struct bstn {

4 int value;

5 struct bstn *left;

6 struct bstn *right;

7 } BST;

8

9 /*@ spec make_node(v) {

10 requires: (v == #v) * (#v == int(#vv))

11 ensures: BST(ret , -{ #vv }-)

12 }*/

13 BST *make_node(int v) {

14 BST *new_node = malloc(sizeof(BST));

15 new_node ->value = v;

16 new_node ->left = NULL;

17 new_node ->right = NULL;

18 return new_node;

19 }

Figure 3.4: C code annotated with Gillian SL specifications

Steps 1–4 occur inside CompCert, while the remaining steps occur inside Gillian-C.
In the full CompCert compiler, the final assembly AST is written to a file as concrete
assembly syntax. The system’s assembler and linker are then invoked in order to
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produce the final relocatable and executable object files, thereby removing the need
for CompCert to solve symbol references itself. As Gillian performs its analyses
entirely through the symbolic execution of the GIL code (with no object files being
produced), it is clear that we need to implement a linking mechanism ourselves. In
addition, as this is a mechanism largely pertaining to the analysis of C programs, it
is clear that it needs to be incorporated directly within Gillian-C.

Figure 3.5: Design for Gillian-C’s linking mechanism

3.3 Design and implementation

Our design for Gillian-C’s import mechanism was shaped by observing the paral-
lels between the compilation process of Gillian-C and the one that typically occurs
during regular C execution. In the original Gillian-C implementation, a C file gets
compiled to exactly one annotated GIL program. The source file must, post prepro-
cessing, contain all the type, function, global variable, and separation-logic-related
definitions it requires for its compilation and subsequent symbolic execution. This
therefore mirrors the creation of the final executable object file during regular com-
pilation. However, if we add another intermediate step just the final GIL program is
produced, creating a valid but non-final GIL program that may not yet have all the
definitions it requires, we would have a translation step that mirrors the creation
of a relocatable object file. The one-one correspondence now resides between the
source C file and its unlinked GIL program. We can envision a similar translation
happening for other input C files during the same running instance of Gillian-C,
resulting in a list of unlinked GIL programs. A linking and combination step, where
the unlinked GIL programs have their cross-references resolved, can then be added
to produce the final fully-linked GIL program that is returned to Gillian for execu-
tion. In order to make this linking step work, we also need to export, along with
each unlinked GIL program, information about the symbols the program defines
and the symbols that it references but which are undefined. This design is shown
in Figure 3.5.
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1 module type ParserAndCompiler = sig

2 module TargetLangOptions : sig

3 type t

4 ...

5 end

6

7 (** Type for parsing and compilation errors. *)

8 type err

9

10 (** Executed at initialisation. *)

11 val initialize : ExecMode.t -> unit

12

13 (** Takes a path and returns a GIL AST or an error. *)

14 val parse_and_compile_file : string -> (Prog.t, err) result

15 ...

16 end

Figure 3.6: ParserAndCompiler signature

3.3.1 Compiler interface

We begin by discussing the interface for the extended Gillian-C compiler and how
it fits into the wider Gillian ecosystem.

Adhering to its goal of being a language-independent platform, Gillian defines
standard interfaces in the form of OCaml module types for all the components it
is parameterised by. It can then interact with these through the use of functors,
which are special OCaml modules that can be parameterised by other modules. For
example, much of Gillian’s top-level code resides in a CommandLine functor that is
parametric on those component types. It contains functions to handle command-
line options that are common to all types of analyses as well as scaffolding code
responsible for, among other things, invoking the GIL compiler before any analysis
takes place.

Each instantiation’s compiler has to comply with the ParserAndCompiler mod-
ule type, the signature for which is shown in Figure 3.6; we omit some of its less
important members. The key function is parse and compile file. When it is
called, it is passed the path of the source file in the target language (as provided
by the user on the command line) and is expected to return either an error value
(the type of which is itself determined by the instantiation) or the compiled GIL
program. It is clear that this will need to be changed. Unlike other languages (such
as ES6 JavaScript) which feature explicit import or export constructs, a C file
does not in itself indicate what external files it depends on. Indeed, looking back
at the example in Figure 3.1, we can see that main.c does not hold any clues to
the location of foo’s definition. In practice, it is customary for a file to have the
prototypes of the functions it wishes to share in a separate header file of the same
name. In our example, we would have a foo.h file containing the foo prototype
that is included by both main.c and foo.c, removing the need for them to declare it
themselves. However, this is merely a convention, and the compiler cannot assume
that the foo.h header really does correspond to a source file named foo.c.

We therefore adopt an interface where the user is responsible for the providing the
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paths of all source files within the C program they wish to analyse. This is similar to
what compiler drivers such as gcc expect. To make it slightly less cumbersome, we
also leverage the fact that each instantiation can define command-line options that
are specific to it (through the TargetLangOptions.t type in Figure 3.6) to provide
the following optional arguments (shown in both their short and long forms), each
of which can specified multiple times by the user when invoking Gillian-C:

• -I dir, --include dir: if specified, dir is added to the list of directories
used by the preprocessor to search for included header files. This intended to
replicate the option of the same name that is generally supported by compiler
drivers such as gcc. In our case, we intercept CompCert’s call into the system
preprocessor and provide the directory paths in the same order in which they
are specified. These are not searched recursively.

• -S dir, --source dir: if specified, dir is added to the list of directories used to
recursively search for the program’s source files. While it is not by any means
a standard option found in compiler drivers, we consider it is a useful addition
until Gillian-C is mature enough to be able to be integrated directly within
widely-used C build systems (such as Make), where it could automatically learn
about the source files in the program by intercepting all commands issued by
the build system to the compiler driver.

3.3.2 Defined and undefined symbols

We now delve into the deeper mechanics of the linking step, by first considering all
the possible ways in which a given C file could hold references to internally- and
externally-defined components.

In § 3.1, we mentioned that information about all the function and global variable
identifiers (henceforth referred to as symbols) that are defined and referenced within
a translation unit are stored in a special data structure known as a symbol table,
which is built by the assembler. We will now study the information it holds in
more detail. To keep things concrete, we will use the example of main1.c (shown
in Figure 3.7), which has been constructed to feature the range of ways in which
C symbols can be declared and used. We can inspect the symbol table that gets
generated for it by telling the gcc driver, using the -c option, to stop just before
invoking the linker and output the relocatable object file instead. We can then use
the readelf tool (from the GNU Binary Utilities collection) with the -s option to
extract the symbol table:

$ gcc -c main1.c

$ readelf -s main1.o

This outputs the following symbol table entries, with the ones not shown corre-
sponding to symbols used by the linker internally:

Num: Value Size Type Bind Vis Ndx Name

5: 4 4 OBJECT LOCAL DEFAULT 3 y

6: 0 12 FUNC LOCAL DEFAULT 1 bar

7: 8 4 OBJECT LOCAL DEFAULT 3 tmp .2182
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12: 0 4 OBJECT GLOBAL DEFAULT 3 x

13: c 65 FUNC GLOBAL DEFAULT 1 main

14: 0 0 NOTYPE GLOBAL DEFAULT UND z

15: 0 0 NOTYPE GLOBAL DEFAULT UND foo

16: 0 0 NOTYPE GLOBAL DEFAULT UND printf

There are three different kinds of symbols within each relocatable object module
[7]:

• Global symbols (also known as those with external linkage) defined by the
module and which can be referenced by other modules. These correspond
to global1 variables and functions defined without the static attribute. In
our example, main1.c defines two global symbols, namely the integer x and
function main. We can see that the symbol table marks them as having a
‘GLOBAL’ bind, and that the compiler has allocated space for them since their
size attribute (in bytes) is non-zero and they have been assigned a section
within the object file (the index of which is given by the Ndx attribute).

• Global symbols referenced by the module but defined by some other module.
These correspond to global variables declared using the extern attribute and
functions that are declared but not defined. In our example, there are three
such symbols, namely the integer z and functions foo and printf. We can
see that the symbol table still marks them as having a ‘GLOBAL’ bind, but this
time the compiler has not allocated any space for them nor has it assigned
them to a section in the object file (indicated by the ‘UND’, or undefined, value
for Ndx attribute).

• Local symbols (also known as those with internal linkage) that are defined and
referenced exclusively by the module. These correspond to global variables and
functions defined with the static attribute. They are visible anywhere within
the module, but cannot be referenced by other modules. In our example, there
are two such symbols, namely the integer y and function bar. We can see that
the symbol table marks them as having a ‘LOCAL’ bind, and that the compiler
has allocated space for them, since they have a non-zero size field.

It is worth noting that local function variables marked with the static keyword
are also included in the symbol table. They are allocated within the same section
as global variables, and have their names appended with an integer in order to keep
them unique. We can see this from the entry for the tmp variable used inside bar,
which gets the name tmp.2182. On the other hand, local variables not marked as
static (such as the variable v used inside main) are not included, since they are
managed at run time on the stack and are therefore of no interest to the linker.

We now consider the symbol information we need to export during our own link-
ing mechanism within Gillian-C. Fortunately, as we are constructing a symbol table
during the translation step from C#minor to GIL, we can leverage the simplifica-
tions that have already been applied by CompCert when translating the source C

1Here, ‘global’ refers to variables declared outside of a function body and which are stored in a
separate section of the object file. They can still have either internal or external linkage.
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1 #include <stdio.h>

2

3 int x = 1;

4 static int y = 2;

5 extern int z;

6

7 int foo ();

8

9 static int bar() {

10 static tmp = 5;

11 return tmp;

12 }

13

14 int main() {

15 int v;

16 v = z;

17 v = foo();

18 v = bar();

19 printf("%d\n", v);

20 return 0;

21 }

Figure 3.7: main1.c

program to C#minor. We can also leverage the information held within the Com-
pCert AST (a subset of whose definitions are shown in Figure 3.8). The whole
program is represented by an OCaml record containing a of list global variable and
function definitions, and a list of all identifiers within the program not marked as
static. Each global variable definition is a record with a field containing a list of
initialisation-related data. A non-empty list indicates that the compiler has allo-
cated space for it, whereas an empty list indicates that it is externally-defined (i.e.
with extern). Similarly, each function definition is a variant with a tag indicating
whether it is internally- or externally-defined. Furthermore, as have seen in § 3.2,
CompCert elevates all local static variable definitions to global variable definitions,
performing any necessary mangling to keep the names unique. This means we do
not need to handle them in any special way.

There are other simplifications we can also take into account. First, we do not
have to record the type of each symbol—whether it is a ‘FUNCTION’ or an ‘OBJECT’
as above—since this information is not needed in the symbol resolution step itself.
Second, we do not need to keep entries for local symbols, since their definitions
are not exposed to other modules and are therefore not taken into account during
symbol resolution. Third, as we are not constructing an object file, there is no notion
of a ‘section’ in which the symbol will be stored. With this, we can record for each
symbol its name and whether a definition exists for it in the current module:

type symbol = { name : string; defined : bool }

and define a symbol table as a list of symbol records.

Finally, we do not actually need to maintain symbol entries for all functions



28 Chapter 3. Multi-file Analysis of C

1 type 'f fundef =

2 | Internal of 'f
3 | External of external_function

4

5 type 'v globvar = {

6 gvar_init : init_data list;

7 ...

8 }

9

10 type ('f, 'v) globdef =

11 | Gfun of 'f
12 | Gvar of 'v globvar

13

14 type ('f, 'v) program = {

15 prog_defs : (ident * ('f, 'v) globdef) list;

16 prog_public : ident list;

17 prog_main : ident;

18 }

Figure 3.8: CompCert AST definition (as OCaml code extracted from Coq)

referenced within the program. In its current form, Gillian-C replaces calls to
standard library functions with calls to their corresponding GIL implementations.
These are currently limited to the functions needed to enable the symbolic testing
of Collections-C, a data structure library used to benchmark Gillian-C in [22]. They
include malloc, calloc, free, memcpy, memmove, memset, and strcmp.

With this, we arrive at the following possible cases and rules for symbol defini-
tions obtained from CompCert:

1. Internal function f . If f is a member of prog public, create a symbol entry
for f with defined set to true. Otherwise, proceed to the next symbol.

2. External function f . If f is an standard library function for which an existing
implementation exists, or if it corresponds to a GIL-specific construct such the
Assume and Assert statements used within symbolic testing, then proceed
to the next symbol. Otherwise, create a symbol entry for f with defined set
to false.

3. Global variable v with no initialisation data (i.e. with an empty gvar init

field). Create a symbol entry for v with defined set to false.

4. Global variable v with some initialisation data. If v is a member of prog -

public, create a symbol entry for v with defined set to true. Otherwise,
proceed to the next symbol.

3.3.3 Symbol resolution

We are now in a position to define our full symbol resolution algorithm. We adhere
to the following two rules:
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1: procedure Link(paths)
2: U := ∅
3: D := ∅
4: for all p ∈ paths do
5: S := GetSymbols(p)
6: Up := {s ∈ S | s.defined = false}
7: Dp := {s ∈ S | s.defined = true}
8: if D ∩Dp 6= ∅ ∧ ¬ IgnoreMultDef then Error
9: end if

10: D := D ∪Dp

11: U := (U ∪ Up) \D
12: end for
13: if U 6= ∅ ∧ ¬ IgnoreUndef then Error
14: end if
15: end procedure

Figure 3.9: Symbol resolution algorithm

1. Every symbol referenced within the program must be matched by a corre-
sponding symbol definition.

2. No two definitions for the same symbol are allowed.

If any of these do not hold, then the linking step should raise an error. However,
as Gillian-C is still under development, we acknowledge that it would be useful to
provide a way to override such errors. This is particularly the case for the first rule,
since there are still many standard library functions that do not currently have an
implementation in GIL and so would be missing definitions. We therefore also define
the following command-line flags:

• --ignore-undef: if provided, any errors regarding undefined symbols are ig-
nored.

• --ignore-multdef: if provided, any errors regarding symbols with multiple
definitions are ignored.

We present the algorithm in Figure 3.9 and walk through it step-by-step below:

1. We begin by initialising the set of unresolved symbols U and the set of defined
symbols D to the empty set.

2. For each input source path p, we fetch the symbol table that was constructed
during its compilation step from C#minor to the unlinked GIL program. We
partition these into two sets: those that are undefined (Up), and those that
are defined (Dp).

3. If any of the newly-defined symbols already have a definition (i.e. are members
of both Dp and D), then raise a linker error, unless such errors are being
suppressed. Otherwise, update U and D to reflect the symbol references and
definitions of p, and proceed to the next path.
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1 #include <stdio.h>

2

3 void foo ();

4

5 int x = 5;

6

7 int main() {

8 foo();

9 printf("%d\n", x);

10 return 0;

11 }

(a) main2.c

1 int x;

2

3 void foo() {

4 x = 10;

5 }

(b) foo2.c

Figure 3.10: Weak and strong symbols example

4. At the end, if U is non-empty, then raise a linker error, unless such errors are
being suppressed.

In practice, linkers usually have some tolerance for multiply-defined global sym-
bols. They additionally categorise symbols into those that are strong and those
that are weak based on information held within the symbol table. Functions and
initialised global variables are assigned strong symbols, whereas uninitialised global
variables become weak symbols. Multiply-defined symbols are then resolved accord-
ing to the following rules [7]:

1. Multiple strong symbols are not allowed.

2. Given a strong symbol and multiple weak symbols, choose the strong symbol.

3. Given multiple weak symbols, choose any of the weak symbols.

This can lead to runtime behaviour that may seem baffling to the user. For
example, when the program in Figure 3.10 is compiled using gcc, the linker assigns
a weak symbol to the definition of x in foo2.c and a strong symbol to the definition
in main2.c. It then proceeds to discard the weak symbol in favour of the strong
symbol. As a result, the author of main2.c would discover during execution that
the value of x gets changed from 5 to 10 by the call to foo on line 8.

As these rules are not included as part of the C standard, however, we do not
model them within our symbol resolution algorithm.

3.3.4 Combination step

Once we have determined that there are no unresolved symbols, we can begin to
piece together the separately-compiled GIL programs.

Gillian already provides support for a basic import mechanism within GIL. Each
instantiation can store the GIL implementations of standard functions pertaining
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to that target language in a series of GIL runtime files. In Gillian-C, these contain
the implementations of the standard library functions it currently supports, such
as malloc and free; 32-bit and 64-bit implementations of standard arithmetic and
bitwise operators; and definitions of core predicates related to its memory models.
Depending on the system’s architecture as well the type of analysis for which the
program is being compiled, the instantiation’s compiler can then specify the runtime
files it needs by including a GIL import declaration with those file names. When
Gillian processes the program, it scans the import declaration (if included), parses
any referenced GIL programs, and combines them into a single AST. The combi-
nation step is straightforward aggregation of all procedure, predicate, and lemma
definitions across the programs. This is because members of a particular component
type are considered to be part of the same global namespace and therefore assumed
to have unique names.

Therefore, by designating one the unlinked GIL programs created by Gillian-C
as the ‘main’ one, and by adding to it a GIL import declaration with references
to all the remaining programs, we can delegate much of the work for building the
final linked program to Gillian itself. There are two things that Gillian-C needs to
handle itself, however.

First, it must ensure that the unique identifier requirement is respected. The
symbol resolution step takes care of this for all global symbols. There might, how-
ever, be several local symbols with the same name defined in separate modules, which
would clash during the merging step. This can be addressed by mangling all local
symbols references and definitions during compilation, for example by prepending
to each symbol the filename of the source file in which it was defined.

Second, it must correctly initialise the state of the program’s memory before this
can be executed. In general, this step depends heavily on how the memory model is
implemented by the instantiation. In Gillian-C, it consists of initialising the memory
with all global variable and function declarations. The compiler does this by building
an i initialize genv GIL procedure that registers all such declarations and by
adding a call to it as the first command inside the compiled main function. In
addition, when the program is being compiled for verification or bi-abduction, it
defines a i global env predicate that is appended to the pre- and post-condition
of every procedure. The ‘i ’ prefix is used within their names in order to indicate
that they are internal, in that they do not have a real correspondence to the user-
defined source code.

Within our own mechanism, we delay the inclusion of the initialisation-related
code until after compilation has taken place. Then, along with its symbol table,
each unlinked GIL program can export a list of commands and assertions that it
requires for its own initialisation. At the end, we aggregate these into a single
i initialize genv procedure and a single i global env predicate, and include
these within the same ‘main’ program as above. For simplicity, we consider this
to be the GIL program corresponding to the first C source path provided as an
argument to Gillian-C.

Finally, the semantics of the import declaration within Gillian itself need to be
revised slightly. Gillian currently assumes that all imported GIL files are runtime
files. This means that during verification and bi-abduction, it excludes procedures
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Figure 3.11: Creating the final GIL program

defined within those files from the set of procedures it verifies, since runtime-related
procedures are always assumed to be ‘correct’. While we still want to avoid ver-
ifying runtime procedures, we want Gillian to verify all procedures from GIL files
corresponding to user source files. We achieve this by extending GIL’s syntax to in-
corporate a new type of import declaration, import verify, and changing Gillian’s
parser to mark any procedures contained within files referenced this way as needing
to be verified.

Figure 3.11 shows a summary of the combination step. As an example, we
also show the compilation of the two source files given in Figure 3.12, assuming
that they are passed to Gillian-C’s compiler in the order main3.c, foo3.c. The
compiler produces two corresponding GIL files, main3.gil and foo3.gil, shown
in Figure 3.13. main3.gil includes initialisation-related code that incorporates its
own global variable and function declarations as well as those of foo3 (which are
highlighted in purple). It also has an import verify declaration in order to ensure
that foo3’s procedure definitions are included in the final GIL program when Gillian
resolves its imports.
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1 int x = 5;

2

3 int foo(void);

4

5 int main() {

6 int v;

7 v = x;

8 v = foo();

9 return 0;

10 }

(a) main3.c

1 int foo() {

2 return 10;

3 }

(b) foo3.c

Figure 3.12: Example C source files

1 import "unops_common.gil", "binops_common.gil",

2 "internals.gil", "logic_common.gil", ...;

3

4 import verify "foo3.gil" ;

5

6 pred i__global_env () :

7 i__glob_fun("main", "main") *

8 i glob fun("foo", "foo") ;

9

10 proc i__initialize_genv () {

11 u := "i__glob_set_var"("x",

12 "x", 4., {{ {{ "int32", 5. }} }},

13 "Writable");

14 u := "i__glob_set_fun"("main", "main");

15 u := "i glob set fun"("foo", "foo") ;

16 ret := undefined;

17 return

18 };

19

20 proc main() {

21 gvar__0 := "i__initialize_genv"();

22 ...

23 };

(a) main3.gil

1 proc foo() {

2 ret := {{ "int", 10. }};

3 return

4 };

(b) foo3.gil

Figure 3.13: Compiled GIL code



Chapter 4

Multi-file Analysis of JavaScript

JavaScript is an object-oriented, dynamic programming language that is used ex-
tensively within client-side webpage scripting. It is also used in non-browser envi-
ronments, such for server-side scripting with the Node.js runtime (also known as
Node). Its syntax, core language semantics and built-in libraries are described by
the international ECMAScript standard maintained by Ecma. Much of the recent
work done by the Verified Software group to build symbolic testing and verification
tools for JavaScript (in the form of JaVerT and JaVerT 2.0, as seen in § 2.3) has
focused on analysing the fifth edition of the ECMAScript standard (ES5), which was
released in 2009. In particular, these tools—and by extension, Gillian-JS—target
ES5 strict, a variant of ES5 that excludes some of the more error-prone language
constructs (such as the with statement) and has better-defined semantics.

Unlike subsequent versions of the standard (beginning with the release of ES6
in 2015), ES5 has no built-in constructs to support modules. Over the years, the
JavaScript community has come up with a number of different ways to overcome this
limitation. The first, and simplest approach is to leverage the existing constructs
of the language in order to implement one of several module design patterns. Using
JavaScript’s built-in support for closures, they allow for variables and functions
to be grouped into their own namespaces, and for limiting which of these should
be ‘exported’ and available for use elsewhere. The second approach has been to
rely on external module loaders such as Require.js and the built-in loader within
Node, which define an explicit import and export syntax that the program may
use. They are then responsible for resolving dependencies between modules, and for
loading and executing referenced module code at the appropriate time. The details
of this process (for example, whether it happens synchronously or asynchronously)
is dictated by the module system specification that the loader implements.

In this chapter, we detail the work done in extending Gillian-JS to support the
analysis of ES5 programs that rely on such external module systems. In partic-
ular, we adopt techniques from the first approach in order to model the runtime
behaviour of Node’s module loader. We begin by taking a whirlwind tour of some
of JavaScript’s key concepts, focusing on variable binding and scoping (§ 4.1). We
then explore the most common module design patterns (§ 4.2) and discuss Node’s
module loader in more detail (§ 4.3). Finally, we discuss the existing architecture of
the Gillian-JS compiler (§ 4.4), and present our implementation in § 4.5.

34
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4.1 Key JavaScript concepts

JavaScript [39] is an object-based language, in that objects are the primary con-
structs through which most of the language’s features are implemented. A JavaScript
object is a collection of properties, split into that are named and those that are in-
ternal. Named properties can be considered to be equivalent to object fields in
languages such as C++ and Java, and can hold primitive values as well as refer-
ences to other objects. However, unlike those languages, objects in JavaScript can
be marked as extensible, which allows more properties to be added to them. In ad-
dition, named properties are not only associated with a value, but also with a list of
attributes that indicate how they can be used. For example, they have a Writable

attribute which determines whether the value can be modified or not. On the other
hand, internal properties are hidden from the user and exist purely to support the
underlying mechanics of JavaScript. For example, every object has an internal prop-
erty @proto (where we use the ‘@’ prefix to denote that it is internal) which holds
a reference to another object called its prototype. This, in turn, holds a reference
to another prototype object, and so on until an object is reached that has a null

prototype. These prototype objects form a prototype chain, and are the backbone
of how JavaScript implements inheritance and other mechanisms related to object-
oriented programming (OOP). In particular, it uses a prototype-based, rather than
class-based, approach to the OOP paradigm. The language standard does not, in
general, specify how such internal properties should be represented—it is left up to
each implementation.

JavaScript can also be considered to be a functional language, since functions
are treated like first-class citizens: they can be assigned to variables, passed as
arguments to functions, returned from functions, and even be declared within other
functions. This is because functions are also stored as objects on the heap. For
example, when the following statement is executed, a new function object called
Person is created:

var Person = function (name , age) {

this.name = name;

this.age = age;

}

The above example uses an anonymous function expression, since there is no
identifier provided after the function keyword. It is worth noting that only function
expressions can be anonymous. Functions are also used to define object types that
can be instantiated to create any number of new objects, in which case they are
termed constructor functions. New instances of a given object type are created by
prepending the new keyword to the constructor invocation. When the constructor
body is executed, the this keyword is bound to the new object being created, and
any properties set via this will correspond to new named properties on the object.
For example, the snippet above defines a Person object type, while in the code
below, a new object p of type Person is created. p is assigned the properties name

and age, which get initialised with the values "Tom" and 20, respectively:

var p = new Person("Tom", 20);

Each function object that gets created has two specific internal properties: @code,
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1 var Person = function (name , age) {

2 this.name = name;

3 this.age = age;

4 }

5

6 var f = function (name , age) {

7 var p = new Person(name , age);

8 }

9

10 f("Tom", 20);

Figure 4.1: Variable binding in JavaScript

which holds a representation of the ECMAScript function code, and @scope, which
holds information about the environment in which the function object was defined
and which therefore will be available to it upon its execution. An environment in
JavaScript is represented by a list of environment record (ER) objects, which to-
gether form a scope chain. Each ER object has as its properties the variables and
functions declared within the corresponding lexical scope, with the order in which
it appears in the list reflecting the nesting of scope. The outermost ER is the global
object, which is responsible for holding all the variables and functions declared in
the global scope. We name this object global. When a function gets invoked, a
new ER object is created that maps the function’s parameters, local variables and
nested functions declared in the function’s body to their respective values. The ER
object is the appended to the end of the current scope chain. During the execution
of the function’s body, variable references are resolved by traversing the scope chain
up until the global object is reached. If the variable is not found in this object, then
the variable is marked as undefined [39].

To illustrate the process of variable binding during function calls, we consider
a revised version of our earlier example, shown in Figure 4.1. When this code is
executed, there are two function objects created, Person and f, as shown by the
blue boxes in Figure 4.2. As both functions are declared in the global scope, their
internal @scope property will be the scope chain [global] (we use [] to denote
a list). The global object, in turn, has the properties Person and f, containing
references to the corresponding function objects. When the call to f is made on
line 10, a new environment record object (ER-f) is created, containing the properties
name, age, and p, with the first two being the formal parameters of f and the last
being the local variable used in its body. The first two get the values "Tom" and
20, respectively, as these are the values passed as arguments during the call to f.
The body of f is then executed in the scope [global, ER-f], with the references
to name and age on line 7 being resolved using the last environment record, and the
reference to Person being resolved using the first environment record. The creation
of the ER-f object ensures that local variables of f cannot be used outside of the
scope in which they were defined. For example, adding the following line after the
call to f would result in an error:

console.log(p); // ReferenceError: p is not defined

The existence of environment record objects means that JavaScript can naturally
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Figure 4.2: Variable binding in the JavaScript heap

1 function f(a, b) {

2 var c = a + b;

3 var g = function (d) {

4 return c + d;

5 }

6 return g;

7 }

8

9 var h = f(1, 2);

10

11 console.log(h(3)); // 6

Figure 4.3: Example of a closure in JavaScript

support the creation of closures. Instead of being garbage collected, the ER objects
created during a function’s execution can be kept in memory, meaning that a re-
turned closure can still keep a reference to any non-local variables that were bound
at the time of the enclosing function’s execution. An example of this is shown in
Figure 4.3. As before, f is function object whose scope is [global]. When f is
executed on line 9, an ER-f object is created that binds the formal parameters a

and b, and local variable c to the values 1, 2, and 3, respectively. When the function
object g created, its internal @scope property will be the chain [global, ER-f],
and because g is returned by f, the reference to ER-f will be kept. Finally, when the
call to g is made on line 11 through the variable h, its body will be executed in the
scope [global, ER-f, ER-g], where ER-g is a newly-created ER object holding a
binding for the parameter d. The reference to d will then be resolved using this
last environment record, while the reference to c will be resolved using the second
environment record, leading to the expected value of 6 being returned. In addition,
the binding for c will remain internal to g—any attempts to access it directly will
result in a ReferenceError being thrown.
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4.2 Module design patterns

As we have seen, any JavaScript variable declared outside the body of a top-level
function automatically becomes part of the global scope. As a codebase grows in
size, there will inadvertently be instances of separate parts of the code accidentally
sharing or changing each other’s global variables, leading to an undesirable effect
known as global namespace pollution. In order avoid this, as well as to make code
more maintainable, JavaScript developers have devised a number of design patterns
that allow for greater encapsulation between unrelated code parts. They leverage
the existing ES5 constructs in order to organise code into module-like segments that
keep their internal state hidden and only allow access to it through an interface. In
addition, the segments can still be kept inside the same JavaScript file.

As we have seen in the Figure 4.3 example, variables that get bound when a
closure is created will remain accessible only from within the closure itself. This fact
is exploited by the module pattern [36], an example of which is shown Figure 4.4.
The closure returned on line 1 is an object with accessor and mutator methods for
the module’s internal counter variable, which remains hidden from the global scope
and so behaves almost like a private field in Java. We can also see that the methods
reference the same counter variable, since the expected value of 2 is outputted by
line 16. In addition, the methods of the module are effectively namespaced, since
any references to them in the outside scope must be prefixed with the module’s
name (in our case, counterModule).

1 var counterModule = (function () {

2 var counter = 0;

3

4 return {

5 increment: function () {

6 counter ++;

7 },

8 get: function () {

9 return counter;

10 }

11 }

12 })();

13

14 counterModule.increment ();

15 counterModule.increment ();

16 console.log(counterModule.get ()); // 2

Figure 4.4: Example of the JavaScript module pattern

The code also uses another JavaScript construct we have not yet introduced: an
immediately-invoked function expression (IIFE). This is done with the (function(){...})()
syntax, with the first outer pair of brackets being used to encapsulate the function
expression in its own lexical scope and the second being used to immediately execute
its body [44]. It saves us from otherwise having to declare an additional function
object in the global scope:

var m = function () { ... }
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var counterModule = m();

The module pattern can also be extended to introduce an import-like mechanism
[36]. Global variables can be passed directly to the IIFE as function parameters, and
the module would be able to use and alias these in any way it wanted. Figure 4.5
shows a variation of the previous example where the module ‘imports’ the starting
value of the counter.

1 var counterStart = 5;

2

3 var counterModule = (function (startVal) {

4 var counter = startVal;

5

6 return {

7 increment: function () {

8 counter ++;

9 },

10 get: function () {

11 return counter;

12 }

13 }

14 })( counterStart );

15

16 counterModule.increment ();

17 console.log(counterModule.get ()); // 6

Figure 4.5: Importing values with the module pattern

4.3 Node.js modules

Node.js1 is a cross-platform runtime that allows JavaScript code to be executed out-
side of a browser environment. It is built on top of Google’s V8 JavaScript execution
engine (the same engine used within the Chrome browser), and features an exten-
sive collection of built-libraries to support, among other things, filesystem I/O and
networking-related operations. These allow it to be used for server-side scripting—
where a webpage content is dynamically generated on a server before being returned
to the user—and to build web servers themselves, unifying the development of a web
application’s frontend and backend under the same language. Outside of the core li-
braries, developers are also able to choose from the vast array of third-party libraries
available through the Node package manager2 (npm) ecosystem.

In order to support the usage of such libraries, as well as to allow developers
to better structure their code, Node introduced one of JavaScript’s earliest module
systems. With it, a JavaScript program can be split across a number of different
files, with each file becoming a module. Modules explicitly mark the variables and

1https://nodejs.org/en/
2https://www.npmjs.com/

https://nodejs.org/en/
https://www.npmjs.com/
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functions they wish to make available to other modules by assigning these as prop-
erties to a special module.exports object, or alternatively to exports, which by
default is an alias to it. In turn, a module can import the functionality provided
by an external module using the require function, which takes as an argument
the identifier of the module (typically its relative path) and returns its exports

object [47]. Figure 4.6 shows an example. There are two modules, main.js and
circle.js, with the latter exporting two functions, area and circum, using both
the full module.exports reference as well as the exports shorthand.

1 var circle = require("./ circle");

2

3 console.log(circle.area (2));

4 // 12.56...

5

6 console.log(circle.circum (4));

7 // 25.13...

(a) main.js

1 var pi = Math.PI;

2

3 var area = function (r) {

4 return pi * Math.pow(r, 2);

5 }

6

7 var circum = function (r) {

8 return 2 * pi * r;

9 }

10

11 module.exports.area = area;

12 // Using just `exports `:
13 exports.circum = circum;

(b) circle.js

Figure 4.6: A Node program with two modules

As well as specifying properties on the exports object, an exporting module can
also directly replace it with a particular function or object, which may be useful if
the module defines a single object type. In such case, the module must use the full
module.exports reference. Figure 4.7 shows an example of this.

1 var Person = function (name , age) {

2 this.name = name;

3 this.age = age;

4 }

5

6 module.exports = Person;

Figure 4.7: person.js

In both examples, any variables or functions local to the module that are not
exported (such as the variable pi in circle.js) are hidden from other modules.
Node achieves this by using a technique similar to the one we have seen being
employed by JavaScript module patterns. Before executing the module code, Node
wraps it in the following function expression [47]:

(function (exports , require , module , __filename , __dirname) {

// Module code lives here

});

This keeps top-level variables scoped to the module rather than the global names-
pace, and provides the module with access to the exports and module objects. It
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also provides access to the convenience variables filename and dirname, which
hold the absolute paths of the module file and the directory it is situated in, respec-
tively. While these objects and variables appear as if they were defined globally,
they are actually specific to each module. In particular, module is an object that
gets created for each module when it is loaded the first time. For the module serving
as the entry point to Node (for example, because it is the one passed as an argument
to Node on the command line), this happens at the very beginning. For any other
module, this happens during the first call to a require that references it. The mod-
ule code is evaluated once, and the module object, along with its populated exports

property, is cached. Any subsequent references to the same module will return the
cached exports object, meaning that only one instance will exist of each module.
This has some interesting consequences, particularly when the module dependencies
form a cycle.

The mechanism for handling such cycles, as well as the names and semantics
of the module and require constructs, largely stem from the CommonJS module
specification [40], which influenced Node’s early development. This was written as
part of a project launched in 2009 (around the same time that Node was released)
that aimed to create a standard module system for JavaScript outside the browser.
The project has sine been abandoned, with the last edit to the specification made
in late 2014, and with each server-side JavaScript implementation (including Node)
continuing on its own path. However, the original specification document is still
useful for understanding the core of Node’s module system, and we will refer to it
when discussing our implementation in § 4.5.

With reference to the program in Figure 4.6, we consider the full steps involved
during its execution by Node, assuming main.js serves as the entry point:

1. Node begins by loading the main.js file, creating a module object for it and
executing its body up until the call to require. As the identifier is a relative
path (since it begins with "./"), Node attempts to resolve it by appending
the it to the absolute path of main.js. As the file is referenced without an
extension, Node will first attempt to look-up the exact filename. Assuming
that a file called circle does not actually exist in the same directory, it will
then try to resolve the path by adding the extensions .js, .json, and .node,
in that order. In our case, the .js extension would match.

2. Node will then look up the path of circle.js in its cache. As this does
not correspond to a previously-loaded module, it will switch to synchronously
loading and executing the body of circle.js, creating a new module object
for it and adding this to the cache. If circle.js had any require calls within
its body, Node would switch to loading and executing the referenced modules
in the same way.

3. Finally, when Node finishes executing circle.js, it switches back to main.js,
assigning the exports property of the exported module object to the variable
circle. It will then continue with the evaluation of main.js.

The approach taken by Node’s module system has a number of interesting im-
plications, particularly when compared to JavaScript’s built-in module system that
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was later added in ES6. The first is that it naturally supports dynamic imports.
Because all of the module’s code up until the require statement is executed before
the referenced module is loaded, the identifier passed to the require call can be con-
structed during execution, for example by using variables [14]. In addition, the call
to require may also be performed conditionally, such as by nesting it within an if

block. In contrast, all ES6 imports—and the imports of subsequent editions of the
standard until ES2020, which is set to have support for a dynamic import()—are
resolved statically.

The second implication is that the main thread executing the body of module
blocks while any referenced modules are loaded and executed. As Node is intended to
be run server-side, the time the thread spends blocked would largely be determined
by the time taken for Node to fetch the file from the filesystem, which, assuming a
reasonable disk access time, would not be too significant. This design becomes far
more problematic if used within the context of an application running client-side
in the browser, since most of this time would be spent waiting for the file to be
downloaded from the server [14]. Assuming typical latency numbers3, this can be
around 10 times slower than a disk access, and would therefore negatively impact the
user experience. To avoid a similar issue, ES6 decouples the parsing and fetching of
module files from their execution, with the first step responsible solely for building
the module dependency graph and the latter for assigning values to variables shared
between modules.

4.4 The Gillian-JS compiler

Gillian-JS is the instantiation of Gillian for the JavaScript language (in particular,
targeting ES5 strict). As with Gillian-C, the compilation of the input source file to
GIL happens across a number of intermediate representations. While some encom-
pass various simplifications made to the language, others exist merely for backwards
compatibility. This is because Gillian-JS includes a significant portion of the orig-
inal JaVerT compiler [23]. Since the JaVerT work, however, the parser has been
changed from Esprima, which is written in JavaScript and therefore had to be run
in a separate process, to Flow, which is written in OCaml. The latter is maintained
by Facebook and is frequently updated to be able to target latest additions to the
ECMAScript standard, making it suitable for future use when Gillian-JS is extended
to support these editions of the standard.

Figure 4.8 illustrates the structure of the Gillian-JS compiler. The steps within
it are, in order:

1. Parsing of the source JavaScript file to build a Flow AST. Any lexical
errors produced at this stage are propagated back to the user. The resulting
AST conforms to the ESTree specification [46], which is the widely-adopted
standard for JavaScript parsers. Every node in the AST contains information
about its exact source code location, including the source file path, its start
position, and its end position, with each position comprising a line number,

3https://gist.github.com/jboner/2841832

https://gist.github.com/jboner/2841832
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Figure 4.8: Compilation process in Gillian-JS

column number, and character offset. The parser also extracts comments from
the file, keeping them in separate list. Like nodes, they are each associated
with a source code location.

2. Construction of a Gillian-JS AST from the Flow AST. This stage is
responsible for detecting the usage of any unsupported constructs, such as
those coming from later editions of the ECMAScript standard (i.e. ES6+),
and for building a simplified, almost JSON-like representation of the program
that contains only expressions. In addition, separation-logic-related annota-
tions and proof tactics are parsed from the comment strings captured by Flow
and added, based on their source locations, to their corresponding expressions
within the Gillian-JS AST.

3. Compilation of the Gillian-JS AST to JSIL. This step forms the bulk
of the Gillian-JS compiler, and has been leveraged directly from the JaVerT
work. JSIL (which stands for the JavaScript Intermediate Language) is a basic
goto language with top-level procedures. It has a very similar syntax to GIL,
and this is because it directly influenced GIL’s design. For full details of this
process and the semantics of JSIL, we refer the reader to the original JaVerT
literature [23], as it is still relevant to the current implementation.

4. Compilation of JSIL to GIL. This is a straightforward translation step,
with each JSIL command being expressed in terms of its equivalent GIL com-
mand.

4.5 Design and implementation

Deciding on how to best integrate support for Node’s module system within the
existing Gillian-JS compiler proved to be more challenging than the related work
in C. Based on the design of both Gillian-JS and the Gillian framework, there were
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two approaches we could take, both of which have their own advantages and difficul-
ties: (i) resolve and load all referenced modules before the program is symbolically
executed by Gillian; or (ii) do it during the process of symbolic execution. In other
words, the choice is roughly between a static versus a dynamic approach, although
these terms are used very loosely—everything Gillian-JS does is ‘static’, since the
input program is not being executed concretely.

The first approach involves combining the code of all referenced modules into a
single AST, and using syntactic wrappers similar to the ones we have seen in § 4.2 in
order to keep their namespaces private. In addition, glue code needs to be added to
ensure that, during symbolic execution, each module is executed in the same order
that it would be by the real Node module loader. Since the loading and evaluation
process happens synchronously in Node, this is not too difficult to emulate.

The second approach, on the other hand, involves passing control back to Gillian-
JS whenever a call in GIL to require is encountered by Gillian. Gillian-JS would
then be responsible for resolving the referenced path, parsing the file, compiling it
to GIL, and passing it to Gillian for execution in a separate thread. In addition, the
compilation step also needs to be modified so as to provide the module code with
access to its own module and exports objects. Then, Gillian-JS needs to ensure
that the same exports instance is returned to the importing module.

We ended up designing our implementation around the first approach, since it is
the simplest and can be contained within the Gillian-JS compiler. It does, however,
have some limitations, particularly when it comes to handling require calls with
dynamically-constructed identifiers. We address this point as part of our evaluation
in Chapter 6.

4.5.1 Overview

Figure 4.9 shows a summary of how we process a JavaScript program with multiple
modules in order to create a single AST that can be symbolically executed. Unlike
the extended version of Gillian-C, Gillian-JS still takes only one file path as input.
We consider this to be the ‘main’ module. The file gets parsed and compiled to
the Gillian-JS AST in the regular way. We then traverse the AST to extract the
paths of all modules the file imports. Then, syntactic wrappers are added to the
AST directly in order to produce an augmented AST. This process is repeated for
all the imported module paths, as well as their transitive dependants. In addition, a
separate preamble.js file is used to keep the definitions of built-in constructs such
as require. This is parsed and combined with the rest of the augmented AST in
order to create the final program.

In principle, the transformation and combination steps can be performed at any
of Gillian-JS’s intermediate representations that we saw in § 4.4. We chose, however,
to perform them at the level of the Gillian-JS AST, since this is much simpler than
the Flow AST but still maintains a close correspondence to the JavaScript language
(unlike the lower-level JSIL representation, which eliminates most of the language’s
constructs).

In the remaining subsections, we detail how the transformations ensure that
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Figure 4.9: Design for Gillian-JS’s module loader

the final program emulates the behaviour of Node’s module loader. To guide our
implementation, we refer to the CommonJS specification, the official Node docu-
mentation, and, when there is ambiguity, to Node’s observable behaviour when ran
on small examples.

4.5.2 Path resolution

To determine which other files are imported by each module, we perform a depth-
first traversal of the AST data structure, and, if we encounter a call to require,
resolve the imported module identifier to a full path by applying the following rules:

1. If the identifier begins with "." or "..", then we treat it as relative to the
directory path of the current module. If this file does not exist, we throw an
error. Otherwise, we obtain the file’s canonical path, and add this to the set
of imported modules.

2. Otherwise, the identifier is assumed to be a reference to either a core Node
module or to a module imported via the Node package manager. At this point,
if Node does not recognise it as a core module, it would attempt to find it in
the node modules directory (if it exists) of the current working directory, the
parent directory, and so on until root of the filesystem is reached. However, as
we are limiting our implementation to user-defined modules, we would throw
an error.

In addition, if we did not throw an error, we rewrite the call to require by a
call that uses the full file path. This makes the implementation of require simpler,
as it eliminates any ambiguities that arise when modules use different relative paths
to refer to the same module.
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4.5.3 Module context

The CommonJS specification [40] defines the module context as the set of free vari-
ables that should be available to each module. They are ‘free’ in the sense that, from
the module’s point of view, they appear to be defined outside its top-level scope. At
minimum, these must include: the require function; the exports object to which
the module adds its API; and the module object, containing an id property that is
the top-level identifier of the module.

To give each module access to these variables, we take direct inspiration from
Node’s function wrapper. We use the preamble file in order to define a global Module
object type, which gets placed at the beginning of the combined program:

var Module = function (id , dirname) {

this.id = id;

this.filename = id;

this.dirname = dirname;

this.exports = {};

}

var _cache = {};

var _module;

Then, as part of the augmenting step, each module body gets wrapped in a
function expression that is either executed immediately or stored for later. Each
module also gets top-level responsible for creating its own instance of Module that
can then be passed as the module parameter to the function. When the object gets
instantiated, the filename and id properties both get assigned the canonical module
file path, while the dirname property is assigned the canonical path of its parent
directory. The filename and dirname properties are kept so that their values can
be used to provide the filename and dirname parameters. Finally, the module
object gets added to a cache using the file path as its key.

For example, every module other than the main one gets wrapped inside the
following top-level code:

_module = new Module("/path/of/module.js", "/path/of");

_cache["/path/of/module.js"] = _module;

_module.load = function (exports , module , __filename , __dirname) {

// ...

};

The function expression is assigned to a property since the module code must
only be evaluated when the execution reaches a require call to it. In contrast, the
main module gets wrapped in an IIFE, since it needs to start executing immediately:

_module = new Module("/path/of/main.js", "/path/of");

_cache["/path/of/main.js"] = _module;

(function (exports , module , __filename , __dirname) {

// ...

})( _module.exports , _module , _module.filename , _module.dirname );

At this point, we should note that top-level code we generate does not run in
strict mode, since this would mean overriding the strict mode configuration of each
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individual module. This means that, although the function wrappers hide all of
a module’s variable and function declarations from the global scope, they cannot
prevent a module running in non-strict mode from polluting the global namespace.
This is because, in non-strict JavaScript, undeclared variables automatically become
part of the global scope, even if they are used within an IIFE:

(function () {

x = 10;

})();

console.log(x); // Does not throw ReferenceError

However, this is not something that Node can prevent against either.

4.5.4 The require function

The missing piece of the top-level code is the definition for require. In principle,
this is straightforward: given the module identifier (which is now always a canonical
file path), it needs to fetch the corresponding Module object from the cache, call
its load function, and return its exports property. However, there is one catch,
arising when two modules form a dependency cycle. For example4, we consider the
situation presented in Figure 4.10, assuming that we execute a.js first. a.js loads
b.js, and in turn b.js attempts to load a.js, which would trigger an infinite loop.
The CommonJS specification states that, in such case [40]:

“ [...] the object returned by “require” must contain at least the exports that
the foreign module has prepared before the call to require that led to the current
module’s execution. ”

This means that the require call should return an object that contains the
property done with the value false, since this property was set by a.js before the
require call into b.js was made.

1 console.log("a starting");

2 exports.done = false;

3

4 var b = require("./b");

5 console.log("b.done: " + b.done);

6

7 exports.done = true;

8 console.log("a done");

(a) a.js

1 console.log("b starting");

2 exports.done = false;

3

4 var a = require("./a");

5 console.log("a.done: " + a.done);

6

7 exports.done = true;

8 console.log("b done");

(b) b.js

Figure 4.10: A dependency cycle

Looking at the output produced by running the program in Node, we can see
that this exactly what happens:

a starting

b starting

4Adapted from the example in the Node documentation [47].
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a.done: false

b done

b.done: true

a done

To ensure we produce the same behaviour, we additionally associate each Module

object with a status property that indicates which stage of the loading and eval-
uation process the corresponding module has reached. When we instantiate the
Module object, this gets initialised to "NOT LOADED". Then, within the module’s
function expression, we add a statement before the module’s code to set the status
to "LOADING" and another at the end to set it to "LOADED". Finally, the module’s
code gets evaluated only the first time it is required, since we make the require

function only call load when the module’s status is "NOT LOADED". However, all
require calls return the module’s exports object, meaning that it can be used by
other modules even when it is only partially prepared:

function require(id) {

var module = _cache[id];

if (module.status === "NOT_LOADED") {

module.load(module.exports , module , module.filename ,

module.dirname );

}

return module.exports;

}



Chapter 5

Continuous Reasoning

The work undertaken in the previous two chapters serves to enable Gillian-C and
Gillian-JS to analyse programs spanning different source files, by extending them
to incorporate the importing and exporting mechanics of their respective target
languages. This is an essential first step in the two tools being able to target any
real-world project, irrespective of the number of lines of code. In this chapter, we
detail the work done in paving the way for the next step: allowing their analyses
to scale to large codebases. It is desirable to have this capability within any future
instantiation of Gillian, not just the current ones for C and JavaScript. For this
reason, we focus our work on developing general mechanics for tracking source code
changes and re-using previous analysis results, and on incorporating them within
the Gillian library itself. In particular, there are two challenges we address:

1. constructing a generic (i.e. language-independent) representation of an input
program’s source files as well as their inter-dependencies, and building a mech-
anism that can determine, based on the set of changed files, which parts of
the GIL program are affected; and

2. for each type of analysis supported by Gillian (verification, automatic com-
positional testing, and symbolic testing), developing an incremental variant
that uses the information from the first step together with previously-stored
results—the format of which is particular to that analysis—in order to only
analyse the parts of the program that have changed.

5.1 Overview

We develop Gillian’s continuous reasoning system using a modular design, shown
in Figure 5.1. At its core is a module that tracks the changes made to the source
program across two successive invocations of Gillian and determines which other
parts of the program they affect. It consists of two parts:

1. A base component responsible for directly relating the changes made in the
source code to the parts of the GIL program they correspond to. It operates

49
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Figure 5.1: Design of Gillian’s continuous reasoning system

at the granularity of changed GIL components, which we recall consist of pro-
cedures, predicates and lemmas. For each type of GIL component, it returns
the set of components that have been added, the set of components that have
been deleted, and the set that of components that existed previously but have
been modified.

2. Three analysis-mode-specific modules, each responsible for computing the tran-
sitive dependants of the procedures, lemmas and predicates that have been
marked as changed by the base component, adhering to rules that are specific
to that analysis.

The information from the second part is fed into Gillian’s three analysis mod-
ules, each of which now operates in two modes: normal, where the whole program is
analysed, and incremental, where only the subset deemed necessary is. The user can
switch between these two modes by using the --incremental command-line flag.
When running in incremental mode, the analysis modules display the results com-
puted from the previous run for the parts of the program that do not get analysed.

5.2 Tracking source code changes

Each procedure, lemma, and predicate that forms part of a compiled GIL program
can always be categorised into one of three types:

1. Those whose definitions come from one of the user source files.

2. Those whose definitions come from one of the instantiation’s runtime files. For
example, in Gillian-C, this would include the GIL implementations of the C
standard library functions.

3. Those that get constructed by the instantiation’s compiler, for example be-
cause they relate to the mechanics of that particular instantiation’s memory
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model. Examples of these include the i initialize genv procedure and
i global env predicate that get created by Gillian-C’s compiler, which we
saw in § 3.3.4.

Henceforth, we refer to procedures, lemmas and predicates that belong to the first
category as non-internal, and those that belong to the second and third categories
as internal.

Procedures, lemmas and predicates that belong to the second category can au-
tomatically be ignored by the change tracker, since they will not change between
successive runs of Gillian.

While those in the third category may certainly change, they only change in
response to changes made elsewhere within the source code. We therefore do not
need to track them separately. For example, in Gillian-C, the i initialize genv

procedure will only change when a new global variable or function declaration is
added to the program by the user.

This leaves us to consider those in the first category. For each of them, we
can record the path of the source file that contains their corresponding definition.
For example, for a Gillian-C procedure, this would be the file containing the cor-
responding function declaration, and for a Gillian-C predicate, it would be the file
containing the comment. Then, if we have the set of files that have changed, we
can use this to build an over-approximation of the GIL components have changed,
based on whether their source definitions belonged to those files.

To determine how the source files have changed, we implement a hash-based
algorithm. We make each instantiation’s compiler responsible for providing Gillian,
along with the compiled GIL program, a set F of all source file paths that it used to
construct the program. For every one of these paths, Gillian computes a hash of the
file contents. Then, if we have the set Fprev of all source files used in the previous
run together with their hashes (for example, because they were persisted between
runs), we can determine the following:

• The set A of all files that have been added, given by F \ Fprev.

• The set D of all files that have been deleted, given by Fprev \ F .

• The set of all files that were present in both runs, given by Fprev ∩ F . For
every such file f , we compare its hash from the current run to its hash from
the previous run. If they are different, then f is added to the set M of modified
files.

5.2.1 Tracking header file changes

For the most part, the semantics of a file within the program changing are straight-
forward: if the file has been modified, then we assume that everything it defines must
have changed. We then determine the relevant subset of the GIL program that di-
rectly corresponds to these definitions. However, when it comes to C, determining
what it means for a header file to change is less obvious. We saw in Chapter 3 that
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header files are typically used to store the forward declarations of functions that are
used across multiple source files. They are also commonly used to store struct and
union type definitions. If these change, then the analysis results for any functions
using them may no longer be valid.

To handle this, for each header file we keep track of the list of files that include it.
Then, if by the above algorithm a header file is determined to have been modified,
all the files that include it are also marked as having been modified. For example,
for a C program consisting of the files foo.c, bar.c, and foo.h, where the header
foo.h is included by both foo.c and bar.c, we produce the following mapping:

• foo.h: [foo.c, bar.c];

• foo.c: [];

• bar.c: [].

To build this mapping, we first determine the list of header files that each source
file includes. We do this by invoking the system C preprocessor with the -MM option.
This causes it to output all the dependencies of the source file, excluding standard
system headers. Then, for every header within the program, we look up the source
files that include it within their list of dependencies.

5.3 Computing dependencies

Before delving into methods for determining transitive dependencies, which are spe-
cific to each analysis mode, we first consider the possible ways in which procedures,
lemmas, and predicates can directly depend on each other.

Procedures For simplicity, within the context of the change tracker, we treat
a procedure’s body and its separation-logic specification (if provided) as a single
atomic unit. The primary dependencies of a procedure are the other procedures
that it calls, which may include itself. In verification, a procedure may also directly
depend on a number of predicates and lemmas. Predicates may form part of its pre-
and post-condition assertions, or may folded and unfolded at various points within
the body (through the fold and unfold proof tactics). Lemmas may similarly
be invoked within the procedure’s body with the apply proof tactic; using them is
akin to performing a ‘logical function call’ that consumes the current symbolic state
and produces another symbolic state.

Predicates A predicate consists of a name and a definition, which is the SL as-
sertion to which the predicate gets unfolded to. The only direct dependencies of
predicates, therefore, are the predicates that appear within their definitions.
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Lemmas Although lemmas have not yet been formalised within Gillian-C and
Gillian-JS, they feature heavily within Gillian-WISL, the instantiation of Gillian for
a toy imperative language intended for teaching SL. The primary components of
a lemma are: its hypothesis, which is an SL assertion describing its pre-condition;
its conclusion, which is an SL assertion describing its post-condition; and its proof,
which is a list of proof tactics that, assuming the hypothesis, allow Gillian to prove
its conclusion. It therefore has two types of dependencies: predicates, which are
either included within the SL assertions or used within the proof, and lemmas,
which may also be used within the proof.

Each of these dependencies can either be computed before the program is sym-
bolically executed, (i.e. ‘statically’), by inspecting the GIL AST directly, or during
the process of symbolic execution (i.e. ‘dynamically’), by for example detecting the
execution of each procedure call, predicate fold/unfold, and lemma application.

Determining the dependencies between procedures statically will clearly not suf-
fice, as both C and JavaScript allow for functions to be called indirectly. In C, this
can be done through the use of function pointers, such as the example in Figure 5.2
shows. It would be impossible to establish that bar calls foo based purely on bar’s
syntactic structure. The call would, however, be observed during the program’s
symbolic execution. This means that a dynamic approach is more suitable.

1 #include "stdio.h"

2

3 int foo() {

4 return 10;

5 }

6

7 int bar(int (*f)(void)) {

8 return 5 * f();

9 }

10

11 int main() {

12 int (*f)(void) = &foo;

13 printf("%d\n", bar(f));

14 }

Figure 5.2: Indirect function call in C

On the other hand, there is no notion of an ‘indirect’ predicate usage or lemma
application. The predicates that occur within a procedure can be determined by
looking at all the assertions within its specification and by inspecting its body for
any fold and unfold proof tactics. Similarly, we can check the procedure’s body for
any lemma applications. This means that a static approach is more suitable.

Because of this, we choose to split the construction of the dependency graph in
two stages:

1. Before symbolic execution, we traverse the GIL AST in order to determine the
direct dependencies involving predicates and lemmas.
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2. During symbolic execution, we update the dependency graph each time a new
procedure call is made, unless that edge already exists.

5.4 Incremental verification

In Gillian’s verification mode, analysis happens at the ‘unit’ of functions and lemmas.
Each function (respectively lemma) within the program is verified by initialising the
symbolic state with its pre-condition, symbolically executing its body (respectively
proof), and attempting to unify the final symbolic state with its post-condition. If
the unification step succeeds, then the function or lemma is proved to be correct
with respect to its specification. Otherwise, the verification fails.

Each such ‘test’ is effectively carried in isolation from all the other procedures and
lemmas within the program. If the procedure being verified makes a call, then this
call is checked with respect to the specification of the callee, not its code. Similarly,
if the procedure has a lemma application within its body, then this is checked with
respect to the lemma’s specification, not its proof.

Figure 5.3: Incremental verification cases (grey denotes a change)

In this way, verification proofs are inherently incremental: if the specifications
of a procedure’s callees do not change between subsequent analyses, then the verifi-
cation result for that procedure still holds. This forms the general intuition behind
how we compute transitive dependants in verification. To help refine it into a full
algorithm, we consider the main cases that can occur. We show these in Figure 5.3,
and discuss them below. In the diagram, solid boxes are used to represent the bod-
ies and specifications of user-defined procedures, whereas dotted boxes are used to
represent internal GIL procedures.

Case A Assume that the program contains the functions f and g, both annotated
with specifications, and f calls g. If, between two runs, the body of g changes but
its specification does not, then f does not need to be re-verified.
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Case B Assume that program contains the functions f, g, and h, all annotated
with specifications and calling each other in that order. If both the body and spec-
ification of h changes between two runs, then g must be also be re-verified, since
there is no guarantee that its proof will still succeed. However, as the specification
of g has not changed, f does not need to be re-verified.

Case C Assume that the program contains the function f, g, and h as in Case
B, but this time g is a function provided by the user without a specification. In
verification, Gillian executes calls to procedures without specifications in the normal
way. This means that we need to consider the body of g as effectively inlined within
f. Therefore, if both the specification and body of h changes, then f also needs to
be re-verified.

Case D Assume that the program contains the functions f, g, and h as previously,
but this time g is an internal GIL function. This case can certainly occur in Gillian-
JS, since all JavaScript function objects inherit an apply method that provides an
alternative way of invoking them. The snippet below shows an example—the call
to apply would be compiled to a call to the equivalent GIL implementation:

// @spec

var h = function (n) {

console.log(n);

}

// @spec

var f = function () {

return h.apply(null , [10]);

}

f(); // 10

The internal function g is treated like a function that was provided without
a specification, which means that this scenario is equivalent to that in Case C.
Therefore, if the specification of h changes, then f must also be re-verified.

With these, we arrive at the following heuristic for computing dependencies
in verification: if a function changes, then its closest non-internal ancestors with
specifications according to the call graph must also be re-verified.

5.5 Incremental bi-abduction

For the most part, bi-abduction proofs share the same incremental characteristics
as those in verification, since procedure calls are also checked with respect to the
specifications of the callees. However, unlike in verification, the specifications are not
known upfront, since the analysis is performed on bare programs. This means that,
if a procedure has changed between two analysis runs, the only way to determine
whether its specification has also changed, and hence whether its dependants up
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Figure 5.4: Incremental bi-abduction example

the call graph must also be re-verified, is to: (i) analyse it and (ii) compare the
newly-derived specification with the one that was previously stored for it.

If it is unchanged, then the analysis can stop. Otherwise, the analysis must
propagate up the call graph until any non-internal procedures are reached, at which
point they will be subjected to the same check. We note that we no longer have
to distinguish between dependants that have specifications and those that do not,
since Gillian’s bi-abduction mode derives specifications for all functions within the
program.

To illustrate this, we consider the example shown in Figure 5.4. We assume
that the program consists of the three functions f, g, and h, that call each other
in that order and for which we have previously derived (and stored) specifications.
We also assume that the function h is determined to have changed. In this case, we
do not know whether the specification we had previously derived for it still holds,
so we proceed to re-check h. Assuming that its specification has in fact changed
(from @spec to @spec’), we then proceed one level up the call graph. As g is a
non-internal function calling h, it will also get re-checked. However, assuming that
Gillian derives the same specification for g as the one that was previously stored,
the analysis does not proceed up to f.

5.6 Incremental symbolic testing

It is less obvious what constitutes an incremental analysis within the context of
Gillian’s symbolic testing mode, as this mode requires everything that is transi-
tively called by the program’s main method to be executed on each invocation.
However, considering that it is most commonly used within Gillian’s bulk execution
mode, where a collection of symbolic test files (each with its own main method)
are executed within the same running instance, we can define the following basic
notion of incrementality: each test file should only be re-executed if its main method
transitively calls a function that has changed.

To achieve this, we apply the change-tracking and dependency-computation
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Figure 5.5: Incremental symbolic testing example

mechanisms to each test file individually. We do this because each test file is an
independent program, and keeping procedures for distinct programs within the same
call graph will invariably lead to name clashes—not least because they each have
a definition for main. The incremental algorithm then consists of computing the
transitive dependencies all the way up the call graph, as shown by the example in
Figure 5.5. In symbolic testing mode, we have no notion of specifications, so this
step a straightforward traversal. Then, if the main function is within this set of
transitive dependants, as in the example, the test should be re-ran. Otherwise, its
previously-stored result should be fetched.



Chapter 6

Evaluation

The primary objective of this project has been to provide the Gillian ecosystem
with the necessary foundations to begin analysing large, real-world codebases that
span multiple files. To this end, we have extended the implementation of the core
Gillian platform along with its instantiations for C and JavaScript in two important
ways: (i) we have added the support for each language’s specific import and export
mechanisms, and (ii) for each of Gillian’s analysis modes, we have developed an
incremental variant that can leverage previously-stored analysis results in order to
minimise the analysis work done between successive runs of Gillian. We evaluate
each of these deliverables with respect to the following criteria:

1. The degree to which it makes Gillian’s adoption within real-world projects
easier and/or more viable.

2. Its demonstrative functional correctness.

3. Its performance in terms of the time taken for Gillian to perform an analysis.

We structure our evaluation as follows:

• We start by evaluating Gillian-C’s new import/export mechanism, by using it
to symbolically test a popular data structure library (§ 6.2).

• We then perform a similar evaluation for Gillian-JS (§ 6.3).

• Next, we provide an evaluation of Gillian’s incremental mode, by constructing
a small test suite that exercises it under a range of important scenarios (§ 6.4).

• We then discuss the main limitations of our overall work (§ 6.5).

• Finally, we conclude our evaluation by discussing the key lessons we learnt
along the way, and reflect on our overall experience with contributing to the
Gillian platform (§ 6.6).
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6.1 Experiment setup

Unless stated otherwise, all experiments and benchmarks within this evaluation have
been performed on a machine with an Intel Core i7-4980HQ CPU 2.80 GHz, DDR3
RAM 16GB, and a 256GB solid-state hard-drive running OSX. This is the same
machine on which all original Gillian experiments were performed.

All test times quoted represent the ‘real’ wall-clock time as measured by the OSX
time utility, and are the average of five runs carried out under similar conditions,
excluding an initial run done to discount the effects of filesystem caching.

6.2 Gillian-C evaluation

We evaluate the ability of Gillian-C’s extension to analyse multi-file C projects by
symbolically testing Collections-C,1 a real-world data-structure library for C with
over 2K stars on GitHub. It has approximately 5.2K lines of code and incorporates
a wide-array of C-specific features and idioms, such as pointer arithmetic and struc-
tures. The data structures it provides include arrays, lists, hash tables, ring buffers,
and priority queues. To test Collections-C, we leverage the comprehensive symbolic
test suite written for Gillian-C by Fragoso Santos et al. as part of [22].

6.2.1 Ease-of-use

tests/

array/

deque/

...

treetable/

test-utils/

utils.h

utils.c

lib/

include/

array.c

common.c

...

treetable.c

Because of Gillian-C’s previous limitations, each test file
within the original suite had to contain a copy of the
library code it tested. In many cases, this was an amal-
gamation of various library files that depended on each
other. For example, because the library uses an array-
based implementation for stacks, the stack tests addi-
tionally had to include the entirety of the library’s array
module. Moreover, since there was no way to interface
with CompCert’s call to the preprocessor and provide
a header search path, the library’s header files had to
be included within the same directories as the tests that
needed them.

With Gillian-C’s new capabilities, we have been able
to entirely rewrite the original test suite in order to sep-
arate the library code from the tests and extract utility
functions (which were also duplicated across the test files) into a separate file. The
library code is kept entirely within its own directory, and this directory maintains
the exact same structure as the Collections-C repository does on GitHub. This
layout is shown on the right.

The tests can now be run by issuing a command that is similar to what a de-
veloper might use if they were compiling the project via the command line (for

1https://github.com/srdja/Collections-C

https://github.com/srdja/Collections-C
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example, using gcc). In particular, they can now easily specify header source paths
as well as the locations of the source code. For example, if they wanted run the
array symbolic tests from the project’s root directory, they could run:

gillian -c bulk -wpst tests/array -S lib -S test -utils \

-I lib/include -I test -utils

This shows that Gillian-C now has far greater potential to be used ‘out-of-the-
box’ by a general developer, since it can be fit to analyse a C project regardless of its
structure, as opposed to the other way round. However, we acknowledge that this
command-line workflow will probably not suffice for most real-world C project, as
these would typically use build tools such as Make in order to compile their sources.
For these, it would be more helpful if Gillian-C could be directly integrated within
the build system—for example, by being able to prepend gillian-c bulk-wpst

before the build command. We will revisit this point in Chapter 7.

6.2.2 Correctness and performance

To test the correctness of our implementation, we run Gillian-C on the new version
of the test suite, and compare the results with those that were published in [22],
which used the single-file version. We present the outcome in Figure 6.1. For each
test folder, which corresponds to a particular data structure in Collections-C, we
report: (i) the number of symbolic tests; (ii) the number of symbolic tests passing;
and (iii) the time taken to run the entire folder, in seconds.

Test folder # Tests # Passing Time (s)
array 21 21 4.98
deque 34 34 5.06
list 37 37 12.45

pqueue 2 2 2.32
queue 4 4 1.48

ring buffer 3 3 0.93
slist 37 37 7.52
stack 2 2 0.83

treeset 6 6 2.08
treetable 13 13 4.64

Total 159 159 42.29

Figure 6.1: Collections-C test results

We note that [22] reported two extra tests for array and slist (singly-linked
list); discounting these, we obtain the same number of tests passing.

When running the tests, we had to use the --ignore-undef option we built into
Gillian-C in order to stop our linker from complaining about references to undefined
symbols. This is because some functions within the library code makes use of the
qsort sorting function that comes from the C standard library, and there is no
current implementation for it in GIL. As these functions never actually get called
during the test suite’s execution, suppressing the error had no bearing on the results.
In general, it is right for Gillian-C to throw such errors, since most other analysis
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tools (including Infer) would also complain if the program cannot be compiled.
However, we acknowledge that, until Gillian-C matures further and supports more
of standard library, most projects will require the use of --ignore-undef when
being analysed.

The total time taken to run all the tests shows an apparent overhead of about
7.5% when compared to the total in [22]. The main reason for this is that, unlike
the paper, we were not able to run the tests in Gillian’s parallel mode due to issues
relating to our setup. In this mode, the symbolic engine forks execution when
reaching a program branch by actually making a fork system call, as opposed to
merely executing both branches sequentially.

However, it is worth noting that, despite the fact that our test results were only
executed sequentially, the times are almost identical with, if not better, than those
in the paper for the larger test suites such as list. This is because our work has also
added a number of optimisations to Gillian related to the caching of compiled GIL
files. The effect of these is most visible when the number of test files, and therefore
total number of files that get compiled during the same running instance of Gillian,
increases. In fact, when we use our setup to run the entire 159 tests together (i.e.
by running the tests folder), we obtain a total execution time of 34.35 seconds,
which is around 13% lower than the time quoted in the paper.

6.3 Gillian-JS evaluation

We evaluate our extension of Gillian-JS in a similar spirit to Gillian-C, choosing
as our case study Buckets.js,2 a real-world, self-contained data-structure library
for JavaScript. It has over 1K stars on GitHub and contains about 1K lines of
JavaScript, using almost every JS-specific construct. It provides implementations of
linked lists, sets, multi-sets, and heaps, among other data structures. We test it using
Gillian-JS’s whole-program symbolic execution mode, and, as with Collections-C,
leverage an already-existing symbolic test suite. In particular, we adopt the tests
written by Fragoso Santos et al. that were previously used to evaluate JaVerT 2.0
in [24] and Gillian-JS in [22].

6.3.1 Ease-of-use

In the original test suite, Gillian-JS’s previous limitations necessitated the library
code to be copied in each individual test file, since the library functions had to be
in the same global scope as the top-level code testing them.

With Gillian-JS’s new capabilities, we have been able to rewrite the original
tests and extract the library code into its own CommonJS module, buckets.js. As
the library defines a single top-level buckets object, it suffices to add the following
statement within the library file:

module.exports = buckets;

2https://github.com/mauriciosantos/Buckets-JS

https://github.com/mauriciosantos/Buckets-JS
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Then, given the directory structure shown on the right, each test file (e.g. located
in array) can import it in the following way:

var buckets = require("../../ buckets");

tests/

array/

bag/

...

stack/

buckets.js

The project structure we adopted is largely arbitrary.
We made the choice to keep the entire library within its
own file since the original Buckets.js repository does not
actually use Node modules (or in fact, any JavaScript
module system). While the source code on GitHub ap-
pears to be composed of several different files, they actu-
ally all get combined within the same namespace when
the project gets built.

However, we believe this example still highlights the
vast leap made by Gillian-JS in being able to target real-
world repositories running in Node (or using Node-like
constructs) with minimum setup by the user. In particular, a developer simply
needs to specify the name of the script (or symbolic test) they wish to analyse (or
execute); Gillian-JS quietly resolves and loads any external modules referenced. For
example, if they wanted to run a symbolic test arrays1.js within the array folder,
they would run:

gillian -js wpst tests/array/arrays1.js

6.3.2 Correctness and performance

We evaluate the correctness of our implementation by running the new version of
the tests, and comparing the results with those reported in [22], which used the
single-file version. We present the outcome in Figure 6.2. As before, we report
for each folder: (i) the number of symbolic tests; (ii) the number of symbolic tests
passing; and (iii) the time taken to run the entire folder, in seconds.

Test folder # Tests # Passing Time (s)
array 9 9 3.59
bag 7 7 6.53

bstree 11 11 27.12
dictionary 7 7 3.09

heap 4 4 8.18
linkedlist 9 9 5.12

multidictionary 6 6 6.87
priorityqueue 5 5 15.66

queue 6 6 2.64
set 6 6 14.66

stack 4 4 1.63
Total 74 74 95.09

Figure 6.2: Buckets.js test results

While we pass all the tests, we can immediately notice a significant slowdown
(approximately 2x) in performance when compared with the times reported in [22],
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which were obtained when running using Gillian’s parallel mode. The fact that an
absence of parallelism produces such a performance hit suggests that the Buckets.js
library features a lot more complex branching than Collections-C, where the dif-
ference between the two execution modes was much smaller. It also suggests that,
despite the other optimisations made on our part (such as better caching during
compilation), the symbolic engine continues to be determining factor that affects
the performance of a Gillian instantiation.

6.4 Evaluation of Gillian’s incremental mode

6.4.1 Setup

To evaluate the implementation correctness of Gillian’s incremental mode, we con-
struct a test suite that incorporates a number of key scenarios of a source program
changing between successive analysis runs. We have chosen to ground the tests in
the context of Gillian-C, however, since they are testing mechanics specific to the
Gillian library, their results are applicable to Gillian-JS as well.

Each test directory consists of:

• A src before sub-directory, containing an initial set of C source files.

• A src after sub-directory, containing the same copy of the source files, but
with a slight modification made in one (or several) of them.

• An OCaml test script that, when executed: (i) copies the files from src before

into the test directory; (ii) analyses the files using Gillian-C in normal mode,
and records its output; (iii) copies the files from src after into the test direc-
tory, thereby ‘applying’ a set of changes to the program; (iv) runs Gillian-C
again, this time with the --incremental flag enabled, and compares the two
outputs in order to check that only the affected functions (and their transitive
dependants) were re-analysed.

Test name Analysis mode Passing
add proc Verif. X

change header Verif. X
change pred Verif. X
change proc Verif. X
no change Verif. X

remove proc Verif. X
transitive call Verif. X

change proc Bi-abd. X

Figure 6.3: Incremental test results
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6.4.2 Tests summary

Figure 6.3 shows a breakdown of the test suite. We focus most of the tests on
Gillian-C’s verification mode, since this has the most intricate rules regarding the
decision of what to re-analyse. This is in part due to the many extra constructs
present, such as specifications, predicates, proof tactics, etc.

For most, the name provides an apt description of the scenario being tested. For
those that are more ambiguous, we provide a brief description of the scenario below:

• change proc (verif.): The program contains three functions, f, g and h, all
annotated with SL specifications. f calls g, and g (together with its speci-
fication) resides in a file separate to the other two. If the file containing g

is modified, then Gillian must assume that the specification of f could have
changed. In this case, only the following two functions should get re-verified:
f and g.

• transitive call: The program contains four functions, f, a, b, and g, calling
each other in that order and with only f and g being annotated with SL
specifications. g resides in a file separate to the other three. If that file
changes, then only the following two functions should get re-verified: f and g.

• change proc (bi-abd.): The program contains three functions, f, g, and h,
with no SL specifications (since we are running in bi-abduction) and calling
each other in that order. h resides in a file separate to the other two. If the file
containing h is modified, then Gillian must first check h. However, the change
made ensures that h’s derived specification does not change. Therefore, only
the only function that ends up being checked again is h.

6.4.3 Discussion

Our implementation passes all the test scenarios that we have constructed. While
there are certainly many more that could (and should) be explored, we believe
the ones we have demonstrate that Gillian’s incremental mode has the necessary
foundations to start being applied to larger codebases. In particular, they show it
can make sense of some of the more complex modifications a developer might make
to a program between successive invocations of Gillian, and use re-use previous
results in order minimise the analysis work done. We also note that the change-
tracking mechanism we have developed does not rely on any external tools such as
Git, making it easier for Gillian to be used ‘out-of-the-box’.

Granted, it is unlikely that the more intricate cases arising in verification will
have a chance to be exercised on large codebases, since this would require a substan-
tial effort on the part of the Gillian researchers in order to write all the necessary
annotations. Instead, we envisage that Gillian’s automatic compositional testing
(i.e. bi-abduction) mode is the most likely out of the three analysis modes to be
successfully deployed at scale. When this happens, even if the incremental algorithm
itself does not get used, we believe that the infrastructure we built around it, such
as the dynamic call graph generation and the mechanism for computing transitive
dependants, will certainly be of use.
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6.5 Known limitations

In this section, we discuss some of the main limitations of our work pertaining to
both multi-file and incremental analysis.

Lack of support for dynamic require calls. The approach we have taken to
integrate support for Node-style modules within Gillian-JS means that we can only
handle require calls that use static module paths (i.e. string literals). This is
because, for simplicity, we perform the module resolution and loading step during
compilation to GIL. In contrast, because Node executes all the code up to the
require statement before resolving the required module, the module specifier can
use variables. For example:

var lang = "en";

var path = "module_" + lang;

var m = require(path);

It is unclear how much of a serious limitation this is, since it is hard to tell
whether it is a commonly-used feature within real Node projects. Adding support
for it will be somewhat involved, as it would require a tighter integration between
the module loader and Gillian’s symbolic execution engine.

Format of persisted results. When implementing Gillian’s incremental mode,
we have focused on achieving correct functionality first. In order to allow for easier
debugging, we have used JSON as the format for storing most of the intermediate
files that get produced in the .gillian directory, including the call graph, source
files table, and derived function specifications (in bi-abduction). However, JSON is
certainly not the most suitable format, since the parsing time would not scale well
as the size of the codebase (and hence of the intermediate files) grows larger. In this
regard, there is plenty more work to be done to investigate faster storage formats
and benchmark their serialisation/deserialisation times. A natural starting point
would be to look into binary data formats, such as the one provided by the biniou3

library in OCaml.

File-based incremental analysis. The main limitation of our incremental anal-
ysis work is the fact that our change-tracking mechanism works at the granularity
of changed files. In particular, it cannot establish which of the functions within a
file have changed, or, in verification, whether both the specification and body of a
function have been changed, or only one of them. These result in the starting set of
changed procedures from which we compute the transitive dependants being larger
than it should be, which means that Gillian performs more re-analysis work than
it really needs to. Pushing down the granularity to changed procedures (or even
changed lines) will only affect the size of this set—the incremental mechanism itself
will not require changing.

In addition, it is worth noting that other tools that have successfully applied
continuous reasoning to large codebases, such as Infer, also work at the granularity

3https://github.com/ocaml-community/biniou

https://github.com/ocaml-community/biniou
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of changed files. This is because, in the context of projects spanning hundreds, if not
thousands of files, limiting the analysis to only the files that have changed already
has a drastic effect on the time taken to provide feedback to the developer.

6.6 Lessons learnt

Working on this project has been quite a different experience to the previous work I
have done as part of my undergraduate studies and during my internships. For those
projects, the tasks were less open-ended, smaller in scope, and generally isolated
from the work being done by others within the same team. In contrast, Gillian has
a significantly large and mature codebase, since it is the amalgamation of several
years of related research work done by the Verified Software group. It is also under
active development by a number of different people working concurrently. There are
a number of key lessons I have learnt along the way.

The importance of good design and simplicity. This is a lesson that fre-
quently gets drilled into Computing students throughout their degree, particularly
during the second-year Software Engineering course but also as early as the first-year
Haskell lectures. However, it hard to grasp just how important maintaining good
code hygiene is until you are required to work on a large, complex codebase whose
original developers may no longer be within easy reach to explain their rationale.
Choosing descriptive but succinct identifier names, separating concerns between dif-
ferent functions and modules, and eliminating duplication can go a long way to limit
the accumulation of technical debt and ensure that the codebase remains maintain-
able for other developers in the future.

The importance of adequate regression testing. The main Gillian repository
has a continuous integration pipeline running that checks the code continues to be
buildable, and that it passes certain tests, as it evolves. This has been vital in
ensuring that the changes made by the four of us (an MEng student, two researchers,
and myself) working on Gillian at around the same time did not clash. However,
while our CI setup detects regressions in functionality, it does not currently check
for regressions in performance.

At one point, I made a change that unknowingly induced a significant overhead in
the memory consumption of Gillian-JS during the compilation process to GIL. This
led to our Test262 test suite (used to check for compliance with the ECMAScript
standard, and comprising around 9000 tests) take almost 10x longer to run. How-
ever, this went unnoticed for almost two weeks, and by that time, other changes have
been to the code which made the issue harder to debug. Learning from this, I will
pay much closer attention to ensuring the projects I am working on have adequate
performance regression testing in place.
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Conclusions and Future Work

In this project, we have successfully extended Gillian, a state-of-the-art program
analysis framework, to have the foundations necessary for it to be integrated into
modern development workflows and therefore reach greater adoption. In particular,
we have enabled its C and JavaScript instantiations to analyse multi-file projects by
incorporating the import and export mechanics specific to each of those languages.
We have demonstrated the correctness of our implementation, and how much more
approachable the tools have become as a result, by using them to analyse two real-
world projects. In addition, we have developed incremental techniques for each of
Gillian’s three analysis modes that allow them to focus their analysis on fragments
of code in code changes, rather than whole programs, therefore paving the way for
them to perform continuous reasoning as outlined by O’Hearn in [37].

Our work has led us to make a number of important observations. It is un-
doubtedly easier for a tool developer to instantiate Gillian for a particular target
language as opposed to building an equivalent analysis tool from scratch. This is
in no small due to its built-in reasoning capabilities and symbolic execution engine.
However, even if we discount the implementation of the memory model, capturing
the full mechanics of that target language is by no means an easy feat for the tool
developer. From our experience, even implementing the target language’s module
system (if it has one) will require the tool developer to spend time understanding
its intricacies, ensure these are faithfully reproduced in the translation process to
GIL, and consider the trade-offs that need to be made given Gillian’s capabilities.

In addition, if the tool developer determines that the core Gillian framework
itself is too limiting to support the mechanics of that target language, they will
likely consider changing it to better adapt their needs, as we have done at various
points in our work. Doing this, all the while ensuring that the framework remains
language-independent, will always present some challenges.

7.1 Future work

Although we believe we have made good progress with our project, we acknowledge
that our work is not yet complete. There is plenty of scope for improvement, both
by addressing the limitations we outlined in § 6.5 and by extending the project in
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new, interesting directions. We discuss some of these below.

Procedure-based incremental analysis. Our current incremental mechanism
within Gillian only tracks changes at the granularity of changed files. Pushing this
granularity down, in order to determine which of the exact functions within a file
have changed, would further reduce the amount of analysis work that Gillian must
do between successive runs. We believe this extension should not be too difficult to
implement. By persisting the compiled GIL files across multiple runs of Gillian, we
could use a similar hash-based approach to determine which parts of the GIL AST
corresponding each file have changed.

Support for ES6+ imports and exports in Gillian-JS. As of the sixth edition
of the ECMAScript standard, JavaScript has its own native support for modules.
Unlike CommonJS modules, these are resolved statically and asynchronously, mak-
ing them suitable for use within browser environments—as of writing, almost all
major browsers support them [45]. Therefore, integrating support for them within
Gillian-JS’s analyses would undoubtedly allow us to target a whole-f real-world,
frontend JavaScript applications.

There are a number of approaches we could take. We could compile any import

and export statements within the program to their Node-style equivalents, which
Gillian-JS already supports. This, in fact, is the approach taken by JavaScript
transpilers such as Babel,1 which allow code written using the more recent constructs
in the language to be compiled to a version that can be supported by older browsers
as well. For example, a named import statement could be translated as follows:

// ES6+ syntax:

import { a, b } from "./foo";

// Becomes:

var _tmp = require("./foo");

var a = _tmp.a;

var b = _tmp.b;

This, however, would not preserve the full runtime semantics of ES6+ modules.
Therefore, a better approach would be to use the official ECMAScript standard to
guide the implementation, as Gillian-JS has done for implementing other internal
JavaScript mechanics.

Integration within common build systems. Many of the static analysis tools
that have reached widespread adoption in industry, such as Infer and Coverity [5],
owe (at least some) of their success to the ease with which they can be invoked on
an existing project. Both of them allow the developer to start using the tool by
simply prepending the tool’s run command to the command they would normally
issue to build their project. For example, to analyse a C project that uses the Make

build system with Infer, a user can run [43]:

infer run -- make

1https://babeljs.io/

https://babeljs.io/
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Infer then uses the compilation commands that get issued by the build system
(such as calls to gcc) in order to work out the structure of the project and determine
the source files it needs to analyse. Adding a similar capability to Gillian-C and
Gillian-JS would greatly improve their ease-of-adoption, since it would allow them
to automatically determine the source files they need to compile to GIL.
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