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Abstract

Haxe [1] is a high-level programming language that compiles code into a number
of targets, including other programming languages and bytecode formats. Hash-
Link [2] is one of these targets: a virtual machine dedicated to Haxe. There is no
manual memory management in Haxe, and all of its targets, including HashLink,
must have a garbage collector (GC). HashLink’s current GC implementation, a vari-
ant of mark-and-sweep, is slow, as shown in GC-bound benchmarks.

Immix [3] is a GC algorithm originally developed for Jikes RVM [4]. It is a good
alternative to mark-and-sweep because it requires minimal changes to the inter-
face, it has a very fast allocation algorithm, and its collection is optimised for CPU
memory caching. We implement an Immix-based GC for HashLink.

We demonstrate significant performance improvements of HashLink with the
new GC in a variety of benchmarks. We also formalise our GC algorithm with an
abstractmodel defined inCoq [5], and thenprove that our implementation correctly
implements this model using VST-Floyd [6] and CompCert [7]. We make the con-
nection between the abstractmodel and VST-Floyd assertions in a novel way, suit-
able to complex programs with a large state.
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Chapter 1

Introduction

1.1 Haxe

Haxe [1] is an open-source programming language created by Nicolas Cannasse in
2006. It is a general-purpose, high-level language that is rapidly evolving thanks
to an active team of developers. Its primary selling point is its ability to transpile1
into many different targets from the same codebase. At the time of writing, Haxe
supports the following targets:

• Programming languages: ActionScript 3.0, C++, C#, Java, JavaScript, Lua,
PHP, Python

• Bytecode: Flash SWF, JVM

• Dedicated virtual machine bytecode: Neko, HashLink

Haxe is popular among video game developers due to its portability, the avail-
ability of high-quality game engines, and its good performance. Performance is
critically important for any interactive experience. Currently, themost performant
Haxe target is C++, allowing the generated code to be optimised bymainstreamC++
compilers, such as GCC [8] or Clang [9]. However, C++ is among Haxe’s older targets
and it suffers from slower compilation times.

1.2 Garbage collection

As is the case for themajority ofmodern high-level programming languages, Haxe
assumes a garbage-collected environment. Programmers cannot, in general, af-
fect howmemory is allocated or managed during the execution of their programs.

1“Transpilation”, at least in theHaxe community, generally refers to compilationwhere the output
is another high-level programming language, rather than bytecode ormachine code. As such, given
the Haxe targets, Haxe is both a transpiler and a compiler.
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Garbage-collected environments are arguably less error-prone and easier to under-
stand, but in the case of Haxe this is a necessity—most of Haxe targets are garbage-
collected and do not have any manual memory management interface.

For the C++ and HashLink targets, the garbage collector is part of the runtime
that is bundled together with the compiled program. C++ does not have a garbage
collector (by design2), so this functionality is provided by the “hxcpp” library.

1.3 HashLink

The HashLink [2] target was introduced in 2015 as a high-performance target with
low compilation times. It is a virtual machine created specifically to run bytecode
produced by the Haxe compiler. As a result, it requires a garbage collector to man-
age the dynamic memory allocated at runtime. The current implementation is a
very simple, stop-the-world, “mark-and-not-sweep” collector that is rather slow
when compared to other Haxe targets in GC-bound benchmarks3.

1.4 JIT, HL/C, and libhl

Haxe source code

Haxe compiler

Pure C code HL/C code HL bytecode

C compiler HL JIT

HL runtime x86/x86 64 code

Figure 1.1: Haxe, HashLink, and HL/C compilation phases. Shaded blocks indicate pro-
cesses, unshaded blocks represent artifacts.

HashLink itself also consists of two “sub-targets”: the bytecode-executing vir-
tual machine (“JIT”) and a library written in C that allows code compiled by Haxe
to be further compiled by regular C compilers while still using most of the virtual

2Although there are proposals such as N2310 or N2670 that would enable easier integration of
automatic garbage collectors. However, these proposals are not implemented onmajor compilers at
the time of writing. See http://open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2310.
pdf and http://open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2670.htm.

3As can be seen from the benchmark results at https://benchs.haxe.org/.
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machine runtime (“HL/C”). The virtual machine currently targets Intel x86 and
x86 64 architectures [10], where the bytecode is compiled into machine code just
before execution starts.

The garbage collector is part of the runtime that is dynamically or statically
loaded to HashLink applications. In the JIT case, the runtime is loaded by the VM
executable. In the HL/C case, the runtime is linked during compilation so that its
functions can be called by the C code.

Finally, HashLink can be used as a standalone library called libhl used only
with (or in addition to) codewritten directly in C,without aHaxe transpilation step.
This is currently not a priority application for HashLink, but the API is designed
with this inmind. See Figure 1.1 for an overview of the compilation phases of Haxe
and HashLink.

1.5 Project goals

The primary goal for this project was to significantly improve or even replace the
garbage collector for the HashLink VM. With an improved GC, HashLink can be-
come much more convenient as a target for developers, as it can reach a greater
runtime performance in addition to its already fast compilation times and native
integration. To be able to empirically determine whether the project was success-
ful in terms of performance, developing a new benchmark suite was also a sub-
goal.

Additionally, if HashLink proves to be fast, reliable, and easily maintainable,
it may in the future be a way to “bootstrap” Haxe—making the compiler compile
itself via the HashLink target while maintaining its current speed.

The secondary goal for this project was to formally verify the GC implemen-
tation, by modeling its behaviour in higher-order logic using the Coq proof assis-
tant [5], then connecting this model to the C implementation using CompCert [7]
and VST-Floyd [6].

1.6 Outline

In Chapter 2, we briefly describe some existing approaches to garbage collection,
as well as their advantages and disadvantages. We also describe some of the liter-
ature related to formal, mechanised verification of garbage collectors and C code.
In Chapter 3, we introduce the specifics of a GC implementation for HashLink, in-
cluding a number of low-level details and various optimisations. In Chapter 4,
we provide empirical data showing the performance of the Immix-based collector
compared to HashLink’s original collector, as well as comparisons of the Immix-
based HashLink target and the other Haxe targets. In Chapter 5, we describe an
abstract model of our Immix-based collector. In Chapter 6, we discuss in detail
the approach taken for the formal verification of the collector, using the abstract
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model. Finally, in Chapter 7, we conclude by suggesting possible future goals of
the new Immix-based implementation and its extensions.
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Chapter 2

Background

2.1 Introduction

In this chapter, we describe some of the existing literature related to the project.
In Section 2.2, we explore the basic ideas of garbage collection, how to evaluate
GC performance, and list some GC algorithms. In Section 2.3, some considerations
specific to garbage collection in Haxe and HashLink are discussed. In Section 2.4,
we discuss some approaches to evaluating GC performance in practicewith bench-
marks. In Section 2.5, we note a number of methods used to verify implementa-
tions of garbage collectors and other complex projects. Finally, in Section 2.6, we
summarise the relevant findings and emphasise the project challenges.

2.2 Garbage collection

It is increasingly common to use programming languages with garbage collec-
tion facilities. The popular representatives of the two paradigms are Java, which
is garbage-collected, and C/C++, which are manually managed. Of these, Java is
gaining in relative popularity due to lower development costs and higher general
productivity [11].

The benefits are easy to describe: the developer generally only needs to know
when a particular object needs to be allocated, but keeping track of its lifetime
throughout the application, and knowingwhen it is no longer needed by any other
part of the application is much more difficult. Garbage-collected environments
expose an API which only provides object allocation. Deallocation of objects hap-
pens automatically, without the developer’s explicit requests. Inmany cases, even
though the garbage collector knowswhen an object is being deallocated, the exact
momentwhen this happens depends largely onmemory usage and allocation pat-
terns, and as a result, it is usually not even possible to trigger additional function-
ality on deallocation. This is the case in both Java and Haxe, although HashLink
as a library allows such finalisation functionality.
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Ideally, a garbage collectorwould deallocate objects soon after they are used for
the last time, in order to decrease memory footprint. However, this property, “live-
ness”, is hard to determine and depends on the specifics of the program1. Instead,
GCs use one of two approximations of liveness, forming the two major GC classes:

• Tracing: objects are assumed to be live if they are reachable by following
pointers from one of the GC “roots”.

• Reference counting: an incoming reference counter is maintained on every
object; an object is assumed to be live if this counter is non-zero.

Although both classes have their advantages and disadvantages, and although
reference counting has recently become comparable in performance to tracing col-
lection due to Shahriyar [13], in this project wewill focus on tracing garbage collec-
tion. Switching to a reference-counted collector would be a large change from the
current approach, andwould require changes to the GC interface. See Section 2.3.3
for further discussion.

2.2.1 Performance metrics

The operation of a GC has an impact on the performance of its host application.
Different GC algorithms affect the application in differentways, so the choice of GC
depends heavily on the type of application. The primary metrics which concern
us in this project are:

• Throughput: the speed at which the application can allocate new objects.

• Pause time: the time it takes for the GC to complete a collection cycle, during
which the application is paused.

• Memory overhead: the amount of memory dedicated to the GC internals and
space used for GC bookkeeping.

Other metrics which are less relevant to HashLink’s applications:

• Promptness: the time it takes for an object to be collected after it becomes
unreachable. There are no finalisers in Haxe, so this is not of crucial impor-
tance.

• Completeness: whether the collector collects all unreachable objects. GC
schemes aim to be complete in general, otherwise running out of memory
would quickly become an issue. However, some schemes are “conservative”
rather than “precise” and may result in false-positive identification of point-
ers, for example when integer values happen to fall into the address range of

1In general, determining liveness of objects in a program would amount to solving the halting
problem. [12]
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a GC. Suchmemory is then not collected, even though it is not used by the ap-
plication. A low rate of false positives is desirable, but a non-zero amount is
probably acceptable. Additionally, completeness may be impossible to reach
in HL/C due to the uncooperative nature of the C language (see Section 3.5.1).

2.2.2 Tracing garbage collection

The most commonly used category of GC in production environments is tracing
GC. The algorithms in this category includemark-and-sweep, mark-and-compact,
and semispace copying, briefly described in the following subsections.

Mark-and-sweep

With mark-and-sweep algorithms, first introduced by McCarthy [14], a collection
cycle consists of tracing all objects reachable from the root set. Objects reached in
this “marking phase” are marked, usually by setting a designated bit in the object
header or a separate bitmap containing themark bits for a larger number of objects.
The next phase is the “sweeping phase”, which iterates through all objects on the
heap and deallocates them if their mark bit is not set.

A slightly different, slower alternative is the “mark-and-not-sweep”2 algorithm,
currently used in HashLink. In this variation, there is no sweep phase. Instead,
objects on the heap are iterated during allocation and space used by unmarked
objects may be used. One possible advantage of this method is that it is simpler to
implement.

Mark-and-compact

One problem introduced by the simple sweeping method of mark-and-sweep GC
is fragmentation—after some time, the heap contains old objects of various sizes
spread far apart in addition to new objects allocated in the gaps. This decreases
object locality, i.e. objects which are close to one another in terms of pointer dis-
tance may end up far apart in memory, which in turn decreases the usefulness of
a CPU cache.

Mark-and-compact algorithms [15, 16] address this by compacting marked ob-
jects into a smaller part of the heap, then updating pointers to compacted objects
in a separate phase. The order of compacted objects varies from algorithm to
algorithm—some aim to increase object locality, some maintain the original allo-
cation order.

2Also known as “lazy sweeping” in the literature.
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Semispace copying

Mark-and-compact algorithms result in lower fragmentation and fast allocation
but have high collection costs. Semispace algorithms, first described by Fenichel
and Yochelson [17], achieve good performance all around in return for a much
higher memory usage. The heap is split into twomemory regions and live objects
are copied from one space to the other during the collection phase. This enables
the GC to compact and reorder live objects arbitrarily, without requiring a separate
pass to update pointers. Because it is theoretically possible that a collection cycle
collects no objects, and because the two semispaces trade places each collection
cycle, they are identically sized by necessity, and so a semispace collector requires
at least double the amount of memory of a non-semispace collector.

2.2.3 Generational GC

The “weak generational hypothesis” states that most objects “die young” (i.e. be-
come unreachable soon after allocation). This appears to be generally true regard-
less of the application or language used. Studies on the Java DaCapo benchmark
suite have shown that between 65% and 96% of objects survive less than 64 kilo-
bytes of GC activity [18].

As a result, it is beneficial for a GC to focus its attention on young objects, and
try to collect young objects much more often than older objects. This is the core
idea of generational GC algorithms (first due to Lieberman and Hewitt [19]), which
separate the heap into at least 2 generations. Collecting the young generation, also
called the nursery, constitutes a “minor” collection. Tuning the sizes of the individ-
ual heap generations is important for achieving optimal performance. Object age
itself is typically measured by counting the number of collection cycles a particu-
lar object survives, since measuring actual GC activity in terms of bytes allocated
is problematic for multi-threaded collectors.

2.2.4 Concurrent GC

The algorithms described so far do not address the issue of threaded applications
and concurrency in the GC itself. A single collector thread is easier to reason about,
but a GC will reach much better performance on a multicore system if the collec-
tion of dead objects is done by multiple threads. Some GC implementations, as is
the case for HashLink, are “stop-the-world”, i.e. all the application threadsmust be
paused before collection actually takes place. This is the primary cause of pauses
and is problematic for interactive applications.

When implementing concurrent GC algorithms, data racesmust be considered.
Certain problemscanbe solvedwith atomic read/write operations as implemented
onmodernmulticore architectures. Additionally, someobjectsmight imposewrite
barriers—synchronisation points used when writing into certain objects. An ex-
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ample of a high performance collector using these techniques is the Shenandoah
GC [20].

A GC that is not concurrent, but uses multiple threads to decrease the applica-
tion pause during collection cycles is called a “parallel” collector.

2.2.5 Modern architectures

In addition to supporting concurrent execution, modern processor architectures
have a large number of features that can drastically improve execution timewhen
used properly. These features include cache lines, cache invalidation, and mem-
ory prefetching. All aim to decrease the cost of accessing the main system mem-
ory, since such operations tend to be orders of magnitude slower than operations
contained within a core and its own cached memory.

As a result, some of the more recent improvements in garbage collectors come
not from more complex algorithms but rather a more clever memory layout that
can better cooperate with the CPU.

2.2.6 Immix

The Immix collector [3] is a parallel collector based on mark-and-sweep with a
modified thread-local allocation algorithm and a heap layout more optimised for
modern CPU caches. The heap is organised into large blocks containing lines
which then contain actual objects. The line size is chosen to more or less align
with the cache line sizes of modern CPU architectures, such as x86 64. Objects
are not collected unless all objects in a line are unreachable, and surprisingly this
coarser granularity leads to performance improvements.

Immix is described in further detail in Chapter 3, since our implementation is
based on it.

Modified Immix collectors

The latest GC used in Haxe’s C++ target is a “generational Immix” collector with
many other differences from the original design. The generational part means
that the heap is additionally split into generations based on object age—a younger
nurserywhich uses fast bump allocation and an older generation that is an Immix
space.

Shahriyar et al. [21] introduce multiple modifications to Immix. These include
“Sticky Immix”, a generational modification; and “RC Immix”, a hybrid reference-
counting Immix collector. The latter is available in Jikes RVM [4], an open-source
Java VM implementation.
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2.3 Haxe, HashLink, HL/C

2.3.1 GC for immutable data

Haxe is primarily an object-oriented language whose semantics should seem fa-
miliar to programmers of Java or C++. However, partly due to its roots in the func-
tional programming language OCaml, the type system of Haxe has certain kinds
of types which are immutable after instantiation. These are called algebraic data
types (ADTs), or simply “enums” in Haxe terminology.

Immutable data are a familiar concept in functional languages such as Haskell
or OCaml. A well-designed GC system can take advantage of immutability—in the
case of a generational collector, older objects can never point to younger objects.

If the overhead of implementing a separate collection strategy for immutable
data is not too high (both in terms of implementation time and performance costs),
it is also important to make sure the interface between the two data categories is
seamless. Ueno et al. [22] demonstrate a similar endeavour, aiming formemory in-
teroperability between C andML (a functional language). Their key idea is to avoid
moving or compacting allocated memory, thereby better facilitating immutable
data in the scheme.

2.3.2 Dynamic types

Although Haxe is a statically typed language, it has some features to allow easier
integration when compiling to dynamically typed languages. The primary exam-
ple of this is the Dynamic type, which is similar to values in JavaScript: it may be
null, any primitive value (Boolean, integer, etc), or an object with fields created
dynamically at runtime.

Using Dynamic is usually not a good solution in idiomatic Haxe code3, but it is
nonetheless a part of the type system that cannot simply be turned off. As such,
HashLink, being a Haxe target, must support Dynamic at runtime.

For the collector, this means that certain objects will not have static type infor-
mation, which is particularly relevant when tracing any referenced objects. Mod-
ifying the type information at runtime could cause difficulties to fully concurrent
collectors. Since fields can be added at runtime, Dynamic instances can grow in
size from the time they were initially allocated.

2.3.3 GC interface

Asmentioned in the introduction, HashLink can be used as a standalone C library.
The library should be able to provide a garbage-collected environment with mini-
mum effort on the part of the programmers. To this end, a tracing GC seems to be a

3The Haxe manual recommends minimising the use of Dynamic. See https://haxe.org/
manual/types-dynamic.html.
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good choice: objects are allocatedwith a call to a particular function, and from that
point on, any references to that object should be automatically detected by the GC,
either by examining pointers of referent objects or by examining thread stacks.

This simple interface would need to be modified for a reference-counting GC
implementation as well as a concurrent GC such as Shenandoah [20]. The opera-
tion of setting an object field to point to another object can no longer happen with-
out the knowledge of the GC. The reference count has to be updated and/or write
barriers need to be checked.

2.3.4 HashLink JIT

When using HashLink as a virtual machine for Haxe-produced bytecode, Hash-
Link uses “just-in-time” compilation, where the bytecode is converted to x86 or
x86 64machine code and loaded directly as executable memory. This process is
fast andavoids the lowperformance andmemorybehaviour of a purely interpreter-
based VM. However, it is more difficult to debug. Hence the focus of GC work
should be on HL/C. After confirming that a GC works well and is apparently bug-
free, it can be integrated into HL JIT later.

2.4 Benchmarks

It is also important to consider how to evaluate performance metrics in practice.
GC research often focuses on Java runtimes. Due to its popularity, there are a num-
ber of benchmark suites designed to emulate large, realistic Java applications us-
ing memory in various allocation patterns. These include the DaCapo suite [23] or
the SpecJVM suites [24].

Unfortunately, such complete benchmarks are not available for Haxe. At the
start of this project, there was a small number of GC-bound microbenchmarks in
addition to various unit tests andproblematic cases demonstrated inGitHub issues
by users of the HashLink target. Since “toy benchmarks”, or microbenchmarks
arewidely considered inadequate at reporting useful information about the perfor-
mance of a GC [25, 26], these are of limited usefulness but still clearly demonstrate
that the C++ and JavaScript targets have better collection schemes, the latter due
to the heavily optimised V8 runtime.

To avoid the pitfalls of microbenchmarks, a good benchmark should be large
enough for the GC to reach a steady state, that is a state after the VM is “warmed
up”, and ideally after the heap has gone through at least one major collection. A
steady state is more indicative of the long-term behaviour of a collector.

A good benchmark should emulate allocation patterns of a realistic application.
This involves examining a template application’s behaviour in detail, recording all
the allocation requests, their sizes and times, the object relationships in terms of
pointers, as well as any modifications of object fields that could result in objects
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being unreachable. This type of activity logging is not yet available for HashLink.
In implementing such a logger, it may be useful to refer to Elephant Tracks [27], a
tool with the same goal implemented for Java.

Fortunately, there are a number of fully developed video games created with
HashLink, which can serve as very realistic benchmarks with the needed alloca-
tion and usage patterns.

2.4.1 GC tuning

GC “tuning” refers to adjusting the parameters of a collector to improve its perfor-
mance for a particular application. Some parameters for the collectors described
so far include: number of generations, sizes ofmemory regions dedicated to partic-
ular types of objects, total heap size, collection schedule, and heuristic thresholds.

Tuning is an application-specific process and parameters that achieve very
good performance with one applicationmay produce terrible results with another.
Even after tuning, results depend on a variety of external factors, such as the ma-
chine workload, which is especially relevant in server applications. Nevertheless,
a well-tuned collector can be a good demonstration of its own strengths. The pro-
cess of tuning is not trivial, and it may be useful to consider machine-assisted
tuning techniques, such as the ones presented by Lengauer and Mössenböck [28],
who demonstrate an experimental result of a 77% improvement of GC runtime for
some applications after tuning. It is important to note that most GC tuning is still
a manual process.

A default GC collection schedule is one inwhich amajor GC collection happens
only when the heap is exhausted. By contrast, Jacek et al. [29] provide an alterna-
tive route, trying to find a best case scenario for a particular collector running a
particular application. This is an offline method that attempts to find the optimal
collection schedule from a trace of the collector behaviour, where the trace con-
tains timestamps of GC-related events such as allocations. Program analysis is
not a part of the method, so it could be applicable to any language if the required
traces could be generated.

2.5 Verification

Garbage collectors form a crucial component in many systems, and due to their
heavy focus ongoodperformance andnecessary interactionswith low-levelmem-
ory representation, their code is generally not trivial to understand and debug. As
such, even for applications which are not critical, it is a worthy endeavour to for-
mally verify the functionality of a GC as compiled, with respect to a higher-order
logic model of that collector.

By formally verifying software, we aim to have a specification in a simpler, but
formal language, and ensure that the implementation satisfies this specification.
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Such a formal language may be higher-order logic (HOL), as implemented in the
proof assistants Coq [5] or Isabelle [30].

One possiblemethod for the verification is to use Coq to describe the abstract GC
model in combinationwith CompCert [7], the verifiedC compiler, andVST-Floyd [6],
a tool for proving C programs using the Verifiable C separation logic. This method
was employed for the (almost) complete end-to-end verification of a TCP/IP echo
server by Koh et al. [31]

Hawblitzel and Petrank [32] show an alternate approach using Boogie [33] and
Z3 [34], proving the correctness of a mark-and-sweep collector and a semispace
copying collector. Ericsson et al. [35] prove an incremental collector for CakeML
using the HOL4 theorem prover.

2.6 Summary

In the sections above, a number of possible approaches to the various goals of this
project have been outlined. In Chapters 3 to 6, we elaborate on the approaches
actually taken.

The GCmethod forming the basis of the implementation is Immix [3], a variant
of mark-and-sweep. This method was chosen due to its similarity to mark-and-
sweep in terms of the interface exposed to the implementing system (i.e. Hash-
Link), and because of its great performance characteristics, as demonstrated by
its various implementations in Java virtual machines.

Formal verification of the collector is modelled after Koh et al. [31], even though
this publication verifies a networking server rather than a GC. This approach was
deemed more appropriate to avoid modelling large parts of HashLink itself.

Some sources of difficulty have also been outlined in the sections above. To
summarise:

• Lack of realistic GC benchmarks for Haxe.

• Lack of previous work: the current HashLink GC is rudimentary andmost of
the work will need to be done from scratch.

• High performance requirements: many possible applications of HashLink
would be bound by its slow GC (for example, using it to bootstrap the Haxe
compiler), so the new GC should be heavily optimised.

• Complex type system: Dynamic instances need to be handled carefully. Im-
mutable ADTs may be handled separately as an optional optimisation.

• Formal verification: formal verification of large codebases is far from trivial
and often individual functions require hundreds of lines of Coq proofs.
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Chapter 3

Immix-based garbage collector for
HashLink

3.1 Introduction

In this chapter, we provide a high-level description of Immix in Section 3.2. We
then describe our implementation of a garbage collector for HashLink based on
Immix in Section 3.3. In Section 3.4, we discuss the low-level details of some opti-
misations. Finally, in Section 3.5, we list the key differences between the original
Immix publication and the collector implemented for HashLink.

3.2 Immix

Immix [3] is a “mark-region” collector originally designed and benchmarked on
the Java research virtualmachine, Jikes RVM [4]. It divides thememory into fixed-
size regions called blocks. Blocks are either free and owned by the collector itself,
or in use and owned by a particular thread. Threads allocate objects inside blocks
using fast bump allocation1 until they run out of space, at which point they recycle
one of their previously used blocks, or take a new one from the collector.

Giving blocks to threads addresses one possible source of slowdown during
allocation—namely, the cost of synchronisation of multiple threads. With thread-
local blocks, allocation in most cases does not require synchronisation, only in
the worst-case scenario when a new block is required, in which case the global
free block pool must be locked. Note that block ownership only implies that a
thread has the exclusive right to allocate data in the owned block. Data may still
be arbitrarily shared across threads, so it is possible that threadsmodify the object

1Also knownas linear allocation, it consists of simply keeping track of the last allocation position
(the cursor) and the end of the current span of free space (the limit). Objects that fit within this space
are allocated at the cursor, which is then moved (“bumped”) by the size of the object.
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data contained in another thread’s blocks. To avoid data races in the application
code, additional synchronisation primitives of the runtime must be used.

Immix additionally splits blocks into lines, the size of which is designed to
align with the size of CPU cache lines. During the marking phase, the collector
marks objects as any mark-and-sweep collector, but it also marks the lines to
which the objects belong. The majority of objects are smaller than one line, so the
line marking is coarser-grained than object marking. The purpose of line marks
is to help the collector quickly identify which parts of a block are free. Rather than
walking through the block and looking for gaps of a particular size, the collector
can instead look for any line-sized gap according to a bytemap2 containing the
line marks.

If a medium object3 cannot be allocated immediately, a fresh block is used to
avoid a potentially expensive gap search. See Section 3.3.9 for the full allocation
algorithm.

With the allocation scheme described above, objects are allowed to span lines,
but not blocks. Because objects can span lines, lines immediately after a marked
line are considered implicitly occupied. As is common in many collectors [36, 37,
38], large objects are treated differently and are allocated into a global free list. For
Immix, this threshold is 25% of the block size, i.e. 8 kilobytes, a value which was
determined empirically.

Because objects are only allocated in line-sized gaps or larger, there is a possible
memory overhead due to live objects in a line with dead objects. The benefits are
that this scheme decreases fragmentation and collection time.

To avoid lineswith very few live objects, Immix canalso opportunistically com-
pact the heap. Compactionmayhappen during themarking phase and is triggered
by heuristics based on fragmentation statistics. The most fragmented blocks are
good candidates for compaction, although it is possible the process is terminated
due to insufficient space, since the statistics only provide estimates of fragmenta-
tion based on line usage, not real space usage.

Differences between the original Immix publication described above and the
collector implemented for HashLink are discussed in Section 3.5.

3.3 Implementation details

In this section we describe the collector implementation for HashLink. Figure 3.1
shows an overview of memory areas, block types, and transition paths between
block types.

Throughout this section and the implementation itself, we assume a 64-bit ar-
chitecture, such as x86 64. A “word” is understood to be 8 bytes in size, large

2A bytemap is chosen rather than a bitmap to allow parallel, multi-threaded marking without
race conditions.

3A “medium object” in Immix is any object larger that one line.
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enough to fit a pointer. A 32-bit implementation would result in several changes
to the specific memory layouts, but the overall structure of the collector remains
the same.

Operating System

Garbage Collector

Thread-local

Active block (one of)

OS pages

Free blocksZombie blocks Huge objects

Brand new blocks

New blocks

Full blocks

Recycled blocks

1
2

3
4

5

6

7

8

9

10

11

12

Figure 3.1: Memory organisation. The numbered transition paths are explained in Sec-
tion 3.3.6.

3.3.1 Memory organisation and sizes

The size of lines was chosen to correspond to the size of CPU cache lines onmajor
CPU architectures [10]. Block and page sizes were derived to obtain a good fit of
block headers and object metadata.

• Line size: 128 bytes (corresponds to 16 words)

• Block size: 64 KiB = 65,536 bytes (accommodates 442 lines and metadata)

• Normal page size: 4 MiB = 4,194,304 bytes (accommodates 64 blocks)

3.3.2 Global OS page management

The collector directly interacts with the operating system in the methods gc -
alloc os memory and gc free os memory. All allocated memory regions must
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be page-aligned. This is usually true of pointers returned by the underlying func-
tion mmap4, although sometimes a realignment procedure is necessary. The re-
alignment procedure is not modified from the current HashLink implementation,
so we skip its explanation here.

Block 1

Block 2

Block 3

Block 64

Block header

Normal page

...

Huge page

Object

Page header

Figure 3.2: Page layout.

3.3.3 GC page management

“Raw” pages allocated from the OS are initialised by the GC in one of two ways.
Normal pages are always 4 MiB in size and consist of blocks. Huge pages have
variable sizes, which may exceed 4 MiB, and accommodate a single large object,
prefixed by a mostly empty block header so that huge objects can be treated just
like other objects.

Both page kinds share a common header structure. This header is embedded
inside the block header of the first block of the page. See Figure 3.2 for a visual-
isation. Due to the alignment requirements for allocated pages, the page header
corresponding to a particular object or block can be obtained by discarding a num-
ber of the least-significant bits of the address (21 in the implementation).

TheGCkeeps trackof all allocatedpages in twodoubly-linked lists, one for each
page kind. These lists are used when scanning pages during the sweep phase. All
allocated pages also participate in a dynamically growinghashmap,which allows
the GC to quickly check if a particular pointer belongs to the collector-managed
memory or not.

4mmap can be used to allocate raw pages of memory from the operating system. See https://
linux.die.net/man/3/mmap for complete documentation.
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Pages are obtainedusing themethodsgc alloc page normalandgc alloc -
page huge. Pages are deallocated using gc free page memory.

3.3.4 Free block pool

The free block pool is a singly-linked list of blocks, common to all threads. No live
objects should be present in the blocks in the pool. Whenever a thread requires a
new block, it must first obtain the lock which protects the pool. The head of the
free block pool list is assigned to the thread, reducing the pool size by one, then
the lock is released. If the pool is empty when a block is requested, a GC cycle is
triggered. If the pool remains empty after the cycle, a newnormal page is allocated,
which adds 64 blocks to the free block pool.

Embedded page header
(32 bytes)

Block metadata
(32 bytes)

Object metadata
(442 × 16 bytes)

Line marks
(442 bytes)

Line metadata
(442 bytes)

Object bitmap
(442 × 2 bytes)

Lines
(442 × 128 bytes)

Figure 3.3: Block layout. A full block spans 64 KiB. Padding is not shown.

3.3.5 Blocks

Blocks consist of 442 lines containing allocated data, and a header that contains:

• the block kind;

• pointers to the previous and the next block in a list; and

• metadata for all objects of the block, including mark bits, object sizes, and
object kinds.

Depending on the block kind, the previous/next pointers have different mean-
ings, as shown in Table 3.1.
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Kind List kind List meaning
Free Singly-linked Global free block pool
New None None
Full Doubly-linked Thread-local list of full blocks
Recycled Doubly-linked Thread-local list of recycled blocks
Zombie Doubly-linked Global list of zombie blocks
Brand new None None

Table 3.1: List of block kinds and their list participation.

3.3.6 Block lifetime

Blocks change their kind as the garbage collector operates. Here is the list of all
block kind transitions. The numbers refer to the paths shown in Figure 3.1.

• 1,2: Huge objects are allocated and released separately from other blocks, be-
ing accommodated in OS pages of their own.

• 3: Blocks are initially formed as Brand new blocks from a normal page taken
from the OS.

• 4: Free blocks may be returned to the OS if the heap is underutilised.

• 5,6: A Brand new block may be taken by a thread and used as its active allo-
cation block. If there are any blocks available in a thread’s recycled block list,
they are used instead (re-marked as New).

• 7,8: When theallocation cursor reaches the endof a block, the block ismarked
as Full and added to the thread’s list of full blocks.

• 9,10: During the sweep phase, the GC scans all full blocks. Full blocks which
have at least one free line after sweeping are marked as Recycled and are
moved into the thread’s list of recycled blocks. Full blocks which are com-
pletely free are instead put back into the free block pool.

• 11,12: When a thread stops executing, all of its blocks aremarked Zombie and
given over to the GC. These may eventually become empty and be added to
the global free block pool.

3.3.7 Objects

Objects are separated into two parts, stored in different sections of a block: the
metadata and the object data. The application can only directly access object data.
Object data is word-aligned and in most cases consists of a type pointer followed
by field data.

The metadata overhead is 1 or 2 bytes per object. In Figure 3.4:
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mark
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raw
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32b
High bytes of word count

HashLink type pointer
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Object data

In metadata section

Next metadata byte if med

In lines section

Figure 3.4: Object layout.

• Mark bit (mark): used during the marking phase to check if an object was
previously marked5.

• Medium-size bit (med): indicates that the object is larger than 16 words (i.e. 1
line) in size.

• Raw bit (raw): indicates that the object does not start with a HashLink type
pointer.

• No-pointer bit (noptr): indicates that the object fields contain no pointers
and should not be scanned.

• Small-size words: 4 least-significant bits of object size in words.

If the medium-size bit is set, then the following 4 metadata bytes contains the
next bits of the object size in words. Because a zero-word allocation is invalid,
the size in words is first decremented by one before storage, allowing objects of 16
words in size, inclusive, to be stored without setting the medium-size bit. Larger
objects are stored using separate pages, and their size is calculated from the page
size stored in the page header.

3.3.8 Allocation: fast path

Under normal conditions, the majority of allocations will follow the fast path. In
the fast path, a thread has a thread-local block from which it can allocate objects,
and it has an allocation cursor and an allocation limit in that block. If there is
enough space to accommodate the allocation request, the allocation cursor is in-
cremented by the object size (rounded up to a multiple of the word size) and the
original cursor position is returned. In pseudo-code, this can be expressed as:
def bump_alloc(size):

obj = initialise(cursor)
cursor += size

5In the implementation, the meaning of the mark bit changes with every cycle so it need not be
reset.
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return obj

def alloc_fast_path(size):
if cursor + size < limit:
return bump_alloc(size)

return alloc_slow_path(size)

3.3.9 Allocation: slow path

If there is not enough space to accommodate the allocation request, the action
taken depends on the size of the object.

For small objects (size less than or equal to one line) a “gap search” is performed
in the active block. This is a linear search through the line markings which were
set in the last sweep cycle by the GC. If a gap is not found, a block is recycled if
available, or a fresh block is taken from the global pool.

For medium objects (size less than a quarter of a block) the search is skipped.
Instead, a block is recycled if available, or a fresh block is taken from the global
pool.

For large objects a “huge” page is allocated directly to hold the object.

The full allocation algorithm can thus be summarised as:
def alloc(size):

// fast path
if cursor + size < limit:
return bump_alloc(size)

// slow path
cursor = line_align(cursor)
if size <= LINE_SIZE:
if gap_search(current_block):

return bump_alloc(size)
full_list.append(current_block)
if recyclable_blocks:

current_block = recyclable_blocks.pop()
if gap_search(current_block):
return bump_alloc(size)

current_block = free_pool.pop()
return bump_alloc(size)

else if size <= MEDIUM_SIZE:
current_block = free_pool.pop()
return bump_alloc(size)

else:
return gc_alloc_page_huge(size)
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3.3.10 Object initialisation

No matter which allocation path an object takes, the garbage collector is only re-
sponsible formemory allocation and system initialisation (according to Jones [12]).
This means that the pointer returned from an allocation request has its metadata
set in the block header, allowing the GC to identify the object’s size at a later time,
but not much more than that.

In case of a Haxe to HashLink compilation, type safety and secondary initiali-
sation is ensured by subsequent operations on the allocated objects. In the case of
C code interacting with libhl, this burden is on the C code developer.

3.3.11 Marking

A collection cycle starts with the mark phase. The GC maintains a dynamically
growing stack of pointers called the “mark stack”. The mark stack is filled first by
following the GC roots, which are application-specific and include references to
static instances and various pieces of the standard library (when compiling from
Haxe).

The mark stack is then supplemented with the pointers found by scanning
the thread stacks and registers. A standard register-spilling procedure based on
setjmp6 is used. The thread context is saved into a jmpbuf using a setjmp call,
then the buffer is scanned at word-aligned increments. On all tested platforms,
the values found in the jmpbuf correspond to the values contained in the CPU reg-
isters before the setjmp call.

The mark phase then enters a tight marking loop, removing pointers from the
top of the stack one at a time, scanning them according to their type information
(if any), and adding any found, not-yet-marked references. This results in a depth-
first scanning order. Care has been taken to reduce the number of branches in the
marking loop, in order to avoid branch prediction misses and to enable good CPU
pipelining. See Section 3.4.2 for more detail.

As per [3], lines aremarked in the per-block linemark bytemapwhen scanning
an object rather than when adding it to the mark stack.

3.3.12 Sweeping

In the sweep phase, the collector iterates through all allocated pages. Based on the
bitmap of used blocks stored in the page header, it scans blocks that might need
to be swept. If the line marks (marked in the mark phase) indicate that a block is
not used anymore, it is put back into the free block pool. If the line marks indicate
that there is some usable space and the block is considered Full, it is moved to the
thread’s recycle list instead. See Section 3.3.6 for more detail.

6See https://linux.die.net/man/3/setjmp for complete documentation.
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At the end of the sweep phase, the GC has statistics on the overall usage of the
heap. These are used as heuristics to decide whether the heap should be grown
by allocating additional pages. This aims to prevent heap thrashing, which is a
situation in which the GC is invoked multiple times in short succession because
it never frees enough memory for the demands of the application.

3.3.13 Thread cooperation

Threads in HashLink are assumed to be cooperative. The GC is a “stop-the-world”
collector, meaning that it requires all threads to reach a safe stopping point before
a collection cycle can begin. Such stopping points occur in all allocation requests,
which happen very often.

This also implies that a thread performing a particularly long operation with-
out any allocations may cause the other threads to halt. However, there are no
plans to change this aspect of HashLink at the moment.

When a thread exits, the objects it allocatedmay still be visible to other threads.
In this case, all of the thread’s blocks are marked Zombie and cannot be used
for fresh allocations until all of the objects they contained are cleared. See Sec-
tion 3.3.6 for more detail.

gc alloc os memory

gc free os memory

gc add page

gc alloc page normal

gc alloc page huge

gc free page memory

gc grow heap gc push

gc pop

gc pop block

gc push block

gc pop huge

gc push huge

gc init

gc deinit gc mark gc sweep hl alloc gen

hl gc major gc find gap

gc alloc bump

hl add root

hl remove root

Figure 3.5: Function and state variable dependencies. Shaded blocks represent the public
API.
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3.4 Optimisations

In this sectionwe explore some of the optimisations of the implementation, regard-
less of whether they were implemented or only considered.

3.4.1 Hot paths

In realistic garbage-collected applications, allocation is an extremely common op-
eration. Ideally, the allocation routine should be heavily optimised towards allo-
cating small objects as fast as possible. Immix is particularly suited for this, as the
most common case when allocating is bump allocation (see Section 3.3.8).

This algorithm ismirrored in the C implementation, where the size check is the
first (and potentially only) thing that needs to happen during allocation. Because
the majority of allocated objects are small, the branch for when an object fits is ad-
ditionally taggedwith a branch hint, whichmay cause compilers to emit a branch
hint instruction for processor architectures that support it.

3.4.2 Branches in marking loop

Another possible source of latency comes from the marking phase, in which the
object graph needs to be traversed to find which objects are reachable and which
are not. Ideally, the marking loop could treat objects homogeneously, avoiding the
need for branches inside the loop. The branch predictor can remedy some of the
negative effects of branching in the loop, but certain allocation patternsmight still
result in a marking order in which the kinds of marked objects are difficult for the
CPU to predict mechanically.

Raw allocation branching In Section 3.3.7, there is a difference in object layout
depending on whether the raw bit is set. For “raw” objects, the first word of the
allocated data is not a pointer to a HashLink type structure. The type in turn con-
tains a mark bits field, which identifies which words of the allocated objects are
pointers and therefore should be scanned.

The purpose of raw allocations is to be able to pass GC-allocated structures di-
rectly to external libraries. The fields are allocated in an order that aligns with
the C definition of the struct expected by the library. Adding an extra type field at
the beginning would disrupt this process. Although it is possible to pass a pointer
to the middle of the allocated data (offset forward by the size of the type pointer),
this complicates the correct identification of allocated data, and would therefore
require branching in a different part of the marking loop instead. As such, this
particular branch was kept in the loop for simplicity.
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Size branching As per the original Immix publication, the lines to which an ob-
ject belongs aremarkedwhen the object is being scanned. However, the linemark-
ing code needs to distinguish between small, medium, and huge objects, since the
lines are marked differently. Additionally, objects that are not small have extra
metadata indicating their full size that needs to be read conditionally (see Fig-
ure 3.4). This branch was also kept in the loop, since the trade-off would be a
large increase in memory consumption for object metadata, requiring a full 32-bit
integer for any object rather than 8 bits for most objects.

3.4.3 Allocation cursor in global register

One final optimisation we considered, but did not implement due to limited com-
piler support and interoperability with C libraries, was the placement of the al-
location cursor and limit into global registers. This would allow any allocation
to be even faster, since allocations would not need to load the allocation cursor
and limit from memory. Register storage would be even more efficient than CPU
cache which most likely contains the allocation cursor and limit in the current
implementation.

3.5 Differences from Immix

The implementation of the garbage collector in HashLink is primarily based on
the original Immix publication by Blackburn and McKinley, but there are some
differences. Several of these are based on the fact that no implementation code
was copied, that the publication does not specify all parts of the collector in detail,
and that the publication assumes a JVM environment.

However, some differenceswere necessitated by the requirements of HashLink.
We describe these in the following sections.

3.5.1 No compaction

Immix compacts blocks in the heap that contain few objects to reduce fragmen-
tation. This requires setting up forwarding pointers and rewriting the original
references to the moved objects. However, because HashLink/C compiles via an
intermediate C stage, identification of pointers in thread stacks and registers is
not always reliable. In rare cases, code produced by the C compiler will keep refer-
ences to the interior of allocated objects (i.e. “interior pointers”), rather than their
beginning, even if the original C code does not. Additionally, moving objects on
the heap would require modifying the GC interface, which would not interoperate
very well with external C libraries.

During benchmarking we found that even without compaction, our collector
performs well. Nevertheless, more investigation is needed to see if it is possible
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to make C compilers more cooperative. It would also be necessary to implement
object pinning7 so that objects can be passed on to external libraries.

3.5.2 Metadata storage

The Immix publication describes a very small overhead for object metadata. In
JVM implementations, all allocated objects have headers which can fit a number
of bits for the exclusive use of the collector. This is not the case in HashLink, and
keeping the object layout intact was a design constraint for this project. Instead,
object metadata is stored in sections of the block header. The result is that the
block header overhead is larger, but objects are slightly smaller in general.

3.5.3 Huge objects in blocks

In the original publication, there is a limit for “medium-sized” allocations. Objects
larger than roughly a quarter of a block are always allocated separately. To avoid
branching in the allocation routine, and because themetadata layout conveniently
supports this, our implementation allows allocating huge objects inside blocks if
they fit on the “first try” (i.e. during fast path allocation). In this case, they are
treated as medium-sized objects, even though their size exceeds the threshold.

3.6 Debugging and development timeline

The development of the collector was started with a prototype entirely indepen-
dent of HashLink. The collector API was modelled after the functions present in
HashLink to ease eventual integration, but otherwise no part of the HashLink run-
timewas used. We checked the correctness of the prototype using a test suitewith
cases designed to trigger different behaviours of the collector, e.g. allocatingmany
small objects, allocating many medium objects, or creating pointer cycles across
blocks.

The final test added to the prototype test suite was a C port of the mandelbrot
benchmark (used in GC benchmarks, see Chapter 4). This test uses a mixture of
small and large objects and performs a large number of allocations. When the pro-
totype correctly executed the test, i.e. with the same result as the old collector, we
felt confident about integrating the prototype into the actual HashLink codebase.
The prototype tests were adapted to work with the HashLink runtime as well, in
order to verify that the integration did not cause any regressions in functionality.

Although HashLink’s original GC was designed with some amount of extensi-
bility in mind, we chose to not tie the new GC to this framework too closely, as we
found it easier tomake rapid changeswith a “blank slate” in this area. Re-aligning

7A “pinned” object is never moved by the collector.
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the new GC with the original framework will be the subject of future work (see
Chapter 7).

During development, crashes due to memory violations were extremely com-
mon, as is probably the case during any GC-related development. We made exten-
sive use of the interactive debugger IDAPro [39] to verifymemory contents, inspect
the assembled code (and its automatic disassembly andC-like decompilation), and
step through various programs.

We also added rudimentary support for event logging (inspired by Elephant
Tracks [27]) with a custom binary format readable by a small utility written in
Haxe. Although this has not been developed further, it helped us identify cases of
heap thrashing in some benchmarks.

In the finalmonths of the project, we started formal verification (see Chapters 5
and 6) of the collector implementation. Due to the relative impracticality of the
verification method we chose, starting the verification process before reaching a
relatively stable implementation likely would have been counter-productive.
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Chapter 4

Evaluation

4.1 Introduction

In this chapter, we discuss the improvements obtained with the new GC imple-
mentation. In Section 4.2, we briefly discuss our new benchmarking framework.
In Section 4.3, we enumerate all the benchmark cases. In Section 4.4, we describe
the setup used to obtain our data. In Section 4.5, we show the obtained data com-
paring the two GC implementations. Finally, in Section 4.6, we summarise our
findings.

4.2 Benchmarking framework

At the outset of the project, there were only a small number of benchmark cases
available for Haxe, most of which were small. As part of this project, we con-
tributed a new benchmark framework1, allowing easier creation of new cases.

The original benchmarking setup required a separate GitHub repository per
benchmark case, even thoughmost files in the repository would be identical from
case to case2. These files were primarily scripts that would compile and run the
code for a particular target, using a particular Haxe compiler version.

In the newbenchmarking framework, we implemented the functionality of the
scripts directly in Haxe, localising the implementation to a single library that is
easier to maintain and update. New benchmark cases consist of sub-directories
in the benchmark-runner repository and at minimum only contain a declaration
of the benchmark name and the code to run3.

1Available at https://github.com/HaxeBenchmarks/benchmark-runner, updated by other
members of the community since its conception.

2For example, the original implementation of the json and mandelbrot benchmarks: https:
//github.com/HaxeBenchmarks/json-benchmark, https://github.com/HaxeBenchmarks/
mandelbrot-benchmark.

3The new json benchmark: https://github.com/HaxeBenchmarks/benchmark-runner/
tree/master/cases/json.
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Benchmark name Type Approximate LoC
alloc micro 50
binarytrees micro 50
json micro 20
mandelbrot micro 100
mandelbrot-anon micro 100
nbody micro 150
bcrypt crypto 400
sha256 crypto 400
sha512 crypto 400
formatter app 10,000
formatter-noio app 10,000

Table 4.1: List of benchmark cases.
“micro”, “crypto”, and “app” refer to “microbenchmarks”, “cryptography benchmarks”, and
“application benchmarks”, respectively.
The lines of code (LoC) include approximate sizes of library dependencies, but not the stan-
dard library (which may or may not be implemented in Haxe, depending on the target).

4.3 Benchmark cases

The full list of benchmark cases used for measuring the performance of the new
collector is shown in Table 4.1.

Many of these benchmarks are not “realistic” in terms of application load, in
that they focus heavily on allocations and not enough on program logic, I/O opera-
tions, user interactions, etc. Nevertheless, in evaluating a garbage collector, even
allocation-based benchmarks seem relevant.

The formatter and formatter noio are more large-scale applications that
have a performance load similar to a compiler. formatter reads a number of
large Haxe codebases, parsing them, then producing the re-formatted code. for-
matter noio is the same, but disk I/O is not included in themeasurement because
files are pre-loaded.

4.4 Measurement setup

The results in the following sections were obtained on a Macbook Pro, “late 2011”
model, with the following parameters:

• OS: Mac OS X 10.9.5

• CPU: 2.4 GHz Intel Core i5

• RAM: 16 GiB 1600 MHz DDR3
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Benchmarks were also executed on a Ubuntu 18.04 server with a 3.8 GHz Intel
Xeon. While the benchmark timesweremuch shorter for both the old and the new
GC, the relative performancewas in the same ratio as observed on theMacbook. A
continuously updated report of the benchmark performances is available online
at the Haxe benchmarking server4, which internally uses our new benchmarking
framework.

All benchmarks were executed 20 times, in order to lower the effects of vari-
ance.

4.5 Results

This section compares the performance of the new GC with the performance of
the original HashLink GC on all the benchmark cases listed in Table 4.1.

In Figures 4.1 to 4.11, the box plots show the non-outlier maxima and minima
with “whiskers”, the box extents show the first and third quartiles, and the line in-
side the box shows the median. Any outliers are identified as samples outside the
1.5 IQR range from the first or third quartiles and are plotted as individual points.
The top two results in each graph represent the performance of the old GC imple-
mentation, whereas the bottom two results, shown in red, represent the perfor-
mance of our implementation. In all cases, a lower time is better.

The full tabulated dataset of samples for the following graphs is avaiable in
Appendix B.

4.5.1 Microbenchmarks

0 1 2 3 4 5 6 7 8 9 10 11

C new

JIT new

C old

JIT old

Time (s)

Figure 4.1: alloc results.

4https://benchs.haxe.org/
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Figure 4.2: binarytrees results.
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Figure 4.3: json results.
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Figure 4.4: mandelbrot results.
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Figure 4.5: mandelbrot-anon results.
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Figure 4.6: nbody results.

4.5.2 Cryptography benchmarks

0 2 4 6 8 10 12 14 16 18 20

C new

JIT new

C old

JIT old

Time (s)

Figure 4.7: bcrypt results.
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Figure 4.8: sha256 results.
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Figure 4.9: sha512 results.

4.5.3 Application benchmarks
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Figure 4.10: formatter results.
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Figure 4.11: formatter-noio results.

4.6 Summary

Figures 4.12 and 4.13 show the median performance improvement on all bench-
marks. Certain benchmarks, such as nbody or bcrypt show virtually identical
results with the new collector, and instead their time depends only on whether
the runtime is HL/JIT or HL/C. These benchmarks allocate very little so this is
to be expected. On the other hand, heavily allocating benchmarks, such as bina-
rytrees or mandelbrot show the best improvements, on the order of 12× faster
performance.

As noted in Section 2.4, large, application-based benchmarks are more indica-
tive of the performance of a particular GC than microbenchmarks. As such, the
results obtained from the formatter and formatter-noio are the most impor-
tant, showing a substantial improvement of 5× faster performance.
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Figure 4.12: Summary of benchmark results in HL/JIT mode. The Y axis shows the ratio
of the median time reached with the new GC to the median time reached with the old GC
on all benchmarks.
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Figure 4.13: Summary of benchmark results in HL/C mode. The Y axis shows the ratio of
the median time reached with the new GC to the median time reached with the old GC on
all benchmarks.
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Chapter 5

Abstract model

5.1 Introduction

In this chapter, we describe an abstract model of our Immix-based collector. In
Section 5.2, we describe the motivation behind defining an abstract model. In Sec-
tion 5.3, we discuss the data model of our abstraction. In Section 5.4, we describe
the functional specifications in our model.

5.2 Motivation

The primary goal of this project, and indeedmany garbage collectors, was to obtain
very good performance in benchmarks while remaining functionally correct. To
this end, the implementation iswritten in C code optimised for speed, not readabil-
ity or ease of reasoning. Additionally, C is a low-level programming language and
so code written in it must make important choices about specific data structures
to use, layout of structures in memory, and so forth.

For these reasons, we found it natural to define a high-level model of the col-
lector. This abstract model performs the same general Immix-based collection
algorithm, but is as independent of specific memory layout as possible. For in-
stance, where the implementation may use a hash map, a singly-linked list, or a
doubly-linked list, the abstract data model uses Coq’s built-in lists.

5.3 Data model

To define the state of the abstract model, we define a set of Coq types. These types
consist of nested Record types and Coq primitive types (natural numbers, lists,
Booleans). The state should beminimal andwe avoid defining a specific represen-
tation and layout of data in memory.
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Pages, blocks, lines, and objects are crucial to the collector operation. Although
object arrangement in lines is somewhat related to memory layout, we cannot de-
fine Immix-based line marking and collection without this facet modelled.

The final type defined in the data model is imx state, which bundles together
all the runtime state of the collector, along with the set of allocated pages, their
blocks, and objects, represented by the imx page, imx block, and imx object
types, respectively.
Record imx_state := {

os_allocs : list (nat * Z);
os_alloc_id : nat;
pages : list ImxPage.imx_page;
roots : list (nat * nat * Z);
alloc_cursor : (nat * nat * Z);
alloc_limit : Z;
pool : list (nat * nat);
recyclable : list (nat * nat);
object_count : nat;
mark_stack : list (nat * nat * Z);

}.

We define the lemma imx state valid to mean that the given instance of
imx state is valid and self-consistent. For example, each block in the pool list
must be contained in one of the currently allocated pages. imx state valid is
an invariant that ismaintained by all functions of the functional specification (see
Section 5.4).

5.3.1 Preprocessing step

The data model additionally defines a number of Coq functions to more conve-
niently update values in the state. In particular, even though Coq has a record
type syntax, it does not have syntax to update a specific field of a record. We auto-
matically generate field updaters in a preprocessing step to avoid additional Coq
library dependencies1.

Our preprocessor is triggered by special comment syntax. As an example, con-
sider a record type sometypewith fields foo and bar:
Record sometype := {

foo : nat;
bar : list nat;

}.
(*@gen_setters sometype foo bar*)

After running the preprocessor, the comment is transformed into:
1Tej Chajed’s coq-record-update is one such library, available at https://github.com/

tchajed/coq-record-update.
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Definition upd_foo value (original : sometype) : sometype := {|
foo := value;
bar := (bar original);

|}.
Definition upd_bar value (original : sometype) : sometype := {|

foo := (foo original);
bar := value;

|}.

We avoid name collisions by packing record types and their associated func-
tions into individual modules, e.g. ImxState contains imx state. This means
types need to be qualified with their module path, but this is only a minor nui-
sance.

5.3.2 State storage

Records in Coq are immutable. Any update operation we might wish to apply to a
record can only be modelled as the creation of a new record instance with some
values updated. This could cause problems if we had multiple record instances
that should represent the current state of the same object in memory, because up-
dating one record would not update the other. This is the case with imx state—it
has a list of imx page instances which then have lists of blocks, then objects—but
sometimes the abstract model functions hold a local reference to a page.

We chose to resolve these problematic situations by adding identifier fields to
each record type, allowing them to be looked up and updated uniquely from the
imx state instance.

5.4 Functional specification

5.4.1 Type signature

For each function of the collector implementation, we define an abstract version
that operates on the data model. The signature of these functions is one of:
imx_state -> imx_result Out
In -> imx_state -> imx_result Out

Where In is an optional argument type and Out is the result type. Out may
be unit, if there is no return value. imx result is a wrapper type that encodes
successful results and possible errors:
Inductive imx_result (Out : Type) : Type :=

| imx_ok (res : Out) (state : imx_state)
| imx_error (msg : string).
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An imx error is an irrecoverable error that is propagated up the call chain.
There is no exception handling and a failed operation is later mapped to an unsat-
isfiable heap predicate. See Chapter 6 for more detail.

5.4.2 Monadic notation

To avoid having to pattern match on imx result after every call, we define a
monadic notation2 for the model states and results. We find the resulting func-
tion definitions a lot more readable and easier to reason about. For a comparison
of the notation applied to a trivial example see Figure 5.1. Table 5.1 describes all of
the added syntax. The syntax is composable, and may be mixed with regular Coq
syntax, such as let x Ȃ:= ȂȂ... in ȂȂ....

Fixpoint imx_gc_grow_heap
(count : nat) : imx_func unit :=

match count with
| S n =>
imx_gc_alloc_page_normal !;
imx_gc_grow_heap n

| _ => imx_return tt
end.

Fixpoint imx_gc_grow_heap
(count : nat)
(state : ImxState.imx_state)
: imx_result unit :=

match count with
| S n =>
match imx_gc_alloc_page_normal state with
| imx_ok _ state =>
imx_gc_grow_heap n state

| imx_err msg => imx_err msg
end

| _ => imx_ok tt state
end.

Figure 5.1: Example of monadic notation. The two versions are functionally equivalent,
but the left one uses our notation. Note that we defined !; as the monadic bind operation.

Syntax Type of f Description
x <-^ f ; ȂȂ... imx state Ȃ-> X Read from the state.
x <- f ; ȂȂ... imx state Ȃ-> imx result X Function call, assigning result to x.
f !; ȂȂ... imx state Ȃ-> imx result X Function call, discarding result.
f ^; ȂȂ... imx state Ȃ-> imx state Write to the state.

Table 5.1: Monadic notation. x is a variable identifier, available in the scope after the call.
f is one of the functions of the functional specification. Function calls may fail, in which
case the failure is propagated as the result of the entire monad chain.

5.4.3 Functions

Table 5.2 shows a full list of the functions of the abstractmodel. Each functionmir-
rors the functionality of the C implementation, but is applied to the abstract data

2Coq’s parser allows introducing custom extensions to the syntax without having to modify the
entire compiler.
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Function name Input type Output type
gc_alloc_os_memory Z nat
gc_free_os_memory nat –
gc_add_page imx page –
gc_alloc_page_normal – imx page
gc_alloc_page_huge Z imx page
gc_free_page_memory Z –
hl_add_root (nat * nat * Z) –
hl_remove_root (nat * nat * Z) –
gc_push_block imx block –
gc_push_huge imx object –
gc_push (nat * nat * Z) –
gc_pop – imx object
gc_mark – –
gc_sweep – –
hl_gc_major – –
gc_alloc_bump Z imx object
gc_find_gap – bool
gc_pop_block – imx block
gc_pop_huge Z imx block
hl_gc_alloc_gen Z imx object

Table 5.2: List of functions in the functional specification of the abstract model. All func-
tion names are prefixedwith imx func in the Coq code. “–” as an input type indicates no
input argument. “–” as an output type indicates the result is unit in Coq.

model. The abstract model is approximately 600 standard3 LoC in size, compared
to the 1200 standard LoC of the C implementation. The functional specification is
also less complex due to the simpler syntax of Coq.

For functions that take somearguments in theC implementation,wemap these
as follows:

• Object sizes: mapped as a single Z-typed argument. Z in Coq efficiently rep-
resents any integer, including negative numbers, but this mapping allows us
easier transition from the VST representation, discussed later.

• Arbitrary pointers: mapped as a tuple (nat * nat * Z). The first compo-
nent represents the ID of the page, the second is the block number, and the
third is the offset inside the block.

• Typed pointers: in some situations, such as in gc_push_block, it is more
convenient to accept as an argument the record representing a model object,

3Excluding comments and empty lines.
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rather than its identifier (see Section 5.3.2). This is usually used for argu-
ments that are not modified.

5.5 Correctness

Although the abstract model is much shorter and more readable than the C im-
plementation, a curious reader might still wonder whether the model itself is cor-
rectly defined. In our project, we chose to address this issuewith a test suite evalu-
ating the behaviour of the model in a variety of situations. We believe this is suffi-
cient, because it would require a consistent, systematic error to produce the same
issue in both the C implementation, the Coq model, the abstract model test suite,
and the VST proofs (defined in Chapter 6) linking the abstract model to the imple-
mentation. Alternative approaches exist, such as Hawblitzel’s and Petrank’s [32],
which establishes the correctness of the collector based on invariants that must
persist across execution of its functions.
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Chapter 6

Formal verification

6.1 Introduction

In this chapter, we describe the verification process used for the implementation.
In Section 6.2, we give the high-level overview of the proof method. In Section 6.3,
we describe a mapping from the abstract model to VST predicates. In Section 6.4,
we describe the process of generating VST specifications. Finally, in Section 6.5,
we discuss the specifics of the proof process.

6.2 Proof overview

Because the collector is designed to integrate into the existing HashLink project
which consists of a codebase of considerable size1 and many third-party library
dependencies, the proof scope is limited to the operation of the GC only. We relate
the abstract model defined in Chapter 5 to the C implementation using VST-Floyd2
and CompCert. This process is similar to the approach taken by Koh et al. [31]

We complete the proof in the following steps, each of which is described in
more detail in the subsequent sections:

1. Model-to-VST mapping: A mapping from model states to VST heap predi-
cates is defined.

2. VST specifications: The pre- and postconditions of the C implementation
functions are created from the model and functional specifications.

3. VST proofs: VST is used to prove that the postconditions are ensured given
the pre-conditions and the C code.

1The HashLink project spans approximately 30,000 lines of C code, excluding library dependen-
cies.

2VST is the Verifiable Software Toolchain, which includes the verified C compiler CompCert; the
Verifiable C separation logic; and VST-Floyd, a proof automation library for Verifiable C proofs. We
will usually refer to the latter as “VST” for brevity.
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Figure 6.1: Proof overview.

A visual representation of the proof steps is shown in Figure 6.1. Note that the
proof could have been completed without defining an abstract model. Instead, all
of the collector functions could have been proven individually using standard VST
specifications. However, this approach would have resulted in a much less useful
proof since the pre- and postconditions would be very long and not obviously cor-
rect or connected to the operation of an Immix-based garbage collector. By basing
our proof in a simple, relatively easy to understand model, we can be more confi-
dent in the validity of the proof itself. See also Section 5.5.

6.3 Model-to-VST mapping

To be able to use the abstract model in our VST proofs, we needed somemethod of
connecting the states of the model with VST. In VST, function pre- and postcon-
ditions are “lifted predicates”, which consist of pure logic propositions, separation
logic conjuncts, local variables in the scope, and, optionally, existential qualifiers.
Such a predicate can be thought of as a subset of all possible heaps. To connect
the model states with VST, we considered two possible methods: converting VST
heap predicates to instances of themodel state, and the opposite, convertingmodel
state to VST heap predicates.

In our work, we concluded it to be too impractical to match on parts of a VST
predicate in an attempt to map them to an abstract state. Due to the shadow state
(explained below), we believe it is actually impossible to perform this mapping
without losing some information.

Instead, we define a mapping from abstract states to VST heap predicates. In
Coq types:
Definition imx_to_vst

(gv : globals)
(shadow : vst_shadow)
(state : imx_state)
: mpred := ...

This mapping function generates VST heap predicates corresponding to a par-
ticular abstract state. globals is a mapping of identifiers to symbols, which al-
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lows us to refer to static variables defined in the C code along with the implemen-
tation functions.

The vst shadow type encompasses all of the implementation-specific parts of
the heap state, such as the specific arrangement of pages in the collector’s hash
map. We define the supplementary lemma imx shadow valid to mean that the
given shadow is valid for the given state; for example, the number of specific
addresses of OS allocations in shadowmust match the number of abstract OS allo-
cations in state. We require vst shadow to exist because we made the choice to
omit the specifics of memory layout from our abstract model. Without this ad-
ditional information, we could only generate VST predicates that would be too
generic, i.e. some heaps that would not satisfy the precondition would be con-
sidered valid, and likewise for the postcondition.

To the best of our knowledge, generating VST heap predicates from an abstract
state (with or without the supplementary concrete state) is a novel method to rea-
son about complex programs with a large amount of state variables.

6.3.1 Mapping components

The definition of the imx to vst function consists of a separating conjunction of
several helper functions, one for each state variable. For example, the assertion
about the state of the gc pool variable is generated using the gen gc pool func-
tion. With this approach, we can treat calls to the generator functions as abstract
predicates during our VST proofs, unlesswe explicitly require them, inwhich case
they can be unfolded.

Functions such as gen pages are tail-recursive on the list of pages in the ab-
stract state. This is useful when proving certain implementation functions, be-
cause it allows us to not have to reason by induction over the entire list of pages.

6.3.2 Erroneous operation

As mentioned in Section 5.4.1, functions of the abstract model may execute suc-
cessfully (imx ok), or they may fail (imx error). We define the model such that
the latter case would only happen if a function was called at the wrong time or
with incorrect arguments. In other words, if the precondition is satisfied, the func-
tion will always execute successfully. To avoid the need to define the pre- and
postconditions in the model as well, we map the imx error result to an unsatisfi-
able VST heap predicate, namely FF. This effectively re-uses the VST precondition
in the abstract model functions.

6.4 VST specifications

For each function of the implementation, we generate a VST specification using
the state mapping function and the abstract functions.
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Definition vst_spec_gc_free_os_memory : ident * funspec :=
DECLARE I._gc_free_os_memory
WITH
shadow : ImxShadow.imx_shadow,
state : ImxState.imx_state,
gv : globals,
id : nat

PRE [tptr tvoid]
PROP (Map.imx_shadow_valid shadow state)
PARAMS (Map.vst_page id)
GLOBALS (gv)
SEP (Map.imx_to_vst gv shadow state)

POST [tvoid]
Map.imx_to_vst_post

gv
shadow
state
(imx_func_gc_free_os_memory id).

Note that the spatial assertion part of the precondition (SEP(ȂȂ...) in VST syn-
tax) consists only of themapped abstract state. Likewise, the entire postcondition
is generated using the helper function imx to vst post.

We also define more straight-forward mapping functions to map arguments
from one representation to another, such as the vst page used above.

6.4.1 Axioms

Because the collector is a very low-level component of HashLink, it is possible
to separate it from the codebase without too much work. On the other hand, the
GC also relies on the operating system for page allocation. To avoid proving the
internal implementation of any particular OS, the mmap and munmap functions are
axiomatised. In particular, the page allocation assumes on the fact that mmapwill
produce pages with the proper memory alignment. This is not actually the case
in practice, so the full GC implementation includes code to re-align as needed. In
the proofs, the mmap axiom states that thememory is aligned and the re-alignment
code is removed to simplify the proofs.

Similarly, calls to malloc, calloc, and freewere axiomatised, although these
axioms are already provided by VST.

6.5 VST proofs

Finally, we prove the VST functional specifications using VST forward separation
logic. The proof scripts are available in the project archive. Each proof is rather
long due to the nature of Coq-based proofs and idiomatic C code being generally
difficult to reason about.
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6.5.1 Verification setup

For proving the correctness of the implementation, we used VST-Floyd (commit
9f136a9a), CompCert (commit 35473ecc), Coq (8.11.1), and OCaml (4.05.0).

To be able to refer to the collector sources in our proofs, we invoke Clightgen,
a tool that is bundled with CompCert. The output is an abstract syntax tree (AST)
that represents the code in all of the defined functions, in addition to “identifiers”,
arbitrary numbers that uniquely identify each function or variable symbol. Note
that Coq/VST compilation is not particularly fast, and including the AST module
results in a small but visible slowdown.

TheVSTmanual recommends structuring large programproofs such that each
function is proven in an individual file that imports a base file that contains the
VST specifications themselves. The base file then depends on the VST library, as
well as the extracted AST.

After introducing the levels of abstraction listed in the previous sections, we
decided on further separating our modules. We define the Immix abstract data
model and functional specification in Immix. To avoid depending on the specific
AST symbols, we define amodule type VSTIdents3 that lists all the required sym-
bols as separate parameters. We define themodel-to-VSTmapping in VSTMap, and
instantiate the VST specifications in VSTSpecs. In VSTProofswe finally provide
the module with concrete symbol identifiers as defined in the extracted ASTmod-
ule gc. Each function is then proved individually in the Proof* modules. With
this approach, we were able to reduce compilation times for modules that did not
absolutely require the extracted AST. See Figure 6.2 for a visual representation of
the module dependencies.

Immix.v

VSTIdents.v

VSTMap.v

VSTSpecs.vgc.v

VSTProofs.v

Proof(X).v Proof(Y).v …

gc.c

Clightgen

Figure 6.2: Dependencies between proof files/modules.

3A module type corresponds to an “interface” in standard OOP terminology. A parameter is a
variable that can then be concretely defined in a separate module.
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Chapter 7

Conclusions and future work

7.1 Contributions

To summarise the contributions of our project:

• We implemented an Immix-based garbage collector and demonstrated sig-
nificant performance improvements of the HashLink virtual machine and
runtime with its integration.

• We created a benchmarking framework for Haxe, allowing easy creation and
contribution of new cases.

• We introduced a formalmodel of the collector written in Coq and proved that
the code implements it correctly using VST-Floyd.

• We introduced a novel method to generate VST assertions for complex pro-
grams with a large state.

Since the conception of the project, improving HashLink (and by extension the
Haxe ecosystem) in practice was an important goal. As such, after the conclusion
of the academic portion of this project, the natural next step is to ensure the col-
lector code is contributed back into the master branch of the HashLink repository,
allowing users to test it. The pull request implementing the new collector is acces-
sible online in the HashLink repository1.

7.2 Performance improvements

Some optimisations that were explored, but not ultimately implemented, were dis-
cussed in Section 3.4. Further performance improvements may be possible by in-
troducing a generational collection system, making the marking and sweeping

1https://github.com/HaxeFoundation/hashlink/pull/372
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multi-threaded, and optimising the codebase for generating better assembly code
with various compilers.

A fully concurrent collector could be very beneficial for the performance as
well, although this would require changes to the GC interface, which was left un-
modified for this project by design. Changing the GC interface would also require
potentially complex changes to the code produced by HashLink’s JIT compiler, e.g.
to introduce write barriers.

7.3 Formal verification

It may also be possible to specify the behaviour of the HashLink virtual machine
as a whole, to establish the correctness of its implementation, its VM semantics,
and to allow its integration in more in-depth research projects. This would be a
much larger undertaking, due to its larger codebase, various low-level interactions
with the operating system, and its own JIT compiler. Proof of the latter might
necessarily be built on top of proofs for the semantics of the x86 architecture. A
similar work, towards proving a Java VM, has been conducted by Hanbing [40],
and could be a good starting point.

The framework of VST-Floyd itself could also be improved, in terms of its doc-
umentation and tooling, since we did not find the development of proofs for the
collector to be particularly intuitive or user-friendly. Some possible improvements
include a more comprehensive and up-to-date manual, a guide to the internals of
the framework, as well as general performance improvements.
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Appendix A

Installation guide

At the time of writing, the new collector is only usable with 64-bit architectures,
and was tested on Mac OS X 10.9.5 and Ubuntu 18.04 only. Compilation fails en-
tirely on Windows, since the underlying OS calls assume a POSIX environment.
As noted in Section 3.6 and Chapter 7, re-aligning the codebase with the frame-
work of the original HashLink project is subject to upcoming future work.

To install HashLink with the new collector, check out the feature/gc fork
branch of the Aurel300 fork of HashLink1. In a standard git-equipped terminal:

$ git clone --single-branch --branch feature/gc
git@github.com:Aurel300/hashlink.git

Alternatively, if SSH login for git is not set up:

$ git clone --single-branch --branch feature/gc
https://github.com/Aurel300/hashlink.git

Then follow the installation guide found in the README file2. The new collec-
tor does not add any additional dependencies, so apt-get on Linux and brew on
Mac OS X should suffice before invoking make.

1https://github.com/Aurel300/hashlink/tree/feature/gc
2https://github.com/HaxeFoundation/hashlink/blob/master/README.md

61

https://github.com/Aurel300/hashlink/tree/feature/gc
https://github.com/HaxeFoundation/hashlink/blob/master/README.md


Appendix B

Tabulated benchmark results

This appendix lists the specific benchmark measurements used to produce the
graphs in Chapter 4.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 8.491 9.395 3.075 2.820
2 8.467 9.380 3.068 2.904
3 9.180 9.391 3.086 2.801
4 10.626 9.511 3.094 2.852
5 9.392 9.761 3.027 2.796
6 8.858 9.469 3.057 2.898
7 9.009 9.510 2.659 2.841
8 8.885 9.433 3.050 2.850
9 8.913 9.606 3.058 2.822
10 9.086 9.556 3.087 2.862
11 9.098 9.592 2.938 2.821
12 9.209 9.874 3.038 2.843
13 9.018 9.960 1.457 2.865
14 9.099 10.038 2.918 2.850
15 9.143 9.875 2.982 2.808
16 9.045 10.117 3.001 2.870
17 9.197 9.902 2.995 2.865
18 9.198 10.201 1.376 2.883
19 9.365 9.956 2.892 2.858
20 9.457 10.005 2.824 2.838

alloc benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 16.298 4.930 19.497 4.845
2 17.355 4.883 19.351 4.783
3 17.795 4.901 19.492 4.798
4 17.959 4.880 19.732 4.743
5 17.982 4.894 19.541 4.771
6 18.263 5.100 19.471 4.981
7 18.292 4.895 19.500 4.813
8 18.291 4.889 19.444 4.737
9 18.371 4.909 19.440 4.823
10 18.514 4.906 19.454 4.752
11 18.447 4.869 19.517 4.793
12 18.656 4.907 19.470 4.765
13 18.675 5.146 19.513 5.016
14 18.722 4.921 19.581 4.775
15 19.314 4.887 19.693 4.820
16 19.505 4.894 19.629 4.776
17 19.670 4.906 19.630 4.782
18 19.620 4.982 19.638 4.788
19 19.550 4.908 19.531 4.795
20 19.563 5.142 19.535 5.022

bcrypt benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 46.492 55.416 4.288 3.110
2 50.826 55.457 4.176 3.180
3 52.080 55.407 4.155 3.401
4 56.942 55.585 4.175 3.191
5 56.543 55.430 4.192 3.141
6 55.638 55.658 4.184 3.119
7 55.841 56.155 4.323 3.145
8 55.784 55.917 4.217 3.137
9 56.180 56.405 4.078 3.129
10 55.936 55.937 4.065 3.158
11 55.989 56.468 4.089 3.189
12 56.194 55.640 4.080 3.144
13 56.288 55.634 4.105 3.406
14 56.242 55.842 4.079 3.242
15 56.294 55.945 4.241 3.113
16 56.416 56.066 4.079 3.127
17 56.180 55.566 4.015 3.146
18 56.437 56.433 4.021 3.174
19 56.446 55.879 4.087 3.110
20 56.203 56.498 3.990 3.196

binarytrees benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 76.767 73.560 14.913 11.826
2 89.483 66.769 17.273 13.661
3 n/a n/a 18.128 18.128
4 n/a n/a 17.192 13.665
5 n/a n/a 18.816 14.246
6 n/a n/a 17.162 15.007
7 n/a n/a 17.685 13.225
8 n/a n/a 18.931 13.497
9 n/a n/a 18.095 13.377
10 n/a n/a 17.431 22.140
11 n/a n/a n/a n/a
12 n/a n/a n/a n/a
13 n/a n/a n/a n/a
14 n/a n/a n/a n/a
15 n/a n/a n/a n/a
16 n/a n/a n/a n/a
17 n/a n/a n/a n/a
18 n/a n/a n/a n/a
19 n/a n/a n/a n/a
20 n/a n/a n/a n/a

formatter benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 129.448 98.689 24.804 21.167
2 97.689 n/a 23.973 n/a
3 n/a n/a 24.430 n/a
4 n/a n/a n/a n/a
5 n/a n/a n/a n/a
6 n/a n/a n/a n/a
7 n/a n/a n/a n/a
8 n/a n/a n/a n/a
9 n/a n/a n/a n/a
10 n/a n/a n/a n/a
11 n/a n/a n/a n/a
12 n/a n/a n/a n/a
13 n/a n/a n/a n/a
14 n/a n/a n/a n/a
15 n/a n/a n/a n/a
16 n/a n/a n/a n/a
17 n/a n/a n/a n/a
18 n/a n/a n/a n/a
19 n/a n/a n/a n/a
20 n/a n/a n/a n/a

formatter-noio benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 9.411 8.271 2.185 1.616
2 9.656 8.568 2.212 1.684
3 11.964 8.323 2.287 1.616
4 9.481 9.099 2.233 1.679
5 9.133 8.452 2.233 1.689
6 8.872 8.529 2.233 1.649
7 8.840 8.491 2.246 1.973
8 9.149 8.688 1.219 1.762
9 8.723 8.382 2.280 1.710
10 8.910 8.436 2.295 1.736
11 8.903 8.385 2.290 1.701
12 9.033 8.677 2.325 1.708
13 8.922 8.415 2.259 1.708
14 8.891 8.485 2.549 1.741
15 9.040 8.429 2.314 1.727
16 9.170 8.778 2.249 1.713
17 9.039 8.515 2.310 1.732
18 9.107 8.481 2.277 1.694
19 9.184 8.426 2.293 1.756
20 9.205 8.853 2.360 1.717

json benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 203.976 211.670 18.025 14.416
2 202.291 229.902 17.983 14.668
3 202.201 206.827 18.077 14.368
4 202.632 203.729 17.904 14.506
5 202.547 202.633 18.072 14.685
6 201.471 203.670 17.884 14.421
7 201.174 201.836 18.125 14.339
8 201.325 200.001 18.106 14.740
9 201.884 199.342 18.027 14.347
10 201.465 199.777 18.131 14.388
11 201.698 198.790 18.095 14.785
12 201.455 198.632 18.090 14.435
13 201.639 200.329 17.944 14.431
14 201.233 202.149 18.082 14.852
15 201.740 203.308 18.120 14.414
16 202.648 204.262 18.131 14.455
17 203.789 205.457 18.029 14.736
18 203.819 206.568 18.122 14.434
19 204.724 207.202 18.136 14.430
20 205.643 208.473 18.132 14.839

mandelbrot benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 162.893 185.824 13.805 11.052
2 175.236 186.193 13.695 10.923
3 188.679 184.493 13.661 10.938
4 188.589 185.763 13.404 11.069
5 189.289 183.744 13.366 10.964
6 189.670 184.822 13.359 10.922
7 190.506 183.431 13.275 11.019
8 191.198 184.201 13.269 10.937
9 195.735 182.706 13.391 10.931
10 190.895 184.971 13.355 11.065
11 191.460 186.470 13.360 10.943
12 192.352 186.229 13.546 10.913
13 192.007 182.728 13.452 11.034
14 192.584 186.460 13.499 10.899
15 191.692 182.493 13.590 10.999
16 194.799 185.401 13.404 11.011
17 191.438 184.253 13.441 10.904
18 190.953 187.391 13.669 10.905
19 191.028 184.062 13.470 11.080
20 190.435 183.242 13.564 10.903

mandelbrot-anon benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 5.253 2.277 5.985 2.233
2 5.266 2.160 5.824 2.256
3 5.267 2.180 6.007 2.234
4 5.246 2.163 6.012 2.210
5 5.391 2.191 5.840 2.241
6 5.287 2.135 5.816 2.204
7 5.281 2.161 5.986 2.262
8 5.669 2.244 5.880 2.212
9 6.956 2.133 5.937 2.177
10 7.236 2.199 5.783 2.416
11 7.522 2.215 5.832 2.291
12 6.335 2.148 5.924 2.285
13 6.186 2.119 6.039 2.249
14 5.826 2.148 5.943 2.315
15 5.584 2.132 5.915 2.301
16 5.613 2.254 5.923 2.319
17 5.670 2.222 5.946 2.296
18 5.960 2.222 6.057 2.341
19 5.630 2.167 6.232 2.318
20 5.703 2.184 5.895 2.356

nbody benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 4.235 2.663 2.228 0.642
2 4.454 2.593 2.067 0.631
3 4.101 2.645 2.069 0.627
4 4.112 2.553 2.113 0.602
5 4.148 2.650 2.033 0.598
6 4.122 2.617 2.060 0.609
7 4.144 2.622 2.111 0.605
8 4.138 2.962 2.031 0.620
9 4.193 2.595 2.092 0.626
10 4.437 2.590 2.035 0.633
11 4.136 2.653 2.099 0.600
12 4.152 2.605 2.098 0.610
13 4.115 2.647 2.084 0.607
14 4.176 2.620 2.108 0.606
15 4.092 2.603 2.328 0.621
16 4.085 2.580 2.079 0.624
17 4.097 2.702 2.042 0.624
18 4.339 2.578 2.135 0.627
19 4.038 2.668 2.050 0.611
20 4.074 2.818 2.037 0.601

sha256 benchmark results.
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Sample JIT old (s) C old (s) JIT new (s) C new (s)
1 18.814 20.309 2.736 2.182
2 18.674 20.005 2.664 2.270
3 19.171 20.285 2.676 2.090
4 19.357 20.675 2.676 2.162
5 19.478 20.256 2.648 2.155
6 20.824 20.443 2.646 2.147
7 19.611 22.681 2.656 2.164
8 19.764 21.624 2.642 2.198
9 19.797 25.316 2.673 2.163
10 19.808 22.873 2.672 2.119
11 20.088 20.259 2.783 2.175
12 19.911 20.399 2.667 2.170
13 20.061 20.369 2.717 2.144
14 20.276 20.254 2.631 2.417
15 20.334 20.229 2.644 2.231
16 20.436 20.167 2.620 2.366
17 20.753 20.140 2.681 2.169
18 20.475 20.252 2.629 2.199
19 21.204 20.123 2.654 2.185
20 20.570 25.980 2.646 2.182

sha512 benchmark results.
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