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Abstract

We look at how the Quantum Fourier Transform can be used to solve a number of computationally
difficult problems on a quantum computer. In the first half of this thesis, we show how a model for
Quantum Computing can be constructed from the postulates of Quantum Mechanics, focusing on
the unitary nature of operations in a quantum computer. We describe a procedure that replicates
any classical computation on a quantum computer using only Toffoli and quantum NOT gates. In
addition, we study the important quantum algorithms for the quantum system Z2n : in particular, we
look at a procedure that solves the Phase Estimation Problem for a unitary operator and see how it
is implemented in Shor’s Algorithm to factor integers into their prime decomposition. In the second
half, we generalise our approach to quantum systems that are the group algebra of a finite group over
C. We look at whether there exists an efficient quantum algorithm that solves the Hidden Subgroup
Problem for an arbitrary group. We show how the irreducible representations of a group can be
used in a procedure to solve the problem in the case where the group is abelian. We see how Shor’s
Algorithm and the Discrete Logarithm Problem are specific instances of this procedure. Finally, we
investigate the Hidden Subgroup Problem in the case where the group is not abelian, which is an
open problem in Computer Science. We show how weak Fourier sampling makes it possible to find
the hidden subgroup in the case where it is normal in the group.

This is my own work unless otherwise stated.
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Notation

Linear Algebra

Symbol Description

† Adjoint
∗ Complex Conjugate
⊗ Tensor Product
⊕ Direct Sum; sometimes addition modulo 2
tr Trace operator
rank Rank of a Matrix
(∗, ∗) Inner Product
〈∗|∗〉 Inner Product; a “braket”
(∗, ∗)H Inner Product restricted to a group H
(A∗)T Adjoint of the matrix A
δij Kronecker Delta; 1 if i = j, 0 otherwise
CNOT Controlled-NOT gate
H Hadamard operator on a qubit
H⊗n Hadamard operator on n qubits
F2n Quantum Fourier Transform for a quantum system of size 2n

FG Quantum Fourier Transform for an arbitrary group G

F †G Inverse Quantum Fourier Transform for an arbitrary group G
I Identity operator
IV Identity operator on a vector space V
Id Identity matrix of dimension d
Mi Measurement Operator indexed by outcome i
Q Quantum System, a complex Hilbert Space
Rk Rotation gate
S Phase gate; same as R2 gate
Toffoli Toffoli gate
U Arbitrary Unitary operator
Uf Oracle evaluating the function f
X Quantum NOT gate
|ψ〉 State of a quantum computer
ρ Density Operator/Density Matrix
|v〉 A vector in Dirac Notation; a “ket”

〈v| Defined to be |v〉†; a “bra”
|w〉 〈v| Outer Product Operator
|v〉 ⊗ |w〉 Tensor Product of |v〉 and |w〉
|v〉 |w〉 Abbreviated notation for the Tensor Product of |v〉 and |w〉
|vw〉 Abbreviated notation for the Tensor Product of |v〉 and |w〉
{|0〉 , |1〉} Computational Basis of a qubit
{|0〉 , |1〉}n Computational Basis of an n-qubit quantum system

|0〉⊗n Initial State of an n-qubit quantum computer
|x̃〉 Element of the Fourier basis
|x+H〉 Coset State in an abelian group G
|xH〉 Coset State in any group G
φ Phase of an eigenvalue of a unitary operator
x · y Dot Product



Group Theory

Symbol Description

G Symbol for an arbitrary group
|G| Order of the group G
1 Identity element of an arbitrary or non-abelian group
0 Identity element of an abelian group
(CN ,×) Cyclic group of order N , multiplicative notation
(ZN ,+) Cyclic group of order N , additive notation
(Z∗N ,×) Multiplicative group of integers modulo N
(C×,×) Group of units of C
C[G] Group Algebra of G over C
CG Set of functions G→ C
Ĝ Dual group of G
G/H Quotient Group
[G : H] Index of H in G; size of the Quotient group G/H
GL(V ) Group of invertible linear maps V → V
H Hidden Subgroup in the Hidden Subgroup Problem

H⊥ Orthogonal subgroup of Ĝ
L Left Regular Representation
R Right Regular Representation
ord(x) Order of the element x ∈ G
ρ Representation ρ of a group
dρ Dimension of a representation ρ
χρ Character of a representation ρ
χ Abbreviated notation for χρ
ker(φ) Kernel of a group homomorphism φ
im(φ) Image of a group homomorphism φ
1G Trivial representation of a group G
σ Irreducible representation of a group
≤ Subgroup
E Normal Subgroup
∼= Isomorphic groups
∼ Isomorphic representations
Ψx Pontryagin Duality, evaluate character at x ∈ G
ωN N th root of unity, defined to be e

2πi
N

ω Abbreviated notation for ωN

Miscellaneous

Symbol Description

∧ Logical AND
¬ Logical NOT∑

Sum∏
Product∫
Integral

gcd Greatest Common Divisor
λ Scalar in C
log2 Base-2 Logarithm



φ(N) Euler’s Totient Function
[a0, . . . , an] nth convergent of a simple continued fraction
L2([0, 1]) Space of L2 functions on [0, 1]
L2(Z) Space of L2 functions on Z
f̂ Fourier Transform of a function f
P (i) Probability of outcome i occurring
Ω(N) Asymptotic Lower Bound for an algorithm of input size N
O(N) Asymptotic Upper Bound for an algorithm of input size N
Θ(N) Asymptotic Lower and Upper Bound for an algorithm of input size N
S1 Unit Circle
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1 Introduction

Joseph Fourier (1768− 1830), in his attempts to solve the heat equation [22]

∂u

∂t
= α2∂

2u

∂2x
(1.1)

for some function u(x, t) representing the temperature of a metal rod at position x and time t, realised
that certain complex-valued functions f could be represented as a linear combination of sine and cosine
functions.

In particular, if f is a 1-periodic function mapping the real line R to the complex plane C, then f
can be expressed in the form

f(x) =
∑
n≥0

an cos(2πnx) +
∑
n≥1

bn sin(2πnx) (1.2)

with coefficients an, bn ∈ C for all n ∈ Z.

It is possible to rewrite Equation (1.2) using complex exponentials instead as

f(x) =
∞∑

n=−∞

cne
2πinx (1.3)

with coefficients cn ∈ C.

It can be shown that the coefficients cn take the form

cn =

∫ 1

0

e−2πinxf(x) dx (1.4)

Relabelling cn as f̂(n), Equation (1.3) becomes

f(x) =
∞∑

n=−∞

f̂(n)e2πinx (1.5)

Expressions of this form are called Fourier series and the coefficients f̂(n) are called Fourier coefficients.

If we consider instead functions f in the vector space L2([0, 1]), which are complex-valued functions
defined on the interval [0, 1] satisfying

||f ||2 :=

∫ 1

0

|f(x)|2 dx <∞ (1.6)

then not only can it be shown that the integral

f̂(n) :=

∫ 1

0

e−2πinxf(x) dx (1.7)

exists for all n ∈ Z, but also that the limit

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣

N∑
n=−N

f̂(n)e2πinx − f(x)

∣∣∣∣∣
∣∣∣∣∣ (1.8)
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exists and equals 0, where || ∗ || is defined in Equation (1.6).

Hence we say that f(x) has a Fourier series which we write in the form

∞∑
n=−∞

f̂(n)e2πinx (1.9)

The vector space L2([0, 1]) was of particular interest to Fourier because its functions come with a lot
more structure than simple periodic functions.

In particular, we can define a function (∗, ∗) : L2([0, 1])× L2([0, 1])→ C to be

(f, g) :=

∫ 1

0

f(x)∗g(x) dx (1.10)

for all f, g ∈ L2([0, 1]), where ∗ denotes the complex conjugate. This function can be seen to satisfy
the properties of a complex inner product as given in Definition 2.1.

As a result, we have that

(f, f) =

∫ 1

0

f(x)∗f(x) dx =

∫ 1

0

|f(x)|2 dx = ||f ||2 (1.11)

Furthermore, we can show that the set of functions B := {en}n∈Z where

en(x) := e2πinx for all x ∈ [0, 1] (1.12)

is an orthonormal set in L2([0, 1]) with respect to the inner product (∗, ∗) defined in Equation (1.10).

Proof. Consider the inner product (em, en):

(em, en) =

∫ 1

0

(e2πimx)∗e2πinx dx =

∫ 1

0

e−2πimxe2πinx dx =

∫ 1

0

e2πi(n−m)x dx (1.13)

Splitting into cases:

Case 1: m 6= n

Equation (1.13) becomes

1

2πi(n−m)
e2πi(n−m)x

∣∣∣∣1
0

=
1

2πi(n−m)

[
e2πi(n−m) − e0

]
=

1

2πi(n−m)
[1− 1] = 0 (1.14)

Case 2: m = n

Equation (1.13) becomes ∫ 1

0

1 dx = 1 (1.15)

Hence
(em, en) = δmn (1.16)

where δ is the Kronecker delta.
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With more work, it can, in fact, be shown that the orthonormal set B of complex exponentials is an
orthonormal basis of L2([0, 1]) with respect to (∗, ∗).

As a result, it is easy to see that

(en, f) =

∫ 1

0

en(x)∗f(x) dx =

∫ 1

0

e−2πinxf(x) dx = f̂(n) (1.17)

and so, from Equation (1.9), functions f ∈ L2([0, 1]) can be written as a linear combination of the
orthonormal basis elements of L2([0, 1])

f =
∞∑

n=−∞

(en, f)en (1.18)

This allows us to prove the following identity, which is often referred to as Parseval’s Identity, although
sometimes it is also called Rayleigh’s Identity:∫ 1

0

|f(x)|2 dx =
∞∑

n=−∞

|f̂(n)|2 (1.19)

Proof. We have that ∫ 1

0

|f(x)|2 = (f, f)

=

(
∞∑

m=−∞

(em, f)em,
∞∑

n=−∞

(en, f)en

)

=
∞∑

m=−∞

∞∑
n=−∞

(em, f)∗(en, f)(em, en)

=
∞∑

m=−∞

∞∑
n=−∞

(em, f)∗(en, f)δmn

=
∞∑

n=−∞

(en, f)∗(en, f)

=
∞∑

n=−∞

|(en, f)|2

=
∞∑

n=−∞

|f̂(n)|2

as required.

If we consider the vector space of functions L2(Z) which are complex-valued functions F defined on
Z satisfying

∞∑
n=−∞

|F (n)|2 ≤ ∞ (1.20)

and we define a function 〈∗|∗〉 : L2(Z)× L2(Z)→ C to be

〈F |G〉 :=
∞∑

n=−∞

F (n)∗G(n) (1.21)
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for all F,G ∈ L2(Z), then it can be shown using Definition 2.1 that 〈∗|∗〉 is an inner product for L2(Z)

Consequently, we can rewrite Parseval’s Identity in terms of inner products:

(f, f) = 〈f̂ |f̂〉 (1.22)

In fact, we claim that Parseval’s Identity actually says that the operator U : L2([0, 1])→ L2(Z), which

maps f 7→ f̂ , is a unitary operator, that is, it is surjective and it preserves the inner product.

We call U the Fourier Transform on L2([0, 1]).

Proof. We know from Equation (1.16) that (em, en) = δmn.

Writing f̂i := Uei for i = m,n, we consider 〈f̂m|f̂n〉.

From Equation (1.9), setting f(x) = en(x), we can see that

f̂n(k) = δkn (1.23)

for all k ∈ Z.

Similarly, we can see that f̂m(k) = δkm for all k ∈ Z.

Therefore

〈f̂m|f̂n〉 =
∞∑

k=−∞

f̂m(k)∗f̂n(k) =
∞∑

k=−∞

δ∗kmδkn = δmn = (em, en) (1.24)

Since {en}n∈Z forms an orthonormal basis of L2([0, 1]), we have that {f̂n}n∈Z forms an orthonormal
basis of L2(Z), from which we can easily see that U is surjective; moreover, we have that

(f, g) = 〈Uf |Ug〉 (1.25)

for all f, g in L2([0, 1]), which can easily be seen by expressing f, g, Uf, Ug as linear combinations of
the basis elements of their respective vector spaces and applying the properties of the inner product.

We have therefore shown that the Fourier Transform on L2([0, 1]) is unitary.

This result made it possible for Fourier to solve the heat equation given in Equation (1.1) when u(x, t)
was a function of position and time such that u(x, t) ∈ L2([0, 1])×R≥0 satisfying u(0, t) = u(1, t), for
he could then express u(x, t) as a Fourier series

u(x, t) =
∞∑

n=−∞

cn(t)e2πinx (1.26)

where

cn(t) =

∫ 1

0

e−2πinxu(x, t) dx (1.27)

By differentiating this expression with respect to t, substituting in Equation (1.1), and using integra-
tion by parts twice, he would have obtained a differential equation in cn(t) whose solution is

cn(t) = cn(0)e−4α
2π2n2t (1.28)

By assuming some additional boundary conditions, namely that

u(x, 0) = f(x) (1.29)
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where f ∈ L2([0, 1]), he would have found that cn(0) is

cn(0) =

∫ 1

0

e−2πinxu(x, 0) dx =

∫ 1

0

e−2πinxf(x) dx = f̂(n) (1.30)

the nth Fourier coefficient of f .

Hence he would have shown that the general solution to the heat equation under these conditions is

u(x, t) =
∞∑

n=−∞

f̂(n)e−4α
2π2n2te2πinx (1.31)

Now while this thesis is neither a study of the heat equation, nor a study of the Fourier Transform
on L2([0, 1]), it is a study of a different type of Fourier Transform known as the Quantum Fourier
Transform, which has many of the same properties that the Fourier Transform on L2([0, 1]) has, and
which often forms the key to solving many difficult problems in Quantum Computing.

In particular, we will see that the Quantum Fourier Transform is also a unitary operator on the
complex Hilbert space that it operates on, thus preserving the inner product on vectors in the Hilbert
space. This is important because Quantum Computing is entirely based upon unitary operators and
how they are used to change the state of a quantum computer in order to output some information
which solves a computational problem. In the same way that applying the Fourier Transform to
elements of L2([0, 1]), expressed as a linear combination of orthonormal basis elements {en}n∈Z, allowed
Fourier to solve the heat equation, we will see that applying the Quantum Fourier Transform to
elements of the group algebra over C for some group G, C[G], expressed as a linear combination of
an orthonormal basis whose elements are indexed by the group elements of G, will allow us to solve a
range of computational problems on a quantum computer, all of which happen to be specific instances
of a much greater problem known as the Hidden Subgroup Problem.

As we have briefly mentioned, a quantum computer has a state at any point in time, similar to its
classical counterpart. But while the state of a classical computer can be observed without being
affected by the observation, the state of a quantum computer could, and is likely to, change upon it
being observed. This is because the model for Quantum Computing is founded upon the postulates of
Quantum Mechanics, the third of which says that the state of the computer changes probabilistically
according to the so-called “measurement operators” that are used to observe it. Furthermore, while
the classical computer’s state is a composition of bits, whose values take on either 0 or 1, the quantum
computer’s state is typically a (tensored) composition of qubits, which are unit vectors that can be
expressed as linear combinations of some basis vectors in the complex Hilbert space C2. Normally, this
basis is an orthonormal basis known as the computational basis, which can be written as {|0〉 , |1〉}
in Dirac notation, and the measurement operators are those that “collapse” the state of a qubit into
one of two quantum states, |0〉 or |1〉, that are analogous to the possible states of a bit. However,
neither the basis nor the measurement operators necessarily have to be these. Used well, the extra
range of states that are possible during a quantum computation prior to an observation can result in
quantum algorithms that are much more powerful than classical ones.

One of the major issues that occurs in Quantum Computing but not in Classical Computing as a
consequence of the previous paragraph is that the act of observing the state of a quantum computer
can lead to a level of “destructive interference”, where the resulting state suffers a loss of information
which was, in some sense, held in the state before it was observed. We will come to see that the
Quantum Fourier Transform is very useful in this respect because, in the case where it is applied to
the group algebra of an abelian group G, C[G], it is a transformation that maps the computational

basis of C[G] to an orthonormal basis of the group algebra of the dual group of G, C[Ĝ], known as
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the Fourier basis. It just so happens that C[Ĝ] is isomorphic to C[G], which we will come to see
is crucial in the context of unitary operators in Quantum Computing. The elements of the Fourier
basis are themselves linear combinations of a natural basis of C[Ĝ] indexed by the one-dimensional
irreducible representations of G. By applying the Quantum Fourier Transform to a state of the
quantum system C[G], we obtain a state in the other, isomorphic quantum system, C[Ĝ], expressed
as a linear combination of elements from the Fourier basis. The key point is that when we choose
measurement operators that collapse this new state into one of the irreducible representations of G
and observe the new state, it results in the preservation of the information that was held in the original
state of the former quantum system C[G], under the right conditions. This is very similar to how the
Fourier Transform on L2([0, 1]) made it possible for functions f in this space to be transformed into

L2 functions f̂ on the dual group of [0, 1], the integers Z, which could then be worked with in order
to obtain a solution to the heat equation in the original L2([0, 1]) space.

Our efforts to understand the Quantum Fourier Transform will take us on a journey across a wide
spectrum of topics in Mathematics, Physics and Computer Science: we will see how Quantum Me-
chanics is used to inform the basis of a model of computation for Quantum Computing; we will study
a number of concepts from linear algebra in order to express our thoughts and ideas; we will see that
quantum computers need all of its operators to be reversible, in direct contrast to Classical Comput-
ing; we will find ourselves venturing into number theory in order to analyse a quantum algorithm to
factor integers on a quantum computer, before generalising our results and algorithms by investigating
the application of the Quantum Fourier Transform to the Hidden Subgroup Problem. We will need
to delve into the foundational results of Group Representation Theory, in particular, the Characters
of Finite Abelian Groups, before we are able to give an algorithm that solves the Hidden Subgroup
Problem in the case where the group is abelian. We will conclude with an investigation into what
remains an open problem to this day: the Hidden Subgroup Problem in the case where the group is
not abelian.

In the final presentation of this thesis, I have had to leave out my investigation into the nature of
single qubits owing to a need for brevity. In particular, I have had to leave out the Bloch Sphere
representation of a qubit, the influence of the Pauli matrices on single qubits, how there exists a unitary
rotation operator Rn̂(θ) that acts on the state of a qubit in an equivalent manner to a rotation by an
angle θ about the n̂ axis of the Bloch Sphere, as well as a full characterisation of the local nature of
unitary operators on the state of a composite quantum system formed from n qubits. In doing so, I
believe that the final presentation, despite its length, is more compact, and I hope that it reads as a
coherent representation of my foray into Quantum Computing.

Edward Pearce-Crump
Imperial College London

September 2020
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2 The Quantum Computing Model

We begin by introducing the foundational concepts needed to study Quantum Computing. Quantum
Computing can be thought of as a model for performing computations that is founded upon the
postulates of Quantum Mechanics. The model describes how the state of a quantum system can be
transformed through time in order to generate information that can be used to solve some sort of
computational task. The model itself is often referred to as a quantum computer and the solution to
a computational task is often called a quantum algorithm. This chapter is based upon the material
found in [11], [14] and [21].

2.1 Quantum Systems and their States

The postulates of Quantum Mechanics are expressed in the language of linear algebra. We review
some basic concepts from linear algebra before stating what the first postulate is.

Definition 2.1. An inner product space is a choice of vector space Q over C augmented by a function
(∗, ∗) : Q×Q→ C that satisfies the following:

1. (∗, ∗) is linear in the second argument, that is(
|v〉 ,

∑
i

λi |wi〉
)

=
∑
i

λi (|v〉 , |wi〉) (2.1)

where λi ∈ C for all i.

2. (|v〉 , |w〉)∗ = (|w〉 , |v〉), where ∗ denotes the complex conjugate.

3. (|v〉 , |v〉) ≥ 0 with equality if and only if |v〉 = 0.

From this definition, we can show that any inner product is conjugate-linear in the first argument.

Remark 2.2. We will be studying finite-dimensional complex inner product spaces Q. Since they are
exactly the same as complex Hilbert spaces and the postulates of Quantum Mechanics are expressed
in the language of complex Hilbert spaces, we will write “complex Hilbert space” instead of “finite-
dimensional complex inner product space” from now on. We will also assume that all vector spaces
are finite-dimensional going forward.

Furthermore, if |v〉 , |w〉 are two vectors in a complex Hilbert space Q, their inner product (|v〉 , |w〉) is
often written instead as a “braket” 〈v|w〉. Hence, we will write 〈∗|∗〉 instead of (∗, ∗) where possible to
denote the inner product associated with Q, reverting to the (∗, ∗) notation only when it is absolutely
necessary.

Nevertheless, when we introduce a complex Hilbert space Q, often we won’t explicitly state what its
accompanying inner product is when it is easily understood.

Definition 2.3. Let Q be a complex Hilbert space with inner product 〈∗|∗〉.

• Two vectors |v〉 , |w〉 are said to be orthogonal in Q if 〈v|w〉 = 0.

• The norm || ∗ || of a vector |v〉 ∈ Q is defined to be || |v〉 || :=
√
〈v|v〉. A vector is called a unit

vector if its norm equals 1.
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• A set of vectors {|i〉}i∈I indexed by an index set I are said to be orthonormal in Q if each vector
in the set is a unit vector and the relation 〈i|j〉 = δij holds for any two vectors |i〉 , |j〉 in the set.

Definition 2.4. A qubit is a unit vector |ψ〉 in the Hilbert space Q = C2 with inner product 〈∗|∗〉.

Using Dirac notation, Q has an orthonormal basis {|0〉 , |1〉}, which means that |ψ〉 can be written as
α |0〉+ β |1〉 for some so-called “amplitudes” α, β ∈ C such that |α|2 + |β|2 = 1.

The qubit |ψ〉 is said to be in a superposition of the “basic” quantum states |0〉 and |1〉, which are
analogues of the possible states of a bit, the fundamental unit of classical computing.

Theorem 2.5 (First Postulate of Quantum Mechanics). A quantum system is a complex Hilbert
space Q with inner product 〈∗|∗〉 which has a quantum state described by a unit vector |ψ〉 in Q.

Q is usually the tensor product of some n quantum systems, each of which has a quantum state that
is a qubit. We call quantum systems of this form either “typical” or “composite” quantum systems.

Therefore, Q is typically the Hilbert space
⊗n

i=1C2 with an inner product defined by〈
n⊗
i=1

|ψi〉
∣∣∣∣ n⊗
i=1

|φi〉

〉
:=

n∏
i=1

〈ψi|φi〉 (2.2)

where |ψi〉 , |φi〉 are qubits in C2 for all i.

Consequently, the quantum state |ψ〉 of a composite quantum system is a unit vector in Q whose
state is held in n qubits.

In addition, Q has a standard orthonormal basis {|x1〉 ⊗ · · · ⊗ |xn〉 | xi ∈ {0, 1}}, which is called the
computational basis of Q.

Since we can also write this basis set as {|x1 . . . xn〉 | xi ∈ {0, 1}}, it means that the computational
basis of Q is the set of binary strings of length n.

Furthermore, since
⊗n

i=1C2 ∼= C2n , we can also label the computational basis of Q as {|i〉}2n−1i=0 . We
often find ourselves using this latter form to express the computational basis of a quantum system,
but the first two are used where appropriate.

Ultimately, this means that the quantum state |ψ〉 of a typical quantum system Q can be expressed
as a superposition of the computational basis

2n−1∑
i=0

αi |i〉 (2.3)

such that the amplitudes αi ∈ C satisfy
∑2n−1

i=0 |αi|2 = 1.

2.2 Transformations of Quantum States

We would like to understand what sort of transformations we can perform on the state of a quantum
system and, in doing so, understand how the state changes with time. Again, we need more concepts
from linear algebra before we can declare what the second postulate is. We first define a very important
notation for representing linear operators on complex Hilbert spaces.

Definition 2.6 (Outer Product Operator). Let |v〉 be a vector in a complex Hilbert space V and let
|w〉 be a vector in a complex Hilbert space W . Denoting the inner product of V by 〈∗|∗〉V , we can
define a linear operator, called the outer product operator, |w〉 〈v| : V → W as follows:

(|w〉 〈v|) |x〉 := |w〉 〈v|x〉V = 〈v|x〉V |w〉 (2.4)
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for all |x〉 ∈ V , since 〈v|x〉V ∈ C.

Consequently, we can take linear combinations of outer product operators which defines an operator
V → W as follows: (∑

i

ai |wi〉 〈vi|

)
|x〉 :=

∑
i

ai 〈vi|x〉V |wi〉 (2.5)

With this, we obtain an important equality for the identity operator IV on a complex Hilbert space
V .

Example 2.7 (Completeness Relation). Let V be a complex Hilbert space, and let {|i〉} be an
orthonormal basis for V .

Then a vector |v〉 ∈ V can be written as a linear combination
∑

i αi |i〉 of the basis vectors such that∑
i |αi|2 = 1, with αi ∈ C.

Consider now the linear operator
∑

i |i〉 〈i| : V → V .

By the orthonormality of the basis, 〈i|v〉 = αi for all i, and so we have that(∑
i

|i〉 〈i|

)
|v〉 =

∑
i

|i〉 〈i|v〉 =
∑
i

αi |i〉 = |v〉 (2.6)

Because this is true for all vectors |v〉 ∈ V , we must have that∑
i

|i〉 〈i| = IV (2.7)

where IV : V → V is the identity operator on V .

Equation (2.7) is called the Completeness Relation, which is a way of expressing the identity operator
as a linear combination of outer product operators.

As a result, we can represent any linear operator in the outer product notation, as follows:

Example 2.8 (Outer Product Representation). Let A : V → W be a linear operator on two com-
plex Hilbert spaces V and W . Suppose that {|vi〉} is an orthonormal basis of V and {|wj〉} is an
orthonormal basis of W .

Then we can say that

A = IWAIV =

(∑
j

|wj〉 〈wj|

)
A

(∑
i

|vi〉 〈vi|

)
=
∑
i,j

〈wj|A|vi〉 |wj〉 〈vi| (2.8)

where 〈wj|A|vi〉 uses the inner product of W .

Hence A has been expressed as a linear combination of outer product operators.

Another important concept that will be used often is the following:

Definition 2.9 (Adjoint Operator). Let A : V → W be a linear operator between two complex
Hilbert spaces V and W . Then the unique linear operator A† : W → V such that the following
equality holds (

|w〉 , A |v〉
)
W

=
(
A† |w〉 , |v〉

)
V

(2.9)
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for all vectors |v〉 ∈ V, |w〉 ∈ W is called the adjoint of A.

For a vector |v〉 ∈ V , we define |v〉† := 〈v|.

Because we can prove that (AB)† = B†A† from Equation (2.9), we also have that (A |v〉)† = 〈v|A†.

We prove some very important results involving adjoints that will be used often in later sections.

Exercise 2.10 (Adjoint of the Outer Product). If V and W are complex Hilbert spaces and |v〉 ∈ V ,
|w〉 ∈ W are any two vectors in their respective vector spaces, show that

(|w〉 〈v|)† = |v〉 〈w| (2.10)

as an operator W → V .

Proof. Let |a〉 be any vector in W and let |b〉 be any vector in V . Then(
(|w〉 〈v|)† |a〉 , |b〉

)
=
(
|a〉 , (|w〉 〈v|) |b〉

)
=
(
|a〉 , 〈v|b〉 |w〉

)
= 〈v|b〉

(
|a〉 , |w〉

)
= 〈v|b〉 〈a|w〉
= 〈a|w〉

(
|v〉 , |b〉

)
=
(
〈w|a〉 |v〉 , |b〉

)
=
(
(|v〉 〈w|) |a〉 , |b〉

)
where we have used that the inner product is conjugate-linear in the first argument and linear in the
second argument. We have also used the definition of the outer product too.

Hence, by the uniqueness of the adjoint, we obtain the result.

Exercise 2.11 (Anti-Linearity of the Adjoint). Show that the adjoint operation is anti-linear, that
is, (∑

i

aiAi

)†
=
∑
i

a∗iA
†
i (2.11)

where the Ai : V → W are linear operators between complex Hilbert spaces V and W and ai ∈ C for
all i.

Proof. Let |v〉 be any vector in V and let |w〉 be any vector in W . Then((∑
i

aiAi
)† |w〉 , |v〉)

=
(
|w〉 ,

∑
i

aiAi |v〉
)

=
∑
i

ai
(
|w〉 , Ai |v〉

)
=
∑
i

ai
(
A†i |w〉 , |v〉

)
=
((∑

i

a∗iA
†
i

)
|w〉 , |v〉

)
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where we have used that the inner product is conjugate-linear in the first argument and linear in the
second argument.

Hence we obtain the result by the uniqueness of the adjoint.

Exercise 2.12. Show that (A†)† = A.

Proof. Let |v〉 be any vector in V and let |w〉 be any vector in W . Then(
(A†)† |v〉 , |w〉

)
=
(
|v〉 , A† |w〉

)
= 〈v|A†|w〉 =

(
A |v〉 , |w〉

)
(2.12)

Again, by the uniqueness of the adjoint, we get the result.

We can also apply the adjoint operator to a matrix, as follows:

Definition 2.13 (Adjoint of a Matrix). When we have a matrix A ∈ Cm×n - for example, when
looking at the matrix representation of a linear operator in some bases - we can say that its adjoint,
A† ∈ Cn×m, is the conjugate transpose of A, that is, (A∗)T .

We now come to one of the most important definitions in Quantum Computing.

Definition 2.14 (Unitary Operators). Let V be a complex Hilbert space.

A linear operator U on V is said to be unitary if U †U equals the identity operator IV .

With this definition, we can now state the second postulate of Quantum Mechanics.

Theorem 2.15 (Second Postulate of Quantum Mechanics). Any change in the state of a quantum
system Q over time is described by a unitary operator. Hence, if |ψi〉 is the state of the quantum
system at time ti for i = 1, 2, then there is a unitary operator U such that

|ψ2〉 = U |ψ1〉 (2.13)

Such operators U are also called quantum gates, or just gates.

Because the evolution of the quantum system is unitary, we need to provide some additional properties
of unitary operators.

The first property is the following:

Lemma 2.16. Unitary operators U on a complex Hilbert space V preserve the inner product between
vectors.

Proof. Let |v〉 , |w〉 be vectors in V .

Then (
U |v〉 , U |w〉

)
= 〈v|U †U |w〉 = 〈v|IV |w〉 = 〈v|w〉 (2.14)

as required.

We obtain the outer product representation for unitary operators from this result, which we use often
in what follows.

Lemma 2.17 (Outer Product Representation of Unitary Operators). Let V,W be complex Hilbert
spaces of the same dimension.
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1. Let {|vi〉} be any orthonormal basis of V . Suppose that U : V → W is a unitary operator, and
define |wi〉 := U |vi〉. Then {|wi〉} is an orthonormal basis of W , and hence U =

∑
i |wi〉 〈vi|.

2. Suppose instead that {|vi〉} and {|wi〉} are two orthonormal bases. Then U :=
∑

i |wi〉 〈vi| is a
unitary operator V → W .

Proof. 1. It is clear that {|wi〉} is an orthonormal basis of W , as unitary operators preserve inner
products by Lemma 2.16.

Also, it is clear, for any basis element |vj〉, that(∑
i

|wi〉 〈vi|

)
|vj〉 =

∑
i

〈vi|vj〉 |wi〉 =
∑
i

δij |wi〉 = |wj〉 (2.15)

which is exactly the action of U on the orthonormal basis of V .

2. We show that U :=
∑

i |wi〉 〈vi| is a unitary operator. Indeed, we have that

U †U =

(∑
j

|wj〉 〈vj|

)†(∑
i

|wi〉 〈vi|

)
=
∑
i

∑
j

|vj〉 〈wj|wi〉 〈vi|

=
∑
i

∑
j

δij |vj〉 〈vi|

=
∑
i

|vi〉 〈vi|

= IV

where we have used the Completeness Relation (Equation (2.7)) in the last equation.

Exercise 2.18. Show that all eigenvalues of a unitary matrix have modulus 1, that is, they can be
writtten in the form eiθ for some θ ∈ R.

Proof. Let the unitary matrix be denoted by U , operating on a vector space V . Then U is a unitary
operator on V that satisfies U †U = UU † = I, and so it is also a normal operator. Hence it has a
spectral decomposition - see [21] for details.

This means that there is an orthonormal basis {|i〉} of V in which U is a diagonal matrix, and so it
can be expressed as an operator in the form

U =
∑
i

λi |i〉 〈i| (2.16)

for some λi ∈ C.
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Now

U †U =

(∑
j

λj |j〉 〈j|

)†(∑
i

λi |i〉 〈i|

)

=

(∑
j

λ∗j |j〉 〈j|

)(∑
i

λi |i〉 〈i|

)
=
∑
i

∑
j

λiλ
∗
j |j〉 〈j|i〉 〈i|

=
∑
i

∑
j

λiλ
∗
jδij |j〉 〈i|

=
∑
i

|λi|2 |i〉 〈i|

But U †U = I =
∑

i |i〉 〈i| by the Completeness Relation, and so |λi|2 = 1 for all i.

Hence the eigenvalues of U have modulus 1, that is, they are equal to eiθ for some θ ∈ R.

The first postulate of Quantum Mechanics (Theorem 2.5) said that quantum systems are often the
tensor product of quantum systems each of which has a quantum state that is a qubit. Therefore, we
need to be able to apply unitary operators to these spaces too. The following looks at tensor product
spaces and operators on them, using the definitions given in [6] and [21].

Definition 2.19. Suppose that V,W are complex Hilbert spaces.

If {|vi〉} and {|wj〉} are bases of V and W respectively, then {|vi〉 ⊗ |wj〉} is a basis of V ⊗W .

Moreover, V ⊗W is a complex Hilbert space with inner product(∑
i

ai
[
|vi〉 ⊗ |wi〉

]
,
∑
j

bj
[
|v′j〉 ⊗ |w′j〉

])
:=
∑
i

∑
j

a∗i bj 〈vi|v′j〉 〈wi|w′j〉 (2.17)

Furthermore, suppose that A is a linear operator on V and B is a linear operator on W .

Then we can define a linear operator A⊗B on V ⊗W by

(A⊗B)

(∑
i

ai
[
|vi〉 ⊗ |wi〉

])
:=
∑
i

ai
[
A |vi〉 ⊗B |wi〉

]
(2.18)

Exercise 2.20. Show that the adjoint operation distributes over the tensor product, that is

(A⊗B)† = A† ⊗B† (2.19)

as a map V ′ ⊗W ′ → V ⊗W for complex Hilbert spaces V, V ′, W and W ′.

Proof. Let |v〉 ⊗ |w〉 be an arbitrary element of V ⊗W and let |v′〉 ⊗ |w′〉 be an arbitrary element of
V ′ ⊗W ′. Writing these as |vw〉 , |v′w′〉, we have that(

(A⊗B)† |v′w′〉 , |vw〉
)

=
(
|v′w′〉 , (A⊗B) |vw〉

)
=
(
|v′w′〉 , A |v〉 ⊗B |w〉

)
= 〈v′|A|v〉 〈w′|B|w〉
= 〈v′|(A†)†|v〉 〈w′|(B†)†|w〉
=
(
A† |v′〉 ⊗B† |w′〉 , |vw〉

)
=
(
(A† ⊗B†) |v′w′〉 , |vw〉

)
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where we have applied Definition 2.19 and Exercise 2.12.

Hence, by the uniqueness of the adjoint, we obtain the result.

Exercise 2.21. Show that the tensor product of two unitary operators on complex vector spaces V
and W is unitary on the complex tensor product Hilbert space V ⊗W .

Proof. Let UV , UW be unitary operators on V and W respectively.

Let |v〉 ⊗ |w〉 be an arbitrary element of V ⊗W .

Then

(UV ⊗ UW )†(UV ⊗ UW )(|v〉 ⊗ |w〉) = (UV ⊗ UW )†(UV |v〉 ⊗ UW |w〉)
= (U †V ⊗ U

†
W )(UV |v〉 ⊗ UW |w〉)

= U †VUV |v〉 ⊗ U
†
WUW |w〉

= IV |v〉 ⊗ IW |w〉
= (IV ⊗ IW )(|v〉 ⊗ |w〉)
= IV⊗W (|v〉 ⊗ |w〉)

where we have applied Exercise 2.20 to (UV ⊗ UW )†.

Hence UV ⊗ UW is unitary on V ⊗W , as required.

We can also consider matrix representations of linear operators on complex tensor product Hilbert
spaces.

Definition 2.22 (Kronecker Product). Let Vi, Wi be complex Hilbert spaces and suppose that
Li : Vi → Wi are linear operators for i = 1, 2.

Let Ai be the dim Wi × dim Vi matrix representation of Li for some bases of Vi and Wi, for i = 1, 2.

Consider now the linear operator L1 ⊗ L2 : V1 ⊗W1 → V2 ⊗W2

Then the matrix representation of L1 ⊗ L2 in the bases naturally formed for V1 ⊗ V2 and W1 ⊗W2 is
given by A1 ⊗ A2 and is defined to be the block matrix

A1 ⊗ A2 = (a1ijA2) (2.20)

where A1 = (a1ij). ⊗ on matrices is called the Kronecker Product.

The matrix A1 ⊗ A2 has size (dim W1 dim W2) × (dim V1 dim V2).

We are now in a position to provide a number of examples that shows the sorts of operations we can
perform on the states of various quantum systems.

We first look at some unitary operators on qubits, before studying the most important unitary oper-
ators on composite quantum systems.

Example 2.23. We consider operators on qubits, typically defined on the computational basis
{|0〉 , |1〉} of Q = C2.

1. The gate I, also called the identity gate, leaves the state of a qubit unchanged. Its outer
representation, using Equation (2.8), is I = |0〉 〈0|+ |1〉 〈1|, and its matrix representation in the
computational basis is (

1 0
0 1

)
(2.21)
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It is clear that I†I = I2 = I, and so I is unitary.

2. The gate X, also called the NOT gate, maps |0〉 7→ |1〉 and |1〉 7→ |0〉, and can be extended
linearly to describe its operation on a superposition state |ψ〉 = α |0〉+ β |1〉. Its outer product
representation is X = |0〉 〈1|+ |1〉 〈0|, and its matrix representation in the computational basis
is (

0 1
1 0

)
(2.22)

It is clear that X†X = X2 = I, and so X is unitary.

3. The gate Z maps |0〉 7→ |0〉 and |1〉 7→ − |1〉. The −1 factor is also known as a phase factor.
Its outer product representation is Z = |0〉 〈0| − |1〉 〈1|, and its matrix representation in the
computational basis is (

1 0
0 −1

)
(2.23)

It is clear that Z†Z = Z2 = I, and so Z is unitary.

4. The rotation gate, Rk, for some k ∈ Z, changes the phase of a state; in particular, it maps

|0〉 7→ |0〉 and |1〉 7→ e
2πi

2k |1〉. Its matrix representation in the computational basis is therefore(
1 0

0 e
2πi

2k

)
(2.24)

It is easy to show that R†kRk = I, and so Rk is unitary.

Furthermore, note that sometimes the gate R2 (i.e k = 2) is labelled as S instead, and has a
matrix representation (

1 0
0 i

)
(2.25)

5. The Hadamard gate, H, is a very important unitary operator in Quantum Computing. It maps

|0〉 7→ |0〉+ |1〉√
2

|1〉 7→ |0〉 − |1〉√
2

(2.26)

and so its outer product representation is

H =
1√
2

[
(|0〉+ |1〉) 〈0|+ (|0〉+ |1〉) 〈1|

]
(2.27)

with matrix representation in the computational basis

1√
2

(
1 1
1 −1

)
(2.28)

It is easy to show that H†H = H2 = I, and so H is unitary.

It is common to draw diagrams to represent all of these gates except for the identity gate, and so the
above gates are given by

X Z Rk S H (2.29)
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The most important gate on a composite quantum system is the following:

Exercise 2.24. Show that the Hadamard operation on n qubits, H⊗n, may be written as

H⊗n =
1√
2n

∑
x,y∈{0,1}n

(−1)x·y |y〉 〈x| (2.30)

The diagram for this gate is
n
H⊗n (2.31)

where the “dash n” indicates that there are n wires going in and coming out of the gate, representing
its action on an n qubit state.

Proof. From Equation (2.26) we can see that

H |zi〉 =
1√
2

∑
yi∈{0,1}

(−1)ziyi |yi〉 (2.32)

for zi ∈ {0, 1}.

Since H⊗n is an operator on Q :=
⊗n

i=1C2, we can write the elements |z〉 , |y〉 of the computational
basis of Q as |z〉 = |z1z2 . . . zn〉 and |y〉 = |y1y2 . . . yn〉, where zi, yi ∈ {0, 1} for all i.

Hence, we have that

H⊗n |z〉 =
n⊗
i=1

H |zi〉

=
n⊗
i=1

 1√
2

∑
yi∈{0,1}

(−1)ziyi |yi〉


=

1√
2n

∑
y∈{0,1}n

(−1)
∑n
i=1 ziyi |y〉

=
1√
2n

∑
y∈{0,1}n

(−1)z·y |y〉 (2.33)

Now, since  1√
2n

∑
x,y∈{0,1}n

(−1)x·y |y〉 〈x|

 |z〉 =
1√
2n

∑
x,y∈{0,1}n

(−1)x·y 〈x|z〉 |y〉

=
1√
2n

∑
x,y∈{0,1}n

(−1)x·yδx,z |y〉

=
1√
2n

∑
y∈{0,1}n

(−1)z·y |y〉

= H⊗n |z〉 (2.34)

we obtain the result, as required.
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Example 2.25. In particular, we can express the matrix representation of the unitary operator H⊗2

for the computational basis of C2 ⊗ C2 explicitly, using Equation (2.28):

H⊗2 =
1√
2

(
H H
H −H

)
=

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (2.35)

Example 2.26. Other important gates on two qubits, that is, on C2 ⊗ C2, are defined on the
computational basis {|00〉 , |01〉 , |10〉 , |11〉}, where, by Theorem 2.5, each digit in a computational
basis state can be and is referred to as a bit. For example, for the state |10〉, the first bit is 1 and the
second bit is 0.

1. The controlled-NOT, or CNOT gate, performs the NOT gate on the second bit if and only if
the first bit is 1. That is, it maps |x, y〉 7→ |x, x⊕ y〉, where ⊕ is addition modulo 2. Hence its
matrix representation is 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.36)

We will draw this gate in either of the following equivalent forms

≡
X

(2.37)

2. More generally, if U is a unitary operator on a qubit, then the controlled-U gate performs the
U gate on the second bit if and only if the first bit is 1, that is, it maps |x, y〉 7→ |x〉Ux |y〉. The
diagram for this gate is

U
(2.38)

3. Another important operation is the SWAP gate on two qubits, that is, the map |x, y〉 7→ |y, x〉.
We can implement this as a series of controlled-NOT gates:

|x, y〉 7→ |x, x⊕ y〉 7→ |x⊕ (x⊕ y), x⊕ y〉 = |y, x⊕ y〉 7→ |y, y ⊕ (x⊕ y)〉 = |y, x〉 (2.39)

Note that in the second mapping, we have used a version of the controlled-NOT gate that
performs the NOT gate on the first bit if and only if the second bit is 1. This is okay to do;
we just need to define which bit in a computational basis state is the “control” bit and which is
the “target” bit when performing a controlled-NOT operation.

We can draw the SWAP gate in either of the following equivalent forms:

≡ (2.40)

Before looking at gates on quantum systems with n qubits, we look at a special gate on a quantum
system with three qubits:
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Example 2.27. The Toffoli gate on three qubits, that is, on C2 ⊗C2 ⊗C2, is defined on the compu-
tational basis as follows:

Toffoli : |x1, x2, x3〉 → |x1, x2, x3 ⊕ x1x2〉 (2.41)

where xi ∈ {0, 1} for all i and ⊕ is, once again, addition modulo 2.

The first two bits of a computational basis state are called control bits, and the third bit is called a
target bit. The names come from the fact that if x1 = x2 = 1, then the third bit in the output of the
Toffoli gate becomes |¬x3〉 (logical NOT), otherwise the third bit is unchanged by the Toffoli gate.

This is easily shown to be a unitary operator which is also its own inverse.

The matrix representation of this gate in the computational basis is 8× 8, so we won’t state it here.
However, the diagram is shown below:

≡

X

(2.42)

We can also change around the order of the operation, that is, say, make the first and third bits the
control bits and the second the target bit, in which case the mapping is

|x1, x2, x3〉 → |x1, x2 ⊕ x1x3, x3〉 (2.43)

on the computational basis, and the diagram of the gate becomes

≡ X (2.44)

We still call this a Toffoli gate. When using these gates, we simply need to specify which two bits of
a computational basis state are the control bits and which one is the target bit.

Example 2.28. We are able to give a few more examples of unitary operators on quantum systems
of n qubits, Q =

⊗n
i=1C2. We have already seen one example in Exercise 2.24, the Hadamard gate

on n qubits, H⊗n.

1. One of the most important ideas in Quantum Computing is the ability to construct an n-qubit
gate by tensoring a number of one, two or three qubit gates together with the identity gate.

For example, if we wish to apply the Hadamard gate to the first qubit and the NOT gate to
the third qubit of the current state, leaving the rest unchanged, we can apply the operator
H ⊗ I ⊗X ⊗ I⊗(n−3) to achieve the desired result.

2. A more general controlled-U gate exists than the one defined on two qubits in Example 2.26. If
we have a unitary operator U that operates on n − 1 qubits, then we can have an extra qubit
which acts as a control qubit in the following sense:

We define a unitary operator U ′ on n qubits as follows: U ′ maps |0〉 |v〉 7→ |0〉 |v〉 and |1〉 |v〉 7→
|1〉U |v〉, where |v〉 is a state on n− 1 qubits.

The diagram for this gate is

U
(2.45)
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We’ve already seen an example of this sort of gate. If we let n = 3 and let U be the CNOT
gate, then U ′ is the Toffoli gate of Example 2.27.

We have seen the first two postulates of Quantum Mechanics and looked at unitary operators in some
depth. We study the third and final postulate in the next section.

2.3 Measurement of Quantum States

We know that a quantum system has a state which can be evolved throughout time by unitary
operators. If the quantum system is composite and made up of n qubits, then we know from Equation
(2.3) that its state is given by

2n−1∑
i=0

αi |i〉 (2.46)

such that the amplitudes αi ∈ C satisfy
∑2n−1

i=0 |αi|2 = 1.

Suppose that we now want to observe the system to derive some sort of information from it. The
third postulate of Quantum Mechanics tells us what happens:

Theorem 2.29 (Third Postulate of Quantum Mechanics). There is a collection of measurement
operators {Mi} whose index describes all the possible measurement outcomes that may occur from
observing the state |ψ〉 of the quantum system (as given in Equation (2.46)).

In particular, they must satisfy the Completeness Relation of Example 2.7 in the following sense∑
i

M †
iMi = I (2.47)

The measurement operators are defined by the basis in which we wish to observe the quantum system.

Remark 2.30. There are two types of measurement operators that we will typically use, unless stated
otherwise.

1. The first type are those that measure the entire quantum system in the computational basis
(that is, measure all n qubits at once), and they are given by the outer product operators

{Mi := |i〉 〈i|}2n−1i=0 (2.48)

Note that M †
iMi = Mi for all i and so they satisfy the Completeness Relation.

A probability distribution is induced by measuring the state |ψ〉 in these operators, and is given
by

P (i) = 〈ψ|M †
iMi|ψ〉 = |αi|2 (2.49)

The state of the system, after measuring index i with probability p(i), collapses to the state |i〉.

2. The second type are those that perform a partial measurement of the quantum system in the
computational basis. It is enough to consider measurement operators that measure only one
qubit of Equation (2.46) because it can be shown that performing two measurements one after
the other is the same as performing a single measurement - see [21] for more details.

We can describe these measurement operators using the following

M0j = I⊗j−1 ⊗ |0〉 〈0| ⊗ I⊗n−j and M1j = I⊗j−1 ⊗ |1〉 〈1| ⊗ I⊗n−j (2.50)
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where the second index means measure qubit j only (which has only two possible outcomes, |0〉
and |1〉.)
Clearly, M †

ijMij = I, the identity operator on the n-qubit system, for i = 0, 1, and so their sum
over i satisfies the Completeness Relation.

As before, a probability distribution is induced by measuring |ψ〉 in these operators, and it is
given by

Pj(i) = 〈ψ|M †
ijMij|ψ〉 (2.51)

for i = 0, 1.

After measuring, the state collapses to a superposition of those basis elements in |ψ〉 whose
jth qubit is the measurement outcome i with probability Pj(i). This new superposition is
renormalised so that the state remains a unit vector in the quantum system.

Example 2.31. We give some examples of measuring states of quantum systems using the two types
of measurement operators given in Remark 2.30.

1. Suppose that we have a qubit in the state |ψ〉 := 1√
2
|0〉 + 1√

2
|1〉 and suppose that we wish to

measure this state. Our measurement operators are M0 = |0〉 〈0| and M1 = |1〉 〈1|, and so by
applying Equation (2.49), the state collapses to either |0〉 or |1〉 with an equal probability of 1

2
.

2. Suppose instead that we have a state |ψ〉 := 1√
2
|00〉+ 1√

2
|11〉 in a two-qubit quantum system.

Suppose that we want to measure the second qubit only. Then the measurement operators are
M02 = I ⊗ |0〉 〈0| and M12 = I ⊗ |1〉 〈1|.
By applying Equation (2.51), we obtain a 0 with probability 1

2
, with the state collapsing in this

case to |00〉, and we obtain a 1 with probability 1
2
, with the state collapsing in this case to |11〉.

3. Suppose now that we have the state |ψ〉 := 1√
2
|000〉+ 1

2
|110〉+ 1

2
|101〉 in a three-qubit quantum

system.

Suppose that we wish to measure the third qubit. Then the measurement operators are M03 =
I⊗2 ⊗ |0〉 〈0| and M13 = I⊗2 ⊗ |1〉 〈1|.
By applying Equation (2.51), we obtain a 0 with probability 3

4
, with the state collapsing in

this case to
√
2√
3
|000〉 + 1√

3
|110〉 (where we renormalised the superposition resulting from the

measurement), and we obtain a 1 with probability 1
4
, with the state collapsing in this case to

|101〉.
Suppose that we want to measure the the second qubit after the measurement of the third qubit.
Then the measurement operators are M02 = I ⊗ |0〉 〈0| ⊗ I and M12 = I ⊗ |1〉 〈1| ⊗ I and we
obtain

• A 0 in the second qubit and a 0 in the third qubit with probability 3
4
× 2

3
= 1

2
, and the

state collapses to |000〉.
• A 1 in the second qubit and a 0 in the third qubit with probability 3

4
× 1

3
= 1

4
, and the

state collapses to |110〉.
• A 0 in the second qubit and a 1 in the third qubit with probability 1

4
× 1 = 1

4
, and the

state collapses to |101〉.
• A 1 in the second qubit and a 1 in the third qubit with probability 1

4
× 0 = 0.
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Notice that performing the measurement of the third qubit followed by the measurement of
the second qubit could have been performed in one measurement by using the measurement
operators {Lij} defined by

L00 := I ⊗ |0〉 〈0| ⊗ |0〉 〈0| = M02M03

L01 := I ⊗ |0〉 〈0| ⊗ |1〉 〈1| = M02M13

L10 := I ⊗ |1〉 〈1| ⊗ |0〉 〈0| = M12M03

L11 := I ⊗ |1〉 〈1| ⊗ |1〉 〈1| = M12M13

on the original state |ψ〉.

2.4 Quantum Algorithms

We are now in a position to summarise the model for Quantum Computing, and describe what a
quantum algorithm is in terms of this model.

Theorem 2.32 (Model of Quantum Computing). The model of Quantum Computing is as follows:

1. It is taken as given that we can always prepare |0〉⊗n to be the initial state of a composite
quantum system consisting of n qubits.

If we want a different state |x〉 = |x1 . . . xn〉, where xi ∈ {0, 1} for all i, to be the initial state
instead, we can apply quantum NOT gates to the various qubits i of |0〉⊗n where we want xi to
be 1. We would still consider |x〉 to be the initial state of the quantum system even though we
have applied some NOT gates to |0〉⊗n.

For example, if we want the input state |0 . . . 01〉 (sometimes also just written as |1〉), then we
apply the operator I⊗n−1 ⊗X to |0〉⊗n to prepare this as the initial state.

2. The evolution of the state of the quantum system through time is given by the Second Postulate
of Quantum Mechanics (Theorem 2.15). This says that the change in state is described by a
unitary operator U .

3. A measurement of some or all of the qubits in the quantum state is performed according to the
Third Postulate of Quantum Mechanics (Theorem 2.29). From this we derive some information
that can be used to obtain the solution to some computational task.

We sometimes refer to the model of Quantum Computing as a “quantum computer”.

Remark 2.33. It is worth noting that sometimes we split the initial state of a quantum system up
into a number of so-called “quantum registers” and study the evolution of the registers through time.

For example, we could split the initial state of an n-qubit quantum system up into two quantum
registers, the first register consisting of t qubits in the initial state |0〉⊗t and the second register
consisting of L qubits in the initial state |1〉 = |0 . . . 01〉 such that t+ L = n.

Here we would say that this quantum system consists of two registers, a t-qubit register and an
L-qubit register, and we would write the initial state of the system as |0〉⊗t |1〉.

Definition 2.34 (Quantum Algorithm). A quantum algorithm is defined to be a series of computa-
tional steps that can be performed on a quantum computer, as defined in Theorem 2.32.
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Definition 2.35. A quantum circuit is a diagram that consists of lines representing so-called “quan-
tum wires” carrying qubits and so-called “quantum gates” representing unitary operators that are
applied to quantum states. A quantum circuit provides a visualisation of the steps of a quantum
algorithm.

Not every quantum algorithm can be described in terms of a quantum circuit. However, if a quantum
algorithm can be described by a quantum circuit, then such a circuit is called an implementation of
the quantum algorithm.

The operations given in quantum circuits are performed from left to right, showing how the state of
a quantum system evolves through time by the unitary operators that are applied to it. They cannot
merely be looked at to understand what algorithm they represent; each operator at every time step
needs to be performed and explicitly calculated in order to avoid making any computational errors.

Example 2.36. For example, the quantum circuit

|0〉 H H

|0〉 X

(2.52)

describes how the initial state |0〉 |0〉 of a two-qubit quantum system evolves through time.

In the first time step, the Hadamard gate H is applied to the first qubit, giving the state 1√
2
|0〉 |0〉+

1√
2
|1〉 |0〉.

A controlled-NOT gate is then applied to this state, giving 1√
2
|0〉 |0〉+ 1√

2
|1〉 |1〉.

Then the Hadamard gate H is again applied to the first qubit, giving the state 1
2
|0〉 |0〉 + 1

2
|0〉 |1〉 +

1
2
|1〉 |0〉 − 1

2
|1〉 |1〉.

The first qubit is then swapped with the second qubit. In this case, the operation is superfluous as
the state remains unchanged.

Finally the first qubit is measured.

The output state of this quantum algorithm is either 1√
2
|0〉 |0〉 + 1√

2
|0〉 |1〉 with probability 1

2
or

1√
2
|1〉 |0〉 − 1√

2
|1〉 |1〉 with probability 1

2
.

Definition 2.37 (Efficient Implementation). We want to find and study quantum algorithms whose
implementations have a number of gates that is polynomial in the size of the input qubits. Such
implementations are called efficient.

2.5 Density Operators

There is an equivalent formulation of the postulates of Quantum Mechanics that uses a so-called
“density operator” instead of a state vector. It is particularly useful when the state of a quantum
system is in a superposition of computational basis states. We occasionally use this approach to
describe some quantum algorithms, particularly in Chapter 7.

Definition 2.38 (Density Operator). Suppose that a quantum system is in one of a number of states
{|ψi〉}i∈I , where I is an index set, with probabilities {pi}i∈I .

The pairs {(pi, |ψi〉)}i∈I are called an ensemble of pure states.
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The density operator for the quantum system is defined by the equation

ρ :=
∑
i∈I

pi |ψi〉 〈ψi| (2.53)

The density operator is sometimes also referred to as the density matrix.

If a quantum system is in a state |ψ〉 that is known exactly, then it is said to be a pure state, and the
equivalent density operator is ρ = |ψ〉 〈ψ|. Otherwise, ρ is said to be in a mixed state.

Example 2.39. Suppose that a quantum state |ψ〉 of a typical quantum system Q of n qubits is in
some superposition of the computational basis, that is

|ψ〉 =
2n−1∑
i=0

αi |i〉 (2.54)

such that the amplitudes αi ∈ C satisfy
∑2n−1

i=0 |αi|2 = 1.

Then Q is in one of the states {|i〉}2n−1i=0 with probabilities {|αi|2}2
n−1
i=0 , and so the density operator for

the system is

ρ =
2n−1∑
i=0

|αi|2 |i〉 〈i| (2.55)

Lemma 2.40 (Evolution of Density Operators). Suppose that the evolution of a quantum system is
described by the unitary operator U .

Then the evolution of the density operator is described by the map ρ 7→ UρU †.

Proof. We provide the proof as given in [21].

If the system were in one of the pure states |ψi〉 in the ensemble with probability pi, then it would be
evolved to the state U |ψi〉 with probability pi under the unitary operator U . Hence

ρ =
∑
i∈I

pi |ψi〉 〈ψi| 7→
∑
i∈I

piU |ψi〉 〈ψi|U † = U

[∑
i∈I

pi |ψi〉 〈ψi|

]
U † = UρU † (2.56)

Lemma 2.41 (Measurement of Density Operators). Suppose that the measurement operators for
performing a measurement on a density operator ρ are given by {Mj} for some index j that specifies
the possible measurement outcomes.

Then the probability of observing outcome j, P (j), is given by

P (j) = tr(M †
jMjρ) (2.57)

where tr is the trace of M †
jMjρ, considered as a linear operator.

Proof. We provide the proof as given in [21].

Indeed, for a state |ψi〉 of a quantum system Q and a linear operator A, we have that

tr(A |ψi〉 〈ψi|) =
∑
k

〈k|A|ψi〉 〈ψi|k〉 = 〈ψi|A|ψi〉 (2.58)
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where we have extended |ψi〉 to an orthonormal basis of Q via the Gram-Schmidt procedure.

Therefore, if the original state of the system was some |ψi〉 from the ensemble of pure states, then the
probability of obtaining result j, P (j|i), is

P (j|i) = 〈ψi|M †
jMj|ψi〉 = tr(M †

jMj |ψi〉 〈ψi|) (2.59)

by Equation (2.58).

Hence

P (j) =
∑
i

piP (j|i)

=
∑
i

pitr(M
†
jMj |ψi〉 〈ψi|)

= tr

(
M †

jMj

[∑
i

pi |ψi〉 〈ψi|

])
= tr(M †

jMjρ)

by the Law of Total Probability.

Remark 2.42. It can be shown that if a measurement results in outcome j with probability P (j),
then the density operator ρ collapses to

ρj =
MjρMj

†

tr(M †
jMjρ)

(2.60)

See [21] for details.

Remark 2.43. The postulates of Quantum Mechanics can therefore be reformulated in the language
of density operators. By studying the density operator further and providing a full characterisation of
it, we could reformulate the postulates without referring to the notion of a state vector in a quantum
system. We won’t do this as we won’t have any use for it, but see [21] for more details.

2.6 Reversible Operations

In this section we show that any classical computation can be replicated on a quantum computer
reversibly using only Toffoli and quantum NOT gates. We have used [7] to motivate the content of
this section, although we provide a different and more intuitive implementation than the one that is
given in [7].

We know that any computation on a classical computer can be built out of three basic components:
the classical AND gate, the classical NOT gate, and the FANOUT operation, which is the operation
that creates a copy of a bit in another wire. Each of these components is an operator on bits that
evolves their state. We would like to replicate these operations on a quantum computer.

However, the second postulate (Theorem 2.15) says that quantum evolution needs to be unitary.
In particular, this means that operators on quantum states need to be reversible, for if the unitary
operator U evolves the state |ψ1〉 to |ψ2〉, then U † recovers the original state |ψ1〉 from |ψ1〉.

So while the classical NOT gate has a direct unitary counterpart in the quantum NOT gate (X), the
classical AND gate does not. In particular, the classical AND gate is not reversible, since it can be
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seen from the truth table that the original input bits cannot be recovered by reversing the operation
on the output bit. In addition, Wooters and Zurek [27] showed that quantum states cannot be directly
copied without being modified in the attempt to copy them.

We saw in Example 2.27 the definition of the Toffoli gate. It performed the operation

Toffoli : |x1, x2, x3〉 → |x1, x2, x3 ⊕ x1x2〉 (2.61)

on the computational basis of C2 ⊗ C2 ⊗ C2, where xi ∈ {0, 1} for all i and ⊕ is addition modulo 2.

We can use this gate to implement both the classical AND operation and the FANOUT operation
reversibly through the use of extra “ancilla” qubits, which are extra qubits that help in performing
an operation reversibly. Often we obtain the result with extra “garbage” qubits, which are qubits in
the output whose states are not needed in the computation.

The classical AND operation can be implemented by applying the Toffoli gate to the state |a, b, 0〉 for
a, b ∈ {0, 1} and looking at the result in the third qubit of the output state, since

Toffoli |a, b, 0〉 = |a, b, ab〉 = |a, b, a ∧ b〉 (2.62)

Note that the third qubit in the input is an ancilla qubit, and that the first two qubits in the output
of this operation become garbage qubits.

The FANOUT operation can be implemented in a similar way by applying the Toffoli gate to the
state |a, 1, 0〉 since it outputs the state |a, 1, a〉. The second and third qubits in the input are ancilla
qubits, and the second qubit in the output becomes a garbage qubit.

We’ve already seen that the classical NOT gate can be implemented using the unitary quantum NOT
gate.

Therefore, since these three classical operations can be implemented reversibly on a quantum com-
puter, and any classical computation can be constructed out of these three operations, it means
that we are able to implement any classical operation on a quantum computer using just Toffoli and
quantum NOT gates. We now show how to do this in detail.

Let C be a classical circuit that takes some x expressed in some n input bits to some output y := C(x)
expressed in k bits. This means that, on a quantum computer, the input can be held in n qubits and
the output can be held in k qubits, since we know from Theorem 2.5 that the computational basis of
a n-qubit quantum system,

⊗n
i=1C2, can be written as {|x1 . . . xn〉 | xi ∈ {0, 1}}, and similarly for a

k-qubit quantum system.

We can therefore write the classical x as the quantum state |x〉 = |x1 . . . xn〉 and the classical y as the
quantum state |y〉 = |C(x)〉 = |y1 . . . yk〉.

We show how to construct a quantum circuit Ĉ that maps

Ĉ : |x〉 |0〉⊗k 7→ |x〉 |C(x)〉 (2.63)

in a reversible fashion using only Toffoli and quantum NOT gates. This quantum circuit clearly
replicates the classical circuit C.

Since C can be constructed out of classical AND, NOT and FANOUT operations, it means that we
can construct a quantum gate C ′ corresponding to the classical operator C which reversibly maps

C ′ : |x〉 |0〉⊗k |0〉⊗m 7→ |x〉 |y〉 |g(x)〉 (2.64)
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where |0〉⊗m are some m extra ancilla qubits in the input and |g(x)〉 is the garbage, dependent on the
input |x〉, which is left over from performing the quantum counterparts to the classical AND, NOT
and FANOUT operations.

The register containing the garbage is problematic because there could be interference between the
first and third register when the circuit C ′ is performed on states that are not in the computational
basis of

⊗n
i=1C2. Any type of measurement on the third register could change the state of the first

register, which is not what we want.

However, we can use the “trick of uncomputation” which uses the reversibility of C ′ to erase the
garbage from the third register by applying (C ′)† to the first three registers. But we need a way to
retain the result y = C(x) first before applying this, as uncomputation will also remove |y〉 if we
haven’t stored the result elsewhere first.

The following procedure constructs the quantum circuit Ĉ from this quantum gate C ′:

1. Start with five registers in the state

|x〉 |0〉⊗k |0〉⊗m |0〉⊗k |0〉 (2.65)

where the last three registers all hold ancilla qubits.

2. Apply C ′ to the first three registers to give

|x〉 |y〉 |g(x)〉 |0〉⊗k |0〉 (2.66)

3. Apply the quantum NOT gate X to the fifth register only, which gives

|x〉 |y〉 |g(x)〉 |0〉⊗k |1〉 (2.67)

4. Apply k Toffoli gates to copy the bits that make up y, where the qubits in the second and fifth
registers are control qubits and the qubits in the fourth register are the target qubits.

More explictly, using k Toffoli gates which each perform the map |z2, z4, z5〉 7→ |z2, z4 ⊕ z2z5, z5〉,
we have that |yi, 0, 1〉 7→ |yi, yi, 1〉 for all i from 1 to k.

This gives
|x〉 |y〉 |g(x)〉 |y〉 |1〉 (2.68)

5. Apply (C ′)† to the first three registers to erase the garbage g(x). This is the trick of uncompu-
tation as described above. The state of the system is now

|x〉 |0〉⊗k |0〉⊗m |y〉 |1〉 (2.69)

6. To get |y〉 in the second register again, we need to apply two sets of k Toffoli gates.

The first set has the qubits in the fourth and fifth register as control qubits and the qubits
in the second register as target qubits, that is, they each perform the map |z2, z4, z5〉 7→
|z2, z2 ⊕ z4z5, z5〉 to give

|x〉 |y〉 |0〉⊗m |y〉 |1〉 (2.70)

since |0, yi, 1〉 7→ |yi, yi, 1〉 for all i from 1 to k.

The second set are the same as those used in Step 4, where the qubits in the second and fifth
registers are control qubits and the qubits in the fourth register are the target qubits. These
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gates erase the bits that make up y from the fourth register, since |yi, yi, 1〉 7→ |yi, 0, 1〉 for all i
from 1 to k.

The state of the system evolves to

|x〉 |y〉 |0〉⊗m |0〉⊗k |1〉 (2.71)

7. Finally, apply the quantum NOT gate to the fifth register to give

|x〉 |y〉 |0〉⊗m |0〉⊗k |0〉 (2.72)

Hence this procedure has mapped

|x〉 |0〉⊗k |0〉⊗m |0〉⊗k |0〉 7→ |x〉 |C(x)〉 |0〉⊗m |0〉⊗k |0〉 (2.73)

using only Toffoli and NOT gates.

Dropping the last three registers of ancilla qubits gives the final reversible circuit Ĉ corresponding to
the classical circuit C which maps |x〉 |0〉⊗k 7→ |x〉 |C(x)〉, as claimed.

The quantum circuit for this operator, in its succinct form, is given by

n

k

|x〉
Ĉ

|x〉

|0〉⊗k |y〉 = |C(x)〉
(2.74)

or, in greater detail, by

copy y to
4th register

copy y to
2nd register

delete y from
4th register

n|x〉

C ′ (C ′)−1

|x〉

|0〉⊗k |y〉 = |C(x)〉

|0〉⊗m |0〉⊗m

|0〉⊗k |0〉⊗k

|0〉 X X |0〉

|x〉 |x〉

|y〉 |0〉⊗k

|g(x)〉 |0〉⊗m

where we have emphasised the copying and deleting operations that ultimately move |y〉 into the
second register by highlighting them. Note that in moving |y〉 we are really copying bits, hence we
have not disobeyed the result of Wooters and Zurek [27] stated above.

Remark 2.44. The procedure to construct Ĉ used five registers since we wanted to construct the
circuit using only Toffoli and NOT gates.
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It is worth noting that we could construct the same circuit using only four registers if we also allowed
ourselves to use CNOT gates, by changing the purple, green and red k-sets of Toffoli gates given in
Steps 4 and 6 into their CNOT counterparts and deleting the fifth register from the quantum circuit
above.

Lemma 2.45. We claim that we can construct a quantum circuit that “evaluates an oracle” Uf
defined by

Uf : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 (2.75)

where ⊕ is addition modulo 2, and f is assumed to be a Boolean function that maps n bits to k bits.

Proof. Note that we can apply a similar quantum gate to C ′ defined in Equation (2.64) which maps
|x〉 |0〉⊗k |0〉⊗m 7→ |x〉 |f(x)〉 |g(x)〉, where |g(x)〉 is garbage in the output state. Denote this reversible
gate by U ′.

The following procedure implements the operator Uf .

1. Start with four registers in the state

|x〉 |0〉⊗k |0〉⊗m |y〉 (2.76)

where the second and third registers contain ancilla qubits.

2. Apply U ′ defined above to the first three registers to get

|x〉 |f(x)〉 |g(x)〉 |y〉 (2.77)

3. Noting Remark 2.44, apply k CNOT gates to the qubits of the second and fourth registers,
where the qubits in the second register are the control qubits and the qubits in the fourth are
the target qubits

This gives
|x〉 |f(x)〉 |g(x)〉 |y ⊕ f(x)〉 (2.78)

4. Apply (U ′)† to the first three registers to perform the trick of uncomputation, giving the state

|x〉 |0〉⊗k |0〉⊗m |y ⊕ f(x)〉 (2.79)

5. Finally drop the second and third registers.

This procedure implements Uf : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉.
Remark 2.46. Typically Uf is applied to the state |x〉 |0〉, giving |x〉 |f(x)〉.

This is especially useful if we have a superposition of the form

2n−1∑
i=0

αi |i〉 |0〉⊗k (2.80)

since if f is a function that maps n bits to k bits, then Uf evolves this state to

2n−1∑
i=0

αi |i〉 |f(i)〉 (2.81)

which is a superposition of all the values of the function f .

This is often called “quantum parallelism”. It is one of the major reasons why certain quantum
algorithms are significantly quicker than their classical counterparts, because we are able to calculate
all the function values with only one call to the operator Uf .
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3 Applications of the Quantum Fourier Transform

We now come to one of the most important unitary operators in Quantum Computing, the Quantum
Fourier Transform. It appears in many quantum algorithms, some of which we will study in this
chapter. We start by defining a version of the Quantum Fourier Transform that we will show can
be implemented on a quantum computer. However, in the chapters that follow, we will introduce
“improved” versions of this operator depending on our needs. Despite this, we will still say “the”
Quantum Fourier Transform when referring to the operator as the version to which we are referring
should be clear from the context. The material for this chapter is based upon [3] and [21].

3.1 Quantum Fourier Transform, version 1

Definition 3.1 (Quantum Fourier Transform). Let Q be a quantum system over C of size 2n. Writing
the computational basis of this system as {|0〉 , |1〉 , . . . , |2n − 1〉}, we can define a linear operator F2n

on this orthonormal basis as follows:

F2n : Q −→ Q

|j〉 7→ 1√
2n

2n−1∑
k=0

ωjk2n |k〉 (3.1)

where ω2n := e
2πi
2n . We will often write ω instead of ω2n for clarity of notation.

Remark 3.2. A useful way to write the operator F2n is to use the outer product notation involving
the computational basis, as follows

F2n =
1√
2n

2n−1∑
x,k=0

ωxk |k〉 〈x| (3.2)

The equality holds because, for a basis state |j〉, we have that(
1√
2n

2n−1∑
x,k=0

ωxk |k〉 〈x|

)
|j〉 =

1√
2n

2n−1∑
x,k=0

ωxk |k〉 〈x|j〉 =
1√
2n

2n−1∑
x,k=0

ωxkδxj |k〉 =
1√
2n

2n−1∑
k=0

ωjk |k〉

So far we have merely stated that the Quantum Fourier Transform is unitary without proving it: we
address this next.

Exercise 3.3. Give a direct proof that the Quantum Fourier Transform as given by Equation (3.1)
is a unitary operator on a quantum system Q of size 2n.

Proof. We show that F †2nF2n = IQ.
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We have that

F †2nF2n =

(
1√
2n

2n−1∑
l,m=0

ωlm |l〉 〈m|

)†(
1√
2n

2n−1∑
j,k=0

ωjk |k〉 〈j|

)

=
1

2n

2n−1∑
l,m=0

2n−1∑
j,k=0

ω−lmωjk |m〉 〈l|k〉 〈j|

=
1

2n

2n−1∑
l,m=0

2n−1∑
j,k=0

ω−lmωjkδlk |m〉 〈j|

=
1

2n

2n−1∑
m=0

2n−1∑
j,k=0

ω(j−m)k |m〉 〈j| (3.3)

where we have used the antilinearity of the adjoint from Exercise 2.11 and the orthonormality of the
computational basis from Theorem 2.5.

We now consider
1

2n

2n−1∑
k=0

ω(j−m)k (3.4)

by splitting into cases:

Case 1: j = m

Then Equation (3.4) equals

1

2n

2n−1∑
k=0

1 = 1 (3.5)

Case 2: j 6= m

Then Equation (3.4) is the sum of a geometric series, which equals

1

2n

[
1− ω2n(j−m)

1− ω(j−m)

]
=

1

2n

[
1− 1

1− ω(j−m)

]
= 0 (3.6)

Therefore Equation (3.3) becomes

1

2n

2n−1∑
j,k=0

|j〉 〈j| =
2n−1∑
j=0

|j〉 〈j| = IQ (3.7)

by the Completeness Relation of Example 2.7. Hence F2n is unitary.

We will also be able to show that the Quantum Fourier Transform is a unitary operator by constructing
a quantum circuit for it. For that, we need another way to represent it.

Proposition 3.4 (Product Representation). The mapping given by Equation (3.1) can be written in
the form

|j1j2 . . . jn〉 7→
1√
2n

(|0〉+ e2πi0.jn |1〉)(|0〉+ e2πi0.jn−1jn |1〉) · · · (|0〉+ e2πi0.j1j2...jn |1〉) (3.8)

where the basis state |j〉 is being expressed in its binary form, that is, as j = j1j2. . .jn, where
j = j12

n−1 + j22
n−2 + · · ·+ jn20.
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Proof. Let 1√
2n

∑2n−1
k=0 ωjk |k〉 be the result of mapping the basis state |j〉. Then, using a binary

representation for each |k〉, we have that this result equals

=
1√
2n

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

e2πij(
∑n
l=1 kl2

−l) |k1k2 . . . kn〉

=
1√
2n

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

n⊗
l=1

e2πijkl2
−l |kl〉

=
1√
2n

n⊗
l=1

[
1∑

kl=0

e2πijkl2
−l |kl〉

]

=
1√
2n

n⊗
l=1

[
|0〉+ e2πij2

−l |1〉
]

=
1√
2n

(|0〉+ e2πi0.jn |1〉)(|0〉+ e2πi0.jn−1jn |1〉) · · · (|0〉+ e2πi0.j1j2...jn |1〉)

where we have used that αβ |k1k2〉 = α |k1〉 ⊗ β |k2〉 in the second line.

The step to give the final line is not trivial. It comes from firstly considering

j

2l
=
j12

n−1 + j22
n−2 + · · ·+ jn20

2l

= j12
n−1−l + · · ·+ jn−l2

0 + jn−l+12
−1 + · · ·+ jn2−l

= αl + 0.jn−l+1. . .jn

where αl := j12
n−1−l + · · ·+ jn−l2

0 ∈ Z.

Then we have that

e2πij2
−l

= e2πi(αl+0.jn−l+1...jn)

= e2πiαle2πi0.jn−l+1...jn

= e2πi0.jn−l+1...jn

Applying this for each l gives the result, as required.

Exercise 3.5. Compute the Quantum Fourier Transform of the n qubit state |00 . . . 0〉 in Q (also
written as the element |0〉 of the computational basis of Q.)

Proof. From the definition of F2n , we have that

|00 . . . 0〉 7→ 1√
2n

2n−1∑
k=0

|k〉

=
1√
2n

(|0〉+ |1〉)⊗n (3.9)

where the |0〉 , |1〉 in Equation (3.9) are the elements of the computational basis of a single qubit
quantum system.

This form aligns nicely with the Product Representation form given in Equation (3.8).

We come to the main result of this Section.
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Theorem 3.6 (Implementation of the Quantum Fourier Transform F2n). When n = 1, the Quantum
Fourier Transform is the Hadamard gate H.

For n ∈ Z>1, the quantum circuit for this form of the Quantum Fourier Transform is

. . .

. . . . . .

...

. . .

. . .

|j1〉 H R2 Rn−1 Rn

SWAPS

|j2〉 H Rn−2 Rn−1

...

|jn−1〉 H R2

|jn〉 H

(3.10)

where |j1j2 . . . jn〉 is a computational basis state |j〉 of Q given in its binary form, that is, ji ∈ {0, 1}
for all i, and the SWAPS gate swaps qubits 1 and n, 2 and n− 1 etc.

Proof. We adapt the proof given in [21].

When n = 1, the Quantum Fourier Transform F2 is the Hadamard gate H, since, by Equation (3.1), F2

maps |0〉 to 1√
2
(|0〉+|1〉) and |1〉 to 1√

2
(|0〉−|1〉), which is exactly the action of H on the computational

basis of C2.

To show that the quantum circuit gives the desired implementation for n ∈ Z>1, we can look at what
happens to the state |j1〉 (ignoring |j2 . . . jn〉 for now.)

• By applying H first, we obtain the state 1√
2

(|0〉+ e2πi0.j1 |1〉), since j1 is either 0 or 1.

• We then look to apply a controlled-R2 gate to this state, with the control bit being given by
|j2〉.

– If j2 = 0, then R2 is not applied to the state, and given that e2πi0.0j2 = 1 under this
condition, we can rewrite our current state as 1√

2
(|0〉+ e2πi0.j1j2 |1〉).

– If j2 = 1, then R2 is applied to the state, and since R2 |0〉 = |0〉 and R2 |1〉 = e2πi0.0j2 , by
linearity we also obtain the state 1√

2
(|0〉+ e2πi0.j1j2 |1〉).

• Hence we are left in the state 1√
2

(|0〉+ e2πi0.j1j2 |1〉) after the action of the controlled-R2 gate in
either case.

In a similar fashion, each of the controlled-Rk gates adds an extra bit to the binary fraction part of
the phase of |1〉, resulting in the state 1√

2
(|0〉+ e2πi0.j1j2...jn |1〉) after all the gates have been applied

to |j1〉.

By applying the same argument to |j2〉 , . . . , |jn〉, and noting that we do not apply any gates to |jl+1〉
before we’ve applied all the appropriate gates to |jl〉, we get the state

1√
2n

((
|0〉+ e2πi0.j1j2...jn |1〉

)
· · ·
(
|0〉+ e2πi0.jn−1jn |1〉

)(
|0〉+ e2πi0.jn |1〉

))
(3.11)

This looks like the Product Representation of the Quantum Fourier Transform, except the order is
reversed. We need to apply swap gates to reverse the order (swap qubits 1 and n, 2 and n− 1 etc.),
each of which is performed by using three controlled-NOT gates (see Example 2.26).

As a result, we end up with an implementation of the Product Representation of the Quantum Fourier
Transform, as given in Equation (3.8).
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Remark 3.7. The circuit is efficient, according to Definition 2.37, because it uses n+(n−1)+· · ·+1 =
n(n+1)

2
gates to make the initial computations and then uses at most n

2
swaps, each of which can be

performed using three controlled-NOT gates. Hence the circuit is a Θ(n2) implementation of this
version of the Quantum Fourier Transform.

Example 3.8. The 2-qubit Quantum Fourier Transform F4 : Q −→ Q has a circuit of the form

H S

H

(3.12)

since R2 = S. We can also give its matrix representation when we choose the computational basis for
both Q in the mapping, as follows: 

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 (3.13)

since the matrix entry in row k, column j when the computational basis is chosen for both Q is ωjk,
where we start the row and column indices from 0.

Exercise 3.9. 1. Show that the Inverse Quantum Fourier Transform is given by

F †2n : |j〉 7→ 1√
2n

2n−1∑
k=0

ω−jk |k〉 (3.14)

2. Give a quantum circuit to perform the Inverse Quantum Fourier Transform

Proof. 1. There are many ways to prove this. We give an approach that uses the adjoint of the
outer product representation of F2n that we have already seen in the proof of Exercise 3.3.

From Equation (3.2) we have that the outer product representation of F2n is

F2n =
1√
2n

2n−1∑
x,y=0

ωxy |y〉 〈x|

Applying the adjoint to each side, we get that

F †2n =

(
1√
2n

2n−1∑
x,y=0

ωxy |y〉 〈x|

)†

=
1√
2n

2n−1∑
y,x=0

ω−xy |x〉 〈y| (3.15)

Then, for a basis state |j〉, we have that(
1√
2n

2n−1∑
y,x=0

ω−xy |x〉 〈y|

)
|j〉 =

1√
2n

2n−1∑
y,x=0

ω−xy |x〉 〈y|j〉 =
1√
2n

2n−1∑
x=0

ω−jx |x〉

Relabelling the sum over x as a sum over k gives the result.

2. Since (AB)† = B†A†, the circuit is the same as the one given in Equation (3.10) but in reverse

order, with all the gates replaced by their adjoints. Note that H† = H and R†k =

(
1 0

0 e
−2πi

2k

)
.
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3.2 Phase Estimation

We are interested in the Phase Estimation problem because it appears as a key subroutine in many
of the quantum algorithms that we’ll study. It’s a natural problem to consider because the Inverse
Quantum Fourier Transform, F †2n , is used as a gate in a quantum circuit that solves this problem. We
can formulate the problem and the goal as follows:

• Problem: We have a unitary operator U that has an eigenvector |u〉 with eigenvalue e2πiφ, but
we don’t know the phase φ.

• Goal: Estimate φ.

We note that the problem formulation makes sense as all eigenvalues of a unitary operator have norm
1 by Exercise 2.18.

In order to make use of the quantum circuit that provides a solution to the Phase Estimation problem
in other quantum algorithms, we make two promises:

1. we are able to prepare the eigenstate |u〉 in a L-qubit register - for some L to be chosen by the
implementer - as an initial state to be input into the circuit.

2. we can implement “oracles” (also known as “black boxes”) which perform the operator U2j for
non-negative integers j.

Neither of these are trivial matters in practice.

But, assuming that this is possible, we can build a circuit that uses two registers: the first is a t-qubit
register whose initial state is |0〉⊗t, and the second is an L-qubit register whose initial state is |u〉. We
will analyse the choice of t more fully later, but for now, it depends on two things:

• how accurately we wish to estimate φ.

• the rate of error that we wish to consider acceptable in applying this procedure.

The quantum circuit that gives the solution to this problem is as follows:

. . .

...
...

...

. . .

. . .

. . .

. . .

|0〉⊗t

H

F †2tH

H

H

|u〉 U20 U21 U22 U2t−1 |u〉

(3.16)
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We break down each step of the circuit below:

1. After applying H⊗t ⊗ I⊗L to |0〉⊗t |u〉, we obtain the state 1√
2t

(|0〉+ |1〉)⊗t |u〉.

2. Next we apply the series of controlled-U2j operations to the second register |u〉, which leaves it
unchanged, but changes the overall state to(

1√
2t

(
|0〉+ e2πi2

t−1φ |1〉
)(
|0〉+ e2πi2

t−2φ |1〉
)
· · ·
(
|0〉+ e2πi2

0φ |1〉
))
|u〉 (3.17)

This is true because, for example:

(I ⊗ U2j)(|1〉 ⊗ |u〉) = I |1〉 ⊗ U2j |u〉
= |1〉 ⊗ e2πi2jφ |u〉
= e2πi2

jφ |1〉 ⊗ |u〉

3. Equation (3.17) is equivalent to

1√
2t

2t−1∑
k=0

e2πikφ |k〉 |u〉 (3.18)

by reconstituting the product of the phases as a binary expansion.

4. Now we apply the crucial step F †2t ⊗ I⊗L (that is, the Inverse Quantum Fourier Transform to
the first register), the result of which we want to be the state

|φ̃〉 |u〉 (3.19)

where φ̃ is a t-bit estimate of φ.

5. Measuring the first register in the computational basis gives φ̃.

Remark 3.10. Clearly, we need to analyse Step 4 more closely in order to be able to assert correctly
that the result of applying the Inverse Quantum Fourier Transform to the first register is |φ̃〉 |u〉.

Remark 3.11. Note that if the phase φ can be expressed exactly as a t-bit binary fraction, that is,
as φ = 0.φ1φ2 . . . φt, then Step 4 above gives the state |φ1φ2 . . . φt〉 |u〉.

It can be seen that the result of Step 2, given by Equation (3.17), is exactly the same as the result of
applying F2n ⊗ I⊗L to |φ1φ2 . . . φt〉 |u〉, presented in its Product Representation form. Hence applying
F †2t ⊗ I⊗L to this result (Step 4) returns the original state, since F2n is unitary.

Therefore, applying Step 5 in this case gives us φ exactly.

We can also provide a less explicit implementation of Steps 1 and 2 above by reconsidering what it
means to “apply the series of controlled-U2j operations to the second register |u〉.”

Exercise 3.12. Show that the effect of the sequence of controlled-U2j operations applied to the
second register |u〉 is to take the state |j〉 |u〉 7→ |j〉U j |u〉.
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Proof. Writing |j〉 as |j1j2 . . . jt〉, where jk ∈ {0, 1} for each k, and considering the quantum circuit
below

. . .

...

. . .

. . .

. . .

. . .

|j1〉
...

|jt−2〉
|jt−1〉
|jt〉

|u〉 U20 U21 U22 U2t−1

(3.20)

we have that

|j〉 |u〉 7→ |j1j2 . . . jt〉U2t−1j1U2t−2j2 . . . U20jt |u〉
= |j1j2 . . . jt〉U2t−1j1+2t−2j2+···+20jt |u〉
= |j〉U j |u〉

as required.

Since we can rewrite the result of Step 1 as

1√
2t

2t−1∑
j=0

|j〉 |u〉 (3.21)

we can apply U j to the second register |u〉 for each j in the sum and obtain Equation (3.18) immedi-
ately.

This reformulation allows us to present a more compact version of the quantum circuit for Phase
Estimation that was given in Equation (3.16):

t

L

|0〉⊗t H⊗t F †2t

|u〉 U j |u〉

(3.22)

We are left with 3 major questions:

1. What do we actually get by applying the Inverse Quantum Fourier Transform in Step 4 above,
and if it is |φ̃〉 |u〉, how good an estimate is φ̃ of φ?

2. How can we choose t such that the algorithm fails with probability less than some arbitrary ε?

3. In which algorithms can we fulfil the two promises that we’ve made in order to make use of a
fully-implemented version of this procedure?

We can answer questions 1. and 2. with the following analysis. We follow the argument given in
[21], but we have changed some of the calculations and the order in which the original analysis was
presented, adding many more details, in order to be clearer in our reasoning.
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By Remark 3.11, we can assume that φ has more than t-bits when expressed as a binary fraction,
that is, that

φ = 0.φ1φ2 . . . φt + δ (3.23)

where 0 < δ < 1
2t

. Defining b := φ12
t−1 + φ22

t−2 + · · · + φt2
0 (and so b ∈ Z such that b ∈ [0, 2t − 1]),

we have that

φ =
b

2t
+ δ (3.24)

Hence b is the largest integer such that b
2t

is less than φ.

Beginning at Equation (3.18), we can see that the true result of Step 4, that is, applying F †2n to the
first register, is

1

2t

2t−1∑
l=0

2t−1∑
k=0

e2πikφe
−2πikl

2t |l〉 |u〉 (3.25)

Now define βl := 1
2t

∑2t−1
k=0 e

2πi(φ− l
2t )k. Note that βl is periodic in 2t, that is, βl+2t = βl.

We can therefore rewrite Equation (3.25) as

2t−1∑
l=0

βl |l〉 |u〉 (3.26)

This is the true result of applying Step 4 in the procedure above.

Step 5 of the procedure states that the first register of Equation (3.26) is measured in the computa-
tional basis. From this measurement, we will obtain some basis state |l〉 with probability |βl|2.

Claim 3.13. But we want to obtain a state |l〉 such that it satisfies |l − b| ≤ e, that is, l is some
tolerance for error e close to the integer b, and, furthermore, choose e such that e < 2t−n − 1 for an
arbitrarily chosen n, because we will then be able to approximate φ to an accuracy of n bits.

Proof. Assume that we measure the first register of Equation (3.26) to obtain a basis state |l〉 such
that |l − b| ≤ e. Then we have that

|l − b| ≤ e ⇐⇒ δ − 2−te ≤ φ− 2−tl ≤ δ + 2−te (3.27)

which we get by multiplying through by −2−t, adding φ, and applying the definition of δ as given by
Equation (3.24).

This is important because the error in the approximation of φ under this measurement is ∆ := φ−2−tl,
and Equation (3.27) says we can bound this error from above:

∆ ≤ δ + 2−te < 2−t + 2−te (3.28)

since 0 < δ < 1
2t

.

By choosing a tolerance for error e such that e < 2t−n − 1, we get that ∆ < 2−n, and so we can
approximate φ to an accuracy of n bits for an arbitrarily chosen n.

Therefore, we need to understand what is the probability of measuring the first register such that |l〉
satisfies |l − b| ≤ e, where e < 2t−n − 1 for an arbitrarily chosen n.

We look instead at the probability of |l − b| > e and find a max bound as a function of e for it.
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Note that we can restrict l mod 2t by the periodicity of βl.

Recalling that b ∈ Z such that b ∈ [0, 2t − 1], we can define l′ := l − b, and consider it mod 2t.

Then the range of l′ can be −2t−1 + 1 ≤ l′ ≤ 2t−1, since the two sets {0, 1, . . . , 2t − 1} and {−2t−1 +
1,−2t−1 + 2, . . . , 0, 1, . . . 2t−1} are precisely the same modulo 2t, and both −e and +e lie in the range
of l′.

Hence, we can say that

P (|l − b| > e) =
−e−1∑

l′=−2t−1+1

|βl′+b|2 +
2t−1∑
l′=e+1

|βl′+b|2 (3.29)

By the definition of βl, we have that

βl′+b =
1

2t

2t−1∑
k=0

e
2πi
(
φ− l

′+b
2t

)
k

(3.30)

Setting r := e
2πi
(
φ− l

′+b
2t

)
, we can see that equation (3.30) is a geometric series, with result

βl′+b =
1

2t
1− r2t

1− r

=
1

2t
1− e2πi(2tφ−(l′+b))

1− e2πi(φ−
l′+b
2t )

=
1

2t
1− e2πi(2tδ−l′)

1− e2πi(δ−
l′
2t )

with the final step coming from substituting in Equation (3.24).

Since |1− eix| ≤ |1|+ | − eix| = 2 for any x ∈ R by the Cauchy-Schwarz inequality, we get that

|βl′+b| ≤
1

2t
2∣∣∣1− e2πi(δ− l′

2t )
∣∣∣ (3.31)

Next, we show that −π ≤ 2π
(
δ − l′

2t

)
≤ π. We had that

− 2t−1 + 1 ≤ l′ ≤ 2t−1

⇒ −1

2
+

1

2t
≤ l′

2t
≤ 1

2

⇒ −1

2
≤ −l

′

2t
≤ 1

2
− 1

2t

⇒ −1

2
≤ δ − l′

2t
≤ 1

2

where the last line comes from 0 < δ < 1
2t

. Multiplying through by 2π gives the result.

The following Lemma helps to continue the proof.

Lemma 3.14. We have that

|1− eiθ| ≥ 2|θ|
π

(3.32)

for all −π ≤ θ ≤ π.
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Proof. We won’t show all the steps, but we note that |1−eiθ| = 2|sin( θ
2
)|, and so it is enough to show

that |sin( θ
2
)| ≥ |θ|

π
for all −π ≤ θ ≤ π.

Since these functions are even on this range, it is sufficient to show that sin( θ
2
) ≥ θ

π
for all 0 ≤ θ ≤ π,

which can be done by proving that
∫ π
0
sin( θ

2
)− θ

π
dθ ≥ 0.

Applying this to Equation (3.31), we get that

|βl′+b| ≤
1

2t
2

2
π

∣∣2π (δ − l′

2t

)∣∣ =
1

2

1

|2tδ − l′|
(3.33)

Hence, ultimately, substituting this into Equation (3.29), we get that

P (|l − b| > e) ≤ 1

4

[
−e−1∑

l′=−2t−1+1

1

(l′ − 2tδ)2
+

2t−1∑
l′=e+1

1

(l′ − 2tδ)2

]

Since 0 ≤ 2tδ ≤ 1, the right hand side is

≤ 1

4

[
−e−1∑

l′=−2t−1+1

1

(l′)2
+

2t−1∑
l′=e+1

1

(l′ − 1)2

]

≤ 1

4

[
2t−1−1∑
l′=e+1

1

(l′)2
+

2t−1−1∑
l′=e

1

(l′)2

]

≤ 1

2

2t−1−1∑
l′=e

1

(l′)2

≤ 1

2

∫ 2t−1−1

e−1

1

(l′)2
dl′

≤ 1

2(e− 1)
(3.34)

We can use this result to fully understand the probability that the |l〉 we measure in Step 5 satisfies
|l − b| ≤ e, where e < 2t−n − 1 for an arbitrarily chosen n.

Claim 3.15. We can bound this probability ≥ 1− ε for some ε if we choose t := n+ dlog2(2 + 1
2ε

)e.

Proof. Our proof of Claim 3.13 showed that if e < 2t−n − 1, then |l − b| ≤ e. Hence we must have
that if |l − b| > e, then e ≥ 2t−n − 1.

Applying this to Equation (3.34), we can see that

P (|l − b| > e) ≤ 1

2(e− 1)
≤ 1

2(2t−n − 2)
(3.35)

In order that P (|l− b| > e) < ε, we need 1
2(2t−n−2) < ε, which holds if and only if t > n+ log2(2 + 1

2ε
).

Hence P (|l − b| ≤ e) ≥ 1− ε if t := n+ dlog2(2 + 1
2ε

)e.

We can combine Claim 3.13 and Claim 3.15 into the following theorem.
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Theorem 3.16 (Phase Estimation). Given a unitary operator U with eigenvector |u〉 and eigenvalue

e2πiφ, we can approximate the phase φ accurate to n bits, which we denote by φ̃, with success at least
1−ε if we apply the quantum algorithm given by the quantum circuit (3.16) with t := n+dlog2(2 + 1

2ε
)e.

Remark 3.17. It is trivial to extend Theorem 3.16 to superpositions of eigenvectors of U : suppose
that |ψ〉 :=

∑
u cu |u〉, where each eigenvector has eigenvalue e2πiφu , and the Phase Estimation pro-

cedure takes as input the state |0〉⊗t |ψ〉 with t chosen as in Theorem 3.16. Then the probability of
measuring φu accurate to n bits is at least |cu|2(1− ε).

Exercise 3.18. Let U be a unitary transform with eigenvalues ±1, which acts on a state |ψ〉. Using
the Phase Estimation procedure, construct a quantum circuit to collapse |ψ〉 into one or the other of
the two eigenspaces of U , giving also a classical indicator as to which space the final state is in.

Proof. Let the eigenstates of U be |u1〉 and |u−1〉 with their (obvious) eigenvalues. Then we can write
|ψ〉 as a superposition of these eigenstates, namely

|ψ〉 = c1 |u1〉+ c−1 |u−1〉 (3.36)

where |c1|2 + |c−1|2 = 1.

Setting t := 1, and applying Steps 1 and 2 of the Phase Estimation procedure to the state |0〉 |ψ〉, we
obtain the state

c1√
2

[|0〉+ |1〉] |u1〉+
c−1√

2
[|0〉 − |1〉] |u−1〉 (3.37)

Since F †2 = H, we can apply H to the first register to obtain

c1 |0〉 |u1〉+ c−1 |1〉 |u−1〉 (3.38)

Measuring the first register in the computational basis of C2 results in being in the eigenspace with
eigenvalue +1 with probability |c1|2 and being in the eigenspace with eigenvalue −1 with probability
|c−1|2.

The quantum circuit for this procedure looks as follows:

|0〉 H H

|ψ〉 U

(3.39)

where we have substituted in for the quantum circuit given in (3.16).

The remaining major question that we are left with is the third question, which said “in which
algorithms can we fulfil the two promises that we’ve made in order to make use of a fully-implemented
version of this procedure?” We take a look at our first application in the next section.
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3.3 Order-Finding Algorithm

We can formulate the problem and the goal as follows:

• Problem: let x,N ∈ Z≥0 such that x < N and gcd(x,N) = 1.

• Goal: find the smallest positive integer r such that xr ≡ 1 mod N . r is said to be the order of
x modulo N .

Our first result is rather simple:

Exercise 3.19. Show that the order of x satisfies r ≤ N .

Proof. Since gcd(x,N) = 1, we have that x,N are coprime.

As x ≤ N , we have that x ∈ (Z∗N ,×), the multiplicative group of integers modulo N which are
coprime to N .

The order of this group is φ(N), where φ denotes Euler’s totient function, which is defined to be the
number of positive integers strictly less than N which are coprime to N .

As the order of x in Z∗N is r, we have that r | φ(N) by Lagrange’s Theorem, and so r ≤ φ(N).

But φ(N) ≤ N by definition of φ, and so r ≤ N as required.

In order to use the Phase Estimation procedure as part of a quantum algorithm to solve this problem,
we need to do the following:

1. reformulate the problem in terms of a unitary operator U and look at its eigenvectors and
eigenvalues.

• For this, it helps to consider N in its binary form, and so we define L := dlog2(N)e as the
number of bits needed to express N in binary.

2. satisfy the two promises, which were

• to prepare an eigenstate |u〉 of U in an L-qubit register to be input into the circuit.

• to provide an implementation of the oracles which perform the operator U2j for non-
negative integers j.

We look at 1. first with the following definition:

Definition 3.20. Let Q be a quantum system over C of size 2L. Writing the computational basis of
this system as |0〉 , |1〉 , . . . , |2L − 1〉, we can define a linear operator U on this basis as follows:

U : Q −→ Q

|y〉 7→
{
|xy mod N〉 , for 0 ≤ y ≤ N − 1
|y〉 , for N ≤ y ≤ 2L − 1

(3.40)
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Exercise 3.21. Show that U is a unitary operator.

Proof. We show that U permutes the computational basis. Since U |y〉 = |y〉 for N ≤ y ≤ 2L − 1,
it is enough to show that the two sets, {|0〉 , |1〉 , . . . , |N − 1〉} and {U |0〉 , U |1〉 , . . . , U |N − 1〉} are
equivalent. It’s clear that if 0 ≤ y ≤ N − 1, then U |y〉 = |xy mod N〉 is equivalent to some |z〉,
0 ≤ z ≤ N − 1. We therefore need to show that if U |y〉 = U |w〉 for 0 ≤ y ≤ w ≤ N − 1, then y = w.

Indeed, if U |y〉 = U |w〉 for 0 ≤ y ≤ w ≤ N −1, then xy mod N = xw mod N . Since x has an inverse
in (Z∗N ,×), we get that y mod N = w mod N . But 0 ≤ y ≤ w ≤ N−1, and so y = w as required.

We complete 1. by investigating the following claim:

Claim 3.22. The following states are eigenvectors of U with eigenvalues e
2πis
r for 0 ≤ s ≤ r − 1.

|us〉 :=
1√
r

r−1∑
k=0

e
−2πisk

r |xk mod N〉 (3.41)

Proof. Indeed, we have that

U |us〉 =
1√
r

r−1∑
k=0

e
−2πisk

r |xk+1 mod N〉 = e
2πis
r |us〉

using that when k = r − 1, xk+1 ≡ 1 mod N .

We look at 2. next. We need to fulfil the two promises of the Phase Estimation procedure in order
to use a fully implemented version of it in the quantum algorithm for Order-Finding. We start by
looking at the first promise.

We are unable to use a single eigenstate |us〉 for some s directly because that would mean that we
would have to know what the value of r is. But we can prove the following two exercises, which will
lead to showing that |1〉 is a superposition of the |us〉, and we can prepare this in the second register as
input into the Phase Estimation procedure. Note that |1〉, when using the L-bit binary representation
of the computational basis, is really |00 . . . 01〉, and so we can easily prepare this state by applying
the operator I⊗(L−1)⊗X to |0〉⊗L. We already know that |0〉⊗L is a state that can always be prepared
for input into a quantum circuit by the model for Quantum Computing given in Theorem 2.32.

Exercise 3.23. Prove that
∑r−1

s=0 e
−2πisk

r = rδk0

Proof. If k = 0 mod r then
r−1∑
s=0

e
−2πisk

r =
r−1∑
s=0

1 = r

Else, we have a geometric series, and

r−1∑
s=0

e
−2πisk

r =
1− e−2πik

1− e−2πik
r

= 0

as required.

Exercise 3.24. Prove that
1√
r

r−1∑
s=0

e
2πisk
r |us〉 = |xk mod N〉 (3.42)
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Proof. Substituting in the definition of |us〉 and applying Exercise 3.23, we have that

1√
r

r−1∑
s=0

e
2πisk
r |us〉 =

1

r

r−1∑
s=0

r−1∑
t=0

e
−2πis(t−k)

r |xt mod N〉

=
1

r

r−1∑
t=0

rδ(t−k)0 |xt mod N〉

= |xk mod N〉

as required.

Corollary 3.25. Setting k = 0 in Equation (3.42) gives

1√
r

r−1∑
s=0

|us〉 = |1〉 (3.43)

and so |1〉 is a uniform superposition of eigenstates of U .

The second promise asks us to provide an implementation of the oracles which perform the operator
U2j for non-negative integers j. As Exercise 3.12 shows, it is enough to provide an implementation
of the transformation |j〉 |y〉 7→ |j〉U j |y〉 = |j〉 |xjy mod N〉, where j ∈ {0, 1, . . . , 2t − 1} (where t is
the same t that is used to define the number of qubits in the first register of the Phase Estimation
procedure, the choice of which is yet to be made explicit).

We can construct a series of reversible circuits that perform these operators, using a third register of
L ancilla qubits in the state |0〉⊗L, as follows:

|j〉 |y〉 |0〉⊗L Ĉ−→ |j〉 |y〉 |xj mod N〉
M−→ |j〉 |xjy mod N〉 |xj mod N〉
Ĉ−1

−→ |j〉 |xjy mod N〉 |0〉⊗L

with implementations of Ĉ and M to follow. Ĉ−1 reverses the calculation of the modular exponential
using the trick of uncomputation.

The classical algorithm for computing xj mod N , the modular exponential, has two steps.

• Since j can be expressed in binary as jt−1jt−2 . . . j0 with ji ∈ {0, 1} for all i, we need to calculate
x2

i
mod N for all such i. This can be done by starting from x mod N and repeatedly squaring,

getting x2 mod N , x2
2

mod N , etc

• Then we obtain xj mod N by performing the following calculation with these stored modular
exponentials

xj mod N =
t−1∏
i=0

(
xji2

i

mod N
)

(3.44)

which is at most t− 1 multiplications (as some of the ji may be 0).

From Section 2.6, we know that any classical algorithm can be implemented reversibly on a quantum
computer, and so we denote its reversible implementation as Ĉ. Similarly, the classical algorithm for
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multiplying two numbers together also has a reversible implementation on a quantum computer by
the same logic, and so we denote this by M .

With this, we have fulfilled both promises, and so we can now use the Phase Estimation procedure
in a quantum algorithm for Order-Finding.

In order to use this procedure successfully, we need to make a choice of t = n+dlog2(2 + 1
2ε

)e that will
provide a “good enough” estimate of the phase. Since we are preparing |1〉, a uniform superposition
of eigenstates |us〉, in the second register, when we apply the Phase Estimation procedure, upon

measuring the first register we will obtain an estimate φ̃s of the phase s
r

accurate to n bits for some
0 ≤ s ≤ r−1, with probability at least 1

r
(1− ε) and with s unknown. The question therefore becomes

“what should we choose n to be so that we can find r?”

We can answer that question by applying the next theorem, which uses the Continued Fractions Algo-
rithm to compute s

r
(with one slight technical proviso) from our estimate φ̃s under certain conditions.

But first, a definition:

Definition 3.26 (Continued Fraction). A finite simple continued fraction is defined by a finite col-
lection a0, . . . , aN of positive integers

[a0, . . . , aN ] := a0 +
1

a1 +
1

a2 +
1

· · ·+
1

aN

(3.45)

The nth convergent for some 0 ≤ n ≤ N of this continued fraction is defined to be [a0, . . . , an].

Theorem 3.27. Suppose s
r

is a rational number, with s and r both L bit integers, such that∣∣∣s
r
− φ̃s

∣∣∣ ≤ 1

2r2
(3.46)

Then s
r

is a convergent of the continued fraction for φ̃s, and it can be computed in O(L3) operations
using the Continued Fractions Algorithm.

Proof. See [21, p. 637] for the details.

Remark 3.28. In order to make use of Theorem 3.27, we need to choose n such that the bound given
by Equation (3.46) holds.

Since we know that r ≤ N ≤ 2L from Exercise 3.19, we have that 1
22L+1 ≤ 1

2r2
.

Hence picking n = 2L + 1 means that the result of the Phase Estimation procedure, φ̃s, will be an
approximation of s

r
accurate to 2L+ 1 bits, and so Theorem 3.27 will hold for this n.

We can therefore apply the Continued Fractions Algorithm and will obtain the value of s
r

as a con-
vergent in this algorithm.

Remark 3.29. The technical proviso mentioned above is that the Continued Fractions Algorithm
will give the value of s

r
, that is, it will return a fraction s1

r1
= s

r
such that gcd(s1, r1) = 1.

So we now know s1 and r1. This could be a problem as r1 may or may not be equal to r.

We can test this by calculating xr1 mod N .
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• If it equals 1 mod N , then we know that r1 = r and so it is the order of x mod N , as required.

• If it is not equal to 1 mod N , then we know that r1 6= r. We address how to proceed when we
analyse what can be done when the algorithm fails.

The quantum circuit for the Order-Finding procedure is as follows:

t

L

|0〉⊗t H⊗t F †2t

|1〉 U j

(3.47)

When does the algorithm fail?

The obvious situation for when the Order-Finding Algorithm fails is when the Phase Estimation
procedure does not produce an estimate of some s

r
accurate to 2L + 1 bits. However, this happens

with probability at most 1−
∑r−1

s=0
1
r
(1− ε) = ε, and this can be made negligably small by increasing

the value of t chosen in the Phase Estimation procedure.

The other case, which we’ve already alluded to, occurs when the Continued Fractions Algorithm
returns s1

r1
with r1 6= r. We can ignore the situation where we obtain s1 = 0, as it occurs with

probability 1
r
, and by repeating the procedure a few times we will obtain an estimate φ̃s of some other

s
r

with s 6= 0.

Ignoring this situation, we therefore get that r1 is a factor of r. We can then run the procedure again
to try to find the order of xr1 mod N , which we now know will have order r

r1
. From the algorithm,

we will obtain some r2. If we get that xr1r2 ≡ 1 mod N , then we know that r1r2 = r is the order of x,
else r2 is a factor of r

r1
, and so we can repeat the procedure to find the order of xr1r2 mod N . We can

continue in this way until we find the order of r, which will take at most O(log2 r) = O(L) iterations,
as we obtain a proper factor of r each time we run the procedure (excluding a constant number of
s = 0 cases).

See [21, p. 231] for another method to obtain r using O(1) repetitions of the procedure.

What is the runtime for this algorithm?

Given that t = 2L + 1 + dlog2(2 + 1
2ε

)e = O(L), we can break down the resources used at each step
of the algorithm, as follows:

• Applying the operator H⊗t to the first register uses t = O(L) gates.

• The modular exponentiation operation was split into two parts:

– calculating all the x2
i

mod N from 0 to t − 1 requires t − 1 = O(L) squaring operations
each at a cost of O(L2), so O(L3) in total.

– calculating xj mod N requires at most t−1 = O(L) multiplications each at a cost of O(L2),
so O(L3) in total.

Hence the modular exponentiation operation is O(L3).

• The Inverse Quantum Fourier Transform, F †2t , uses O(t2) = O(L2) gates.

• The application of Theorem 3.27 to find r1 uses O(L3) operations.
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Hence one iteration of the Order-Finding Algorithm takes O(L3) operations. As our analysis showed,
we need to repeat it O(L) times in order to guarantee finding r, and so we have an O(L4) algorithm
to find the order of x mod N .

We can immediately improve it to O(L3) by using the method found in [21, p. 231]. Shor [26],
who discovered this algorithm when he studied the application of Order-Finding to factoring inte-
gers, the topic of our next section, obtained an O(N2 log(N) log(log(N))) algorithm by using faster
multiplication algorithms to perform the modular exponentiation than the ones we used above.

3.4 Factoring Integers

We begin as usual by formulating the problem and the goal:

• Problem: We have a positive, composite integer N .

• Goal: To find a non-trivial factor of N .

Shor [26] was able to take the Order-Finding Algorithm of the previous section and use it as a
subprocedure within his algorithm to factor integers into their prime decomposition. It is easiest to
provide the details of his algorithm first before proving each of the steps:

Theorem 3.30 (Shor’s Algorithm). The following procedure is a O((logN)3) algorithm to factor a
positive composite integer N .

1. If N ≡ 0 mod 2, then return 2.

2. Else, randomly choose x ∈ [2, N − 1], and calculate gcd(x,N) using Euclid’s Algorithm. If
gcd(x,N) 6= 1, return gcd(x,N).

3. Else, apply the Order-Finding Algorithm to find the order r of x mod N .

4. If r is odd or x
r
2 ≡ −1 mod N , the algorithm has failed, so return to Step 1.

5. Otherwise compute gcd(x
r
2 − 1, N) and gcd(x

r
2 + 1, N). At least one of these divides N non-

trivially.

The only step that requires a quantum algorithm is Step 3, which we know runs in O((logN)3) time if
we use the improved method of the Order-Finding Algorithm stated above. Step 1 is a simple division
test, which is O(1). All of the other steps use Euclid’s Algorithm, which, given that it is a classical
algorithm, can be replicated on a quantum computer by Section 2.6 if need be, but can be computed
classically in O((logN)3) [21, p. 629].

To prove Step 5, we need the following Lemma:

Lemma 3.31. Let N be an L-bit composite number, and suppose that y is a non-trivial solution to
the equation y2 ≡ 1 mod N such that 1 < y < N − 1. (Then y 6= ±1 mod N .)

Then at least one of gcd(y−1, N) and gcd(y+1, N) is a non-trivial factor of N that can be computed
using O(L3) operations.
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Proof. We give the proof that can be found in [21].

As y2 ≡ 1 mod N , we have that N | y2 − 1 = (y − 1)(y + 1). Hence N must have a factor d > 1 such
that either d | y − 1 or d | y + 1.

However, 1 < y < N − 1 implies that y − 1 < y + 1 < N , and so d < N .

Hence either 1 < d ≤ gcd(y − 1, N) < N or 1 < d ≤ gcd(y + 1, N) < N , and by computing
gcd(y − 1, N) and gcd(y + 1, N) using Euclid’s Algorithm, we obtain a non-trivial factor of N using
O(L3) operations.

Remark 3.32. Clearly setting y = x
r
2 with r even and x

r
2 6= −1 mod N in Lemma 3.31 gives Step

5. Note also that x
r
2 6= 1 mod N , since r is the order of x mod N .

We now need to understand how often the algorithm fails in Step 4. First we present the following
Lemma:

Lemma 3.33. Let p be an odd prime and suppose that 2d is the largest power of 2 dividing φ(pα).
Then if r is the order of a randomly chosen element x in Z∗pα , the probability that 2d | r is 1

2
.

Proof. We give the proof that can be found in [21].

We have that the only integers less than pα which are not coprime to pα are the multiples of p, and
there are pα−1 − 1 such multiples, hence φ(pα) = (pα − 1)− (pα−1 − 1) = pα−1(p− 1). Since p is odd
we also get that φ(pα) is even, and hence d ≥ 1.

We use that Z∗pα is a cyclic group [21, p. 632], and so x ≡ gk mod pα for some generator g of the group
and for some k ∈ {1, 2, . . . , φ(pα)}. Furthermore, since r is the order of x in this group, we have that
gkr ≡ 1 mod pα.

Now, if k is odd, then φ(pα) | kr and hence 2d | r.

But if k is even, then

g
kφ(pα)

2 ≡ 1
k
2 ≡ 1 mod pα

Hence r | φ(pα)
2

and so 2d does not divide r (if it did then 2d+1 would divide φ(pα), which is a
contradiction by the construction of d.)

The probability that k is odd is exactly 1
2
, since φ(pα) is even, and hence the probability that 2d

divides the order of a randomly chosen element in Z∗pα is 1
2
, as required.

With this result, we can now bound the probability of the algorithm failing in Step 4, that is, choosing
an x ∈ [2, N − 1] such that its order r is odd or x

r
2 ≡ −1 mod N .

Proposition 3.34. Let
∏m

i=1 p
ai
i be the prime factorisation of an odd, composite positive integer N .

Suppose also that x ∈ Z∗N is chosen uniformly at random and let r be its order.

Then the probability that r is even and x
r
2 6= −1 mod N is greater than or equal to 1− 1

2m−1 .

Proof. This is my own proof as the proof given in [21] is incorrect.

We consider the probability that x is a member of the set

S := {y ∈ Z∗N | ord(y) is odd or y
ord(y)

2 ≡ −1 mod N} (3.48)

where ord(y) is the order of y ∈ Z∗N .
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The Chinese Remainder Theorem gives us an isomorphism Z∗N −→ Z∗
p
a1
1
× · · · × Z∗pamm defined by

y 7→ (y1, y2, . . . , ym) (3.49)

such that y ≡ yi mod paii for all i.

In fact, we can say something stronger:

For any y ∈ Z∗N , if we define d to be the largest index such that 2d | ord(y), then this is equivalent
under this isomorphism to choosing y1, y2, . . . , ym such that not only does y ≡ yi mod paii hold for all
i, but also that there exist di that are the largest indices such that 2di | ord(yi).

We now look to use Lemma 3.33, as follows:

Let z be the largest integer such that 2z | φ(N), the order of Z∗N . Since φ(N) =
∏m

i=1 φ(paii ), we
can also define zi to be the largest integer such that 2zi | φ(paii ), where, clearly, by construction,
2z =

∏m
i=1 2zi . It is worth nothing that we know what z and the zi are.

Lemma 3.33 now gives us that 2zi | ord(yi) with probability exactly 1
2
. But since 2di ≤ 2zi by

construction, and di is the largest index such that 2di | ord(yi), this Lemma really gives us that
zi = di with probability 1

2
, and hence also that zi 6= di with probability 1

2
.

We claim that for all i, ord(yi) | ord(y).

Since yord(y) ≡ 1 mod N , we have that yord(y) ≡ 1 mod paii for all i. As y ≡ yi mod paii , this implies

that y
ord(y)
i ≡ 1 mod paii for all i. But ord(yi) is the order of yi in Z∗

p
ai
i

, and so ord(yi) | ord(y) for all

i.

Now the event “ord(y) is odd or y
ord(y)

2 ≡ −1 mod N” can either occur when “ord(y) is odd” or when

“ord(y) is even and y
ord(y)

2 ≡ −1 mod N .” We consider each case:

• If ord(y) is odd, then d = 0. Since ord(yi) | ord(y) for all i, the ord(yi) are also odd, and hence
di must also be 0 for all i.

• If ord(y) is even and y
ord(yi)

2 ≡ −1 mod N , then we have that y
ord(y)

2 ≡ −1 mod paii , and so

ord(yi) does not divide ord(y)
2

.

– For if it did, then writing ord(y)
2

= ord(yi)k for some k, we’d have that y
ord(y)

2 ≡ yord(yi)k ≡
1 mod paii . But since N is odd, paii 6= 2 for all i, and so −1 6= 1 mod paii , giving a contra-
diction.

We show that di = d for all i.

Since 2di | ri | r and d is the max index such that 2d | r, this implies di ≤ d.

Writing ord(y) = 2ds, with s ∈ Z odd, we must have that ord(y) = ord(yi)k = 2ds for some
k ∈ Z.

Since ord(yi) does not divide ord(y)
2

, this must mean that k
2
/∈ Z. Hence k is odd too.

Writing ord(yi) = 2dit, with t ∈ Z odd, we have that 2ds = kt2di . Hence 2d | kt2di , but since
k, t are odd this implies that 2d | 2di . Hence d ≤ di for all i, as required.

Hence
S ≡ {(y1, y2, . . . , ym) ∈ Z∗

p
a1
1
× · · · × Z∗pamm | d = d1 = d2 = · · · = dm} (3.50)
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We now bound the size of S from above:

When we choose some x ∈ Z∗N at random, this is us making a free choice of some index d (as each x
comes with a d by construction) which either cannot be assigned to any of its di (which it gets from
the isomorphism given by Equation (3.49)) or can be arbitrarily assigned to (at least) one of the di.
(We have abused notation here by repeating d and di but we do so with the hope of keeping track of
the ideas already presented in this proof.)

It is necessary that for x to be an element of S, it must be assigned to at least one of the di, so we
let it be assigned to d1 without loss of generality.

Notably, at most, every x in the set Z∗N has a d that can be assigned to one of the di, so we count
under this restriction (thus calculating an upper bound for the size of S.)

Furthermore, it is also required that d2 = d1 = d, d3 = d1 = d, . . . , dm = d1 = d for x to be an
element of S, but there is now no longer any free choice over these equalities.

We know from above that, for all i, either zi = di or zi 6= di with equal probability. Hence, for all i,
either zi = d or zi 6= d under the new restriction.

We need to choose those elements such that zi = d for all i in order that d = d1 = d2 = · · · = dm.
Since we’ve already fixed d1, this means that the size of S is at most

∏m
i=2

1
2
|Z∗N | = 1

2m−1 |Z∗N |.

Hence

P (r is odd or x
r
2 ≡ −1 mod N) =

|S|
|Z∗N |

≤ 1

2m−1
(3.51)

as required.

Remark 3.35. In total, this means that Shor’s Factoring Algorithm obtains a factor of a positive,
composite integer N with O((logN)3) resources with high - O(1) - probability.

Exercise 3.36. Shor’s Algorithm is an efficient factoring algorithm that comes from having an efficient
Order-Finding Algorithm.

Show instead that if we had an efficient factoring algorithm, then we could find the order modulo N
of any x that is coprime to N .

Proof. Suppose that we had an efficient factoring algorithm to factor N as
∏m

i=1 p
ai
i , and let x be

coprime to N . By the same factoring algorithm, we can factor φ(N) into

φ(N) =
m∏
i=1

pai−1i (pi − 1) (3.52)

Since the order r of x can be at most φ(N), and φ(N) is finite, Equation (3.52) allows us to construct
an increasing list of factors of φ(N)

1 = f1 < f2 < · · · < fk = φ(N) (3.53)

for some finite k. We can then find the order r by starting at i = 1 and calculating xfi mod N ,
stopping at the lowest i such that xfi ≡ 1 mod N . This fi is the order r of x.
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4 Quantum Computing with Groups

In the previous chapter, we looked the Quantum Fourier Transform when applied to quantum systems
of size 2n, giving an algorithm to estimate the phase of an eigenvector of a unitary operator, an
algorithm to find the order of an integer coprime to some integer N as well as an algorithm to factor
a composite integer into a product of prime numbers.

In the second half of this thesis, we turn our attention to a famous problem in Quantum Computing
which has its roots in Group Theory. It is called the Hidden Subgroup Problem. We will see that we
can make use of an improved version of the Quantum Fourier Transform when studying this problem,
one which is applied to a quantum system that is the group algebra for some finite group G. We will
define this improved version in the next chapter.

For now, we only state what the Hidden Subgroup Problem is, before looking at some more advanced
mathematical concepts from Group Representation Theory that we will need in order to understand
under what conditions a quantum computer can be used to solve the problem.

4.1 The Hidden Subgroup Problem

Definition 4.1 (The Hidden Subgroup Problem). Let f : G → S be a function from a finite group
G to a finite set S which can be computed efficiently.

In addition, suppose that f has the following property on some unknown subgroup H ≤ G:

f(g) = f(g′) ⇐⇒ g−1g′ ∈ H

The goal is to find H, or equivalently, to find a generating set for H.

Remark 4.2. We note the following:

1. The word “efficiently” in the statement of the problem means that f can be computed in time
polynomial to the number of bits needed to represent an input for f . The number of bits is
log2 |G| because every finite group G has a generating set of size ≤ log2 |G|.

2. The function f is called a hiding function of H.

In fact, we have that f is constant on the left cosets of H in G, and distinct on different cosets.

For if we take some g ∈ G such that g /∈ H, we have that

f(g) = f(g′) ⇐⇒ g′ ∈ gH ⇐⇒ gH = g′H (4.1)

4.2 Group Representation Theory

The topics addressed in this section and the next form the foundational material needed to study
the Hidden Subgroup Problem. They are a collation of definitions, statements and results that can
be found in one of [3], [5], [14], [24] and [25]. I have proved many of the results myself, although I
reference those which come from one of these sources.

All groups G are assumed to be finite in this section and the next. However, we explicitly use the
word finite in definitions where it is particularly important that the group is finite. We use additive
notation when the group is abelian, most notably in Section 4.3.
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Definition 4.3. A representation ρ of a group G is a choice of vector space V over C and a homo-
morphism ρ : G→ GL(V ), that is, ρ(x)ρ(y) = ρ(xy) for all x, y ∈ G.

The dimension dρ of the representation ρ is dim V , the dimension of the vector space V .

If we choose a basis for V , then each ρ(x) : V → V becomes an invertible matrix in Cdρ×dρ .

Remark 4.4. Writing 1 as the identity element of G, it is clear that ρ(1) = IV , the identity map
V → V , and ρ(x−1) = ρ(x)−1.

Remark 4.5. We are able to assume that our representations are unitary without loss of generality,
that is, for all x ∈ G, ρ(x)−1 = ρ(x)†, because every representation of a finite group is isomorphic to
a unitary representation [25, p. 6].

Furthermore, for each x ∈ G, there is some basis in which ρ(x) is diagonalisable, since we can apply
the Spectral Theorem for Normal Operators, as a unitary operator is also normal [21, p. 72].

We will often make use of these two statements in what follows.

Definition 4.6. Let ρ1 : G→ GL(V ) and ρ2 : G→ GL(W ) be two representations of G.

A G-linear map between ρ1 and ρ2 is a linear map f : V → W such that, for all x ∈ G

f ◦ ρ1(x) = ρ2(x) ◦ f (4.2)

Furthermore, suppose that the G-linear map f is also an isomorphism between the vector spaces V
and W .

Then we can say that ρ1 and ρ2 are isomorphic representations, and we denote this by ρ1 ∼ ρ2.

Definition 4.7. A subrepresentation of a representation ρ : G→ GL(V ) is a vector subspace W ⊆ V
such that ρ(x)(w) ∈ W for all x ∈ G, w ∈ W . We say that W is an invariant subspace of this
representation ρ.

Remark 4.8. It is clear that the zero subspace and the subspace V of a representation ρ : G→ GL(V )
are always invariant subspaces.

Definition 4.9. If the zero subspace and V are the only invariant subspaces of a representation
ρ : G→ GL(V ), then ρ is said to be irreducible.

With this, it is natural to try to find the irreducible representations of a group. We can use the
following theorem:

Theorem 4.10 (Maschke’s Theorem). Let ρ : G → GL(V ) be a representation and let U1 be an
invariant subspace of ρ. Then there exists another invariant subspace U2 of ρ that is complementary
to U1, that is, V = U1 ⊕ U2.

In fact, we can write ρ = ρ1 ⊕ ρ2, where ρi(x) is ρ(x) restricted to Ui for i = 1, 2 and for all x ∈ G.

Proof. See [24, p. 23] for details.

Corollary 4.11. Every representation ρ : G→ GL(V ) can be written as a direct sum

ρ = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρr (4.3)

of irreducible (sub)representations ρi : G→ GL(Ui), not necessarily unique.

Equivalently, we have that
V = U1 ⊕ U2 ⊕ · · · ⊕ Ur (4.4)
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Remark 4.12. Corollary 4.11 implies that we can choose a basis of V in which every ρ(x) is block
diagonal, where the ith block corresponds to the ith irreducible subrepresentation in the above decom-
position.

Another useful Lemma involving G-linear maps and irreducible representations is the following:

Theorem 4.13 (Schur’s Lemma). Let ρ1 : G → GL(V ) and ρ2 : G → GL(W ) be two irreducible
representations of G.

1. Let f : V → W be a G-linear map. Then either f is an isomorphism or f is the zero map.

2. Let f : V → V be a G-linear map. Then f = λIV for some λ ∈ C.

Proof. We present the proof given in [24].

1. If f is not the zero map, then

• ker(f) ⊆ V is an invariant subspace of ρ1 that must be the zero subspace as ρ1 is irreducible,
and so f is injective.

• im(f) ⊆ W is an invariant subspace of ρ2 that must be W as ρ2 is irreducible, and so f is
surjective.

Hence f is an isomorphism, and ρ1 ∼ ρ2.

2. As V is a complex vector space, by the Fundamental Theorem of Algebra, f : V → V has an
eigenvalue λ ∈ C. Then f − λIV is G-linear, since, for all x ∈ G, v ∈ V

(f − λIV )(ρ1(x)(v)) = f(ρ1(x)(v))− λρ1(x)(v)

= ρ1(x)(f(v))− ρ1(x)(λv)

= ρ1(x)((f − λIV )(v)) (4.5)

Furthermore, as f − λIV has a non-zero kernel, it cannot be an isomorphism.

Hence f − λIV must be the zero map by part 1, that is, f = λIV , as required.

Another important definition is the following:

Definition 4.14. Let ρ : G → GL(V ) be a representation. Then the character of ρ is the function
χρ : G→ C defined by χρ(x) := tr(ρ(x)).

Remark 4.15. Note that the trace of ρ(x) is well-defined since the trace is independent of the basis
chosen for V .

For if M1 is the matrix representation of ρ(x) in one basis, and M2 is the matrix representation of
ρ(x) in another basis, then there exists a unitary change of basis matrix U such that UM1U

† = M2,
but tr(M2) = tr(UM1U

†) = tr(M1UU
†) = tr(M1).

Proposition 4.16. Let ρ : G→ GL(V ) be a represenation of dimension dρ and let χρ be its character.
Then

1. If x and y are conjugate in G, then χρ(x) = χρ(y).

2. χρ(1) = dσ.
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3. For any x in G, χρ(x
−1) = χρ(x)∗, the complex conjugate of χρ(x).

Furthermore, the character χ1d of the trivial representation 1d of G of dimension d (which maps every
x ∈ G to the identity matrix Id) is d for every element x ∈ G.

Proof. We prove point 3, since it is the only non-obvious result.

Fix some x ∈ G, and suppose it has some order r.

As there exists a basis in which ρ(x) is a diagonal matrix by Remark 4.5, in this basis, the diagonal

entries are the eigenvalues of ρ(x), {λi}dρi=1.

Furthermore, each λi is an rth root of unity in C, either by Exercise 2.18, or, more directly, by the
fact that, in this basis, ρ(x)r = ρ(xr) = ρ(1) = Idρ .

Therefore, ρ(x−1) is a diagonal matrix with entries {λ−1i }
dρ
i=1 in this basis; moreover, we have that

λ−1i = λ∗i , since ρ(x−1) = ρ(x)† by Remark 4.5.

Hence

χρ(x
−1) =

dρ∑
i=1

λ−1i =

dρ∑
i=1

λ∗i =

(
dρ∑
i=1

λi

)∗
= χρ(x)∗ (4.6)

as required.

Proposition 4.17. For i = 1, 2, let ρi : G → GL(Ui) be representations of G with characters χρi .
Then we have that

1. χρ1⊕ρ2 = χρ1 + χρ2

2. χρ1⊗ρ2 = χρ1χρ2

Proof. Both statements can be proved by considering the matrix representations of the ρi(x) in some
bases of the Ui for all x ∈ G.

1. Fix some x ∈ G. Then we can pick bases of U1, U2 such that (ρ1 ⊕ ρ2)(x) is block diagonal in
the basis of U1 ⊕ U2 naturally formed from these bases, with the first block corresponding to
ρ1(x) and the second block corresponding to ρ2(x).

Clearly tr((ρ1 ⊕ ρ2)(x)) = tr(ρ1(x)) + tr(ρ2(x)) in this basis, and hence χρ1⊕ρ2(x) = χρ1(x) +
χρ2(x) = (χρ1 + χρ2)(x).

2. Again, fix some x ∈ G. Then picking bases of U1, U2, we obtain a basis of U1 ⊗ U2 such that
ρ1 ⊗ ρ2 has the matrix representation

M =


ρ1(x)11ρ2(x) ρ1(x)12ρ2(x) · · · ρ1(x)1dρ1ρ2(x)
ρ1(x)21ρ2(x) ρ1(x)22ρ2(x) · · · ρ1(x)2dρ1ρ2(x)

...
...

. . .
...

ρ1(x)dρ11ρ2(x) ρ1(x)dρ12ρ2(x) · · · ρ1(x)dρ1dρ1ρ2(x)

 (4.7)

using the Kronecker Product of Definition 2.22, where ρ1(x)ijρ2(x) is a block of size dρ2 × dρ2
for all i, j.



E. Pearce-Crump Quantum Computing 54

Then

χρ1⊗ρ2(x) = tr(M)

= tr

 dρ1∑
i=1

[ρ1(x)iiρ2(x)]


= tr

 dρ1∑
i=1

ρ1(x)ii

 ρ2(x)


=

 dρ1∑
i=1

ρ1(x)ii

 tr(ρ2(x))

= tr(ρ1(x)) tr(ρ2(x))

= χρ1(x)χρ2(x) (4.8)

as required.

Corollary 4.18. We can naturally extend Proposition 4.17 to n representations of G, namely

1. χ⊕n
i=1 ρi

=
∑n

i=1 χρi

2. χ⊗n
i=1 ρi

=
∏n

i=1 χρi

We now consider functions G→ C in the following way:

Definition 4.19. Let CG be the set of functions G → C. Then CG is a vector space over C, with
linear combinations of elements defined in the obvious manner by

(λ1f1 + λ2f2) : G→ C
x 7→ λ1f1(x) + λ2f2(x) (4.9)

Furthermore, we can augment this vector space with the function (∗, ∗) : CG × CG → C

(f1, f2) :=
1

|G|
∑
x∈G

f1(x)∗f2(x) (4.10)

which can be shown to be an inner product using Definition 2.1.

Note that (∗, ∗) is conjugate linear in the first argument, and linear in the second argument.

A related construct is the following:

Definition 4.20. Let G be any group.

Then we can define Ĝ to be the set of homomorphisms G→ C×. (Note that Ĝ ⊂ CG, as sets.)

If we augment Ĝ with the following binary operation, the pointwise multiplication of functions:

(f1f2)(x) = f1(x)f2(x) for all f1, f2 ∈ Ĝ, x ∈ G (4.11)

then Ĝ can be shown to be a group, which is called the dual group.

Note that Ĝ is an abelian group since multiplication in C× is commutative.
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But, for now, using the inner product of CG, it is possible to show the following:

Theorem 4.21. Let χρ1 , χρ2 , . . . , χρr be the irreducible characters of G. Then

(χρi , χρj) = δij (4.12)

which means that the irreducible characters form a linearly independent set of orthornormal vectors
in CG.

In fact, we can say more:

Theorem 4.22. Let ρ : G→ GL(V ) be a representation, and let ρ1, ρ2, . . . , ρr be the irreducible rep-
resentations of G. Then, because we can decompose ρ as a direct sum of the irreducible representations
of G by Corollary 4.11, by applying Corollary 4.18, we can say that

χρ = m1χρ1 +m2χρ2 +mrχρr (4.13)

where mi is the number of copies of ρi in ρ.

But we can find the mi, since
mi = (χρ, χρi) (4.14)

by Theorem 4.21.

Corollary 4.23. We can therefore deduce a test for irreducibility from Theorem 4.22:

A representation ρ : G→ GL(V ) is irreducible if and only if (χρ, χρ) = 1.

In giving these last two results, we have presupposed that we are able to find out exactly what all
the irreducible representations of a finite group G are, and we have assumed that there are a finite
number of them, up to isomorphism. We now give a method for finding all of them for an arbitrary
finite group G.

Definition 4.24. Let G be a finite group, and let VL be a vector space that has a basis enumerated
by the elements of G, which we denote by {|y〉 | y ∈ G}.

Then L : G→ GL(VL) is a representation of dimension |G| defined by

L(x) |y〉 = |xy〉 (4.15)

for all x ∈ G.

L is called the left regular representation of G.

We can also define a representation R : G → GL(VR) of dimension |G|, where VR is a vector space
with the same basis as VL, by

R(x) |y〉 = |yx−1〉 (4.16)

for all x ∈ G.

R is called the right regular representation of G.

An important fact is the following:
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Theorem 4.25. The left regular representation of G contains every irreducible representation of G,
and the number of irreducible representations of G is finite.

In fact, if {ρi : G → GL(Ui)}ri=1 are the irreducible representations of G with dimensions {di}ri=1,
then

VL =
r⊕
i=1

U⊕dii (4.17)

and so the left regular representation contains every irreducible representation exactly di times.

Equivalently, we can say that

L =
r⊕
i=1

diρi (4.18)

which we will prove to be isomorphic to the operator

L ∼=
r⊕
i=1

[
ρi ⊗ Idρi

]
(4.19)

in Proposition 7.6.

Corollary 4.26. By counting the dimensions of Equation (4.17), we have that

r∑
i=1

d2i = |G| (4.20)

The following result is also useful:

Lemma 4.27. For any x ∈ G, x 6= 1, we have that

r∑
i=1

dρiχρi(x) = 0 (4.21)

where the sum is over the irreducible representations of G.

Proof. Fix x ∈ G− {1}. Then xy 6= y for all y ∈ G, and so the matrix representation of L(x) in the
basis {|y〉 | y ∈ G} of VL has a 0 in every entry along the diagonal.

Hence χL(x) = 0, and so, using Equation (4.19) and Corollary 4.18, we have that

0 = χL(x) = χ(
⊕r
i=1[ρi⊗Idρi ])

(x) =
r∑
i=1

χ(ρi⊗Idρi )
(x) =

r∑
i=1

χρi(x)χIdρi
(x) =

r∑
i=1

dρiχρi(x) (4.22)

as required.

Theorem 4.28. We can perform a similar analysis for the right regular representation of G, and get
that

R ∼=
r⊕
i=1

[
Idρi ⊗ ρ

∗
i

]
(4.23)

We prove this result in Proposition 7.6.

In Group Representation Theory, we often consider a vector space that is isomorphic to VL, since it
also has a basis indexed by the elements of a group G, but we use it in a rather different way.
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Definition 4.29. Let G be a finite group.

Then we can form a vector space over C which has the group elements of G as a basis, denoted by
{|x〉 | x ∈ G}, such that ∑

x∈G

λx |x〉+
∑
x∈G

µx |x〉 :=
∑
x∈G

(λx + µx) |x〉 (4.24)

where λx, µx ∈ C for all x ∈ G.

We denote this vector space by C[G].

In fact, C[G] is often called the group algebra, because the vector space can also be augmented with
a bilinear map C[G] × C[G] → C[G] defined on this basis by (|x〉 , |y〉) 7→ |xy〉 for all x, y ∈ G and
extended bilinearly, which turns it into an algebra.

Another useful result relating to the orthogonality of irreducible representations is the following:

Theorem 4.30. For any two irreducible representations ρ and σ of G, we have that

dρ
|G|

∑
x∈G

ρ(x)∗i,jσ(x)k,l = δρσδikδjl (4.25)

where δρσ is 1 if ρ is isomorphic to σ, and 0 otherwise.

We end this section with the following remark:

Remark 4.31. If ρ : G → GL(V ) is a representation of G, and H is any subgroup of G, then ρ
restricted to H is a representation of H.

Irreducible representations of G may not be irreducible when restricted to H.

We write the inner product given in Equation (4.10) as (∗, ∗)H when representations of G are being
considered as representations of H.

4.3 The Characters of Finite Abelian Groups

In order to study the Hidden Subgroup Problem in the case where the group is abelian, we need to
understand more about the characters of finite abelian groups. We remind the reader that we will
use additive notation for the abelian groups. We begin with the following Proposition:

Proposition 4.32. Every irreducible representation of a finite abelian group G has dimension 1.

Proof. We present an amended proof of the one given in [24].

Let ρ : G → GL(V ) be an irreducible representation of G, and pick some arbitrary x ∈ G. Then
ρ(x) : V → V is a G-linear map, since, for all g ∈ G, v ∈ V , we have that

ρ(x)(ρ(g)(v)) = ρ(xg)(v) = ρ(gx)(v) = ρ(g)(ρ(x)(v)) (4.26)

Applying Schur’s Lemma (Theorem 4.13) gives ρ(x) = λxIV . Now, fixing v ∈ V , we have that

ρ(x)(µv) = λx(µv) (4.27)

for some µ ∈ C, and so span(v) is an invariant subspace of ρ of dimension 1 (since the choice of x ∈ G
was arbitrary).

But since ρ is irreducible, we must have that span(v) = V , and so V has dimension 1, as required.
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Example 4.33. We can list the irreducible representations of a cyclic group G = (ZN ,+) of order N
in terms of the generator 1 ∈ G.

Since a representation of G of dimension 1 is a homomorphism ρ : G → C× (as GL(C) ∼= C×) we
have that it is fully determined by the value of ρ(1) ∈ C× such that ρ(1)N = 1.

Hence ρ(1) = ωkN for some k ∈ {0, 1, . . . , N − 1}, where ωN := e
2πi
N .

This gives N distinct irreducible representations

ρk : G→ C×

j 7→ ωjkN (4.28)

for k ∈ {0, 1, . . . , N − 1}.

These are all the irreducible representations of G since G has N irreducible representations, which can
be seen by considering the left regular representation of G and applying Proposition 4.32 to Equation
(4.17).

It is worth noting also that ρkρl = ρk+l.

Example 4.34. We can extend Example 4.33 to all finite abelian groups (G,+) of order |G| = N ,
as follows:

We know that a finite abelian group G of order N is a direct product of cyclic groups:

G ∼= ZN1 × ZN2 × · · · × ZNr (4.29)

As before, we consider the irreducible representations of G and apply Proposition 4.32 to state that
an irreducible representation must be a homomorphism ρ : G→ C×.

As G is a direct product of cyclic groups, it has r generators {γi}ri=1 of the form

γi = (0, 0, . . . , 0, 1i, 0, . . . , 0) (4.30)

(where 1i is the element 1 ∈ ZNi) such that Niγi is the identity 0G of G.

Hence ρ is determined entirely by the set of numbers {ρ(γi)}ri=1 such that ρ(γi)
Ni = 1 for all i.

Therefore ρ(γi) = ωkiNi for some ki ∈ {0, 1, . . . , Ni − 1}.

Since every element of G is of the form (
∑r

i=1 jiγi) for ji ∈ {0, 1, . . . , Ni− 1}, i = 1 to r, we can label
the irreducible representations of G as:

ρk1,k2,...,kr : G→ C×(
r∑
i=1

jiγi

)
7→

r∏
i=1

ωjikiNi
(4.31)

for ki ∈ {0, 1, . . . , Ni − 1}. This gives us N =
∏r

i=1Ni distinct irreducible representations.

As before, these are all the irreducible representations of G, for the same reasoning as when G was
merely a cyclic group.

Also as before, denoting the tuple (k1, . . . , kr) by k, we can see that ρkρl = ρk+l.

Remark 4.35. Using the notation of Examples 4.33 and 4.34, we can see that the representations of
the abelian group (G,+) are just the products of the representations of the individual cyclic groups
ZNi . That is,

ρk(j) =
r∏
i=1

ρki(ji) (4.32)
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under the isomorphism G ∼= ZN1 × ZN2 × · · · × ZNr , where we have defined j := (
∑r

i=1 jiγi) ∈ G.

Remark 4.36. It is useful to note that a representation ρ of dimension 1 of a group G is exactly the
same function as the character χρ.

Hence the irreducible representations of an abelian group G are precisely the irreducible characters
of G; moreover, they are orthonormal in the Hilbert space CG under the inner product stated in
Equation (4.10) by Theorem 4.21.

Therefore, we will proceed using the language of irreducible characters in the rest of this section.

Note that this means that we can rewrite Equation (4.32) as

χk(j) =
r∏
i=1

χki(ji) (4.33)

where we have defined the character of ρk to be χk and the characters of the ρki to be χki .

Remark 4.37. We proved in Exercise 4.34 that a finite abelian group G had |G| irreducible repre-
sentations, which are the irreducible characters of G by Remark 4.36.

Hence, for a finite abelian group G, we have that

|G| = |Ĝ| (4.34)

where Ĝ is the dual group of G, as given in Definition 4.20.

Our aim is to show something stronger: that if G is abelian, then G ∼= Ĝ.

First, consider the following:

Theorem 4.38. If G is a cyclic group, then G ∼= Ĝ.

Proof. We adjust the proof given in [5].

Suppose that |G| = N . Using additive notation, we have that G ∼= (ZN ,+). It is sufficient to show

that ZN ∼= ẐN
Considering the generator 1 of ZN , we claim that

χ1 : ZN → C×

j 7→ ωjN (4.35)

as defined in Remark 4.33 (using the notation of characters instead of representations, by Remark

4.36) is a generator of ẐN .

Indeed, let f be any element of ẐN . Then f = χk for some k ∈ {0, 1, . . . , N − 1}, also by Remark
4.33, and so

f(j) = χk(j) = ωjkN = χ1(j)
k (4.36)

Hence f = χk1, and so χ1 generates ẐN .

Since |ZN | = |ẐN | by Equation (4.34), we must have that ZN ∼= ẐN (via the isomorphism 1 7→ χ1).

Lemma 4.39. If (G1,+) and (G2,+) are finite abelian groups, then Ĝ1 ×G2
∼= Ĝ1 × Ĝ2.
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Proof. We revise the proof given in [5].

For a character χ of (G1 ×G2,+), define χ1 and χ2 to be characters on G1 and G2 respectively by

• χ1(x) = χ(x, 0) for all x ∈ G1.

• χ2(y) = χ(0, y) for all y ∈ G2.

Then because
χ(x, y) = χ((x, 0) + (0, y)) = χ1(x)χ2(y) (4.37)

for all (x, y) ∈ G1 ×G2, we get a map

φ : Ĝ1 ×G2 → Ĝ1 × Ĝ2

χ 7→ (χ1, χ2) (4.38)

which is easily shown to be a group homomorphism.

To show that φ is an isomorphism, we firstly prove that φ is injective and then prove that the groups

Ĝ1 ×G2 and Ĝ1 × Ĝ2 are of the same order.

Indeed, to prove that φ is injective, it is sufficient to show that ker(φ) is trivial:

If χ ∈ ker(φ), then χ1 and χ2 must be the trivial characters, and so χ1(x) = 1 = χ2(y) for all
x ∈ G1, y ∈ G2. But 1 = χ1(x)χ2(y) = χ(x, y) for all (x, y) ∈ G1 × G2, and so χ must be the trivial

character in Ĝ1 ×G2.

Furthermore, because

|Ĝ1 ×G2| = |G1 ×G2| = |G1||G2| = |Ĝ1||Ĝ2| = |Ĝ1 × Ĝ2| (4.39)

by Equation (4.34), we have shown that φ is an isomorphism of groups, as required.

Theorem 4.40. If G is an abelian group, then G ∼= Ĝ.

Proof. We amend the proof given in [5].

Since G is abelian, it is isomorphic to a direct product of cyclic groups:

G ∼= ZN1 × ZN2 × · · · × ZNr (4.40)

Hence, first by Lemma 4.39 and then by Theorem 4.38, we have that

Ĝ ∼= (ZN1 × ZN2 × · · · × ZNr )̂ ∼= ẐN1 × ẐN2 × · · · × ẐNr ∼= ZN1 × ZN2 × · · · × ZNr ∼= G (4.41)

as required.

Another interesting theorem regarding the characters of finite abelian groups is the following:

Theorem 4.41 (Pontryagin Duality). Let G be a finite abelian group. There is a natural isomorphism

between G and the double-dual group of G,
̂̂
G (the dual group of Ĝ), defined by

φ : G→ ̂̂
G

x 7→ Ψx (4.42)
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where

Ψx : Ĝ→ C×

χ 7→ χ(x) (4.43)

is the function that evaluates χ ∈ Ĝ at x ∈ G.

Remark 4.42. Note that for x ∈ G, Ψx is a representation of Ĝ of dimension 1, because

Ψx(χ1χ2) = (χ1χ2)(x) = χ1(x)χ2(x) = Ψx(χ1)Ψx(χ2) (4.44)

where we have used the definition of the binary operation of Ĝ in the second equality.

Since Ĝ is abelian, we have that Ψx is a character of Ĝ by Remark 4.36, and so Ψx ∈
̂̂
G.

To prove Theorem 4.41, we need the following Lemma:

Lemma 4.43. Let G be a finite abelian group. If x is not the identity of G, then χ(x) 6= 1 for some

character χ ∈ Ĝ.

Proof. Suppose that χ(x) = 1 for all irreducible characters of G. We know that there are |G| of them,
by Equation (4.34).

As the irreducible characters of G are the same as the irreducible representations of G by Remark
4.36, we have that ρ(x) = 1 for all irreducible representations ρ of G, and they are all of dimension 1.

If we consider the left regular representation L, then Equation (4.18) implies that

L(x) =

|G|⊕
i=1

ρi(x) = IVL (4.45)

The only element of G that L maps to the identity matrix is the identity element, and hence x = 1,
as required.

Proof of Pontryagin Duality. We know that G and
̂̂
G have the same size by Equation (4.34), and

ker(φ) is trivial since if x ∈ ker(φ), then every character of G maps x to 1 ∈ C, and so x is the
identity of G by Lemma 4.43.

Hence φ is an injection between groups of the same size, and so φ must an isomorphism.

In order to develop another equation that looks like the inner product of CG given in Equation (4.10),
we need the following Lemma:

Lemma 4.44. Let G be a finite group. Then∑
x∈G

χ(x) =

{
|G| if χ = 1G

0 if χ 6= 1G
(4.46)

Proof. Indeed, if χ = 1G, then 1G(x) = 1 for all x ∈ G, and so
∑

x∈G χ(x) = |G|.

Otherwise, there exists some x0 such that χ(x0) 6= 1. Then

χ(x0)

(∑
x∈G

χ(x)

)
=
∑
x∈G

χ(x0x) =
∑
x∈G

χ(x) (4.47)

and so
∑

x∈G χ(x) = 0.
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Theorem 4.45. Let G be a finite abelian group. Then, for elements x1, x2 ∈ G, we have that

1

|G|
∑
χ∈Ĝ

χ(x1)
∗χ(x2) =

{
1 if x1 = x2
0 if x1 6= x2

(4.48)

where the sum is over the irreducible characters χ of G.

Proof. We first consider ∑
χ∈Ĝ

χ(x) (4.49)

By Pontryagin Duality, we have that ∑
χ∈Ĝ

χ(x) =
∑
χ∈Ĝ

Ψx(χ) (4.50)

and so, by Lemma 4.44, we have that∑
χ∈Ĝ

Ψx(χ) =

{
|G| if Ψx = 1Ĝ

0 if Ψx 6= 1Ĝ

(4.51)

since Ψx is a character of the abelian group Ĝ and the sum is over the elements of Ĝ.

But Lemma 4.43 states that

Ψx = 1Ĝ ⇐⇒ χ(x) = 1 for all x ∈ Ĝ ⇐⇒ x = 1 (4.52)

Hence ∑
χ∈Ĝ

χ(x) =

{
|G| if x = 1
0 if x 6= 1

(4.53)

Setting x = x−11 x2 and applying Proposition 4.16, we get that∑
χ∈Ĝ

χ(x1)
∗χ(x2) =

{
|G| if x1 = x2
0 if x1 6= x2

(4.54)

Dividing through by |G| gives the result.

To end this section, we introduce an important subgroup of Ĝ that will be used often in the Hidden
Subgroup Problem.

Theorem 4.46 (Orthogonal Subgroup of the Dual Group). Let G be a finite abelian group, and
suppose that H is a subgroup of G.

Then we can define the set

H⊥ = {χ ∈ Ĝ | χ(h) = 1 for all h ∈ H} (4.55)

Then H⊥ is a subgroup of Ĝ which is isomorphic to Ĝ/H, and so |H⊥| = [G : H].
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Proof. It is easy to show that H⊥ is a subgroup, so we will prove that H⊥ ∼= Ĝ/H.

Again, we use additive notation for the abelian groups, and write 1 as a generator of G.

Since G is abelian, so is G/H, and so |Ĝ/H| = |G/H| = [G : H] by Equation (4.34).

Hence we can define a mapping

φ : Ĝ/H → Ĝ

χk → χk ◦ f := ψk (4.56)

where f : G → G/H is the canonical homomorphism and χk is an irreducible character in Ĝ/H for
k ∈ {0, 1, . . . , [G : H]− 1}

This is easily seen to be a homomorphism of groups as a consequence of the binary operation of the
dual group being the pointwise multiplication of functions.

We claim that im(φ) ⊆ H⊥:

Indeed, for some χk ∈ Ĝ/H, we have that

ψk(j) = (χk ◦ f)(j) = χk(j +H) = ωjk[G:H] (4.57)

where j := j +H (and can be thought of as j mod |H| in the exponent of ω[G:H].)

Hence
ψk(h) = χ(0) = 1 for all h ∈ H (4.58)

and so ψk ∈ H⊥.

We also claim that ker(φ) is trivial:

If χk ∈ Ĝ/H then

χk ◦ f = 1G

⇒ χk(j) = 1 for all j ∈ G/H

⇒ ωjk[G:H] = 1 for all j ∈ G/H
⇒ k = 0

Hence χk = 1G/H .

Therefore, by the First Isomorphism of Groups, we have that Ĝ/H ∼= im(φ) and so

|Ĝ/H| = |im(φ)| ≤ |H⊥| (4.59)

since im(φ) ⊆ H⊥.

To prove that H⊥ ∼= Ĝ/H, it is enough to show that |H⊥| ≤ |Ĝ/H|, because then we will have that
H⊥ = im(φ).

To do this, we construct another homomorphism of groups, as follows:

Let χ ∈ H⊥. Define ψ : G/H → C× by x+H 7→ χ(x), where x is a representative of the coset x+H
in G.
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ψ is a well defined mapping, since if we choose another coset representative g ∈ x+H, then

ψ(x+H) = χ(g) = χ(x+ h) = χ(x)χ(h) = χ(x) (4.60)

since χ ∈ H⊥.

Therefore ψ is a character of G/H.

We can now define the map

α : H⊥ → Ĝ/H

χ→ ψ (4.61)

which is easily shown to be a homomorphism, again by the binary operation of the dual group.

We claim that ker(α) is trivial:

Indeed, if χ ∈ ker(α), then χ(x) = ψ(xH) = 1G/H(x) = 1 for all x ∈ G, and so χ = 1G.

Therefore, |H⊥| ≤ |Ĝ/H|, and so we are done.
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5 The Quantum Fourier Transform for Abelian Groups

In Chapter 3, on the Applications of the Quantum Fourier Transform, we stated that we would
introduce “improved” versions of the Quantum Fourier Transform as and when we needed them.
In that chapter, we looked at how we could implement the Quantum Fourier Transform when the
quantum system was of size 2n for some n ∈ Z≥1. We now need to generalise our approach by looking
at quantum systems that are composed of linear combinations of a basis whose elements are indexed
by the elements of an abelian group G. We therefore need a new version of the Quantum Fourier
Transform which can be applied to states in such a quantum system, which is where we begin this
chapter. We find our motivation for this chapter in [3], [4] and [8].

5.1 Quantum Fourier Transform, version 2

Definition 5.1 (Quantum Fourier Transform). Let G be a finite abelian group of size |G|.

Consider a quantum system over C with the computational basis labelled by the elements of G,
namely {|j〉 | j ∈ G}.

Note that this quantum system is C[G], the group algebra from Definition 4.29, considered as a
vector space over C, augmented with the inner product 〈∗|∗〉 : C[G] × C[G] → C that is defined
on the computational basis by 〈i|j〉 = δij and extended conjugate-linearly in the first argument and
linearly in the second argument.

We can define a linear operator FG on this basis as follows:

FG : C[G]→ C[Ĝ]

|j〉 7→ 1√
|G|

∑
k∈Ĝ

χk(j) |k〉 (5.1)

where Ĝ is the dual group of G, and the sum is over the irreducible characters of G that forms a basis
of C[Ĝ]. Note that they are all one-dimensional by Example 4.34.

FG is called the Quantum Fourier Transform over the finite abelian group G.

Remark 5.2. As before, we can write FG using outer product notation, namely

FG =
1√
|G|

∑
x∈G

∑
k∈Ĝ

χk(x) |k〉 〈x| (5.2)

with the proof being very similar to that of Remark 3.2.

Furthermore, because there is an isomorphism of groups Ĝ ∼= G by Theorem 4.40, this implies that
C[Ĝ] ∼= C[G] is an isomorphism of vector spaces over C.

Therefore, in Equation (5.2), we can change the sum over the elements of Ĝ to a sum over the elements
of G should it be needed, and consider FG as a operator C[G]→ C[G] where appropriate.

Exercise 5.3. Verify that FG is a unitary operator, using the orthogonality of operators as given by
Equation (4.48).

Proof. We show that F †GFG = I.



E. Pearce-Crump Quantum Computing 66

But first, we need to know what F †G is:

F †G =

 1√
|G|

∑
w∈G

∑
z∈Ĝ

χz(w) |z〉 〈w|

† =
1√
|G|

∑
w∈G

∑
z∈Ĝ

χz(w)∗ |w〉 〈z| (5.3)

where we have used the anti-linearity of the adjoint from Exercise 2.11.

Therefore

F †GFG =
1

|G|
∑
x,w∈G

∑
k,z∈Ĝ

χz(w)∗χk(x) |w〉 〈z|k〉 〈x|

=
1

|G|
∑
x,w∈G

∑
k,z∈Ĝ

χz(w)∗χk(x)δzk |w〉 〈x|

=
1

|G|
∑
x,w∈G

∑
k∈Ĝ

χk(w)∗χk(x) |w〉 〈x| (5.4)

Since
1

|G|
∑
k∈Ĝ

χk(w)∗χk(x) = δwx (5.5)

by Theorem 4.45, we have that Equation (5.4) equals∑
x,w∈G

δwx |w〉 〈x| =
∑
x∈G

|x〉 〈x| = I (5.6)

using the Completeness Relation from Example 2.7.

Hence FG is a unitary operator, as required.

We should show that FG is indeed a new and improved version of “version 1” of the Quantum Fourier
Transform, F2n .

Example 5.4. Consider the group G = (Z2n ,+).

Then, by Example 4.33, we have that the irreducible characters of Z2n are

χk : Z2n → C
|j〉 7→ ωjk2n (5.7)

for k ∈ {0, 1, . . . , 2n − 1}, where ω2n := e
2πi
2n .

Hence, by Equation (5.1), FZ2n
maps

|j〉 7→ 1√
2n

2n−1∑
k=0

ωjk2n |k〉 (5.8)

which is exactly the same as the definition of F2n given in Equation (3.1).

In order to keep our notation consistent, going forward we will write FZ2n
instead of F2n .

Another very nice example of this form of the Quantum Fourier Transform is the following, which we
have seen before in Exercise 2.24, and have used in the Phase Estimation procedure:
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Example 5.5. Consider the group G = (Zn2 ,+), and let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
be arbitrary elements of G.

Then we claim that the irreducible characters of this group are χy(x) = (−1)x·y, where x · y :=∑n
i=1 xiyi.

Indeed, since the irreducible characters of Z2 are

χ0 : 0 7→ 1

1 7→ 1

χ1 : 0 7→ 1

1 7→ −1
(5.9)

that is, χyi(xi) = (−1)xiyi , the irreducible characters χy(x) of Zn2 are the products of the irreducible
characters of the individual cyclic groups by Equation (4.33).

Therefore, we have that

χy(x) =
n∏
i=1

χyi(xi) =
n∏
i=1

(−1)xiyi = (−1)
∑n
i=1 xiyi = (−1)x·y (5.10)

Substituting this into Equation (5.2), the Quantum Fourier Transform for Zn2 is

FZn2 =
1√
2n

∑
x,y∈Zn2

(−1)x·y |y〉 〈x| = H⊗n (5.11)

where the last equality is a consequence of Exercise 2.24.

Remark 5.6. Example 5.5 suggests that the Quantum Fourier Transform over an arbitrary abelian
group G is the generalisation of the Hadamard operation H⊗n applied to n qubits.

In particular, it allows us to create a uniform superposition over group elements when starting with
a register of dimension |G| in the state |0〉, because

FG |0〉 =

 1√
|G|

∑
x∈G

∑
k∈Ĝ

χk(x) |k〉 〈x|

 |0〉 =
1√
|G|

∑
k∈G

|k〉 (5.12)

since χk(0) = 1 for all χk ∈ Ĝ.

Note that the sum is over the group elements in G instead of over the characters of Ĝ, but we stated
in Remark 5.2 that we could write the sum in this way if we wanted to.

Also, it is worth noting that we have stated the size of the register in terms of its dimension as a
vector space as opposed to giving its size in terms of the number of qubits that it is formed from.
This is because it is often not possible to provide an implementation, that is, draw a quantum circuit,
of the quantum algorithms that follow where we need to create superpositions of group elements.
Describing the size in terms of qubits in these situations would be rather meaningless.

Despite this, if |G| = 2n for some n ∈ Z≥0, then we know that it is possible to provide an implemen-
tation in terms of n qubits, as we have shown explicitly with the quantum circuit given in Equation
(3.10).
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5.2 Quantum Fourier Transform over a General Finite Abelian Group

We want to be able to implement the Quantum Fourier Transform over an arbitrary cyclic group ZN

FZN =
1√
N

∑
t,y∈ZN

ωtyN |y〉 〈t| (5.13)

The quantum circuit given in Equation (3.10) is only a valid implementation of the Quantum Fourier
Transform when N is a power of 2.

But we are able to provide an approximate implementation of FZN , as follows:

Let U be the unitary operator which subtracts 1 mod N from each basis element of ZN , that is,

U :=
∑
z∈ZN

|z − 1〉 〈z| (5.14)

Then the eigenstates of U are the states {FZN |x〉 | x ∈ ZN} with corresponding eigenvalues {ωxN},
since

U(FZN |x〉) = U

(
1√
N

∑
y∈ZN

ωxyN |y〉

)

=

(∑
z∈ZN

|z − 1〉 〈z|

)(
1√
N

∑
y∈ZN

ωxyN |y〉

)

=
1√
N

∑
y,z∈ZN

ωxyN |z − 1〉 〈z|y〉

=
1√
N

∑
y∈ZN

ωxyN |y − 1〉

=
1√
N

∑
y∈ZN

ω
x(y+1)
N |y〉

= ωxNFZN |x〉

Writing |x̃〉 := FZN |x〉, we can use the Phase Estimation procedure given by Theorem 3.16 with this
unitary operator U to implement the transformation T defined by

T : |0〉⊗t |x̃〉 → |x〉 |x̃〉 (5.15)

which will give an estimate of x accurate to n := dlog2Ne bits if we set t := n+ dlog2(2 + 1
2ε

)e.

Note that if N is a power of 2 then this will give x in exact form, as stated in Remark 3.11.

So, in order to implement the Quantum Fourier Transform over ZN approximately, we perform the
following procedure:

1. Start with a quantum system in the state |x〉 |0〉⊗n, where x ∈ ZN , such that the first register
is of size t = n+ dlog2(2 + 1

2ε
)e qubits, where n = dlog2Ne, and the second register is of size n

qubits.

We can create |x〉 in the first register by applying the quantum NOT gate X to the appropriate
qubits of the initial state |0〉⊗t such that we obtain x ∈ ZN when expressed in its binary form.
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2. Apply the transformation UFZN
to this state, using the method of reversible computation given

in Lemma 2.45, which therefore maps |x〉 |0〉 7→ |x〉FZN |x〉 = |x〉 |x̃〉.

3. Run the operation of T in reverse, that is, apply

T † : |x〉 |x̃〉 → |0〉⊗t |x̃〉 (5.16)

to erase |x〉.

4. Finally, drop the first register to obtain |x̃〉.

Since we can now implement the Quantum Fourier Transform over ZN (approximately), we can also
implement the Quantum Fourier Transform over an arbitrary finite abelian group G (approximately).

As G is abelian, we know that G is isomorphic to a direct product of cyclic groups

G ∼= ZN1 × ZN2 × · · · × ZNr (5.17)

Moreover,
C[G] ∼= C[ZN1 × ZN2 × · · · × ZNr ] ∼= C[ZN1 ]⊗ C[ZN2 ]⊗ · · · ⊗ C[ZNr ] (5.18)

is an isomorphism of Hilbert spaces over C because we can map one computational basis to another
by

|(x1, x2, . . . , xr)〉 7→ |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xr〉 (5.19)

for xi ∈ ZNi .

Therefore, the Quantum Fourier Transform over a direct product of cyclic groups is simply the tensor
product of the Quantum Fourier Transforms over the individual groups, that is

FG =
r⊗
i=1

FZNi (5.20)
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6 The Abelian Hidden Subgroup Problem

6.1 A Procedure for the Abelian Hidden Subgroup Problem

We are now in a position to consider the Hidden Subgroup Problem in the case where the group G
is a finite abelian group. As for the previous chapter, we find our motivation for this chapter in [3],
[4] and [8]. We state the definition of the Hidden Subgroup Problem once again, but this time in the
case where G is a finite abelian group:

Definition 6.1 (The Abelian Hidden Subgroup Problem). Let f be a function f : G → S from a
finite abelian group G to a finite set S which can be computed efficiently.

In addition, suppose that f has the following property on some unknown subgroup H ≤ G:

f(g) = f(g′) ⇐⇒ g−1g′ ∈ H

The goal is to find H, or equivalently, to find a generating set for H.

Remark 6.2. It is worth noting that H must be abelian in this case of the Hidden Subgroup Problem.

We will continue to use additive notation to denote binary operations on group elements of the abelian
group G.

We can construct a procedure to find H, as follows:

1. Start with a quantum system in the state |0〉 |0〉

• where the first register has dimension |G| and the second register has dimension #S (which
is possible as both G and S are finite).

2. Apply FG to the first register:

• Since χk(0) = 1 ∈ C for all χk ∈ Ĝ, and G ∼= Ĝ by Theorem 4.40, we can sum over
the elements of G rather than over the irreducible characters of G, obtaining a uniform
superposition of the elements of G:

1√
|G|

∑
g∈G

|g〉 |0〉 (6.1)

3. Apply the “black-box” unitary transformation Uf : |g〉 |s〉 7→ |g〉 |s⊕ f(g)〉 to this state, where
⊕ is an appropriate binary function for the set S such that 0⊕ s = s for all s ∈ S, giving

1√
|G|

∑
g∈G

|g〉 |f(g)〉 (6.2)

4. Measure the second register and drop it: this gives some value f(x) for some x ∈ G, and
collapses the first register to a uniform superposition over the elements of G that have the same
value in S under f , namely the elements of the coset x+H.

1√
|H|

∑
h∈H

|x+ h〉 (6.3)

This state is also known as a “coset state”, which we can denote by |x+H〉.
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5. Now apply FG to this state, which gives:

FG |x+H〉 =

 1√
|G|

∑
t∈G

∑
k∈Ĝ

χk(t) |k〉 〈t|

( 1√
|H|

∑
h∈H

|x+ h〉

)

=
1√
|G||H|

∑
h∈H

∑
k∈Ĝ

χk(x+ h) |k〉

=

√
|H|
|G|

∑
k∈Ĝ

χk(x)

[
1

|H|
∑
h∈H

χk(h)

]
|k〉 (6.4)

We claim that
1

|H|
∑
h∈H

χk(h) =

{
1 if χk ∈ H⊥
0 if χk /∈ H⊥

(6.5)

Proof. Indeed, if χk ∈ H⊥, that is, χk(h) = 1 for all h ∈ H, then

1

|H|
∑
h∈H

χk(h) =
1

|H|
∑
h∈H

1 = 1 (6.6)

If χk /∈ H⊥, then χk(h0) 6= 1 for some h0 ∈ H. Then

χk(h0)

(
1

|H|
∑
h∈H

χk(h)

)
=

1

|H|
∑
h∈H

χk(h0 + h) =
1

|H|
∑

h∈h0+H

χk(h) =
1

|H|
∑
h∈H

χk(h) (6.7)

since h0 +H = H, and so we have that

1

|H|
∑
h∈H

χk(h) = 0 (6.8)

as required.

Applying this result to Equation (6.4) gives us that

FG |x+H〉 =

√
|H|
|G|

∑
k:χk∈H⊥

χk(x) |k〉 (6.9)

which is a uniform superposition of the elements of H⊥, as |H⊥| = [G : H] by Theorem 4.46
and |χk(x)| = 1 for all χk ∈ H⊥, x ∈ G by Example 4.34.

6. Perform a measurement of this register in the computational basis. This gives some character
χk that maps the hidden subgroup H to 1.

We can then consider the following subgroup of G:

ker(χk) := {g ∈ G : χk(g) = 1} (6.10)

which is very useful since H ⊆ ker(χk) and it restricts what can possibly be in H.

We claim that if we repeat this procedure O(log |G|) times, then H is the intersection of the
kernels we obtain from each iteration with very high probability (almost 1).
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Proof. Suppose we are about to begin a new iteration of this procedure. We can denote the
intersection of the kernels that we’ve obtained up to this point as K, which is a subgroup of G
that we assume is not H. (If it were H then we wouldn’t begin this new iteration.)

We want to find the probability of measuring a χk that helps in obtaining H, which we do by
looking at the probability of measuring one that does not help.

The probability that we measure a χk such that K ≤ ker(χk) in Step 6 is

|H|
|G|
×#{χk ∈ Ĝ | K ≤ ker(χk)} (6.11)

by the uniformity of the superposition given in Equation (6.9).

But because

{χk ∈ Ĝ | K ≤ ker(χk)} = {χk ∈ Ĝ | χk(x) = 1 ∀x ∈ K} = K⊥ (6.12)

and |K⊥| = |G|
|K|

by Theorem 4.46, we have that

P (Measuring a χk such that K ≤ ker(χk)) =
|H|
|G|
|G|
|K|

=
|H|
|K|
≤ 1

2
(6.13)

with the last equality coming from Lagrange’s Theorem (as H < K,H 6= K).

Therefore, the probability of observing a χk such that K � ker(χk) is at least 1
2
.

Moreover, for this χk, K ∩ ker(χk) will be a proper subgroup of K, and so, by Lagrange’s
Theorem again, we have that

|K ∩ ker(χk)| ≤
|K|
2

(6.14)

This means that our newly updated subgroup of the intersection of all the kernels obtained up
to the end of this iteration, K∩ker(χk), is at least half the size of the subgroup at the beginning
of the iteration, and it contains H.

Therefore, if we perform O(log |G|) iterations of this procedure, we will obtain H almost cer-
tainly. As a result, this procedure is an efficient quantum algorithm that solves the Abelian
Hidden Subgroup Problem.

Remark 6.3. In order to use this procedure to solve applications of the HSP, we need to be able to

• provide implementations of quantum states of dimension |G| and #S respectively in order to
prepare the quantum system as given in Step 1.

• implement the transformation Uf that was merely a “black-box” in this procedure, and provide
an appropriate binary operation ⊕ on elements of S.

One such application is the following problem:

Example 6.4 (Reformulation of the Order-Finding Problem). We saw that the Order-Finding Prob-
lem considered x ∈ Z∗N with the goal of finding the smallest positive integer r such that xr ≡ 1 mod N .

We can reformulate this problem as an example of the Abelian Hidden Subgroup Problem, as follows:

Let G be the abelian group (Z,+), and let S be the finite set {xj | j ∈ Zr and xr = 1}.
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Then we can let f : G→ S be the function which maps j 7→ xj, and f has the property that

f(j) = f(j′) ⇐⇒ j ≡ j′ mod r ⇐⇒ j − j′ ∈ rZ (6.15)

Our goal, therefore, is to find H := rZ, which is a subgroup that has a single generator, the solution
to the original problem.

However, in order to use the procedure above, we need to set the first register up such that it has
dimension |G|. Clearly, (Z,+) is an infinite group.

Our first thought might be to restrict the domain of f to the group (Zφ(N),+) because we know that
r | φ(N) and so r ≤ φ(N). The uniform superposition in Step 5 would be over the elements of H⊥,
which, in this case, has the form

H⊥ =
{
χk ∈ Ẑφ(N)

∣∣ e 2πikh
φ(N) = 1 for all h ∈ H

}
=

{
χk ∈ Ẑφ(N)

∣∣∣∣∣ kr

φ(N)
∈ {0, 1, . . . , r − 1}

}
(6.16)

since h ∈ H = rZ.

Step 6 would therefore give a k that is some integer multiple of
φ(N)

r
.

However, this approach is problematic, because we do not know how to implement the Quantum
Fourier Transform for Zφ(N) exactly, only approximately. It is also not assumed that the algorithm
has knowledge of the value of φ(N) in the first place.

But we do know how to implement the Quantum Fourier Transform exactly for the abelian group
G := (Z2n ,+) for some n ∈ Z, which we have shown before in Equation (3.10). If we choose n such
that N2 ≤ 2n ≤ 2N2, then it can be shown that by applying the procedure for the Abelian Hidden
Subgroup Problem for this G we will obtain a k that is “very close” to 2n

r
. We can then apply a result

that is very similar to Theorem 3.27 to obtain r by the Continued Fractions Algorithm.

We won’t look into the details of this calculation because they are very similar to those given for the
original Order-Finding Problem of Section 3.3. However, they are provided in full in [8, p. 37].

Consequently, we can see that Shor’s Factoring Algorithm is a specific instance of this algorithm
to solve the Abelian Hidden Subgroup Problem, by the one-to-one link between order-finding and
factoring composite integers as seen in Section 3.4.

6.2 The Discrete Logarithm Problem

We are able to use the Abelian Hidden Subgroup Problem procedure to solve another problem that
we have not seen before, called the “Discrete Logarithm Problem”, which is stated as follows:

• Problem: Suppose that we have a cyclic group (CN ,×) with a generator g of order N , which is
known. Suppose that we consider an element x in this group.

• Goal: to find the smallest non-negative integer r such that gr = x.

We can formulate this problem as an instance of the Abelian Hidden Subgroup Problem, following
[3]:

Let G be the group (ZN × ZN ,+), and let S be the group CN , considered as a finite set of elements.
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Then we can define a function f : ZN × ZN → CN which maps

(α, β) 7→ xαgβ (6.17)

Now, since gr = x for some non-negative integer r, we also have that f(α, β) = grα+β, and so f is a
constant function on the sets where rα + β is some constant γ for varying pairs (α, β) ∈ ZN × ZN .

We can index these sets by the constant γ itself, namely

Sγ = {(α, β) ∈ ZN × ZN | rα + β = γ} (6.18)

Hence
f(α, β) = f(α′, β′) ⇐⇒ rα + β = rα′ + β′ ⇐⇒ (α− α′, β − β′) ∈ S0 (6.19)

and so S0 = {(α,−rα) | α ∈ ZN} is the hidden subgroup H that we are looking to find.

We now apply the procedure for the Abelian Hidden Subgroup Problem as follows:

1. We start in the state |0〉 |0〉 |0〉, where the first and second registers each have dimension N (as
|ZN | = N) and the third register has dimension #CN = N also.

• We have used Equation (5.18) here to say that C[ZN ×ZN ] ∼= C[ZN ]⊗C[ZN ]. This allows
us to start with three registers, the first two for the tensored group algebras and the third
for the set CN .

2. We use Equation (5.20) to say that FZN×ZN = FZN ⊗ FZN and apply this operator to the first
and second registers to create a uniform superposition over ZN × ZN .

1

N

∑
α,β∈ZN

|α〉 |β〉 |0〉 (6.20)

3. We apply the unitary transformation Uf which computes f in the third register:

1

N

∑
α,β∈ZN

|α〉 |β〉 |f(α, β)〉 (6.21)

This transformation can be implemented using the techniques of reversible computation via the
repeated squaring of the group element g ∈ CN , as seen before in Section 3.3.

4. We now measure the third register and drop it. We will observe gδ for some δ in this register.

The first two registers therefore collapse to a uniform superposition over the elements of ZN×ZN
which also map to gδ under f .

These elements are the set Sδ, but we can actually write this set as a coset of S0, namely the
coset

(0, δ) + S0 = {(α, δ − rα) | α ∈ ZN} = Sδ (6.22)

Therefore, the state we are left with after measuring the third register is:

1√
N

∑
α∈ZN

|α〉 |δ − rα〉 (6.23)
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5. We apply FZN ⊗ FZN to this state.

By Equation (5.13), we have that

FZN =
1√
N

∑
x,y∈ZN

ωxyN |y〉 〈x| (6.24)

and so

FZN ⊗ FZN =
1

N

( ∑
µ,x∈ZN

ωxµN |µ〉 〈x|

)
⊗

( ∑
ν,y∈ZN

ωyνN |ν〉 〈y|

)
(6.25)

Applying this to the state given by Equation (6.23), we have that this equals

=
1

N
3
2

∑
α∈ZN

( ∑
µ,x∈ZN

ωxµN |µ〉 〈x|α〉

)
⊗

( ∑
ν,y∈ZN

ωyνN |ν〉 〈y|δ − rα〉

)

=
1

N
3
2

∑
α,µ,ν∈ZN

ω
αµ+(δ−rα)ν
N |µ〉 |ν〉

=
1

N
3
2

∑
µ,ν∈ZN

ωδνN

[∑
α∈ZN

ω
α(µ−rν)
N

]
|µ〉 |ν〉

=
1

N
3
2

∑
µ,ν∈ZN

ωδνN
[
Nδ(µ−rν),0

]
|µ〉 |ν〉 (6.26)

=
1√
N

∑
ν∈ZN

ωδνN |rν〉 |ν〉 (6.27)

where the step given in Equation (6.26) is a direct consequence of Exercise 3.23.

6. We now measure this state in the computational basis of C[ZN ] ⊗ C[ZN ], obtaining some pair
(rν, ν) uniformly at random.

Since we now know ν, we can check to see if it has a multiplicative inverse mod N . If it does,
then we can apply it to the result of the first register to obtain r.

If it does not, then we can perform another iteration of the procedure.

Given that there are φ(N) elements of ZN which have a multiplicative inverse mod N , each

iteration has a probability of success
φ(N)

N
.

This is Ω( 1
log logN

) - see [16] for details. Hence we will obtain r with a few iterations, at most.
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7 The General Hidden Subgroup Problem

We now look at a method that provides an insight into the open problem of finding an efficient
quantum algorithm for the most general form of the Hidden Subgroup Problem: the case where the
group G is not abelian. It generalises the approach used to solve the problem when the group is
abelian by using a sampling method called weak Fourier sampling. Weak Fourier sampling applies a
set of measurement operators indexed by the elements of Ĝ to a block diagonal density operator that
represents a coset state in C[G] which has been transformed by the Quantum Fourier Transform to
its equivalent state in an isomorphic complex Hilbert space. We show that this method, sometimes
called the “standard method”, solves the Hidden Subgroup Problem in the general case efficiently
when the hidden subgroup H is normal in G, a result of [15]. However, we follow the presentation
given in [3], filling out many of the details that they left out in their paper. To begin, we need another
improved version of the Quantum Fourier Transform.

7.1 Quantum Fourier Transform, version 3

Definition 7.1 (Quantum Fourier Transform). Let G be any finite group of size |G|.

Consider the group algebra C[G] as a quantum system over C with the computational basis labelled
by the elements of G, {|x〉 | x ∈ G}. This vector space is augmented with the inner product
〈∗|∗〉 : C[G]× C[G]→ C that is defined on the computational basis by 〈i|j〉 = δij and then extended
conjugate-linearly in the first argument and linearly in the second argument to the whole of C[G] ×
C[G].

Then G has a set of irreducible representations σ : G→ GL(Cdσ), each of dimension dσ, satisfying∑
σ∈Ĝ

d2σ = |G| (7.1)

by Corollary 4.26, and for all x ∈ G, σ(x) : Cdσ → Cdσ is a unitary map of dimension d2σ by Remark
4.5.

We now consider the complex Hilbert space
⊕

σ∈ĜCd
2
σ , which is a direct sum of complex Hilbert spaces

over the irreducible representations of G, with its inner product 〈∗|∗〉 :
⊕

σ∈ĜCd
2
σ ×

⊕
σ∈ĜCd

2
σ → C

defined to be
〈f |g〉 :=

∑
σ∈Ĝ

〈fσ|gσ〉σ (7.2)

for all |f〉 , |g〉 ∈
⊕

σ∈ĜCd
2
σ , where 〈∗|∗〉σ is the Frobenius inner product for the complex Hilbert space

Cd2σ given by
〈A|B〉σ := tr(A†B) (7.3)

for all matrices A,B ∈ Cd2σ .

The complex Hilbert space Cd2σ clearly has dimension d2σ, and so the direct sum complex Hilbert space⊕
σ∈ĜCd

2
σ has dimension |G| by Equation (7.1).

If we fix some element x ∈ G, then for each irreducible σ ∈ Ĝ and unitary map σ(x) : Cdσ → Cdσ , we
can choose bases of both Cdσ . Then, for these bases, the σ(x) become dσ × dσ unitary matrices over
C, that is, elements of Cd2σ . (For the rest of this definition, we will abuse our notation by considering
the σ(x) as unitary matrices for the bases chosen.)
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So if there are n irreducible representations of G, we can use the index set {1, 2, . . . , n} to enumerate

them and say that
⊕

σ∈ĜCd
2
σ =

⊕n
j=1C

d2σj . We can then consider the following element in this Hilbert
space:

|x̃〉 :=

(
dσ1√
|G|
|σ1(x)〉 , dσ2√

|G|
|σ2(x)〉 , . . . , dσn√

|G|
|σn(x)〉

)
(7.4)

where we have labelled each of the states |σi(x)〉 as unit vectors in Cd2σi , that is, they correspond to
the matrix 1√

dσi
σi(x).

The |σi(x)〉 are unit vectors in Cd2σi because the Frobenius inner product of the matrix σi(x) with

itself in Cd2σi is equal to the trace of σi(x)†σi(x) by Equation (7.3), which equals the trace of Idσi (the
dσi × dσi identity matrix) as σi(x) is unitary; that is, the trace is dσi . Hence, for the state |σi(x)〉,
〈σi(x)|σi(x)〉σi = 1.

The norm of |x̃〉 ∈
⊕n

j=1C
d2σj is 1 as a result of applying the definition of the inner product given in

Equation (7.2) to 〈x̃|x̃〉, using the fact that the |σi(x)〉 are unit vectors in Cd2σi and using the equality
given in Equation (7.1).

We now define |σi〉 ∈
⊕n

j=1C
d2σj to be the element that has entry Idσi in the ith position of Equation

(7.4), and the zero matrix of the appropriate dimension otherwise.

Therefore, by the uniqueness of representing elements of a direct sum vector space, we can rewrite
the element |x̃〉 as

|x̃〉 =
n∑
i=1

dσi√
|G|
|σi〉 |σi(x)〉 =

∑
σ∈Ĝ

dσ√
|G|
|σ〉 |σ(x)〉 (7.5)

As a result, we can define a linear operator FG on the computational basis of C[G] as follows:

FG : C[G]→
⊕
σ∈Ĝ

Cd2σ

|x〉 7→ |x̃〉 =
∑
σ∈Ĝ

dσ√
|G|
|σ〉 |σ(x)〉 (7.6)

and extend linearly over linear combinations of computational basis elements.

It is often useful to apply the isomorphism

Cd2σ ∼= Cdσ ⊗ Cdσ (7.7)

by rewriting the state of each |σ(x)〉 as

|σ(x)〉 =
dσ∑
j=1

dσ∑
k=1

σ(x)j,k√
dσ
|j〉 |k〉 (7.8)

since each of the states |σ(x)〉 are normalised in Cd2σ and correspond to the matrix σ(x)√
dσ

.

Therefore, we can say that ⊕
σ∈Ĝ

Cd2σ ∼=
⊕
σ∈Ĝ

(
Cdσ ⊗ Cdσ

)
(7.9)
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consider FG as a linear operator

FG : C[G]→
⊕
σ∈Ĝ

(
Cdσ ⊗ Cdσ

)
(7.10)

and write |x̃〉 as

|x̃〉 =
∑
σ∈Ĝ

√
dσ
|G|

dσ∑
j,k=1

σ(x)j,k |σ〉 |j〉 |k〉 (7.11)

Remark 7.2. From this definition, we can look at what FG does when G is abelian.

Since dσ = 1 for all irreducible representations σ ∈ Ĝ, we have that⊕
σ∈Ĝ

Cd2σ =
⊕
σ∈Ĝ

C ∼= C[Ĝ] (7.12)

where the isomorphism holds via a mapping of the basis |σi〉 ∈
⊕

σ∈ĜC 7→ |σi〉 ∈ C[Ĝ] for some
enumeration i of the one-dimensional irreducible representations of G.

Since σ is a representation of dimension 1, we must have that |σ(x)| = 1 for all x ∈ G, and because
σ(x) = χσ(x) in this case by Remark 4.36, we can consider |σ(x)〉 instead to be the complex scalar
χσ(x) ∈ S1 ⊂ C, which merely alters the phase of the state |σ〉.

Hence FG maps the computational basis of C[G] as follows:

FG : C[G]→ C[Ĝ]

|x〉 7→ 1√
|G|

∑
σ∈Ĝ

χσ(x) |σ〉 (7.13)

which is exactly the same as Equation (5.1), as expected.

Remark 7.3. Using the notation of Equation (7.11), we can write FG using the outer product notation

FG =
∑
x∈G

|x̃〉 〈x| =
∑
x∈G

∑
σ∈Ĝ

√
dσ
|G|

dσ∑
j,k=1

σ(x)j,k |σ〉 |j〉 |k〉 〈x| (7.14)

which is not unique because we have chosen a basis for each unitary map σ(x), for all x ∈ G.

Exercise 7.4. We still need to show that FG is a unitary transformation.

Proof. We show that F †GFG = I.

It is clear from Equation (7.14) that F †G =
(∑

x∈G |x̃〉 〈x|
)†

=
∑

x∈G |x〉 〈x̃|.

Therefore

F †GFG =
∑
x,y∈G

|y〉 〈ỹ|x̃〉 〈x|

=
∑
x,y∈G

∑
σ,σ̃∈Ĝ

d∗σ̃dσ
|G|
〈σ̃|σ〉 〈σ̃(y)|σ(x)〉 |y〉 〈x|

=
∑
x,y∈G

∑
σ∈Ĝ

d2σ
|G|
〈σ(y)|σ(x)〉 |y〉 〈x| (7.15)
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where we have used that dσ ∈ R and the orthogonality of irreducible representations in Equation
(7.15).

We claim that 〈σ(y)|σ(x)〉 =
χσ(y−1x)

dσ

Indeed, we have that

〈σ(y)|σ(x)〉 =
dσ∑

j,k=1

dσ∑
l,m=1

σ(y)j,k√
dσ

σ(x)l,m√
dσ
〈j|l〉 〈k|m〉

=
dσ∑

j,k=1

σ(y)j,kσ(x)j,k

dσ

=
1

dσ

dσ∑
k=1

[
dσ∑
j=1

σ†(y)k,jσ(x)j,k

]
(7.16)

=
1

dσ

dσ∑
k=1

(
σ†(y)σ(x)

)
k,k

=
tr(σ†(y)σ(x))

dσ

=
tr(σ(y−1x))

dσ
(7.17)

=
χσ(y−1x)

dσ
(7.18)

where we have used the definition of unitary operators in Equation (7.16), and used the fact that
we have restricted ourselves to the use of unitary representations by Remark 4.5 to obtain Equation
(7.17).

Substituting Equation (7.18) into Equation (7.15) gives

F †GFG =
∑
x,y∈G

∑
σ∈Ĝ

dσ
|G|

χσ(y−1x) |y〉 〈x| (7.19)

We now consider ∑
σ∈Ĝ

dσ
|G|

χσ(y−1x) (7.20)

by splitting into cases.

If x = y, then χσ(y−1x) = χσ(1) = dσ, and so Equation (7.20) is equal to∑
σ∈Ĝ

d2σ
|G|

= 1 (7.21)

If x 6= y, then χσ(y−1x) = χσ(z) for some z ∈ G, z 6= 1, and so Equation (7.20) becomes

1

|G|
∑
σ∈Ĝ

dσχσ(z) = 0 (7.22)

by Lemma 4.27.
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Hence Equation (7.20) equals δxy, and so Equation (7.19) becomes

F †GFG =
∑
x,y∈G

δxy |y〉 〈x| =
∑
x∈G

|x〉 〈x| = I (7.23)

and so FG is unitary, as required.

Remark 7.5. In particular, Exercise 7.4 shows that

C[G] ∼=
⊕
σ∈Ĝ

Cd2σ ∼=
⊕
σ∈Ĝ

(
Cdσ ⊗ Cdσ

)
(7.24)

since FG is a unitary transformation between complex Hilbert spaces of the same dimension.

An important result for our purposes is the following:

Proposition 7.6. FG is the G-linear map that results in an isomorphism of representations

L ∼=
⊕
σ∈Ĝ

(σ ⊗ Idσ) R ∼=
⊕
σ∈Ĝ

(Idσ ⊗ σ∗) (7.25)

where L denotes the left regular representation of G, and R denotes the right regular representation
of G.

Proof. We show this for the right regular representation R. See [3, p. 50] for the proof of the left
regular representation L.

Consider R(x) as a map C[G] → C[G], instead of as a map VR → VR, for all x ∈ G. We can do this
because C[G] and VR are isomorphic by Definition 4.29.

Let us define R̃(x) := FGR(x)F †G :
⊕

σ∈ĜCd
2
σ →

⊕
σ∈ĜCd

2
σ .

Since FG is an isomorphism between C[G] and
⊕

σ∈ĜCd
2
σ by Remark 7.5, by Definition 4.6, it is

enough to show that R̃(x) =
⊕

σ∈Ĝ (Idσ ⊗ σ∗(x)).

Since R(x) |y〉 = |yx−1〉, we have that

R̃(x) = FGR(x)F †G

=

(∑
z∈G

|z̃〉 〈z|

)
R(x)

(∑
y∈G

|y〉 〈ỹ|

)
=
∑
z,y∈G

|z̃〉 〈z|yx−1〉 〈ỹ|

=
∑
y∈G

|ỹx−1〉 〈ỹ|

Substituting in, using Equation (7.14), we get that

R̃(x) =
∑
y∈G

∑
σ,σ̃∈Ĝ

dσ∑
j,k=1

dσ̃∑
l,m=1

√
dσdσ̃
|G|

σ(yx−1)j,kσ̃(y)∗l,m |σ〉 |j〉 |k〉 〈σ̃| 〈l| 〈m| (7.26)
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Since σ(yx−1)j,k =
∑dσ

p=1 σ(y)j,pσ(x−1)p,k, this gives

R̃(x) =
∑
y∈G

∑
σ,σ̃∈Ĝ

dσ∑
j,k,p=1

dσ̃∑
l,m=1

√
dσdσ̃
|G|

σ(y)j,pσ(x−1)p,kσ̃(y)∗l,m |σ〉 |j〉 |k〉 〈σ̃| 〈l| 〈m| (7.27)

By the orthogonality of irreducible representations given by Theorem 4.30,

dσ
|G|

∑
y∈G

σ(y)j,pσ̃(y)∗l,m = δσ,σ̃δj,lδp,m (7.28)

where δσ,σ̃ = 1 if σ is an isomorphic representation to σ̃, and 0 otherwise.

Substituting this into Equation (7.27) gives

R̃(x) =
∑
σ∈Ĝ

dσ∑
j,k,p=1

σ(x−1)p,k |σ〉 |j〉 |k〉 〈σ| 〈j| 〈p| (7.29)

Now, since
σ(x−1)p,k = σ(x)−1p,k = σ(x)†p,k = σ(x)∗k,p = σ∗(x)k,p (7.30)

we can rewrite Equation (7.29) as

R̃(x) =
∑
σ∈Ĝ

(
|σ〉 〈σ| ⊗

([
dσ∑
j=1

|j〉 〈j|

]
⊗

[
dσ∑
k=1

dσ∑
p=1

σ∗(x)k,p |k〉 〈p|

]))
(7.31)

The right hand side is precisely ⊕
σ∈Ĝ

(Idσ ⊗ σ∗(x)) (7.32)

and so we are done.

Remark 7.7. FG is the invertible linear transformation that makesR and
⊕

σ∈Ĝ (Idσ ⊗ σ∗) isomorphic
representations.

Since FG =
∑

x∈G |x̃〉 〈x|, Proposition 7.6 shows that FG changes the basis of R from the computational

basis of C[G] into the Fourier basis {|x̃〉 | x ∈ G} of the complex Hilbert space
⊕

σ∈ĜCd
2
σ that is

isomorphic to C[G].

Furthermore, this transformation makes the matrix representation of R in
⊕

σ∈ĜCd
2
σ block diagonal

for all x ∈ G, with each block labelled by an irreducible representation σ ∈ Ĝ.

Note also that the Fourier basis is an orthonormal basis of
⊕

σ∈ĜCd
2
σ , since for any |x̃〉 , |ỹ〉 in the

Fourier basis, we have that

〈x̃|ỹ〉 =
∑
σ,σ̃∈Ĝ

d∗σ̃dσ
|G|
〈σ̃|σ〉 〈σ̃(x)|σ(y)〉 =

∑
σ∈Ĝ

d2σ
|G|
〈σ(x)|σ(y)〉 =

∑
σ∈Ĝ

d2σ
|G|

χσ(x−1y)

dσ
= δxy (7.33)

by Equations (7.18), (7.21) and (7.22).



E. Pearce-Crump Quantum Computing 82

7.2 Weak Fourier Sampling

We use the statements in Remark 7.7 in what follows to describe the standard method for trying to
solve the Hidden Subgroup Problem in the general case where the group is not abelian. In particular,
we will transform a coset state expressed in the computational basis of C[G] using the Quantum Fourier
Transform FG to its equivalent state expressed in the Fourier basis in the isomorphic quantum system⊕

σ∈ĜCd
2
σ . Since the group is not abelian, we’ll use multiplicative notation for the group operation

instead of the additive notation used for abelian groups. We will be formulating our approach in the
language of density operators which were defined in Section 2.5.

We again start with a superposition of the form

1√
|G|

∑
g∈G

|g〉 |0〉 (7.34)

and apply the unitary transformation Uf to obtain the state

1√
|G|

∑
g∈G

|g〉 |f(g)〉 (7.35)

We then measure the second register and drop it, obtaining some coset state

|xH〉 :=
1√
|H|

∑
h∈H

|xh〉 (7.36)

for some x ∈ G measured uniformly at random.

These are the same initial steps that we saw in the procedure for the abelian case.

We can see that

|xH〉 =
1√
|H|

∑
h−1∈H

|xh−1〉 =
1√
|H|

∑
h−1∈H

R(h) |x〉 =
1√
|H|

∑
h∈H

R(h) |x〉 (7.37)

We now consider the equivalent density operator formulation of |xH〉, that is

ρH :=
1

|G|
∑
x∈G

|xH〉 〈xH| (7.38)

which is equal to

=
1

|G||H|
∑
x∈G

∑
h,h̃∈H

R(h) |x〉 〈x|R(h̃)† (7.39)

=
1

|G||H|
∑
h,h̃∈H

R(h)R(h̃)† (7.40)

=
1

|G||H|
∑
h,h̃∈H

R(hh̃−1) (7.41)

=
1

|G|
∑
h∈H

R(h) (7.42)

where we have used the Completeness Relation,
∑

x∈G |x〉 〈x| = I, in Equation (7.40), together with
the fact that our representations are unitary in Equation (7.41).
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Equation (7.42) can be seen as follows. Assume that H has some arbitrary n elements. Then we can
calculate its Cayley table as

× h1 h2 · · · hn
h1 h1h1 h1h2 · · · h1hn
h2 h2h1 h2h2 · · · h2hn
...

...
... · · · ...

hn hnh1 hnh2 · · · hnhn

(7.43)

Each row of the Cayley table contains the same elements, and each row (as a set) is precisely the
elements of H itself.

As there are |H| such rows, we have that∑
h,h̃∈H

R(hh̃−1) =
∑

h,h̃−1∈H

R(hh̃) =
∑
h,h̃∈H

R(hh̃) = |H|
∑
h∈H

R(h) (7.44)

as required.

We can now apply the transformation ρ 7→ FGρF
†
G to Equation (7.42) (which is equivalent to applying

FG to the coset state |xH〉 by Lemma 2.40) and use the result of Proposition 7.6, which states that
the right regular representation is block-diagonal in the Fourier basis, to give

ρ̃H := FGρHF
†
G (7.45)

=
1

|G|
∑
h∈H

FGR(h)F †G (7.46)

=
1

|G|
∑
h∈H

⊕
σ∈Ĝ

(Idσ ⊗ σ∗(h)) (7.47)

=
1

|G|
⊕
σ∈Ĝ

(
Idσ ⊗

(∑
h∈H

σ∗(h)

))
(7.48)

We can now perform what is known as weak Fourier sampling, which means measuring the density
operator ρ̃H with respect to a set of measurement operators labelled by all the irreducible representa-
tions of G to obtain a specific irreducible representation σ ∈ Ĝ of dimension d2σ. It is “weak” because
we are not following this measurement up with a measurement of the row and column indices j, k
corresponding to the matrix representation of Idσ ⊗

(∑
h∈H σ

∗(h)
)
, when considered in a form similar

to that given by Equation (7.8). (Such a measurement is called strong Fourier sampling.)

The key point is that this measurement will not destructively interfere with the elements of the
ensemble of pure states of FG |xH〉, that is, the Fourier basis elements{

|x̃〉 =
∑
σ∈Ĝ

dσ√
|G|
|σ〉 |σ(x)〉

∣∣∣∣∣ x ∈ G
}

(7.49)

since its density operator equivalent ρ̃H is block diagonal in the irreducible representations σ of G.

By Lemma 2.41, the probability of obtaining an irreducible representation σ is

P (σ) = tr(M †
σMσρ̃H) (7.50)

where the measurement operator Mσ is defined to be |σ〉 〈σ| ⊗ Idσ ⊗ Idσ .
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Since M †
σMσ = Mσ, we have that

P (σ) = tr(Mσρ̃H)

= tr

[|σ〉 〈σ| ⊗ Idσ ⊗ Idσ]
 1

|G|
∑
σ̃∈Ĝ

[
|σ̃〉 〈σ̃| ⊗ Idσ̃ ⊗

(∑
h∈H

σ̃∗(h)

)]


= tr

 1

|G|
∑
σ̃∈Ĝ

[
|σ〉 〈σ|σ̃〉 〈σ̃| ⊗ IdσIdσ̃ ⊗ Idσ

(∑
h∈H

σ̃∗(h)

)]
=

1

|G|
tr

(
|σ〉 〈σ| ⊗ Idσ ⊗

(∑
h∈H

σ∗(h)

))

=
1

|G|
tr
(
|σ〉 〈σ|

)
tr (Idσ) tr

(∑
h∈H

σ∗(h)

)

Now, since tr (|σ〉 〈σ|) = 1 and tr (Idσ) = dσ, this implies that

P (σ) =
dσ
|G|

tr

(∑
h∈H

σ∗(h)

)

=
dσ
|G|

∑
h∈H

tr (σ∗(h))

=
dσ
|G|

∑
h∈H

tr (σ(h))∗

=
dσ
|G|

∑
h∈H

χσ(h)∗ (7.51)

since σ is unitary.

If we restrict χσ to be a character of H, we can use the orthogonality of characters given in Theorem
4.21 and the fact that the one-dimensional, irreducible trivial representation 1H of H maps every
element of H to 1 ∈ C to say that

∑
h∈H

χσ(h)∗ = |H|

(
1

|H|
∑
h∈H

χσ(h)∗χ1H (h)

)
= |H|(χσ, χ1H )H (7.52)

Hence

P (σ) =
dσ|H|
|G|

(χσ, χ1H )H (7.53)

Note that (χσ, χ1H )H is the number of times the irreducible trivial representation of H appears in σ
when restricted as a representation of H by Theorem 4.22.

Consequently, we can see that the probability of measuring σ is independent of the coset of H that
we obtain when measuring the second register of Equation (7.35), that is, it only depends on the
subgroup H itself. In fact, the calculation above shows that this probability is entirely determined
by the linear operator

∑
h∈H σ(h).

This operator has a very nice structure, which we describe in the following Proposition:
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Proposition 7.8. Let σ be an irreducible representation of G.

Then, for any subgroup H ≤ G, we have that

1

|H|
∑
h∈H

σ(h) : Cdσ → Cdσ (7.54)

is a projection operator onto the direct sum space C⊕m1 , where m1 := (χσ, χ1H )H .

Proof. Since σ ∈ Ĝ is being applied only to the elements of H, we can consider σ as a representation
of H. Note that σ may not be irreducible when restricted as a representation of H by Remark 4.31.

Therefore we can apply Corollary 4.11 to write σ as a direct sum

σ = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρr (7.55)

of irreducible representations ρi : H → GL(Ui), not necessarily unique.

Equivalently, we have that
Cdσ = U1 ⊕ U2 ⊕ · · · ⊕ Ur (7.56)

Remark 4.12 says that we can choose a basis B of Cdσ in which every σ(h) is block diagonal, where
the ith block corresponds to the ith irreducible representation in the decomposition given in Equation
(7.55).

Therefore, in this basis B, we can consider the linear operator 1
|H|
∑

h∈H σ(h) as a block diagonal
matrix

MB =


1
|H|
∑

h∈H ρ1(h) 0 · · · 0

0 1
|H|
∑

h∈H ρ2(h) · · · 0
...

...
. . .

...
0 0 · · · 1

|H|
∑

h∈H ρr(h)

 (7.57)

By Lemma 4.44, we have that ∑
h∈H

ρi(h) =

{
|H| if ρi = 1H

0 if ρi 6= 1H
(7.58)

that is, each sum on the diagonal of the matrix MB is 1 when the irreducible representation is the
trivial representation of H, and 0 otherwise. In particular, M2

B = MB.

Since the linear operator 1
|H|
∑

h∈H σ(h) in any basis B̃ is given by

UMBU
† (7.59)

where U is a unitary change of basis operator from B to B̃, we have that(
1

|H|
∑
h∈H

σ(h)

)2

= (UMBU
†)(UMBU

†) = UMBU
† =

1

|H|
∑
h∈H

σ(h) (7.60)

Therefore 1
|H|
∑

h∈H σ(h) is a projector operator, which is clearly onto the direct sum space C⊕m1 by

Equations (7.56) and (7.58).
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Let us now define σ(H) :=
∑

h∈H σ(h) for an irreducible representation σ of G.

Then, from Proposition 7.8 and Equation (7.52), we can see that

(χσ, χ1H )H =
1

|H|
∑
h∈H

χσ(h)∗

= tr

(
1

|H|
∑
h∈H

σ(h)

)∗

= tr

(
1

|H|
∑
h∈H

σ(h)

)
= rank(MB)

= rank

(
1

|H|
σ(H)

)
since tr

(
1
|H|
∑

h∈H σ(h)
)
∈ R.

Therefore, we can also write the probability of measuring σ using weak Fourier sampling as

P (σ) =
dσ|H|
|G|

rank

(
1

|H|
σ(H)

)
(7.61)

that is, a scalar multiple of the rank of a projection operator.

Similar to the abelian case, we would like to perform a polynomial in log |G| number of iterations
of this procedure to determine the hidden subgroup H, by taking the intersection of the normal
subgroups ker(σ) := {g ∈ G | σ(g) = Idσ} for all the irreducible representations σ obtained in the
iterations. The next section gives an example of where this is possible.

7.3 Normal Subgroups

We show that performing weak Fourier sampling in a polynomial of log |G| number of iterations of
the standard method when the subgroup H is normal in G will lead to determining H.

First, the critical reason why weak Fourier sampling works when the subgroup H is normal:

Proposition 7.9. Consider σ(H) =
∑

h∈H σ(h) for some irreducible representation σ : G→ GL(Cdσ)
of G. Suppose H E G.

Show that σ(H) = λIdσ for some λ ∈ C.

Proof. It is enough to show that σ(H), which is a linear operator Cdσ → Cdσ , is G-linear, that is

σ(H) ◦ σ(g) = σ(g) ◦ σ(H) (7.62)

for all g ∈ G, because we can then apply Schur’s Lemma (Theorem 4.13) to get the result.
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Indeed, we have that

σ(H) ◦ σ(g) =
∑
h∈H

σ(h)σ(g)

=
∑
h̃∈H

σ(xh̃x−1)σ(g) (7.63)

=
∑
h̃∈H

σ(xh̃x−1g)

=
∑
h̃∈H

σ(gyh̃y−1) (7.64)

= σ(g)
∑
h̃∈H

σ(yh̃y−1)

= σ(g)
∑
h∈H

σ(h) (7.65)

= σ(g) ◦ σ(H) (7.66)

where we have used, in Equation (7.63), that, for some x ∈ G and for all h ∈ H, there exists h̃ such
that xh̃x−1 = h, by the normality of H. In Equation (7.64), we set y−1 = x−1g, which is still an
element of G, and used the normality of H in G again in Equation (7.65).

Proposition 7.10. Suppose that H is a normal subgroup of G. Then

P (σ) =


d2σ|H|
|G|

if H ≤ ker(σ)

0 if H � ker(σ)

(7.67)

that is, the rank of the projector 1
|H|σ(H) is of full rank, dσ, when H ≤ ker(σ), and 0 otherwise.

Proof. This is a very similar proof to that given in Step 5 of the procedure for the Abelian Hidden
Subgroup Problem.

Suppose H ≤ ker(σ). Then, since σ(h) = Idσ for all h ∈ H, we have that 1
|H|σ(H) = Idσ also, and so

its rank is dσ.

Hence, by Equation (7.61), we have that

P (σ) =
dσ|H|
|G|

rank

(
1

|H|
σ(H)

)
=
d2σ|H|
|G|

(7.68)

as expected.

Suppose instead that H � ker(σ) and consider σ(H). Since σ(h0) 6= Idσ for some h0 ∈ H, we have
that

σ(h0)σ(H) =
∑
h∈H

σ(h0h) =
∑
h∈H

σ(h) = σ(H) (7.69)

hence
(σ(h0)− Idσ)σ(H) = 0 (7.70)

Since σ(h0)− Idσ 6= 0 and σ(H) is a scalar multiple of the identity by Proposition 7.9, it must mean
that that scalar is 0. Hence σ(H) is the zero map.

Therefore, rank
(

1
|H|σ(H)

)
= 0, and so P (σ) = 0 by Equation (7.61), as required.
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Theorem 7.11. Combining Proposition 7.9 and Proposition 7.10, we can see that ρ̃H is block diagonal
in the Fourier basis, where each block is labelled by the irreducible representations σ of G and is some
λσ ∈ C scalar multiple of the identity matrix Id2σ .

Note that the identity matrix is of size d2σ, because Idσ ⊗
(∑

h∈H σ
∗(h)

)
is a d2σ × d2σ square matrix by

the Kronecker Product of Definition 2.22.

Moreover, we can say that

λσ =


dσ|H|
|G|

if H ≤ ker(σ)

0 if H � ker(σ)

(7.71)

So ρ̃H has non-zero blocks of full rank only when H ≤ ker(σ); furthermore, ρ̃H is not just block-
diagonal but diagonal in the Fourier basis.

This is why weak Fourier sampling works in the case when H is normal, because the diagonalisation
of the coset state allows us to weak Fourier sample only those irreducible representations of G whose
kernel contains H.

In addition, for the σ that we measure, the projector 1
|H|σ(H) is dσ/|G| times the identity matrix Idσ ,

and so its full rank means that all of the available information about H is given up when enough
iterations of the sampling procedure are performed. The case where G was abelian, as seen in Chapter
6, is a specific instance of this case, since all subgroups of an abelian group are normal.

We can show this explicitly by following the same steps as for the case where G is abelian:

Theorem 7.12. If we repeat this procedure O(log |G|) times, then H is the intersection of the ker(σ)
for the irreducible representations σ we obtain from each iteration, with high probability.

Proof. Suppose that we are about to begin a new iteration of this procedure. We can denote the
intersection of the kernels that we’ve obtained up to this point as K, which is a subgroup of G that
we can assume is not H.

The probability of measuring an irreducible representation σ such that K ≤ ker(σ) is∑
σ∈Ĝ | K≤ker(σ)

P (σ) =
∑

σ∈Ĝ | K≤ker(σ)

d2σ|H|
|G|

=
|H|
|G|

∑
σ∈ Ĝ

K

d2σ =
|H|
|G|
|G|
|K|

=
|H|
|K|
≤ 1

2
(7.72)

by the fact that representations of G that map K to the identity can be associated with representations
of G

K
, and by using Lagrange’s Theorem to obtain the inequality.

Therefore, the probability of observing a σ such that K � ker(σ) is at least 1
2
. Similar to Equation

(6.14) in the abelian case, we get that

|K ∩ ker(σ)| ≤ |K|
2

(7.73)

by Lagrange’s Theorem again.

Hence each iteration of the procedure has greater than half chance of reducing the intersection of all
the kernels at least in half, and so O(log |G|) iterations will give H almost certainly. In fact, 4 log2 |G|
iterations are enough - see [15] for details.
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8 Conclusion

We have been able to cover a number of interesting topics in Quantum Computing in this thesis.
In the first half, we were able to show how it is possible to replicate any classical algorithm on a
quantum computer, coming up with our own explicit implementation using five registers. We looked
at some applications of the Quantum Fourier Transform over the complex group algebra of Z2n for
some n ∈ Z≥1. We saw how being able to implement this version of the Quantum Fourier Transform
on a quantum computer makes it possible to solve the Order-Finding Problem for any element in the
group Z∗N . In turn, we saw how this leads to an efficient quantum algorithm, first discovered by Shor
[26], which determines the prime factors of any composite integer in bounded probability polynomial
time. We were able to give our own proof to one of the important results that makes up a step in
this algorithm.

In the second half, we turned our attention to generalising the approach of Shor by studying a more
general problem from Group Theory, the Hidden Subgroup Problem. After reviewing the key results
from Group Representation Theory, we first described a quantum algorithm that finds the hidden
subgroup in a polynomial of O(log |G|) time in the case where the group G is abelian. In doing so, we
generalised the Quantum Fourier Transform to the complex group algebra over G, seeing how mapping
its computational basis to the Fourier basis of the isomorphic group algebra of its dual group Ĝ makes
it possible to measure irreducible characters of G whose kernels all contain the hidden subgroup. We
then saw how Shor’s Algorithm and the Discrete Logarithm Problem were specific instances of this
algorithm.

In the previous chapter, we went even further, studying the case where the group G is not abelian,
which is an open problem in Quantum Computing. We were successful in describing the standard
method in detail, which generalises the procedure for the case where the group is abelian. Again, we
saw that mapping the computational basis of the complex group algebra of G to the Fourier basis
of an isomorphic direct sum Hilbert space, indexed by the irreducible representations of G, leads a
block diagonal density operator equivalent of a transformed coset state whose blocks are indexed by
the irreducible representations of G. We wanted to understand whether we could recover the hidden
subgroup from this density operator by performing a method known as weak Fourier sampling, which
measures only the irreducible label itself, a polynomial of O(log |G|) number of times. We concluded
by showing how this method gives a positive result when the hidden subgroup is normal.

With more time, it would have been good to take this one step further. For example, Hallgren et al.
[15] show that weak Fourier sampling fails to determine the hidden subgroup when a group G has two
distinct conjugate subgroups. This is because conjugate subgroups give the same probabilities for each
irreducible representation of G, and so the intersection of the kernels of the irreducible representations
obtained from repeating the procedure won’t distinguish between distinct conjugate subgroups. One
could try to go beyond this by performing strong Fourier sampling instead, which measures either
the rows |j〉 or the columns |k〉 of the irreducible representation σ that is obtained from weak Fourier
sampling, with the notation as in Equation (7.8). In fact, Grigni et al. [13] show that not only is
there no point in measuring the rows |j〉, as they give up no more information, but also that in most
cases strong Fourier sampling as a technique to find the hidden subgroup is not useful, even when
coupled with the idea of picking “random bases” for each of the irreducible representations of the
group when defining the Quantum Fourier Transform in the first place. The idea of picking random
bases was considered because the Quantum Fourier Transform is defined uniquely only up to a choice
of basis, as stated in Remark 7.3.

One problem of major interest is the Hidden Subgroup Problem in the case where the group is the
symmetric group Sn. As Sn has distinct conjugate subgroups, weak Fourier sampling fails to give a
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solution to this problem. Moore et al. [20] show that strong Fourier sampling cannot give a solution
to this problem either. It is known [15], however, that finding a solution to this problem would
automatically generate a solution to another open problem in Computer Science known as the Graph
Isomorphism Problem. This problem asks whether it can be determined in polynomial time if two
graphs of finite size are isomorphic to each other, that is, whether there exists a bijection between their
vertex sets that induces a bijection between their edge sets. It has important applications to practical
problems such as image processing, computer systems and information networks. A solution to the
Hidden Subgroup Problem for the symmetric group Sn would therefore lead to a major breakthrough
in a number of important topics in Mathematics and Computer Science.
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A Literature Overview

The books on Quantum Computing range from the less technical, such as Bernhardt’s [2], to the very
technical, such as the “bible” of the field written by Nielsen and Chuang [21]. Somewhere in the
middle lies Rieffel and Polak’s book [23], which offers, in their own words, a “gentle” introduction to
Quantum Computing. They are adamant in using Dirac notation to introduce all the linear algebra
that is needed to be able to read technical papers in the field. Lipton and Regan’s book [19], however,
takes the opposite approach, actively rejecting any use of Dirac notation. This is contrary to most
approaches to the subject; despite this, their chapter on implementing Boolean functions on a quantum
computer is very good and is not seen elsewhere.

Of the major papers, Deutsch’s 1985 seminal paper [9] laid out a quantum algorithm using only one
oracle call to solve the problem of understanding whether a function applied to one bit was balanced
or constant. An n-bit extension to this algorithm was given by Deutsch and Jozsa [10] in 1992. The
No-Cloning Theorem was discovered by Wooters and Zurek [27] in 1982. Feynman wrote some of the
early papers on Quantum Computing, and many of his ideas - especially on the infamous “billiard-
ball computer” - can be found in [12]. Shor’s algorithm for factoring integers in bounded probability
polynomial time [26] was published in 1994 and is the most famous paper in the field.

The notes written by Crommie and Vazirani [7] provide an excellent introduction to reversible cir-
cuits. The lecture notes written by Childs [3] form a useful guide to many of the algebraic quantum
algorithms. They were created from his paper with van Dam [4]. de Wolf’s lecture notes [8] on Quan-
tum Computing offer an easier introduction to the Hidden Subgroup Problem, describing a procedure
for the problem in the case where the group is abelian. Hallgren, Russell and Ta-Shma’s paper [15]
contains a solution to the Hidden Subgroup Problem when the hidden subgroup is normal. It builds
on Hallgren’s Ph.D. thesis at the University of California, Berkeley [14] where he studied the weak
Fourier sampling approach to the Hidden Subgroup Problem in both the abelian and non-abelian
cases. Moore, Russell and Schulman [20] prove that strong Fourier sampling cannot give a solution to
the Hidden Subgroup Problem for the symmetric group Sn. Grigni, Schulman and Vazirani’s paper
[13] offers an overview of the standard method to the Hidden Subgroup Problem, as well as detailing
other failed approaches to try to solve the problem where the group is not abelian.

The quantum circuits in this thesis were drawn using the quantikz package, with help from the
tutorial written by Kay [18].
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B Research Approach

I found myself reading Bernhardt’s book [2] initially to establish a brief understanding of the topics
in Quantum Computing, before mostly using the Nielsen and Chuang book [21] in the first half of the
research time to build a technical understanding of those topics. I supplemented any misunderstand-
ings with Edalat’s lecture notes [11] and with Rieffel and Polak’s book [23]. I used Conrad’s notes
on the Tensor Product [6] to add to my understanding of this key algebraic structure in Quantum
Computing.

In Nielsen and Chuang’s book, I found the chapter on linear algebra very comprehensive and specific
to the study of Quantum Computing. Having worked through the exercises, I was able to use that
chapter to understand the postulates of Quantum Mechanics. I worked through the chapter on single
qubits, solving many of the exercises related to the Bloch Sphere, before studying the Quantum
Fourier Transform and its applications to Phase Estimation and the Order-Finding Problem in the
case where the quantum system is of size 2n. I studied their appendices on Number Theory and
Group Theory in order to understand the key results for Shor’s Algorithm, working out my own proof
of Proposition 3.34 as the statement and proof given in the book were incorrect. They also mention
the Hidden Subgroup Problem, without going into much depth. I briefly looked at Grover’s search
algorithm for querying large databases before deciding that in the second half of the research time I
wanted to study the Hidden Subgroup Problem instead.

The major source of inspiration for the Hidden Subgroup Problem came from Childs [3]. His notes
lay out the bare bones of the argument, skipping over most of the details. He gave a description of
the outer product representation of the Quantum Fourier Transform when the group is abelian, which
made things easier to understand, especially when deriving the Inverse Quantum Fourier Transform.
The outer product approach for describing operators in Quantum Computing is far better than the
alternative of looking at the underlying matrix representation in the computational basis, because
working at the operator level takes advantage of the Dirac notation in which these operators are
expressed and makes the resulting layout more compact. I focused on working through the outline
argument given by Childs [3] in minute depth, filling in all of the gaps, which meant proving most of
the missing details myself. It has proven to be a very good use of my time, as the results of this work
forms the basis of the second half of this thesis.

It quickly became clear that I needed to improve my understanding of Group Representation Theory,
and so I used Segal’s lecture notes [24] and Serre’s book [25] to study the underlying theory. I also used

Conrad’s notes on the Characters of Finite Abelian Groups [5] to understand the dual group Ĝ and the
orthogonal subgroup H⊥, before generalising his work in the final presentation to fit in with the more
general results of Segal and Serre. I used de Wolf’s lecture notes [8] to gain an initial understanding
of the Hidden Subgroup Problem, working through his procedure for the Abelian Hidden Subgroup
Problem, before turning my attention to Childs’ notes. During this time, I stumbled upon the Ph.D.
thesis of Hallgren [14], which helped to consolidate my understanding, even though I found the density
operator approach of Childs more intuitive. Hallgren’s short summary on the key results of Group
Representation Theory proved to be a very useful guide when it came to writing up Chapter 4, but it
took a good amount of work to merge all the various sources into one coherent chapter, as they each
took different approaches and came from different starting points.

I finished my research with almost two full notebooks of exercises and proofs as well as a number
of annotated papers. Quantum Computing has been an exciting and challenging topic to study as
I ended up needing to go far beyond my existing knowledge of Mathematics and Computer Science
to make the progress that I have made. I very much enjoyed these last few months researching the
topic. I hope you enjoyed reading my thesis.
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