
MENG INDIVIDUAL PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Refinement Session Types

Author:
Fangyi Zhou

Supervisor:
Prof. Nobuko Yoshida

Second Marker:
Dr. Iain Phillips

16th June 2019





Abstract

We present an end-to-end framework to statically verify multiparty concurrent and
distributed protocols with refinements, where refinements are in the form of logical
constraints. We combine the theory of multiparty session types and refinement types and
provide a type system approach for lightweight static verification. We formalise a variant
of the λ-calculus, extended with refinement types, and prove their type safety properties.
Based on the formalisation, we implement a refinement type system extension for the F#
language. We design a functional approach to generate APIs with refinement types from
a multiparty protocol in F#. We generate handler-styled APIs, which statically guarantee
the linear usage of channels. With our refinement type system extension, we can check
whether the implementation is correct with respect to the refinements. We evaluate the
expressiveness of our system using three case studies of refined protocols.
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Chapter 1

Introduction

1.1 Motivation

With the development of computer science, distributed and concurrent programming
has become increasingly prevalent in recent years. Concurrency is ubiquitous in the
modern computing world, ranging from multiple cores in CPU and GPU, to server
clusters in large data centres. The development has brought benefits such as speedups
and scalability, but also new challenges in specifying and verifying distributed and
concurrent programs.

The importance of type systems in programming languages is increasingly recog-
nised by developers, as they provide a lightweight way for program specification and
verification. Type systems provide certain guarantees about programs, when typecheck-
ing succeeds. This is often remarked upon by the slogan “Well-typed programs cannot
go wrong” [32]. Although it is usually difficult to prove the absence of all software
bugs, static typechecking, usually run at a compilation stage, can detect classes of pro-
gramming errors, without the need to execute the actual program or write test cases.
Moreover, some type systems can reconstruct types, known as type inference, for a
given program without the need to be provided with explicit type annotations from
programmers.

Modern type systems are often equipped with a range of features, and able to provide
different kinds of guarantees according to the underlying theory. Most type systems
are not designed to handle complex invariants and properties of data or program, but
provide guarantees on the set of possible values exhibited by a variable, denoted by its
type. Type systems with stronger guarantees, such as dependent types, come with costs.
In a dependent type system it is usually impossible to provide a general type inference
algorithm due to undecidability [12], and hence some type annotations are necessary.
Moreover, proofs need to be supplied by programmers which can be tedious. Another
approach, refinement types [17], is built upon an existing type system and enhances the
expressiveness by allowing predicates, usually in the form of logical formulas, to be
placed on types. In recent work [48], refinement type systems use SMT solvers to check
for satisfiability of logical formulas, which saves programmers from writing tedious
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manual proofs.

To reason about concurrent and distributed programs, researchers develop models
of concurrent computing, of which the most notable models are shared memory and
message passing. In shared memory models, components communicate by accessing a
shared piece of memory. Practically, this is how different cores of the CPU, or different
threads in a process operate. The model may seem simple, but complication arises
when dealing with out-of-order execution, a common technique of optimisation on both
architectural and software levels. On the other hand, the message passing approach
models processes that communicate in the form of messages. This model reflects usages
in distributed programming where high-level components exchange messages specified
by protocols. The structured exchange of messages can be further described by session
types [22], a type discipline which provides guarantees on communication, such as
deadlock freedom, session fidelity and the absence of communication mismatch.

We motivate this research from the need to combine session types and refinement
types, two disciplines that seem orthogonal, into a stronger theory that provides more
expressiveness in specifying protocols. Data dependencies in communication protocols
are very common, but simple session types are not expressive enough for these data
dependencies. On the other hand, refinement types focus on single components, where
interaction with other components may not be expressible in a straightforward way.
Combining the two theories together allows the safety properties of communication
from the session type side to work with the logical predicates from refinement type side,
leading to this project of refinement session types.

1.2 Objectives

The objective of this project is to provide an end-to-end solution for verifying com-
munication protocols statically. We use the protocol description language Scribble [51],
originating from the multiparty session type (MPST) theory [23], with extensions to allow
protocol refinements to be expressed. We then use code generation to provide developers
with APIs, so that they can use the generated APIs to implement the communication
protocols. In the end, we provide a way to verify the correctness of implementation
statically, so that there is no need to perform runtime checks with regards to refine-
ments or channel linearity. This involves a theory of refinement types along with an
implementation of the type systems.

1.3 Contributions and Report Structure

We present an end-to-end solution for static verification of refined communication
protocols. The related work [36] uses runtime checks for validating the refinements and
checking channel linearity, whereas we present a static approach. To the best knowledge
of the author, this is the first work on static verification of multiparty protocols with
refinement, by combining multiparty session types and refinement types.
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We present the workflow of the end-to-end solution in Figure 1.1.

Protocol Specification
with Refinements

Projection to Local
Roles with Refinements

Generated API
with Refinements

Verified Implementation

Scribble [51], Section 2.1.4

FLUIDSESSION, Chapter 5

FLUIDTYPES, Chapter 4

Foundation with λH, Chapter 3

Figure 1.1: Workflow for Verified Implementation of Refined Protocols

In Chapter 2, we introduce the type discipline of session types and refinement types
respectively, including related work on theory and implementation. In particular, we
introduce a prior work on combining the two theories.

In Chapter 3, we introduce a variant of λ-calculus with refinement types called λH.
We explain the typing judgements in detail and give proofs of the type safety properties.
Detailed lemma and proofs in this section can be found in Appendix B.1. This chapter
provides the theoretical basis for the implementation of FLUIDTYPES.

In Chapter 4, we introduce an implementation of λH in F# as a typechecker extension,
which we call FLUIDTYPES. The implementation provides a way for programmers
to annotate F# code with refinement types and check whether the refined program is
well-typed. This library is not limited to checking implementations for communication
protocols, but works for general F# programs. The library is publicly available on
https://github.com/fangyi-zhou/FluidTypes.

In Chapter 5, we introduce a way to integrate FLUIDTYPES with the Scribble toolchain
for multiparty session types. We present a handler style of API generation for com-
munication protocols specified in Scribble to F#, taking refinements into account. The
generated code allows developers to implement the protocol in a correct-by-construc-
tion way, guaranteed by types of the APIs. Moreover, the refinements can be checked
by the library FLUIDTYPES statically, strengthening the guarantees. We have pub-
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lished the code generator for multiparty protocols at https://github.com/fangyi-
zhou/ScribbleCodeGen.

In Chapter 6, we evaluate our work through case studies of refined protocols. We
demonstrate how to implement refined protocols with our work, and how FLUIDTYPES

is able to verify implementations statically with respect to refinements. We also discuss
limitations on expressiveness of refinements.

Finally, we summarise our work in Chapter 7 and propose possible extensions and
future works on this project.

This project was presented as Fluid Types: Statically Verified Distributed Protocols with
Refinements at 11th Workshop on Programming Language Approaches to Concurrency-
& Communication-cEntric Software (PLACES 2019) [52], and in the Type My Morning
seminar series at Facebook London.

In addition to the project itself, the author has made contributions to various F# open
source libraries during the project period, including feature improvements and bug fixes.
The full list of contribution is listed in Section 7.1.1.
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Chapter 2

Background

In this chapter, we introduce the typing discipline of session types and refinement
types, which are the two important theories involved in this project.

2.1 Session Types

Many studies are done on modelling concurrency, especially on how concurrent
processes communicate with each other. Message passing and shared memory are
two major abstractions of communication techniques. In the shared memory model,
processes have access to a shared piece of memory, analogous to different cores in
CPU having access to the same physical memory. This model may seem simple, but
the complication arises from common optimisations of out-of-order execution [1]. In
the message passing model, processes are linked by communication channels and
communicate by sending messages in the channels, analogous to a cluster of servers
communicating via network in the setup of distributed systems. We focus on the latter
model in this section.

Message passing can be modelled by the process algebra π-calculus originally pro-
posed by Milner [34]. Processes can form channels identified by names, and can pass
names via the channels. We introduce an asynchronous variant of π-calculus in Sec-
tion 2.1.1. Session types provide a typing discipline for processes and channels modelled
in the π-calculus. Initial work on session types [22] only supports binary sessions on
channels. Honda et al. [23, 24] extend session types from binary to multiparty, enabling
the theory to be applied to a vast range of real world protocols. Well-typed processes are
guaranteed to have session fidelity, no type mismatch, no deadlocks and no protocol
violations during the communicating sessions. With the use of session types, distributed
systems and network communications are more reliable.

Session types are implemented and used in various popular programming languages
of different paradigms, including C [39], Erlang [16], Java [18, 26, 27], Python [35],
OCaml [28], etc. Different approaches are used to implement them according to the
language design and features available for the programming language. For example,
in some languages static type checking is used to check whether sessions are correctly
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implemented, where others may require dynamic approaches to check type information
at runtime.

2.1.1 Asynchronous π-calculus

The π-calculus provides a model of concurrent computation. Basic components,
known as processes, run in parallel and communicate via names. The asynchronous
π-calculus is a simple, concise, yet powerful model. It is able to encode λ-calculus,
hence is Turing complete [33]. The original asynchronous π-calculus was first presented
in [7, 21]. Many variants of the π-calculus exist in the literature, here we present a
variant as shown in [50].

P, Q ::= Processes

0 Nil Process

| u〈v〉 Output

| u(x).P Input

| P
∣∣Q Parallel Composition

| !P Replication

| (ν a) P Scope Restriction

u, v ::= a Names

| x Variables

Figure 2.1: Processes in Asynchronous π-calculus

We define the syntax of processes in the asynchronous π-calculus in Figure 2.1.

• 0 is the nil process, which represents a process with no action.

• u〈v〉 is an output process that will send v on u.

• u(x).P is an input process. On receiving a message from u it can carry on executing
P, with x substituted with the message received.

• P
∣∣Q represents processes composing in parallel.

• !P represents a process that can replicate itself, meaning there may be infinite
processes of P composing in parallel.

• (ν a) P represents the process P with a private name a, where the name a inside
process P will not interfere with other names in the open world.

Notice that the output process u〈v〉 does not have a continuation process P. This is
due to the asynchronous nature of the calculus.

14



P ≡ P Reflexivity

P ≡ Q =⇒ Q ≡ P Symmetry

P ≡ R ∧ R ≡ Q =⇒ P ≡ Q Transitivity

P ≡ Q =⇒ (ν a) P ≡ (ν a) Q Congruence of Restriction

P ≡ Q =⇒ P
∣∣ R ≡ Q

∣∣ R Congruence of Parallel

P ≡ Q =⇒ u〈x〉.P ≡ u〈x〉.Q Congruence of Input

P ≡ Q =⇒ !P ≡ !Q Congruence of Replication

P =α Q =⇒ P ≡ Q α-equivalence

(P
∣∣Q)

∣∣ R ≡ P
∣∣ (Q ∣∣ R) Associativity

P
∣∣Q ≡ Q

∣∣ P Commutativity

P
∣∣ 0 ≡ P Nil

!P ≡ P
∣∣ !P Replication

(ν a) 0 ≡ 0 Restriction of Nil

(ν a) (ν b) P ≡ (ν b) (ν a) P Restriction of Restriction

a /∈ fn(P) =⇒ P
∣∣ (ν a) Q ≡ (ν a) (P

∣∣Q) Restriction of Parallel

Table 2.1: Structural Congruence for Asynchronous π-calculus

An important concept in the π-calculus is the structural congruence relation. Struc-
turally congruent processes are not distinguishable. We define this relation in Table 2.1.

COMM
a〈v〉

∣∣ a(x).P→ P[v/x]

The key rule of the operational semantics of asynchronous π-calculus is (COMM),
where an input process and an output process, composing together in parallel, reduce
when the names are the same. This models the communication between the input
process and the output process on a channel. The remaining process is the continuation
process from the input process, with the variable substituted by the message received.

2.1.2 Binary Session Types

A session is a sequence of actions on a channel. In the typing discipline of session
types, we give types to communication channels. Names are distinguished between two
use cases, as session names or shared names. A shared name is public and it acts as a
communication channel for unrestricted number of parties. A session name is private to
communicating parties and acts as a linear channel where communication is restricted to
the two parties.

We introduce a session calculus with different syntactic constructs for linear and
shared names for processes, to address the difference between session and shared names.
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P, Q ::= Processes

0 Nil Process

| u〈e〉.P Output on Shared names

| u(x).P Input on Shared names

| k〈e〉.P Output on Session names

| k(x).P Input on Session names

| k / {l1 : P1 8 · · · 8 ln : Pn} Branches on Session names

| k . l.P Selection on Session names

| P
∣∣Q Parallel Composition

| (ν a) P Scope Restriction on Shared names

| (ν k) P Scope Restriction on Session names

| if e then P else Q Conditionals

| def D in P Recursive Definitions

| X〈ẽ〉 Recursive Calls

u ::= a | x Shared Names and Variables

k ::= s | x Session Names and Variables

e ::= v | e⊕ e | ¬e Expressions

⊕ ::= ∧ | ∨ Binary operators

v ::= true | false | s | a Values

D ::= X(x̃) = P Recursion Declarations

Figure 2.2: Processes in Session Calculus

We define the syntax of the processes in Figure 2.2. This calculus is an extended version
of Figure 2.1, with additional constructs for:

• Syntactic distinction between shared names and session names. This is represented
by two variants of input and output processes.

• Recursive definitions and calls . This is represented by def D in P and X〈ẽ〉
processes. X〈ẽ〉 is expanded into the process in the definition, with usual function
call behaviour.

• Expressions with boolean constants and conditional processes. The process
if e then P else Q reduces to P if e evaluated to true and Q otherwise.

• Branching and selection processes. A process k / {l1 : P1 8 · · · 8 ln : Pn} can provide
one or more branches with distinct labels on a session name. The branch can be
selected by the process k . l.P.

• Output processes u〈e〉.P have continuation processes. After a successful commu-
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nication, it continues with process P. This means that this session calculus in
synchronous.

The syntax of session types are defined in Figure 2.3. The syntax of session types
and processes share a large similarity. In particular, input processes correspond to send
types, and output processes to receive types, etc. Hence in many cases, session types can
be assigned to session variables and names in a syntax directed fashion.

S ::= Sort

bool Boolean

T, U ::= Type

![S]; T Value Send

| ?[S]; T Value Receive

| ![U]; T Type Send

| ?[U]; T Type Receive

| &{l1 : T1, · · · , ln : Tn} Branches

| ⊕ {l1 : T1, · · · , ln : Tn} Selection

| t Type Variable

| µt.T Recursive Type

| end Termination

Figure 2.3: Syntax of Session Types

A key concept in session types is duality. Process reduction occurs when communica-
tion takes place, that is when a message is exchanged on a name. There should be two
processes at two ends of the channel, a “sending” side and a “receiving” side, expecting
dual behaviours on two ends of the channel. The two ends, identified by their names,
should be typed in a dual form, so that we can prevent communication mismatches from
happening. Following this intuition, we define T, the dual of type T, in Table 2.2.

When two processes compose in parallel, all session variables in the processes should
carry dual types. In this way, communication always matches, and mismatch errors or
deadlocks never occur due to duality of types. A send action is always matched with a
receive action, and vice versa.

In addition, the linear names must be used once and only once between in two
processes composing in parallel. This ensures a use-once property that a message sent
will be eventually received, so that there is no orphaned messages.

We described the desired guarantees and intuitions for the session types. For exact
details of the typing judgements, readers can refer to [19, 22, 47].

17



![S]; T = ?[S]; T

?[S]; T = ![S]; T

![U]; T = ?[U]; T

?[U]; T = ![U]; T

&{l1 : T1, · · · , ln : Tn} = ⊕{l1 : T1, · · · , ln : Tn}
⊕{l1 : T1, · · · , ln : Tn} = &{l1 : T1, · · · , ln : Tn}

t = t

µt.T = µt.T

end = end

Table 2.2: Duality of Session Types

2.1.3 Multiparty Session Types

While session types in Section 2.1.2 provide some guarantees, their expressiveness
is limited to describing communication protocols between two parties. In distributed
computing, there are usually more parties involved. A large multiparty protocol is not
always decomposable into smaller binary session types between two communicating
parties. In particular, the duality of session types does not extend to multiple parties
easily.

Multiparty session types (MPST) are a major extension to the binary session types,
which are able to address these limitations. The typing discipline provides more ex-
pressiveness via a view of the communication protocol from the global perspective. The
global view can then be projected into local views where processes can be monitored
whether they obey the communication protocol [37], and code can be generated for each
local process [38], via local communicating finite state machines.

The syntax of processes in multiparty session calculus, as presented in [9], is shown
in Figure 2.4. In this session calculus, message delivery is modelled in an asynchronous
fashion, where messages queue up waiting to be delivered. Since multiple parties are
involved in the communication, the input and output processes now carry the participant
number of the other party, which identifies the interacting party.

Note that shaded syntax in Figure 2.4 indicates that the syntax is a runtime syntax,
meaning that the syntax cannot occur in any written program, but only occurs in
operational semantics.

The operational semantics for asynchronous multiparty session calculus involve
message queues between processes, and include usual communication rules via channel
names:

• A session name and a message queue dedicated for the session name are created
after successful communication of multicast request and multicast accept processes.
Each process knows its participant number in the session.

• Output of values and channels, and selection processes on a session add a message
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P, Q ::= Processes

0 Nil Process

| u[p](y).P Multicast Request

| u[p](y).P Multicast Accept

| c〈p, e〉.P Output of Values

| c(p, x).P Input of Values

| c〈〈p, c′〉〉.P Output of Channels

| c((p, y)).P Input of Channels

| c / (p, {l1 : P1 8 · · · 8 ln : Pn}) Branches

| c . (p, l).P Selection

| P
∣∣Q Parallel Composition

| (ν a) P Scope Restriction on Shared names

| (ν s) P Scope Restriction on Session names

| if e then P else Q Conditionals

| def D in P Recursive Definitions

| X〈e, c〉 Recursive Calls

| s : h Message Queue

D ::= X(x, y) = P Recursion Declarations

u ::= a | x Shared Names and Variables

e ::= v | x | e⊕ e | ¬e Expressions

⊕ ::= ∧ | ∨ Binary operators

v ::= true | false | a Values

c ::= y | s[p] Channels

m ::= Messages in Transit

(q,p, v) Message of value

| (q,p, s[p’]) Message of channel

| (q,p, l) Message of label

h ::= h ·m | ∅ Message Queue

Figure 2.4: Processes in Multiparty Session Calculus
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to the message queue of that session.

• Input of values and channels, and branching processes on a session remove a
message from the message queue of that session.

• Messages in the queues are tagged with participant numbers of the sending and
receiving processes.

Typing for multiparty session calculus involves a global description of protocol,
known as a global type involving message exchanges between all participants. Due to
the multiparty nature, a session can have more than two participants, hence the session
types are also annotated with participant number, which does not exist in binary session
types, to indicate the intended target in the session. Using this idea, we define the syntax
of global types and session types in Figure 2.5.

S ::= Sort

bool Boolean

G ::= Global Types

p→ q : 〈S〉.G Value Exchange

| p→ q : 〈T〉.G Channel Exchange

| p→ q : {li : Gi}i∈I Branching

| t Type Variable

| µt.T Recursive Type

| end Termination

T, U ::= Session Type

!〈p, S〉; T Value Send

| ?(p, S); T Value Receive

| !〈p, U〉; T Channel Send

| ?(p, U); T Channel Receive

| &(p, {li : Ti}i∈I) Branches

| ⊕ (p, {li : Ti}i∈I) Selection

| t Type Variable

| µt.T Recursive Type

| end Termination

Figure 2.5: Global and Session Types

Local types describe the communicating behaviour of a local role in the global protocol.
The local types for processes can be projected from a global type for a given role in
the protocol, as shown in Figure 2.6. With local types, each role has its own view
of the communication protocol besides the global view. Practically, this means that
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development of each participant in the protocol can be done in isolation – as long
as the projection is correct, composing different components developed in isolation
gives correct behaviour as described in the global protocol. We explain more detail
in Section 2.1.4 with an example of how a protocol can be described in the Scribble
language with API generation for different endpoints.

(p→ p’ : 〈U〉.G′) � q =


!〈p’, U〉; (G′ � q) if q = p

?(p, U); (G′ � q) if q = p’

(G′ � q) otherwise

(p→ p’ : {li : Gi}i∈I) � q =


⊕(p’, {li : Gi � q}i∈I) if q = p

&(p, {li : Gi � q}i∈I) if q = p’

(Gi0 � q) where i0 ∈ I if q 6= p, q 6= p’

and Gi � q = Gj � q, for all i, j ∈ I

(µt.G) � q =

µt.(G � q) if G � q 6= t

end otherwise

(t) � q = t

(end) � q = end

Figure 2.6: Projection from Global Types to Session Types

Multiparty session types are able to provide guarantees on communication, includ-
ing:

• Communication Safety: There are no mismatch in expected type and the actual
type when sending and receiving messages on a channel.

• Protocol Fidelity: Interaction between processes will follow the global protocol.

• Progress: Messages sent by processes will be eventually received, and processes
waiting for messages will eventually receive messages. This also implies that there
will be no orphaned messages.

2.1.4 Scribble and Endpoint API Generation

Scribble [51] is a protocol description language that incorporates multiparty session
types, applying the theory into practical programming. Communicating parties, known
as roles, exchange typed structured messages for interaction. Each message has a label
and a payload signature, where the label distinguishes different kinds of the messages
in the protocol and the payload signature specifies the types of the payload included in
the message.

An example protocol described in Scribble is in Figure 2.7. The protocol describes a
server capable of performing addition operation. After sending a HELLO message to the
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server, the client can choose to send two integers in a ADD message and receive the result
in a RES message, and repeat the protocol. Alternatively, the client can choose to send a
BYE message and terminate the protocol after receiving a BYE message from the server.

1 global protocol Adder(role C, role S) {
2 HELLO(int) from C to S;
3 choice at C {
4 ADD(int, int) from C to S;
5 RES(int) from S to C;
6 do Adder(C, S);
7 } or {
8 BYE() from C to S;
9 BYE() from S to C;

10 }
11 }

Figure 2.7: Adder Protocol

The global protocol can be projected to local roles so that each role can use the
projected protocol to generate code for the structured communication for that given role,
independent of other roles. A communicating finite state machine (CFSM) describes local
behaviour of the given role, where state transitions are actions of communication, i.e.
sending messages to or receiving messages from other roles.

We take Java as an example for the code generation process. Each state in the CFSM
is be converted into a class, with outgoing transitions converted into its methods. The
methods contain communication primitives for sending and receiving messages, and
return the next state in the CFSM. In this way, the programmer can use a chain of
methods starting from the initial state to reach a terminating state where there is no
outgoing transitions. It is important that each state object must be used once and only
once, to ensure the CFSM has correct state transitions.

Implementations following the generated APIs can benefit from the guarantees of
MPST, i.e. free from communication errors, session fidelity and progress.

To illustrate, Figure 2.8 shows the finite state machine for role C (client), obtained
via Scribble from the Adder protocol in Figure 2.7. At state 2, the client makes an choice
on what message to send to the server, either a BYE message to terminate, or an ADD
message for computation. We show the generated code in Java for the state in Figure 2.9.

2.1.5 F# Session Type Provider

F# is an open source programming language, originally developed by Microsoft.
It is a member of ML language family, and shares a similar syntax to OCaml. Type
provider [40] is a language feature of the F# language for compile time type generation.
Common usage of this feature includes generating type-safe APIs for structured data
sources, e.g. for a JSON file or a SQL database. This is done by invoking the type
provider during compilation to obtain type information from data schemas or remote
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S?RES(int)

S!ADD(int, int)

S!HELLO(int)

S!BYE()

S?BYE()

1

2

4 3

5

Figure 2.8: Finite State Machine for role C for Protocol in Figure 2.7

1 public Adder_C_3 send(S role, ADD op, int arg0, int arg1) {
2 super.writeScribMessage(role, Adder.ADD, arg0, arg1);
3 return new Adder_C_3(this.se, true);
4 }
5

6 public Adder_C_4 send(S role, BYE op) {
7 super.writeScribMessage(role, Adder.BYE);
8 return new Adder_C_4(this.se, true);
9 }

Figure 2.9: Generated Java API for State 2, Role C (truncated)
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resources, and provide typed interaction of the information in the program. Developers
do not need to manually specify type definitions, and they can also benefit from typed
access to resources.

Neykova et al. [36] implement multiparty session types in F# using type providers.
This is an innovative use of type providers as a meta-programming technique. The com-
munication protocol is considered as the data source and types for the local endpoints
can be generated via the type provider during the compilation. This is done by projecting
the global protocol to local endpoints during the compilation using Scribble, and then
generate typed APIs for the local endpoint, in a similar way to Java code generation.

An important aspect of this work includes an extension of multiparty session types
with refinements. We explain this extension in more detail in Section 2.2.4.

2.2 Refinement Types

Refinement type systems build upon the existing type system of a programming
language. Refinement types offer the ability to add predicates on existing data types,
restricting the values corresponding to the underlying data types [17]. Using refinements
in the type signature, one can encode pre- and post-conditions of a function easily via
refining the input and output types respectively.

Refinement types are implemented for many general purpose programming lan-
guages, including F# [3], Scala [44] and Haskell [48]. In many implemtations, the
refinement predicates are transformed into a verification condition, which is then dis-
charged via an external SMT solver. After the conditions are verified, the refinements do
not need to be carried into the runtime, since they have been verified statically. Therefore,
they can be safety erased into the underlying type system. In this way, programs can be
made more reliable without performance penalty.

2.2.1 Liquid Types

Rondon et al. propose Logically Qualified Data Types in [43], abbreviated to Liquid Types.
The predicates used in the refinement are limited to a decidable logic, so that refinement
type inference is decidable. The type system formalisation involves a semantic subtyping
relation, decided by an external SMT solver. Terms and typing contexts are encoded into
SMT logic, and subtyping is modelled as implications in the logic, which are validated
by a SMT solver.

Suppose int is the bast type for integers. Natural numbers, which are non-negative
integers, can be defined as follows in liquid types:

{ν : int | ν ≥ 0}

where the variable ν stands for the members of that type.

Function types in liquid types are parameterised by variables, so that the variables
can be later used in the predicate as a refinement. This is a form of dependent functions.
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For example, the function max taking the greater of two integers can take the following
type, which specifies that the output must be greater than or equal to both input argu-
ments. Whilst this may not be the most precise specification of the output, this signature
of the max function more precisely than a function type without refinements:

(x : int)→ (y : int)→ {ν : int | ν ≥ x ∧ ν ≥ y}

The refinement predicates are restricted to a set of decidable logic of equality, un-
interpreted functions and linear arithmetic (EUFA). Terms in the refinement predicate
and the typing context are encoded in the logic conservatively. The subtyping relation
is decided by the validity of implication of the encoded types and typing contexts, as
described by the following typing rule (JeK represents the encoding of e in the logic and
B represents a base type). We use a similar formalisation of typing judgements in our
work, which we explain in detail in Section 3.4.

Valid(JΓK∧ Je1K =⇒ Je2K)

Γ ` {ν : B | e1} <: {ν : B | e2}

2.2.2 F7: Refinement Types for F#

F7 [20] is an extension to the F# language, a dialect of ML, with refinement types
developed by Microsoft Research. Currently, there is no active development of F7 after
its release. In F7, the theory includes formalisation of a calculus with refinements and
concurrency, with features such as algebraic data types, dependent function and pair
types and π-calculus style message passing communication primitives.

The logical predicates allowed to refine the data types include first-order logical
operators. An SMT solver (Z3 [10]) is used during type checking. The work produces a
partial inference algorithm for the type system, hence some type need to be annotated
manually. In addition, due to the incompleteness of Z3 prover, some valid first order
formulas are not provable. In contrast, liquid types are always decidable, but the logical
operators permitted are more restricted.

Bengtson et al. [3] apply this refinement calculus to cryptography scenarios. In this
formalisation, processes can communicate with typed channels. The typed channel only
allows values of the specified type to be passed. In contrast, session types are more
expressive, since values of different types may be transmitted via channels, with their
order and direction of transfer specified.

Bhargaven et al. [5] demonstrate a technique for protocol synthesis and verification
of multiparty session types. A protocol specification is compiled into protocol imple-
mentation files and a typed interface, which can be checked for correctness by F7 with
session types encoded as logical pre- and post-conditions.

2.2.3 F?

F? [31] is a programming language developed by Microsoft Research and INRIA
for program verification. The type system of F? subsumes previous work of F7. The
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language has a type system with a rich set of features, including dependent types,
refinement types and a weakest precondition calculus. F? plays a key role in Project
Everest [4, 42] for a fully verified HTTPS stack.

Swarmy et al. [45] provide an example for verifying multiparty sessions using F?,
applying multiparty session type theory in [11, 23]. With support of affine types in
F?, the technique can produce more precise specifications with less code annotations
compared to previous work in [5].

2.2.4 F# Session Type Provider

Neykova et al. [36] extend multiparty session types with refinements. The protocol
specification language Scribble is extended to include refinements. For example, the
Adder protocol as shown in Figure 2.7 can be refined as shown in Figure 2.10. The
refined protocol imposes restrictions on the values exchanged in messages. Essentially,
the Adder only works with positive integers rather than all integers.

1 global protocol Adder(role C, role S) {
2 HELLO(int) from C to S;
3 choice at C {
4 ADD(x:int, y:int) from C to S; @"x > 0 && y > 0"
5 RES(v:int) from S to C; @"v > 0"
6 do Adder(C, S);
7 } or {
8 BYE() from C to S;
9 BYE() from S to C;

10 }
11 }

Figure 2.10: Refined Adder Protocol

During the code generation phase, the refinement conditions are checked by Scribble
for well-formedness, including the following:

• Variable Knowledge: The refinement on a message may not refer to a variable not
known by sending endpoint. This ensures that refinements can be checked during
runtime for the sending endpoint.

• Refinement Satisfiability: Every refinement must be satisfiable by some assign-
ments of variables. This ensures that there are no unreachable parts of the protocol.

• Refinement Progress: Whenever there is a choice in the protocol, there must be
at least one branch whose refinements are satisfiable, under all assignments of
variables. This ensures that there is no case that a protocol gets stuck with no
feasible branches due to unsatisfied refinements.

During the runtime, refinements are encoded as inline assertions. At each endpoint, a
cache is used to store variables, so that refinements can be checked when needed. During
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execution, unsatisfied refinements lead to runtime expections in this implementation.
The runtime refinement checks incur an overhead during execution.

We motivate our work from this existing work. We develop a static approach of
refinement session types to address the limitations.
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Chapter 3

λH: A Simple Refinement Calculus

In this chapter, we define a variant of the λ-calculus with refinement types. We build
upon the type system of the simply typed λ-calculus (hereafter STLC) with integer and
boolean literals, and extend it to include refinements on the type level, which impose
constraints on the members of a given type.

The name λH originally comes from [29]. The refinement typed variant comes from
[43]. The form of λH presented in this chapter is adopted from these previous work. We
give syntax, semantics, bidirectional typing judgements, and type safety theorems in
this chapter.

λH provides the theoretical basis for the implementation of FLUIDTYPES in F#. We
explain the implementation in detail in Chapter 4.

3.1 Syntax

We define the syntax of terms and types in λH in Figure 3.1. The terms M and types
τ are defined in a mutually recursive way, since a type can occur in a term in a type
annotated term (M : τ), and a term can occur in a type in a base type ({ν : b | M}).

We define terms in two syntactic categories to support bidirectional typing [41],
which we discuss in detail in Section 3.4. The two syntactic categories for all terms are
M? for synthesisable terms and M for checkable terms. The former category has a typing
judgement for synthesis, meaning a type can be reconstructed from a given context,
whereas the latter has a typing judgement for checking, meaning a type needs to be
provided to check whether the term is well-typed under a given context.

The terms M in λH include the usual terms in λ-calculus, namely variables (x),
abstractions (λx.M) and applications (M?M). In addition, there are syntactic constructs
for:

• Conditional expressions (if M then M else M), a common extension to the
λ-calculus;

• Type-annotated terms (M : τ), which allows a checkable term to carry an explicit
type annotation to become synthesisable;
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M? ::= Synthesisable Term

x Variable

| c Constant

| M?M Application

| M : τ Type-annotated Term

M ::= Checkable Term

λx.M Abstraction

| if M then M else M Conditional

| M? Synthesisable Term

b ::= int | bool Base Type

τ ::= Refinement Type

{ν : b | M} Refined Base Type

| (x : τ)→ τ Function type

Figure 3.1: Syntax of λH

• Constants (c). In this cases, they consist of integer literals (e.g. 0, 1, 2 . . . ), boolean
literals (i.e. true, false), and operators for integers and booleans (e.g. (&&),
(+), (=)). We write operators in infix forms where appropriate for clarity.

For types, we first have the base types for integers and booleans, which corresponds
to the integer and boolean literals in terms. A refinement type τ is either a refined base
type ({ν : b | M}) or a function type ((x : τ1) → τ2). A refined base type {ν : b | M} is
in a form similar to a mathematical set notation. It consists of a base type b, indicating
the underlying type of the value, and a term M, acting as a predicate on the type. The
predicate term M specifies a constraint on the values of the refined base type, such
that a member ν needs to satisfy the predicate term M. This is the reason why this
typing discipline is known as refinement types, as the predicate refines values in the
underlying base types. As a consequence, M is a term of a boolean type (later explained
in typing rules), and it may optionally contain the special variable ν, which stands for
the members of the refined type. For example, one can represent positive integers with
type {ν : int | ν > 0}, meaning all its members ν should satisfy the predicate ν > 0.

In the simply typed λ-calculus, a function type is usually of form t1 → t2, where
t1 and t2 are types. In our syntax, a function type is of form (x : τ1) → τ2, where the
argument type τ1 is named with a variable. Moreover, the variable x can occur in the
result type τ2 in the predicates. In other words, this function type represents dependent
function space, or is sometimes written in an alternative form of Πx:τ1 τ2(x), common in
presentations of Martin-Löf type theory [30].

This definition of types can also represent those types without refinements. For
example, the type for all integers, i.e. int in simple type system, corresponds to
{ν : int | true}, since all integers satisfy the predicate true. In fact, we use base type
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b to abbreviate {ν : b | true} for simplicity, where there is no ambiguity. In cases where
a function (x : τ1)→ τ2 is not dependent, such that the variable x does not occur τ2, we
use the abbreviation τ1 → τ2.

For typing, we define two contexts for typing judgements, the typing context Γ for
storing types for variables and the predicate context ∆ for storing refinement predicates.
We explain their roles in typing later in Section 3.4.

Γ ::= ∅ | Γ, x : τ Typing Context

∆ ::= ∅ | ∆, M Predicate Context

Figure 3.2: Definition of Contexts

We define free variables for terms and types in Definition 3.1.1. The definition of free
variables does not deviate too much from the λ-calculus. In an abstraction λx.M, the
variable x is bound in M. For types, in a base type {ν : b | M}, the variable ν is bound in
M, as it is a special variable representing the value exhibited by the type; in function
type (x : τ1) → τ2, the variable x is bound in τ2. We define substitutions for terms,
types and typing context in Definition 3.1.2, in the usual way that only free variables are
substituted, and that bound variables are not affected by substitution.

Definition 3.1.1 (Free Variables). Free variables of a term are defined as follows:

fv(x) = {x}
fv(c) = ∅

fv(λx.M) = fv(M) \ {x}
fv(M1M2) = fv(M1) ∪ fv(M2)

fv(if M1 then M2 else M3) = fv(M1) ∪ fv(M2) ∪ fv(M3)

fv(M : τ) = fv(M) ∪ fv(τ)

Free variables of a type are defined as follows:

fv({ν : b | M}) = fv(M) \ {ν}
fv((x : τ1)→ τ2) = fv(τ1) ∪ (fv(τ2) \ {x})

Definition 3.1.2 (Substitution). Substitution on terms is defined as follows.

x[M/x] = M

y[M/x] = y (x 6= y)

c[M/x] = c

(λy.N)[M/x] = λy.(N[M/x]) (x 6= y)

(M1M2)[M/x] = M1[M/x]M2[M/x]

(if M1 then M2 else M3)[M/x] = if M1[M/x] then M2[M/x] else M3[M/x]

(N : τ)[M/x] = N[M/x] : τ[M/x]
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Substitution on types is defined as follows.

({ν : b | N})[M/x] = {ν : b | N[M/x]}
((y : τ)→ σ)[M/x] = ((y : τ[M/x])→ σ[M/x]) (x 6= y)

Substitution on typing contexts is defined as follows.

(∅)[M/x] = ∅

(Γ, y : τ)[M/x] =

Γ[M/x], y : τ[M/x] if x 6= y

Γ[M/x] if x = y

Substitution on predicate contexts is defined as follows.

(∅)[M/x] = ∅
(∆, N)[M/x] = ∆[M/x], N[M/x]

3.2 Operational Semantics

We define operational semantics for λH in a call by value style. We add additional
rules for additional constructs that do not occur in the λ-calculus.

We first define values of λH in Definition 3.2.1.

Definition 3.2.1. Values in λH are defined as follows:

v ::= Values

c Constant

| λx.M Abstractions

| v : τ Type-Annotated Values

Constants and abstractions are always values. In addition, a value can be type-
annotated and the annotated term is still a value.

We then define the operational semantics in Figure 3.3.

RED-APP-ANNO
(λx.M1 : ((x : τ1)→ τ2))v2 → M1[v2 : τ1/x] : τ2[v2 : τ1/x]

RED-IF-TRUE
(if true then M2 else M3)→ M2

RED-IF-FALSE
(if false then M2 else M3)→ M3

M→ M′ RED-CTX
C[M]→ C[M′]

C ::= ·M | v · | if · then M else M | · : τ

Figure 3.3: Reduction Rules for λH
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In the λ-calculus, we have a reduction rule as follows:

(λx.M1)v2 → M1[v2/x]

However, in λH, we have rule (RED-APP-ANNO) instead. This may seem unusual,
but the rule is set in a way such that syntactic categories of terms are preserved. In
our syntax, applications are of form M?M, and abstractions λx.M do not belong to M?.
In order for an abstraction to be in M?, a type annotation is necessary, since a type
annotated term (M : τ) is in M?. We future note that M1 is in M, and hence it remains
in M after substitution. Since an application is in M?, the result after substitution is
annotated to preserve the syntactic category. Similarly, we substitute x with v2 : τ1

instead of with v2.

(RED-IF-FALSE) and (RED-IF-FALSE) define how conditionals are reduced when
the predicate term is a boolean literal. The correspondent branch is picked according to
the literal.

(RED-CTX) defines the contextual closure of the base rules.

We define the multistep reduction relation→∗ as the reflexive, transitive closure of
the reduction relation→.

3.3 Erasing Refinements

λH can be erased into the the λ-calculus with booleans. We define the erasure
function in Definition 3.3.1 to convert type, terms and typing contexts from λH to the
λ-calculus.

Definition 3.3.1. The erasure of terms is defined as follows.

erase(x) = x

erase(c) = c

erase(λx.M) = λx. erase(M)

erase(M1M2) = erase(M1) erase(M2)

erase(if M1 then M2 else M3) = if erase(M1) then erase(M2) else erase(M3)

erase(M : τ) = erase(M)

The erasure of types is defined as follows.

erase({ν : b | M}) = b

erase((x : τ1)→ τ2) = erase(τ1)→ erase(τ2)

The erasure of typing context is defined as follows.

erase(∅) = ∅
erase(Γ, x : τ) = erase(Γ) , x : erase(τ)
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The concept of erasure is important, as the type system of λH builds upon the
underlying type system of the simply typed λ-calculus. When it is necessary to use
the underlying type system, we erase λH down to the λ-calculus. Moreover, if well-
typed terms in λH are also well-typed after erasure, we can first typecheck the term in
λH, then erase it to the λ-calculus for the actual execution. This is very useful for the
implementation, as the runtime does not need to be modified to adopt to type system
changes. We revisit erasure in Section 3.4.4 and establish connections between two type
systems.

Theorem 3.3.2. If M→ M′, then erase(M)→ erase(M′)

Proof. By induction on the reduction relation→ of λH.

3.4 Typing

In this section, we explain the bidirectional type system for λH , based on an existing
type system of λ-calculus. We do not go into details of the base type system of the simply
typed λ-calculus, but we include the typing judgements in Appendix A.1 for reference.
Typing judgements defined in this chapter are summarised in Table 3.1.

` Γ; ∆ Well-formedness of Context

Γ; ∆ ` τ Well-formedness of Type

Γ; ∆ ` τ <: σ Subtyping

Γ; ∆ ` M? ⇒ τ Type Synthesis

Γ; ∆ ` M⇐ τ Type Checking

Γ; ∆ `erase M : τ Typing under erasure

Table 3.1: Judgements of Type System

We base the type system of the λH on the type system of the simple λ-calculus. The
judgement:

Γ; ∆ `erase M : τ

is an abbreviation of:
erase(Γ) ` erase(M) : erase(τ)

in the type system of the simple λ-calculus.

3.4.1 Type Synthesis and Checking

We use a bidirectional approach to typing λH, inspired by [41].

We use judgements of form:

Γ; ∆ ` M? ⇒ τ
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to represent the synthesis of type τ from the given contexts Γ and ∆ for term M?.

We use judgements of form:

Γ; ∆ ` M⇐ τ

to represent that the type τ typechecks under the given contexts Γ and ∆ for term M.

In the former judgement, the type τ is an output of a type inference algorithm
whereas in the latter judgement, the type τ is an input.

We show the main typing judgements for λH in Figure 3.4.

TY-VAR-BASE
Γ, x : {ν : b | M}, Γ′; ∆ ` x ⇒ {ν : b | ν = x}

TY-VAR-FUNC
Γ, x : (y : τ1)→ τ2, Γ′; ∆ ` x ⇒ (y : τ1)→ τ2

TY-CONST
Γ; ∆ ` c⇒ Ty(c)

Γ; ∆ ` M1 ⇒ ((x : τ1)→ τ2) Γ; ∆ ` M2 ⇐ τ1
TY-APP

Γ; ∆ ` M1M2 ⇒ τ2[M2/x]

Γ; ∆ ` M⇐ τ
TY-ANNO

Γ; ∆ ` (M : τ)⇒ τ

Γ, x : τ1; ∆ ` M⇐ τ2 Γ; ∆ ` ((x : τ1)→ τ2)
TY-ABS

Γ; ∆ ` λx.M⇐ ((x : τ1)→ τ2)

Γ; ∆ ` M1 ⇐ bool Γ; ∆, M1 ` M2 ⇐ τ Γ; ∆,not M1 ` M3 ⇐ τ Γ; ∆ ` τ
TY-COND

Γ; ∆ ` if M1 then M2 else M3 ⇐ τ

Γ; ∆ ` σ <: τ Γ; ∆ ` M? ⇒ σ Γ; ∆ ` τ
TY-SUB

Γ; ∆ ` M? ⇐ τ

Figure 3.4: Typing Judgements for λH

(TY-VAR-BASE) and (TY-VAR-FUNC) synthesise types for variables from the typing
context. If the variable x has a base type in the typing context, a base type with refinement
ν = x is synthesised for the variable. This allows the type to reference to the refinement
attached to the variable in the context. If the variable x has a function type in the context,
the function type is synthesised.

(TY-CONST) synthesises types for constant values. We list some example types for
constants in Table 3.2. Integer and boolean literals have refinement types of their base
type with predicate that the member is equal to the literal itself. Operators have refined
function types, with return type refined with the predicate that the member is equal to
the result of the operation.

(TY-APP) synthesises types for applications. Since the first term is in the syntactic
category M?, it is always possible to synthesise a type for that term. The term must carry
a function type (x : τ1) → τ2. The second term needs to typecheck against τ1, namely
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the type of argument. The final synthesised type is τ2[M2/x] instead of τ2. Without
substitution τ2 may contain variable x, which is no longer bound when the function type
is eliminated, a substitution is thus necessary.

(TY-ANNO) synthesises types for annotated-terms. We use the typecheck judgement
to verify the annotated type is correct, then return the annotated type as the result of
synthesis. This rule makes it possible to synthesise types for checkable terms, as long as
they are type-annotated.

1 :: {ν : int | ν = 1} integers

true :: {ν : bool | ν = true} booleans

(+) :: (x : int)→ (y : int)→ {ν : int | ν = x + y} arithmetic

(≥) :: (x : int)→ (y : int)→ {ν : bool | ν = (x ≥ y)} relational

Table 3.2: Constants and their Refined Types

For all typecheck judgements, it is required that the provided type is well-formed
under the given context. We give well-formedness judgements for types in Figure 3.5,
and explain them in Section 3.4.2.

(TY-ABS) checks types for abstractions. Here we assume without loss of generality
that x does not occur in Γ. It is not possible to synthesise a type for abstractions without
knowing the type of the argument, hence abstractions have a typecheck rule instead.
When checked against a function type (x : τ1)→ τ2, the term M is typechecked against
type τ2, under the assumption that the abstraction variable x carries type τ1 in the typing
context. The result type τ2 may contain the variable x, but the new context is able to
provide type information for x.

(TY-COND) checks types for conditionals, i.e. boolean elimination. In this rule,
we make use of the predicate context ∆. We model path sensitivity by adding path
constraints into the predicate context ∆, which is encoded when deciding subtyping.
The then branch carries predicate M1, as it is taken when the predicate evaluates
to true; whereas the else branch carries not M1, as it is taken when the predicate
evaluates to false.

(TY-SUB) checks types for synthesisable terms. The synthesised type for the term
provides a single type for the term. Due to the presence of a subtyping relation, the term
can carry more types than the unique synthesised type under the same typing context.
The rule required that the synthesised type σ is a subtype of the specified type τ.

In a non-bidirectional typing setup, typing judgements usually contain a subsump-
tion rule, which can be applied regardless of the syntax of the term. While the sub-
sumption rule is powerful, the typing judgements are no longer syntax directed, and
the subsumption rule complicates the implementation of the type system. In our setup,
subtyping judgements are only used in (TY-SUB), when a synthesisable term is checked
against a provided type.
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3.4.2 Well-formedness of Types and Context

The well-formedness judgements for types are shown in Figure 3.5, of form:

Γ; ∆ ` τ

The well-formedness judgements for contexts are shown in Figure 3.6, of form:

` Γ; ∆

In well-formedness judgements, we use the underlying type system of the simply
typed λ-calculus instead of λH typing judgements to prevent cycles in inductive judge-
ments.

Γ, ν : b; ∆ `erase M : bool fv({ν : b | M}) ⊆ dom(Γ)
WF-TY-BASE

Γ; ∆ ` {ν : b | M}

Γ; ∆ ` τ1 Γ, x : τ1; ∆ ` τ2 fv((x : τ1)→ τ2) ⊆ dom(Γ)
WF-TY-FUNC

Γ; ∆ ` ((x : τ1)→ τ2)

Figure 3.5: Well-formedness Judgements for Types

For a type to be well-formed, the free variables in the type must be a subset of the
domain of the typing context Γ. This ensures that type is closed under the typing context.

For refined base type (WF-TY-BASE), we use the type system for the simply typed
λ-calculus to ensure that the predicate term M has a boolean type, under the assumption
that the special variable for members ν carries the base type b.

For function type (WF-TY-FUNC), we check whether the argument type τ1 is well-
formed, as well as whether the result type τ2 is well-formed with the assumption that x
has type τ1 in the context. This is necessary, since τ2 may contain the variable x in the
refinement predicate.

WF-CTX-BASE
` ∅;∅

x /∈ dom(Γ) ` Γ; ∆ Γ; ∆ ` τ
WF-CTX-TYPE

` Γ, x : τ; ∆

` Γ; ∆ Γ; ∆ `erase M : bool
WF-CTX-PRED

` Γ; ∆, M

Figure 3.6: Well-formedness Judgements of Context

For contexts to be well-formed, the variable context Γ should only contain well-
formed types, and the predicate context ∆ should contain well-typed boolean terms.
We arrange the typing context in an ordered way such that when new variables are
appended to the context, its type can refer to existing variables in the context. Similarly,
typechecking in context well-formedness uses the type system under erasure.
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(WF-CTX-BASE) provides the base case for well-formedness. Empty contexts are
always well-formed.

(WF-CTX-TYPE) allows the typing context Γ to be extended. A variable with a
well-formed type appended to a well-formed context preserves the well-formedness of
the context. In our formalisation, all variables in the typing context are distinct.

(WF-CTX-PRED) allows the predicate context ∆ to be extended. A boolean term
M, typechecked under erasure in a well-formed context can be extended, with well-
formedness preserved.

3.4.3 Subtyping and Encoding

Subtyping judgements are shown in Figure 3.7, of form:

Γ; ∆ ` τ1 <: τ2

We use a Satisfiability Modulo Theories (SMT) solver to decide the base cases in the
subtyping judgements. We encode terms and typing contexts into a representation in
logic, and then use the solver to check satisfiability of the encoded logical formula. While
subtyping judgements are syntax-directed, the actual subtyping relation is semantics-
driven, determined by the solver.

Valid(JΓK∧ J∆K∧ JM1K =⇒ JM2K)
SUB-BASE

Γ, ∆ ` {ν : b | M1} <: {ν : b | M2}

Γ; ∆ ` σ1 <: τ1 Γ, x : σ1; ∆ ` τ2 <: σ2 SUB-FUNC
Γ, ∆ ` ((x : τ1)→ τ2) <: ((x : σ1)→ σ2)

Figure 3.7: Subtyping Judgements for λH

(SUB-BASE) defines the subtyping relation for base types. Two refined base type
must first have the same base type, then we encode typing context Γ, predicate context
∆ and refinements M1, M2 to form a logical formula:

JΓK∧ J∆K∧ JM1K =⇒ JM2K

We explain encoding later in this section. The formula is dispatched into a solver to
check for validity. This gives rise to a semantically driven subtyping relation, where
a type is a subtype of another, if the refinement for latter always holds whenever the
refinement holds for the former [6].

(SUB-FUNC) defines subtyping relation for function types. We define subtyping for
function types inductively, contravariant on the argument type and covariant on the
result type.

We use an encoding for terms into SMT logic to decide subtyping relations. We define
encoding of terms M, typing context Γ, and predicate context ∆ in Definition 3.4.1.
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Definition 3.4.1 (Encoding). Encoding of terms JMK is defined as:

JxK = x

JcK = cl

Jλx.MK = fi

JM1M2K = JM1K(JM2K)

JM : τK = JMK

Jif M1 then M2 else M3K = (JM1K =⇒ JM2K) ∧ (¬JM1K =⇒ JM3K)

Encoding of typing context JΓK is defined as:

J∅K = > JΓ, x : {ν : b | M}K = JΓK∧ JM[x/ν]K JΓ, x : ((y : τ1)→ τ2)K = JΓK

Encoding of predicate context J∆K is defined as:

J∅K = > J∆, MK = J∆K∧ JMK

where cl is the correspondent constant in the logic, fi is a fresh uninterpreted function.

We encode the variables in λH into the variables in the SMT logic, as well as constants.
We use a theory with booleans and integers, so that we can use boolean and integer
constants in the logic, as well as the usual operators. Therefore, we encode all the
constants in λH into corresponding literals or function in SMT.

For abstractions, we do not reflect the definition into the logic, instead we use
uninterpreted function symbols without definition. This allows basic facts about function
to be expressed in the logic, such as x = y =⇒ f x = f y for a function f , but no extra
information is available about the function f itself.

Function applications are encoded as function applications in the SMT logic. Type-
annotated terms are encoded as if the term were not annotated. Conditional expressions
are encoded as the conjunction of two implications, representing the two possible
branches.

For typing contexts, we encode refined base types in Γ into a formula involving the
refinement attached in the type. The special variable ν, representing members of the
type, is substituted to the variable with that type in the typing context Γ. This allows
the refinement to be correctly attached the variable at encoding. Variables carrying a
function type in the typing contexts are ignored in this current setup.

Since the predicate context ∆ consists of zero or more terms, we simply encode the
terms in the predicate context one by one.

We show that the subtyping relation is reflexive and transitive.

Theorem 3.4.2. Subtyping is reflexive. Γ; ∆ ` τ <: τ

Proof. By induction on structure of τ.

1. τ = {ν : b | M}
It is straightforward to show that JΓK ∧ J∆K ∧ JMK =⇒ JMK is valid. By (SUB-
BASE), we have Γ; ∆ ` {ν : b | M} <: {ν : b | M}, as required.
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2. τ = (x : τ1)→ τ2

By inductive hypothesis.

Theorem 3.4.3. Subtyping is transitive. If Γ; ∆ ` τ <: σ and Γ; ∆ ` σ <: ρ, then Γ; ∆ ` τ <:
ρ

Proof. We notice first that there is no derivation for Γ; ∆ ` {ν : b | M} <: (x : τ1)→ τ2,
nor Γ; ∆ ` (x : τ1)→ τ2 <: {ν : b | M}. Hence τ, σ and ρ are either all refined base types,
or all function types.

1. τ = {ν : b | M1}, σ = {ν : b | M2}, ρ = {ν : b | M3}

From (SUB-BASE), we know that JΓK ∧ J∆K ∧ JM1K =⇒ JM2K, and that JΓK ∧
J∆K∧ JM2K =⇒ JM3K are both valid.

We show that JΓK∧ J∆K∧ JM1K =⇒ JM3K is valid.

1. JΓK∧ J∆K∧ JM1K =⇒ JM2K premise

2. JΓK∧ J∆K∧ JM2K =⇒ JM3K premise

3. JΓK∧ J∆K∧ JM1K assumption

4. JM2K =⇒ E(1, 3)

5. JΓK∧ J∆K ∧E1(3)

6. JΓK∧ J∆K∧ JM2K ∧I(5, 4)

7. JM3K =⇒ E(2, 6)

8. JΓK∧ J∆K∧ JM1K =⇒ JM3K =⇒ I(3, 8)

By (SUB-BASE), we have Γ; ∆ ` {ν : b | M1} <: {ν : b | M3}, as required.

2. τ = (x : τ1)→ τ2, σ = (x : σ1)→ σ2, ρ = (x : ρ1)→ ρ2

By inductive hypothesis.

3.4.4 Typing under Erasure

Well-typed terms in λH are well-typed in the simply typed λ-calculus under erasure,
as presented in Theorem 3.4.4. Practically, this means an implementation can typecheck
terms in λH, and then erase all the refinements and use the underlying type system of
the simply typed λ-calculus, so that no runtime information about refinements need to
be kept.

Theorem 3.4.4 (Typeable under Erasure). If Γ; ∆ ` M ⇒ τ or Γ; ∆ ` M ⇐ τ, then
Γ; ∆ `erase M : τ.

40



Proof. By mutual induction on the derivation of Γ; ∆ ` M⇒ τ and Γ; ∆ ` M⇐ τ.

1. Γ; ∆ ` x ⇒ {ν : b | M} (TY-VAR-BASE)

From (TY-VAR-BASE), we have Γ = Γ1, x : {ν : b | M′}, Γ2 for some Γ1, Γ2, M′.

By definition, we have erase(Γ) = erase(Γ1) , x : b, erase(Γ2); and erase({ν : b | M}) =
b, as required.

Hence, we have erase(Γ1) , x : b, erase(Γ2) ` x : b.

2. Γ; ∆ ` x ⇒ (y : τ1)→ τ2 (TY-VAR-FUNC)

From (TY-VAR-BASE), we have Γ = Γ1, x : (y : τ1 → τ2), Γ2 for some Γ1, Γ2, τ1, τ2.

By definition , we have erase(Γ) = erase(Γ1) , x : (erase(τ1)→ erase(τ2)), erase(Γ2);
and erase((y : τ1)→ τ2) = erase(τ1)→ erase(τ2).

Hence, we have erase(Γ1) , x : (erase(τ1)→ erase(τ2)), erase(Γ2) ` x : (erase(τ1)→
erase(τ2)), as required.

3. Γ; ∆ ` c⇒ Ty(c) (TY-CONST)

The constants are typeable under erasure with their erased types.

4. Γ; ∆ ` M1M2 ⇒ τ (TY-APP)

From (TY-APP), we have Γ; ∆ ` M1 ⇒ (x : τ1)→ τ2 and Γ; ∆ ` M2 ⇐ τ1.

By inductive hypothesis, we have Γ; ∆ `erase M1 : (x : τ1) → τ2, i.e. erase(Γ) `
erase(M1) : erase(τ1) → erase(τ2); and that Γ; ∆ `erase M2 : τ1, i.e. erase(Γ) `
erase(M2) : erase(τ1).

Hence we have erase(Γ) ` erase(M1) erase(M2) : erase(τ2), i.e. erase(Γ) `
erase(M1M2) : erase(τ2) as required.

5. Γ; ∆ ` (M : τ)⇒ τ (TY-ANNO)

By (TY-ANNO), we have Γ; ∆ ` M⇐ τ.

By inductive hypothesis, we have Γ; ∆ `erase M : τ.

Since erase(M : τ) = erase(M), we have Γ; ∆ `erase (M : τ) : τ.

6. Γ; ∆ ` (λx.M)⇐ (x : τ1)→ τ2 (TY-ABS)

By (TY-ABS), we have Γ, x : τ1; ∆ ` M⇐ τ2.

By inductive hypothesis, we have Γ, x : τ1 `erase M : τ2, i.e. erase(Γ) , x :
erase(τ1) ` erase(M) : erase(τ2).

We have erase(Γ) ` λx. erase(M) : erase(τ1)→ erase(τ2). Since erase(x : τ1 → τ2) =

erase(τ1) → erase(τ2), and erase(λx.M) = λx. erase(M), we have Γ; ∆ `erase

λx.M⇐ (x : τ1)→ τ2.

7. Γ; ∆ ` if M1 then M2 else M3 ⇐ τ (TY-COND)

By (TY-COND), we have Γ; ∆ ` M1 ⇐ bool and Γ; ∆, M1 ` M2 ⇐ τ and
Γ; ∆,not M2 ` M3 ⇐ τ.
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By inductive hypothesis, we have Γ; ∆ `erase M1 : bool, i.e. erase(Γ) ` erase(M1) :
bool.

Similarly, We have Γ; ∆, M2 `erase M2 : τ, i.e. erase(Γ) ` erase(M2) : erase(τ);
and Γ; ∆, M2 `erase M2 : τ, i.e. erase(Γ) ` erase(M2) : erase(τ). We notice typing
under erasure does not depend on the predicate context ∆.

Hence we have erase(Γ) ` if erase(M1) then erase(M2) else erase(M3) :
erase(τ), i.e. Γ; ∆ `erase if M1 then M2 else M3 ⇐ τ.

8. Γ; ∆ ` M⇐ τ (TY-SUB)

By (TY-SUB), we have Γ; ∆ ` M⇒ σ and Γ; ∆ ` σ <: τ.

By inductive hypothesis, we have Γ; ∆ `erase M : σ.

By Lemma B.1.1, we have erase(τ) = erase(σ).

Hence we have Γ; ∆ `erase M : τ, as required.

3.5 Type Safety

We prove the type safety theorems of λH in this section. Type safety is best known
by the slogan “Well-typed programs cannot go wrong” [32]. We present the main
theorems, preservation in Theorem 3.5.3 and progress in Theorem 3.5.5. We include
lemmas and their proofs in Appendix B.1. Preservation theorem states that type for
terms are preserved under reduction. Progress theorem states that well-typed terms are
either values or can further reduce. Combined together, we achieve type safety, that if a
term is well-typed, it cannot reach a stuck state where the term is not a value and cannot
reduce.

Lemma 3.5.1 (Substitution (Synthesis)). Suppose Γ, Γ′; ∆ ` M⇒ τ.

1. If Γ, x : τ, Γ′; ∆ ` N ⇒ σ, then Γ, Γ′[M/x]; ∆[M/x] ` N[M/x]⇒ σ[M/x]

2. If Γ, x : τ, Γ′; ∆ ` N ⇐ σ, then Γ, Γ′[M/x]; ∆[M/x] ` N[M/x]⇐ σ[M/x]

Proof. By simultaneous induction on typing derivations Γ, x : τ, Γ′; ∆ ` N ⇒ σ and
Γ, x : τ, Γ′; ∆ ` N ⇐ σ.

1. Γ, x : τ, Γ′; ∆ ` y⇒ σ (TY-VAR-BASE), (TY-VAR-FUNC)

When x = y, y[M/x] = M. From (TY-VAR), it must have been the case that τ = σ.
We then show that Γ, Γ′[M/x] ` M⇒ σ[M/x] in Lemma B.1.12.

When x 6= y, y[M/x] = y. We show that Γ, Γ′[M/x] ` y⇒ σ[M/x] in Lemma B.1.8.
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2. Γ, x : τ, Γ′; ∆ ` c⇒ σ (TY-CONST)

We assume that the typing for constants does not depend on the typing context,
and the types for constants contains no free variables for substitution. Hence we
are left to show Γ, Γ′[M/x]; ∆[M/x] ` c⇒ σ, which is easy by (TY-CONST).

3. Γ, x : τ, Γ′; ∆ ` λy.N′ ⇐ ((y : σ1)→ σ2) (TY-ABS)

From (TY-ABS) we have Γ, x : τ, Γ′, y : σ1; ∆ ` N′ ⇐ σ2 and Γ, x : τ, Γ′; ∆ ` ((y :
σ1)→ σ2).

From inductive hypothesis, we have Γ, Γ′[M/x], y : σ1[M/x]; ∆[M/x] ` N′[M/x]⇐
σ2[M/x].

By Lemma B.1.9, we have Γ, Γ′[M/x]; ∆[M/x] ` ((y : σ1)→ σ2)[M/x]. Note that
((y : σ1)→ σ2)[M/x] = ((y : σ1[M/x])→ σ2[M/x]).

We apply (TY-ABS) and obtain Γ, Γ′[M/x]; ∆[M/x] ` N′[M/x] ⇐ ((y : σ1) →
σ2)[M/x], as required.

4. Γ, x : τ, Γ′; ∆ ` N1N2 ⇒ σ (TY-APP)

From (TY-APP) we have Γ, x : τ, Γ′; ∆ ` N1 ⇒ ((y : σ1)→ σ2) and Γ, x : τ, Γ′; ∆ `
N2 ⇐ σ1 for some σ1 and σ2 with σ2[M2/x] = σ. Note that here y is fresh.

From inductive hypothesis, we have Γ, Γ′[M/x]; ∆[M/x] ` N1[M/x] ⇒ ((y :
σ1)→ σ2)[M/x] and Γ, Γ′[M/x]; ∆[M/x] ` N2[M/x]⇐ σ1[M/x].

Note that ((y : σ1) → σ2)[M/x] = ((y : σ1[M/x]) → σ2[M/x]), hence we can
apply both rules to (TY-APP) and obtain Γ, Γ′[M/x]; ∆[M/x] ` N1N2 ⇒ σ2[M/x].
Since σ2[M/x] = σ, we have shown the goal.

5. Γ, x : τ, Γ′; ∆ ` if N1 then N2 else N3 ⇐ σ (TY-COND)

By inductive hypothesis and Lemma B.1.9.

6. Γ, x : τ, Γ′; ∆ ` (N′ : σ)⇒ σ (TY-ANNO)

By inductive hypothesis.

7. Γ, x : τ, Γ; ∆ ` N ⇐ σ (TY-SUB)

By inductive hypothesis, Lemma B.1.9 and Lemma B.1.11.

Corollary 3.5.2 (Substitution (Typechecking)). Suppose Γ, Γ′; ∆ ` M⇐ τ.

1. If Γ, x : τ, Γ′; ∆ ` N ⇒ σ, then Γ, Γ′[M : τ/x]; ∆[M : τ/x] ` N[M : τ/x] ⇒ σ[M :
τ/x]

2. If Γ, x : τ, Γ′; ∆ ` N ⇐ σ, then Γ, Γ′[M : τ/x]; ∆[M : τ/x] ` N[M : τ/x] ⇐ σ[M :
τ/x]
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Proof. By (TY-ANNO), we have Γ, Γ′; ∆ ` (M : τ) ⇒ τ, the results follow from
Lemma 3.5.1.

Theorem 3.5.3 (Preservation). Suppose M→ M′.

1. If Γ; ∆ ` M⇒ τ, then Γ; ∆ ` M′ ⇒ τ

2. If Γ; ∆ ` M⇐ τ, then Γ; ∆ ` M′ ⇐ τ

Proof. By induction on the reduction relation M→ M′.

1. (λx.M1 : ((x : τ1)→ τ2))v2 → M1[v2 : τ1/x] : τ2[v2 : τ1/x] (RED-APP-ANNO)

Without loss of generality, we let x be fresh in Γ; ∆.

• Suppose Γ; ∆ ` (λx.M1 : ((x : τ1) → τ2))v2 ⇒ τ, we show that Γ; ∆ `
(M1[v2 : τ1/x] : τ2[v2 : τ1/x])⇒ τ.

From the rule (TY-APP), we have Γ; ∆ ` (λx.M1 : ((x : τ1) → τ2)) ⇒ ((x :
τ1)→ τ2), and Γ, x : τ1; ∆ ` v2 ⇐ τ1 and τ = τ2[v2 : τ1/x].

From the rule (TY-ANNO), we have Γ; ∆ ` λx.M1 ⇐ ((x : τ1)→ τ2).

From the rule (TY-ABS), we have Γ, x : τ1; ∆ ` M1 ⇐ τ2.

By Corollary 3.5.2, we have Γ; ∆[v2 : τ1/x] ` M1[v2 : τ1/x] ⇐ τ2[v2 : τ1/x].
Since x is fresh in Γ; ∆, we have ∆[v2 : τ1/x] = ∆.

By (TY-ANNO), we have Γ; ∆ ` (M1[v2 : τ1/x] : τ2[v2 : τ1/x]) ⇒ τ2[v2 :
τ1/x]. Note that τ = τ2[v2 : τ1/x], so we have Γ; ∆ ` M1[v2 : τ1/x] : τ2[v2 :
τ1/x]⇒ τ, as required.

• Suppose Γ; ∆ ` (λx.M1 : ((x : τ1) → τ2))v2 ⇐ τ, we show that Γ; ∆ `
(M1[v2 : τ1/x] : τ2[v2 : τ1/x])⇐ τ.

From (TY-SUB), we have Γ; ∆ ` (λx.M1 : ((x : τ1)→ τ2))⇒ σ, and Γ; ∆ ` τ

and Γ; ∆ ` σ <: τ, for some type σ.

By applying the result from the previous part, we have Γ; ∆ ` (M1[v2 : τ1/x] :
τ2[v2 : τ1/x])⇒ σ.

By (TY-SUB), we have Γ; ∆ ` (M1[v2 : τ1/x] : τ2[v2 : τ1/x])⇐ τ, as required.

2. if true then M2 else M3 → M2 (RED-IF-TRUE)

• There is no derivation for Γ; ∆ ` if true then M2 else M3 ⇒ τ.

• Suppose Γ; ∆ ` if true then M2 else M3 ⇐ τ, we show that Γ; ∆ `
M2 ⇐ τ.

From (TY-COND), we have Γ; ∆,true ` M2 ⇐ τ. We know that J∆,trueK =
J∆K ∧ >, hence we have J∆K =⇒ J∆,trueK. By Lemma B.1.16, we have
Γ; ∆ ` M2 ⇐ τ.

3. if false then M2 else M3 → M3 (RED-IF-FALSE)

Similar to the case of (RED-IF-TRUE), except that we have not false for the
truthy value instead of true.
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4. If M→ M′, then C[M]→ C[M′] (RED-CTX)

By inductive hypothesis.

Corollary 3.5.4 (Preservation (Multistep)). Suppose M→∗ M′.

1. If Γ; ∆ ` M⇒ τ, then Γ; ∆ ` M′ ⇒ τ

2. If Γ; ∆ ` M⇐ τ, then Γ; ∆ ` M′ ⇐ τ

Proof. If M = M′ (reflexive case), the conclusion holds trivially.

If M→ M′ (single step case), the conclusion holds by Theorem 3.5.3.

If M→ M′′ and M′′ →∗ M′ (transitive case), the conlusion holds by Theorem 3.5.3
and inductive hypothesis.

Theorem 3.5.5 (Progress). If ∅;∅ ` M⇒ τ or ∅;∅ ` M⇐ τ, then either M is a value, or
there exists M′ such that M→ M′.

Proof. By mutual induction on the derivation of ∅;∅ ` M⇒ τ and ∅;∅ ` M⇐ τ.

1. (TY-VAR-BASE), (TY-VAR-FUNC)

There is no derivation of such rules, since typing context Γ is empty.

2. ∅;∅ ` c⇒ τ (TY-CONST)

c is a value.

3. ∅;∅ ` M1M2 ⇒ τ (TY-APP)

By (TY-APP), we have ∅;∅ ` M1 ⇒ (x : τ1)→ τ2 and ∅;∅ ` M2 ⇐ τ1 for some
τ1 and τ2 such that τ2[M1/x] = τ.

By inductive hypothesis, we have that M1 is either a value v1 or there exists M′1
such that M1 → M′1.

• By inductive hypothesis, we have that M2 is either a value v2 or there exists
M′2 such that M2 → M′2.

– We have value v1 such that ∅;∅ ` v1 ⇒ (x : τ1)→ τ2. By inversion, we
know that v1 = λx.M : (x : τ1) → τ2 for some term M. By (RED-APP-
ANNO), we have (λx.M1 : ((x : τ1) → τ2))v2 → M1[v2 : τ1/x] : τ2[v2 :
τ1/x].

– By (RED-CTX), we have v1M2 → v1M′2.

• By (RED-CTX), we have M1M2 → M′1M2.
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4. ∅;∅ ` (M : τ)⇒ τ (TY-ANNO)

From (TY-ANNO), we have ∅;∅ ` M⇐ τ.

By inductive hypothesis, we have that either M is a value v or there exists M′ such
that M→ M′.

• v : τ is a value.

• By (RED-CTX), we have (M : τ)→ (M′ : τ).

5. ∅;∅ ` λx.M⇐ τ (TY-ABS)

λx.M is a value.

6. ∅;∅ ` if M1 then M2 else M3 ⇐ τ (TY-COND)

From (TY-COND), we have ∅;∅ ` M1 ⇐ bool.

By inductive hypothesis, we have M1 is either a value v1, or there exists M′1 such
that M1 → M′1.

• By inversion, we have v1 = true or v1 = false.

– v1 = true
By (RED-IF-TRUE), we have if true then M2 else M3 → M2.

– v1 = false
By (RED-IF-FALSE), we have if false then M2 else M3 → M3.

• By (RED-CTX),
we have if M1 then M2 else M3 → if M′1 then M2 else M3.

7. ∅;∅ ` M⇐ τ (TY-SUB)

By (TY-SUB), we have ∅;∅ ` M⇒ σ for some σ.

By inductive hypothesis, M is either a value v or there exists M′ such that M→ M′.

Based on the type safety results, we finally prove a theorem relating well-typed terms
and their refinement types. In this theorem, we show that a term carrying a refinement
type respects the predicate in the refinement, if the term reduces to a value. This makes
the connection between the terms and their refinement types, showing the validity of
predicates in our type system.

Theorem 3.5.6 (Predicate Validity). If ∅;∅ ` M ⇐ {ν : b | N} and M →∗ v, then
JNK[v/ν] is valid.

Proof. By Corollary 3.5.4, we have ∅;∅ ` v⇐ {ν : b | N}.
By inversion of values, we have that v is a constant literal of base type b. Therefore,

by (TY-CONST), we have ∅;∅ ` v⇒ {ν : b | ν = v}.
From (TY-SUB), we have that ∅;∅ ` {ν : b | ν = v} <: {ν : b | N}.
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From (SUB-BASE), we have that the following formula is valid:

J∅K∧ J∅K∧ Jν = vK =⇒ JNK

Note that J∅K = >, we simplify the formula to:

Jν = vK =⇒ JNK

By substitution, we have JNK[v/ν] is valid.
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Chapter 4

FLUIDTYPES: A Type System
Implementation of λH

In this chapter, we present FLUIDTYPES, an F# library that extends the F# type system
with refinement types. In refinement types, we allow base types to be refined by boolean
predicates. Refinement types can be annotated explicitly in F# source codes and can
be checked by the typechecker extension we develop. We explain the implementation
details and justify design choices in this chapter.

FLUIDTYPES works stand alone, allowing programmers to use the library for refine-
ment types in their code; but in combination with our code generator for protocols with
refinements, we can verify their implementation by static typechecking. We discuss the
details in Chapter 5.

This part of the project is open source and the source code is publicly available at
https://github.com/fangyi-zhou/FluidTypes under the MIT license.

The library is structured as three modules, corresponding to three major functionalit-
ies:

• Refinements: A typechecker for λH

• Extractions: For the extraction of F# programs into terms in λH

• Annotations: For ways to annotations to express refinements in source code

In order to support a wide range of language features of F#, the core calculus of λH

is extended with a few practical extension, including type aliases, record types, and
enumerations.

We explain implementation details of Refinements in Section 4.1, Extractions
in Section 4.2, Annotations in Section 4.3, and type system extensions in Section 4.4.

4.1 Implementation of λH Type System

In Section 3.4, we formalised the type system for λH. he typing judgements are
presented in a bidirectional style, which has the benefit of being syntactic-directed. The
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implementation of type system can hence be constructed in a straightforward fashion.

4.1.1 Data Type Definitions

We use mutually recursive algebraic data types to represent the terms M and types τ

in λH , since a term can contain a type (for type-annotated terms (M : τ)) and a type can
contain a term (for refined base types {ν : b | M}).

For typing contexts Γ, we use a mapping from variable to types. In the definition,
entries in the typing context are ordered. From the well-formedness judgements of
contexts, a typing context is only well-formed when there exists an sequence of variables,
such that for any variable in the sequence, the type for that variable in the context
may only contain free variables occurring earlier in the sequence, and must not contain
free variables occuring later in that sequence. This means a typing context such as
x : {ν : int | ν = y}, y : {ν : int | ν = x},∅ is not well-formed.

Practically, the ordering in the typing context can be ignored safely. The well-
formedness property of the typing context is only affected when a new entry is added to
the typing context. When an entry is added, no free variable other than those already
in the typing context can occur in the type of that entry. Once this property is checked
when new entry is added, the well-formedness of the typing context is preserved. On
the other hand, we always start with an empty context at the beginning, and an empty
context is always well-formed. Instead of using a list data structure and keeping the
ordering of variables in the typing context, we can ignore the ordering by using a map
data structure.

4.1.2 Main Typing Judgements

The main typing judgements are the type synthesis judgement (Γ; ∆ ` M⇒ τ) and
type checking (Γ; ∆ ` M⇐ τ) judgement, in Figure 3.4. They are defined as mutually
recursive functions with the signatures as shown in Figure 4.1.

1 val infer_type: Ctx → Term → Ty option
2 val check_type: Ctx → Term → Ty → bool

Figure 4.1: Function Signatures of Main Typing Judgements

In the type signature, Ctx stands for the typing context and the predicate context
(Γ; ∆), Term is the type for term M, and Ty is the type for type τ. The type inference
function returns an option type, where a value present corresponds to the cases where a
type can be synthesised, and absent otherwise. In cases when a type cannot be inferred,
we report an error to the user. The type check function returns a boolean value indicating
whether the given term admits the given type.

Algorithm 1 shows the implementation of main typing judgements. Details on
how other judgements and definitions are implemented are not shown, for instance,
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let rec infer_type (Γ; ∆) M =
match M with

| x when x ∈ Γ→
match Γ(x) with

| {ν : b | _} → Some {ν : b | ν = x}
| (x : τ1)→ τ2 → Some (x : τ1)→ τ2

| x→ None
| c→ Some Ty(c)
| M1M2 →

match infer_type (Γ; ∆) M1 with
| Some ((x : τ1)→ τ2)→

if check_type (Γ; ∆) M2 τ1 then Some τ2[M2/x]
else None

| None→ None
| (M : τ)→

if check_type (Γ; ∆) M τ then Some τ

else None
| _→ None

and check_type (Γ; ∆) M τ =
if is_type_wellformed (Γ; ∆) τ then

match M with
| λx.M→

match τ with
| (x : τ1)→ τ2 → check_type (Γ, x : τ1; ∆) M τ2

| _→ false
| if M1 then M2 else M3 →

check_type (Γ; ∆) M1 bool
&& check_type (Γ; ∆, M1) M2 τ

&& check_type (Γ; ∆,not M1) M3 τ

| M→
match infer_type (Γ; ∆) M with

| Some σ→ is_subtype (Γ; ∆) σ τ

| None→ false
else false

Algorithm 1: Type inference and checking algorithm

51



substitution of terms and well-formedness of types, since these definitions or judge-
ments can be similarly implemented in a straightforward way. In the algorithm shown,
is_type_wellformed (Γ; ∆) τ stands for the type well-formedness judgement Γ; ∆ ` τ and
is_subtype (Γ; ∆) τ1 τ2 stands for the subtyping judgement Γ; ∆ ` τ1 <: τ2.

The benefit of bidirectional typing judgements is evident, as they easily convert to
algorithms. Since the recursive invocation of the typing functions are on structurally
smaller terms M, the algorithm terminates, provided that the terms are finite themselves.
(F# is strict and we do not define infinite data structures).

We do not go into implementation details of well-formness judgements of types and
typing judgements under erasure here, since they can be converted into algorithms in
similar ways. Curious readers may refer to the implementation file src/Refinement-
s/Typing.fs for more details.

4.1.3 Subtyping Judgements and SMT Encodings

Another core component of the type system is the subtyping judgement. This is
decided by an external solver. We produce standarised SMT-LIB scripts [2] for SMT
queries to decide subtyping. This allows us to use different SMT solvers supporting the
standard. In this implementation, we use the SMT solver Z3 [10].

We recall that the base case of the subtyping judgement is as follows:

Valid(JΓK∧ J∆K∧ JM1K =⇒ JM2K)
SUB-BASE

Γ, ∆ ` {ν : b | M1} <: {ν : b | M2}

SMT solvers are able to check whether a conjunction of formulas are satisfiable. We
formalised the subtyping judgement with logical formulas in validity form. So we need
to use the equivalent satisfiability form of the formula. That is to say, the formula for the
SMT solver to decide is:

JΓK∧ J∆K∧ JM1K∧ ¬JM2K (†)

We produce a SMT-LIB script for each subtyping check. This script consists of
variable declarations, assertions and a command according to the standard. The script
is dispatched to Z3, but the end user is able to use their favourite solver, as long as it
support the standard.

For variable declarations, we define variables and their sorts in our logical formula.
We map λH base types into appropriate logical sorts. We use a theory with integers and
booleans in our setup, and declare Int and Bool sorts for variables carrying integer and
boolean base types in λH respectively. Using declare-const command, we declare
variables involved in the formula, i.e. variables in the current typing context Γ and the
special variable ν representing the value of the refinement type.

For assertions, we encode Equation (†) into SMT assertions using assert command.
Since there is no encoding for function values and function applications other than those
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defined as constants, we call these terms unencodable and we use a conservative approach
to approximate them, ensuring soundness at the cost of completeness.

In the end of the script, we use check-sat command to instruct the solver to check
for satisfiability of the formula. If the solver decides that the formula is not satisfiable
(i.e. UNSAT), then the subtyping judgement holds. Otherwise, we can query the SMT
solver for an example of the assignment to the variables, and use the example for error
messages later.

When an unencodable term appears in Γ, ∆ or M1, we ignore the unencodable
term. If the formula without the unencodable term were unsatisfiable, then the formula
with that ignored term encoded must also be unsatisfiable, since the latter formula
is weaker than the former. When an unencodable term appears in M2, we directly
come to the conclusion that subtyping judgement does not hold. The approach leads to
incompleteness, since we are not able some subtype judgements when they hold due to
approximation, e.g.

f : (x : int)→ int, z : int;∅ ` {ν : int | f z = 0} <: {ν : int | f z ≥ 0}

4.1.4 Summary

We described the Refinements module of FLUIDTYPES, which implements typing
judgements of λH . We use a sound approximation of the encoding of λH terms into SMT
formulas for deciding subtyping judgements.

For future work, it is worth investigating how to encode abstractions and function
applications. In Definition 3.4.1, we use uninterpreted function symbols to encode
abstractions. Practically, SMT-LIB has support for functions. We can declare functions in
SMT-LIB with different arities with builtin sorts for integers and booleans. However,
application of functions cannot be partial in SMT-LIB.

In addition, it is interesting to investigate how function types in the typing context
can be encoded. Despite definition being absent, a function type can be encoded as
a first logic formula with universal quantifiers. For example, a function f with type
(x : {ν : int | ν > 0})→ {ν : int | ν ≤ x} can produce the term ∀x : Int.(x > 0) =⇒
( f x ≤ x), which establishes the pre- and post-conditions of the function.

In SMT-LIB, integers are unbounded mathematical integers. In F#, integers are
bounded and has wrap around behaviour when overflowing. The discrepancy of integer
behaviour in SMT-LIB and F# can be addressed by addressed by using bit vectors instead
of integers in SMT-LIB to represent integers.

In our current implementation, we do not optimise queries to the SMT solver. We
may be able to handle small programs in our examples, but this may impose scalability
issues for large use cases. As future work, we can deploy optimisation techniques on
SMT queries, for example those used by other verification tools [8].
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4.2 From F# Expression to λH Terms

In order to use the type system for λH , we first convert the F# code to λH terms, and
then use the typechecker for λH for validation. We call this process of converting F#
code to λH Extraction.

To start the process, it is necessary to access the abstract syntax tree of the source
code. To achieve so, we use the F# Compiler Services (hereafter FSC) [13]. The FSC
library is derived the F# compiler to provide developers with tools for working on the
source code for F#, with identical behaviour to the actual F# compiler. In particular, it
provides a representation of the typed F# abstract syntax tree (AST), which enables this
work.

F# code is usually organised into a project, which often consists of a number of source
files and possibly some external dependencies. We use project files as inputs to our
library. We use the library dotnet-proj-info to analyse the project file and convert
it to a form acceptable by FSC. FSC runs a typechecking pass with the F# type system
and returns a typed AST of the source code for us to use. If there are type errors in the
source code, our library terminates and reports these errors, since FLUIDTYPES always
expects a well-typed program udner the F# type system.

Once the typed AST is obtained, we traverse the AST and follow a syntactic approach
to convert the terms and types in the AST. For each project, the AST node consists of a
list of files, where each file contains a list of definitions. The definitions are the focus of
extraction, as the definitions, along with their types will be extracted.

4.2.1 Handling Expressions and Types

Expressions in the AST have type FSharpExpr and types have type FSharpType.
Instead of being defined as a union type with a given number of cases to match against,
the two data types are defined abstract, meaning the internals are not exposed, but FSC
provides a number of active patterns for matching different syntactic constructs of F#
programs. Active pattern is a language feature of F# that allows patterns to be defined
and used in match expressions. We use mutually recursive functions to extract the F#
types and expressions into λH terms and types, by pattern matching and then converting
correspondent constructs in F# to λH.

Since F# has a wider range of language features and constructs than λH, we handle
this issue in two ways. We implement extensions to the λH and its type system, and
describe the extension in Section 4.4. For the rest of unsupported constructs, we define a
special kind of terms UnknownTerm and similarly UnknownType for types. Unknown-
Type is a type that is not supported in λH, and carries a string representation of the F#
type. UnknownTerm similarly carries a string representation of the F# term, but also a
type, which is extracted from the F# type. The type attached to an unknown term will
be the type of the term in the type system. Refinement type annotation is not permitted
in the case, since there is no way to check. These types and terms are treated as abstract,
and we do not model any behaviour of them.
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4.2.2 Summary

We described the Extraction module of FLUIDTYPES, responsible to converting
F# expressions into λH terms. We convert common functional programming constructs
(variable, function application, abstractions, conditional expressions, etc.) in F# into
λH terms. While not all expressions are extractable, we handle these expressions in a
graceful way. Later in Section 4.4, we introduce several extensions to the core features of
the type system.

4.3 Annotations for Refinement Types

Our FLUIDTYPES library can extract terms and type information from F# code, which
we discussed in Section 4.2. However, it would not be too interesting if there is no way
to express type refinements, as all extracted types will have refinement true attached
instead of any meaningful refinement types. We discuss the interface to interact with
refinement types in the source code in this section.

The annotations are a crucial part of the library, since they form the interface for
interacting with developers. We propose several approaches in this section. We first
describe the chosen approach implemented, then discuss alternative approaches.

4.3.1 Annotation by Custom Attributes

Attribute is a feature in the F# language for attaching metadata [14]. They can be
attached to a number of program constructs, and those metadata can be retrieved at
runtime when necessary. For instance, the attribute marking the entry point of an
executable is known as [<EntryPoint>] and we show an example usage in Figure 4.2.

1 [<EntryPoint>]
2 let main args =
3 Array.iter (printfn "%s") args
4 0

Figure 4.2: Code Snippet of Using an Attribute

Fortunately, it is possible to define custom attributes, so that we can use those
attributes when imported. Moreover, attributes can carry some metadata so that they are
not merely a tag as shown in the previous example. It is possible to attach basic data with
the attributes, such as integers or strings. For instance, one can mark the deprecation of
a function and provide an alternative, such as [<Deprecated("foo")>].

We create a custom attribute Refined so that users can use the attribute to annotate
refinement types for top-level definitions. The extraction process looks for any Refined
attributes in the typed AST and extract refinement types out of the attribute metadata.
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We discuss alternative approaches in Section 4.3.3, including some designs that are
not possible to implement due to restrictions of runtime framework.

4.3.2 String-based Annotation

We use a string representation of the refinement type in the attribute, similar to the
syntax of typed in Figure 3.1. Developers can use a string representation of the desired
refinement type in the source code to annotate the top-level definitions. The string
is then parsed by our typechecker, to an internal representation of λH. The syntax of
refinement type is included in the appendix in Appendix C.1. Since not all terms can be
encoded in SMT, as we previously discussed in Section 4.1.3, we do not support the full
syntax of all λH terms in the syntax of refinement type annotations. In particular, we do
not support abstractions and function applications.

Using this approach, we can annotate a function abs for the absolute value of an
integer as in Figure 4.3. The return type is refined to be non-negative in the signature.

1 [<Refined("(x: int) → {v:int | v>=0}")>]
2 let abs x = if x > 0 then x else -x

Figure 4.3: abs Function with an Annotated Refinement Type

During the extraction process, the typechecker checks whether there exists a re-
finement type annotation. If there exists such an annotation, the annotation is parsed
and checked against the F# type extracted from the typed AST. It is necessary that the
annotated type from the string annotation be compatible to the extracted type from
typed AST. The refinement type, after erasure, must be equal to the type extracted; in
addition, the refinement type must be closed and well-formed, per well-formedness
typing judgement. The term is checked against the annotated refinement type, if there
exists one, or against the extracted unrefined F# type otherwise.

4.3.3 Alternative Designs

In this sub-section, we discuss alternative options of refinement annotation. We
explain the benefits and drawbacks of each approach, and why they are not preferred
over the approach chosen for the implementation.

4.3.3.1 Quotation-based approach

Code Quotation is a language feature of F# that allows a representation of the
expressions of the language to be expressed in the language itself [15]. This provides a
programmatic representation of F# expressions, with possibilities for typechecking.

We recall the refinement for base types is of form {ν : b | M}, where M is a term.
Here is where we can use a quoted expression instead of a string representation. In this
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way, the well-formness of the refinement type can be guaranteed during compilation
time by the F# typechecker, which saves our typechecker from performing typechecks.

The fundamental limitation of the approach is that attributes can only take literal
values for metadata of base types. A quoted expression is unfortunately not among the
supported literal values, so this approach is not feasible.

In addition, the requirement that the quoted expression must be closed may as well
be a limitation. The term M in the refinement type is always closed, since it can contain
the special variable ν along with variables in the typing context. The expressiveness of
refinement types would be limited if only closed terms are permitted.

4.3.3.2 Special Comments

In LIQUIDHASKELL, the refinement type library for Haskell, the annotations are
embedded in comments with a special form. The compiler still recognises the comment
as a regular comment, but the typechecker is able to extract the information in the
comment.

In a similar fashion, we can define a special form of comment for F# and extract in-
formation out of comments instead of using attributes. This approach lifts the restriction
that F# attributes can only be attached to a limited number of program constructs.

The main drawback of this approach is that comments are not available in the typed
AST after typechecking. Comments are usually discarded by compilers during the
construction of the abstract syntax tree from the concrete parse tree, as they may not
contain too much relevant information to later compilation stages after parsing. This
approach is hence not implemented due to the engineering effort required, as it requires
mapping information from the concrete syntax trees to typed abstract syntax trees
manually.

4.3.4 Summary

We described the Annotations module of FLUIDTYPES, responsible for providing
a way to annotate F# terms with refinement types. We discussed several design options
for implementation, with their pros and cons, and implemented a string-based approach
to annotate refinement types using F# attributes.

4.4 Type System Extensions

The core calculus λH does not include many features since the calculus is kept small
and simplistic. In order to express the constraints necessary for typechecking refined
protocols, and to improve the expressiveness of the type system, we implement a number
of extensions and explain their details in this section.
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4.4.1 Type Aliases

The limitations of F# attributes impose constraints on where the annotations can be
added. To address this issue, we allow type aliases to be defined for refinement types,
so values can be annotated in an explicit type annotation where a refinement attribute
cannot be attached.

In particular, let expressions at a non-top-level cannot be annotated. For example,
the code snippet shown in Figure 4.4 is invalid.

1 // error FS0824: Attributes are not permitted on ’let’ bindings
2 // in expressions
3

4 let absAdd x y =
5 let abs x: [<Refined("{v:int | v>=0}")>] int =
6 if x >= 0 then x else -x
7 abs x + abs y

Figure 4.4: Invalid Code Snippet due to a Limitation of F# Attributes

It is possible to attach a refinement type annotation on a type alias definition, so the
type checker can check whether the refinement type is compatible to the aliased type,
and remember the refinement type alias for future usages. For example, one can define
a type alias for non-negative integers as shown in Figure 4.5.

1 [<Refined("{v:int | v>=0}")>]
2 type NonNeg = int

Figure 4.5: Type Alias Definition of Non-negative Integers

With the type alias definition, we can re-write the code in Figure 4.4 in a form that is
accepted by F#, as shown in Figure 4.6.

1 let absAdd x y =
2 let abs (x: int): NonNeg =
3 if x >= 0 then x else -x
4 abs x + abs y

Figure 4.6: Valid Code Snippet Using Type Alias

It is important to notice that type alias definitions are transparent, that is to say, the
F# compiler does not distinguish between two types. We annotate explicit the argument
x to function abs with type int, since F# would otherwise infer that x has type NonNeg,
which may not be the intended type.

For implementation, we use a map to store the mapping between F# types and λH

types. Originally, the map contains entried of builtin base types, such as base types for
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boolean and integer. We add user-defined type aliases into the mapping. The refinement
type annotation must be compatible to the aliased type and be well-formed, otherwise
an error is reported.

4.4.2 Records

Records consist of a number of named fields, with their types explicitly stated in the
type definition. The syntax of defining records is not too different from that in ML. A
simple example is shown in Figure 4.7, where we define a record for a point on a plane.

1 type Point = {
2 x : int;
3 y : int;
4 }

Figure 4.7: An Example Definition of Record Type

In F#, field definitions can carry attributes, so we can utilise this feature to add
refinement annotations to fields, such as in Figure 4.8. We define a record for a point in
the first quadrant, so both the x and y value of the point are positive, as specified by the
refinement type annotation.

1 type PointFirstQuadrant = {
2 [<Refined("{v:int | v>0}")>] x : int;
3 [<Refined("{v:int | v>0}")>] y : int;
4 }

Figure 4.8: An Example Definition of Record Type with Refinement

Moreover, subsequent field declarations can refer to previously defined fields in the
refinement type annotation. In this way, it is possible to specify data dependencies in
records, and this gives us a way to specify a dependent record type in this fashion. We
can encode existential types in our annotated record type. An example is to encode a
type for even numbers, as shown in Figure 4.9, where num is the even number, and half
provides the evidence that the even number is twice of half. With this definition, we
can prove that the sum of two even numbers are even, as shown in Figure 4.10.

1 type EvenNumber = {
2 half : int;
3 [<Refined("{v:int | v=half+half}")>] num : int;
4 }

Figure 4.9: An Example Definition of Record Type with Data Dependency
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1 let evenPlus (x: EvenNumber) (y: EvenNumber): EvenNumber =
2 {
3 half = x.half + y.half
4 num = x.num + y.num
5 }

Figure 4.10: Proving Sum of Two Even Numbers are Even Using Record Type

To check whether a definition of record with refinement is well-formed, we check
the field definitions one by one. We use an empty typing context to begin with, and then
append field variables with their types. The refinement attached on each field definition
must be compatible with their F# type and that the refinement type must be well-formed
under the current typing context. A refinement type may optionally refer to a field that
is defined prior to that field, since the fields defined earlier has entried in the typing
context with their types.

If a user-defined record is well-formed, it is added to a record definition environment.
When a new record of a user-defined type is created, we retrieve the definition from the
environment, and check each field according to the order they are defined. Moreover,
fields form equality predicates that are added to the predicate context. This allows the
data dependencies within a record to be expressed.

For encoding of the records into SMT logic, we currently flatten the records into a
number of variables, which corresponds to the fields. This approach imposes limitations
on the expressiveness, as a record must be bound to a variable, in order for the data
dependencies to be correctly encoded.

Alternatively, SMT logic supports custom data type definitions, which can encode
sum and product data types into the logic. This alternative approach can be implemented
as an extension to this work.

4.4.3 Enumerations

Enumerations, or enums for short, provide a means to assign labels to values. In
F#, the values are limited to integers only. Therefore, during compilation, the enum
values are de-sugared into integer values in the typed AST, except that they carry the
type of the enum instead. We use this feature in FLUIDSESSION to express the branching
behaviour of a protocol.

An example enum definition is shown in Figure 4.11. This enum MyEnum has two
values, Apple with value 1 and Pineapple with value 3.

In FLUIDTYPES, we consider enums as a type alias to unrefined integers. The values
of the enums available in the typed AST are already de-sugared integer values, so they
always typecheck against the unrefined integers. A more precise type for enums is
integers refined to only take the set of possible values as declared in the definition. For
example, MyEnum would be a alias to {ν : int | ν = 1 ∨ ν = 3}, instead of unrefined

60



1 type MyEnum =
2 | Apple = 1
3 | Pineapple = 3

Figure 4.11: An Example Type Definition of Enumeration Type

int. Since it is not possible to construct an integral value outside those mapped to by a
label in F#, we take advantage of this guarantee and safely use the unrefined int type.

4.4.4 Algebraic Data Types

FLUIDTYPES has support for discriminated unions and limited support for tuples.

For discriminated unions, it is possible to add refinement type annotation for each
union case. For example, we can represent integers according to their signs with the
union type defined in Figure 4.12

1 type Number =
2 | [<Refined("{v:int | v>0}")>] Pos of int
3 | [<Refined("{v:int | v=0}")>] Zero of int
4 | [<Refined("{v:int | v<0}")>] Neg of int

Figure 4.12: An Example Type Definition of Discriminated Union with Refinements

For each union case in the union type definition, we generate refinement-aware
function signatures in the typing context for constructors, case testers (which checks
whether a union value matches a given tag) and eliminators. For example, the Pos case
has a constructor of type (v : {ν : int | ν > 0}) → Number, a case testing function of
type Number→ bool, and an eliminator of type Number→ {ν : int | ν > 0}.

In F#, pattern matching does not strictly follow the traditional formalisation of a
match constructs, where each case of the union is provided with a expression to execute
when the tag matches. Instead, the match expression is de-sugared into a series of
conditional expressions with case testers as conditions, and then use eliminators to
obtain the tagged value. Therefore, we can support discriminated unions with λH with
the generated function definitions.

For tuples, the support is very limited. FLUIDTYPES is able to extract tuples used
in F#, but there is no way to specify refinement type annotations on them. This can be
addressed in future work. Despite that tuples with refinements cannot be expressed
now, it is possible to use records to achieve a similar effect.
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Chapter 5

FLUIDSESSION: Towards Statically
Verified Protocol Implementation

In this chapter, we present a way to use FLUIDTYPES to statically verify communica-
tion protocol implementation. We present a code generator in F# to provide APIs with
refinement types for protocols written in the Scribble protocol description language.
Developers can implement the protocol using the provided APIs, and then use FLUID-
TYPES to check statically whether the protocol implementations are correct according
to the refinements. The code generator is publicly available under the MIT License at
https://github.com/fangyi-zhou/ScribbleCodeGen.

5.1 Protocol Specification with Scribble

We use a variant of the Scribble protocol description language, as presented in [36].
This variant allows message payload to be named with variables, and assertions can
then be attached to these messages. Details of the modified Scribble are previously
introduced in Section 2.2.4.

5.2 Obtaining the CFSM from Scribble

As in previous work [36], code generation uses the Scribble toolchain to extract
information about the protocol. Scribble gives a local projection for a given role of a
global protocol in the form of a communicating finite state machine (hereafter CFSM).

We first invoke Scribble to obtain to graph representation of CFSM for the given
role to begin with. Transitions of the CFSM are in the form of communication actions
(i.e. sending or receiving messages to another role). Scribble first validates the well-
formedness of the protocol, and then provides the output in the DOT graph description
language, with communication actions encoded as a string attached to state transitions.
Our code generator parses the graph representation, including the action labels into an
internal representation of CFSM.
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5.3 API Generation

We explain the process of API generation in this section. In prior work [36], APIs are
presented in a way similar to Java APIs, as previously described in Section 2.1.4. This
approach can provide safety guarantees, but only when all the state objects are used in a
linear fashion, which requires careful attention by the developers.

We use an event-based approach of API generation in contrast to the style used
in previous work. We motivate this handler style from the idea originally proposed
by Hu in [25]. This style specifies handlers for send and receive actions, instead of
exposing send and receive APIs to users. When all handlers are specified, the CFSM can
be executed as a deterministic automata, which guarantees linearity by construction.

We use a running example to demonstrate how the API generation works in our
work. To begin with, we use a simple Adder protocol involving two roles, a Server and a
Client, as shown in Figure 5.1, and gradually we evolve the example with more features.

5.3.1 A Straight-line Protocol without Refinements

1 global protocol Adder(role C, role S) {
2 NUM1(x: int) from C to S;
3 NUM2(y: int) from C to S;
4 SUM (z: int) from S to C;
5 }

Figure 5.1: Adder Protocol (without Refinements)

The protocol is quite simple. The client sends two messages to the server, NUM1 and
NUM2 each containing an integer. After that, the server will send back an integer in a SUM
message, for the sum of the two values received from the client. Currently, the protocol
does not have refinements, but we will add refinements in later examples.

We obtain a CFSM from Scribble for role Client, and show it in Figure 5.2. Since there
are no branches or recursions, the CFSM is in a form of a straight line.

We generate a type for each state in the CFSM, which we explain more in Section 5.3.3.
For send actions in transitions, the handlers are functions that take the origin state as an
argument, and return a value with the type of the payload. For example, the handler for
the send transition from state 6 to state 8 has the following type:

1 state6OnsendNUM1 : State6 → int

This handler will be called during execution at state 6. The return value of the
function provides the payload value to send in NUM1 message. After that, the CFSM
progresses to the next state.

For receive actions, the handlers are functions that take the origin state and the
payloads as arguments, and return an unit. For example, the handler for the receive
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S!NUM1(x: int)

S!NUM2(y: int)

S?SUM(z: int)
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7

Figure 5.2: Finite State Machine for Role C for Protocol in Figure 5.1

transition from state 9 to state 7 has the following type:

1 state9OnreceiveSUM : State9 → int → unit

This handler will be called during execution at state 9. The payload value received in
a SUM message is passed as an argument of the handler function. After that, the CFSM
progresses to the next state.

The handlers are gathered in a record, with its type definition shown in Figure 5.3.
Developers only need to provide the handlers to implement the protocol. Once the
handlers are provided, the execution of CFSM is through generated code, so developers
do not need to maintain states manually. We explain how the execution of CFSM works
in Section 5.4.

1 type HandlersC = {
2 state6OnsendNUM1 : State6 → int
3 state8OnsendNUM2 : State8 → int
4 state9OnreceiveSUM : State9 → int → unit
5 }

Figure 5.3: Generated Handler Types for role C for Figure 5.1
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5.3.2 Adding Refinements to Payloads

In the next example, shown in Figure 5.4, we attach refinements to the messages, so
that the integers being exchanged must be non-negative. In Scribble, the assertions are
attached to messages, whereas in refinement types, the refinements are attached to types.
As a consequence, it is necessary to convert the assertion attached to the message, to
refinement types of the payload.

In the current implementation, the payload can carry exactly one value, therefore
attaching refinement to type is trivial. The limitation arises from the absence of support
of algebraic data types in FLUIDTYPES. However, we do not lose generality in this case,
since a message with multiple payloads can be decomposed into a series of messages
with a single payload.

1 global protocol Adder(role C, role S) {
2 NUM1(x: int) from C to S; @"x >= 0"
3 NUM2(y: int) from C to S; @"y >= 0"
4 SUM (z: int) from S to C; @"z >= 0"
5 }

Figure 5.4: Adder Protocol (with Refinements)

The handlers are now annotated with refinement type attributes as described in
Section 4.3. The type definitions of all the handlers are shown in Figure 5.5. We notice
the return type of the send handlers are refined to be non-negative, so the implementation
must provide a function satisfying the refinement. Similarly, the receive handler has
a non-negative in the argument type, so that the argument can carry the non-negative
refinement when being used in the handler definition.

1 type HandlersC = {
2 [<Refined("State6 → {x:int | x>=0}")>]
3 state6OnsendNUM1 : State6 → int
4 [<Refined("State8 → {y:int | y>=0}")>]
5 state8OnsendNUM2 : State8 → int
6 [<Refined("State9 → (z: {z:int | z>=0}) → unit")>]
7 state9OnreceiveSUM : State9 → int → unit
8 }

Figure 5.5: Generated Handler Types for role C for Figure 5.4

5.3.3 Adding Refinements with Non-payload Variables

In the third example, shown in Figure 5.6, we add another refinement to the SUM
message, that the payload must be the sum of the two integers in the previous messages.
Previously in Figure 5.4, all variables in the refinement are those defined in the payload.
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In the new example, the refinement also includes variables that are known by the local
role, but not part of the payload itself. For example, the message SUM has refinement
z = x + y, where x and y are known via previous messages, and z is a payload variable.
Note that Scribble validates that all variables in the refinements are known by the
sending role of the message.

1 global protocol Adder(role C, role S) {
2 NUM1(x: int) from C to S; @"x >= 0"
3 NUM2(y: int) from C to S; @"y >= 0"
4 SUM (z: int) from S to C; @"z >= 0 && z = x + y"
5 }

Figure 5.6: Adder Protocol (with More Refinements)

This means a naive generation, as shown below, would not be valid, since the type is
not well-formed due to unbound variables x and y:

1 [<Refined("State9 → (z: {z:int | z>=0 && z=x+y}) → unit")>]
2 state9OnreceiveSUM : State9 → int → unit

To fix this issue, we need to bind the variables x and y in an appropriate context,
while not breaking validity in the meantime. It is crucial for correctness that these
variables are bound to be the exact values received in previous messages. Therefore, we
need to place the variables x and y in the state type State9.

Therefore, for each state, we generate a record type containing all the variable known
at the state, including their refinements. Fortunately, we are able to express dependencies
between fields, as this is implemented by the FLUIDTYPES record extension (described in
Section 4.4.2). We traverse the CFSM states in a depth-first way, and collect the variables
defined in the payload in the messages and their refinements. The record for State9
contains the variables x and y, as shown in Figure 5.7

1 type State9 = {
2 [<Refined("{x:int | x>=0}")>]
3 x : int
4 [<Refined("{y:int | y>=0}")>]
5 y : int
6 }

Figure 5.7: Generated State Record Definition for State 9

With the state record containing a backlog of previously exchanged messages, the
handler can have access to the necessary variables. These records will be constructed by
the execution function at runtime, We can thus give the following refinement type to the
send handler, with variables x and y bound to the state record type ($ operator is used
for field access in records):
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1 [<Refined(
2 "(st: State9) → (z: {z:int | z>=0 && z=st$x+st$y}) → unit"
3 )>]
4 state9OnreceiveSUM : State9 → int → unit

5.3.4 Adding Branches

In the fourth example, shown in Figure 5.8, we extend server with the ability to
compare the operands of addition. The result of the comparison is identified by the
label of the message sent from the server. GEQ means the first number is greater than or
equal to the second one, LES means otherwise. The refinements attached to GEQ and
LES message ensure that the message are only sent if the correct comparison holds.

1 global protocol Adder(role C, role S) {
2 NUM1 (x: int) from C to S; @"x >= 0"
3 NUM2 (y: int) from C to S; @"y >= 0"
4 choice at S {
5 GEQ (z1: int) from S to C;
6 @"(z1 >= 0 && z1 = x + y) && x >= y"
7 } or {
8 LES (z2: int) from S to C;
9 @"(z2 >= 0 && z2 = x + y) && x < y"

10 }
11 }

Figure 5.8: Adder Protocol (with Branches)

The CFSM for the client changes due to the branching behaviour. We show the new
CFSM in Figure 5.9. Notice that there are two transitions from state 9 to state 7 in the
CFSM, which corresponds to the two branches after the choice.

Recall that we generate handlers for each receive action. In this protocol, the handler
generation follows a similar process. We generate the following types for handlers:

1 [<Refined(
2 "(st: State9)
3 → (z1: {z1:int | z1>=0 && z1=st$x+st$y && st$x>=st$y})
4 → unit"
5 )>]
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S!NUM1(x: int)@x>=0

S!NUM2(y: int)@y>=0

S?GEQ(z1: int)
@z1>=0 && z1=x+y && x>=y

S?LES(z2: int)
@z2>=0 && z2=x+y && x<y

6

8

9

7

Figure 5.9: Finite State Machine for role C for Protocol in Figure 5.8

1 state9OnreceiveGEQ : State9 → int → unit
2 [<Refined(
3 "(st: State9)
4 → (z2: {z2:int | z2>=0 && z2=st$x+st$y && st$x<st$y})
5 → unit"
6 )>]
7 state9OnreceiveLES : State9 → int → unit

The label of the message is received first during the execution at state 9, following
the appropriate payload of the message according to the label. Then, the appropriate
receive handler is invoked, with the received payload. After that, the CFSM progresses
to the next state.

On the other hand, API generation for Server side cannot follow the same approach.
Since there are only two parties in this protocol, the CFSM for S has the same states as
that for C, but the actions of the state transitions are swapped between send actions and
receive actions.
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Following the same approach, we would generate the APIs for transition from state
9 to state 7 as follows:

1 // This API generation is incorrect
2 [<Refined(
3 "(st: State9) → {z1:int | z1>=0 && z1=st$x+st$y && st$x>=st$y}"
4 )>]
5 state9OnsendGEQ : State9 → int
6 [<Refined(
7 "(st: State9) → {z2:int | z2>=0 && z2=st$x+st$y && st$x<st$y}"
8 )>]
9 state9OnsendLES : State9 → int

At state 9, it is not clear which handler should be invoked for the CFSM to progress.
According to the protocol, this is a choice at Server. It is necessary to provide another
handler for selecting which handler to invoke. As a consequence, for a state with
multiple outward send transitions in a CFSM, we generate an enum for each label, and a
handler for selecting which label to progress with when there is a choice. This gives us
the following APIs:

1 type State9Choice =
2 | GEQ = 0
3 | LES = 1
4 state9 : State9 → State9Choice
5 [<Refined(
6 "(st: State9) → {z1:int | z1>=0 && z1=st$x+st$y && st$x>=st$y}"
7 )>]
8 state9OnsendGEQ : State9 → int
9 [<Refined(

10 "(st: State9) → {z2:int | z2>=0 && z2=st$x+st$y && st$x<st$y}"
11 )>]
12 state9OnsendLES : State9 → int

In this style, the handler for state9 is invoked first, where the return value specifies
the label to continue with protocol with. Then, the appropriate send handler is invoked,
where the return value can be communicated as the payload of the message.

However, this approach has drawbacks. Recall the message GEQ has the refinements
z1 ≥ 0, z1 = x + y and x ≥ y, among which the refinement x ≥ y does not involve
the variable of the payload z1. This is a constraint on branching behaviour and such
constraint is not reflected by the refinement type of label selector state9. Furthermore,
we suppose that the label selector is implemented in a way that satisfies the constraints
attached to each label, but the send handler for the label does not take those constraints
into account in state 9. That is to say, the developer may need to perform redundant
checks to satisfy the refinement type system, which is inefficient.

To address this problem, we refine the label selection handler. For each send action,
we split the refinements into two parts, depending on whether the refinement contains
payload variables. We call the part without payload variables path constraints. The
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return type of label selector is refined such that a label can only be selected if the path
constraint for that label is satisfied. Practically, this means the refinement of the label
is a disjunction of refinements for each label, where the refinement for each label is the
conjunction of the path constraints and the selection of label as the return value.

In this example, GEQ has path constraint x ≥ y; LES has path constraint x < y.
Hence the refinement for GEQ label is (choice = 0) && (st$x >= st$y); that for
LES label is (choice = 1) && (st$x < st$y), where st refers to a record of type
State9. Therefore, we have the following refined type for state9 handler.

1 [<Refined(
2 "(st: State9)
3 → {label:int | (label=0 && st$x>=st$y) || (label=1 && st$x<st$y)}"
4 )>]
5 state9 : State9 → State9Choice

For the send handlers, we know that the path constraints must have been satisfied
from the refined label selection handler. Hence the path constraints need to be added to
the record definition of the state. We generate new record definitions for state 9 for each
label with path constraints (here only showing GEQ). Notice that y is refined such that
x ≥ y:

1 type State9_GEQ = {
2 [<Refined("{x:int | x>=0}")>
3 x : int
4 [<Refined("{y:int | y>=0 && x>=y}")>]
5 y : int
6 }

We generate send handlers using the records types with path constraints, as shown
in the following snippet:

1 [<Refined(
2 "(st: State9_GEQ)
3 → {z1:int | z1>=0 && z1=st$x+st$y && st$x>=st$y}"
4 )>]
5 state9OnsendGEQ : State9_GEQ → int

While it may be tedious to use a label section handler first and then handlers for
send actions, it is possible to use one handler for both. This comes at the cost that no
refinement can be expressed in the message. We could generate State9Choice as a
discriminated union with payloads. However, it is not possible in the current setup of
FLUIDTYPES, to express dependencies of the discrimated union with regard to the state.
This could be added if F# provides type families, so we can use a state type to index into
the choice type and establish correct data dependencies.
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5.3.5 Summary

We summarise the generation of handlers in Table 5.1 according the outward trans-
itions of a state.

Action Number Generation

Send
One 1 send handler

Multiple 1 label selector and 1 send handler for each label

Receive Any 1 receive handler for each label

Table 5.1: Handler Generation for a State in CFSM

For each non-terminal state of the CFSM, we create a record to store all variables
known at that state since the initial state, with their refinement types. For states with
multiple outgoing send actions, we find the path constraints for each action, and create
a record with additional path constraints.

5.4 Execution of the CFSM

We outline the code generation procedure for the execution of CFSM. We use a run
function to execute the CFSM and communicate with other roles, after all handlers are
provided by the developer. Due to limited time, this part is currently not implemented
in FLUIDSESSION. However, the limitation that implementations cannot be executed
does not invalidate the result of verification, since verification is done by typechecking
the handlers.

The execution of CFSM takes a record of handlers provided by the developer, and
has three major aspects:

• Perform communication to other roles:

The execution function establishes connections and exchange messages with other
roles. It serialises and de-serialises the payload and transmits the content to other
roles. Therefore, the developers do not need to handle tedious communication
code.

Since all communication are done completely by the execution function, the CFSM
keeps track of the usage of communication channels. In this way, we can ensure
the linearity of the channels easily. This is a major advantage of this style of API
generation.

• Invoke correct handlers according to the current state:

The execution function remembers the current state and invoke appropriate hand-
lers before or after the communication.

72



For single outgoing send actions, the send handler for the appropriate state is
invoked, and the return value from the handler is sent to the receiver role, along
with the label.

For multiple outgoing send actions, the label selection handler for the appropriate
state is invoked, and then the send handler corresponding to the return value is
invoked. The return value from the send handler is sent to the receiver role, along
with the label.

For receive actions, the label is received first, then the correspondent payload with
the label. The appropriate receive handler is then invoked with the payload.

• Construct state records:

The execution function keeps the backlog of the history of communication in
state records. When communication takes place and state changes, the function
constructs a new state record for the next handler to use.

5.5 Limitations

Message payload is limited to one item in the current setup, due to limited support
for tuple types in FLUIDTYPES; However, it is possible to generate records in the case of
the multiple payload items to address this limitation. We do not lose generality due to
this limitation.

It is not possible to express refinements in different iterations of recursion in a
protocol. Allowing such refinements would give a huge boost to expressiveness, as
invariants can be established in this way. This limitation originates from the previous
work of [36], since we use the same version of Scribble in our work, we also face the same
limitation. This is an open research question, and we discuss possible improvements in
Section 6.3.
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Chapter 6

Evaluation

The main objective of our work is to statically verify implementations of protocols
with refinements according to their specification. We use three cases studies of protocols
to demonstrate strengths and weaknesses of our work:

• Adder Protocol in Section 5.3:

We walk through an implementation of the Adder Protocol, where a client asks
a server to perform some simple computation of addition and comparison. This
protocol contains the main features of protocols in Scribble. We demonstrate the
interaction of FLUIDSESSION and FLUIDTYPES via examples.

• Two Buyers Protocol:

We use a variant of two buyers protocol from [23], involving 3 participants. This
illustrates that our project is not limited to binary communications protocols, but
that it also extends to multiple parties.

• Accumulator Protocol:

We demonstrate limitations of our work via an accumulator protocol between two
parties, where a series of values are sent from the client to the server, and the server
accumulates the values by addition. The refinements in the protocol cannot be
expressed by our current implementation. However, we propose possible future
works to address the limitation. The limitation arises from the Scribble toolchain,
instead of our approach to generate code.

6.1 Adder Example in Section 5.3

We recall the protocol definition of the Adder protocol, as shown in Figure 5.8. The
Client sends two non-negative integers to the Server for some computation, and the
Server sends back the comparison result and their sum.
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1 global protocol Adder(role C, role S) {
2 NUM1 (x: int) from C to S; @"x >= 0"
3 NUM2 (y: int) from C to S; @"y >= 0"
4 choice at S {
5 GEQ (z1: int) from S to C;
6 @"(z1 >= 0 && z1 = x + y) && x >= y"
7 } or {
8 LES (z2: int) from S to C;
9 @"(z2 >= 0 && z2 = x + y) && x < y"

10 }
11 }

Figure 5.8: Adder Protocol (repeated from page 68)

6.1.1 Client

We project the global protocol into a CFSM representation for Client, and use our
code generator to generated APIs with refinement types. For the Client side, the handler
type is shown in Figure 6.1.

1 type HandlerC = {
2 [<Refined("State6 → {x:int | x>=0}")>]
3 state6OnsendNUM1 : State6 → int
4 [<Refined("State8 → {y:int | y>=0}")>]
5 state8OnsendNUM2 : State8 → int
6 [<Refined(
7 "(st: State9)
8 → (z1: {z1:int | z1>=0 && z1=st$x+st$y && st$x>=st$y})
9 → unit"

10 )>]
11 state9OnreceiveGEQ : State9 → int → unit
12 [<Refined(
13 "(st: State9)
14 → (z2: {z2:int | z2>=0 && z2=st$x+st$y && st$x<st$y})
15 → unit"
16 )>]
17 state9OnreceiveLES : State9 → int → unit
18 }

Figure 6.1: Handler Type Definition for Client in Adder Protocol

In this case, a developer needs to implement 4 handlers for the Client role. The first
two send handlers ask the programmer to provide two numbers to be added together,
to be sent to the Server. The other two receive handlers ask the programmer to process
received sum value. We provide a simple example implementation in Figure 6.2.
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1 module ClientImpl
2

3 // Import Generated Code
4 open ScribbleGeneratedAdderC
5

6 let handlers = {
7 state6OnsendNUM1
8 = fun _ → 1 // Send integer 1
9 state8OnsendNUM2

10 = fun _ → 2 // Send integer 2
11 state9OnreceiveGEQ
12 = fun _ _ → () // Do nothing
13 state9OnreceiveLES
14 = fun _ _ → () // Do nothing
15 }

Figure 6.2: Example Implementation of Client Role

In the example implementation, we use integer 1 for message NUM1 and integer 2
for message NUM2. These numbers are surely non-negative and pass the typecheck. For
handling receive actions, we simply do nothing.

This simple implementation passes the refinement typecheck by FLUIDTYPES:

1 $ mono FluidTypesConsole.exe Client.fsproj
2 All checks passed!

However, if we replace integer 1 in message NUM1 with -1, FLUIDTYPES fails the
with following error message:

1 $ mono FluidTypesConsole.exe Client.fsproj
2 File Adder/ClientImpl.fs
3 BaseType (TInt,
4 App (App (Const (Binop EqualInt), Var "$this"),
5 Const (IntLiteral -1)))
6 is not a subtype of
7 BaseType (TInt,
8 App (App (Const (Binop GreaterEqual), Var "$this"),
9 Const (IntLiteral 0)))

10 for term
11 Const (IntLiteral -1)

We use an internal representation of λH terms and types in the error message. This
error means that the term −1 has type {ν : int | ν = −1}, which is not a subtype of
{ν : int | ν ≥ 0}. For the handler to be correctly typed, the return value for the send
handler must be a non-negative integer. As expected, FLUIDTYPES reports an error.

For a more sophisticated implementation, we can use a function to generate a random
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integer as a return value of the handler. We can define a function as follows, using the
builtin random number generator provided by .NET APIs:

1 let randomInt () = System.Random().Next()

We can use this function in the send handlers:

1 state6OnsendNUM1 = fun _ → randomInt ()

However, since there is no domain modelling for .NET APIs in FLUIDTYPES, it is not
possible to obtain more information other than the return value is an integer. Therefore,
FLUIDTYPES produces the following error message:

1 $ mono FluidTypesConsole.exe Client.fsproj
2 File Adder/ClientImpl.fs
3 BaseType (TInt, Const (BoolLiteral true))
4 is not a subtype of
5 BaseType (TInt,
6 App (App (Const (Binop GreaterEqual), Var "$this"),
7 Const (IntLiteral 0)))
8 for term
9 UnknownTerm

10 ("Call (None, val randomInt, [], [],
11 [Const (null,type Microsoft.FSharp.Core.unit)])",
12 BaseType (TInt, Const (BoolLiteral true)))

To address this issue, we introduce an extra check to refine the type, and negate the
random value when it is negative:

1 state6OnsendNUM1 = fun _ →
2 let rnd = randomInt ()
3 if rnd >= 0 then rnd else -rnd

With the changes, the implementation passes the typecheck of FLUIDTYPES:

1 $ mono FluidTypesConsole.exe Client.fsproj
2 All checks passed!

To check the properties of the received value, we first define some auxiliary functions
in Figure 6.3. expect_sum takes 3 integers, where the third argument is expected to
be the sum of the first 2 integer arguments. expect_nonneg takes an integer that is
non-negative. expect_pos takes an integer that is positive. We can call these auxiliary
functions, and FLUIDTYPES checks whether their arguments carry the types specified in
the refinement annotations. We use them to test properties about the received value in
the receive handler.

We can check whether the received value is the sum of the two numbers as follows:

1 state9OnreceiveGEQ = fun st value → expect_sum st.x st.y value
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1 [<Refined("(x: int) → (y: int) → (sum: {v:int | v=x+y}) → unit")>]
2 let expect_sum x y sum = ()
3

4 [<Refined("(x: {v:int | v>=0}) → unit")]
5 let expect_nonneg x = ()
6

7 [<Refined("(x: {v:int | v>0}) → unit")]
8 let expect_pos x = ()

Figure 6.3: Auxiliary Functions for Testing Properties

Similarly, we can validate that after receiving LES, we know x ≤ y. To validate this
property, we check whether y− x is positive:

1 state9OnreceiveLES = fun st _ → expect_pos (st.y - st.x)

We validate the properties by invoking FLUIDTYPES again:

1 $ mono FluidTypesConsole.exe Client.fsproj
2 All checks passed!

We validate these properties successfully by FLUIDTYPES with static typechecking.
This can save developers from writing unit tests or dynamic checks to ensure those
properties hold, because they can be checked statically during compile time.

It is important to notice that FLUIDTYPES checks refinement according to the refine-
ments specified in the protocol specification. A possible implementation may choose
only to send positive integers in NUM1 and NUM2, as shown in Figure 6.4 and expect
the sum to be always positive. These properties cannot be validated by FLUIDTYPES,
because our work aims to provide guarantees according to the protocol description, but
not generic properties established by a specific implementation, that are not required by
the protocol.

FLUIDTYPES fails with an error at the argument of expect_pos in the handler
for GEQ message. Readers may wonder why no error is produced in the handler for
LES message. The reason is that the SMT solver used by FLUIDTYPES is able to prove
semantic properties. In this case, we have that x and y are non-negative, and that x < y,
we know that it must be the case that y > 0. Therefore, x + y must be positive and the
desired validity holds.

In the case of GEQ message, the solver cannot prove that x + y > 0, since x = 0 and
y = 0 are able to satisfy the necessary constraints x ≥ y imposed by refinement on the
message, but does not satisfy x + y > 0. Since there exists a counterexample, the desired
validity does not hold. FLUIDTYPES hence produces an error:
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1 let handlers = {
2 state6OnsendNUM1
3 = fun _ →
4 let rnd = randomInt () // The value sent to the
5 if rnd > 0 then rnd else 42 // server is always positive
6 state8OnsendNUM2
7 = fun _ →
8 let rnd = randomInt () // The value sent to the
9 if rnd > 0 then rnd else 42 // server is always positive

10 state9OnreceiveGEQ
11 = fun _ value →
12 expect_pos value // Error here
13 state9OnreceiveLES
14 = fun _ value →
15 expect_pos value // No error here
16 }

Figure 6.4: Alternative Implementation of Client Role

1 $ mono FluidTypesConsole.exe Client.fsproj
2 File Adder/ClientImpl.fs
3 BaseType (TInt,
4 App (App (Const (Binop EqualInt), Var "$this"),
5 Var "value"))
6 is not a subtype of
7 BaseType (TInt,
8 App (App (Const (Binop Greater), Var "$this"),
9 Const (IntLiteral 0)))

10 for term
11 Var "value"

FLUIDTYPES is not designed to prove properties about a specific implementation of
the protocol, but instead to prove properties specified in the protocol. In this example,
the implementation chooses to make the additional guarantee that all numbers are
positive, whereas the protocol only requires non-negative. Such implementation-defined
properties require a more sophisticated analysis with knowledge of execution flow, and
proving them is a non-goal for our design.

6.1.2 Server

We project the global protocol into a CFSM representation for Server, and use our
code generator to generated APIs with refinement types. For the Server side, the handler
type is shown in Figure 6.5.

In this case, a developer needs to implement 5 handlers. There are 2 receive handlers
for the operand numbers, 1 handler to select the label for the next send action and 2 send
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1 type HandlerS = {
2 [<Refined("State14 → (x: {x:int | x>=0}) → unit")>]
3 state14OnreceiveNUM1 : State14 → int → unit
4 [<Refined("State16 → (y: {y:int | y>=0}) → unit")>]
5 state16OnreceiveNUM2 : State16 → int → unit
6 [<Refined(
7 "(st: State17)
8 → {label:int |
9 (label = 0 && st$x < st$y)

10 || (label = 1 && st$x >= st$y)
11 }"
12 )>]
13 state17 : State17 → State17Choice
14 [<Refined(
15 "(st: State17_LES)
16 → {z2:int | z2>=0 && z2=st$x+st$y && st$x<st$y}"
17 )>]
18 state17OnsendLES : State17_LES → int
19 [<Refined(
20 "(st: State17_GEQ)
21 → {z1:int | z1>=0 && z1=st$x+st$y && st$x>=st$y}"
22 )>]
23 state17OnsendGEQ : State17_GEQ → int
24 }

Figure 6.5: Handler Type Definition for Server in Adder Protocol

handlers. We provide a simple example implementation in Figure 6.6.

In the minimal implementation, we handle receive actions by doing nothing. There
is no need to save the received values explicitly, because they are stored in the state
record automatically by the execution function. We compare the values of two received
values to decide which action to proceed in state17. In the send handlers for both LES
and GEQ, we add the two received values together.

This minimal implementation of the handlers passes the refinement typecheck by
FLUIDTYPES:

1 $ mono FluidTypesConsole.exe Server.fsproj
2 All checks passed!

We can check properties on the received values, similar to what we previously did
for the Client role handlers. We can use expect_nonneg function in the receive handler
to ask FLUIDTYPES to validate that the number received is non-negative. We do not
demonstrate similar checks here to avoid duplication.

Instead, we focus on the label selection handler in this implementation. A careless
programmer may drop the equal sign at the comparison, and cause a protocol violation
in the edge cases. We use an incorrect implementation of the handler state17 , shown
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1 module ServerImpl
2

3 // Import Generated Code
4 open ScribbleGeneratedAdderS
5

6 let handlers = {
7 state14OnreceiveNUM1
8 = fun _ _ → () // Do nothing here
9 state16OnreceiveNUM2

10 = fun _ _ → () // Do nothing here
11 state17
12 = fun st →
13 if st.x >= st.y
14 then State17Choice.GEQ // GEQ when x >= y
15 else State17Choice.LES // LES otherwise
16 state17OnsendLES
17 = fun st → st.x + st.y // Adding values together
18 state17OnsendGEQ
19 = fun st → st.x + st.y // Adding values together
20 }

Figure 6.6: Example Implementation of Server Role

as follows:

1 state17 = fun st →
2 if st.x > st.y // ‘>‘ is used instead of ‘>=‘
3 then State17Choice.GEQ // no error, since x > y implies x >= y
4 else State17Choice.LES // error when x = y

Running FLUIDTYPES produces an error as expected. The error message indicates
that 0, the enum value for LES, does not fulfill the refinement constraints. This is because
x ≤ y does not hold when x = 0 and y = 0, but such values leads to the LES label being
selected incorrectly.

1 mono FluidTypesConsole.exe Server.fsproj
2 File Adder/ServerImpl.fs
3 BaseType (TInt,
4 App (App (Const (Binop EqualInt), Var "$this"),
5 Const (IntLiteral 0)))
6 is not a subtype of
7 BaseType
8 (TInt,
9 App ...

10 for term
11 Const (IntLiteral 0)
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6.1.3 Summary

We demonstrated how to implement a simple binary protocol using generated APIs
from FLUIDSESSION, and use FLUIDTYPES to check the correctness of implementation
with regards to the specification. The Adder protocol covers main features of Scribble,
including messages and branches, along with refinements. We showed how FLUIDTYPES

can check static properties and catch common implementation errors through examples.

The error messages produced by FLUIDTYPES are not friendly to developers in their
current form, as they use an internal representation of terms instead of the F# source
code. An aspect for future work is to make relevant connections between extracted terms
and original source code locations, to improve the usability of the library.

6.2 Two Buyers Protocol

We implement a variant of the two buyers protocol from [23], with refinements. The
two buyer protocol describes a protocol between two buyers A, B and a Seller. Through
this example, we show that our approach extends to multiparty scenarios.

We show the Scribble specification of this protocol in Figure 6.7. A and B are two
buyers, and S is the seller. A asks the Seller for a quote of a book, then Seller sends a
quote to both A and B. After that, A tries to negotiate a split of the payment with B, where
A proposes how much A would like to pay. B only accepts the split when B pays no more
than A pays, otherwise B rejects the split and the purchase is cancelled.

1 global protocol TwoBuyer(role A, role B, role S) {
2 bookId (id: int) from A to S;
3 quoteA (x: int) from S to A; @"x >= 0"
4 quoteB (y: int) from S to B; @"x = y"
5 proposeA (a: int) from A to B; @"a >= 0 && a <= x"
6 choice at B {
7 ok (b: int) from B to A; @"b = y - a && b <= a"
8 buy () from A to S;
9 } or {

10 no () from B to A;
11 cancel () from A to S;
12 }
13 }

Figure 6.7: Two Buyer Protocol in Scribble

It is important to notice that refinements are projected to local roles in a way such that
only variables known to that local role are projected. In this example, the Seller knows
that they give the buyer A a quote x which is non-negative and they give the buyer B
a quote y that is equal to x. However, A does know that the quote x is non-negative,
but the same information is not perceived by B. This is because B is unaware of the
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variable x in their local projection, and hence the refinement x = y cannot be projected
to B. Whereas it is obvious from the global perspective that y is also non-negative, such
information is unfortunately not known to B.

It would be possible to address the issue via the use of existential quantifiers. While
B does not learn the value of variable x, they know that there exists a variable x that
the Seller sends to A. B could further learn that there exists an non-negative integer x
and the received integer y is equal to that x, hence deduce that y is also non-negative.
Unfortunately, neither Scribble nor FLUIDTYPES currently supports quantifiers.

We include the implementation for Seller and A in Appendix D.1, and focus on the
implementation of B here, as shown in Figure 6.8. Although the partner of communic-
ation is not indicated clearly in each handler, the execution function is aware of the
partner and ensures messages are sent to or received from the correct role.

1 module ImplB
2

3 open ScribbleGeneratedTwoBuyerB
4

5 let handlers = {
6 state30OnreceivequoteB
7 = fun _ _ → ()
8 state32OnreceiveproposeA
9 = fun _ _ → ()

10 state33
11 = fun st →
12 if st.y - st.a < st.a // y - a is what B needs to pay
13 then State33Choice.ok
14 else State33Choice.no
15 state33Onsendok
16 = fun st →
17 if st.y - st.a < st.a // This repeated check will
18 then st.y - st.a // always pass
19 else failwith "Impossible"
20 state33Onsendno
21 = fun _ → ()
22 }

Figure 6.8: Implementation for Role B of Two Buyers Protocol

The choice at B (line 6 of Figure 6.7) corresponds to state33 handler of label
selection. We establish in line 12 of Figure 6.8 that if y − a < a, i.e. the ok branch
is chosen when B pays less than A does, otherwise no. Since b = y − a and b ≤ a
both involve the payload variable b, there is no path constraint attached to this choice.
Unfortunately, it is necessary to repeat the condition check in line 17 to satisfy the type
system. It is not desirable to repeat the same check twice, since the second check will
always pass and gives no extra information.
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This limitation arises since each handler is checked separately with respect to their re-
finement types annotated in the type definition. In this case, there are no path constraints
attached to either ok or no message in the protocol description. While it is possible to
deduce that the ok message requires y− a ≤ a as a path constraint, by substituting b
with y− a from the equality refinement, the projection of refinements is syntax directed,
and does not handle implied path constraints. Moreover, FLUIDTYPES is not able to
establish the control flow of handlers and hence accumulate predicates along the control
flow. The implementation of state33 establishes a predicate for entering ok branch,
but the handler for ok message is not aware of that established predicate.

Nonetheless, this example demonstrates that our FLUIDSESSION can be applied to
multiparty protocols, not limited to binary protocols.

6.3 Example Protocols with Unsupported Refinements

Since our work depends on Scribble to produce a CFSM representation, we inherit
the limitations from the prior work. In this section, we explore in detail how refinements
can be extended to recursion in multiparty protocols.

Consider an accumulator protocol involving a Client and a Server, as shown in
Figure 6.9. This is a recursive protocol, where the Client can choose to provide a number
or quit. The Server is expected to add up all the numbers sent from the Client and send
the accumulated value to the Client.

1 global protocol Accum(role C, role S) {
2 rec LOOP {
3 choice at C {
4 NUM (x: int) from C to S;
5 ACCUM (y: int) from S to C;
6 continue LOOP;
7 } or {
8 BYE () from C to S;
9 BYE () from S to C;

10 }
11 }
12 }

Figure 6.9: Accumulator Protocol in Scribble

We would like to refine the protocol, such that the payload variable y in ACCUM
message is the sum of all values of x communicated in NUM message. Currently, there is
no way to express the intended properties. Since it is not possible to refer to variables in
the previous iterations of the protocol, we cannot specify the accumulation of value. We
propose a refined protocol in Figure 6.10, in an imaginary extension of Scribble.

We use y0 = 0 to provide an initial value for y, and use y = y′ + x to specify that y
in current iteration must be equal to the sum of y in previous iteration and x in current
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1 global protocol Accum(role C, role S) {
2 rec LOOP {
3 @"y_0 = 0"
4 choice at C {
5 NUM (x: int) from C to S;
6 ACCUM (y: int) from S to C; @"y = y’ + x"
7 continue LOOP;
8 } or {
9 BYE () from C to S;

10 BYE () from S to C;
11 }
12 }
13 }

Figure 6.10: Refined Accumulator Protocol in Imaginary Scribble

iteration. In this way, we can refer to payload variables across iterations and specify
invariants about the loop.

In the CFSM representation, we can use two variables for y, one for the current
iteration and one for the previous iteration. When the recursion occurs, we set the
variable for previous iteration y′ to that for the current iteration y, and continue with
execution. We also need to unroll the recursion for the initial iteration, where there is no
previous iteration, and use the initial value y0 for the initial iteration of y.

On another persepective, our style of API generation keeps a backlog of the commu-
nication in the protocol. This may be sufficient for some use cases, for example those we
have shown in the previous examples, but is unfit for this protocol. It is usually the case
that the Client has a list of integers to process, and the list does not occur in the backlog
of communications.

We propose to extend the handlers by a user-defined environment type, where a
develop can use a type of their choice as the environment of the communication protocol.
This is analogue to the concept of a state monad, but we choose not to use the name “state”
for confusion avoidance. So the handlers take additional argument for environment,
and an environment is part of the return type. We can use a polymorphic type ’env for
the type of environment:

1 state1OnsendNUM : ’env * State1 → int * ’env
2 state2OnreceiveACCUM : ’env * State2 → int → ’env

This proposal requires further improvement in λH and FLUIDTYPES, with support
for polymorphism and recursive types. In addition, FLUIDTYPES currently does not
have a model for built-in functions or data structures in F#, making it impossible to
implement the protocol, even without refinements.
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Chapter 7

Conclusion

7.1 Contributions

In this project, we develop and present an end-to-end framework for static veri-
fication of multiparty communication protocols with refinements. We begin with the
protocol description language Scribble, extended with refinements [51, 36], and use the
Scribble toolchain to obtain the projections of global protocols to local roles.

From that point on, we design and implement a code generation tool for F#, explained
in Chapter 5, which uses the output from Scribble and produces handler-styled APIs for
local roles. These APIs carry refinement types which can be validated by a typechecker
extension we develop, and the handler style of API generation can guarantee the linear
usage of channels.

We formalise a theory of refinement types in Chapter 3 and prove type safety and
erasure properties. We implement it as a typechecker extension for F# and explain the
design and implementation details in Chapter 4. The typechecker extension is able to
verify the implementation of the protocol, with respect to refinements in the protocol,
hence completing the end-to-end static verification of protocols.

Compared to previous work, we are not only able to avoid dynamic checks for
refinements, but also linearity checks of communication channels during execution. We
evaluate our framework via case studies in Chapter 6 and demonstrate the strengths
and limitations with examples.

This project has received positive feedback from the community. We presented
the work as Fluid Types: Statically Verified Distributed Protocols with Refinements at 11th
Workshop on Programming Language Approaches to Concurrency- & Communication-
cEntric Software (PLACES 2019) [52], and in Type My Morning seminar series at Facebook
London, and the community responded with positive feedback. We also had discussions
with Don Syme, key designer and implementer of F#, about the work and received
positive reviews from him.

Our F# refinement type extension is available in a public repository1under the MIT
license. This library is not limited to checking multiparty protocol implementations
but applies also to generic F# programs. F# users can use our refinement typechecker
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independently from our work on code generation for session types. Similarly, the code
generation tool for Scribble protocols is in a public repository2under the MIT license.

Overall, we offer a solid foundation to combine refinement types and multiparty ses-
sion types, both in theory and in practice. Our static verification framework showcases
the potential and the feasibility of the approach and invites further research into the
intersection of two areas.

7.1.1 Open Source Contributions to F# Libraries

Our implementation makes use of several F# open source libraries. During the
project period, we made the following contributions to open source libraries, including
feature improvements and bug fixes:

• FSLEXYACC

Add module and internal option to FSLEX (https://github.com/fsprojects/
FsLexYacc/pull/90)

• FAKE

Fix Shell.mv function (https://github.com/fsharp/FAKE/pull/2309)

• FSHARP.TYPEPROVIDERS.SDK

Fix a crash due to ToString not overridden (https://github.com/fsprojects/
FSharp.TypeProviders.SDK/pull/310)

• DOTPARSER

Handle escaped double quotes in parsing (https://github.com/auduchinok/
DotParser/pull/6)

7.2 Future Work

This project opens path to future work on combining refinement types and session
types. The following ideas are interesting open research questions that can be explored
for an extension to this project.

7.2.1 Refinements in Multiparty Session Types

Rumyana et al. [36] propose a framework for specifying refinements in the context
of multiparty session types. This project builds upon this setup, where refinements
are attached as an assertion to the messages. The work focuses on practical aspects of
implementation, but lacks a theoretical foundation of refinements in the MPST setup.

1https://github.com/fangyi-zhou/FluidTypes
2https://github.com/fangyi-zhou/ScribbleCodeGen
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This work provides a formalisation for the refinement calculus λH in an isolated
setup, without modelling the communication aspects. Therefore, the full meta-theory
of MPST with refinement is not covered by this work and remains as future work. The
meta-theory can provide the theoretical foundations for the safety claims in prior work
and this work. Related work by Toninho et al. [46] formalises dependent session types
with intuitionistic linear type theory, in the setting of π-calculus. Future work on the
meta-theory with refinement types can compare its expressiveness with existing work.

Since this work uses a variant of λ-calculus with subtyping for the formalisation of
λH, the meta-theory of MPST with refinements can be formalised in a variant of MPST
with subtyping. In terms of expressiveness, the previous work is unable to express
refinements in loop constructs in the protocol, such as invariants, or constraints on
variables communicated in the previous iterations. The future work on the meta-theory
may choose to include these extensions.

7.2.2 λH and FLUIDTYPES Library

Vazou et al. [48, 49] present the theory and implementation of LIQUIDHASKELL, a
refinement type library for Haskell. Our work on FLUIDTYPES is heavily influenced by
the work on LIQUIDHASKELL, but only implements a subset of the features available in
refinement types in LIQUIDHASKELL.

Our implementation currently supports a subset of the features available in the F#
language. In particular, many features frequently used by functional programmers are
not supported, such as polymorphism, union types, tuples, etc. To improve usability,
FLUIDTYPES needs to support more functionality available in F#.

Moreover, FLUIDTYPES lacks a model for built-in libraries for F#. While developers
can use FLUIDTYPES for their own libraries and programs, only a small set of built-in
libraries are modelled, for example, arithmetic and logical operators, integer literals and
boolean literals. For a more usable refinement type library, it is necessary to provide
models for built-in libraries, especially for data structures such as lists.

For the usability perspective, the error message quality needs improvement. Cur-
rently, FLUIDTYPES reports errors using the internal representation of λH instead of the
surface language F#. This can confuse developers when an error occurs. Improvements
in error reporting would improve the usability of the library.
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Appendix A

A Basic Type System for the Simply
Typed λ-calculus

A.1 Types and Typing Judgements

We define syntax of types in λ-calculus in Figure A.1.

t ::= Types

b Base Type (See Figure 3.1)

| t→ t Function Type

Figure A.1: Types in λ-calculus

We present the typing judgements for λ-calculus in Figure A.2.

T-VAR
Γ, x : t, Γ′ ` x : t

T-CONST
Γ ` c : Ty’(c)

Γ ` M1 : t1 → t2 Γ ` M2 : t1 T-APP
Γ ` M1M2 : t2

Γ, x : t1; ∆ ` M : t2 T-ABS
Γ ` λx.M : t1 → t2

Γ ` M1 : bool Γ ` M2 : t Γ ` M3 : t
T-COND

Γ ` if M1 then M2 else M3 : t

Figure A.2: Typing Judgements for λ-calculus

Types for some constants Ty’(c) are shown in Table A.1.
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1 :: int integers

true :: bool booleans

(+) :: int→ int→ int arithmetic

(=)int :: int→ int→ bool relational

Table A.1: Constants and their Basic Types
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Appendix B

Lemmas and Proofs

B.1 Lemmas and Proofs for Chapter 3

Lemma B.1.1. If Γ; ∆ ` τ <: σ, then erase(τ) = erase(σ).

Proof. By induction on the derivation of Γ; ∆ ` τ <: σ.

1. Γ; ∆ ` {ν : b | M1} <: {ν : b | M2} (SUB-BASE)

Since erase({ν : b | M1}) = b and erase({ν : b | M2}) = b, the property holds.

2. Γ; ∆ ` ((x : τ1)→ τ2) <: ((x : σ1)→ σ2) (SUB-FUNC)

From (SUB-FUNC), we have Γ; ∆ ` σ1 <: τ1, and Γ, x : σ1; ∆ ` τ2 <: σ2.

By inductive hypothesis, we have erase(σ1) = erase(τ1) and erase(τ2) = erase(σ2).

Since erase((x : σ1)→ σ2) = erase(σ1) → erase(σ2) and erase((x : τ1)→ τ2) =

erase(τ2)→ erase(τ2), by substitution, the property holds.

Lemma B.1.2. If Γ; ∆ ` τ, then fv(τ) ⊆ dom(Γ)

Proof. By induction on the derivation of Γ; ∆ ` τ.

1. Γ; ∆ ` {ν : b | M} (WF-TY-BASE)

By (WF-TY-BASE), fv({ν : b | M}) ⊆ dom(Γ).

2. Γ; ∆ ` ((x : τ1)→ τ2) (WF-TY-FUNC)

By (WF-TY-BASE), fv((x : τ1)→ τ2) ⊆ dom(Γ).

Lemma B.1.3. If Γ, x : τ, y : σ, Γ′; ∆ ` ρ and x /∈ fv(σ), then Γ, y : σ, x : τ, Γ′; ∆ ` ρ

Proof. By induction on the derivation of Γ, x : τ, y : σ, Γ′; ∆ ` ρ.
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1. Γ, x : τ, y : σ, Γ′; ∆ ` {ν : b | M} (WF-TY-BASE)

From (WF-TY-BASE), we have Γ, x : τ, y : σ, Γ′, ν : b; ∆ `erase M : bool, and
fv({ν : b | M}) ⊆ dom(Γ, x : τ, y : σ, Γ′).

By permutation lemma of simple λ-calculus, we have Γ, y : σ, x : τ, Γ′, ν : b; ∆ `erase

M : bool.

Note that dom(Γ, x : τ, y : σ, Γ′) = dom(Γ)∪{x, y}∪dom(Γ′) = dom(Γ, y : σ, x : τ, Γ′)

By (WF-TY-BASE), we obtain Γ, y : σ, x : τ, Γ′; ∆ ` {ν : b | M}.

2. Γ, x : τ, y : σ, Γ′; ∆ ` ((z : ρ1)→ ρ2)

From (WF-TY-FUNC), we have Γ, x : τ, y : σ, Γ′; ∆ ` ρ1, Γ, x : τ, y : σ, Γ′, z : ρ1; ∆ `
ρ2, and fv((z : ρ1)→ ρ2) ⊆ dom(Γ, x : τ, y : σ, Γ′).

By inductive hypothesis, we have Γ, y : σ, x : τ, Γ; ∆ ` ρ1 and Γ, y : σ, x : τ, Γ′, z :
ρ1; ∆ ` ρ2 (applying inductive hypothesis on Γ′, z : ρ1).

Note that dom(Γ, x : τ, y : σ, Γ′) = dom(Γ)∪{x, y}∪dom(Γ′) = dom(Γ, y : σ, x : τ, Γ′)

By (WF-TY-FUNC), we obtain Γ, y : σ, x : τ, Γ′; ∆ ` ((z : ρ1)→ ρ2).

Lemma B.1.4. If y /∈ dom(Γ), and Γ; ∆ ` σ, and Γ; ∆ ` τ, then Γ, y : σ; ∆ ` τ

Proof. By induction on the derivation of Γ; ∆ ` τ.

1. Γ; ∆ ` {ν : b | M} (WF-TY-BASE)

From (WF-TY-BASE), we have Γ, ν : b; ∆ `erase M : bool, and fv({ν : b | M}) ⊆
dom(Γ).

By weakening and permutation lemma of simple λ-calculus, Γ, y : σ, ν : b; ∆ `erase

M : bool.

Note that dom(Γ) ⊆ dom(Γ, y : σ) = dom(Γ) ∪ {y}, hence we have
fv({ν : b | M}) ⊆ dom(Γ, y : σ).

By (WF-TY-BASE), Γ, y : σ; ∆ ` {ν : b | M}.

2. Γ; ∆ ` ((x : τ1)→ τ2) (WF-TY-FUNC)

From (WF-TY-FUNC), we have Γ; ∆ ` τ1, Γ, x : τ1; ∆ ` τ2 and fv((x : τ1)→ τ2) ⊆
dom(Γ).

By inductive hypothesis, we have Γ, y : σ; ∆ ` τ1 and Γ, y : σ, x : τ1; ∆ ` τ2

Since y /∈ dom(Γ) and fv((x : τ1)→ τ2) ⊆ dom(Γ) (By Lemma B.1.2), we have
y /∈ fv((x : τ1)→ τ2).

By Lemma B.1.3, we have Γ, x : τ1, y : σ; ∆ ` τ2

Note that dom(Γ) ⊆ dom(Γ, y : σ) = dom(Γ) ∪ {y}, hence we have
fv((x : τ1)→ τ2) ⊆ dom(Γ, y : σ).

By (WF-TY-FUNC), we have Γ, y : σ; ∆ ` τ2.
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Lemma B.1.5. If Γ; ∆ ` σ and y /∈ dom(Γ), then Valid(JΓ, y : σK =⇒ JΓK)

Proof. By induction on the structure of σ.

1. {ν : b | M}

JΓ, y : {ν : b | M}K = JΓK∧ JM[y/ν]K

By ∧E1 on the right hand side, we have JΓK.

2. (x : τ1)→ τ2

JΓ, y : (x : τ1)→ τ2K = JΓK.

Trivial.

Lemma B.1.6. If Γ, x : τ, y : σ, Γ′; ∆ ` ρ1 <: ρ2 and x /∈ fv(σ), then Γ, y : σ, x : τ, Γ′; ∆ `
ρ1 <: ρ2

Proof. By induction on the derivation of Γ, x : τ, y : σ, Γ′; ∆ ` ρ1 <: ρ2.

1. Γ, x : τ, y : σ, Γ′; ∆ ` {ν : b | M1} <: {ν : b | M2} (SUB-BASE)

From (SUB-BASE), we have Valid(JΓ, x : τ, y : σ, Γ′K∧ J∆K∧ JM1K =⇒ JM2K).

Notice that JΓ, x : τ, y : σ, Γ′K ⇐⇒ JΓ, y : σ, x : τ, Γ′K, this is due to the commut-
ativity of ∧ and follows from Definition 3.4.1.

We have Valid(JΓ, y : σ, x : τ, Γ′K∧ J∆K∧ JM1K =⇒ JM2K). By (SUB-BASE), we
have Γ, y : σ, x : τ, Γ′ ` {ν : b | M1} <: {ν : b | M2}.

2. Γ, x : τ, y : σ, Γ′; ∆ ` ((z : ρ1)→ ρ2) <: ((z : ω1)→ ω2) (SUB-FUNC)

From (SUB-FUNC), we have Γ, x : τ, y : σ, Γ′; ∆ ` ω1 <: ρ1, and Γ, x : τ, y : σ, Γ′, z :
ρ1; ∆ ` ω2 <: ρ2.

By inductive hypothesis, we have γ, y : σ, x : τ, Γ′; ∆ ` ω1 <: ρ1, and Γ, y : σ, x :
τ, Γ′, z : ρ1; ∆ ` ω2 <: ρ2.

By (SUB-FUNC), we have Γ, y : σ, x : τ, Γ′; ∆ ` ((z : ρ1)→ ρ2) <: ((z : ω1)→ ω2).

Lemma B.1.7. If y /∈ dom(Γ), and Γ; ∆ ` σ, and Γ; ∆ ` τ1 <: τ2, then Γ, y : σ; ∆ ` τ1 <: τ2

Proof. By induction on the derivation of Γ; ∆ ` τ1 <: τ2.

1. Γ; ∆ ` {ν : b | M1} <: {ν : b | M2} (SUB-BASE)

From (SUB-BASE), we have Valid(JΓK∧ J∆K∧ JM1K =⇒ JM2K).

By Lemma B.1.5, we have Valid(JΓ, y : σK =⇒ JΓK).

We prove the validity of JΓ, y : σK∧ J∆K∧ JM1K =⇒ JM2K by natural deduction.
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1. JΓK∧ J∆K∧ JM1K =⇒ JM2K premise

2. JΓ, y : σK =⇒ JΓK Lemma B.1.5

3. JΓ, y : σK∧ J∆K∧ JM1K assumption

4. JΓ, y : σK ∧E1(3)

5. J∆K∧ JM1K ∧E2(3)

6. JΓK =⇒ E(2, 4)

7. JΓK∧ J∆K∧ JM1K ∧I(6, 5)

8. JM2K =⇒ E(1, 7)

9. JΓ, y : σK∧ J∆K∧ JM1K =⇒ JM2K =⇒ I(3, 8)

Hence we have Valid(JΓ, y : σK∧ J∆K∧ JM1K =⇒ JM2K).

By (SUB-BASE), we have Γ, y : σ; ∆ ` {ν : b | M1} <: {ν : b | M2}.

2. Γ; ∆ ` ((x : τ1)→ τ2) <: ((x : ρ1)→ ρ2) (SUB-FUNC)

From (SUB-FUNC), we have Γ; ∆ ` ρ1 <: τ1, and Γ, x : ρ1; ∆ ` τ2 <: ρ2.

By inductive hypothesis, we have Γ, y : σ; ∆ ` ρ1 <: τ1 and Γ, x : ρ1, y : σ; ∆ `
τ2 <: ρ2.

By Lemma B.1.2, we have fv(σ) ⊆ dom(Γ). Since y /∈ dom(Γ), we have y /∈ fv(σ).

By Lemma B.1.6, we have Γ, y : σ, x : ρ1; ∆;` τ2 <: ρ2.

By (SUB-FUNC), we have Γ, y : σ; ∆ ` ((x : τ1)→ τ2) <: ((x : ρ1)→ ρ2).

Lemma B.1.8. If x 6= y, and ` Γ, x : τ, Γ′; ∆, and Γ, Γ′; ∆ ` M ⇒ τ, and Γ, x : τ, Γ′; ∆ `
y⇒ σ, then Γ, Γ′[M/x]; ∆[M/x] ` y⇒ σ[M/x].

Proof. Γ, x : τ, Γ′; ∆ ` y ⇒ σ has two possible derivations, via (TY-VAR-BASE) or
(TY-VAR-FUNC). We consider by case here.

Since x cannot occur twice in the typing context, we have x /∈ dom(Γ) and x /∈
dom(Γ′). From the derivation, we know that y ∈ dom(Γ) ∪ dom(Γ′).

• (TY-VAR-BASE)

We have Γ, x : τ, Γ′; ∆ ` y⇒ {ν : b | ν = y}, and that the context Γ, x : τ, Γ′ can be
split into Γ1, y : {ν : b | M}, Γ2 for some base type b and term M.

In either case x ∈ dom(Γ1) or x ∈ dom(Γ2), we have Γ, Γ′[M/x]; ∆[M/x] ` y ⇒
{ν : b | ν = y} by (TY-VAR-BASE), and that (ν = y)[M/x] = ν = y, as required.

• (TY-VAR-FUNC)

We have Γ, x : τ, Γ′; ∆ ` y⇒ (z : ρ1)→ ρ2 and σ = (z : ρ1)→ ρ2.
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– Suppose y ∈ dom(Γ), there must exist a split of Γ = Γ1, y : σ, Γ2. Hence we
have ` Γ1, y : σ, Γ2, x : τ, Γ′; ∆;

From Lemma B.1.2, we have fv(σ) ⊆ dom(Γ1). Since Γ = Γ1, y : σ, Γ2, we
have dom(Γ1) ⊆ dom(Γ).

Since x /∈ dom(Γ), we also have x /∈ fv(σ), therefore σ[M/x] = σ.

By (TY-VAR-FUNC), we have Γ1, y : σ, Γ2, Γ′[M/x]; ∆[M/x] ` y ⇒ σ[M/x],
where Γ = Γ1, y : σ, Γ2 and σ[M/x] = σ.

– Suppose y ∈ dom(Γ′), there must exist a split of Γ′ = Γ1, y : σ, Γ2. Therefore,
Γ′[M/x] = Γ1[M/x], y : σ[M/x], Γ2[M/x].

By (TY-VAR-FUNC), we have Γ, Γ1[M/x], y : σ[M/x], Γ2[M/x]; ∆[M/x] `
y⇒ σ[M/x], where Γ′[M/x] = Γ1[M/x], y : σ[M/x], Γ2[M/x].

Lemma B.1.9. If Γ, x : τ, Γ′; ∆ ` σ and Γ, x : τ, Γ′; ∆ ` M⇒ τ, then Γ, Γ′[M/x]; ∆[M/x] `
σ[M/x]

Proof. By induction on the derivation of Γ, x : τ, Γ′; ∆ ` σ.

Lemma B.1.10. The following properties hold:

1. JM[N/y]K = JMK[JNK/y].

2. J∆[N/y]K = J∆K[JNK/y].

3. JΓ[N/y]K = JΓK[JNK/y].

Proof. By induction on Definition 3.4.1.

Lemma B.1.11. If Γ, x : τ, Γ′; ∆ ` σ1 <: σ2 and Γ, x : τ, Γ′; ∆ ` M⇒ τ, then Γ, Γ′[M/x]; ∆[M/x] `
σ1[M/x] <: σ2[M/x].

Proof. By induction on the derivation of Γ, x : τ, Γ′; ∆ ` σ1 <: σ2.

1. Γ, x : τ, Γ′; ∆ ` {ν : b | M1} <: {ν : b | M2} (SUB-BASE)

From (SUB-BASE), we have Valid(JΓ, x : τ, Γ′K∧ J∆K∧ JM1K =⇒ JM2K). Denote
this logical formula as A.

We first show Valid(JΓ, x : τ, Γ′K =⇒ JΓ, Γ′K) (denoted as B) is valid:

By Definition 3.4.1

JΓ, x : τ, Γ′K =

JΓK∧ JΓ′K if τ is (x : τ1)→ τ2

JΓK∧ JM′[x/ν]K∧ JΓ′K if τ is {ν : b | M′}

From A and B, we have Valid(JΓ, Γ′K∧ J∆K∧ JM1K =⇒ JM2K) (denoted as C).
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We substitute all occurences of the variable x to JMK and obtain
Valid((JΓ, Γ′K∧ J∆K∧ JM1K =⇒ JM2K)[M/x])

By Lemma B.1.10, we have
Valid((JΓ[M/x], Γ′[M/x]K∧ J∆[M/x]K∧ JM1[M/x]K =⇒ JM2[M/x]K))

Since a variable cannot occur in a context twice, we have x /∈ dom(Γ), and hence
Γ[M/x] = Γ.

By (SUB-BASE), we have
Γ, Γ[M/x]; ∆[M/x] ` {ν : b | M1[M/x]} <: {ν : b | M2[M/x]}.

2. Γ, x : τ, Γ′; ∆ ` ((y : σ1)→ σ2) <: ((y : ρ1)→ ρ2) (SUB-FUNC)

By inductive hypothesis.

Lemma B.1.12. Suppose ` Γ, x : τ, Γ′; ∆ and Γ, x : τ, Γ′; ∆ ` x ⇒ τ.

1. If Γ, Γ′; ∆ ` M⇒ τ, Then Γ, Γ′[M/x]; ∆[M/x] ` M⇒ τ[M/x].

2. If Γ, Γ′; ∆ ` M⇐ τ, Then Γ, Γ′[M/x]; ∆[M/x] ` M⇐ τ[M/x].

Proof. By simultaneous induction on the derivation of Γ, Γ′; ∆ ` M ⇒ τ and Γ, Γ′; ∆ `
M⇐ τ.

1. Γ, Γ′; ∆ ` y⇒ τ (TY-VAR-BASE), (TY-VAR-FUNC)

By application of the same argument in Lemma B.1.8.

2. Γ, Γ′; ∆ ` c⇒ τ (TY-CONST)

Constant types have no free variables, hence the substitution τ[M/x] = τ. Moreover,
there exists a derivation of constants for any typing context.

By (TY-CONST), we have Γ, Γ′[M/x]; ∆ ` c⇒ τ[M/x].

3. Γ, Γ′; ∆ ` λy.M⇐ (y : τ1)→ τ2 (TY-ABS)

From (TY-ABS) we have Γ, Γ′, y : τ1; ∆ ` M⇐ τ2 and Γ, Γ′; ∆ ` ((y : τ1)→ τ2).

From inductive hypothesis, we have Γ, Γ′[M/x], y : τ1[M/x]; ∆[M/x] ` M ⇐
τ2[M/x].

By Lemma B.1.9, we have Γ, Γ′[M/x]; ∆[M/x] ` ((y : τ1)→ τ2)[M/x]. Note that
((y : τ1)→ τ2)[M/x] = ((y : τ1[M/x])→ τ2[M/x]).

We apply (TY-ABS) and obtain Γ, Γ′[M/x]; ∆[M/x] ` M⇐ ((y : τ1)→ τ2)[M/x],
as required.
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4. Γ, Γ′; ∆ ` M1M2 ⇒ τ2[M2/y] (TY-APP)

From (TY-APP) we have Γ, Γ′; ∆ ` M1 ⇒ ((y : τ1) → τ2) and Γ, Γ′; ∆ ` M2 ⇐ τ1

for some τ1.

From inductive hypothesis, we have Γ, Γ′[M/x]; ∆[M/x] ` M1 ⇒ ((y : τ1) →
τ2)[M/x] and Γ, Γ′[M/x]; ∆[M/x] ` M2 ⇐ τ1[M/x].

Note that ((y : τ1) → τ2)[M/x] = ((y : τ1[M/x]) → τ2[M/x]), hence we can
apply both rules to (TY-APP) and obtain Γ, Γ′[M/x]; ∆[M/x] ` M1M2 ⇒ τ2[M/x].

5. Γ, Γ′; ∆ ` if M1 then M2 else M3 ⇐ τ (TY-COND)

By inductive hypothesis and Lemma B.1.9.

6. Γ, Γ′; ∆ ` (M : τ)⇒ τ (TY-ANNO)

By inductive hypothesis.

7. Γ, Γ′; ∆ ` M⇐ τ′ (TY-SUB)

By inductive hypothesis, Lemma B.1.9 and Lemma B.1.11.

Lemma B.1.13 (Weakening (Typing Context)). Suppose y /∈ dom(Γ) and Γ; ∆ ` σ, then

1. If Γ; ∆ ` M⇒ τ, then Γ, y : σ; ∆ ` M⇒ τ.

2. If Γ; ∆ ` M⇐ τ, then Γ, y : σ; ∆ ` M⇐ τ.

Proof. By simultaneous induction on Γ; ∆ ` M⇒ τ and Γ; ∆ ` M⇐ τ with Lemma B.1.4
and Lemma B.1.7.

Lemma B.1.14. If J∆′K =⇒ J∆K and Γ; ∆ ` τ, then Γ; ∆′ ` τ.

Proof. We notice that the derivation of Γ; ∆ ` τ does not depend on ∆. Hence the results
hold by induction on the derivation of Γ; ∆ ` τ.

Lemma B.1.15. If J∆′K =⇒ J∆K and Γ; ∆ ` τ <: σ, then Γ; ∆′ ` τ <: σ.

Proof. By induction on the derivation of Γ; ∆ ` τ <: σ.

1. Γ; ∆ ` {ν : b | M1} <: {ν : b | M2} (SUB-BASE)

From (SUB-BASE), we know that JΓK∧ J∆K∧ JM1K =⇒ JM2K.

We show that JΓK∧ J∆′K∧M1 =⇒ JM2K.
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1. JΓK∧ J∆K∧ JM1K =⇒ JM2K premise

2. J∆′K =⇒ J∆K premise

3. JΓK∧ J∆′K∧ JM1K assumption

4. J∆′K ∧E2(3)

5. J∆K =⇒ E(2, 4)

6. JΓK ∧E1(3)

7. JM1K ∧E3(3)

8. JΓK∧ J∆K∧ JM1K ∧I(6, 5, 7)

9. JM2K =⇒ E(1, 8)

10. JΓK∧ J∆′K∧ JM1K =⇒ JM2K =⇒ I(3, 9)

2. Γ; ∆ ` ((x : τ1)→ τ2) <: ((x : σ1) <: σ2) (SUB-FUNC)

By inductive hypothesis.

Lemma B.1.16 (Weakening (Predicate Context)). Suppose J∆′K =⇒ J∆K, then

1. If Γ; ∆ ` M⇒ τ, then Γ; ∆′ ` M⇒ τ.

2. If Γ; ∆ ` M⇐ τ, then Γ; ∆′ ` M⇐ τ.

Proof. By mutual induction on the derivation of Γ; ∆ ` M⇒ τ and Γ; ∆ ` M⇐ τ, with
Lemma B.1.14 and Lemma B.1.15.
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Appendix C

Syntax of Refinement Annotations

C.1 Syntax of Refinement Type Annotation in F#

〈ident〉 ::= [A-Za-z][A-Za-z0-9_]*

〈int〉 ::= integers

〈bool〉 ::= true | false

〈arith〉 ::= + | -

〈logic〉 ::= && | ||

〈rel〉 ::= = | > | < | >= | <= | <>

〈expr0〉 ::= 〈expr0〉 〈logic〉 〈expr0〉 | 〈expr1〉

〈expr1〉 ::= not 〈expr1〉 | 〈expr1〉 〈rel〉 〈expr1〉 | 〈expr2〉

〈expr2〉 ::= 〈expr2〉 〈arith〉 〈expr2〉 | 〈expr3〉

〈expr3〉 ::= 〈expr3〉 $ 〈ident〉 | 〈expr4〉

〈expr4〉 ::= 〈ident〉 | ( 〈expr0〉 ) | 〈int〉 | 〈bool〉

〈ty〉 ::= ( 〈ident〉 : 〈ty〉 ) -> 〈ty〉 | { 〈ident〉 : 〈ident〉 | 〈expr0〉 } | 〈ident〉
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Appendix D

Code for Evaluation

D.1 Implementation for Two Buyers

1 module ImplA
2

3 open ScribbleGeneratedTwoBuyerA
4

5 let randomInt () = System.Random().Next()
6

7 let handlers = {
8 state19OnsendbookId
9 = fun _ → randomInt ()

10 state21OnreceivequoteA
11 = fun _ _ → ()
12 state22OnsendproposeA
13 = fun st →
14 if st.x >= 5 then st.x - 5 else 0
15 state23Onreceiveok
16 = fun _ _ → ()
17 state23Onreceiveno
18 = fun _ → ()
19 state24Onsendcancel
20 = fun _ → ()
21 state25Onsendbuy
22 = fun _ → ()
23 }

Figure D.1: Implementation for Role A of Two Buyers Protocol
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1 module ImplS
2

3 open ScribbleGeneratedTwoBuyerS
4

5 let randomInt () = System.Random().Next()
6

7 let handlers = {
8 state7OnreceivebookId
9 = fun _ _ → ()

10 state9OnsendquoteA
11 = fun _ →
12 let rnd = randomInt ()
13 if rnd >= 0 then rnd else -rnd
14 state10OnsendquoteB
15 = fun st → st.x
16 state11Onreceivebuy
17 = fun _ → ()
18 state11Onreceivecancel
19 = fun _ → ()
20 }

Figure D.2: Implementation for Role S of Two Buyers Protocol
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