
MENG INDIVIDUAL PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Session Arrows: A Session-Type Based
Framework For Parallel Code Generation

Author:
Shuhao Zhang

Supervisor:
Prof. Nobuko Yoshida

Dr. David Castro-Perez

Second Marker:
Dr. Iain Phillips

June 19, 2019

Abstract

Parallel code is notorious for its difficulties in writing, verification and maintenance.
However, it is of increasing importance, following the end of Moore’s law. Modern pro-
grammers are expected to utilize the power of multi-core CPUs and face the challenges
brought by parallel programs.

This project builds an embedded framework in Haskell to generate parallel code.
Combining the power of multiparty session types with parallel computation, we create a
session typed monadic language as the middle layer and use Arrow, a general interface
to computation as an abstraction layer on top of the language. With the help of the Arrow
interface, we convert the data-flow of the computation to communication and generate
parallel code according to the communication pattern between participants involved in
the computation. Thanks to the addition of session types, not only the generated code is
guaranteed to be deadlock-free, but also we gain a set of local types so that it is possible
to reason about the communication structure of the parallel computation.

In order to show that the framework is as expressive as usual programming lan-
guages, we write several common parallel computation patterns and three algorithms
to benchmark using our framework. They demonstrate that users can express computa-
tion similar to traditional sequential code and gain, for free, high-performance parallel
code in low-level target languages such as C. Moreover, this framework is not limited to
a standalone tool for parallel computation; we show the framework can act as a code gen-
eration backend for other data-flow based high-level parallel languages with an example.
Benchmarks show the generated code can have up to 12X speedup on certain input sizes
on a 32-core machine.

Acknowledgements

I would like to take the opportunity to thank my supervisor, Prof. Nobuko Yoshida for
her invaluable advice and insight. Her brilliant course on session types is one of the main
reasons why I want to pursue this project. I must thank my second supervisor, Dr. David
Castro-Perez, for his incredible dedication, contagious cheerfulness and willingness to
help me during this year, and for igniting my interest in functional programming. Every
meeting with him is a delight, and I have learned a huge amount of knowledge from him.
It is hard to imagine to complete this project without their supports.

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 Contributions . 6

1.3 Report outline . 7

2 Background 8

2.1 Arrows . 8

2.1.1 Definition . 8

2.1.2 Example: Calculate the mean . 9

2.1.3 Application in parallel computation 11

2.2 Recursion Schemes . 11

2.2.1 Definition . 11

2.2.2 Example: Merge sort . 12

2.3 Multiparty session types . 13

2.3.1 Global types and local types . 13

2.3.2 Applications in parallel computing 16

2.4 Message passing concurrency . 16

2.4.1 Primitives for message-passing concurrency 16

2.4.2 Concurrency Monads . 17

2.5 Free monad . 19

2.5.1 Definition . 19

2.5.2 Example . 21

2.5.3 Applications . 22

3 Alg : Algebraic Functional Language 23

3.1 Alg . 23

3.1.1 Syntax . 23

2

3.2 ParAlg: Alg + role annotations . 25

3.2.1 Syntax . 25

3.2.2 Inferring global types . 26

3.2.3 Example: Parallel merge sort . 27

3.3 Conclusion . 27

4 SPar: A session-typed free monad EDSL for concurrency 29

4.1 Computation: The Core EDSL . 29

4.1.1 Syntax . 29

4.1.2 Representation of recursive data structures 30

4.2 Communication: The Proc EDSL . 31

4.3 Concurrent computation: A group of Proc 31

4.3.1 Operational semantics . 32

4.3.2 Session types and duality checking 33

4.4 Conclusions . 34

5 SPar: Implementation 36

5.1 Session types . 36

5.1.1 Representations of session types in Haskell 36

5.1.2 Value-level duality check . 37

5.1.3 Type-level duality check . 37

5.2 SPar interpreter . 40

5.2.1 Overview . 40

5.2.2 Implementation . 40

6 SArrow: An Arrow interface for writing SPar expressions 43

6.1 Syntax . 43

6.1.1 Arrow interface . 44

6.2 Implementation of arrow combinators . 47

6.3 Strategies for optimized role allocation . 49

6.4 Satisfaction of arrow laws . 51

6.5 Conclusions . 53

7 Type-safe code generation from SPar 54

7.1 Instr: A low-level EDSL for channel communication 54

7.1.1 Syntax and semantic . 54

3

7.1.2 Representation types . 55

7.2 Compilation from SPar to Instr . 56

7.2.1 Transformation from Proc to Instr 56

7.2.2 Strategies for channel allocation . 58

7.2.3 Monad for code generation . 58

7.3 Code generation to C: from Instr to C . 59

7.3.1 Representations of Core data type in C 59

7.3.2 Compiling from Core to C . 61

7.3.3 The structure of generated C code 62

7.4 Conclusion . 62

8 Parallel algorithms and evaluation 64

8.1 Parallel algorithms . 64

8.1.1 Four steps to write parallel algorithms in SArrow 64

8.1.2 Example: Merge sort . 65

8.2 Benchmarks . 68

8.2.1 Evaluation . 69

9 Conclusions and future works 72

9.1 Conclusions . 72

9.2 Future work . 73

A Examples of generated code 77

A.1 Merge sort . 77

4

Chapter 1

Introduction

1.1 Motivation

Writing parallel software is not a trivial task. Parallel code is hard to write because it is
usually done in low-level languages with verbose and non-idiomatic decorations, hard to
debug because machines, where the code is written, are usually different from machines
where the code is intended to run and hard to maintain and reuse. This is because even
though the underlying algorithms are not changed, multiple versions of the parallel code
are needed to tackle various platform, and the evolution of architectures.

There are many on-going pieces of research aimed at helping programmers to write
correct parallel programs smoothly. A common approach is to develop a high-level lan-
guage and compile programs in this language to parallel code. There are many high-level
frameworks for parallel programming (e.g. algorithmic skeletons [1], domain-specific
languages for parallelism [2] or the famous MapReduce parallel model [3]). An exam-
ple is to use arrow terms (see in Section 2.1) to describe data-flow implicitly and hence
generate parallel code [4].

The workflow of writing parallel code has evolved from writing it directly in the
target platform to writing software in a high-level language designed for parallel com-
putation and then compiling to the target platform. This project builds an embedded
framework in Haskell to generate parallel code. Combining the power of multiparty ses-
sion types with parallel computation, we introduce a monadic domain-specific language:
SPar to act as a bridge between high-level and target low-level parallel languages. Built
upon SPar and Arrow (a general interface for computations), we develop an interface
for writing SPar expressions: SArrow. It is an abstraction layer on top of SPar and pro-
vides an intuitive way for users to express computation. With the help of the Arrow
interface, we interpret the data-flow of the computation as communication, and build a
backend to generate parallel code according to the communication pattern between the
participants involved in the computation. Our framework couples with multiparty ses-
sion type (MPST) [5]. It is done by inferring session types for the computation of each
participant. We can take advantages of the collection of local types to enable aggres-
sive optimization but ensuring code correctness and meaningful static analysis; e.g. cost
modeling for parallel programming according to properties of MPST.

5

1.2 Contributions

SArrow:
An Arrow interface for

writing SPar expressions
Chapter 6

SPar:
A session-typed free monad EDSL

for concurrency
Chapter 4, 5

Instr:
A low-level EDSL

for channel communication

Chapter 7

Low level parallel code:
C programs

Chapter 7

Users

Front end of
other functional
parallel frameworks

Figure 1.1: Visualization of the workflow

The result of the project is an embedded high-level framework in Haskell that is ca-
pable of generating low-level parallel code. The major contributions are:

1. Session-typed intermediate language. We create SPar: a session typed free monad
EDSL for message-passing concurrency. SPar is built using free monad technique,
and it contains primitive operations for channel communication as well as our rep-
resentation of computation. This language can be typed by local types, and hence,
we can apply multiple results from the multiparty session types to our framework,
especially in terms of safety of generated code and reasoning of communication
patterns.

2. Intuitive user interface. One innovation of this project is that we apply the Arrow
interface for users to express parallel computations. Arrow is a general interface for
computations (see in Section 2.1). We call our interface SArrow: an Arrow interface

6

for writing SPar expressions. It is an abstraction layer on top of SPar, which hides
communication primitives from users so that users can express parallel algorithms
similar to what they would write for sequential programs.

3. Multiple backends. We create a backend to generate parallel C code from SPar
expressions. The core of the backend is Instr: a low-level EDSL for channel com-
munication as well as operations on variables and resources management. It is
independent of target languages. This means that we can support multiple target
languages with ease without re-implementing multiple backends. In addition to
the code generation backend, we implement an interpreter backend in Haskell for
experimenting and fast verification.

4. Evaluations. Finally, we show the expressive power of the framework by im-
plementing several common computation patterns and three algorithms using our
interface. We evaluate the performance of the generated code from the algorithms
on high-performance computers.

The Figure 1.1 summaries the workflow of the framework visually. The main principle
supporting the framework is that we convert data-flow into communication and from
the communication pattern, we gain parallel code. The results of expressing compu-
tation in the framework are 1) compilation to efficient deadlock-free low-level parallel
programs and 2) a set of local types to reason the structure of the parallel computation.

At the end of the project, we have discovered two use case of the framework. The pri-
mary application is a stand-alone tool to generate parallel C code from programs written
in Haskell, and another is a backend for other data-flow based parallel frameworks.

1.3 Report outline

Chapter 2 gives an overview of the background and related research. We present the
syntax and the semantics of SPar in Chapter 4 followed by Chapter 5 introducing the
implementation aspect of SPar, like session typing and developing the interpreter. Chap-
ter 6 demonstrates the Arrow interface with examples of parallel patterns formed by the
interface and justification of the interface satisfying the arrow laws. The discussion about
some implementation specific issues like role allocation is also contained in Chapter 6.
In Chapter 7, we show the code generation backend and discuss our solutions to chal-
lenges when compiling to C, i.e. the problem of representing polymorphic algebraic data
structures in C. Chapter 8 explains our benchmark and shows the performance of the gen-
erated code. This chapter can also be regarded as a tutorial on how to use the framework.
Finally, we conclude with potential future improvements and remarks on this project. We
also include the generated C code in the appendix for the curious readers.

7

Chapter 2

Background

This section is an overview of techniques that influence the design choices of our frame-
work. First of all, we give an overview of techniques that can be applied in high-level par-
allel frameworks: arrows (Section 2.1) and recursion schemes (Section 2.2). We then intro-
duce several techniques for message-passing concurrency: multiparty session types (Sec-
tion 2.3) and monadic languages for concurrency (Section 2.4). In the end, we introduce
free monads (Section 2.5), a technique valuable in implementing embedded domain-
specific languages (EDSL).

2.1 Arrows

Arrow is a general interface to describe computation. It can ease the process of writ-
ing structured code suitable for parallelizing. It also demonstrates a common feature of
the frameworks: parallelizability is empowered by underlying implicit but precise data-
flow. On the other hand, converting to low-level message-passing code, which requires
programmers to define communication using message-passing function and primitives,
makes the data-flow explicit.

2.1.1 Definition

Listing 1 shows the Arrow definition in Haskell. Intuitively, an arrow type y a b(that is,
the application of the parameterized type y to the two parameter types b and c) can be
regarded as a computation with input of type b and output of type b[6]. Visually, arrows
are like pipelines (shown in Figure 2.1). In Haskell, an arrow y is a type that implements
the following interface (type classes in Haskell are roughly interfaces). arr converts an
arbitrary function into an arrow. >>> sequences two arrows (illustrated in Figure 2.1b).
Taking two input, first apply the arrow to the first input while keeping the second
untouched (Figure 2.1a). Conversely, second modifies the second input and keeps the
first one unchanged. *** applies two arrows to two input side by side (Figure 2.1d).
&&& takes one input and applies two separate arrows to the input and its duplications
(Figure 2.1c).

The simplest instance of arrow class is the function type (shown in Listing 2). It

8

is worth noticing that only arr and *** need to be implemented. The rest of func-
tions in the arrow type class can be defined in terms of the two functions. For example,
f &&& g = (f *** g) . arr (\b -> (b, b)) and first = (*** id)

1 class Arrow y where
2 arr :: (a -> b) -> y a b
3 first :: y a b -> y (a, c) (b, c)
4 second :: y a b -> y (c, a) (c, b)
5 (***) :: y a c -> y b d -> y (a, b) (c, d)
6 (&&&) :: y a b -> y a c -> y a (b, c)

Listing 1: Arrow class in Haskell

1 instance Arrow (->) where
2 arr f = f
3 (***) f g ~(x,y) = (f x, g y)

Listing 2: (→) instance of Arrow class

2.1.2 Example: Calculate the mean

Consider the function to calculate the mean from a list of floating point numbers, we
present the implementation using arrows compared with a point-free Haskell definition.
Implementation using arrows can be regarded as point-free programming. Point-free
programming is programming paradigm where function definitions only involve combi-
nators and function composition without mentioning variables [8].

1 mean :: [Float] -> Float
2 mean xs = sum xs / (fromIntegral . length) xs
3

4 mean' :: [Float] -> Float
5 mean' = (sum &&& (length >>> fromIntegral)) >>> uncurry (/)

The arrows implementation can be visualized in Figure 2.2.

1 mean'' :: [Float] -> Float
2 mean'' = liftM2 (/) sum (fromIntegral . length)

The above code snippet is the more traditional approach form of point-free mean function
in Haskell. Arrows are not the only way to form point-free programs. We can argue this
form of point-free function is more difficult to understand compared to arrows because
it involves knowledge of monads (liftM2) and does not map to the intuitive data-flow.

The simple example demonstrates that arrows combinators make writing point-free
programs easier. Arrows unite the implementation of the algorithm and data-flow in the
algorithm.

9

(a) first (b) >>>

(c) &&& (d) ***

Figure 2.1: The visual representations of arrow combinators[7]

10

&&&

length fromIntegral

uncurry (/)

sum

Figure 2.2: Visualization of mean’

2.1.3 Application in parallel computation

From the previous example, the data-flow of programs written using arrow combinators
can be easily visualized (shown in Figure 2.1). It is intuitive to recognize that the clean
separation between the flow of data and actual computation will be useful in generating
parallel code. Indeed, arrow describes data-flow implicitly, and it is an example of the
so-called algebraic pattern. Many works has been done to generate parallel code from
algebraic patterns [4, 9, 10]. In particular, details of [10] are introduced in Chapter 3.

We will use some figures to explain the idea behind arrows as a framework for parallel
computation. For example, as shown in the Figure 2.3a, f *** g means computations
of f and g happen in parallel. Figure 2.3b shows that it can be used to implement parallel
map in terms of arrows, taking an arrow computation arr a b and returning a list of
computation in parallel arr [a] [b].

(a) Visualization of parallel *** [4] (b) Visualization of parMap [4]

2.2 Recursion Schemes

Recursion schemes are patterns for expressing recursive functions. In particular, they are
high order function abstracting common patterns of recursion.

2.2.1 Definition

We will introduce three typical recursion schemes: catamorphisms representing folds,
anamorphisms representing unfolds and hylomorphisms representing divide-and-con-
quer algorithms (seen in Listing 4). Recursion schemes express recursion with the help
of data structures that mirror the control structure of the recursion.

Anamorphisms takes a function a -> f a (called the co-algebra) and a value a and
return the Fix f. Using TreeF as an example, anamorphisms takes a single value with
type a and applies the co-algebra to the value. It continues to apply itself to the branches

11

1 newtype Fix f = Fix { unfix :: f (Fix f) }
2

3 data TreeF a =
4 Node a a
5 | Leaf int
6 | Empty
7 deriving Functor
8

9 type Tree = Fix TreeF

Listing 3: Definition of fix point of data structures

of the TreeF recursively and finally expands a single value to a complete tree. Intuitively,
anamorphism unfolds a single value to a complicated data structure in a top-down way.

Catamorphisms is the reverse of anamorphisms, folding a data structure to a single
value in a bottom-up way. It takes a function f a -> a (called the algebra) and data
Fix f to fold and return a single value a. Catamorphisms and anamorphisms describe
the process globally while co-algebra and algebra capture what happened locally. The
elegant part is while co-algebra and algebra do not involve with any recursion data struc-
ture (TreeF is not recursive), catamorphisms can consume recursive data structures and
anamorphism can build recursion data structures.

Hylomorphisms applies anamorphism followed by catamorphisms. It is the most
common pattern to use. We will use an example to illustrate its usefulness. It can be
thought of as an abstract divide and conquer algorithm.

1 ana :: Functor f => (a -> f a) -> a -> Fix f
2 ana coalg = Fix . fmap (ana coalg) . coalg
3

4 cata :: Functor f => (f a -> a) -> Fix f -> a
5 cata alg = alg . fmap (cata alg) . unfix
6

7 hylo :: (f b -> b) -> (a -> f a) -> b -> a
8 hylo g f = f . fmap (hylo f g) . g

Listing 4: Recursion schemes in haskell

2.2.2 Example: Merge sort

We can write merge sort recursively. First of all, we split the list in half and then apply
the merge sort recursively to both parts and finally we merge two lists into a single list.

To write merge sort in terms of recursion scheme, we need to define the recursive
structure to represent the control structure. By the definition of merge sort, this struc-
ture must have a case with two branches, a base case representing a singleton list and a

12

base case representing an empty list hence this structure is the TreeF we defined above.
Splitting a list is a co-algebra while merging is an algebra. We use the hylomorphisms to
combine them and then get the implementation of merge sort (seen in Listing 5).

1 mergeSort :: [Int] -> [Int]
2 mergeSort = hylo merge split where
3 merge Empty = []
4 merge (Leaf c) = [c]
5 merge (Node l r) = usualMerge l r
6

7 split [] = Empty
8 split [x] = Leaf x
9 split xs = Node l r where

10 (l, r) = splitAt (length xs div 2) xs

Listing 5: Merge sort using hylomorphisms

2.3 Multiparty session types

In complicated distributed systems, participants agree on a protocol, specifying the type
and direction of data exchanged. Multiparty session types are a branch of behavioral
types specifically targeted at describing protocols in distributed systems based on asyn-
chronous communication [5]. They are a type formalism used to model communication-
based programming by codifying the structure of the communication. The evolution of
computing from the era of data processing to the era of communication witnessed the
growth and significance of the theory of session types.

The theory of multiparty session types contains three main elements. Global types
(seen in Section 2.3.1), local (session) types and processes. Processes are the concrete
descriptions of the behavior of the peers involved in the distributed system [5] using a
formal language. The most used and the original language is π-calculus [11]. The coming
sections are an intuitive introduction of session types by examples.

2.3.1 Global types and local types

A global type is at the most abstract level, describing a communication protocol from
a neutral viewpoint between two or more participants[5]. The syntax of global types is
shown in Figure 2.4 and an example of global types is shown in Figure 2.6.

Local types or session types characterize the same communication protocol as the
global type, but from the viewpoint of each peer [5]. Each process is typed by a local
type. The syntax of local types is shown in Figure 2.5 and an example of local type is
shown in Figure 2.7.

The relationship between global types and local types are established by the projec-
tion operator (seen in the Section 2.3.1.1), and a type system performs syntactic checks,

13

ensuring that processes are typed by their corresponding local types. Hence, at the com-
pile time, three important properties follow [5].

• communication safety: Mismatches between the types of sent and expected mes-
sages, despite the same communication channel is used for exchanging messages
of different types, do not exist [5].

• protocol fidelity: The interactions that occur are accounted for by the global type
and therefore are allowed by the protocol [5].

• progress: Every message sent is eventually received, and every process waiting for
a message eventually receives one [5].

We will learn that these properties are valuable not only in the distributed system but
also in the domain of parallel computing in Section 2.3.2.

G ::= Global types
p→ q : 〈S〉.G Value exchange
p→ q : 〈T 〉.G Channel exchange
p→ q : {li : Gi}i∈I Branching
µt.G | t | end Recursion/End

Figure 2.4: Global types

S ::= Sorts
bool | nat | string
. . .

T ::= Session types/local types
!〈p, S〉.T Send value
!〈p, T 〉.T Send channel
?(p, T).T Channel Receive
?(p, S).T Sorts Receive
⊕〈p, {li : Ti}i∈I〉 Selection
&(p, {li : Ti}i∈I) Branching
µt.T | t | end Recursion/End

Figure 2.5: Session types/local types

2.3.1.1 Projection between global types and local types

Projection is the formalization of the relationship between global and local types. It is an
operation extracting the local type of each peer from the global type [5]. The definition of
projection is shown in Figure 2.8.

As an example, a projection of global type in Figure 2.6 is shown below:

G � 0 =!〈1, string〉; ?(1, string); &(1, {accept :?(1, string); !〈2, string〉; ?(2, int), reject : end})

14

1. Customer(0) sends an order num-
ber to Agency(1), and the Agency
sends back a quote to the cus-
tomer.

2. If Customer is happy with the
price, then Customer selects ac-
cept option and notifies Agency.

3. If Customer thinks the price is too
high, then Customer terminate the
trade by selecting reject.

4. If accept is selected, the Agency
notifies both Customer and
Agency2(2).

5. Customer sends an address to
Agency2 and Agency2 sends back
a delivery date.

G =

0→ 1 : 〈string〉.
1→ 0 : 〈int〉.
0→ 1 : { accept :

1→ {0, 2} : 〈string〉.
0→ 2 : 〈string〉.
2→ 0 : 〈int〉.end,

reject : end}

Figure 2.6: An example of a protocol described by global types G

S , µt.(&{balance :![nat]; t,

deposit :?[nat]; ![nat]; t,

exit : end})
C , ⊕{balance :?[nat]; end,

deposit :![nat]; ?[nat]; end}

Figure 2.7: Session types of client and server end point of a ATM service

Figure 2.8: The definition of projection of a global type G onto a participants q[5]

15

2.3.1.2 Duality of session types

In binary session types where all protocols are pairwise, duality formalizes the relation-
ship between the types of opposite endpoints. For a type T , its dual or co type, written T̄
is defined inductively as in Figure 2.9.

Figure 2.9: Inductive definition of duality

Duality is essential for checking type compatibility. Compatible types mean that each
common channel k is associated with complementary behavior: this ensures that the
interactions on k run without errors.

In order to apply duality into multiparty session types in which more than two partic-
ipants are allowed, the partial projection operation (seen in [5]) from multiparty session
type to binary session type was introduced to allow reusing the definition of duality after
applying the partial projection.

2.3.2 Applications in parallel computing

Multiparty session types not only have rich applications in distributed systems but also
value in the domain of parallel computation.

Existing work[12] has shown how to generate Message Passing Interface (MPI) [13]
programs using session types. Users describe the communication topology as a skeleton
using a protocol language, which is type checked by session types. After that, an MPI
program is generated by merging the skeleton and user-provided kernels for each peer.
The parallel code obtained in this way is guaranteed to be deadlock-free and progressing.

2.4 Message passing concurrency

This section introduces some interfaces for message passing concurrency from the prim-
itive case: channel to more advanced one: monad for message passing concurrency.

For simplicity, they are represented in Haskell, but in general, most languages can
implement similar interfaces.

2.4.1 Primitives for message-passing concurrency

In Section 2.3, channels are bi-directional and used for communication between two par-
ties. In Haskell, channel primitives are represented in Listing 6. However, just using these
primitives cannot guarantee progress or communication safety. For example, a program
that has one thread writing channel once combined with another thread reading channel

16

twice is type-correct but will cause deadlock. Many kinds of researches to encode MPST
using Haskell’s type system are presented in [14] so that an (MPST) type-correct Haskell
program assures progress, communication safety and session fidelity.

1 data Chan a
2 newChan :: IO (Chan a)
3 writeChan :: Chan a -> a -> IO ()
4 readChan :: Chan a -> IO a
5 dupChan :: Chan a -> IO (Chan a)

Listing 6: Channel primitives in Haskell

2.4.2 Concurrency Monads

The work done by [15] constructs a monad to express concurrent computation. The def-
inition is in Listing 7. Action is the algebraic datatype representing basic concurrency
primitives. Atom, the atomic unit of computation, is a computation (wrapped in the IO
monad) followed by an action. Fork is two parallel action. Stop is the termination of
an action. type C is a special case of the continuation monad. The continuation monad
is an encapsulation of computations in continuation-passing style (CPS)1. SO C a is a
CPS computation that produces an intermediate result of type a within a CPS computa-
tion whose final result type is Action. With the help of the monad C, sequencing and
composing actions can use monadic bind.

1 data Action =
2 Atom (IO Action)
3 | Fork Action Action
4 | Stop
5

6 newtype C a = C { runC :: (a -> Action) -> Action }
7

8 instance Monad C where
9 (>>=) :: C a -> (a -> C b) -> C b

10 m >>= f = C $ \k -> runC m (\v -> runC (f v) k)
11 return :: a -> C a
12 return x = C $ \k -> k x

Listing 7: The definition of concurrency monad

The idea is using continuation to represent the "future" so that computation can pause
and resume as well as expressing sequential computation. Atom wraps the actual com-
putation and Fork is responsible for spawning threads. In addition, in order to write

1In continuation-passing style function result is not returned, but instead is passed to another function,
received as a parameter (continuation)[16]

17

programs in a monadic way easier, some helper functions are defined (shown in List-
ing 8). atom lifts an IO computation to C. And fork takes a computation in C and return
a C which involves the Fork action. Given a C a, action gives the result of running the
CPS computation. We use _. Stop to represent the final continuation (Stop action is
the last action). An example of programme written in the concurrency monad is shown

1 atom :: IO a -> C a
2 atom m = C $ \k -> Atom $ do
3 r <- m
4 return $ k r
5

6 fork :: C () -> C ()
7 fork m = C $ \k -> Fork (runC m (const Stop)) (k ())
8

9 action :: C a -> Action
10 action m = m (_. Stop)

Listing 8: Helper functions

below.

1 example :: C ()
2 example = do
3 atom $ putStrLn "Hello"
4 name <- atom getLine
5 fork $ atom $ putStrLn "World"
6 atom $ putStrLn name

We can easily define a round-robin scheduler for programs in this monad. We can regard
a list of action as a queue of threads that are running concurrently. schedulewill pattern
match on the head of the list. If it is Atom then the scheduler will run the computation
(seen a <- ioa at 7) and pause its remaining computation and put it at the end of
the thread queue (seen at 8). If it is Fork then the scheduler will spawn the thread
and put the new thread and the current thread to the bottom of the queue (seen at 9).
Finally, If it is Stop then it means this thread has finished, and the scheduler will resume
with the rest of threads in the queue. For example, to run the above example, we call
schedule [action example].

1 schedule :: [Action] -> IO ()
2 schedule [] = return ()
3 schedule (a:as) = sched as a
4

5 sched :: [Action] -> Action -> IO ()
6 sched as (Atom ioa) = do
7 a <- ioa 7
8 schedule $ as ++ [a] 8

18

9 sched as (Fork a1 a2) = schedule $ as ++ [a2, a1] 9
10 sched as Stop = schedule as

The concurrency monad can be extended to support many features. For example,
work done by [17] modifies the definition of Action as well as implements a work-stealing
parallel scheduler (seen in Listing 9) to build a monad for parallel computation.

Besides, extending the concurrency monad to monad for message-passing concur-
rency can be done by adding channel primitives like newChan, writeChan and readChan
into the Action. Since channel primitives are possible to represent in this monad, we nat-
urally think of its prospect in connecting with MPST (will be discussed in Section 4.3.2)

1 newtype IVar a = IVar (IORef (IVarContents a)) 1
2 data IVarContents a = Full a | Blocked [a -> Action.]
3

4 data Action .=
5 Fork Action Action
6 | Stop
7 | forall a . Get (IVar a) (a -> Action) 7
8 | forall a . Put (IVar a) a Action 8
9 | forall a . New (IVar a -> Action)

Listing 9: Par Monad
1 Parent threads and child threads communicate data via IVar

7 Get operation blocks when the underlying IVarContents is Blocked

8 Put operation updates the underlying IVarContents to Full with the result a and
resume the list of blocking threads by applying a to the continuation.

We draw inspiration from this monad to design our intermediate language.

2.5 Free monad

Free monad [18] is a concept from category theory. Intuitively, a free monad as a pro-
gramming abstraction is a technique for implementing EDSLs, where a functor represents
basic actions of the EDSL and the free monad of this Functor provides a way to sequence
and compose actions. Speaking of the advantages, we are particularly interested in its
benefits in flexible interpretations which will be illustrated by an example (Section 2.5.2)
and discussed further (Section 2.5.3).

2.5.1 Definition

In practice, a free monad in Haskell can be defined as an algebraic data type(ADT)
(shown in Listing 10). Free f is the monad produced given a functor f. Free has two

19

type constructors: Pure and Free. Monad (Free f) is the Haskell implementation of
the Monad interface for Free f. Many useful helper functions are derived from the sim-
ple definition of the free monad (shown in Listing 11). liftF lift the functor to its free
monad representations. freeM maps a natural transformation of functor (f a -> g a)
to the natural transformation of their free monad versions. Given m is a monad, freeM
is a special case of interpreting Free m a: to the m monad itself. Finally, interpret
shows the power of free monad. We can interpret the free monad version of a functor f
to any monad m given a natural transformation from f to m.

1 data Free f a
2 = Pure a
3 | Free f (Free f a)
4

5 instance Functor f => Monad (Free f) where
6 return = pure
7 (Pure x) >>= fab = fab x
8 (Free fx) >>= fab = Free $ fmap (>>= fab) fx

Listing 10: Free monad in Haskell

1 liftF :: Functor f => f a -> Free f a
2 liftF = Free . fmap Pure
3

4 freeM :: (Functor f, Functor g)
5 => (f a -> g a)
6 -> (Free f a)
7 -> (Free g a)
8 freeM phi (Pure x) = Pure x
9 freeM phi (Free fa) = Free $ phi (fmap (freeM phi) fa)

10

11 monad :: Monad m => Free m a -> m a
12 monad (Pure x) = pure x
13 monad (Free mfx) = mfx >>= monad
14

15 interpret :: (Functor f, Monad m)
16 => (f a -> m a)
17 -> (Free f a -> m a)
18 interpret phi = monad . freeM phi

Listing 11: Helper functions based on free monad

20

2.5.2 Example

Free monad is useful in interpreting an abstract syntax tree (AST). In order to apply the
free monad technique to a given AST, we can follow a routine [19].

1. Create an AST, usually represented as an ADT

2. Implement functor for the ADT

3. Create helper constructors to Free ADT for each type constructor in ADT by liftF

4. Write a monadic program using helper constructors. It is essentially a program
written in EDSL operations.

5. Build interpreters for Free ADT by interpreting

6. Interpret the program by the interpreter.

We will demonstrate the above procedure by a made-up example. We would like to build
a simple EDSL for getting customers’ name and greeting customers. First of all, we build
a functor GreetingF to represent the basic operations: getting the name and greeting.
Then we wrap the functor with Free constructor so that a program written in our EDSL
can be regarded as a Haskell expression with type Free GreetingF a.

1 data GreetingF next
2 = Getname (String -> next)
3 | Greet String next
4 deriving Functor
5

6 type Greeting = Free GreetingF

Then we create helper functions of Greeting using liftF.

1 getName = liftF $ Getname id
2 greet str = liftF $ Greet str ()

Then we can write a simple program using operations provided by Greeting.

1 exampleProgram :: Greeting ()
2 exampleProgram = do
3 a <- getName
4 greet a
5 b <- getName
6 greet b

Then we can easily implement an interpreter for the example program

21

1 goodMorningInterpreter :: Greeting a -> IO a
2 goodMorningInterpreter = interpret helper
3 where
4 helper (Getname next) =
5 fmap next getLine
6 helper (Greet str next) =
7 putStrLn ("Good morning " ++ str) >> return next

Finally, execute the program.

ghci:> goodMorningInterpreter exampleProgram
Tom
Good morning Tom
Mary
Good morning Mary

2.5.3 Applications

As illustrated by the example (Section 2.5.2), a free monad decouples the abstract syntax
tree of domain-specific language and the interpreter. Interpreters with different purposes
can be implemented without changing the syntax.

In the project, we apply free monads to the intermediate language so not only we
make the language monadic for free but also benefit from decoupling the interpreter
and the syntax to implement different interpreters, e.g., Simulator, code generators to
different platforms easily.

22

Chapter 3

Alg : Algebraic Functional Language

Algebraic Functional Language (Alg) is an example of a high-level language to generate
parallel code, proposed in the paper [10]. The work done by [10] also proposes a method
to do the code generation. Part of this project is about implementing an alternative code
generation backend for this language.

3.1 Alg

3.1.1 Syntax

F1, F2 ::=

I Identity functor
Kt Constant functor
F1 + F2 Sum functor
F1 × F2 Product functor

t1, t2 ::= Types
() | int | . . . Primitive types
a→ b Function types
a+ b Sum types
a× b Product types
F t1 Functor types
µ.F Recursive types

e1, e2 ::= Expressions
f | v | const e | e1 ◦ e2 | πi | e1 M e2 | e1Oe2 | li | F e | inF | outF | recF e1 e2

Figure 3.1: Syntax of Alg language

newtype L = K () + K I n t * I
type L i s t = Rec L

Listing 12: Type of integer list in PAL

The syntax of Alg is shown in Figure 3.1. In terms of the syntax of expressions, f
represents atomic functions which are functions of which we only know their types [10].
The presence of atomic functions is important in the code generation, which we will dis-
cuss in the later chapter. v is a primitive value like integer 1.F represents functor and

23

a, b are types. Besides primitive types, function types and the recursive type constructor
µ, Alg uses four functors to form more types hence representing data structures by com-
posing them. For example, a list of integers is expressed in Listing 12. Alg is a point-free
language.

f : a→ b ∈ Γ

` f : a→ b

` e : a
` cons e : b→ a

` id : a→ a

` inF : F µF → µF

` outF : µF → F µF

` e1 : b→ c, ` e2 : a→ b

e1 ◦ e2 : a→ b

i ∈ [1, 2]

πi : a1 × a2 → ai

i ∈ [1, 2]

li : ai → a1 + a2

` e1 : a→ b, ` e2 : a→ b

e1 M e2 : a→ b× c
` e1 : a→ c, ` e2 : b→ c

e1Oe2 : a+ b→ c

` e : a→ b
F e : F a→ F b

` e1 : F b→ b, ` e2 : a→ F a

recF e1 e2 : a→ b

Figure 3.2: Typing rules for Alg

The typing rules for Alg are expressed in Figure 3.2 and the semantics for Al is shown
in Figure 3.3.

An important feature of Alg is the lack of usual control flow like if a branch or while
loop to build algorithms, instead, it uses the flow of transformation of data structures
to replace conventional control flow. For example, O combinator is the case operation
whose types is a+b→ c. It can be seen as an analogy of if branch in normal programming
languages. M combinator represents split operation. More importantly, the combinator
recF uses the idea of recursion schemes (explained in Section 2.2) to build divide-and-
conquer algorithms.

To summarize, algorithms in Alg are represented as a series of transformations of
data, making it easy to transform the Alg programs to programs in arrows mechanically
since arrows also express the flow of data and their transformations naturally. This prop-
erty allows us to generate parallel code without burdens.

By making the hylomorphism as a built-in combinator recF , Alg can express merge
sort similarly as the example shown in Section 2.2.2. We use the functor T = K() +Ka+

24

Figure 3.3: Semantics of Alg expression[10]

ms = recT mrg spl = mrg ◦ T (recT mrg spl) ◦ spl

= mrg ◦ (id + id + (recT mrg spl)× (recT mrg spl)) ◦ spl

= mrg ◦ (id + id + ms×ms) ◦ spl

Listing 13: Merge sort in Alg

I × I to be substitute the functor F in recF and the type Ls to represent a list of elements
whose type is a. We also have two atomic function spl : Ls→ T Ls and mrg : T Ls→ Ls.
Finally we express merge sort as ms = recT mrg spl. It is shown in Listing 13. From the
example, we observe that ms can expanded infinitely. Later, we will exploit this property
to generate parallel code.

3.2 ParAlg: Alg + role annotations

Alg programs are point-free programs which have an implicit but precise data-flow that
does not rely on an external context. For example, e1 ◦ e2 is the function composition
so the output of applying e2 will be used as the input of e1. We can interpret this as e2
sends a message to e1. Parallel Algebraic Language is the formalization of the above idea.
In essence, it is Alg with role annotations, converting implicit data-flow to explicit role
communication. In this section, we will present the main results and use examples to
build intuitions about its principles. More details and proofs can be found in [10]. We
will briefly mention the results that will be useful in our project.

3.2.1 Syntax

The syntax of ParAlg is shown in Figure 3.4. r is the role identifier representing a unit of
computation. R1 × R2 specifies that the input is split across roles R1 and R2 [10]. More
explanation of different constructor can be seen in [10]. In short, ParAlg is just Alg with
role annotations at certain points.

Notice that recF in Alg does not belong to constructs of ParAlg. So we need to unroll

25

Figure 3.4: Syntax of ParAlg

recursion a fixed number of times and then apply the role annotations to the unrolled
expression. The unroll process is shown in Listing 13 and in this example, the number
of unrollings is 1. The unroll-and-annotate operation will parallelize the recursive func-
tions.

3.2.2 Inferring global types

ParAlg turns implicit data-flow into communication, and hence, we should be able to de-
rive its communication protocols from valid ParAlg programs. In [10], global types (ex-
plained in Section 2.3) are used to represent communication protocols for ParAlg, which
means for any valid ParAlg program, we can infer its corresponding global type. The
inference rules and typing for ParAlg can be seen in [10].

G =

r0 → r1 : Rec L

r1 → {r2, r3}
{l0 : r1 → r3 : () + int.

end;

l1 : r1 → r2 : Rec L.

r1 → r3 : Rec L.

r2 → r3 : Rec L.

end};
r3 → r0 : Rec L.

end

Listing 14: Global types for merge sort

An example of the inferred global type is in Listing 14. It is the inferred global type of
recT mrg spl with the number of unrollings equal to two. This global type tells us that r1
receives an input list from r0, based on the length of the input list, r1 either sends it to r3
directly when the list is a singleton or empty or splits the list into halves and sends them
to r2 and r3 respectively. In the second case, r2 processes the received list and sends it to
r3, r3 processes its received part and waits for another half of list to be received from r2.
After both r2 and r3 finish, r3 will process the combined results. Finally r3 sends the data

26

back to r0.

3.2.3 Example: Parallel merge sort

par_fun msp
: (Rec L)@r0 -> (Rec L)@r0
= id@r0

. (merge@r3
. (inj[0]

||| (inj[1]
. (((merge

. (inj[0]
||| (inj[1]
. ((ms. proj[0])&&& (ms. proj[1, 2]))))
. split)@r2
. proj[0]@r1)
&&& ((merge

. (inj[0]
||| (inj[1]
. ((ms. proj[0])&&& (ms. proj[1]))))
. split)@r3
. proj[1]@r1))))

. split@r1)

Listing 15: ParAlg for merge sort

The ParAlg expression for two unrolling of the merge sort is shown in Listing 15. We
use arrow combinators &&& and ||| to replace O and M in the actual ParAlg expression
since they are equivalent. A similar reason also applies to inj, the replacement of li and
proj, the replacement of πi. Its inferred global type is shown in the last subsection.

3.3 Conclusion

A visualization of the compilation pipeline can be seen in the Figure 3.5. More details
about Alg and ParAlg can found in [10].

Alg is a point-free language. Without the use of explicit variables, point-free pro-
grams express the underlying data-flow of the computation clearly. Adding role anno-
tations transforms Alg programs to ParAlg programs converting the implicit data-flow
to explicit communication. Communication will aid us to generate parallel code using
message-passing concurrency. We will introduce our method from the next chapter.

27

Figure 3.5: Overview of code generating pipeline from Alg[10]

28

Chapter 4

SPar: A session-typed free monad
EDSL for concurrency

To generate parallel code from ParAlg, we first introduce the syntax of our intermediate
language, the session-typed free monad EDSL for concurrency hosted in Haskell (SPar).
SPar is comprised of two components: Core and Proc. Core is the language expressing
sequential computation while Proc is a monadic language with message-passing primi-
tives, communicating Core expressions between different roles. We use a group of Proc
interacting with each other to represent parallel computations. In addition, session typ-
ing a group of Procs ensures that the computation is deadlock-free [20].

4.1 Computation: The Core EDSL

Core is the elemental computation. The syntax of Core is mostly inspired by Alg [10]
and the work done by Svenningsson and Axelsson [21]. For this project, we chose to
implement Core syntax as small as possible without sacrificing expressibility.

4.1.1 Syntax

The syntax of Core is shown in Listing 16. Inl and Inr are for the construction of sum
types. Pair is responsible for constructing values of product types while Fst and Snd ex-
tract value from product type. Supporting sum, product and inductive types (see in the
next section) is enough to express any data structure in any computation. In addition to
these actions manipulating basic data structures, we have Lit which can be directly inter-
preted by the Haskell interpreter (see Section 5.2) via unwrapping and Var, a constructor
which is useful when what we do not evaluate the Core expression but inspect their static
structure. It is used for code generation (see Section 7.3.2) and session typing (see Sec-
tion 5.1). Id is the identity function, and Const is the constant function. Prim represents
user-defined functions takes, and two fields: the name and the Haskell implementation.
The first field will be useful in the code generation (see Section 7.3.2) when applying user-
defined function calls. The second field will be used by the Haskell interpreter directly
when interpreting Prim expressions.

29

data Core a where
Lit :: a -> Core a
Var :: Int -> Core a
Prim :: String

-> a
-> Core a

Ap :: Core (a -> b) -> Core a -> Core b
Id :: Core (a -> a)
Const :: Core a -> Core (b -> a)

Fst :: Core ((a, b) -> a)
Snd :: Core ((a, b) -> b)
Pair :: Core a -> Core b -> Core (a, b)

Inl :: Core (a -> Either a b)
Inr :: Core (b -> Either a b)

Listing 16: The syntax of Core

4.1.2 Representation of recursive data structures

Core has primitives to operate on sum and product types. Representing recursive types
like µlist.() + Int × list will be covered in this section. The method is taken from the
implementation of the Alg language in [10]. First of all, we extend the core with the
following two operations. In represents the fold operation on iso-recursive types and
Out represents the unfold operation on iso-recursive types. :@: is a type family which is
a function acting on types instead of values. :@: converts f to sum and product type in
Haskell which are (,) and Either. Consider a recursive type µα.τ , the type parameter t
is equivalent to α, f :@: t is equivalent to τ and the typeclass Data f t is a recursive
datatype equivalent to the fix-point of f.

data Core a where
In :: Data f t => Core (f :@: t -> t)
Out :: Data f t => Core (t -> f :@: t)

type family (:@:) (a :: Poly Type) (b :: Type) :: Type where
'PId :@: x = x
'PK y :@: _ = y
'PProd f g :@: x = (f :@: x, g :@: x)
'PSum f g :@: x = Either (f :@: x) (g :@: x)

class Data (f :: Poly Type) t | t -> f where
roll :: f :@: t -> t
unroll :: t -> f :@: t

30

A concrete example is shown below. We know a list has recursive type: µα.() + a × α.
So the f is ('PSum ('PK ()) ('PProd ('PK a) 'PId)) and we use Haskell list
type [a] to present α (equivalent to t in f :@: t). f :@: t is evaluated to the type
Either () (a, [a]).

instance Data ('PSum ('PK ()) ('PProd ('PK a) 'PId)) [a] where
roll (Left _) = []
roll (Right (a, b)) = a : b

unroll [] = Left ()
unroll (x:xs) = Right (x,xs)

However, most of our examples use Prim for representing recursive data structure
hiding the implementation details (see in Section 7.3.2) In, and Out are low-level opera-
tions and less used.

4.2 Communication: The Proc EDSL

Proc is a free monad EDSL for message passing. As introduced in the free monad
section in the background, the first thing to do it to define the algebra of message-passing
concurrency: ProcF and Proc is defined using free monad constructor and ProcF. The
definition is shown in the Listing 17. Careful reader might notice that Proc and ProcF
are defined mutually with each others in Branch, Select and Broadcast.

The semantics will be defined in the next subsection in terms of a group of Proc pro-
grams because a single Proc program is either sequential or deadlock. The operational
semantics is only worth discussing when given a group of Proc programs interacting
with each other.

4.3 Concurrent computation: A group of Proc

We have introduced syntax for computation and communication. We also know that a
single Proc expression is meaningless since there does not exist another party to interact
with; hence, the computation has no progress. Naturally, we use a group of Proc to rep-
resent concurrent computations. To be more precise, a collection of Proc with their own
role identifiers can be treated as a system of roles executing their own programs concur-
rently. In most of the cases, in order to make a group of Proc meaningful, we will allocate
a start role in the system acting as the original data provider and an end role whose Proc
program will receive data from others, process and output the final computation which
is wrapped by the Pure constructor at the end of the Proc program.

Readers might find it easy to visualize a group of Proc as a computation graph. The
start role is the source node, and the end role is the sink node. A pair of nodes are
connected if they communicate data with each other.

31

data ProcF next where
Send :: Nat -> Core a -> next -> ProcF next

Recv :: Nat -> (Core a -> next) -> ProcF next

Select :: Nat
-> Core (Either a b)
-> (Core a -> Proc c)
-> (Core b -> Proc c)
-> next
-> ProcF next

Branch :: Nat
-> Proc c
-> Proc c
-> (Core c -> next)
-> ProcF next

Broadcast :: [Nat]
-> Core (Either a b)
-> (Core a -> Proc c)
-> (Core b -> Proc c)
-> next
-> ProcF next

type Proc a = Free ProcF (Core a)

Listing 17: The algebra for message-passing

4.3.1 Operational semantics

Due to the similarities between Proc and multiparty session calculus introduced in [5],
we borrow some syntax and operational semantics rules from their calculus to define the
operational semantics of Proc. P,Q denote Proc programs. A message queue is h which
contains messages (q, p, v) meaning that the sender q sends the receiver p with value v.
h ·m is a message queue whose bottom element is message m. h are runtime syntax to
model the asynchronous message communication where the order of the messages are
retained [5]. e ↓ v means the evaluation of the Core expression e to the value v. Figure 4.1
shows the small step semantics for Proc. Rule (Init) describes the initialization of a group
of Proc programs with an empty message queue at the beginning. Rule (Send) appends
the value to the message queue. Its complementary rule: (Recv) will recv the value at the
top of the message queue. Rule (Branch) is also the complementary rule of the rule (Sel).
Broadcast is defined in terms of Select, and it broadcasts the label to a group of receivers.
Even though its semantics can be expressed in terms of Select, the reason why we still
treat broadcast as an independent operation in SPar is because 1) this operation is very

32

(P1, r1) | (P2, r2) | . . . | (Pn, rn)→ (Init)

(P1, r1) | (P2, r2) | . . . | (Pn, rn) | ∅
(Free (Send rj e next), ri) | . . . | h→ (Send)

(next, ri) | . . . | h · (ri, rj , v) (e ↓ v)

(Free (Recv ri cont), rj) | . . . | (ri, rj , v) · h→ (Recv)

(p, rj) | . . . | h (cont v ↓ p)
(Free (Select rj e cont1 cont2 next), ri) | . . . | h→ (Sel-Left)

(cont1 v � next, ri) | . . . | h · (ri, rj ,L) (e ↓ v, label(v) ↓ L)

(Free (Select rj e cont1 cont2 next), ri) | . . . | h→ (Sel-Right)

(cont2 v � next, ri) | . . . | h · (ri, rj ,R) (e ↓ v, label(v) ↓ R)

(Free (Branch ri next1 next2 cont), rj) | . . . | (ri, rj ,L) · h→ (Branch-Left)

(next1 >>= cont, rj) | . . . | h
(Free (Branch ri next1 next2 cont), rj) | . . . | (ri, rj ,R) · h→ (Branch-Right)

(next2 >>= cont, rj) | . . . | h
(Free (Broadcast [rk1 , . . ., rkn] e cont1 cont2 next), ri) | . . . | h→ (Broadcast-1)

(Free (Select rk1 v c c (Pure ())), ri) | . . . | h
where (e ↓ v, c = Free (Broadcast [rk2 , . . ., rkn] cont1 cont2 next))

(Free (Broadcast [rk1] e cont1 cont2 next), ri) | . . . | h→ (Broadcast-2)

(Free (Select rk1 v cont1 cont2 next), ri) | . . . | h (e ↓ v)

(Pure v, ri) | (Pi, ri) | . . . | (Pj , rj) | h→ (Pure)

(Pi, ri) | . . . | (Pj , rj) | h

Figure 4.1: Small step semantics for Proc

common in communication, including Broadcast as a primitive operation is beneficial for
user to write code 2) In the code generation stages, we can generate more efficient code
for Broadcast operation instead of generating a series of Select operations. Broadcast
operation can be treated as a syntax sugar in the Proc language.

4.3.2 Session types and duality checking

Immediately, we notice that a Proc program can be typed by session types. Send opera-
tion in ProcF corresponds to the type !〈p, S〉.T, Select corresponds to ⊕〈p, {li : Ti}i∈I〉
and so on. One exception is the broadcast operation which does not correspond to any
type of the session types. We will discuss how to handle Broadcast in Section 5.1.

Figure 4.2 shows the session typing rule for a Proc expression. We borrowed some
notation from the work done [10]. Γ ` e : Proc L a is the type of a Proc expression
that follows protocol L and returns a value of type a. The types are parameterized by

33

Inst Γ ` e : ∀l.Proc L a
Γ ` e : Proc ([end/l]L) a

Gen
Γ ` e : ∀l.Proc L a, fresh l

Γ ` e : Proc ([l/end]L) a

Ret Γ ` v : a
Γ ` Pure v : ∀l.Proc l a

Abs
Γ, x : a ` e : ∀l.Proc L b

Γ ` λx.e : a→ ∀l.Proc L b

Bind
Γ ` m : ∀l1.Proc L1 a, Γ ` f : a→ ∀l2.Proc L2 b

Γ ` m >>= f : ∀l2.Proc [L2/L1]L1 b

Send Γ ` v : a
Γ ` Free (Send r v (Pure ())) : ∀l.Proc (r!〈a〉.l) ()

Recv
Γ ` Free (Recv r (\v → Pure v)) : ∀l.Proc (r?(a).l) a

Select
Γ ` v : a+ b, Γ ` f1 : a→ ∀l1Proc L1 c, Γ ` f2 : b→ ∀l2.Proc L2 c

Γ ` Free (Select r v f1 f2 (Pure ())) : ∀l.Proc r ⊕ {L : [l/l1]L1, R : [l/l2]L2} ()

Branch
Γ ` next1 : ∀l1Proc L1 c, Γ ` next2 : ∀l2.Proc L2 c

Γ ` Free (Branch r next1 next2 (\x→ Pure x)) :

∀l.Proc r &{L : [l/l1]L1, R : [l/l2]L2} ()

Figure 4.2: Typing rules for Proc expressions

a variable l representing the continuation of a local type L. The typing rules contain
all the operations except Broadcast. This is because Broadcast can be expressed in
terms of a series of Select as explained in the previous subsection. So its session type
⊕{rj}j∈[1,n]L : L1, R : L2 can be expanded to r1 ⊕ {l : r2 ⊕ {. . .⊕ {rn . . .}}, . . .}l∈[L,R].

We have argued that a Proc program can be typed by multiparty session types. To
utilize this property, we should check the duality of each pair of Proc in the group. In
short, the duality check examines whether any pair of Proc in the system are comple-
ment with each other. If the duality properties are satisfied, the computation is guaran-
teed to be deadlock-free. This safety guarantee is useful and powerful in the application
of parallel code generation. In this domain, SPar is considered to be the intermediate
language. Passing duality check for the intermediate representation means that as long
as we preserve types and communication pattern carefully in later stages of code gen-
eration pipeline, the generated code obtained will share the same non-trivial properties:
communication safety, protocol fidelity and deadlock-freedom.

The work done by [5] constructed the theoretic foundation of algorithms for checking
dualities, and we will give an overview of the implementation in the Section 5.1.

4.4 Conclusions

In this section, we have introduced our intermediate language. It is human-friendly to
use thanks to the monadic interface. In addition, communication and computation are

34

independent in SPar. We can parameterize Proc with the type that represents sequential
computation so that users can simply use their construction for sequential computation.
More importantly, our strategy for parallelism is clear now. In a nutshell, we achieve
parallelism by message-passing concurrency: spawning a group of threads on a multi-
core CPU where each thread executes its corresponding Proc program.

Before jumping into the code generation, we will use the next chapter to give an
overview of some implementation challenges related to SPar first.

35

Chapter 5

SPar: Implementation

5.1 Session types

Haskell does not support session types natively. Using other encodings of session types
in Haskell is too much for this project since Proc does not support all actions that can be
typed by session types, i.e. channel delegation. We decided to create our representation
of session types in Haskell corresponding to a set of actions supported by Proc. We
will introduce two methods for session typing the group of Proc programs followed by
duality checking. One is at the value level, and another is at the type level.

Essentially, what we do is to infer a collection of local types from a set of SPar ex-
pressions. The collection not only can be used to check the duality compatibility of the
overall computation but also can work with external tool [20] for additional analysis and
verification

5.1.1 Representations of session types in Haskell

Session types belong to the family of behavioral types. We can learn from Section 2.3
that behavioral types have a correspondence between types and operations that will be
typed. We exploit this similarity to defined our session types in terms of a free monad,
the same method we have used in defining Proc.

data STypeF a next where
S :: Nat -> a -> next -> STypeF a next
R :: Nat -> a -> next -> STypeF a next
B :: Nat -> SType a c -> SType a c -> next -> STypeF a next
Se :: Nat -> SType a c -> SType a c -> next -> STypeF a next

type SType a next = Free (STypeF a) next

Listing 18: Session types in Haskell

Listing 18 shows the definition in Haskell. SType is the session type in Haskell. It
is parameterized by a type variable a so that the value-level session types and the type-

36

level session types can share the same basic definition of session types. S is mapped to
!〈p, S〉.T . R is mapped to ?(p, S).T . B is mapped to Branch type, and Se is mapped to
Select type.

5.1.2 Value-level duality check

For the value-level session types, the type variable a is instantiated with type TypeRep.
TypeRep reifies types to some extent by associating type representations to types [22].
Due to session types are represented as value expressions in Haskell, session typing a
Proc program is the same as writing an interpreter which can be easily done since Proc is
a free monad.

We traverse Proc programs converting each operation to its corresponding type in
STypeF and convert the value to its TypeRep. For output actions, we recursively call
the substructure to build the rest of the session types. For input actions like Recv, we
will apply the continuation with the Core value constructed by Var and recursively call
the function on the result. The trick to applying Var to the continuation makes it possi-
ble to inspect the static structure of every Proc programs because b -> Proc a is not
inspectable, i.e., we cannot pattern match on it, while Proc a can be inspected. We will
also use this for code generation, which will be introduced in Chapter 7.

5.1.3 Type-level duality check

The value-level duality check works well in checking duality at runtime, but as program-
mers, we aim to eliminate problems earlier. Hence, we propose a solution that makes
use of Haskell’s powerful type systems to check the duality of the system at the compile
time. Besides, we will introduce some combinators to helps us build a group of Proc to
form parallel computation, and this mechanism can act as an extra safety guard to make
sure the correctness of these combinators.

The general approach of type-level duality checks can be summarized as the follow-
ing steps.

1. Create a type-level representation of session types.

2. Modify the algebra of Proc to make it indexed by session types so that we can
session type a proc while building it at the same time. Unlike the above method,
we can only session type a Proc by interpretation after it has been constructed.

3. Gather the indexed session types of each Proc in the system and check the duality
pair-wise at the type level.

The first step is achieved by reusing the definition in Listing 18 and use Haskell DataKind
extension to promote data constructors of STypeF and data constructors of Free monad
to type constructors. At this stage, type parameter a has been promoted to a kind pa-
rameter, and it will be instantiated with kind * representing the kind of all types that
have values, i.e. Int, List of float. Also, we should also create a type-level function that is

37

type family (>*>) (a :: SType * c) (b :: SType * c) where
'Free ('S r v n) >*> b = 'Free ('S r v (n >*> b))
'Free ('R r v n) >*> b = 'Free ('R r v (n >*> b))
'Free ('B r n1 n2 n3) >*> b = 'Free ('B r n1 n2 (n3 >*> b))
'Free ('Se r n1 n2 n3) >*> b = 'Free ('Se r n1 n2 (n3 >*> b))
'Pure _ >*> b = b

Listing 19: Implementations of type level bind

equivalent to bind in Free monad to help us compose session types. The implementation
of type level bind >*> can be seen in Listing 19. It is similar to bind in Free monad but
defined as a type family.

data ProcF (i :: SType * *) (j :: SType * *) next where
Send :: Sing (n :: Nat) -> Core a -> next

-> ProcF ('Free ('S n a j)) j next
Recv :: Sing (n :: Nat) -> (Core a -> next)

-> ProcF ('Free ('R n a j)) j next
Branch :: Sing (n :: Nat) ->

Proc' left ('Pure ()) c ->
Proc' right ('Pure ()) c ->
next ->
ProcF ('Free ('B n left right j)) j next

Select :: Sing (n :: Nat) ->
Core (Either a b) ->
(Core a -> Proc' left ('Pure ()) c) ->
(Core b -> Proc' right ('Pure ()) c) ->
next ->
ProcF ('Free ('Se n left right j)) j next

type Proc (i :: SType * *) a =
forall j . IxFree ProcF (i >*> j) j (Core a)

Listing 20: The algebra of Proc indexed by session types and the definition of indexed
Proc

The second step is challenging since we need to find a way to make the Proc indexed
by our free monad. Obviously, the original definition of Free monad and Proc does not
provide any extra type parameters to be indexed by session types. Hence we use the
indexed free monad. It is indexed by two parameters i and j. In the context of this
project, you can treat i as the session type for the current proc and j as the continuation
of session types. Accordingly, we will modify the definition of the algebra of Proc as
well as Proc (see in Listing 20). The main operations remain unchanged, and the main
difference is 1) makes the algebra of Proc indexed by its corresponding session type (i)
and continuation (j) 2) For the role identifier, we use the type level identifier: the type

38

whose kind is Nat instead of values because, in the later stage, we have to check duality
at the type level. The definition of Proc use Haskell’s RankNType and type family >*>
to extract its corresponding indexed session type i from the continuation. RankNType
allows any type of j hence models any continuation. It represents ∀l in the session types
of Proc (see in Section 4.3.2) in Haskell. By the definition of >*>, session type i must end
with the Pure type constructor which is mapped to end in the session type. The basic
helper functions for constructing Proc expressions are also indexed by session types. An
example can be in seen in Listing 21. We will omit details of some of the helper functions.
Observing the function signatures is crucial in understanding how it works.

liftF :: ProcF i j a -> IxFree ProcF i j a

(>>=) :: IxFree ProcF i j a
-> (a -> IxFree ProcF j k b)
-> IxFree ProcF i k b

send ::
Sing n
-> Core a
-> Proc ('Free ('S n a ('Pure ()))) a

send role value = liftF $ Send role value value

recv :: Sing n -> Proc ('Free ('R n a ('Pure ()))) a
recv role = liftF (Recv role id)

Listing 21: Implementations of helper functions

example = do
x :: Core Int <- recv zero
send one x

ghci:> :type example
example

:: Proc
('Free

('R 0 Int
('Free ('S 1 Int ('Pure ())))))

Int

Listing 22: An example of session type

We will conclude the implementation of the second step with an example in List-
ing 22. It represents a simple proc that receives an int from role zero and send the int
to role one. Haskell’s type system infers its session type, 'Free ('R 0 Int ('Free
('S 1 Int (Pure ())))), which corresponds to the behavior of the example. Ses-

39

sion typing can be done simultaneously and automatically while users are building the
Proc processes thanks to Haskell’s type inference.

For the third step, we can assume we have already gathered a type level list of session
types paired with its role identifier. The duality check algorithm is still the same. We
match different Proc programs pair-wise and check whether the projection of both session
types is complementary. The algorithm is easy to implement as the Haskell function, but
lifting the computation into type level is tricky. One of the obstacles is that type family
does not support higher-order type-level functions. We divide the problem into sub-
problems. We need to implement 1) a type family that converts a list of Session type to
a list of Session type pair 2) a type family that maps a function to list and combine the
result 3) a type family that includes projection, checking whether a pair of session types
are complementary. We combine the solutions to these problems and encapsulate them
into type class constraint. The constraint is satisfied only if the duality checked is passed
at the compile time.

5.2 SPar interpreter

5.2.1 Overview

SPar interpreter is a simulator that simulates a group of Proc programs in Haskell. It can
be considered as the simplest backend for evaluating SPar expressions. It records traces
of the executions and the final output values of each Proc programs in the system.

It focused on providing a reference implementation explaining the semantics of SPar
expressions, not on performance. Besides, the SPar interpreter served as a very useful
tool in the development of this project. We use it as a prototype to quickly verify whether
the computation produces the expected results. This feature is useful, especially in the
early stage of implementation or during debugging.

5.2.2 Implementation

The implementation of the SPar interpreter is standard. It is similar to the implementa-
tion of the scheduler we explained in the free monad section of the background chapter.
In essence, it is a round robin scheduler for a group of Proc programs.

A partial implementation can be seen in Listing 23. It takes a list of Proc as a param-
eter, and it maintains a state which is the combination of a message queue, a trace and a
list of output values. For the base case, the list is empty which means all processes has
exited, it returns the current trace and a list of output values. For the recursive case, its
pattern matches the first process at the beginning of the list. If the operation is Pure, it
will update the list of output values and call itself recursively on the tail of the list. If
the operation is an output action, i.e., Send, Select or Broadcast, it will update the
message queue with the corresponding message containing the sender, the receiver and
the value, then pop the head Proc and append its next step to the end of list of Procs,
and call the list recursively. If the operation is an input action, i.e., Recv or Branch, it

40

data MyState = MyState
{

outputValues :: [(Nat, String)],
trace :: [String],
messageQueue :: [(Nat, Nat, String)]

}

interpret :: [(Proc (), Nat)] -> State MyState ()
interpret [] = return ()
interpret (x : xs) = interp x xs

interp :: (Proc (), Nat) -> [(Proc (), Nat)] -> State MyState ()
interp (Pure value, role) xs = do

updateOutputValue role value
interpret xs

interp (Free (Send receiver value next), role) xs = do
updateMessageQueue (role, receiver, show $ interpCore value)
updateTrace "send"
interpret $ xs ++ [(next, role)]

interp p@(Free (Recv sender cont), role) xs = do
(x, y, v) <- getTopMessage
if x == sender && y == role

then do
popMessageQueue
updateTrace "recv"
let value = Lit (read v)
interpret $ xs ++ [(cont value, role)]

else
interpret $ xs ++ [p]

Listing 23: Partial implementation of the SPar interpreter

will first examine whether sender and receiver pairs match the pair from the message
at the top of the message queue. If so, it applies the continuation with the value in the
message, removes the message from the queue, removes the head of the list, moves the
result of applying continuation to the end of the list and calls the list recursively. If not, it
simply moves the head of the list to the end of the list without changing the value of the
head process and calls the list recursively. Because we have checked the duality of the
processes in the system, this guarantees that for any input action, the required message
will eventually appear at the head of the message queue in finite steps.

Also, the interpreter has a helper function that evaluates Core expressions. This
helper function is easy to write because operation on product or sum type has its own
mapping function in Haskell and for the Prim and Lit, we can get their underlying
Haskell implementation directly. As for Var, this constructor is not intended to be used

41

externally so we will not encounter it.

42

Chapter 6

SArrow: An Arrow interface for
writing SPar expressions

When trying to express more complex and interesting parallel patterns, such as the map
or reduce pattern, we realize SPar is too low-level. It is difficult to express simple com-
putations because of the overheads of expressing communication patterns by hand.

To solve this issue, we draw inspirations from the Arrow interface, in particular from
[4] where they use the Arrow interface to do parallel programming in Haskell. We intro-
duce SArrow; an Arrow interface for writing SPar expressions.

SArrow is an Arrow interface for writing SPar expressions. With help from SArrow,
users can use canonical arrow combinators to write algorithms without writing any ex-
plicit communication, and gain parallelized algorithms for free.

6.1 Syntax

data Pipe a b = Pipe
{ start :: Nat
, cont :: a -> Proc
, env :: Map Nat Proc
, end :: Nat
}

type SArrow a b = Nat -> Pipe a b

instance Arrow SArrow where
instance ArrowChoice SArrow where

Listing 24: Definition of SArrow

The simplified syntax of SArrow can be found in Listing 24. Pipe a b data struc-
tures are the essential component of SArrow. It regards computation as a pipe where

43

data with type a goes into the pipe and data with type b get out of the pipe. Internally,
it’s a record type of four fields. start field identifies the process where the input data
is received. cont field has the type a -> Proc, which is a continuation waiting for the
input data produced by the last pipe. env represents a group of Procs interacting inside
the pipe to produce the output data; in other words, it is the parallel computation. end
is the identification of the process that produces the output data in the end. We can re-
trieve the corresponding process by a lookup in env with the key end. The returned Proc
returns data with type b.

SArrow is a type synonym of Nat -> Pipe a b. It consumes Nat which means the
identifier of a process and output Pipe a b. The reason why we use Nat as the only
parameter is to ensure that processes names are not duplicated. It will be explained more
thoroughly in Section 6.3.

6.1.1 Arrow interface

SArrow is an instance of the Arrow typeclass as well as ArrowChoice type class. For
example, the type signature of the combinators >>>, |||, &&& and arr are shown below.
The main difference between their type signatures and the usual Arrow interface is that
in the arr, the function is wrapped with Core. In general, it captures the same mean-
ing as the usual Arrow interfaces. Implementation details of these combinators will be
explained in Section 6.2.

(>>>) :: SArrow a b -> SArrow b c -> SArrow a c
arr :: Core (a -> b) -> SArrow a b
(|||) :: SArrow a c -> SArrow b c -> SArrow (Either a b) c
(&&&) :: SArrow b c -> SArrow b c' -> SArrow b (c, c')
(***) :: SArrow b c -> SArrow b' c' -> SArrow (b, b') (c, c')

As an example, we will illustrate some typical computation patterns used in parallel
computing.

Figure 6.1: Visualization of the branching pattern [23]

First of all, the branching pattern illustrated by Figure 6.1 is equivalent to an expres-
sion formed by ||| combinators, where the data constructor Left leads to one compu-
tation path and the data constructor Right leads to another computation path. It seems
to be a simple pattern, but it is useful when composed with other more complex patterns.
We will use an example to illustrate this at the end of this section.

44

(a) Visualization of the fork-join pattern [23]
(b) Fork-Join pattern for divide-and-conquer
algorithms [23]

Figure 6.2: Fork-join pattern and divide-and-conquer algorithms

Secondly, the fundamental building block, the fork-join pattern illustrated by Fig-
ure 6.2a can be expressed by &&& combinator. The SArrow produced by &&& produces
a tuple as output by collecting the computation result of the main thread and the forked
thread and also acts as a synchronization point.

Figure 6.3: Visualization of parallel map [23]

Thirdly, the familiar parallel map pattern illustrated in Figure 6.3 is also a candidate
to be expressed in SArrow. The code sample is in Listing 25. pmap splits the input a into
4 chunks using the splitting function s, applied the elemental function f and the arrow
combinator *** in parallel and finally use the collecting function c to collect the results.
Usually, the input a is a list and s splits the list into four equal chunks. The size of the
tuple determines the degree of parallelism.

Fourthly, we can apply a similar logic to express the parallel reduce pattern shown in
Figure 6.4. The code sample is in Listing 26. The result of parallel reduce has similar type

45

pmap :: SArrow a b
-> SArrow a (a, (a, (a, a)))
-> SArrow (b, (b, (b, b))) b
-> SArrow a b

pmap f s c = s >>> (f *** (f *** (f *** f))) >>> c

Listing 25: Parallel map in SArrow

Figure 6.4: Visualization of parallel reduce in SArrow [23]

signature as the collecting function in pmap so it is often used with the pmap function. We
use nested tuple (a, (a, (a, a))) to represent a sized array of data. The helper
function transforms the array representation of data into a form so that we apply the
reduce function r to the elements pair-wise and parallel.

Finally, a more complex pattern can be expressed compositionally from simpler pat-
terns expressed in SArrow. We use a typical divide-and-conquer algorithm implemented
with fork-join as an example. Figure 6.2b shows divide-and-conquer algorithms with 2-
ways and 3-levels of fork-join. The algorithm in SArrow is in Listing 27. The divide-and-
conquer pattern can be built recursively in Haskell. For the base case, we simply apply
the basic computation. Otherwise, we first call split and then call the function recursively
with the level decremented by one and, in the end, call the merge to combine the results.
Every expression in the function definition is connected using arrow combinators. A 3-
level divide-and-conquer algorithm is constructed by passing 3 to the function resulting
in an algorithm with 23 = 8-way parallelism.

Also, the divide-and-conquer parallel pattern can be optimized when combining with
the branching pattern. The branching pattern allows us to add shortcuts to the pattern
(illustrated in the Figure 6.5, red lines represent the alternative computation path pro-
vided by branching patterns). The shortcut gives us the ability to decide whether to do
local computation or split into multiple subtasks depending on the input size. When the
input size is small, the overhead of the latter usually outweighs its parallelism. Adding
the simple branching pattern results in a pattern that is adaptive to various input sizes

46

preduc :: SArrow (a, a) a -> SArrow (a, (a, (a, a))) a
preduc r = assoc >>> (r *** r) >>> r
where
assoc = (arr Id *** arr Fst) &&& (arr Snd >>> arr Snd)

Listing 26: Parallel reduce in SArrow

divConquer
:: Int
-> SArrow a b
-> SArrow a (a, a)
-> SArrow (b, b) b
-> SArrow a b

divConquer 0 baseFunc _split _merge = baseFunc
divConquer level baseFunc split merge =

split
>>> (divConquer (level - 1) baseFunc split merge

*** divConquer (level - 1) baseFunc split merge
)

>>> merge

twoWayThreeLevelDq = divConquer 3

Listing 27: 2-ways and 3-levels divide-and-conquer algorithm in SArrow

with better performance.

The implementation demonstrates the power of implementing SArrow as a domain-
specific language embedded in Haskell. We make full use of Haskell features, i.e. high or-
der functions and polymorphic functions to construct expressive, composable and
generic computation patterns.

More examples of algorithms formed by SArrow, e.g. dot product or merge sort are
shown in the Section 8.

6.2 Implementation of arrow combinators

In this chapter, we will present naive implementation, and the optimized solution is in-
troduced in the next section.

Kleisli arrow has the same type as the second parameter of the monadic bind. The
intuition why SArrow is an instance of Arrow comes from the Kleisli arrow of a monad
is an instance of Arrow class (shown in Listing 28). The cont field in the Pipe has a
similar type signature as the runKleisli field in the Kleisli arrow. From the previous
section, we have shown that Proc is a monad, so Pipe is just an extended version of
Kleisli arrow where computations in Pipe usually finish in one of the processes stored in

47

Figure 6.5: Combination of branching pattern and divide-and-conquer pattern

env instead of finishing at cont like Kleisli arrow. Intuitively, SArrow, a function from
the role to Pipe, should be an instance of Arrow since Pipe can be made into an arrow
instance and functions compose.

The essential issue when implementing arrow combinators is how to connect one
Pipe by another Pipe. The first problem we need to address is how to deal with the
cont in the tail Pipe. We know that only one cont field exists in the resulting Pipe
and it must be that from the head Pipe. For the cont field in the tail Pipe, we append
the action: receive from end in the first Pipe to the beginning of it by monadic binding.
We then store the resulting Proc expression in the new env. We also extend the Proc
corresponding to the end in the head Pipe with action: send to the start role defined
in the tail Pipe. Finally, the new env is formed by merging the env from the head Pipe
and the env from the tail Pipe. When there are duplications of role identifications, we
compose them using the monadic bind. The start field in the resulting Pipe is the same
as that from the head Pipe and the end field will be set the same as that in the tail Pipe.

We can use the Pipe composing function to implement arrow combinators for SAr-
row. The implementation just applies the first SArrow to the input role and the second
SArrow to a new role. Usually, to avoid duplication of roles, the new role is set to be
the maximum role in the first Pipe + 1 and finally apply the Pipe composing functions
to both Pipe. A simplified code explanation can be seen in Listing 29. The rest of the
combinators can be implemented in a similar fashion.

48

newtype Kleisli m a b = Kleisli { runKleisli :: a -> m b }

instance Monad m => Arrow (Kleisli m) where
id = Kleisli return
(Kleisli f) . (Kleisli g) = Kleisli (\b -> g b >>= f)
arr f = Kleisli (return . f)
first (Kleisli f) =

Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d))
second (Kleisli f) =

Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c))

Listing 28: The implementation of arrow instance for Kleisli arrow of a monad

(>>>) :: (SArrow a b) -> (SArrow b c) -> (SArrow a c)
(>>>) leftArrow rightArrow start = compose firstPipe secondPipe
where
firstPipe = leftArrow start
secondPipe = rightArrow (end leftP + 1)

Listing 29: The simplified implementation of >>>

6.3 Strategies for optimized role allocation

From the last section, we know the number of roles in the system is directly related to
the number of processes in the final generated code. Hence, role allocation is an essential
part of generating efficient parallel programs.

In this section, we propose strategies for optimizing role allocation. We have two
goals in mind when optimizing; (1) we would like to reduce the number of roles (pro-
cesses) in the computation, since the overhead of thread creation and data transmis-
sion has negative impact on performance; (2) we want to avoid roles duplication when
we compose SArrows since role duplication means the different computations must be
merged in the same role and computations in the same thread are sequential.

An easy solution for the first goal would be to setup an upper bound on the number of
roles, and then cycle through this fixed bound when allocating new roles. Processes cor-
responding to duplicated roles can be simply merged using binds since Proc is a monadic
EDSL and duality check ensures binding will not cause deadlocks. However, this strat-
egy is not ideal since the duplication of roles will decrease the degree of parallelism in
the system.

The naive strategy used in Section 6.2 already satisfies the second goal. However, the
number of channels required and the number of roles in the system will grow exponen-
tially. In a divide-and-conquer algorithm, the number of channels increases from 10 to
120 and the number of roles increases from 6 to 36 when the level is increased from 1 to
3.

49

id
x : Role, a : Type

id : SArrow a a, x⇒ x

Figure 6.6: Role allocation for id

For illustration, we use inference rules to explain our proposed strategy for optimized
role allocations when composing SArrows. Please see Figure 6.6 as an example. x ⇒ x

means the computation starts with role x and ends with role x.

compose
e1 : SArrow a b, x⇒ y, e2 : SArrow b c, y ⇒ z

e1 >>> e2 : SArrow a c, x⇒ z

arr
f : Core (a→ b), x : Role
arr f : SArrow a b, x⇒ x

arrow choice: |||
e1 : SArrow a c, x⇒ y, e2 : SArrow b c, x⇒ z

e1 ||| e2 : SArrow (Either a b) c, x⇒ max(y, z)

arrow choice: +++
e1 : SArrow a c, x⇒ y, e2 : SArrow b d, x⇒ z

e1 +++ e2 : SArrow (Either a b) (Either c d), x⇒ max(y, z)

arrow: &&&
e1 : SArrow a b, x⇒ y, e2 : SArrow a c, (y + 1)⇒ z

e1 &&& e2 : SArrow a (b, c), x⇒ z

arrow: ***
e1 : SArrow a b, x⇒ y, e2 : SArrow a’ c, (y + 1)⇒ z

e1 *** e2 : SArrow (a, a’) (b, c), x⇒ z

Figure 6.7: Rules fo role allocations of different combinators

The rules for the rest of combinators are shown in Figure 6.7. Notice that for compose,
id, arr and ArrowChoice, we do not introduce any new roles; in other words, there is no
parallelization for these combinators. The reader may find it strange that we do not
intend on parallelizing arr combinator which lifts a sequential computation represented
by Core (a → b) into SArrow. It makes sense to introduce a new role to execute the
computation and hence parallelize computationally heavy tasks. We use this strategy
in the first place, but later, we found a more suitable strategy exists. This strategy is
not ideal because introducing new roles for simple functions will damage performance.
Also, another reason not to introduce a new role when encountering arr combinators is
that we gained function fusion for free. Simple function, i.e. fst, inject left, or snd, are
automatically fused into more complex user-defined functions.

For the class of combinators belonging to arrow choice, we do not introduce any new
role. The expressions at the left side and at the right side start with the same role x be-
cause when only one code path will be executed as the name choice suggested so we

50

should not use separate roles for two expressions that will never be executed simultane-
ously. In the end, we decided the computation end in the role max(y, z). Max guarantees
that there will not be role duplications when we compose expressions formed by Ar-
rowChoice combinators with other combinators. For the implementation, all processes
in both left and right SArrow expressions are wrapped inside a branch operation sepa-
rately. Assume max(y, z) = y, the process at the role y will be extended with actions that
receive data from min(y, z) = z role at its right branch. Finally, applying inject left and
inject right at left and right branches gives us an Either type as the output.

Finally, we decided that the right place to allocate new roles is &&& combinator. As
shown in the type signature, product types mean computation at both branches will both
be executed, and they are independent. To make sure that both computations are exe-
cuted simultaneously, we constraint that the right SArrow expression must start with a
role greater than the end role of the left SArrow expression. This ensures no role duplica-
tions, hence maximize parallelism. The combined expression ends in the end role of the
right SArrow expression instead of introducing an unnecessary new role. For the imple-
mentation, the process corresponding to end role z is extended with actions that receive
data from the end role y of the left process finally outputs a pair.

Even though from the implementation point of view, optimized role allocation is ad-
hoc and more difficult to implement because we need to consider composition by send-
and-receive as well as composition by local monadic bind. In contrast, the naive solution
in Section 6.2 only consider send-and-receive, so the code is symmetry for both left and
right roles. We believe the effort is worthy because, for a n-level divide-and-conquer
algorithms, the optimized role allocation strategies allocate 2n roles in total, which is the
same as the degree of parallelism. All the roles are used to maximize parallelism instead
of wasting valuable resources to create roles that merely transmit data.

Moreover, the optimized strategy presented in this subsection is not the only solu-
tion. For example, there is a strategy that only introduces new roles into the computation
graph when encountering a specific atomic function. Different strategies result in differ-
ent communication structures hence different kind of parallelisms. We should choose the
right strategy depending on the specific task.

6.4 Satisfaction of arrow laws

We have provided the implementation of SArrow combinators that is similar to the Ar-
row interface. However, the implementation is not enough to state that SArrow is an
Arrow. We will present a justification on basic arrow laws.

Figure 6.8 shows the rules of arrow laws. We include the subset of the laws that con-
tain the first combinator. The other half of the laws that contain the second combinator
can be proved by symmetry. first combinator is implemented as first = (*** id)
and α :: ((x, y), z) → (x, (y, z)) converts a pair of a pair of elements and an element to a
pair of an element and a a pair of elements.

We argue above equation holds if both sides of equation express the same computa-

51

arr(Id) >>> a = a (1)

a >>> arr(Id) = a (2)

(a >>> b) >>> c = a >>> (b >>> c) (3)

arr(f ; g) = arr(f) >>> arr(g) (4)

first(a) >>> arr(Fst) = arr(Fst) >>> a (5)

first(a) >>> arr(α) = arr(α) >>> first(first(a)) (6)

first(a >>> b) =first(a) >>> first(b) (7)

Figure 6.8: Arrow laws [24]

a >>> b

Id

a

Id

b

Id

Figure 6.9: Graphical representation of equation (7)

tion. Equation (1), (2) holds because lifting Id from Core to SArrow will not modify the
result of computation due to the semantics of Id. Equation (3) is the associativity rule
of >>>. Left side of the equation sends the output from a >>> b to the input of c while
right side sends the output of a to the input b >>> c. The communication structure might
change, but they both represent the same computation. Equation (4) is valid because
applying the input value to the composition of f;g is the same as applying the input to
f followed by a message passing (data communication could be local which means the
communication structure for both sides of equations are the same in this case) and then
applying it to g. One might claim that the left side is more efficient than the right side due
to the fusion depending on the role allocation strategy. Equation (5) holds because they
both represent a computation that takes an input pair and applies the function a to its
first position and returns the result. Right hand side of equation (7) represents a SArrow
expression that applies a on left position of input pair and applies Id on the right position
of input pair in parallel, collects the results and applies b on left position of input pair
and applies Id on the right position of input pair while left side fused a and b together
and applied them in one step hence there is only one join point. Figure 6.9 is a graphical

52

X

Y × Z

a

Id

α
X × Y
Z

X

Y × Z

X

Y × Z
α

X × Y
Z

a

Id

X × Y

X × Y
Z

X × Y

Id

Figure 6.10: Graphical representation of equation (6)

representation of equation (7). They represent the same computation. We can also derive
equation (6) from its Visualization (see in Figure 6.10).

From the above explanation, we gain intuition why the left and the right sides of
equations produce the same computation result. More importantly, since SArrow is an
abstract layer on top of a message-passing intermediate language, we should argue that
the underlying communication structures for both sides of an equation do not have er-
rors, i.e. there is no communication mismatched and computations are deadlock-free.
Progressing work from [10] can be adapted to show that there exists a global type for an
SArrow expression. The consequence is that SPar expressions for all participants beneath
a SArrow expression are typeable against the projection of this global type and therefore,
they are dual pair-wise indicating no communication errors.

6.5 Conclusions

The Arrow interface is the perfect interface to express general computation for this pro-
ject, not only because it is intuitive to understand and visualize, but also because its
combinators *** and &&& have a natural parallel interpretation.

In addition, SArrow makes hassle-free compilation from Par-Alg to SPar possible be-
cause Par-Alg is also an arrow expression and simply interpreting arrow combinators by
the SArrow implementations fills the gap between Par-Alg and SPar.

So far, we have introduced our interface for expressing computations. The remained
challenge is the code generation from SPar to a target platform. In the next chapter, we
will introduce one code generation backend to C. Once we achieve this, every computa-
tion in SArrow can be transformed into parallel C code automatically.

53

Chapter 7

Type-safe code generation from SPar

SPar has two components: Core representing the unit of computation and Proc as a skele-
ton of the communication. Naturally, the process of code generation from SPar should be
divided into two parts correspondingly. We choose to make the two parts independent
of each other so that it is possible to swap the code generation strategy of one component
without modifying another one.

The procedure of code generation is standard: transformation. We start our programs
in a high-level EDSL and run a series of transformations to a low-level EDSL. SPar ex-
pressions are converted to a low-level EDSL which is then transformed to an abstract
syntax tree (AST) of C [25]. The generated code is obtained by pretty printing the AST.

7.1 Instr: A low-level EDSL for channel communication

In Proc, we have high-level actions like select, broadcast and branch abstracting imple-
mentation details such as variable declarations, variable assignments, channel initializa-
tions, channel communication and channel deletion. Hence, we need to define an EDSL
containing instructions related to these low-level operations. We name it Instr. Programs
will be translated to sequences of Instr.

When we design Instr, we keep the simplicity in mind, so Instr is not dependent on
any specific target language. Any reasonable target language with a channel communi-
cation library can be easily used as a target from Instr.

7.1.1 Syntax and semantic

The definition of Instr is seen in Listing 30. Channel is our abstract representation
of channels in Instr. It is indexed by a type a from the reified type ReprType a. Reified
types give us information about the types of expressions at runtime. This type parameter
makes sure the value sent or received in this channel are of the correct type. This is
necessary because, for some target languages, the channels are typed. Similarly, type
parameters in Exp have the same functionality. Exp is just a wrapper of Core expressions.
In later stages, we will take care of the code generation of Exp. Instr defines the set of

54

data Channel a where
Channel :: CID -> ReprType a -> Channel a

data Exp a where
Exp :: Core a -> ReprType a -> Exp a

data Instr where
CInitChan :: Channel a -> Instr
CDeleteChan :: Channel a -> Instr
CSend :: Channel a -> Exp a -> Instr
CRecv :: Channel a -> Int -> Instr
CEnd :: Exp a -> Instr
CDecla :: Int -> ReprType a -> Instr
CAssgn :: Int -> Exp a -> Instr
CBranch :: Int -> Seq Instr -> Seq Instr -> Instr
CSelect :: Int -> Int -> Seq Instr -> Seq Instr -> Instr

Listing 30: The syntax of Instr in Haskell with accompanying low-level data types

statements that will be generated, and Exp represents the sequential computation, which
is a value that will be generated.

The semantics of Instr is similar to what its names suggest. CInitChan represents op-
erations that initialize a channel according to the given type and cid. CDeleteChan will
destroy a channel. CSend operation sends the value Exp a through the Channel. CRecv
action means the value received in the channel will be assigned to a variable whose post-
fix name is the int field. CEnd means the instruction exits with the value Exp a. CDecla
and CAssgn are instructions for variable declaration and assignment. The type of the
variable is determined by ReprType a, and the value is Exp a. CBranch and CSelect
are used to express conditional control flow of the Instr language. SPar actions like broad-
cast are built on top of these operations. For CBranch, the first field represents the value
of the Either type to be received via the channel, and two Seq Instrs represents the
sequence of Instrs in the left branch and the right branch. For CSelect, the first field
represents the variable containing the Either value, and the second field represents the
variable whose value is assigned by the end result of the instructions from either the left
branch or the right branch. The third and fourth fields represent the instructions in the
left and right branches respectively.

7.1.2 Representation types

SPar programs cannot be fully parametric since the target language for code generation
from SPar are usually less expressive, i.e., they do not treat function type a->b as a value,
and are less efficient in dealing with some certain forms of data, e.g. languages targeting
GPUs are usually more productive in dealing with arrays of floating point numbers while
slow when working with aggregate structures [26].

55

data ReprType a where
NumReprType :: NumType a -> ReprType a
LabelReprType :: ReprType Label
SumReprType :: ReprType a -> ReprType b -> ReprType (Either a b)
UnitReprType :: ReprType ()
ProductReprType :: ReprType a -> ReprType b -> ReprType (a, b)
ListReprType :: ReprType a -> ReprType [a]

Listing 31: The definition of representation types

constToCExpr :: ReprType a -> a -> CExpr
constToCExpr (NumReprType numType) v = numTypeToCExpr numType v
constToCExpr LabelReprType v = case v of
Le -> cVar "LEFT"
Ri -> cVar "RIGHT"

constToCExpr s@(ProductReprType a b) v = defCompoundLit
(show s)
[([], initExp $ constToCExpr a (fst v))
, ([], initExp $ constToCExpr b (snd v))
]

Listing 32: An example usage of reified type in the code generation

Hence, we need to restrict the set of types allowed in SPar. We achieve this using the
typeclass Repr and corresponding reified type ReprType (shown in Listing 31). Repr
determines the set of types allowed in SPar. Reified type ReprType will be used to alter
the behavior of code generation based on the type. This can be simply done by pattern
matching because reified types are values in Haskell [27]. To be more concrete, Listing 32
gives an example. constToCExpr is a function that handles code generation from con-
stant values to expressions in the C programming language. By pattern matching, we
vary the behaviors of code generation so that constants with different types have their
own way to be represented in C.

In conclusion, we allow the following types: numerical type like Float and Int, the
unit type (), the label type which is used in the code generation of select and branch and
the aggregate type: list, product and sum that are built recursively, to be expressed in
SPar.

7.2 Compilation from SPar to Instr

7.2.1 Transformation from Proc to Instr

As described in the previous section, Instr contains a data type called Exp which is a
wrapper of Core expressions. Compiling Core to Instr is hence not difficult. The chal-
lenge of compiling Core is mainly how to compile it to a specific target language. This

56

will be discussed in the next subsection.

In this section, we will explain how we transform operations in Proc to Instr. Gener-
ally speaking, each Proc operation is mapped to a sequence of actions in Instr. The trans-
formation algorithm from a Proc expression to a sequence of Instr can be implemented
easily by traversing Proc expressions, applying the mapping and collecting the results by
concatenation. This is an advantage of using the free monad technique to build the AST
because Proc expressions can be treated as data structures and traversing recursive data
structures can be easily done in Haskell. Also, operations like Recv which involves con-
tinuations whose type is Core a -> next in their constructors are treated differently
than those operations whose constructors only have a value type next. The latter is easy
to implement; we can simply call the traversing function. For the former, we have to pass
an expression whose type is Core a to the continuation to call the traversing function on
the result of applying a value to the continuation. The exact value of that Core expression
is not known at this stage, so we use the V ar constructor to build the expression. Passing
a unique variable to the continuation gives us next inexpensively, and we will define
where the value of variables come from, for each operation in Proc.

We have introduced the general principle to the readers. Now let us dig into details
of the translation rules for each operation.

• Pure. It is the base case in a free monad. Hence it is mapped to the CEnd instruc-
tion.

• Send. It is mapped to a sequence of three instructions. First of all, we declared a
temporary variable using CDecla and then assign the value that will be sent to this
variable using CAssgn and send the content of the variable via the specific channel.
The problem of how to make sure the same channel is used in a send-and-receive
pair will be discussed in the next sub section.

• Recv. It is the reverse of the send operation. Firstly, it declares a new variable
with CDecla and uses CRecv to assign the value received from the sender to this
variable. Notice that Recv has a continuation, we will pass the variable declared
in the first Instr to the continuation to traverse the Proc expression recursively as
discussed above.

• Select. It is a more complicated operation. Its constructor contains two continua-
tions: one for left branch and one for the right branch. Hence, for this instruction,
we need to declare two variables to be passed into the continuations. The value
of both variables is assigned by the Core expression, whose value is Either type.
Besides, we need to send a label indicating whether the execution of the left branch
or the right branch of the receiver is selected. The value of the label is determined
by the either value. Sending of the label is done by CSend. Finally, we call the
transforming function recursively on the left branch and right branch and combine
the results using CSelect.

• Broadcast. The mapping from Broadcast is similar to that of Select. The only
difference is that the former sends to a list of receivers while the latter sends to a

57

single receiver. So in this operation, we will have multiple CSend corresponding to
each receiver.

• Branch. It is the reverse of the Select operation. So it will use CRecv to receive a
label from the sender and call on two branches and finally use CBranch to collect
results.

7.2.2 Strategies for channel allocation

Channel allocation is important because correct allocation is essential in making sure the
correctness and deadlock-freedom of generated code. Besides correctness concerns, we
are also want to reduce the number of channels hence increase performance.

In the first iteration, inspired by the linearity of channels in the π calculus, we allocate
a one-time channel for each send-and-receive pair. All channels’ buffer size is one because
of the linearity. Send actions will initialize a channel and receive actions will destroy this
channel once they receive the value. We ensure the same channel is used for a pair of
a send action and a receive action. During the transformation, we use a map of queues
whose key is a pair of sender id and receiver id. When visiting the send action, it will
push the channel into the queue, and the corresponding receive operation will pop the
channel from the queue. Because we’ve ensured the duality of all processes in the system,
we can claim that the channel is right for each pair of sender id and receiver id. However,
we realize this strategy is complicated to implement and not resource efficient since too
many channels are initialized.

In the second iteration, we defined a more efficient and simple strategy. The buffer
size of all channels is still one due to the same reason about linearity. However, we
decided to only allocate one channel for a pair of sender and receiver. We will not destroy
the channel after the value has been received, and we will reuse the channel for the next
communication. When all processes have returned, we will destroy all channels at once.
For this strategy, we have simplified the state from a map of queues of channels to a map
of channels.

7.2.3 Monad for code generation

From the last two subsections, we need to maintain several states during the com-
pilation process. Hence we define a state monad to be used during the traversal. The
CodeGenState is the collection of states and it is shown in Listing 33. Each state plays
its own role in the code generation process. chanTable is the map we required during
the channel allocation. varNext represents the next variable id to used. It will increment
by one every time we declare a new variable. It helps us make sure the variable names
are unique. chanNext has a similar functionality ensuring the uniqueness of channel
names. dataStructCollect is the set of compound types we defined by traversal.

58

data CodeGenState = CodeGenState
{

chanTable :: Map ChanKey CID,
varNext :: Int,
chanNext :: CID,
dataStructCollect :: Set AReprType

}

newtype CodeGen m a =
CodeGen { runCodeGen :: StateT CodeGenState m a }
deriving (Functor,

Applicative,
Monad,
MonadState CodeGenState,
MonadIO)

Listing 33: States required during the traversal

7.3 Code generation to C: from Instr to C

The last piece of the jigsaw is compilation from a sequence of Instr to C. This is done by
transforming the sequence of Instr to a C AST. We used an open source library: language-
c [25] to represent C AST in Haskell and pretty-printing the C AST gives us the generated
code. This method can be generalized to any target language. As for the implementation
of channel communication in C, we used another open source library: chan [28] whose
internals are based on shared memory. In the following subsections, we will present some
of our design choices during this last step.

7.3.1 Representations of Core data type in C

The first challenge we face is how to represent data structures in C. For primitive data
types like Int or Float, a simple one-to-one mapping is sufficient. It is hard to deal with
algebraic data types in C. First of all, C does not support polymorphic types. Hence,
we choose to generate specific data types for every different compound data type even
though they have the same structure. The drawback of this approach is an explosion on
generated code size due to the duplication on data type declarations. We have a way to
name the generated data type to avoid name duplication. The naming simply reflects
the structure of the data types with its elemental type. For example, (Int, (Int, ())) is
converted to Prod-Int-Prod-Int-Unit and Either (Either () (Int, Int)) (Int, Int) is convert to
Sum-Sum-unit-Prod-int-int-Prod-int-int. In this project, all compound types are formed
by sum types and product types. The product type will be converted to a struct with two
fields in C. The sum type is represented by the tagged union type. The tagged union is
a struct with two fields. The value of the first field indicates whether it is a left value
or right value and the value of the second field is a union type containing either the

59

typedef enum Label {
LEFT, RIGHT

} Label;

typedef struct Prod_int_int {
int fst; int snd;

} Prod_int_int;

typedef struct Sum_unit_Prod_int_int {
Label label;
union {

int left; Prod_int_int right;
} value;

} Sum_unit_Prod_int_int;

Listing 34: Compound data type in C

left value or right value. We also implement a sorting algorithm based on the depth of
compound types so that all necessary data types have been defined before the definition
of the compound type. An example of what Either Int (Int, Int) will be converted to is
shown in Listing 34.

Another challenge is the representation of recursive types. From type theory, we learn
that a list of integers can be expressed as µa.() + Int × a. We might reuse the idea from
the last paragraph to generated recursive types in terms of sums and products. Hence a
list of Int will look like the code below.

typedef struct Sum_unit_Prod_int_a {
Label label;
union {

int left;
Sum_unit_Prod_int_a *right;

} value;
} Sum_unit_Prod_int_a

However, we believe expressing typical recursive data structures like a list of integers in
this way is bad for performance. C has a more efficient way to represent lists of integers
using arrays. So we decided to have two ways of representing recursive data structures.
For a set of specific recursive data structures, users can write their own representation to
exploit the advantages of the target language. For example, a list of integers is encoded in
C using a wrapper of pointer types (shown in Listing 35). This way is not very generic but
better for performance. For other types of recursive data structures where user does not
specify their optimized versions in C, we simply apply the method in the last paragraph
to encode them in C. This way is generic but not efficient.

60

typedef struct List_int {
size_t size; int * value;

} List_int;

Listing 35: Optimized representation of List in C

7.3.2 Compiling from Core to C

Var
JVar nK = vn

Lit
JLit valK = toC(val)

Fst
JaK = c

JFst ‘ap‘ aK = c.fst
Snd

JaK = c

JSnd ‘ap‘ aK = c.snd

Inl
JaK = c

JInl ‘ap‘ aK = {LEFT, c} Inr
JaK = c

JInr ‘ap‘ aK = {RIGHT, c}

Pair
JaK = c1, JbK = c2

JPair a bK = {c1, c2}

Id
JaK = c

JId ‘ap‘ aK = c
Const

JaK = c, JvK = b

J(Const v) ‘ap‘ aK = b

Prim
JaK = c

J(Prim fname fimpl) ‘ap’ aK = fname(c)

Figure 7.1: Rules for compilation from Core to C

Core has a concise syntax so it does not require too much work to write a function
that generates C expressions from Core expressions. Not surprisingly, the compilation is
a traversal of the Core expressions. The ap (apply) constructor is used with an expression
whose type is Core (a -> b) and another expression whose type is Core b. The code
generation for ap depends on the what the function expression is. The code generation
rule is explained by the inference rules shown in Figure 7.1. JaK means the C code gener-
ated by Core expression a. toC is the function that converts constant values in Haskell to
constant values in C.

• Var, Lit: Code generation of Lit simply converts Haskell values to its corresponding
C values. As for Var, it will be converted to a string literal composed of the variable
identity prefixed by ’v’.

• Fst, Inl, Pair. . . For Inl and Inr and Pair, we used C99 style to initialize struct
and union. The rule for generating the corresponding struct are explained in the
previous subsection. For Fst and Snd, we simply access the specific value using the
designator.

61

• Id, Const v: Code generation of Id constructor, is the same as the code generation
of the argument of the Id. Code generation of Const ignores the argument and use
the code generation of v expression instead.

• Prim: Prim constructor represents user-defined functions. The code generation for
function call of Prim is converted to function call by the name of the primitive func-
tion. Users can implement those functions in C and include them in the main gen-
erated file.

7.3.3 The structure of generated C code

We have covered the code generation algorithm for each process. We will now tackle
how the generated code is structured from a group of interacting processes representing
a parallel computation. For each process, we will generate its own C functions that take
no argument. We generate an additional C function for users to interact with generated
code by calling the function. This function will take a parameter as input data and return
the computation result. Inside, the function, it will spawn the same number of threads as
the number of roles in the system. Each thread will execute the code which is generated
from its corresponding Proc expression. In addition to that, the function will send the
input parameter to the starting role in the group of Proc to kick off the computation and
waiting for the ending role to send back the computation results. After it receives the
result and all the threads have returned, it will return the result. We called this function
proc0.

An example of the generated code is shown in Listing 36. The code contains one
process which received a list of int from proc0, sort the input by a user-defined function
and then send the result to proc0. We omit global channels declarations and data type
declaration for simplicity.

7.4 Conclusion

With the completion of code generation, we deliver the results we promised in the in-
troduction section. We have implemented an end-to-end procedure that will generate
low-level deadlock-free parallel code from an expressive high-level language embedded
with a flexible backend that can target multiple languages with ease. Now, it is time to
evaluate the performance of our achievement with quantitative measurements.

62

void proc1Rt()
{

List_int v0;
chan_recv_buf(c1, &v0, sizeof(List_int));
List_int v1;
v1 = sort(v0);
chan_send_buf(c2, &v1, sizeof(List_int));

}
void * proc1()
{

proc1Rt();
return NULL;

}
List_int proc0(List_int v0)
{

c1 = chan_init(1);
c2 = chan_init(1);
pthread_t th1;
pthread_create(&th1, NULL, proc1, NULL);
chan_send_buf(c1, &v0, sizeof(List_int));
List_int v1;
chan_recv_buf(c2, &v1, sizeof(List_int));
pthread_join(th1, NULL);
chan_dispose(c1);
chan_dispose(c2);
return v1;

}

Listing 36: An example of generated code

63

Chapter 8

Parallel algorithms and evaluation

In this section, we give an overview of how to use SPar for implementing parallel algo-
rithms, benchmarking the performance of the generated code for various computations
and analyzing the design choices of the project.

8.1 Parallel algorithms

The biggest advantage of writing parallel programs in SArrow is that the user can express
the computation similar to the sequential one, without worrying about any low-level
primitives for parallel computation. We will give a recommended recipe of expressing
computations in SArrow and a concrete example for the explanation.

8.1.1 Four steps to write parallel algorithms in SArrow

Usually, divide-and-conquer algorithms are the best candidates for SArrow to parallelize.
The recipe is below:

1. Understand the algorithm: We recommend programmers to express the algorithms
using recursion schemes (see Section 2.2) Recursion schemes is recommended be-
cause it separates the split function, the merge function and the structure of divide-
and-conquer from each other, so it helps you familiarize with the building blocks
of the divide-and-conquer algorithms, i.e., the data structures involved, the type
signature of the split function, the type signature of merge functions and their im-
plementation.

2. Systematic parallelization: In the first iteration, we can express the split, merge
functions and other necessary helper functions in terms of SArrow, by combing
arr constructor and Prim constructor. Every computation wrapped by arr with
Prim is considered to be sequential. We will substitute them into high-level par-
allel patterns provided by SArrow. For example, divide-and-conquer algorithms
can be parallelized by divConquer (see Listing 27) helper functions. Notice that
the number determining the level of a parallelized divide-and-conquer algorithm
should be set accordingly by the number of cores of the execution machine.

64

3. Specific parallelization: The above step is generic and can be applied to any divide-
and-conquer algorithm. In this stage, what will be done is determined by the spe-
cific implementation. The programmer should inspect the implementation of these
functions wrapped by arr with Prim, to see whether there is any parallelism to
exploit. If so, the programmer should rewrite these functions using the parallel
patterns provided by SPar or arrow combinators. For example, the split function
of the Quickhull [29] to solve convex hull problems will use a for-loop to find the
point whose distance to the line is at the maximum. This step can be expressed by
the parallel map-and-reduce pattern (see Listing 26). Programmers can apply this
step iteratively until all possible sources of parallelism are exploited, or program-
mers think it is enough. All sequential computation is left in the form: arr with
Prim.

4. Wrap up: Before code generation, the programmer needs to implement all the Prim
functions in terms of the target language. In the scope of this project, programmers
will write them in C and create a header file. The generated code will include the
header file, and from then on, programmers obtain the parallelized version of the
algorithm that is guaranteed to be deadlock-free.

8.1.2 Example: Merge sort

We will show how to use the framework to generate parallel code by expressing merge
sort on a list of integers.

split :: SArrow [Int] (Either (Either () Int) ([Int], [Int]))
split = arr $ Prim "split" undefined

merge :: SArrow (Either (Either () Int) ([Int], [Int])) [Int]
merge = arr $ Prim "merge" undefined

sort :: SArrow [Int] [Int]
sort = arr $ Prim "sort" undefined

Listing 37: The code for atomic functions

1. The first step is to understand the algorithm. The merge sort is a famous divide-
and-conquer algorithm. It splits the list into two halves, applies the algorithm to
sub-lists recursively, and finally merges the sub-lists in order. From the above de-
scription, we identify three atomic functions split, merge and the base function
sort. We need to define the type signatures for these functions to understand what
data structures are involved. For the split function, it will take a list of integers
[Int] as an input and output a pair of lists of integers (Int, Int) as an output.
To deal with the case where the input list cannot be split i.e. when the list is empty
or a singleton list, we wrap the output pair with an Either type to deal with these
situations. So the output type is Either (Either () Int) ([Int], [Int])
Accordingly, the type signature of merge is the reverse of the split. sort type

65

signature will be the same as the merge sort: [Int] -> [Int]. Finally, we wrap
them using Prim and arr. The code written for the first step is shown in Listing 37.

mergesort :: Int -> SArrow [Int] [Int]
mergesort = divConq sort split merge

divConq ::
SArrow a b

-> SArrow a (Either c (a, a))
-> SArrow (Either c (b, b)) b
-> Int
-> SArrow a b

divConq baseFunc _ _ 0 = baseFunc
divConq baseFunc alg coalg x =
alg

>>> (arr Inl
||| (((arr Fst >>>

divConq baseFunc alg coalg (x - 1))
&&& (arr Snd >>>

divConq baseFunc alg coalg (x - 1))
)

>>> arr Inr
)

)
>>> coalg

Listing 38: Construction of the algorithm using the parallel pattern and atomic functions

2. The second step is combining these atomic functions in the first step in a parallel
pattern that we define. Since we are using our framework to parallelize a merge
sort, we will use the divide-and-conquer parallel pattern. The result of applying
the pattern is an expression whose type is Int -> SArrow [Int] [Int] where
the first parameter determines the number of levels of the divide-and-conquer al-
gorithm. In this case, we will use our refined version of the divide-and-conquer
parallel pattern that supports shortcut. The code written for the second step is
shown Listing 38. For the completeness, we also include the implementation of the
parallel pattern. The polymorphic parallel pattern can be used to generate non-
polymorphic code.

3. The third step is optimizing the atomic functions. Since split and merge are not
very intensive computation. We will not modify anything for this step.

4. Up to this step, we have finished everything we need to do in the Haskell side to
express computation. First of all, we will show how to generate C code from a
SArrow expression using the framework. Secondly, we will talk about how to com-
plete the implementation for the atomic functions. In the library, we have defined a

66

function codeGen that takes an SArrow expression as an input and generates three
files in the specified path. The first file is called func.h, which contains declarations
of all atomic functions. The second file is data.h, which includes the definition of
data structures involved in C. The third file is code.c, which includes all the nec-
essary headers like the standard library and channel library and generated code.
The structure is similar to what we described in Section 7.3.3. The last job to do is
to complete the implementation of the functions declared in the func.h. After that,
we use the generated code in whatever way we want. The structures are shown in
Table 8.1.

0: !<1, [Int]>.?(4, [Int]).end
1: ?(0,[Int]).Br<[2,3,4],

{L: !<4,Either (Either () Int) ([Int],[Int])>.end,
R: !<3,([Int],[Int])>.Br<[2],

{L: !<2,Either (Either () Int) ([Int],[Int])>.end,
R: !<2,([Int],[Int])>.!<2,[Int]>.end}>
.end}>

.end
2: &(1,

{L: end,
R: &(1,

{L: ?(1,Either (Either () Int) ([Int],[Int])).end,
R: ?(1,([Int],[Int])).?(1,[Int]).end}).!<4,[Int]>
.end})

.end
3: &(1,{

L: end,
R: ?(1,([Int],[Int])).Br<[4],

{L: !<4,Either (Either () Int) ([Int],[Int])>.end,
R: !<4,([Int],[Int])>.!<4,[Int]>.end}>
.end})

.end
4: &(1,

{L: ?(1,Either (Either () Int) ([Int],[Int])).end,
R: &(3,

{L: ?(3,Either (Either () Int) ([Int],[Int])).end,
R: ?(3,([Int],[Int])).?(3,[Int]).end})
.?(2,[Int]).end})

.!<0,[Int]>.end

Listing 39: Inferred session types

In addition to the generated code, we also show the inferred session types of each
role in the system for the merge sort at level two in Listing 39. We can call the function
runType on any SArrow expression to get a list of session types. The session types are

67

pretty printed. The original representation of session types is a free monad as explained
in Chapter 4. br is a syntax sugar for a series of select (see in Section 4.3.2).

8.2 Benchmarks

int main()
{

int * tmp = randomList(1048576);
List_int a = (List_int) {1048576, tmp};
double start = get_time();
proc0(a);
double end = get_time();
printf("%lf\n", end - start);
return 0;

}

Listing 40: The main function for benchmark

We have defined a specific code generation function for benchmarking the parallel
algorithms. The main difference from the normally generated code is the main function.
The main function will create a random source data by the specified input size, record
the execution time and output the execution time. The main file is shown in Listing 40.

For each benchmark of a divide-and-conquer SArrow, we will generate the code for
a range of sizes and a different number of recursion unrollings representing the level of
the algorithm. We will record the execution time on high-performance computer.

The compiler we used is gcc (version 9.1.0) with the default optimizations. The plat-
form on which we run our benchmarks is a 32-core high throughput computing machine
provided by Imperial College London ICT services.

We have implemented three benchmarks to run.

1. MergeSort: It is one of the most classic divide-and-conquer algorithms. Its details
are shown in the above subsection.

2. DotProduct: It computes the inner product of two vectors whose sizes are the
same and of the form 2n.

3. IntCount: It counts the number of occurrences of integer given a list of integer
ranging from 0 to 50. split divides the list by halves. count will count occur-
rences of integers and output a list of tuple where the first integer is the value and
the second integer is the number of occurrences of that value. union will unite two
sub-lists by summing up the occurrence.

68

8.2.1 Evaluation

We will demonstrate the execution time against different sizes for different levels of
divide-and-conquer algorithms as well as the speedup of the parallel algorithms against
the sequential algorithm.

Figure 8.1 shows the result for different cases running on a 32-core machine. For each
level k, we will generate a total number of 2k threads to execute the parallel computation.
The x-axis indicates the size of the input where 22 means the input is a list of 222 integers
or a pair of a list of 222 integers. The execution time is measured in seconds and the
speedup is computed by tsequential

tparallel
.

For MergeSort, the speedup increases as the size increases, which is shown by the
increasing graph from Figure 8.1a. Different levels will have a varying degree of a perfor-
mance boost on growing sizes. For DotProduct, this trend holds for up to size 26. When
the size is 26, we witness a sudden decrease in speedup at various levels. The reason for
this abnormal behavior is yet to be studied. In term of IntCount, the speedup increases
against increasing sizes when the level is big enough. The degree of speedup increase
at the large level is also the most obvious for IntCount among the three benchmarks.
This can be observed by the two slopes when the level is equal to seven and eight. Unex-
pected behavior is the line when the level is equal to six. Its speedup is nearly as small as
level = 1. Also, the overproduction of threads has positive impacts on the speedup. The
best level is seven which contains 128 threads. It gives a 7.5X speedup for MergeSort,
8X speedup for DotProduct and nearly 12X speed up for IntCount when the size is
226. In general, a greater number of threads has better speedup for greater sizes. The
level that gives the best performance depends on the number of cores of the machine.
The relationship is not merely one-to-one, and from the experiment, we recommend to
overproduce the number of threads compared to the number of cores. However, the per-
formance will not be significantly increased and even slower if the level is too big (see
the comparison of speedup line when the level is equal to seven and eight). Also, one
may argue that speedup around 10X is not a great achievement on a 32-core machine.
However, the expectation of a 30X speedup is not realistic because of Amdahl’s law: the
sequential part of the algorithm ends up dominating the execution time. For example,
the split and merge functions in MergeSort are not parallelized in our implementation.
What the law tells us is that if these operations take up p% of the sequential execution
time, the theoretical speedup is limited to at most 1

p% [30]. To be more specific, if these
operations account for 5% of total time, then the limit of speedup is at most 1

0.05 = 20X no
matter how many processors are used. The sequential execution becomes the bottleneck.
We have not investigated too much on optimization of sequential code since this is not
the scope of the project. But the speedup could be more notable once optimizations for
the sequential code were done. In general, an algorithm where the inherently sequential
part take less time will achieve higher speedups.

69

typedef enum Label {
LEFT, RIGHT

} Label;
typedef struct List_int {

size_t size; int * value;
} List_int;

typedef struct Sum_unit_int {
Label label;
union {

int left; int right;
} value;

} Sum_unit_int;
typedef struct Prod_List_int_List_int {

List_int fst; List_int snd;
} Prod_List_int_List_int;

typedef struct Sum_Sum_unit_int_Prod_List_int_List_int {
Label label;
union {

Sum_unit_int left; Prod_List_int_List_int right;
} value;

} Sum_Sum_unit_int_Prod_List_int_List_int;

(a) data.h

#include "data.h"
List_int merge(Sum_Sum_unit_int_Prod_List_int_List_int);
Prod_List_int_List_int split(List_int);
List_int sort(List_int);

(b) func.h

#include<stdint.h>
#include<stdlib.h>
#include<chan.h>
#include<pthread.h>

#include"data.h"
#include"func.h"

List_int proc0(List_int a) {

}

(c) code.c

Table 8.1: The complete structure of the generated c code. Omit the implementation of
code.c

70

●

● ●

●

●

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

22 23 24 25 26

size

sp
ee

dU
p

●

1

2

3

4

5

6

7

8

(a) Merge sort: speedup

0

3

6

9

22 23 24 25 26

size

tim
e

0

1

2

3

4

5

6

7

8

(b) Merge sort: execution time

●

●

●

●

●

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

22 23 24 25 26

size

sp
ee

dU
p

●

1

2

3

4

5

6

7

8

(c) Dot product: speedup

0.0

0.1

0.2

0.3

0.4

22 23 24 25 26

size

tim
e

0

1

2

3

4

5

6

7

8

(d) Dot product: execution time

● ●
●

●
●

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

22 23 24 25 26

size

sp
ee

dU
p

●

1

2

3

4

5

6

7

8

(e) Int count: speedup

0.0

0.1

0.2

0.3

22 23 24 25 26

size

tim
e

0

1

2

3

4

5

6

7

8

(f) Int count: execution time

Figure 8.1: Benchmarks results
71

Chapter 9

Conclusions and future works

9.1 Conclusions

Our goal was to implement a backend for code generation for Alg parallel language us-
ing a session-typed intermediate language. We not only achieved this but also devel-
oped a high-level framework for parallel computation. The most important result of the
project is a framework that generates parallel C code along with local types describing
the communication patterns by interpreting data-flow as communication, from Arrow
based high-level expressions that can be easily formed, composed and manipulated by
users with the help of the host language: Haskell.

Specifically, we developed SPar: a session-typed free monad EDSL for message pass-
ing concurrency (see in Chapter 4) as our intermediate language. Also, we developed
tools like local type inferrer to help us reason about the underlying communication struc-
ture with external tools by inferring session types from SPar expressions as well as a
simulator to aid experimenting and act as a reference semantics (see in Chapter 5). On
top of this, we draw inspirations from the Arrow interface and developed SArrow: an
interface for writing SPar expressions (see in Chapter 6) to form complex computation
patterns such as parallel divide-and-conquer and parallel map in a composite way. We
designed a code generation backend from SPar to C. The core of the backend is Instr : a
low-level EDSL for channel communication we created in Section 7.1. Code generation
pipeline benefits from Instr’s ease of transformation to a C AST. Finally, our benchmarks
(see in Chapter 8) show that our framework can generate efficient parallel code and gain
a notable performance boost compared to the sequential code. The best case gives us
a speedup of nearly 12X when the input size is 226 integers. In Section 8.1, we use a
concrete example: expressing parallel merge sort in our framework to demonstrate that
users can express computation in SArrow in a similar way as to how they would write
for the sequential version and gain high-performance parallel code automatically.

In conclusion, with the recent release of AMD’s latest generation of consumer CPUs
featuring a processor with sixteen physical cores, Moore’s law will be replaced by the
addition of cores. No need to mention the area of high-performance computing where
CPU with 64 cores are common. In contrast, most of the programmers have only written
sequential code, and most of the algorithms about which students learn are not parallel.

72

We hope this project can contribute its force on parallelism on CPUs, encouraging more
and more programmers to take advantages of modern computing architectures.

9.2 Future work

There are many interesting future works that we would like to implement. We will select
some of them to introduce:

• Optimization for benchmark. Because of the time constraints, there are lots of
space to optimize the generated code. We should do more fine-grained profiling on
the generated code. It is interesting to use tools like EzTrace to trace and visualize
the execution of all the threads. More importantly, reducing the size of the gener-
ated code by eliminating common sub-expressions will be useful. At the moment,
there is much code duplication for communication among different roles. The only
difference is that the role of participating in the communication. The size of gen-
erated code can be reduced a lot if we can extract the common part to a function
parameterized by the roles participating.

• Integrated user experience. As demonstrated in the evaluation chapter, users need
to write the computation using the EDSL in Haskell and then generate C code.
From then on, they need to finish the implementation of their atom functions in
C. Finally, they can run the generated code with their data in C. The user experi-
ence is isolated when you have to write Haskell first and manually completed the
generated code and run them in C. Instead, it will be great if we can provide an
integrated user experience where the user does everything in Haskell from writ-
ing the high-level expression to collect computation results. This is possible thanks
to packages like inline-C and foreign language interface in Haskell. User experi-
ence will be greatly improve if we can offer an interface in Haskell that looks like
run :: SArrow a b -> (a -> b). This function will take a SArrow expres-
sion and produces a function that will convert a Haskell value into C data and
execute the computation in C and copy back the C output by foreign language in-
terface to Haskell. From the user pointer of way, it can be used the same as a normal
Haskell function with type a -> b. Forming a closed loop in Haskell would give
us the best user interface and automate a large amount of boilerplate work.

• Fine-grained control for strategies in role allocation. We talked about how differ-
ent role allocation strategies give us different parallel computation. It will be great
if we parameterize the SArrow with role allocation strategies and adding ways to
specify what strategy will be used at a different stage of the computation. This
also opens the possibility for users to implement their strategies to customize their
parallel computation tasks.

• More customizations. Similar to customized role allocation strategies, we can
even have customized representation of sequential computation since the separa-
tion of the communication EDSL and the sequential computation EDSL. This can be

73

done by parameterizing Core in Proc. This kind of work requires well-designed
interfaces.

74

Bibliography

[1] M. I. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation. Pit-
man London, 1989.

[2] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Oluko-
tun, “A Heterogeneous Parallel Framework for Domain-Specific Languages,” in
2011 International Conference on Parallel Architectures and Compilation Techniques,
(Galveston, TX, USA), pp. 89–100, IEEE, Oct. 2011.

[3] R. Li, H. Hu, H. Li, Y. Wu, and J. Yang, “MapReduce Parallel Programming Model:
A State-of-the-Art Survey,” International Journal of Parallel Programming, vol. 44,
pp. 832–866, Aug. 2016.

[4] M. Braun, O. Lobachev, and P. Trinder, “Arrows for Parallel Computation,”
arXiv:1801.02216 [cs], Jan. 2018.

[5] M. Coppo, M. Dezani-Ciancaglini, L. Padovani, and N. Yoshida, “A Gentle Intro-
duction to Multiparty Asynchronous Session Types,” in Formal Methods for Multicore
Programming (M. Bernardo and E. B. Johnsen, eds.), vol. 9104, pp. 146–178, Cham:
Springer International Publishing, 2015.

[6] J. Hughes, “Generalising monads to arrows,” Science of Computer Programming,
vol. 37, pp. 67–111, May 2000.

[7] “Haskell/Understanding arrows - Wikibooks, open books for an open world.”
https://en.wikibooks.org/wiki/Haskell/Understanding_arrows.

[8] “Tacit programming,” Wikipedia, Jan. 2019. Page Version ID: 879102751.

[9] C. Elliott, “Generic functional parallel algorithms: Scan and FFT,” Proceedings of the
ACM on Programming Languages, vol. 1, pp. 1–25, Aug. 2017.

[10] D. Castro and N. Yoshida, “Algebraic Multiparty Protocol Programming,” Under
submission, p. 37.

[11] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes, I,” Information
and Computation, vol. 100, pp. 1–40, Sept. 1992.

[12] N. Ng, J. G. de Figueiredo Coutinho, and N. Yoshida, “Protocols by Default,” in
Compiler Construction (B. Franke, ed.), Lecture Notes in Computer Science, pp. 212–
232, Springer Berlin Heidelberg, 2015.

75

[13] “Message Passing Interface.” https://www.mcs.anl.gov/research/projects/mpi/.

[14] D. Orchard and N. Yoshida, “Session types with linearity in Haskell,” Behavioural
Types: from Theory to Tools, p. 219, 2017.

[15] K. Claessen, “A poor man’s concurrency monad,” Journal of Functional Programming,
vol. 9, no. 3, pp. 313–323, 1999.

[16] “Control.Monad.Cont.” http://hackage.haskell.org/package/mtl-
2.2.2/docs/Control-Monad-Cont.html.

[17] S. Marlow, R. Newton, and S. Peyton Jones, “A monad for deterministic paral-
lelism,” in ACM SIGPLAN Notices, vol. 46, pp. 71–82, ACM, 2011.

[18] “Free monad in nLab.” https://ncatlab.org/nlab/show/free+monad.

[19] C. contributors, “Cats: FreeMonads.” https://typelevel.org/cats/datatypes/freemonad.html.

[20] J. Lange and N. Yoshida, “Verifying Asynchronous Interactions via Communicating
Session Automata,” arXiv:1901.09606 [cs], Jan. 2019.

[21] J. Svenningsson and E. Axelsson, “Combining deep and shallow embedding of
domain-specific languages,” Computer Languages, Systems & Structures, vol. 44,
pp. 143–165, Dec. 2015.

[22] “Data.Typeable.” http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-
Typeable.html.

[23] M. D. McCool, A. D. Robison, and J. Reinders, Structured Parallel Programing: Patterns
for Efficient Computation. Amsterdam: Elsevier, Morgan Kaufmann, 2012.

[24] R. Atkey, “What is a Categorical Model of Arrows?,” Electronic Notes in Theoretical
Computer Science, vol. 229, pp. 19–37, Mar. 2011.

[25] “Language.C.” http://hackage.haskell.org/package/language-c-
0.8.2/docs/Language-C.html.

[26] T. L. McDonell, M. M. Chakravarty, V. Grover, and R. R. Newton, “Type-safe run-
time code generation: Accelerate to LLVM,” ACM SIGPLAN Notices, vol. 50, no. 12,
pp. 201–212, 2016.

[27] “Reified type - HaskellWiki.” https://wiki.haskell.org/Reified_type.

[28] T. Treat, “Pure C implementation of Go channels. Contribute to
tylertreat/chan development by creating an account on GitHub.”
https://github.com/tylertreat/chan, June 2019.

[29] C. B. Barber, D. P. Dobkin, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algo-
rithm for convex hulls,” ACM Transactions on Mathematical Software (TOMS), vol. 22,
no. 4, pp. 469–483, 1996.

[30] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference, pp. 483–485, ACM, 1967.

76

Appendix A

Examples of generated code

A.1 Merge sort

This is the generated code.c at level 3 for merge sort.
1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <chan . h>
4 # include <pthread . h>
5 # include " data . h"
6 # include " func . h"
7 chan_t * c1 ;
8 chan_t * c2 ;
9 chan_t * c3 ;

10 chan_t * c4 ;
11 chan_t * c5 ;
12 chan_t * c6 ;
13 chan_t * c7 ;
14 chan_t * c8 ;
15 chan_t * c9 ;
16 chan_t * c10 ;
17 chan_t * c11 ;
18 chan_t * c12 ;
19 chan_t * c13 ;
20 chan_t * c14 ;
21 chan_t * c15 ;
22 chan_t * c16 ;
23 chan_t * c17 ;
24 void proc1Rt ()
25 {
26 L i s t _ i n t v0 ;
27 chan_recv_buf (c1 , &v0 , s i ze of (L i s t _ i n t)) ;
28 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v1 ;
29 v1 = s p l i t (v0) ;
30 Label v2 ;
31 v2 = v1 . l a b e l ;
32 chan_send_int (c2 , v2) ;
33 chan_send_int (c3 , v2) ;
34 chan_send_int (c4 , v2) ;
35 chan_send_int (c5 , v2) ;
36 chan_send_int (c6 , v2) ;
37 chan_send_int (c7 , v2) ;
38 chan_send_int (c8 , v2) ;
39 Sum_unit_int v3 ;
40 P r o d _ L i s t _ i n t _ L i s t _ i n t v4 ;
41 i n t v5 ;
42 i f (v1 . l a b e l == LEFT)
43 {
44 v3 = v1 . value . l e f t ;
45 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v6 ;
46 v6 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) { LEFT , { . l e f t = v3 } } ;
47 chan_send_buf (c8 ,
48 &v6 ,
49 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
50 v5 = 0 ;
51 }
52 e lse
53 {
54 v4 = v1 . value . r i g h t ;
55 P r o d _ L i s t _ i n t _ L i s t _ i n t v7 ;

77

56 v7 = v4 ;
57 chan_send_buf (c5 , &v7 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
58 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v8 ;
59 v8 = s p l i t (v4 . snd) ;
60 Label v9 ;
61 v9 = v8 . l a b e l ;
62 chan_send_int (c2 , v9) ;
63 chan_send_int (c3 , v9) ;
64 chan_send_int (c4 , v9) ;
65 Sum_unit_int v10 ;
66 P r o d _ L i s t _ i n t _ L i s t _ i n t v11 ;
67 i n t v12 ;
68 i f (v8 . l a b e l == LEFT)
69 {
70 v10 = v8 . value . l e f t ;
71 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v13 ;
72 v13 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) { LEFT , { . l e f t = v10 } } ;
73 chan_send_buf (c4 ,
74 &v13 ,
75 s ize of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
76 v12 = 0 ;
77 }
78 e lse
79 {
80 v11 = v8 . value . r i g h t ;
81 P r o d _ L i s t _ i n t _ L i s t _ i n t v14 ;
82 v14 = v11 ;
83 chan_send_buf (c3 , &v14 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
84 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v15 ;
85 v15 = s p l i t (v11 . snd) ;
86 Label v16 ;
87 v16 = v15 . l a b e l ;
88 chan_send_int (c2 , v16) ;
89 Sum_unit_int v17 ;
90 P r o d _ L i s t _ i n t _ L i s t _ i n t v18 ;
91 i n t v19 ;
92 i f (v15 . l a b e l == LEFT)
93 {
94 v17 = v15 . value . l e f t ;
95 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v20 ;
96 v20 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) { LEFT , { . l e f t = v17 } } ;
97 chan_send_buf (c2 ,
98 &v20 ,
99 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;

100 v19 = 0 ;
101 }
102 e lse
103 {
104 v18 = v15 . value . r i g h t ;
105 P r o d _ L i s t _ i n t _ L i s t _ i n t v21 ;
106 v21 = v18 ;
107 chan_send_buf (c2 , &v21 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
108 L i s t _ i n t v22 ;
109 v22 = s o r t (v18 . snd) ;
110 chan_send_buf (c2 , &v22 , s i ze of (L i s t _ i n t)) ;
111 v19 = 0 ;
112 }
113 v12 = 0 ;
114 }
115 v5 = 0 ;
116 }
117 }
118 void proc2Rt ()
119 {
120 i n t v24 ;
121 Label v23 ;
122 chan_recv_int (c2 , &v23) ;
123 i f (v23 == LEFT)
124 {
125 v24 = 0 ;
126 }
127 e lse
128 {
129 Label v25 ;
130 chan_recv_int (c2 , &v25) ;
131 i f (v25 == LEFT)
132 {
133 }
134 e lse
135 {
136 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v27 ;
137 Label v26 ;
138 chan_recv_int (c2 , &v26) ;
139 i f (v26 == LEFT)
140 {
141 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v28 ;

78

142 chan_recv_buf (c2 ,
143 &v28 ,
144 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
145 v27 = v28 ;
146 }
147 e lse
148 {
149 P r o d _ L i s t _ i n t _ L i s t _ i n t v29 ;
150 chan_recv_buf (c2 , &v29 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
151 L i s t _ i n t v30 ;
152 v30 = s o r t (v29 . f s t) ;
153 L i s t _ i n t v31 ;
154 chan_recv_buf (c2 , &v31 , s i ze of (L i s t _ i n t)) ;
155 v27 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) {RIGHT, { . r i g h t = (P r o d _ L i s t _ i n t _ L i s t _ i n t) { v30 , v31 } } } ;
156 }
157 L i s t _ i n t v32 ;
158 v32 = merge (v27) ;
159 chan_send_buf (c9 , &v32 , s i ze of (L i s t _ i n t)) ;
160 }
161 v24 = 0 ;
162 }
163 }
164 void proc3Rt ()
165 {
166 i n t v34 ;
167 Label v33 ;
168 chan_recv_int (c3 , &v33) ;
169 i f (v33 == LEFT)
170 {
171 v34 = 0 ;
172 }
173 e lse
174 {
175 i n t v36 ;
176 Label v35 ;
177 chan_recv_int (c3 , &v35) ;
178 i f (v35 == LEFT)
179 {
180 v36 = 0 ;
181 }
182 e lse
183 {
184 P r o d _ L i s t _ i n t _ L i s t _ i n t v37 ;
185 chan_recv_buf (c3 , &v37 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
186 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v38 ;
187 v38 = s p l i t (v37 . f s t) ;
188 Label v39 ;
189 v39 = v38 . l a b e l ;
190 chan_send_int (c10 , v39) ;
191 Sum_unit_int v40 ;
192 P r o d _ L i s t _ i n t _ L i s t _ i n t v41 ;
193 i n t v42 ;
194 i f (v38 . l a b e l == LEFT)
195 {
196 v40 = v38 . value . l e f t ;
197 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v43 ;
198 v43 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) { LEFT , { . l e f t = v40 } } ;
199 chan_send_buf (c10 ,
200 &v43 ,
201 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
202 v42 = 0 ;
203 }
204 e lse
205 {
206 v41 = v38 . value . r i g h t ;
207 P r o d _ L i s t _ i n t _ L i s t _ i n t v44 ;
208 v44 = v41 ;
209 chan_send_buf (c10 , &v44 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
210 L i s t _ i n t v45 ;
211 v45 = s o r t (v41 . snd) ;
212 chan_send_buf (c10 , &v45 , s i ze of (L i s t _ i n t)) ;
213 v42 = 0 ;
214 }
215 v36 = v42 ;
216 }
217 v34 = v36 ;
218 }
219 }
220 void proc4Rt ()
221 {
222 Label v46 ;
223 chan_recv_int (c4 , &v46) ;
224 i f (v46 == LEFT)
225 {
226 }
227 e lse

79

228 {
229 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v48 ;
230 Label v47 ;
231 chan_recv_int (c4 , &v47) ;
232 i f (v47 == LEFT)
233 {
234 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v49 ;
235 chan_recv_buf (c4 ,
236 &v49 ,
237 s ize of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
238 v48 = v49 ;
239 }
240 e lse
241 {
242 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v51 ;
243 Label v50 ;
244 chan_recv_int (c10 , &v50) ;
245 i f (v50 == LEFT)
246 {
247 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v52 ;
248 chan_recv_buf (c10 ,
249 &v52 ,
250 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
251 v51 = v52 ;
252 }
253 e lse
254 {
255 P r o d _ L i s t _ i n t _ L i s t _ i n t v53 ;
256 chan_recv_buf (c10 , &v53 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
257 L i s t _ i n t v54 ;
258 v54 = s o r t (v53 . f s t) ;
259 L i s t _ i n t v55 ;
260 chan_recv_buf (c10 , &v55 , s i ze of (L i s t _ i n t)) ;
261 v51 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) {RIGHT, { . r i g h t = (P r o d _ L i s t _ i n t _ L i s t _ i n t) { v54 , v55 } } } ;
262 }
263 L i s t _ i n t v56 ;
264 v56 = merge (v51) ;
265 L i s t _ i n t v57 ;
266 chan_recv_buf (c9 , &v57 , s i ze of (L i s t _ i n t)) ;
267 v48 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) {RIGHT, { . r i g h t = (P r o d _ L i s t _ i n t _ L i s t _ i n t) { v56 , v57 } } } ;
268 }
269 L i s t _ i n t v58 ;
270 v58 = merge (v48) ;
271 chan_send_buf (c11 , &v58 , s i ze of (L i s t _ i n t)) ;
272 }
273 }
274 void proc5Rt ()
275 {
276 i n t v60 ;
277 Label v59 ;
278 chan_recv_int (c5 , &v59) ;
279 i f (v59 == LEFT)
280 {
281 v60 = 0 ;
282 }
283 e lse
284 {
285 P r o d _ L i s t _ i n t _ L i s t _ i n t v61 ;
286 chan_recv_buf (c5 , &v61 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
287 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v62 ;
288 v62 = s p l i t (v61 . f s t) ;
289 Label v63 ;
290 v63 = v62 . l a b e l ;
291 chan_send_int (c12 , v63) ;
292 chan_send_int (c13 , v63) ;
293 chan_send_int (c14 , v63) ;
294 Sum_unit_int v64 ;
295 P r o d _ L i s t _ i n t _ L i s t _ i n t v65 ;
296 i n t v66 ;
297 i f (v62 . l a b e l == LEFT)
298 {
299 v64 = v62 . value . l e f t ;
300 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v67 ;
301 v67 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) { LEFT , { . l e f t = v64 } } ;
302 chan_send_buf (c14 ,
303 &v67 ,
304 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
305 v66 = 0 ;
306 }
307 e lse
308 {
309 v65 = v62 . value . r i g h t ;
310 P r o d _ L i s t _ i n t _ L i s t _ i n t v68 ;
311 v68 = v65 ;
312 chan_send_buf (c13 , &v68 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
313 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v69 ;

80

314 v69 = s p l i t (v65 . snd) ;
315 Label v70 ;
316 v70 = v69 . l a b e l ;
317 chan_send_int (c12 , v70) ;
318 Sum_unit_int v71 ;
319 P r o d _ L i s t _ i n t _ L i s t _ i n t v72 ;
320 i n t v73 ;
321 i f (v69 . l a b e l == LEFT)
322 {
323 v71 = v69 . value . l e f t ;
324 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v74 ;
325 v74 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) { LEFT , { . l e f t = v71 } } ;
326 chan_send_buf (c12 ,
327 &v74 ,
328 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
329 v73 = 0 ;
330 }
331 e lse
332 {
333 v72 = v69 . value . r i g h t ;
334 P r o d _ L i s t _ i n t _ L i s t _ i n t v75 ;
335 v75 = v72 ;
336 chan_send_buf (c12 , &v75 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
337 L i s t _ i n t v76 ;
338 v76 = s o r t (v72 . snd) ;
339 chan_send_buf (c12 , &v76 , s i ze of (L i s t _ i n t)) ;
340 v73 = 0 ;
341 }
342 v66 = 0 ;
343 }
344 v60 = v66 ;
345 }
346 }
347 void proc6Rt ()
348 {
349 i n t v78 ;
350 Label v77 ;
351 chan_recv_int (c6 , &v77) ;
352 i f (v77 == LEFT)
353 {
354 v78 = 0 ;
355 }
356 e lse
357 {
358 Label v79 ;
359 chan_recv_int (c12 , &v79) ;
360 i f (v79 == LEFT)
361 {
362 }
363 e lse
364 {
365 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v81 ;
366 Label v80 ;
367 chan_recv_int (c12 , &v80) ;
368 i f (v80 == LEFT)
369 {
370 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v82 ;
371 chan_recv_buf (c12 ,
372 &v82 ,
373 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
374 v81 = v82 ;
375 }
376 e lse
377 {
378 P r o d _ L i s t _ i n t _ L i s t _ i n t v83 ;
379 chan_recv_buf (c12 , &v83 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
380 L i s t _ i n t v84 ;
381 v84 = s o r t (v83 . f s t) ;
382 L i s t _ i n t v85 ;
383 chan_recv_buf (c12 , &v85 , s i ze of (L i s t _ i n t)) ;
384 v81 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) {RIGHT, { . r i g h t = (P r o d _ L i s t _ i n t _ L i s t _ i n t) { v84 , v85 } } } ;
385 }
386 L i s t _ i n t v86 ;
387 v86 = merge (v81) ;
388 chan_send_buf (c15 , &v86 , s i ze of (L i s t _ i n t)) ;
389 }
390 v78 = 0 ;
391 }
392 }
393 void proc7Rt ()
394 {
395 i n t v88 ;
396 Label v87 ;
397 chan_recv_int (c7 , &v87) ;
398 i f (v87 == LEFT)
399 {

81

400 v88 = 0 ;
401 }
402 e lse
403 {
404 i n t v90 ;
405 Label v89 ;
406 chan_recv_int (c13 , &v89) ;
407 i f (v89 == LEFT)
408 {
409 v90 = 0 ;
410 }
411 e lse
412 {
413 P r o d _ L i s t _ i n t _ L i s t _ i n t v91 ;
414 chan_recv_buf (c13 , &v91 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
415 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v92 ;
416 v92 = s p l i t (v91 . f s t) ;
417 Label v93 ;
418 v93 = v92 . l a b e l ;
419 chan_send_int (c16 , v93) ;
420 Sum_unit_int v94 ;
421 P r o d _ L i s t _ i n t _ L i s t _ i n t v95 ;
422 i n t v96 ;
423 i f (v92 . l a b e l == LEFT)
424 {
425 v94 = v92 . value . l e f t ;
426 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v97 ;
427 v97 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) { LEFT , { . l e f t = v94 } } ;
428 chan_send_buf (c16 ,
429 &v97 ,
430 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
431 v96 = 0 ;
432 }
433 e lse
434 {
435 v95 = v92 . value . r i g h t ;
436 P r o d _ L i s t _ i n t _ L i s t _ i n t v98 ;
437 v98 = v95 ;
438 chan_send_buf (c16 , &v98 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
439 L i s t _ i n t v99 ;
440 v99 = s o r t (v95 . snd) ;
441 chan_send_buf (c16 , &v99 , s i ze of (L i s t _ i n t)) ;
442 v96 = 0 ;
443 }
444 v90 = v96 ;
445 }
446 v88 = v90 ;
447 }
448 }
449 void proc8Rt ()
450 {
451 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v101 ;
452 Label v100 ;
453 chan_recv_int (c8 , &v100) ;
454 i f (v100 == LEFT)
455 {
456 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v102 ;
457 chan_recv_buf (c8 ,
458 &v102 ,
459 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
460 v101 = v102 ;
461 }
462 e lse
463 {
464 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v104 ;
465 Label v103 ;
466 chan_recv_int (c14 , &v103) ;
467 i f (v103 == LEFT)
468 {
469 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v105 ;
470 chan_recv_buf (c14 ,
471 &v105 ,
472 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;
473 v104 = v105 ;
474 }
475 e lse
476 {
477 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v107 ;
478 Label v106 ;
479 chan_recv_int (c16 , &v106) ;
480 i f (v106 == LEFT)
481 {
482 Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int v108 ;
483 chan_recv_buf (c16 ,
484 &v108 ,
485 s i ze of (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int)) ;

82

486 v107 = v108 ;
487 }
488 e lse
489 {
490 P r o d _ L i s t _ i n t _ L i s t _ i n t v109 ;
491 chan_recv_buf (c16 , &v109 , s i ze of (P r o d _ L i s t _ i n t _ L i s t _ i n t)) ;
492 L i s t _ i n t v110 ;
493 v110 = s o r t (v109 . f s t) ;
494 L i s t _ i n t v111 ;
495 chan_recv_buf (c16 , &v111 , s i ze of (L i s t _ i n t)) ;
496 v107 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) {RIGHT, { . r i g h t = (P r o d _ L i s t _ i n t _ L i s t _ i n t) { v110 , v111 } } } ;
497 }
498 L i s t _ i n t v112 ;
499 v112 = merge (v107) ;
500 L i s t _ i n t v113 ;
501 chan_recv_buf (c15 , &v113 , s ize of (L i s t _ i n t)) ;
502 v104 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) {RIGHT, { . r i g h t = (P r o d _ L i s t _ i n t _ L i s t _ i n t) { v112 , v113 } } } ;
503 }
504 L i s t _ i n t v114 ;
505 v114 = merge (v104) ;
506 L i s t _ i n t v115 ;
507 chan_recv_buf (c11 , &v115 , s i ze of (L i s t _ i n t)) ;
508 v101 = (Sum_Sum_unit_ int_Prod_Lis t_ int_Lis t_ int) {RIGHT, { . r i g h t = (P r o d _ L i s t _ i n t _ L i s t _ i n t) { v114 , v115 } } } ;
509 }
510 L i s t _ i n t v116 ;
511 v116 = merge (v101) ;
512 chan_send_buf (c17 , &v116 , s i ze of (L i s t _ i n t)) ;
513 }
514 void * proc1 ()
515 {
516 proc1Rt () ;
517 return NULL;
518 }
519 void * proc2 ()
520 {
521 proc2Rt () ;
522 return NULL;
523 }
524 void * proc3 ()
525 {
526 proc3Rt () ;
527 return NULL;
528 }
529 void * proc4 ()
530 {
531 proc4Rt () ;
532 return NULL;
533 }
534 void * proc5 ()
535 {
536 proc5Rt () ;
537 return NULL;
538 }
539 void * proc6 ()
540 {
541 proc6Rt () ;
542 return NULL;
543 }
544 void * proc7 ()
545 {
546 proc7Rt () ;
547 return NULL;
548 }
549 void * proc8 ()
550 {
551 proc8Rt () ;
552 return NULL;
553 }
554 L i s t _ i n t proc0 (L i s t _ i n t v0)
555 {
556 c1 = c h a n _ i n i t (1) ;
557 c2 = c h a n _ i n i t (1) ;
558 c3 = c h a n _ i n i t (1) ;
559 c4 = c h a n _ i n i t (1) ;
560 c5 = c h a n _ i n i t (1) ;
561 c6 = c h a n _ i n i t (1) ;
562 c7 = c h a n _ i n i t (1) ;
563 c8 = c h a n _ i n i t (1) ;
564 c9 = c h a n _ i n i t (1) ;
565 c10 = c h a n _ i n i t (1) ;
566 c11 = c h a n _ i n i t (1) ;
567 c12 = c h a n _ i n i t (1) ;
568 c13 = c h a n _ i n i t (1) ;
569 c14 = c h a n _ i n i t (1) ;
570 c15 = c h a n _ i n i t (1) ;
571 c16 = c h a n _ i n i t (1) ;

83

572 c17 = c h a n _ i n i t (1) ;
573 pthread_t th1 ;
574 pthread_create (&th1 , NULL, proc1 , NULL) ;
575 pthread_t th2 ;
576 pthread_create (&th2 , NULL, proc2 , NULL) ;
577 pthread_t th3 ;
578 pthread_create (&th3 , NULL, proc3 , NULL) ;
579 pthread_t th4 ;
580 pthread_create (&th4 , NULL, proc4 , NULL) ;
581 pthread_t th5 ;
582 pthread_create (&th5 , NULL, proc5 , NULL) ;
583 pthread_t th6 ;
584 pthread_create (&th6 , NULL, proc6 , NULL) ;
585 pthread_t th7 ;
586 pthread_create (&th7 , NULL, proc7 , NULL) ;
587 pthread_t th8 ;
588 pthread_create (&th8 , NULL, proc8 , NULL) ;
589 chan_send_buf (c1 , &v0 , s i ze of (L i s t _ i n t)) ;
590 L i s t _ i n t v1 ;
591 chan_recv_buf (c17 , &v1 , s i ze of (L i s t _ i n t)) ;
592 pthread_ jo in (th1 , NULL) ;
593 pthread_ jo in (th2 , NULL) ;
594 pthread_ jo in (th3 , NULL) ;
595 pthread_ jo in (th4 , NULL) ;
596 pthread_ jo in (th5 , NULL) ;
597 pthread_ jo in (th6 , NULL) ;
598 pthread_ jo in (th7 , NULL) ;
599 pthread_ jo in (th8 , NULL) ;
600 chan_dispose (c1) ;
601 chan_dispose (c2) ;
602 chan_dispose (c3) ;
603 chan_dispose (c4) ;
604 chan_dispose (c5) ;
605 chan_dispose (c6) ;
606 chan_dispose (c7) ;
607 chan_dispose (c8) ;
608 chan_dispose (c9) ;
609 chan_dispose (c10) ;
610 chan_dispose (c11) ;
611 chan_dispose (c12) ;
612 chan_dispose (c13) ;
613 chan_dispose (c14) ;
614 chan_dispose (c15) ;
615 chan_dispose (c16) ;
616 chan_dispose (c17) ;
617 return v1 ;
618 }
619 i n t main ()
620 {
621 i n t * tmp = randomList (1 0 2 4) ;
622 L i s t _ i n t a = (L i s t _ i n t) { 1 0 2 4 , tmp } ;
623 double s t a r t = get_t ime () ;
624 proc0 (a) ;
625 double end = get_t ime () ;
626 p r i n t f ("%l f \n" , end s t a r t) ;
627 return 0 ;
628 }

84

	Introduction
	Motivation
	Contributions
	Report outline

	Background
	Arrows
	Definition
	Example: Calculate the mean
	Application in parallel computation

	Recursion Schemes
	Definition
	Example: Merge sort

	Multiparty session types
	Global types and local types
	Applications in parallel computing

	Message passing concurrency
	Primitives for message-passing concurrency
	Concurrency Monads

	Free monad
	Definition
	Example
	Applications

	Alg : Algebraic Functional Language
	Alg
	Syntax

	ParAlg: Alg + role annotations
	Syntax
	Inferring global types
	Example: Parallel merge sort

	Conclusion

	SPar: A session-typed free monad EDSL for concurrency
	Computation: The Core EDSL
	Syntax
	Representation of recursive data structures

	Communication: The Proc EDSL
	Concurrent computation: A group of Proc
	Operational semantics
	Session types and duality checking

	Conclusions

	SPar: Implementation
	Session types
	Representations of session types in Haskell
	Value-level duality check
	Type-level duality check

	SPar interpreter
	Overview
	Implementation

	SArrow: An Arrow interface for writing SPar expressions
	Syntax
	Arrow interface

	Implementation of arrow combinators
	Strategies for optimized role allocation
	Satisfaction of arrow laws
	Conclusions

	Type-safe code generation from SPar
	Instr: A low-level EDSL for channel communication
	Syntax and semantic
	Representation types

	Compilation from SPar to Instr
	Transformation from Proc to Instr
	Strategies for channel allocation
	Monad for code generation

	Code generation to C: from Instr to C
	Representations of Core data type in C
	Compiling from Core to C
	The structure of generated C code

	Conclusion

	Parallel algorithms and evaluation
	Parallel algorithms
	Four steps to write parallel algorithms in SArrow
	Example: Merge sort

	Benchmarks
	Evaluation

	Conclusions and future works
	Conclusions
	Future work

	Examples of generated code
	Merge sort

