Imperial College
London

MENG INDIVIDUAL PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Improving Neural Architecture
Search with Reinforcement Learning

Supervisor:

Dr. Jonathan Passerat-Palmbach
Author:

Maurizio Zen Second Marker:

Dr. Ben Glocker

June 19, 2019

Abstract

Neural Networks are powerful models that provide great performance on numerous
image classification tasks. While some of the best architectures are still manually
designed, in recent years researchers have focused on developing methods to auto-
matically search for network architectures. We investigate the topic of neural archi-
tecture search with reinforcement learning, a method in which a recurrent network,
the controller, learns to sample better convolutional architectures. We highlight dif-
ferent methods that influence the sampling decisions of the controller, and present
a novel approach that improves the search strategy employed by the controller.

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Jonathan Passerat-Palmbach,
for his constant support, guidance and invaluable feedback. I would also like to
thank Dr. Amir Alansary for his great suggestions and help.

I send my gratitude to my former Mathematics teachers, Mr. Lucian Ruba and
Mr. Alexandru Blaga, for inspiring me academically and personally.

Finally, I would not be the person I am today without my family and closest friends.
I owe them everything and hold them dear.

Contents

1 Introduction 4
1.1 Problem Description, 4
1.2 Motivation and Current Applications)
1.3 Contributions 5

2 Background - Machine Learning Building Blocks 7
2.1 Overview e 7
2.2 Deep Learning Basics oo 7
2.3 Neural Network Layers, 8
2.4 Convolutional Neural Networks 9

3 AutoML Techniques for Hyper-parameter Tuning and Neural Ar-

chitecture Search 11
3.1 Overview 11
3.2 Manually Designed Architectures 11
3.3 Hyper-parameter Optimisation Approaches 16
3.3.1 Standard Methods 18
3.3.2 Bayesian Optimisation 19
3.3.3 Genetic Algorithms oL 21
3.3.4 Reinforcement Learning 23
3.4 Primary Bottleneck in Neural Architecture Search 26
3.5 Neural Architecture Search 29

4 Investigation of the Efficient Neural Architecture Search Approach 32

4.1 Overview e 33
4.2 Experiments and Results 0 L. 35
4.3 SUMMATrY oo 36
5 Evaluation of the Controller RNN 38
5.1 Overview e e 38
5.2 Random Search with Weight Sharing 38
5.3 Full Controller RNN 41
5.4 Full Controller RNN and Random Search with Weight Sharing Com-
PATISON o o e e e e 42
5.5 Hybrid Search Strategy L 44
5.6 Summary 47

6 Enhancing the Controller RNN
6.1 Extracting the Controller RNN
6.2 A Novel Approach: ENAS with Early Stopping
6.2.1 Overview
6.2.2 ENAS with Early Stopping vl
6.2.3 ENAS with Early Stopping v2
6.3 Summary

7 Conclusions and Future Work

A Hybrid Search Strategies

49
49
55
95
o6
57
29

61

63

Chapter 1

Introduction

1.1 Problem Description

With the increasing popularity of machine learning models as solutions to compli-
cated problems, engineers face the challenge of having to optimise their models. The
problems addressed are usually complex in nature and involve high-dimensional in-
puts, making it hard for humans to visualise the data and come up with a solution.
Since its earliest days as a discipline, machine learning has made use of optimisation
formulations and algorithms. Similarly, machine learning has contributed to opti-
misation by driving the development of new optimisation approaches that address
the challenges presented by machine learning applications. Due to their theoreti-
cal properties and wide area of applicability, optimisation approaches have enjoyed
prominence in machine learning [1]. After a machine learning model is agreed upon,
engineers need to take model-specific decisions. As an analogy, consider the task
of building a house. One needs to know the surface allocated for the building,
the number of rooms, the number of people planning to move in etc. Similarly,
after choosing a machine learning model, engineers need to configure multiple ini-
tial variables which will have a direct impact on the model. These variables are
called hyper-parameters, they are specific to each model and set before training
begins, as opposed to "simple" parameters which are learned during training time.
Hyper-parameters are essential because they control the behaviour of the training
algorithm and have a significant influence on the performance of the model being
trained. Some of the most common hyper-parameters include: learning rate, num-
ber of epochs, hidden layers, activation functions. Taking neural networks as an
example, setting a high value for the learning rate leads to overfitting (the model
has high variance), whereas a low value for the learning rate leads to underfitting
which makes the model inadequate to recognise patterns (high bias).

We tackle the problem of Hyper-parameter Optimisation/Tuning, which is the pro-
cess of searching through the parameter space to find an optimal set of parameters
that minimises a given loss function. This project is an investigation of automated
hyper-parameter optimisation methods, with a particular emphasis on Reinforce-
ment Learning (RL) methods applied to Convolutional Neural Networks (CNNs)
(Section 2.4) for which little literature is available. RL is a particular learning
paradigm that trains intelligent agents to solve a specific task using a set of ac-
tions. Such approaches have shown to surpass human level on different platforms,

4

such as in Atari [2] and Go [3] games. This paradigm has been recently applied
to the problem of hyper-parameter optimisation [4, 5|. The RL agents are capable
of learning new architectures that achieve higher accuracy compared to the typical
human-designed architectures.

1.2 Motivation and Current Applications

The increase in computational power together with the ability to store and analyse
a larger amount of data have led to the design of complex models for solving sophis-
ticated problems. Consider the case of popular mixed integer programming solvers
for scheduling and planning which come with a large number of free parameters
that have to be tuned manually |6, 7]. It is vital to find the optimal value of each
parameter for the model to be trained. However, dependencies between parameters
are not to be ignored since good values for one parameter can be overshadowed by
poor performance of another parameter. Therefore, it is crucial to consider joint
optimisation as a solution to our hyper-parameter tuning problem.

Hyper-parameter search is often performed manually, using rules-of-thumb or by
trying out sets of hyper-parameters on a predefined grid. Such approaches are
characterised by lack of reproducibility and become impractical as the number of
hyper-parameters grows. Standard methods, e.¢g. Grid Search and Random Search,
fail to scale well to larger hyper-parameter spaces and training times. Consequently,
the idea of automated hyper-parameter tuning is receiving increased attention in
machine learning [8]. Furthermore, manual search done by experts has been out-
performed by automated methods on several problems [9]. Hyper-parameter tuning
and neural architecture search, when compared to hand crafted architectures, can
lead to simpler models that produce similar accuracies with less memory and FLOPs
[10]. Automated algorithms for hyper-parameter tuning bring benefits to a wide area
of commercial applications such as image recognition, medical analysis tools, game
engines, robotic agents and design problems. All these tasks come with extensive
parameter spaces to explore which makes automation desirable [7].

1.3 Contributions

e An exploration of the manually designed neural architectures used in im-
age classification tasks and of two closely connected subfields of Automated
Machine Learning (AutoML): hyper-parameter optimisation approaches and
neural architecture search (Chapter 3);

e An investigation of Efficient Neural Architecture Search (ENAS) [5] technique,
demonstrating the usefulness of the concept of weight sharing across all
child models in the master architecture, as well as showing the lack of repro-
ducibility of the results reported by the authors of ENAS (Chapter 4);

5

e An assessment of different search strategies followed by the controller RNN;,
culminating with the finding that the ENAS controller does not do significantly
better than a Random Search with Weight Sharing strategy, thus contradicting
the claims of the authors of ENAS. Evaluating a new hybrid search strategy
that combines the sampling decisions of the controller RNN with Random
Search (Chapter 5);

e Enhancing the search strategy of the controller RNN by incorporating a novel
approach based on the reward received by the controller. This leads to the
sampling of improved neural networks that outperform those found by
the ENAS controller (Chapter 6).

Chapter 2

Background - Machine Learning
Building Blocks

2.1 Overview

At the heart of computer vision lies the task of image classification that, despite its
simplicity, has numerous applications in real-life such as autonomous driving, face
detection, automated image organisation.

The success in image classification is mostly owed to deep Convolutional Neural
Networks (CNNs), which extract hierarchical features from the data. Furthermore,
CNNs have been also applied to Natural Language Processing (NLP) tasks, achiev-
ing remarkable results in semantic parsing and text classification [11, 12]. With the
rising success of CNNs came an increasing demand for neural network engineering
which is regarded as the bottleneck in addressing classification tasks. Consequently,
researchers have been attempting to automatise such tasks. The automatic process
of finding effective neural networks is referred to as Neural Architecture Search.

To have a better overall picture of Neural Architecture Search, we offer a concise
introduction into the topic of Deep Learning, followed by an overview of various
types of neural network layers.

2.2 Deep Learning Basics

In the context of classification tasks, deep learning algorithms train a neural network
to approximate the true function f* using a set of observations (z,y), where x is
the input and y is the label. In other words, a neural network builds a mapping
y = f*(x;0) and optimises the parameters 6 so as to generate a good approximation
of the true function. The typical deep learning pipeline consists of a neural network,
a loss function and an optimisation method.

The neural network can be considered as a directed acyclic graph that describes
the connectivity between constituent structures called layers. The layers between

7

the input and last layer have an indirect impact on the output and are consequently
named hidden layers. State of the art neural networks consist of tens or even hun-
dreds of hidden layers that account for millions of parameters to tune.

The loss function measures the discrepancy between the prediction issued by the
neural network and the true label. For classification tasks, it is usually expressed as
the cross-entropy loss:

L(xi, yi) = yi - log(f*(x:)) + (1 — i) - log(1 — f*(w3))

While the loss determines how accurate a prediction is, the optimisation method
offers the possibility to modify the parameters of the neural network with the aim
of increasing the network’s performance. Current optimisation methods, such as
Adam|[13], Adagrad|14], Adadelta[15], SGD[16], come with their own sets of parame-
ters to be tuned, e.g. learning rate and momentum. While the available optimisation
methods are basically limited, the search space for possible network architectures is
huge. Thus, an exhaustive search to find the optimal set of parameters is naturally
infeasible due to time constraints and computational resources.

2.3 Neural Network Layers

In the previous section, we stated that a neural network is comprised of various
types of layers. It is critical to have a good grasp of these types of layers and their
parameters, in order to have a strong understanding of designing neural architec-
ture search spaces. Here, we offer a description of the format and hyper-parameters
associated with the different types of layers, summarised in Table 2.1.

Layer Type Hyper-parameters Input Shape Output Shape Parameters
]F(’ rf;lllltnelrb(szizzf filters (7, W F)
Convolution P (H, W, C) | H = ZE2P 4 K2CF+ F
57 Strlde W} _ W—K+2P + 1
P, padding S
- 1.(H, W,C) |1 (H W,C) 1. 2C
Batch Normalisation o 7 o I 9 9ff
. . . 1.(H, W,C) |1 (H W,(C) 1.0
Activation f, activation function o I o I 2 0
e)
Pooling » DUIEDEE rb (H, W, C) | H = #2=£28 4 0
S, stride W’ W-K+2pP
i : - +1
r, reduction function s
Global Pooling r, reduction function | (H, W, C) C 0
_ 1. (H, W, C) |1 (H W,C) 1.0
Dropout p, dropout rate o H 9 H 2 0
. 1. (H, W, C)|1. U 1. UCHW + U
Fully Connected U, output units o I 9 U o UH + U

Table 2.1: Summary of the frequent types of layers in a CNN and their (hyper)-
parameters.

The network starts with the Input layer. In the context of image classification
it is usually a tensor of size (N,H, W,C'), where N is the number of images, and H,
W are the height and width of each image, while C' is the number of channels of
the image (e.g. C' = 3 for RGB channel).

The essential building block of a CNN is the Convolution layer, as it extracts mean-
ingful features from the data. It works by sliding multiple filters over the input
tensor, performing a dot product between a section of the image and the filter,
which generates multiple feature maps. The concatenation of these feature maps
forms a tensor that serves as an input for the next layer. In addition, Activation
layers are used for the purpose of extracting more representative features from the
data. These activation functions introduce a non-linear representation of the data.
Without using these non-linearities, the output of the network would merely be a
linear combination of the input.

Researchers show that training deep neural networks can be accelerated using a
Batch Normalisation layer after each convolution layer [17]. This type of layer is
employed to reduce the covariate shift by using two trainable parameters that learn
to decide whether the input tensor for the next layer should be normalised.

Typically inserted between consecutive convolutional layers, the Pooling layer shares
some commonality with the convolution layer in the sense that it also slides a filter
over the input tensor. What makes a pooling layer different than a convolution layer
is the operation it performs, namely, it uses a reduction function over a region of
the input tensor called receptive field. Employing dimensionality reduction is the
main aim for using pooling layers. It is also worth noting that pooling layers have
no trainable parameters [18].

The final classification usually takes place inside the Fully Connected layers, which
compute a weighted sum over the extracted features. These layers can be thought of
as convolutions with a filter shape equal to the input tensor shape. It is usually the
case that the fully connected layers contain the largest number of learnable param-
eters in the network. This can lead to over-parametrisation which, in turn, makes
the network learn the noise from the input. In this case, the neural network fails
to generalise to unseen data. The phenomenon described here is called overfitting
[19]. Moreover, a Dropout layer is sometimes used in an attempt to fix overfitting
by disabling neurons during training.

One way to address the issue of over-parametrisation is to use a Global Pooling
layer before the first fully connected layer. Akin to a pooling layer presented above,
the global pooling layer uses a filter of shape equal to the one of the input tensor.

2.4 Convolutional Neural Networks

CNNs are a class of feed-forward neural networks. An example of the structure
of a CNN and the connections between the layers presented above is depicted in

Figure 2.1. We choose to apply hyper-parameter tuning on CNNs because of their
wide area of application, especially when it comes to computer vision applications
such as facial recognition or image classification [20]. Furthermore, CNNs require
a multitude of hyper-parameters to tune which make them the preferred model to
work on for our research.

15—___:! car
|| bike
i _ilorry
Convelution Pooling Convolution Pooling Fully Connected

Figure 2.1: Structure of Convolutional Neural Networks.

The problem of hyper-parameter tuning partly owes its high degree of difficulty
to the various types of parameters. Usually, neural networks have discrete, con-
tinuous and conditional variables (activated only if other variables have specific
values) that act as parameters. Consider CNNs as an example, where the number of
units in a fully connected layer is discrete, momentum is a continuous variable, and
the dropout rate on a fully connected layer is conditioned on whether the "input"
dropout, which is a Boolean variable, is set to True |7]. In general, hyper-parameters
can be classified into two main categories:

e Architectural: number and size of layers

e Training: number of epochs, batch size, learning rate, dropout, weight initial-
isation

There is no consensus in the literature on the number of hyper-parameters to op-
timise which varies from paper to paper. Furthermore, the hyper-parameters that
are optimised also vary: some experiments tune the learning rate, number of con-
volutional and fully connected layers, number of filters per convolutional layer and
their size, number of units per fully connected layer, batch size, and regularisation
parameters |21]; other works set the values for the learning rate and batch size [22].

10

Chapter 3

AutoML Techniques for
Hyper-parameter Tuning and Neural
Architecture Search

3.1 Overview

We start this chapter by emphasising the complexity of crafting neural networks,
as well as underline specific concepts behind popular architectures. Currently, the
majority of state-of-the-art (SOTA) neural networks are manually designed by engi-
neers. We then present various hyper-parameter optimisation methods: Grid Search,
Random Search, Bayesian Optimisation, Genetic Algorithms and Reinforcement
Learning. Afterwards, we concentrate on neural architecture search, a subfield of Au-
tomated Machine Learning (AutoML) that is closely connected to hyper-parameter
tuning. We focus in particular on performing neural architecture search using Re-
inforcement Learning.

3.2 Manually Designed Architectures

A breakthrough in the field of Deep Learning was achieved by AlexNet|23], when
it won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [24] in
2012. It yielded a top-5 error of 15.3% on the challenging ImageNet dataset, a score
that was significantly beating other methods based on traditional machine learning.
Following that success in 2012, a variety of families of neural networks have been
proposed. Some of the most competitive which we are going to cover in this section
are: VGGNet(16) [25], GoogLeNet [26], Inception-V3 [27], ResNet [28], SqueezeNet
[29], MobileNet [30], DenseNet [31], Xception [32]. A summary of these manually
crafted architectures is shown in Table 3.1. It is important to highlight that there
are several variations of these architectures even though they maintain a structure
which is similar to the one of the architectures these variations originate from. In
the original papers [25, 26, 27, 28, 31, 32] more variations were discussed, however
for greater clarity we choose to include only the best performing architectures in
our table. Moreover, the modules included in some of the architectures are vital for
the sake of accuracy and training time. Due to their importance, we offer an insight
into the structure of these modules in the following paragraphs.

11

Network Input Shape Weights Depth ImageNet | CIFAR-10
(M) accuracy | accuracy
AlexNet 224 x 224 62.5 8 84.70 -
VGGNet(16) 224 x 224 138 16 92.70 -
GoogLeNet 224 x 224 4 22 93.33 -
ResNet-32 32 x 32 0.46 32 - 92.49
ResNet-50 224 x 224 25.6 50 94.75 -
Inception-V3 224 x 224 24 42 94.40 -
SqueezeNet 224 x 224 0.12 18 80.30 -
MobileNet 224 x 224 2.59 55 88.20 -
DenseNet-BC12 32 x 32 0.8 100 - 95.49
Xception 224 x 224 22 36 94.50 -

Table 3.1: Summary of manually crafted neural network architectures with their
respective structure and performance. For the ImageNet dataset, we report the
Top-5 accuracy.

AlexNet has a basic CNN construction which is depicted in Figure 3.1a. It is formed
of eight layers: the first five are convolution layers, while the last three are fully con-
nected layers. Additionally, some of the convolution layers are also followed by max
pooling layers and dropout is used on the first two fully connected layers. AlexNet
employs a Rectified Linear Unit (ReLU) as an activation function, which improves
the training performance over other ubiquitous activation functions like tanh or sig-
moid. Results from the original paper [23| show that the high performance of the
network mostly relies on its depth. This, in turn, required the use of GPUs in or-
der to make training feasible. Although it has a reasonably simple configuration,
AlexNet has a surprisingly large number of parameters (approximately 62 million)
compared to newer architectures. As a consequence, the authors trained the network
on two GPUs for six days.

Influenced by AlexNet, VGGNet(16) employs a deeper architecture shown in Figure
3.1b with 13 convolution layers, some of them followed by a pooling layer, and 3 fully
connected layers. Despite its appealing configuration, the capacity of this network
is enormous with roughly 120 million parameters. The authors trained the network
for three weeks on four GPUs, managing to obtain a 7.3% top-5 error at the cost
of doubling the number of parameters of AlexNet. Thus, VGGNet(16) was ranked
second in the 2014 ILSVRC computer vision competition [24].

The winner of the aforementioned competition was GoogLeNet. Also known as
Inception-V1, the network scored a 6.6% top-5 error rate which is on par with hu-
man level performance. Primarily inspired by the original LeNet architecture 33|,
the novelty of GooglLeNet comes from its implementation of the Inception module
which is shown in Figure 3.2. The main idea behind the Inception module is the
use of multiple small convolutions with the aim of strongly reducing the number of
parameters. The Googl.eNet architecture consists of a 22-layer neural network, and
despite the large number of layers, the number of parameters is just 4 million.

12

conv 3x3
F=64

[]

conv 11x11 conv 3x3
F=128 | *

conv 3x>
56

F=384
F=256

AlexNet

Figure 3.1: Structure of (a) AlexNet, and (b) VGGNet(16).

previous
layer

‘ conv 1x1 ‘

‘ conv 1x1 | ‘ max 3x3 ‘

conv 1x1

b4 k4 k4

‘ conv 3)(3 conv 5xd conv 1x1 ‘

concatenatmn /

layer

Figure 3.2: Structure of the Inception Module present in Googl.eNet. Smaller con-
volutions are employed in order to reduce the number of parameters in the network.

13

The ResNet architecture is the winner of the 2015 ILSVRC competition, achieving
a top-H error rate of 3.57% which surpasses human-level performance on ImageNet
[24]. Its name stands for Residual Neural Networks and the major traits of it are
the use of skip, residual connections and introduction of heavy batch normalisation
layers. The advantage of skip connections is that they reduce the impact of the
vanishing gradient issue, as the network has fewer layers to propagate through. The
main conceptual motifs that drive ResNet are shown in Figure 3.3. Repeating these
motifs, the authors of ResNet have trained a neural network composed of 152 layers
which outperforms and is less complex in terms of the number of parameters than
VGGNet. Without skip connections, the accuracy of deep neural networks has a
tendency to saturate relatively early, and then it degrades quickly. This problem is
also known as the degradation problem in deep networks. Empirically, the authors
have shown that skip connections play an essential role not only by reaching a better
local optimum, but also allowing for faster convergence. Furthermore, neural net-
works without residual connections explore more of the feature space which makes
them particularly sensitive to noise in data.

conv 3x3
F=N

conv 3x3
F=N

¥
add layer

conv 1x1
F=N

conv 1x1
F=4N

add layer

Figure 3.3: The two main motifs of ResNet.

Reaching second place in the 2015 ILSVRC computer vision competition [24]|, Inception-
V3 replaces the expensive 5x5 convolution in GoogLeNet with a couple of 3x3 convo-
lutions, while still achieving the same accuracy. The sequence of 3x3 convolutions is
less demanding to perform, and, moreover, this trick reduces the amount of param-
eters by about 28%. This replacement can be visualised graphically by comparing
the Inception module in GoogLeNet (Figure 3.2) with the top motif shown in Fig-
ure 3.7. Working with the same idea, a 3x3 convolution can be factorised into two
asymmetric convolutions: a 1x3 convolution followed by a 3x1 convolution. This
further reduces the number of parameters by 33%. These architectural differences
are highlighted by the comparison between the top and middle motifs in Figure
3.7. Furthermore, the third motif in Figure 3.7 is used for its capability of building
representations of the data in higher dimensions. Additionally, batch normalisation

14

is performed after the convolutions making the network less susceptible to learn the
noise in the data.

previous
layer

| conv lxl

| conlel | | ma.xBxB |

conv 1x1

| conv 3x3 | conv 3x3 conv 1x1 |

t #
concaten ation,

previous
layer

conv 1x1

| conv 1xn |

| conv lxl |

conv 1x1 ‘ conv lxn conv nx1 ‘

conv nxl ‘ conv lxn

conv nxl

previous
layer

gl
| conv 1x1 | | conv 1x3 ‘ conv 3x1 | conv 1x1 | | conv 3x3 |

concaten atlcm'—J

layer

Figure 3.4: Structure of Inception Modules. The top motif replaces the expensive
5x5 convolutions with two consecutive 3x3 convolutions. The middle motif further
factorises the 3x3 convolutions into a 1x3 convolution followed by a 3x1 convolution.
The third motif incorporates the other two motifs and excels in building higher
dimensional representations of the data.

Based on the module shown in Figure 3.5, SqueezeNets yield an accuracy similar to
AlexNet, but are up to 3 times faster and require fewer parameters by the order of
hundreds. The main trait of SqueezeNets is that they use a squeezing layer which
substantially reduces the depth of the information going through the network, cou-
pled with an expansion layer that performs the opposite operation. This technique
is ubiquitous in modern architectures since it allows for a reduction of the number
of parameters, while keeping the accuracy high.

15

conv 1x1

N

conv 1x1 conv 3x3

N

concatenation
layer

Figure 3.5: Structure of the SqueezeNet Module. It is used in smaller neural net-
works with few parameters that can easily fit into the computer memory.

MobileNets provide a good trade-off between accuracy and training cost. Designed
for applicability on low budget devices, MobileNets replace the more expensive 3x3
convolutions with stacks of 3x3 depthwise separable convolutions and 1x1 pointwise
convolutions. The factorisation of convolutions, depicted in Figure 3.6a, has a good
impact on reducing the training time.

Based on convolutions, DenseNets provide a better accuracy because of their dense
connections, also known as skip connections, between layers present at different
depth levels in the neural network as shown in Figure 3.6b. The greatest advantage
of the skip connections used in the DenseNet module is that they elude the vanishing
gradient issues. This, in turn, favours the reuse of learned features and reduces the
number of parameters in the network. Another specificity of DenseNets is the use
of concatenations to merge different branches used in skip connections, as opposed
to ResNet which uses an addition operation. As a consequence of skip connections
and concatenation of merging branches, the network does not have to learn again
from scratch the previously learned features.

Xception is an adaptation of the Inception-V3 that includes a distinctive setup of
depthwise separable convolutions depicted in Figure 3.7. Similarly to DenseNet and
ResNet, Xception also uses skip connections which offer a better flow of informa-
tion. Furthermore, it is important to note that Xception achieves better accuracy
than Inception-V3 while having fewer parameters than its counterpart. This high-
lights the significant impact of combining skip, residual connections with depthwise
separable convolutions.

3.3 Hyper-parameter Optimisation Approaches

We start by briefly describing standard methods, namely Grid Search and Ran-
dom Search, continuing with the main areas of research for hyper-parameter tun-
ing: Bayesian Optimisation (BO), Genetic Algorithms (GA) and Reinforcement
Learning (RL), with the latter constituting our main focus. We can classify hyper-
parameter optimisation methods in two broad categories: model-based and model-
free, as shown in Figure 3.8. In a model-based scenario, there are cost-sensitive,
commercial methods: e.g. Freeze-thaw (Google Vizier) [34], Fabolas [35], as well
as standard, typical methods: Bayesian Optimisation. A similar classification can

16

conv 1x1

v

conv 3x3
5.2 I . Block ____
v
NDI'El;lIESl;tiDII Block [~
activation Bltu:k \\
co?é]}]xl Bltck /
. T /
NDI‘Elg}EShEtiDII Bl:l:k
/
activation Block
(a) Mo- (b) DenseNet
bileNet

Figure 3.6: Structure of modules used in (a) MobileNet, and (b) DenseNet.

activation

activation

activation

add layer

Figure 3.7: Structure of the Xception Modules. The use of depthwise separable
convolutions differentiates this module from the ones we previously introduced.

17

be done in the context of model-free hyper-parameter optimisation methods. There
are cost-sensitive methods, e.g. Hyperband [36], and standard methods: Random

Search, GA and RL.

Hyper-Parameter
Optimisation

Model-based Model-free

Standard ‘ Commercial ‘ ‘ Commercial ‘ ‘ Standard ‘

Bayesian
Optimisation

N

Random Forests TPE Random Search Genetic Algorithms

Reinforcement
Learning

Gaussian
Processes

Figure 3.8: Taxonomy of hyper-parameter optimisation methods.

3.3.1 Standard Methods
Grid Search

One of the simplest methods for hyper-parameter optimisation is Grid Search. The
user defines a range of candidate values to explore, and grid search evaluates the
Cartesian product of these ranges. The idea is to exhaustively try out all possi-
ble combinations of hyper-parameter values, and for each combination we train a
different model. In the end, we keep the model that offers the best performance.
While Grid Search is guaranteed by its nature to converge, the main drawback is
that the time complexity of this algorithm is exponential with the number of hyper-
parameters. Therefore, Grid Search can be infeasible when tuning more than a few
hyper-parameters [37].

Random Search

Another standard method for hyper-parameter optimisation is Random Search. As
opposed to searching the entire grid, i.e. the Cartesian product mentioned above,
Random Search evaluates random samples of the points on the grid. This method
yields approximately the same results as Grid Search, but needs far less computa-
tional time. More specifically, it has been showed that if at least 5% of the possible
combinations on the grid give a sufficiently good result, i.e. close to optimum, then
random search finds such a solution after 60 trials with a 95% probability [37]|. This
is a substantial improvement when compared to classical Grid or Manual Search.

18

For instance, consider the case when we run 9 different experiments to optimise the
learning rate and regularisation term (Figure 3.9). When using Grid Search, we are
only testing 3 values for the learning rate and 3 values for the regularisation term.
However, using Random Search 9 different possible values for each parameter are
explored. Both Grid and Random Search are totally uninformed by past evalua-
tions, which means that they spend time evaluating unreasonable combinations of
hyper-parameters.

Grid Random

reqularization

learning rate learning rate

Figure 3.9: Grid and Random Search approaches for optimising learning rate and
regulariser [37].

3.3.2 Bayesian Optimisation
Overview

In contrast to standard methods, Bayesian optimisation methods keep track of past
evaluation results to determine the next combination of hyper-parameters to evalu-
ate. Let us suppose that our objective function, which is usually the cross-validation
error, is expensive to compute and we want to limit calls to it. To overcome this
disadvantage, a probabilistic model is built by mapping hyper-parameters to a prob-
ability of a score on the objective function. In literature, this probabilistic model
is called surrogate model which approximates the true function based on past ob-
servations [38]. A Gaussian Process (GP) is attached to the observed data and the
GP mean is used to approximate the true objective function within a certain con-
fidence interval (Figure 3.10). The next choice of hyper-parameters to evaluate is
based on previous observations by optimising an acquisition function. This function
is a trade-off between exploitation of known optima and exploration of previously
unknown values in the hyper-parameter space, with different acquisition functions
having a different impact on this trade-off (Figure 3.11). The whole process of up-
dating the surrogate model, analysing the acquisition function to choose the next set
of hyper-parameters, and making a new observation based on previous ones (Figure
3.12) is repeated until the number of iterations is reached or the method converges.
Iterating through such an algorithm (Algorithm 1), Bayesian optimisation methods
perform an efficient search of the hyper-parameter space to determine the global
optima [39]. Two major decisions have to be made when using Bayesian optimisa-
tion. The first one is selecting a prior over functions based on the assumptions made
about the function that is being optimised. The second decision to be made is the
choice of acquisition function.

19

GP estimate of the function

best observed value

observed values
true function
—— GP mean
confidence interval

0.25 e

0.0 0.2 0.4 0.6 0.8 1.0
hyperparameter

Figure 3.10: GP approximation of the true objective function [40].

Acquisition function

0.04
exploration exploitation

Zo.03 /
=y
E
s
@
‘6 0.02
o
S
©
=

0.01

0.00 H
0.0 0.2 0.4 0.6 0.8 1.0
hyperparameter

Figure 3.11: Acquisition function and trade-off between exploration and exploitation
[40].

GP estimate of the function

1.00
/best observed value
0.75
E
= 0.50
B
0.25 ® observed values
true function
—— GP mean
confidence interval
0.00
0.0 0.2 0.4 0.6 0.8 1.0

hyperparameter

Figure 3.12: Performing a new observation based on past observations [40].

Algorithm 1 Pseudocode for Bayesian Optimisation Algorithm

1. procedure SOLVE(problem, n, k)

2 X < random(n)

3 Y « problem.evaluate(X)

4: model = GP(X,Y)

5: model.update()

6 while not converged() do:

7 acq < get Acquisition (k)

8 Tnew < acq.optimise()

9: Ynew <— problem.evaluate(x,ey)
10: model. update(Tew, Ynew)

11: return model.best

20

Publicly Available Tools

Spearmint [41] is a software package which employs algorithms outlined by (Snoek
et al., 2012) [42]. The four proposed algorithms have the following similarities. A
Gaussian Process (GP) prior is chosen because of its adaptability and mathematical
convenience. As far as the acquisition function is concerned, although several op-
tions are available in Spearmint, the preferred one is Expected Improvement (EI),
which is also one of the most widely used acquisition functions in literature [43].

The first algorithm is GP EI MCMC which works by integrating out GP hyper-
parameters. This integration is performed using a type of Markov chain Monte
Carlo (MCMC) algorithms called slice sampling. The second algorithm is Nz GP
EI MCMC which is an N times parallelised version of GP EI MCMC that aims to
determine the next evaluation point while the current evaluation is still running.
The third one is GP EI Opt which optimises the GP hyper-parameters. The last
algorithm, GP FEI per Second, introduces the concept of a duration function and
employs a GP machinery to model this function so as to improve the performance
in terms of wallclock time. The performance of these algorithms was tested on the
CIFAR-10 dataset using CNNs. A number of 9 hyper-parameters of a three-layer
architecture were tuned: the learning rate, number of epochs, four weight costs: one
for each layer and one for the softmax output weights, as well as the width, scale and
power of the response normalisation on the pooling layers of the network. A 14.98%
error rate was reported for the hyper-parameters determined by GP EI MCMC [42].

Advantages and Disadvantages

The main advantage of Bayesian Optimisation methods over manual search and Grid
and Random Search lies in the fact that we are making informed, intelligent deci-
sions about the new set of hyper-parameters to evaluate while considering trade-offs
between exploration and exploitation. The efficiency in finding the optimal param-
eters of these methods is particularly noticeable for non-convex functions, taking
less training time and computational resources [36]. However, since each step builds
on top of the other, such algorithms are hard to parallelise. While it has been
showed that Bayesian Optimisation methods outperform Random Search on some
benchmark tasks, when it comes to high-dimensional problems, Bayesian Optimi-
sation methods yield similar performance to Random Search which is manifestly
conceptually simpler [44].

3.3.3 Genetic Algorithms

Overview

An alternative to Bayesian Optimisation is a class of algorithms called Genetic Al-
gorithms (GAs). Inspired by the biological process of natural selection, GAs are
based on the idea that the fittest individuals in a population reproduce and pass
their traits to the next generation. In the context of hyper-parameter optimisation,
the individuals represent a set of hyper-parameters. To begin with, individuals need
to be encoded e.g. as binary arrays. The generic structure of a GA is shown in
Figure 3.13. The process begins with the initialisation phase in which a random
set of hyper-parameters is generated. In the second stage of the algorithm, the set

21

of hyper-parameters is evaluated on the test set using the classification error which
plays the role of the fitness function. Based on these results and a fitness threshold,
a number of individuals are probabilistically selected. Then the Genetic Opera-
tors phase starts. The two most common operators are crossover and mutation.
Crossover constructs new potential solutions, while the mutation operator ensures
diversity. This leads to a new population of individuals which is again evaluated
in the second step of the process. Iterations of GA algorithms are carried out until
stopping criteria, e.g. training time is up, are satisfied.

| Initial Population |

—>| Fitness Evaluaiion |

l

| Selection |

l

| Mutations |

l

| MNew Population |

Figure 3.13: Workflow of activities in Genetic Algorithms.

Large-Scale Evolution of Image Classifiers

(Real et al., 2017) [45] propose a solution to the problem of hyper-parameter opti-
misation involving massive parallel computations in which the individuals represent
architectures that are encoded as a simplified graph referred to as a DNA. This
simplified graph is only transformed to a full neural network graph for training and
evaluation. In the initialisation phase, random individuals are created using single
layered networks without convolutions. Fitness testing is done using a method called
tournament selection, in which the weaker individual is killed. Mutations are the
prevalent genetic operators and they come in several variations such as insert /remove
convolution, alter stride, reset weights etc. The population is set to 1000 individuals
which is very computationally demanding since each individual has to be trained and
undergoes fitness evaluation. For the CIFAR-10 dataset, this algorithm achieves a
classification error of 5.4%, which is better than Bayesian Optimisation as reported
in their paper, albeit computationally expensive.

Advantages and Disadvantages

The main asset of genetic algorithms is that they are open to parallelisation. There-
fore, given enough computational power, GAs can outperform Bayesian Optimisa-
tion as described in the previous section. However, if one does not have a highly
competitive hardware, GAs may not be ideal for hyper-parameter tuning. These
algorithms require large populations to be trained. While smaller samples can be

22

used in experiments, it may happen that the algorithms converge to a local optimum
and get stuck there.

3.3.4 Reinforcement Learning
Overview

RL is an area of machine learning concerned with the study of optimal decision
making. The main idea behind RL is how software agents decide to take actions in
an environment in order to maximise some cumulative reward. An agent needs to
find the best actions to take or how to behave in an environment so as to carry out
a task in the best possible way. The environment sends observations to the agent
in the form of a reward signal for its actions and information about the new state.
The reward gives notice to the agent about how good or bad the action taken was.

Rt ||
Envi t ;1}1 ' ‘-

] nvironmen P
—
St+1 i i

Action State Reward
At Sit Rt

-

—— Agent

'y

Figure 3.14: The agent-environment interaction.

RL can be seen as a paradigm which is situated at the boundary between supervised
and unsupervised learning. It is not completely supervised because it does not have
a set of labelled data for training, yet it cannot be considered unsupervised either
due to cumulative reward which our agent needs to maximise. A particularly im-
portant aspect in RL is time; the learning process is done sequentially with delayed
feedback from the environment. Furthermore, the feedback might be delayed over
a few time steps, or even to the point that the agent receives the feedback only
after successfully completing a task, e.g. if the agent’s goal is to escape a maze,
the feedback may well be at the end. No supervisor is involved in the process of
learning, it is just the reward signal that informs the agent how well it performs.

The interaction between the agent and the environment (Figure 3.14) is performed
over a sequence of discrete time steps. At time step ¢, the agent receives some no-
tion about the state S; of the environment, and using that information performs
an action A;. At time step t 4 1, the agent receives a reward R; which is usually
a real number, and finds itself in the new state S;;1. The set of sequences of the
form state-action-reward is called history. A naive attempt to pick the best action
to take for some time step ¢ would be based entirely on the history. However, this
kind of approach is prone to failure in the real-world problems because of the vast
history. Instead, the state, which encapsulates the information acquired thus far, is

23

used to make the next decision. The environment state is a private representation of
the environment based on which the next state and reward are issued. As far as the
representation of the agent state is concerned, there are two possible methods. The
first one is the Bayesian approach using Markov Decision Processes (MDP) for a
fully observable environments, and Partially Observable MDP for partially observ-
able environments. The second approach to represent the agent state is by using
Recurrent Neural Networks (RNNs):

S;l = O-(Szltl—le + OtWo>

Here, the current agent state Sy depends on a linear combination of the previous
state Sy, multiplied by some weight W, and the current observation O, multiplied
by some weight W,,.

There are three main components of an RL agent: a policy, a value function, and
a model. The way the agent’s action selection happens is through a policy 7(a|s),
which usually gives the probability of taking action a when in state s, i.e. Stochastic
Policy:

m(a|s) = P(A; = alS; = s)

The value function depends on the policy and it informs the agent what reward to
expect if taking action a in state s. More specifically, the value function returns the
expected sum of future rewards starting from state s:

VT(s) = E[Y)_ 7Rl

where v is a discount factor between 0 and 1, which has the role of balancing be-
tween current and future rewards. For instance, a high discount factor means that
the agent prioritises rewards in the future.

For the task of hyper-parameter optimisation we are interested in Model-Free Agents.
One of the most popular model-free algorithms for RL is Q-learning. This algorithm
finds the optimal action-selection policy using Q-values stored in a Q-table. A Q-
value gives the expected reward given the undergoing of action a; at state s; and
following the policy 7 afterwards. In order to calculate Q-values we use:

T

QW(Sty at) = E[Z Wt_lRt |3t, at]

t=1

and the update equation:

Qs ar) <= Q(s1, ar) + a[Ripr + v - mazQ(si41,a") — Q(s¢, ar)]

where « is the learning rate, R;,; is the reward for taking action a; at state s;, 7y
is the discount factor and max@(s;41,a’) is the maximum expected future reward
given the new state s;,1 and all possible actions a’ at that state. When picking a new
action it is important to consider the trade-off between exploration and exploita-
tion. We usually specify an exploration rate which influences the randomness of the
actions taken. However, using Q-tables is ineffective, and instead, an approximation

24

conv

Train Neural Network Agent Leans from
Replay Memory

_— 5 . Architecture:
conv ‘f+ 4 conv(64,5.1) —
== . conv(128,3,1) [; —
|l: = Replay max(3, 3) Replay Q
max I 1 softmax(10) .
Cache in Per) Sample Update
s Replay Memory griormance: Memory Q-values|

softmax s 85.31%

T \

Figure 3.15: Designing CNN architectures using RL algorithms (e.g. Q-learning).

Agent Samples Architecture

for the Q-values can be obtained using Neural Networks.

Based on the Q-learning algorithm, CNN architectures can be learned. The agent
samples a CNN architecture based on the agent’s past results and conditioned on a
predefined policy. This CNN architecture is then trained on a specific task and its
performance is evaluated using e.g. the validation accuracy. All sampled CNNs are
stored in the agent’s memory. Consequently, through Q-learning the agent makes
use of the past configurations to learn about the space of CNN architectures [22].

Recall that we identified two main categories of hyper-parameters in Section 2.4.
The majority of RL approaches only tune architectural hyper-parameters, while
training hyper-parameters like learning rate are selected manually [21]. For in-
stance, (Baker et al., 2016) [22] choose to set a fixed value for learning rate and
batch size, while architectural hyper-parameters are tuned. For the latter, an agent
is trained to maximise the validation accuracy. The topology of the CNN is defined
to be formed of convolutional, pooling, fully connected, global average pooling and
softmax layers, where each layer comes with its own set of hyper-parameters to tune.
The Q-learning algorithm used presents two fixed hyper-parameters: the learning
rate and discount factor which are set to 0.01 and 1, respectively. To address the
exploration/exploitation trade-off issue, the algorithm also uses an e-greedy strat-
egy which is similar to the exploitation rate from the generic Q-learning algorithm
discussed previously. CNNs were trained for 20 epochs with a fixed batch size and
learning rate. Experiments show a 6.92% error rate when using the most performant
model. This approach proved to be expensive in terms of both time and resources
needing at least 8 days to complete, as well as 10 GPUs.

A less expensive method, Efficient Neural Architecture Search (ENAS) is proposed
by (Pham et al., 2018) [5]. A controller searches for an optimal subgraph within a
larger computational graph to find different neural network topologies. The model
corresponding to the discovered subgraph is trained so as to optimise a certain loss
function. ENAS brings a major improvement to NAS [4] by forcing all child models
to share weights so as to train each model to convergence. While significantly less
computationally expensive than NAS, ENAS finds an architecture that achieves a
2.89% test error, highly competitive when compared to the 2.65% achieved by NAS-
Net.

These methods show some promising results and since RL approaches to hyper-

25

parameter optimisation yield good results, it is worth experimenting more with this
method. We conclude this section with a summary of Bayesian, Genetic and Rein-

forcement Learning Algorithms in the context of hyper-parameter tuning presented
in Table 3.2.

Bayesian Algorithms Genetic Algorithms Reinforcement Learning Algorithms
> ial l-base ’ochastic optimisati
Type S(‘quent@ fnod.c based Stochastic optlnglsgtlon Sequential decision making
optimisation and metaheuristics
Optimisation Surrogate model Fitness of candidates Reward signal
based on
Exploration | Explore uncertain regions Mutation and crossover Based on the
Ezploitation | Exploit low mean regions | Elitism and selection pressure | decision making policy(e.g. e-Greedy)

Table 3.2: Summary of three widely used families of algorithms for navigating
through the search space of CNN.

3.4 Primary Bottleneck in Neural Architecture Search

The remarkable results achieved by hierarchical feature extractors in the manually
crafted architectures presented in Section 3.2 have generated a high interest in archi-
tecture engineering. Designing such complex networks and modules manually can
be a laborious and time-consuming task. This has led to an increasing demand for
automation of network architecture search.

We discuss the current state of research in automation of architecture search [46]
from three perspectives: the search space and strategy, and the performance esti-
mation strategy. In the context of neural architecture search, a state is defined as a
neural network architecture. The search space is comprised of all the possible states
that are reachable during the architecture search, while the search strategy provides
a way of exploring the search space, in particular how the searching of architectures
starts and what actions are required to move to a new state in the search space.
Additionally, every state that is reached is evaluated using a performance estimation
strategy which usually means that a particular configuration indicated by the cur-
rent state is trained on a dataset and then the accuracy of the resulting architecture
is evaluated on unseen data. Since the size of the dataset can be very large, the
performance estimation phase can take a significant amount of time. Trying out the
same architecture search on various datasets makes this phase more expensive in
terms of both resources and time. Thus, the primary bottleneck of neural architec-
ture search is accelerating the performance estimation strategy. To address this, a
trade-off between accuracy and time is required.

From the perspective of the Search Space, we notice two different, broad types of net-
works: chain-structured (e.g. AlexNet - Figure 3.1a, and VGGNet(16) - Figure 3.1b
and multi-branch networks such as DenseNet (Figure 3.6b) and ResNet (Figure 3.3).

Considering chain-structured architectures, the search space is determined by the
type of each layer and the hyper-parameters associated with each layer, as well as

26

input

conv 1x1
F=32

max 3x3

conv 3x3
=16

max 3x3

dropout 0.5
dropout 0.5 Fully
Connected
F=1000
Fully l
Connected
F=200 T
F=1000
Fully l
Connected
F=1000 output
(a) Chain-Structure Search (b) Sampled
Space Network

Figure 3.16: Example of a Chain-Structure Search Space and a possible sampling
of a neural network. Note that in this search space we have more than 2.3 million
configurations for possible architectures.

the depth of the network. Usually, the types of layers that are part of the search
space consist of Convolution, Dropout, Pooling, Fully Connected etc. We show an
example in Figure 3.16 of a chain-structured search space from which we sample a
neural network. In this example we fix the number of layers so that an architecture
can have up to 7 hidden layers. Our search space consists of 8 types of layers, which
means that the total number of possible network configurations is enormous, with
more than 2 million configurations. Using grid search, we could generate every pos-
sible combination of layers, however this is unfeasible since training each sampled
network would sum up to years of training time.

Multi-branch networks allow for greater flexibility when sampling a candidate ar-
chitecture which implies that the search space grows exponentially. Most of the
modules presented in Section 3.2 are particular instances of multi-branch networks.
Such architectures tend to outperform the simpler chain-structured networks.

Guided by the manually engineered modules, the idea of combining automatically
designed modules to form complex architectures emerged. This idea is based on the
concept of a fixed master architecture from which modules called cells are combined
to give rise to performant architectures |5, 22|. We note that such cells are less
complicated than the whole network and thus this approach offers the possibility of
reducing the search space significantly which, in turn, reduces the time needed for
training. However, such a cell-based approach requires non-trivial rules on how to

27

combine the modules between them. This means that the architecture search phase
can concentrate merely on finding the cells without properly combining them into a
whole network and in such a case the complexity of the search space remains high.

The second characteristic of an automated neural architecture search is the Search
Strategy which offers a way to explore and exploit the search space. While multiple
strategies have been attempted, only some of them provide an accuracy on-par with
the manually engineered neural networks. These successful search include Random
Search, Bayesian Optimisation, Genetic Algorithms, and Reinforcement Learning,
all of which were introduced in Section 3.3.

RL has gained a particular interest especially after the work of (Zoph et al., 2016)
[4] achieved SOTA results on both a text classification dataset (Penn Treebank [47])
and an image classification dataset (CIFAR-10 [48]). However, this work can be
identified as proof of concept due to the fact that the large computational resources
involved are not accessible to the average Machine Learning practitioner. The ex-
periments performed by Zoph et al. required 800 GPUs running for 4 weeks to find
an architecture achieving nearly on-par with SOTA results on CIFAR-10. After-
wards, efforts have been made |5, 49, 22| to maintain high accuracy levels while at
the same time diminishing the cost of computations. The core of an RL problem is
how an agent decides what actions to take in an environment in order to maximise
some cumulative reward. In this context, the environment represents the search
space while the actions correspond to sampling different configurations from the
search space. The most interesting part is the agent. The agent can be an RNN
as employed by NAS [4] that samples strings which represent encodings of CNNs.
Then, the convolutional networks are trained and the accuracies are fed as reward
signals to the RNN. In another approach using RL, (Baker et al., 2016) [22] build
the network layer by layer in a sequential fashion while using Q-learning to guide
through the search space.

Another successful method used for finding novel architectures is Bayesian Opti-
misation. Some of the discovered neural networks achieve SOTA accuracies on
CIFAR-10 [50, 51]. An alternative search strategy to Reinforcement Learning and
Bayesian Optimisation is the family of evolutionary, genetic algorithms. Starting
from an initial population of random neural networks called the first generation, an
evolutionary algorithm is an iterative process. A network is sampled from each gen-
eration, then it is mutated and evaluated using a fitness function which is usually the
accuracy on the validation set. The mutation is an operation that changes the con-
figuration of the network by, e.g. removing or adding a layer, and after performing
the mutation, the network is added back to the population. Genetic algorithms are
not only applied in neural architecture search, but also when it comes to updating
the network weights. In the latter context, given the large number of weights evo-
lutionary algorithms do not match the performance of gradient-based approaches,
however there are works which demonstrate the capability of using evolutionary al-
gorithms to combine architecture search with learning the weights, and similarly,
this method can also be applied in the RL area of research [52, 53].

One way to guide a search strategy is through Performance Estimation. This means

28

that when a neural network is sampled, the performance of this architecture needs to
be evaluated in order to efficiently navigate through the search space. It is important
to realise that the search space contains a large number of possible configurations
and the cost of fully evaluating each sampled architecture from the search space
requires hundreds or even thousands of GPU days [49]. Various methods have been
employed in an attempt to reduce the cost of computation and speed up the perfor-
mance evaluation phase. One such method involves training for shorter periods of
time [49]. A second approach trains the sampled architectures only on a subset of
the data [35]. Other methods perform training with a scaled version of the neural
network [54], as well as lowering the resolution of the images [55]. While all these
methods reduce the computational resources needed, they only provide approxima-
tions of the true evaluation phase, and these approximation do not preserve the
proper hierarchy between networks and thus highly affect the outcome of the search
[56].

3.5 Neural Architecture Search

Deep Learning has led to the development of novel neural architectures for tasks such
as image recognition. Most of these architecture are developed manually by humans.
However, human expertise is an expensive, time-consuming and error-prone process.
To address this, a growing interest in automated architecture search has emerged.
The automation of architecture engineering bears the name of Neural Architecture
Search. We note that neural architecture search is not equivalent to, but rather a
subfield of AutoML [57| with a substantial overlap with hyper-parameter tuning.

Neural Architecture Search with RL (NAS) [4] uses a predefined RNN as a controller.
The controller is responsible for generating new architectural hyper-parameters
of CNNs, and is trained using RL. After the controller predicts a set of hyper-
parameters, a neural network with the specified configuration is built, i.e. a child
model, and trained to convergence on a dataset like, for example, CIFAR-10. The
validation accuracy of the child model is then used as a reward signal R to train
the controller RNN, whose parameters 6 are updated using an RL policy gradient
method described in the next paragraph. Also, an upper threshold on the number
of layers in the CNN is used to stop the process of generating new architectures.

The parameters predicted by the controller can be thought of as a series of actions
a1.7 to create an architecture for a child model. The controller aims to maximise its
expected reward, denoted by J(6):

J<0) = EP(al:T§9) [R]

As the reward signal R obtained from the validation accuracy on the child model is
not differentiable, a policy gradient method is applied to update the parameters of
the controller, 0, using the Reinforce Rule [58]:

T

VoJ(8) = Z Ep(a,.r0) [VolOgP(at|a(t—1);1; 0)R|

t=1

29

which is approximated by:

m T

VoJ(0) ~ Z Z VologP(a¢|ag—1y.1;0) Ry

k=1 t=1

where T is the number of hyper-parameters predicted by the controller to generate
a neural network architecture, i.e. child model; m is the number of architectures
sampled by the controller RNN so far at the current time step; and Ry is the
validation accuracy from the k™ child model. Even though the above approximation
is an unbiased estimate of the gradient in the Reinforce Rule, it still suffers from
high variance which can be reduced by subtracting the exponential moving average
of the past rewards, b, from the current reward Rj:

m T

VeJ(H) ~ Z Z VglogP(at|a(t,1):1; 9)(sz - b)

k=1 t=1

It is worth noting that the parameters of the controller, 8, are updated only af-
ter training a child model to convergence. Since training a child model is time-
consuming, training the controller RNN can be accelerated using parallelisation
and asynchronous updates. A parameter-server scheme is used to store the shared
parameters of the several controller replicas. Each replica samples a different set
of hyper-parameters to design different child models which are trained in paral-
lel. Then, each replica collects its corresponding gradients which are sent to the
parameter-server. The parameter-server then updates the weights across all the
replicas.

The controller RNN, which consists of a two-layer LSTM, is trained using the Adam
optimiser [13] with the learning rate set to 0.0006. The weights of the controller are
initialised uniformly between -0.08 and 0.08. Using the distributed training method
described above, 800 child models are trained in parallel. The child models are
trained using Momentum Optimiser with the learning rate set to 0.1, weight decay
of 0.0001 and momentum of 0.9 with Nesterov Momentum. Each child architecture
is trained on CIFAR-10 from scratch, and then is evaluated on a held-out validation
set. The resulting accuracy is then used to update the weights of the controller RNN.

As far as the setup for the experiments on CIFAR-10 is concerned, the hyper-
parameter search space includes convolutional architectures, with Rectified Linear
Units (ReLU) as non-linearities, batch normalisation and skip connections. Skip
connections [59], as the name suggests, allow for a wider search space since at any
particular layer N, there are 2V~! possible combinations of the previous N — 1 lay-
ers to serve as inputs to layer N. The intuition behind this type of skip connection
is that they have uninterrupted gradient flow from the first layer to the last layer,
which tackles the vanishing gradient problem. Apart from the aforementioned pa-
rameters, for each layer the controller selects a filter height, filter width and number
of filters. Also, we observe that the learning rate is not among the predicted hyper-
parameters, and that the child models generated by the controller are restricted to
only convolutional layers.

With this setup, NAS discovers a CNN with 15 layers achieving a 5.50% error rate

30

on the test set. An important aspect to underline is the role of skip connections.
Connecting each layer to all the layers that precede it results in a small performance
drop, yielding a 5.56% error rate. Conversely, removing all skip connections has a
significant impact on the performance of the architecture, with the test error drop-
ping to 7.97%.

A second set of experiments on CIFAR-10 also includes the stride width and stride
height for each layer, along with the hyper-parameters predicted in the previous
setup, thus increasing the search space at the cost of computational challenges. In
this setup, NAS discovers a 20-layer CNN which achieves 6.01% error rate on the
test set, similar to the previously suggested architecture. In a third scenario, the
controller can also decide to include a pooling layer for layers 13 and 24, respectively,
of the generated architectures. Moreover, a number of 40 filters are added to each
layer of the child models. With this new setup, the controller predicts a CNN that
achieves 3.65% test error rate.

In spite of the strong empirical performance of NAS, this method is extremely time-
consuming and computationally expensive, using 450 GPUs for 3-4 days for a single
experiment, i.e. an average of 38,000 GPU hours. Training thousands of models
is nearly impossible for the usual machine learning practitioner. An explanation
for the computational bottleneck of NAS is training every child model sampled by
the controller RNN to convergence and throwing away all the trained weights after
updating the controller. One way to overcome this disadvantage is to share the
weights among the child models so that training each child model from scratch is
not required anymore which, in turn, leads to a significant reduction in both time
and resources allotted for training. Thus, rather than training thousands of child
models from scratch, it is possible to train a single large neural network capable of
emulating any architecture within the defined search space.

31

Chapter 4

Investigation of the Efficient Neural
Architecture Search Approach

This project is an investigation of automated hyper-parameter optimisation focused
on Reinforcement Learning (RL) methods applied to Convolutional Neural Net-
works (CNNs). It aims to identify strengths and weaknesses of RL algorithms for
the problem of hyper-parameter tuning. Also, it is worth mentioning that we explore
uncharted territory since very little literature is available for this kind of approach
to our problem. Hence, there is no guarantee that an RL algorithm will outperform
existing methods like Bayesian Optimisation or Genetic Algorithms. With his in
mind, we search for solid neural networks architectures trained on the CIFAR-10
dataset.

Two of the main aspects to be taken into consideration when it comes to the stopping
criteria for the automated hyper-parameter tuning problem are:

e Performance: One would like to pass a threshold in terms of performance, i.e.
achieve a certain classification accuracy percentage, or even beat state-of-the-
art algorithms, without necessarily considering time and hardware constraints;

e Time: One has a limited time to allocate for training the model. Experiments
are done in a manner that is optimised for time.

We opt for the CIFAR-10 dataset [48] as the input for all our experiments. CIFAR-
10 is among the most popular datasets for machine learning research, especially for
image classification. This dataset is made up of 60000 colour images of size 32x32
and is split equally in 10 classes. The lowest error rates for CIFAR-10 are achieved
using large neural networks, particularly CNNs, which require a multitude of hyper-
parameters to optimise [4]. Therefore, we argue that this dataset is highly suitable
for the task of neural architecture search. Another well-known dataset is MNIST,
however it is not difficult to achieve above 90% which in turn makes comparison
between various optimisation methods hard to evaluate. Furthermore, any slight
improvement in performance is overshadowed by the amount of resources needed for
this.

32

4.1 Overview

Similar to the NAS method presented in Section 3.5, Efficient Neural Architecture
Search via Parameter Sharing (ENAS) [5] uses an RNN controller to sample CNN
architectures. The key observation is that, as opposed to NAS which trains all child
models from scratch, ENAS uses weight sharing among child architectures to amor-
tise the cost of training. The idea of weight sharing is inspired by previous work
[49] on transfer learning which shows that weights learned for a particular model on
a specific task can be used, with little changes, for different models on different tasks.

We can represent the search space of ENAS using a Directed Acyclic Graph (DAG)
whose nodes represent the local computations that can be performed at a particular
layer, while the edges represent the flow of information, 7.e. what previous nodes
are connected to the current node. The local computations for a node, i.e. layer,
are the following 6 operations:

e convolution with filter size 3x3 (conv 3x3);

convolution with filter size 5x5 (conv 5x5);

depthwise separable convolution with filter size 3x3 (sep 3x3);

depthwise separable convolution with filter size 5x5 (sep 5x5);
e max pooling with kernel size 3x3 (max 3x3);
e average pooling with kernel size 3x3 (avg 3x3).

Both the computation operations and the flow of information for every node, i.e.
layer, are sampled by the controller RNN. What this means is that a child model
generated by the controller RNN is just one possible configuration of local opera-
tions and connections between nodes (layers), which is basically a subgraph of the
larger DAG. The activation function at each layer is ReLU and every convolution is
followed by batch normalisation.

Figure 4.1 demonstrates how the controller RNN samples a child model from 5
nodes in the DAG. At each node, the controller RNN decides on what previous
nodes to connect to, as well as a computational operation:

e At node 1, i.e. layer 1, the controller does the following sampling: it can only
connect the input to node 1, and it chooses a conv 3x3 operation;

e At node 2, i.e. layer 2, the controller samples previous index 1 and a max 3x3
operation;

e At node 3, i.e. layer 3, the controller samples previous index 2 and a sep 5x5
operation;

e At node 4, i.e. layer 4, the controller samples previous indices 2, 3, and a conv
3x3 operation;

e At node 5, i.e. layer 5, the controller samples previous index 1 and a conv 5x5
operation.

33

Figure 4.1: The DAG depicts the entire search space which contains 5 nodes. The
red arrows denote the configuration of a model sampled by the controller RNN. The
black arrows denote other possible paths between the nodes that are available for
sampling to the controller.

The output of the controller, namely the child model, is shown in Figure 4.2. In
our example, for every pair of nodes (i, j) with j < i, there are 6 weight matrices
Wf;’ corresponding to the different computational operations. In other words, each
operation at each layer has a different set of parameters.

Figure 4.2: The child model CNN generated by the controller RNN. The figure
shows the layer type and connections for each layer.

We now demonstrate the concept of weight sharing. If a computational operation
between two nodes has been done before (i.e. was trained before in another child
model), then the weights from the convolutional filters and 1x1 convolutions (to
maintain number of channel outputs) will be reused. This can be easily understood
with another example. Starting from the setup in our previous example, assume
that now at node 3 the controller samples previous index 1 and a sep 5x5 operation;
and at node 5, the controller samples previous index 1 and a avg 3x3 operation.
Then, when training this new child model, we can reuse the weights corresponding
to layers 1, 2 and 4: WEgro3®3 Wneed#3 and Weg3*3, Thus, only the newly es-
tablished connections need to be trained. The main purpose behind weight sharing
is that the controller RNN does not need to train every child model from scratch
and thus the training phase is shortened. It is important to highlight that reducing
training costs by a large margin, approximately 1000 times in terms of GPU-hours
compared to NAS, allows the average practitioner to perform Neural Architecture
Search using RL.

34

4.2 Experiments and Results

Previously, reproducing NAS results was unfeasible due to the large amount of com-
putation that came with these methods [4]. However, more recent works [5, 60]
have reduced the associated costs significantly and as such offer the possibility to
attempt the reproduction of the results reported in the respective papers. When
experimenting with ENAS [5], we found that the maximum resident set size of the
process during its lifetime was approximately 18 GB. A key aspect to underline is
the lack of reproducibility of the experiments ran by the authors of ENAS to find
performant CNNs. Using the same setup as indicated in the original paper [5], we
managed to achieve an error rate of 4.93%. In comparison, the authors reported a
3.85% error rate. Other researchers [61] have highlighted the issue caused by the
inability to reproduce the results of the experiments performed by the authors of
ENAS. Usually, a specific random seed is needed to have deterministic results for
such experiments. In the original implementation of ENAS in TensorFlow, no such
random seed is provided as an argument. We run the same experiment several times,
i.e. using the same search space and parameters as input. The learning rate for
the controller RNN is set to 0.001. We constrain the controller RNN to build child
models that contain a fixed number of hidden layers, namely 14 hidden layers. We
set the upper threshold for the number of epochs allotted for training to 310.

en 55

sep 5x5

conv 5x5

H

sep S5x5 sep 5x5

max 3x3

+
L3

sep 5x5 sep 3x3

sep 3x3 sep 3x3

-+

max 3x3 sep 5x5

L

sep 5x5

8
H
o
i

sep 3x3 sep 5x5
sep 3x3 sep 5x5
+ +
softma sofmax
(a) (b)
Own Result Original Result

Figure 4.3: CNNs discovered by the controller RNN.

Our best performing child neural network sampled by the controller RNN, depicted
in Figure 4.3a, yielded a test accuracy of 95.07% which is just short of the 96.15%

35

Time Parameters | Test Accuracy
Method (days) GPUs (M) (%)
Macro NAS + Q-Learning|22] 10 10 11.2 93.07
Net Transformation|[60] 2 5 19.7 94.30
SMASH[62] 15 1 16.0 95.96
NAS[4] 28 800 7.1 95.53
NAS + more filters|4] 28 800 374 96.35
ENAS[| 0.7 1 16 96.15
ENAST 0.7 1 4.6 95.07
Hierarchical NAS|63] 1.5 200 61.3 96.37
Progressive NAS|64] 1.5 100 3.2 96.37
NASNet-A[49] 1 450 3.3 96.59
NASNet-A | CutOut[49] 1 450 3.3 97.35

Table 4.1: Top-1 accuracy for ENAS and other approaches on the CIFAR-10 bench-
mark. The first block contains techniques that search for the entire CNN. The
second block presents approaches that search for convolutional cells which are com-
bined to design the final neural network. For ENASt we report the results achieved
by running our own experiments.

result reported by the authors of ENAS. Our resulting CNN is on par with the
state-of-the-art architectures, while requiring far less resources since we only use
one GPU. The ENAS method excels when we consider the short period of time of
less than 17 hours needed to find such a performant convolutional architecture. We
present the performances achieved by various searching methods on CIFAR-10, as
well as the resources and time required, in Table 4.1. It is worth comparing and
contrasting the network obtained by the authors, shown in Figure 4.3b, and our
neural network. We notice that for the first few layers the controller RNN prefers
convolutions with larger kernels and samples the 5x5 convolution more frequently
than the 3x3 convolution. This tendency occurs in all our experiments on CIFAR-
10. However, stacking multiple smaller 3x3 convolution layers, as opposed to using
a single larger 5x5 convolution layers, makes the network lighter and provides better
accuracy for the simple reason that it results in more layers and a deeper network. In
our experiments, the number of hidden layers is fixed for the child models to 14, so
the RNN controller is forced at the first few layers to predominantly pick the larger
5x5 convolutions. Moreover, we observe the prevalence of depthwise separable con-
volution layers which reduce the computation costs by up to 7 times. Additionally,
replacing the depthwise separable convolution layers with normal convolution layers
decreases the test accuracy by 1.5%), while randomly modifying the skip connections
between layers further decreases the test accuracy by 2.4%.

4.3 Summary

In this chapter we presented an investigation of the ENAS approach. After analysing
the search space of ENAS and how the controller RNN samples architectural con-

36

figurations from the DAG, we explained the concept of weight sharing which is vital
for significantly reducing the time required, namely less than 17 hours, to find a
performant CNN architecture.

Moreover, we highlighted the lack of reproducibility of the results reported by the
authors of ENAS. Based on the setup used by the authors, we discovered a child
model that yielded a test accuracy of 95.07% on CIFAR-10. We underlined the ten-
dencies encountered in the sampling decisions of the controller RNN and discussed
how modifying the configuration of our best performing CNN affects its performance.

37

Chapter 5

Evaluation of the Controller RNN

5.1 Overview

The controller RNN is responsible for designing CNNs, namely what operations to
employ at each layer and what skip connections to use. In this chapter, we explore
and compare between different search strategies that can be followed by the con-
troller RNN. A key point to highlight is that ENAS uses an e-greedy algorithm to
search for an optimal network configuration. Adjusting the values of the parameter
€, we can compare between using a strategy that allows the controller RNN to make
its own sampling decisions and a controller RNN that employs a random search with
weight sharing strategy, as well as a combination of these two strategies. Since ran-
domness plays a role in all approaches, it is worth examining the training, validation
and test accuracies of the controller RNN plotted against the number of epochs in
order to evaluate these search strategies. We need to emphasise that the controller
is guided by the validation accuracy of the sampled child models. This means that
we expect a high level of similarity between the graphs depicting the training and
validation accuracies for each of the three strategies.

5.2 Random Search with Weight Sharing

We first discuss the results for the experiment in which the controller RNN employs a
Random Search with Weight Sharing strategy, in other words we set the € parameter
to 1. Analysing the graphs in Figure 5.1, we observe that we can partition the
graph in four main areas of the search space. We recall that after a child model,
i.e. a sampled CNN, is trained to convergence, the controller RNN samples an
architectural configuration from another region of the search space. We show an
in-depth analysis of the results for training accuracy of the controller, however the
same applies for both validation and test accuracies:

e The first area is exploited in the first 25 epochs, the training accuracy of the
controller RNN increases nearly monotonically starting from 58% and con-
verging to 79%:;

e Another region of the search space expands from epoch 25 to epoch 55. Here
the training accuracy grows from 61% to 81%, where it converges;

38

e The third phase spans from epoch 55 to epoch 150. We notice that in this
particular region the controller RNN initially converges to a training accuracy
of approximately 71%. This underlines the high probability of a local optimum
in the third area of the search space. Afterwards, in the last third of this phase,
the accuracy quickly converges to another better-performing local optimum
which yields a roughly 83% result;

e The final phase spans from epoch 150 to epoch 310 which is the limit for the
number of epochs we allow for training. It is probably the most remarkable
phase since the training accuracy converges linearly to the best performing
local optimum. Starting from an initial training accuracy of 65%, we observe
that the accuracy grows smoothly to an accuracy of approximately 85%.

Random Search with Weight Sharing Random Search with Weight Sharing Random Search with Weight Sharing

08 D 08 , 08
.
[/ 07 ’) 07 ’ 0
’ Y Y ' £ .] p
N J I TV yos{ M A - 2‘ X
R o . 8 Py e N) A
5 2] [L] 3 . ¢ 8 }' .
g X% gos r 505- @
< [} v .
Sos L] [} € [) . b .
< [. 2 ! 2 [}
H] 8 04 004~
o4 2 K
F 3 .
' 03 03- o
03
02 1
R 02- o
02
L] 014 ® oL- @
0 50 00 10 200 250 300 0 5 100 150 200 250 30 0 5 100 10 200 250 300
Esochs Epochs Epachs
Random Search with Weight Sharing Rendorm Search with Waight Sharing Random Search with Weight Sharing
08 08-
" o e
W 07 07-
07
=06 06- W
9 3 H
3 M Sos-
L 5 ¢
B4 T os-
04 2 £
r g
03 03-
03
02 02-
02
01 01-
0 50 00 10 200 250 300 0 5 100 10 200 50 30 0 5 100 10 200 250 300

Eochs Epochs Epachs

Figure 5.1: The controller RNN employs a Random Search with Weight Sharing
Strategy. The plots show the training, validation and, respectively, test accuracy of
the controller RNN plotted against the number of epochs.

We reproduced this experiment 3 times and observed that the training, validation
and, respectively, test accuracies follow the pattern described above. Thus, we infer
that the results presented in the previous paragraph are not under the influence of
chance, but rather it demonstrates the power of Random Search with Weight Shar-
ing. Another aspect worth mentioning is that the controller RNN is not affected
by a few outliers in the search space that yielded significantly lower accuracies. It
is important to recall that ENAS receives as an input a master architecture which
contains numerous possible configurations. The master architecture directly influ-
ences the accuracies for the controller RNN since it already provides a search space
designed in a way such that it contains good-performing configurations.

39

Random Search with Weight Sharing

Tmmcy
o
=3

400 600 800
Epochs

Random Search with Weight Sharing

1000

Training Accuracy

bl 200 400 600 800
Epochs

1000

Validation Accuracy

Validation Accuracy

Rendom Search with Weight Sharing

-t eagrRes |

i,

.
»
»
0 200 400 600 800 1000
Epochs
Rendom Search with Weight Sharing
0 200 400 600 800 1000

Epochs

Test Accuracy

Test Accuracy

2

Random Search with Weight Sharing

&

.
.
& (3
pro
*]
.
]
.
.
.
.
0 200 400 600 800 1000
Epochs
Random Search with Weight Shzring
0 200 400 600 300 1000
Epachs

Figure 5.2: Random Search with Weight Sharing. Increasing the number of epochs
for training to 1000 does not yield better performance when compared to results
from the previous experiments with three times fewer epochs shown in Figure 5.1.

40

We also performed another experiment in which we increase the number of epochs
to 1000. This idea was inspired by the results obtained in the fourth region of the
search space. Analysing the plots in Figure 5.1 we cannot guarantee that we reached
a plateau which means that the accuracies could grow even more. Consequently it
is natural to allow more epochs for finding child models. The results for this experi-
ment are shown in Figure 5.2. We note that, indeed, the results from the experiment
in which we set the number of epochs to 1000 offer an insignificant improvement
while increasing the computational costs three times. Thus, we infer that allowing
more epochs for searching and the larger costs associated with it are not justified by
the small performance improvement. Also the random controller goes on to explore
another region of the search space, but with less satisfactory results.

5.3 Full Controller RNN

In our second set of experiments, we employ a search strategy that uses only the
controller RNN to make sampling decisions by setting the e parameter to 0. The
learning rate of the controller RNN is set to 0.001. We allow 310 epochs for training,
and constrain the controller RNN to sample CNNs with exactly 14 hidden layers, as
per our previous experiment in which we performed a Random Search with Weight
Sharing strategy. We start by discussing the plots for training, validation and test
accuracies that are shown in Figure 5.3. We proceed in the same manner as we did
with Random Search with Weight Sharing: we focus our discussion on the training
accuracy which is influenced by the validation accuracy of the sampled child models.
Naturally, the validation and test accuracies follow a very similar pattern. After
training a child model to convergence, the controller RNN samples another child
model from a different area of the search space taking into account its past sampling

decisions. We again identify 4 separate regions of the search space that are exploited
by the controller RNN:

e The first region is exploited for the first 30 epochs. We note how initially
the controller RNN seems to get stuck in a local optimum yielding a training
accuracy of around 65%. Afterwards, the training accuracy slowly converges
to a better local optimum of 79%. As expected, this behaviour reflects in the
plots for validation accuracy and training accuracy, as well;

e In the second region of the search space spanning from epoch 30 to epochs
75 the training accuracy grows almost linearly from 60% and converges to
approximately 84% which corresponds to the local optimum for this particular
area of the search space;

e After converging to 84%, the controller RNN samples another CNN architec-
ture based on the results from the previous two exploitation phases. This can
be observed by looking at the starting point of the third region of the search
space which gives an initial training accuracy of 63%. The training accuracy
converges to 86%, after which the controller RNN samples another child model;

41

Full Controller RNN Full Controller RNN Full Controller RNN

W W e

(] < .

o1 * 0L e al- 0

T T T T T T T T T T T T T T T T T T
0 50 100 150 200 250 300 0 50 100 150 200 50 300 4 50 100 150 200 250 300
Egochs Epochs Epochs

Full Controller RNN Full Controller RNN Full Controller RNN

0 Y M s el

Ac
=

\‘) Sb l[“() Elj::hs 260 250 36[I‘] Sb 100 El;‘ql)(hs 260 I;E 36(] 6 Sb 16[é:ihs 200 Zéﬂ 3:“(]
Figure 5.3: Sampling decisions are solely based on the actions of the controller RNN.
Note the similar performances of this method and the Random Search with Weight
Sharing approach.

e The fourth region of the search space is exploited from epoch 150 until reaching
the threshold of 310 epochs. Here, the training accuracy of the controller RNN
plateaus at 87%.

As we did in our experiments with Random Search with Weight Sharing, we try to
extend the number of epochs allotted for training in order to confirm that our search
strategy has reached its maximal potential. The plots in Figure 5.4 show the results
for the experiment in which we increased the number of epochs to 1000. Compared
to the results of the previous experiment (Figure 5.3), we observe that for the first
four regions of the search space that are exploited the differences in performance are
non-essential given that by increasing the number of epochs we also increased the
costs. This serves as a confirmation that the performances obtained when allowing
310 epochs for training are very solid.

5.4 Full Controller RNN and Random Search with
Weight Sharing Comparison

In Section 5.2 and 5.3, we performed an independent analysis of two search strate-
gies, namely Random Search with Weight Sharing and a search strategy fully guided
by the controller RNN. Investigating the validation and test accuracies given by the

42

two strategies, we notice that a search strategy solely based on the controller RNN
to make sampling decisions does not perform significantly better than a Random
Search with Weight Sharing strategy. This observation contradicts the claims of the
authors of ENAS.

To illustrate our remark we provide the following argument. During the explo-

W,

Full Controller RNN Full Controller RNN Full Controller RNN

o W A

|2
Jos{ ®
< []

T T T T T T T T T T T T T T T
0 200 400 600 800 1000 4 200 400 600 800 1000 0 200 400 600 800 1000

Full Controller RNN Full Controller RNN Full Controller RNN

Eoochs Epochs Epochs
Figure 5.4: Sampling decisions are solely based on the actions of the controller
RNN. Increasing the number of epochs to 1000 does not offer significant performance
improvement when comparing with the results from the experiment where we set
the number of epochs to 310 (Figure 5.3).

ration phase the controller RNN samples architectures in a manner which is biased.
That is, given its past experience the controller RNN focuses on a particular re-
gion of the search space in which specific activations and skip connections are more
frequent. This can guide the controller RNN into exploiting an area of the search
space that does not contain performant architectural configurations. Thus, the per-
formance of the CNNs sampled by the controller RNN heavily relies on the search
space, i.e. master architecture, the controller RNN has at its disposal. This search
space needs to be configured manually by the user and this usually constitutes one
of the drawbacks of Neural Architecture Search methods. Intuitively, the bias in
the sampling performed by the controller RNN can be explained as follows: the
training stage in ENAS switches between updating the shared weights in the mas-
ter architecture, i.e. the Directed Acyclic Graph, and updating the parameters of
the controller RNN, thus the controller RNN is biased towards sampling the same
architecture for the child model again since the shared weights of the corresponding
model have already been improved. Thus, sharing the weights of the child models

43

is an artifact that leads to biased decisions of the controller RNN, but this is the
trade-off we are willing to take in order to significantly shorten the training time
and make this approach available to the ordinary ML practitioners. Furthermore,
the argument goes to show the principal characteristic of the former search strategy:
biased exploration. Making informed sampling decisions is the main trait of employ-
ing a search strategy that uses RL to guide the controller RNN through the search
space and exploit particular areas of the space. Even though the two approaches,
namely Random Search with Weight Sharing strategy and a Full Controller RNN
strategy, both benefit from employing a common weight sharing scheme, they still
constitute different search methods. However, Figure 5.1 and 5.3 show that both
methods perform similarly. Thus, we argue against the initial claims of the authors
of ENAS and show that the controller RNN does not do significantly better than
Random Search with Weight Sharing.

5.5 Hybrid Search Strategy

The previous two experiments set the stage for our third approach in which we
propose a hybrid search strategy in which the controller RNN navigates through the
search space switching between sampling child models using the actions issued by
itself and sampling using Random Search with Weight Sharing. We use the following
configuration for this experiment. The learning rate is set to 0.001, and we use an
e-greedy strategy where we set the parameter € to 0.5. To offer a fair ground for
comparison, we constrain the controller RNN to sample from the same search space
we used in the Random Search with Weight Sharing and sampling solely based on
the controller RNN approaches. Furthermore, we make the controller RNN sample
convolutional networks with exactly 14 hidden layers. We investigate the training,
validation and test accuracies of the controller RNN which are shown in Figure 5.5.
Again, we focus on the training accuracy since the other two follow a similar pattern.
Analysing the graph, we note that the search space is partitioned into four regions:

e The first region of the search space that is exploited lasts until epoch 30. The
controller RNN samples a sub-optimal configuration. This is reflected in the
low training accuracy it achieves, reaching only about 68% accuracy at epoch
30 which shows that the controller RNN has sampled in a region with poorly
performing architectures;

e The controller RNN samples another child model from another area of the
search space spanning from epoch 30 to epoch 75. Although at first the con-
troller RNN gets stuck in a local optimum yielding an accuracy of 62%, it then
converges to an improved local optimum of 74%;

e Afterwards, the controller RNN samples from the third area of the search
space which lasts from epoch 75 until epoch 150. Note that now the controller
RNN sampled a region which contains good architectures since the training
accuracy seems to grow quite fast to 79% where it looks to converge. However,
there still seems to be room for improvement which is a plausible reason for

44

Epsilon 0.5 Epsilon 0.5 Epsilon 0.5

g] » g 'l..‘. Y L
e RN Lyl g
ol SR B -.3#- X oar s L
E o ¥y ¢ g 't'.' T v

. EEF S SEMER

Epsilon 0.5 Epsilon 0.5 Epsilon 0.5

\‘) 5b 160 15‘[\ ZE“(] 250 36[5 5b 100 15‘0 260 Ié[36(] 6 S‘D 16[L%D 200 Zéﬂ 3:“(]

Eochs Epochs Epachs
Figure 5.5: The controller RNN employs an e-greedy Search Strategy, where the
parameter € is set to 0.5, switching between the two previous strategies.

us to run another experiment with more epochs. We discuss this idea later in
this section;

e Finally, the last area of the search space is exploited from epoch 150 until
reaching the threshold of 310 epochs where the training terminates. The con-
troller RNN now samples a good performing architecture. This is reflected in
the training accuracy the controller RNN achieves, namely 84%, since training
the controller is guided by the validation accuracy of the child models. Again,
we suspect that the training accuracy could grow even more if training was
allowed for a larger number of epochs. We investigate this option in our next

experiment.

As mentioned above, we have a good reason to perform another experiment in which
we increase the number of epochs to 1000 (Figure 5.6) since the graphs correspond-
ing to our last experiment (Figure 5.5) do not show that the accuracy plateaus
especially in the third and fourth regions exploited by the controller RNN. How-
ever, we only observe a very slight increase in the accuracies which is clearly not
satisfactory taking into account the large amount of computational costs involved.
We also note that a fifth area of the search space is exploited, but the performance
of architectural configurations from this region does not match the results from the
fourth area of the search space.

45

Epsilon 0.5 Epsilon 0.5 Epsilon 0.5

03
08 08 '
7 07
: . }
07 o . ¢
5 . * 206 A 05 0
¢ g 5
5 § '.:] H & ? [
<06 1ol <03 l‘ éms-v LI
£ 7 e R
" . a]
5 o ¢ 04, ¢ P RN .
5] ’
£ 1! H .
05 d 03 03-
] . .
[.
.
' 02 02-
04
U . .
01 o
0 200 00 600 800 1000 0 200 40 600 800 1000 0 200 400 600 800 1000
Enochs Epochs Epachs
Epsilon 0.5 Epsilon 0.5 Epsilon 0.5
08 08 18
07-
01 07
]
] g »
M b 5
g 3
506 £06 g
£ 2 2
< o
< 3 ¢
s 2 ¢
= 3
05 05 05
04 04 04
bl 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 300 1000
Enochs Epochs Epochs

Figure 5.6: The controller RNN employs an e-greedy Search Strategy, where the
parameter € is set to 0.5. Extending the number of epochs for training the controller
RNN to 1000 insignificantly improves the performance considering the high increase
in computational costs.

46

5.6 Summary

Full Controller RNN Ful Controler RNN Full Contraller RNN

02 — Random Search 02 — Rendom Search 02- ‘ — Randorn Search
— Epsilon 0.5 o1 — Epsilon 0.5 o1- — Epsilen 0.5

Eoochs Epochs Epochs
Figure 5.7: Comparison between three different search strategies in terms of training,
validation and, respectively, test accuracy. The number of epochs is set to 310. The
Full Controller RNN strategy performs better than the other two approaches, but
not by significant margin.

In this section we evaluated the search strategy of the controller RNN and com-
pared it to Random Search with Weight Sharing. We showed that the best child
model sampled by the controller RNN is slightly better than the child model sam-
pled by employing a Random Search with Weight Sharing strategy. However, we
argue the Full Controller RNN strategy is not significantly better than Random
Search with Weight Sharing, thus contradicting the claims of the authors of ENAS.
Furthermore, we evaluated a hybrid method that combines the two aforementioned
search strategies. A summary of the experiments discussed in this section is pre-
sented in Table 5.1. The Full Controller RNN approach slightly outperforms the
other two methods, as shown in Figure 5.7 where we compare the three different
search strategies. We have also performed more experiments with various search
strategies in which the controller RNN switches between a Random Search with
Weight Sharing strategy and a search strategy fully guided by the sampling deci-
sions of the controller RNN according to the e parameter. We refer the reader to
the Appendix A for further details regarding these experiments.

47

Search Strategy Average Test Accuracy Best CNN Child Model
Test Accuracy
(epochs) (%)
(%)
Random Search with
Weight Sharing 82.93 94.91
(310)
Full Controller RNN
(310) 85.07 95.07
e=0.5
(310) 80.73 93.68
Random Search with
Weight Sharing 83.12 94.96
(1000)
Full Controller RNN
(1000) 85.78 95.11
e=0.5
(1000) 82.21 93.75

Table 5.1: Summary of the experiments discussed in this section. For each of the
search strategies the controller employs we report the average test accuracy of the
controller RNN and the test accuracy of the best performing child model sampled
by the controller RNN.

48

Chapter 6

Enhancing the Controller RNIN

6.1 Extracting the Controller RNN

The structure and connectivity of a neural network can be expressed usually by a
string of variable-length. Such a string can be generated by a Recurrent Neural Net-
work which in the context of ENAS is the controller RNN. Training the architecture,
i.e. child model, indicated by the variable-length string on the CIFAR-10 dataset
leads to a validation accuracy that is used as a reward signal for the controller.
The policy gradient used to update the weights of the controller is analogous to the
Reinforce Rule [58] employed by the Neural Architecture Search with RL method
[4] presented in Section 3.5. Thus, the controller RNN is trained to improve its
sampling decisions by giving higher probabilities to architectures that yield a good
validation accuracy. An essential trait of ENAS is the strong connection between
the controller RNN and the sampled child models, as shown in Figure 6.1. In this
section, we focus on extracting the controller and investigating its characteristics.

The controller RNN is a 2-layer LSTM with 100 hidden units. At the beginning,
the learning rate is set to 0.0010. The weights of the controller RNN are initialised
uniformly in the interval [-0.01, 0.01] and are trained using the Adam optimiser
[13| for which the gradient is computed by employing the Reinforce Rule. The re-
ward fed to the controller RNN is computed on the validation set so as to force the
controller RNN to sample CNNs that have the capability to generalise on unseen
data, as opposed to using the training accuracy of the child models as the reward
signal which would cause the controller RNN to sample architectures that overfit
the training data.

In the most basic case, the controller is capable of sampling feed-forward neural
networks with only convolutional and pooling layers. In this case, the controller
has to predict for each layer the number of filters, the filter height, the filter width,
as well as stride height and stride width. At the starting point, the input for the
controller RNN is an empty embedding. Afterwards, the controller RNN samples
decisions using softmax classifiers, where the decision sampled in the previous step
serves as input embedding for the current step. This process is repeated for each
layer.

In order to increase the complexity of the search space, the controller RNN can

49

the validation accuracy of
the Child Model is fed as a

%

reward to the Controller

——

to maximise the validation accuracy S
of the Child Model)

- - /___:-—“""

- \‘\5,_ _
= 0
e e——
Child Model Y
a Convolutional Neural Network ‘i—J

(updating the decision |
policy of the Controller
| based on the reward |

Controller ‘-l

a Recurrent Neural Network that aims F‘\

designed according to the latest h
decisions sampled by the Controller

'trajnjng the Child |
Model on the
| CIFAR-10 dataset |

the Controller proposes
an architectural
configuration the Child
Model has to follow

Figure 6.1: Interaction between the controller RNN and the child model

20

also propose skip connections which are part of modern manually designed architec-
tures such as ResNet. To allow the controller RNN to sample such connections, at
each layer we need to establish an anchor point which encompasses the content-based
sigmoid of each of the previous layers that need to be connected. A similar approach
is employed in Neural Architecture Search with RL (NAS) [4]. Each content-based
sigmoid determines the probability that an earlier layer in the child model serves
as input to the current layer together with preceding layer. It is a function that
encapsulates the current state of the controller RNN and the states of the previous
anchor points. Mathematically, this can be expressed as:

P(layer A is an input to layer B) = sigmoid(v’ - tanh(Wy - s4 + Wg - 5p))

where A ranges from 0 to B - 1 and s4 is the state of the controller RNN at the
anchor point belonging to the A-th layer, while s is the state of the controller RNN
at the anchor point of the B-th layer. The equation mentioned above constitutes
the main concept behind how the controller RNN samples skip connections. The
anchor point from a preceding layer, i.e. s4, is multiplied by the corresponding
weight matrix which is a learnable parameter. Then, this product gets added with
the product of the anchor point at the current layer, i.e. sg, and the corresponding
weight matrix. The resulting sum is then used as an argument to a sigmoid (logit)
function that maps the sum in the interval (0, 1), thus giving the probability of a
previous layer to be connected to the current layer using skip connections. This
process is repeated for all preceding layers. Afterwards, samples are drawn from a
multinomial distribution to decide which of the previous layers are going to be con-
nected to the current layer. Figure 6.2 shows how the controller RNN uses anchor
points to generate skip connections. If a layer has multiple input layers due to skip
connections, then the input layers are concatenated along the channel dimension.
In the case that the input layers to be joined are incompatible, namely they have
different sizes, then the smaller layers are padded with zeros so as to force the con-
catenated input layers to have the same sizes.

Layer L-1 Layer L Layer L + 1
Number| ___ | . Filter |____ Filter | ____ | Stride |____ | Stride | __ |Number| ___ .
. [of Filters| ™™ | ABCROT I | pgigng [T | Width \ | Height [y | Width + |of Filters| " | AAnchor
: A r ry W A T A r

Figure 6.2: The controller RNN uses anchor points to generate skip connections.

It is important to understand how the controller RNN builds a CNN child model
that is going to be trained. In the paragraph above we investigated how the con-
troller RNN samples skip connections. The other task of the controller RNN is
to decide what operation to use for each layer. This is done sequentially, layer by
layer. Recall that we forced the controller RNN to build child models consisting
of exactly 14 hidden layers and that the search space is determined by the master

51

architecture, i.e. the Directed Acyclic Graph (DAG). For each layer the controller
RNN samples a node from the master architecture. A softmax classifier is used to
assign each node the probability of being selected as the operation to be performed
at the current layer. Then, the controller RNN draws a sample from the resulting
multinomial distribution and, thus, records the operation to use for the current layer.

Up to this point for the two tasks it has to carry out, the controller RNN sam-
ples actions from multinomial distributions. However, we have to emphasise the
importance of training the controller RNN using the validation accuracy from the
selected child models. In ENAS, the controller RNN models the selection of a new
architecture a; based on the following equation:

P(a;) = P(ai|aq, ..., a;_1)

where aq, ..., a;_1 represent convolutional architectures previously sampled by the
controller RNN. We observe that this assumption is too relaxed in the sense that
it makes the controller RNN take into account architectures from the first sampling
trials which are naturally poor in terms of performance since the controller has not
been trained properly at the time of making these early sampling decisions. Al-
though the controller RNN eventually manages to learn to sample better and better
CNNs, the sub-performing architectures sampled initially still negatively impact the
controller RNN especially in the early stages of training. In Section 6.2 we propose
a solution to tackle this problem.

To demonstrate that the controller RNN is indeed improving its sampling deci-
sions we set out two experiments. In the first experiment we extract the controller
RNN and decouple it from the child model. We replace the reward signal fed to the
controller RNN, more specifically, instead of using the validation accuracy of the
child models, we replace it with a small constant value. Thus, the weights of the
controller RNN do not get updated properly which in turn leads to poor decision
making. To demonstrate this, we run the first experiment for 20 epoch. The train-
ing, validation and test accuracies of the controller RNN are shown in Figure 6.3.
Analysing these plots, we observe how he controller RNN is not capable of learning
anything meaningful since in the case of the training accuracy it merely scatters in
the interval [0.10, 0.18]. Naturally, the same phenomenon occurs in the case of the
validation and test accuracies with the results being even worse. The resulting child
model has 9 out of the 14 layers set to the identity operation and no skip connections
are employed. This further shows that in this setup the controller RNN is not able
to learn to sample performant architectures. We highlight the importance of the
reward by comparing between the results from Figure 6.3 and the results in Figure
6.4 where the reward signal is based on the validation accuracy of the child model.
Clearly, in this second experiment we observe how the accuracies grow in each of
the regions of the search space that are exploited. This indicates that the controller
RNN clearly learns to sample better performing architectures over time.

52

Training Accuracy

010

Training Accuracy

Controller RNN with Substituted Reward Signal

25 50 75 00 125 150 175 200
Enochs

Controller RNN with Substituted Reward Signal

25 50 75 00 125 150 175 200
Epochs

018

Validation Accuracy

008

018

validation Accuracy

010

Controller RNN with Substituted Reward Signal

25 50 75 00 125 150 175 200
Epochs

Controller RNN with Substituted Reward Signal

25 50 75 00 125 150 175 200
Epochs

0.18-

0.16-

Test Accuracy

010~

0.08-

0.06-

016~

Test Accuracy

0.10-

0.08-

Controller RNN with Substituted Reward Signal

5 50 75 100 L5 150 175 200
Epachs

Controller ANN with Substituted Reward Signal

Y
/
/\

/ v

5 50 75 100 15 150 175 200
Epochs

Figure 6.3: Substituting the reward signal with a small constant value affects the
sampling decisions of the controller RNN. It shows that the controller RNN is de-
pendent on a meaningful reward signal to improve its searching over time. Note the
very small accuracies reached in each of the plots. The training accuracy is always
less than 19%. Conversely, the experiment also demonstrates that in the general

case the controller RNN learns based on previous experience.

93

Full Controller RNN Full Controller RNN Full Controller RNN

09
08 08 , 08- !
f . { ,
o7y 4 & ¢ o7 # ’ 07+ :
L) -
RS » V':': ':
> . g . 05-] .
306 ° 3061 ¢ . H
¢ ", £ . 0 3 . O
3 » g . e .
205 <05 205"
g
g . § . g .
€ 804 04-
[H £
S E
03 03 03-
02 02 02-
01 @ 0l » ol- o
0 50 00 10 200 250 300 0 5 100 150 200 250 30 0 5 100 150 200 250 300
Enochs Epochs Epachs
Full Controller RNN Full Controller RNN Full Controller RNN
08 W 08 08- M
o 07 v V/‘wﬁ(W
>
5 06 05-
g : 3 /
205 105 305-
< v
: ; :
< 504 8 04-
S04 g i
: E
03 03 03-
02 02 02-
01 01 01-
0 50 100 150 200 250 300 bl 50 100 150 200 250 300 0 50 100 150 200 250 300
Enochs Epochs Epochs

Figure 6.4: The choice of reward signal is crucial for the controller RNN to learn
to sample better child models. The growing accuracy for each of the 4 regions of
the search space that are exploited indicate that the controller RNN improves its
decision making with time.

o4

6.2 A Novel Approach: ENAS with Early Stopping

6.2.1 Overview

The core mechanism behind the controller RNN is the reward signal which helps the
controller navigate through the search space. Building on the investigation presented
in Section 6.1, we establish that it is highly relevant to encourage the controller RNN
to sample better performing architectures from the initial stages of training. In this

section, we propose a novel approach to improve the sampling decisions of the con-
troller RNN. We call our method ENAS with Early Stopping.

Conceptually, when the controller RNN explores a new region of the search space
we want to predict whether this region contains good performing configurations for
CNNs. After the controller RNN decides on a particular configuration, it uses the
resulting validation accuracy of the sampled child model to decide whether this
particular region of the search space is worth exploiting further. If the validation
accuracy, which is fed as reward to the controller, is low we want to stop training
the child model and, thus, the controller RNN should choose to sample another
region of the search space. We recall that the controller RNN keeps track of all
sampled architectures, and the low reward it receives from underperforming child
models forces the controller RNN to sample a different architecture from a different
area of the search space. We repeat this process until the controller RNN finds a
satisfactory configuration of the child model.

The main advantage of our novel approach is that it allows the controller RNN
to learn to sample better child models even from the early stages of training. Since
the decisions of the controller RNN are strongly influenced by its past samplings,
the controller ends up discovering superior CNNs.

In the early stages of training, we want to encourage the controller RNN to ex-
plore the search space more efficiently. We do this by establishing a lower bound on
the validation accuracy of the sampled child models. Specifically, if the validation
accuracy of the child model is less than the lower bound we established, then the
controller RNN samples from another area of the search space taking into account
the past decisions. We highlight that at the beginning the controller RNN has no
knowledge of the search space. We could address this issue by injecting some prior
knowledge so as to influence the initial sampling decisions of the controller RNN,
however this would lead to highly biased exploration. Thus, we propose two modi-
fied search strategies: ENAS with Early Stopping vl and ENAS with Farly Stopping
v2. In both approaches, the search strategy is fully guided by the controller RNN;,
presented in Section 6.1, combined with different early stopping techniques. Fur-
thermore, since initially no prior knowledge is provided to the controller RNN, we
enforce the validation accuracy threshold only after the controller samples the first
child model. Then, the controller RNN samples different architectures until finding
a configuration that produces a validation accuracy not less than the threshold. As
training progresses, the controller RNN enhances its decision making and designs
improved child models.

95

6.2.2 ENAS with Early Stopping v1

In this approach we set the lower bound for the validation accuracy of a sampled
child model to 45%. Throughout training the controller RNN we do not modify this
threshold. We chose to set the threshold to 45% for empirical reasons: we attempted
to increase the threshold, but this led to a very slow search strategy. We note that
for each region of the search space the controller samples from, receiving a modest
reward in the early stages of the exploitation phase, yet still greater than 45%, does
not necessarily mean that a region contains only subperforming configurations. This
is the reason why in this approach we allow the controller RNN to further exploit
such regions.

Full Controller RNN with Early Stopping v1 Full Controller RNN with Early Stopping v1 Full Controller RNN with Ezrly Stopping v1

; M"wf“" ; *1/#/,.»:" o

*a
=
ca
o
-
-

A
P
=
°
-

M
< . .
v

-

-
=
.

0 50 100 150 200 250 00 il 50 100 150 200 50 300 0 50 100 150 200 250 30
Enochs Epochs Epochs

Full Controller RNN with Early Stopping v1 Full Controller RNN with Early Stopping v1 Full Controller RNN with Ezrly Stopping v1

P i Tl f M ,rw’

0 50 100 150 200 250 300 bl 50 100 150 200 250 300 0 50 100 150 200 250 300
Epochs Epochs Epachs

Figure 6.5: ENAS with Farly Stopping vi. We set the lower bound for the validation
accuracy of a child model to 45% to avoid sampling poorly performing configurations.
While the results are promising, we underline that when the controller RNN samples
from a new region of the search space there is a significant drop in the accuracies. A
reason behind this phenomenon is that establishing a threshold and not modifying
it as training progresses is not a strong enough early stopping policy.

We experiment with this new technique using the same setup for the controller
as in the Full Controller RNN search strategy presented in Section 5.3. As per
our previous experiments discussed in Chapter 5, we expect a strong connection be-
tween the plots for training, validation and, respectively, test accuracy. Analysing
the plots in Figure 6.5, we observe that the search space is split into four regions.
We focus on the training accuracy, however a similar pattern emerges in the other
two graph corresponding to validation and, respectively, test accuracy:

o6

e The first region is exploited until epoch 35. By employing our early stopping
technique, the controller RNN avoids getting trapped in a local optimum cor-
responding to roughly 66% training accuracy, and quickly converges to 79%.
This goes to show that indeed the controller is encouraged to sample better
configuration even from the early stages of training.

e The second region of the search space spans from epoch 35 to epoch 75. Here,
the training accuracy of the controller grows almost linearly to 82% where it
converges to a local optimum.

e Then, the controller RNN exploits a new area of the search space until epoch
200. The training accuracy grows to 84% reaching a local optimum at this
stage, after which the controller samples another area of the search space.

e The fourth region of the search space spans from epoch 200 until the end of
training. Here, the controller RNN reaches a training accuracy of 86% which
corresponds to a better local optimum of the search space when compared to
the training accuracies achieved by the controller on the previously sampled
regions. This is another confirmation that the controller RNN samples better
configurations as training progresses.

It is important to observe that the accuracies never drop below 50% since the im-
proved controller RNN is able to avoid sampling areas of the search space that
contain less competitive configurations for CNNs. However, we note that when the
controller RNN samples from a new region, the accuracies drastically drop in the
very early stages of exploiting the new region. This fact can be visualised by inves-
tigating the scatter plots in Figure 6.5, specifically we notice that at the beginning
of each new region of the search space there is a small number of points correspond-
ing to lower accuracies than expected. This can occur because our early stopping
strategy is not strict enough.

6.2.3 ENAS with Early Stopping v2

In the previous strategy we did not modify the reward threshold which was kept at
45%. Based on the results from the previous experiment we speculate that FNAS
with Farly Stopping vl is not strong enough. Consequently, we propose a stricter
early stopping policy in which we decide to adjust the reward threshold as training
progresses. Initially we set the threshold to 45% and gradually increase it by 1%
every 15 epochs, giving a final threshold of 65%.

The experiment with this novel approach is depicted in Figure 6.6. Due to the
similar patterns followed by the training, validation and test accuracies of the con-
troller RNN, we analyse the results for the training accuracy. We can partition the
graph in four separate regions of the search space exploited by the controller RNN:

e In the first region extends up to epoch 35. We emphasise the high initial
training accuracy of the controller which is approximately 60%. Then, the
training accuracy grows rapidly to 80% which corresponds to a local optimum
in this particular area of the search space;

o7

e The controller RNN samples a child model from another area of the search

space. The aforementioned observation regarding the high initial accuracy
holds in this instance as well, attesting the power of this novel approach with
early stopping. The second area of the search space exploited by the controller
spans from epoch 35 to epoch 75. In this region the controller RNN converges
to a training accuracy of 85%;

Based on the previously sampled child models, the controller decides on the
third area of the search space. Indeed, this region contains good architectural
configurations, a fact that is confirmed by the high accuracy achieved by the
controller. It converges to a training accuracy of 87%;

The fourth region of the search space spans from epoch 200 until the upper
limit for the number of epochs allowed for searching a suitable CNN which is
set to 310. The controller RNN demonstrates that it has honed its decision
making abilities by converging to 88% training accuracy, the highest accuracy
in all of the four regions exploited.

Full Controller RNN with Early Stopping v2 Full Controller RNN with Early Stopping v2 Full Controller RNN with Ezrly Stopping v2

0 50 100 150 200 250 300 0 50 100 150 200 50 300 0 50 100 150 200 250 30
Eochs Epochs Epachs

‘ M |
| i 0 W.m 7 ﬁﬁj as
it W 51l MWF” S JJW

5 -515F H z
] 5 s ¢ 13
3 Z05 % 205 H
55032 3 503 o 502
K] 3 s C K
z 204 z 204 :
5254 I -558 ° 259
3 3 H H °
= 3 z 3 Z
202 5 5002 03 002

50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epachs Eochs Epochs

Figure 6.6: ENAS with Farly Stopping v2. Building on top of the first technique,
we initially set the lower bound for the validation accuracy of the sampled child
models to 45%. As training progresses, we gradually alter this threshold, increasing
it by 1% every 15 epochs. This provides the controller RNN with the ability to
avoid sampling architectures from areas of the search space with underperforming
configurations.

We notice that using this approach the accuracies never drop below 55% which is
a great improvement when compared to the previous early stopping strategy. The

o8

best performing child model sampled by the controller RNN using our refined early
stopping approach yielded a test accuracy of 95.16%, which outperforms the 95.07%
test accuracy obtained from the best performing child model sampled using solely
the Full Controller strategy.

6.3 Summary

We started this chapter by doing an in-depth investigation of the controller RNN
employed by ENAS. The controller RNN is responsible for designing CNNs: for each
layer in a child model, the controller RNN samples what operation to employ, as
well as what skip connections to use. We performed experiments that show how the
controller RNN learns to sample better architectural configurations and highlighted
the significance of the reward signal.

'Wf > | ?(Wﬂ “D‘ | f |r w

S m v’

— ENAS with Early 5. v2 —— ENAS with Early 5. v2 —— ENAS with Early S, v2
Full Controller RNN Full Controller RNN Full Controller ANN

\‘] Sb IE“O Elj::hs ZE‘G 250 36[‘ﬂ Sb 100 Eljoﬂ(hs 260 IgE 36(] (‘J S‘D 16[Eléf(hs 200 Z%O 3:“(]
Figure 6.7: Comparing between two search strategies: ENAS with Early Stopping
v2 and Full Controller RNN.

Understanding the subtleties behind the controller RNN and the reward signal are
crucial in the development of our early stopping approaches. In ENAS with Farly
Stopping vl we set a constant lower bound for the validation accuracy of the sampled
child models. Empirically, we showed that this constraint was not strong enough
to encourage the controller RNN to sample better architectural configurations from
the early stages of training. Consequently, we devised an enhanced early stopping
strategy, ENAS with Early Stopping v2 in which we gradually increase the lower
bound for the reward as training progresses. The results for training, validation
and test accuracies are better than the ones belonging to the Full Controller RNN
method, as depicted in Figure 6.7. Using the controller in combination with this
novel technique led to the sampling of a child model that outperformed the CNN
sampled by the Full Controller search strategy. We report the performances of the
early stopping methods in Table 6.1.

99

Search Strategy Average Test Accuracy Best CNN Child Model
Test Accuracy
(epochs) (%)
(%0)
ENAS with Early Stopping v1 3334 94.96
(310)
ENASY
(310) 85.07 95.07
ENAS with Early Stopping v2 85.81 95.16
(310)
ENAS|[5]
310 N/A 96.15

Table 6.1: Summary of the experiments for our early stopping methods. For ENASY
we report the results achieved by running our own experiments. For each of the
search strategies the controller employs we report the average test accuracy of the
controller RNN and the test accuracy of the best performing child model sampled

by the controller RNN.

60

Chapter 7

Conclusions and Future Work

In this chapter we reiterate the main points discussed throughout the previous chap-
ters, then present ideas for future work.

We started by highlighting some of the best manually designed architectures and
the main motifs behind them, while at the same time emphasising the complexity of
crafting such networks and the need for automation. Therefore, we investigated sev-
eral hyper-parameter optimisation approaches: Grid and Random Search, Bayesian
Optimisation, Genetic Algorithms and Reinforcement Learning (RL). We chose Neu-
ral Architecture Search (NAS) with RL as our main focus of discussion for the next
chapters. In spite of the strong empirical performance of NAS, this method is ex-
tremely time-consuming and computationally expensive, using 450 GPUs for 3-4
days for a single experiment.

An explanation for the computational bottleneck of NAS is training every child
model sampled by the controller RNN to convergence and throwing away all the
trained weights after updating the controller. The ENAS approach overcomes this
disadvantage by sharing the weights among the child models so that training each
child model from scratch is not required anymore. Needing only a single GPU and
less than 17 hours to find a performant CNN, this method can also be used by the
average practitioner. This is the reason we chose to further explore and enhance
this approach in the rest of our work.

The controller RNN is responsible for designing CNNs, namely what operations to
employ at each layer and what skip connections to use. After analysing the search
space of ENAS and how the controller RNN samples architectural configurations
from the master architecture, i.e. Directed Acyclic Graph, we explained the con-
cept of weight sharing and underlined the tendencies encountered in the sampling
decisions of the controller RNN. We also highlighted the lack of reproducibility of
the results reported by the authors of ENAS. Our best performing CNN yielded a
test accuracy of 95.07% on the CIFAR-10 dataset. Furthermore, we discussed how
modifying the configuration of our best performing CNN affects its performance.

We then evaluated different search strategies of the controller. We showed that

the best child model sampled using a search strategy fully guided by the controller
RNN is slightly better than the child model sampled by employing a Random Search

61

with Weight Sharing strategy. However, we argued the Full Controller RNN strategy
is not significantly better than Random Search with Weight Sharing, thus contra-
dicting the claims of the authors of ENAS. We also experimented with a new, hybrid
search method that combines the two aforementioned search strategies.

We performed experiments that show how the controller RNN learns to sample bet-
ter architectural configurations and highlighted the significance of the reward signal.
We established that it is highly relevant to encourage the controller to sample bet-
ter architectures even in the early stages of training. Consequently, we developed a
novel approach, ENAS with Early Stopping, in which we enforce a reward threshold
with the aim of improving the sampling decisions of the controller RNN. Our best
performing CNN sampled using this approach achieved a 95.16% test accuracy on
CIFAR-10, thus outperforming the child model sampled by the ENAS controller.

As far as ideas for future work are concerned we propose extending the search space
available to the controller RNN by adding more operations, e.g. Dropout layer,
this can lead to even better child models. Another suggestion worth exploring is
replacing the 5x5 convolutions with consecutive 3x3 convolutions which may help
reduce the number of parameters in the network.

62

Appendix A

Hybrid Search Strategies

Here we list the experiments we performed for different hybrid methods we inves-
tigated. The higher the value for the ¢ parameter, the more the controller RNN
uses the Random Search with Weight Sharing strategy. Notice that the controller
RNN learns better, i.e. yields higher training, validation and test accuracies, when
the sampling is done preponderantly based on the decisions issued by the controller
RNN. However, this does not mean that the best performing Convolutional Neural
Network sampled by such strategies are better than the architectures sampled using
a search strategy that has more randomness in its sampling.

0.8 1

0.7 1

0.6

0.5 ~

0.4 1

Training Accuracy

034 &

® Epsilon0.1
® Epsilon 0.4
0.2 4 ® Epsilon 0.6
] ® Epsilon 0.8
0.1 T T T T T T T
0 50 100 150 200 250 300

Epochs

Figure A.1: Scatter plot for different e-greedy search strategies employed by the
controller RNN, where the parameter € is set to 0.1, 0.4, 0.6, 0.8.

63

0.8 1
0.7 +
' 0.6
o
=
g
< 0.5 1
[=]
-
£
o 0.4
=
0.3 7 —— Epsilon 0.1
—— Epsilon 0.4
0.2 4 —— Epsilon 0.6
—— Epsilon 0.8
T T T T T T T
0 50 100 150 200 250 300

Epochs

Figure A.2: Line plot for different e-greedy search strategies employed by the con-
troller RNN, where the parameter € is set to 0.1, 0.4, 0.6, 0.8.

64

Epsilon 0.1

Training Accuracy

0 50 100

150 200 250 300
Enochs

Epsilon 0.4

Training Accuracy

Training Accuracy

Training Accuracy

0 50 100

Figure A.3: Scatter plots for different e-greedy search strategies employed by the
controller RNN, where the parameter € is set to (from top row to bottom row) 0.1,
0.4, 0.6, 0.8.

150 200 250 300
Epochs

Epsilon 0.1

Validation Accuracy

0 50 100 150 200 50 300

Epochs

Epsilon 0.4

Validation Accuracy

Validation Accuracy

Validation Accuracy

il 50 100 150 200 50 30
Epochs

Epsilon 0.6

Epsilon 0.8

M 50 100 150 200 250 300
Epochs

65

Epsilon 0.1

L

07
o
e
306~
M
< D
B
Fos. o
e
.
04-
03- *
0 100 10 200 250 300
Epachs
Epsilon 0.4
08 J
07 '
3 =)
ST
5 ' -
g 0o~ 0: . v,
< . ()
TS
K]
05- 0‘ $
.
04-
.
0 50 100 150 200 250 300
Epochs
Epsilon 0.6
08-
07-
»
3
g
506-
3
v
€
8
[
05-
04-
0 50 100 150 200 250 300
Epachs
Epsilon 0.8
03-
07-
J.
05-
2
e . | " ‘
gos- .
1 ‘.
?
o4 "I
03- o
02-
.
01—

0 50 100 150 200 250 30
Epochs

Epsilon 0.1

Training Accuracy

04
03 T T T T T T
0 50 00 150 200 250 300
Enochs
Epsilon 0.4
08
07
>
&
4
5
g06
)
g
c
o
=)
04
0 50 100 150 200 250 300
Enochs
Epsilon 0.6
08
07
>
g
4
5
g
<06
o
g
<
g
£
05
04
0 50 100 150 200 250 300
Enochs
Epsilon 0.8
08
07
>
#
Lo6
g
<
Zos
£
[
F
04
03
024~ T T T

]
s

Figure A.4:

0.6, 0.8.

150 200 25
Epochs

0 300

Line plots for different e-greedy search strategies employed by the con-
troller RNN, where the parameter € is set to (from top row to bottom row) 0.1, 0.4,

Epsilon 0.1

Validation Accuracy

g4

100 150 200 50
Epochs

Epsilon 0.4

Validation Accuracy

g

100 150 200 50
Epochs

Epsilon 0.6

Validation Accuracy

50 100 150 200 250
Epochs

g

Epsilon 0.8

Validation Accuracy

50 100 150 200 250
Epochs

g

66

Test Accuracy

Test Accuracy

Test Accuracy

Test Accuracy

Epsilon 0.1

50

100

150
Epachs

Epsilon 0.4

200

50

100

150
Epochs

Epsilon 0.6

200

50

100

150
Epachs

Epsilon 0.8

200

50

100

150
Epochs

200

Bibliography

1

2l

3]

4]

5]

6]

7]

8]

9]

[10]

[11]

Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. Optimization for Ma-
chine Learning, volume 2, pages 1-3. MIT Press, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXww preprint arXiv:1312.5602, 2013.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. Nature,

550(7676):354, 2017.

Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement
Learning. arXiv e-prints, art. arXiv:1611.01578, November 2016.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Ef-
ficient Neural Architecture Search via Parameter Sharing. arXiv e-prints, art.
arXiv:1802.03268, February 2018.

IBM ILOG CPLEX optimization studio. URL https://www.ibm.
com/products/ilog-cplex-optimization-studio?mhg=cplex&mhsrc=
ibmsearch_a. Accessed: 16/01/2019.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the
IEEE, 104(1):148-175, Jan 2016. ISSN 0018-9219. doi: 10.1109/JPROC.2015.
2494218.

Marc Claesen and Bart De Moor. Hyperparameter Search in Machine Learning.
arXiv e-prints, art. arXiv:1502.02127, February 2015.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. Algo-
rithms for hyper-parameter optimization. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 24, pages 2546-2554. Curran Associates, Inc.,
2011.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Ar-
chitecture Search. arXiv e-prints, art. arXiv:1806.09055, Jun 2018.

Yoon Kim. Convolutional Neural Networks for Sentence Classification. arXiw
e-prints, art. arXiv:1408.5882, Aug 2014.

67

https://www.ibm.com/products/ilog-cplex-optimization-studio?mhq=cplex&mhsrc=ibmsearch_a
https://www.ibm.com/products/ilog-cplex-optimization-studio?mhq=cplex&mhsrc=ibmsearch_a
https://www.ibm.com/products/ilog-cplex-optimization-studio?mhq=cplex&mhsrc=ibmsearch_a

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21

[22]

23]

[24]

Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-
relation question answering. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages
643-648, Baltimore, Maryland, June 2014. Association for Computational Lin-
guistics. doi: 10.3115/v1/P14-2105.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. arXiv e-prints, art. arXiv:1412.6980, Dec 2014.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. AdaGrad stepsizes: Sharp con-
vergence over nonconvex landscapes, from any initialization. arXiv e-prints,

art. arXiv:1806.01811, Jun 2018.

Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. arXiv
e-prints, art. arXiv:1212.5701, Dec 2012.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic Gradient
Descent Optimizes Over-parameterized Deep ReLLU Networks. arXiv e-prints,
art. arXiv:1811.08888, Nov 2018.

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv e-prints, art.
arXiv:1502.03167, Feb 2015.

Dan Ciregan, Ueli Meier, and Juergen Schmidhuber. Multi-column Deep Neural
Networks for Image Classification. arXiv e-prints, art. arXiv:1202.2745, Feb
2012.

Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network. arXiv e-prints,
art. arXiv:1312.4400, Dec 2013.

Ashwin Bhandare, Maithili Bhide, Pranav Gokhale, and Rohan Chandavarkar.
Applications of convolutional neural networks. International Journal of Com-
puter Science and Information Technologies, Vol. 7 (5), pages 2-6, 2016.

Tobias Hinz, Nicolas Navarro-Guerrero, Sven Magg, and Stefan Wermter.
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural
Networks. arXiv e-prints, art. arXiv:1807.07362, July 2018.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing
Neural Network Architectures using Reinforcement Learning. arXiv e-prints,
art. arXiv:1611.02167, November 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume
1, NIPS’12, pages 1097-1105, USA, 2012. Curran Associates Inc.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252,
2015. doi: 10.1007/s11263-015-0816-y.

68

[25]

[26]

27]

28]

29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. arXiv e-prints, art. arXiv:1409.1556, Sep
2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Computer Vision and Pattern

Recognition (CVPR), 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going Deeper with Convolutions. arXiv e-prints, art. arXiv:1409.4842,
Sep 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. arXiv e-prints, art. arXiv:1512.03385, Dec
2015.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and &I1t;0.5MB model size. arXiv e-prints, art.
arXiv:1602.07360, Feb 2016.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv
e-prints, art. arXiv:1704.04861, Apr 2017.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Densely Connected Convolutional Networks. arXiv e-prints, art.
arXiv:1608.06993, Aug 2016.

Francois Chollet. Xception: Deep Learning with Depthwise Separable Convo-
lutions. arXiv e-prints, art. arXiv:1610.02357, Oct 2016.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE, 86
(11):2278-2324, 1998.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D. Sculley. Google vizier: A service for black-box optimization. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 17, pages 1487-1495, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4887-4.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
Datasets. arXiwv e-prints, art. arXiv:1605.07079, May 2016.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. arXiv e-prints, art. arXiv:1603.06560, March 2016.

69

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13(Feb):281-305, 2012.

lan Dewancker, Michael McCourt, and Scott Clark. Bayesian optimiza-
tion primer. URL https://app.sigopt.com/static/pdf/Siglpt_Bayesian_
Optimization_Primer.pdf. Accessed: 19/01/2019.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning. arXiv e-prints, art.
arXiv:1012.2599, December 2010.

Meghana Ravikumar. Let’s talk bayesian optimisation. URL https://mlconf.
com/lets-talk-bayesian-optimization/, 2018. Accessed: 22/01/2019.

Jasper Snoek. Spearmint. URL https://github.com/JasperSnoek/
spearmint. Accessed: 22/01/2019.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in neural information
processing systems, pages 2951-2959, 2012.

Chao Qin, Diego Klabjan, and Daniel Russo. Improving the expected improve-
ment algorithm. In Advances in Neural Information Processing Systems, pages
5381-5391, 2017.

Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando De Freitas,
et al. Bayesian optimization in high dimensions via random embeddings. pages
4-6.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc Le, and Alex Kurakin. Large-Scale Evolution of Image
Classifiers. arXwv e-prints, art. arXiv:1703.01041, March 2017.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture
Search: A Survey. arXiv e-prints, art. arXiv:1808.05377, Aug 2018.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann
Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. The penn treebank:
Annotating predicate argument structure. In Proceedings of the Workshop on
Human Language Technology, HLT ’94, pages 114-119, Stroudsburg, PA, USA,
1994. Association for Computational Linguistics. ISBN 1-55860-357-3. Ac-
cessed: 17/01,/2019.

CIFAR-10 and CIFAR-100 datasets. URL https://www.cs.toronto.edu/
“kriz/cifar.html. Accessed: 17/01/2019.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learn-
ing transferable architectures for scalable image recognition. CoRR,
abs/1707.07012, July 2017.

J. Bergstra, D. Yamins, and D. D. Cox. Making a Science of Model Search.
arXiv e-prints, art. arXiv:1209.5111, Sep 2012.

70

https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf
https://mlconf.com/lets-talk-bayesian-optimization/
https://mlconf.com/lets-talk-bayesian-optimization/
https://github.com/JasperSnoek/spearmint
https://github.com/JasperSnoek/spearmint
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

[51]

[52]

[53]

[54]

[55]

[56]

[57]

58

[59]

[60]

[61]

[62]

|63]

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up
automatic hyperparameter optimization of deep neural networks by extrapo-
lation of learning curves. In Proceedings of the 24th International Conference
on Artificial Intelligence, IJCAT’15, pages 3460-3468. AAAI Press, 2015. ISBN
978-1-57735-738-4.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evo-
lution Strategies as a Scalable Alternative to Reinforcement Learning. arXiv
e-prints, art. arXiv:1703.03864, Mar 2017.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Ken-
neth O. Stanley, and Jeff Clune. Deep Neuroevolution: Genetic Algorithms
Are a Competitive Alternative for Training Deep Neural Networks for Rein-
forcement Learning. arXiv e-prints, art. arXiv:1712.06567, Dec 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regular-
ized Evolution for Image Classifier Architecture Search. arXiv e-prints, art.
arXiv:1802.01548, Feb 2018.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. Back to Basics: Bench-
marking Canonical Evolution Strategies for Playing Atari. arXiv e-prints, art.
arXiv:1802.08842, Feb 2018.

Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards Auto-
mated Deep Learning: Efficient Joint Neural Architecture and Hyperparameter
Search. arXiv e-prints, art. arXiv:1807.06906, Jul 2018.

Google. Cloud automl. URL https://cloud.google.com/automl/. Accessed:
26,/04/2019.

Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning, volume 8, pages 229-256. Kluwer Academic
Publishers Hingham, 1992.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. CoRR, abs/1411.4038, 2014.

Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-Level
Network Transformation for Efficient Architecture Search. arXiv e-prints, art.
arXiv:1806.02639, Jun 2018.

Liam Li and Ameet Talwalkar. Random Search and Reproducibility for Neural
Architecture Search. arXiv e-prints, art. arXiv:1902.07638, Feb 2019.

Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. SMASH: One-
Shot Model Architecture Search through HyperNetworks. arXiv e-prints, art.
arXiv:1708.05344, Aug 2017.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernand o, and Koray

Kavukcuoglu. Hierarchical Representations for Efficient Architecture Search.
arXiwv e-prints, art. arXiv:1711.00436, Nov 2017.

71

https://cloud.google.com/automl/

[64] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia
Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive
Neural Architecture Search. arXiv e-prints, art. arXiv:1712.00559, Dec 2017.

72

	Introduction
	Problem Description
	Motivation and Current Applications
	Contributions

	Background - Machine Learning Building Blocks
	Overview
	Deep Learning Basics
	Neural Network Layers
	Convolutional Neural Networks

	AutoML Techniques for Hyper-parameter Tuning and Neural Architecture Search
	Overview
	Manually Designed Architectures
	Hyper-parameter Optimisation Approaches
	Standard Methods
	Bayesian Optimisation
	Genetic Algorithms
	Reinforcement Learning

	Primary Bottleneck in Neural Architecture Search
	Neural Architecture Search

	Investigation of the Efficient Neural Architecture Search Approach
	Overview
	Experiments and Results
	Summary

	Evaluation of the Controller RNN
	Overview
	Random Search with Weight Sharing
	Full Controller RNN
	Full Controller RNN and Random Search with Weight Sharing Comparison
	Hybrid Search Strategy
	Summary

	Enhancing the Controller RNN
	Extracting the Controller RNN
	A Novel Approach: ENAS with Early Stopping
	Overview
	ENAS with Early Stopping v1
	ENAS with Early Stopping v2

	Summary

	Conclusions and Future Work
	Hybrid Search Strategies

