
BEng Individual Project

Department of Computing

Imperial College of Science, Technology and Medicine

Emmy:
A Proof Assistant

for Reasoning about Programs

Author:
Junfeng Xu

Supervisor:
Sophia Drossopoulou

June 17, 2019

Submitted in partial fulfillment of the requirements for the BEng Computing of Imperial
College London

Abstract

We present Emmy, a proof assistant optimised for teaching and learning, that fills the gap
between existing teaching tools and powerful practical theorem provers. Emmy supports a
many-sorted first-order logic in which recursive functions, data structures, and arithmetic
operations can be expressed. Emmy can express and prove the properties of many computer
programs, in addition to theorems in propositional and first-order logic.

To make it convenient for students to start using Emmy, we also developed a web-based
interface for Emmy, which has been proven in tests to be easy to learn. Alternatively, the
users may also write proofs in an LISP-like DSL, and check their proofs by ‘running’ them
using Emmy’s interpreter.

Since we intend to use Emmy in the teaching of the reasoning about programs course, we
demonstrated the proving power of Emmy with regard to the course materials. The results
are satisfying: we believe that Emmy has enough proving power to be used in actual teaching.

1

Figure 1: A proof of theorem B.15 written using the web interface of Emmy

2

Acknowledgements

I would like to thank Professor Sophia Drossopoulou, my supervisor, for giving me the
oppotunity to work on this project, and her kind guidance throughout the course of the
project.

I would like to thank Theo Charalambous and Ben Pahnke for helping me test Emmy, and
providing me with invaluable feedback.

I would also like to thank Fangyi Zhou for sharing with me a list of projects available
for MEng students. Without their help, I would not have know about this project in the first
place.

3

Contents

I Introduction 7

1 Introduction 8
1.1 Motivation . 8
1.2 Objectives . 8
1.3 Contribution . 8

2 Background 10
2.1 Logic and Proofs . 10

2.1.1 Propositional and First-order Logic . 10
2.1.2 Natural Deduction . 11
2.1.3 Stylised Proof . 15

2.2 Reasoning about Programs . 16
2.2.1 Induction . 17
2.2.2 Hoare Logic . 19

2.3 Theorem Provers . 20
2.3.1 Automatic Theorem Proving . 20
2.3.2 Proof Assistants . 22

2.4 Logic Teaching Tools . 24

II Emmy 26

3 Overview of Emmy 27

4 Emmy’s Logic 28
4.1 Terms, Functions, and Types . 28

4.1.1 The Atom Type . 30
4.1.2 Integer Terms and Integer Functions . 30
4.1.3 Data Structures . 30
4.1.4 Typing Rules . 31

4.2 Formulae . 32
4.2.1 Equality . 34
4.2.2 Integer Predicates . 34
4.2.3 ‘if’ Expression . 34
4.2.4 Induction Marker . 35

4.3 Semantics of Emmy’s Logic . 36
4.3.1 Semantic of Data Structure Constructors 36

4.4 Translation into SMT-LIB Logic . 38
4.4.1 Translation of Data Structure Constructors 38

4

CONTENTS CONTENTS

5 Emmy Programs 39
5.1 Declarations . 40
5.2 Proofs . 40

5.2.1 Proof Steps . 40
5.3 Lemmas . 46
5.4 Definitions . 46

5.4.1 Definition with Cases . 47
5.4.2 Induction over Function Definition . 48

5.5 Program . 52

6 Proof Checking 53
6.1 Lemmas . 53
6.2 Function Definitions . 54

6.2.1 Exhaustion Check . 54
6.2.2 Translation of Function Definitions . 54

6.3 Checking Types . 56
6.4 Checking Steps . 57

6.4.1 Simple Steps . 57
6.4.2 Assumptions . 59
6.4.3 Introductions . 62
6.4.4 Induction Step . 63
6.4.5 Equalities Step . 66

6.5 Checking Program . 67
6.6 Checking Entailment . 68

6.6.1 Checking Entailment Syntactically . 68
6.6.2 Checking Entailment Using an SMT Solver 68

7 Implementation 76
7.1 Proof Checker . 77

7.1.1 Logic and Program Representation . 77
7.1.2 Proof Checking Workflow . 79

7.2 Web Interface . 79
7.2.1 Technical Details . 80
7.2.2 Screenshots of the Web Interface . 80

7.3 Server . 84
7.4 #lang emmy . 84

III Evaluation and Conclusion 85

8 Soundness of Induction 86
8.1 Induction Over Data Structures . 86
8.2 Induction Over Function Definitions . 87

8.2.1 Correctness of FunctionInductionPrinciple 88
8.2.2 The Original Formula is True if Function Terminates 90

8.3 Unfolding of Induction Markers . 90
8.4 Non-terminating Functions . 90

5

CONTENTS CONTENTS

9 Evaluation 92
9.1 Language Support . 92
9.2 Proving Power . 93

9.2.1 Logic . 93
9.2.2 Reasoning about Program . 94

9.3 Proving Powers of SMT Solvers . 97
9.3.1 Data Structure Properties . 97
9.3.2 Induction over Data Structure . 97
9.3.3 Entailment between Equivalent Formulae 98

9.4 Non-terminating Functions . 99
9.5 User Feedback . 100

9.5.1 Procedure . 100
9.5.2 Results . 100
9.5.3 Improvements Made in Response to User Feedback 101

10 Conclusion 102
10.1 Future Works . 102

IV Bibliography and Appendices 104

A Translation into SMT-LIB Script 110

B Theorems 112
B.1 Logic . 112
B.2 Reasoning about Programs . 112

C Example Programs for Section 9.3.3 119

D Program Language 128

E Example Proofs 131
E.1 Propositional Logic . 131

E.1.1 example1.prf . 131
E.2 First-order Logic . 133

E.2.1 Non-sorted First-order Logic . 133
E.2.2 Stylised Proof in Non-sorted First-order Logic 135
E.2.3 Stylised Proof in Many-sorted First-order Logic 137

E.3 Arithmetics . 138
E.4 Induction . 138

E.4.1 Over Recursive Data Structures . 138
E.4.2 Over Recursive Function Definitions . 143

6

Part I

Introduction

7

Chapter 1

Introduction

1.1 Motivation
Currently, there exists a huge gap between the educational theorem provers used in teach-
ing, and the practical theorem provers used in research and the industry. The educational
theorem provers, such as Pandora [15], and Panda [43], are often developed by educational
institutions and used as teaching tools in logic courses. While being friendly to newcomers,
they usually lack the expressiveness to prove more sophisticated theorems, such as prop-
erties of computer programs. Meanwhile, there exists many powerful practical proof tools,
including the famous Coq proof assistant [19], and the Isabelle/HOL proof assistant [67].
While these tools are very expressive and are capable of formulating and proving more ad-
vanced theorems, they have high barrier of entries, and require considerable amounts of
prerequisite knowledge in logic, making them inaccessible to students who have just started
learning.

We argue that the lack of more expressive teaching tools hampers the teaching and learn-
ing of the reasoning about programs course, which is a mandatory first-year course at the
Department of Computing, Imperial College London. Students taking this course have no
choice but to write all proofs by hand, which is a tedious and error-prone process. The gap
between teaching tools and practical tools also discourage students from learning about the
arts of theorem proving and program verification, driving away future contributors to a
domain with a lot of potential.

1.2 Objectives
The main objectives of this project is to build a proof tool that addresses the above concerns.
Namely, the system should aim to assist the students taking the reasoning about programs
course, who have already learnt how to write logic proofs in natural deduction, but do not
have the time nor the prerequisite knowledge needed to learn to use a powerful, ‘real-world’
theorem prover or proof assistant.

This requires the tool to be able to express the proofs that the students might encounter
when learning the course, while remaining approachable enough so that the students can
become productive using this tool with minimal learning and practice.

1.3 Contribution
The main contributions of this project are:

8

1.3. CONTRIBUTION Chapter 1. Introduction

• We devloped Emmy, a proof assistant that puts an emphasis on easy of learning and
low barrier of entry, while having enough power to handle the vast majority of the
proofs in the first half of the reasoning about program course.

• We built a web-bases graphical user interface for Emmy, making it easily accessible to
users without needing to install anything on their own machines.

• We demonstrated how our proof assistant can be used to aid the learning and teaching
of the reasoning about programs course, by showing how to solve questions in the
course material using Emmy.

Figure 1.1: A proof oheorem written using the web interface of Emmy.

9

Chapter 2

Background

2.1 Logic and Proofs
In this section we look at how theorems can be formalised using symbolic logic, and the
proof processes with which the theorems can be proven.

2.1.1 Propositional and First-order Logic

The syntax and semantics of propositional and first-order logic described here are based on
the lecture notes from the C140 Logic course at Department of Computing, Imperial College
[75], and the book Logic in Computer Science: Modelling and Reasoning about Systems [55].

Propositional Logic

In propositional logic, we are mainly concerned about the relation between propositions,
which, as far as we are concerned, can be treated as statements that can be either true or
false.

For example, the statements

• It is raining.

• It is sunny.

are all propositions. Whether these proposition are true depends on the interpretation of
them. We can represent each of these propositions with a letter. For the rest of this section,
we will name the two propositions above R, and S respectively.

From these atomic propositions, we may construct more complicated logic formulae
which we may reason about. Each individual proposition is a formula. We may also con-
struct formulae by ‘connecting’ existing formulae using logic connectives. We can, for exam-
ple, have formulae like ‘It is not raining’, ‘It is raining, and it is sunny’, and ‘If it is raining, then
it is not sunny’. We can use symbols to represent the ‘connection’ between the propositions,
so that these three propostions can be written as ‘¬R’, ‘R ∧ S’, and ‘R → ¬H’ respectively.

Again, whether these formulae are true depends on the interpretation. We say that a
formula is ‘satisfiable’ if there exists an interpretation that makes the formula true, and we
say it is ‘valid’ if it is always true.

10

2.1. LOGIC AND PROOFS Chapter 2. Background

First-order Logic

Propositional logic is useful when reasoning about the relation between propositions. How-
ever, it is often impossible to express more complicated statements using propositional logic.
Consider this famous argument in the form of syllogism:

• All men are mortal.

• Socrates is a man.

• Therefore, Socrates is mortal.

In propositional logic, we can express neither ‘a man’, ‘all men’, ‘Socrates’, nor ‘Socrates is
mortal’. First-order logic, also known as predicate logic, solves this problem by introducing
variables, constants, predicate symbols, and quantifiers, so that the three statements above
can be expressed using the following logic formulae:

• ∀x. [Man(x)→Mortal(x)]

• Man(socrates)

• Mortal(socrates)

In the above formulae, x is a variable, socrates is a constant, while Man and Mortal are
predicate (or relation) symbols, where Man(x)means that ‘x is a man’ and Mortal(socrates)
means that ‘socrates is mortal’. Predicate symbols take ‘arguments’ which must be variables
or constants. A predicate that takes no arguments is the same as propositions in proposi-
tional logic. In the first formula, ∀ is the symbol for ‘for all’, thus ∀x means that ‘forall x’.
Therefore, the entire formula can be interpreted as ‘for all x, if x is a man, then x is mortal.’

Apart from ‘for all’, we can also express ‘there exists’ in first-order logic, using the ‘∃’
symbol. The formula ∃x. Mortal(x), for example, can be interpreted as ‘there exists an x, such
that x is mortal.’

Many-sorted First-order Logic

Many-sorted first-order logic differs from normal, unsorted first-order logic by associating
each term with a ‘sort’. The sort of a term indicates what kind of object the term is.

We may write, for example,

∀x ∶ Man. Mortal(x)

which means that ‘for all x of type Man, x is Mortal.’
Many-sorted first-order logic allows some property to be expressed using sorts, which,

as can be seen in the above example, allows certain properties to be expressed more suc-
cintly. The sorts in many-sorted first-order logic can also be used to express ‘types’ in typed
programming languages.

2.1.2 Natural Deduction

When working with logic, we often want to prove formally the validity of formulae. Proving
methods include resolution, which is often employed by automatic tools (see 2.3.1), the use
of truth tables, which is often not feasible for large proofs, and various forms of deduction.

Here we are particularly interested in natural deduction, a family of formal systems that
allows proofs to be written in a way akin to ‘intuitive, informal reasoning’ [70]. Natural

11

2.1. LOGIC AND PROOFS Chapter 2. Background

deduction is widely taught in introductory logic courses, including the first-year logic course
at Imperial College.

The name ‘natural deduction’ first appeared in Gerhard Gentzen’s 1935 article [45] [44].
Gentzen stated that he wished to ‘set up a formal system which comes as close as possible
to actual reasoning’ [44], as opposed to existing systems developed by Frege, Russell, and
Hilbert, which he found ‘far removed’ from the methods used in practice. The result, in his
own words, was ‘ein Kalkül des natürlichen Schließens’, ‘a calculus of natural deduction’.

Gentzen presented ‘calculus NJ’, a natural deduction system for intuitional logic, and
‘calculus NK’, obtained by adding inference rules to NJ to make it compatible with classical
logic. Under Gentzen’s system, proofs are written as derivation trees of true formulae, which
are derived from some assumptions, using a set of derivation rules.

Gentzen was, however, not the first person to come up with such a system. In 1934,
Stanisław Jaśkowski published an article in which he demonstrated how to ‘analyze a prac-
tical proof by making use of the method of suppositions’ [56]. In Jaśkowski’s system, proofs
are written as sequences of proof steps, which is more akin to the system taught at Imperial
College today.

Both Gentzen and Jaśkowski focused on the use of assumptions in their systems [69].
Such an emphasis might reflect the actual methods employed by mathematicians at that
time, as Jaśkowski remarked, ‘the chief means employed in their method is that of an arbi-
trary supposition.’ [56]

Since mid-20th century, a number of syntactically different ‘natural deduction’ systems
have emerged, many of them containing features that ‘stem from’ the works of Gentzen
and Jaśkowski [69]. We will now discuss the difference between some systems of natural
deduction, with regard to our project.

Styles of Natural Deduction

To demonstrate the difference between the various styles of natural deduction, we try to
proof theorem 2.1 in the various styles we discuss.

Theorem 2.1. If P → Q, then ¬Q → ¬P.

Gentzen The ‘initial formulae’, which all sit on the top of the proof tree with no other formu-
lae above, are all assumptions, named by numbers written above them. Some deriva-
tion rules use assumptions. For derivations using such rules, the assumptions used
must be ‘made explicit’, which in our case via making the assumption number sub-
script of the rule name.
Notice that since Gentzen used the symbol ‘→’ in his sequent calculus (see 2.1.2). We
therefore use ‘⊃’, the symbol used by Gentzen, instead of ‘→’ to denote implication in
this proof.

Proof.

2
¬Q

3
P

1
P ⊃ Q

⊃-E
Q
⊥-E⊥ ⊥-I3¬P ⊃-I2¬Q ⊃ ¬P
⊃-I1

(P ⊃ Q) ⊃ (¬Q ⊃ ¬P)

12

2.1. LOGIC AND PROOFS Chapter 2. Background

Gentzen described the two ways in which his system differs from ‘actual reasoning’
[45]:

1. In actual reasoning, there is ‘a linear sequence of utterances’ [45], which cannot
be represented in a tree-like derivation.

2. In actual reasoning, people are ‘accustomed to applying repeatedly a result once
it has been obtained’ [45]. But in Gentzen’s system, a derived formula can only
be used once, which often leads to redundant ‘branches’ in the derivation tree.

Jaśkowski The proof here is written in the style employed in Jaśkowski’s 1934 article [56].
An alternative style, using boxes to track the ‘lifetime’ of assumptions, was mentioned
in the footnote of the said article. We do not discuss the alternative style here as it is
too similar to our ‘box style’ natural deduction which we will discuss later.
Notice that Jaśkowski wrote formulae using Polish Notation, which is a way to write
logic formulae without brackets [12], named after the nationality of logician Jan Łukasiewicz,
of whom Jaśkowski was a student [77]. In Polish notation, the connective is put in front
of its arguments. So, for example, ‘p → ¬q’ would be written as ‘→ p¬q’, or ‘CpNq’ in
the originial notation.
While Polish Notation is not commonly used in logic nowdays, we preserve Jaśkowski’s
original syntax for the sake of consistency with the original article, but replace the con-
nectives with modern ones for better clarity.

Proof.

1 ⋅ S → pq
1 ⋅ 2 ⋅ S¬q
1 ⋅ 2 ⋅ 2 ⋅ Sp
1 ⋅ 2 ⋅ 2 ⋅ q
1 ⋅ 2 ⋅ ¬p
1 ⋅ → ¬q¬p
→→ pq → ¬q¬p

This proof is, in fact, very similar to one of the examples provided in Jaśkowski’s arti-
cle. The letter ‘S’ in the proof means ‘suppose’, such that the formula ‘Sq’ would me
‘suppose that q’. The numeric prefix before each step indicates the assumptions under
which this step is written. For example, if a step is prefixed by ‘1 ⋅ 2’, then it means that
this step is written under the assumptions ‘S → pq’ and ‘S¬q’.

‘Box’ In the ‘box’ style, the scope of assumptions are tracked using boxes, hence the name.
The ‘box’ style is similar to a system mentioned by Jaśkowski [56] [70]. It is currently
the natural deduction method taught in the logic course at Department of Computing,
Imperial College [75].
In our ‘box’ style, theorem 2.1 can be proven as:

13

2.1. LOGIC AND PROOFS Chapter 2. Background

1. P → Q Assume
2. ¬Q Assume
3. P Assume
4. Q →-Elim 1 3

5. � �-Intro 2 4

6. ¬P ¬-Intro 3 5

7. ¬Q → ¬P →-Intro 2 6

8. (P → Q)→ (¬Q → ¬P) →-Intro 1 7

If the formula we wish to prove is of the form ‘P1 → ⋯→ Pn → Q’, we can then formulate
the proof as ‘given that P1⋯Pn are true, prove Q’. This can be helpful if there are many
‘premises’, which would otherwise result in many nested boxes, which we consider
unnecessary.
After ‘extracting’ the outermost premise, we arrive at the following proof:

1. P → Q Given
2. ¬Q Assume
3. P Assume
4. Q →-Elim 1 3

5. � �-Intro 2 4

6. ¬P ¬-Intro 3 5

7. ¬Q → ¬P →-Intro 2 6

Each step, which is a proven formula, in our proof is indexed by a number. We write
the natural deduction rule on the right side of each line, along with the number of
the formula used in the inference. In fact, proofs in the ‘box’ style can be regarded as
sequential representations of proofs written in Gentzen’s tree style, where the numbers
written on the right of each step indicates the subtrees of the derivation tree of the
formula proven in that step. However, we do not need to duplicate a subproof if we
wish to reuse some proven formulae.
The sequential structure of our ‘box’ style makes it easy for human to comprehend the
proof, while the boxes makes it very easy to track the lifetime of assumptions.

Sequent Calculus

In addition to the two systems of natural deduction, NJ and NK, Gentzen also developed
two more generalised deduction systems, LJ and LK, which became what we call ‘sequent
calculus’ nowdays. In the sequent calculus, a ‘sequent’ is an expression which takes the
following form [45]:

P1,⋯, Pn → Q1,⋯, Qm

The above expression has the same informal meaning as the following formula [45]:

(P1 ∧⋯∧ Pn) ⊃ (Q1 ∨⋯∨Qm)

14

2.1. LOGIC AND PROOFS Chapter 2. Background

Notice that here we use ‘⊃’ to as the implication connective, as Gentzen used ‘→’ in se-
quents.

Proofs in sequent calculus are, like Gentzen’s natural deduction, structured as trees. The
‘leaves’ of the tree would be ‘initial sequents’, which are tautologies of the form ‘A → A’. We
then apply derivation rules to these sequents to obtain a sequent of the form ‘→ B’, which
means that B, the theorem we wish to prove, remains true under all situations.

As shown by Gentzen, his system NK, LK, and classical predicate logic (‘LHK’) are
equivalent. He also presented a way to translate NJ into LJ.

2.1.3 Stylised Proof

The ‘stylised proof’ is a logic proof style taught in the reasoning about program course [29].
Like a proof in the ‘box’ style natural deduction, a stylised proof consists of a sequence of
steps, where each step follows from some previous steps.

We write a stylised proof as:

Proof. Given:

(1) Some statement
(2) Another statement
(3) Yet another statement

Show:

Some interesting statement

Proof:

(4) Some intermediate result from (1) (2)
(5) Another intermediate result from (4) (3)
(6) Some interesting statement from (5)

Unlike natural deduction, in which formulae can only be proven syntatically, using in-
ference rules, in a stylised proof, if we say that ‘step x follows from steps y and z’, then we
are making the following statement about the semantics of the steps: ‘step x is true if steps y
and z are true’. This gives us much more freedom in terms of the structure of the proof: we
may omit trivial steps which are otherwise required.

For example, consider the following theorem:

Theorem 2.2. If A ∧C and B ∧D, then A ∧ B ∧C ∧D.

A proof in natural deduction would take nine steps:

15

2.2. REASONING ABOUT PROGRAMS Chapter 2. Background

1. A ∧C Given
2. B ∧D Given
3. A ∧-Elim 1

4. B ∧-Elim 2

5. C ∧-Elim 1

6. D ∧-Elim 2

7. C ∧D ∧-Intro 5 6

8. B ∧C ∧D ∧-Intro 4 7

9. A ∧ B ∧C ∧D ∧-Intro 3 8

While in stylised proof it takes only one.

Proof. Given:

(1) A ∧C
(2) B ∧D

Show:

A ∧ B ∧C ∧D

Proof:

(3) A ∧ B ∧C ∧D from (1) (2)

The above proof is correct because we know A ∧ C, B ∧ D A ∧ B ∧ C ∧ D. That is, se-
mantically, (3) follows from (1) and (2).

The expressiveness and brevity of stylised proof comes at the obvious price of rigourosity:
it is much harder to detect an error in a stylised proof than in a natural deduction proof. The
correctness of a proof in natural deduction can be easily checked by human, by checking the
application of each derivation rule. However, it is much harder to check the correctness of
a step in a stylised proof. It is easy to make mistakes when writing a stylised proof without
realising.

2.2 Reasoning about Programs
Logic provides a language for modelling program behaviours and reasoning about them
formally [55]. This allows us to prove the correctness of computer programs, using reasoning
methods based on logic.

We will then discuss some methods of reasonong, which are taught in the first-year Rea-
soning about Program course at Imperial College.

16

2.2. REASONING ABOUT PROGRAMS Chapter 2. Background

2.2.1 Induction

Mathematical Induction

Mathematical induction is a technique widely used when proving properties of natural
numbers. Paraphrasing Peano’s ninth axiom [68], we can express principle of mathemat-
ical induction as the following formula in first-order logic:

P(0)∧∀x ∈N.[P(x)→ P(x + 1)]→ ∀x ∈N.P(x) (2.1)

That is, to prove that property P holds for all natural numbers, we need to prove that
1) P holds for 0 1, and that 2) for an arbitrary natural number x, if P holds for x, then P holds
for x + 1.

We usually call the first case the base case, the second case the inductive step, and the
formula expressed in 2.1 the inductive principle.

It is straightforward to apply mathematical induction when reasoning about functions
recursively defined over natural numbers, as the two are structurely similar. In eairly 1960s,
John McCarthy presented a method called ‘recursion induction’, ‘for making arguments that
in the usual formulations are made by mathematical induction’ [60]. He then showed how
to use recursion induction to prove the equality of functions [61]. The reasoning course
however uses a method more similar to mathematical induction, which can be argued to be
more approachable to students who already have the knowledge of mathematical induction.

We can demonstrate mathematical induction using the factorial function, which was
used as an example in McCarthy’s 1962 paper [60]. Consider the following Haskell function
which is supposed to calculate the factorial of a number, and the mathematical definition of
the factorial function:

-- x >= 0
f :: Int -> Int
f x | x == 0 = 1

| x > 0 = x * f (x - 1) x! = { 1 if x = 0
∏x

i=1 i otherwise

We wish to prove that the Haskell function f, is equivalent to the factorial function. First,
we can define the property P(x) ≡ f x = x!. Then, we need to prove that P(x) holds for all
x ∈N.

First, we prove that P(0) holds:

f 0 = 1 (From the definition of f)
= 0! (From the definition of factorial)

Then, we prove that for arbitrary x ∈N, P(x + 1) holds given P(x) holds.

f (x + 1) = (x + 1)× f x (From the definition of f)
= (x + 1)× x! (From induction hypothesis)
= (x + 1)! (From the definition of factorial)

Notice that the above is, in a sense, a stylised proof.
1 It should be noticed that in Peano’s original treatise the first natural number is 1. We are starting from 0

here to adhere to a modern definition of natural numbers.

17

2.2. REASONING ABOUT PROGRAMS Chapter 2. Background

Structural Induction

Apart from functions that deal with natural numbers, we can also prove properties of func-
tions that operate on recursively defined data structures, using a method called structural
induction.

The core idea of structural induction, as described by Burstall [16], is to first prove a
property of the most elementary data, then prove the property for more complex data, given
that the property is proven for ‘all data of lesser complexity’. The structure of a proof is
analogous to a proof using mathematical induction: first prove the base case(s), then prove
the inductive step(s) using some assumptions.

Consider the following definition of a linked list data structure in Haskell:

data List a = Nil
| Cons a (List a)

For the List data structure, we can derive the following induction principle:

P(Nil)∧∀t ∈ List a. [P(t)→ ∀v ∈ a. P(Cons v t)]→ ∀l ∈ List a. P(l)

Similar to the induction principle for natural numbers, our induction principle for List
is an implication whose premise is a conjuction of one base case and one inductive step.
For more complicated data structures, there might be more cases that we need to prove.
Consider a tree-like data structure:

data Tree a b = Leaf a
| Flower b
| Branch (Tree a b) (Tree a b)
| Trunk a (Tree a b)

An induction principle for Tree a, with two base cases and two inductive steps, would
be:

∀l ∈ a. P(Leaf l)
∧∀f ∈ b. P(Flower f)
∧∀t1, t2 ∈ Tree a b. [P(t1)∧ P(t2)→ P(Branch t1 t2)]
∧∀t ∈ Tree a b. [P(t)→ ∀l ∈ a. P(Trunk l t)]

→ ∀t ∈ Tree a b. P(t)

While we mainly focus on the reasoning of functional programs using induction, sim-
ilar strategies can also be applied to recursive functions and data structures in imperative
languages.

Zeno

We often need to manually extract induction principles from the definitions of recursive
data structures, either to use them in hand-written proofs, or to supply them to automatic
theorem provers that does not support induction (see 2.3.1).

Zeno is a tool that automatically generates proofs of functions over recursively defined
data structures [79]. Zeno can generate induction principles for definitions of recursive func-
tions and recursively defined data structures. as well as auxilary lemmas if needed in a

18

2.2. REASONING ABOUT PROGRAMS Chapter 2. Background

proof. Compared to other comparable provers, Zeno has stronger proving power, and sim-
ilar performance.

The internal language of Zeno is, a modified version of the internal language of the Glas-
gow Haskell Compiler (GHC), to represent recursive data structures and functions. For ex-
ample, natural number and the ‘less than’ relation can be expressed in HC as following:

data Nat = Zero | Succ Nat

letrec (<=) = \x -> \y -> case <lq1> x of
{ Zero -> True; Succ x' -> case <lq2> y of
{ Zero -> False; Succ y' -> x' <= y' } }

Zeno’s representation of recursive functions, which allows easy extration of induction
principles, is of interest to our project, as we plan to implement inductive reasoning in our
proof system.

2.2.2 Hoare Logic

Programs written in imperative programming languages pose significant challenge to rea-
soning, as the outcome of each operation in such programs depends on the implicit state of
the program at the moment the operation is carried out. The state of the program, which
may, for example, describe the value of each variable at the moment, can also be manipu-
lated as the program executes. We must make the state of the program explicit in order to
be able to reason about imperative programs.

One way to formalise the state of the program, as introduced by Tony Hoare, under the
influence of the work of Robert W. Floyd [81], is to ‘state the connection precondition (P),
a program (Q) and a description of the result of its execution (R)’ [51], using the notation
shown in 2.2, which is now recognised as a ‘Hoare Triple’:

P {Q} R (2.2)
The above Hoare Triple states that ‘if the assertion P is true before initiation of a program

Q, then the assertion R will be true on its completion’ [51]. In other words, R describes the
state of the program after Q is executed when the state of the program is described by P.

Consider a imperative programming language with integer arithmetics 2 and variable
assignment, where x ∶= ϵ means assign the value of the expression ϵ to variable x, we can
then construct the Hoare Triple 2.3, which states that ‘if x > 10 and y > 10, then after execut-
ing z ∶= x + y, z > 20.

x > 10∧ y > 10 {z ∶= x + y} z > 20 (2.3)
If the precondition is irrelevant then we can also replace it with ‘true’.

true {x ∶= 10} x = 10 (2.4)
Hoare also proposed rules for dealing with conditionals and loops, and later, rules re-

garding functions [18]. Together, these rules form the basis of the second half of the reason-
ing of programs course.

2It is certainly possible in real life that such a programming language may suffer from integer overflow when
adding very large numbers, or, in the extreme case where the numbers are too large to fit in the computer’s
memory, crash even if the language supports arbitrarily large numbers. We might need to assume that we are
considering the purely theoretical semanticas of the language, without bothering how a real-life implementation
of the language may go wrong, for now.

19

2.3. THEOREM PROVERS Chapter 2. Background

Dafny

Dafny is an imperative programming language and a program verifier. [59], with support
for recursive functions, classes, inductive data types [76]. In Dafny, code specification can be
written within the program code, making it easy to clearly express properties of imperative
programs.

Hoare logic can be easily expressed in Dafny. For example, the two Hoare triples shown
above can be expressed in Dafny as:

assert x > 10 && y > 10;
var z: int := x + y;
assert z > 20;

assert true;
var x: int := 10;
assert x == 10;

Dafny also supports more advanced constructs in Hoare logic, such as pre- and post-
conditions of functions, and loop variants and invariants. There is also support for inductive
reasoning.

Dafny programs are verified automatically, by first translating the program into Boogie 2
[5] an intermediate representation used in verification, and then checked using an automatic
prover (see 2.3.1). Programmers only needs to state the assertions, pre- and post-conditions,
loop invariants and other properties of the code when writing the code. They do not need
to perform the actual proving themselves.

While we do not implement imperative reasoning, the data structure axioms, which are
used by Dafny, [59], are of interest to us.

2.3 Theorem Provers
There already exists many tools for constructing, searching, automating, and verifying proofs.
As noted by the authors of Edinburgh LCF, a theorem prover developed in the 1970s, there
exists two ‘extreme sytles of doing proofs on a computer’ [49]:

Automatic theorem proving The user only provides the goal and some axioms, and the
system will search for a proof with little or no user input.

Proof checking The user provides a proof, the system merely checks the correctness of the
supplied proof.

We will look at some concepts related to theorem proving, and discuss how they relate
to our project.

2.3.1 Automatic Theorem Proving

Automatic theorem proving can be regarded as ‘algorithmic methods for proving theorems’
[42]. When using an automatic theorem prover, the users need to formulate the theorem they
wish to prove in a format, such as conjunctive normal form, as stipulated by the prover. The
prover will then find a proof for the theorem automatically.

A widely-used strategy of automatic theorem proving is SAT solving, which refers to
determining the satisifiability of logic formulae. A notable SAT solving algorithm is the
Davis-Putnam algorithm [23], which first applies Herbrand’s theorem to ‘reduce’ first-order
clauses to propositional ones [17], and then apply propositional resolution to determine the
satisifiability. Davis-Putnam algorithm also has some modern derivatives, such as Chaff

20

2.3. THEOREM PROVERS Chapter 2. Background

[63]. There also exists alternative methods such as tableaux, which can work with a more
diverse set of logic theorems.

While convenient for research and industrial purposes, the ‘black-box’ nature of auto-
matic theorem provers makes them unsuitable for use in introductory courses, where the
students are expected to understand the proving process. In addition, the algorithms used
in automatic theorem proving are very different from the methods taught in logic and rea-
soning courses, making them unaccessible to students with in these courses.

However, it is possible to use automatic theorem proving techniques in proof verification
tools to For example, to allow proofs to be checked automatically using automatic provers
[2] [37].

SMT Solving

Satisfiability modulo theories (SMT) is about determining the satisfiability of first-order for-
mulae with regard to a certain set of background theories [65]. The set of background theo-
ries might include arithmetics, arrays, lists, strings, and even recursive data structures [64],
making it possible to efficiently express properties of programs, which is difficult in more
traditional theorem provers based on SAT solving. Thus, SMT solving can be used for not
only basic SAT solving, but also model checking, and program verification [24]. A noticable
use of SMT in automatic reasoning is Boogie, an ‘intermediate verification language’ that is
used in the translation of program written in a higher-level language, such as Dafny [59],
into a form that can be checked using theorem provers, which, by default, is Z3, an SMT
solver [1].

Many modern SMT solvers, including Z3 [65], CVC4 [10], and Yices [36], implement the
SMT-LIB standard, which specifies the syntax and semantics of the SMT-LIB language and
related logic theories[8], such as arithmetics, bit vectors, quantifiers, and, in more recent
versions, data structures [6]. The SMT-LIB language provides a way to formulate theories,
as well as to interact with the solvers. The language’s syntax is based on LISP’s S-expressions
[62], making it very easy for other programs to construct formulae in the language, and to
parse the output from a solver.

In our project, an SMT solver can be used to check the correctness of proof steps. For
example, consider the following proof:

1. A ∧ B Given
2. C ∧D Given
3. A ∧D By 1 2

We wish to check the correctness of step 3, that is, to check whether or not the formulae
obtained in steps 1 and 2 lead to the formula in step 3. We can formulate this question as
checking the validity of the formula (A ∧ B)∧ (C ∧D)→ A ∧D.

To prove that a propositional formula is valid using an SMT (or SAT) solver, we can
instead ‘refute’ the negation of that formula [23], that is, to prove that the negation of that
formula is not satiafiable. We now need to determine the satisfiability of the formula ¬((A∧
B)∧ (C ∧D)→ A ∧D), which can be checked using the following SMT-LIB program:

;; Declare all propositions we are going to use
(declare-const A Bool)
(declare-const B Bool)
(declare-const C Bool)

21

2.3. THEOREM PROVERS Chapter 2. Background

(declare-const D Bool)

;; The formula
(assert (not (to (and (and A B) (and C D)) (and A D))))

;; Tell the solver to check the satisfiability of the assertions
(check-sat)

After running the program, The SMT solver would give us the output ‘unsat’, telling us
that ¬((A ∧ B)∧ (C ∧D)→ A ∧D) is not satisfiable, hence step 3 is correct.

If we use only natural deduction rules in this proof, then we would have two extra steps,
which we consider unnecessary for an immediately obvious proof. The use of an SMT solver
allows the omission of such proof steps, making proofs more concise, without sacrificing the
correctness of proofs.

2.3.2 Proof Assistants

Proof assistants, which are computer tools that help their users to write proofs, sit some-
where in between the two extremes. They often require their users to write detailed proofs,
but still offer some degree of automation to make the process easier.

Popular proof assistants include Coq [19], HOL/Isabelle [66], and Agda [14]. Proof as-
sistants usually set their basis upon some foundamental logic theories. Coq is based on the
calculus of inductive constructions [11] a dependent type system; Agda is also based on de-
pendent types, and is in fact a programming language that can be executed; and Isabelle is
based on Higher-order logic (HOL).

Due to the interactive nature of proof assistants, users often operate proof assistants ei-
ther through an IDE, such as the Coq IDE.[19] and Isabelle/jEdit [82] or through a text editor
enhanced with a plugin for the proof assistant, such as agda-mode, a plugin for Emacs [38].
There is also Proof General, which is a ‘generic tool’ that supports multiple theorem provers
[3].

Tactics

Many proof assistants provide a set of ‘tactics’, which are instructions that tells the system
how to construct a proof. For example, if we want to prove ‘A → B’ in natural deduction,
our first reaction would be ‘let us make an assumption!’ We can then tell our proof assis-
tant to ‘make an assumption’, without elaborating what assumptions it should make. Upon
receiving such an instruction, the proof assistant will then look at ‘A → B’, the goal of our
proof, and decide what assumption to make based on the form of our goal. In this case, the
proof assistant will make the assumption A, and change the goal of the proof to B. That is, to
prove A → B, we must prove B under the assumption that A is true. Other than that, we may
also tell the proof assistant to ‘apply the ∧-introduction rule’, or even ‘apply the induction
principle of natural numbers’.

Tactic systems can be considered as a way to automate the proving process, because they
allow the users of proof assistants to omit the details of each step when writing proofs, and
focus on the ‘strategy’ [49] of finding a proof. Some proof assistants also offer tactics that
constructs proofs fully automatically, such as auto tactic in Coq [19]. There have also been
attempts to use external SAT and SMT solvers (see 2.3.1) to implement automation tactics in
Coq [37] [2].

22

2.3. THEOREM PROVERS Chapter 2. Background

However, since tactics often involve the transformation of assumptions and goals, it is
quite mentally burdensome to keep track of the state of proof. The finished proof is also
somehow opaque, as the intermediate states are not obvious without the use of an IDE.
Tactics systems also make proof assistants harder to learn, as the use must now learn the
tactic language in addition to a language used for proofs, which may be too demanding
[26]. The steep learning curve makes such proof assistants unsuitable for an introductory
course.

Example: Prove Theorem 2.1 Using Coq

We take Coq as an example, as it is very popular, and has a mature tactic system [26]. When
writing a proof, the Coq IDE will display a list of current subgoals to be proved, and a list
of assumptions that have been made. The Coq IDE also allows users to ‘step’ through their
proof, to see how the use of an individual command changes the assumptions and subgoals.

In Coq [19], theorem 2.1 can be expressed as the following Theorem:

Theorem transposition (p: Prop) (q: Prop): (p -> q) -> (~q -> ~p).

The Coq IDE will then say

1 subgoals
p : Prop
q : Prop
______________________________________(1/1)
(p -> q) -> ~ p -> ~ q

which tells us that there is one ‘subgoal’ we need to prove, which is our theorem, written
below the horizontal line.

To prove the theorem, we need to first write ‘Proof.’, and write the body of our proof,
using Coq tactics, below ‘Proof.’.

Proof.
intros.

Here, we have written an incomplete proof using the intros tactic. intros introduces
new assumptions automatically, In our case, the new assumptions introduced will be ‘p ->
q’ (which means ‘p → q’), and ‘~q’ (which means ‘¬q’).

Coq IDE will then give the following output:

1 subgoals
p : Prop
q : Prop
H : p -> q
H0 : ~ q
______________________________________(1/1)
~ p

The newly introduced assumptions are placed above the horizontal line. The formula ~p
(which means ‘¬p’) at below the horizontal line is the current subgoal we need to prove.

The full proof would be:

23

2.4. LOGIC TEACHING TOOLS Chapter 2. Background

Theorem transposition (p: Prop) (q: Prop): (p -> q) -> (~q -> ~p).
Proof.

intros.
contradict H0.
apply H.
assumption.

Qed.

Once Coq tells us that there are ‘No more subgoals’, we know that we have proven ev-
erything we need to prove.

2.4 Logic Teaching Tools
A number of teaching tools have been developed in order to aid the teaching of logic such
as Pandora [15], and Panda [43]. Many of them are developed by universities and used in
their logic courses.

Such logic teaching tools often facilitate construction of proofs in a certain style, such as
natural deduction [15] and can check or even grade proofs automatically [83]. Some tools
also offer tutorials and guide to students. However, these tools often have limited proving
power. They tend to implement only proving of propositional and first-order logic theories,
which is only enough for introductory logic courses, but not sufficient for reasoning about
programs.

Pandora

Proof Assistant for Natural Deduction using Organised Rectangular Areas (Pandora) is a
tool for learning first-order natural deduction written in Java [15]. The tool is developed and
used at Imperial College and expresses natural deduction in the sequential ‘box’ style (see
2.1.2). Pandora provides a graphical user interface for constructing proofs, a built-in tutor
system, and the capability to work ‘backwards’ from the goal. It does not support reasoning
about programs nor automatic proof checking, although both features were mentioned as
possible extensions in the original paper.

As a Java GUI application, Pandora depends on the Java Runtime which impedes its
usage on students’ machines. The Java Applet version of Pandora, which could be accessed
through a web browser, is also no longer easily accessible as most modern browsers have
removed support for Java Applets [54], highlighting the need for educational tools to adapt
to the changes in UI technology.

iProve

iProve is a web-based proof assistant designed for teaching logic [50]. It supports proposi-
tional and first-order logic, as well as the reasoning of basic arithmetics. iProve provides an
online interface for building proofs using natural deduction using the ‘box’ style (see 2.1.2).
Proofs in iProve are checked using Z3 (see 2.3.1), allowing intermediate steps to be omitted.
There is currently no support for reasoning about programs or induction of any kind. It also
supports usage of lemmas to streamline the proving process.

iProve was implemented as a modern web application, using the React JavaScript library
[71]. It requires no local installation, but needs an internet connection to run. The users
write proof steps on the web interface. The proof steps are then parsed and checked by the
Z3 solver in the backend.

24

2.4. LOGIC TEACHING TOOLS Chapter 2. Background

The Little Prover, the Little Typer, J-Bob, and Pie

The Little Prover is a book about proving properties of programs [41]. It is written by Daniel P.
Friedman and Carl Eastlund. Friedmand has previously co-authored a series of introductory
books on programming in LISP and Scheme, whose titles all begin with ‘the Little’. Books in
this series are structured as series of dialogues between two people, and introduces concepts
as the dialogue progresses. The result is an engaging and humorous tone and a very gentle
learning curve.

The Little Prover introduces J-Bob, a proof assistant written for this book [47], named after
J Moore and Bob Boyer, two pioneers of theorem provers. J-Bob is implemented in Scheme
and ACL2 [57]. Despite its relative simplicity, J-Bob is capable of proving all theorems pre-
sented in the book. The book also provides a brief overview of other proof assistants for
interested readers to explore.

Also co-authered by Friedman, the Little Typer is an introductory book on dependent
types [40]. Following the same format as Friedman’s previous books, the book introduces
concepts aboud dependent types and shows how dependent types can be used to ensure
the correctness of programs.

Programs in the Little Typer are written in a Pie, a dependently typed teaching language
designed specifically for this book[48]. Implemented as a #lang language in Racket [25], Pie
can be installed using Racket’s package manager, and requires Racket to run.

25

Part II

Emmy

26

Chapter 3

Overview of Emmy

Emmy is a proof assistant designed for teaching purposes. Users may express logic theorems
in Emmy, write proofs of the theorems using Emmy’s language, and ask Emmy to check the
correctness of their proofs.

Users can access Emmy via its online interface, where they can write and check proofs,
or use the command line application of Emmy.

The logic of Emmy is a variant of many-sorted first-order logic, capable of expressing
many important programming language features, including recursive functions and data
structures. This means that many common and useful properties about computer programs
can be formulated and expressed using Emmy’s logic. We develop the syntax of Emmy’s logic
in chapter 4.

Emmy supports a structured variant of stylised proofs. This makes proofs extremely flex-
ible in Emmy: the user can produce a very detailed proof, writing down every step in their
reasoning process, or they can write one single step to prove a complicated theorem, and
let Emmy to ensure that the proof is indeed correct. We describe the syntax of proofs and
supporting elements, such as function definitions and lemmas, in chapter 5.

To know whether or not a proof is correct, we developed an algorithmic definition of
the correctness of proofs. The full description, along with a formal definition, of the proof
checking algorithm is available in chapter 9.3.

Proof checking in Emmy relies heavily on external SMT solvers, which are tools that can
check the satisfiability of logic formulae automatically. This is why it is possible to write
correct proofs in Emmy without writing down every single step in the proof. The SMT solvers
we use implement the SMT-LIB Standard [8], which specifies the syntax and semantics of
the logics the SMT solvers support. By default, Emmy uses the Z3 theorem prover [65], but
it also supports the CVC4 theorem prover [10]. We describe how we use SMT solvers in
section 6.6.2, and the power and limitations of SMT solvers in section 9.3.

We implemented Emmy as a computer program, using the Racket language, and devel-
oped a web interface for accessing Emmy, written in JavaScript. We describe Emmy’s imple-
mentation in chapter 7.

27

Chapter 4

Emmy’s Logic

Emmy uses a variant of many-sorted first-order logic, with quantifiers, uninterpreted func-
tions, and data structures, to express properties of programs. A large range of properties
regarding simple functional programs such as:

Theorem 4.1. reverse is its own inverse function

∀l ∶ List. reverse(reverse(l)) = l

can be expressed easily and clearly in Emmy’s logic.
In this chapter, we give a detailed, formal description of the abstract syntax of our logic.

We then give a brief description of the semantics of our logic, and a detailed description of
our treatment of inductive data structures.

4.1 Terms, Functions, and Types
Informally, a term denotes an object, which could be a person, a tree, or an integer. A function
is a mapping from one or more terms to a term. For example, we may use the function
symbol age to represent a mapping from a person to that person’s age, or use + to map two
integers to their sum.

Each term has an associated type 1, which denotes what kind of object it is. For example,
if we use the term x to denote an integer in a mathematical expression, then x has type Int.
Functions also have types, which determines what should the types of their arguments be,
and what is the type that is being mapped to by the function. The age function, for example,
takes a term of type Person, and gives a term of type Int.

Formally, we adapt the definition of terms taught in the logics course [75], and define
terms as:

Definition 4.1. Term formation
Terms are formed according to the following rules:

• A constant with a type is a term. We consider integers to be constants, so integers
are terms as well, with Int as their types.

1 ‘Type’ here is the same as ‘sort’ in many-sorted logic. We chose the name ‘type’, instead of using the es-
tablished name ‘sort’, to reduce friction when expressing expressions in typed function programming in our
logic.

28

4.1. TERMS, FUNCTIONS, AND TYPES Chapter 4. Emmy’s Logic

• A variable with a type is a term.

• If f is a function that accepts terms of type τ1,⋯, τn as its arguments, and t1,⋯, tn
are terms with types τ1,⋯, τn, then f (t1,⋯, tn) is a term.

Terms formed according to the above rules are called well-formed terms.

Constants and variables are called atomic terms as they do not contain any subterms.
Notice that constants and variables must have types, otherwise they are not terms. A

function must also have a type. A function must be applied to the correct number of argu-
ments with correct types, in order to form a function application term.

In our logic, functions are not terms, which might be quite confusing for users who are
used to functional programming, where functions can be treated just like any other term.
This is due to the limitations in the underlying logic system, namely, the variant of many-
sorted first-order logic specified by the SMT-LIB Standard. Many other features that exists
in functional programming, including currying (partial application), and higher-order func-
tions, are also absent from our system.

In the future, we may add support for higher-order functions by defunctionalisation,
which we describe in section 10.1.

The meaning of each term and function is dependent on the structure of the program,
which is an interpretation of each term as an object in the underlying universe. In Emmy, we
do not bother much about the meaning of terms. We only allow users to declare terms, but
not to define them. Hence all terms, except integers, whose treatment are described below,
are uninterpreted.

Typing Statements and Contexts

We use the notation ‘t ∶ τ’ to denote the statement ‘term t has type τ’, ‘ f ∶ τ1⋯τn → σ’ to
denote ‘function f takes arguments of types τ1⋯τn and gives a term of type σ’, and ‘τ ∶∶ Type’
to denote ‘τ is a type.

Statements like the ones described above are called typing statements. The context is a set
of typing statements. When working out the type of a term, we consult the context to find
statements that could be used to determine the type of that term. The content of the context
might change as variables may be introduced by quantifiers. We refer to the context under
which the current operation is performed as the current context.

We denote a context by Γ.

Term Substitution

Term substitution means replacing one term with another. It can be defined formally as:

Definition 4.2. Term substitution
We denote ‘substitude x by y in term t’ by [y/x]t, where x, y can be any term.

[y/x]t ≜ y When t = x
[y/x]t ≜ t When t ≠ x

[y/x] f (t1,⋯, tn) = f ([y/x]t1,⋯, [y/x]tn)

29

4.1. TERMS, FUNCTIONS, AND TYPES Chapter 4. Emmy’s Logic

We use term substitution when we check formula equivalence, which is in turn per-
formed when checking steps, and generating induction principles.

We denote a single substitution using the letter s.
Sometimes, we have a sequence S of substitutions (s1,⋯, sn). The semantics of applying

a sequence ot substitutions to a term is as below:

Definition 4.3. Semantics of sequence of substitutions

S t ≜ s1 (s2 (⋯(sn t)))

where S = (s1, s2,⋯, sn).

4.1.1 The Atom Type

In order to encode unsorted first-order logic into our system, we provide a type called ‘Atom’.
Every constant and variable in unsorted first-order logic will be given the type Atom when
translated into our logic.

Atom is declared implicitly by the Emmy. Users do not need to declare Atom by themselves.

4.1.2 Integer Terms and Integer Functions

As stated before, all integers are also terms, whose types are Int. We also provide addition,
subtraction, and multiplication as functions, which all have the type Int Int→ Int. The Int
type, as well as the operations, are all defined implicitly, so the users do not need to define
them.

We do not provide division because integer division is not total: 3
4 is not an integer, and

x
0 is undefined.

4.1.3 Data Structures

A data structure is a type whose members can be ‘constructed’ using a set of constructors. A
constructor of a data structure δ can be either

An atomic constructor which is a constant of type δ.

A constructor function which takes some arguments and returns a term of type δ.

If a constructor function takes terms of type δ as arguments, then it is also an inductive
constructor. Atomic constructors, and constructor functions that are not inductive, are called
base constructors.

We denote atomic constructors using a, and other constructors using c.
We require that a data structure must have at least one base constructor. Otherwise, the

data structure is not well-founded, and we may not reason about it inductively. We will
discuss this requirement in detail in section 4.3.1.

We also require names of all constructors to be unique.
We use the typing statement

δ ∶∶ {a1,⋯, an, c1 ∶ τ11⋯τ1n1
,⋯, cm ∶ τm1⋯τmnm}

to mean that

30

4.1. TERMS, FUNCTIONS, AND TYPES Chapter 4. Emmy’s Logic

• δ is a data structure.

• a1,⋯, an are atomic constructors of δ.

• c1,⋯, cm are constructors functions of δ, where ci takes ni arguments of types τi1 ,⋯, τini
.

We often denote the set of constructors by C, and write δ ∶∶ C to mean that ‘δ has con-
structors C’.

Constructors are the same as other constants and functions for term formation purposes.
However, there are additional rules that restricts the ways in which constructors are inter-
preted, which we describe in detail in 4.3.1.

4.1.4 Typing Rules

We developed a system of typing ruels for determining the type of a specific term, as defined
below:

Definition 4.4. Term typing
There exists the following typing rules:

τ ∶∶ Type ∈ Γ
K-Axiom

Γ τ ∶∶ Type

Γ τ ∶∶ Type t ∶ τ ∈ Γ
T-Axiom

Γ t ∶ τ

δ ∶∶ {⋯} ∈ Γ
K-Data-Axiom

Γ δ ∶∶ Type

f ∶ τ1⋯τn → σ ∈ Γ
T-Fun

Γ f ∶ τ1⋯τn → σ

Γ δ ∶∶ Type δ ∶∶ C ∈ Γ a ∈ C
T-Cons-Const

Γ a ∶ δ

Γ δ ∶∶ Type δ ∶∶ C ∈ Γ c ∶ τ1⋯τn ∈ C
T-Cons-Fun

Γ c ∶ τ1⋯τn → δ

Γ f ∶ τ1⋯τn → σ Γ i∈[1,n] ti ∶ τi
T-App

Γ f (t1,⋯, tn) ∶ σ

x ∈Z T-Int
Γ x ∶ Int

Where Γ t ∶ τ means that from the context Γ we can derive the conclusion that
term t has type τ.

Term typing rules are also term formation rules. A well-formed term is a term that can
be typed, under some context, and vice versa.

31

4.2. FORMULAE Chapter 4. Emmy’s Logic

4.2 Formulae
A formula is a statement that is either true or false. It could be a proposition, such as ‘I am
happy’. It can also be the application of a predicate that describes the relation between some
objects. For example, we can say ‘x is greater than 10’, where ‘greater than’ is the predicate
that describes the relation between the two terms x and 10. Like a function, a predicates has
a type, that determines what are the types of the terms whose relations that the predicate is
describing. The simple statements ‘true’ and ‘false’ are also formulae, where the first one is
always true, and the second one is always false.

From existing formulae, we can construct new formulae using connectives, by saying ‘I
am happy, and x is greater than 10’, where ‘and’ is a connective that connects the two formula
we have alreaidy seen. Equality is also one possible relation between two terms, so ‘x is equal
to 10’ is also a formula. We can also quantify over variables. For example, we may say ‘there
exist an integer x, such that x is greater than 10’, where x is being quantified. The resultant
statements constructes using connectives and quantifiers are also formulae.

Like terms, our definition of formulae is largely identical to the definition of many-sorted
first-order logic in the logics course [75]. We define formulae recursively as below:

Definition 4.5. Formula formation
Formulae are formed according to the following rules:

• A proposition P is a formula.

• ⊺ and � are formulae.

• If ϕ is a formula, then its negation ¬ϕ is a formula.

• If ϕ1 and ϕ2 are both formulae, then ϕ1 C ϕ2 is a formula, where C is one of the
binary connectives: ∧ ∨ → ↔ ¬

• If ϕ is a formula, t is a term name, and τ is a type, then Q t ∶ τ.ϕ is a formula,
where Q is one of the quantifiers: ∀ ∃

• If P is a predicate that accepts arguments of types τ1,⋯, τn, and t1,⋯, tn are terms
with types τ1,⋯, τn, then P(t1,⋯, tn) is a formula.

• If t1 and t2 are both terms of the same type, then t1 = t2 is a formula. We also
consider a formula in this form to be the application of predicate = to arguments
t1, t2.

Formulae formed according to the above rules are called well-formed formulae.

As in many-sorted logic, we require all quantifications to specify the type (sort) of the
term quantified. Quantified formulae can be translated from unsorted first-order logic by
using Atom as the type of all quantified terms, such that

∀x.ϕ

becomes
∀x ∶ Atom.ϕ

Notice that the above definition of formula formation mentions term typing statements
like ‘τ is a type’. The meaning of such statements are defined in the previous section. When

32

4.2. FORMULAE Chapter 4. Emmy’s Logic

checking whether or not a formula is well-formed, we must also check whether or not the
terms it mentions are well formed and have the correct types, and whether or not the types
it mentions are types as well.

Term Substitution (in Formulae)

Similar to term substitution for terms, we define term substitution for formulae as below:

Definition 4.6. Term substitution
We denote ‘substitute x by y in term t’ by [y/x]t, where x, y can be any term.

[y/x]⊺ ≜ ⊺
[y/x]� ≜ �
[y/x]P ≜ P

[y/x]P(t1,⋯, tn) ≜ P([y/x]t1,⋯, [y/x]tn)
[y/x]¬ϕ ≜ ¬[y/x]ϕ

[y/x](ϕ1 C ϕ2) ≜ [y/x]ϕ1 C [y/x]ϕ2

[y/x]Q t ∶ τ.ϕ ≜ Q t ∶ τ.ϕ When x = t
[y/x]Q t ∶ τ.ϕ ≜ Q t′ ∶ τ.[y/x][t′/t]ϕ When y = t, x ≠ t
[y/x]Q t ∶ τ.ϕ ≜ Q t ∶ τ.[y/x]ϕ When y ≠ t, x ≠ t

where C is one of the binary logic connectives, Q is either ∀ or ∃, and t′ is fresh.

Term substituion in formulae is used when checking the equivalence between formulae,
and when generating induction principles.

We define application of a sequence of substitutions to a formula in the same manner as
definition 4.3.

Equivalence

Informally, two formula are equivalent if we can rename bound variables in one formula so
it would become the same as the other. We define formula equivalence formally as:

Definition 4.7. Formula equivalence
The relation =F, ‘formula equivalence’, between two formulae, is defined as:

⊺ =F ⊺
� =F �
P =F P

P(t1,⋯, tn) =F P(t′1,⋯, t′n)↔ ∀i ∈ [1, n].ti = t′i
¬ϕ =F ¬ϕ′ ↔ ϕ =F ϕ′

ϕ1 C ϕ2 =F ϕ′1 C ϕ′2 ↔ ϕ1 =F ϕ′1 ∧ ϕ2 =F ϕ′2

Q t ∶ τ.ϕ =F Q t′ ∶ τ.ϕ′ ↔ [t′/t]ϕ =F ϕ′

where C is one of the binary logic connectives, and Q is either ∀ or ∃.

From the definition, we obtain the following theorem:

33

4.2. FORMULAE Chapter 4. Emmy’s Logic

Theorem 4.2. Formula equivalence is weaker than logic equivalence
If ϕ1 =F ϕ2 is true, then ϕ1 ↔ ϕ2 is true.
However, even if ϕ3 ↔ ϕ4, ϕ3 =F ϕ4 is not necessaily true.

The first property can be proven by induction on the definition of =F. The second can be
proven by finding an counter-example: A ∧ B↔ B ∧ A, but A ∧ B /=F B ∧ A.

We use =F when we want to quickly check whether or not two formulae are equal except
for the naming of bound variables. We will describe and justify the usage of =F in detail in
section 6.6.1.

4.2.1 Equality

We have a predicate = that stands for the equality of two terms. However, unlike other
predicates, which can only accept arguments of certain types, as they are defined, = can
accept any pair of terms with the same type.

4.2.2 Integer Predicates

We provide four integer predicates: < ‘less than’, > ‘greater than’, ≤ ‘less than or equal to’, and
≥ ‘greater than or equal to’. They all accept two integers as arguments, and are interpreted
in the obvious way.

4.2.3 ‘if’ Expression

We define ‘if, a shorthand notation for terms whose values depends on some conditions,
as below:

Definition 4.8. Term formation [Extends definition 4.1]
If ϕC is a formula, and tt, t f are terms of type τ, then if(ϕC, tt, t f) is a term of type

τ.
A term of this form is called an if expression.

Which gives the following typing rule:

Definition 4.9. Term typing [Extends definition 4.4]

τ ∶∶ Type ∈ Γ ϕC is a formula Γ tt ∶ τ Γ t f ∶ τ
If-Expr

Γ if(ϕC, tt, t f) ∶ τ

Intuitively, the value of if(ϕC, tt, t f) is tt if ϕC is true, and t f if ϕC is false. We do not
define the semantics for if expressions like this. Instead, we define the following syntactic
equivalence:

Definition 4.10. if expression
If formula ϕ contains t as a subterm, and

t = if(ϕC, tt, t f)

34

4.2. FORMULAE Chapter 4. Emmy’s Logic

for some formula ϕC, and terms tt, t f of the same type, then ϕ is equivalent to

ϕC → [tt/t]ϕ ∧ ¬ϕC → [t f /t]ϕ

Which leads to the following theorem:

Theorem 4.3. Semantics of if expressions
The if expression if(ϕC, tt, t f) is equivalent to tt if ϕC is true, otherwise, it is equivalent

to t f .

This is useful in the definition of functions. For example, we can define abs, which return
the absolute value, by the following formula:

∀n ∶ Int.abs(n) = if(n < 0,−n, n)

which is equivalent to

∀n ∶ Int.[(n < 0→ abs(n) = −n) ∧ (¬n < 0→ n)]

Notice that by definition 4.10, nested ‘if’ expressions are also valid, and can be used
to define functions with more than two cases, such as f ib, which returns the xth Fibonacci
number:

∀x ∶ Int.[¬x < 0→ f ib(x) =
if(x = 0, 0,if(x = 1, 1, f ib(x − 1)+ f ib(x − 2))]

which is equivalent to

∀x ∶ Int.[¬x < 0→

(x = 0→ f ib(x) = 0) ∧

(¬x = 0→ f ib(x) = if(x = 1, 1, f ib(x − 1)+ f ib(x − 2)))]

and

∀x ∶ Int.[¬x < 0→

(x = 0→ f ib(x) = 0) ∧

(¬x = 0→

(x = 1→ f ib(x) = 1) ∧

(¬x = 1→ f ib(x) = f ib(x − 1)+ f ib(x − 2)))]

4.2.4 Induction Marker

Sometimes, some formula ϕ cannot be proven directly by the underlying SMT solver, but
can be proven if we perform induction on ϕ, and break it down into an inductive principle ϕ′,
which entails ϕ.

We need a way to mark these formulae, so that the tool knows where induction should
be performed. We thus define induction markers as below:

35

4.3. SEMANTICS OF EMMY’S LOGIC Chapter 4. Emmy’s Logic

Definition 4.11. Formula formation [Extending definition 4.5]
If ϕ is a formula, then I(ϕ) is a formula.
We call such formulae induction markers.

If we have some formula ϕ, and we want to prove it by induction, then we may write
I(ϕ) instead of ϕ, and the induction will be performed when I(ϕ) is checked.

We will define induction in definition 4.14. We will also define an Un f old function,
that transforms formulae in induction markers to corresponding induction principles, in
definition 6.31.

We treat I(ϕ) and ϕ as the same in definitions. That is, if we have defined something for
ϕ, then the same definition also applies to I(ϕ). The only exception is the Un f old function,
which explicitly deals with induction markers.

We also extend the definition of =F by:

Definition 4.12. Formula equivalence [Extends definition 4.7]

I(ϕ) =F ϕ

4.3 Semantics of Emmy’s Logic
Like normal many-sorted first-order logic, the semantics of our logic depends on an un-
derlying universe, which contains numerous objects. The meaning of a statement (formula)
in our logic depends on how it is interpreted in the underlying universe. Generally, under
a certain interpretation, each term in our logic maps to one of the objects in the universe,
each function, applied to correct arguments, returns one of these objects as well, and each
predicate is maps to a relation between objects of corresponding sorts in the universe.

We do not define the universe and the interpretation by ourselve. In EmmyEmmyfunctions
2, and predicates can only be declared, not defined, thus their interpretation are not specified
in our logic. Rather, we depend on the SMT solver underlying our system for constructing
the universe and interpreting terms and formulae.

4.3.1 Semantic of Data Structure Constructors

While we treat constructors as functions and terms for the purpose of term formation, we
must impose some restrictions on the ways in which they are interpreted. Consider the
declarations

Nat ∶∶ Type
z ∶ Nat
s ∶ Nat→ Nat

whice declares the type of natural numbers, the natural number zero, and the successor
function, that is supposed to map each natural number to the ‘next’ one.

2 such that ϕ = P(t1,⋯, tn), and We do have function definition, but it is only a syntactic sugar that gets
translated into a logic assertion.

36

4.3. SEMANTICS OF EMMY’S LOGIC Chapter 4. Emmy’s Logic

z

(a) A lonely universe.

z

s(z)

s(s(z))

⋯

(b) A universe with infinitely
many natural numbers.

Figure 4.1: Two universes

The problem with the above declarations is that they say
nothing about the interpretation of term z and function s. We
could intreprete them in, for example, the universe depicted
by figure 4.1 a, where z is the only natural number, and the
‘successor’ function merely maps it back to itself. Similarly, if
we have define a tree data structure as above, we may have
‘branch’ constructors that maps subtrees back to themselves,
et cetra.

A set of axioms is thus needed to ensure that a certain data
structure is interpreted as we expected. If we add Peano’s sixth
and seventh axioms [68]:

∀x ∶ Nat.∀y ∶ Nat.[x = y↔ s(x) = s(y)] (6)
∀x ∶ Nat.[s(x) ≠ z] (7)

to the above definitions, then we would obtain a universe like
the one in figure 4.1 b, which is correct.

Axioms like these are needed for all data structure constructors. We require that con-
structors abide the five properties proposed by the authors of Dafny [59], namely,

1. Constructors are injective.

2. Different constructors produces different values.

3. All data structure values are constructed using constructors.

4. Data structure values are partially ordered.

5. The order is well-founded.

The first three properties ensures that constructors in our logic work in the same way
constructors in functional programming languages work. The last two are required for us
to perform structural induction on them.

We define the order as below:

Definition 4.13. Data structure order
If the constructor c of data structure δ takes arguments of type τ1,⋯, τn, and t1,⋯, tn

are terms of corresponding types, then for all i ∈ [1, n], if τi = δ, then ti < c(t1,⋯, tn).

It is obvious that the base constructors construct the minimal elements in the order, since
they take no arguments of the type of the data structure, they cannot construct a term that
is greater than any other term. Since we require all data structures to have at least one base
constructors, the order is indeed well-founded for all data structures.

The well-founded ordering of a certain data structure is closely related to well-founded
structural induction over that data structure: the minimal elements in the ordering, which
are the non-inductive constructors, form the base cases in the induction, while inductive
constructors form the inductive steps. The well-foundedness of the ordering is crucial: we
rely on this property in our proof of the correctness of induction, in section 8.1.

Since we have defined the well-founded order for all data structures, we can perform
well-founded induction over them. The induction principle for an induction over a certain
quantification over a data structure can thus be defined as:

37

4.4. TRANSLATION INTO SMT-LIB LOGIC Chapter 4. Emmy’s Logic

Definition 4.14. Data structure induction principle
For a context Γ such that Γ δ ∶∶ C, that is, the data structure δ has C as its set

of constructors, and formula ϕ, we define InductionPrinciple, the function that maps a
quantification over a data structure to its induction principle, as:

InductionPrinciple(Γ,∀t ∶ δ.ϕ) ≜

⋀
a∈C
[a/t]ϕ ∧ ⋀

c∶τ1⋯τn∈C
[∀t1 ∶ τ1.⋯∀tn ∶ τn.[⋀i∈[1,n](τ1 = δ → [ti/t]ϕ)

→ [c(t1,⋯, tn)/t]ϕ]]

We will see how induction principles are used in section 6.4.4 ,and 6.6.2.

4.4 Translation into SMT-LIB Logic
Since we use SMT-LIB compliant solvers to check the proofs, we need to develop a way to
translate terms and formulae in out logic into corresponding terms in SMT-LIB logic. Trans-
lation of types, functions, and constants are mostly straightforward: types are added to the
signature as sorts, functions and their type are translated into ranked function symbols, which
are function symbols associated with sequences of sort symbols [8, p. 46], and added to the
signature, and constants are added to the signature as ranked variables, which are variable
symbols associated with their sorts [8, p. 46].

In SMT-LIB logic, formulae are terms of Bool sort. Our propositions are thus translated
to constants of Bool sort, and predicates becomes functions from the sorts of their arguments
to Bool. We do not need to translate connectives as they are included in SMT-LIB theories
we are using.

We define the translation formally in definitions 6.32, 6.33, and 6.34.

4.4.1 Translation of Data Structure Constructors

One way to translate data structure constructors is to translate the constructors to normal
terms and functions, and generate appropriate axioms for them. This approach is employed
by Dafny: its authors proposed five data structure properties, which we described in section
4.3.1, and Dafny axiomatises the first, second, and fourth properties, while achieving the
fifth (well-foundedness of odering) by ‘enforcing’ the ‘stratification’ of data structures.

However, we choose to delegate this task to the underlying SMT solver, by directly
declaring the data structures when consulting the SMT solvers, so that the solver can en-
force these properties for us. We do it this way for the following reasons:

• The SMT solvers already have ways of ensuring the correct construction of recursive
data structures. Doing it by ourself by extracting all axioms add unnecessary com-
plexity to our proof-checking procedure.

• The SMT solvers underlying our system do not seem to handle instantiation of uninter-
preted sorts (types) well, causing them to fail when working with quantified recursive
data structures defined using terms and functions, even when axioms are supplied.

38

Chapter 5

Emmy Programs

Proofs in Emmy are written in a variant of the ‘stylised’ proof format, discussed in section
2.1.3: there is a sequence of steps, where each step follows from some previous steps or
facts. The semantics of our proofs are similar to stylised proofs. However, our proofs are
more structured. The lifetimes of assumptions and introduced variables are syntactically
indicated, which is more similar to ‘box’ style proofs.

For example, the following proof of theorem 4.1

Proof. Show:

∀l ∶ List. reverse(reverse(l)) = l

Proof:

By induction.

Base Case Show reverse(reverse(nil)) = nil

Proof: By definitions of reverse and append.

Inductive Step Take some l ∶ List, such that reverse(reverse(l)) = l. Take arbitrary x ∶
Integer. Show reverse(reverse(cons(x, l))) = cons(x, l).
Proof: By definitions of reverse and append.

can be written in the abstract syntax of Emmy as

⟨∀l ∶ List. reverse(reverse(l)) = l,
(I⟨L,∀l ∶ List. reverse(reverse(l)) = l,
(I⟨(⟨(),
(I⟨(⟨reverse(reverse(nil)) = nil,
(I⟨(⟨(S⟨1, reverse(reverse(nil)) = nil,{r-n,r-c,app-n,app-c}⟩)⟩,
(I⟨(⟨(⟨l ∶ List, reverse(reverse(l)) = l⟩, ⟨x ∶ Int,⊺⟩),
(I⟨(⟨reverse(reverse(cons(x, l))) = cons(x, l),
(I⟨(⟨(S⟨2, reverse(reverse(cons(x, l))) = cons(x, l),{r-n,r-c,app-n,app-c}⟩)⟩)⟩)⟩

whose structure corresponds to the structure of the stylised proof we have written above.

39

5.1. DECLARATIONS Chapter 5. Emmy Programs

Apart from proofs, we also need ways to define functions like reverse, declare data struc-
tures like List, and provide useful lemmas when needed. The combination of all the proofs,
declarations, definitions, and lemmas, is called a program.

In this chapter, we describe how programs are represented in Emmy. We specify the
abstract syntax of Emmy programs, and describe the relation of elements in our programs to
other proof systems and programming languages.

We will give a full description of the semantics of the programs, that is, how is the correct-
ness of proofs determined, in the next chapter. We have also included the concrete syntax
of Emmy in appendix D.

5.1 Declarations
Types, functions, predicates, and constants must be declared before they can be used in
proofs. The declarations of types, functions, predicates, and constants are typing statements,
denoted using notations introduced in the previous chapter.

Declarations are written in declaration sections, so they cannot be interleaved with proof
steps. Variables, which are introduced by quantifiers, are ‘declared’ by the respective quan-
tifications.

Formally, we define declaration section as:

Definition 5.1. Declaration section
A declaration section is a sequence of typing statements.

Declarations made in declaration sections are added to the context when checking proof
steps.

5.2 Proofs
Intuitively, a proof is a sequence of steps that leads to a result, which, ideally, is our goal. It
represents the process through which a goal an be obtained, where each step represents one
‘milestone’ in the proving process.

Formally, we define a proof as:

Definition 5.2. Proof
A proof is a pair

⟨ϕG, Π⟩

where

• ϕG is the goal of the proof, which is a formula whose validity we are trying to
prove.

• Π is a sequence of proof steps. The formula in the last step should be the formula
of the goal.

5.2.1 Proof Steps

Proof steps are ‘tagged’ products that mark ‘steps’ in the proving procedure. We label the
type of each step by putting BLACKBOARD BOLD letters in front of the step.

40

5.2. PROOFS Chapter 5. Emmy Programs

Simple Step

A simple step is a step where an intermediate formula is proven to follow from some previ-
ous steps. For example, if we have

1. A ∧ B Given
2. A By 1

3. A ∨C By 2

then ‘A By 1’ would be a simple step in which we prove that the intermediate result A follows
from step 1.

We give a number to each step, so that a step may be referenced by other steps in the
same proof as the other steps’ justification.

Formally, we define a simple step as:

Definition 5.3. Simple step
A simple proof step is a tagged triple

S⟨i, ϕ, J⟩

where

• i is the number of the step.

• ϕ is the formula that is proven true in this step.

• J is a justification of this step. It is either

– Given
– Tentative
– A set of step numbers.

The step number i of a step is not necessarily the same as the index of the step in the
sequence containing it. We require that the step number i is unique within each proof.

We use ϕi to denote the formula in step i, and Ji to denote justification for step i. The step
with number i can be similarly denoted as σi.

Assumption

We often make assumptions when proving. In the following proof, we assume A ∧ B, and
prove that A follows from A ∧ B, hence we obtain A ∧ B → B at last:

1. A ∧ B Assumed
2. A By 1

3. A ∧ B → A By 2

We put everything in the box in the above proof into an assumption step, including the
assumption we made, and the subproof that is proved under that assumption. We define
such a step as below:

41

5.2. PROOFS Chapter 5. Emmy Programs

Definition 5.4. Assumption Step
An assumption step is a tagged triple

A⟨i, ϕ, Π⟩

where

• i is the number of the step.

• ϕ is the formula that is being assumed.

• Π is the subproof made under the assumption that ϕ is true. It is a sequence of
steps which can use ϕ as a justification.

Similarly, we can denote the subproof in step i as Πi.

Variable Introduction

When working with first-order proofs, we often introduce variables to be used in subsequent
steps. We introduce the variable by giving it a name and state its type. We also give it a
scope, or lifetime, in which it is declared, which is represented by a box in ‘box’ style natural
deduction.

A variable introduction and the subproof that involves the introduced variable is defined
as below:

Definition 5.5. Introduction step
An introduction step is a tagged triple

I⟨i, t ∶ τ, Π⟩

where

• i is the number of the step.

• t ∶ τ is the declaration of the introduced variable, where t is the name of the variable,
and τ is its type.

• Π is the subproof within which the variable is available.

Sometimes, we also make an assumption about the variable introduced, by saying ‘take
an integer x, such that x > 10’. Such step is defined as:

Definition 5.6. Introduction with assumption step
An introduction step with assumption is a quadruple

IA⟨i, t ∶ τ, ϕ, Π⟩

where

• i is the number of the step.

42

5.2. PROOFS Chapter 5. Emmy Programs

• t ∶ τ is the declaration of the introduced variable, where t is the name of the variable,
and τ is its type.

• ϕ is the formula that is being assumed, it can contain free t.

• Π is the subproof within which the variable is available.

It can contain t.

Induction Steps

When we perform induction over either a recursively declared data structure, or a recursive
function definition, we wish to structure our proof in a way that resembles the induction
principle. We want to state our goal, list all base cases and their proofs, as well as all induc-
tive steps, their induction hypotheses, and their proofs.

We define induction step to reflect the structure of induction:

Definition 5.7. Induction Step and induction cases
An induction step is either a tagged triple

I⟨i, ϕ, C⟩

that performs induction over a data structure, or a tagged quadruple

I⟨i, id, ϕ, C⟩

that performs induction over a function definition, where

• i is the number of the step.

• id, if exists, is the name of the function definition we want to perform induction on.

• ϕ is the formula that is being proven by induction.

• C is a sequence of induction cases.

where an induction case is a triple

⟨H, ϕG, Π⟩

where

• H is a sequence of induction hypotheses made for this case.

• ϕG is the goal proven in this case.

• Π is the subproof under the assumptions.

43

5.2. PROOFS Chapter 5. Emmy Programs

where an induction hypothesis is a pair

⟨t ∶ τ, ϕH⟩

where

• t ∶ τ is the declaration of a variable introduced for this induction case.

• ϕH is an assumption we make about the introduced variable.

If we do not make any assumptions about a variable introduced in a case, we just trivially
assume ⊺.

Each induction step is one single unit that proves an inductive property. Each case
should only prove one base case or inductive step in the induction principle.

Notice that in order for the proof checking algorithm defined in section 6.4.4 to be correct,
the goal must satisfy certain properties:

• If the step performs induction over a data structure, a valid goal must be a universal
quantification over a data structure. That is, the goal must have the form ∀t ∶ δ.ϕ,
where δ is a data structure.

• If the step performs induction over a function definition, a valid goal must be a se-
quence of universal quantifications and implications with an induction marker inside.
That is, a valid goal must be either

– I(ϕ), an induction marker, or
– ∀t ∶ τ.ϕG, where ϕG is also a valid goal, or
– ϕ → ϕG, where ϕG is also a valid goal.

Equalities Steps

Very often, we write stylised proofs with ‘chained’ equalites that looks like:

Proof.

(1) t0 = t1 from R1

(2) = t2 from R2

(3) = t3 from R3

⋮
(n) = tn from Rn

in which we prove that t = t1, and that t1 = t2, and so on, and eventually we prove
tn−1 = tn, which, by transitivity, proves that t = tn. It is equivalent to the following stylised
proof:

Proof.

(1) t0 = t1 from R1

44

5.2. PROOFS Chapter 5. Emmy Programs

(2) t0 = t2 from R2 (1)
(3) t0 = t3 from R3 (2)

⋮
(n) t0 = tn from Rn (n − 1)

To formulate it in our syntax, it would become something like:

(S⟨1, t0 = t1,{R1}⟩,
S⟨2, t0 = t2,{R2 1}⟩,
S⟨3, t0 = t3,{R3 2}⟩,
⋮
S⟨n, t0 = tn,{Rn (n − 1)}⟩)

which is very cumbersome, especially when written in the concrete syntax.
Therefore, we define a shorthand notation that proves a chain of equalities in one single

step, as:

Definition 5.8. Equalities step
An equalities step is a tagged triple

E⟨i, t0, E⟩

where

• i is the number of the step.

• t0 is the initial term. We will show that the initial term is equal to some other term
in this step.

• E is a sequence of equalities.

Where an equality is a pair
⟨ti, Ji⟩

where

• ti is the term in the ith equality.

• Ji is the justification for the ith equality.

Using an equalities step, we may write the above proof as one step

(E⟨1, t0, (⟨t1,{R1}⟩, ⟨t2,{R2}⟩, ⟨t3,{R3}⟩,⋯, ⟨tn,{Rn}⟩)⟩)

in which we prove that t0 = tn.

45

5.3. LEMMAS Chapter 5. Emmy Programs

5.3 Lemmas
A lemma is a theorem that is useful when proving other theorems. Proving the lemmas each
time we need them is tiresome, so we allow users to ‘declare’ a set of lemmas, which can
be used in proofs without having to be proved. Thus, a lemma is similar to a simple step,
except that a lemma does not need any justification: it is assumed to be true.

A single lemma is defined as:

Definition 5.9. Lemma
A lemma is a pair

⟨i, ϕ⟩

where

• i is the number of the lemma.

• ϕ is the formula of the lemma.

We require that the number of lemmas to be unique across the entire program, and that
no step has the same number as a lemma.

And a lemma section is defined as:

Definition 5.10. Lemma section
A lemma section is a sequence of lemmas.

We can treat a lemma section as a syntatic sugar: declaring some lemmas is the same as
putting all lemmas at the beginning of each proof, as steps that are ‘Given’ to be true.

5.4 Definitions
In declarations, functions are declared, not defined, meaning that we do not impose any
restriction on the interpretation of functions when we declare them. We now define function
definition, a way to give the functions meanings, as:

Definition 5.11. Function definition
A function definition is a triple

⟨i, tl , r⟩

where

• i is the number of this definition.

• tl is the left-hand-side (LHS) of the definition.

• The term r is the right-hand-side (RHS) of the definition.

We require all variables that appear free in r to also appear free in tl . We also require
all variables in tl to be distinct from all other variables anywhere in the program.

46

5.4. DEFINITIONS Chapter 5. Emmy Programs

We also require all terms and their subterms on the LHS to be either variables, con-
stants, or function applications, and that all but the outermost function application on
the LHS to be constructor functions applied to arguments.

The requirement that variable names are distinct is needed to prevent shadowing of vari-
able names. In the implementation of the proof checker, we replace all variables on the LHSs
by fresh variables before using the function definitions in checking proofs.

The reason for our second requirement is to make function definitions in out language
similar to function definitions in Haskell.

For example, the following definitions of function s:

s x = x + 1 s(x) = x + 1

can be written as:
⟨f-def,s-def, s(x), x + 1⟩

We then define the definition section:

Definition 5.12. Definition section
A definition section is a sequence of definitions.

Definitions are semantically similar to lemmas: they are theorems whose truth we take
for granted.

5.4.1 Definition with Cases

In a programming language, we may define a function as below:

f x :: Int -> Int
f x | x == -1 = 0

| x == 0 = 1
| otherwise = 2

The definition of function definitions cannot define anything equivalent to the above
definition of f. We must provide a way to express different cases:

Definition 5.13. Function definition [Amends definition 5.11]
r, the right-hand-side of the definition, should be a either a term, or a non-empty

sequence of pairs ⟨ϕC, tb⟩, where each pair is called a case. The formula ϕC in each case
is the condition of that case, and the term tb is the body of that case.

We require that all variables that appears free in r to appear free in tl .
We require that the cases are exhaustive, which means that the disjunction of all cases’

conditions is valid.

The requirement that cases are exhaustive means that for all argument values, there is
at least one case whose condition should be true. We develop a formal definition for case
exhaustion in section 6.2.1, along with a procedure to check the exhaustion of cases.

Using cases, the function f can be defined as:

⟨f-1, f (x), (⟨x = −1, 0⟩

47

5.4. DEFINITIONS Chapter 5. Emmy Programs

⟨x = 0, 1⟩
⟨⊺, 2⟩)⟩

which means that when x = −1, f (x) = 0, if x = 0, f (x) = 1, and if none of the above conditions
are met, then f (x) = 2. The above definition is complete because ⊺, the condition of the last
case, will always be true, therefore there will always be a case whose condition is true.

In the concrete syntax, we allow ‘otherwise’ as an alias for ‘⊺’ as a case’s condition,
because in Haskell, otherwise is defined to be the same as True [21].

Notice that having exhaustive cases does not mean that the function returns a result for
all possible arguments. For example, the following Haskell function

endless x :: Int -> Int
endless x | x < 0 = 0

| otherwise = 1 + endless (x + 1)

has exhaustive cases by our definition, but does not terminate when applied to a non-negative
integer. We discuss the ramifications of non-terminating functions in section 8.2 and 9.4.

If f (x) does not terminate, we say that f (x) is undefined. Any formula that contains f (x)
would be meaningless.

5.4.2 Induction over Function Definition

When reasoning about the property of recursive functions, we can perform induction over
the definition of such functions [27]: a recursive function should have a case without any re-
cursive calls, which serves as our base case in the induction, and then the cases with recursive
calls become inductive steps in the induction. We first prove that the propertu for the base
cases, then, in a inductive step, we assume that the property holds for all values returned
from recursive calls, and prove the property for that case.

An Example

For example, say we have the following definition of function f :

f (x, y) = { 1 if x − y > 100
(x + y) ∗ f (x + 10, y − 10) otherwise

And we want to prove the property:

∀x ∶ Int.∀y ∶ Int.P(f (x, y)) (5.1)

Induction on integers does not help much. What we can do instead is to prove the fol-
lowing induction principle:

∀x ∶ Int.∀y ∶ Int.[(x − y > 100→ P(1)) (5.2)

∀x ∶ Int.∀y ∶ Int.[∧

∀x ∶ Int.∀y ∶ Int.[∀r ∶ Int.(x − y ≤ 100→ r = f (x + 10, y − 10)∧ P(x)→ P((x + y) ∗ r))]

which implies
∀x ∶ Int.∀y ∶ Int.∀z ∶ Int.[f (x, y) = z → P(z)] (5.3)

48

5.4. DEFINITIONS Chapter 5. Emmy Programs

From the definition of f , we know that the value of x − y increases in each recursive call,
therefore, f always terminates, and we have

∀x ∶ Int.∀y ∶ Int.∃z ∶ Int. f (x, y) = z (5.4)

From 5.3 and 5.4, we could prove 5.1, the original property. Notice that if f does not
terminate, then 5.1 cannot be proven.

For non-terminating functions, the situation is more tricky. Consider function g:

g(x) = { 0 if x < 0
g(x + 1) otherwise

And property:
∀x ∶ Int.Q(g(x)) (5.5)

Then, the induction principle would be:

∀x ∶ Int.[(x < 0→ Q(0))∧∀r ∶ Int.[x ≥ 0 ∧ r = g(x + 1)→ Q(r)]] (5.6)

which implies

∀x ∶ Int.∀r ∶ Int.[r = g(x)→ Q(r)] (5.7)

However, property 5.7 does not imply 5.5, because for some values of x, g(x) is unde-
fined, and for such values, Q(x) is meaningless.

In general, induction over function definitions proves some formula that looks like

∀t1 ∶ τ1.⋯∀tn ∶ τn.∀r ∶ σ.[f (t1,⋯, tn) = r → R(t1,⋯, tn, r)] (5.8)

instead of

∀t1 ∶ τ1.⋯∀tn ∶ τn.R(t1,⋯, tn, f (t1,⋯, tn)) (5.9)

which is stronger than 5.8 [27]. Notice that Formula 5.9 follows from 5.8 if f terminates.

Generation of Induction Principle

To begin, we define CallsT, which extracts all calls to a certain function in terms, and CallsF,
which extracts calls from formulae, as:

Definition 5.14. Extraction of calls from terms and formulae

CallsT(f , c) ≜ ∅ if c is a constant
CallsT(f , c) ≜ ∅ if v is a variable

CallsT(f , f ′(t1,⋯, tn)) ≜ { f ′(t1,⋯, tn)} if f = f ′

CallsT(f , f ′(t1,⋯, tn)) ≜ ⋃
i∈[1,n]

CallsT(f , ti) if f ≠ f ′

CallsF(f , P) ≜ ∅ P is a proposition
CallsF(f ,¬ϕ) ≜ CallsF(f , ϕ)

CallsF(f , ϕ1 C ϕ2) ≜ CallsF(f , ϕ1)∪CallsF(f , ϕ2) C is a binary connective
CallsF(f , Q t ∶ τ ϕ) ≜ CallsF(f , ϕ) Q is either ∀ or ∃

49

5.4. DEFINITIONS Chapter 5. Emmy Programs

CallsF(f , P(t1,⋯, tn) ≜ ⋃
i∈[1,n]

CallsT(f , ti)

CallsF(f , t1 = t2) ≜ CallsT(f , t1)∪CallsT(f , t2)

CallsT(f , t) returns the set of all unique calls of f in term t, and CallsF(f , ϕ) returns all
unique calls of f in formula ϕ. For example, we have:

CallsF(f , f (x)+ g(x) < f (x)+ f (10+ x)) = { f (x), f (10+ x)}

Notice that if the same function call occurs twict in a formula, CallF will only return one,
as there is only one unique call.

We use CallF(f , ϕ) to find the arguments supplied to calls of f in ϕ. We substitute the
arguments when generating the induction hypotheses.

We then define the function FunctionInductionPrinciple, which generates the induction
principle for a formula from the definition of a function, as:

Definition 5.15. Function Induction Principle

FunctionInductionPrinciple(Γ, ⟨i, f (t1,⋯, tn), C⟩, ϕ) ≜
⋀

i∈[1,∣C∣]
CaseInductionPrinciple(Γ, Ci)

where C, the cases in the function definition, is a sequence of at least two function cases,
∣C∣ is its length, and Ci is the ith case.

We define CaseInductionPrinciple as:

CaseInductionPrinciple(Γ, ⟨ϕi, bi⟩) ≜
Sϕ ϕi ∧ ⋀

j∈[1,i−1]
(¬Sϕ ϕj) → [Sϕ bi/tϕ]ϕ If ∣CallsT(f , bi)∣ = 0

CaseInductionPrinciple(Γ, ⟨ϕi, bi⟩) ≜
∀r ∶ σ.[Sϕ ϕi ∧ ⋀

j∈[1,i−1]
(¬Sϕ ϕj) If ∣CallsT(f , bi)∣ = 1

→ (Sb [r/tϕ] ϕ ∧ r = Sb tϕ → [Sϕ [r/tr] bi/tϕ] ϕ)]

where

• Γ f ∶ τ1⋯τn → σ.

• r is fresh.

• {tϕ} = { f (t′1,⋯, t′n)} = CallsF(f , ϕ).

• {tr} = { f (t′′1 ,⋯, t′′n)} = CallsT(f , bi).

and Sϕ and Sb are sequences of substitutions such that

Sϕ = ([t′1/t1],⋯, [t′n/tn])
Sb = ([Sϕ t′′1 /Sϕ t1],⋯, [Sϕ t′′n/Sϕ tn])

We require that ∣CallsF(f , ϕ)∣ = 1.

50

5.4. DEFINITIONS Chapter 5. Emmy Programs

We only define FunctionInductionPrinciple for function definitions in which no more
than one unique recursive call occurs. In addition, we require that exactly one call to the
function occurs in the formula, that is, ∣CallsF(f , ϕ)∣ = 1. This is because when there are
multiple calls, the generation of induction principle becomes very complicated, and that if
there is no function call in the formula, then there is no point performing induction. By
‘unique recursive call’, we mean the application of the function over whose definition we
perform induction to the same set of arguments. For example, in f (x) = 1+ f (x − 2)+ f (x −
2), there is only one unique recursive call, while in f ib(x) = f ib(x − 1)+ f ib(x − 2), there are
two.

Also, we only define FunctionInductionPrinciple for function definitions with cases, as
if there are no different cases, then there is either no need for induction because there is no
recursive call, or the induction will not be well-founded as there is no base case.

We will prove the soundness of induction over function definitions in section 8.2.

Function Induction Markers

To perform function induction, we can use an induction step. We then need a way to denote
the places where we wish to apply the induction principle, and the name of the function
definition with regard to which we generate the inductive principle. We thus extend our
existing definition of induction markers (definition 4.11) as below:

Definition 5.16. Formula formation [Extending definitions 4.5 and 4.11]
If ϕ is a formula, and i is the number of a function definition, then Ii(ϕ) is an induc-

tion marker.

Like the induction markers we defined in definition 4.11, we treat Ii(ϕ) and ϕ as the
same in definitions, excepct in the Un f old function.

The formula ϕ inside the induction marker Ii(ϕ) is what we apply the induction principle
to.

We will discuss when the induction is performed in section 6.6.2.

Example of Function Induction Principle Generation

As an example, consider the following function definition, adapted from proof of theorem
B.21:

g′(i, j, cnt, acc) = { acc if cnt ≥ i
g′(i, j, 1+ cnt, j + acc) otherwise

which can be expressed in our language as:

d = ⟨gp-d, g′(i, j, cnt, acc), (⟨cnt ≥ i, acc⟩
⟨⊺, g′(i, j, 1+ cnt, j + acc)⟩)⟩

Now, if we want to prove the property

∀x ∶ Int.∀y ∶ Int.∀cnt ∶ Int.∀acc ∶ Int.[(5.10)
P(x, y, cnt)→ g′(x, y, cnt, acc) = (x − cnt) ∗ y + acc]

under some context Γ that would type g′ correctly, we must perform induction on the defi-
nition of g′: simple induction on integers does not work here.

51

5.5. PROGRAM Chapter 5. Emmy Programs

First, we use an induction marker to mark the part of the formula that we want to prove
inductively. In general, we put the induction marker inside all quantifications:

∀x ∶ Int.∀y ∶ Int.∀cnt ∶ Int.∀acc ∶ Int.[(5.11)

Igp-d(P(x, y, cnt)→ g′(x, y, cnt, acc) = (x − cnt) ∗ y + acc)]

We then generate the induction principle for the formula inside the induction marker.

FunctionInductionPrinciple(Γ, d, ϕ) =
[P(x, y, cnt) → (x ≥ cnt → acc = (x − cnt) ∗ y + acc)]
∧

∀r ∶ Int.[⊺∧¬cnt ≥ i

→
(P(x, y, cnt)→ r = (x − (1+ cnt)) ∗ y + (j + acc)) ∧ r = g′(i, j, 1+ cnt, j + acc)
→

(P(x, y, cnt) → r = (x − cnt) ∗ y + acc)]

What we need to prove now is the two induction cases, whose conjunction implies ϕ.

5.5 Program
We have already defined ‘declare’, ‘proof’, ‘lemma’, and ‘definition’ sections. Now, we may
finnally define formally programs: they are sequences of sections.

Definition 5.17. Program
A program is a sequence of sections, which can be either declare, proof, lemma, or

definition sections.

52

Chapter 6

Proof Checking

In the previous chapter we have described the syntax of Emmy programs. Emmy takes such
programs as inputs, and check the correctness of them, or, more specificly, the correctness
of the proofs in these programs.

In this chapter, we describe how the correctness of proofs is defined, define the algorithm
with which the correctness is checked, and explain how our system utilise external SMT
solvers when checking proofs. We also present some possible alternations to our semantics
and evaluate their values.

Entailment, Informally

In this chapter, we very often use the notation

Γ, ∆, ϕ1,⋯, ϕn ϕc

which is called an entailment. Informally, the meaning of the above entailment is

Under the context Γ, and the function definitions ∆, the formulae ϕ1,⋯, ϕn entails
ϕc. That is, if ϕ1,⋯, ϕn are all true, then ϕc is true.

The formulae ϕ1,⋯, ϕn, which are to the left of the turnstile () are the premises of the
entailment, and ϕc, the formula to the right, is the consequence of the entailment.

We develop a formal definition of entailment in section 6.6.
We mark everything that is carried out using the SMT solver in blue. If an entailment is

marked in blue, then it means that it is being checked using the SMT solver.

6.1 Lemmas
Since lemmas and function definitions are syntatic sugar over normal steps, we translate
them into normal steps before checking a proof:

Definition 6.1. Translation of Lemmas

Translate(⟨i, ϕ⟩) = S⟨i, ϕ,Given⟩

No checking is performed, as we assume all lemmas to hold.

53

6.2. FUNCTION DEFINITIONS Chapter 6. Proof Checking

6.2 Function Definitions

6.2.1 Exhaustion Check

In definition 5.13, we require that cases in a definition to be exhaustive: they must cover all
possible cases. If the cases are not exhaustive, then under certain circumstances, conditions
of all cases are false, and the value of the function would be undefined.

We define the exhaustion check as below:

Definition 6.2. Exhaustion check

Exhaustive(Γ, (⟨ϕ1, t1⟩,⋯, ⟨ϕn, tn⟩)) ≜ Γ,{} ϕ1 ∨⋯∨ ϕn

where Γ is the current context.

t1,⋯, tn, the case bodies, are not relevent here.
That is, if the disjunction of all cases’ conditions is valid, then the cases are exhaustive, as

it would be impossible for all conditions to be false at the same time. The validity is checked
using the entailment checking procedure, which may call the SMT solver. If the cases are
not exhaustive, the program should stop and report an error.

Notice that we are checking the entailment with an empty set of definitions in the above
definition.

In practice, we can first check if any of the conditions are ⊺, which corresponds to an
otherwise term in the ‘guards’ of Haskell’s function definitions. The ⊺ case would always
be true, so it would ‘capture’ all situations that are not covered by previous cases, making
all situations handled.

6.2.2 Translation of Function Definitions

To begin, we translate the RHS, which may contain multiple cases, to a single term:

Definition 6.3. Translation of RHS

TranslateRhs(C) ≜ TranslateRhsCases(C) When C is a sequence of cases
TranslateRhs(t) ≜ t When t is a term

where

TranslateRhsCases((⟨ϕC, tb⟩, c⋯)) ≜ if(ϕC, tb, TranslateRhsCases(c⋯))
TranslateRhsCases((⟨⊺, tb⟩, c⋯)) ≜ tb

TranslateRhsCases((⟨ϕC, tb⟩)) ≜ tb

Notice that as soon as we encounter a case with ⊺ as its condition, we throw away all
remaining cases. Because if we translated it to

if(⊺, tb, TranslateRhsCases(c⋯))

then by theorem 4.3, it will always be equal to tb. The rest of the cases are irrelevant.
Also notice that if there is only one case left, no matter what the condition is, we trans-

late the case to its body. We could do this because we know that the cases are exhaustive.

54

6.2. FUNCTION DEFINITIONS Chapter 6. Proof Checking

Therefore, either one of the previous cases’ condition is met, so the last case is irrelevant, or,
if all previous cases’ conditions are not met, then the condition of the last case must hold.
Otherwise, the cases cannot be exhaustive.

The function TranslateRhs yields a term which will sit on the right hand side of the
resultant formula. However, we cannot just assert that LHS and RHS are equal, because
they both contain free variables whose types are unknown. We need to quantify over these
variables at last, but before that, we need to infer the types of these free variables, which is
not difficult, as the types of all functions and constructors have already been declared.

The type inference algorithm can be defined as:

Definition 6.4. Type inference

In f er(Γ, τ, v) ≜ {v ∶ τ} when ¬∃σ.Γ v ∶ σ

In f er(Γ, τ, c) ≜ ∅ when Γ c ∶ σ

In f er(Γ, τ, f (t1,⋯, tn) ≜ ⋃
i∈[1,n]

In f er(Γ, τi, ti) when Γ f ∶ τ1⋯τn → τ

In f er(Γ, τ,if(ϕC, tt, t f) ≜ In f er(Γ, τ, tt)∪ In f er(Γ, τ, t f)

The last case (for if expressions) is actually not needed, as we prohibit if expressions on
LHS.

The function In f er takes three arguments: the first is the current context, from which
we may get the type of constants, functions, and constructors, the second is the ‘expected’
type of a term, and the third is the term whose, and whose subterms’, types we wish to
infer. It returns a set of typing statements, that should tell us about the types of all free
variables. In f er is undefined for all other cases, which should be caught as errors in the
implementation.

Notice that it is possible for In f er to return conflicting types for the same term:

In f er({ f ∶ τ σ− > τ}, τ, f (x, x))
= In f er({ f ∶ τ σ− > τ}, τ, x)∪ In f er({ f ∶ τ σ− > τ}, σ, x)
= {x ∶ τ}∪ {x ∶ σ}
= {x ∶ τ, x ∶ σ}

We therefore define the predicate ContextCorrect, to check the context returned by In f er:

Definition 6.5. Is a context correct?

ContextCorrect(Γ) ≜ x ∶ τ ∈ Γ ∧ x ∶ σ ∈ Γ → τ = σ

That is, a context is correct if each term and function appear in only one typing statement
in the context. When inferring types of variables, if the same variable is given more than one
type, than the implementation should report an error.

Using the above definitions, we arrive at the procedure for translating function defini-
tions:

55

6.3. CHECKING TYPES Chapter 6. Proof Checking

Definition 6.6. Translation of function definitions

Translate(⟨i, f (t1,⋯, tn), r⟩) ≜
S⟨i,∀v1 ∶ σ1.⋯.∀vm ∶ σm. f (t1,⋯, tm) = TranslateRhs(r),Given⟩

where
Γ is the current context.

•• Γ f ∶ τ1⋯τn → τ

• {v1 ∶ σ1,⋯, vm ∶ σm} = In f er(Γ, τ, f (t1,⋯, tn)

• ContextCorrect(In f er(Γ, τ, f (t1,⋯, tn)).

Function Call Lemma

From the above definitions and the fact that function definitions must be exhaustive, we may
obtain the following conclusion, by induction over function Translate:

Lemma 6.1. Function call must fall into one case
If

• Γ f ∶ τ1⋯τn → σ

• Γ ti ∶ τi for i ∈ [1, n]

• d = ⟨i, f (ta1,⋯, tan)(⟨ϕ1, b1⟩,⋯, ⟨ϕm, bm⟩)⟩

then there exists some i ∈ [1, m] such that

Translate(d)→
S ϕi ∧ ⋀

j∈[1,i−1]
(¬S ϕj) ∧ f (t1,⋯, tn) = S bi

where S = ([t1/ta1],⋯, [tn/tan]).

That is, all possible inputs to a function must satisfy the condition of one case, and must
not satisfy the conditions of all previous cases, and the value of the function call would be
equal to the body of that case, with all variables substituted.

We will use this lemma when proving the soundness of function induction principles.

6.3 Checking Types
Before a proof is checked, we need to ensure that all formulae in the proof is well-formed.
That is, no function is applied to wrong arguments, and no predicate is applied to wrong
variables. Our type system consists of rules that determines whether or not something is
well-typed, and therefore well-formed (see section 4.4). We perform a type check before
checking the proof, and proceeds checking only if no type errors are found.

We also include type declarations into the generated SMT-LIB script. However, we do
not use the SMT solver for any type checking purposes, as our own type checking procedure
can give much more detailed and specific error messages than what SMT-LIB specified. We
expect any program that is approved by our type checker to run without type errors in the
SMT solver.

56

6.4. CHECKING STEPS Chapter 6. Proof Checking

6.4 Checking Steps
We can now develop an algorithm for checking the correctness of steps, that is, to check
whether or not the conclusion we draw in a certain step follows from the justifications of
this step.

6.4.1 Simple Steps

Intuitively, a step σ is correct under a context Γ if its formula is true given that all formulae in
steps referenced in the justification of step σ are true under Γ. That is, the step σi = S⟨i, ϕi, Ji⟩
is correct if Γ, ∆, ϕj1 ,⋯, ϕjn ϕi, where Ji ≡ {j1,⋯, jn}.

However, this simple definition does not take into consideration circular reference be-
tween steps. Consider the following steps, which are all nonsensical yet deemed correct
under the above definition and an empty context:

σ1 = S⟨1, A ∧ B,{1}⟩
σ2 = S⟨2, P → Q,{3}⟩
σ3 = S⟨3,¬Q → ¬P,{2}⟩

Obviously, there is little point allowing a step to say ‘I am true because I am true’. We must
therefore have some means of ruling out the use of circular references. A more aggressive
approach would be to construct a ‘dependency graph’ for the step we are checking, where
step σi ‘depends on’ σj if j ∈ Ji. If we encounter the step we are checking when constructing
the graph, then we can declare that step invalid. However, this is computationaly heavy, and
would result in many duplicated computations, especially for long, complicated proofs.

The approach used in our implementation is more passive: we maintain a mapping ΦC
from the numbers of yje steps we have already checked to those steps’ formulae. We treat
ΦC as a binary relation between the set of possible step numbers and the set of possible
formulae, such that for any step number i and formula ϕ, ⟨i, ϕ⟩ ∈ ΦC if and only if ΦC(i) =
ϕ. For example, if we have checked the step S⟨10, A ∧ B,{9}⟩, then ⟨10, A ∧ B⟩ ∈ ΦC, and
ΦC(10) = A ∧ B.

It is obvious that if the step we are currently checking, whose number is by definition not
in the domain of ΦC, only uses steps in the domain of ΦC as its justifications, then it cannot
reference itself. We then add the current step number and formula to ΦC, and check the next
step. This approach is more efficient, but does not accept proofs where a step references a
step after it even if no circular references actually exists.

To make lemmas and function definitions accessible to proof steps, we also add all (trans-
lated) lemmas and function definitions to ΦC, before a proof is checked.

Combining handling of circular reference with the definition we purposed in the begin-
ning, we arrive at the following definition of the correctness of a single step:

Definition 6.7. Correctness of a step

Correct(Γ, ∆, ΦC,S⟨i, ϕi, Ji⟩) =

∀j ∈ Ji. j ∈ dom(ΦC) ∧ Γ, ∆, ΦC(j1),⋯, ΦC(jn) ϕi

where Ji ≡ {j1,⋯, jn}, and Γ is the context.

57

6.4. CHECKING STEPS Chapter 6. Proof Checking

The entailment, marked in blue, is checked using the external SMT solver. We describe
in detail how it can be checked in section 6.6.

We then need a way to construct the mapping ΦC. The obvious way would be to start
with an empty set, and add checked steps to the set as we move along the sequence of steps
we are checking. The algorithm for checking an entire sequence of steps could thus be de-
fined recursively as below:

Definition 6.8. Correctness of a sequence of steps

StepsCorrect(Γ, ∆, ΦC, ()) = ⊺
StepsCorrect(Γ, ∆, ΦC, (S⟨i, ϕi, Ji⟩, σ′⋯)) =

Correct(Γ, ∆, ΦC,S⟨i, ϕi, Ji⟩) ∧ StepsCorrect(Γ, ∆, ΦC ∪ {⟨i, ϕi⟩}, (σ′⋯))

Notice that since we require all step numbers to be unique within a proof, no two mapping
pairs with the same step number will be added to ΦC. It is not possible to have ⟨i, ϕi⟩, ⟨j, ϕj⟩ ∈
ΦC such that i = j and ϕi ≠ ϕj.

Since we do not introduce (declare) any new term, the context is not changed.
This algorithm with return true if all steps are correct, otherwise it returns false.

Formulae Given to Be True

In the ‘box’ style natural deduction, we sometimes mark some steps as ‘Given’. That is, the
result obatined in this step is ‘given to be true’, or ‘taken for granted’. This can reduce the
levels of assumptions that exist in a proof.

In Emmy, we allow ‘Given’ to be the justification of a step. Such steps are deemed correct
right away:

Definition 6.9. Correctness of a step [extends definition 6.7]

Correct(Γ, ∆, ΦC,S⟨i, ϕi,Given⟩) = ⊺

Tentative Steps

Sometimes, we know that we need to prove something, but do not know exactly how it can be
proven. In this case, we can make this step ‘Tentative’. We have not proven it, but we wish
it to be there in the proof, either to give us a hint, or to serve as a justification for following
steps. We allow users to write such steps in order to lessen the restriction on how proofs
can be written, which is one of the objectives of this project. Like ‘Given’ steps, ‘Tentative’
steps are always true. We can thus extend the definition 6.7 by:

Definition 6.10. Correctness of a step [extends definition 6.7]

Correct(Γ, ∆, ΦC,S⟨i, ϕi,Tentative⟩) = ⊺

58

6.4. CHECKING STEPS Chapter 6. Proof Checking

Extraneous Justifications and Valid Formulae

Notice that since the logic of Emmy is monotonic: having extraneous justifications does not
affect the outcome of the step checking algorithm. The sequence of steps

(S⟨1, A ∧ B,Given⟩,
S⟨2, C ∧D,Given⟩,
S⟨3, A,{1, 2}⟩)

is correct, although step 3 does not need step 2 as a justification.
Our algorithm will also happily accept any step whose formula is valid, regardless of the

justification of that step. Consider

(S⟨1, (A → B)→ (¬B → ¬A),{}⟩)

which will be deemed correct even though no justification is given.
There does not seem to a simple way to deal with these issues, as invalidating the above

proofs would require a change to our entailment-based proof checking algorithm, possibly
necessitating the use of inference rules. We therefore do not handle such situations in our
proof checker, by leaving these steps as correct steps. Proof checking front-ends may imple-
ment ‘simplification’ features that minimises the number of justifications used, or notify the
user that a formula is valid.

6.4.2 Assumptions

A single assumption step consists of an assumption, and a subproof, which is a sequence of
steps. We can define the correctness of an assumption step as the correctness of its subproof,
under the assumption that the assumed formula is deemed to be true. Thus, the algorithm
for checking a single assumption step is simple: we add the assumption to ΦC, and then
check the subproof with regard to the updated ΦC.

To put this formally, we could extend definition 6.7 by adding a case for assumptions:

Definition 6.11. Correctness of a step [extends definition 6.7]

Correct(Γ, ∆, ΦC,A⟨i, ϕi, Πi⟩) = StepsCorrect(Γ, ∆, ΦC ∪ {⟨i, ϕi⟩}, Πi)

Now we need to find a way to ‘use’ the results obtained in the subproof, under the as-
sumption, in later steps. Recall that in ‘box’ style natural deduction, we can have the follow-
ing:

1. A → B Given
2. B → C Given
3. A Assume
4. B →-Elim 1 3

5. C →-Elim 2 4

6. A → C →-Intro 3 5

Step 6 lists step 5, which is in the subproof under the assumption made in step 3, as its
justification. Our algorithm for checking a sequence of steps, as in definition 6.8, cannot

59

6.4. CHECKING STEPS Chapter 6. Proof Checking

handle this situation, because it does not add steps in the subproof of an assumption to ΦC,
rendering those steps inaccesible for later steps. However, we also must not simply throw
all steps in a subproof into ΦC directly. Consider the following sequence of steps:

(A⟨1, A, (
S⟨2, A,{1}⟩
)⟩,
S⟨3, A,{2}⟩)

If we simply add step 2, which is in the subproof of step 1, into ΦC after we have checked
step 1, then step 3 would become correct, which is not what we want.

To derive a correct way to carry what we have proven in a subproof forward, we may
look at how assumptions are handled in natural deduction, from which we derived the style
of our proofs. In ‘box’ style natural deduction, an application of the arrow-introduction rule
(→-Intro) looks like:

1. P Assume
2. Q Obtained
3. P → Q →-Intro 1 2

If Q is proven true under the assumption that P is true, then using the arrow-introduction
rule, we could derive the implication P → Q. This gives us the first hint on developing our
algorithm: when a proven formula is taken out of an subproof, it becomes the consequent
in an implication, where the assumption becomes the antecedent.

Also notice that if we have something like:

1. P Assume
2. ⋮ Hard work...
3. Q Obtained
4. R Also obtained
5. P → R →-Intro 1 4

then we can also have:

1. P Assume
2. ⋮ Hard work...
3. Q Obtained
4. R Also obtained
5. P → R →-Intro 1 4

6. P Assume
7. ⋮ The same hard work as above
8. Q Obtained, but we don’t go another step and obtain R
9. P → Q →-Intro 6 8

That is, if we can derive ‘assumption implies last formula’, then we can also derive ‘as-
sumption implies the formula before the last’. By induction, for all formula P′ proven in
the subproof, we may derive P → P′. This gives us the second hint: any formula proven in
a subproof can be taken out. It does not have to be the last one.

60

6.4. CHECKING STEPS Chapter 6. Proof Checking

Our treatment of assumption steps is thus the following: after an assumption stepA⟨i, ϕi, Πi⟩
is being checked, for each step S⟨j, ϕj, Jj⟩ in the subproof Πi, we add ⟨j, ϕi → ϕj⟩ to ΦC, so
that the conclusion ‘it is proven in step j that ϕj is true if ϕi is true’ becomes accessible to
later steps.

The algorithm described above can be formalised as the below addition to definition 6.8:

Definition 6.12. Correctness of a sequence of steps [extends definition 6.8]

StepsCorrect(Γ, ∆, ΦC, (A⟨i, ϕi, Πi⟩, σ′⋯)) =
Correct(Γ, ∆, ΦC,A⟨i, ϕi, Πi⟩)
∧ StepsCorrect(Γ, ∆, ΦC ∪ Substeps(A⟨i, ϕi, Πi⟩), (σ′⋯))

Where the Substeps function is defined as:

Definition 6.13. The Substep function

Substeps(A⟨i, ϕi, Πi⟩) = {⟨j, ϕi → ϕj⟩ ∣ S⟨j, ϕj, Jj⟩ ∈ Πi}

Assumption within Assumptions

Notice that we only ‘extract’ conclusions from simple steps in the subproof. If there is an-
other assumption within a subproof, anything proven within that assumption’s subproof
will not be added to ΦC.

There is no technical reason for imposing such an limit, as it is easy to recursively add all
results from assumptions within assumptions to ΦC. Rather, the choise is made for usabil-
ity reasons: first, we do not wish to deviate too much from the syntax of ‘box’ style natural
deduction, which, like all other forms of natural deduction, does not have any rule that elim-
inates two assumptions at the same time. Second, we are afraid that if we allow more than
one level of ‘arrow-introduction’, then users may try to take things out of very deeply nested
assumptions, resulting in long implications, which makes the proof harder to understand.

An alternative algorithm for extracting results from a subproof looks like:

Definition 6.14. The Substep function [alternative to 6.13]

Substeps(A⟨i, ϕi, Πi⟩) =
{⟨j, ϕi → ϕj⟩ ∣ S⟨j, ϕj, Jj⟩ ∈ Πi}
∪ ⋃

A⟨j,ϕj,Πj⟩∈Πi

{⟨k, ϕi → ϕk⟩ ∣ ⟨k, ϕk⟩ ∈ Substeps(A⟨j, ϕj, Πj⟩)}

We included this definition in the implementation of Emmy, which can be switched on
using the ‘--deep’ command line argument.

Reference to Assumption in Justification

Notice that in natural deduction, when performing arrow-introduction, we need to apply
the rule to not only the step in which the consequent is proven, but also the step in which
the assumption is made, as in the following examples (use of assumption step marked in
red):

61

6.4. CHECKING STEPS Chapter 6. Proof Checking

1
P Hard work

Q
→-Intro(1)P → Q

1. P Assume
2. ⋮ Hard work
3. Q Obtained
4. P → Q →-Intro 1 3

In Gentzen’s original style, we need to give each assumption a number and refer to that
number when introducing an implication, to indicate that the ‘scope’ of the assumption is
over, or that the assumption is no longer in place after this step. This is necessary as in
Gentzen’s original style there is no other way to indicate the ‘scope’ of assumptions. The
‘box’ style made the ‘scope’ of assumptions clear, however, the inference rule remains the
same, probably to mark the use of assumption explicitly, and to keep consistency with tree-
style natural deduction systems.

Since our system does not use any inference rules, we do not require the assumption to
be included in the justification, for the sake of simplicity. If we require the users to refer to
the assumption whenever they use a result obtained under an assumption, we can replace
the definition 6.13 with the following:

Definition 6.15. The Substeps function [alternative to 6.13]

Substeps(A⟨i, ϕi, Πi⟩) = {⟨⟨i, j⟩, ϕi → ϕj⟩ ∣ S⟨j, ϕj, Jj⟩ ∈ Πi}

Then, when we need to use, for example, the result obtained in step 10, which is proven
under assumption 5, in our justification, we need to include ⟨5, 10⟩ in our justification.

6.4.3 Introductions

Introductions are similar to assumptions: intuitively, the newly introduced term can be seen
as the ‘assumption’ in an introduction. We define the correctness of a single introduction
step as the correctness of its subproof. However, before checking its subproof, we do not
change ΦC. Instead, we add the declaration of the newly introduced term into the context.

We extend definition 6.7 by adding a new case:

Definition 6.16. Correctness of a step [extends definition 6.7]

Correct(Γ, ∆, ΦC, I⟨i, t ∶ τ, Πi⟩) = StepsCorrect(Γ, ∆ ∪ {t ∶ τ}, ΦC, Πi)

Now we need to add the steps in the subproof to ΦC. In the case of assumptions, we say
that the formulae proven in steps in the subproof are proven under an assumption. Here,
instead of an assumption, we can say that they are proven under the context, which contains
an arbitrary term of a certain type.

It now becomes obvious that the formulae proven in the subproof need to be ‘wrapped’
in ‘for all’ quantifiers when they are taken out of the subproof. Just like for assumptions, we
put implication arrows in front of them. We thus add a case to the definition of Substeps:

62

6.4. CHECKING STEPS Chapter 6. Proof Checking

Definition 6.17. The Substep function [extends definition 6.13]

Substeps(I⟨i, t ∶ τ, Πi⟩) = {⟨j,∀t ∶ τ. ϕj⟩ ∣ S⟨j, ϕj, Jj⟩ ∈ Πi}

We also need to add a new case to StepsCorrect accordingly:

Definition 6.18. Correctness of a sequence of steps [extends definition 6.8]

StepsCorrect(Γ, ∆, ΦC, (I⟨i, t ∶ τ, Πi⟩, σ′⋯)) =
Correct(Γ, ∆, ΦC, I⟨i, t ∶ τ, Πi⟩)
∧ StepsCorrect(Γ, ∆, ΦC ∪ Substeps(I⟨i, t ∶ τ, Πi⟩), (σ′⋯))

By combining the definitions for assumptions and introductions, we obtain the following
definitions for introductions with assumptions:

Definition 6.19. Correctness of a step [extends definition 6.7]

Correct(Γ, ∆, ΦC, IA⟨i, t ∶ τ, ϕi, Πi⟩) =
StepsCorrect(Γ, ∆ ∪ {t ∶ τ}, ΦC ∪ {⟨i, ϕi}, Πi)

Definition 6.20. The Substep function [extends definition 6.13]

Substeps(IA⟨i, t ∶ τ, ϕi, Πi⟩) = {⟨j,∀t ∶ τ. [ϕi → ϕj]⟩ ∣ S⟨j, ϕj, Jj⟩ ∈ Πi}

Definition 6.21. Correctness of a sequence of steps [extends definition 6.8]

StepsCorrect(Γ, ∆, ΦC, (IA⟨i, t ∶ τ, ϕi, Πi⟩, σ′⋯)) =
Correct(Γ, ∆, ΦC, IA⟨i, t ∶ τ, ϕi, Πi⟩)
∧ StepsCorrect(Γ, ∆, ΦC ∪ Substeps(IA⟨i, t ∶ τ, ϕi, Πi⟩), (σ′⋯))

Like assumptions, we can ‘extract’ formulae proven in nested introduction steps, or to
require that the introduction with assumption step to be refered when a step from its sub-
proof is used as a justification by later steps. Such changes would require modifications to
Substeps, which can be carried out in a manner similar to definition 6.14 and 6.15.

6.4.4 Induction Step

An induction step can be used if we want to prove some inductive property ϕ, by either
structural induction over a universal quantification over a data structure (see definition 4.14),
or induction over a function definition (see section 5.4.2). In an induction step, we generate
ϕ′, the induction principle of ϕ, which is a conjunction of induction cases ϕ1 ∧⋯∧ ϕn. We will
then prove ϕ′ by proving ϕ1,⋯, ϕn individually, and then, as proven in chapter 8, ϕ would
follow from ϕ′.

63

6.4. CHECKING STEPS Chapter 6. Proof Checking

To begin, we generate the induction principle. For structural inductions, we can simply
apply InductionPrinciple to the formula in the step. However, for induction over functon
definitions, the property we wish to apply FunctionInductionPrinciple to can be buried deep
inside some quantifications and implications. Therefore, we need to define a separate func-
tion CompleteFunctionInductionPrinciple to generate the full induction principle:

Definition 6.22. Extraction of induction principle over function definition

CompleteFunctionInductionPrinciple(Γ, d, ϕ) ≜ ⋀
x∈[1,n]

Pre(ϕx)

where
⟨Pre, ϕI⟩ = Extract(ϕ)

•• ⋀x∈[1,n] = FunctionInductionPrinciple(Γ, d, ϕI)

• d is a function definition.

and

Extract(∀t ∶ τ.ϕ) ≜ ⟨λϕa.(∀t ∶ τ.(p ϕa)), ϕI⟩ where ⟨p, ϕI⟩ = Extract(ϕ)
Extract(ϕ → ϕ′) ≜ ⟨λϕa.(ϕ → (p ϕa)), ϕI⟩ where ⟨p, ϕI⟩ = Extract(ϕ′)

Extract(I(ϕ)) ≜ ⟨λϕa.ϕa, ϕ⟩

We use the λ notation to denote an anoumynous function, where if the function f equals
λx.y, then f (z) = [z/x]y.

The Extract function finds the induction marker in a sequence of universal quantifica-
tions and implications. It returns two values:

• A function Pre, that, when applied to a formula, puts the formula inside the sequence
of quantifications and implications ‘outside’ the induction marker.

• The formula inside the induction marker.

For example, if ⟨Pre, ϕI⟩ = Extract(∀t1 ∶ τ1.[ϕ1 → ∀t2 ∶ τ2.I(ϕ2)], then ϕI = ϕ2, and Pre(ϕ′)
would be equal to ∀t1 ∶ τ1.[ϕ1 → ∀t2 ∶ τ2.ϕ′] for any ϕ′.

Extract is only defined if ϕi, the goal, is of a certain form (see the remarks on definition
5.7).

Using CompleteFunctionInductionPrinciple, we may find the property we wish to per-
form induction on, and generate the property quantified induction principle. For example,
say we have a function f defined as

f :: Int -> Int
f x | x < 2 = 0

| x >= 2 = 1 + f (x - 2)

d = ⟨f-def, f (x), (⟨x < 2,0⟩,
⟨x ≥ 2,1+ f (x − 2)⟩)⟩

and some property
ϕ = ∀x ∶ Int.[x ≥ 0→ I(P(f (x)))]

Then we would have

CompleteFunctionInductionPrinciple(Γ, d, ϕ) =

64

6.4. CHECKING STEPS Chapter 6. Proof Checking

∀x ∶ Int.[x ≥ 0→ x > 2→ P(0)]
∧

∀x ∶ Int.[x ≥ 0→ ∀r ∶ Int.[¬x < 2∧ x ≥ 2 → P(r)∧ r = f (x − 2) → P(1+ r)]]

We then need a way to check whether or not the cases we have written in an induction
step actually ‘cover’ the cases in the generated induction principle. We define Covered as:

Definition 6.23. Coverage of induction cases

Covered(Γ, ϕP, (⟨H1, ϕ′1, Π1⟩,⋯, ⟨Hn, ϕ′n, Πn⟩)) ≜

∀x ∈ [1, n].∃j ∈ [1, n].[Γ, ∆, ApplyHypothesis(Hj, ϕ′j) ϕ′′x]

where ⋀x∈[1,n] ϕ′′x = ϕP, and

ApplyHypothesis((), ϕ) ≜ ϕ

ApplyHypothesis((⟨t ∶ τ, ϕH⟩, h⋯), ϕ) ≜ ∀t ∶ τ.[ϕH → ApplyHypothesis(h⋯, ϕ)]

By definition 6.23, the induction principle is covered by the induction cases if for each
case in ϕP, the generated induction principle, there is an induction case whose actual goal
entails the case in the induction principle. By ‘actual goal’, we mean the theorem that is
actually proven in the case, when the induction hypotheses are taken into consideration.
For example, if have a case like below:

⟨(⟨x ∶ Int,⊺⟩, ⟨y ∶ Int, x + y > z ⟩), P(x, y), Πi⟩

which means
In this case, take an integer x, and another integer y, such that x + y > z, then
prove P(x, y) by steps Πi.

in this case, what we have actually proven would be

∀x ∶ Int.∀y ∶ Int.[x + y > z → P(x, y)]

for some z.
Once we know that the inductive principle is correctly reflected by the cases in the step,

we then proceed to check the correctness of individual cases: first, we check whether or not
the subproofs in the cases are correct, under the induction hypothesis, second, we check
whether or not the end result obtained in the subproofs entails the goals of the cases.

We define the correctness of an induction case as:

Definition 6.24. Correctness of an induction case

CaseCorrect(Γ, ∆, ⟨P, ϕ, Π⟩) ≜
StepsCorrect(Γ ∪ Introductions(P), ΦC ∪ {⟨H, Hypothesis(P)⟩}, Π)

∧ Γ ∪ Introductions(P), ∆, LastΦ(Π) ϕ

whereH is a special step number that is distinct from all other step numbers, and

Hypothesis((⟨t1 ∶ τ1, ϕ1⟩,⋯, ⟨tn ∶ τn, ϕn⟩)) ≜ ⋀
i∈[1,n]

ϕi

65

6.4. CHECKING STEPS Chapter 6. Proof Checking

Introductions((⟨t1 ∶ τ1, ϕ1⟩,⋯, ⟨tn ∶ τn, ϕn⟩)) ≜ ⋃
i∈[1,n]

ti ∶ τi

We use a special step number ‘H’ to serve as the ‘number’ of the induction hypothesis.
Steps within the subproof of induction cases may refer to ‘H’ in their justifications.

Combining the above two definitions, we arrive at the definition for the correctness of
induction steps:

Definition 6.25. Correctness of a step [extends definition 6.7]

Correct(Γ, ∆, ΦC,I⟨i, ϕi, C⟩) ≜
Covered(Γ, InductionPrinciple(Γ, ϕi), C) ∧ ∀j ∈ [1, ∣C∣].CaseCorrect(Γ, ∆, Cj)

Correct(Γ, ∆, ΦC,I⟨i, id, ϕi, C⟩) ≜
Covered(Γ, CompleteFunctionInductionPrinciple(Γ, d, ϕi), C)
∧ ∀j ∈ [1, ∣C∣].CaseCorrect(Γ, ∆, Cj)

where d = ⟨id, Cd⟩ ∈ ∆

After that, only the final result proven in an induction step is added to ΦC and passed to
following steps:

Definition 6.26. Correctness of a sequence of steps [extends definition 6.8]

StepsCorrect(Γ, ∆, ΦC, (I⟨i, ϕi, C⟩, σ′⋯)) =
Correct(Γ, ∆, ΦC,I⟨i, ϕi, C⟩) ∧ StepsCorrect(Γ, ∆, ΦC ∪ {⟨i, ϕi⟩}, (σ′⋯))

6.4.5 Equalities Step

In an equalities step, we prove the equality t0 = tn by proving a ‘chain’ of equalities t0 =
t1, t1 = t2,⋯, tn−1 = tn. For each equality in the ‘chain’, there is a justification for it. Thus, an
equalities step would be correct, if all equalities in the chain are entailed by their respective
justifications.

We define the correctness as:

Definition 6.27. Correctness of a step [extends definition 6.7]

Correct(Γ, ∆, ΦC,E⟨i, t0, (⟨t1, J1⟩,⋯, ⟨tn, Jn⟩)⟩) ≜

⋀
i∈[1,n]

[Ji = Given ∨ Ji = Tentative

∨ (∀j ∈ Ji. j ∈ dom(ΦC) ∧ Γ, ∆, ΦC(j1),⋯, ΦC(jn) ti−1 = ti)]

We allow ‘Given’ and ‘Tentative’ as justifications for each term in the equality chain,
and have included them in the above definition

Since our intention is to prove that the initial term, t0, is equal to the last term in the
chain, tn, we add ‘t0 = tn’ as the result obtained in this step to ΦC.

66

6.5. CHECKING PROGRAM Chapter 6. Proof Checking

Definition 6.28. Correctness of a sequence of steps [extends definition 6.8]

StepsCorrect(Γ, ∆, ΦC, (E⟨i, t0, (⟨t1, J1⟩,⋯, ⟨tn, Jn⟩)⟩, σ′⋯)) =
Correct(Γ, ∆, ΦC,E⟨i, t0, (⟨t1, J1⟩,⋯, ⟨tn, Jn⟩)⟩)
∧ StepsCorrect(Γ, ∆, ΦC ∪ {⟨i, t0 = tn⟩}, (σ′⋯))

6.5 Checking Program
A program is a sequence of sections, which could contain declarations, lemmas, function
definitions, or more importantly, proofs. When checking an entire program, we maintain
a set of declarations already made, a set of lemmas already declared, and a set of function
definitions stated. We add new declarations, lemmas, and function definitions to them as we
move through the program. Once we encounter a proof section, we check the proof using
everything we have already seen.

To put this formally, we define the procedure Check as below:

Definition 6.29. Program checking

Check(Γ, Λ, ∆, ()) ≜ ()
Check(Γ, Λ, ∆, (Γ′, s⋯)) ≜ (⊺,⋯Check(Γ ∪ Γ′, Λ, ∆, s⋯))
Check(Γ, Λ, ∆, (Λ′, s⋯)) ≜ (⊺,⋯Check(Γ, Λ ∪Λ′, ∆, s⋯))
Check(Γ, Λ, ∆, (∆′, s⋯)) ≜ (⊺,⋯Check(Γ, Λ, ∆ ∪∆′, s⋯))

Check(Γ, Λ, ∆, (⟨ϕG, Π⟩, s⋯) ≜ (StepsCorrect(Γ, ∆, InitialiseΦC(Λ, ∆), Π)
∧ ϕG =F Lastϕ(Π),

⋯Check(Γ, Λ, ∆, s⋯))

where
Γ, Λ, ∆ are the sets of the declarations, lemmas, and function definitions we have
already seen so far.

•• Γ′, Λ′, ∆′ are sequences of declarations, lemmas, and function definitions repec-
tively.

• (x,⋯S) is shorthand for (x, S1,⋯, Sn), where S1 to Sn are elements in sequence S.

• The function Lastϕ(Π) returns the formula in the last step in the step sequence
Π.

and the InitialiseΦC function is defined as

InitialiseΦC(Λ, ∆) ≜ {⟨i, ϕ⟩ ∣ ⟨i, ϕ, J⟩ ∈ Translate(Λ ∪∆)}

for any set of lemmas Λ and any set of function definitions ∆.

The Check procedure takes sets of existing declarations, lemmas, and function defini-
tions, and return a sequence of either ⊺ of �. For each proof, we return ⊺ if the proof is
correct, that is, the proof steps are correct, and that the goal is equal to the last proof step,
and � otherwise. For all other sections, we simply return ⊺.

67

6.6. CHECKING ENTAILMENT Chapter 6. Proof Checking

If any section is not well-formed, for example, because it uses an undeclared type, then
the implementation should not proceed any further, and report an error.

As discussed in section 4.1.2, and 4.2.2, we provide arithmetic functions (+, −, and ∗), as
well as the integer predicates (<, >, ≤, and ≥). They do not need to be declared by the users,
but we still need to put them in the context somewhere when checking proofs. The solution
is to provide a prelude, denoted by Γp, that contains the declarations of the atom type, the
integer type, arithmetic operations, and arithmetic comparators.

At last, we may now define how programs are checked:

Definition 6.30. Checking program
To check a program P, we call function Check as following:

Check(Γp,∅,∅, P)

where Γp is the prelude.

6.6 Checking Entailment
At the heart of our step checking algorithm lies the question of whether an entailment of the
form

Γ, ∆, ϕj1 ,⋯, ϕjn ϕi (6.1)

holds or not, where Γ is the context, ϕi is the formula proven in step σi, and ϕj1 ,⋯, ϕjn are
formulae proven in the steps referenced in step σi’s justification.

6.6.1 Checking Entailment Syntactically

First, we may observe that if there is only one premise, and that premise is equivalent to the
consequence, then the entailment holds trivially, as it is in essence a tautology.

Theorem 6.1. Tautological entailment
If both ϕ and ϕ′ are well-formed under context Γ, then ϕ =F ϕ′ → (Γ, ∆, ϕ ϕ′)

This is a ‘shortcut’ that allows us to quickly check the entailment in trivial cases, without
envoking an external SMT solver. We use it for a number of reasons:

• Checking equivalence is faster than calling an SMT solver, as the later would require
starting a subprocess which has high overhead.

• In induction steps, we check whether or not the goals of induction cases written by the
users entails the generated case goals. If they are correct, the user-written case goals
are likely to be equivalent to the generated ones, but they might use different names
for introduced and quantified variables.

6.6.2 Checking Entailment Using an SMT Solver

When we consult the external SMT solver, we need to encode this entailment into a form
that can be understood by the SMT solver. The SMT solvers we use implement the SMT-LIB
standard, however, they still differ in terms of features and proving powers.

68

6.6. CHECKING ENTAILMENT Chapter 6. Proof Checking

accept SMT-LIB scripts, which is a language specified by the SMT-LIB standard [8], as
their input format. Here, we describe how entailments can be translated into SMT-LIB terms
and signatures written using abstract SMT-LIB syntax.

We define the translation into concrete SMT-LIB scripts, which are inputs to SMT-LIB
compliant SMT solvers, in chapter A.

Choice of SMT Solver

Emmy supports two SMT solvers: Z3 [65] and CVC4 [10]. They both implement SMT-LIB
standard version 2.0 [8], but also support many features from later versions of the SMT-LIB
standard, such as data structures [6].

Other SMT-LIB compliant solvers may be also usable, but we have not tested them.
In the beginning of the project, we chose Z3 because it is well-known, and has a detailed

user guide [46]. We later added support for CVC4, because CVC4 supports for induction
natively, which is of interest to us, while Z3 does not.

Notice that CVC4 and Z3 are two top-performing solvers in SMT-COMP, a competetion
of SMT solvers [7] [9] [78].

We prefer to use Z3 as the underlying solver, because it has better support for data struc-
ture properties, as discussed in section 9.3.1. While CVC4 supports induction, we feel that
this feature is not very important for us, because Emmy can generate induction principles.

SMT-LIB Logic

Before we perform the check, we must specify the SMT-LIB logic under which the check is
performed, as the logic we use determines the set of theories, which, in SMT-LIB, is the class
of universes and their interpretations with the same signature [8], with regard to which we
are checking our formulae.

In general, we use the AUFNIA logic specified by the SMT-LIB standard. The AUFNIA logic
uses:

• The Core theory, which specifies basic propositional algebra, logic connectives, and
the equality relation between terms.

• Arrays (A), which are not a part of our logic, but required to use data structures.

• Free sort and function symbols (UF).

• Quantifiers (Not quantifier-free [QF]).

• Non-linear Integer Algebra (NIA), which also interprets the integer arithmetics we wish
to perform.

For CVC4, we need to use the AUFDTNIA logic, which includes the theory of data struc-
tures (DT), as CVC4 requires that we state explicitly that we want data structures in our logic,
while for Z3 we do not have to.

CVC4 Options

If we use CVC4 as the underlying solver, we need to ‘switch on’ induction with some com-
mand line arguments when calling CVC4. The exact arguments, used by the authors of the
paper “Induction for SMT Solvers” [72], are [73]:
--quant-ind --quant-cf --conjecture-gen
--conjecture-gen-per-round=3 --full-saturate-quant

69

6.6. CHECKING ENTAILMENT Chapter 6. Proof Checking

Unfolding of Induction

In definitions 4.11 and 5.16, we have defined induction markers, which marks the formula
upon which induction should be performed. We now define the Un f old function, which ap-
plies induction principles to the formulae in induction markers, ‘unfolding’ these formulae
to their induction principles:

Definition 6.31. Unfolding induction principle

Un f old(Γ, ∆,I(∀t ∶ δ.ϕ)) ≜ InductionPrinciple(Γ,∀t ∶ δ.ϕ)
Un f old(Γ, ∆,Ii(ϕ)) ≜ FunctionInductionPrinciple(Γ, di, ϕ) Where di = ⟨i, C⟩ ∈ ∆

Un f old(Γ, ∆, P) ≜ P P is a proposition
Un f old(Γ, ∆,¬ϕ) ≜ ¬Un f old(Γ, ∆, f , ϕ)

Un f old(Γ, ∆, ϕ1 C ϕ2) ≜ Un f old(Γ, ∆, ϕ1) C Un f old(Γ, ∆, ϕ2) C is a binary connective
Un f old(Γ, ∆, Q t ∶ τ ϕ) ≜ Q t ∶ τ Un f old(Γ, ∆, ϕ) Q is either ∀ or ∃

Un f old(Γ, ∆, P(t1,⋯, tn) ≜ P(t1,⋯, tn)
Un f old(Γ, ∆, t1 = t2) ≜ t1 = t2

We prove that Un f old is sound, that is, if Un f old(Γ, ∆, ϕ) is defined, then Un f old(Γ, ∆, ϕ)→
ϕ, in section 8.3.

Because we only use induction to prove something, only ϕc, the consequence of entail-
ment 6.1, which we wish to prove, needs to be unfolded. Entailment 6.1 now becomes:

Γ, ∆, ϕ1,⋯, ϕn Un f old(Γ, ∆, ϕc) (6.2)

For brevity, we use ϕ′c to denote Un f old(Γ, ∆, ϕc), the ‘unfolded’ consequence, from now
on.

Entailment to Horn Clause

We then transform entailment 6.2 into

Γ, ∆, ϕ1,⋯, ϕn,¬ϕ′c � (6.3)

that is, under the context Γ, it is impossible for ϕ′c to be false when ϕ1,⋯, ϕn are all true, or,
the Horn clause [53] ϕ1,⋯, ϕn,¬ϕ′c is not satisfiable.

Since SMT solvers check satisfiability, we need to formulate our entailment as a Horn
clause, and try to refute this clause.

Context to SMT-LIB Signature

Next, we need to translate the current context, Γ, which is a set of typing statements. In
SMT-LIB, the corresponding properties are specified in signatures, denoted by Σ, which, in-
formally, contains definitions of sorts (which corresponds to our types), function and pred-
icate symbols, constructors, and variables.

We define ContextInSignature, a function that takes a context and returns the assertion
that the context has been fully encoded in a certain signature Σ, as:

70

6.6. CHECKING ENTAILMENT Chapter 6. Proof Checking

Definition 6.32. Translation of context into SMT-LIB signature

ContextInSignature(Γ) ≜ ∀s ∈ Γ.JsKS

where Γ is a context, and

Jτ ∶∶ TypeKS ≜ τ ∈ ΣS ∧ ar(τ) = 0Jt ∶ τKS ≜ t ∈ ΣF ∧ ⟨t, (τ)⟩ ∈ RJ f ∶ τ1⋯τn → σKS ≜ f ∈ ΣF ∧ ⟨ f , (τ1⋯τn σ)⟩ ∈ RJP ∶ τ1⋯τn → PropKS ≜ P ∈ ΣF ∧ ⟨P, (τ1⋯τn Bool)⟩ ∈ RJδ ∶∶ CKS ≜ δ ∈ ΣS ∧ ar(δ) = 0

∧∀a ∈ C.[a ∈ ΣC ∧ a ∈ conΣ(δ)∧ ⟨a, (δ)⟩ ∈ R]

∧∀c ∶ τ1⋯τn ∈ C.[c ∈ ΣC ∧ c ∈ conΣ(δ)
∧ ⟨c, (τ1⋯τn δ)⟩ ∈ R]

∧∀a ∈ C.[T a ∈ ΣT ∧ tesΣ(a) = T a (∼)
∧⟨T a, (δ Bool)⟩ ∈ R]

∧∀c ∶ τ1⋯τn ∈ C.[T c ∈ ΣT ∧ tesΣ(c) = T c (∼)
∧⟨T c, (δ Bool)⟩ ∈ R]

∧∀c ∶ τ1⋯τn ∈ C.[∀i ∈ [1, n].[Sc
i ∈ ΣG (∼)

∧selΣ(c)i = Sc
i

∧⟨Sc
i , (δ τi)⟩ ∈ R]]

where
For any constructor c of data structure δ, T c maps c to a fresh function symbol
that serves as its tester.

•• For any constructor function c ∶ τ1⋯τn of data structure δ, Sc
i maps c to a fresh

function symbol that serves as its ith selector, where 1 ≤ i ≤ n.

To distinguish between SMT-LIB sorts and types in Emmy, we use the monospace letters
to write types in Emmy, and bold letters to write SMT-LIB sorts.J⋅KS, the interpretation function for typing statements, takes a typing statement, and re-
turns a property that the signature Σ must satisfy.

Informally, what we need to do is to

• turn each declared type and data structure into a sort in the signature, that does not
take any other sorts as arguments.

• turn each declared constant of type τ into a nullary ‘function’, whose return type is τ,
in the signature.

• add each function to the signature in the obvious way.

• turn each predicate that takes arguments of types τ1,⋯, τn into a function that takes
the corresponding sorts, and returns Bool, in the signature.

71

6.6. CHECKING ENTAILMENT Chapter 6. Proof Checking

• turn each atomic constructor of data structure δ into a nullary constructor function,
whose return type is δ, in the signature.

• for each constructor, create a fresh tester function and add it to the signature.

• for each argument required by each constructor function, create a fresh selector func-
tion, and add it to the signature.

Some of the properties of the resultant siganture, namely, those involving testers, which
‘tests’ whether or not a term is constructed by a certain constructor, and selectors, which
‘selects’ a argument that is passed to the constructor when constructing a term, are neither
present in our program language, not relevant to the semantics of our programs, but re-
quired to be present in the SMT-LIB signature. In definition 6.32, we mark these properties
in grey and denote them by (∼) so that they can be distinguished from the rest.

For example, consider contxt Γ:

Γ = {Int ∶∶ Type,
List ∶∶ {nil, cons ∶ Int List},
length ∶ List→ Int,
P ∶ List List→ Prop}

The assertion ContextInSignature(Γ)would be satisfied by the signature Σ where:

ΣS = {Int, List, Bool}
ΣF = {nil, cons, length, P, nilt, const, conss

1, conss
2}

ΣC = {nil, cons} ΣT = {nilt, const} ΣG = {conss
1, conss

2}
R = {⟨nil, (List)⟩, ⟨cons, (Int List List)⟩,
= {⟨nilt, (List Bool), ⟨const, (List Bool),
= {⟨conss

1, (List Int), ⟨conss
2, (List List)

= {⟨length, (List Int)⟩, ⟨P, (List List Bool)⟩,}
ar(List) = 0 ar(Int) = 0 ar(Bool) = 0

conΣ(List)= {nil, cons}
tesΣ(nil)= nilt tesΣ(cons) = const

selΣ(nil)= () selΣ(cons) = (conss
1, conss

2)

We are not showing the assertion ContextInSignature(Γ) here, because it is going to be
extremely long.

The translation from typing statements to concrete SMT-LIB scripts is defined in defini-
tion A.1.

Formulae to SMT-LIB Terms

We then translate the Horn clause ϕi,⋯, ϕn, and ¬ϕ′c, into SMT-LIB terms.
We define J⋅KT, the translation from our terms to SMT-LIB terms, and J⋅KF, the translation

from our formulae to SMT-LIB terms of type Bool, as below:

72

6.6. CHECKING ENTAILMENT Chapter 6. Proof Checking

Definition 6.33. Translation of terms into SMT-LIB terms

JcKT ≜ c c is a constantJvKT ≜ v v is a variableJ f (t1,⋯, tn)KT ≜ f Jt1KT⋯JtnKT

Definition 6.34. Translation of formulae into SMT-LIB Bool terms

JPKF ≜ P P is a propositionJ¬ϕKF ≜ ¬ JϕKFJϕ1 C ϕ2KF ≜ C Jϕ1KF Jϕ2KF C is a binary connectiveJQ t ∶ τ ϕKF ≜ Q t ∶ τ JϕKF Q is either ∀ or ∃JP(t1,⋯, tn)KF ≜ P Jt1KT⋯JtnKTJt1 = t2KF ≜≈ Jt1KT Jt2KT

The translation of terms is essentially an identity. Terms are translated into the directly
corresponding SMT-LIB term, with each function application f (t1,⋯, tn) replaced by a SMT-
LIB style function application f t1 ⋯ tn. The difference is only syntactic.

For formulae, we translate each of them into an SMT-LIB of sort Bool. Thus a proposition
is a constant, or nullary function, of sort Bool, and a predicate is a function that maps from
some sorts to the sort Bool, the connectives are functions from Bool(s) to a Bool. Equality,
denoted by ≈ in SMT-LIB, is treated as a predicate as well. Quantifications are special binders
in which variables are bound, whose syntax is largely the same as our quantifications.

For if expressions, we may first translate them into their equivalent formula, or translate
them using the ite function implemented by many SMT solvers:

Definition 6.35. Translation of terms into SMT-LIB terms [Extends definition 6.33]

Jif(ϕc, tt, t f)KT ≜ ite JϕcKF JttKT Jt f KT

The ite function’s sementics is similar to if. Its first argument, the ‘condition’, should
have sort Bool. Its value is equal to the second argument if the condition is true, and equal
to the third if it is not.

As an example, consider the following formula:

ϕ = ∀x ∶ Int.P(x)∧ P(f (x)) = x

According to the above definitions, we have:

JϕKF = ∀x ∶ Int.(∧ (P x) (≈ (P (f x)) x))

The translation from terms and formulae into SMT-LIB terms is defined in definitions
A.2 and A.3.

73

6.6. CHECKING ENTAILMENT Chapter 6. Proof Checking

Declare the Propositions

Since propositions are constants, they must also be declared in the signature Σ. We define
the function AllPropositionsDe f ined?, that takes a set of formulae and returns the assertion
that all propositions are defined in some signature Σ, as:

Definition 6.36. Define proposition

AllPropositionsDe f ined(Φ) ≜ ⋀
ϕ∈Φ

De f ined?(ϕ)

where

De f ined?(P) ≜ P ∈ ΣF ∧ ⟨P, (Bool)⟩ ∈ R
De f ined?(¬ϕ) ≜ De f ined?(ϕ)

De f ined?(ϕ1 C ϕ2) ≜ De f ined?(ϕ1)∧De f ined?(ϕ2) C is a binary connective
De f ined?(Q t ∶ τ ϕ) ≜ De f ined?(ϕ) Q is either ∀ or ∃

De f ined?(P(t1,⋯, tn)) ≜ ⊺
De f ined?(t1 = tn) ≜ ⊺

This definition is used when we defined the signature under which the check is per-
formed.

Perform the Check

We will then generate the signature Σ under which the check is performed. The signature
Σ should satisfy the following property:

ContextInSignature(Γ)∧ AllPropositionsDe f ined({ϕ1,⋯, ϕn,¬ϕ′c})

That is, all types, data structures, functions, and predicates are properly encoded in Σ, and
all propositions are defined in Σ.

Once we have generated the signature, we handle the premises and the consequence. The
SMT solver we consult has an assertion stack, which can store assertions, which are formulae
(SMT-LIB terms on type Bool) that we wish to be true, at different levels. The levels are
useful to control the lifetime, or scope, of assertions, but since we run the SMT solver once
for each entailment check, we do not care about the levels here.

For each premise ϕi, we assert that the formula JϕiKF is true. For the (unfolded) conse-
quence ϕ′c, we assert that its negation, J¬ϕ′cKF, is true.

Finally, we ask the SMT solver to check the satisfiability of the current set of assertions,
by giving the following SMT-LIB command to the SMT solver:

(check-sat)

The SMT solver will check the satisfiability, and return one of the three results:

(unsat) means that is it impossible for the consequence to be false when all premises are
true. Therefore, the entailment holds.

(sat) means that even if all premises are true, it is still possible for the consequence to be
false. Therefore, the entailment does not hold.

74

6.6. CHECKING ENTAILMENT Chapter 6. Proof Checking

(unknown) means that the solver cannot determine the satisfiability of the assertions, so we
do not know whether the entailment holds or not.

To ensure the soundness of Emmy, that is, to make sure that Emmy cannot prove anything
that is not true, we deem the entailment to not hold when the satisfiability is unknown.

Sometimes, the SMT solver may go on and on and never finish solving. This is often
related to inductions: the SMT solver may enter an infinite loop when checking inductive
properties [72]. To ensure that our program will not stop indefinitely, we impose a time limit
on the satisfiability checking. In our implementation, the default time limit is 200ms, but it
can be adjusted using a command line argument. If the SMT solver cannot finish solving
before the time limit, it will return ‘(unknown)’ as its answer.

75

Chapter 7

Implementation

In this chapter, we discuss how Emmy is implemented as a computer program, as well as the
choice of programming languages and libraries.

Emmy has three main components:

A proof checker which is a command line application that takes Emmy programs as inputs,
checks them, and displays the results.

A web interface where users can write proofs, and send the proofs to the proof checker to
be checked.

A server which handles the communication between the proof checker and the web inter-
face.

In addition, we provided a ‘reader’ for #lang emmy, a DSL in which Emmy programs can
be written.

The relation between the three main components, and the external SMT solver, can be
summarised by the following diagram:

Web interface

Server

Proof checker

SMT solver

Proof to be checked (JSON via
HTTP request)

Proof to be checked (JSON via
stdin)

Entailment to be checked(SMT-LIB
script vis stdin)

Proof checking result (JSON via
HTTP response)

Proof checking result (JSON via
stdin)

Either (unsat), (sat), or
(unknown) to stdin

Figure 7.1: Structure of the project.

76

7.1. PROOF CHECKER Chapter 7. Implementation

We shall now describe the implementation of each component in detail:

7.1 Proof Checker
The proof checker is a Racket program that takes Emmy programs as input via the standard
input stream (stdin), checks the correctness of the program following the algorithm defined
in chapter 6, and outputs the checking result as output via standard output (stdout). It will
call the external SMT solver by spawning a subprocess, if needed.

We use the Racket language to write the proof checker for the following reasons:

• As a LISP (Scheme) dialect, Racket has excellent symbolic manipulation capabilities,
making it easy to work with formulae expressed using s-expressions.

• The Racket parser can parse Emmy’s s-expression based program language, which we
will discuss in the next section, directly.

• While there is no well-maintained Racket binding for the SMT solvers we used, the fact
that Racket can manipulate and write s-expressions means that we could very easily
construct programs in SMT-LIB scrtips, and parse output from SMT solvers.

• Racket provides language building functionalities which allowed us to turn Emmy pro-
grams into program code that can be ‘executed’ directly, rather than data to be fed into
another program.

By default, the proof checker accepts s-expression as the input format, which we will
explain in detail in the next section. A command line argument can be used to instruct the
proof checker to use JSON as the input format.

The core proof checking algorithm, described in chapter 6, is defined in a functional
style. Our implementation is largely a translation of the definition into functional Racket
code. The code is mostly pure, apart from the generation of fresh variable names which is
stateful. This makes it easy for us to reason about the code, to debug and to structure the
program in general.

7.1.1 Logic and Program Representation

In the proof checker, terms, formulae, proofs, and programs are represented using LISP’s
s-expressions [62]: a single item, which could be a term, a formula, a step, or a lemma sec-
tion, is either a single symbol, such as ‘x’, ‘SomeProposition’, or a list of items, enclosed by
brackets, like ‘(f 10 x y)’.

Like LISPs, we use Polish [12], or prefix notation, putting functions, operators, predi-
cates, connectives, et cetra, before their arguments, so that x + y would become as ‘(+ x y)’,
f (x, 1)would become ‘(f x 1)’, and A → B would become as ‘(Implies A B)’.

The first element in a list can also serve as the ‘tag’ that indicates the type of that item.
For example, we use ‘[Function f Int -> Int]’ to represent a function declaration that
says f ∶ Int→ Int, where ‘Function’ tells us about the type of this declaration.

Notice that in the above example we used square brackets instead of normal brackets.
In Emmy and Racket’s concrete syntax, normal, square, and curly brackets are semantically
equivalent.

We chose s-expression because the Racket parser can parse directly our programs written
in s-expression, saving us from writing our own parser. The representation of programs, in

77

7.1. PROOF CHECKER Chapter 7. Implementation

Racket code, is also identical to their representation in s-expression, reducing the overhead
in maintaining multiple representations of programs.

The full, concrete syntax for the program language can be found in appendix D.

Example Program

The following program, adapted from theorem-15.prf, first declares the List type, two
list functions, state a lemma related to the properties of the functions, then defines the two
functions, and prove that reverse(reverse(l)) = l (theorem B.15):

1 {Declare
2 [Data List [nil] [cons Int List]]
3 [Function append List List -> List]
4 [Function rev List -> List]
5 }
6

7 {Lemma
8 [LD (Forall List l1 (Forall List l2 (= (rev (append l1 l2))
9 (append (rev l2) (rev l1)))))]

10 }
11

12 {Define
13 [append-1 (append nil l) l]
14 [append-2 (append (cons i l1) l2)
15 (cons i (append l1 l2))]
16

17 [rev-1 (rev nil) nil]
18 [rev-2 (rev (cons i l)) (append (rev l) (cons i nil))]
19 }
20

21 {Proof (Forall List l (= l (rev (rev l))))
22 [G Induction (Forall List l (= l (rev (rev l))))
23 [Show (= nil (rev (rev nil)))
24 By (rev-1)]
25 [Take List l such that (= l (rev (rev l)))
26 Take Int x
27

28 Show (= (cons x l) (rev (rev (cons x l))))
29 By (append-1 append-2 rev-1 rev-2 LD %Hypo)]
30]
31 }

We provide more example programs in appendix E, all written in the concrete syntax.

JSON Representation

We also define the JSON [80] representation of programs, and have implemented the transla-
tion between the JSON representation and the canonical, s-expression-based representation.
It is intended to be used when the proof checker is communicating with outside programs,

78

7.2. WEB INTERFACE Chapter 7. Implementation

such as our web interface, and potentially, future native GUI proof assistants, or text editor
plugins.

The JSON representation is more verbose, but it can be easily parsed by other program-
ming languages, using existing libraries. The JavaScript language, in which Emmy’s web
interface is written, provides native functions for parsing JSON representations.

7.1.2 Proof Checking Workflow

The entry point of the proof checker is the main module in main.rkt. The main module calls
the check procedure, which reads and parses the program from the standard input, and
passes the input program, as a Racket list of sections, to the check-loop procedure, defined
in lang/check-loop.rkt.

The check-loop procedure corresponds to the Check procedure, defined in definition
6.29. It iterates through the sections. For each section, check-loop first checks for errors
using the procedures defined in checker/error-checker.rkt. Then, if it is a declaration,
function definition, or lemma section, check-loop will add the content of the section to the
collection of declarations, definitions, or lemmas seen so far. If it is a proof section, it calls
the checker/checker.rkt to check the proof.

The check-proof procedure first calls transform-definition, which corresponds to
Translate defined in definition 6.6, to translate function definitions into Given steps. The
translated function definitions and lemmas are then added to ΦC. check-proof then calls
check-steps, which corresponds to StepsCorrect and Correct, to check the sequence of steps
in the proof.

The check-steps procedure recursively checks the correctness of each step in a sequence
(represented in Racket as a list) of steps, following the algorithm defined in StepsCorrect and
Correct. ϕC, the context and the definitions are carried through recursive calls as function
arguments. It calls itself in cases where a subproof needs to be checked, such as for assump-
tions and induction cases.

We check entailment by calling the entails? procedure, defined in checker/checker.rkt.
It first checks syntactically as defined in definition 6.1. Then, if the check fails, it calls the
check-entailment procedure, defined in checker/smt.rkt, to check the entailment using
an SMT solver.

The check-entailment procedure calls various translation procedures to translate the
formulae and context into SMT-LIB script representations. It then generates the complete
SMT-LIB program and calls call-solver to spawn the solver process and perform the check.

After the checking results are ready, check-loop prints the result, either as s-expression
or as JSON, depending on settings, via standard output.

7.2 Web Interface
We provide a web interface for writing and checking Emmy programs, that supports

• Writing, editing, loading, and saving Emmy program.

• Checking the proof and displaying the result, including displaying the correctness of
induction principles.

• Annotating the program with comment sections.

• Automatically renumbering proof steps.

79

7.2. WEB INTERFACE Chapter 7. Implementation

• Automatically generating induction principles for induction over data structures.

On the web interface, formulae are written using a syntax similar to the syntax used in
the logics course (see section 2.1.1), except for function applications, which are written in
the Haskell style, that is, f x y instead of f (x, y).

For example, the formula

∀x ∶ Int.∀y ∶ Int.[P(x, y) → f (x) = g(x, y)∧ f (x)− 1 > y]

can be written on the web interface as

Forall x: Int. Forall y: Int. [
P(x, y) -> f x = g x y And f x - 1 > y

]

After a formula is written down correctly, the web interface would render it in LaTeX
style, to make the formula more concise and easier to read:

Figure 7.2: The above formula rendered on the web interface of Emmy.

We believe that by using a syntax similar to the one the students are already familiar
with, we lowered the barrier of entry of Emmy, making it easier for new users to learn Emmy
and become productive more quickly.

7.2.1 Technical Details

The web interface is an one-page web application written in Vanilla Javascript in a func-
tional style: we made extensive use of immutable data structure operations, higher-order
functions, and side-effect free code.

We used React [71], a popular JavaScript library for building interactive, stateful web
applications. We use React to manage the state of the web interface, to dynamically ren-
der UI components, and to handle input events. We also used a number of other packages
that extends React to provide additional features, such as rearranging program sections by
dragging and dropping them, and LaTeX style formula rendering.

When the user clicks on the ‘CHECK’ button on the web interface, the application makes
an request to a server, which we will describe in the next chapter, and display the proof
checking result returned from the server.

7.2.2 Screenshots of the Web Interface

Here is a collection of the screenshots of Emmy’s web interface.

80

7.2. WEB INTERFACE Chapter 7. Implementation

Figure 7.3: A proof of theorem B.3 written using the web interface of Emmy, with a comment
section.

81

7.2. WEB INTERFACE Chapter 7. Implementation

Figure 7.4: A proof of theorem B.5 written using the web interface.82

7.2. WEB INTERFACE Chapter 7. Implementation

Figure 7.5: A proof of theorem B.20 written using the web interface, using a large number
of declarations and definitions, and an inductive step with an equalities step.

83

7.3. SERVER Chapter 7. Implementation

7.3 Server
The server handles the communication between the web interface and the proof checker.
When the server receives a request from the web interface, it spawns a proof checker process,
and passes the program sent by the web interface to the proof checker via the standard input
stream (stdin). Once the proof checker finishes, the server passes the results from the proof
checker back to the web interface.

The server is a very simple Node.js program written using the Express [39] library.

7.4 #lang emmy

We also provide the Emmy language, a DSL implemented as a Racket #lang language [25].
The users may write Emmy programs using the Emmy language, save the program in a file,
and check the proof by ‘runing’ the file directly using the Racket interpreter.

The syntax of the Emmy language is the same as the s-expression based syntax described
in section 7.1.1. However, in the beginning of a Emmy file, there must be the following line:

1 #lang emmy

To check the code, simply run the Racket interpreter on the code file:

racket name-of-file

When the Racket interpreter sees #lang emmy when ‘running’ an Emmy program, it knows
that the code is written in the Emmy language, so it would use an ‘reader’ provided by us to
read the code below. Our reader will then read the program, and pass the program to the
check-loop procedure to check the correctness of the program.

84

Part III

Evaluation and Conclusion

85

Chapter 8

Soundness of Induction

When induction is performed in a proof, either by the use of an induction marker or in an
induction step, Emmy generates an induction principle for the formula we wish to proof, and
then proves the generated induction principle instead of the original formula in the normal
way.

In this chapter, we prove that induction in Emmy is sound, that is, if formula ϕ′ is the
induction principle for some formula ϕ, then if ϕ′ is true, ϕ must be true.

Formally, we define soundness of induction as:

Theorem 8.1. Induction principle is sound
For any formula ϕ, context Γ, function definition d, if there exists some ϕ′ such that

ϕ′ = InductionPrinciple(Γ, ϕ), then ϕ′ → ϕ, and if there exists some ϕ′′ such that ϕ′′ =
FunctionInductionPrinciple(Γ, d, ϕ), then ϕ′′ → ϕ.

We first prove the soundness of the induction principles generated by functions InductionPrinciple
and FunctionInductionPrinciple. These two proofs are based on the principle of well-founded
orderings: we first identify the order, and then show that the set of terms for which the in-
duction principle is unsound is empty, by the properties of well-founded orders. After that,
we prove Un f old, which uses the two functions, is sound.

Our conclusion from the proofs is that:

• Emmy generates correct induction principle for inductions over data structures.

• Emmy generates correct induction principle for inductions over function definitions, if
the function definition terminates.

We will then discuss how non-terminating functions affect the soundness, and how it
effects the use of Emmy.

8.1 Induction Over Data Structures

Proof. Take some context Γ, variable t, and type δ such that Γ δ ∶∶ C for some set of con-
structors C. Take formula ϕ arbitrary. Take formula ϕ′ = InductionPrinciple(Γ,∀t ∶ δ.ϕ), and
ϕ′1 ∧⋯∧ ϕ′n = ϕ′. That is, ϕ′ is the induction principle for ϕ, and ϕ′i is a case in the induction
principle for i ∈ [1, n].

Assume that ϕ′, the induction principle, holds.
We now assume that the induction principle is not sound. That is, there exists some term

tF of type δ, such that [tF/t]ϕ does not hold under the assumption that ϕ′ holds. Let us

86

8.2. INDUCTION OVER FUNCTION DEFINITIONS Chapter 8. Soundness of Induction

denote the set of such terms as T′δ, which is a subset of Tδ, the set of terms of type δ. Since
all terms of type δ are in a well-founded order, as required by our data structure axioms, T′δ
has at least one minimal elements.

Take some term t′ with type δ such that t′ is the minimal term for which [t′/t]ϕ does not
hold. That is, there does not exist any term t′′ with type δ such that t′′ < t′, by definition 4.13,
and that [t′′/t]ϕ is false.

We show that such a term t′ cannot exist by contradiction:
Since t′ is of type δ, then, according to the data structure axioms, t′ is constructed by a

constructor. t′ must be either

1. An atomic constructor a.
If t′ = a, then a ∈ C. By the definition of InductivePrinciple, ϕ′i , one of the cases that
forms the induction principle, must be [a/t]ϕ. If ϕ′ is true, then [a/t]ϕ must be true,
so is [t′/t]ϕ. [t′/t]¬(ϕ′ → ϕ)will not hold. There is a contradiction.

2. A function constructor c applied to a sequence of terms t′1,⋯, t′m, where Γ c ∶ τ1⋯τm →
δ, Γ t′i ∶ τi for all i ∈ [1, m].
We first define I, the set of indices of recursive calls, as, I = {i ∈ [1, m] ∣ τi = δ}.
If t′ = c(t′1,⋯, t′m), then c ∶ τ1⋯τm ∈ C. By the definition of InductivePrinciple, ϕ′i , one of
the cases that forms the induction principle, must be ∀t1 ∶ τ1.⋯tm ∶ τm.⋀i∈[1,n](τ1 = δ →
[ti/t]ϕ) → [c(t1,⋯, tm)/t]ϕ, which, by the definition of I, is equivalent to ∀t1 ∶ τ1.⋯tm ∶
τm.⋀i∈I[ti/t]ϕ → [c(t1,⋯, tm)/t]ϕ. If we eliminate the universal quantification, we may
obtain ⋀i∈I[t′i/t]ϕ → [c(t

′
1,⋯, t′m)/t]ϕ.

Now, there are two possibilities:

(a) ⋀i∈I[t′i/t]ϕ is true, and [c(t′1,⋯, t′m)/t]ϕ is true. However, this would contradict
our assumption that [t′/t]ϕ is false.

(b) ⋀i∈I[t′i/t]ϕ is false. This would mean that there exists some i ∈ I, such that [t′i/t]ϕ
is false. However, since t′ = c(t′1,⋯, t′m), by definition 4.13, t′i < t′. This contradicts
with out assumption that t′ is a minimal element of the set of terms for which ϕ
does not hold.

Since we reach a contradiction in all cases, the minimal element t′ of T′δ does not exist.
However, this would contradict the property of well-founded order that any non-empty
subset of the set with a well-founded order has a minimal element. This means that T′δ
is empty. Therefore, if ϕ′, the induction principle, is true, then ϕ, the original formula, is
true, for all possible values of t. Hence the induction principle is sound.

8.2 Induction Over Function Definitions
As discussed in section 5.4.2, if we want to prove something that looks like:

∀t1 ∶ τ1.⋯∀tn ∶ τn.R(t1,⋯, tn, f (t1,⋯, tn)) (8.1)

Then we should first prove that:

∀t1 ∶ τ1.⋯∀tn ∶ τn.∀r ∶ σ.[f (t1,⋯, tn) = r → R(t1,⋯, tn, r)] (8.2)

87

8.2. INDUCTION OVER FUNCTION DEFINITIONS Chapter 8. Soundness of Induction

Then, if f terminates, then formula 8.1 follows from 8.2.
The formula R(t1,⋯, tn, f (t1,⋯, tn)) corresponds to our ϕ, which should be some formula

that contains f (t1,⋯, tn) as a subterm, where f ’s definition is what we perform induction on,
and R(t1,⋯, tn, r)would be [r/ f (t1,⋯, tn)]ϕ.

We will split the proof into two parts:

1. We prove that for some ϕ, d, and Γ,

FunctionInductionPrinciple(ϕ, d, Γ)→ ∀r ∶ σ.[r = f (t1,⋯, tn)→ [r/ f (t1,⋯, tn)]ϕ]

where { f (t1,⋯, tn)} = CallsF(f , ϕ) (CallF is defined in definition 5.14).

2. We prove that if f always terminates, then

∀r ∶ σ.[r = f (t1,⋯, tn)→ [r/ f (t1,⋯, tn)]ϕ] → ϕ

The first part proves that FunctionInductionPrinciple correctly generates the induction
principle. The second part proves that if the function terminates, then the correct induction
principle implies the original formula.

8.2.1 Correctness of FunctionInductionPrinciple

Proof. Take some context Γ, and function definition d = ⟨i, f (ta1,⋯, tan), C⟩, such that Γ
f ∶ τ1⋯τn → σ. Let t1,⋯, tn be terms with types τ1,⋯τn. Let ϕ be a formula such that
{ f (t1,⋯, tn)} = CallsF(f , ϕ), that is, f (t1,⋯, tn) is the only unique call to f in formula ϕ.

We will use c f to denote f (t1,⋯, tn) from now on.
We first assume that the function definition upon which we perform induction is defined

for all arguments, or that it always terminates. That is,

∀t′1 ∶ τ1.⋯∀t′n ∶ τn.∃t′ ∶ σ.t′ = f (t′1,⋯, t′n)

We then define the following relation:

Definition 8.1. Recursive call order For terms t′1,⋯, t′n of types τ1,⋯, τn, if, by defini-
tion d, f (t′1,⋯, t′n) = tb, and that f (t′′1 ,⋯, t′′n) ∈ CallsT(f , tb), for terms t′′1 ,⋯, t′′n of types
τ1,⋯, τn, that is, tb contains f (t′′1 ,⋯, t′′n) as a subterm, then ⟨t′′1 ,⋯, t′′n⟩ <R ⟨t′1,⋯, t′n⟩

Intuitively, if we make the recursive call f (t′′1 ,⋯, t′′n)when calling f (t′1,⋯, t′n), then ⟨t′1,⋯, t′n⟩ <R
⟨t′′1 ,⋯, t′′n⟩ It is easy to see that <R is a well-founded partial order. Because f always termi-
nates, it is impossible to have an infinite chain of recursive calls.

Let A be the set of all possible cartesian products of terms of types τ1,⋯, τn. We then
define A′ ⊆ A as

A′ = {⟨t′1,⋯, t′n⟩ ∈ A ∣ ¬([t′1/t1],⋯, [t′n/tn]) ϕ}

That is, A′ is the set of groups of terms ⟨t′1,⋯t′n⟩, for which ([t′1/t1],⋯, [t′n/tn]) ϕ does not
hold. Since all elements in A are in the well-founded order <R, A′ must be either empty, or
have at least one minimal elements.

Take formula ϕ′ = FunctionInductionPrinciple(Γ, d, ϕ), and ϕ′1 ∧⋯∧ ϕ′m = ϕ′. That is, ϕ′

is the induction principle for ϕ, and ϕ′i is a case in the induction principle for i ∈ [1, m].
We assume that ϕ′, the induction principle, holds.

88

8.2. INDUCTION OVER FUNCTION DEFINITIONS Chapter 8. Soundness of Induction

Now, we wish to prove that

∀r ∶ σ.[r = c f → [r/c f]ϕ]

Take some r0 and assume that r0 = c f . We now need to prove [r0/c f]ϕ, which, according
to the assumption, is equivalent to ϕ: that is, we now need to prove ϕ.

We then assume that ⟨t1,⋯, tn⟩ is a minimal element in A′. This would imply that ϕ does
not hold under the assumption that ϕ′ holds. We shall then show by contradiction that
⟨t1,⋯, tn⟩ cannot exist as a minimal element. Which implies that A′ is empty, hence the ϕ
would always be true.

According to lemma 6.1, we have, under the definition d, the following property:

c f = f (t1,⋯, tn) = S bi ∧ S ϕi ∧ ⋀
j∈[1,i−1]

(¬S ϕj) (8.3)

where ⟨ϕi, bi⟩ is the ith case in definition d, and sequence of substitution S = ([t1/ta1],⋯, [tn/tan]).
1 Since the induction principle ϕ′ is defined, the case body bi must either

• contain no recursive call (∣CallsT(f , bi)∣ = 0).
If this is the case, then one of the cases in the induction principle must be

S ϕi ∧ ⋀
j∈[1,i−1]

(¬S ϕj) → [S bi/c f]ϕ

From the assumption that the induction principle is true, and property 8.3, we know
that [S bi/c f]ϕ is true. However, since c f = S bi, [S bi/c f]ϕ would be the same as ϕ,
which implies that ϕ is true, which contradicts the assumption that ϕ does not hold.

• contain one unique recursive call (∣CallsT(f , bi)∣ = 1).
If this is the case, then one of the cases in the induction principle must be

∀r ∶ σ.[S ϕi ∧ ⋀
j∈[1,i−1]

(¬S ϕj) → (Sb [r/c f] ϕ ∧ r = Sb c f → [S [r/tr] bi/c f] ϕ)]

where Sb = ([S t′1/S ta1],⋯, [S t′n/S tan]), and {tr} = { f (t′1,⋯, t′n)} = CallsT(f , bi)2.
Take a term r′, such that r′ = Sb c f , which means r′ is the result returned by the recursive
call.
By property 8.3, we now have:

Sb [r/c f] ϕ ∧ r = Sb c f → [S [r/tr] bi/c f] ϕ

Now, there are two possibilities:

1. Sb [r′/c f] ϕ, the induction hypothesis, is true.
From the induction principle, we then have [S [r′/tr] bi/c f] ϕ.
By assumption, we have r′ = Sb c f . By definition of Sb and S, we then have r′ =
Sb f (t1,⋯, tn) = f (S t′1,⋯, S t′n), which gives r′ = S f (t′1,⋯, t′n) = S tr.
This gives [S [S tr/tr] bi/c f] ϕ, which is equivalent to [S bi/c f] ϕ. By property 8.3,
this gives [c f /c f] ϕ, hence ϕ is true.
This contradicts with our assumption that ϕ is not true.

1 Notice that by this definition, ti ≠ c f for all i ∈ [1, n]. Also, since ta1 is required by definition 5.11 to be
distinct from other variables, S S ϕ∗ would be equal to S ϕ∗ for all formula or term ϕ∗.

2 By the definition of S, this means Sb is equivalent to ([S t′1/t1],⋯, [S t′n/tn]).

89

8.3. UNFOLDING OF INDUCTION MARKERS Chapter 8. Soundness of Induction

2. Sb [r′/c f] ϕ, the induction hypothesis, is false.
Since r′ = Sb c f , we have ¬Sb [Sb c f /c f] ϕ, which would be equivalent to ¬Sb ϕ.
By the definitions of S and Sb,we also have ¬([S t′1/t1],⋯, [S t′n/tn]) ϕ, which gives
⟨S t′1,⋯, S t′n⟩ ∈ A′.
Since f (t1,⋯, tn) ∈ CallsF(f , ϕ), we have f (S t′1,⋯, S t′n) ∈ CallsF(f ([S t′1/t1],⋯, [S t′n/tn]) ϕ).
which means that ⟨S t′1,⋯, S t′n⟩ <R ⟨t1,⋯, tn⟩.
We have now found a member of A′ that is less than ⟨t1,⋯, tn⟩, which contradicts
the assumption that ⟨t1,⋯, tn⟩ is a minimal element.

8.2.2 The Original Formula is True if Function Terminates

Proof. Take some context Γ, and function f , such that Γ f ∶ τ1⋯τn → σ. Let t1,⋯, tn be
terms with types τ1,⋯τn. Let ϕ be a formula such that { f (t1,⋯, tn)} = CallsF(f , ϕ), that is,
f (t1,⋯, tn) is the only unique call to f in formula ϕ.

We will use c f to denote f (t1,⋯, tn) from now on.
Assume that f always terminates, that is,

∀t′1 ∶ τ1.⋯∀t′n ∶ τn.∃r ∶ σ. f (t′1,⋯, t′n) = r

Then, assume that
∀r ∶ σ.[r = c f → [r/c f]ϕ] (8.4)

Because f always terminates, we can take some r′ such that r′ = c f .
From the assumption 8.4, we have [r′/c f]ϕ. From the assumption that r′ = c f , we have ϕ.
Therefore, ∀r ∶ σ.[r = f (t1,⋯, tn)→ [r/ f (t1,⋯, tn)]ϕ]→ ϕ.

8.3 Unfolding of Induction Markers
By definition 6.31, Un f old will only alter (sub)formulae that are induction markers, by ap-
plying either InductionPrinciple or FunctionInductionPrinciple to the formula in the in-
duction marker. Since we have proven that those two functions are sound under certain
conditions, we can prove that Un f old is sound under those conditions, by straightforward
induction.

8.4 Non-terminating Functions
The above proofs about soundness of induction over function definitions are written un-
der the assumption that f , the function we apply induction on, terminates. If f does not
terminate, then we could prove incorrect results from induction.

Consider the following definition of f :

f :: Int -> Int
f x | x < 10 = 10

| otherwise = f (x + 1)

⟨f-def, f (x), (⟨x < 10,10⟩,
⟨⊺, f (x + 1)⟩)⟩

90

8.4. NON-TERMINATING FUNCTIONS Chapter 8. Soundness of Induction

Say we have some Γ x ∶ Int, and a formula

ϕ = f (x) > 0 (8.5)

We cannot prove ϕ because x could be greater than or equal to 10, which would make ϕ
meaningless.

However, we could generate the following induction principle for ϕ:

FunctionInductionPrinciple(Γ, d, ϕ) = (8.6)
(x < 10→ 1 > 0) ∧ ∀r ∶ Int.[¬x < 10 → r > 0∧ r = f (x + 1) → r > 0]

Since if x ≥ 10, f (x + 1) is undefined, r > 0 ∧ r = f (x + 1) cannot be true. Hence the
induction step in the induction principle is vacuously true, which means that the entire
induction principle is true, although the original formula ϕ cannot be proven to be true.

91

Chapter 9

Evaluation

In this chapter, we provide an evaluation of Emmy in relation to the various objectives of the
project. Namely, we will focus on how the capabilities of Emmy impact the use of Emmy in
the teaching of the reasoning about programs course, making reference to course materials
when relevant.

9.1 Language Support
Emmy supports the following language features:

• Formula and terms in propositional and (many-sorted) first-order logic.

• Declaration of custom types and (non-mutually recursive) data structures. which al-
lows as to express most basic data structures that are used in Haskell.

• Strong, static typing. This allows Emmy to ensure the well-formedness formulae a
proof before checking the proof.

• Recursive function definitions.

• Pattern matching in function definitions, which is crucial when defining functions
about data structures.

• Guards in function definitions, which is useful when defining recursive functions.

• if expressions.

• Built-in support for integers and basic arithmetic operations, which is built upon the
SMT solvers’ native support for arithmetic.

Some important language features that Emmy cannot express directly are:

• Integer division, which is not total.

• Declaration and reasoning of mutually recursive data structures, like:

data Yin = Yin1 | Yin2 Yang
data Yang = Yang1 | Yang2 Yin

• Generic data structures and functions, like:

92

9.2. PROVING POWER Chapter 9. Evaluation

data GenericList a = GenericNil | GenericCons a GenericList

and

id :: a -> a

• Higher-order functions that take other function as it arguments, such as

map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]

Notice that these two functions are also generic functions.

• Lambda expressions, like \x -> x + 1.

• Shorthand notations, including list construction ([1, 2, 3]) and pair construction
((1, 2)).

Although Emmy can only express a small subset of the Haskell language, it is already
enough for expressing a large range of data structures, functions, and algorithms. As we
will show in the next section, Emmy is in fact capable of expressing most theorems a student
may encounter in the reasoning course. However, due to the lack of generic data structures,
the expression of certain theorems may be cumbersome.

We will discuss how some of the missing features can be implemented in section 10.1.

9.2 Proving Power
We now demonstrate the proving power of Emmy, by using Emmy to prove theorems that
appeared in the course materials. In this way, we surveyed the extent to which Emmy can
help with the teaching and learning of the reasoning about programs course.

We identified 26 theorems in total, and proved 24 of them. The proofs were checked
twice, first time using Z3 version 4.8.5, and then using CVC4 version 1.6 as the underlying
SMT solver, with a 200ms time limit per call. The full set of theorems are listed in appendix
B.1, and the proofs, written in the #lang Emmy language (see section 7.4), are placed in the
examples folder in the code directory.

9.2.1 Logic

Although Emmy focuses on proving properties of computer programs, it is also capable
of proving theorems in propositional and first-order logic. We took 3 propositional theo-
rems1from a tutorial sheet for the logic course [74], and an additional 5 first-order theorems
2from another tutorial sheet [52] that are difficult or tricky to prove using natural deduction,
and wrote proofs of them using Emmy.

We followed the principles listed below when formulating and proving the theorems in
Emmy:

• The first letters in the names of all propositions and predicates are capitalised.
1 Question 2g, 2k, and 2m from the tutorial sheet. We chose these questions because they were supposed to

be discussed during tutorial sessions.
2 Queston 51 to 54, and question 57. We omitted 55 and 56 because they are more about translating statements

than writing proofs.

93

9.2. PROVING POWER Chapter 9. Evaluation

• To prove a theorem of the form
ϕ1,⋯, ϕn ϕ′

we first write formulae ϕ1,⋯, ϕn as steps that are ‘Given’ to be true. Then, we prove ϕ′

using these ‘Given’ steps.

• For first-order theorems, we use Atom as the type for all terms.

For each theorem, we produce at least two proofs: one longer proof in ‘natural deduction
style’, and another short one where the goal follows directly from the premises. We then try
to produce new proofs by removing steps from the longer proof. We wish to show that our
tool is not only capable of proving these theorems, but also capable of handling proofs in
different styles, including cases where we do not follow strictly natural deduction rules, and
rely on our intuition instead.

Results

We proved all 8 theorems using both SMT solvers. In addition, we have shown that all the
theorems can be proven by Emmy directly in one step.

We have also shown that all 8 theorems can be proven by stylised proofs that are shorter
than the ‘natural deduction style’ proofs, without sacrificing correctness. We argue that the
automated checking power of Emmy may alleviate the tediousness of writing proofs in ‘pure’
natural deduction.

It worths mentioning that many of the theorems involves properties of functions in dis-
crete mathematics. For example, theorem B.5 involves the property of injective functions,
and theorem B.7 proves that functions cannot be one-to-many or many-to-many. While we
did not intend to use Emmy in the teaching of discrete mathematics, we now believe that
there is a potential for such application.

9.2.2 Reasoning about Program

To demonstrate the proving power of Emmy in relation to the syllabus of the reasoning about
programs course, we identified some theorems about the properties of functions and data
structures that appeared in the course materials, and then proved of them using Emmy.

There are also questions and examples about finding the induction principle or writing
down the proof schema in the course materials. However, it is not clear how to show that our
tool can be used for such tasks. We therefore focus on proving the theorems we identified
instead.

Due to the various limitations of Emmy’s logic, many theorems in the course materials
cannot be translated into Emmy’s language directly. We tried to preserve the meaning of the
original theorems as much as we could, and added extra constraints such as the expected
range of function arguments, in cases where the original theorem is not clear enough. In
general, we followed the following rules:

• A generic list with Haskell type [a] will become a list of integers in our proof, with
nil, which constructs an empty list and corresponds to [] in Haskell, and cons, which
takes one integer and another list, and corresponds to the : operator in Haskell, as its
two constructors.
For example, the Haskell list [1, 2, 3], which is equal to 1 : 2 : 3 : [], would
become cons(1, cons(2, cons(3, nil))) in our theorems.

94

9.2. PROVING POWER Chapter 9. Evaluation

Lists of specific types are defined individually, with suffixes added to type names and
constructor names where ambiguity might arise. For example, for theorem B.20, we
declared two list types, ListC and ListT, as lists of Codes and lists of Trees.

• The ++ infix operator in Haskell, which contatenates two lists, are represented by an
append function, defined as:

append(nil, ys) = ys
append(cons(x, xs)) = cons(x, append(xs, ys))

which is the same as the definition of ++ in the Haskell prelude [22].
For example, the Haskell expression xs ++ ys would become append(xs, ys).
When there are lists of specific types, we also define individual append functions for
those list types.

• We define a Bool type to stand for booleans, with t and f as its two atomic constructors.
We use b = t to mean ‘b is true’, and b = f to mean ‘b is false’.
Logic operators (connectives) are declared and defined in the usual manners when
they are needed.

• A Pair data structure would be declared in cases where they are needed. The type of
its two elements depends on the theorem. The f st and snd accessors would also be
declared and defined if needed.

• All natural numbers, except those in proofs about Peano numbers, were given the Int
type, and an extra assumption that they are non-negative.
For example, the formula ∀x ∶ N.P(x)would become ∀x ∶ Int.[x ≥ 0→ P(x)].

• All natural numbers that occurs in theorems in terms of zeros and successor functions
are expressed by a Nat type, which corresponds to Peano numbers, with two construc-
tors, z and s.

• All non-total function definitions are replaced with total ones that behave the same in
the ‘correct’ cases.

Some of the questions in the course materials comes with a set of lemmas. We use them
when applicable.

We found 18 theorems in the lecture notes, exercises, and tutorial sheets of the reasoning
about programs course. The majority of them involve inductive property or function defini-
tions, and require explicit application of induction to prove. None of the theorems contain
higher-order functions, which Emmy cannot express.

For each theorem that can be expressed using Emmy, we first check whether or not Emmy
can prove them directly from the definitions without performing any induction or supplying
any additional lemmas not included in the course material. Then, we write a proof for it by
hand.

Results

We proved 16 of the 18 theorems. The below table gives a summary of the results:

95

9.2. PROVING POWER Chapter 9. Evaluation

Z3 CVC4
Theorem number Proven? Directly? Proven? Directly?

Theorem B.9 ✓ ✓ ✓
Theorem B.10 ✓ ✓ ✓
Theorem B.11 ✓ ✓
Theorem B.12 ✓ ✓ ✓
Theorem B.13 ✓ ✓
Theorem B.14 ✓ ✓ ✓
Theorem B.15 ✓ ✓ ✓
Theorem B.16 ✓ ✓
Theorem B.17 ✓
Theorem B.18 ✓ ✓ ✓
Theorem B.19 ✓ ✓
Theorem B.20 ✓ ✓∗
Theorem B.21 ✓ ✓
Theorem B.22 ✓ ✓
Theorem B.23
Theorem B.24
Theorem B.25 ✓ ✓ ✓
Theorem B.26 ✓ ✓ ✓ ✓

Count: 18 16 1 15∗ 8

Table 9.1: The results from proving the reasoning about programs theorems.

Theorem B.20 cannot be proven when we use CVC4 when using a 200ms time limit. It
could be proven if we raise the limit to 2000ms.

We were unable to prove two of the theorems, for the following reasons:

Theorem B.23 is about the property of a power function, defined in terms of exponentiation
in mathematics, which is not available ‘natively’ in the SMT solvers we use. This means
that we have to write our own exponent function if we want to express the proof,
which, we believe, defeats the purpose of proving the property of a power function.

Theorem B.24 requires induction on the definitions of two functions, but Emmy only sup-
ports induction on the definition of one function at a time.

When we use CVC4, theorem B.17 cannot be proven. This is likely related to CVC4’s
handling of data structure properties, which we will discuss in section 9.3.1.

Most of our proofs are short: we can either prove the theorem in one induction step,
or prove a lemma in one step first, and then show that the goal follows directly from the
lemma. Only a few rather complicated theorems required more than that to prove.

From the above results, we draw the following conclusions:

• Emmy is capable of proving most theorems a student may encounter in the reasoning
course. In particular, it can prove all data structure related theorems that appear in
the course materials.

• Z3 is perhaps more suitable for Emmy. as can be seen in the results, it proves

96

9.3. PROVING POWERS OF SMT SOLVERS Chapter 9. Evaluation

9.3 Proving Powers of SMT Solvers
The proving powers of the underlying SMT solvers have a large impact on the power of
Emmy. The more powerful the SMT solvers are, the fewer steps we need to write in order to
obtain our goal.

We shall now discuss some issues with the SMT solvers’ proving power we discovered
during the course of the development of Emmy, and their relation with Emmy’s functionality.
We will also compare the two solvers we use with regard to these issues

9.3.1 Data Structure Properties

Consider this property, defined upon the definition of List described in section 9.2.2:

Theorem 9.1. Non-empty list must be constructed from an integer and a list

∀xs ∶ List.[xs ≠ nil → ∃y ∶ Int.∃ys ∶ List.xs = cons(y, ys)]

While theorem 9.1 itself is not very interesting, it can be used to prove theorems such as

Theorem 9.2. Empty list is the only left identity of append

∀xs ∶ List.∀ys ∶ List.[append(xs, ys) = ys ↔ xs = nil]

However, we found out that it is impossible to prove theorem 9.1 using CVC4 as the
underlying solver 3. The solver would keep running, until the time limit is reached and it
returns unknown. As a result, certain theorems related to theorem 9.2, such as step I4 in the
proof of theorem B.17, is not provable when using CVC4.

Z3, however, can prove theorem 9.1 directly.
One possible way to get around this issue is to generate lemmas like theorem 9.1 for all

non-atomic data structure constructors, and include all of them in entailment checks.

9.3.2 Induction over Data Structure

In general, SMT solvers have limited inductive reasoning capabilities. Many of them are
unable to prove anything that requires non-trivial induction [72]. It was clearly stated in
the Z3 guide that Z3 ‘will not prove inductive facts’ [46]. CVC4, however, has implemented
support for inductive reasoning [72] [58].

The vast majority of the theorems we proved in section 9.2.2 are inductive. As can be
seen in table 9.1, when using Z3, Emmy can only prove one of the theorems directly, but
when using CVC4, 8 can be proven directly.

Most of the inductive theorems that cannot be proven directly even when using CVC4
involves the use of lemmas. We speculate that although CVC4 can perform induction over
data structures, it cannot effectively generate lemmas when proving.

However, we argue that the inductive reasoning power of the SMT solvers is not very
important for Emmy, because Emmy can generate induction principles before calling the SMT
solvers. Also, we have shown that Emmy is already capable of proving most theorems when
using Z3, which does not support induction, as the underlying solver.

3 Curiously, while theorem 9.1 cannot be proven when using CVC4, an equivalent theorem can be proven by
CVC4 directly:

Theorem 9.3. Empty list is the only left identity of append [Variant of theorem 9.2]

∀xs ∶ List.∀ys ∶ List.[append(xs, ys) = ys ↔ xs = nil]

97

9.3. PROVING POWERS OF SMT SOLVERS Chapter 9. Evaluation

9.3.3 Entailment between Equivalent Formulae

We identified some pairs of formulae that are semantically equivalent but bear trivial syn-
tactic differences, where Z3 cannot prove that one formula entails another.

One instance, encountered when proving theorem B.25, is that for the following seman-
tically equivalent formulae

ϕ = ∀k ∶ Nat.∀i ∶ Nat.∀j ∶ Nat.[k = min(i, j)→ k = min(j, i)]
ϕ′ = ∀i ∶ Nat.∀j ∶ Nat.∀k ∶ Nat.[k = min(i, j)→ k = min(j, i)]

where the only difference between ϕ and ϕ′ is the ordering of quantified formulae, the en-
tailment

Γ, ∆, ϕ ϕ′

does not hold, when checked using Z3.
Another instance was encountered when proving the following theorem:

Theorem 9.4. Length of concatenation of two lists is the same as sum of two lists’ length

∀l1 ∶ List.∀l2 ∶ List.length(append(l1, l2)) = length(l1)+ length(l2)

A proof of theorem 9.4 is available in example-data-3.prf.
The proof would require induction. The induction principle of theorem 9.4 could be

∀l2 ∶ List.length(append(nil, l2)) = length(nil)+ length(l2) (9.1)
∧

∀l1 ∶ List.[∀l2 ∶ List.length(append(l1, l2)) = length(l1)+ length(l2)

→

∀i ∶ Int.∀l2 ∶ List.length(append(cons(i, l1), l2)) = length(cons(i, l1))+ length(l2)]

If we swap the order of the base case and inductive step, and rename the quantified
variable l1 in the inductive step, we may obtain the semantically equivalent formula:

∀l1′ ∶ List.[∀l2 ∶ List.length(append(l1′, l2)) = length(l1′)+ length(l2) (9.2)

→

∀i ∶ Int.∀l2 ∶ List.length(append(cons(i, l1′), l2)) = length(cons(i, l1′))+ length(l2)]

∧
∀l2 ∶ List.length(append(nil, l2)) = length(nil)+ length(l2)

If we denote formula 9.2 by ϕ and formula 9.1 by ϕ′, then the entailment

Γ, ∆, ϕ ϕ′

cannot be proven when using Z3.
Interestingly, if we add the (translated) definitions of length and append to the set of

premises to the left of the turnstile, then the entailment will be deemed correct, although it
should be correct regardless of the definitions of the functions. Also, the entailment can be
proven when we only rename the quantified variable, or when we only switch the order of
cases, but not when we do both.

98

9.4. NON-TERMINATING FUNCTIONS Chapter 9. Evaluation

We provide the SMT-LIB scripts generated when proving all variations of the second
example, the output from running the SMT solvers, along with a small summary of results,
in appendix C.

Entailments in both the first and second example can be proven when we use CVC4.
We only identified and documented two such cases, but we believe that similar cases are

very common. The users may become frustrated when the equivalence between two obvi-
ously equivalent formulae cannot be checked. There is also a problem with inductions: the
user could have written the correct induction principle, but Emmy may consider it incorrect
because the aforementioned problems.

One way to partially solve this problem is to normalise formulae, so that such pairs of
syntactically similar formulae can be represented by the same normal form. This is one of
the future extensions of Emmy listed in section 10.1.

9.4 Non-terminating Functions
In section 5.4.1, we have shown how we could define non-terminating functions in Emmy.
Consider the following definition:

f :: Int -> Int
f x | x < 10 = 10

| otherwise = f (x + 1)

⟨f-def, f (x), (⟨x < 10,10⟩,
⟨⊺, f (x + 1)⟩)⟩

It is obvious that f does not terminate for any argument x ≥ 10, so we could say that if
x ≥ 10, then f (x) is undefined, hence the following property is false:

∀x ∶ Int.∃r ∶ Int.r = f (x) (9.3)

However, when the translated function definition f-def is used as a justification, Emmy
would prove formula 9.3 to be true.

This counterintuitive result stems from how we translate function definitions: the defi-
nition f-def would be represented, according to definition 6.6, by the property:

∀x ∶ Int. f (x) = if(x < 10, 10, f (x + 1)) (9.4)

which is equivalent to

∀x ∶ Int.[(x < 10→ f (x) = 10) ∧ (x ≥ 10→ f (x) = f (x + 1)] (9.5)

The property 9.5 only says that f (x) = f (x + 1)when x ≥ 10. If we define f (x) to be 0 for
all x ≥ 10, as

f' :: Int -> Int
f' x | x < 10 = 10

| otherwise = 0

⟨fp-def, f ′(x), (⟨x < 10,10⟩,
⟨⊺,0⟩)⟩

then 9.5 would also be satisfied.
Since property 9.4, the generated property that should represent the definition of f , does

not forbid such an interpretation, Emmy would consider 9.3 to be true.
We have shown that the semantics of the definition of a non-terminating recursive func-

tion in Emmy deviates from the same definition in programming languages, and the fact that

99

9.5. USER FEEDBACK Chapter 9. Evaluation

property 9.3 can be proven by Emmy is the consequence of such a deviation. To mitigate this
issue, the users can write definitions that ensures termination. Alternatively, they could also
add constraints to the arguments in their arguments, so that the function always terminates
if the constraints are satisfied:

∀x ∶ Int.∃r ∶ Int.[x < 10→ r = f (x)]

9.5 User Feedback
We invited students from two tutorial groups to test-use the web interface of Emmy, and
received two responses from them. Due to the very small number of participants, no quan-
titative studies were conducted.

The two test-users are both first-year students who have very recently sat the reason-
ing about programs exam, and are therefore familiar with the course material. We did not
provide any prior information about Emmy to the test-users.

9.5.1 Procedure

During test-using, we first showed the test-users an example proof. We walked through the
proof, showing the syntax for writing declarations, definitions, and formulae using the on-
line interface, as well as some of the basic operations, such as editing formulae and checking
proofs.

We then showed the test-users a question about theorem B.12, which is about the prop-
erty of a recursive function over inductive data structures, and requires structural induction
to prove. We asked the test-users to prove this theorem using Emmy. Two lemmas, namely
add(i, 0) = i, and add(s(i), j) = add(i, s(j)), could be used without proving. We did not pro-
vide extensive guidance when the test-users were writing the proofs, but helps were offered
when they were stuck on specific UI issues.

9.5.2 Results

We observed the following from the test-users:

• Both test-users produced correct proofs for theorem B.12. They both used one induc-
tion step with one base case, and one induction step.

• The base case, which follows from a lemma we gave them, was proven by both test-
users directly in one step.
For the inductive step, the test-users used multiple steps to obtain the equality add(succ(i), j) =
add(j, succ(i)).

• The syntax for writing declaration using the web interface, which is similar to Haskell
syntax, but differs in cases such as the naming of data structure constructors, the use of
single instead of double colons for typing statements, caused minor confusions among
the test users, but they were quick to adapt to our syntax.

• They learned the syntax for writing formulae using the web interface, which is very
similar to the syntax of normal logic formula, quickly. Some points of confusion in-
clude the dot following the typing statement in a quantification, and whether or not
brackets are needed in some cases.

100

9.5. USER FEEDBACK Chapter 9. Evaluation

• The various buttons used for adding steps, induction cases, et cetra. were confusing,
and their functionalities were hard to discover.

• One test-user commented that it would be better if Emmy could check proofs and up-
date the result as he worked through the proof, which is currently infeasible as proof
checking takes a long time.

Although both test-users used multiple steps in the inductive step to prove add(succ(i), j) =
add(j, succ(i)), Emmy can actually prove it directly. We speculate that the test-users were not
aware of the full proving power of Emmy, so their proofs were more conservative than nec-
essary.

One test-user who had more free time proceeded to prove theorem B.18. He was able to
prove it correctly without much troubles.

9.5.3 Improvements Made in Response to User Feedback

Many UI bugs and imperfections were identified during the tests and later fixed. This in-
cludes:

• The user may edit more than one elements at the same time. For example, they may be
editing both the formula and number of a step at once. However, if they finish editing
any one of the elements, their edits made to the other elements would be lost.
This was fixed by making all text inputs save their content once the user stops editing
them, by, for example, clicking elsewhere.

• There were buttons that adds the wrong types of steps to the proof. They were fixed
by changing the arguments supplied to relavent functions.

We also added some new features as response to how the test-users used Emmy. For
example, we added a ‘copy’ button that copies the raw string of a formula, after noticing the
test-users clicking on the formulae and copying the raw strings from the editor.

101

Chapter 10

Conclusion

In this project, we have developed a proof system, defined formally its syntax and semantics,
and built an implementation of the said system as a computer program. The result is Emmy, a
proof assistant that strives to provide the full power of automated reasoning tools to students
who have just starting learning to reason about programs.

Despite a number of limitations in terms of expressiveness and automatic proving power,
we have demonstrated that Emmy is sufficiently powerful to prove most theorems students
may encounter when learning the reasoning about programs course. From the test-using
results of Emmy, we are also confident that Emmy has met our expectation that it should be
approachable and easy to learn.

We believe that Emmy is now in a stable state, and is ready to be deployed in the teach-
ing of the reasoning about program course. We are excited to be able to bring Emmy into
existence, and we are looking forward to its use and appreciation by future users.

10.1 Future Works
Here we suggest some features that may be added to Emmy by future contributors.

Induction over Relations Apart from induction over data structures and function defini-
tions, we may also implement induction over recursively defined relations, or predi-
cates. Consider the following predicate Odd, define for natural (Peano) numbers:

Odd(s(z))
∀x ∶ Nat.[Odd(x)→Odd(s(s(x)))]

Then, if we want to prove that some property P holds for all odd numbers:

∀x ∶ Nat.P(x)

We may perform induction, and obtain the following induction principle.

P(s(z))
∧

∀x ∶ Nat.[P(x)∧Odd(x) → P(s(s(x)))]

Notice that before we implement induction principle generation for induction over
relations, we also need to be able to define relations. Both features should be straight-
forward to implement, as they are similar to function definitions and their inductions.

102

10.1. FUTURE WORKS Chapter 10. Conclusion

Higher-order Functions Functions in Emmy are first-order, they neither take functions as
arguments not return functions. Common higher-order Haskell functions, such as
map and foldl, cannot be expressed in our system.
One way to extend Emmy to include higher-order functions without changing the un-
derlying SMT solver is to apply defunctionalisation: [20] we first turn functions into
terms, and then use a special ‘apply’ function to carry out function application. Alter-
natively, we may use a higher-order SMT solver [4] [13], in which higher-order func-
tions can be expressed directly.
While we considered adding support for higher-order functions during the course of
the project, we decided to omit this feature due to time constraints and the fact that
none of the theorems in the course materials involve higher-order functions.

Generic Types Currently, Emmy does not have any support for generic types. When we
need generic versions of certain data structures and functions, we must declare them
individually for each type we need. For example, when proving theorem B.20, we had
to define List data structures and related operations for each concrete List type we
intend to use.
Since the most recent version of the SMT-LIB standard already supports type param-
eters in data structures [6], declaration of generic data structures can be expressed
easily. However, there is no support for genric functions. We may need to gener-
ate concrete instances of generic functions when translating our programs to SMT-LIB
scripts.

Formula Normalisation Currently, when checking proofs, we do not alter the structure of
formulae in any way except for the unfolding of induction principles. However, we
may develop a way to ‘normalise’ formulae, so that two formulae that are semantically
equivalent, but have minor syntactic differences, can be expressed by the same normal
form.
For example, we may define an ordering of quantifications, and normalise nested
quantifications by sorting them in ascending order. Suppose we order quantification
by the name of the quantified variable, then we may have something like:

Normalise(∀b ∶ τ.∀a ∶ τ.∀c ∶ τ.ϕ) = ∀a ∶ τ.∀b ∶ τ.∀c ∶ τ.ϕ
Normalise(∀c ∶ τ.∀b ∶ τ.∀a ∶ τ.ϕ) = ∀a ∶ τ.∀b ∶ τ.∀c ∶ τ.ϕ
Normalise(∀a ∶ τ.∀b ∶ τ.∀c ∶ τ.ϕ) = ∀a ∶ τ.∀b ∶ τ.∀c ∶ τ.ϕ

This could mitigate, though not eliminate, some of the problems we identified in sec-
tion 9.3.

Incremental Proof Checking The current proof checking implementation checks an entire
program at once, which may take a long time when the program is long, or if there are
unprovable formulae that causes the SMT solver to timeout. This makes it prohibitive
to provide ‘live’ updates about the correctness of individual steps.
An incremental approach to proof checking would allow us to check individual steps,
without touching other parts of the proof. This might require a stateful proof checking
implementation, that stores the previously checked proof, and only check the parts
that have been changed since last check. This would result in higher CPU and memory
load for the server, but would provide a more seamless experience for users of the web
interface.

103

Part IV

Bibliography and Appendices

104

Bibliography

[1] Michael Ameri and Carlo A. Furia. “Why Just Boogie?” In: Integrated Formal Methods. Ed. by
Erika Ábrahám and Marieke Huisman. Cham: Springer International Publishing, 2016, pp. 79–
95. isbn: 978-3-319-33693-0.

[2] Michael Armand et al. “A Modular Integration of SAT/SMT Solvers to Coq through Proof
Witnesses”. In: Certified Programs and Proofs. Ed. by Jean-Pierre Jouannaud and Zhong Shao.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 135–150. isbn: 978-3-642-25379-9.

[3] David Aspinall. “Proof General: A Generic Tool for Proof Development”. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Ed. by Susanne Graf and Michael Schwartzbach.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 38–43. isbn: 978-3-540-46419-8.

[4] Haniel Barbosa et al. “Extending SMT Solvers to Higher-Order Logic”. In: 2019.
[5] Mike Barnett et al. “Boogie: A Modular Reusable Verifier for Object-Oriented Programs”. In:

Formal Methods for Components and Objects. Ed. by Frank S. de Boer et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 364–387. isbn: 978-3-540-36750-5.

[6] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6. Tech.
rep. Available at www.SMT-LIB.org. Department of Computer Science, The University of Iowa,
2017.

[7] Clark Barrett, Leonardo de Moura, and Aaron Stump. “SMT-COMP: Satisfiability Modulo The-
ories Competition”. In: Computer Aided Verification. Ed. by Kousha Etessami and Sriram K. Raja-
mani. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 20–23. isbn: 978-3-540-31686-2.

[8] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version 2.0. Tech. rep.
Available at www.SMT-LIB.org. Department of Computer Science, The University of Iowa,
2010.

[9] Clark Barrett et al. “6 Years of SMT-COMP”. In: Journal of Automated Reasoning 50.3 (Mar. 2013),
pp. 243–277. issn: 1573-0670. doi: 10.1007/s10817-012-9246-5. url: https://doi.org/10.
1007/s10817-012-9246-5.

[10] Clark Barrett et al. “CVC4”. In: Proceedings of the 23rd International Conference on Computer Aided
Verification (CAV ’11). Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture
Notes in Computer Science. Snowbird, Utah. Springer, July 2011, pp. 171–177. url: http://
www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf.

[11] Yves Bertot and Pierre Castéran. Interactive theorem proving and program development. Coq’Art: The
Calculus of inductive constructions. 2004. isbn: 3540208542. doi: 10.1007/978-3-662-07964-5.

[12] Simon Blackburn, ed. The Oxford Dictionary of Philosophy. 2 rev ed. Oxford University Press,
2008.

[13] Sascha Böhme. “Proving Theorems of Higher-Order Logic with SMT Solvers”. Dissertation.
München: Technische Universität München, 2012.

[14] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda – A Functional Language
with Dependent Types”. In: Theorem Proving in Higher Order Logics. Ed. by Stefan Berghofer
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 73–78. isbn: 978-3-642-03359-9.

105

https://doi.org/10.1007/s10817-012-9246-5
https://doi.org/10.1007/s10817-012-9246-5
https://doi.org/10.1007/s10817-012-9246-5
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://doi.org/10.1007/978-3-662-07964-5

BIBLIOGRAPHY BIBLIOGRAPHY

[15] Krysia Broda et al. “Pandora: A Reasoning Toolbox using Natural Deduction Style”. In: Logic
Journal of the IGPL 15.4 (2007), pp. 293–304. doi: 10 . 1093 / jigpal / jzm020. eprint: /oup /
backfile/content-public/journal/jigpal/15/4/10.1093/jigpal/jzm020/2/jzm020.
pdf. url: http://dx.doi.org/10.1093/jigpal/jzm020.

[16] R. M. Burstall. “Proving Properties of Programs by Structural Induction”. In: The Computer
Journal 12.1 (1969), pp. 41–48. doi: 10 . 1093 / comjnl / 12 . 1 . 41. eprint: /oup / backfile /
content-public/journal/comjnl/12/1/10.1093/comjnl/12.1.41/2/12-1-41.pdf.
url: http://dx.doi.org/10.1093/comjnl/12.1.41.

[17] Samuel R. Buss. “On Herbrand’s theorem”. In: Logic and Computational Complexity. Ed. by
Daniel Leivant. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 195–209. isbn: 978-3-
540-44720-7.

[18] M. Clint and C. A. R. Hoare. “Program proving: Jumps and functions”. In: Acta Informatica 1.3
(Sept. 1972), pp. 214–224. issn: 1432-0525. doi: 10.1007/BF00288686. url: https://doi.org/
10.1007/BF00288686.

[19] The Coq Development Team. The Coq Proof Assistant Reference Manual, version 8.7. Oct. 2017.
url: http://coq.inria.fr.

[20] Olivier Danvy and Lasse R. Nielsen. “Defunctionalization at Work”. In: Proceedings of the 3rd
ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming.
PPDP ’01. Florence, Italy: ACM, 2001, pp. 162–174. isbn: 1-58113-388-X. doi: 10.1145/773184.
773202. url: http://doi.acm.org/10.1145/773184.773202.

[21] Data.Bool. url: http://hackage.haskell.org/package/base- 4.12.0.0/docs/Data-
Bool.html#v:otherwise.

[22] Data.List. url: http://hackage.haskell.org/package/base- 4.12.0.0/docs/Data-
List.html.

[23] Martin Davis and Hilary Putnam. “A Computing Procedure for Quantification Theory”. In: J.
ACM 7.3 (July 1960), pp. 201–215. issn: 0004-5411. doi: 10.1145/321033.321034. url: http:
//doi.acm.org/10.1145/321033.321034.

[24] Leonardo De Moura and Nikolaj Bjørner. “Satisfiability Modulo Theories: Introduction and
Applications”. In: Commun. ACM 54.9 (Sept. 2011), pp. 69–77. issn: 0001-0782. doi: 10.1145/
1995376.1995394. url: http://doi.acm.org/10.1145/1995376.1995394.

[25] “Defining new #lang Languages”. In: The Racket Guide. Chap. 17.3. url: https : / / docs .
racket-lang.org/guide/hash-languages.html.

[26] David Delahaye. “A Tactic Language for the System Coq”. In: Proceedings of the 7th International
Conference on Logic for Programming and Automated Reasoning. LPAR’00. Reunion Island, France:
Springer-Verlag, 2000, pp. 85–95. isbn: 3-540-41285-9. url: http://dl.acm.org/citation.
cfm?id=1765236.1765246.

[27] Sophia Drossopoulou and Mark Wheelhouse. Inductively Defined Functions. 2019.
[28] Sophia Drossopoulou and Mark Wheelhouse. Structural induction over Haskell data types. 2019.
[29] Sophia Drossopoulou and Mark Wheelhouse. Stylised Proofs. 2019.
[30] Sophia Drossopoulou and Mark Wheelhouse. Week 4 Assessed PMT - Structural Induction. 2019.
[31] Sophia Drossopoulou and Mark Wheelhouse. Week 4 PMT - Structural Induction. 2019.
[32] Sophia Drossopoulou and Mark Wheelhouse. Week 4 Tutorial - Structural Induction. 2019.
[33] Sophia Drossopoulou and Mark Wheelhouse. Week 5 Assessed PMT - Structural Induction. 2019.
[34] Sophia Drossopoulou and Mark Wheelhouse. Week 5 PMT - Induction over Recursively Defined

Sets, Relations and Functions. 2019.
[35] Sophia Drossopoulou and Mark Wheelhouse. Week 5 Tutorial - Induction over Recursively Defined

Relations. 2019.

106

https://doi.org/10.1093/jigpal/jzm020
/oup/backfile/content-public/journal/jigpal/15/4/10.1093/jigpal/jzm020/2/jzm020.pdf
/oup/backfile/content-public/journal/jigpal/15/4/10.1093/jigpal/jzm020/2/jzm020.pdf
/oup/backfile/content-public/journal/jigpal/15/4/10.1093/jigpal/jzm020/2/jzm020.pdf
http://dx.doi.org/10.1093/jigpal/jzm020
https://doi.org/10.1093/comjnl/12.1.41
/oup/backfile/content-public/journal/comjnl/12/1/10.1093/comjnl/12.1.41/2/12-1-41.pdf
/oup/backfile/content-public/journal/comjnl/12/1/10.1093/comjnl/12.1.41/2/12-1-41.pdf
http://dx.doi.org/10.1093/comjnl/12.1.41
https://doi.org/10.1007/BF00288686
https://doi.org/10.1007/BF00288686
https://doi.org/10.1007/BF00288686
http://coq.inria.fr
https://doi.org/10.1145/773184.773202
https://doi.org/10.1145/773184.773202
http://doi.acm.org/10.1145/773184.773202
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Bool.html#v:otherwise
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Bool.html#v:otherwise
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
https://doi.org/10.1145/321033.321034
http://doi.acm.org/10.1145/321033.321034
http://doi.acm.org/10.1145/321033.321034
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
http://doi.acm.org/10.1145/1995376.1995394
https://docs.racket-lang.org/guide/hash-languages.html
https://docs.racket-lang.org/guide/hash-languages.html
http://dl.acm.org/citation.cfm?id=1765236.1765246
http://dl.acm.org/citation.cfm?id=1765236.1765246

BIBLIOGRAPHY BIBLIOGRAPHY

[36] Bruno Dutertre. “Yices 2.2”. In: Computer-Aided Verification (CAV’2014). Ed. by Armin Biere and
Roderick Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer, July 2014, pp. 737–
744.

[37] Burak Ekici et al. “SMTCoq: A Plug-In for Integrating SMT Solvers into Coq”. In: Computer
Aided Verification. Ed. by Rupak Majumdar and Viktor Kunčak. Cham: Springer International
Publishing, 2017, pp. 126–133. isbn: 978-3-319-63390-9.

[38] Emacs Mode —Agda 2.5.4.2 documentation. 2018. url: https://agda.readthedocs.io/en/v2.
5.4.2/tools/emacs-mode.html.

[39] Express - Node.js web application framework. url: https://expressjs.com/.
[40] Daniel P. Friedman and David Thrane Christiansen. The Little Typer. The MIT Press, 2018.
[41] Daniel P. Friedman and Carl Eastlund. The Little Prover. The MIT Press, 2015.
[42] Jean H Gallier. Logic for computer science : foundations of automatic theorem proving. eng. Harper &

Row computer science and technology series. New York ; London: Harper & Row, 1986. isbn:
0060422254.

[43] Olivier Gasquet, François Schwarzentruber, and Martin Strecker. “Panda: A Proof Assistant
in Natural Deduction for All. A Gentzen Style Proof Assistant for Undergraduate Students”.
In: Tools for Teaching Logic. Ed. by Patrick Blackburn et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 85–92. isbn: 978-3-642-21350-2.

[44] Gerhard Gentzen. “Investigations into Logical Deduction”. In: American Philosophical Quarterly
1.4 (1964), pp. 288–306. issn: 00030481. url: http://www.jstor.org/stable/20009142.

[45] Gerhard Gentzen. “Untersuchungen über das logische Schließen. I”. In: Mathematische Zeitschrift
39.1 (Dec. 1935), pp. 176–210. issn: 1432-1823. doi: 10.1007/BF01201353. url: https://doi.
org/10.1007/BF01201353.

[46] Getting Started with Z3: A Guide. url: https://rise4fun.com/z3/tutorial.
[47] GitHub - the-little-prover/j-bob. url: https://github.com/the-little-prover/j-bob.
[48] GitHub - the-little-typer/pie: The Pie language, which accompanies The Little Typer by Friedman and

Christiansen. 2018. url: https://github.com/the-little-typer/pie.
[49] Michael J. Gordan, Arthur J. Milner, and Christopher Wadsworth. Edinburgh LCF. Lecture

Notes in Computer Science. Springer, 1979. isbn: 978-3-540-09724-2. doi: https://doi.org/
10.1007/3-540-09724-4.

[50] Tim Green et al. iProve - Final Report. 2019.
[51] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun. ACM 12.10

(Oct. 1969), pp. 576–580. issn: 0001-0782. doi: 10.1145/363235.363259. url: http://doi.acm.
org/10.1145/363235.363259.

[52] Ian Hodkinson. Extra logic exercises. 2018.
[53] Alfred Horn. “On Sentences Which are True of Direct Unions of Algebras”. In: The Journal of

Symbolic Logic 16.1 (1951), pp. 14–21. issn: 00224812. url: http://www.jstor.org/stable/
2268661.

[54] How do I enable Java in my web browser? url: https://java.com/en/download/help/enable-
browser.xml.

[55] Michael Huth and Mark Ryan. Logic in Computer Science. Modelling and Reasoning about Systems.
Cambridge University Press, 2004.

[56] Stanisław Jaśkowski. “On the Rules of Suppositions in Formal Logic”. In: I�tepmccall1967. Ox-
ford at the Clarendon Press, 1934.

[57] M. Kaufmann and J. Strother Moore. “ACL2: an industrial strength version of Nqthm”. In:
Proceedings of 11th Annual Conference on Computer Assurance. COMPASS ’96. June 1996, pp. 23–
34. doi: 10.1109/CMPASS.1996.507872.

107

https://agda.readthedocs.io/en/v2.5.4.2/tools/emacs-mode.html
https://agda.readthedocs.io/en/v2.5.4.2/tools/emacs-mode.html
https://expressjs.com/
http://www.jstor.org/stable/20009142
https://doi.org/10.1007/BF01201353
https://doi.org/10.1007/BF01201353
https://doi.org/10.1007/BF01201353
https://rise4fun.com/z3/tutorial
https://github.com/the-little-prover/j-bob
https://github.com/the-little-typer/pie
https://doi.org/https://doi.org/10.1007/3-540-09724-4
https://doi.org/https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://www.jstor.org/stable/2268661
http://www.jstor.org/stable/2268661
https://java.com/en/download/help/enable-browser.xml
https://java.com/en/download/help/enable-browser.xml
https://doi.org/10.1109/CMPASS.1996.507872

BIBLIOGRAPHY BIBLIOGRAPHY

[58] K. Rustan M. Leino. “Automating Induction with an SMT Solver”. In: Verification, Model Check-
ing, and Abstract Interpretation. Ed. by Viktor Kuncak and Andrey Rybalchenko. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 315–331. isbn: 978-3-642-27940-9.

[59] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional Correctness”. In:
Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by Edmund M. Clarke and An-
drei Voronkov. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 348–370. isbn: -78-3-
642-17511-4.

[60] J. Mccarthy. “Towards a Mathematical Science of Computation”. In: In IFIP Congress. North-
Holland, 1962, pp. 21–28.

[61] John McCarthy. “A Basis For a Mathematical Theory of Computation”. In: Computer Program-
ming and Formal Systems. Ed. by Paul Braffort and David Hirschberg. North Holland, 1963,
pp. 33–70.

[62] John McCarthy. “Recursive Functions of Symbolic Expressions and Their Computation by Ma-
chine, Part I”. In: Commun. ACM 3.4 (Apr. 1960), pp. 184–195. issn: 0001-0782. doi: 10.1145/
367177.367199. url: http://doi.acm.org/10.1145/367177.367199.

[63] Matthew W. Moskewicz et al. “Chaff: Engineering an Efficient SAT Solver”. In: Proceedings of
the 38th Annual Design Automation Conference. DAC ’01. Las Vegas, Nevada, USA: ACM, 2001,
pp. 530–535. isbn: 1-58113-297-2. doi: 10.1145/378239.379017. url: http://doi.acm.org/
10.1145/378239.379017.

[64] Leonardo de Moura and Nikolaj Bjørner. “Satisfiability Modulo Theories: An Appetizer”. In:
Formal Methods: Foundations and Applications. Ed. by Marcel Vinícius Medeiros Oliveira and
Jim Woodcock. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 23–36. isbn: 978-3-
642-10452-7.

[65] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In: Tools and Algorithms
for the Construction and Analysis of Systems. Ed. by C. R. Ramakrishnan and Jakob Rehof. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340. isbn: 978-3-540-78800-3.

[66] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Edinburgh LCF. Lecture Notes in
Computer Science. Springer, 2002. isbn: 978-3-540-43376-7. doi: https://doi.org/10.1007/
3-540-45949-9.

[67] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Berlin, Heidelberg: Springer-Verlag, 2002. isbn: 3-540-43376-7.

[68] Giuseppe Peano. Arithmetices principia: nova methodo exposita. Fratres Bocca, 1889.
[69] Francis Jeffry Pelletier and Allen P. Hazen. “A History of Natural Deduction”. In: Logic: A

History of its Central Concepts. Ed. by Dov M. Gabbay, Francis Jeffry Pelletier, and John Woods.
Vol. 11. Handbook of the History of Logic. North-Holland, 2012, pp. 341–414. doi: https:
//doi.org/10.1016/B978-0-444-52937-4.50007-1. url: http://www.sciencedirect.
com/science/article/pii/B9780444529374500071.

[70] Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Publications, 1965.
[71] React ‒A JavaScript library for building user interfaces. url: https://reactjs.org/.
[72] Andrew Reynolds and Viktor Kuncak. “Induction for SMT Solvers”. In: Verification, Model

Checking, and Abstract Interpretation. Ed. by Deepak D’Souza, Akash Lal, and Kim Guldstrand
Larsen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 80–98. isbn: 978-3-662-46081-
8.

[73] Andrew Reynolds and Viktor Kuncak. Induction for SMT Solvers (VMCAI 2015 submission). url:
http://lara.epfl.ch/~reynolds/VMCAI2015-ind/.

[74] Alessandra Russo. 140 Logic exercises 4. 2018.
[75] Alessandra Russo and Ian Hodkinson. Lecture notes: C140 Logic. 2018.

108

https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199
https://doi.org/10.1145/378239.379017
http://doi.acm.org/10.1145/378239.379017
http://doi.acm.org/10.1145/378239.379017
https://doi.org/https://doi.org/10.1007/3-540-45949-9
https://doi.org/https://doi.org/10.1007/3-540-45949-9
https://doi.org/https://doi.org/10.1016/B978-0-444-52937-4.50007-1
https://doi.org/https://doi.org/10.1016/B978-0-444-52937-4.50007-1
http://www.sciencedirect.com/science/article/pii/B9780444529374500071
http://www.sciencedirect.com/science/article/pii/B9780444529374500071
https://reactjs.org/
http://lara.epfl.ch/~reynolds/VMCAI2015-ind/

BIBLIOGRAPHY BIBLIOGRAPHY

[76] K. Rustan and M. Leino. “Developing Verified Programs with Dafny”. In: Verified Software:
Theories, Tools, Experiments. Ed. by Rajeev Joshi, Peter Müller, and Andreas Podelski. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 82–82. isbn: 978-3-642-27705-4.

[77] Peter Simons. “Jan Łukasiewicz”. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N.
Zalta. Spring 2017. Metaphysics Research Lab, Stanford University, 2017.

[78] SMT-COMP 2018 Results. url: http://smtcomp.sourceforge.net/2018/results- toc.
shtml.

[79] William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. “Zeno: An Automated Prover
for Properties of Recursive Data Structures”. In: Tools and Algorithms for the Construction and
Analysis of Systems. Ed. by Cormac Flanagan and Barbara König. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 407–421. isbn: 978-3-642-28756-5.

[80] Ed. T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format. RFC 8259. 2017. url:
https://tools.ietf.org/html/rfc8259.

[81] Robert W. Floyd. “Assigning Meanings to Programs”. In: Mathematical Aspects of Computer
Science, Proceedings of Symposia in Applied Mathematics 19 (1967). doi: 10.1090/psapm/019/
0235771.

[82] Makarius Wenzel. “Isabelle/jEdit – A Prover IDE within the PIDE Framework”. In: Intelligent
Computer Mathematics. Ed. by Johan Jeuring et al. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 468–471. isbn: 978-3-642-31374-5.

[83] Frank Zenker et al. “Designing an Introductory Course to Elementary Symbolic Logic within
the Blackboard E-learning Environment”. In: Tools for Teaching Logic. Ed. by Patrick Blackburn
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 249–255. isbn: 978-3-642-21350-
2.

109

http://smtcomp.sourceforge.net/2018/results-toc.shtml
http://smtcomp.sourceforge.net/2018/results-toc.shtml
https://tools.ietf.org/html/rfc8259
https://doi.org/10.1090/psapm/019/0235771
https://doi.org/10.1090/psapm/019/0235771

Appendix A

Translation into SMT-LIB Script

Notice that when names of functions, terms, types, propositions, and predicates are trans-
lated into SMT-LIB script, we add prefixes func-, term-, type-, prop-, and pred- to them,
to avoid name clashing.

Definition A.1. Translation of typing statements into SMT-LIB script

Jτ ∶∶ TypeKSMT ≜ (declare-sort type-τ 0)Jt ∶ τKSMT ≜ (declare-const term-t type-τ)J f ∶ τ1⋯τn → σKSMT ≜ (declare-fun func- f (type-τ1 ⋯ type-τn) type-σ)JP ∶ τ1⋯τn → PropKSMT ≜ (declare-fun func- f (type-τ1 ⋯ type-τn) Bool)Jδ ∶∶ CKSMT ≜ (declare-datatype type-δ (Jcons1Kc ⋯ JconsnKc))

where C = {cons1,⋯, consn}, and

JaKc ≜ (term-a)Jc ∶ τ1⋯τnKc ≜ (func-c (c-0 type-τ1) ⋯ (c-(n − 1) type-τn))

Definition A.2. Translation of terms into SMT-LIB script

JcKSMT ≜ term-c c is a constantJvKSMT ≜ term-v v is a variableJ f (t1,⋯, tn)KSMT ≜ (func- f Jt1KSMT ⋯ JtnKSMT)Jif(ϕC, tt, t f)KSMT ≜ (ite JϕCKSMT JttKSMT Jt f KSMT)

Definition A.3. Translation of formulae into SMT-LIB script

JPKSMT ≜ prop-P P is a propositionJ¬ϕKSMT ≜ (not JϕKSMT)Jϕ1 ∧ ϕ2KSMT ≜ (and Jϕ1KSMT Jϕ2KSMT)Jϕ1 ∨ ϕ2KSMT ≜ (or Jϕ1KSMT Jϕ2KSMT)

110

Chapter A. Translation into SMT-LIB Script

Jϕ1 → ϕ2KSMT ≜ (=> Jϕ1KSMT Jϕ2KSMT)Jϕ1 ↔ ϕ2KSMT ≜ (= Jϕ1KSMT Jϕ2KSMT)J∀t ∶ τ ϕKSMT ≜ (forall ((term-t type-τ)) JϕKSMT)J∃t ∶ τ ϕKSMT ≜ (exists ((term-t type-τ)) JϕKSMT)JP(t1,⋯, tn)KSMT ≜ (pred-P Jt1KSMT ⋯ JtnKSMT)Jt1 = t2KSMT ≜ (= Jt1KSMT Jt2KSMT)

111

Appendix B

Theorems

B.1 Logic

Theorem B.1. P → Q ¬Q → ¬P

Proof. Proven in example-propositional-3.prf.

Theorem B.2. ¬(¬P ∧¬Q) P ∨Q

Proof. Proven in example-propositional-4.prf.

Theorem B.3. (P → Q)∨ (Q → P)

Proof. Proven in example-propositional-5.prf.

Theorem B.4. ∀x.∃y.[P(y)∧ x ≠ y] is equivalent to ∃x.∃y.[P(x)∧ P(y)∧ x ≠ y]

Proof. Proven in example-first-order-4.prf.

Theorem B.5. ∀u.g(f (u)) = h(f (u)),∀z.∃v. f (v) = z ∀v.g(v) = h(v)

Proof. Proven in example-first-order-5.prf.

Theorem B.6. ∀x.∀y.[f (g(x)) = f (g(y))→ x = y] ∀u.∀v.[g(u) = g(v)→ u = v]

Proof. Proven in example-first-order-6.prf.

Theorem B.7. ∀x.∀y.[x = y → f (x) = f (y)]

Proof. Proven in example-first-order-7.prf.

Theorem B.8. ∀x.[x = a ∨ x = b], g(a) = b,∀x.∀y.[g(x) = g(y)→ x = y] g(g(a)) = a

Proof. Proven in example-first-order-8.prf.

B.2 Reasoning about Programs
In this chapter we list the full set of theorems we have extracted from the reasoning about
programs course material.

For the theorems we have proven, we give the name of the proof file, which is included
in examples folder in the code repository. For the others, we explain the reason why our
system is incapable of proving them.

112

B.2. REASONING ABOUT PROGRAMS Chapter B. Theorems

Theorems from ‘Structural induction over Haskell data types’ [28]

Theorem B.9. subList removes elements from a list

∀xs ∶ List.∀ys ∶ List.∀z ∶ Int.[elem(z, ys) = t → elem(z, subList(xs, ys)) = f]

where

elem(x, nil) = f

elem(x, cons(y, ys)) = { t if x = y
elem(x, ys) otherwise

subList(nil, ys) = nil

subList(cons(x, xs), ys) = { subList(xs, ys) if elem(x, ys) = t
cons(x, subList(xs, ys)) otherwise

Proof. Proven in theorem-9.prf.

Theorem B.10. Append then reverse is equal to reverse then append

∀xs ∶ List.∀ys ∶ List.reverse(append(xs, ys)) = append(reverse(ys), reverse(xs))

where

reverse(nil) = nil
reverse(cons(x, xs)) = append(reverse(xs), cons(x, nil))

Proof. Proven in theorem-10.prf. A detailed walkthrough of the proof is available in sec-
tion E.4.1.

Theorem B.11. sum and sumTr are equal

∀is ∶ List.sum(is) = sumTr(is, 0)

where

sum(nil) = 0
sum(cons(i, is)) = i + sum(is)

sumTr(nil, k) = k
sumTr(cons(i, is), k) = sumTr(is, i + k)

Proof. Proven in theorem-11.prf. A detailed walkthrough of the proof is available in sec-
tion E.4.1.

Theorems from ‘Week 4 Tutorial - Structural Induction’ [32]

Theorem B.12. Addition of natural numbers is commutative

∀m ∶ Nat.∀n ∶ Nat.add(m, n) = add(n, m)

where

add(z, j) = j
sum(s(i), j) = s(add(i, j))

113

B.2. REASONING ABOUT PROGRAMS Chapter B. Theorems

Proof. Proven in theorem-12.prf.

Theorem B.13. Two evaluation strategies are the same

∀tm ∶ Term.ValPositive(tm)
→

∀tm ∶ Term.eval(tm) = sign(eval(rip(tm)), pos(tm))

where

Term ∶∶ {val ∶ Int, min ∶ Term, mul ∶ Term Term}
ValPositive(val(i))↔ i ≥ 0

ValPositive(min(tm))↔ ValPositive(tm)
ValPositive(mul(t1, t2))↔ ValPositive(t1)∧ValPositive(t2)

eval(val(i)) = i
eval(min(tm)) = −eval(tm)

eval(mul(t1, t2)) = eval(t1) ∗ eval(t2)
rip(val(i)) = val(i)

rip(min(tm)) = rip(tm)
rip(mul(t1, t2)) = mul(rip(t1), rip(t2))

pos(val(i)) = { t if x ≥ 0
f otherwise

pos(min(tm)) = not(pos(tm))
pos(mul(t1, t2)) = i f f (pos(t1), pos(t2))

sign(i, b) = { i if b = t
−i if b = f

Proof. Proven in theorem-13.prf.

Theorems from ‘Week 4 PMT - Structural Induction’ [31]

Theorem B.14. ‘RevConcat’

∀xs ∶ List.∀x ∶ Int.reverse(append(xs, cons(x, nil))) = cons(x, reverse(xs))

where reverse is as defined in theorem B.10.

Proof. Proven in theorem-14.prf.

Theorem B.15. ‘RevRev’

∀xs ∶ List.reverse(reverse(xs)) = xs

where reverse is as defined in theorem B.10.

Proof. Proven in theorem-15.prf.

114

B.2. REASONING ABOUT PROGRAMS Chapter B. Theorems

Theorem B.16. reverseA can do what reverse does

∀xs ∶ List.reverseA(xs, nil) = reverse(xs)

where reverse is as defined in theorem B.10, and

reverseA(nil, ys) = ys
reverseA(cons(x, xs), ys) = reverseA(xs, cons(x, ys))

Proof. Proven in theorem-16.prf.

Theorem B.17. g4 checks whether or not a list is a palindrome

∀xs ∶ List.g4(xs) = t↔ Pal(xs)

where reverse is as defined in theorem B.10, and

∀xs ∶ List.Pal(xs)↔ ∃ys ∶ List.xs = append(ys, reverse(ys))
∨∃y ∶ Int.xs = append(ys, append(cons(y, nil), reverse(ys)))

g4(xs) = g5(xs, nil)
g5(nil, ys) = f

g5(cons(x, xs), ys) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t if cons(x, xs) = ys
t if xs = ys
g5(xs, cons(x, ys)) otherwise

Proof. Proven in theorem-17.prf.

Theorems from ‘Week 4 Assessed PMT - Structural Induction’ [30]

Theorem B.18. size and length does the same

∀t ∶ Tree.size(t) = length(enc(t))

where a List is a list of Codes, and

Tree ∶∶ lea f ∶ Int, node ∶ Tree Tree
Code ∶∶ nd, l f ∶ Int

enc(lea f (x)) = cons(lea f (x), nil)
enc(node(t1, t2)) = append(cons(nd, enc(t1)), enc(t2))

size(lea f (x)) = 1
size(node(t1, t2)) = 1+ size(t1)+ size(t2)

Proof. Proven in theorem-18.prf.

Theorem B.19. dec is reverse of enc

∀t ∶ Tree.t = dec(enc(t))

where Tree, Code, and enc are as defined in the previous theorem, and

Pair ∶∶ p ∶ Tree List

115

B.2. REASONING ABOUT PROGRAMS Chapter B. Theorems

f st(p(x, y)) = x snd(p(x, y)) = y

dec(t) = { f st(decAux(t)) if snd(decAux(t)) = nil
lea f (0) otherwise

decAux(cons(l f (i), cds)) = p(lea f (i), cds)

decAux(cons(nd, cds)) = p(node(f st(decAux(cds)),
node(f st(decAux(snd(decAux(cds))))),
snd(decAux(snd(dexAux(cds)))))

Proof. Proven in theorem-19.prf.

Theorem B.20. decd is reverse of encd

∀t ∶ Tree.t = decd(encd(t))

where Tree, Code, are as defined in the previous theorems, and

ListC ∶∶ nilC, consC ∶ Code ListC
ListT ∶∶ nilT, consT ∶ Tree ListT

appendC and appendT are defined in the obvious way for ListC and ListT
encd(lea f (i)) = consC(l f (i), nilC)

encd(node(t1, t2)) = appendC(encd(t1), appendC(encd(t2), cons(nd, nilC)))
decd(cds) = decdAux(cds, nilT)

decdAux(nilC, consT(t, ts)) = t
decdAux(consC(l f (i), cds), ts) = decdAux(cds, cons(lea f (i), ts))

decdAux(consC(nd, cds), consT(t1, consT(t2, ts))) = decdAux(cds, consT(node(t1, t2), ts))

Proof. Proven in theorem-20.prf.

Theorems from ‘Inductively Defined Functions’ [27]

Theorem B.21. g performs multiplication

∀i ∶ Int.∀j ∶ Int.[i ≥ 0∧ j ≥ 0 → g(i, j) = i ∗ j]

where

g(i, j) = g′(i, j, 0, 0)

g′(i, j, cnt, acc) = { acc if cnt ≥ i
g′(i, j, 1+ cnt, j + acc) otherwise

Proof. Proven in theorem-21.prf. A detailed walkthrough of the proof is available in sec-
tion E.4.2.

116

B.2. REASONING ABOUT PROGRAMS Chapter B. Theorems

Theorem B.22. divMod finds the quotient and remainder

∀m ∶ Int.∀n ∶ Int.∀k1 ∶ Int.∀k2 ∶ Int.[p(k1, k2) = divMod(m, n) → m = k1 ∗ n + k2∧ k2 < n]

where

Pair ∶∶ p ∶ Tree List
f st(p(x, y)) = x snd(p(x, y)) = y

divMod(m, n) = dm(m, n, 0, 0)

dm(m, n, cnt, acc) = { p(cnt, m − acc) if acc + n > m
dm(m, n, cnt + 1, acc + n) otherwise

Proof. Proven in theorem-22.prf.

Theorem B.23. m is a power function

∀x ∶ Int.[x ≥ 0→ m(x) = 2x]

where

m(x) = m′(x, 0, 1)

m′(i, cnt, acc) = { acc if cnt ≤ i
m′(i, cnt + 1, 2 ∗ acc) otherwise

We did not produce a proof as SMT-LIB does not offer the power operator. Any proof
would thus require us to define out own ‘trusted’ power operation, which would defeat the
purpose of proving the correctness of a power function.

Theorems from ‘Week 5 Tutorial - Induction over Recursively Defined Relations’
[35]

Theorem B.24. f and g are equivalent

∀n ∶ Int.[n ≥ 0→ f (n) = g(n)]

where

f (n) = { 10+ 10 ∗ n if 0 ≤ n ∧ n < 3
f (n − 1) ∗ f (n − 3) otherwise

g(n) = { 10+ 10 ∗ n if 0 ≤ n ∧ n < 3
h(n, 2, 30, 20, 10) otherwise

h(n, cnt, k1, k2, k3) = { k1 if n = cnt
h(n, cnt + 1, k1 ∗ k3, k1, k2) otherwise

We cannot produce a proof because the proof would require induction the definitions of
both f and h, which is not supported by Emmy.

117

B.2. REASONING ABOUT PROGRAMS Chapter B. Theorems

Theorems from ‘Week 5 PMT - Induction over Recursively Defined Sets, Rela-
tions and Functions’ [34]

Theorem B.25. min is commutative

∀i ∶ Nat.∀j ∶ Nat.∀k ∶ Nat.[k = min(i, j) → k = min(j, i)]

where

∀n ∶ Nat.min(n, z) = z
∀n ∶ Nat.min(z, n) = z

∀n ∶ Nat.∀n′ ∶ Nat.∀k ∶ Nat.[k = min(n, n′) → s(k) = min(s(n), s(n′))]

The proof requires an induction over k, which is not easy to perform as k is quantified
inside two other quantifications. We therefore prove

∀k ∶ Nat.∀i ∶ Nat.∀j ∶ Nat.[k = min(i, j) → k = min(j, i)]

instead.

Proof. Proven in theorem-25.prf.

The way in which min is defined makes the proof somehow complicated. We included
an alternative, simpler proof in theorem-25.prf, written using function definitions.

Theorem B.26. Induction principle of odd numbers implies induction principle of natural
numbers

[P(s(z)) ∧ ∀m ∶ Nat.[Odd(m)∧ P(m) → P(s(s(m)))]

→ ∀n ∶ Nat.[Odd(n)→ P(n)]]

→

[[Odd(z)→ P(z)] ∧ ∀m ∶ Nat.[[Odd(m)→ P(m)] → [Odd(s(m))→ P(s(m))]]

→ ∀n ∶ Nat.[Odd(n)→ P(n)]]

where

Odd(s(z))
∀n ∶ Nat.[Odd(n)→ Odd(s(n))]

Proof. Proven in theorem-26.prf.

Theorems from ‘Week 5 Assessed PMT’ [33]

This coursework asks for a proof of theorem B.22, which we have already proven.

118

Appendix C

Example Programs for Section 9.3.3

An induction principle for theorem 9.4, defined in section 9.3.3, can be written as:

∀l2 ∶ List.length(append(nil, l2)) = length(nil)+ length(l2) (C.1)
∧

∀l1 ∶ List.[∀l2 ∶ List.length(append(l1, l2)) = length(l1)+ length(l2)

→

∀i ∶ Int.∀l2 ∶ List.length(append(cons(i, l1), l2)) = length(cons(i, l1))+ length(l2)]

We denote C.1 by ϕ.
We produced some semantically equivalent variations of ϕ, with minor syntactic differ-

enced with ϕ. We denote the ith variation as ϕ′i . We then used Emmy to check whether or
not Γ, ∆, ϕ → ϕ′i holds, using Z3 as the underlying SMT solver.

The summary of results from all variations is as below:

Rename? Swap? Definition? Proven?
1 ✓∗
2 + ✓
3 + ✓
4 + + ✓
5 + ✓∗
6 + + ✓
7 + +
8 + + + ✓

Table C.1: Summary of results.

Where

Rename means that we renamed the quantified variables in ϕ′, like from ∀x ∶ τ.ϕ to ∀y ∶
τ.[y/x]ϕ.

Swap means that we swapped the induction cases in ϕ′. like from A ∧ B to B ∧ A.

Definition means that we included function definitions in the justifications when proving.

119

Chapter C. Example Programs for Section 9.3.3

Proven means that the entailment is proven. ‘✓∗’ means that Emmy did not call the SMT
solver because the two formulae are equivalent according to definition 4.7.

In a nutshell, the entailment is only not proved when we renamed quantified variables,
swapped induction cases, but did not provide function definitions as justifications.

1. ϕ is exactly the same as ϕ′1. SMT solver is not called.

2. (set-option :timeout 2000)
(set-logic AUFNIA)
(declare-sort type-Atom 0)
(declare-datatype
type-List
((term-nil) (func-cons (cons-0 Int) (cons-1 type-List))))

(declare-fun func-append (type-List type-List) type-List)
(declare-fun func-length (type-List) Int)
(assert
(and (forall

((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2))))

(forall
((term-l1 type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l1 term-l2))
(+ (func-length term-l1) (func-length term-l2))))

(forall
((term-i Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i term-l1) term-l2))
(+
(func-length (func-cons term-i term-l1))
(func-length term-l2)))))))))

(assert
(forall
((term-l+0 type-List))
(= (func-append term-nil term-l+0) term-l+0)))

(assert
(forall
((term-l2+0 type-List))
(forall
((term-l1+0 type-List))
(forall
((term-i+0 Int))
(=
(func-append (func-cons term-i+0 term-l1+0) term-l2+0)
(func-cons term-i+0 (func-append term-l1+0 term-l2+0)))))))

(assert (= (func-length term-nil) 0))
(assert
(forall
((term-l+1 type-List))
(forall
((term-i+1 Int))
(=

120

Chapter C. Example Programs for Section 9.3.3

(func-length (func-cons term-i+1 term-l+1))
(+ 1 (func-length term-l+1))))))

(assert
(not
(and (forall

((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2))))

(forall
((term-l1 type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l1 term-l2))
(+ (func-length term-l1) (func-length term-l2))))

(forall
((term-i Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i term-l1) term-l2))
(+
(func-length (func-cons term-i term-l1))
(func-length term-l2))))))))))

(check-sat)

Output: (unsat)

3. (set-option :timeout 2000)
(set-logic AUFNIA)
(declare-sort type-Atom 0)
(declare-datatype
type-List
((term-nil) (func-cons (cons-0 Int) (cons-1 type-List))))

(declare-fun func-append (type-List type-List) type-List)
(declare-fun func-length (type-List) Int)
(assert
(and (forall

((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2))))

(forall
((term-l1 type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l1 term-l2))
(+ (func-length term-l1) (func-length term-l2))))

(forall
((term-i Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i term-l1) term-l2))
(+
(func-length (func-cons term-i term-l1))
(func-length term-l2)))))))))

121

Chapter C. Example Programs for Section 9.3.3

(assert
(not
(and (forall

((term-l1 type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l1 term-l2))
(+ (func-length term-l1) (func-length term-l2))))

(forall
((term-i Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i term-l1) term-l2))
(+
(func-length (func-cons term-i term-l1))
(func-length term-l2)))))))

(forall
((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2)))))))

(check-sat)

Output: (unsat)

4. (set-option :timeout 2000)
(set-logic AUFNIA)
(declare-sort type-Atom 0)
(declare-datatype
type-List
((term-nil) (func-cons (cons-0 Int) (cons-1 type-List))))

(declare-fun func-append (type-List type-List) type-List)
(declare-fun func-length (type-List) Int)
(assert
(and (forall

((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2))))

(forall
((term-l1 type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l1 term-l2))
(+ (func-length term-l1) (func-length term-l2))))

(forall
((term-i Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i term-l1) term-l2))
(+
(func-length (func-cons term-i term-l1))
(func-length term-l2)))))))))

(assert
(forall

122

Chapter C. Example Programs for Section 9.3.3

((term-l+0 type-List))
(= (func-append term-nil term-l+0) term-l+0)))

(assert
(forall
((term-l2+0 type-List))
(forall
((term-l1+0 type-List))
(forall
((term-i+0 Int))
(=
(func-append (func-cons term-i+0 term-l1+0) term-l2+0)
(func-cons term-i+0 (func-append term-l1+0 term-l2+0)))))))

(assert (= (func-length term-nil) 0))
(assert
(forall
((term-l+1 type-List))
(forall
((term-i+1 Int))
(=
(func-length (func-cons term-i+1 term-l+1))
(+ 1 (func-length term-l+1))))))

(assert
(not
(and (forall

((term-l1 type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l1 term-l2))
(+ (func-length term-l1) (func-length term-l2))))

(forall
((term-i Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i term-l1) term-l2))
(+
(func-length (func-cons term-i term-l1))
(func-length term-l2)))))))

(forall
((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2)))))))

(check-sat)

Output: (unsat)

5. ϕ is exactly the same as ϕ′5. SMT solver is not called.

6. (set-option :timeout 2000)
(set-logic AUFNIA)
(declare-sort type-Atom 0)
(declare-datatype
type-List
((term-nil) (func-cons (cons-0 Int) (cons-1 type-List))))

(declare-fun func-append (type-List type-List) type-List)
(declare-fun func-length (type-List) Int)
(assert
(and (forall

123

Chapter C. Example Programs for Section 9.3.3

((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2))))

(forall
((term-l1 type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l1 term-l2))
(+ (func-length term-l1) (func-length term-l2))))

(forall
((term-i Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i term-l1) term-l2))
(+
(func-length (func-cons term-i term-l1))
(func-length term-l2)))))))))

(assert
(forall
((term-l+0 type-List))
(= (func-append term-nil term-l+0) term-l+0)))

(assert
(forall
((term-l2+0 type-List))
(forall
((term-l1+0 type-List))
(forall
((term-i+0 Int))
(=
(func-append (func-cons term-i+0 term-l1+0) term-l2+0)
(func-cons term-i+0 (func-append term-l1+0 term-l2+0)))))))

(assert (= (func-length term-nil) 0))
(assert
(forall
((term-l+1 type-List))
(forall
((term-i+1 Int))
(=
(func-length (func-cons term-i+1 term-l+1))
(+ 1 (func-length term-l+1))))))

(assert
(not
(and (forall

((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2))))

(forall
((term-l- type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l- term-l2))
(+ (func-length term-l-) (func-length term-l2))))

(forall

124

Chapter C. Example Programs for Section 9.3.3

((term-i- Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i- term-l-) term-l2))
(+
(func-length (func-cons term-i- term-l-))
(func-length term-l2))))))))))

(check-sat)

Output: (unsat)

7. (set-option :timeout 2000)
(set-logic AUFNIA)
(declare-sort type-Atom 0)
(declare-datatype
type-List
((term-nil) (func-cons (cons-0 Int) (cons-1 type-List))))

(declare-fun func-append (type-List type-List) type-List)
(declare-fun func-length (type-List) Int)
(assert
(and (forall

((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2))))

(forall
((term-l1 type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l1 term-l2))
(+ (func-length term-l1) (func-length term-l2))))

(forall
((term-i Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i term-l1) term-l2))
(+
(func-length (func-cons term-i term-l1))
(func-length term-l2)))))))))

(assert
(not
(and (forall

((term-l- type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l- term-l2))
(+ (func-length term-l-) (func-length term-l2))))

(forall
((term-i- Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i- term-l-) term-l2))
(+
(func-length (func-cons term-i- term-l-))

125

Chapter C. Example Programs for Section 9.3.3

(func-length term-l2)))))))
(forall
((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2)))))))

(check-sat)

Output: (unknown)

8. (set-option :timeout 2000)
(set-logic AUFNIA)
(declare-sort type-Atom 0)
(declare-datatype
type-List
((term-nil) (func-cons (cons-0 Int) (cons-1 type-List))))

(declare-fun func-append (type-List type-List) type-List)
(declare-fun func-length (type-List) Int)
(assert
(and (forall

((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2))))

(forall
((term-l1 type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l1 term-l2))
(+ (func-length term-l1) (func-length term-l2))))

(forall
((term-i Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i term-l1) term-l2))
(+
(func-length (func-cons term-i term-l1))
(func-length term-l2)))))))))

(assert
(forall
((term-l+0 type-List))
(= (func-append term-nil term-l+0) term-l+0)))

(assert
(forall
((term-l2+0 type-List))
(forall
((term-l1+0 type-List))
(forall
((term-i+0 Int))
(=
(func-append (func-cons term-i+0 term-l1+0) term-l2+0)
(func-cons term-i+0 (func-append term-l1+0 term-l2+0)))))))

(assert (= (func-length term-nil) 0))
(assert
(forall
((term-l+1 type-List))
(forall
((term-i+1 Int))

126

Chapter C. Example Programs for Section 9.3.3

(=
(func-length (func-cons term-i+1 term-l+1))
(+ 1 (func-length term-l+1))))))

(assert
(not
(and (forall

((term-l- type-List))
(=>
(forall
((term-l2 type-List))
(=
(func-length (func-append term-l- term-l2))
(+ (func-length term-l-) (func-length term-l2))))

(forall
((term-i- Int))
(forall
((term-l2 type-List))
(=
(func-length (func-append (func-cons term-i- term-l-) term-l2))
(+
(func-length (func-cons term-i- term-l-))
(func-length term-l2)))))))

(forall
((term-l2 type-List))
(=
(func-length (func-append term-nil term-l2))
(+ (func-length term-nil) (func-length term-l2)))))))

(check-sat)

Output: (unsat)

Notice that we raised the time limit to 2000ms when checking these entailments.

127

Appendix D

Program Language

Here we specify the concrete syntax of the language described in chapter 5, using (extended)
BNF notation, where ‘+’ means the repeating a rule for one or more times, and ‘∗’ means
the repetition a rule for zero or more times.

The syntax of the program language is based on LISP’s s-expressions [62]. Due to the
heavy use of brackets, we omit all quotation marks around literal. We also use LISP sym-
bols to denote logic connectives, mathematical operators, and step names. Such terms are
displayed using a monospaced typeface without any quotation marks. Terms (enclosed
by brackets)must have whitespaces between them.

Comment
⟨Comment⟩ ::= A markdown text enclosed by double quotation marks

Terms Notice that in the rule for Conditional terms we reference the rule for Formula.

⟨TermIdentifier⟩ ::= Strings that starts with a lower-case letter, and contains only letters, digits, and
hyphens

⟨FunctionIdentifier⟩ ::= ⟨TermIdentifier⟩ | + | - | * | /

⟨Digit⟩ ::= ‘0’ to ‘9’

⟨Sign⟩ ::= ‘+’ | ‘-’ | ⟨Empty⟩

⟨Integer⟩ ::= ⟨Sign⟩⟨Digit⟩+

⟨Conditional⟩ ::= (if ⟨Formula⟩ ⟨Term⟩ ⟨Term⟩)

⟨FunctionApplication⟩ ::= (⟨FunctionIdentifier⟩ ⟨Term⟩+)

⟨Term⟩ ::= ⟨TermIdentifier⟩ | ⟨Integer⟩ | ⟨Conditional⟩ | ⟨FunctionApplication⟩

Formulae
⟨PropositionIdentifier⟩ ::= Strings that starts with an upper-case letter, and contains only letters, digits,

and hyphens

⟨TypeIdentifier⟩ ::= ⟨PropositionIdentifier⟩

⟨PredicateIdentifier⟩ ::= ⟨PropositionIdentifier⟩ | = | < | >

128

Chapter D. Program Language

⟨PredicateApplication⟩ ::= (⟨PredicateIdentifier⟩ ⟨Term⟩+)

⟨Negation⟩ ::= (Not ⟨Formula⟩)

⟨BinaryConnective⟩ ::= And | Or | Implies | If-and-only-if

⟨BinaryFormula⟩ ::= (⟨BinaryConnective⟩ ⟨Formula⟩ ⟨Formula⟩)

⟨Quantifier⟩ ::= Forall | Exists

⟨Quantification⟩ ::= (⟨Quantifier⟩ ⟨TypeIdentifier⟩ ⟨Term⟩ ⟨Formula⟩)

⟨InductionMarker⟩ ::= (Ind: ⟨StepNumber⟩ ⟨Formula⟩) | (Ind: ⟨Formula⟩)

⟨Formula⟩ ::= ⟨PropositionIdentifier⟩ | ⟨PredicateApplication⟩ | ⟨Negation⟩
| ⟨BinaryFormula⟩ | ⟨Quantification⟩ | ⟨InductionMarker⟩

Steps
⟨StepNumber⟩ ::= A string of letters, numbers, and hyphens

⟨Rule⟩ ::= A string that ends with ‘:’

⟨Justification⟩ ::= Given | ?
| (⟨Rule⟩ ⟨StepNumber⟩*) | (⟨StepNumber⟩*)

⟨SimpleStep⟩ ::= [⟨StepNumber⟩ ⟨Formula⟩ ⟨Justification⟩]

⟨AssumptionStep⟩ ::= [⟨StepNumber⟩ Assume ⟨Formula⟩ ⟨Step⟩+]

⟨IntroductionStep⟩ ::= [⟨StepNumber⟩ Take ⟨TypeIdentifier⟩ ⟨TermIdentifier⟩ ⟨Step⟩+]

⟨IntroductionWithAssumptionStep⟩ ::= [⟨StepNumber⟩ Take ⟨TypeIdentifier⟩ ⟨TermIdentifier⟩ such that
⟨Formula⟩ ⟨Step⟩+]

⟨InductionHypothesis⟩ ::= Take ⟨TypeIdentifier⟩ ⟨TermIdentifier⟩ |
| Take ⟨TypeIdentifier⟩ ⟨TermIdentifier⟩ such that ⟨Formula⟩

⟨InductionCaseBody⟩ ::= ⟨Step⟩* | By ⟨Justification⟩

⟨InductionCase⟩ ::= [⟨InductionHypothesis⟩* Show ⟨Formula⟩ ⟨InductionCaseBody⟩]

⟨InductionStep⟩ ::= [⟨StepNumber⟩ Induction ⟨Formula⟩ ⟨InductionCase⟩*]
| [⟨StepNumber⟩ Induction on ⟨StepNumber⟩ ⟨Formula⟩ ⟨InductionCase⟩*]

⟨Equality⟩ ::= = ⟨Term⟩ ⟨Justification⟩

⟨EqualitiesStep⟩ ::= [⟨StepNumber⟩ = ⟨Term⟩ ⟨Equality⟩+]

⟨Step⟩ ::= ⟨SimpleStep⟩ | ⟨AssumptionStep⟩ | ⟨IntroductionStep⟩ | ⟨IntroductionWithAssumptionStep⟩ |
⟨InductionStep⟩ | ⟨EqualitiesStep⟩

Declarations
⟨TypeDeclaration⟩ ::= [Type ⟨TypeIdentifier⟩]

⟨TermDeclaration⟩ ::= [Term ⟨TypeIdentifier⟩ ⟨TermIdentifier⟩]

⟨DataCase⟩ ::= [⟨TermIdentifier⟩ ⟨TypeIdentifier⟩*]

129

Chapter D. Program Language

⟨DataStructureDeclaration⟩ ::= [Data ⟨TypeIdentifier⟩ ⟨DataCase⟩+]

⟨FunctionDeclaration⟩ ::= [Function ⟨TermIdentifier⟩ ⟨TypeIdentifier⟩+ -> ⟨TypeIdentifier⟩]

⟨PredicateDeclaration⟩ ::= [Predicate ⟨PropositionIdentifier⟩ ⟨TypeIdentifier⟩+]

⟨Declaration⟩ ::= ⟨TypeDeclaration⟩ | ⟨TermDeclaration⟩ | ⟨DataStructureDeclaration⟩
| ⟨FunctionDeclaration⟩ ⟨PredicateDeclaration⟩

Lemmas
⟨Lemma⟩ ::= [⟨StepNumber⟩ ⟨Formula⟩]

Definitions
⟨DefinitionCaseCondition⟩ ::= ⟨Formula⟩ | otherwise

⟨DefinitionCase⟩ ::= [⟨DefinitionCaseCondition⟩ ⟨Term⟩]

⟨Definition⟩ ::= [⟨StepNumber⟩ ⟨FunctionApplication⟩ ⟨Term⟩]
| [⟨StepNumber⟩ ⟨FunctionApplication⟩ cases ⟨DefinitionCase⟩+]

Program
⟨Section⟩ ::= { Declare ⟨Declaration⟩* }
| { Lemma ⟨Lemma⟩* }
| { Define ⟨Definition⟩* }
| { Proof ⟨Formula⟩ ⟨Step⟩* }
| ⟨Comment⟩

⟨Program⟩ ::= ⟨Section⟩*

We use rounded brackets (()) for things that resemble function applications, such as
terms and formulae. We use square brackets ([]) for items in a list, such as declarations and
steps. We use curly brackets ({ }) for program sections. We use different brackets for mere
cosmetic reasons. There is no semantic difference between these three types of brackets, and
the Racket parser treats them as the same.

130

Appendix E

Example Proofs

Here are some example proofs that demonstrate the range of theories tha can be proven
using Emmy, as well as how Emmy’s approach compares to exsting proof methods. This
chapter may also be used as a guide to writing proofs in Emmy, especially because we prove
a number of examples from the lecture notes.

First, we present a proof carried out in the ‘traditional’ way, either by ‘box’ style natural
deduction (see 2.1.2), or by a stylised proof (see 2.1.3) We then provide a Emmy program that
proves the same thing, written in the concrete syntax of Emmy, which means that they are
valid inputs to Emmy and can be automatically checked.

All proofs in this chapter are included in the examples directory in the project repository.

E.1 Propositional Logic
For proofs in propositional logic, we can write everything in one proof section. There are
no terms not predicates, so nothing needs to be declared or defined. We may use a lemma
section to provide existing, proven, lemmas, if we wish.

E.1.1 Peirce’s Law

Theorem E.1. Peirce’s Law
((P → Q)→ P).

Using ‘box’ style natural deduction, we can prove that Peirce’s Law holds, as below:

1. (P → Q)→ P Assume
2. ¬P Assume
3. P Assume
4. � �-Intro 3 2

5. Q �-Elim 4

6. P → Q →-Intro 5 3

7. P →-Elim 3 1

8. � �-Intro 2 7

9. ¬¬P ¬-Intro 2 8

10. P ¬¬-Elim 9

11. ((P → Q)→ P)→ P →-Intro 1 10

131

E.1. PROPOSITIONAL LOGIC Chapter E. Example Proofs

We can replace each assumption with an assumption step, and drop all invocations of
natual deduction rules, to obtain the following proof in our language:

1 {Proof (Implies (Implies (Implies P Q) P) P)
2

3 [1 Assume (Implies (Implies P Q) P)
4 [2 Assume (Not P)
5 [3 Assume P
6 [4 Bottom (3 2)]
7 [5 Q (4)]]
8 [6 (Implies P Q) (5 3)]
9 [7 P (3 1)]

10 [8 Bottom (2 7)]]
11 [9 (Not (Not P)) (2 8)]
12 [10 P (9)]]
13 [G (Implies (Implies (Implies P Q) P) P) (1 10)]
14 }

We changed the number of the last step to ‘G’, which is the idiomatic name for the last
step, which is required to be equivalent to the goal.

Notice in the above proof, we still make reference to the assumption, when we take things
out of an assumption, that is, when performing an arrow introduction. As described in
section 6.4.2, they are not needed. We could drop those references in justifications, and
rewrite the proof as:

1 {Proof (Implies (Implies (Implies P Q) P) P)
2

3 [1 Assume (Implies (Implies P Q) P)
4 [2 Assume (Not P)
5 [3 Assume P
6 [4 Bottom (3 2)]
7 [5 Q (4)]]
8 [6 (Implies P Q) (5)]
9 [7 P (3 1)]

10 [8 Bottom (2 7)]]
11 [9 (Not (Not P)) (8)]
12 [10 P (9)]]
13 [11 (Implies (Implies (Implies P Q) P) P) (10)]
14 }

However, since we do not use natural deduction rules at all, it is possible to greatly sim-
plify the proof, for example, we may obtain � from the assumptions (P → Q) → P and ¬P
directly:

1 {Proof (Implies (Implies (Implies P Q) P) P)
2

3 [1 Assume (Implies (Implies P Q) P)
4 [2 Assume (Not P)

132

E.2. FIRST-ORDER LOGIC Chapter E. Example Proofs

5 [8 Bottom (1 2)]]
6 [9 (Not (Not P)) (8)]
7 [10 P (9)]]
8 [G (Implies (Implies (Implies P Q) P) P) (10)]
9 }

Or, since Peirce’s law is valid, we can skip all steps, and obtain the result in one step:

1 {Proof (Implies (Implies (Implies P Q) P) P)
2 [G (Implies (Implies (Implies P Q) P) P) ()]
3 }

This proof is included in example-propositional-1.prf.

E.2 First-order Logic

E.2.1 Non-sorted First-order Logic

In classical, non-sorted first-order logic, we have the following theorem:

Theorem E.2. Not forall is equivalent to exists not
¬∀x.P(x) and ∃x.¬P(x) are equivalent, for any predicate P.

It can be proven by:

1. ¬∀x.P(x) Assume
2. ¬∃x.¬P(x) Assume
3. a ∀-Intro const
4. ¬P(a) Assume
5. ∃x.¬P(x) ∃-Intro 4

6. � �-Intro 2 5

7. ¬¬P(a) ¬-Intro 4 6

8. P(a) ¬¬-Elim 7

9. ∀x.P(x) ∀-Intro 3 8

10. � �-Intro 1 9

11. ¬¬∃x.¬P(x) ¬-Intro 2 10

12. ∃x.¬P(x) ¬¬-Elim 11

13. ∃x.¬P(x) Assume
14. ¬P(a) Assume
15. ∀x.P(x) Assume
16. P(a) ∀-Elim 15

17. � �-Intro 14 16

18. ¬∀x.P(x) ¬-Intro 15 17

19. ¬∀x.P(x) ∃-Elim 13 14 18

20. ¬∀x.P(x)↔ ∃x.¬P(x) ↔-Intro 1 12 13 19

133

E.2. FIRST-ORDER LOGIC Chapter E. Example Proofs

The above proof is of special interest to us as it uses all four natural deduction rules
involving first-order quantifiers.

To prove a theory in non-sorted first-order logic in our system, we assign the Atom type
to all constants and variables occuring in the original theory, and declare each predicate as
one predicate that takes a certain number of Atoms. The above proof can thus be translated
into:

1 {Declare
2 [Predicate P Atom]}
3

4 {Proof (If-and-only-if (Not (Forall Atom x (P x)))
5 (Exists Atom x (Not (P x))))
6 [1 Assume (Not (Forall Atom x (P x)))
7 [2 Assume (Not (Exists Atom x (Not (P x))))
8 [3 Take Atom a
9 [4 Assume (Not (P a))

10 [5 (Exists Atom x (Not (P x))) (4)]
11 [6 Bottom (2 5)]]
12 [7 (Not (Not (P a))) (6)]
13 [8 (P a) (7)]]
14 [9 (Forall Atom x (P x)) (8)]
15 [10 Bottom (9 1)]]
16 [11 (Not (Not (Exists Atom x (Not (P x))))) (10)]
17 [12 (Exists Atom x (Not (P x))) (11)]]
18

19 [13 Assume (Exists Atom x (Not (P x)))
20 [14 Take Atom a such that (Not (P a))
21 [15 Assume (Forall Atom x (P x))
22 [16 (P a) (15)]
23 [17 Bottom (16 14)]]
24 [18 (Not (Forall Atom x (P x))) (17)]]
25 [19 (Not (Forall Atom x (P x))) (13 18)]]
26

27 [20 (If-and-only-if (Not (Forall Atom x (P x)))
28 (Exists Atom x (Not (P x))))
29 (12 19)]
30 }

When we introduce an arbitrary variable to prove that some property holds for all vari-
ables of that type, we use an introduction step to take an arbitrary variable. When we in-
troduce an variable and assume that it satisfies some properties to perform ∃-Elimination,
we use an introduction step with assumptions, and refer to the step in which the existential
quantification if proved in the step where we perform ∃-Elimination.

Notice that we have also removed all unnecessary references to assumptions.
Since theorem E.2 is true, we can also skip to the result in one step:

1 {Declare
2 [Predicate P Atom]}

134

E.2. FIRST-ORDER LOGIC Chapter E. Example Proofs

3

4 {Proof (If-and-only-if (Not (Forall Atom x (P x)))
5 (Exists Atom x (Not (P x))))
6 [G (If-and-only-if (Not (Forall Atom x (P x)))
7 (Exists Atom x (Not (P x))))
8 ()]
9 }

This proof is included in example-first-order-1.prf.

E.2.2 Stylised Proof in Non-sorted First-order Logic

Theorem E.3. Green Dragons are Happy
Given that the following facts about dragons are true:

1. A dragon is happy if all of its children can fly.

2. All green dragons can fly.

3. Something is green if at least one of its parents is green.

4. All of the children of a dragon are also dragons.

5. If y is a child of x, then x is a parent of y.

and that, all green dragons are happy

Theorem E.3 appeared in the reasoning about programs lecture notes, as an exercise for
constructing stylised proofs [29]. We will not present the natural deduction proof here as it
has over 30 steps, but it is available in the lecture notes and included in the example program
example3.prf. A stylised proof in the lecture notes uses proves the same theorem with only
11 steps. Formulated in our language, the stylised proof would be:

1 {Declare
2 [Predicate Dragon Atom]
3 [Predicate Green Atom]
4 [Predicate Fly Atom]
5 [Predicate Happy Atom]
6 [Predicate Parent-of Atom Atom]
7 [Predicate Child-of Atom Atom]}
8

9 {Lemma
10 [1 (Forall Atom x
11 (Implies (And (Dragon x)
12 (Forall Atom y
13 (Implies (Child-of y x) (Fly y))))
14 (Happy x)))]
15 [2 (Forall Atom x
16 (Implies (And (Green x)
17 (Dragon x))
18 (Fly x)))]

135

E.2. FIRST-ORDER LOGIC Chapter E. Example Proofs

19 [3 (Forall Atom x
20 (Implies (Exists Atom y
21 (And (Parent-of y x)
22 (Green y)))
23 (Green x)))]
24 [4 (Forall Atom x
25 (Forall Atom y
26 (Implies (And (Child-of x y)
27 (Dragon y))
28 (Dragon x))))]
29 [5 (Forall Atom x
30 (Forall Atom y
31 (Implies (Child-of x y)
32 (Parent-of y x))))]
33 }
34

35 {Proof (Forall Atom x (Implies (Dragon x)
36 (Implies (Green x) (Happy x))))
37

38 [I Take Atom smaug
39 [ass1 Assume (Dragon smaug)
40 [ass2 Assume (Green smaug)
41 [6 (Forall Atom x (Forall Atom y (Implies (And (Parent-of y x)
42 (Green y))
43 (Green x))))
44 (3)]
45 [7 (Forall Atom x (Forall Atom y (Implies (And (Child-of x y)
46 (Green y))
47 (Green x))))
48 (5 6)]
49 [8 (Forall Atom x (Implies (Child-of x smaug)
50 (Green x)))
51 (7 ass2)]
52 [9 (Forall Atom x (Implies (Child-of x smaug)
53 (Dragon x)))
54 (4 ass1)]
55 [10 (Forall Atom x (Implies (Child-of x smaug)
56 (And (Green x) (Dragon x))))
57 (8 9)]
58 [11 (Forall Atom x (Implies (Child-of x smaug)
59 (Fly x)))
60 (10 2)]
61 [12 (Happy smaug) (1 ass1 11)]]
62 [13 (Implies (Green smaug) (Happy smaug)) (12)]]
63 [14 (Implies (Dragon smaug) (Implies (Green smaug) (Happy smaug))) (13)]]
64 [G (Forall Atom x
65 (Implies (Dragon x) (Implies (Green x) (Happy x))))
66 (14)]
67 }

136

E.2. FIRST-ORDER LOGIC Chapter E. Example Proofs

The ‘facts about dragons’, which are ‘given’ to us, are put into a lemma section to separate
them from the rest of the proof. Its is also possible to write them as steps Given to be true,
but it would use more space.

Our representation uses slightly more steps because we need to take results out from
assumptions, one assumption at a time. If we allow access to results obatined within nested
assumptions, as defined in definition 6.14, then we could also omit steps 13 and 14.

Notice that E.3 can be proven directly in one step as well:

68 {Proof (Forall Atom x (Implies (Dragon x)
69 (Implies (Green x) (Happy x))))
70 [G (Forall Atom x (Implies (Dragon x)
71 (Implies (Green x) (Happy x))))
72 (1 2 3 4 5)]
73 }

This proof is included in example-first-order-2.prf.

E.2.3 Stylised Proof in Many-sorted First-order Logic

The lecture note formalises the theorem using non-sorted logic, where the predicate Dragon(x)
is used to say that ‘x is a dragon’. We could represent the same statement using a type
Dragon, so that if a term has type Dragon, it is a dragon. The proof could then be written as:

1 {Declare
2 [Type Dragon]
3

4 [Predicate Green Dragon]
5 [Predicate Fly Dragon]
6 [Predicate Happy Dragon]
7 [Predicate Parent-of Dragon Dragon]
8 [Predicate Child-of Dragon Dragon]}
9

10 {Lemma
11 [1 (Forall Dragon x (Implies (Forall Dragon y (Implies (Child-of y x) (Fly y)))
12 (Happy x)))]
13 [2 (Forall Dragon x(Implies (Green x) (Fly x)))]
14 [3 (Forall Dragon x (Implies (Exists Dragon y (And (Parent-of y x) (Green y)))
15 (Green x)))]
16 [4 (Forall Dragon x (Forall Dragon y (Implies (Child-of x y) (Parent-of y x))))]
17 }
18

19 {Proof (Forall Dragon x (Implies (Green x) (Happy x)))
20

21 [I Take Dragon smaug
22 [ass1 Assume (Green smaug)
23 [5 (Forall Dragon x (Forall Dragon y
24 (Implies (And (Parent-of y x) (Green y))

137

E.3. ARITHMETICS Chapter E. Example Proofs

25 (Green x))))
26 (3)]
27 [6 (Forall Dragon x (Forall Dragon y
28 (Implies (And (Child-of x y)
29 (Green y))
30 (Green x))))
31 (4 5)]
32 [7 (Forall Dragon x (Implies (Child-of x smaug)
33 (Green x)))
34 (6 ass1)]
35 [8 (Forall Dragon x (Implies (Child-of x smaug)
36 (Fly x)))
37 (7 2)]
38 [9 (Happy smaug) (1 ass1 8)]]
39 [10 (Implies (Green smaug) (Happy smaug)) (9)]]
40 [G (Forall Dragon x (Implies (Green x) (Happy x))) (10)]
41 }

Since we now represent some of the information in the theorem with types, the length
of the proof is even shorter.

This proof is included in example-first-order-3.prf.

E.3 Arithmetics
Both SMT solvers we use have extensive support for

Theorem E.4.
∀x, y ∶ Z.(x + y)2 = x2 + y2 + 2xy

E.4 Induction
Inductive reasoning is extremely useful when reasoning about functional programs, where
recursively defined functions and data structures are used extensively. However, the SMT
solvers we researched have limited inductive reasoning capailities: Z3 cannot prove ‘induc-
tive facts’ [46], and as we will show in this section, neither Z3 nor CVC4 could perform
induction over function definitions.

Therefore, Emmy cannot directly prove inductive statements using the underlying solvers.
Instead, the user must explicitly instruct our system to perform induction, and our system
will generate suitable induction principles for this purpose. In this section we present how
induction is performed, how inductive proofs are structured in our system, and how do they
compare to stylised proofs.

We discuss the exact proving abilities of SMT solvers in section 9.3.

E.4.1 Over Recursive Data Structures

For recursive data structures, we

138

E.4. INDUCTION Chapter E. Example Proofs

Consider the following definitions, adapted from the lecture notes [28] 1:

data List = nil | cons Int List

append :: List -> List -> List
rev :: List -> List

append nil l = l
append (cons x xs) l = cons x (append xs l)

rev nil = nil
rev (cons x xs) = append (rev xs) (cons x nil)

We wish to prove that

Theorem E.5. For any Lists l1 and l2, rev (append l1 l2) is equal to append (rev l2) (rev l1).

We can use the following lemmas for the proof:

Lemma E.1. append has right identity
For all List l, append l nil is equal to l

Lemma E.2. append is associative
For all List l1, l2, and l3, append (append l1 l2) l3 is equal to append l1 (append l2 l3).

Before we proceed to prove E.5, we express the data structure declarations, function
declarations, and function definitions in our language:

1 {Declare
2 [Data List [nil] [cons Int List]]
3 [Function append List List -> List]
4 [Function rev List -> List]}
5

6 {Define
7 [append-1 (append nil l) l]
8 [append-2 (append (cons x xs) l) (cons x (append xs l))]
9

10 [rev-1 (rev nil) nil]
11 [rev-2 (rev (cons x xs)) (append (rev xs) (cons x nil))]}

Then, we put the two lemmas available into a lemma section:

12 {Lemma
13 [append-ident (Forall List l (= (append l nil) l))]
14 [append-assoc (Forall List l1
15 (Forall List l2
16 (Forall List l3 (= (append (append l1 l2) l3)
17 (append l1 (append l2 l3))))))]}

1 The lecture notes do not give explicit definitions for [] and ++, which correspondes to List and append in
our definitions. Instead, it uses a few lemmas about the properties of ++. Our definition of append is the same
as the definition of ++ in the Haskell prelude [22].

Also notice that our Lists are not polymorphic, because we have not implemented parametric polymorphism.

139

E.4. INDUCTION Chapter E. Example Proofs

We start the proof by stating our goal:

18 {Proof (Forall List l1 (Forall List l2
19 (= (rev (append l1 l2))
20 (append (rev l2) (rev l1)))))

The actual proof clearly requires structural induction. We choose to perform induction
over the definition l1, and split the goal into two cases: one base case and one inductive
case.

To begin, we write an induction step. Since we will be able to prove the goal of the proof
in one step, we name this step G, for ‘goal:

21 [G Induction (Forall List l1 (Forall List l2
22 (= (rev (append l1 l2))
23 (append (rev l2) (rev l1)))))

Then comes the base case, in which we do not make any induction hypothesis, and show
directly, by definition and lemma E.1, that the theorem E.5 holds when l1 is replaced by nil.

24 [Show (Forall List l2 (= (rev (append nil l2))
25 (append (rev l2) (rev nil))))
26

27 By (append-ident append-1 rev-1)]

For the induction step, we make some assumptions. We first take an List l1, and make
the inductive hypothesis that theorem E.5 holds for l1. Then, we take an arbitrary Int x,
and prove that the property holds for cons x l1.

28 [Take List l1 such that (Forall List l2 (= (rev (append l1 l2))
29 (append (rev l2) (rev l1))))
30 Take Int x
31 Show (Forall List l2 (= (rev (append (cons x l1) l2))
32 (append (rev l2) (rev (cons x l1)))))

The subproof for this case is relatively straightforward. We build up a chain of equalities
to show that the term rev (append (cons x l1) l2) is equal to some intermediate result,
and eventually, that it is equal to append (rev l2) (rev (cons x l1)), which is the goal
we wish to prove in this case.

33 [II Take List l2
34 [I = (rev (append (cons x l1) l2))
35 = (rev (cons x (append l1 l2))) (append-2)
36 = (append (rev (append l1 l2)) (cons x nil)) (rev-2)
37 = (append (append (rev l2) (rev l1))
38 (cons x nil)) (%Hypo)
39 = (append (rev l2)

140

E.4. INDUCTION Chapter E. Example Proofs

40 (append (rev l1) (cons x nil))) (append-assoc)
41 = (append (rev l2) (rev (cons x l1))) (rev-2)]]]
42]
43 }

Notice that in the third equality, we refer to the induction hypothesis that the property
holds for l1, by using %Hypo as a justification.

Notice that we cannot prove theorem E.5 without explicitly stating that we wish to per-
form induction. As neither Z3 nor CVC4 seem to be able to prove E.5 in its original form
directly. The correctness of the following proof cannot be determinined, so it would be con-
sidered incorrect by out system, although semantically it is correct.

18 {Proof (Forall List l1 (Forall List l2
19 (= (rev (append l1 l2))
20 (append (rev l2) (rev l1)))))
21

22 [G (Forall List l1 (Forall List l2
23 (= (rev (append l1 l2))
24 (append (rev l2) (rev l1)))))
25 (append-1 append-2 rev-1 rev-2 append-ident append-assoc)]
26 }

However, we can use an induction marker to instruct the system to perform induction
over l1. Emmy will generate induction principles for all formulae marked by induction mark-
ers, so we are now asking the underlying solver to prove the generated inductive principle,
instead of the original formula.

The following program, which puts the entire goal inside an induction marker, will be
deemed correct:

18 {Proof (Forall List l1 (Forall List l2
19 (= (rev (append l1 l2))
20 (append (rev l2) (rev l1)))))
21

22 [G (Ind: (Forall List l1 (Forall List l2
23 (= (rev (append l1 l2))
24 (append (rev l2) (rev l1))))))
25 (append-1 append-2 rev-1 rev-2 append-ident append-assoc)]
26 }

This proof is included in theorem-10.prf.

Another Example: Two Different sum Functions

Consider another set of definitions adapted from the lecture notes [28]:

data List = nil | cons Int List

sum :: List -> Int

141

E.4. INDUCTION Chapter E. Example Proofs

sum nil = 0
sum (cons i is) = i + sum is

sumTr :: List -> Int -> Int
sumTr nil k = k
sumTr (cons i is) k = sumTr is (i + k)

We wish to prove that

Theorem E.6. sum is and sumTr is 0 are equal
For all List is, sum is is equal to sumTr is 0.

We begin the proof by declaring the types and functions, and defining the functions:

1 {Declare
2 [Data List [nil] [cons Int List]]
3 [Function sum List -> Int]
4 [Function sumTr List Int -> Int]}
5

6 {Define
7 [sum-B (sum nil) 0]
8 [sum-I (sum (cons i is)) (+ i (sum is))]
9

10 [sumTr-B (sumTr nil k) k]
11 [sumTr-I (sumTr (cons i is) k) (sumTr is (+ i k))]}

It is mostly a straightforward translation from the Haskell definitions.
We first state our proof goal:

12 {Proof (Forall List is (= (sum is) (sumTr is 0)))

Directly proving theorem E.6 is not possible. We need to first prove a stronger theorem
which entails theorem E.6:

Theorem E.7. x + sum is and sumTr is x are equal
For all List is, and integer x, x + sum is is equal to sumTr is x.

We prove theorem E.7 in an induction step.

13 [L Induction
14 (Forall List is (Forall Int x (= (+ x (sum is)) (sumTr is x))))
15

16 [Take Int x
17

18 Show (= (+ x (sum nil)) (sumTr nil x))
19 By (sum-B sumTr-B)]
20

21 [Take List is such that (Forall Int x (= (+ x (sum is)) (sumTr is x)))
22 Take Int i

142

E.4. INDUCTION Chapter E. Example Proofs

23 Take Int x
24

25 Show (= (+ x (sum (cons i is))) (sumTr (cons i is) x))
26 By (sum-I sumTr-I %Hypo)]]

The goal would follow directly.

27 [G (Forall List is (= (sum is) (sumTr is 0))) (L)]}

This proof is included in theorem-11.prf.

E.4.2 Over Recursive Function Definitions

When proving properties of recursively defined functions, we split
Consider the following definitions of functions g and g', taken from the lecture notes

[27]:

g :: Int -> Int -> Int
g i j = gp i j 0 0

g' :: Int -> Int -> Int -> Int -> Int
g' i j cnt acc
| cnt >= i = acc
| otherwise = gp i j (1 + cnt) (j + acc)

Which, mathematically, is equivalent to:

g(i, j) = g′(i, j, 0, 0)

g′(i, j, cnt, acc) = { acc if cnt ≥ i
g′(i, j, 1+ cnt, j + acc) otherwise

Notice that although in ‘normal’ cases,
The lecture notes then gives the following theorem and proves it via induction in a

stylised proof:

Theorem E.8. g performs multiplication
For all non-negative integers x, y, g x y is equal to x * y.

We need to limit the domain to positive integers, because while
To prove the above, we need to prove the following lemma:

Lemma E.3. g' performs multiplication
For all non-negative integers x and y, and integers cnt and integer acc, if x is greater

than or equal to cnt, then g' x y cnt acc is equal to (x - cnt) * y + acc.

As before, we limit the range of x and y by assuming them to be non-negative. We also
assume cnt to be less than or equal to x, because we only care what happens if we call
g' x y 0 0 when calling g x y. We don’t care what happens if g' is applied other argu-
ments.

It is easy to see that if lemma E.3 is true, then g' x y 0 0 would be equal to x * y, and
theorem E.8 would hold according to the definition of g.

To begin with our proof, as before, we first declare the functions:

143

E.4. INDUCTION Chapter E. Example Proofs

1 {Declare
2 [Function g Int Int -> Int]
3 [Function gp Int Int Int Int -> Int]}

We renamed g' to gp as our syntax does not support ' in identifiers. As our built-in Int type
includes negative integers, we will add range constraints as assumptions when formulating
the theorem and in our proof.

The definition of g is straightforward. While for g', we use a function definition with
cases that corresponds with the cases in the Haskell definition we wrote with guards.

4 {Define
5 [g-1 (g i j) (gp i j 0 0)]
6 [gp-1 (gp i j cnt acc)
7 cases
8 [(>= cnt i) acc]
9 [otherwise (gp i j (+ 1 cnt) (+ j acc))]]

10 }

Our proof goal would be theorem E.8. We state the non-negativity of x and y explicitly,
by making it the antecedent of the theorem we wish to prove.

11 {Proof (Forall Int x
12 (Forall Int y
13 (Implies (And (>= x 0) (>= y 0))
14 (= (g x y) (* x y)))))

We first prove lemma E.3 in one induction step. We state that we are performing induc-
tion on the definition of gp-1. Then, we use an induction marker in the goal of the induction
step to mark the ‘body’ of lemma E.3 inside the quantifiers. Like before, we state that x and
y are non-negative explicitly.

15 [L Induction on gp-1
16 (Forall Int x (Implies (>= x 0)
17 (Forall Int y (Implies (>= y 0)
18 (Forall Int cnt
19 (Forall Int acc
20 (Implies (>= x cnt)
21 (Ind: (= (gp x y cnt acc)
22 (+ (* (- x cnt) y) acc))))))))))

We name this step L as we prove the lemma in this step.
The definition gp-1 contains two cases. We first deal with the base case, where x is less

than or equal to cnt, and gp x y cnt acc is equal to acc:

23 [Take Int x such that (>= x 0)
24 Take Int y such that (>= y 0)

144

E.4. INDUCTION Chapter E. Example Proofs

25 Take Int cnt
26 Take Int acc
27

28 Show (Implies (= cnt x)
29 (= acc (+ (* (- x cnt) y) acc)))
30 By ()]

Notice that since the case condition that x ≤ cnt and x ≥ cnt both holds, we only need
to prove that the property holds when x is equal to cnt. Emmy is good at handling minor
variations across equivalent arithmetic properties.

The goal of the base case can be easily proven without any justification, so we just write
By ().

We then move on to the induction step. In the definition of g', the case condition for
the second case is otherwise. However, since we require function definition cases to be
exhaustive, and that there are only two cases, we can write cnt < x as the case condition,
which is the negation of the condition of the first case.

In an inductive step, we need to introduce an ‘result’ variable r, whose value is equal to
the result of the recursive call. We also assume that the lemma E.3, the inductive property
we wish to prove, holds for r. Then, we proceed to prove that under these assumptions, the
value of the call to g′ would satisfy the property as well.

31 [Take Int x such that (>= x 0)
32 Take Int y such that (>= y 0)
33 Take Int cnt
34 Take Int acc
35 Take Int r such that (And (= r (gp x y (+ 1 cnt) (+ y acc)))
36 (= r (+ (* (- x (+ 1 cnt)) y) (+ y acc))))
37

38 Show (Implies (< cnt x)
39 (= r (+ (* (- x cnt) y) acc)))
40 By (%Hypo)]]

In this case, the goal of this case follows from the induction hypothesis, denoted by %Hypo.
The goal would trivially follow from lemma E.3 and the definition of g.

41 [G (Forall Int x
42 (Forall Int y
43 (Implies (And (>= x 0) (>= y 0))
44 (= (g x y) (* x y)))))
45 (L g-1)]
46 }

Lemma E.3 can also be proven in one simple step automatically, given that we use an
induction marker to state that we wish to perform induction on the definition gp-1:

11 {Proof (Forall Int x
12 (Forall Int y
13 (Implies (And (>= x 0) (>= y 0))

145

E.4. INDUCTION Chapter E. Example Proofs

14 (= (g x y) (* x y)))))
15

16 [L (Forall Int x (Implies (>= x 0)
17 (Forall Int y (Implies (>= y 0)
18 (Forall Int cnt
19 (Forall Int acc
20 (Implies (>= x cnt)
21 (Ind: gp-1 (= (gp x y cnt acc)
22 (+ (* (- x cnt) y) acc))))))))))
23 (gp-1)]
24

25 [G (Forall Int x
26 (Forall Int y
27 (Implies (And (>= x 0) (>= y 0))
28 (= (g x y) (* x y)))))
29 (L g-1)]
30 }

Without the induction marker, it cannot be proven automatically.
This proof is included in theorem-21.prf.

146

	I Introduction
	Introduction
	Motivation
	Objectives
	Contribution

	Background
	Logic and Proofs
	Propositional and First-order Logic
	Natural Deduction
	Stylised Proof

	Reasoning about Programs
	Induction
	Hoare Logic

	Theorem Provers
	Automatic Theorem Proving
	Proof Assistants

	Logic Teaching Tools

	II Emmy
	Overview of Emmy
	Emmy's Logic
	Terms, Functions, and Types
	The Atom Type
	Integer Terms and Integer Functions
	Data Structures
	Typing Rules

	Formulae
	Equality
	Integer Predicates
	`if' Expression
	Induction Marker

	Semantics of Emmy's Logic
	Semantic of Data Structure Constructors

	Translation into SMT-LIB Logic
	Translation of Data Structure Constructors

	Emmy Programs
	Declarations
	Proofs
	Proof Steps

	Lemmas
	Definitions
	Definition with Cases
	Induction over Function Definition

	Program

	Proof Checking
	Lemmas
	Function Definitions
	Exhaustion Check
	Translation of Function Definitions

	Checking Types
	Checking Steps
	Simple Steps
	Assumptions
	Introductions
	Induction Step
	Equalities Step

	Checking Program
	Checking Entailment
	Checking Entailment Syntactically
	Checking Entailment Using an SMT Solver

	Implementation
	Proof Checker
	Logic and Program Representation
	Proof Checking Workflow

	Web Interface
	Technical Details
	Screenshots of the Web Interface

	Server
	#lang emmy

	III Evaluation and Conclusion
	Soundness of Induction
	Induction Over Data Structures
	Induction Over Function Definitions
	Correctness of FunctionInductionPrinciple
	The Original Formula is True if Function Terminates

	Unfolding of Induction Markers
	Non-terminating Functions

	Evaluation
	Language Support
	Proving Power
	Logic
	Reasoning about Program

	Proving Powers of SMT Solvers
	Data Structure Properties
	Induction over Data Structure
	Entailment between Equivalent Formulae

	Non-terminating Functions
	User Feedback
	Procedure
	Results
	Improvements Made in Response to User Feedback

	Conclusion
	Future Works

	IV Bibliography and Appendices
	Translation into SMT-LIB Script
	Theorems
	Logic
	Reasoning about Programs

	Example Programs for Section 9.3.3
	Program Language
	Example Proofs
	Propositional Logic
	example1.prf

	First-order Logic
	Non-sorted First-order Logic
	Stylised Proof in Non-sorted First-order Logic
	Stylised Proof in Many-sorted First-order Logic

	Arithmetics
	Induction
	Over Recursive Data Structures
	Over Recursive Function Definitions

