
MEng Individual Project

Imperial College London

Department of Computing

Deterministic concurrency control for
transaction processing systems on

FPGAs

Author:

William Woodacre

Supervisor:

Dr. Holger Pirk

Second Marker:

Dr. Alexandros Koliousis

June 17, 2019

Abstract

Transactions are the unit of change for a database system. With the rise of e-
commerce and other internet scale services, the role of online transaction process-
ing (OLTP) systems has become increasingly important. In parallel to this, the
slowdown of single core performance improvements has lead to many data-centres
utilising increasingly heterogeneous hardware, including the use of FPGAs. How-
ever whilst there has been research into the applications of FPGAs in acceleration
various aspect of database systems such as query processing [36] or caching [3], there
has not been any investigation into transaction processing; the heart of a database
management system (DBMS).

To remedy this, this project will investigate transaction processing of OLTP
workloads using an FPGA. This project implements both deterministic concurrency
control as well as more traditional two phase locking (TPL) both on the CPU and
FPGA as a basis of comparison.

While deterministic concurrency control is a promising new technology for multi-
node databases [30], the �nding of the project show that it's single node performance
does not scale well to utilise the resources of a single server e�ectively. However
when transaction processing is moved to an FPGA and the cost of synchronisation
is large as in a multi-node system, we see that this method of concurrency control far
outperforms TPL. This project also introduces a novel deterministic lock manager,
suited to batch transaction processing on FPGAs. These improvements combined
with the speed and parallelism possible on an FPGA produced better performance
than seen from that of the purely CPU based implementations.

From our �ndings, the use of FPGAs for single node in memory transaction
processing shows much promise. This project has the potential to form the basis of
future investigations into the application of FPGAs in transaction processing.

Acknowledgements

I would like to thank the following people for their support through this project:

• Holger Pirk for his support, encouragement and invaluable guidance through-
out the duration of this project.

• Alexandros Koliousis for his feedback and advice on the direction of the
project.

• Dom Margan and George Theodorakis in the LSDS group for their assis-
tance in helping me to set up and con�gure the FPGA hardware.

• Intel for the generous donation of the FPGA boards used during this project.

Contents

1 Introduction 7

1.1 Objectives . 8

1.2 Contributions . 8

1.3 Report layout . 9

2 Background 10

2.1 Concurrency control in database systems 10

2.1.1 Two phase locking . 10

2.1.2 Two phase commit . 12

2.1.3 Deterministic CC . 13

2.2 Hetrogeneous hardware in database systems 16

2.2.1 FPGAs . 17

2.2.2 GPUs . 18

2.3 OpenCL . 19

3 HOBBES 22

3.1 Target applications . 22

3.2 CPU based implementations . 24

3.2.1 Deterministic . 25

3.2.2 TPL . 26

3.3 FPGA implementations . 27

3.3.1 FPGA design considerations 27

3.3.2 Processing transactions on FPGA 31

3.3.3 Deterministic CC on FPGA 34

3.3.4 TPL on FPGA . 36

4 Evaluation 39

4.1 CPU baseline . 39

4.1.1 YCSB B . 40

4.1.2 YCSB A . 41

4.2 FPGA results . 41

4.2.1 Kernel execution times . 42

4.2.2 Memory transfer times . 43

4.2.3 FPGA resource utilization . 44

4.3 CPU vs FPGA performance . 45

4.3.1 Throughput . 45

4.3.2 Latency . 46

2

5 Conclusion 48

5.1 Challenges . 49
5.2 Future work . 50

5.2.1 Optimistic concurrency control 50
5.2.2 Improving utilization of FPGA resources 50
5.2.3 Non-volatile storage . 51

A Main Appendix 52

A.1 Hardware . 52
A.1.1 Server . 52
A.1.2 FPGA board . 53

A.2 ACID . 54
A.3 Performance comparisons . 54
A.4 Source code . 55

A.4.1 OpenCL kernels . 55

3

List of Figures

2.1 Diagram of two transactions executing with TPL. After obtaining one
lock T1 has to wait for T0 to realise locks before it can gain more and
execute. 11

2.2 Results for a write-intensive YCSB workload using TPL with varying
levels of contention [38] . 12

2.3 Measured probability of lock contention and transaction throughput
with respect to time in a 3-second interval. Two transactions con�ict
with probability of 0.01%, 0.1% and 1% respectively [30] 14

2.4 The system architecture of Calvin [31] 15
2.5 99%ile Latency from a transactions �rst start to its �nal commit for

varying cluster size [11] . 16
2.6 Throughput for the protocols using variations of the YCSB workload

and di�erent cluster sizes [11]. 16
2.7 The basic structure of an FPGA [21] 17
2.8 Normalized throughput for a number of benchmarks comparing GPUTx

to CPU implementations [12] . 19
2.9 OpenCL compute device architecture [26] 20

3.1 The probability distribution of a Zip�an distribution [9] 23
3.2 The architecture of the deterministic concurrency control implemen-

tation . 25
3.3 The architecture of the TPL implementation 26
3.4 Time spent transferring the transaction objects to the FPGA (via

DMA on the PCIe bus) per 1000 transactions, against the number of
total number transaction objects transferred in one batch. 30

3.5 The architecture of transaction processing on the FPGA. 31
3.6 A �ow diagram of the generated kernel with improved memory ac-

cesses. The area hi-lighted in red shows that the compiler was not
able to pipeline this section. This corresponds to the area in which
we preform the reads or writes to the table. 33

3.7 A �ow diagram of the kernel with the improvements to memory accesses. 34
3.8 A timeline of the kernel execution with the initial lock manager from

Intel's FPGA pro�ling tool. Note that there is a large amount of time
between the two kernel executions where the FPGA is idling. 35

3.9 Average time taken locking a batch of 131072 transactions running
YCSB A and B at medium contention (theta=0.5) with the original
and improved lock managers. 36

3.10 A timeline of the kernel execution with the improved lock manager
from Intel's FPGA pro�ling tool. 36

4

3.11 A �ow diagram of the generated kernel for TPL. 38

4.1 Throughput of transactions from YCSB B on the TPL and deter-
ministic CPU based implementations with varying numbers of work-
ers and contention levels (Low theta=0.1, Medium theta=0.5, High
theta=0.9) . 40

4.2 Throughput of transactions from YCSB A on the TPL and deter-
ministic CPU based implementations with varying numbers of work-
ers and contention levels (Low theta=0.1, Medium theta=0.5, High
theta=0.9) . 41

4.3 Kernel execution times of the deterministic and TPL designs running
YCSB B with theta=0.1. 42

4.4 A breakdown of the time spent on the FPGA for both designs running
YCSB B with theta=0.1. Shown is the time taken transferring work
to the FPGA from the CPU, executing the transactions on the FPGA,
and transferring the results from the FPGA to the CPU. 43

4.5 Overall throughput of TPL and deterministic implementations run-
ning on the FPGA and the CPU for YCSB A and B with theta=0.1 . 45

4.6 The latency of a single read transaction from start to �nish with TPL
and Deterministic CC both on the FPGA and CPU implementations.
Note that we include the time taken to �ll the entire bu�er of trans-
actions in the batch in the FPGA experiments. 46

A.1 The Taz research server. The DE5-Net card can be seen as the third
card from the left. 52

A.2 The Stratix V GX family features [18] 53

5

List of Tables

3.1 The YCSB workloads as de�ned in [5] 23

4.1 Memory performance of the deterministic and TPL kernels on reads
and writes to the table with varying numbers of compute units. Per-
formance is gathered from the kernel with the Intel pro�le tool while
running YCSB B with theta=0.1. 43

4.2 The FPGA resource consumption of the deterministic CC and TPL
kernels with varying number of compute units. Percentages in the
columns show the proportion of the boards total available resources
the design consumes. 44

6

Chapter 1

Introduction

Transactions are the unit of change for a database system. With the rise of e-
commerce and other internet scale services, the role of transaction processing sys-
tems has become increasingly important. Even very small delays in these services
can cause signi�cant damage to these buisnesses. In tests done by Amazon.com, it
was found that small delays of even 100 miliseconds could cause substantial drops
in revenue [24]. The requirement for such systems has created a need for a new class
of database systems known as OLTP or on-line transaction processing databases.
OLTP systems typically process short-lived and repetitive transactions [19], but have
to scale to handle a high throughput of these transactions at a reasonable latency
at peak times.

The main challenge for OLTP systems is to maximise the throughput of transac-
tions while keeping a serial order in order to maintain ACID properties (as de�ned
in A.2). A key problem achieving this is trying to minimise the number of acquired
locks for a transaction (to maintain high levels of concurrency) while simultaneously
minimising communication between nodes.

The classical way that distributed databases have been architected to solve this
problem was pioneered by System R* [25] in the 1980s. This popularised two-phase
commit which is still widely used today. In two-phase commit, all of the participat-
ing nodes in a distributed transactions have to agree whether the transaction was
successful. The problem with this methodology is that the cost of communication
is large as this involves many network round trips between all participating ma-
chines which can often take longer than the actual transaction processing. This is a
problem that has typically plagued the scalability of distributed database systems.

Because of these problems, there has been a signi�cant movement to relax some of
the ACID guarantees in order to yield better performance and scalability. Amazon's
Dynamo [6] relaxes consistency guarantees, while Google's Bigtable [4] completely
removes support for multi-row transactions. This can be well suited to some appli-
cations, however, a large amount of applications do not �t these models well. In
many applications database transactions mirror physical transactions, e.g. money
moving from one account to others or a warehouses stock being added to or taken
from. If ACID properties are relaxed then serious issues can occur such as persons
spending money they do not have or customers ordering items that do not exist.
Moreover, relaxing ACID can often make it harder for developers to reason about
their applications which can slow down development and cause bugs.

With the continued increase of single server performance and availability of main

7

memory, the time taken to execute transactions is continually decreasing. In 2010, it
was suggested in a paper [30] that deterministic concurrency control be revisited as
with low transaction times the overhead of determinism is almost negligible whilst
removing the problem of synchronisation overhead. This was then incorporated into
the system Calvin [31] in 2012. The result was a system that out-preformed most
popular concurrency control schemes in a number of key benchmarks [11].

As Moore's law nears its end [34], modern data-centres are increasingly more
heterogeneous in order to keep up with the demands of applications. Microsoft's
Azure data centres have a FPGAs on every server since late 2015 [8], as well as
o�ering GPU services. There has also been a large interest in the database commu-
nity to use more heterogeneous hardware to accelerate various aspects of database
systems. Examples of this include query processing [36] and caching [3].

However much of this work has been focused on using additional hardware to
accelerate current system, and not to design a new system around a more het-
erogeneous architecture. This begs the question, how would a database look if it
were built around modern heterogeneous systems? This is the question this project
intends to answer.

1.1 Objectives

Given transaction processing is at the core of a DBMS, we investigate how transac-
tion processing can be done utilizing an FPGA. We experiment with di�erent types
of currency control to discover what method is optimal for transaction processing
on FPGAs, including deterministic concurrency control.

The primary objective of this project is to demonstrate through this investiga-
tion that FPGAs can o�er improvements in transaction processing over a purely
CPU based implementation. Our secondary objective is to provide a throughout
understanding of what works well for transaction processing on an FPGA, as well
as the limitations.

The hypothesis of this project is that transaction processing on a single node can
be accelerated signi�cantly by a highly parallel design possible on an FPGA. We
also hypothesise that deterministic concurrency control will be well suited for this
task. This is because deterministic concurrency control is successful in distributed
databases where the cost of communication between workers is high. Although
we investigate into single node con�gurations, we anticipate that the cost of syn-
chronisation between workers on an FPGA creates a similar parallel to distributed
databases.

It is hoped that the outcome of this project will yield new insight into transaction
processing on FPGAs, and provide the basis for future research into this area which
has not been explored before.

1.2 Contributions

Transaction processing is at the heart of any DBMS. To the best of our knowl-
edge, this work is the �rst research of transaction processing on FPGAs. The main
contributions of this project can be summerised as follows:

8

• An evaluation of the characteristics or transaction processing on

FPGAs - we have investigated what optimisations increase performance for
processing transactions in-memory on an FPGA. This project also identi�es
the key bottlenecks in transaction processing on an FPGA of memory band-
width and memory transfers between the CPU and FPGA device.

• An investigation of concurrency control techniques for transaction

processing on FPGAs - from extensive research of concurrency control
in transaction processing we identify deterministic concurrency control as a
promising �t for FPGAs. We implement both this concurrency control scheme
and more standard two phase locking, and demonstrate that deterministic is a
better �t for the architecture of a FPGA.

• A comparison between CPU and FPGA transaction processing -
we also implement both of these concurrency control techniques purely on
the CPU to serve as a comparison with the FPGA based implementations.
Overall, we show that the deterministic FPGA implementation out-performs
the others, demonstrating the potential for the use of FPGAs in transaction
processing.

1.3 Report layout

Chapter 2 introduces the current �eld of research in transaction processing. This
will include a summary of popular concurrency control schemes used in modern
DBMSs, and well as current research into using heterogeneous hardware in database
acceleration. At the end of this chapter we will also discuss the details of the OpenCL
programming model for FPGAs which we will use going forward in the report.

The core of the implementation work done for this project will then be discussed
in detail in chapter 3. This includes the CPU implementations that we use as a
baseline for our FPGA work, as well as the details of the FPGA designs and how
they have been optimised to best make use of the hardware.

Chapter 4 will then evaluate the merit of the implementations. Firstly, we com-
pare the CPU and FPGA based implementations individually to evaluate their per-
formance characteristic. Then, we compare the overall performance of all of the
implementations in throughput and latency.

Lastly, in chapter 5 we discuss the our overall �ndings from the project as well
as the major challenges we faced during the project. Possible future extensions to
the project are also presented that we did not have the time to explore during this
project.

9

Chapter 2

Background

The following section aims to summarise the current research into transaction pro-
cessing databases, and give an overview of the di�erent techniques used in these
systems. We initially outline the current methods of concurrency control used by
distributed database systems to illustrate the possible approaches that could be used
in the project. We then outline the current work going in to using heterogeneous
hardware to accelerate database systems. Lastly, we discuss OpenCL and the use
of high level synthesis languages in FPGA programming.

2.1 Concurrency control in database systems

ACID database transactions is an abstraction widely used in most database sys-
tems. It is highly popular as it abstracts away concurrent interactions between
multiple commits being sent to the system by providing logical isolation between
each commit, making the system easier for developers to reason about.

In order to maintain isolation between commits in an ACID database, a DBMS
must guarantee a serial ordering of the transactions given to a system. The simplest
way to do this would be to execute one transaction at a time, and wait until it is
written to durable storage before starting the next. However, this will be slow as if
one commit is waiting for disk read or write, or waiting on the network, all other
transactions will also be held up. Furthermore, this would result in poor utilization
of most modern multi-core systems and lack the ability to scale out across many
servers.

Therefore a DBMS should be able to execute multiple transactions concurrently,
while maintaining a serial execution order. Considerable care has been taken to
perfect concurrency control protocols in database systems as communication over-
head to guarantee ordering can often be the source of bottlenecks. The following
sections aim to describe in detail the common concurrency control protocols used in
database systems today.

2.1.1 Two phase locking

In 1976 one the �rst concurrency control schemes was introduced [7], which still
remains popular today. This scheme is known as two-phase locking (TPL). The
main idea behind this scheme is that each transaction must have a growing and
shrinking phase. As in regular locking, a transaction must have a lock for each

10

...
..

0

.

2

.

4

.

6

.

8

.

10

.

12

.

14

.0 .

1

.

2

.

3

.

Time

.

L
o
ck
s
ac
q
u
ir
ed

.

. ..T0

. ..T1

Figure 2.1: Diagram of two transactions executing with TPL. After obtaining one
lock T1 has to wait for T0 to realise locks before it can gain more and execute.

record it accesses. During the growing phase, a transaction can request new locks.
However once a transaction releases a lock, it cannot acquire a new one. Thus, each
transaction must go through a growing phase, followed by a shrinking phase where
all locks released with a period in the middle where the transaction is executed.

If two transactions have overlapping records, then the transaction that gets the
overlapping locks �rst will stop the other's growing phase from ending and thus the
transaction cannot start. Only when the �rst transaction has �nished committing
and enters shrinking phase is the second transaction able to acquire the rest of the
locks it needs and continue. Thus, this ensures that two overlapping transactions
cannot execute at the same time and therefore guarantees a serial ordering of com-
mits. This is demonstrated in �gure 2.1.

However, one problem with TPL is that con�icting transactions can result in
deadlock in their growing phase depending on the order in which locks are acquired.
There are a few ways that are commonly used to deal with this scenario:

• Deadlock detection - each transaction could be checked to see if its accesses
cause a dependency cycle. If a cycle is detected, a transaction in the cycle can
be aborted and run later.

• No wait - if a transaction requests a lock and it cannot be obtained then the
transaction is aborted and all locks it was holding are released.

• Wait-die - each transaction is given a timestamp when it begins. If a trans-
action tries to acquire a lock that another is holding, it is permitted to wait
on that transaction if it's timestamp is newer than the other transaction's.
Otherwise, the transaction is restarted but keeping the original timestamp [2].

Although this �xes the problems with deadlock, TPL has problems with scaling
due to lock thrashing. This happens as a transaction will hold all of the locks it needs
until it commits, which blocks all other transactions that are happening concurrently
that require any one of the locks that it holds. This causes problems when there

11

is a large amount of transactions with high levels of contention and is the main
bottleneck of all TPL schemes [38].

Figure 2.2: Results for a write-intensive YCSB workload using TPL with varying
levels of contention [38]

2.1.2 Two phase commit

The problem when executing transactions that span multiple partitions (or replicas)
of a database is that all parties involved in executing the transactions need to agree
if it succeeded or not in order to maintain ACID. The classical way that distributed
databases have been architected to solve this problem was pioneered by System R*
[25] in the 1980s. This popularised two-phase commit - an atomic commit protocol
for distributed systems. Two phase commit works by having an initial phase where
all nodes try to execute the transaction. Then, in the second phase all participating
nodes have to vote on whether the transaction succeeded or not. The problem with
this methodology is that the second phase requires multiple network round trips
between all participating nodes which can be the source of a major bottleneck in
most systems. Moreover locks on records accessed for the transaction are still held
when the protocol is taking place, further limiting performance.

Because of these problems, there has been a signi�cant movement to relax some of
the ACID guarantees in order to yield better performance and scalability. Amazon's
Dynamo [6] relaxes consistency guarantees, while Google's Bigtable [4] completely
removes support for multi-row transactions. This can be well suited to some ap-
plications. For example, in Amazon's case if reads of a shopping baskets contents
from multiple replicas are inconsistent then the current contents of the basket must
be the union of all the baskets [6]. However, a large number of applications do not
�t these models well. In many applications database transactions mirror physical
transactions, eg, money moving from one account to others or a warehouses stock
being added to or taken from. If ACID properties are relaxed then serious issues
can occur such as people spending money they do not posses or customers ordering
items that do not exist. Moreover, relaxing ACID can often make it harder for de-
velopers to reason about their applications which can slow down development and
cause bugs.

12

2.1.3 Deterministic CC

Traditionally, transactions processed by a DBMS are executed in a non-deterministic
ordering. A DBMS will typically choose an ordering of transactions based on a
number of runtime factors such as:

• Disk read times

• Hardware failure

• Thread scheduling

instead of processing transactions in the order given to the system. This stays within
ACID guarantees, as it only stipulates that transactions must be processed in some
serial ordering.

Consider an example database system. For each transaction executed in this
system we �rst take out the locks on the tuples accessed by the transaction, then
commit the transaction before releasing the acquired locks. If a transaction stalls due
to deadlock or reading from storage, this can cause other subsequent transactions to
be stalled as well. An example [30] of how this could be a problem is given below.
Suppose three transactions were to be processed in order:

T0 : read(A), write(B), read(X)

T1 : read(B), write(C), read(Y)

T2 : read(C), write(D), read(Z)

If T0 were to stall on reading X, T1 would not be able to execute as T0 would
still hold a lock on B. If the system is deterministic, the commits would have to
be executed in the order given and so T2 would also not be able to execute as its
read of C is dependent on the result of T1. However, if we were able to process the
transactions in a non-deterministic ordering, we could choose to process T2 straight
away and make better use of available resources. This would still maintain ACID
as we are simply choosing a di�erent serial ordering of transactions.

Figure 2.3 demonstrates this issue with deterministic concurrency control in an
experiment [30]. In this experiment, each transaction accesses 10 of the databases
106 records. The time taken to process each transaction is relativity short, taking
around 30µs from having all the locks to the last being released. Then, at 1 second a
transaction acquires 10 locks and stalls for a full second. After the time has passed,
it then commits and releases its locks.

While there is not a stalled transaction, both the deterministic and non-deterministic
systems show similar levels of performance. Similarly both systems recover quickly
after stalled transaction �nishes and return to the usual levels of performance. How-
ever we can see that when the stalled transaction starts, the deterministic system
yields much lower performance than its counterpart. In particular, since it cannot
reorder its transactions, the throughput reaches almost zero at every level of con-
tention as the stalled transaction clogs the system much like the previous example.
Whereas, the non-deterministic system is able to still process transactions during
this time as it can simply reorder the transactions and execute ones that do not
con�ict with the stalled transaction. Although it will slow down eventually if it
runs out of transactions that do not con�ict with the stalled transaction.

13

Figure 2.3: Measured probability of lock contention and transaction throughput with
respect to time in a 3-second interval. Two transactions con�ict with probability of
0.01%, 0.1% and 1% respectively [30]

From this evidence we can see that for any system that transactions frequently
stall due to deadlock, disk read/writes or other problems, a non-deterministic ap-
proach will clearly yield much better performance. Thus, in the past most database
systems have opted for this design.

In 2010, a paper was published proposing to revisit deterministic concurrency
control [30]. This was motivated by changes in the landscape:

• Increased performance in processing transactions - with the increase
in availability of main memory many applications can now �t entirely in main
memory, and larger applications can store data on fast SSD based storage.
This combined with the continued increase in reliability of hardware means
that the probability of transactions stalling is greatly reduced.

• Rise of OLTP workloads - OLTP systems typically process short-lived and
repetitive transactions that access a small number of records at a time [19].

14

This greatly reduces the chances of a stalled transaction clogging the transac-
tions behind it.1

These two factors greatly reduce the frequency of transactions stalling and caus-
ing clogging in a deterministic system. Therefore in practice we are unlikely to see
this worse case performance seen in Figure 2.3. However, since the transactions
are executed in a deterministic ordering there is no need for communication be-
tween distributed threads or nodes executing transactions. Thus we can completely
eliminate the overhead of communication between distributed transactions seen in
non-deterministic systems as they scale horizontally.

This idea was fully realised by Thomson et al. in Calvin [31] - a transaction
scheduling and data replication layer making use of deterministic concurrency con-
trol. Calvin provides a sequencer layer that is capable of taking in transactions from
clients and maintains an agreed ordering of transactions across all replicas in the
system. This is done by either having a master sequencer that forwards batches of
order transactions to all other slave replicas, or by reaching consensus on a ordering
via the Paxos algorithm [22]. The scheduling layer then obtains locks for each trans-
action, strictly in the ordering given by the sequencer layer. Then, when all locks
are obtained, the transaction is sent to a worker thread for execution. Another key
innovation of Calvin is that it solves the problem of using slow storage that is prob-
lematic for determinism as we have discussed before. When the sequencer receives
a transaction that could incur a disk stall, it waits and sends a request to storage to
obtain the relevant records. This then reduces the possibility of a disk stall while a
transaction is holding locks, thus further reducing the chances of clogging.

Figure 2.4: The system architecture of Calvin [31]

The combination of these design decisions allows Calvin to scale well compared
to other systems using other concurrency control schemes. In 2017, Harding et al.

15

compared Calvin to a number of popular concurrency control schemes in a number
of benchmarks [11]. To do this they implemented their own framework called Deneva
which could be adapted easily to multiple concurrency control protocols to compare
their bottlenecks.

Figure 2.5: 99%ile Latency from a transactions �rst start to its �nal commit for
varying cluster size [11]

Figure 2.6: Throughput for the protocols using variations of the YCSB workload
and di�erent cluster sizes [11].

As can be seen by Figures 2.5 and 2.6, Calvin typically scales horizontally well
compared to other schemes. In particular, the latency of transactions remains ex-
tremely low and scales with the log of the server count. This is due to the property
of not having to perform many network round trips in order to acquire locks as
is necessary in a non-deterministic setting. Furthermore, Calvin manages to have
a similar throughput no matter the level of contention in the transactions, due to
locks only being held purely when the transaction is being executed. The downside
of Calvin's design is that the scheduler that gives out the locks to each transaction is
single-threaded in order to acquire the lock in the given serial ordering. This means
that when there is a read-only workload, it is not able to keep up with the other
protocols.

Overall, deterministic concurrency control is a highly promising scheme that of-
fers large improvements in performance over the more traditional two phase commit
when scaling horizontally.

2.2 Hetrogeneous hardware in database systems

Historically, the steady increase of transistors in CPUs over time from Moore's law
has meant that CPU performance has increased steadily over time. However, this
is no longer the case. While the number of transistors and core count in modern
CPUs are still increasing, single threaded performance improvements of CPUs has

16

slowed down over the last decade [28]. While more cores allows us to better exploit
parallelism in applications, due to Amdahl's law, even if most of an application
can exploit parallelism it is still capped in potential speed-ups by its serial parts.
However, the amount of data we need to process is still growing exponentially. In
order to deal with this, modern data centres are becoming more heterogeneous to
keep up with demands. In particular, the use of FPGAs, ASICs and GPUs have
become extremely prevalent in many areas including �nance, machine learning and
data processing. The following section aims to outline the current work in using
heterogeneous hardware to accelerate database systems

2.2.1 FPGAs

FPGAs (�eld programmable gate arrays) are chips that are able to be re-programmed
in order to emulate almost any physical hardware circuit (within it's size con-
straints). FPGAs are typically slower than ASICs (application speci�c integrated
circuits) as their reprogram-ability means that the circuitry will not have as optimal
of a layout and thus result in a poorer clock speed. However, FPGAs are o� the shelf
components and so are signi�cantly cheaper than their ASIC counterparts and have
the �exibility to be reprogrammed and updated down the line while still yielding
similar performance increases to ASICs over CPUs.

Figure 2.7: The basic structure of an FPGA [21]

FPGAs consist of a number of LUTs (small look-up tables), on-chip memory,
and dedicated hardware (such as multipliers, MUXs etc.) that are connected by a
fabric that can be re-programmed to connect these components together in di�er-
ent con�gurations. The advantage of using an FPGA over a CPU is that speci�c
functions can be directly written into an FPGA and deeply pipelined allowing for
much greater throughput than is possible on a CPU. Furthermore, multiple func-
tions can be placed in parallel on a FPGA (much like a SIMD processor) allowing
far greater levels on parallelism than is possible even on a large core count CPU. Be-
cause of these bene�ts, there has been a large amount of research into using FPGAs
to accelerate database systems.

17

In 2014, Ibex [36] was introduced showing that parts of SQL query could be of-
�oaded to an FPGA. Ibex is an intelligent storage system, sitting between a DBMS
(MySQL in its case) and its storage. All data requests from the DBMS are routed
though the FPGA. Then the FPGA reads the relevant tuples from storage. Before
handing them back to DBMS, Ibex can then apply a number of operations to the
tuples - projections, selections and GroupBy. These operations can be con�gured by
the DBMS via a register �le on the FPGA. If parts of the query cannot be o�-loaded
to Ibex, the tuples can simply be passed through back to the DBMS unchanged.
Compared to a common MySQL storage engine MyISAM, Ibex o�ers greater per-
formance at a lower power consumption. Ibex also shows that an FPGA system can
easily be plugged into an existing DBMS and provide signi�cant hardware acceler-
ation.

Simple in-memory database systems are becoming increasingly popular in web
backends to cache results to common database queries to increase responsiveness
in delivering pages. Examples of these are Redis and Memcached. In 2013, it was
shown that FPGA could be used to implement a key-value store [3] that could
be orders of magnitude faster than its CPU based alternatives at this task. The
design was highly pipelined, and could handle instruction level parallelism. At its
peak performance, it could process over 13 million requests a second compared to
under 2 on a 8 core CPU. More impressively it could achieve this performance at
a lower power consumption to the CPU, processing 106K requests per second per
watt compared to the CPU's 7K. This then proves the viability of in-memory data
storage on an FPGA, which is key to an in-memory transaction processing system
succeeding on an FPGA.

However, to the best of our knowledge, there has not been any published research
into transaction processing on FPGAs despite seeing the bene�ts of using FPGAs
in database systems seen in this section.

2.2.2 GPUs

GPUs (graphics processing units) are processors that feature a massively parallel
architecture of basic processing cores. Typically they have a far greater memory
bandwidth than CPUs, and have a higher peak FLOPs. Although these proces-
sors were traditionally designed to accelerate 3-D graphics in desktop systems, they
have programmable support for compute via support for languages like CUDA and
OpenCL and are widely used in applications that can take advantage of their par-
allel architecture such as machine learning. There has also been a large amount of
research into using GPUs to accelerate various aspects of database systems.

GPUTx [12] was proposed in 2011 - an in memory transaction processing system
running completely on a GPU. This paper particularly demonstrates the perfor-
mance gains that a massively parallel architecture can give to a transaction pro-
cessing system. When running on a single GPU core, GPUTx only achieves the
throughput of 25%-50% of a single CPU core. However when utilizing the whole
GPU, GPUTx reaches 4-10X the performance of a CPU implementation. While
this paper clearly demonstrates the possibilities of GPUs in transaction processing,
it does not bring any novel ideas to the table. GPUTx is implemented by bulk
processing transactions based on current concurrency control method (such as TPL
and K-Set). This paper demonstrates the advantage of using accelerator devices

18

in transaction processing however the techniques used may not be applicable to
transaction processing on an FPGA because of the large di�erences in the hardware
architecture.

Figure 2.8: Normalized throughput for a number of benchmarks comparing GPUTx
to CPU implementations [12]

2.3 OpenCL

Open Computing Language (OpenCL) is an open parallel compute framework for
writing programs that are able to run across heterogeneous hardware including
CPUs, FPGAs, GPUs and many more hardware accelerators. OpenCL is imple-
mented by many companies for their devices including Intel, AMD, NVIDIA, Xilinx
and many more [29]. Code for the hardware accelerators can be written in either C99
or C++11 syntax, with a few restrictions and additional tags and keywords. The
program interacting with the accelerator can then interface with it using a provided
API.

The OpenCL programming model is split into two parts - the host and the device.
The device incorporates what is run on the hardware accelerator. Regardless of
the speci�cs or how the device works (whether GPU or DSP) the model remains
the same. Firstly, kernels are the programs are run on devices. They are simply
functions that are run till completion and can have a number of arguments given
to them of pointers to bu�ers in memory. Kernels can either be implemented in a
task parallel or data parallel way. In the task parallel way, a kernel simply executes
a �xed function and many of these tasks can be executed in parallel. In the data
parallel way, a global group of work is assigned to the device. This is then split
evenly into work groups, each consisting of a number of individual work items. The
kernel is then run for each item in every work group. The kernel query its local work
item id as well as its group id at runtime and perform a di�erent function based
on its ids. A way this is typically used is if the kernel is performing a operation on
groups of vectors, the local work id could be used as an index on the vector is group
is working on. Multiple work groups can then run in parallel across many compute
units (typically cores) on the device at runtime. However, the device has control
over scheduling work onto its compute units and not all work groups are guaranteed
to be running concurrently.

19

Figure 2.9: OpenCL compute device architecture [26]

The host then has the job of orchestrating the whole operation. First, it queries
the devices available to it, and selects one to use. It can query various parameters
about the device at this time to know the type of device and what it supports. Then
the host has to re-program the device with a binary of the kernel it wants to run on
it. Once the kernel is programmed to the device, the host then can set up bu�ers
that will map to the kernels arguments and be used for the data transfers to and from
the device. The host can then write the arguments to the host's memory. Following
that, the host can then issue a command to the device to execute the kernel. The
host can then wait for the kernel to �nish executing, or issue more commands to be
executed on the command queue. When the kernel is done executing, the host can
then transfer any results from the device back to the host.

Programming OpenCL for FPGAs is mostly the same as any other OpenCL de-
vice, however there are some slight di�erences. First of all instead of the device being
programmed with a binary by the host, it must be programmed with a bitstream.
Since this bitstream is a physical layout of the hardware for our speci�c target card,
you cannot run your kernel on any other di�erent FPGA device. Furthermore, this
means that multiple kernels cannot run on the device unless they were compiled
together. Secondly in order to reprogram the device with a new kernel, it must be
already running an OpenCL kernel. This meant that when we the card was initially
con�gured, it needed to be bootstrapped with an OpenCL kernel. This was achieved
by writing a OpenCL kernel's bitstream to the card's on board �ash memory via a
USB JTAG interface. Then whenever the card is rebooted, it automatically loads
up the bitstream on the �ash memory, and therefore is able to be reprogrammed
with an OpenCL kernel.

An alternative to using OpenCL to program FPGAs would be to use a hard-
ware description language (HDL) such as Verilog or VHDL. These languages are
traditionally used for hardware design and give much �ner grain control over the
hardware that is synthesised. However, this also means that it is much more com-
plex and time consuming to write programs in these languages. Thus, a decision
was made to use OpenCL for the implementations as although this could lead to

20

a less optimal design for the FPGA, the aim of this project is to investigate what
methods of concurrency control fundamentally work well for transaction processing
on an FPGA. Therefore, relative performance of the methods to each other is more
important an the absolute performance that is achievable and so the ease of pro-
gramming with OpenCL is a great asset. It can also be noted that the debugging
designs is much easier in OpenCL, as designs can be run in an emulator and de-
bugged like a C program. Whereas with a HDL language, you have to write test
benches for the design and debug the signals in the emulated hardware.

21

Chapter 3

HOBBES

In this chapter we present Hobbes, our implementation of transaction processing
using deterministic concurrency control on an FPGA, as well as our implementation
of TPL on the FPGA and CPU implementations. Section 3.1 covers the applications
we support across all the implementations. The details of our CPU based imple-
mentations is then covered in section 3.2. Finally, the details of the FPGA based
implementations as well as the design considerations for maximising the performance
of the FPGA kernels are outlined in section 3.3.

3.1 Target applications

For this project, it was decided to use the Yahoo cloud scalability benchmark
(YCSB) [5] as the main target application. YCSB was developed out of the need
for a standard benchmark for modern document stores that do not support a strong
relational model. Unlike traditional industry benchmarks in transaction processing
like TPC-C [32], YCSB does not try to emulate a speci�c application or use-case.
Instead, YCSB de�nes a simple set of "CRUD" (create, read, update, delete) oper-
ations that a database must support and then de�nes a variety of workloads with
di�erent proportions of these operations. This then enables YCSB able to show a
wide range of possible workloads that are interesting for many di�erent applications.

The operations that YCSB de�nes are as follows:

• Insert - Insert a new record. [5]

• Update - Update a record by replacing the value of one �eld. [5]

• Read - Read a record, either one randomly chosen �eld or all �elds. [5]

• Scan - Scan records in order, starting at a randomly chosen record key. The
number of records to scan is randomly chosen. [5]

22

Figure 3.1: The probability distribution of a Zip�an distribution [9]

A key aspect of the YCSB benchmark is the distribution of keys in the trans-
actions. The main distribution of keys for the transactions in YCSB is the Zip�an
distribution which can be seen if �gure 3.1. Each integer k in the distribution has

weight proportional to 1
k

theta
. This means that some keys will be very popular, while

others at the other end of the distribution will be very sparsely accessed. Further-
more, the parameter theta can be increased or decreased to vary how skewed the
distribution is towards the popular keys. This is particularly important when as-
sessing concurrency control, as it allows the ability to vary the level on contention
on the most popular keys.

YCSB de�nes 5 workloads as follows:

Workload Operations Record selection Application example
A Update heavy Read: 50%

Update:
50%

Zip�an Session store recording recent ac-
tions in a user session

B Read heavy Read: 95%
Update: 5%

Zip�an Photo tagging; add a tag is an up-
date, but most operations are to
read tags

C Read only Read: 100% Zip�an User pro�le cache, where pro�les
are constructed elsewhere

D Read latest Read: 95%
Insert: 5%

Latest User status updates; people want
to read the latest statuses

E Short ranges Scan: 95%
Insert: 5%

Zip�an / Uni-
form

Threaded conversations, where
each scan is for the posts in a
given thread (assumed to be clus-
tered by thread id)

Table 3.1: The YCSB workloads as de�ned in [5]

YCSB was selected as the main application for this project for a number of
reasons. Firstly, being able to easily vary the contention on keys with the parameter
theta allows an exploration of the relative performance of the di�erent methods
of concurrency control under varying circumstances. Furthermore, having to only
support a simple "CRUD" API means that the FPGA designs can be relatively

23

simple and make it easy to identify and focus on bottlenecks. Lastly, YCSB is
a popular benchmark used to evaluate many transaction processing systems and
allows us to easily compare how our implementation performs against other systems
in the current landscape.

YCSB also provides a YCSB client. This is a Java application set up to run the
5 workloads on a connected database and collect statistics such as throughput and
latency of transactions. The client is designed to be extensible, and new databases
can easily be added by a new database interface layer. This layer provides the setup
for the connection to the database as well as an implementation of all of the functions
in the CRUD API needed for YCSB. However, we opted not to use the YCSB client
for benchmarking our system. This is because traditionally the YCSB client would
be connected to a multi-node database with a connection over an interface like TCP.
However, since the project is focused purely on a single server setup, the overhead for
any connection and translation to the client is much more signi�cant and could lead
to an unwanted bottleneck. Furthermore, by implementing the benchmark ourselves
we are able to have much �ner control over the metrics we record.

3.2 CPU based implementations

The �rst part of this project was to create a two phase locking based system, as
well as a deterministic concurrency control based system based purely on the CPU
to establish a baseline for performance.

For both types of concurrency control we tried to keep the architecture constant,
barring the mechanisms used to control the concurrent execution of transactions.
Common to both, we have a application that is responsible for generating the trans-
actions used to benchmark the system. We then have a scheduler, which schedules
work to the workers and monitors the workers for �nished transactions. Workers are
responsible for executing transactions through a shared in memory table. Transac-
tions are given to each worker by the scheduler via it's own individual work queue.
Each worker also has an outgoing queue shared with the scheduler to queue the re-
sults of each transaction to. Workers are implemented as C++ threads, and simply
spin waiting for work to be given to them.

For our experiments we measure throughput by recording the time taken to
execute a large number of transactions. This is measured from the time taken
before the scheduler schedules the �rst transaction, to the time that the scheduler
receives the result of the last transaction to �nish. To ensure that we do not incur
any overhead by generating transactions during our benchmarking, we generate all
of the transactions in a benchmark before the start and store them in memory.

To gauge where bottlenecks are in our implementation we used Intel's software
pro�ling tool, VTune [16]. Vtune enables us to run our application, pro�ling data
about its execution such as time spent executing functions and thread utilisation.
Using this tool, we found that allocating memory during runtime was a major over-
head. To get around this we ensured that all data in transactions was �xed size and
so did not have to be allocated during the benchmark. In addition to this instead
of allocating new result objects when we �nish a transaction in each worker, we add
to the results queue a pointer to a result in a circular results bu�er.

For increased e�ciency, we also implement read-write locking for both methods
of concurrency control as YCSB benchmarks typically include a mix of read and

24

write transactions. Read-write locks maintain the following invariants: (a) a read
lock is acquired i� there exist no writers, (b) a write lock is acquired i� there exist
no readers or writers. This is a e�ective optimisation for locking as it still guarantees
isolation of the transactions, but will mean that multiple readers to the same tuple
will not experience contention.

3.2.1 Deterministic

Figure 3.2: The architecture of the deterministic concurrency control implementa-
tion

In the deterministic implementation, we tried to keep the code faithful to the im-
plementation used in Calvin [31]. The main alteration we make is to remove the
sequencer, as since we only executing on a single node, the order in which the sched-
uler receives transactions is the only possible ordering.

A key aspect of the deterministic implementation, is the lock manager. The lock
manager implements read-write locking per tuple in the table. Every transaction
must be processed by the lock manager before it can be processed by the scheduler.
When the scheduler processes the next transaction in the queue, it initially attempts
to lock it with the lock manager. If the transaction is locked successfully, the trans-
action is scheduled to a worker. Else, the scheduler moves on to the next transaction
in the queue. Then, when a worker completes a transaction, the scheduler unlocks
the transaction using the lock manager. The lock manager then returns a list of
transactions that have been made ready to execute by the lock(s) being released.
The scheduler then immediately schedules these transactions to workers.

In order to maintain determinism, the lock manager must keep an ordering of
the transactions waiting on locks on the tuples. This is done by keeping an ordered
list of the transactions waiting on each tuple, along with whether it is a read or
write access. Then the transactions that are granted the lock by a lock that has
been released can be determined by the following algorithm:

25

Listing 3.1: Algorithm for granting locks adapted from [37]

i f (r ea l easedReques t == reques t s−>begin () &&
(rea leasedRequest−>isWri te | |
(! r ea leasedRequest−>isWri te && i t−>isWri te))) {

// I f a wr i t e l o c k r e que s t f o l l ow s , grant i t .
i f (i t−>isWri te)
newOwners . push_back (i t−>txn) ;

// I f a sequence o f read l o c k r e qu e s t s f o l l ow s , grant a l l o f them .
for (; i t != reques t s−>end () && ! i t−>isWri te ; ++i t)

newOwners . push_back (i t−>txn) ;
} else i f (! ongoingWrites &&

rea leasedRequest−>isWri te && ! i t−>isWri te) {
// I f a sequence o f read l o c k r e qu e s t s f o l l ow s , grant a l l o f them .
for (; i t != reques t s−>end () && ! i t−>isWri te ; ++i t)

newOwners . push_back (i t−>txn) ;
}

3.2.2 TPL

Figure 3.3: The architecture of the TPL implementation

For the two phase locking implementation we remove the lock manager from the
scheduler, and simply schedule work to the workers as needed. Then to manage
concurrency between the transactions, each worker thread shares access to a lock
table. This lock table implements a read-write lock per tuple (similar to our de-
terministic lock manager), and is implemented through C++'s standard library

26

shared_timed_mutex. Thus, if there is any contention on a tuple, one worker al-
ways proceeds while the other threads are blocked. Deadlocking can also be avoided
by ensuring that workers obtain the locks that they need in a deterministic ordering.

3.3 FPGA implementations

3.3.1 FPGA design considerations

FPGAs as detailed in section 2.2.1, are hardware circuits that are able to be re-
programmed with bit-streams to emulate physical hardware. In section 2.3 we then
discussed the exciting new development to write programs for these devices in high
level compute languages like OpenCL that allow us to compile more tradition "C
like" programs into bit-streams for our FPGAs. However, we found that simply
compiling our OpenCL programs for FPGAs without taking into consideration the
synthesis of the programs into hardware, will not generally lead to good performance
or utilisation of the hardware. In this section, we discuss the design considerations
that we need to take when porting the earlier CPU experiments onto using the
FPGAs.

Pipelining

The �rst important concept to consider is pipelining. This is the concept of a hard-
ware design consisting of many sequential steps that instructions or data must �ow
through to �nish their computation. When one instruction �nishes a step, it can
then move on to the next step, allowing the next instruction to then compute that
step. This leads to pipeline-parallelism, where multiple instructions can be execut-
ing concurrently in the pipeline at di�erent stages. This can a big performance
advantage when using an FPGA over a general purpose processor as multiple in-
structions are in �ight at a time, a much lower number of cycles to output a result
can be achieved. For example Sirowy Et Al, found that their fully pipelined design
for JPEG image compression could compute one color component per cycle - 1155X
faster than their general purpose CPU implementation [27].

However, it is not always possible to create a perfect pipeline in which the next
instruction is able to execute immediately after the previous. A common example
of this is an external memory operation, as the time taken for this operation can
vary (especially if caching is used). If this operation takes longer than the time
allocated to it, it will e�ectively stall the pipeline whereby all instructions behind
it have to wait. This then reduces the e�ective parallelism in the pipeline as stalls
in the pipeline create bubbles of empty instructions [13].

There are a few ways in which this was taken into account in the FPGA designs.
Originally, we branched into di�erent pieces of code to execute the transaction based
on it's type. However, since each piece of code could have a di�erent amount of
execution time, the compiler can only pipeline up to the point where the code
branches and execute the branch as a single step in the pipeline. Thus, this removes
any pipelining from the design. Therefore, we made sure to make each transaction
execute in one main loop rather than have separate loops based on the type of
transaction. This then allows each loop iteration to be pipelined, so that multiple
transactions can be executing concurrently in the design. This is possible as in

27

YCSB all columns are of a �xed size, and so we can make each transaction simply
execute over all of the �xed bytes of a column in the store. If we want to support
other transactions such as full row reads we can simply construct this as multiple
read transactions.

Read and write dependencies within a loop can also cause issues for the compiler
being able to e�ectively pipeline a design. If we load or store to global memory inside
of a loop, the compiler will make sure that the next iteration of the loop is not run
until the load or store is completed to ensure correctness if there are dependencies on
the memory in future iterations of the loop. However this limits the performance of
the design, as we are stalling the pipeline on these memory actions. This was a big
problem for the performance of our FPGA designs as the bulk of our kernel is reading
and writing to memory within a loop. To avoid this, the Intel OpenCL compiler
provides the ivdep pragma which instructs the compiler that any loop this pragma
is placed above does not have memory dependencies between loop iterations. This
then means that the compiler can allow a higher rate of instructions going through
the loop as we do not have to stall loop iterations on memory accesses.

Memory accesses

Another aspect we must take into account when writing programs for an FPGA is
the way in which memory is accessed. This is particularly important on an FPGA as
we do not have the bene�ts of features large caches and speculative execution which
bene�t memory performance on a general purpose processor. Thus, to maximise
memory bandwidth we must design our programs memory accesses to compliment
the DRAM interface.

One important optimisation is alignment. If we do not our align structures with
the width of the memory interface then we will end up adding additional reads or
writes to where the data overlaps the memory interface width, reducing our e�ective
memory bandwidth. Our particular hardware needs 64-bit memory alignment. To
get around this, we make sure to pad all of our structures to 64-bits so that when the
design indexes a structure in a memory bu�er, it's address will always be a multiple
of 64-bits. Furthermore, when transferring data two and from the device, we must
ensure that the bu�ers are 64-byte aligned to allow direct memory access (DMA)
with the host and board.

Since memory interfaces are typically very wide, performance can also be increase
by coalescing reads and writes to memory. In our design we copy each transaction
object into local on chip memory at the start of each transaction and then copy the
result object into global memory only at the end of the transaction. Doing these
memory operations in bulk, rather than reading or writing to individual �elds during
the transaction ensures that the reads and writes are coalesced and so the compiled
hardware can make full use of the width of the memory bus.

Scaling up

Once we have maximised performance from a single pipeline design, we need to scale
up the design to make full use of all of the FPGAs resources. One way this could be
achieved is to simply compile the design with multiple identical kernels. However
this would mean that we would have to manage in and out bu�ers for each kernel
which would lead a higher number of smaller data transfers between the host and

28

device leading to poorer usage of the PCIe bus. To get around this problem, Intel's
compiler provides two di�erent methods - kernel vectorisation and compute units.

For both of these methods, we need to use work groups rather than execute all
of the transactions in a single batch. Instead of iterating over all of the transactions,
we call get_group_id and get_local_id to get the local and group id of the work
item which we can then use to calculate the index of the transaction. The compiler
then creates the pipeline to iterate through the work items in a work group.

Kernel vectorisation works by creating extra hardware that executes multiple
work items in parallel, much like a single instruction multiple data (SIMD) processor.
The compiler does this by creating extra hardware for each scalar operation in the
kernel, so multiple work items can be executed in parallel. On the other hand,
telling the compiler to create multiple compute units for a design simply creates
multiple unique parallel pipelines. Additionally, this creates a hardware scheduler
on the FPGA which schedules work items onto the compute units during runtime.

While both methods increase the amount of parallel work at the expense of hard-
ware resources, kernel vectorisation is more e�cient, as the parallel memory accesses
are able to be coalesced and so leads to better utilization of memory bandwidth [13].
However, since transactions are independent and access random memory it is hard
to match them to a SIMD work�ow. Moreover, kernel vectorisation does not allow
work id dependent branching which makes it di�cult to use as we need to branch
based on each transactions type (if it is a read or write etc...). Thus to scale up the
designs in this project we use multiple compute units.

Memory transfers

Data is transferred to and from the FPGA via direct memory access (DMA) over
the PCIe bus. DMA is an I/O acceleration technology that allows hardware devices
to access the CPU's main memory, without independently of the CPU. In order to
initialise a DMA, the CPU must perform some initialisation as well as handle an
interrupt when the transfer is �nished. This overhead makes small memory transfers
ine�cient as demonstrated in the experiment below.

29

...
..

0

.

0.5

.

1

.

1.5

.

2

.

·105

.
60

.

70

.

80

.

90

.

100

.

110

.

Number of transactions

.

T
im
e
ta
ke
n
p
er

10
00

tr
an
sa
ct
io
n
s
(µ
s)

Figure 3.4: Time spent transferring the transaction objects to the FPGA (via DMA
on the PCIe bus) per 1000 transactions, against the number of total number trans-
action objects transferred in one batch.

As seen in �gure 3.4, the more transaction objects we sent in a batch the larger
the total memory transfer size resulting in a slower e�ective time to transfer each
object as the overhead of DMA is amortised. However as the size of the batches is
increased further, the more this payo� is reduced.

Therefore, we must ensure that the size of the batches processed on the FPGA
are large enough so that the overhead of DMA does not cause the memory transfers
to dominate the kernel execution time.

30

3.3.2 Processing transactions on FPGA

Like in our CPU experiments, we have tried to keep the architecture similar for our
TPL and deterministic implementations on the FPGA. We show this architecture
in �gure 3.5 below:

Figure 3.5: The architecture of transaction processing on the FPGA.

As in the CPU implementation, we also have a scheduler that has the role of
managing the execution of transactions in the system. However, instead of schedul-
ing individual transactions to be executed, the scheduler must now lock batches of
transactions as we must be able to saturate the kernel's pipeline with transactions
on each execution. As demonstrated in �gure 3.4 previously, it is most e�cient for
memory transfers if we transfer large batches of transactions at a time. Batches of
131072 transactions were chosen as the speed-up beyond this in �gure 3.4, and so
makes a good trade-o� between transfer speeds and the overall latency to complete
transactions.

When the scheduler has �lled a bu�er to be executed, it passes it on to the host.
The host is responsible for managing all aspects of the FPGA card. When the pro-
gram is started, the host programs the FPGA with our kernel's bitstream, allocates
the three bu�ers in the devices global memory and assigns pointers to them as the
kernel's input arguments. The transactions bu�er acts as the input to our kernel,
and consists of structs containing the data needed to execute each transaction.
The results bu�er acts as the output of the kernel and contains result structs con-
taining the result of each transaction. Lastly, the table bu�er allocates the area in
memory to be used for the data storage. When the scheduler gives transactions to

31

be executed to the host, it writes the new transactions to the transactions bu�er
and queues a kernel execution to the command queue. Then, when the scheduler is
�nished �lling the next batch of transactions it calls the host for the results of the
previous batch. When this happens, the host waits for the execution of the kernel to
�nish, and then reads the results bu�er from the FPGA's memory. The host blocks
until all of the results are read.

For each transaction, the kernel takes the following steps. Firstly the kernel gets
its work group id and work item id to calculate the unique index of its transaction in
the transaction bu�er. Then, we bu�er the transaction object into private memory.
Branching on the transaction type, we either preform a read or write to the table
in global memory with the key the value given in the transaction object. Lastly, we
write the result of the transaction to the transaction bu�er.

Challenges

A large problem that we had when writing the kernel, was the speed of the accesses
to global memory. From viewing the pro�ling data from the kernel execution all
memory accesses were getting 3-8% utilisation of the memory bandwidth. In order
to improve this we investigated into the hardware the compiler was generating for
these memory accesses.

From looking at the report that Quartus had generated from the compile, we
found that the compiler had generated non-aligned burst coalesced LSUs for the
loading of transaction objects and the storing of result objects. Non-aligned memory
accesses can cause very poor memory performance as extra reads or writes have to
be performed where overlaps in the memory word size occur. Although we were
64-bit aligning the transaction and results structs, the compiler was still generating
misaligned LSUs because it was not aligned to the memory word size of 512-bits.
To get around this problem, we forced these structs to be 512-bit aligned. Since the
size of each �eld is 512-bits, this forces both structs to be 1024-bits in total size.
This resulted in compiler generating streaming LSUs for the memory accesses.

Next we looked at the hardware generated for the memory operations on the
table. Initially in the design, we looped through the reads/writes, reading/writing
to each byte of the �eld sequentially. Thus, we were relying on the LSU to bu�er
and coalesce the sequential bytes in order to ensure e�cient use of the memory
bus. However, this was clearly not the case from the pro�ling data. To solve this,
we created a struct called Col which only contained a �xed size array of the size
of a �eld in the table. Then, in the kernel we fully removed the loop and simply
perform the read/write operation as a assignment of a Col struct. This forced the
compiler to generate an LSU of exactly the width of a �eld, so that each read or
write transaction uses accesses exactly one line of memory in one go.

Figures 3.6 and 3.7, show the �ow diagrams before and after these described
changes. As can be seen, these changes result in a far simpler �ow through the kernel,
and removes the non-pipelined area (shown in red) where we perform the transaction.
The result of these improvements pushed the utilisation of the memory bandwidth
for each memory access to 100%, and resulted in an around 5X improvement in
overall kernel throughput.

32

Figure 3.6: A �ow diagram of the generated kernel with improved memory accesses.
The area hi-lighted in red shows that the compiler was not able to pipeline this
section. This corresponds to the area in which we preform the reads or writes to
the table.

33

Figure 3.7: A �ow diagram of the kernel with the improvements to memory accesses.

3.3.3 Deterministic CC on FPGA

The implementation for deterministic concurrency control on the FPGA is very
similar to that of our earlier CPU experiments. The key di�erence instead of the
scheduler transferring transactions to the worker threads after locking their tuples,
we instead pass work to the FPGA. When the kernel running on the FPGA processes
a transaction, it can assume that it has the necessary locks to execute it and so the
FPGA simply execute the operations to the table in global memory that make up
the transaction.

When running the implementation initially, we found that the application was
spending the majority of the time �lling the bu�er of transactions to be executed,
and so for a large amount of the benchmark the FPGA was idling. When inspecting
the execution stack with the VTune performance analysis tool [16], it was noticed
that half of the execution time was spent in the lock manager. In particular, op-
erations on the list structures keeping track of the transactions waiting to acquire
access to a tuple were dominating. Actions like adding to a list can be expensive
due to memory allocations or traversing pointers however they are necessary as we
need to keep track of dynamic amounts of transactions waiting on locks at runtime.
This led to the FPGA idling for most of the applications runtime as seen in �gure
3.8. If we continued with this lock manager, there would be little point in executing
on the FPGA as it would simply be bottlenecked by the performance of the lock
manager.

34

Figure 3.8: A timeline of the kernel execution with the initial lock manager from
Intel's FPGA pro�ling tool. Note that there is a large amount of time between the
two kernel executions where the FPGA is idling.

However, a key insight we had was that since we were now processing transactions
in batches we do not to keep a track of all of the transactions that have a lock or
are waiting to acquire one. This is because each batch is executed in isolation and
all locks that are taken for one batch will be free on the next. Thus, much simpler
data structures and logic can be employed to manage locking. The algorithm we
use is as follows:

Algorithm 1 Batch locking algorithm

readers← {0}
writers← {0}
while bu�er not full do

transaction← pop front transactions
(type, key)← transaction
if type = write then

success← ¬(readers(key) ∨ writers(key))
if success then

writers(key)← true

else

success← ¬(writers(key))
if success then

readers(key)← true

if success then
push back transaction to bu�er

else

push back transaction to transactions

Note that if a transaction contends with a transaction that has already been
added to the bu�er, we simply try that transaction again later. Since the readers
and writers are now simple sets, we can implement them as simple bitmaps that
have the length of the number of tuples in the table. Compacting these structures
down helps to increase the locality of our accesses while locking and keep these sets
entirely in cache. Also, the releasing of the locks done at the start can simply be
implemented as an e�cient memset operation of the sets to 0.

Figure 3.9 demonstrates the performance increase in locking batches of trans-
actions with this new lock manager. We see a almost 4X speed-up when running
YCSB B (read heavy) and almost of 5X speed-up in YCSB A (write heavy). When
we run YCSB A we get e�ectively more contention when we use read-write locks
with a higher number of writes. This then means that the lock manager has to
try more transactions in order to �ll the bu�er for the batch. This leads to the
performance decreasing for the original lock manager, as when a transaction cannot

35

acquire it's locks we must keep a track the transaction's position involving map and
list writes. Whereas in the improved lock manager, if a transaction cannot acquire
it's locks we simply retry it later so we do not su�er any performance decreases from
a higher proportion of writes.

...

..

B Med. Cont.

.

A Med. Cont.

.
20

.

40

.

60

.

80

.

T
im
e
ta
ke
n
(m

s)

.

. ..Original . ..Improved

Figure 3.9: Average time taken locking a batch of 131072 transactions running
YCSB A and B at medium contention (theta=0.5) with the original and improved
lock managers.

The improvement can be seen in �gure 3.10, where now the time that the FPGA
is idling is signi�cantly reduced. Overall because of the improved times to lock
batches, we see an increase in overall throughput of 3.9 million transactions a
second when running YCSB B with medium contention.

Figure 3.10: A timeline of the kernel execution with the improved lock manager
from Intel's FPGA pro�ling tool.

3.3.4 TPL on FPGA

Two phase locking maps very easily in implementation to an FPGA. Since the
workers manage concurrency control as well as the transactions, the only other part
needed is a schedule to give transactions to the workers. This then is a natural �t to
have the CPU host schedule and bu�er the transactions to be sent over PCIe to the
FPGA to be executed. The workers can then be simply implemented as compute
units on the FPGA.

The main challenge of this design is to create a shared locking mechanism be-
tween the compute units, to allow the isolation of transactions that two phase locking

36

gives us. In the CPU based implementation, we could easily achieve this through
a shared table of read write locks. However, OpenCL does not natively support
synchronisation between work groups. This is because OpenCL allow devices to
schedule work groups to compute units during runtime, and so is abstracted away
from the programming environment. However OpenCL does support a set of atomic
functions in the standard, of which Intel supports the 32-bit atomic functions [14].
Of these functions, we have:

• int atomic_cmpxchg (volatile __global int *p, int cmp, int val) -
Read the 32-bit value (referred to as old) stored at location pointed by p.
Compute (old == cmp) ? val : old and store result at location pointed by p.
The function returns old. [26]

• int atomic_xchg (volatile __global int *p, int val) - Swaps the old
value stored at location p with new value given by val. The function returns
old. [26]

From this, we can then de�ne our locking primitives as follows:
#define LOCK(a) while(atom_cmpxchg(a, 0, 1))

#define UNLOCK(a) atom_xchg(a, 0)

We also put mem fences after locking, and before unlocking to ensure that all
accesses to global memory have �nished after/before we lock/unlock. All together,
this mechanism is an analogue of a spin lock in CUDA [1] common used in GPU
programming to synchronise threads.

The �nal component that is needed to �nish the locking mechanism is a table of
locks in memory that can be shared between the compute units. OpenCL's memory
model only allows global memory to be shared between compute units (local memory
is shared within compute group, and private is shared within work groups). Ideally,
we would have the lock table in the FPGAs internal memory to make use of it's high
bandwidth. However, global memory is by default mapped to the FPGAs external
memory and although the Intel compiler does support using heterogeneous memory
for global memory, this is not a feature that our board supports. Therefore we
implement this lock table as a bu�er in global memory, and pass a pointer to it as
an extra argument to the kernel. Additionally, on the initialisation of the kernel we
zero out this bu�er from the host to ensure all locks are available when the kernel
starts.

37

Figure 3.11: A �ow diagram of the generated kernel for TPL.

38

Chapter 4

Evaluation

In the following section we will evaluate the performance of the deterministic and
TPL concurrency control implementations on both the FPGA and CPU. In sec-
tion 4.1 we will compare the performance of the two concurrency control schemes
running purely on the CPU. Section 4.2 will then compare the concurrency control
schemes running with the FPGA. Then in section 4.3 we will compare the absolute
performance of all four implementations to assess the relative performance of each
approach.

In our tests, we will use the YSCB benchmarks [5] to gauge performance. How-
ever, we have made slight modi�cations to the schema in order to generate more
e�cient hardware for the FPGA. Firstly, we reduce the size of �elds from 100 bytes
to 64 bytes. This is so that the records are aligned in memory, and that reads and
writes will be a full cache line to ensure e�cient LSUs on the FPGA. We also reduce
the number of �elds in each record from 10 down to 8, so that addresses of each �eld
can be e�ciently calculated on the FPGA. We found that these changes did not have
a signi�cant impact on the performance characteristics of the CPU implementation.

It should also be noted that we use a scrambled Zip�an distribution for the
distribution of keys to spread the popular keys across the key space so that we avoid
any caching that would not be seen in a real world workload. All read and write
transactions are also single �eld.

Details about the hardware we run these experiments on can be found in the
appendix in section A.1.

4.1 CPU baseline

In this section we will explore the performance characteristics of the two CPU based
implementation to establish a baseline level of performance. For each benchmark
we vary the number of workers executing transactions on each system. In addition
to these threads, we also create a single thread for a scheduler to allocate work to
the workers.

39

4.1.1 YCSB B

...
..

0

.

5

.

10

.

15

.
0

.

2

.

4

.

No. workers

.

T
h
ro
u
gh
p
u
t
(M

il
li
on
s
tr
an
sa
ct
io
n
s/
s)

.

Low contention

..
..

0

.

5

.

10

.

15

.
0

.

2

.

4

.

No. workers

.

Medium contention

..
..

0

.

5

.

10

.

15

.
0

.

2

.

4

.

No. workers

.

High contention

.

..

. ..TPL

. ..Deterministic

Figure 4.1: Throughput of transactions from YCSB B on the TPL and deterministic
CPU based implementations with varying numbers of workers and contention levels
(Low theta=0.1, Medium theta=0.5, High theta=0.9)

In these benchmarks we see that TPL far out scales the deterministic implementation
by a large degree. Initially, we see that the deterministic implementation achieves
a higher throughput than the TPL with small numbers of workers (1 or 2). This is
because of the higher overhead of using CPU locks in the TPL implementation, vs
in memory structure of the lock manger in the deterministic.

However once the number of workers increases beyond this, we see that the TPL
implementation increases linearly with the number of workers while the determin-
istic remains �at. This is due to the fact that the deterministic implementation is
reliant on the lock manager to schedule transaction. Since this lock manger is single
threaded (to maintain determinism), the whole system is limited to the throughput
of this stage. As we have discussed in section 3.3.3, the lock manager is slow due
to the structures keeping track of waiting transactions. This is not a bottleneck in
Calvin as it is a distributed system, and so the throughput of each node reaching in
the tens of thousands [31]. However, in our single node setup this is a major issue
for scalability.

The results do not signi�cantly change over the varying levels of contention in
this benchmark. This is largely due to the fact that this is a read heavy benchmark
(95% reads, 5% writes) and both implementations use read-write locking per record.
It can be noted however that the higher contention results do have a slightly faster
scaling with the number of workers. This is due to the higher density of transactions
on popular keys, leading to an increase in cache hits on records.

40

4.1.2 YCSB A

...
..

0

.

5

.

10

.

15

.
0

.

2

.

4

.

No. workers

.

T
h
ro
u
gh
p
u
t
(M

il
li
on
s
tr
an
sa
ct
io
n
s/
s)

.

Low contention

..
..

0

.

5

.

10

.

15

.
0

.

2

.

4

.

No. workers

.

Medium contention

..
..

0

.

5

.

10

.

15

.1 .

2

.

3

.

4

.

No. workers

.

High contention

.

..

. ..TPL

. ..Deterministic

Figure 4.2: Throughput of transactions from YCSB A on the TPL and deterministic
CPU based implementations with varying numbers of workers and contention levels
(Low theta=0.1, Medium theta=0.5, High theta=0.9)

The results from YCSB A do not change signi�gantly from the results for YCSB
B despite the larger proportion of write transactions. Although there is a higher
level on contention on our read-write locking mechanisms in this benchmark, since
the transactions are single row and relatively short lived locking of the transactions
continues not to be a bottleneck.

4.2 FPGA results

In this section we will evaluate the performance of both deterministic and TPL
concurrency control running on the FPGA. We measure the FPGA's performance
by compiling our designs with the �ag -profile=all to the Altera o�ine compiler.
This compiles additional hardware into the design to measure stalls, memory perfor-
mance and other runtime characteristics of the kernels execution. We will use these
results to compare the two designs, and identify bottlenecks in these techniques.

41

4.2.1 Kernel execution times

...

..

Determinstic

.

TPL

.

5

.

10

.

15

.2.44 .

13.4

.2.51.

13.4

. 2.51.

13.4

.

E
x
ec
u
ti
on

ti
m
e
(m

s)

.

. ..1CU . ..2CUs . ..4CUs

Figure 4.3: Kernel execution times of the deterministic and TPL designs running
YCSB B with theta=0.1.

We can see from the kernel execution times that the deterministic design yields over
a 5X speed-up over the TPL. Although the OpenCL report only shows 12 cycles
being allocated to the lock acquisition out of a total of 213 for each work item in the
pipeline, we see much worse performance than this when we run benchmarks. This is
because each record has a lock that is only 32 bits wide, and since our access pattern
will be very random (because of the scrambled Zip�an distribution) the LSUs will
not be able to coalesce together lock acquisitions and releases in the pipeline leading
to poor memory performance. This leads to 66% of lock acquisitions and 74% of
lock releases stalling the pipeline, and a total utilisation of the memory bandwidth of
6.27% and 6.29% for these instructions respectively. In comparison, the deterministic
kernel achieves 100% bandwidth e�ciency on all memory instructions, and a 9% stall
rate on the worst memory instruction.

We do however not see any scaling in either of the designs as more compute
units are added. Although this should give more performance since we have multi-
ple pipelines executing in parallel, the limiting factor is the available memory band-
width and not the compute on the FPGA. We can see this in the pro�ler data from
these runs. In the deterministic kernel with one compute unit, we achieve a memory
bandwidth of 171.5MB/s and 3320MB/s for writes and reads to the table respec-
tively. When we increase this to four compute units this decreases to 42.6MB/s and
824MB/s. This is almost exactly a 4X decrease in the memory bandwidth for every
compute unit showing that any speed up we gain by the parallel execution of the
pipelines is lost by a reduction in the individual performance of the pipelines.

42

No. Compute Units Read
speeds
(MB/s)

Read stalls Write
speeds
(MB/s)

Write
stalls

TPL
1 599 68.58% 35.5 40.75%
2 299 52.31% 15.7 8.46%
4 149.6 58.75% 7.9 48.11%

Deterministic CC
1 3320 14.63% 171.5 2.67%
2 1654.9 9.39% 85.5 5.73%
4 823.7 9.25% 42.6 5.94%

Table 4.1: Memory performance of the deterministic and TPL kernels on reads and
writes to the table with varying numbers of compute units. Performance is gathered
from the kernel with the Intel pro�le tool while running YCSB B with theta=0.1.

4.2.2 Memory transfer times

...
..

Determinstic 4 CUs

.

TPL 4 CUs

.
10

.

15

.

20

.

25

.

30

.

35

.

T
im
e
ta
ke
n
(m

s)

.

. ..Transferring results . ..Transfering work . ..Execution time

Figure 4.4: A breakdown of the time spent on the FPGA for both designs running
YCSB B with theta=0.1. Shown is the time taken transferring work to the FPGA
from the CPU, executing the transactions on the FPGA, and transferring the results
from the FPGA to the CPU.

Between each run of the kernels, we must read the results from the FPGAs memory
and write the new batch of transactions to be executed over the PCIe connection.
Since the performance of this is mainly based on the memory bandwidth on the
FPGA as well as the speed of the PCIe connection, these transfer times are con-
stant for both designs. However, with the deterministic design's much faster kernel

43

execution time, the time spent transferring memory dominates the time spent ac-
tually executing transactions. This therefore limits the possible performance of
transaction processing on our FPGA card as increases in the performance of the
FPGA design beyond this will have little impact on the overall throughput of the
system.

4.2.3 FPGA resource utilization

No. Compute Units ALUTs FFs RAMs DSPs
Deterministic CC

1 47593 (10%) 66496 (7%) 431 (17%) 0 (0%)
2 54480 (12%) 78526 (8%) 518 (20%) 0 (0%)
4 68252 (15%) 102605 (11%) 692 (27%) 0 (0%)

TPL
1 47627 (10%) 66562 (7%) 431 (17%) 0 (0%)
2 54548 (12%) 78658 (8%) 518 (20%) 0 (0%)
4 68324 (15%) 114865 (12%) 700 (27%) 0 (0%)

Table 4.2: The FPGA resource consumption of the deterministic CC and TPL
kernels with varying number of compute units. Percentages in the columns show
the proportion of the boards total available resources the design consumes.

As demonstrated in table 4.2 both the Deterministic and TPL kernels take up a
small amount of our FPGA's available resources, even when scaling up the number
of compute units. This is due to the both kernels mainly being focused on accesses
to global memory, and so most of the resources used are for the generation of LSUs.
Thus more compute intensive resources such as DSPs are not even utilised in these
designs.

We also see that the scaling up resources for both designs is fairly linear with
the number of compute units added. Since adding more compute units in OpenCL
simply adds duplicate pipelines, and communication or synchronisation is not needed
between them (accept for atomic functions used in TPL) this behaviour is to be
expected.

Typically in most FPGA applications, you come up with an optimised design for
the task and �nd a way to scale it up to maximise the usage of the available hardware
on the FPGA to further increase performance. However, since in our application
we have seen that we are extremely memory bound, we do not bene�t from using
the additional hardware to create multiple compute units. This is not necessarily a
drawback of transaction processing on an FPGA as additional area could be used
to implement more complex transaction types, o�oad other tasks such as query
processing to the FPGA, or simply allow us to run this application on smaller and
more cost e�ective FPGAs.

44

4.3 CPU vs FPGA performance

4.3.1 Throughput

...

..

B Low Cont.

.

A Low Cont.

.
1

.

2

.

3

.

4

.

5

.

4.29

.

4.3

.

3.8

.

2.94

.1.3. 1.29.

5.37

.

4.89

.

T
h
ro
u
gh
p
u
t
(M

il
li
on
s
tr
an
sa
ct
io
n
s/
s)

.

. ..TPL CPU . ..TPL FPGA . ..Det. CPU . ..Det. FPGA

Figure 4.5: Overall throughput of TPL and deterministic implementations running
on the FPGA and the CPU for YCSB A and B with theta=0.1

While we have seen that the kernel execution time of the TPL on the FPGA gives
it a higher throughput then we get from TPL running on the CPU, the overall
throughput remains slower for both benchmarks. This is due to the large amount
of overhead that occurs from transferring work and results to and from the FPGA.

We also see a large disparity between the CPU and FPGA results in the deter-
ministic systems. This is thanks to the much faster batch lock manager we use for
the FPGA. Since this lock manager does not incur any overhead as we have seen, we
are able to run at the full speed of the FPGA, which we have seen has an extremely
high throughput.

Overall, we see that the deterministic FPGA implementation has the highest
overall throughput. However, it should be noted that this lead does somewhat
decrease in the YCSB A benchmark with a higher proportion of writes. This is
due to the fact that writes to DRAM are slower than reads. Since we have seen
that the FPGA performance is highly memory bound, this has a large impact on its
performance. Whereas, on CPU implementations are not memory bound and so do
not show any �uctuation in performance between the two benchmarks.

45

4.3.2 Latency

...

..
D
et
. C
PU

.
TP
L
CP
U

.

D
et
. F
PG
A

.

TP
L
FP
G
A

.

101

.

102

.

103

.

104

.

105

.

L
at
en
cy

(µ
s)

Figure 4.6: The latency of a single read transaction from start to �nish with TPL
and Deterministic CC both on the FPGA and CPU implementations. Note that we
include the time taken to �ll the entire bu�er of transactions in the batch in the
FPGA experiments.

Although the FPGA implementations do achieve a high throughput (as demon-
strated in the previous section), as seen in �gure 4.6, the trade-o� we make to
achieve this is increased latency of individual transactions. In particular, we see
around a 4000X increase in latency for our FPGA implementations vs the CPU
based equivalents. This increase is a product of moving to batch processing as well
as the additional latency of transferring data over the PCIe bus. With an overall la-
tency of around 60ms for the FPGA implementations this should still be suitable for
most applications, however for applications that require low latencies for individual
transactions we see that a CPU based implementation will be preferable.

While the CPU implementations have signi�cantly lower latencies than both
FPGA implementations, it can be noted that the deterministic CC CPU imple-
mentation has a lower latency of 16µs compared to the 19.1µs of the TPL. From
observing their execution in VTune, we �nd that this is due to the locking in the
deterministic lock manager faster than that of the CPU locks used in the TPL im-
plementation. It is also worth noting that the Deterministic FPGA implementation
also outperforms its TPL counterpart in latency by around 3.7ms due to its shorter
overall kernel execution time as seen in �gure 4.3.

It should be noted that although the latency of both FPGA implementations the-
oretically could be much lower with future hardware improvements. The pipeline of
the deterministic kernel takes 189 cycles to complete, whilst the TPL implementa-
tion takes 195. If both kernels were able to achieve the full clock speed of 500MHz
and experienced no stalls on memory, the latency of a transaction would be 0.37µs
and 0.39µs respectively. Thus, it is possible that we could end up with latencies
smaller than the CPU implementations with future improvements to interconnect

46

between CPU and FPGA.

47

Chapter 5

Conclusion

Using deterministic concurrency control methods is an exciting advancement in the
�eld of distributed OLTP databases. This simpler method of concurrency control
enables far better scaling across large numbers of nodes, by bypassing much of the
synchronisation needed to maintain ACID properties.

For a single node database system however, traditional concurrency schemes
still remain on top. We have shown through our CPU experiments that TPL based
concurrency control far out-scales deterministic. Because of the low cost of syn-
chronisation of thread in a single node compared to over multiple nodes, the single
threaded lock acquisition of deterministic concurrency control becomes a serious
bottleneck to its scaling.

However, when processing transactions on an FPGA, the bottlenecks and limit-
ing factors change signi�cantly. As demonstrated, the cost of managing concurrency
through locking values on an FPGA is extremely high because of the resulting small
and ine�cient atomic actions on global memory. This then results in a signi�cant
drop in performance when executing TPL on the FPGA as locking for each trans-
action add a high amount of stalling to the pipeline, reducing parallel execution.
Whereas, deterministic transaction processing maps well to an FPGA's architecture
as the design of the kernel can be simple and pipelined. Additionally, where the lock
manager was a bottleneck to performance on the CPU implementation we have put
forward a new lock manager optimised for batch processing which is necessary for
the FPGA. This yields much higher throughput in the lock manger, but also allows
processing of the locking in parallel to the kernel execution on the FPGA.

While TPL remains slower on the FPGA than on the CPU, deterministic trans-
action processing on the FPGA shows a notable increase in overall throughput over
anything that we saw was possible without it. This is thanks to processing the
transactions in a very e�cient pipelined design, that is able to fully saturate the
memory bandwidth available to it.

Overall, the application of FPGAs to in memory transaction processing is very
promising. As technology improves, we expect the case for transaction processing
on FPGAs to get stronger. During this projects experiments, it was found that
transaction processing on the FPGA is highly memory bound. From this we an-
ticipate that increases in memory bandwidth available to the FPGA would result
in equal increases in throughput of transactions. Manufacturers such as Intel and
Xilinx have already started to create FPGA devices with high bandwidth memory
(HBM) [15] [35] that are capable of memory bandwidth of around 1 TB/s compared

48

to the 6.4GB/s bandwidth of the DDR3 memory on our FPGA. Additionally from
the experiments it was found that a large amount of overall execution time is spent
transferring data back and forth between the device. This bottleneck will only get
smaller with improvements in the interconnect between the CPU and FPGA.

5.1 Challenges

Many challenges were encountered during the course of this project. Although steps
were taken to mitigate against some of these challenges, there was still a number of
hurdles to face along the way.

Setting up the FPGA programming environment proved di�cult at �rst. Al-
though Terasic provides a board support package for the FPGA board, the installa-
tion process was not straightforward. The server used for this project was running
Ubuntu as it's Linux distribution, however Intel only o�cially supports CentOS for
Linux. This resulted in having to modify the drivers for the board in order for
them to compile and be installed. Additionally, the default Altera driver as this
was causing issues with the board not being recognised by the system and had to
be manually disabled. Lastly, physical access the system was required to attach a
cable to the boards JTAG interface to program the board with an OpenCL kernel
so that the device could be further reprogrammed through the PCIe connection.

Although OpenCL was chosen in this project for ease of programming over HDL
languages like VHDL or Verilog, issues were still experienced with this environment
over traditional CPU programming. Firstly, although OpenCL abstracts the hard-
ware generation away from the programmer, it still has to synthesize the hardware
and its placement - the same as compiling a HDL program. This causes large com-
pile times for even simple designs, and so typically design iterations took around
3 to 4 hours. This limited the pace at which new designs could be developed and
tested on the FPGA during the project.

Additionally, the debugging tools available for the OpenCL kernels did present
challenges. Unlike a traditional program where a debugger can be used to stop and
inspect the program state at a given point in time, it is not possible to do this with
a kernel running on an FPGA. Intel does provide an option to compile the kernel
for emulation which does allow it be to ran in GDB and inspect state. However,
when it was used it was usually not adequate as the emulator does not accurately
re�ect the hardware of the FPGA making issues that we were seeing on the FPGA
not appear on the emulator. Printing is also supported from the FPGA from Intel's
OpenCL compiler, which does allow peeping into the execution state of the FPGA.
However, in practice this is not too useful as a tool as prints only occur when kernel
execution is �nished so kernels that stall cannot be observed. Additionally, printf
statements take up a large amount of resources, limiting the number of complexity
that can be used. It was found that the best way to overcome this was to read and
verify the global bu�ers on the host after kernel execution, however this meant that
to check any internal state we had to compile in writes to these bu�ers.

49

5.2 Future work

While this project has provided a basis for transaction processing on FPGAs, there
are many areas that could be explored further that were beyond the scope of this
project.

5.2.1 Optimistic concurrency control

This project primarily experimented with with deterministic concurrency control,
and TPL as di�erent methods of concurrency control for transaction processing on
FPGAs. From the results it was found that deterministic concurrency control is
indeed a good �t for the task. However, there are still more types of currency
control that could be explored for transaction processing on FPGAs.

In particular, an interesting form of concurrency control to investigate would
be optimistic concurrency control. Optimistic concurrency control (OCC) was �rst
introduced in 1981 as a way to avoid the overhead of lock maintenance and deadlock
[20]. OCC adds an additional veri�cation step to the end of every transaction. This
step veri�es that during the transaction, no other transaction has written to the
data it has read. In the case of a con�ict, the transaction is then rolled back. This
then removes any need for locking during executing transactions. Silo [33], a leading
in memory single node system, uses a form of optimistic concurrency control.

This could potentially be a good �t for transaction processing on an FPGA,
because of it's lack of locking during executing transactions. As the �ndings of this
project demonstrates, locking on an FPGA is a major bottleneck when implement-
ing TPL. The key to this investigation would be to see if compared deterministic
concurrency control (also lock free) is executing the veri�cation step on the FPGA
advantageous compared to the batch locking on the CPU.

5.2.2 Improving utilization of FPGA resources

One characteristic of the FPGA implementations found in the evaluation is that
the OpenCL kernels take up little of an FPGA's total resources. This is because
most of the performance is achieved through e�cient memory accesses and not
computational speed. However, this is a large waste of the FPGA's resources that
could be used to otherwise speed up the database. Therefore a natural extension of
the project would be to explore ways to use this additional area.

One possible use could be to implement a caching system for the table. We
hypothesise that since our current kernel's performance is bound by the speed of
memory accesses, better caching would lead to higher memory performance and
thus improve the overall throughput of the kernel. Even with 4 compute units in
the current deterministic kernel, only 27% of the on-board memory leaving approx-
imately 36.5 Mbit of on board memory capacity for a cache. Although small in
capacity, these M20K memory blocks have a signi�cantly higher throughput and
lower latency than accessing the DDR memory o� the chip. Additionally, these
memories can be clocked at double the frequency of the OpenCL kernels allowing
the memory to be double pumped resulting in twice the bandwidth [13]. Thus for
workloads with small hotspots, using more resources for a cache could signi�cantly
increase the throughput of the kernel.

50

Alternatively, the extra area could be used to o�oad further work from the
DBMS to the FPGA. Query processing, proven to be power on an FPGA by Ibex
[36], could be done in tandem with the transaction processing on the FPGA and
could utilise the FPGAs internal interconnect for extremely high bandwidth data
transfer between them. Not only would this accelerate these individual tasks, but
could also reduce the overall data being transferred between the CPU and FPGA
by performing selections and projections on the FPGA. As shown in section 4.2.2,
memory transfer times dominate kernel execution time so reducing this could be a
major bene�t.

5.2.3 Non-volatile storage

During this project, the focus was on in-memory databases. However, the limited
capacity of random access memory is often too constraining for many real world
applications. This would further be exacerbated by the move to HBM as suggested
earlier as the current HBM2 speci�cation only allows up to 8GB per stack. Thus, a
natural further extension is to investigate support for non-volatile storage.

Connecting storage such as an SSD or HDD to the FPGA board could easily
be done through the board's four SATA ports that connect to the Stratix V device.
Additionally, Intel makes available a SATA Ip core which provides link layer to
implement SATA channel to the FPGA [17].

The disadvantage of using deterministic concurrency control with non-volatile
storage is that stalls on the storage can be costly to performance, since transactions
must be executed in a deterministic ordering. Calvin solves this problem by delaying
any transaction that may incur a disk stall before it is scheduled while it sends out a
request to retrieve the relevant records [31]. However, this solution may not map well
to the architecture set out in this project as communication between the scheduler
and the storage would have to take place over the PCIe connection which would
most likely incur a larger delay than would be worth to reduce stall times. This
leaves an open problem to solve, and perhaps a novel new architecture or algorithm
could be employed to solve it.

51

Appendix A

Main Appendix

A.1 Hardware

A.1.1 Server

All of our experiments were run on the Taz research server managed by the LSDS
group. This server features two Intel Xeon Silver 4114 Skylake CPUs running at
2.2GHz. Each of these CPUs has 10 physical cores and 20 logical cores, and a
13.75MB L3 cache. The CPUs are connected via a NUMA interface. Both CPUs
feature 6 memory channels, which are each populated with 16GiB DDR4 DIMMs
running at 2666MHz.

Figure A.1: The Taz research server. The DE5-Net card can be seen as the third
card from the left.

52

A.1.2 FPGA board

For the FPGA implementations, we used the DE5-Net FPGA Development Kit
from Terasic. This development board features the Altera Stratix V GX FPGA
(5SGXEA7N2F45C2), which features a large amount of hardware resources as seen
in the 5SGXA7 column of �gure A.2 and is capable of running at a maximum speed
of 500MHz. For the main memory, the board is con�gured with 2, 2GB DDR3
DIMMs. The board is connected to the server via a x8 PCIe Gen 3.0 connection,
capable of a maximum total throughput of 8GB/s between the device and host.

Figure A.2: The Stratix V GX family features [18]

53

A.2 ACID

ACID (Atomicity, consistency, isolation, durability) is a set of properties that most
modern databases guarantee. The de�nition of these properties, �rst published in
1983 by Haerder and Reuter [10], are as follows:

• Atomicity - All-or-nothing - either all of the actions in a transaction must be
commited or none.

• Consistency - Any transaction that has been commited perseveres the consis-
tency of the database. Eg, each commited transaction must bring the database
from one valid state to another.

• Isolation - The concurrent execution of transactions must be equivalent to
some serial ordering of the transactions being executed.

• Durability - Once a transaction has committed it's results, the results must
survive any subsequent malfunction of the system.

A.3 Performance comparisons

We also set out to compare the performance achieved with our implementations with
other similar leading in-memory OLTP databases. In particular, databases that
implemented YCSB for a direct comparison. From this, we chose three databases:
Silo [33], Deneva [38] and Cicada [23]. We ran these systems on our hardware in
order to compare the results we achieved in this project to the state of the art.

However we found that after running these databases on our hardware, they
produced wildly di�erent results to our implementations as well as to each-other.
Deneva managed a throughput of around 100,000 transactions a second, whilst Ci-
cada achieved around 4 million transactions a second and around 10 million for Silo.
This appeared to be due to the di�erence in implementations of YCSB between these
systems as well as our inability to get some of the dependencies working. Overall,
we decided to leave these comparisons out due to their inconsistencies and leave this
to future work.

54

A.4 Source code

This section will show some of the more important source code. The full source code
used in this project is available at https://gitlab.doc.ic.ac.uk/wjw15/hobbes.

A.4.1 OpenCL kernels

Deterministic CC

Listing A.1: The �nal kernel used for TPL

#include " . . / . . / backend/txn . h"

__attribute__ ((reqd_work_group_size (WORK_ITEM_SIZE, 1 , 1)))
__attribute__ ((max_work_group_size (WORK_ITEM_SIZE)))
__attribute__ ((num_compute_units (NO_CUS)))
__kernel void det (__global Txn ∗ r e s t r i c t txns ,

__global Result ∗ r e s t r i c t r e s u l t s ,
__global Col ∗ r e s t r i c t t ab l e) {

s i ze_t g id = get_group_id (0) ;
s i z e_t l i d = get_loca l_id (0) ;
s i z e_t i = (g id ∗ WORK_ITEM_SIZE) + l i d ;
__private Txn txn ;
__private Result r e s ;
__private s i ze_t co l ;
__private int key ;
__private s i ze_t pos ;

txn = txns [i] ;
key = txn . key ;
c o l = txn . c o l ;
pos = (key ∗ 8) + co l ;

mem_fence (CLK_GLOBAL_MEM_FENCE) ;

i f (txn . type == Write) {
tab l e [pos] = txn . va lue ;

} else {
r e s . r e s u l t = tab l e [pos] ;

}

mem_fence (CLK_GLOBAL_MEM_FENCE) ;

r e s . id = txn . id ;
r e s . s u c c e s s = true ;
r e s u l t s [i] = r e s ;

}

55

https://gitlab.doc.ic.ac.uk/wjw15/hobbes

TPL

Listing A.2: The �nal kernel used for deterministic CC

#include " . . / . . / backend/txn . h"

#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable

#define LOCK(a) while (atomic_cmpxchg (a , 0 , 1) != 0)
#define UNLOCK(a) atomic_xchg (a , 0)

__attribute__ ((reqd_work_group_size (WORK_ITEM_SIZE, 1 , 1)))
__attribute__ ((max_work_group_size (WORK_ITEM_SIZE)))
__attribute__ ((num_compute_units (NO_CUS)))
__kernel void t p l (__global Txn ∗ r e s t r i c t txns ,

__global Result ∗ r e s t r i c t r e s u l t s ,
__global volat i le unsigned int ∗ r e s t r i c t lockTable ,
__global Col ∗ r e s t r i c t t ab l e) {

s i ze_t g id = get_group_id (0) ;
s i z e_t l i d = get_loca l_id (0) ;
s i z e_t i = (g id ∗ WORK_ITEM_SIZE) + l i d ;
__private Txn txn ;
__private Result r e s ;
__private s i ze_t co l ;
__private int key ;
__private s i ze_t pos ;

txn = txns [i] ;
key = txn . key ;
c o l = txn . c o l ;
pos = (key ∗ 8) + co l ;

LOCK(&lockTable [key])
mem_fence (CLK_GLOBAL_MEM_FENCE) ;

i f (txn . type == Write) {
tab l e [pos] = txn . va lue ;

} else {
r e s . r e s u l t = tab l e [pos] ;

}

mem_fence (CLK_GLOBAL_MEM_FENCE) ;

UNLOCK(&lockTable [key]) ;

r e s . id = txn . id ;
r e s . s u c c e s s = true ;
r e s u l t s [i] = r e s ;

}

56

Bibliography

[1] Alglave, J., Batty, M., Donaldson, A. F., Gopalakrishnan, G.,
Ketema, J., Poetzl, D., Sorensen, T., and Wickerson, J. GPU concur-
rency: Weak behaviours and programming assumptions. In Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems (2015), ASPLOS '15, ACM, pp. 577�591.
event-place: Istanbul, Turkey.

[2] Bernstein, P. A., and Goodman, N. Concurrency control in distributed
database systems. ACM Computing Surveys (CSUR) 13, 2 (1981), 185�221.

[3] Blott, M., Karras, K., Liu, L., Vissers, K., Bär, J., and István, Z.

Achieving 10gbps line-rate key-value stores with fpgas. In Presented as part of
the 5th {USENIX} Workshop on Hot Topics in Cloud Computing (2013).

[4] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,

Burrows, M., Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: A
distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS) 26, 2 (2008), 4.

[5] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and
Sears, R. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing - SoCC '10 (2010), ACM Press,
p. 143.

[6] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-
man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels,

W. Dynamo: Amazon's highly available key-value store. In ACM SIGOPS op-
erating systems review (2007), vol. 41, ACM, pp. 205�220.

[7] Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L. The no-
tions of consistency and predicate locks in a database system. Communications
of the ACM 19, 11 (1976), 624�633.

[8] Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A.,
Andrewartha, M., Angepat, H., Bhanu, V., Caulfield, A., and

Chung, E. Azure accelerated networking: SmartNICs in the public cloud.
In 15th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 18) (2018), pp. 51�66.

[9] Gray, J., Sundaresan, P., Englert, S., Baclawski, K., and Wein-

berger, P. J. Quickly generating billion-record synthetic databases. In Pro-
ceedings of the 1994 ACM SIGMOD International Conference on Management

57

of Data (1994), SIGMOD '94, ACM, pp. 243�252. event-place: Minneapolis,
Minnesota, USA.

[10] Haerder, T., and Reuter, A. Principles of transaction-oriented database
recovery. ACM Computing Surveys 15, 4 (1983), 287�317.

[11] Harding, R., Van Aken, D., Pavlo, A., and Stonebraker, M. An eval-
uation of distributed concurrency control. Proceedings of the VLDB Endowment
10, 5 (2017), 553�564.

[12] He, B., and Yu, J. X. High-throughput transaction executions on graphics
processors. Proceedings of the VLDB Endowment 4, 5 (2011), 314�325.

[13] Intel. Intel FPGA SDK for OpenCL pro edition best practices
guide. 191. https://www.intel.com/content/dam/www/programmable/us/

en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf.

[14] Intel. Intel FPGA SDK for OpenCL pro edition programming
guide. 212. https://www.intel.com/content/dam/www/programmable/us/

en/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf.

[15] Intel. Intel stratix 10 MX FPGAs. https://www.intel.com/content/www/
us/en/products/programmable/sip/stratix-10-mx.html.

[16] Intel. Intel VTune ampli�er. https://software.intel.com/en-us/vtune.

[17] Intel. SATA IP core. https://www.intel.com/content/

www/us/en/programmable/solutions/partners/partner-profile/

designgateway-co---ltd-/ip/sata-ip-core.html.

[18] Intel. Stratix v device overview. 23. https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.

pdf.

[19] Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik,
S., Jones, E. P., Madden, S., Stonebraker, M., and Zhang, Y. H-
store: a high-performance, distributed main memory transaction processing
system. Proceedings of the VLDB Endowment 1, 2 (2008), 1496�1499.

[20] Kung, H.-T., and Robinson, J. T. On optimistic methods for concurrency
control. ACM Transactions on Database Systems (TODS) 6, 2 (1981), 213�226.

[21] Kuon, I., Tessier, R., and Rose, J. FPGA architecture: Survey and chal-
lenges. Foundations and Trends in Electronic Design Automation 2, 2 (2008),
135�253.

[22] Lamport, L. Paxos made simple. ACM Sigact News 32, 4 (2001), 18�25.

[23] Lim, H., Kaminsky, M., and Andersen, D. G. Cicada: Dependably fast
multi-core in-memory transactions. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data (2017), ACM, pp. 21�35.

[24] Linden, G. Geeking with greg: Marissa mayer at web 2.0. http://glinden.
blogspot.com/2006/11/marissa-mayer-at-web-20.html.

58

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.intel.com/content/www/us/en/products/programmable/sip/stratix-10-mx.html
https://www.intel.com/content/www/us/en/products/programmable/sip/stratix-10-mx.html
https://software.intel.com/en-us/vtune
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/designgateway-co---ltd-/ip/sata-ip-core.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/designgateway-co---ltd-/ip/sata-ip-core.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/designgateway-co---ltd-/ip/sata-ip-core.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-v/stx5_51001.pdf
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

[25] Mohan, C., Lindsay, B., and Obermarck, R. Transaction management
in the r* distributed database management system. ACM Transactions on
Database Systems (TODS) 11, 4 (1986), 378�396.

[26] Munshi, A. The OpenCL speci�cation. In 2009 IEEE Hot Chips 21 Symposium
(HCS) (2009), IEEE, pp. 1�314.

[27] Sirowy, S., and Forin, A. Wheres the beef? why FPGAs are so fast.
Microsoft Research, Microsoft Corp., Redmond, WA 98052 (2008).

[28] Sutter, H. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobbs journal 30, 3 (2005), 202�210.

[29] The Kronos group. OpenCL - the open standard for parallel programming
of heterogeneous systems, 2013. https://www.khronos.org/opencl/.

[30] Thomson, A., and Abadi, D. J. The case for determinism in database
systems. Proceedings of the VLDB Endowment 3, 1-2 (2010), 70�80.

[31] Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P., and

Abadi, D. J. Calvin: fast distributed transactions for partitioned database
systems. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data (2012), ACM, pp. 1�12.

[32] TPC. TPC - current speci�cations. http://www.tpc.org/tpc_documents_

current_versions/current_specifications.asp.

[33] Tu, S., Zheng, W., Kohler, E., Liskov, B., and Madden, S. Speedy
transactions in multicore in-memory databases. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (2013), ACM,
pp. 18�32.

[34] Waldrop, M. M. The chips are down for Moores law. Nature News 530, 7589
(2016), 144.

[35] Wissolik, M., Zacher, D., Torza, A., and Day, B. Virtex UltraScale+
HBM FPGA: A revolutionary increase in memory performance. 11.

[36] Woods, L., István, Z., and Alonso, G. Ibex: an intelligent storage engine
with support for advanced SQL o�oading. Proceedings of the VLDB Endow-
ment 7, 11 (2014), 963�974.

[37] yaledb. Calvin source code. https://github.com/yaledb/calvin.

[38] Yu, X., Bezerra, G., Pavlo, A., Devadas, S., and Stonebraker, M.

Staring into the abyss: An evaluation of concurrency control with one thousand
cores. Proceedings of the VLDB Endowment 8, 3 (2014), 209�220.

59

https://www.khronos.org/opencl/
http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp
https://github.com/yaledb/calvin

	Introduction
	Objectives
	Contributions
	Report layout

	Background
	Concurrency control in database systems
	Two phase locking
	Two phase commit
	Deterministic CC

	Hetrogeneous hardware in database systems
	FPGAs
	GPUs

	OpenCL

	HOBBES
	Target applications
	CPU based implementations
	Deterministic
	TPL

	FPGA implementations
	FPGA design considerations
	Processing transactions on FPGA
	Deterministic CC on FPGA
	TPL on FPGA

	Evaluation
	CPU baseline
	YCSB B
	YCSB A

	FPGA results
	Kernel execution times
	Memory transfer times
	FPGA resource utilization

	CPU vs FPGA performance
	Throughput
	Latency

	Conclusion
	Challenges
	Future work
	Optimistic concurrency control
	Improving utilization of FPGA resources
	Non-volatile storage

	Main Appendix
	Hardware
	Server
	FPGA board

	ACID
	Performance comparisons
	Source code
	OpenCL kernels

