
MEng Individual Project

Imperial College London

Department of Computing

Trusted Infrastructure for JavaScript
(ES5) Analysis

Author:
Si Wei Tan

Supervisor:
Prof. Philippa Gardner

June 17, 2019

Abstract

JavaScript is one of the most widely used languages in the world today. Its dynamic nature
provides ample flexibility for developers but is often criticised for its complex semantics and
strange edge-case behaviours. During the past decade, analysis tools have been deployed to assist
developers in verifying JavaScript code to varying success. One such tool is JaVerT, an academic
tool developed at Imperial College, which offers formal verification, whole program symbolic testing
and bi-abductive compositional testing of JavaScript strict mode programs. However, while strict
mode is a recommended-to-use subset of the language with more restrictive and less error-prone
semantics, it is still an "opt-in" feature and need not be used by developers in their programs,
especially if these programs contain legacy code that depend on non-strict features.

In this project, we have extended JaVerT to support non-strict features of JavaScript (ES5,
the fifth edition of the ECMAScript standard. We have implemented the full set of ES5 language
features in JS-2-JSIL, the JavaScript compiler of JaVerT. We have validated the new compiler
against the official ECMAScript Test262 test suite, achieving 100% coverage for non-strict only
test cases and 99.89% coverage across all test cases that are applicable for the compiler. In doing
so, we have uncovered bugs in the previous version of JS-2-JSIL that were not spotted due to the
incompleteness of the Test262 test suite, as well as bugs in and inconsistent behaviours across
modern browsers when it comes to non-strict features of JavaScript. Using the whole-program
symbolic testing aspect of JaVerT, we have also created a series of symbolic tests that aim to
uncover the intricate details of non-strict features in the language not necessarily tested by Test262.

Acknowledgements

I would like to thank my supervisor, Prof. Philippa Gardner, for her continued support in this
project despite her busy schedule. Her encouragement and confidence in the direction of the project
is an invaluable source of motivation.

I would also like to thank Petar Maksimović and José Fragoso Santos for their support throughout
the project. Petar’s 24/7 assistance on my numerous questions and attention to detail was especially
helpful in helping me progress quickly in the project. José’s detailed and step-by-step explanations
of the existing toolchain was also critical in helping me jump-start the initial phases of the project.

Finally, I would like to thank my family, friends and past internship mentors who have supported
me throughout my entire degree. Their encouragement was a source of light that helped me pushed
forward in my darkest times.

Contents

1 Introduction 6

2 Background 8
2.1 The JavaScript language . 8

2.1.1 Key JavaScript features . 8
2.1.2 Strict vs non-strict mode in ES5 . 10

2.2 Program correctness for JavaScript . 13
2.2.1 Formal verification based on separation logic (SL) 14
2.2.2 Symbolic execution and testing . 15
2.2.3 Compositional testing . 16

2.3 JaVerT 2.0 . 16
2.3.1 JS Parser . 16
2.3.2 JS-2-JSIL Compiler . 17
2.3.3 Compositional symbolic execution for JSIL 17

3 The JS-2-JSIL ES5 Compiler 19
3.1 Core JSIL constructs . 19
3.2 The JavaScript variable state in JSIL . 20

3.2.1 Variable state management in ES5 . 21
3.2.2 The ES5 variable state in JSIL . 22
3.2.3 The ES5 variable state management in JSIL: Inner Mechanics 23
3.2.4 Implementation of Environment Records (ERs) in JSIL 24

3.3 Dynamic name resolution . 28
3.4 Compilation of the with statement . 30
3.5 Hoisting of variable and function declarations . 31
3.6 The arguments object . 32

3.6.1 Two-way binding example . 33
3.6.2 Non-strict callee property . 34

3.7 Direct and indirect eval . 35

4 Analysing ES5 Programs 37
4.1 Motivating Example . 37
4.2 Whole-Program Symbolic Testing . 39

4.2.1 Core symbolic execution constructs . 39
4.2.2 Declaration hoisting order . 40
4.2.3 Non-block-level declarations . 40

2

4.2.4 Modifying properties of the arguments object 42
4.2.5 Indirect, non-strict eval call . 43
4.2.6 Immutable function identifiers . 44
4.2.7 Dynamic hoisting . 44
4.2.8 Summary of symbolic examples . 45

5 Evaluation 46
5.1 Implementation correctness . 46

5.1.1 Language tests . 48
5.1.2 Built-in tests . 51
5.1.3 Evaluation of the Test262 test suite . 52
5.1.4 Bug in JaVerT 2.0 (ES5 Strict) . 53

5.2 Usefulness in analysing ES5 programs . 54
5.3 Real-world implementations of ES5(+) . 55

5.3.1 Bug in Microsoft Edge . 55
5.3.2 NodeJS script execution behaviour . 56

5.4 Evaluation of the ES5 specification . 58
5.4.1 Extensive redirections . 58
5.4.2 Questionable naming . 58

5.5 Known limitations . 58
5.6 Lessons learnt . 59

5.6.1 Compilers and language specifications . 59
5.6.2 Working with JaVerT 2.0 . 59

6 Conclusion 61
6.1 Future work . 61

A Contributions to JS-2-JSIL Compiler 63

B Breakdown of Test262 results 65
B.1 Language Tests . 65
B.2 Built-in Tests . 68

3

List of Figures

2.1 Scope resolution example . 10
2.2 Scope resolution in with statement . 11
2.3 eval code mode of execution . 13
2.4 Consequence Rule . 14
2.5 Frame Rule . 14
2.6 JaVerT 2.0 Architecture . 17
2.7 Compiling contents[k] = v to JSIL by closely following the ES5 Standard. . . . 18

3.1 Variable State Management of Code Snippet 3.1 . 21
3.2 Setting up scope chain and ThisBinding in compiled JSIL functions 23
3.3 Scope chain of Code Snippet 3.2, Code Snippet 3.3 25
3.4 Scope chain of Code Snippet 3.4 . 26
3.5 Scope chain of Code Snippet 3.5 . 28
3.6 getIdentifierReference Internal JSIL procedure 28
3.7 Line-by-line compilation of with (e) {s} . 31
3.8 arguments object example . 33
3.9 isDirectEval implementation . 35

4.1 Declaration hoisting order: (a) original symbolic test (left); (b) rewritten test (right) 40
4.2 Variable declaration within for statement is ignored 41
4.3 Symbolic test for arguments object . 42
4.4 Dynamic redefinition with indirect non-strict eval 43
4.5 Function identifier is immutable in named function expressions 44
4.6 Dynamic hoisting behaviour . 45

5.1 Correct function hoisting in Chrome (left) vs Incorrect function hoisting in Edge
(right) . 56

4

List of Tables

5.1 Test results categorised by mode of execution . 47
5.2 Test results categorised by feature type . 47
5.3 Language test overview . 48
5.4 Language test failures . 49
5.5 Built-in test overview . 51
5.6 Built-in test failures . 51

A.1 Compiler changes . 63
A.2 New internal JSIL procedures . 63
A.3 Significant changes to JSIL procedures . 64

B.1 Language test results . 66
B.2 Breakdown of all language failures and aborts . 67
B.3 Built-in test results . 68

5

Chapter 1

Introduction

JavaScript is one of the most popular programming languages used for client-side scripting in web
applications. It is used by 95.1% of websites [26] and is the most popular language on GitHub
[10, 11]. The dynamic nature of JavaScript and high level of control that it presents to the developer
enables the rapid development of interactive and responsive web applications.

However, this dynamic nature, coupled with the evolving standards by ECMAScript committee
[5] makes JavaScript a difficult language to reason about and ensure functional correctness of.
Even within the same standard, different behaviour could be reproduced depending on the mode of
execution. In particular, JavaScript has two modes: non-strict, which is the default, unrestricted
mode, featuring the notorious with statement and error silencing; and strict, which purposefully
exhibits better behavioural properties, such as lexicographic scoping and better error reporting.

We illustrate one of the differences between ES5 Strict and ES5 using a simple JavaScript code
snippet below (CS 1.1) executed in ECMAScript 5th Edition (ES5) Standard [4]:
1 function f() {
2 a = 1; // Reference error in strict mode
3 var b = 2;
4 }
5 f();
6 a; // Returns 1 in non-strict mode
7 b; // Reference error (b is not defined outside of function f)

Code Snippet 1.1: Variable declaration in ES5

In ES5 Strict, references to undeclared variables result in a run-time ReferenceError. In
non-strict mode, such references result in the creation of global variables. Therefore, in strict mode,
the variable a in line 2 is undeclared and hence causes a reference error when f() is first executed.
However, in ES5, the same variable is automatically lifted into a global variable and initialised to 1
in line 2. This difference in behaviour may be spotted by someone well-versed in the ES5 standard,
but may also cause hidden bugs with far-reaching consequences in complicated JavaScript programs
(imagine if a was maliciously redefined by the function f).

Given the complexity of JavaScript programs and standards, there is evident great benefit in
providing formal methods and tools that offer assurances of code correctness. However, unlike for
static languages, such as C and Java, tools for analysing JavaScript code are few and far-between.
One such tool is JaVerT [24, 8], developed at Imperial College London. JaVerT is a state-of-the-art
analysis tool for JavaScript, which supports symbolic testing, full verification, and automatic
compositional testing of ES5 Strict programs.

This project extends the infrastructure of JaVerT to support the full ES5 standard (both strict
and non-strict). This is an essential step towards analysing real-world JavaScript code, because:
(1) ES5 is supported by all modern browsers,1 (2) strict mode usage is low amongst JavaScript
developers [13], and (3) there are valid use cases of non-strict mode constructs, such as the with
statement, to emulate block-level scoping in ES5 (cf. §4.2.3).

1http://kangax.github.io/compat-table/es5/

6

In particular, we have extended the compiler of JaVerT to fully support all ES5 strict and
non-strict language features. These include dynamic name resolution, the with statement, direct
and indirect eval, together with many other smaller internal methods of ES5. We have benchmarked
our implementation against ECMAScript’s official test suite, Test262, achieving 100% coverage of
all applicable tests for strict- and non-strict-only features, and 99.89% across all applicable tests.
Additionally, we have analysed implementations of the ES5 specification in modern programs, such
as Microsoft Edge, Chrome, Mozilla, and NodeJS, discovering a bug in Microsoft Edge and an
important implementation detail of the NodeJS run-time that could result in unexpected behaviours
when running ES5 code. Finally, we have enabled the whole-program symbolic testing aspect
of JaVerT for ES5, and demonstrated how it can be used to create symbolic Test-262-like tests,
revealing often overlooked or counter-intuitive behaviours of the specification that could cause
confusion among developers.

The report is organised as follows. We discuss the differences in behaviour between ES5 Strict
and ES5 and present an overview of related work in Chapter 2. In Chapter 3, we present the
extended ES5 JS-2-JSIL compiler in detail. In Chapter 4, we demonstrate how JaVerT can be used
for whole-program symbolic testing of ES5 programs. We evaluate the project in Chapter 5. We
conclude in Chapter 6, outlining possible future extensions that would further improve JaVerT in
the analysis and verification of JavaScript programs.

7

Chapter 2

Background

To aid us in understanding the domain of the problem presented in Chapter 1, we will present the
background of three key topics. We start by introducing the JavaScript Language, focusing on key
aspects of the language that are relevant, and the differences between ES5 and ES5 Strict mode.
Next, we discuss the problem of ensuring program correctness for JavaScript programs, providing
a brief overview of existing works on JavaScript verification and validation. Finally, we cover an
overview of JavaScript Verification Toolchain 2.0 (JaVerT 2.0), a JavaScript verification and testing
framework whose functionality we will extend from ES5 Strict to ES5.

2.1 The JavaScript language

JavaScript is a object-oriented dynamic programming language. It is dynamic in that objects can
be extended and variable types can be modified at runtime. It is standardised by the ECMAScript
Committee with the latest standard released on June 2018 (9th edition) [5]. The standard defines a
strict mode for the language, which provides improved error reporting and restricts some language
features available to the developer. These restrictions include removing certain language features
that are considered "error-prone" and developers may opt to use strict mode in the interest of
security or preference. As mentioned in Chapter 1, this project will work with the 5th edition of the
ECMAScript standard - specifically in non-strict mode. For clarity, we will refer to the publication
released for the ES5 standard on June 2011 [4].

We will first present the key features of JavaScript, then highlight the difference between strict
and non-strict mode in ES5.

2.1.1 Key JavaScript features

2.1.1.1 JavaScript objects

Objects are collections of properties. These properties can include values, functions or other objects.
Properties can be classified into two types: named or internal.
Named properties are further classified into named data properties and named accessor properties.
They are associated with property descriptors, which are lists of attributes. Each attribute describes
the way in which a property can be accessed and/or modified. The classification of named properties
into named data and named accessor properties is based on their associated list of attributes. Named
data properties contain four attributes: Value, Writable, Enumerable and Configurable (denoted by
[V], [W], [E], and [C], respectively). Named accessor properties also contain four attributes, but
differ from named properties in the first two attributes: Get, Set, Enumerable and Configurable
(denoted by [G], [S], [E], and [C], respectively). The attributes have the following semantics:
[V] holds the property value; [W] determines if the value [V] can be modified; [E] determines if
the property is included for the for-in enumeration; [G] and [S] operate similarly to traditional
getters and setters of object-oriented languages such as Java; and [C] determines if modification of
the other attributes (except for [V]) is allowed.

8

Internal properties are related to the inner workings of JavaScript and are hidden from the user.
They exists for specification purposes and are used for critical JavaScript mechanisms such as
prototype inheritance.

2.1.1.2 Lexical environments and environment records

A Lexical Environment is a specification type that defines the association of ECMAScript identifiers
to variables and functions. It is based on the lexical nesting of the ECMAScript code and can be
seen informally as a pair that contains an Environment Record and a (possibly null) reference to
an outer Lexical Environment.
An Environment Record (ER) records identifier bindings created within the scope of its associated
lexical environment. Informally, it can be seen as a lookup table of key-value pairs that maps
ECMAScript Identifiers to variable and function references. There are two types of ERs: Declarative
ERs and Object ERs. Intuitively, a declarative ER is associated with language syntactic elements
such as function declarations, variable declarations and catch clauses. The associated identifiers of
these elements are bound directly to ECMAScript values. Object ERs are associated with other
ECMAScript elements such as programs or the with statement, which binds the identifiers to the
properties of some object.

2.1.1.3 Executable code and execution contexts

There are three types of executable code1:

1. Global code: Source text that is parsed at the top-level in the JavaScript program. It does
not include source text that are part of function bodies.

2. Eval code: Source text passed to the built-in eval function.

3. Function code: Source text parsed within a function body. It is not recursive with nested
functions and their associated function bodies. In addition, source text passed to the built-in
Function constructor as a function body is also considered function code.

In ES5, the variable state management is emulated via the use of Execution Contexts. An execution
context consists of three components:

1. LexicalEnvironment2: The lexical environment used for resolving identifier references.

2. VariableEnvironment: Lexical environment whose environment record holds the bindings
created from variable and function hoisting.

3. ThisBinding: Holds the value associated with the this keyword.

An execution context is created whenever control is transferred to an executable code. These
execution contexts form a logical stack, with the top of the stack being the current (active) execution
context.

2.1.1.4 Scope resolution

Scope resolution is performed by inspecting the identifier bindings present in lexical environments.
By construction, the lexical environments of the execution contexts naturally form a linked-list
based on the lexical nesting of ECMAScript code. Scope resolution begins by inspecting the
LexicalEnvironment of the current execution context, then proceeds "up" the linked-list until the
global lexical environment. We represent this global lexical environment as a pair comprising: the
global object ER, lg and a null outer lexical environment reference. To illustrate the mechanics
of scope resolution, we give a simple example of a ES5 code below (Code Snippet 2.1). The code
defines a function f that takes 2 arguments, a and b, and returns the second argument, b. The
LexicalEnvironment formed during the execution of line 5 is illustrated in Figure 2.1.

1ES5 Section 10.1
2Not to be confused with “Lexical Environment" (note the space) - the type explained in §2.1.1.2

9

1 var f = function (a, b) {
2 return b;
3 }
4 var a = 1;
5 f(3, a); // returns 1

Code Snippet 2.1: Scope resolution example

Figure 2.1: Scope resolution example

ERf is the (declarative) environment record for the function f. It contains two properties,
corresponding to the two parameters: a and b. lg is the (object) environment record for the global
environment containing two properties: reference to the function f and the variable a. Both ERs
contain internal properties used by the inner workings of JavaScript which we are not interested in
at the moment. The corresponding lexical environments are LEf and LEglobal respectively, and
they form the linked-list used for scope resolution. During the execution of line 5, the variable a is
copied into the parameter b of function f. Hence, the return value of f(3, a) is 1.
While this example is trivial, we will build on this notion of scope resolution in the next section
when discussing about with statements.

2.1.2 Strict vs non-strict mode in ES5

In this section, we will highlight the main differences between ES5 Strict and ES5 features.

2.1.2.1 The with statement

The most important difference between ES5 Strict and ES5 is the inclusion of the with statement
in non-strict mode. The syntax of the with statement is as follows:

WithStatement :
with (Expression) Statement

The semantics of the with statement is described in three steps. First, an object environment
record is added to the lexical environment of the current execution context. This object environment
record is computed from the given Expression. Next, the Statement is executed with the modified
lexical environment. Finally, the lexical environment is restored to its original state.

We will illustrate the process with the program in Code Snippet 2.2.
Similar to the example in Code Snippet 2.1, we have a function f, with two parameters, a and

b. However, instead of simply returning the second parameter b, it now returns a dynamic value
based on the LexicalEnvironment of the current execution context.

With the introduction of the with statement in lines 2 to 4, an object ER is added to the
LexicalEnvironment by computing the object from the expression a (the object computed here
is just a from the global context). The execution in line 3 will now run with the modified
LexicalEnvironment. Variable resolution of b in line 3 will first look up the property b in a, then

10

up a’s prototype chain. If b is not found in a (and in the properties inherited from its prototype
chain), then the lookup will move to the outer lexical environment (ERf) and attempt to find b.
The rest of the scope resolution proceeds as mentioned in §2.1.1.4. As such, we obtain 2 from the
first execution of f on line 7 and 3 from the second execution in line 9. The scope resolution in line
9 is illustrated in Figure 2.2.

1 var f = function (a, b) {
2 with (a) {
3 return b;
4 }
5 }
6 var a = 1;
7 f(a, 2); // returns 2
8 var a = {b: 3};
9 f(a, 2); // returns 3

Code Snippet 2.2: with statement example

Figure 2.2: Scope resolution in with statement

2.1.2.2 arguments object

The arguments object is an array-like object present by default in function objects. It contains the
values of the parameters passed to that function. The use of the arguments object is to typically
reference function parameters using array indices, for example:

1 var f = function (a, b) {
2 arguments [0]; // a = 1
3 arguments [1]; // b = 2
4 return arguments [0] + arguments [1];
5 }
6 f(1, 2); // returns 3

Code Snippet 2.3: arguments object example

However, there is a difference in the behaviour of the arguments object between ES5 Strict
and non-strict mode. In strict mode, the arguments object is a copy of the function parameters.
Modification to the elements in the arguments object does not modify the function parameters
referred to by their named identifier. Additionally, the arguments object cannot be declared as an
identifier for a function parameter.

For non-strict mode, the arguments object (that is created automatically during the execution
of the function code) contains objects that share the same bindings as the named parameters of
the function. This means that changing the contents of the arguments object will change their
corresponding named parameters.

11

A summary of the main differences in behaviour is shown below (Code Snippet 2.4).
1 // compile error: "arguments" used as parameter identifier
2 var f = function (arguments) {
3 "use strict";
4 }
5 // compile error: "arguments" used as variable declaration in function body
6 var g = function (a) {
7 "use strict";
8 var arguments;
9 }

10 // Non-strict mode , arguments [0] shares same binding as a
11 var h = function (a) {
12 arguments [0] = 2;
13 return a;
14 }
15 h(1); // returns 2

Code Snippet 2.4: arguments object in strict and non-strict mode

2.1.2.3 Indirect eval

The eval function is perhaps one of the most notorious features of JavaScript. In a study done in
2011, The Eval That Men Do [22], it surveyed the top 10,000 most popular websites and observed
that over 50% of these websites use eval to varying degrees. Improper use of eval could result in
bugs and vulnerabilities that are not immediately visible to the developer. It is therefore important
to understand the inner mechanics of eval. For clarity, we refer a function call to the built-in
function eval as an "eval call" and the string passed to the function as "eval code".

There are two types of eval calls in general: direct and indirect. A direct eval call is a
JavaScript statement with a function call that resolves to the built-in eval function directly. An
indirect eval call is any other statements that involve immediate steps before calling the built-in
eval function.

An important distinction between direct and indirect calls is the execution context with which
the eval code is executed. A direct eval call will be executed in the current execution context of
the caller while an indirect eval call will execute in the global execution context. Code Snippet
2.5 shows the difference between direct and indirect eval calls, and their corresponding execution
context:

1 // Direct calls
2 eval("1+1;");
3 (eval)("1+1;");
4
5 // Indirect calls
6 (0, eval)("var str = 'indirect ';");
7 var e = eval;
8 e("var str = 'this is also indirect ';");
9
10 // eval code in caller 's execution context
11 var a = 1;
12 (function () {
13 var a = 10;
14 // Direct Call , executed in local context
15 return eval("a + 1;");
16 })(); // returns 11
17
18 // eval code in global execution context
19 var a = 1;
20 (function () {
21 var geval = eval
22 var a = 10;
23 // Indirect Call , executed in global context
24 return geval("a + 1;");
25 })(); // returns 2

Code Snippet 2.5: Direct vs indirect eval calls

12

Aside from the execution context of the eval code, the type of eval call also affects the mode in
which the eval code in executed. We will term the mode of execution of the caller as calling mode.

There are two cases where the eval code is executed in strict mode:

1. The eval code contains the strict-mode directive, "use␣strict";. For example:
1 (function () {
2 // Both in strict and non-strict mode
3 var a = 10;
4 // eval code declares "use strict" directive -> execute in strict mode
5 return eval("\"use strict \"; a + 1; b = 1;"); // Reference error for b
6 })();

Code Snippet 2.6: Mode of execution in eval code

2. In the absence of the strict mode directive, a direct eval call is made while executing in
strict mode.

All other combinations of call type and calling mode will result in the eval code executing in
non-strict mode. We summarise the combinations in Figure 2.3.

Figure 2.3: eval code mode of execution

2.1.2.4 Other noteworthy differences

Aside from the key differences mentioned above, there are other noteworthy differences that have
significant impact on the semantics of the program when compiled in non-strict mode. We will
broadly cover some of those mentioned in Annex C of the ES5 Standard [4].
Identifier names. Strict mode restricts the use of certain reserved words for identifiers such as
"implements", "interface", "let", etc. These are classified as FutureReservedWord and would
result in a compile error when used in ES5 Strict. In non-strict mode, the use of these words would
behave like any other identifier.
eval and arguments identifier. These identifiers cannot occur as a LeftHandSideExpression in
strict mode. This meant that in non-strict mode, it is possible to change the built-in function
eval and the arguments object. It is essential that this difference is made apparent when verifying
JavaScript code - distinguish between built-in functions/objects and user-defined functions/objects
with the same name.
Assignment to undeclared identifier. In strict mode, an assignment to an undeclared identifier
(not found in the LexicalEnvironment of the execution contexts) will result in a ReferenceError. In
non-strict mode, the assignment will result in the initiation of the identifier as a global variable.
This is best exemplified in the example given in Chapter 1 (Code Snippet 1.1).

2.2 Program correctness for JavaScript

Ensuring the correctness of a program in general is hard. Bugs and vulnerabilities in programs
could arise from various reasons such as unchecked user input, vulnerable library dependencies or a
mistake on the developers code. To check for correctness in code, developers may employ extensive
use of test cases and code reviews. However, these processes are limited in practice. Test cases only
prove the correctness of program behaviour in the domain of the test suite, which may not capture
the full range of inputs and states the program could execute in. Code reviews are also dependent

13

on the reviewers’ insight on the program and is highly prone to human errors. Program correctness
therefore requires more formal verification and validation mechanisms.

In this section, we will discuss the theory and tools related to JavaScript program verification and
validation, across three broad categories: formal verification, symbolic execution and compositional
testing.

2.2.1 Formal verification based on separation logic (SL)

2.2.1.1 Hoare Logic

Hoare Logic was introduced in 1969 by Tony Hoare [15]. It is a formal verification system based
on a set of rules to reason about the correctness of programs. At the center of the reasoning
mechanism is the Hoare Triple, {P}C{Q}3. It describes the connection between the precondition
of the program {P}, the program C and the result of the execution as the post-condition {Q}.
Informally, it means "if the precondition {P} holds before the execution of C and the execution
of C successfully terminates, then the post-condition {Q} will hold after its execution". {P} and
{Q} are also known as assertions. Hoare also developed a set of inference rules that specify the
axiomatic behaviour of programs such as the Rule of Consequence 4:

` P → P ′ `
{
P ′} C

{
Q′} ` Q′ → Q

`
{
P

}
C

{
Q

} Consequence Rule

Figure 2.4: Consequence Rule

However, these rules operate with assertions that are applied on the entire program and hence
do not scale well with the size of the program C.

2.2.1.2 Separation logic

To address the scalability issue with Hoare Logic, Separation Logic (SL) [19] was propsed as an
extension to Hoare Logic [15]. SL operates by the notion of local reasoning, where a program is
segmented into local states called heaps. Heaps are partial functions that map addresses to values.
Local states are deemed to be independent segments of the program and the entire program can be
reasoned by composing these local states together.

The key mechanism to this approach is the introduction of a separating conjuction P ∗ Q,
which takes two assertions P and Q, and asserts the P and Q hold for disjoint portions of the
addressable storage [19]. This allowed the introduction of the frame rule, an important inference
rule core to the mechanics of local reasoning:

{
P

}
C

{
Q

}{
P ∗ R

}
C

{
Q ∗ R

} Frame Rule

(where no variable occurring free in R is modified by C.)

Figure 2.5: Frame Rule

The use of the frame rule enables the extension of a local specification by involving on parts of
the heap that are used by the program C,by adding predicates about parts of the heap that are not
modified by C[19].

3The notation in the paper [15] uses P{Q}R but is semantically the same as the notation we used in this report.
4Notation difference from [15]. → means logically implies (Hoare uses ⊃).

14

2.2.1.3 Related works

Separation logic has been shown to be useful in formal verification of programs. In particular, when
it comes to JavaScript, there are several significant pieces of work and we briefly cover each of them
in this section.

Towards a Program Logic for JavaScript [9] developed separation logic for verifying for a
fragment of the ECMAScript 3 (ES3) Standard to reason about the variable store emulated in the
JavaScript heap. This enabled reasoning about a substantial subset of ES3 features such as prototype
inheritance, the with statement, simple functions and simple eval. Of interest is the introduction of
a new sepish connective, P t∗Q that allows partial separation between heaps. Informally, the sepish
connective splits the heap into 3 disjoint heaps, h1, h2, h3 where P is satisfied in h1, Q is satisfied in
h2, and h3 is the "shared" part that satisfies both P and Q. The use of the t∗ allowed them to reason
concisely about prototype inheritance, where objects may share the same prototype. However,
as mentioned in [24], the extension of the logic to the full language is intractable. JavaScript
operations as standardised in ES5 involves the use of numerous internal functions such as GetValue,
Type, PutValue, GetReferenceName [4] and complex control flow statements such as switch or
try-catch-finally. To verify programs in JavaScript would require all these complexities to be
formalised into proof rules, thus making automation essentially impossible.

Building on the work of [9], JaVerT: JavaScript Verification Toolchain [24] was developed as a
semi-automatic tool based on separation logic that verifies specifications of JavaScript code based
on the ES5 standard in strict mode. JaVerT solves the scalability issue raised above by moving to
an intermediate representation of JavaScript, JSIL. They introduced a logic-preserving compiler
JS-2-JSIL that compiles JavaScript code into JSIL and a semi-automatic verification tool JSIL
Verify that uses sound JSIL separation logic. Their compiler is well tested against the official test
suite for JavaScript, Test262 [3], achieving 100% test result for all relevant test cases 5. This work
stops at ES5 Strict, hence does not cover the full ES5 standard.

A Trusted Mechanised JavaScript Specification [2] developed a formalisation of the ES5 standard
in the Coq proof assistant JSCert, and a reference interpreter for JavaScript JSRef. It covers a
significant portion of the ES5 standard including the syntax and semantics of JavaScript expressions,
statements and programs. However, it does not specify the parsing of JavaScript programs, which
is an important mechanism required for the eval call (§2.1.2.3).

SAFE [18] is a tool developed for formal specification and implementation of JavaScript. It
provides three different levels of intermediate representation, all formally defined: Abstract Syntax
Tree (AST), IR and Control Flow Graph (CFG). However, this tool is mainly used as parser/compiler
for JavaScript and does not actually verify the output of the intermediate representation (as done
in [24, 8]). Instead, it provides the framework that other verification components could use for
verification purposes. In addition, the robustness of the compiler is not verified against the Test262
test suite. SAFE 2.0 [21], an extension to SAFE added new features such as a HTML Debugger
module. While the implementation of SAFE 2.0 is claimed to be tested against Test262, it does
not report the coverage of the test suite.

An interesting work used in [18, 21] is the rewriting of with statements as presented in [20]. It
classifies with statements into 6 types, 5 of which could be rewritten to semantically equivalent
statements without the use of with. The last category is deemed not rewriteable due to dynamic
code generation (a combination of with and eval calls).

2.2.2 Symbolic execution and testing

Symbolic execution is a testing methodology that involves the use of symbolic values to validate the
correctness of programs [17]. Symbolic values differ from concrete values in that they represent
classes of inputs. Each class represents the range of input values that a variable can take, constrained
by the conditions of the program executed thus far. As such, symbolic testing provides the benefit
of testing the program over a range of inputs without explicitly testing all possible concrete values.

5ES5 Strict test cases

15

2.2.2.1 Related works

A Symbolic Execution Framework for JavaScript [25] developed a symbolic-execution based frame-
work for analysing client-side JavaScript code. Their automated tool, Kudzu, provides automatic
exploration of the execution space of client-side JavaScript code. The symbolic executor is dynamic,
in that the path exploration is random, hence does not cover all possible execution paths.

Symbolic Execution for JavaScript [23] developed a symbolic executor Cosette for JavaScript
programs aimed at providing a general-purpose symbolic analysis and testing tool for developers.
It is an extension of the work in [24], borrowing the JS-2-JSIL compiler to compile extended JS
programs to extended JSIL programs for reasoning about symbolic values. It supports whole-
program symbolic testing and specification-driven bug finding. While Cosette is based on the ES5
Strict standard, it does not cover the use of eval.

2.2.3 Compositional testing

Symbolic execution does not scale well in practice due to the path explosion problem [12]. Attempting
to perform symbolic execution systematically over all possible program paths in a large, complex
program is computationally expensive and can be imprecise due to unbounded number of iterations.

Compositional testing alleviates the path explosion problem by performing symbolic execution
compositionally [12]. The key idea in compositional symbolic execution is to summarise parts of
the program into logical units called functions6. Every function f is given a function summary φf

that describes the preconditions and post-conditions (also known as constraints) associated with f .
Executing symbolic testing will in turn only inspect program paths that are deemed feasible by the
constraints [1].

2.2.3.1 Related works

The concept of compositional symbolic execution and testing is not new. [12] used this idea for
dynamic test generation and [1] built on the works of [12] to develop a demand-driven compositional
symbolic executor for .NET applications.

However, to the best of our knowledge, JaVerT 2.0 [8] is the first to apply this idea to JavaScript
programs. We will cover JaVerT 2.0 in more detail in §2.3.

2.3 JaVerT 2.0

The JavaScript Verification Toolchain (JaVerT) 2.0 [8] is an extension to JaVerT [24], a tool built
to assist JavaScript (JS) developers in the testing and verification of their programs. JaVerT 2.0 is
based on ES5 Strict and supports: whole-program symbolic testing, semi-automatic verification
and automatic compositional testing.

The architecture of JaVerT 2.0 is shown in Figure 2.5. It has three main components: (1) JS
parser, (2) JS-2-JSIL compiler and a (3) run-time compositional symbolic execution component for
JSIL. We will briefly describe the high level overview of each component below.

2.3.1 JS Parser

JaVerT 2.0 uses Esprima [6] as its JavaScript parser. It is a standard-compliant ECMAScript
parser that can be used for both lexical analysis (tokenisation) and syntatic analysis (parsing) of
JavaScript programs. The output from the parser is a JSON [16] object representing the Abstract
Syntax Tree (AST) of the input JS Program. Esprima does distinguish between strict and non-strict
mode of ECMAScript [14], but is not clear if it supports a mixture of both in the same program7.

6Not to be confused with functions used in programming languages
7Inlining "use␣strict"; in select parts of the program.

16

Figure 2.6: JaVerT 2.0 Architecture

2.3.2 JS-2-JSIL Compiler

JS-2-JSIL is a logic preserving compiler that compiles JavaScript code into JSIL, a proprietary inter-
mediate language for JavaScript defined in [24]. The compiler follows line-by-line the ECMAScript
English Standard (in strict mode) specified in [4]. ES5 internal functions are translated to JSIL
procedural calls to their reference implementation [24] (JSIL internal functions). To demonstrate
this correspondence, we provide an example [24] of the simple assignment operation in ES5, compiled
to JSIL code (Figure 2.7, the ES5 standard on the left, JSIL code on the right).

In this example, we are compiling the statement contents[k] = v where contents is some
arbitrary object with property k and v is an arbitrary value. The compilation of the 6 step process
given by the ES5 standard is as follows:

1. The evaluation of contents[k] translates to lines 1-9 of the JSIL code where we obtain
["o"], x_2_v, x_4_n) as the corresponding reference of property k of object contents.

2. Next, the evaluation of the variable v involves looking up on the scope chain8 of the current
execution context (JSIL line 10) and we obtain ["v", x_7, "v"]; as the reference to v.

3. The ES5 internal function GetValue is called on reference obtained in step 2, which corresponds
to the JSIL internal function i__getValue on line 12.

4. This step is the result of strict mode restrictions in ES5, and is represented by the JSIL
internal function i__checkAssignmentErrors.

5. The assignment operation is then performed by calling JS internal function PutValue. This
corresponds to the JSIL internal function i__putValue.

6. Every JavaScript statement returns a value. The compilation of a JS statement by JS-2-JSIL
returns the list of JSIL commands (code presented on the right of Figure 2.7) and the variable
(x_8_v) that stores the return value.

2.3.3 Compositional symbolic execution for JSIL

The compositional symbolic execution component for JSIL is the runtime component for JaVerT
2.0. It is capable of performing three tasks: full verification, whole-program symbolic testing, and
automatic compositional testing (Figure 2.5). To achieve this, the JSIL semantics is separated into
two components: a Semantics Module and a state instantiation.

8We will formally introduce the notion of a scope chain in §3.2.1. Intuitively, a scope chain is simply the
lexicographic list of environment records that emulates the list of LexicalEnvironments.

17

Figure 2.7: Compiling contents[k] = v to JSIL by closely following the ES5 Standard.

The Semantics Module describes the behaviour of JSIL commands in terms of a state signature.
This state signature is general, and can be instantiated into three instances to obtain specific JSIL
semantics: Concrete, Instrumented and Symbolic. Concrete semantics is used for concrete execution
of JSIL programs and to test the infrastructure against Test262, the ECMAScript official test
suite [3]. Instrumented semantics is an interim stage between concrete and symbolic semantics. It
keeps track of objective properties that are not present, in order to exhibit the behaviour of the
frame property. This approach resulted in better modular reasoning and simpler proofs than [9].
Symbolic semantics is the core of the compositional symbolic execution component and is obtained
by lifting the instrumented state instantiation (above). It is fully formalised and proven sound [8].

Alongside the Semantics Module are the Specification Module and Bi-Abduction Module.
The Specification Module links the JSIL SL assertion language to JSIL states while the Bi-Abduction
Module involves the use of bi-abduction for automatic inference of missing resources in specification
errors. When used independently, the Specification module provides verification for JSIL programs
and the Bi-Abduction Module provides automatic local testing. Automatic compositional testing is
achieved by using both in tandem.

18

Chapter 3

The JS-2-JSIL ES5 Compiler

The JS-2-JSIL compiler is a critical component of JaVerT. Since all of the analyses supported by
JaVerT are done on the JSIL intermediate language, it is essential to have a compiler from ES5
programs to JSIL programs that preserves correct program behaviour as per the ES5 specification.
In this chapter, we first briefly describe the features of JSIL that are relevant to the project (§3.1),
and then present our implementation of the key ES5 features of the extended compiler:

• faithful modelling of the JavaScript (JS) variable state in JSIL (§3.2);

• dynamic name resolution (§3.3);

• compilation of the with statement (§3.4);

• hoisting of variable and function declarations (§3.5);

• the arguments object (§3.6); and

• direct and indirect eval (§3.7),

discussing the contributions, challenges, and implementation choices for each of them in detail.

3.1 Core JSIL constructs

JSIL is a simple object-based intermediate goto language well-suited for JS analysis, introduced
in [24, 8]. As such, most of its design decisions behind are in one way or another motivated by the
semantics of JS. Here, we focus on the core aspects of JSIL that are relevant for this project.
JSIL Objects and Metadata. JSIL objects contain fields and metadata. Fields are key-value
pairs that represent the properties of the JSIL object. As in JS, field access in JSIL is dynamic
and objects are extensible, unlike in, for example, Java, where field access is static and objects are
sealed. JSIL objects additionally have metadata, which is meant to hold some extra information
about the object. While the metadata can hold any JSIL value, in compiled JS programs it always
contains another object with information that is not meant to be accessible by the JS program, but
is required by the JS semantics, such as internal object fields (for example, "@proto", which tells
us the prototype of the object, or "@extensible", which tells if the object is extensible or not). The
creation of a JSIL object takes an optional value as its metadata. For example, x := new(x_meta)
creates a JSIL object x taking x_meta as its metadata. The metadata of the created object can
then be accessed with: meta := metadata(x). Object metadata will be extensively used in the
modelling of JS state (§3.2).
Argument Collection. Within a JSIL procedure, the arguments with which the procedure was
called can be accessed via the args command, in the style of x := args. As args is a dynamic
component that retrieves parameters passed in at run-time, it allows is possible to supply and
access unnamed parameters to the procedure via args. It is required for the correct modelling of
the JS arguments object (§3.6).

19

JSIL Procedures. JSIL procedures are of the form proc fid(x){c}, where proc is a keyword
for defining a JSIL procedure, fid is the name of the procedure, x is an optional list of named
parameters and c is a list of JSIL commands. A procedure has two modes of completion: normal
and error, allowing us to model exceptions in JSIL. Normal completion is performed via the return
command while error completion uses the throw command. In both modes, a dedicated return
variable ret stores the value that is returned.
Procedure calls. JSIL procedure calls have the format: x := e(e) with j. They are dynamic, since
the procedure identifier is obtained by evaluating the JSIL expression e. The parameters to the
procedure are given by list of JSIL expressions e. If the procedure completes normally, execution
continues to the next command. Otherwise, we have an error completion and the execution jumps
to the j-th command.
External procedure calls. External procedure calls are procedure calls with the extern qualifier:
jvar := extern e(e) with j. These external calls dynamically generate and execute JSIL code at
run-time. There are two main use cases for external procedure calls in compiled JS code: eval code
execution (cf. §3.7) and the Function constructor. Both of these cases take a single parameter,
which is a string representing a JS program, that needs to be parsed and compiled at run-time.
φ-node commands. The φ-node command, can intuitively be seen as a conditional assignment
based on the (JSIL) code order of the paths through which the command itself can be reached. If we
assume that there are n paths through which the φ-node command can be reached, the command
would have the form x := φ(x). Its semantics would then be to assign to x the value xi if and only
if the i-th path was used to reach the command. This command is borrowed from the literature on
Single-Static-Assignment (SSA), a style of programming that is known to simplify analysis. The
JS-2-JSIL compiler produces code that is in SSA.

3.2 The JavaScript variable state in JSIL

Variable state management in JavaScript refers to the management of scope and the resolution
of the this keyword. We have briefly explained the mechanics of variable state management in
JavaScript with the use of execution contexts in §2.1.1.3. In this section, we focus on the differences
in variable state management constructs between ES5 JavaScript and JSIL, and how we preserve
the semantics despite these differences. In particular, since JaVerT was originally targeting ES5
Strict, which has lexicographic scoping, it had substantial simplifications in place when it comes to
variable state management with respect to the standard. As these simplifications could no longer
be maintained for ES5, we have fully and faithfully implemented the variable state management
mechanism of ES5, line-by-line close to the standard.

Onward, we first examine how variable state management is performed in accordance with ES5
specification (§3.2.1), and then give a high-level explanation of how the JavaScript variable state is
modelled in JSIL (§3.2.2). Next, we explain the inner mechanics of JSIL state management in full
in §3.2.3 and, finally, conclude by explaining the implementation of environment records in §3.2.4.

We illustrate the differences in variable state management between ES5 and JSIL using the JS
program (Code Snippet 3.1) and its corresponding state management constructs (Figure 3.1) below.

1 var obj = {
2 a: 1,
3 b: 2
4 }
5 function f(a, b) {
6 with (obj) {
7 var g = function () {
8 "use strict";
9 return a + b;
10 }
11 }
12 return g();
13 }
14 var ret = f(4, 5); // returns 3

Code Snippet 3.1: Nested with and functions

20

Figure 3.1: Variable State Management of Code Snippet 3.1

3.2.1 Variable state management in ES5

With reference to Code Snippet 3.1, we begin by looking at the environment records created during
its execution:

1. ER_Global: An object environment record that is created at the start of the program, holding
the global object as its binding object.

2. ER_f: A declarative environment record created when the execution enters function f.

3. ER_obj: An object environment record created by the use of the with statement in line 7,
holding the JS object obj as its binding object.

4. ER_g: A declarative environment record created when the execution enters function g.

In ES5, execution contexts are created whenever control is passed into an ECMAScript executable
code1. In the execution of Code Snippet 3.1, three execution contexts are created. However,
states can change within the same execution context. During the execution of Code Snippet 3.1,
modifications to the states are in the following order:

1. The program begins its execution in the global execution context EC_0. The LexicalEnviron-
ment and VariableEnvironment initialised with the same environment record ER_Global, as
LE_0 and VE_0 respectively.

2. In line 5, a new function object is created for function f with its internal [[Scope]] property
set to the current VariableEnvironment LE_02.

3. When control is transferred to function f in line 14, a new lexical environment is created
with the environment record ER_f and outer lexical environment specified by the f function
object’s [[Scope]] property: LE_0. In addition, a new execution context EC_1 is created
with LexicalEnvironment and VariableEnvironment initialised to the newly created lexical
environment LE_1.

4. During the execution of function f, the use of the with statement in line 7 creates a new lexical
environment LE_2 with the environment record ER_obj. The current LexicalEnvironment
is updated to LE_2. Note that this does not modify the VariableEnvironment and no new
execution context is created.

1Recall the three types of executable code: global, function, and eval
2Function declarations create function objects using the current execution context’s VariableEnvironment.

21

5. In line 7, a new function object is created with its internal [[Scope]] property set to the
current LexicalEnvironment LE_23. This new function object is assigned to the variable g
and, for simplicity, we will term this function as g.

6. LexicalEnvironment is restored to LE_1 before the function call to g in line 12.

7. The last execution context EC_2 is created during the execution of function g in line 12. Enter-
ing the function code results in a creation of a new lexical environment LE_3 with environment
record ER_g and outer lexical environment specified by the g function object’s [[Scope]]
property: LE_2. Both the LexicalEnvironment and VariableEnvironment components of EC_2
is initialised to LE_3.

8. Upon completion of the function g in line 12, the last execution context is popped from the
execution stack and the current execution context becomes EC_1.

9. Finally. the completion of function f in line 14 restores execution stack back to the initial
execution context EC_0.

In general, both the LexicalEnvironment and VariableEnvironment of an execution context can
be seen as pointers to a specific lexical environment of a linked-list structure. However, they differ
in the scenarios in which they are updated: VariableEnvironments are only updated during the
creation of a new execution context; LexicalEnvironments are updated by both the creation of a
new execution context and when execution enters lexical constructs of the ECMAScript code, such
as the with or try-catch-finally statements. This subtle difference between LexicalEnvironment
and VariableEnvironment is crucial as it affects the hoisting of declarations and scope resolution
in JS. Failure to recognise this difference would lead to bugs in implementation, one of which we
have observed in modern browsers (cf. §5.3.1).

3.2.2 The ES5 variable state in JSIL

Instead of using lexical environments, we model the variable state management of JavaScript in
JSIL with the use of scope chains. A scope chain is a list4 of environment records, formed by
the lexical nesting structure of the ECMAScript code. We observe that the creation of lexical
environments in ES5 naturally form a linked-list of lexical environments (§2.1.1.4), with the current
LexicalEnvironment as the last element in the list. Since each lexical environment is a container for
an environment record, we can deconstruct this linked-list into a list of environment records - the
scope chain of the running execution context.

We now explain state management in Code Snippet 3.1 in JSIL with respect to scope chains:

1. The program begins with an initial scope chain comprising just the global environment record:
[ER_Global].

2. When control is transferred to function f in line 14, the declarative environment record for
function f is appended to the scope chain: [ER_Global, ER_f].

3. In line 7, the with statement introduces a new object environment record to the scope chain:
[ER_Global, ER_f, ER_obj].

4. Scope chain is restored to [ER_Global, ER_f] at the end of with statement on line 11.

5. A function object is created in line 7 with its [[Scope]] internal property set to the modified
scope chain. By the same logic in the ES5 explanation above, we will term this function g.

6. In line 12, control enters the function g. A declarative record ER_g is created for function g.
This declarative ER is appended to the scope chain of the function (previously established in
step 5): [ER_Global, ER_f, ER_obj, ER_g].

7. As execution exits function g, the scope chain is once again restored to [ER_Global, ER_f].
3Function expressions create function objects using the current execution context’s LexicalEnvironment
4JSIL has native support for lists.

22

8. Finally, scope chain is restored to its initial state [ER_Global] as execution exits f in
line 14.

The primary advantage of using scope chains is simplicity. We only need to manage one
construct instead of two pointers to achieve the same state management semantics. For all static
code (this excludes the use of eval), we do not need to distinguish between LexicalEnvironment
and VariableEnvironment, as the last element in the scope chain would be the lexical environment
that we would use for compilation.

The disadvantage of this approach is the difficulty of distinguishing between a LexicalEnvironment
and a VariableEnvironment, when required. In ES5, this only occurs when we have declarations
within a non-strict eval code, nested in a with statement. This situation is particularly noteworthy
and we will revisit this issue and how we resolve it in §3.5.

Although we do not model lexical environments directly in JaVerT, we retain the term for
operating with scope chains as “Lexical Environment Operations". In addition, we will simplify our
scope chain models used in this report to show only properties in environment records that are
relevant to the examples.

3.2.3 The ES5 variable state management in JSIL: Inner Mechanics

As JSIL does not have a global execution context and its variable state management is local to JSIL
procedures, information about the ES5 variable state must be passed via the run-time parameters
to JSIL procedures. There are two ES5 variable state management constructs passed to JSIL
procedures at run-time: the caller’s scope chain and a caller provided thisArg. We will illustrate
how states are passed and updated in JSIL procedures using the partial compilation of a simple JS
function: f(a, b) {}. Prior to this, however, we need to explain how the ThisBinding construct
works in ES5.
ThisBinding. In ES5, The ThisBinding component of execution contexts stores the return value
of the this keyword. The initial value of the ThisBinding component is the global object and it
gets updated whenever a new execution context is created. This occurs in two situations:

1. Entering function code. In ES5 strict, entering a function code will set ThisBinding to the
caller provided ThisArg. In non-strict mode, if the caller provided thisArg is undefined or
null, it gets updated to the global object. Otherwise, thisArg is coerced to type Object if
needed before assigning to ThisBinding.

2. Entering eval code. The new execution context’s ThisBinding is inherited from the caller’s
execution context.

In JSIL, the ThisBinding corresponds to a special JSIL variable x__this.

Figure 3.2: Setting up scope chain and ThisBinding in compiled JSIL functions

State management in JSIL procedures. We are now ready to examine the state management
process in the partial compilation of the JS function f(a, b) {}, which is given in Figure 3.2.

1. The compiled procedure receives five parameters. The first three are parameters used internally
by the compiled JSIL code, while the last two correspond to the formal parameters from the
original JS function:

23

• x__func_obj, the function object that represents the current procedure. This parameter
is used in compilation of the arguments object (cf. §3.6).

• x__scope, the caller’s scope chain.
• x__this_arg, the caller-provided thisArg.
• a, the first formal parameter of f.
• b, the second formal parameter of f.

2. From lines 2 to 7, we perform the resolution of the ThisBinding construct. These commands
follow the non-strict mode behaviour and we determine the final ThisBinding on line 7 with
a φ-node command. If compiled in strict mode, we would directly assign the ThisBinding
with a single JSIL command x__this := x__this_arg instead.

3. In lines 9 and 10, we add a new declarative environment x__er with the internal JSIL
procedure "newDeclarativeEnvironment". Then, we obtain the scope chain for the procedure
x__sc_fst by appending x__scope with x__er. Internally within the compiler, we keep track
of the latest variable that holds the scope chain via a translation context.

The only exception to the behaviour above is the JSIL procedure main, which is the entry point
for a JSIL program. In this case, the scope chain and ThisBinding is set directly to the global
environment and the global object, respectively.

3.2.4 Implementation of Environment Records (ERs) in JSIL

In §2.1.1.2, we gave a broad overview of the two types of ERs: declarative ERs and object ERs. In
this section, we first introduce the broad type that defines generic ERs in JSIL (§3.2.4.1), then
dive into how the two specific ER types are implemented in JSIL, along with their design choices
(§3.2.4.2 and §3.2.4.3).

The explicit differentiation of ERs into declarative ERs and object ERs, along with the appropri-
ate changes in compilation and the implementation of supporting functions (essentially, the entirety
of §3.2.4.2 and §3.2.4.3), is new and is a substantial contribution of this project. Previously, there
was no distinction between declarative ERs and object ERs, which was deemed sufficient given that
the analysis target of JaVerT was ES5 Strict and that all appropriate Test262 tests were passed.
This approach, however, is imprecise, but the Test262 test suite is incomplete and actually does not
contain tests that would have revealed the imprecision in this conflation of ERs. We discuss this
issue in detail in §5.1.4.

We implemented 11 new internal JSIL procedures to enable this distinction between declarative
ERs and object ERs. The 11 procedures are grouped into three categories: (1) environment record
operations (ES5 Section 10.2.1), (2) lexical environment operations (ES5 Section 10.2.3), and (3) a
reference abstract operation that distinguishes ER references from property references (ES5 Section
8.7). The full list of new internal JSIL procedures can be found in Table A.2.

3.2.4.1 Generic ERs

Environment records are implemented as JSIL objects in JaVerT. Every ER in JSIL is either
a declarative ER or object ER, but not both. As there are no special object types in JSIL to
differentiate between JS specification constructs and actual JS objects, we have to keep type specific
properties in the metadata of JSIL objects. We differentiate the type of ER created using the
"@er_type" property in the metadata: declarative ERs have type "er_d", while object ERs have
type "er_o". The metadata property "@er" is kept for legacy reasons as a way to distinguish ERs
from normal JS Objects in JSIL.

3.2.4.2 Declarative ERs

Declarative ERs can be seen as a dictionary of key-value pairs, where dictionary keys are JS
identifiers and dictionary values are JS primitive values (undefined, null, boolean, string and
number) or JS objects. These key-value pairs are termed as bindings in the ES5 specification.

24

Bindings are decorated with two flags: immutable and deletable. An immutable binding cannot be
changed once it has been initialised while a deletable binding can have its associated key-value pair
removed from the ER in a delete operation. Only mutable bindings (the opposite of immutable
bindings) can be marked as deletable. For brevity, we will term immutable bindings as immutables,
deletable bindings as deletables, and mutable bindings as mutables.
Usage of Immutables. Immutables have two uses in ES5: binding of named function expressions
to an environment record (in both strict and non-strict modes), and the creation of the arguments
object in strict-mode functions. In ES5, the production of a named function expression creates an
additional ER known as a closure. The closure contains only one binding - the name of the function
expression - and it is immutable. This allows the use of recursive calls within the function using its
function name but this name cannot be accessed outside of the function expression.

In JSIL, we keep track of immutables of a declarative ER using an immutable table stored in the
metadata property "@immutables" of the ER. The immutable table is a JSIL object where the field
names are the string identifiers of the immutable bindings and the field values determine the state
of the immutable. For each immutable, it could be in two states: uninitialised or initialised. Newly
created immutables are uninitialised and marked with the value false in the immutable table while
initialised immutables are marked with the value true. While the ES5 specification dictates that
there are two states for immutables, both usages of immutables initialise the bindings immediately
after creation. In fact, the creation of constants in ES6+ (third use case of immutables) also
exhibit similar behaviour. As such, the state of the immutable after its creation is inconsequential
in subsequent JS statements. This allows us to optimise the test for immutability to simply a check
for the existence of the field name in the immutable table.

1 "use strict";
2 var x = function c() {
3 // Throws TypeError exception
4 c = 50;
5 return typeof c;
6 };
7 x();

Code Snippet 3.2: Immutable function
expression (ES5 Strict)

1 var x = function c() {
2 c = 50;
3 return typeof c;
4 };
5 // returns "function"
6 x();

Code Snippet 3.3: Immutable function
expression (ES5 Non-strict)

Figure 3.3: Scope chain of Code Snippet 3.2, Code Snippet 3.3

To illustrate the behaviour of immutables, we present an example (in strict and non-strict mode)
where an attempt is made to modify the immutable binding of the function identifier in a named
function expression. Code Snippet 3.2 represents the instance where the example is executed in
strict mode while Code Snippet 3.3 represents the non-strict variant. Both instances make an
attempt to modify the immutable binding of the function identifier c. They share the same scope
chain during the execution of the function c, as depicted in Figure 3.3.

For simplicity, we will explain the strict mode case (Code Snippet 3.2) first. The immutable
table is denoted by imm_tbl, where the identifier "c" is record as an initialised immutable. In line
4, an attempt was made to modify the value of c. This calls the setMutableBinding internal JSIL
procedure which checks if the referenced name is an immutable. As a strict mode function, the
mutation attempt on the immutable c will throw a TypeError exception.

The behaviour of the non-strict mode code (Code Snippet 3.3) also prevents the mutation of

25

immutables. However, instead of throwing a TypeError when an attempt was made to mutate c in
line 2, it simply fails silently and no modification is made to the immutable c. As c has not been
modified, x() returns "function" in line 6.
Usage of Deletables. Only newly created mutables can be marked as deletable. There is only
one such usage in ES5: the dynamic declaration of function and variable identifiers in eval code.
Bindings created in eval code are configurable, hence can be subjected to deletion after their
creation. A binding is deleted via the delete operation, which will call the JS abstract operation
on ERs: DeleteBinding.

We keep track of deletables with the use of a deletable table stored in the metadata property
"@deletables" of every declarative ER. Similar to how the immutable table work for immutables,
the deletable table contains field names for mutable bindings that are marked as deletable. As the
table only contain the name of mutable bindings that are deletable, we only have to perform an
existence check during DeleteBinding operation.

To illustrate the behaviour of deletables, we provide the example Code Snippet 3.4 along with its
scope chain Figure 3.4. We run the example in non-strict mode in order for the dynamic declaration
of variable b to be hoisted to the ER of function f. In this example, there two calls to the delete
operation, one in line 2 and another in line 5. The first delete operation is called on the mutable
a that is not configurable, hence the delete operation fails silently (statement returns false).
In line 3, the execution of the eval code creates a new mutable and configurable binding for the
variable b. This allows the variable to be deleted in line 5 (statement returns true).

1 function f(a) {
2 delete a; // false
3 eval("var b = 2;");
4 var res = a + b;
5 delete b; // true
6 return res;
7 };
8 f(1); // returns 3

Code Snippet 3.4: Deletables in ES5

Figure 3.4: Scope chain of Code Snippet 3.4

In strict mode, function and variable identifiers cannot be deleted. Attempts to do so will throw
a SyntaxError exception if the delete operation references the identifier directly (like in line 2 of
Code Snippet 3.4), otherwise a TypeError is thrown.

Due to the semantics of strict mode code, simplifications could be made if the entire JS program
(including any calls to eval and the eval code itself) is run in strict mode. In this case, all hoisted
function and variable declarations are lexically scoped. Any delete operation on these hoisted
declarations could be caught at compile-time and a SyntaxError would be thrown. Additionally, a
deletable table would not be required in declarative ERs to keep track of deletables.

26

3.2.4.3 Object ERs

Object ERs use actual JS objects treated as dictionaries for resolving identifier bindings. These
JS objects are known as binding objects and every object ER has one such binding object. The
property names and descriptors (including all inherited properties) of the binding object are the
identifier names and values of the object ER respectively. Intuitively, an object ER encapsulates its
binding object to provide an interface for resolution of identifier bindings similar to declarative ERs.

There are three main differences that distinguish object ERs from declarative ERs:

1. All object ER bindings are mutable.

2. Deletion of an object ER binding is governed by the configurable field of its corresponding
property descriptor, instead of a deletable flag store in the ER.

3. Object ER can optionally use its binding object as an implicit this value in function calls.

The consequence of the differences are twofold. First, we do not need to create two tables to keep
track of immutables and deletables. Second, we require a new metadata property "@provideThis"
to indicate if the object ER should use its binding object as an implicit this value.
Usage of the "@provideThis" flag. By default, the "@provideThis" is set to false. This flag is
set to true only when the object ER is created within a with statement. Within the with statement,
if the identifier of the function call resolves to a binding in the object ER, the this keyword within
the function call will be set to the binding object.

To illustrate this behaviour, we provide the example Code Snippet 3.5 with its scope chain
Figure 3.5. In this example, we define two global variables a and obj. a is initialised to the number
10 while obj is initialised as a JS object with two fields: a with number 1, and b with undefined.
In line 6, the use of with statement creates a new object ER with the obj as its binding object.
Within the with statement, we create a new anonymous (strict) function that returns the sum
this.a + 2. We assign this function to the property b of obj in line 7. When we call the function
b in line 13, the identifier b gets resolved to a reference of the binding object obj. This causes
the this keyword within the function to return obj. The result of the sum this.a + 2 is now
equivalent to obj.a + 2, which returns 3 (in line 13). Intuitively, the function call in line 13 is
semantically-equivalent to a property call obj.b().

As a point of comparison, we assign the function to a new variable c (which lives in the global
ER) in line 12. When we perform a function call in line 13, the resolution of the identifier c is
the global ER. The global ER is also an object ER, with the global object as its binding object.
However, the global ER’s provideThis flag is false, which causes the this keyword in the function
to return undefined. Note that if the function is defined in non-strict mode, the this keyword
will default to the global object.

1 var obj = {
2 a: 1,
3 b: undefined
4 };
5 with (obj) {
6 b = function () {
7 "use strict";
8 if (this === undefined) return -1;
9 return this.a + 2;
10 };
11 // this is equivalent to obj.b ();
12 b(); // returns 3
13 c = b;
14 c(); // returns -1
15 }

Code Snippet 3.5: Use of provideThis flag in Object ER

27

Figure 3.5: Scope chain of Code Snippet 3.5

3.3 Dynamic name resolution

In general, name (identifier) resolution in ES5 is dynamically scoped5. We could make simplifications
if we restrict the entire JS program to strict mode (including all runtime execution of eval). In that
situation, name resolution is static and lexically scoped. JaVerT ([8]) makes use of lexical scoping
semantics to build a closure clarification table at compile time to resolve JS identifiers to their
respective ERs in the scope chain. Intuitively, a closure clarification table maps JS identifiers to the
environment record that holds its binding (if it exists)6. By extending JaVerT to ES5 (non-strict),
we can no longer use this simplification, and have to implement internal JSIL procedures to resolve
JS identifiers dynamically at runtime.

Dynamic name resolution in ES5 involves over 10 sections of the specification that covers both
lexical environment operations and object internal methods. We will not go through all these
functions in detail as most of them are purely algorithmic or only require minor modifications from
the previous version of JaVerT. For interested readers, we listed the list of lexical environment
operations implemented in this project in Table A.2. Instead, we will focus on the main operation
that enables dynamic name resolution in ES5: GetIdentifierReference (Section 10.2.2.1)

To illustrate our approach, we present the line-by-line compilation of our dynamic name resolution
JSIL procedure "getIdentifierReference" that is based on the abstract lexical environment
operation in ES5 "GetIdentifierReference".

Figure 3.6: getIdentifierReference Internal JSIL procedure

5For clarity, we refer to scope resolution that has to be done at run-time as dynamic scope resolution and scope
resolution that can be computed at compile-time as lexical scope resolution.

6To be more precise, the closure clarification table maps JS identifiers to a specific index of the current scope
chain, which holds the environment record with its binding (if it exists).

28

With reference to Figure 3.6, specification for "GetIdentifierReference" is shown on the left
while our implementation is shown on the right. Our implementation has significant differences
from the specification which we will explain based on the algorithmic flow of the specification:

1. The first difference is in our use of scope chains instead of lexical environments. As such, we
pass in the current scope chain (sc) as a run-time argument instead of a lexical environment
(lex). A scope chain is a simply a list, hence we transform the recursive calls in the specification
(orange boxes on the left) to the iterative loop in our implementation (orange box on the
right).

2. Since environment records in the scope chain are ordered by their creation time, we iterate
on the scope chain backwards, starting with the last environment record in the scope chain.

3. In each iteration, we check if a binding exists for the identifier id. In the specification, an
abstract operation HasBinding of the environment record is called, passing the parameter
name (equivalent to id in our JSIL procedure). However, we noticed that we can make a
small optimisation by inlining the operation call into the main body of the loop (lines 14 to
24 on the right). There are three benefits to this approach:

(a) We reduce a function call for every identifier resolution at run-time, potentially improving
run-time performance significantly

(b) With one less function call, we could obtain a more simplified call stack during debugging.
(c) We require the procedure to return JSIL references that have types based on the

environment record in which the first binding for the identifier is found. A similar
distinction between ER types is also made in our implementation of hasBinding. By
inlining the procedure call, we also reduce the duplicated ER type check.

4. If the binding exists in a particular iteration, we exit the loop and return the appropriate
JSIL reference of the following form:

(a) (1st element) Type "v" if found in declarative ER, type "o" if found in object ER.
(b) (2nd element) Reference base, which is the ER where the binding is first found.
(c) (3rd element) Reference name, which is the identifier id.
(d) (4th element) A flag to indicate if the reference obtained in strict mode (inherited from

the parameter strict).

At this juncture, it is important to note that we cannot switch between lexical and dynamic
scoping based on the mode of execution of individual executable code components of a JS program.
Once an executable code of a JS program is run in non-strict mode, we lose lexical scoping for the
entire program. To help the reader understand the consequence of intermixing execution mode
within a JS program, we provide a simple JS program below:

1 "use strict";
2 typeof a; // "undefined"
3 (0, eval)("a = 2;");
4 typeof a; // "number"

Code Snippet 3.6: Mixed execution mode

With reference to Code Snippet 3.6, let us explain the program step-by-step:

1. In line 1, we have a strict mode directive ("use␣strict;" at the top level (global). This
implies that all global and function code components of the program must be executed in
strict mode.

2. In line 2, as the identifier a does not exist in the global scope, the type of a is undefined.

3. In line 3, we inject non-strict behaviour at runtime with the use of an indirect eval
(recall the execution modes of eval in §2.1.2.3). The execution of the eval code "a␣=␣2;"
creates a new global variable a initialised with the number 2.

29

4. In line 4, due to the creation of a in line 3, we obtain a different result with the same statement
in line 2, obtaining the type of a as number.

If we compile Code Snippet 3.6 by switching between lexical and dynamic scoping, we would be
using the closure clarification tables to resolve the identifier a in both line 2 and 4 since both lines
are executed in strict mode. Since the closure clarification table is built at compile-time, it would
not contain a valid mapping for a that is dynamically created by the eval call in line 3. As such,
line 4 would return the incorrect type - undefined - with the use of the closure clarification table.

It should also be noted that if we were to modify line 3 of Code Snippet 3.6 into a direct
eval call or use a strict mode directive in its eval code: "use␣strict;␣var␣a␣=␣2;", the entire
program would be in strict mode, hence preserving lexical scoping.

3.4 Compilation of the with statement

Having explained the state management and dynamic name resolution implemented in JSIL, we
now have the necessary constructs to begin the compilation of the with statement.

In §2.1.2.1, we explained the semantics of the with statement in ES5. It is a non-strict-mode-only
feature and is the first language feature we had to implement when extending the compiler. We
present in this section a line-by-line compilation from the ES5 specification into JSIL using a
generalised with statement of the following form: with (e) {s}, where e is a JS expression and s
is a JS statement.

With reference to Figure 3.7, the semantics of the with as per ES5 specification is shown on the
left, and its correponding compiled JSIL commands are shown on the right. Following the steps of
the ES5 specification, the compilation is as follows:

1. We start by recursively calling our compiler on the expression e to generate a list of commands
cmds1 that evaluates it and store the result in a fresh variable x1.

2. Next, we coerce the result of the evaluated expression to an object in a two-step process: (a)
First, call i__getValue (JSIL procedure for abstract operation GetValue), passing x1 as the
parameter and storing the result in a fresh variable x_v; (b) Next, call i__toObject (JSIL
procedure that implements JS abstract operation ToObject) passing x_v as the parameter
and storing the result in a fresh variable x_o_1.

3. The current LexicalEnvironment is given by the current scope chain: x_sc_0.

4. Using x_o_1 as its binding object, a new object environment record is created in the call
to JSIL procedure newObjectEnvironment (implementation of the JS abstract operation
NewObjectEnvironment). The newly created object ER is stored in x_er. Note that we
do not require a reference to the current execution context’s LexicalEnvironment for the
construction of a new object environment record due to our choice of using a scope chain for
state management.

5. We set the provideThis flag of the newly created ER to true by retrieving its metadata and
setting the field "@provideThis" to true.

6. Next, we update the state of execution by appending x_er to the current scope-chain, x_sc_0,
storing the result to a fresh variable x_sc_1. Internally within the compiler, we also update a
compile-time state management construct known as a translation context with the new scope
chain reference7.

7. With the updated scope chain, we call the compiler on the JS statement s to generate a list
of commands cmds2, which evaluates s and stores the result in a fresh variable x2.

8. As our compiler maintains the reference to the variable that holds the original scope chain
(x_sc_0) with which the with statement is called on, we do not need to explicitly restore the
scope chain at the end of the compilation.

7More precisely, a new translation context is created with updated states every time a change is made to the
execution state.

30

9. By construction, J2-2-JSIL compiler will return the the list of JSIL commands shown in the
figure along with the variable that stores the return value of the with statement. In this case,
the return value will be stored in variable x2.

Figure 3.7: Line-by-line compilation of with (e) {s}

3.5 Hoisting of variable and function declarations

Hoisting is a mechanism used to forward declare variables and functions. One of the primary
benefits of hoisting function declarations is the ability to perform mutual recursions. In ES5,
variable and function declarations are hoisted to the VariableEnvironment of the current execution
context. In all statically compiled JS code, at the moment of hoisting, the VariableEnvironment
and LexicalEnvironment point to the same lexical environment. This implies that we could hoist
declarations directly to the last environment record in the scope chain in JSIL.

However, this assumption is broken when dealing with dynamically compiled code. In particular,
we could construct a situation where the LexicalEnvironment and VariableEnvironment point to
different lexical environments with the use of the with statement. Additionally, we can force the
creation of a new execution context that inherits the LexicalEnvironment and VariableEnvironment
with a direct and non-strict eval call. In this case, the last environment of the scope chain is no
longer the correct environment record that should receive the hoisted declarations contained with
the eval code.

Let us illustrate this behaviour with the example below (Code Snippet 3.7):
1 var obj = {
2 inner: 1
3 };
4 function outer() {
5 with (obj) {
6 eval("function inner(a) { return inner + a; };");
7 if (typeof inner === "function") {
8 // Never reached
9 return inner (2);
10 }
11 }
12 return inner (3);
13 }
14 outer(); // returns 4

Code Snippet 3.7: Dynamic hoisting

In this example, the key modifications to the scope chain and hoisted declarations are as follows:

1. In line 5, we extend the scope chain of the function outer with an object ER using obj as its
binding object.

2. In line 6, we make a direct and non-strict eval call. Within the eval, it declares a new function
inner that takes a single formal parameter a. As the eval call inherits the current state of
execution, we would require the newly declared function to be hoisted to the declarative ER
of function outer instead of the object ER of the with statement created in line 5. This
implies that the inner property of obj is not updated to the new function.

31

3. Additionally in line 6, notice that there is an reference to the identifier inner within the
function body of the function inner. Due to the hoisting mechanism above, this inner
reference within the function body resolves to the property obj.inner instead of the newly
declared inner function.

4. We can do a check to ascertain that the type of obj.inner has not changed and the dynamically
declared inner function can only be called outside the with statement in line 11.

The difficulty in implementing hoisting lies in the 2nd step. Specifically, we require an internal
JSIL procedure to obtain the equivalent of the VariableEnvironment from the current scope chain.
To do so, we need to analyze the situations where the VariableEnvironment is updated and used
for hoisting. There are three situations corresponding to the three types of executable code:

1. Global code. Declarations are hoisted to the global ER, or more precisely, as properties of
the global object.

2. Function code. Declarations are always hoisted to the new declarative ER that is created for
the function.

3. eval code. There are three sub-cases for eval:

(a) Strict mode. An additional declarative ER is created and used for hoisting.
(b) Non-strict and direct call. Inherits the caller’s VariableEnvironment and uses it for

hoisting. Notice that this VariableEnvironment will always be a declarative ER even if
the caller is within a with statement.

(c) Non-strict and indirect call. Inherits the global environment and hoists declarations to
the global ER.

In all of these cases, we observe that declarations are always hoisted to either the global ER (case
(1) and (3)(c)) or to the latest declarative ER (all other cases). As such, we can do an iterative
search on the current scope chain to obtain the last declarative ER or the global object (whichever is
found first) as the appropriate ER for hoisting declarations. This is essentially the implementation
of the internal JSIL procedure getVariableEnvironment.

The subtlety in the choice of the lexical environment that receive hoisted declarations creates
counter-intuitive behaviours in dynamically generated code. Specifically, care should be taken when
executing eval code in non-strict mode.

3.6 The arguments object

We briefly explained the semantics of the arguments object between the strict and non-strict mode
in §2.1.2.2. The primary difficulty of implementing the arguments object in non-strict mode is the
two-way binding between the JS function’s formal parameters (also known as named parameters)
and the elements within the arguments object itself. This binding only exists in non-strict mode and
is broken in two situations: (1) the property in the arguments object is deleted, or (2) the property
is redefined into an accessor property. To maintain the mapping between formal parameters and
properties of the arguments object, we require two constructs to assist us:

1. A map object that keeps track of properties in the arguments object that are mapped to
formal parameters. This object is stored in the metadata property "@parameterMap" of the
arguments object. Each property of the map object represents a mapped formal parameter,
and stores an accessor descriptor.

2. Each accessor property of the map field above require an abstract argument getter and setter
to retrieve and modify the actual properties of the arguments object. As such, we implement
JSIL procedures to dynamically create functions for both the getters and setters.

The core component that enables the above two constructs to work together are the modified
Get, GetOwnProperty, DefineOwnProperty and Delete internal methods for the arguments object.

32

These internal methods are only used in non-strict mode, hence we set a metadata property
"@argInternals" of arguments object as a flag that will indicate to the run-time if these methods
should be used. We will not explain line-by-line the details of all these functions as they are purely
algorithmic, but will provide a general intuition on how these are used to provide the dynamic
binding behaviour between formal parameters and fields of the arguments object.

All modified internal methods take at least one parameter - a property name in the arguments
object. If this property name references a mapped property within the arguments object, the
call is redirected into internal method calls of the map object. Otherwise, it redirects the method
call to the default object internal methods of the arguments object. A special case exists in the
modified DefineOwnProperty which deletes a mapped property if the new descriptor definition is
an accessor descriptor. This removes the two-way binding for that property and its corresponding
formal parameter.

3.6.1 Two-way binding example

Let us illustrate the behaviour of the mapping with the example Code Snippet 3.8. In this example,
we have a simple function f(a, b) that takes in two (formal) parameters a and b. At run-time, we
call the function with three parameters: f(3, 4, 5). This results in a creation of an arguments
object, arg_obj as shown in Figure 3.8.

1 function f(a, b) {
2 arguments [0] += arguments [2];
3 var del = delete arguments [0];
4 if (del) return a;
5 return b;
6 }
7 f(3, 4, 5); // 8

Code Snippet 3.8: arguments object behaviour

Figure 3.8: arguments object example

In both strict and non-strict modes, arg_obj will be initialised with 3 fields. The field names
are the index of the run-time parameters: "0", "1", "2". Their corresponding field values are
data descriptors containing the value of the parameter, along with all remaining three attributes
(writable, enumerable and configurable) set to true. As there are only two formal parameters,
the map object contains only two fields, one for each of the formal parameter. The third run-time
parameter is only accessible via the arguments object and is not mapped to the formal parameters.

Within the function body of f, we perform a compound assignment to arguments[0] by adding
arguments[2] to arguments[0], giving 8. Due to the two-way binding, the formal parameter a also
gets updated. Properties of arg_obj created by default in the compilation process are configurable,
hence can be deleted. We delete the property "0" of arg_obj in line 3 which causes the function to
return a (which was updated in line 2), with the value 8.

33

3.6.2 Non-strict callee property

In addition to the two-way binding explained above, the semantics of the "callee" property of the
arguments object is modified in non-strict mode to return the current function object. While this
change in semantics is trivial to understand, we face a dilemma when implementing it in JSIL. To
explain this dilemma, we need to first introduce the previous implementation of the compilation
process that translates JS programs into JSIL procedures.

Prior to this project, translated JSIL procedures are of the following format:
proc fid (x__sc, x__this_arg, <formal_params>), where x__sc is the scope chain of the
caller, x__this_arg is the thisArg passed to the function for resolving ThisBinding, and
<formal_params> is a placeholder for the translated formal parameters of the original JS function.
Function objects are created during function calls (which reside outside of the translated JSIL
procedure) while creation of the arguments object is done within the JSIL procedure. This meant
that we do not have access to the function object during the creation of arguments object.

To resolve this issue, we thought of three approaches:

1. Add the function object as a new first parameter for translated JSIL procedures, while keeping
the rest of the parameters.

(a) This is a breaking change for any JSIL procedures that depend on the procedure
parameter format and/or depend on run-time optional parameters. Specifically, these
include most of the JSIL implementation of built-in JS functions. These procedures
depend on implicit assumptions on the number of run-time parameters and obtain their
parameters via the args JSIL command. As access to this parameters is done via array
indices, introducing a new first parameter would effectively create a “right shift" (increase
index by 1) for all subsequent parameters. We have to modify all of these functions to
take into account this change.

(b) The primary advantage of this approach is for any other JSIL procedure that references
the caller scope chain x__sc directly. This change would preserve direct references to
the scope chain without resorting to additional calls into the function object to obtain it.

(c) Additionally, the semantics of the specification assumes that we have access to the function
object within the function body during compilation. This change would preserve the
semantics of the specification.

2. Replace the scope chain (first) parameter of translated JSIL procedures with the function
object. The scope chain of the caller is then referenced from the function object’s "@scope"
metadata property.

(a) This likely to be the most intrusive change as it could potentially affect most of the
JSIL procedures. Any JSIL procedure that directly references the caller scope chain
must be modified with additional steps to obtain the scope chain from the function
object. Additionally, JSIL procedures that references run-time parameters via the args
command could also be affected if they expect the first parameter to be the caller scope
chain.

(b) The main benefit of this approach is that it preserves the number of parameters in all
existing JSIL procedures. Additionally, we do not duplicate the scope chain data that
could be referenced from the function object anyway.

(c) This approach also has the benefit of preserving the semantics of the specification (as
with approach (1)).

3. Add a global JSIL variable that stores the latest function object. Since we know that the
arguments object is created only in the body of the JSIL procedure, we can update the
global reference with the function object used for each function call before entering the JSIL
procedure. This allows us to safely assume that we would be able to obtain the reference
correct function object during the creation of the arguments object within the procedure.

(a) This approach is likely to be the least intrusive as no major changes are required for any
JSIL procedure.

34

(b) The main disadvantage of this approach is that we pollute the heap with a temporary
variable in order to keep track of a local state. This does not conform to the semantics
of the specification and has no guarantees that our assumption would continue to hold
in future specification. Intuitively, this feels like a “hack".

The considerations for selecting our approach are two-fold. First, we want to preserve the
semantics of the specification. Second, we want to introduce as minimal changes to the code
base as possible. Approach (3) does not fulfil the first criterion and is immediately removed from
consideration. Between approaches (1) and (2), (1) is ultimately chosen as it is less intrusive
than (2).

The implementation of approach (1) results in the updated JSIL procedure format:
proc fid (x__func_obj, x__sc, x__this_arg, <formal_params>). This updated format al-
lows us to directly pass in the function object x__func_obj during the creation of the arguments
object for the callee property.

3.7 Direct and indirect eval

In §2.1.2.3, we explained the difference between direct and indirect eval calls. In short, a direct
eval call has two conditions:

1. The reference obtained from evaluating the MemberExpression (left side of the expression
before the parameters) has an environment record as its base (i.e. binding must be obtained
from an ER), and the reference name must be ``eval".

2. The result of calling GetValue abstract operation on the referenced obtained from (1) must
be the built-in eval function.

To distinguish between these two types, we implemented the internal JSIL procedure
isDirectEval(ref, ref_v) as shown in Figure 3.9.

Figure 3.9: isDirectEval implementation

The procedure is called when a function call expressions evaluates to a call to the built-in eval
function. It takes two parameters: ref and ref_v. ref is the reference obtained from evaluating
the MemberExpression in the function call while ref_v is the result of calling GetValue on ref.

We make a preliminary check in lines 2 and 3 to ensure that ref is a JSIL reference. If this
check fails, we return false. Next, we check if ref fulfills the first condition in lines 6 to 10. JS

35

references can be classified into property references and ER references. We perform this check in
line 6 by calling the internal JSIL procedure i__isPropertyReference, which returns false if it
is an ER reference. The referenced name can be obtained from the 2-th element in the list ref in
line 8. We then perform the actual check for the first condition in line 10. If this check passes, we
proceed to check for the second condition in line 12 using our global JSIL location reference to the
built-in eval function ($lg_eval). If any of the two checks fails, we return false. Otherwise, we
return true.

At first glance, there appears to be a duplication of parameters as we could have obtain ref_v
from ref by calling GetValue within the procedure. However, we observe that the compilation
of a function call would always make a GetValue call on the reference obtained from evaluating
MemberExpression. This meant that we would already have obtained the results to check for the
second condition prior to the check for direct eval. As such, we could perform an optimisation in
the run-time by directly passing the result of the GetValue call directly into isDirectEval as its
second parameter.

36

Chapter 4

Analysing ES5 Programs

In this chapter, we take a deeper dive into the intricate details of ES5. We will base most of our
discussions around symbolic programs as examples that reveal the complexity of the language.
Specifically, we showcase how small details of ES5 can have big impact on the entire program.

We organised this chapter into two sections. The first section (§4.1) presents a concrete JS
program with an intentional bug that is difficult to detect at first sight. It highlights a small feature
of JS and serves as a motivation for moving towards symbolic testing. We then proceed to analyse
JS programs using the whole-program symbolic testing aspect of JaVerT, which we enabled for
ES5, in §4.2. We present these symbolic programs in the style of Test262 (ECMAScript’s official
test suite) tests. Our main contributions in these symbolic tests are two-fold: (1) the generalisation
of concrete tests, and (2) providing new tests that check for behaviour previously not found in the
official test suite.

4.1 Motivating Example

Concrete tests check the behaviour of a program based on concrete values and are usually the
primary form of testing for many programs. The official test suite for ECMAScript, Test262, is also
based on concrete tests. As developers, we use concrete tests to provide an indication of correctness.
However, it may not always be feasible to generate tests for an entire range of inputs. This problem
is further compounded when dealing with complex languages such as JavaScript. Its many subtle
semantics as a dynamic language may confuse developers who are not familiar with the language.

We present a small JS program (Code Snippet 4.1) as a motivating example in this section. It
highlights limitation of concrete tests and a feature of ES5 JS that is often overlooked by developers
from other languages such as C or Java - hoisting.

1 function isPrime(x) {
2 var prime = false;
3 if (x < 2) return prime;
4 if (x === 2) return !prime;
5
6 for (var i = 2; i <= Math.sqrt(x); i += 2) {
7 var prime;
8 if ((x % i) === 0) { prime = false; }
9 if (prime !== undefined) return prime;

10 }
11 return true;
12 }
13
14 var collect = [];
15 for (var i = 0; i < 10; ++i) {
16 if (isPrime(i)) { collect.push(i) };
17 }
18 collect; // [2, 3, 5, 7]

Code Snippet 4.1: Non-block-level scope declarations in ES5

37

With reference to Code Snippet 4.1, we have a simple JS program with a single function isPrime.
Given an integer x, isPrime returns true if x is prime, false otherwise. At first glance, from the
standpoint of, for example, a C developer, this function appears to behave correctly. We can also
test it against the first 10 integers (lines 15 to 19) and check that the result is indeed accurate.
However, if we check the result of isPrime(11), we would get false! 11 is clearly prime, which
means there is a bug in isPrime.

This bug actually stems from variable hoisting in ES5 JS. In line 2, we declared a function-level
variable prime. We re-declare a variable with the same name prime in line 8. In ES5, variables are
always hoisted to the current execution context, which means the prime in line 8 is also hoisted
to the function-level. Re-declared variables without initialisation in ES5 are essentially ignored.
Hence, the declaration in line 8 is equivalent to an empty statement. This means that prime is
always defined, and will return false whenever control enters the loop. We intentionally crafted
the program such that control will only enter the for loop for values of x greater than 10, as square
root of 10 is greater than 3, which is the starting value of i. This is also why we successfully
generate the first 4 primes between 0 and 10.

Contrast this to block-level scoped languages like C, where a similar program would create a local
variable prime in the block scope of the for statement in lines 7 to 11. This local variable would
shadow the outer variable prime at the function-level. The prime in line 8 would be undefined until
we find an i that divides x, which will set prime and return prime in lines 9 and 10 respectively.

As a point of interest, we could actually emulate block-level scoping using the with statement
in non-strict JS programs. A rewriting of Code Snippet 4.1 into block-level scoped variables is
presented in Code Snippet 4.2. In this program, we create a new lexical environment with a new
object {prime: undefined} in every iteration of the for loop. References to the identifier prime
in lines 10 and 11 would point to property of the object instead of the function-level prime.

1 function isPrimeWith(x) {
2 var prime = false;
3 if (x < 2) return prime;
4 if (x === 2) return !prime;
5
6 for (var i = 2; i <= Math.sqrt(x); i += 2) {
7 with ({ prime: undefined }) {
8 // prime contained in block due to with statement
9 if ((x % i) === 0) { prime = false; }

10 if (prime !== undefined) return prime;
11 }
12 }
13 return true;
14 }
15
16 var collect = [];
17 for (var i = 0; i < 10; ++i) {
18 if (isPrimeWith(i)) { collect.push(i) };
19 }
20 collect; // [2, 3, 5, 7]
21 isPrimeWith (11); // true

Code Snippet 4.2: Emulation of block-level scoping using with statement in ES5

If we examine the versions of the standard beyond ES5, we will notice that ES6 introduced the
let construct, which declares lexically-scoped variables. An equivalent rewriting of the block-scoped
ES5 program Code Snippet 4.2 would be the program in Code Snippet 4.3.

Of course, one could argue that the example we provided in Code Snippet 4.1 is clearly
contrived. Reusing variable names within the same function in nested blocks is generally not an
ideal programming style. The variable declaration in line 2 is also clearly unnecessary; the primes
in lines 3 to 5 can be replaced with primitive booleans directly. However, we could generalise this
behaviour into larger programs with more lengthy and complex functions, and similar unintentional
reuse of variable names. In these situations, proof-reading entire programs to avoid such situations
may become tedious or infeasible. As such, we move towards whole-program symbolic testing,
where we test JS programs using symbolic values that represents abstract concepts, such as
numbers, strings, or general JavaScript values.

38

1 function isPrimeES6(x) {
2 let prime = false;
3 if (x < 2) return prime;
4 if (x === 2) return !prime;
5
6 for (let i = 2; i <= Math.sqrt(x); i += 2) {
7 // Block scoped variable
8 let prime;
9 if ((x % i) === 0) {
10 prime = false;
11 }
12 if (prime !== undefined) return prime;
13 }
14 return true;
15 }
16
17 var collect = [];
18 for (var i = 0; i < 10; ++i) {
19 if (isPrimeES6(i)) { collect.push(i) };
20 }
21 collect; // [2, 3, 5, 7]
22 isPrimeES6 (11); // true

Code Snippet 4.3: Equivalent block-level scoping in ES6

4.2 Whole-Program Symbolic Testing

Whole-program symbolic testing is a feature of JaVerT that enables the use of symbolic constructs
to test entire JS programs. The primary benefit of symbolic tests is the generalisation of concrete
tests. These provide stronger guarantees in the correctness of the program as we test against an
abstract range of inputs instead of concrete instances.

This section is organised into three logical parts:

1. We start by introducing the core symbolic execution constructs of JaVerT that we will be
using throughout the rest of the chapter in §4.2.1.

2. Subsequently, we present key symbolic tests that illustrate different ES5 behaviours from
section §4.2.2 to §4.2.7 (one section per example). We will also highlight symbolic tests that
check for ES5 behaviour previously not found in the Test262 test suite.

3. Finally, we summarise our main contributions to these symbolic tests in §4.2.8.

4.2.1 Core symbolic execution constructs

In this section, we introduce the core symbolic constructs used in this chapter. The full mechanics
of the symbolic execution engine and its formalisation is beyond the scope of this project. Interested
readers are directed to the following papers for more details: [24, 8].
There are three main constructs that we employ in our symbolic tests:
Symbolic values. During whole-program symbolic testing, there are four types of symbolic
values that are directly available to the developer: numbers, booleans, strings, and general values.
Symbolic numbers, booleans and strings are simply symbolic variants of the intuitive definition
of concrete numbers, booleans and strings in programming. We can initialise a JS variable with
these types of symbolic values by using the functions symb_number, symb_boolean, symb_string,
and symb. For example, a JS statement var x = symb_number(x) informs the symbolic execution
engine that x is symbolic, and contains a symbolic number.
Assumptions. We can place constraints on symbolic values with the use of assumptions in the
symbolic engine. For instance, we can inform the engine that a symbolic number x can only contain
even numbers with the following JS statement: Assume((x % 2) = 0). Note that the Assume

39

function acts like a directive for the symbolic engine. The argument to the function, an expression
written in JSIL, is the assumption the engine must make in the execution of the rest of the program.
Assertions. Assertions are the tests for the program. Similarly to the mechanics of Assume,
described above, an Assert function takes a JSIL expression that when evaluated, must return
true. For instance, Assert(not ((x % 3) = 0)) checks that x must not be divisible by 3. As
these tests are symbolic, the symbolic engine will attempt to create a model (a set of inputs) in
which the assertions might fail.

4.2.2 Declaration hoisting order

We will start with a simple symbolic test in Figure 4.1 (on the left). For clarity we will refer to the
program on the left of the figure as (a) and the program on the right as (b) This test illustrate the
implicit order of hoisting between variable and function declarations.

Figure 4.1: Declaration hoisting order: (a) original symbolic test (left); (b) rewritten test (right)

In program (a) of Figure 4.1, we make two type checks on the identifier a (line 1 and line 7).
There are two declarations of a: first in line 3, assigned with a symbolic string; second in line 4,
assigned with a function object. If we were to interpret the program sequentially, we would assume
that the first type check in line 1 would give us a string, and the second in line 7 to give us a
function.

However, in ES5, function declarations are always hoisted before variable declarations. As such,
the function declaration in line 4 is hoisted before the variable declaration of the same identifier
a in line 3. This results in the first type check to return "function" and the second to return
"string". An equivalently rewriting of the program to the semantics of the hoisting behaviour in
ES5 is given on the right of Figure 4.1.

We can check for the correct hoisting behaviour with the use of the Asserts in lines 9 and 10 of
(a). As this tests for the type of the return values instead of over a range of outputs, the value in
using symbolic tests is not very high. In fact, one could argue that this example is almost equivalent
to a concrete test with the exception of the single use of symbolic string in line 3 (which is also
arguably superfluous). To better illustrate the value of symbolic testing, we will proceed with more
complicated examples in the subsequent sections.

4.2.3 Non-block-level declarations

In this section, we will revisit the isPrime example we gave in §4.1, rewritten into a symbolic test.
We made a few tiny adjustments to make it easier to check for incorrect behaviour.

With reference to Figure 4.2, we first explain the differences between the isPrime function here
and in §4.1:

1. We changed the initialisation of variable prime from false to true. We made this change

40

to allow the function to incorrectly return certain non-primes as primes, instead of always
rejecting every number greater than 9.

2. We shifted the even number check x % 2 === 0 to be part of the divisibility check in the
for loop in line 11.

3. Due to a limitation of the symbolic engine, the Math.sqrt function has not been implemented
symbolically. As such, we regress to a more inefficient algorithm that checks for divisibility
from 2 to one less than x.

Figure 4.2: Variable declaration within for statement is ignored

The changes above allowed us to demonstrate the value of symbolic testing. isPrime takes
a number x, which we pass in symbolically. We initialised two symbolic variables, n1 and n2.
n1 is assumed to be an even number greater than 2, while n2 is assumed to be an odd number
greater than 3, but also divisible by 3. In our test, we use isPrimeWith as an “oracle” to indicate
correctness of behaviour.

We first test the behaviour using symbolic variable n1. As n1 is assumed to be even, it will
always pass the divisibility check in line 13, hence returning false (value of prime) in line 14. This
passes the assertion in line 35. However, in our second symbolic check with symbolic variable n2,
we assumed n2 to be an odd number greater than 3, but divisible by 3. Concretely, n2 can be
numbers 9, 15, 21, 27, etc. In this case, isPrime will pass these numbers as “prime” because of the
function-level hoisting behaviour explained in §4.1. Our symbolic engine will find a counter-model

41

for the assertion in line 39 r13 = r23 when n2 = 9. We have managed to detect a bug in the
program without iteratively passing a range of concrete values to the program in concrete tests.

4.2.4 Modifying properties of the arguments object

In §3.6, we explained the mechanics of the arguments object in functions. An often confused
mechanic is the two-way binding between formal parameters of a function and its run-time arguments
object in non-strict mode. It is further complicated by the different deletable semantics of formal
parameters and mapped properties of the arguments object. We will illustrate these behaviours
with a symbolic test shown in Figure 4.3.

Figure 4.3: Symbolic test for arguments object

We define a function f that has two formal parameters a and b. This creates two mapped
properties in the arguments object at index "0" and "1" respectively. If we were to modify
these mapped properties directly, such as in lines 7 and 8, the corresponding formal parame-
ters will also be updated. This behaviour is tested when we check for the sum a + b in line
29 Assert(r1 = ((n1 * n3) + (n2 * n4))). Formal parameters cannot be deleted, but their
corresponding mapped properties in the arguments object can. We test this behaviour by deleting
the "0"-th property in line 9, which succeeds (returns true). Deletion of the property simply breaks
the two-way binding between arguments[0] and a, but the formal parameter a retains the value
(n1 * n3) before the deletion. We can continue to modify the formal parameter a directly in line
11 even if its mapped property has been deleted.

For clarity, we summarise the behaviour checks in the symbolic test below:

1. Assert(r1 = true) checks that the deletion of arguments[0] in line 9 is successful.

2. Assert(r2 = undefined) checks that the deleted property is indeed undefined.

3. Assert(r3 = ((n1 * n3) + n4)) checks that we can continue to modify the formal param-
eter a even after its mapped property in the arguments object has been deleted.

42

4. Assert(r4 = ((n1 * n3) + (n2 * n4))) checks that both formal parameters are changed
due to the two-way mapping when assignments are made in lines 7 and 8.

It should be noted that there exists test cases in Test262 that tests some of these behaviour
individually. For instance, language/statements/function/S13_A13_T2.js tests for the deletion
behaviour of mapped properties in the arguments object. We can view the symbolic test presented
above as a generalisation of these tests into symbolic variants.

4.2.5 Indirect, non-strict eval call

One of the most confusing elements of JavaScript is the eval function. eval calls can be executed
in either strict or non-strict mode, and can be called directly or indirectly. By simple combinatorics,
this should result in a total of 4 different combinations. However, direct eval calls can also implicitly
inherit the mode of execution while indirect eval calls do not. As such, we have a total of 5
combinations of execution (previously shown in Figure 2.3). In addition, the context with which
eval runs in depends on whether the eval call is a direct or indirect call.

We will illustrate the two most confusing aspects of eval: (1) non-strict execution in indirect
eval, and (2) inheritance of the global execution environment in indirect eval.

Figure 4.4: Dynamic redefinition with indirect non-strict eval

In Figure 4.4, we have two functions declared in the global level: f and g. Within f, we extend
the scope chain using the with statement and obj as the binding object. We make an immediate
function call on an anonymous function expression in strict mode. In line 13, an indirect eval call
is made. This causes a redefinition of the function g in the global scope. Additionally, this new
function g is compiled in non-strict mode due to the indirect call. We further test the non-strict
behaviour of the new function g by assigning to a previously undeclared variable b, which will
create a new global variable in non-strict mode.

For clarity, we summarise the symbolic tests given in this example below:

1. Assert(r1 = (n2 + n3)) and Assert(not (r1 = (n1 + n3))) checks that the call to func-
tion g in line 16 is the dynamically defined function g (in line 13).

43

2. Assert(r2 = (n2 + n3)) and Assert(not (r2 = (n1 + n3))) checks that the global func-
tion g has indeed been redefined, and the correct assertions preceding these is not due to
hoisting of g to the scope of f.

3. Assert(r3 = n1) checks that the dynamically defined function g is indeed run in non-strict
mode and the reference on an undeclared variable b creates a new global variable with the
same name.

4.2.6 Immutable function identifiers

An often overlooked semantic in ES5 is the immutability of function identifiers for named function
expressions. We explained its behaviour in §3.2.4.2 while introducing the notion of immutability in
declarative environment records. In this section, we present a symbolic test that checks for this
immutability.

Figure 4.5: Function identifier is immutable in named function expressions

With reference to Figure 4.5, we attempt to change the definition of f (in line 11) within
the closure of its function. As f is an immutable binding, this mutation will throw a TypeError
exception in strict mode. The test expects this specific type of error to be thrown and passes the
test.

We intentionally run the function f in strict mode as a prelude to a later discussion about the
mutation behaviour in previous versions of JaVerT. This discussion (§5.1.4) will highlight a bug
previously not caught by the Test262 test suite, indicating that there may be a missing behaviour
check in the test suite.

4.2.7 Dynamic hoisting

In this section, we present yet another dynamic hoisting example. Different from the previous
symbolic tests regarding hoisting, this is dynamic hoisting using direct eval calls in non-strict
mode. The main motivation for this test case is a real-world implementation bug that we discovered
in a modern browser - Microsoft Edge - which we will discuss in depth in §5.3.1.

With reference to Figure 4.6, the program starts with only one declared function outer. A new
function inner is dynamically declared in line 8 with the direct eval call. We intentionally wrap
this dynamic function creation within a with statement (in line 6) that takes obj as its binding
object. Note that obj also has a property named inner, that is initialised to a symbolic number

44

n1. As function inner is dynamically hoisted to the scope of function outer, all type checks on
inner within the with statement (lines 7 and 9) should return "number"; obj.inner shadows the
function inner present in the scope of outer. We can verify that function inner does exist in
scope of outer with the type check in line 11. Additionally, we also verify the property obj.inner
has not be modified with the type check in line 21.

Figure 4.6: Dynamic hoisting behaviour

For clarity, we summarise the assertions in this example below:

1. Assert(ti1 = "undefined") checks that inner was not hoisted prior to the execution of
eval in line 8.

2. Assert(ti2 = "number"), Assert(ti3 = "number") and Assert(ti4 = "number") checks
that the dynamic hoisting is beyond the scope of the with statement. As such, all references
to inner, include the reference in the last statement of the eval code, point to the property
obj.inner.

3. Assert(ti5 = "function") checks that function inner is indeed hoisted to the scope of
function outer.

4. Assert(ti6 = "number") does a final check to ensure obj.inner has not been modified.

4.2.8 Summary of symbolic examples

In this chapter, we gave a total of six symbolic JS programs written in the style of Test262 test cases.
By using the symbolic execution engine of JaVerT, we are able to examine these tests in detail to
reveal the complexities of the language. An interesting observation is that four of these six symbolic
tests involve some form of hoisting (static or dynamic). Given the confusing nature of hoisting,
intermixed with complex dynamic options (such as the example in §4.2.5), we strongly believe that
whole-program symbolic testing provides stronger guarantees to implementation correctness than
concrete testing.

Additionally, we identified two potential edge cases (§4.2.6 and §4.2.7) not covered in Test262,
that could lead to bugs in implementation. These will be covered in greater detail in Chapter 5.

45

Chapter 5

Evaluation

The primary objective of this project is to extend JaVerT to support ES5 non-strict. We evaluate
our progress towards that goal in two aspects:

1. Implementation correctness of the JS-2-JSIL compiler (§5.1).

2. Usefulness of the toolchain in analysing ES5 programs (§5.2).

Of the two evaluation indicators, our priority is on the implementation correctness of the
compiler, which is where the majority of our work resides. An incorrect compiler cannot serve as
a basis for formal verification and future extensions. As such, we test our compiler thoroughly
against ECMAScript’s official test suite, Test262. We believe that this work has fully achieved its
goal when it comes to implementing the ES5 language features and that it represents a significant
step towards a complete implementation of the entire ES5 standard.

We organised our evaluation as follows:

• We start by evaluating the implementation correctness of our compiler in §5.1. Using Test262
as the benchmark, we provide the test coverage of our compiler, along with the explanations
of the failed and aborted test cases.

• Next, we evaluate the usefulness of JaVerT in analysing non-strict JS programs in §5.2. We
will focus on the use of the symbolic execution engine in JaVerT to perform whole-program
symbolic analysis, and its current limitations.

• We then further our evaluation by investigating real-world implementations of ES5+ in §5.3,
specifically covering the run-time behaviour of Microsoft Edge and NodeJS. These case studies
shed light on both the complexity of the language and subtle implementation decisions that
have huge impact on the run-time behaviour of JS programs.

• As our source of reference throughout the project, we will also evaluate the clarity of the ES5
specification in §5.4. In particular, we will highlight the difficulties we faced in this project
when trying to understand it.

• Finally, we discuss the main limitations of our work in §5.5, making references to the earlier
evaluations in §5.1 and §5.2.

5.1 Implementation correctness

Our benchmark for implementation correctness is the official ECMAScript’s test suite, Test262.
Test262 has 11,062 ES5 test cases which provide extensive coverage across most of ES5 features.
We target the latest standard of Test262 and filter for tests that have “es5id” within the test
descriptions, meaning that they are intended/originate from the previous versions of the test suite
for ES5. However, there are some mislabelled tests where the test behaviour has been updated
with a later standard (such as ES6), but the tests still retain their “es5id” labels. In these cases,

46

since the goal of JaVerT is to move on to later versions of the standard, and given that all browsers
already implement the behaviours of the newer standards, we also implement the behaviour of the
newer standards. For clarity, when we qualify a standard (for example, ES5) with the ‘+’ symbol,
we meant “(ES5) and later standards”.

Due to complexities of the language, there are multiple ways to group these tests into logical
categories. In this section, we will evaluate the correctness of our compiler across the following
categories:

1. Mode of execution

(a) Non-strict only tests. These involve non-strict features of the language, such as the
with statement.

(b) Strict only tests. These tests check for specific strict mode behaviour, such as strict
mode restrictions and semantic differences from non-strict mode.

2. Feature type

(a) Language tests. These tests features of the JavaScript language such as expressions
and statements. They cover most of the ES5 specification except Section 15 (Standard
Built-in ECMASCript Objects).

(b) Built-in tests. These tests the standard built-in objects (Section 15) assumed to be
present in every JavaScript program. They are not tied to any language feature, but do
depend on the correct implementation of the language features.

We present the overview of our compiler’s testing results in Table 5.1 and Table 5.2 for tests in
“mode of execution” and “feature type” respectively. For clarity, we define “applicable” test cases
as tests which use ECMAScript built-in objects with corresponding JaVerT implementations. For
example, this excludes tests for regular expressions or tests for other features of the language which
use regular expressions, as regular expressions have not yet been implemented in JaVerT.

Table 5.1: Test results categorised by mode of execution

Table 5.2: Test results categorised by feature type

Within the scope of the project, we have achieved tremendous progress towards supporting
non-strict features of ES5 in JaVerT. In particular, we achieved 100% coverage for all applicable

47

strict and non-strict only tests, and 99.89% coverage for all applicable tests. Of the 11 applicable
test cases that failed, 8 of them are due to limitations of our parser in handling Unicode strings
within the source text. The remaining 3 applicable failing tests are related to the changes in ES6+
syntax and semantics.

In the following sections, we will analyse the test results from “language tests” and “built-in
tests”. In our analysis, we examine why these tests fail or abort, and their impact on the correctness
of our compiler. We skip the categories for “modes of execution”, as they are contained within the
“feature type” tests. The interested readers can find the full tests breakdown, grouped by feature
type, in Appendix A.

5.1.1 Language tests

There are 3202 language tests spanning over 84 language features. The summary of our compiler’s
language test result is shown in Table 5.3. We will examine the aborted tests first (§5.1.1.1), then
the failed tests (§5.1.1.2). Finally, we summarise our contribution in language tests in §5.1.1.3.

Table 5.3: Language test overview

For interested readers, the full breakdown grouped by language feature is given in Table B.1.
The list of failed and aborted tests is given in Table B.2.

5.1.1.1 Aborted tests

All 42 aborted tests are due to ECMAScript built-in objects that we have not yet implemented
in JaVerT. Aborts of this type are not directly related to any language feature and they are not
indicative of incorrectness in our compiler’s language features. Hence, we immediately exclude
these tests from our applicable test list.

5.1.1.2 Failed tests

We now investigate the failing language tests summarised in Table 5.4. These 8 failed tests can be
classified into 3 groups:

1. Limitations of the parser in parsing Unicode strings. There are 5 such cases, labelled 1
through 5 in Table 5.4.

2. Semantic changes between ES5 and ES6+. They correspond to the last 3 cases in Table 5.4,
with the first 2 being due to the change in the semantics of the if statement, and the last
one being due to a change in permitted positioning of functions in the code.

The limitations of the parser in parsing Unicode strings stem from the difference in representation
of these strings. We use OCaml to parse and compile JS programs, which transforms JS strings into
OCaml strings. Our OCaml representation of Unicode strings are in UTF-8, which are interpreted

48

Table 5.4: Language test failures

at the byte level. In constrast, ECMAScript Unicode strings are represented in UTF-16. As such, a
single Unicode character, such as U+104A0, could be represented as 4 bytes in UTF-8 but takes 2
UTF-16 code units. This Unicode character is precisely the reason why the fifth test case failed.

Additionally, there are several semantic differences in how ES5 treats certain Unicode characters
with special meaning (white space, carriage returns, terminating string) compared to OCaml
Unicode characters. These are not recognised by our parser, hence the failures of tests 1 to 4.

Failed tests due to limitation of the parser are still relevant to ES5 since they are part of
the lexical grammar. However, we place a lower priority on these, as they are not tied to any
higher-order language feature.

The next two failed test cases deal with the change in semantics of the if statement in later
standards. In ES5, the evaluation of the if statement returns the result of evaluating the appropriate
branch statement (determined by the boolean expression). However, in ES6+, an additional check
is placed on the return value of each statement. If the return value is empty, it gets updated to
undefined before the statement completes its evaluation. We illustrate with the first failed test
case in this group in Code Snippet 5.1. The intuition for the second test case is similar.

1 // Copyright 2009 the Sputnik authors. All rights reserved.
2 // This code is governed by the BSD license found in the LICENSE file.
3
4 /*---
5 info: |
6 The result of evaluating "for(ExpNoIn;Exp;Exp)" loop is returning
7 (normal , evalValue , empty)
8 es5id: 12.6.3 _A9.1
9 description: Using eval
10 ---*/
11
12 var supreme , count;
13 supreme=5;
14
15 var __evaluated = eval("for(count=0;;) {if (count===supreme)break;else count

++; }");
16
17 assert.sameValue(__evaluated , void 0, '#1: __evaluated === 4. Actual:

__evaluated ==='+ __evaluated);

Code Snippet 5.1: Test case: head-init-expr-check-empty-inc-empty-completion.js

In this example, line 15 calls eval with a for loop that does a conditional break statement.
In ES5, the evaluation would return empty into the variable __evaluated. However, ES6 would
return undefined instead. The test case expects the ES6 behaviour, as seen by the void 0 in the
assertion (void 0 evaluates to undefined). Due to time constraints, we were not able to correct
this failure in time for the report. The correction requires non-trivial changes in the compilation of
the if statement.

The last failed test, presented in Code Snippet 5.2, is meant to test the behaviour of breaks

49

within a labeled loop. However, there exists a function declaration IN_DO_FUNC in line 17 which is
within the block statement of the outer do-while loop (lines 12 to 18). In ES5, the grammar does
not permit the presence of function declaration in block statements. In fact, function declaration
can only occur at the top level of a program or a function declaration as SourceElements. Our
compiler will catch this function declaration and throw an early error after parsing.

However, in ES6+, function declarations within block statements are allowed. It is part of the
rule of HoistableDeclaration - a type of statement. The semantics of a function declaration within a
block statement is more akin to the forward declaration of a variable whose name is the identifier
of the declared function, and is initialised to a function expression whose body is the same as the
declared function. In other words, an equivalent rewriting into ES5 would transform line 17 of
Code Snippet 5.2 into var IN_DO_FUNC = function() {}; and inserted between lines 12 and 13.

1 // Copyright 2009 the Sputnik authors. All rights reserved.
2 // This code is governed by the BSD license found in the LICENSE file.
3
4 /*---
5 info: When "break" is evaluated , (break , empty , empty) is returned
6 es5id: 12.8 _A3
7 description: Using "break" without Identifier within labeled loop
8 ---*/
9
10 LABEL_OUT : var x=0 , y=0;
11
12 LABEL_DO_LOOP : do {
13 LABEL_IN : x=2;
14 break ;
15 LABEL_IN_2 : var y=2;
16
17 function IN_DO_FUNC (){}
18 } while (0);
19
20 LABEL_ANOTHER_LOOP : do {
21 ;
22 } while (0);
23
24 function OUT_FUNC (){}
25
26 // //
27 //CHECK#1
28 if ((x!==2)&&(y!==0)) {
29 $ERROR('#1: x === 2 and y === 0. Actual: x ==='+x+' and y ==='+y);
30 }
31 //
32 // //

Code Snippet 5.2: Test case: statements/break/12.8_A3.js

There are two solutions to this test case:

1. The first is to follow the rewriting intuition we gave above. We could modify the AST
generated by the parser such that we reorder all function declarations to the first statement
of each block, then perform the equivalent rewriting into a variable declaration initialised
with a function expression. The main disadvantage of this approach is that we are effectively
changing the structure of the original JS program to avoid dealing with the actual problem.
This has no guarantees that it would work in all future versions of ECMAScript.

2. The second solution is to remove the early error and allow function declarations within block
statements. We would have to further modify the compiler to correctly traverse the AST
and perform the appropriate hoisting. The main complication with this approach is that
the semantics of function declarations have also changed in ES6+. Specifically, the scope
of the function inherits the LexicalEnvironment of the running execution context in ES6,
instead of VariableEnvironment as in ES5. We have already discussed at length the differences
between LexicalEnvironments and VariableEnvironments within execution contexts in §3.5.
In short, this change would impact the compilation of function declarations within with

50

statements, where the LexicalEnvironment and VariableEnvironment point to different lexical
environments.

Given these solutions and further constraints by time, we chose to push this test case to the
future work of extending JaVerT to ES6.

5.1.1.3 Summary of language tests

Overall, we view the language test results to be a complete success. We achieved 99.75% coverage
for all applicable language tests and a high coverage of 98.44% across all language tests. While
there is room for improvement in the parser and the ES6+ tests, we do know how to fix those
failures and were only limited by time in the end.

5.1.2 Built-in tests

There are 7860 built-in tests across 12 types of ECMAScript built-in objects. The table Table 5.5
summarises our compiler’s built-in test results. Similar to our discussion of the tests in language
tests (§5.1.1), we will first examine the aborted tests (§5.1.2.1), then the failed tests §5.1.2.2. Finally,
we summarise our contributions in §5.1.2.3.

Table 5.5: Built-in test overview

Interested readers can refer to Table B.3 for the breakdown by built-in object type.

5.1.2.1 Aborted tests

We have 1205 aborted built-in tests, all of which are due to unimplemented built-in functions in
JSIL. They range from partial implementations of the Global and String objects, to entire missing
objects, such as RegExp and JSON. We determine that these aborted tests are not indicative of
incorrectness in our compiler and exclude them from our list of applicable tests. It remains part
of the broader goal of JaVerT to fully implement the entire specification, including the missing
built-ins.

5.1.2.2 Failed tests

Table 5.6: Built-in test failures

Of the built-ins that we have implemented, there are only 3 failing tests and they belong to the
same type of failure: limitations of the parser in parsing Unicode strings.

Similar to the failing tests due to Unicode parsing in §5.1.1.2, the first group of failing built-in
tests face the same constraint when dealing with Unicode strings. In particular, these three test

51

cases attempt to construct Number objects with Unicode strings containing Unicode characters
classified as “white-space" in ECMAScript. Our compiler does not distinguish between these
characters from any (Unicode) character and passes them unaltered to the run-time construction of
a number in OCaml. This calls a string to float conversion function (Float.of_string) which fails
and we return NaN (Not-a-Number) as the constructed number instead.

There are two possible methods to resolve this issue:

1. Pre-process Unicode characters passed to the Number constructor at compile-time. This would
allow us to replace these Unicode (white-space) characters into equivalent ASCII white-space
or simply an empty string (since they have equivalent semantics in Number construction).
However, we will fail in the dynamic case if the string used for construction cannot be
determined at compile time.

2. Parse the Unicode strings at run-time, which will enable us to handle dynamic strings.
However, this will add significant complexity in the verification of JS programs, in addition
to the adverse impact it would have on the performance of the run-time.

Both solutions are non-trivial to implement and we are constrained by time. As these tests are
not critical in the analysis of ES5 (non-strict) behaviour - the focus of this project - we chose to
lower the priority of these tests and push them as future improvements.

5.1.2.3 Summary of built-in tests

Overall, we view the built-in test results to be a significant success. Of all the implemented built-ins,
we have achieved near 100% coverage, limited only by the parsing of Unicode strings. Echoing
the same sentiments from our conclusion of the language tests, we would have liked to fix the test
cases that fail due to the parser had we had more time. A significant amount of work remains to
implement the entire built-in objects in JaVerT.

5.1.3 Evaluation of the Test262 test suite

While passing the great majority of the applicable Test262 tests gives us confidence in the correctness
of our compiler, we should keep in mind that Test262 is not a conformance test suite and that it
does not cover all of the possible paths through the JavaScript semantics. This could result in
JavaScript implementation having errors that are very difficult to detect. In fact, we have discovered
two edge cases that are not covered in the Test262 test suite, which have resulted in bugs in JaVerT
and real-world browsers. We will cover these two cases in §5.1.4 and §5.3.1 respectively.

1 // Copyright (c) 2012 Ecma International. All rights reserved.
2 // This code is governed by the BSD license found in the LICENSE file.
3
4 /*---
5 es5id: 10.4.3 -1-101-s
6 description: >
7 Strict Mode - checking 'this' (non-strict function passed as arg
8 to String.prototype.replace from strict context)
9 flags: [noStrict]
10 ---*/
11
12 var x = 3;
13
14 function f() {
15 x = this;
16 return "a";
17 }
18
19 assert.sameValue(function () {"use strict"; return "ab".replace("b", f);}(), "aa

");
20 assert.sameValue(x, this , 'x');

Code Snippet 5.3: Use of built-in String.replace in language test

52

In addition, the test cases in Test262 often include built-ins in their language tests, which intro-
duce unnecessary dependencies. Take the test case language/function-code/10.4.3-1-101-s.js,
for instance (Code Snippet 5.3).

This is a language test for function-code that checks for the ThisBinding value for non-strict
functions. However, due to the use of the built-in String.prototype function String.replace,
there is now a dependency on the built-in function to be implemented before this test case can
be executed correctly. This, in particular, was a problem for us as we do not yet have the
implementation of String.replace in JaVerT1.

A solution to the problem is to re-implement the test case with similar semantics but without
the use of the built-in function, shown in Code Snippet 5.4. We replace the call to String.replace
to a function callback that accepts a callback function cbf, and executes it within the body. While
it does not behaviour exactly the same as String.replace, it achieves the same purpose of testing
the behaviour of ThisBinding in a non-strict callback function within a strict function.

1 /*---
2 es5id: 10.4.3 -1-101-s (modified)
3 description: >
4 Strict Mode - checking 'this' (non-strict function passed as arg
5 to a function that accepts a callback function)
6 flags: [noStrict]
7 ---*/
8 var x = 3;
9
10 function f() {
11 x = this;
12 return "a";
13 }
14
15 function callfunc(dum , cbf) {
16 if (dum === "b") {
17 return cbf();
18 }
19 return dum;
20 }
21
22 assert.sameValue(function () {"use strict"; return callfunc("b", f);}(), "a");
23 assert.sameValue(x, this , 'x');

Code Snippet 5.4: Function code test case without built-ins

On a broader level, this example also highlights the importance of designing test suites. Ideally,
unit test cases should be self-contained, testing only the aspect that is required without depending
on external constructs. If a unit test fails, it should fail because it does not meet the expected
behaviour within the scope of the test, and not because of a dependency that failed. In the situation
where integration testing is required (two or more modules are involved), it should be clearly
labelled and grouped separately from unit test cases.

5.1.4 Bug in JaVerT 2.0 (ES5 Strict)

We discovered a bug in the previous version of JaVerT that is not caught by the Test262 test suite.
This occurs due to a mutability bug of named function expressions.

In ES5, named function expressions create an additional declarative ER (before the ER created
for the function itself), known as a closure. This ER houses only the function identifier for the
named function expression and it is an immutable binding. In the past implementation of the
JS-2-JSIL compiler, we do not have constructs to distinguish between mutables and immutables.
Unless specific exceptions are made (such as eval and arguments), bindings are always implicitly
mutable. As such, we can mutate the binding of the function identifier as shown in Code Snippet 5.5.
The immutability behaviour is consistent between strict and non-strict mode of ES5. We chose to
use a strict mode example to further illustrate the point that this is indeed a bug in the previous
version of JaVerT that only runs ES5 strict mode programs.

1The implementation of several String.prototype functions is part of another project.

53

In the execution of Code Snippet 5.5, we create a function object from a named function
expression of f. Within the body of f in line 15, we try to modify the binding of the identifier f
from a function object to the number 10. In the previous version of JaVerT, this mutation would
succeed, and all future references of f would be the number 10. In the example program, it would
throw the error "Expected␣immutable␣f" as an indication of the incorrect behaviour.

1 /**
2 * [commit 52619 c50] ES5 "Strict" JS-2-JSIL
3 * Run-time throws the Error: Expected immutable f
4 * This means that the older version of JaVerT does not check for
5 * the immutable binding of named function expressions.
6 *
7 * [commit ecc07138] ES5 JS-2-JSIL
8 * Run-time returns "okay"
9 */
10
11 var g = function f() {
12 "use strict";
13 try {
14 // This mutation succeeds in old version of JaVerT
15 f = 10;
16 } catch (e) {
17 if (e instanceof TypeError) {
18 return "okay";
19 }
20 throw Error("Expected TypeError");
21 }
22 throw Error("Expected immutable f");
23 }
24 g();

Code Snippet 5.5: Mutability bug in named function expressions

We fixed the incorrect behaviour in the new version of the compiler with the use of immutables
as discussed in §3.2.4.2. The same mutation in line 15 will now correctly throw a TypeError.

Given the 100% test coverage of Test262 ES5 strict in the previous version of JaVerT [24], it is
likely the mutation behaviour demonstrated above was not part of the test suite. From this, we
can clearly see that test coverage is not always the best measure of implementation correctness.
On a broader level, if we consider test-driven development in software development, we can only
guarantee that the software is only as correct as the test cases it passes.

5.2 Usefulness in analysing ES5 programs

In Chapter 4, we presented several symbolic tests that could serve as the basis of analysing the
behaviour of JS programs symbolically. For the use cases given, the whole-program symbolic testing
mechanism has worked relatively well. We were able to execute symbolic programs with minimal
changes to the symbolic engine after our compiler has been modified to support ES5 non-strict
features. This gives us confidence in the long-term sustainability of supporting whole-program
symbolic testing in JaVerT as we move progressively towards the full ES5 specification or later
standards.

However, there is a major limitation to the run-time of the symbolic engine - symbolic imple-
mentation of some of the operators used by JavaScript and, therefore, JSIL. Previously, in our
evaluation of the implementation correctness of our compiler, we are less concerned about the
non-implementation of built-ins compared to the language feature tests. This is due to the fact
that built-ins largely do not affect the correctness of the compiler, but rather limit the variety of
programs that could be executed in the run-time. However, in analysis of real-world programs,
having a symbolic implementation of language operators that are supported concretely is especially
important in providing a realistic symbolic testing environment.

We briefly mentioned one instance of this limitation when we were rewriting the isPrime example
in §4.2.3. We were forced to replace the more efficient loop condition i < Math.sqrt(x) to an
inefficient variant i < x as we do not have the symbolic implementation of the square root in JSIL.

54

In this case, we were able to make a simple modification as: (1) the substitution is straight-forward,
and (2) we own the code. If we were to extend our analysis to more complex real-world programs,
the lack of built-ins would severely impact the feasibility of performing whole-program symbolic
testing. As such, more work is required in this area before JaVerT can become a top-tier symbolic
analysis tool.

5.3 Real-world implementations of ES5(+)

In this section, we will discuss two real-world implementations of ES5. We start by investigating a
peculiar bug in Microsoft Edge (§5.3.1). This case is particularly interesting as it highlights the
complexity of the language and how a small deviation could have a large impact on JS programs as
a whole. We also discuss an interesting design choice of NodeJS where JS programs may exhibit
slightly different semantics due to the packaging of modules (§5.3.2).

5.3.1 Bug in Microsoft Edge

In §3.2.1, we examined the mechanics of state management in ES5. Specifically, we mentioned the
subtle differences between LexicalEnvironments and VariableEnvironments, and how this difference
could affect hoisting of declarations and scope resolution. During our implementation of function
hoisting, we investigated its implementation behaviour in modern browsers which revealed an
implementation bug in Microsoft Edge. Specifically, this bug occurs during the case of dynamic
function declaration hoisting through the combination of with and direct eval.

To assist us in understanding how the bug occurs, we provide the following example in Code
Snippet 5.6 with the expected print results from console.log in the comments. We first explain
the expected behaviour of the example, then compare the correct behaviour with the incorrect
behaviour displayed in Microsoft Edge. As a point of comparison, both the behaviour of Google
Chrome (version 74.0.3729.169) and Microsoft Edge (version 17.17134) are shown in Figure 5.1.

1 var obj = {
2 inner: 1
3 };
4 function outer() {
5 console.log(typeof inner); // undefined
6 with (obj) {
7 console.log(typeof inner); // number
8 console.log(typeof eval("function inner() {}; inner;")); // number
9 console.log(typeof inner); // number
10 }
11 console.log(typeof inner); // function
12 }
13 outer();
14 console.log(typeof obj.inner); // number

Code Snippet 5.6: Dynamic function hoisting in ES5

In Code Snippet 5.6, two function declarations are made: (1) A statically declared function
outer. Statically declared functions are hoisted to the parent ER at compile time, and (2) a
dynamically declared function inner that is contained in the string passed to the direct eval call.
All function declarations (static or dynamic) are hoisted to the VariableEnvironment of the current
execution context. In the static case, analysis is simple as hoisting occurs at compile time. For
the function outer, the declaration occurs in global code, hence hoisted to the global environment
record. However, complication arises in the dynamic case.

Recall that direct non-strict eval calls inherits the parent execution context as its running
execution context. During the execution of outer in line 6, the LexicalEnvironment has been
modified by the with statement, adding a new environment record to the scope chain. However, the
VariableEnvironment remains unchanged. The eval call inherits the modified LexicalEnviron-
ment and the unmodified VariableEnvironment, hence hoists the function inner to the environment
record of the function outer. This implies that there exists two distinct bindings for the string
identifier "inner" in the scope chain: one in the object environment record for the with (obj)

55

statement and the other in the environment record for outer. In other words, the inner property
of object obj shadows the function inner in the execution of the eval statement. As such, the
return value of the eval call2 is the property inner of obj (type is "number"). By the same logic,
inner in line 9 refers to the same property in obj.

Exiting the with statement in line 11 restores the LexcialEnvironment to the lexical environment
of the function outer. The identifier inner now references the dynamically declared function inner
(type is now "function"). Finally, we make a sanity check in line 14 to ensure that the outer.inner
property has not been modified (type is "number").

Figure 5.1: Correct function hoisting in Chrome (left) vs Incorrect function hoisting in Edge (right)

The behaviour described above is reflected in the execution behaviour in Chrome. In Edge
however, the bug occurs during the dynamic hoisting of the inner function within the eval code.
Instead of hoisting the function to the inherited VariableEnvironment (scope of function outer),
Edge hoists it to both the inherited VariableEnvironment and LexicalEnvironment (scope of the
with statement). This causes the obj.inner property to be overwritten by the function inner, and
a new function inner to be added to scope of outer. As such, all subsequent calls to typeof inner
now returns "function" (4 times in total).

This behaviour in Edge is especially bizarre as the function is hoisted to two locations: (1) in
the object of the with statement, and (2) in the outer function outer. If the bug is caused by a
lack of distinction between LexicalEnvironment and VariableEnvironment, then the function should
be wrongly hoisted to the object in the with statement only. However, the additional hoisting to
the outer function seems to indicate that Edge does recognise the difference between the lexical
environments. We hypothesize that it could be due to a misinterpretation of later standards (ES6+)
where the dynamic function declaration is treated additionally as a static variable declaration
initialised with an anonymous function expression within the with. Edge could be performing both
the static hoisting and dynamic hoisting in the same instance despite it clearly being a dynamic-only
hoisting case.

5.3.2 NodeJS script execution behaviour

NodeJS is a JS runtime built on the V8 JavaScript engine [7]. As NodeJS uses the same JavaScript
engine as Google Chrome, the execution of JS programs in NodeJS usually display the same
behaviour as Google Chrome. However, in our early testing of dynamic hoisting using indirect and
non-strict eval, we discovered a case where the execution of the exact same program produces
different results in NodeJS and Google Chrome.

We present this case in Code Snippet 5.7. Notice that this is actually a concrete case of the
symbolic test that we gave in §4.2.5. Due to its similarly with the symbolic test, we will skip most
of the description of the program and focus only on the parts that are significant to our discussion.

The execution of Code Snippet 5.7 by ES5 specification should return the following order of
console.log prints: "2", "12", "12", "3". If we were to run this program in Google Chrome,
we would indeed get these results. However, when we execute this program in NodeJS, we get a

2Recall that eval calls return the last computed statement that is not empty.

56

different output: "2", "2", "2", "not␣found". It appears as if the function g was never redefined
after the execution of the eval call in line 9. Hence, the variable b was never implicitly declared,
and we get "not␣found" in the last console.log as well. This seem to indicate that NodeJS is
incorrectly hoisting the function g in line 9.

1 var obj = { a: 1 };
2 var a = 2;
3 function g() { return a; }
4 function f() {
5 console.log(g()); // "2"
6 with (obj) {
7 (function () {
8 "use strict";
9 (0,eval)("function g() { b = 3; return a + 10 };");
10 })();
11 }
12 return g();
13 }
14 console.log(f()); // "12"
15 console.log(g()); // "12"
16 try {
17 console.log(b); // "3"
18 } catch (e) {
19 console.log("not found");
20 }
21
22 // Chrome returns: 2, 12, 12, 3
23 // Node returns: 2, 2, 2, not found
24 // Edge returns: 2, 2, 2, not found

Code Snippet 5.7: Dynamic hoisting in indirect non-strict eval

However, what actually happened is that NodeJS encapsulates every JS script it runs with a
wrapper function. This is part of a design decision made by NodeJS to modularise the loading of JS
scripts in isolated containers. We can more accurately represent Code Snippet 5.7 as the program
in Code Snippet 5.8. As such, the var declarations in a JS script run by the NodeJS run-time are
actually hoisted to function-level variables. Taking into account the wrapper, the behaviour of the
original program in NodeJS is actually an accurate implementation of the ES5 standard. In fact, if
we were to modify the code in Code Snippet 5.8 such that line 4 and 6 become implicit globals
(a = 2 and g = function(){return a;}), we would get the “correct” behaviour given in Chrome.

1 (function (exports , require , module , __filename , __dirname) {
2 // Locally scoped variable declarations
3 var obj = { a: 1 };
4 var a = 2;
5 // Locally scoped function g
6 function g() { return a; }
7 function f() {
8 console.log(g()); // "2"
9 with (obj) {
10 (function () {
11 "use strict";
12 // `g' hoisted to global level
13 (0,eval)("function g() { b = 3; return a + 10 };");
14 })();
15 }
16 return g();
17 }
18 console.log(f()); // "2"
19 // References g in the local function scope
20 console.log(g()); // "2"
21 try {
22 console.log(b);
23 } catch (e) {
24 console.log("not found");
25 }
26 });

Code Snippet 5.8: Module wrapping in NodeJS

57

As an additional point of interest, executing Code Snippet 5.7 in Microsoft Edge returns the
same result seen in NodeJS. This is another bizarre behaviour that Edge does and we do not have
a concrete explanation of what actually happened in this case.

5.4 Evaluation of the ES5 specification

One of the main challenges we faced in this project is the clarity of the ES5 specification. There
are two main issues we faced when reading the specification: (1) extensive redirections, and (2)
questionable names.

5.4.1 Extensive redirections

We spent a considerable amount of time going through the extensive redirections that take us from
one section to many others. For example, the compilation of a simple variable reference v involves
over 10 sections of the specification. We present this traversal in full for the reader’s enjoyment.

The compilation starts in Section 11.1.2 (Identifier Reference), which has two sentences,
the first of which redirects us to Section 10.3.1. Section 10.3.1 (Identifier Resolution) con-
tain a 3 line algorithm, with the third line calling the abstract lexical environment operation
GetIdentifierReference defined in Section 10.2.2.1. Within Section 10.2.2.1, we have additional
redirections to the HasBinding concrete operations of both types of environment records (Section
10.2.1.1.1 and Section 10.2.1.2.1). The object ER’s HasBinding concrete method makes additional
calls to HasProperty (Section 8.12.6), GetProperty (Section 8.12.2) and GetOwnProperty (Section
8.12.1) internal methods of the binding object. We have already covered 8 sections thus far. If we
also include string object’s own GetOwnProperty internal method (Section 10.5.5.2), which is a
special case of GetOwnProperty, we would need to add another 3 more sections to the list.

5.4.2 Questionable naming

Aside from redirections, the choice of names is also questionable. In particular, the use of lexical
environment (two words with a space) and LexicalEnvironment (joined as one word) was a major
source of confusion. Despite how similar their names are, they are in no way referring to the same
construct in ES5. A lexical environemnt is a wrapper of an environment record, and can be seen
as a node in a linked-list of lexical environments. A LexicalEnvironment is a pointer to a lexical
environment. One is a specification construct, one is a pointer to another. However, if one was
not careful and misinterpret lexical environment and LexicalEnvironment as the same construct,
several parts of the specification may become semantically different.

For instance, the definition of the VariableEnvironment in an execution context is also pointer
to a lexical environment. If we were to assume that lexical environment and LexicalEnvironment
are the same construct, this effectively means that the VariableEnvironment is now the same as
LexicalEnvironment. This could result in incorrect hoisting of dynamically declared functions and
variables when the two pointers should point to different lexical environments, such as in a with
statement. This could be a possible explanation of the incorrect behaviour in Microsoft Edge
(§5.3.1) where the dynamically function is hoisted to the binding object of the with statement
instead of the outer scope.

5.5 Known limitations

Despite the success we have in implementation correctness of our compiler, there are several
limitations of our current work. In this section, we will discuss these limitations.

Unicode parsing The primary reason for the failed tests in our list of applicable Test262 tests
is the parsing of Unicode strings. We discussed the impact of incorrect interpretation of Unicode
strings with significant depth when we examined the failed test cases in both §5.1.1.2 and §5.1.2.2.

58

In short, we require a parser that can correctly recognise certain Unicode characters as special
characters (white-space, carriage return, termination, etc.) as per the ES5 lexical grammar.

Non-implementation of ECMAScript built-in objects We have a significant lack of im-
plementation of ECMAScript built-in objects. This limitation is seen in both the concrete and
symbolic execution engines of JaVerT. In the concrete case, we have over 16% of all test cases
abort due to non-implementation of the built-in objects. While the built-in objects is not critical
when analysing JS programs, it does limit the variety of JS programs JaVerT can analyse. This
is particularly limiting in the symbolic case, as there is an additional requirement for equivalent
implementations with symbolic constructs.

Formal verification of ES5 programs The main limitation of this project lies in the lack
of formal verification for ES5 programs. In fact, due to the numerous changes to the compiler,
run-time and scope resolution, we have effectively disabled the ability of JaVerT to formally verify
ES5 programs. The changes to the scope resolution would be a significant problem to overcome as
we migrated from lexical scoping to dynamic scoping when we introduced the with statement. In
addition, we have introduced and made significant modifications to over 60 internal JSIL functions
(Appendix A). We will have to write new specifications or rewrite existing ones to fit these JSIL
procedures. As formal verification provides the strongest guarantees in program correctness, the
lack of it in the current state of JaVerT does limit its usefulness.

5.6 Lessons learnt

5.6.1 Compilers and language specifications

Prior to this project, my experience in compilers and language specifications was limited to small
toy languages taught during my undergraduate studies.

This project is my first experience working with a large and contemporary language specifica-
tion. Due to the algorithmic nature of the ES5 specification, it was certainly tempting to "code
blindly" to the standard without understanding the semantics. In fact, I was able to complete the
implementation of all lexical environment operations (§3.2.2) without understanding the significance
of LexicalEnvironments and VariableEnvironments within execution contexts. However, this lack
of understanding of the underlying semantics proved to be detrimental when I met edge case
behaviours such as the bug in Microsoft Edge (§5.3.1). In fact, it is this bug that also revealed
my prior misunderstanding of the hoisting behaviour when I hoisted all declarations to the last
environment record in the scope chain. As Test262 does not have test cases that reveal this edge
case behaviour, I was able to successfully pass all scope related tests despite the (now apparent)
wrong implementation.

Learning from this mistake, I would always ensure I understand the semantics of the specifications
before implementing new language features to the compiler. Additionally, revisiting previously
implemented language features (in older versions of JaVerT) such as the creation of function objects
in function expressions, also enabled me to identify the mutability bug in JaVerT (§5.1.4) that was
not discovered until this project.

5.6.2 Working with JaVerT 2.0

JaVerT is a relatively mature toolchain with a significantly large code base. Having worked with it
over the past few months, I have gathered some of my thoughts and lessons learnt below.

5.6.2.1 Design decisions

Early decision decisions have long-term impact. In my opinion, JaVerT generally has well designed
components within the compiler and run-time. Its modularity was also a major benefit when

59

implementing new features. However, the decision to deviate from the ES5 specification for
simplifications in strict mode was a challenging problem to resolve in this project.
Compiler design. The compiler is split into several modules and my work was generally focused
on only a few files. In the area of state management, the decision to create new translation contexts
in keep track of updated compile-time states (such as the appropriate scope chain reference) was
an excellent choice. It helped simplify the complex control flow logic in the run-time that could
arbitrary return or jump to different parts of the JS program. This has been particularly useful
during the compilation of the with statement where the scope chain must be restored even in the
event of abrupt completions (such as breaks, continues or returns). Since the compiler keeps track
of the appropriate scope chain at each lexical level of the code, we basically get scope restoration
for “free"" without having to manually update the translation context when control flow exits the
with statement.
Early simplifications. The main challenges I faced when extending JaVerT was in the modification
of existing behaviour and breaking previous assumptions. Prior to this project, JaVerT was made to
target the strict mode of ES5. Due to many of the simplified semantics in strict mode, the compiler
was developed with many simplified assumptions in mind. These simplifications has brought about
many benefit such as ease of control flow and optimisations to the specification algorithms. For
instance, in ES5 strict, we could resolve references lexically by building a closure clarification table.
With the benefit of resolving references lexically, there was no need to implement all the lexical
environment and environment record operations that are capable of dynamic resolution. In fact, the
redirection mess mentioned in §5.4 (over 10 sections worth of specifications) for variable references
was entirely avoided and replaced with a simple list element retrieval at run-time. This was not
only easier to reason formally about, but also a lot more efficient than dynamic referencing.

However, simplifications can create technical debt at times. The non-implementation of the
dynamic referencing operations results in a significantly longer implementation time when we move
towards ES5 non-strict. This is further amplified when significant deviation from the specification
has been made - such as using the global object directly in the scope chain instead of creating an
object ER to encapsulate it.

In a certain way, early simplifications can be viewed more like the style of agile development,
where we only develop features as and when we need it. The goal is more short-term, and hence,
ensuring short-term correctness and efficiency is more important than implementing all requirements.
However, this style of development may create additional challenges for longer-term projects.

5.6.2.2 Ease of use

One of the limiting factors in development productivity for this project was the lack of proper
debugging tools. There was no method to follow the steps of the JSIL program during its runtime
and the only way to check the outcome of the execution was through plain text logs, which could
run on for several hundreds of megabytes. Despite its shortcomings, these text logs are surprisingly
well structured. With the aid of a good text editor, it is possible to emulate the use of “step-through”
debugger by searching for command keywords and function names. In addition, the ability to see
entire program state per execution of JSIL command was also a great help when debugging.

60

Chapter 6

Conclusion

In this project, we have successfully extended JaVerT to the full ES5 standard. In particular, the
JS-2-JSIL compiler of JaVerT now supports the compilation of all non-strict ES5 language features
while preserving the existing correct behaviour of ES5 strict features, and the whole-program
symbolic testing aspect of JaVerT is now operational on full ES5. Additionally, we have further
improved on JaVerT’s implementation correctness in strict mode by fixing a bug not covered by
ECMAScript’s official test suite, Test262.

In parallel, we dived into the intricacies of the ES5 specification to discover subtle semantics
and run-time behaviour not covered in Test262. Our detailed analysis also showed the advantage of
using whole-program symbolic testing over concrete tests in detecting bugs in JavaScript program.

Finally, we obtained the most interesting results during our investigation of real-word implemen-
tations of ES5 in modern browsers. We managed to discover a bug in Microsoft Edge, a modern
browser that is shipped by default with Windows 10. Additionally, we have learnt an important
implementation detail of NodeJS that alters how scripts are interpreted, giving rise to potentially
unexpected run-time behaviours.

6.1 Future work

While the body of work presented here is substantial, we acknowledge that our work is not yet
complete. There are limitations previously mentioned in §5.5 that could be improved and future
extensions that could be implemented in subsequent works:

1. Proper Unicode parsing. Currently, 8 of the 10 failed Test262 test cases is due to the
limitation of the parser in handling Unicode strings within the JS program. While these tests
do not affect the overall correctness of language features and JaVerT’s ability to analyse most
JS programs, we recognise that there might be use cases where Unicode strings are used in
real-world programs. For completeness, a parser that correctly parses all source text (in both
Unicode and ASCII) correctly would be a great addition.

2. Complete implementation of ECMAScript Built-in Objects. The main limitation
that we face in whole-program symbolic analysis is the lack of symbolic implementation of
certain built-ins such as the Math object functions. With complete implementation of the
missing built-in objects, we could vastly expand the range of ES5 programs we could analyze
and start to dive into real-world JS libraries written in ES5. Complete implementation of
concrete built-in objects would also enable us to cover the entire Test262 test suite, providing
us greater confidence in the implementation correctness of our compiler.

3. Formal verification for ES5 programs. One of potential direction of this project was
to provide formalisation to ES5 non-strict features such as rewriting of the scope predicate
of previous works [24, 8]. However, due to the scope and complexity of the ES5 non-strict
features, we made the decision to focus on getting the correct implementation of the compiler.
Currently, the specification engine (the module that provides formal verification) of JaVerT

61

does not work with the new compiler in ES5 non-strict mode. This is due to the numerous
changes made to both the compiler, internal JSIL procedures and scope resolution. Future
works could revisit this aspect and provide support for formal verification to ES5 non-strict
programs. As formal verification provides a stronger guarantee for program correctness
compared to concrete and symbolic tests, this extension would greatly increase the usefulness
of JaVerT as a tool-chain for analysing ES5 programs.

4. Extension to ES6+ standards. As an evolving language, newer standards of JavaScript
are always in the works by ECMAScript committee. At the time of writing this report, the
latest standard is ES9 (June 2018) [5], a full 4 standards newer than the target of our project
(ES5). Of course, most commercial implementations of JavaScript are nowhere near the latest
standard. In fact, most modern browsers’ support are approximately between ES6 and ES71.
By progressively moving towards later ES standards, we enable the use of JaVerT to verify
more modern features such as arrow functions and promises.

1Compatibility table can be found on https://kangax.github.io/compat-table/es2016plus/

62

Appendix A

Contributions to JS-2-JSIL Compiler

Table A.1: Compiler changes

Table A.2: New internal JSIL procedures

63

Table A.3: Existing JSIL procedures with significant changes†

Summary
Functions created/modified: 62
Lines of code involved: (approximately) 2633
Note: Lines of code are approximations as they may include comments within the functions
(comments outside of the function body are excluded).

†These include extensions made to ES5 non-strict behaviour and rewriting of existing internal JSIL procedures.

64

Appendix B

Breakdown of Test262 results

B.1 Language Tests

(a) Language tests: Core
(b) Language tests: Statements

65

(c) Language tests: Expressions

(d) Language tests: Summary

Table B.1: Language test results

66

Table B.2: Breakdown of all language failures and aborts

67

B.2 Built-in Tests

(a) Built-in tests: Global Object

(b) Built-in tests: Other built-in objects

(c) Built-in tests: Summary

Table B.3: Built-in test results

68

Bibliography

[1] Anand, S., Godefroid, P., and Tillmann, N. Demand-driven compositional symbolic
execution. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (2008), Springer, pp. 367–381.

[2] Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziu-
niene, D., Schmitt, A., and Smith, G. A trusted mechanised javascript specification. In
ACM SIGPLAN Notices (2014), vol. 49, ACM, pp. 87–100.

[3] ECMA TC39. Github - tc39/test262: Official ecmascript conformance test suite. https:
//github.com/tc39/test262. (Accessed on 01/22/2019).

[4] ECMA TC39. The 5th Edition of the ECMAScript Language Specification. Tech. rep.,
ECMA, 2011.

[5] ECMA TC39. The 9th edition of the ECMAScript Language Specification. Tech. rep., ECMA,
2018.

[6] Esprima. Esprima. http://esprima.org/. (Accessed on 01/23/2019).

[7] Foundation, N. Node.js. https://nodejs.org/en/. (Accessed on 06/15/2019).

[8] Fragoso Santos, J., Maksimović, P., Sampaio, G., and Gardner, P. Javert 2.0:
compositional symbolic execution for javascript. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 66.

[9] Gardner, P., Maffeis, S., and Smith, G. Towards a program logic for javascript. In
POPL (2012), pp. 31–44.

[10] GitHub. Projects | the state of the octoverse. https://octoverse.github.com/projects#
languages. (Accessed on 01/17/2019).

[11] GitHut. Githut - programming languages and github. https://githut.info/. (Accessed
on 01/17/2019).

[12] Godefroid, P. Compositional dynamic test generation. In Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (New York,
NY, USA, 2007), POPL ’07, ACM, pp. 47–54.

[13] Hafiz, M., Hasan, S., King, Z., and Wirfs-Brock, A. Growing a language: An empirical
study on how (and why) developers use some recently-introduced and/or recently-evolving
javascript features. Journal of Systems and Software 121 (2016), 191–208.

[14] Hidayat, A. Validating strict mode. https://ariya.io/2012/10/
validating-strict-mode. (Accessed on 01/23/2019).

[15] Hoare, C. A. R. An axiomatic basis for computer programming. Communications of the
ACM 12, 10 (1969), 576–580.

[16] International, E. ECMA-404—The JSON Data Interchange Format. Tech. rep., ECMA,
2011.

[17] King, J. C. Symbolic execution and program testing. Communications of the ACM 19, 7
(1976), 385–394.

69

https://github.com/tc39/test262
https://github.com/tc39/test262
http://esprima.org/
https://nodejs.org/en/
https://octoverse.github.com/projects#languages
https://octoverse.github.com/projects#languages
https://githut.info/
https://ariya.io/2012/10/validating-strict-mode
https://ariya.io/2012/10/validating-strict-mode

[18] Lee, H., Won, S., Jin, J., Cho, J., and Ryu, S. Safe: Formal specification and imple-
mentation of a scalable analysis framework for ecmascript. In FOOL 2012: 19th International
Workshop on Foundations of Object-Oriented Languages (2012), Citeseer, p. 96.

[19] O’Hearn, P., Reynolds, J., and Yang, H. Local reasoning about programs that alter data
structures. In International Workshop on Computer Science Logic (2001), Springer, pp. 1–19.

[20] Park, C., Lee, H., and Ryu, S. All about the with statement in javascript: Removing with
statements in javascript applications. ACM SIGPLAN Notices 49, 2 (2014), 73–84.

[21] Park, J., Ryou, Y., Park, J., and Ryu, S. Analysis of javascript web applications using
safe 2.0. In Software Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International
Conference on (2017), IEEE, pp. 59–62.

[22] Richards, G., Hammer, C., Burg, B., and Vitek, J. The eval that men do. In European
Conference on Object-Oriented Programming (2011), Springer, pp. 52–78.

[23] Santos, J. F., Maksimović, P., Grohens, T., Dolby, J., and Gardner, P. Symbolic
execution for javascript. In PPDP (2018), vol. 11, pp. 1–11.

[24] Santos, J. F., Maksimovic, P., Naudziuniene, D., Wood, T., and Gardner, P. Javert:
Javascript verification toolchain. PACMPL 2, POPL (2018), 50–1.

[25] Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., and Song, D. A
symbolic execution framework for javascript. In Security and Privacy (SP), 2010 IEEE
Symposium on (2010), IEEE, pp. 513–528.

[26] w3techs. Usage statistics of javascript for websites, january 2019. https://w3techs.com/
technologies/details/cp-javascript/all/all. (Accessed on 01/17/2019).

70

https://w3techs.com/technologies/details/cp-javascript/all/all
https://w3techs.com/technologies/details/cp-javascript/all/all

	Introduction
	Background
	The JavaScript language
	Key JavaScript features
	Strict vs non-strict mode in ES5

	Program correctness for JavaScript
	Formal verification based on separation logic (SL)
	Symbolic execution and testing
	Compositional testing

	JaVerT 2.0
	JS Parser
	JS-2-JSIL Compiler
	Compositional symbolic execution for JSIL

	The JS-2-JSIL ES5 Compiler
	Core JSIL constructs
	The JavaScript variable state in JSIL
	Variable state management in ES5
	The ES5 variable state in JSIL
	The ES5 variable state management in JSIL: Inner Mechanics
	Implementation of Environment Records (ERs) in JSIL

	Dynamic name resolution
	Compilation of the `with' statement
	Hoisting of variable and function declarations
	The `arguments' object
	Two-way binding example
	Non-strict `callee' property

	Direct and indirect `eval'

	Analysing ES5 Programs
	Motivating Example
	Whole-Program Symbolic Testing
	Core symbolic execution constructs
	Declaration hoisting order
	Non-block-level declarations
	Modifying properties of the `arguments' object
	Indirect, non-strict `eval' call
	Immutable function identifiers
	Dynamic hoisting
	Summary of symbolic examples

	Evaluation
	Implementation correctness
	Language tests
	Built-in tests
	Evaluation of the Test262 test suite
	Bug in JaVerT 2.0 (ES5 Strict)

	Usefulness in analysing ES5 programs
	Real-world implementations of ES5(+)
	Bug in Microsoft Edge
	NodeJS script execution behaviour

	Evaluation of the ES5 specification
	Extensive redirections
	Questionable naming

	Known limitations
	Lessons learnt
	Compilers and language specifications
	Working with JaVerT 2.0

	Conclusion
	Future work

	Contributions to JS-2-JSIL Compiler
	Breakdown of Test262 results
	Language Tests
	Built-in Tests

