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Abstract

Wireless Sensor Networks are notorious for their unreliable links. Core distributed comput-
ing tasks, such as consensus, are unobtainable with the lack of message delivery guarantees.
Synchronous Transmission primitives have been used to make links more reliable, but they all
have problems. Glossy is robust, yet suffers from high many-to-many dissemination latency.
Chaos has a reduced primitive execution time, but sacrifices strong termination guarantees,
and is unlikely to complete under strong network interference.

We propose Hybrid, a new dissemination strategy, to address the problems arising from
the use of individual ST primitives. Hybrid interleaves Chaos and Glossy floods to minimise
network latency and maximise reliability. Additionally we present WISP and WIMP, Paxos
implementations which leverage the guarantees of Hybrid to provide correct and dependable
consensus solutions for Wireless Sensor Networks.

This report describes the design of Hybrid, WISP and WIMP, and demonstrates their reli-
ability and resiliency with testbed evaluation under strong interference. The thesis concludes
by illustrating how the protocols match, and better the latencies of state-of-the-art implemen-
tations, while providing a more robust solution to network-wide voting and consensus.
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1 | Introduction

1.1 Motivation

Network-wide agreement is a key component of a distributed system as it allows participants
to share common “objectives”, data or knowledge throughout the whole network. Due to
their unreliability and high communication costs, consensus has always been considered too
expensive of a protocol for wireless sensor networks (WSNs). There exist, though, a number
of critical systems which would greatly benefit from the dissemination of trusted values, which
a majority of network is guaranteed to agree upon. Distributed configuration management,
leader election and node clustering are examples of protocols which require specific network-
wide agreement guarantees, which low-power multi-hop networks are unable to provide.

The problem with WSNs is they are notorious for their unreliability. Moreover it has been
proven for consensus protocols to not work in a fully asynchronous system in the presence of
even a single node failure [16], further impacting their lack of adoption. The solution is to use
more robust network dissemination primitives which provide stronger guarantees on correct
node reception probabilities.

A new family of robust protocols, exploiting constructive interference and the capture effect
to ensure reliability, was introduced in 2011 with Glossy [15]. Utilising back-to-back fast floods,
Glossy guarantees network-wide dissemination of packets with above 99.99% probability. To
mitigate the high latency impacts incurred when using Glossy’s one-to-many synchronous
transmissions (ST) to disseminate values from multiple nodes, a new ST primitive, Chaos,
introduces efficient all-to-all data sharing by allowing nodes to concurrently aggregate payloads
into the flooded packets.

Built on top of Chaos, multi-phase voting protocols and a wireless Paxos [32] imple-
mentation were developed between 2017 and 2019 using A2 Synchotron [2], a synchronous
transmission kernel that enables full configuration over Chaos rounds. The lack of precise
timing constraints over the Chaos floods, though, hinders the A2 implementation, which pro-
vides low-latency protocol implementations sacrificing fairness and potential system liveliness
in the presence of failure or interference.

To pioneer a new generation of more energy aware applications, Baloo [21], a flexible and
configurable middleware for ST primitives was published in 2019. Allowing the execution of
both Glossy and Chaos-based protocols Baloo enforces a strict time sliced paradigm where
protocol run times must be declared in advance. Even though this provides a solution to A2’s
unreliable execution lengths, by effectively cutting protocols off after a specific time bound,
it potentially hinders the safety properties of the protocols themselves, which might not have
been able to terminate correctly.

Therefore, despite the fact that new reliable dissemination primitives have been introduced
to low-power multi-hop networks, there currently is no robust, failure tolerant implementation
of consensus protocols. Even though experimentations, such as A2’s WPaxos exist, they fail
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in providing both robust, scalable and reliable consensus in WSNs.

1.2 Contributions

The project’s objective is to make wireless communications more reliable and robust. With
these extra reliability guarantees we implement consensus protocols, which are normally too
sensitive to unreliable communications. This project presents the following main contributions:

• Hybrid synchronous transmissions primitive and the XPC library. We in-
troduce Hybrid, a new ST primitive which minimises network latency and maximises
reliability. Hybrid leverages the optimal latency of Chaos floods and optimises them
with Glossy’s reliable one-to-many communications. To configure and switch multiple
ST primitives independently of protocol implementations we introduce XPC. XPC is a
novel multi-phase voting library which allows users to easily recreate existing voting pro-
tocols within the Baloo middleware matching state-of-the-art latencies and enhancing
overall reliability. Hybrid and XPC are discussed in Chapter 3.

• WISP and the Wireless Part-time Parliament. We propose WISP, a Paxos imple-
mentation for XPC, based on the Hybrid ST primitive. To provide support for majority-
voting consensus protocols we present WiPP, the first Wireless Part-time Parliament, an
extension of the XPC library tailored for quorum-based voting. WISP uses the Wireless
Part-time Parliament to match, and better, the latency and reliability of state-of-the-
art protocols, while providing the same guarantees and consensus properties. WISP and
WiPP are discussed in Chapter 4.

• WIMP and Multiple network proposers. We present WIMP, a reliable Multi-
Paxos implementation for XPC, based on the Hybrid ST primitive. The XPC library is
extended to allow for multiple proposers. All nodes within the network are allowed to
propose values during the execution of any XPC protocol with any ST primitive. WIMP
uses multiple proposal to execute multiple back-to-back Paxos rounds for all pending
network values. WIMP and multiple network proposers are discussed in Chapter 5.



2 | Background

This chapter aims to introduce the fundamentals of Wireless Sensor Networks and consensus
which are the focus for the whole project.

2.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN), which is the system assumption of this thesis, is a network
of distributed autonomous devices with sensing and actuating capabilities. Each individual
unit is often called a WSN mote. Motes sense the environment and communicate with each
other to collect data at central locations.

2.1.1 Motes

AWSN mote (of which the TelosB chip in Figure 2.1 is an example) is made up of the following
components:

• A Microcontroller (MCU), which is the center of all processing for the WSN mote.

• Multiple Sensors/Actuators. Sensors capture an aspect of the state of the environment
(i.e. temperature, humidity, light) and actuators enable the mote to perform an action
(i.e. LEDs for light, buzzers for sound, motors for movement)

• OneWireless Communicator or Radio, a IEEE 802.15.4 [19] compatible transceiver,
used by motes to communicate with each other on the network by sending and receiving
communications.

• Battery. Motes have limited battery life (unless they are able to generate power through
other means), and hence are equipped with long-lasting batteries to supply them with
power. No battery is present on the TelosB in Figure 2.1 as the are usually externally
soldered onto the chip once users decide the target lifetime they wish to provide for their
motes.

Motes will switch the radio on and off depending on when they expect to receive commu-
nication, to reduce energy consumption. This is called radio duty-cycling.

2.1.2 Contiki-NG

Contiki-NG [31] is an operating system developed for IoT devices with limited resources that
facilitates the programming of WSN motes. Available for a multitude of MCU architectures
and radio devices, Contiki-NG provides network, sensing and actuation programming capabil-
ities for motes. The internal repository structure is representative of the various components
that OS is made out of:
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Figure 2.1: Front (left) and back (right) view of the TelosB wireless mote [8].

• arch: Contains all the MCU information and has implementations for the various devices
present on supported chips.

• os: The main Contiki-NG kernel. Provides libraries for sensors/actuators, STL-like
functionality (i.e. lists, queues), timers, asynchronous I/O and networking.

• tools: A collection of tools for flashing, debugging and simulating Contiki-NG. The
main simulation software is Cooja, written in Java.

• tests: Adds test programs and unit-testing capabilities to Contiki-NG.

• examples: Example programs which can be used as a baseline for the various kernel
functionalities.

Contiki-NG supports a wide variety of IoT device architectures, most specifically there
are a number of motes which are most common in use, therefore the most supported both in
terms of software and hardware:

• TelosB / Tmote Sky: they have an MSP430 microcontroller (one of MSP430x15x,
MSP430x16x or MSP430x161x) and a CC2420 transceiver.

• MicaZ: an ATmega128L MCU with a CC2420 radio chip.

• CC2650 SensorTag 2.0: equipped with the CC2650 wireless MCU.

There are numerous other operating systems for IoT devices, such as TinyOS and numerous
Contiki versions (2.x, 3.x and NG), and they all have similar event-driven programming models
and capabilities [7]. As discussed in Section 2.8 this project builds on top of the Baloo
middleware [21], which was written for the Contiki-NG operating system. The OS choice is
therefore non-negotiable. Contiki-NG is the most recent and most documented iteration of the
Contiki kernel. Code contributions can potentially be pushed to the official GitHub repository
and be used by researchers around the globe, making this the most mature IoT-device OS
currently in use.

2.1.3 Networking

WSN motes communicate with each other over radio using the IEEE 802.15.4 technical stan-
dard (defined for low-rate wireless personal area networks) [19]. The nodes are organized
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in topologies based on the spatial distribution of the motes that compose them. Network-
ing in Contiki-NG is slightly different from the traditional OSI-layer model, as the current
implementation, called NETSTACK is built by four distinct elements:

• Network Layer (NETSTACK_NETWORK). Running on top of IEEE 802.15.4 with Time-
Slotted Channel Hopping [42] (TSCH), Contiki-NG has a full IPv6 stack. Implemented
via uIP [12] (an open-source TCP/IP implementation for 8 or 16-bit microcontrollers),
IP, UDP and TCP protocols are available in minimized models. Routing is handled via
RPL [41], an IPv6 routing protocol for low-power and lossy networks, which maintains
a routing graph built from a root node for the whole network.

• MAC layer (NETSTACK_MAC). Designed to prevent packet collisions, Contiki-NG uses
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) [22] to determine
if a transmission is occurring at the same time as a node wants to send over the shared
medium, backing off when it determines it would cause a packet collision.

• RDC layer (NETSTACK_RDC). The Radio Duty Cycling saves energy by powering down
the radio transceiver for most of the time according to a periodic schedule (i.e. during
a given time period on for 20% and off for 80%). An alternative approach is low-power
listening (LPL), supported by Contiki-NG, which allows the RDC to power back on the
radio when it senses communication is occurring.

• Radio layer (NETSTACK_RADIO). The lowest NETSTACK layer handles the specific radio
module present on the physical mote.

The maximum communication distance between two motes is limited. Large WSNs may
cover an area which is larger than the radio communication range. These are called multi-hop
networks, characterised by large network topologies with hundreds of motes, where network
packets will go through a number of devices before reaching their final destination. In these
multi-hop networks individual motes need to take into account that they must keep their radios
powered on for longer periods of time to relay packets broadcast by other nodes. Contiki-NG
supports both single-hop and multi-hop networks.

The unreliability of wireless communications is, though, a constant concern. Conflicting
broadcasts and lack of constant radio up-time are cause of high packet losses and missed
transmissions. A potential solution to unreliable WSN communication has been proposed by
using the capture effect and interference.

2.1.4 Capture Effect and Interference

WSNs communicate using radio transceivers. Radio communication is inherently broadcast
based; the broadcast of one node will superimpose itself upon the broadcasts of other nodes
in close spatial proximity. This phenomenon is known as the superposition principle [43]. It
occurs to all electromagnetic waves and is most notable when the frequencies of the colliding
waves match. Formally, in the presence of two waves wa and wb of the same frequency,
generated concurrently from points A and B respectively, which are received at point C, the
phase difference ∆φ between the two waves is denoted as:

∆φ =
2πf∆d

c

where c = 3 × 108 m/s is the speed of light, f is the wave frequency and ∆d is the spatial
distance between the broadcaster and the receiver. The phase difference is perceived as a time
offset ∆t between the alignment of the periods of the two waves (see Figure 2.2a).
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(a) Superposition of 2 waves at receiver C (b) Dissemination of concurrent broadcasts to C

Figure 2.2: Visualisation of multiple concurrent broadcast superposition at receiver C.

The receiver, though, will only perceive the summation of all input waves together, and
for non-zero phase difference values the received signal strengths vary. This phenomenon is
called interference and occurs when two broadcasts share the same frequency and generate
signals which physically overlap in time and space (see Figure 2.2b). For periodic waves of
period 2π there are two main types of interference:

• Destructive, which occurs when ∆φ e is an odd integer multiple of π. Under destructive
interference (see Figure 2.2a) the receiver is unable to decode incoming transmissions as
the addition of the individual wave signal strengths is zero.

• Constructive, which occurs when ∆φ is an integer multiple of 2π. Constructive inter-
ference allows receivers to correctly detect the superimposed signals emitted by multiple
transmitters. The received signal has greater strength if compared to the individual
broadcasts from A or B.

With constructive interference node broadcasts are received more reliably and with greater
signal strengths, yet in order to achieve it the time offset ∆t between the waves reaching
receiver nodes must be close to zero. This is a very difficult problem in practice, which
has only recently been approached within WSNs. There are currently two main methods to
maximise wave allignment in order to guarantee constructive interference in Wireless Sensor
Networks:

• Using clock synchronization. By achieving accurate clock synchronization, and being
able to predict with certainty all software delays incurred when preparing, transmitting
and receiving packets, it is possible to synchronise all the nodes in a network so that the
broadcasted waves are aligned and achieve constructive interference on receivers.

• Using the capture effect. The capture effect occurs when a wireless module correctly
detects a transmission from one transmitter despite there being interference on the
channel [45]. This might occur if the original signal is stronger than all others (power
capture) or when the broadcast started significantly earlier (delay capture).

Both of these effects are not commonly used in other forms of digital radio communication,
and are still considered active research in the WSN community. In 2011 a new protocol, Glossy
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[15], has introduced the first dissemination strategy to exploit both the capture effect and clock
synchronization, starting a new branch of scientific research (see Section 2.3). Communication
robustness, though, comes at a cost: Glossy uses a serial approach which greatly increases
protocol latencies. A more recent strategy taken by Chaos [25] (2013) boosts dissemination
times but is once again unreliable in the case individual nodes become temporarily unreachable.

Numerous other protocols have been developed to exploit constructive interference. Splash
[10], Pando [11], Crystal [20] and Mixer [18] are such examples, each adding a contribution in
terms of latency, reliability, or communication efficiency. Throughout this thesis we will focus
on analysis Glossy (Section 2.3) and Chaos (Section 2.5), as they have led the most analysed,
cited and robust branch of research.

2.2 Consensus

A fundamental primitive of all distributed systems (among which WSNs) is consensus. The
problem of consensus consists of reaching network-wide agreement on proposed values in the
presence of potentially faulty processes [9]. All (or a majority) of nodes share an identical,
agreed-upon, value in a system which has reached consensus. This strong guarantee is applied
to protocols which involve leader election, atomic broadcasts and distributed configuration
management.

In our model we consider a collection of processes Pi (where i = 1..N) communicating
via message passing. Communication between processes is assumed to be reliable, though
processes themselves can fail. A failed process is said to have crashed; a non-failed process
is said to be correct. In order to reach consensus, each process Pi proposes a single value vi.
Processes communicate with each other and then choose one of the proposed variables vi to
set as their decision variable di. At this point the process has entered a decided state and is
no longer able to change di (see Figure 2.3).

Many consensus algorithms exist. For all of them the following properties hold [34]:

• Termination. Eventually each correct process decides a value di.

• Agreement. All correct processes decide on the same value di.

• Integrity. A process decides at most on one value.

• Validity. If a process decides on a value di, then di has been proposed by some process.

The termination property can also be reformulated as liveliness. Liveliness expresses the
eventual termination of a protocol and is independent on the correctness of the decided value.
The union of agreement, integrity and validity properties guarantee a safe protocol execution.
A protocol’s safety property expresses which guarantees are given on the decided value upon
termination. Safety properties are ranked strong to weak based on the strictness of their
condition (i.e. how many nodes in the network are guaranteed to share the same decided
value).

2.2.1 Asynchronous Systems

It is proven that no algorithm can guarantee to reach consensus in an asynchronous system
with as little as one process failure; this is known as the impossibility result [16]. This is
because in an asynchronous system processes may respond at arbitrary times and a “slow-to-
reply” process is indistinguishable from a crashed one. Wireless Sensor Network are examples
of distributed asynchronous systems: individual node clocks may be out of sync, messages
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Figure 2.3: Three processes engaged in a consensus algorithm. Processes P1 and P2 propose
value “proceed”. Process P3 proposed “abort” but then crashes. The two remaining correct
processes decide on value “proceed” [9].

can be delayed for arbitrary amount of times and there is no guarantee that a broadcast
message will be correctly received by any number of nodes. Yet consensus can be achieved
within WSNs, as there are a number of techniques which can be used to work around the
impossibility result:

• Masking faults. During its execution, each process saves data to persistent storage
(which is able to survive failures). Upon a crash, a process is simply restarted and is
able to resume its tasks by reading back the data to memory. This means that crashed
processes are able to behave similarly to correct ones; occasionally they just take a long
time to reply.

• Failure detectors. Failure detectors allow all processes taking part in the consensus
algorithm to know about a trusted sub-set of processes which are considered to be
correct. All processes are initially treated as correct, but during a protocol’s execution
if replies to periodic heart-beat messages are either missing or incorrect the node will be
suspected to be faulty. As failure detectors suspect failed processes, all other processes
will discard their messages. If less than N/2 processes crash, consensus can still be
reached by the sub-set of correct processes.

2.2.2 Atomic Commit Protocols

Of the many properties of distributed transactions, we are interested in atomicity. The atom-
icity property states that when a distributed transaction comes to an end, either all of its
actions are carried out, or none of them. Transactions are ended when the client decides to
commit or abort them. There are two main atomic commit protocols, which are listed below.
Both of them require each transaction to have a designed coordinator, which is aware of all of
the nodes participating within the transaction itself.
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2.2.2.1 Two-phase commit

The simplest atomic commit protocol is two-phase commit (2PC) [17]. 2PC is a blocking
protocol which guarantees that, should all nodes in a network vote to commit a value di, upon
termination all nodes will have committed the value di (safety property). In an asynchronous
system, though, the protocol is not guaranteed to terminate (liveliness property) as it may
block indefinitely waiting for replies from a few missing nodes. Two-phase commit is initiated
by a client asking the coordinator to commit a transaction. There are 5 operations which are
allowed by the protocol:

• bool canCommit(transaction). The coordinator asks the participant if it is able to
commit the specified transaction. Receiver replies with its vote (Yes or No).

• void doCommit(transaction). The coordinator tells the participant to commit the
given transaction.

• void doAbort(transaction). The coordinator tells the participant to abort the trans-
action.

• void haveCommitted(transaction, participant). The participant confirms to the
coordinator it has committed the given transaction.

• bool getDecision(transaction). The participant asks the coordinator confirmation
about a transaction it has voted Yes for, but the coordinator did not reply to. Used to
recover from coordinator crashes or processing delays.

(a) Global Commit. (b) Global Abort.

Figure 2.4: Coordinator and Participant communication in two-phase commit protocol.

The protocol is then carried out in 2 phases (4 steps):

• Phase 1 (voting phase):

1. Coordinator sends a canCommit request to each participant.
2. Upon receiving a canCommit request, participants vote (either Yes or No). Before

replying with a Yes, participants store all transaction information on permanent
storage. If the vote is No, the participant aborts the transaction immediately.

• Phase 2 (completion phase):

3. The coordinator collects all the votes.
(a) If all participants voted Yes, then a doCommit request is sent to each partici-

pant.
(b) With at least one No vote, the coordinator sends a doAbort request to all

participants which voted Yes.
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4. Upon receiving a doAbort request, participants abort the given transaction. If they
receive a doCommit request they reply to the coordinator with a haveCommitted
message.

In the best-case scenario, N transactions can be committed in N protocol phases (see
Figure 2.4). In this description we assume a fail-restart failure model, where nodes may fail
and later resume communications. Due to its weak liveliness property it can take arbitrary
amounts of time for the transaction to take place, as no maximal time-limit can be specified
for the protocol’s execution. Multiple, successive, failures are tolerated via masking faults
(§2.2.1) allowing nodes to reboot and resume communication rounds. The problem with two-
phase commit is that due to its strong safety guarantees it may block indefinitely, prohibiting
applications using it from making progress. This issue is fixed with three-phase commit.

2.2.2.2 Three-phase commit

Two-phase commit is a blocking protocol. Node failures will impact all other participants as
the whole network will be waiting the coordinator to make progress. To overcome this, in
addition to the lack of termination guarantees, three-phase commit (3PC) [39] is introduced
(see Figure 2.5). 3PC provides guaranteed termination (liveliness property) by allowing the
coordinator to timeout and abort a transaction. It, though, relaxes the safety property as it
is possible for cohort nodes to commit values that were actually aborted due to a timeout by
the coordinator. The main decision is to ensure protocol progress at the expense of safety.
This is achieved by introducing an additional pre-commit phase between the phases of 2PC:

• Phase 1 (proposal voting phase): same as 2PC.

• Phase 2 (pre-commit or abort phase): as in 2PC the coordinator decides whether to
commit or abort transactions (participants which timeout or fail to reply are assumed to
have aborted the transaction). If a transaction is to be committed a preCommit request
is sent to each participant. Participants reply with ACK messages.

• Phase 3 (do-commit phase): The coordinator now sends actual doCommit requests and
the participants commit the transaction. This ensures that no participant has proceeded
to commit a transaction if any of the nodes were in an uncertain state.

Figure 2.5: Three-phase commit protocol communication [38].
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The protocol is non-blocking, individual node failures do not impact the liveliness of the
whole network. It removes the possibility for a participant from committing and terminating
before the other nodes. This resolves the ambiguity present in 2PC with the doCommitmessage.
Coordinator failures can therefore easily be recovered from, without waiting for the existing
coordinator to come back online, as a new participant can take over the coordination role and
reach a new agreement with the network. Cohort node failures (or delays) will accordingly he
handled with timeout commits or aborts as seen in Figure 2.5.

Three-phase commit is unable to recover from a network-partition. The protocol aborts
the moment a single node temporarily goes offline or crashes and, should the coordinator
have become unreachable for the cohort, a new one would be selected. This is the difference
with 2PC’s blocking approach, which would wait for the node to come back online. As there
would be two live coordinators after a network partition (i.e. the original one and a newly
selected one by the partitioned network) there is no way to reconcile the transactions of the
two network subsets. Furthermore the protocol requires a minimum of three round trips to
complete, potentially introducing high latency between transactions. To address the shortfalls
and limitations of three-phase commit our discussion continues to Paxos, a majority-based
consensus algorithm.

2.2.3 Paxos

Paxos [24] is a consensus protocol proposed by Leslie Lamport in 1989 which has become the
industry standard for consensus. Paxos solves the problems of safety and liveliness present
in 2PC and 3PC by providing efficient majority-based network-wide voting. Paxos divides
nodes into three different roles: proposers, acceptors and learners (see Figure 2.6a). Proposers
independently propose values they want agreement on. Acceptors receive communication from
proposers and independently choose values. When a majority of acceptors agree on a selected
value, the information is forwarded to learners, which store the list of decided values. Paxos
solves the liveliness problem of 2PC by only needing a quorum of replies in order to proceed to
the next phase. It solves the safety problem of 3PC by only querying a majority of acceptors,
regardless of who is the leader. Each Paxos proposal has the form [n, v], where n is the
proposal number and v is the proposed value.

(a) Paxos Overview (b) Paxos during the prepare phase

Figure 2.6: Paxos diagram and example node communication [28].



2. Background 12

Paxos is structured into two rounds:

• Prepare-Promise.

– Each proposer chooses a proposal number n and a value v. It asynchronously sends
the information to the acceptors (Figure 2.6b) in a prepare request.

– Acceptors receive [n, v] pairs from proposers. If n is greater than their currently
stored proposal number, or if they have never seen a proposal number before, they
update their stored [n, v] pair and reply to acceptors with a prepare response. If
the proposal number n sent by the proposer is lower than the currently stored value
it does not send a reply (i.e. acceptor Z does not reply to proposer A in Figure
2.7b).

• Accept-Accepted.

– When a proposer receives a prepare response from a majority of acceptors it then
issues an accept request to the acceptors.

– Upon receiving an accept request if the proposal number n is still the highest pro-
posal number seen by the node, the acceptor sends an accept response to each
learner. A value v is declared chosen when learners have received accept responses
from a majority of of acceptors.

(a) Acceptors replying to proposers (b) Acceptors updating their proposal numbers

Figure 2.7: Complete Paxos prepare phase between two proposers and three acceptors [28].

A number of optimisations have been suggested over a vanilla Paxos implementation.
Ideally proposers could agree to vote for leaders. A leader would be able to greatly speed up
the algorithm by reducing the proposal number clashes that would require proposers to back
off and try proposing again.

There currently exist many implementations of Paxos that make, or depend, upon different
system assumptions. In this thesis we present a new variation of Paxos based on the lax
guarantees provided by our communication approach. WSNs communications are unreliable,
introducing problems for the correct functionality of Paxos. We thus continue our analysis
presenting the background of our communication approach, aiming to provide high reliability
guarantees to allow for the proposal of a new consensus algorithm.

2.3 Glossy

Proposed to solve WSN unreliable links, Glossy [15] is a novel flooding architecture for Wireless
Sensor Networks. It exploits constructive interference of IEEE 802.15.4 radio chips to achieve
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fast network flooding and time synchronization. This approach is novel to WSNs, and is
still an area of active research. Glossy is able to flood packets within a few milliseconds and
achieve a time synchronization error below one microsecond. Glossy’s performance is not
impacted by node density, making it a good candidate for real-world applications. Glossy’s
approach to time-synchronization for concurrent broadcasts assign the protocol to the family
of Synchronous Transmission (ST) primitives. ST primitives realize energy and time efficient
network-wide broadcasts by synchronously transmitting packets from multiple wireless nodes.

Figure 2.8: High probability of constructive interference of signals for ∆max = 0.5 µs [15].

2.3.1 Protocol Overview

Glossy uses constructive interference (§2.1.4) to speed up system-wide floods and allow for
time synchronization. Given IEEE 802.15.4 signal modulation schemes (which allow digital
signals to be encoded in an analogue wave, with redundancy, so that it can be sent over the
wireless medium), Matlab simulations have been performed to evaluate maximum-allowable
temporal displacement (∆max) which would still achieve constructive interference. As seen
in Figure 2.8, results [15] show that even in the absence of capture-effects, correct detection
occurs for ∆max = 0.5µs.

Figure 2.9: Propagation of a Glossy flood [15].

During a Glossy broadcast (Figure 2.9), there are two types of nodes:

• Initiators, which are considered as source nodes for each broadcast.

• Receivers, which listen for transmissions and re-broadcast them to allow for network
propagation.
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The entire flooding process is driven by radio events. When a node completes a full packet
reception, a re-transmission is triggered so that all of it’s neighbours are able to receive the
given packet. Receptions and transmissions occur multiple times, propagating down multi-hop
topologies.

The Glossy execution model can be expressed as a state-machine with 4 main states nodes
can be in:

• Wait. Nodes have the radio turned on and are waiting for packets. Upon sensing a
transmission, we enter the receive state.

• Receive. The node keeps receiving the transmission for its full length. If the transmis-
sion is incomplete or corrupted, it goes back to the wait state. Otherwise it reaches the
transmit stage.

• Transmit. The MCU immediately re-transmits the incoming message. The relay
counter is increased by one. During a glossy flood, nodes can be asked to transmit
packets up to N times (to improve overall reliability). If a node has already reached N
transmissions it goes to the off state. Otherwise it goes back to wait.

• Off. Upon completion of a glossy flood, the node turns off its radio (to save power).

Figure 2.10: Glossy states and timeline model [15].

2.3.2 Time synchronization

As shown in Figure 2.10, all Glossy state transitions depend on the radio hardware (except
a brief software delay Tsw introduced before the transmission stage). To achieve constructive
interference Glossy needs a maximum temporal displacement ∆max of 0.5 µs (Figure 2.8). We
take all time delays into account to be able to estimate Tslot, the overall slot length of a Glossy
transmission. If we denote Ttx, the packet transmission time, as:

Ttx = Tcal + Tpr + Tf + Tl + Tm

We can break down the individual time delays:

• Tcal is internally taken by the radio to calibrate its voltage controlled oscillator (VCO).

• Tpr is the time taken to generate the preamble of the packet.

• Tf is the time to align the start of frame delimiter (SFD) as specified by the IEEE
802.15.4 standard.
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• Tm is the time taken to generate the MAC protocol data unit (i.e. the packet itself
carrying the data).

The overall slot time can therefore be approximated as:

Tslot = Td + Tsw + Ttx

Where Td is the radio processing delay introduced by packet reception and Tsw is intro-
duced by the MCU having to handle the software interrupt that would cause the transmission.
This delay is non deterministic as it is MCU-dependant (i.e. an MSP430 might take between
1 and 6 cycles). To compensate for this Glossy measures the time taken and introduces a
number of no operations if the MCU is too fast.

This estimates a finite Tslot for a Glossy broadcast, and allows Glossy to be a time syn-
chronization protocol. During a Glossy flood, nodes can measure drift accumulated within
Tslot transmissions. Based on this calculation they can compensate their clock oscillations to
account for the measured drift.

Although fast and reliable, a Glossy-only approach can be slow for all-to-all communica-
tion rounds. As transmissions of different packets cannot be interleaved the protocol operates
sequentially, new data floods occurs only after the current flood’s termination. Furthermore,
with the lack of a centralised control node, network participants might accidentally com-
mence concurrent Glossy rounds with conflicting packets. In order to provide structure and
organisation for Glossy, making it a viable solution for data gathering and dissemination, our
discussion continues with the Low-Power Wireless Bus.

2.4 Low-Power Wireless Bus

Low-Power Wireless Bus (LWB) [14] provides a structured control system for data dissemina-
tion with Glossy. Its aim is to turn low-power multi-hop networks into a shared bus, where all
nodes can continuously exchange data flows. LWB supports one-to-many, many-to-one and
many-to-many traffic; it is topology independent and supports node mobility. It is built on
three main ideas:

• Fast network floods. LWB is built on top of Glossy (§2.3) and exclusively uses fast
network-wide floods for communication.

• Time-triggered bus access. All nodes using LWB are synchronized (by Glossy) and
access the shared bus via a global communication schedule which is recomputed based
on traffic demands.

• There is a central host node. The host node is in charge of computing the schedule
and distributing it to all nodes. The host is able to adjust the schedule to the demands
of the network adapting as nodes require to communicate more, or less, data.

2.4.1 Protocol Overview

LWB’s protocol operation can be seen in Figure 2.11. It can be mainly split across three
different stages. In this example it is assumed that all source nodes (i.e. nodes generating data
packets which are sent through the bus back to the host) have an inter-packet-interval (IPI)
of 6s. This means that every 6 seconds nodes generate data which they wish to disseminate
to the whole network through LWB.
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Figure 2.11: LWB protocol in operation through all three states [14].

• Bootstrapping (t = 0−11s). When the protocol is initiated all nodes listen with their
radio on. Upon receiving the first schedule, the nodes synchronize with the host and
learn about the round period T . The nodes start duty-cycling (§2.1.1) their radio to
reduce power consumption. Every node communicates its traffic demands (i.e. its IPI)
within the contention slot S which is allocated for every schedule. This introduces loss
of communication during the first few rounds (at time t = 4− 10s) as, of all the nodes
replying in the contention slot S, the host is only able to detect at most one node’s reply
due to capture effects (§2.1.4). As the host learns about nodes wishing to join the bus,
it acknowledges them by allocating slots on the schedule. By t = 12s the first complete
schedule is sent out.

• Steady-state condition (t = 12 − 70s). Starting from t = 12s all nodes are time-
synchronized and the host knows about the node’s IPIs. In our case all nodes are aware
that the round period T is 1s and that they will be receiving a new schedule at every
round. Every 6 rounds the host will send a schedule which allocates a data-slot for each
of the 6 nodes, which will reply in the allocated slot before the round period is over.
Empty schedules at t = 13 − 17s are necessary to allow the host to schedule further
transmissions should the IPI of a given node have increased.

• Long-run condition (t = 71 − ∞s). LWB adapts to the streaming requests on the
bus. By time t = 70s the host has learned that the IPI of the nodes is constant. This
allows for further optimisation: the period time T is increased from 1s to 30s and nodes
are notified in the schedule. 5 slots are now allocated for each node in the schedule sent
at t = 100s to still meet the IPI demands. This allows nodes to have a much longer
radio-off period when duty-cycling, effectively saving a lot of energy.

2.4.2 Failure Tolerance

LWB is resilient to failures. Depending on the type of failure it has specific guarantees or
recovery mechanisms:

• Node failures. If a node fails or disconnects from the network, the host will cease
receiving messages from it and eventually adapt the schedule to omit the node’s spe-
cific data-slot. If the node resumes communication it will use the contention slot to
communicate its needs to the host and will be re-added to the schedule.

• Communication failures. Even though all communication is handled by Glossy floods,
communication failures may happen. Nodes are instructed to not communicate to the
host if they missed the schedule for the specific round. They will instead communicate
their IPI requirements upon reception of the next schedule in the contention slot.

• Host failures. If within a specified time period nodes to not receive communication
from the host, it is assumed to have failed. Upon initialisation LWB hard-codes specific
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channel-host pairs on all nodes. As the nodes realise the host as failed they will change
radio channels and wait for the new host to bootstrap the network.

LWB therefore offers a robust many-to-many Glossy-based dissemination strategy. Using
a serial communication style nodes are scheduled to sequentially disseminate their values to
the whole network. Even though this approach ensures high reliability, is it heavily inefficient
in terms of number of broadcasts and latency. The protocol’s execution time grows linearly
with the network size, making the implementation of voting protocols too expensive for large
topologies.

2.5 Chaos

A building block for Wireless Sensor is the ability to have many-to-many interactions allowing
packets to easily be disseminated to all nodes in the network. LWB (§2.4) and other protocols
can potentially handle this, but they are inefficient. Such protocols would perform many-to-
one data collection, centralised processing, and subsequent one-to-many dissemination. Chaos
[25] offers lightweight many-to-many communication, thus parallelising collection, aggregation
and dissemination steps using two main mechanisms:

• Synchronous transmissions. All nodes synchronously broadcast their data, and re-
ceptions are guaranteed due to capture effects (§2.1.4). Nodes merge locally the data
and keep re-broadcasting it until all nodes have received data from all other nodes.

• User-defined merge operators. Data merging is fully customizable by the user al-
lowing distributed processing of packets from all nodes.

Chaos is a primitive built on top of Glossy (§2.3) to leverage synchronous transmissions.
The transformation from a one-to-many to a many-to-many packet sharing protocol, though,
introduces two main challenges:

• Packet merge overhead. As mentioned previously in §2.3.2, Glossy requires minimal
delays to be able to exploit it’s fast flooding window. The maximum software delay Tsw
considered between packet reception and re-transmission is of a few MCU clock cycles.
Chaos will instead be performing full merge operations during Tsw with the duration of
tens of thousands of MCU clock cycles. It could also mean different nodes have different
merge execution times (impacting overall synchronization).

• Constructive interference. Unlike Glossy packets, Chaos packets are likely different
for every node broadcasting them. This means there cannot be constructive interference
on receivers and instead we can only rely on the capture effects. Higher number of
conflicting packet transmissions severely reduce Packet Reception Rate (PRR) and if
packet transmissions exceed 160µs the capture effect will no longer benefit receivers in
decoding messages with high probability.

2.5.1 Protocol Overview

Chaos packets have two main components: a flags section and a payload. The flags are a
bitmap containing one bit for every node present on the network. The payload section is data
which is exchanged by every node during a Chaos iteration. The Chaos protocol can be seen
in action in Figure 2.12, and can be mainly summarised in three sections:
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• Bootstrapping. Each node has a payload to share with the network. Chaos starts
operating when an appointed node, called the initiator sends its prepared packet (flags
+ payload) to everyone in the network. In our example A broadcasts to neighbours B-F
in Slot 1.

• Aggregation. Upon receiving data, nodes aggregate the received payload with the
payload they have stored using a merge operator (which can be user-defined). Newly
received flags are OR merged with the existing ones.

– If the newly merged flags differ from the currently stored ones, the node re-
broadcasts (i.e. B broadcasts in Slot 2 after receiving data from A).

– If the newly merged flags do not differ, or the reception failed, the node suppresses
its transmission and waits. This can be seen by B in Slot 4 after receiving duplicate
flags in Slot 3 by A.

• Termination. The protocol terminates when all nodes have a full set of all flags and
hence no longer transmit (Slot 11). Nodes then enter a brief final-flood stage, where
they aggressively disseminates the aggregated packet to the whole network.

Figure 2.12: Trace of Chaos operating with 8 nodes on a multi-hop network [25].

Aggregation is therefore a key aspect of Chaos. Several simply built-in aggregators are
provided (such as min/max which would allow the nodes to all agree on what is the maximum
payload proposed by the network). More advanced aggregation such as sum or average is
possible, though it suffers from the over-counting problem (i.e. accidentally aggregating a
node’s result more than once).

Varying MCU processing speeds (during aggregation) can also be prevented by setting a
minimum processing delay for all nodes. Prior to entering the Ttx transmission stage, nodes
will busy wait a user-defined number of MCU clock-cycles to make sure not to desynchronize.

Further care is taken to prevent early termination of the protocol (i.e. due to transmission
failures which would lock the network in an uncomplete state where nodes have an incomplete
flags bitmap). Firstly, to reduce concurrent (and conflicting) transmissions nodes do not
broadcast if they received no new information. Secondly if premature termination is suspected
(as would happen if during Slot 7 G ’s broadcast is lost having no nodes receive it), nodes have
a timeout mechanism where they will attempt to reinitialise communication until completion.

2.5.2 Practical Applications

The ability to aggregate and disseminate data on the fly, allows Chaos to be applicable to a
number of consensus (§2.2) problems:
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• Network-wide agreement. Any important piece of information necessary to the net-
work can be distributed using Chaos. Encryption keys can be exchanged by all nodes
on startup by aggregating them into an array. Aggregators which keep selecting the
maximal seen values can be used to agree on which nodes have the highest ID, and
therefore should be nominated as leader, etc.

• Three-phase commit. Even though this will be greatly expanded by the “A2: Agree-
ment in the Air” protocols (§2.6), three-phase commit (§2.2.2.2) can be achieved by using
the flags section as a counter for the three stages of the protocol, and data is exchanged
via the payload. Node failures or missed messages will not advance the flags, prompting
for re-transmissions.

Chaos drastically reduces the communication cost and latency for implementations of
voting protocols, yet it sacrifices reliability for efficiency. Chaos floods are unable to target
specific nodes or request replies form specific network participants. Messages are simply
constantly aggregated into the flood’s payload and eventually replies from all nodes will reach
the initiator mote. The inability to reliably schedule specific participants to reply affects the
protocol’s correctness in the presence of failure or channel interference. Nodes cannot quickly
be suspected of failure, as their replies might simply not have been propagated yet by the
floods. Chaos is therefore a potentially unreliable protocol to use for robust failure-tolerant
consensus algorithms.

2.6 Agreement in the Air

A2, Agreement in the Air [2], brings distributed consensus to low-power multi-hop networks.
A2 introduces Synchrotron, a new synchronous transmission kernel, and extending on concepts
proposed by Chaos (§2.5) and LWB (§2.4), introduces consensus and network-wide voting
primitives.

2.6.1 Synchrotron

Synchrotron is a new synchronous transmission kernel, introduced as a robust lower layer for
A2. Inspired by LWB and Chaos, it implements a number of functionalities:

• Time-slotted design. Borrowing from Chaos, Synchrotron operates in time slots which
include the time taken for reception, processing and transmission of packets.

• Synchronization. Node synchronization is achieved via a virtual high-definition timer
[36] (VHT), which uses a combination of low and high-frequency clocks to maintain
synchronization in absence of network activity.

• Frequency Agility. Within Chaos reception rates degrade quickly in presence of in-
terference. Synchrotron fixes this by borrowing from algorithms such as time-slotted
channel hopping (TSCH) [42]: transmissions are spread across multiple channels. Each
node chooses one channel to use for transmissions within a given time slot, overall this
increases capture effects (§2.1.4) on receivers, and overall the protocol’s reliability.

• Scheduler. Multiple A2 applications can coexist and be scheduled independently during
the lifetime of a node.

Synchrotron has been used to implement all A2 protocols described in this section.
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2.6.2 Protocol Overview

A2 extends Chaos introducing a number of network-wide communication primitives:

• Disseminate, collect and aggregate. Inherited from Chaos, they allow for many-to-
one and one-to-many communication.

• Vote. A network-wide voting primitive is introduced allowing nodes to vote against a
coordinator’s proposal (see §2.6.3).

• Agreement. Network-wide agreement protocols such as 2PC and 3PC is introduced
(see §2.6.4).

• Group membership. A2 allows for persistent group membership with join and leave
capabilities.

2.6.3 Network-wide Voting

A fundamental building block for network agreement (§2.6.4) is a network-wide voting prim-
itive. It allows to distribute a proposed value and collect votes from all participating nodes.
A successful voting round ends with the coordinator knowing which votes were cast by which
nodes.

Figure 2.13: Network-wide voting in A2 over 3 nodes [2].

As can be seen in Figure 2.13, voting is very similar to a one-to-many broadcast in Chaos.
The coordinator proposes a given value (as a payload) and the flags section of each packet
is used to carry information on the state of the vote (2 bits of information are necessary for
each node: 0x00 represents no vote cast, 0x01 is a vote in favour, 0x10 is a vote against.
Voting flags get merged at every slot and the aggregated packet is continuously broadcast
until completion (i.e. all votes have been cast, and all nodes know about the outcome).

Just as all original Chaos primitives, voting is best-effort as there is no guarantee that all
nodes will have received the final aggregated packet containing all the votes.

2.6.4 Two and Three-Phase Commit

Two-phase commit (§ 2.2.2.1) is a simple consensus protocol which can be achieved in A2

based on top of the network-wide voting primitive (§2.6.3). A sample run can be seen in
Figure 2.14.

• Voting phase. Nodes use the network-voting primitive illustrated above to vote on a
proposed value (as can be seen in Slots 1 - 4 of Figure 2.14). Once the voting stage is
complete nodes remain active awaiting the coordinator’s decision.
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• Completion phase. Based on the voting result, the coordinator decides whether to
commit or abort the transaction. The coordinator spreads the decision and nodes adopt
it.

Figure 2.14: Two-phase commit protocol running in A2 with 3 nodes [2].

2PC is a blocking protocol, meaning that node failures impact the latency of the whole
network, possibly preventing termination. Due to this three-phase commit (§ 2.2.2.2) is intro-
duced, which trades liveliness at the expense of safety (i.e. consistency cannot be enforced).
It’s implementation in A2 is as follows:

• Voting phase. Identical to 2PC.

• Pre-commit or abort phase. The decision of the coordinator is disseminated to
the whole network. Nodes are not allowed to vote at this stage so they simply lock
the resources (in case of pre-commit) and acknowledge the reception of the message by
setting their specific flag in the packet. This is identical to how Chaos is able to check
if all nodes have received the message.

• Do-commit phase. Similarly to the previous stage, the coordinator disseminates the
do-commit decision to all nodes.

2.7 WPaxos

The problem of consensus has been studied for decades in traditional wired networks, yet it still
remains challenging within the realm of WSNs. Wireless Paxos [32] (or WPaxos for short)
brings fault-tolerant consensus to wireless networks by building it within the Synchrotron
(§2.6.1) transmission kernel. WPaxos is designed to integrate as closely as possible to the
underlying Chaos ST primitive using fast in-network processing and minimal delays between
broadcasts.

To be able to successfully execute the Paxos algorithm on a distributed broadcast-only
networks such as a WSN testbed, a number of adaptations to Leslie Laport’s original algorithm
[24] are necessary:

• Beyond unicast. Protocols for wired networks are built on top of a one-to-one, unicast
dissemination strategy. When broadcasting over the radio, messages are heard by all
neighbouring nodes. This multicast strategy can be used to reduce overall protocol
latency. Nodes participating within a WPaxos round will constantly aggregate all of the
communication that they receive on the network and retransmit the most up-to-date
aggregated packet.
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Figure 2.15: WPaxos execution with 4 nodes. Node A is the initial proposer [32].

• Proposers and acceptors. All nodes act as acceptors during a Wireless Paxos round
and nodes can optionally act as proposers. Should a node be a proposer all proposer
logic will be executed before the acceptor one.

Additionally there are a couple characteristics of the original Paxos implementation that
map into the Wireless Paxos model:

• Proposal cohabitation. Multiple proposers may be active at any time within the
network. Proposals are ordered using unique monotonically increasing ballot numbers
and acceptors will only rebroadcast the proposal they received with the highest ballot
number (to prevent the network form stalling).

• Phase cohabitation. Paxos is a two-phase protocol (i.e. “prepare-promise” and
“accept-accepted”) and both phases might coexist during any Chaos round. To reduce
the number of messages a heuristic is in place to ensure nodes will keep transmitting a
newer phase even if they receive older phase information. Furthermore nodes will reduce
their transmission rate should they see prepare-phase packets which already contain a
majority of replies; they will resume back to a normal rate once they detect the proposer
has initiated the subsequent accept-phase.

Wireless Paxos introduces the idea of reliable distributed consensus to wireless networks.
Multiple nodes are able to proposes values to the network and eventually one of these values
will be chosen and agreed upon. It therefore satisfies all Paxos safety conditions [23]:

1. Only a value that has been proposed may be chosen,

2. Only a single value is chosen, and

3. A process never learns that a value has been chosen unless it actually has been.

Furthermore it also ensures that the liveliness condition is preserved: eventually (in absence
of Byzantine failures) a value will be chosen by the protocol. Reliability, though, is hindered
by bad network conditions. In the presence of interference or channel noise WPaxos’ Chaos
floods are unable to reliably reach all network nodes, increasing the protocol’s latency and
impacting its robustness.

2.7.1 Wireless Multi-Paxos

Multi-Paxos [44] is a common extension of Paxos which introduces the ability for the network
to agree on a sequence of values by executing multiple consensus rounds. Many rounds can
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be executed in parallel or sequentially, potentially allowing for proposers to merge many
concurrent proposals into one single packet. Together with WPaxos a novel Wireless Multi-
Paxos solution was proposed based on four main design rationales:

1. Bounded memory. In its original implementation an unbounded number of ballots is
allowed to exist at any time. To mitigate the problems potentially arising due to limited
memory available on the motes, log and packet buffer sizes are fixed and ballots may be
aggregated by proposing nodes during the protocol’s execution.

2. Prepare-phase specifics. Proposers are constantly required to learn the transaction
outcome of all previous rounds to prevent inconsistencies. This is impossible due to the
packet size constraints. An iterative process used, allowing proposers to gradually learn
all values already committed by the network.

3. Message ordering. Ballot numbers must be universal and monotonically increasing
across all proposers. To guarantee uniqueness the lower digits of each proposal number
(PN) carry over the ID of the proposer which generated it.

4. Long lasting leader. For fast execution of multiple Paxos rounds there cannot be
a constant fight for ballot numbers across multiple proposers. Nodes with the highest
ballot are acknowledged as leaders by the network for lasting periods of time. This way
values are voted upon quickly and efficiently by the network.

Overall Wireless Multi-Paxos introduces quick and efficient multi-proposer consensus to
wireless multi-hop networks, while suffering from the same limitations of WPaxos: unrelia-
bility and poor performance under non-optimal network conditions. The existing codebase is
currently developed for Synchrotron within the Contiki 2.7 Operating System.

2.8 Baloo

Synchronous transmissions (ST) popularised by Glossy are a highly reliable and energy efficient
method of communicating in low-power multi-hop networks. A number of ST-primitives (i.e.
protocols that execute any-to-all broadcasts in bounded time) exist, such as Glossy or Chaos,
though they heavily rely on low-level control of timers and radio events. Designing a network-
stack over an ST-primitive can therefore become a challenging and time-consuming task. Baloo
[21] aims to simplify the process by introducing a middleware for synchronous transmissions
with the following guarantees:

• Expose a well-defined interface enabling run-time control of ST-primitives by the network
layer.

• Allow for implementation of a wide variety of network layer protocols.

• Network layers should be able to use multiple ST-primitives, potentially switching them
at runtime.

• The middleware should not impact the time synchronization requirements of ST-primitives.

Overall Baloo provides an extensible middleware which has already working implementa-
tions for algorithms such as LWB (§2.4). It is being developed within the new Contiki-NG
codebase (§2.1.2) and has a strong documentation effort underway. This enables this state-
of-the-art project to be used as a strong baseline for the implementation of more complex
algorithms such as A2 (§2.6).
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2.8.1 Middleware Overview

Implementing ST-primitives such as Glossy and Chaos, Baloo is designed to work in Time
Division Multiple Access (TDMA) [37] execution rounds. All vital protocol information will
be sent to the network by a central node on the first slot of each communication round. It
is designed to provide a middleware which abstracts low-level cumbersome operations to the
higher-level protocols (see Figure 2.16a). The middleware is in charge of all timers and radio
operations. Control information can be provided by the protocol within callback functions
exposed by Baloo. The entirety of the protocol logic is implemented within the callback
functions (§2.8.1.1).

(a) Overview of Baloo’s design [21].

(b) State machine of Baloo’s middleware [21].

Figure 2.16: Baloo components: design overview and middleware state-machine

The middleware has a minimal state-machine (see Figure 2.16b) which consists of three
different states (as defined below). Baloo is driven by control packets which are sent at the
beginning of each round. The packets contain schedule information (i.e. how to execute the
current communication round, and when to wake up for the next round), and configuration
information (i.e. slot length and retransmission count). Nodes that have successfully received
and decoded control packets can transmit during the subsequent allocated data slots.

• Bootstrapping. When booted a node waits to receive a control packet. Upon reception
it can enter the running state for the round specified in the control packet itself.

• Running. When running a node is able to participate in the network for all protocol
operations. Should a node miss a control packet it enters the suspended state.

• Suspended. Suspended nodes will quickly resume their running state if they are able
to receive subsequent control packets. Should they sense that multiple other control
packets have been missed, they return to the bootstrapping state; the node is likely out
of sync and requires brand new fresh copies of schedule and configuration information.

With the abstraction introduced by the middleware (Figure 2.17) it is possible to separate
the protocol implementation with the lower level manipulation of data packets, data transfers
and timing model. The fixed Baloo middleware allows users to have simple and portable
protocol implementations which uniquely communicate with the middleware. The underlying
ST primitives (such as Glossy or Chaos) may be changed without impacting the soundness of
the protocols themselves.
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Figure 2.17: Protocol-level abstraction achieved by using Baloo’s middleware [5].

2.8.1.1 Callback functions

During the running stage, nodes expose callback functions which can be used to implement
high-level protocols over the Baloo middleware. There are five different callbacks which can
be seen in operation in Figure 2.18.

• on_control_slot_post(). At the end of a control slot, it can be used to process the
information present in the control packet.

• on_slot_pre(). Executed before each data slot, allows to send a custom payload to the
middleware.

• on_slot_post(). Executed at the end of each data slot, allows to process the received
payload.

• on_round_finished(). Executed at the end of each round allows to execute more time-
demanding processing or state management.

• on_bootstrap_timeout(). Executed when a node fails to bootstrap (i.e. does not
receive any control packets). The protocol might require nodes to go to sleep for some
time to save on energy consumption.

Arbitrary code can be run in the Baloo defined callbacks. This might impact maximum
synchronization delays required by the various ST primitives. Baloo solves this by allowing

Figure 2.18: Protocol running on top of Baloo middleware [21].
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the user to configure a parameter, called gap_time, that sets an upper-bound for callback
execution time.

2.8.1.2 Control packet

The control packet (Figure 2.19a) is at the core of Baloo’s synchronous design. It is sent by
the global host at the beginning of each round and it contains all the information required by
all round participants to transmit and duty cycle correctly.

(a) Baloo control packet [5]

(b) Configurable control packet parameters [5]

Figure 2.19: Full Baloo control packet structure including optional configuration slots.

It is split into 4 main sections:

• schedule: The only compulsory part of the control packet, holds all the information
required by the nodes to complete the next round. It holds the global time measure
and all slot assignment and scheduling. The schedule is allowed to vary for each new
round allowing the order of the scheduled nodes to change. Slots can be configured to
be “standard” with one specific node assigned, or “contention” where any node willing
to broadcast to the whole network may do so. In case more than one node broadcasts
within a contention slot, due to the capture effect, at least one of the replies will be
heard by the global host.

• config: The configuration section holds middleware configuration parameters which
may vary at runtime. Most importantly the underlying ST primitive (i.e. Glossy or
Chaos) could be changed, and together with them the slot lengths and retransmission
numbers. This section is optional and if not present all nodes will use the globally
configured defaults.

• slot_config: Further (optional) per-slot customisation can be achieved with this sec-
tion of the packet. If a specific slot must deviate from the configured slot length and
retransmission numbers, it can be customised in this section.
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• user_bytes: This final optional section of the control packet allows the global host
to send arbitrary data to all the nodes within the control packet. It can be used by
protocols to configure the behaviour of the network during the next round.

When any of the 3 optional sections of the control packet (config, slot_config or user_-
bytes) are used, their presence must be declared by setting specific bits of the n_slots section
of the schedule (see Figure 2.19b).

2.8.2 Practical Applications

Baloo allows protocols to use multiple ST-primitives. It currently supports a Glossy and Chaos
and can likely be easily extended to support newer primitives such as Mixer [18]. Other than
the concepts already discussed it additionally supports detection of interference, potential for
an advanced state machine and starvation protection for nodes. Baloo’s advanced scheduling
functionality allows it to currently have implementations for state-of-the-art algorithms such
as LWB, Crystal [20] and Sleeping Beauty [35].

Baloo is developed on top of a Contiki-NG fork, allowing for easy extensibility within a
fast growing and popular operating system. It is well documented and aims to finally bridge
together academic protocol implementations with real-world reproducible results. It is impor-
tant to note that although Baloo allows for protocols to switch ST primitives, to the best of our
knowledge this feature was only every used once as a EWSN 2019 Dependability Competition
submission [29]. Data dissemination rounds were executed via Chaos and acknowledgements
were gathered in subsequent phases using Glossy.

In this thesis we propose a new reliable approach to using ST primitives by switching be-
tween Chaos and Glossy floods during the dissemination and gathering of the same data. This
new primitive, Hybrid, whose implementation is made possible by Baloo, requires numerous
additional configurations alongside the middleware. This project therefore builds on top and
extends Baloo to introduce a novel, reliable, multi-phase voting library: XPC.

2.9 Current Experimental Methodology

WSN protocols can be assessed in a variety of ways. Their evaluation may consider multiple
metrics including packet loss, latency, throughput or even clock synchronization. To aid this
investigation and analysis it is common for protocols to be firstly developed and debugged
within a simulation environment, and subsequently be thoroughly tested on actual hardware
within a testbed.

As not all software stacks fully support hardware emulation (for simulation purposes),
certain libraries, such as Baloo’s middleware, cannot be tested out on Contiki’s simulation
environment (Cooja [13]). Such code must therefore be tested out on real hardware, and can
potentially be more cumbersome to debug, test and analyse.

2.9.1 Testbeds

Simulations provide very good approximations of expected broadcast outcomes and general
network behaviour, though when dealing with physical phenomena such as the capture effect
it is important to thoroughly test the behaviour on actual hardware. The isolated simulation
environment might not model environmental factors, such as potential channel interference,
possibly yielding inaccurate results if not backed up by real-world experiments. Given that it
becomes very expensive and time-consuming to distribute binaries and test them “in-house”
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for large topologies, in addition to the possibility of error or inaccuracies in simulations,
researchers have developed a number of WSN testbeds all across the globe [40].

Most commonly, WSN testbeds are large mote deployments at academic institutions and
are mainly accessed by researchers. Ideally testbeds want to achieve some isolation or shielding
from outside interference. Deployments in indoor locations achieve this, allowing for higher
result replicability and easier maintenance. The majority of testbeds have the same charac-
teristics:

• Known topology. Testbed deployments have a fixed known topology. This allows for
specific experiments which might prefer to target particular network configurations.

• Specific devices. Academic projects tend to target different types of motes and archi-
tectures as they have different instruction-sets and might allow for varying programming
flexibility.

• Backend server. The server manages the scheduling of the tasks to the nodes at
deploy time, and handles and centralizes all of the logging done by the motes during the
experiment.

• GUI. Graphical User Interfaces are usually in place to allow for easy deployment to the
motes and task scheduling.

Figure 2.20: TelosB node (referenced as Tmote Sky) attached to a FlockLab observer [26].

Testbeds are being updated constantly. Embedded hardware is prone to failure, and older
motes tend to get replaced to make room for newer ones. For this reason it is important to
choose testbeds with a fairly large number of motes which can be extensively used throughout
the length of the project. Furthermore, in order to guarantee the scientific robustness of
gathered results, when comparing against existing protocol implementations, data should be
gathered using the same testbed. Minimal variations in the network condition allow results
to be comparable and for protocol enhancements to be clearly visible.

2.9.1.1 Indrya2

Indrya2 [4] is a WSN testbed deployed at the National University of Singapore. Indrya2
features 74 TelosB motes and 28 CC2650 SensorTags. TelosB motes are the most commonly
used platform in papers and academic research. They are equipped with a MSP430F1611
Microcontroller, and a IEEE 802.15.4-compatible CC2420 radio.
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2.9.1.2 FlockLab

FlockLab [27] is a WSN testbed based in Zurich, Switzerland. It consists of 27 observer nodes
(Figure 2.20) connected with each other over LAN (Figure 2.21). An individual FlockLab ob-
server node has numerous sensor nodes attached to it, among which a TelosB (also known as
Tmote Sky). Similarly to Indrya2 it provides an online web-interface with monitoring capabil-
ities and on-line performance metrics. Focklab offers logging capabilities for GPIO (General
Purpose Input/Output) pins, which are used as LEDs, together with all the data which is
written to the Serial Port. All output is timestamped to allow for easy comparison across
different network nodes. Even though Flocklab also supports chips such as Dual Processing
Platform (DPP), the TelosB mote is the target platform used throughout this thesis.

Figure 2.21: Flocklab connectivity map with 27 nodes [27].

2.9.2 Modelling Interference

When executing tests on a remote testbed there are a number of factors which could affect
the repeatability of gathered results. Amongst these the most prominent is interference, or
radio noise, occurring on the same channels used for 802.15.4 network transmissions. As most
testbeds are deployed within office buildings they offer little to no control over the testing envi-
ronment: multiple researchers will be using the same frequencies, causing packet collisions and
missed broadcasts. Additionally WiFi and microwave ovens share the 2.4 GHz spectrum used
by 802.15.4, causing additional disruption. A method used to ensure testing reliability and
repeatability is to artificially inject interference patterns into the network, covering the back-
ground channel noise with a stronger, distinct, interfering wave. Furthermore the background
noise can be analysed, as the additional traffic during day-time hours causes additional dis-
ruption to the medium, if compared to night-time. Analysing a protocol’s performance with
different background-noise levels and under different levels of injected interference provides
thorough insight in it’s robustness and reliability.

This is the approach taken by JamLab [6]. It provides low-cost flexible testbed infras-
tructure to allow the repeatable generation of a wide range of interference patterns. When
using JamLab a number of nodes in the network will be designated as “jammer” motes, thus
being removed from the list of protocol participants. JamLab nodes can model three different
interference sources:
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• WiFi. Using a probabilistic approach, JamLab can emulate the interference impact
of WiFi communications occurring on the 2.4 GHz ISM band. It has models for satu-
rated (i.e. constant data streaming) and non-saturated (i.e. sporadic broadcasts) traffic
sources.

• Bluetooth. More complex than WiFi, Bluetooth is allowed to perform Adaptive Fre-
quency Hopping (AFH) to combat interference on devices. Hops occur 1600 times a
second and cannot be predicted deterministically. Similarly to the non-saturated WiFi
transmissions, JamLab emulates the effects of Bluetooth broadcasts with a probabilistic
model.

• Microwave Oven. Well known kitchen appliances, microwave ovens heat food by
usually emitting particles at 2.45 GHz frequencies. Being close to the 2.4 GHz band it is
possible for these particles to interfere with 802.15.4 transmissions (with a higher impact
on channels 20-26 [6]). Microwave ovens follow a simple on/off transmission mechanic,
which is easier to model for interference purposes (see Figure 2.22).

(a) Zoom Out. (b) Zoom In.

Figure 2.22: Temporal characteristics of JamLab microwave oven interference [6].

JamLab offers a simple and efficient solution to reliably injecting interference during pro-
tocol evaluations. It does, though, come at a topology cost. A number of network nodes must
be removed from the main protocol pool and assigned a jamming-only task, this can poten-
tially hinder comparisons with existing papers, as the number of nodes used to schedule the
tests would differ. Additionally it is important to configure a “sufficient” number of interfering
nodes within the network. As all interference is executed via the mote’s radio transceivers, the
signal will decay over distance meaning that multiple JamLab nodes must be used to replicate
the effects of a single WiFi stream or microwave oven.

2.10 Current Challenges

This chapter has introduced much of the background for Wireless Sensor Networks, construc-
tive interference and consensus. Table 2.1 summarizes all the problems which arise with
state-of-the-art literature, together with the solutions which have been provided so far. A
number of issues, such as reliability and the adoption of consensus-based protocols, remain
currently unsolved.
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Section Technology Problem Our Solutions
§ 2.1.3 WSN broad-

casts
Unreliable reception and
transmission guarantees.

Capture effect and constructive
interference.

§ 2.1.4 Capture
effect and
interference

Difficult to achieve in or-
derly network-wide fashion.

Glossy-based protocols to provide
synchronous network-wide flood-
ing.

§ 2.2.1 Consensus in
WSNs

Unreliable links could stall
protocols indefinitely.

Reliable links via Glossy-based
protocols (P1).

§ 2.2.2.1 Two-phase
commit

Blocking protocol cannot
make progress with node
failures.

Three-phase commit, which sac-
rifices safety for liveliness.

§ 2.2.2.2 Three-phase
commit

Unable to recover from a
network partition.

Majority-based consensus algo-
rithms such as Paxos.

§ 2.3 Glossy Requires structured sched-
ule to prevent colliding
floods.

Low-power wireless bus uses a
global scheduling host.

§ 2.4 Low-power
Wireless Bus

Slow for many-to-many
communication rounds over
large networks.

Chaos protocol performs aggre-
gation during round dissemina-
tion.

§ 2.5 Chaos Cannot reliably retrieve
data from individual nodes.

Requires a new low-latency and
reliable ST primitive (P2).

§ 2.6 Agreement in
the air

Only implements 2PC and
3PC.

WPaxos extension introduces
consensus.

§ 2.7 WPaxos Interference has a big im-
pact on reliability.

Must use a new low-latency and
reliable ST primitive (P3).

§ 2.8 Baloo Requires a lot of configura-
tion to switch ST primitive
during a phase.

All configuration code to be han-
dled by a new multi-phase voting
library (P4).

§ 2.9 Experimental
Methodology

Determining true protocol
reliability under interfer-
ence.

Reliability must be tested using
JamLab for WiFi and microwave
oven interference (P5).

Table 2.1: Summary of problems addressed in Chapter 2 together with the problems P1-P5
which remain unsolved in the current literature.

The problems present in the current literature (P1-P5) are highlighted in Table 2.1. They
can be reformulated into the following challenges which this thesis aims to solve:

C1 WSN communications must be low latency and reliable. A standalone use of Glossy and
Chaos ST primitives is insufficient. We need to propose a new ST primitive which is
able to provide the robustness of Glossy together with the performance of Chaos. This
challenge encapsulates P2.

C2 Protocols must be able to easily switch between ST primitives. Protocol implementations
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must not rely on a specific dissemination strategy and must be able to run with different
ST primitives to allow for reliability and latency comparisons. An extension on Baloo
needs to be developed to address this. With the creation of this new library we address
P4.

C3 Consensus protocols must run reliably on WSNs. Existing approaches to consensus
need to use a new ST primitive to provide strong liveliness and safety guarantees. This
challenge encapsulates P1 and P3.

C4 Protocol reliability has to be tested with JamLab to allow for replicability. By using
JamLab to inject interference during our evaluations we address P5.

This thesis addresses C1 and C2 by introducing Hybrid (a new reliable ST primitive) and
XPC (an extension to Baloo to allow for switchable ST primitives) in Chapter 3. Consensus
protocols WISP andWIMP (two new flavours of WSN Paxos) further addressC3 in Chapters 4
and 5 respectively. All protocol and ST implementations are tested with JamLab for reliability
(C4), and compared to state-of-the-art protocol implementations in Chapter 6.
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We introduce Hybrid, a new synchronous transmissions network dissemination strategy aimed
at minimising latency and maximising reliability. Hybrid leverages the optimal Chaos flood-
ing latency and optimises it with Glossy’s reliability. In order to allow for configurable ST
primitives independent of protocol implementations we introduce XPC alongside Baloo. XPC
is a novel, highly configurable, multi-phase voting library which allows us to easily recreate
existing voting protocols within the Baloo middleware, matching state-of-the-art latencies and
enhancing overall reliability. By implementing the Hybrid ST primitive and XPC we address
and solve C1 and C2 respectively.

Building up to the implementation of Hybrid, we will first commence in Section 3.1 by
analysing the interactions and configurations required on top of Baloo to implement multi-
phase voting protocols. This motivates the necessity for XPC, a standalone library implemen-
tation which places itself alongside Baloo’s middleware. Section 3.2 studies the behaviour of
2PC and 3PC voting protocols with existing ST primitives. Glossy and Chaos are analysed
in Sections 3.2.1 and 3.2.2 respectively. Section 3.2.3 culminates our analysis by introducing
Hybrid, a new dissemination strategy with stronger timing and robustness guarantees than
both Glossy and Chaos.

3.1 XPC fundamentals

XPC is a library which simplifies the use of different synchronous transmission (ST) primitives
for multi-phase voting protocols built on top of Baloo. With XPC, protocols may interchange-
ably use any ST primitive during their execution, allowing for the implementation of Hybrid.
XPC is structured into four main components:

1. Application: XPC abstracts all Baloo code away from the application. Network-wide
voting is a service which is executed every round and the application may interact with
it by either proposing a value for the next round, or by inspecting the outcome of the
previously executed round (i.e. which value was committed or aborted by the network).
The application layer is fully customizable by the user, as arbitrary code can be executed
by all nodes. The only requirement is for the node to poll upon completion. By polling
Baloo will duty-cycle the node and execute all XPC code prior to the application being
preempted once again. This allows for a strong separation of application and protocol
implementations, enabling nodes within a network to use XPC as a service for reliable
dissemination of values agreed upon by the whole network.

2. Protocol implementation: XPC allow protocols to be implemented on top of a mini-
mal Baloo-like structure (see Figure 3.1). Protocols are only required to handle internal
state-machine transitions and packet pre and post processing. Network dissemination
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and primitive-specific tuning is handled via specific API calls to other layers of the XPC
stack.

3. Common code: All handling of packet buffers, message parsing, and all retransmission
policies have been packaged into a “common” section of XPC’s implementation to allow
the protocol code to be as simple and readable as possible. Within the codebase the
section is referred to as xpc-common.

4. ST primitives: Different ST primitives have completely different message packet struc-
tures. Baloo’s control packet schedule and config sections will also differ. Protocol
implementations specify which ST primitive to use to exchange messages each round, and
the primitive-specific code will handle generation of the appropriate packet, dissemina-
tion during the round and aggregation of the results. XPC has a primitive-independent
API to configure network-layer buffers. All primitive-specific code is re-run each round
allowing the user to potentially switch between different ST primitives within the same
protocol.

Figure 3.1: Layered overview of all XPC components. XPC lives alongside Baloo’s implemen-
tation processing all data incoming from the application and managing the control structure.

3.1.1 Adjustments for Voting Protocols

To implement voting protocols we used and configured Baloo in the following ways:

1. Single Initiator. Baloo relies on the presence of a global host. This node is in charge
of bootstrapping the network and sending control packets at the beginning of each flood.
For our 2PC and 3PC implementations this node is in charge of the protocol and of the
initiator’s state machine. It can be argued this simplifies the implemented protocols to
single-initiator ones. Multiple-initiation, though, could simply be achieved by having
the nodes communicate the values to the host first, delegating all initiation privileges to
the global node.



3. Hybrid ST Primitive and XPC 35

2. Retransmissions for Reliability. As stated in the background, WSN links are very
unreliable and packets may be lost due interference or environmental conditions. Even
though Glossy is an incredibly reliable protocol, dealing with large networks will always
involve missing packets. To mitigate this issue, our protocols will implement retransmis-
sion procedures that allow the execution of a given phase more than once, should there
be missing replies from a part of the network. This measure greatly increases reliability
(as we will see in Section 3.2).

3. Additional Final Round. Baloo relies on a tightly timed transmission middleware.
At the beginning of each round nodes receive a control packet which contains exact
information on their radio-on times. This decision fixes the configuration for the cur-
rent round and new, updated, radio duty-cycle times can only be communicated with
additional control packets. With our retransmission policy, though, at the beginning of
a Baloo round, we are unsure if our protocol will terminate, or if, instead, a “retrans-
mission” round has to be scheduled right after due to missing replies. This forces us to
introduce an extra, final, and empty round at the end of each protocol run. As can be
seen in Figure 3.2 during rounds 1 to N the host sends out a control packet C expecting
all nodes in the cohort to reply during their scheduled slots. If the protocol implemen-
tation is able to terminate after round N , a final ending round (denoted as E) has to
be scheduled, where the global host communicates to all nodes the protocol run is over.
All nodes will therefore turn off their radios and allow their applications to access the
result of the protocol’s execution.

Figure 3.2: Example N-Phase protocol ported to Baloo’s round structure.

In order to support these adjustments, there are a number of common Baloo configurations
that will be used by all protocols, regardless of their underlying ST primitive:

• schedule.period. All protocols will share the same overall period. This is the length
of time allocated for the execution of the application after a successful iteration of the
protocol. This can be configured to adapt the protocol runs to the needs of the top-level
application.

• user_bytes. Due to the nature of the single global initiator, all protocol information
necessary for a given round will be disseminated within the control packet itself. The
host assigns two sections of the optional user_bytes configuration parameter: the first
holds the message sent by the host to all nodes in the cohort, the second holds the value
currently proposed by the host.

All above Baloo configurations, together with any additional primitive-specific adjustments
are necessary to enable the development of quick, simple, and clean protocol implementations.
The XPC layered library is written to take care of this unique configuration management,
handling all communication to GMW on behalf of the application.
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3.1.2 Initiator and Participant

Building alongside Baloo, all XPC protocols are implemented with one node acting as an
initiator and all other nodes acting as participants. Even though all xpc-common and xpc-
primitive code is independent to such a division, these two different node roles have slightly
different implementations for the various Baloo callback functions. We analyse such a distinc-
tion by viewing high-level pseudo-code for an XPC initiator node (see Algorithm 1) and an
XPC participant node (see Algorithm 2). Within the pseudo-code we denote as parameters
to the callback functions all variables present within the global state of the node that will be
modified during the execution of the function itself. All variables are passed by reference and
updates using the ← operator modify the internal state of the object referenced by the given
variable.

Algorithm 1 XPC Initiator Pseudocode
1: function on_round_finished(state, message, retr_cnt, reply_num)
2: retr_cnt← retr_cnt + 1
3: n_slots = XPC_COHORT_NODES - reply_num
4: if retr_cnt > XPC_TIMEOUT_RETRANSMISSIONS then
5: state = XPC_ABORT_STATE
6: else if reply_num == XPC_COHORT_NODES then
7: state_transition(state)
8: n_slots = XPC_COHORT_NODES
9: retr_cnt← 0

10: prepare_message(state, message)
11: Prepare the Control Packet with the message and n_slots
12:
13: function on_slot_post(state, message, reply_num, node_id)
14: if we have not yet received a reply from node_id while in this state then
15: process_message(state, message, reply_num)

The XPC initiator (usually the Baloo host) is in charge of the protocol’s progress and
therefore determines the contents of the control packets for each round (Algorithm 1). Con-
trol packets must always be generated one round in advance, hence the on_round_finished
callback executed at the end of round t must generate the new control packet which will be
sent to initiate round t+ 1.

When generating a control packet XPC will first determine how many nodes must be
scheduled to reply within the given round (set using the n_slots field on line 3). It then
determines if it has retransmitted more than the retransmission limit (line 4). If all nodes
have replied during the previous round (lines 6-9), the initiator’s state is updated to execute
the next protocol phase. The control packet is then prepared with the correct message which
should be sent by the protocol when at the given state (lines 10-11).

All other protocol logic is executed within the on_slot_post callback. The initiator pro-
cesses replies from all of the nodes and determines if the correct nodes have replied and
how each reply impacts the initiator’s state machine. Implementations for state_transi-
tion(...), prepare_message(...) and process_message(...) are protocol dependent and
will differ for each different voting protocol implemented using XPC.

Nodes participating within an XPC round (see Algorithm 2) will parse the control packet
and attempt to execute a state transition based on the new information sent by the host
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Algorithm 2 XPC Participant Pseudocode
1: function on_control_slot_post(state, control, message, retr_cnt)
2: retr_cnt← retr_cnt + 1
3: if retr_cnt > XPC_TIMEOUT_RETRANSMISSIONS then
4: state = XPC_ABORT_STATE
5: if state == XPC_ABORT_STATE then
6: message← XPC_DO_ABORT
7: prev_state = state
8: state_transition(state, control, message)
9: if prev_state 6= state then

10: retr_cnt← 0

11:
12: function on_slot_pre(state, message, node_id)
13: if it is node_id’s turn to transmit then
14: Send the message using the correct primitive

(line 8). Similar to the XPC initiator, all participant nodes are allowed to timeout if the
information sent by the host does not cause a change in their state after a set amount of
retransmissions (lines 2-4, 7, 9-10). This is to prevent a possible deadlock conditions. A host
may miss too many replies from a participant and time-out. The current round is aborted
and then a new value is proposed. Due to interference in the network a participant may miss
a control packet containing timeout-abort information and may infinitely wait for a specific
message from the host, stalling the whole network for multiple rounds. Upon reaching an
ABORT_STATE due to a timeout, participants show the same behaviour as if they received a
DO_ABORT message within the control packet. Similarly to the initiator code, implementations
for state_transition(...) are protocol dependent and will be specified for each protocol
implemented via XPC.

XPC therefore offers an API for stateless primitive manipulation. Individual protocols
are mainly left with the task of handling their internal state machine on top of a simplified
minimal Baloo callback structure. We therefore meet and solve C2 presented in Section 2.10.
In the next section we provide and explain two voting protocols implemented with XPC.

3.1.3 Example Voting Protocols in XPC

We provide reference implementations for Two-Phase commit (§ 2.2.2.1) and Three-Phase
commit (§ 2.2.2.2) protocols to illustrate the functionality of XPC. This further allows XPC
to match the existing literature (such as A2 Synchrotron), providing a common point of
comparison for all introduced reliability and robustness enhancements.

3.1.3.1 Two-Phase Commit

We provide a reference implementation of 2PC to illustrate XPC. Two-Phase commit can be
translated very neatly to XPC’s time-sliced paradigm. Assuming that all the nodes in the
network intend to commit, the phase structure is as follows:

• Phase 1 (see Figure 3.3) contains the CAN_COMMIT message in the Control packet, sent
by the host to all the nodes in the cohort. Nodes willing to commit the value reply with
VOTE_YES, otherwise they reply with VOTE_NO.



3. Hybrid ST Primitive and XPC 38

• Phase 2 begins when either all nodes have voted yes, or at least one node has voted no.
DO_COMMIT or DO_ABORT messages are conditionally sent in the control packet. Requests
to commit are acknowledged by nodes with HAVE_COMMITTED messages.

Figure 3.3: 2PC Protocol in Baloo with 1 retransmission.

The above breakdown assumes replies are always heard from all nodes. In the case of
missing replies, the host is given a maximum number of retransmissions (XPC_TIMEOUT_-
RETRANSMISSIONS) to attempt to reach stragglers within each phase. If these nodes remain

Algorithm 3 2PC Initiator
1: function state_transition(s)
2: switch s do
3: case XPC_INIT_STATE
4: s← XPC_READY_STATE
5: case XPC_READY_STATE
6: s← XPC_COMMIT_STATE
7: case XPC_COMMIT_STATE
8: Commit value
9: s← XPC_INIT_STATE

10: case XPC_ABORT_STATE
11: Abort value
12: s← XPC_INIT_STATE
13:
14: function prepare_message(s, m)
15: switch s do
16: case XPC_INIT_STATE
17: m← XPC_EMPTY_MESSAGE
18: case XPC_READY_STATE
19: m← XPC_CAN_COMMIT
20: case XPC_COMMIT_STATE
21: m← XPC_DO_COMMIT
22: case XPC_ABORT_STATE
23: m← XPC_DO_ABORT
24:
25: function process_message(s, m, r)
26: switch s do
27: case XPC_READY_STATE
28: if m == XPC_VOTE_YES then
29: r← r+ 1

30: if m == XPC_VOTE_NO then
31: s← XPC_ABORT_STATE
32: case XPC_COMMIT_STATE
33: if m == XPC_HAVE_COMMITTED then
34: r← r+ 1

Algorithm 4 2PC Participant
1: function state_transition(s, c, m)
2: if s == XPC_INIT_STATE then
3: s← XPC_READY_STATE
4: switch c do
5: case XPC_CAN_COMMIT
6: if s == XPC_READY_STATE then
7: if agree then
8: m← XPC_VOTE_YES
9: if disagree then

10: m← XPC_VOTE_NO
11: s← XPC_COMMIT_STATE
12: case XPC_DO_COMMIT
13: if s == XPC_COMMIT_STATE then
14: Commit value
15: m← XPC_HAVE_COMMITTED
16: s← XPC_INIT_STATE
17: case XPC_DO_ABORT
18: Abort value
19: s← XPC_INIT_STATE
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unresponsive after the maximum number of retransmissions is reached, the host times-out.
Upon timeout the host switches to a DO_ABORT phase.

Building on top of XPC, initiators and participants will have custom implementations
for the state and messaging processing functions. The logic behind state transitions and
generated messages can be found in the Algorithm 3 and 4 code listings. Most notably the
initiator switches to an abort state upon receiving the first VOTE_NO (Algorithm 3 lines 30-31)
and participants do not need to acknowledge DO_ABORT messages (Algorithm 4 lines 17-19).

3.1.3.2 Three-Phase Commit

We present a reference implementation of 3PC written with XPC. Building on top of 2PC,
Three-Phase commit aims to give additional guarantees on the correct termination of the
protocol attempting to reduce the number of inconsistencies. The biggest change can be
seen as the addition of “timeout commits”. Rather than always aborting, if all nodes have
acknowledged their intention to commit, but do not explicitly reply to a DO_COMMIT message,
upon timing out the initiator will commit the value, hopefully granting the network higher
resilience to communication failures.

Figure 3.4: 3PC Protocol in Baloo with 1 retransmission.

Very similarly to Two-Phase commit, 3PC also maps to the Baloo paradigm as follows
(Figure 3.4):

• Phase 1. Identical to 2PC.

• Phase 2. Upon receiving a VOTE_YES from all nodes, the host initiates the prepare stage
with a PREPARE message which has to be ACKed by all the nodes.

• Phase 3. When all nodes have ACKed their commit preparations, the initiator sends a
DO_COMMIT message which will be acknowledged by nodes with HAVE_COMMITTED replies.
If the host does not receive HAVE_COMMITTED messages from all nodes it will timeout but
identify the transaction as a commit regardless.

As outlined in the description of the different protocol phases, 3PC initiator (Algorithm 5)
and participant (Algorithm 6) pseudo-code is very similar to that of 2PC. Both implementa-
tions simply introduce an additional stage between the READY_STATE and the COMMIT_STATE
with its corresponding messages being exchanged.

3.1.3.3 Multi-Phase Protocol Properties and Guarantees

2PC and 3PC are implemented for XPC and may use both Glossy and Chaos ST primitives.
All combinations are correct (i.e. nodes commit upon the whole cohort voting yes, and abort
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Algorithm 5 3PC Initiator
1: function state_transition(s)
2: switch s do
3: case XPC_READY_STATE
4: s← XPC_PREPARE_STATE
5: case XPC_PREPARE_STATE
6: s← XPC_COMMIT_STATE
7: other cases same as 2PC
8:
9: function prepare_message(s, m)

10: switch s do
11: case XPC_PREPARE_STATE
12: m← XPC_PRE_COMMIT
13: other cases same as 2PC
14:
15: function process_message(s, m, r)
16: switch s do
17: case XPC_PREPARE_STATE
18: if m == XPC_ACK then
19: r← r+ 1

20: other cases same as 2PC

Algorithm 6 3PC Participant
1: function state_transition(s, c, m)
2: if s == XPC_INIT_STATE then
3: s← XPC_READY_STATE
4: switch c do
5: case XPC_CAN_COMMIT
6: if s == XPC_READY_STATE then
7: if agree then
8: m← XPC_VOTE_YES
9: if disagree then

10: m← XPC_VOTE_NO
11: s← XPC_PREPARE_STATE
12: case XPC_PRE_COMMIT
13: if s == XPC_PREPARE_STATE then
14: m← XPC_ACK
15: s← XPC_COMMIT_STATE
16: other cases same as 2PC

when at least one node votes against) and have different reliability and latency guarantees.
An important measure for reliability is transaction outcome: it analyses a situation where all
nodes in the network always intended to commit, checking how often the protocol was able
to terminate correctly committing the value. The aim is to match the results of the A2 (§2.6)
implementation: 100%.

In XPC’s 2PC implementation, if the host has committed a value, all other nodes must
have also committed the same value, though if the host as aborted a value, the cohort might
be in an inconsistent state. We can formalise this behaviour with the following properties:

• Liveliness: 2PC is a blocking protocol, simply meaning that if a node stops replying no
progress can be made. Within XPC, though, the protocol is forced to eventually timeout
in such a case, and thus “complete”. This way we are sacrificing safety for liveliness,
ensuring the protocol always completes for all nodes, yet not necessarily maintaining
consistency across the whole network.

• Safety: If the initiator commits then all nodes must have committed. If the initiator
aborts, though, there might be nodes which have incorrectly committed. This can
occur if the host sends out a DO_COMMIT request to all nodes, but never receives HAVE_-
COMMITTED replies from a few. In this case the host sends a DO_ABORT message, some
nodes might have already committed and are prohibited by 2PC to switch to an abort,
creating potential inconsistency in the network.

With 3PC the initiator is allowed to make a decision to commit a value regardless of
cohort-nodes failing, meaning that to a much greater degree, if compared to 2PC, overall
protocol liveliness is valued at the expense of safety. In 3PC if the host commits there could
be failed nodes in the network that have never committed, and if the host aborts due to a
timeout on the final stage (similarly to 2PC) the cohort could be in an inconsistent state.

In the next section we present 2PC and 3PC again to show how they perform with the
different communication primitives provided by XPC.
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3.2 Hybrid: Fast and Reliable Synchronous Transmissions

No optimal, fast and reliable algorithm can be constructed with a vanilla use of ST primitives
within Baloo. With XPC we have introduced the possibility to compare the latency and relia-
bility of identical protocol implementations with different underlying ST primitives. Sections
3.2.1 and 3.2.2 analyse the issues (in terms of performance and robustness) which arise when
executing multi-phase voting protocols with Glossy and Chaos.

In order to address C1, fixing the scalability, latency and reliability problems encountered
by the two primitives individually, Section 3.2.3 introduces Hybrid. Hybrid is a completely
new approach to Glossy-based flooding protocols which leverages the optimal Chaos latency
and optimises it with Glossy’s reliability. Hybrid takes full advantage of XPC’s capabilities
by switching among different ST primitives during the execution of a protocol phase. This
approach was not possible before the introduction of Baloo, and was only enabled by the
implementation of XPC.

3.2.1 Glossy Protocols

The simplest primitive to use with XPC protocols is Glossy (§2.3). XPC with Glossy uses a
time-sliced data dissemination approach. Given a network of k nodes (where one is the Baloo
host), each round the schedule.n_slots field is set to k − 1, meaning that all nodes, which
are not the global host, are scheduled to communicate in a given schedule.slot (see Figure
3.5a). All nodes will receive round information from the host within the control packet, and
they will reply to the host by broadcasting during their allocated scheduled slot. The payload
exchanged during each round contains the messages sent by each node as a reply to the host.
In Glossy’s case this is one byte of data (containing one of the messages determined by the
process_message callback).

(a) Glossy round execution (b) Glossy retransmission round

Figure 3.5: Execution of Glossy rounds with XPC. When nodes do not reply in a given slot
they are scheduled to retransmit in the subsequent round during the same phase.

Regarding their retransmission policy, Glossy-based protocols simply keep track of nodes
that do not reply in their scheduled slots and schedule them to retransmit in the next round.
This retransmission round will have a shorter length, as replies would only be missing for a
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subset of the whole network. This is illustrated in Figure 3.5b, node 3 and node 4 were unable
to successfully send their reply to the host node during the first round of transmissions. There-
fore the retransmission round (i.e. round 2) contains only two entries in the schedule.slot
section to specifically allow the nodes with missing replies to broadcast them.

3.2.1.1 Two-Phase Commit with Glossy

Two-Phase Commit is a simple protocol which benefits greatly from a time-sliced reliable
dissemination primitive such as Glossy’s. The protocol is unable to reliably reach all nodes
in one round for each phase. The introduction of retransmissions greatly boosts the overall
reliability, quickly reaching 100% (Figure 3.6a).

(a) 2PC-Glossy transaction outcome (b) 2PC-Glossy retransmission latency

Figure 3.6: Evaluation of transaction outcome and latency for 2PC-Glossy in FlockLab.

Retransmissions don’t have a heavy impact on the overall latency of the protocol (which,
as outlined by Figure 3.6b, is below 1 second for the 27 nodes present in FlockLab). This
is likely due to the protocol being forced to timeout due to missing replies from a couple of
nodes. Rescheduling specifically these few nodes to send a reply in the next round (which
therefore has a much shorter duration), solves the problem. It is important to note that the
first communication round counts as a “retransmission”, meaning that if only 1 retransmission
round is scheduled the protocol will never attempt to communicate with nodes which have
missed the first control packet.

When increasing the number of retransmissions, the protocol is no longer ever inconsistent
(i.e. when part of the nodes have committed the values, and part of the nodes have timed-out
and aborted). This is because when timing out the global host must then send an abort
message to all nodes in the subsequent round. Nodes are not required to acknowledge abort
statements, and if the control packet is lost, a node might never be notified the value it has
committed actually has to be aborted, therefore leading to an inconsistent state. By increasing
the reliability of the protocol, timeouts occur less often, increasing the consistency of commits
and aborts.

Sometimes Baloo makes a slight timing mistake when preempting the application to exe-
cute the middleware operations (such as listening for control packets). In these rare cases a
participant’s radio is turned on too late and the very first control packet for the first round
can be missed. When using only one retransmission, if the first control packet is missed, the
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full communication round will be missed by the node. This will cause the node to be unable
to either commit or abort the proposed value (and thus causing the protocol to timeout).

3.2.1.2 Three-Phase Commit with Glossy

The introduction of “timeout commits” doesn’t play a huge role in 3PC-Glossy’s correctness.
3PC-Glossy (Figure 3.7a) has a very similar reliability if compared to 2PC-Glossy (Figure
3.6a). The most significant impact, though, can be seen in latency (Figure 3.7b). As expected
3PC has one more phase, and thus a higher latency if compared to 2PC when tested on
FlockLab. This latency means that a Glossy-based consensus protocol would be very slow.

(a) 3PC-Glossy transaction outcome (b) 3PC-Glossy retransmission latency

Figure 3.7: Evaluation of transaction outcome and latency for 3PC-Glossy in FlockLab.

3.2.2 Chaos Protocols

Chaos (§2.5) has different timing requirements to Glossy, and is harder to configure to match
Baloo’s (and thus XPC’s) precisely timed and synchronous paradigm. Chaos is a ST primitive
which terminates dissemination rounds once a reply has been heard from all nodes. Baloo
requires a fixed execution time upper time bound for each round. Therefore, the sched-
ule.period section of the control packet is set to a mutable value which allows nodes enough
time to reply to the Chaos initiator. Missed nodes can be reached via retransmissions.

Only one schedule.n_slots is set, during which all nodes communicate simultaneously
until the end of the round. This is due to Baloo’s middleware, which schedules primitives for
execution and terminates the execution upon primitive “completion”. Glossy completes once
it has flooded/broadcast its packet enough times, whereas Chaos completes once its packet
has been acknowledged/seen by all nodes in the network. The payload attached to the packet
is a bitmap where each node will aggregate the message it wishes to send back to the host.
Votes are encoded as one bit for every node (i.e. technically two bits if we consider that each
payload carries around a bitmap flag to keep track which nodes have cast their vote and which
nodes are still missing).

If compared to Glossy, Chaos prioritises latency over reliability. As can be seen in Figure
3.8 Chaos floods occur in a “best-effort” fashion, where rounds should hopefully be long enough
to reach all nodes in the network and aggregate replies from them.
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Figure 3.8: Execution of an XPC Chaos round with 1 retransmission. As nodes aggregate
their vote into the payload they set their bits into the packet’s flags bit-field.

When requiring retransmissions due to missing replies, Chaos is unable to directly target a
specific node in the network. It is also unaware of how many iterations the protocol will require
for the missing packets to reach the host. The current policy within XPC is to schedule a
new round of the same length instructing all nodes to keep using the payload of the previous
round (Figure 3.8). The full payload is carried over to the new round and communication
ceases when no node is seeing new information in the packets being broadcast (as occurs in
Figure 3.8 after the fourth broadcast during the second round). This way the Chaos flood is
resumed exactly from where it was last stopped by XPC, and it is given extra time so that it
will terminate. This is not guaranteed.

3.2.2.1 Two-Phase Commit with Chaos

The biggest challenge encountered when using 2PC together with the Chaos ST primitive is
allocating a correct timing value to the slot size. If compared to Glossy, Chaos has more of
a local-gossip approach, where the message is constantly broadcast to all neighbours, which
receive it, aggregate their own message into the payload, and rebroadcast it themselves. Hence
two main problems can occur with varying slot sizes:

• Under-allocation. If the slot size is too small there is simply not enough time for
the nodes the furthest away from the host to send their reply across, broadcast after
broadcast. Differently from Glossy, there is no one-to-many communication and nodes
need to rely on their one-hop neighbours to disseminate the message across. Even with
varying levels of retransmissions, Chaos slots which are too small might not allow the
host’s message to be received by the whole network.

• Over-allocation. Bigger slot sizes end up having a big latency impact. Even though
ideally one would schedule as big slots as possible, in practice it is best to try and
minimise overall protocol execution time as much as possible. Faster protocols lead to
less energy consumption in radio broadcasts.
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Therefore the experimentation of 2PC-Chaos had to take into account two possible variables:
number of retransmissions and Chaos slot length. Practical experimentation (see Figure 3.9)
validated the assumptions: bigger slot lengths (i.e. 100ms or 200ms) can reliably get 100%
reliability, very similarly to Glossy.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 3.9: Consensus outcome of 2PC-Chaos with varying slot lengths in FlockLab.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 3.10: Latency of 2PC-Chaos with varying slot lengths in FlockLab.

The biggest difference from 2PC-Glossy, though, is the overall latency of the protocol
(Figure 3.10). Above 95% reliability can be achieved with 100ms long Chaos floods and
overall 325ms latency. Close-to 100% reliability can instead be obtained with 200ms floods
with a latency of 525ms (around 40% less than 2PC-Glossy when run on FlockLab). It can
be observed that with longer Chaos flood lengths, retransmission numbers do not have a big
impact on overall latency. This is likely due to the fact that retransmissions occur on very
few occasions, as the protocol already starts off with a high reliability from slot 1.

The results show that 50ms slots (Figure 3.10b) have a lower latency than 25ms slots
(Figure 3.10a). We can see the answer in the FlockLab GPIO (General Purpose Input/Output
pins, in this case used as LED lights) traces (Figures 3.11 and 3.12). When executing tests
on FlockLab the red LED is set whenever the radio is turned on, the purple LED is set
upon reception of radio messages and the yellow LED is set whenever a radio message is
broadcast. LED setting has little time overhead and increased accuracy (if compared to writing
outputs to serial) and thus offers a much less disruptive way to analyse packet exchanges and
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overall synchronization of the network during a protocol flood. Flocklab also offers a web
visualiser that allows the inspection of these GPIO outputs. As Glossy based protocols keep
synchronising the network, all of the logs will have matching timestamps across the various
nodes in the network, and therefore can be compared.

(a) Flocklab Radio LED tracing

(b) Breakdown of Chaos retransmissions

Figure 3.11: Breakdown of FlockLab Radio LED tracing for 2PC-Chaos with 25ms slots.

A snapshot of the execution of 2PC-Chaos with 25ms slots and 2 retransmissions can be
seen in Figure 3.11a. This analysis is carried out over 2 retransmissions as the 1 retransmission
implementation is never able to commit (see Figure 3.9a); in particular, of the 4 protocol
executions present in the image (i.e. the four column of LED traces), only the right-most was
able to commit (and can be seen enlarged in Figure 3.11b). All other executions ended up
timing out and aborting due to missing replies.

From the breakdown we can see that a successful commit actually takes 5 retransmissions:
2 retransmissions for Phase 1, 2 retransmissions for Phase 2, and a final retransmission to com-
municate the end of the 2PC round to the network. When committing the protocol is always
using 2 rounds for each communication phase, which is a sign of a too small communication
slot: not all nodes can be easily reached, and retransmissions are thus constantly required.

(a) Flocklab Radio LED tracing

(b) Breakdown of Chaos retransmissions

Figure 3.12: Breakdown of FlockLab Radio LED tracing for 2PC-Chaos with 50ms slots.

When analysing 2PC-Chaos with 50ms slots we see a completely different picture. In this



3. Hybrid ST Primitive and XPC 47

case the FlockLab GPIO trace (see Figure 3.12a) shows 3 successful commit runs (the left-most
ones), and a timeout abort run (right-most). When looking into any of the successful commit
executions (Figure 3.12b), it shows that with 50ms slots, Chaos tends to execute 3 rounds
before committing (if compared to the 5 overall rounds with 25ms slots). And the overhead
cost of scheduling additional rounds together with the in-between gap times (necessary to allow
callback functions to execute and to prevent network traffic clashes), is actually outweighed
by having slightly longer slot times. The overall impact of having to send additional control
packets to schedule more rounds means that 1 retransmission 2PC-chaos with 100ms slots
has higher reliability and slightly lower latency that any number of retransmissions with 25ms
slots.

3.2.2.2 Three-Phase Commit with Chaos

Overall 3PC-Chaos suffers from the same reliability and latency concerns as 3PC-Glossy. From
a reliability perspective (Figure 3.13), 3PC performs worse than its two-phase counterpart even
once we consider the “timeout commit” feature. This is likely due to additional Chaos rounds
being more highly impacted by stragglers that compromise the full protocol run. Similarly to
2PC-Chaos, though, close to 100% reliability can be achieved with 200ms transmission slots.

As expected, latency is affected by the introduction of an additional communication round.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 3.13: Consensus outcome of 3PC-Chaos with varying slot lengths in FlockLab.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 3.14: Latency of 3PC-Chaos with varying slot lengths in FlockLab.
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Overall latencies, though, remain much lower than their counterpart when using Glossy (Figure
3.14). Chaos is therefore a viable ST primitive that helps minimise the overall protocol
execution time, yet unfortunately it simply lacks the sufficient reliability to be a robust long-
term voting solution, or the basis for the implementation of a consensus protocol for low-power
multi-hop networks.

3.2.3 Hybrid

In this section we introduce a novel communication architecture that solves the latency issues
of Glossy and the reliability issues of Chaos. Having examined Glossy and Chaos imple-
mentations of two and three-phase commit protocols within XPC, it can be said that both
approaches have a number of advantages, but also quite a few drawbacks.

• Glossy-based approaches are incredibly reliable across retransmissions, yet latency suf-
fers greatly when scaled across large networks. This is because inherently every single
node within the network has to be have its own communication slot scheduled in order
to reply back to XPC’s host node. Furthermore the size of the control packet grows
linearly with the size of the network. Within the schedule.slots there needs to be
room to allocate at least every node once. Glossy-based protocols can be visualised as a
“serial” execution of tasks, where nodes are requested to transmit in an orderly-fashion
one after the other.

• Chaos-based algorithms have much better latency, yet they suffer from reliability. It is
very hard to guarantee that all nodes within the network will be able to reply during
a round. Nodes cannot be reached individually and retransmission rounds therefore
need to have much greater lengths. Furthermore the size of the payload exchanged by
the nodes during each round grows linearly with the size of the network, as it needs to
contain one bit of information from each node. Chaos-based protocols can be visualised
as a completely “paralllel” execution of tasks, where all nodes keep trying to transmit
to all others until the protocol is terminated or all nodes have received replies from all
participants in the network.

Hybrid introduces a novel multi-ST primitive retransmission policy that leverages Baloo’s
middleware support for fully configurable flooding rounds. The first retransmission of each
phase is executed using a Chaos flood (see Figure 3.15). Based on the flood’s outcome, starting
from the second retransmission, Glossy is used. This allows the host to receive most replies
during the first Chaos round and thereafter uses Glossy to quickly retrieve information from
all straggler nodes which were unable to broadcast during the first slot. Up to a maximum of

Figure 3.15: Overview of Hybrid execution across multiple phases. Each phase starts with a
Chaos dissemination round, followed by a variable number of glossy floods.
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XPC_TIMEOUT_RETRANSMISSIONS − 1 Glossy floods may be scheduled, after which, if still no
reply is heard from every node, the protocol times-out.

Hybrid solves all reliability problems experienced by Chaos when forced to fit a specific
timing model such as Baloo’s. It is also able to achieve close-to-Chaos latency, overall providing
a completely new, fast and reliable means of executing wireless communication. Hybrid offers
a practical solution to the scalability of ST primitives: regardless of network density and
regardless of number of nodes it enables the creation of quick, efficient and reliable protocols
that reach every single available mote. Hybrid therefore meets and solves C1 presented in
Section 2.10.

3.2.3.1 Hybrid Two-Phase Commit

As XPC offers a complete separation of all ST primitive code from the protocol implementa-
tion, “hybrid” based approaches only differ in the parameters set within the project’s config-
uration file. It is therefore important to configure the two individual ST primitives correctly
to ensure the lowest possible latency with the highest reliability.

The protocol could, in fact, suffer from both drawbacks of Glossy and Chaos. If the initial
Chaos slot does not communicate with enough nodes then too many replies will be required
during the subsequent Glossy rounds, severely impacting the overall protocol latency. If the

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 3.16: Consensus outcome of 2PC-Hybrid with varying slot lengths in FlockLab.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 3.17: Latency of 2PC-Hybrid with varying slot lengths in FlockLab.
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initial Chaos round is too large we likely might be wasting time waiting for pending replies
from very few nodes; probably a shortened Chaos slot, and subsequent Glossy retransmissions,
would have retrieved the replies from these stragglers faster.

Hence when testing Hybrid, in order to guarantee an as-close-as-possible performance to
Chaos, we tested it using the same Chaos slot sizes. These slot sizes are only used to determine
the length of the first round of each protocol phase, after which Glossy uses its own, fixed, slot
lengths. What we can see when analysing Figure 3.16 is that, just as expected, the Glossy
retransmissions are able to reliably bump up the protocol reliability to 100%. The latency
(Figure 3.17) is also minimally affected (if compared to 2PC-Chaos). Being able to converge
this quickly to 100% correct transaction outcome allows nodes to transmit minimal number of
messages: fewer messages imply big energy savings and it is always important to ensure that
motes save on using as many communication rounds as possible to ensure maximal energy
efficiency.

3.2.3.2 Hybrid Three-Phase Commit

Due to its additional third phase, 3PC has already proven itself to slightly fall short on
reliability (if compared to its 2PC counterpart) both with Glossy and Chaos implementations.
Unsurprisingly our 3PC-Hybrid implementation does also require additional retransmissions

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 3.18: Consensus outcome of 3PC-Hybrid with varying slot lengths in FlockLab.

(a) 25ms slots (b) 50ms slots (c) 100ms slots (d) 200ms slots

Figure 3.19: Latency of 3PC-Hybrid with varying slot lengths in FlockLab.



3. Hybrid ST Primitive and XPC 51

to reach 100% reliability (Figure 3.18).
Latency (see Figure 3.19) is also once again comparable with 3PC-Chaos, offering a much

needed speedup over the Glossy implementation. Overall this data highlights how our novel
Hybrid approach to scheduling ST primitives can potentially generate a whole new family of
fast reliable voting protocols built on top of XPC and Baloo.

3.3 Next Steps

Chapter 3 has introduced Hybrid, a novel, efficient and reliable ST primitive. The implemen-
tation of Hybrid relies on the introduction XPC, a new library which simplifies the use of
different ST primitives for the creation of multi-phase voting protocols built on top of Baloo.

Our analysis began with XPC. Section 3.1 outlines its 3 fundamental aspects: protocol
implementation, common code and ST primitive interface. Similarly to Baloo, XPC has split
initiator and network-participant sections in the code. We have analysed the difference in the
callback structure and state-machines of the two different kinds of nodes, providing examples
of how two-phase and three-phase commit protocols can be translated to XPC’s time-sliced
paradigm.

Two main protocol families stem out of XPC, differing mainly on the underlying ST prim-
itive used. Section 3.2.1 analyses Glossy-based protocols and their linear time-sliced approach
to ensuring reliability across retransmissions. Section 3.2.2 investigates Chaos showing how it
is still possible to have close-to 100% transaction outcome with much faster, yet less orderly,
local-gossip flooding and dissemination. There are though problems in both approaches either
in terms of latency or robustness.

The analysis concludes in Section 3.2.3 with our first contribution: Hybrid. Hybrid is
introduced as a novel multi-ST primitive protocol which is able to leverage the fast flooding
of Chaos and the high reliability of Glossy. With the implementation of Hybrid and XPC we
adress and solve C1 and C2.

Evaluation of Hybrid-based protocols, together with comparison with state-of-the-art im-
plementations, can be found in Section 6. Yielding very promising results the next step is
to build a new family of voting protocols which can fully utilise the scalability and latency
benefits of this new hybrid use of ST primitives: the Wireless Part-time Parliament.



4 | WISP and the Wireless Part-time
Parliament

This chapter introduces WISP, a Paxos implementation for XPC based on the Hybrid ST
primitive. To support Paxos-based protocols we present WiPP, the first Wireless Part-time
Parliament, an extension of the XPC library tailored for majority-based protocols and appli-
cations. To the best of our knowledge there is currently no other library or project in literature
which supports this level of voting configurability, while guaranteeing reliable dissemination
and Chaos-like latency.

In 2019 WPaxos [32] introduced the first majority-based consensus primitive based on top
of Chaos to the realm of WSNs. Borrowing many concepts from Leslie Lamport’s Paxos [24],
today’s most used consensus protocol, WPaxos allows a proposer to globally disseminate a
value after a majority of nodes have accepted to commit it. Implemented using A2, WPaxos
relies on Chaos floods to disseminate values and is unable to reliably reach the whole network
in the presence of node failures or interference. WISP uses the Wireless Part-time Parliament,
together with Hybrid dissemination rounds, to match, and better, the latency and reliability
of WPaxos, while providing the same safety guarantees and consensus properties. By using
WiPP and Hybrid, the implementation of WISP addresses C3.

Our discussion begins in Section 4.1 with an overview of the Wireless Part-time Parlia-
ment’s internal layered structure. We analyse the implementation of majority voting and
global dissemination, which are necessary to support consensus protocols. Section 4.2 then
introduces WISP, a new Paxos-based protocol implemented within XPC’s stack.

4.1 WiPP fundamentals

The Wireless Part-Time Parliament is a new XPC-based protocol which enables the network
to execute majority voting. Rather than requiring a reply from each member of the cohort
(operation executed by universal-voting protocols such as 2PC and 3PC) majority-voting
rounds are allowed to proceed to the next phase once b50% + 1c of the cohort nodes have
replied. Wireless multi-hop networks benefit greatly from majority-based protocols in the
following ways:

1. Resiliency to failures. The failure of a single node in a standard 2PC implementation
causes the whole protocol to block and be unable to make progress. A majority-based
protocol with a quorum of b50% + 1c could not only make progress with up to f node
failures, but it would also constantly be able to guarantee consistency. When querying
the network for a protocol’s result there will always be a majority of (alive) nodes which
would agree on what values have been agreed upon and committed.
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2. Lower latencies. When implementing protocols for wireless multi-hop networks, la-
tency is important. The sooner nodes are able to complete a protocol round, the quicker
they are able to resume their sensing operations. Protocols should always aim to have
minimal impact in the duty-cycling of an individual mote.

3. Fewer exchanged packets. A final consideration is energy efficiency. The higher the
number of messages which keep being exchanged and flooded by the network, the more
energy will be consumed. WSN motes are bound by a limited battery supply which
often determines their overall lifetime; the fewer times a node needs to use its radio, the
longer it will be able to participate in the network.

4.1.1 WiPP alongside XPC

The Wireless Part-time Parliament has been implemented to complement XPC’s layered struc-
ture and extend it with new functionality. By introducing WiPP we bring three new additions
to XPC (Figure 4.1), all these features being backwards-compatible with existing protocols
and application implementations:

Figure 4.1: Overview of the contributions introduced by WiPP to the XPC library. WiPP
adds optional majority round voting and multiple proposing nodes.

• Multiple Proposers. The applications using XPC may now initiate round proposals
from any node in the network. When using the single proposer option only the XPC
host is able to propose values at each protocol run. With multi-initiation any arbitrary
number of nodes may propose values and all values will be voted sequentially. The multi
proposer feature is transparent to the protocol layer, meaning that no state-machine or
code alteration needs to be performed in order to enable it. A more in depth analysis
on multiple proposers can be found in Section 5.1.

• Majority Voting. Shifting from 2PC’s and 3PC’s universal voting strategy (where a
reply must be heard from all nodes in the cohort in order to proceed), majority voting
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allows a round to complete when a quorum of nodes have given the same reply. As
nodes are only allowed to reply in a binary yes/no fashion this guarantees our rounds
will eventually terminate.

• WiPP Protocol. The Wireless Part-time Parliament is offered as a protocol which
can be used by Contiki applications, similarly to two and three-phase commit. Being
built within XPC’s stack it can be configured to use any ST primitive and proposer
methodology.

4.1.2 Global Dissemination

WiPP features reliable global dissemination of committed values, additionally to offering a
fast and flexible solution to majority-style voting on wireless multi-hop networks. A hurdle
blocking the wide-spread adoption of majority protocols in the WSN community is the lack
of a globally-coherent state upon completion. All nodes which are not part of the quorum
may be potentially unaware of the committed value, and ignore the protocol round entirely.
This is not a problem for wired networks. Each node will simply attempt to communicate
with the cohort and eventually a majority of nodes will provide the committed value. Such an
operation is incredibly energy-expensive for a wireless low-power node, and does not fit with
Baloo’s synchronous approach.

WiPP introduces a global dissemination round at the end of its execution in order to min-
imise individual mote power usage and to mitigate the problem of having nodes autonomously
decide whether or not to query the network as whole to determine the outcome of a transac-
tion. This approach is not new to the WSN field, as WPaxos [32] also uses a global Chaos
flood of committed values to ensure the whole network constantly shares the same common
state. With the addition of the global dissemination all nodes will always be aware of the
outcome of each voting round for each proposed value. This strong guarantee allows WiPP to
not only be used for quick majority-based voting rounds, but also for reliable distribution of
the transaction outcomes.

4.1.3 Majority voting for ST primitives

We analyse the behaviour of the underlying ST primitives (and XPC) to determine any addi-
tional adjustments which must be made when transitioning from universal-voting to majority-
based voting.

• Chaos requires no adjustments. Chaos floods see no difference during their execution
as there is no method to deterministically predict how many nodes will be contacted
and will reply during a round. What changes is the “end” condition for a Chaos round
as it now requires only b50% + 1c of the nodes to have performed the same operation
(i.e. either a commit or an abort) before switching to the next protocol phase.

• Glossy requires further engineering. Due to its time-slotted nature, the schedule at the
beginning of a Glossy round has to carry information regarding which, and how many
nodes will be broadcasting their replies. There is a problem; at the beginning of a Glossy
round the protocol is unsure of how many nodes should be scheduled to broadcast. This
is because only a quorum of the nodes is required to reply with the same message, and
it is not necessary to hear back from every node in the cohort. We refer to this problem
as the Retransmission Cohort Problem (RCP).
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With Glossy the Retransmission Cohort Problem can be expressed in terms of round
allocation size. This problem can be analysed in the case of a simple protocol which proposes
a value and proceeds to the next stage based upon a majority-reply from the network. Each
node is allowed to reply in favour (VOTE_YES) or against (VOTE_NO) the proposed value. Once
the host has received a majority of replies for either message it proceeds to the next stage.
RCP consists in knowing what is the minimal number of nodes the host should schedule to
reply within a round to reach a quorum of replies in the least amount of time and most
energy-efficient way possible.

A simple example of RCP can be theoretically analysed for a network the same size as
Flocklab’s with 27 nodes and a quorum set at 14 votes. At the very first round a conservative
scheduler might decide to randomly pick 14 nodes in the network and ask for their vote against
a proposed value. Assuming each node has a 70% chance of agreeing with a value proposed
by the host (hence issuing a VOTE_YES reply, and a 30% chance of replying with a VOTE_NO),
out of the 14 expected replies, the host will, on average, receive 10 in favour and 4 against.
In this average case the quorum is not reached and a new communication round has to occur
(which will cause a higher energy cost for the nodes and an overall higher protocol latency).

The scheduler now determines how many additional nodes should be contacted in the
second round, given that it already has received a specific number of replies in favor and
against. As the quorum is set at 14 nodes, an attempt to minimise the number of nodes to
ask causes the host to schedule 4 random nodes (of the remaining 13) to reply (as 10 replies in
favor were received). With a 70% VOTE_YES rate such round is likely to only receive 3 replies
in favor on average, forcing the scheduler to execute another additional round (following the
law of diminishing returns). A conservative scheduler can therefore risk to keep scheduling
additional rounds with a decreasing numbers of scheduled nodes per round. This will increase
protocol latency as a new control packet has to be sent out each time.

Algorithm 7 Determines number of n_slots scheduled in the next Glossy round
1: function xpc_process_majority_vote(votes_yes, votes_no)
2: max_n←min(votes_yes, votes_no)
3: if votes_yes > QUORUM then
4: Proceed to next state and return
5: else if votes_yes > QUORUM then
6: Switch to abort state and return
7: else
8: n_slots← (QUORUM− max_n) + ∆Q
9: n_slots←min(XPC_COHORT_NODES− (votes_yes + votes_no), n_slots)

10: Schedule a new majority round with n_slots scheduled nodes

The Wireless Part-time Parliament solves the Retransmission Cohort Problem by introduc-
ing ∆Q, a configurable parameter used when scheduling replies from nodes during a Glossy-
based round. When determining the n_slots parameter of an XPC majority round (see
Algorithm 7) the protocol will normally attempt to use the minimal number of nodes that can
be scheduled in the optimistic view of receiving the same reply from every contacted node. By
setting ∆Q to a non-zero value, additional nodes will be scheduled during the next round. To
ensure that nodes are not queried redundantly for replies, the algorithm stops once it either
reaches the quorum or each of the nodes in the cohort has replied (and therefore can make no
further progress).

The introduction of ∆Q to solve the Retransmission Cohort Problem offers a trade-off
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(a) ∆Q = 0 (b) ∆Q = 3

Figure 4.2: Comparison of expected number of replies across retransmissions for Glossy floods
on FlockLab with varying probability of nodes committing.

between single-round latency and overall number of retransmissions. A comparison simulation,
based on numerical analysis, is shown in Figures 4.2a and 4.2b. We analyse the impact of
using a ∆Q of 0 or 3 in the case where nodes in the network have varying probabilities of
issuing a VOTE_YES reply.

Figure 4.2 visualises the impact a larger ∆Q has in speeding up the convergence towards
the network quorum (b50% + 1c of the 27 nodes) by reducing the number of required retrans-
missions. If the network has an overall high VOTE_YES rate it does mean we are likely to
overshoot the quorum (as occurs in the 100%-90% plots in Figure 4.2b), yet overall it reduces
the amount of retransmissions required for potentially unstable networks (80%-50% plots).
Each retransmission has a fixed cost as it needs to reliably flood a new schedule. A focal point
of the analysis of protocols using the Wireless Part-time Parliament is to determine what
impact varying amounts of ∆Q have on the overall protocol latency.

4.2 WISP: WiPP Simple Paxos

An efficient implementation of Paxos was introduced to low-power wireless networks byWPaxos
in March 2019 [32]. It mapped the algorithm to Synchrotron’s continuous Chaos flooding
mechanism, allowing all nodes in the network to be hypothetical proposers during a WPaxos
commit round (§ 2.7). Relying exclusively on Chaos floods, WPaxos is unable to reliably reach
the whole network in the presence of node failures or interference as single nodes cannot be
individually scheduled to reply. With our newly introduced Wireless Part-time Parliament
within XPC’s Baloo-based stack we introduce WiPP Simple Paxos (WISP for short), a new
take on consensus-based commit protocols. WISP is able to match, and better, the latency
and reliability of WPaxos, extending it’s functionality by including complete network-wide
voting capabilities.

Lamport’s Paxos is a two-phase protocol (§ 2.2.3). During the first phase (prepare-promise)
proposers send ballot numbers to all acceptors searching for the highest proposal number
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Figure 4.3: Overview of the two phase structure of a WISP proposal

(PN). When a proposer receives acknowledgement that its PN is higher than any other PN it
switches to phase two (accept-accepted) where it tries to make a majority of nodes commit
it’s proposed value (PV). WPaxos adopts this approach and adds a third phase, a global
dissemination phase of the proposed value, at the end. WISP leverages the presence of the
global Baloo host to simplify WPaxos’ phase structure to maintain two phases (Figure 4.3):

1. Voting phase. Baloo requires a host to be present at all times in the network. The host
is in charge of generating every round’s control packets and guarantees the synchronous
timing structure of the middleware. WISP leverages the presence of the global host to
propose all values, treating it as a global leader. As all values are proposed by a single
node there is no need to use proposal numbers during rounds: the presence of the leader
guarantees that no more than a single value will be proposed at once, and additionally
provides a global ordering to all values proposed to the network. Needing no PNs, WISP
removes the prepare-promise phase of Paxos. Additionally the second phase is modified
such that nodes can vote on each value in a binary yes/no fashion, rather than being
only able to accept (and thus commit) the proposed values. The protocol only requires
a majority of nodes to agree before continuing to the next phase.

2. Dissemination phase. The host initiates a second phase to disseminate the transac-
tion’s result in order to guarantee that all nodes in the network are aware of the outcome
of the voting phase. Dissemination is reliable and must be acknowledged by all network
nodes.

The novelty of WISP is in its majority-based voting. In WPaxos nodes are only able
to reject proposal numbers that are not monotonically increasing with the highest currently
stored PN. With WISP participants can vote on the actual transaction content, potentially
rejecting proposals they do not wish to see committed.

Even though WISP removes the prepare-promise phase, it is still a Paxos algorithm as it
maintains the safety and liveliness properties described in Section 2.2. Termination, agree-
ment, integrity and validity are all satisfied due to the presence of the global leader which
guarantees a global ordering for all proposed values. Due to the global dissemination round
all transactions will be locally ordered on each individual node. We therefore maintain the
correctness of Paxos, providing an efficient implementation for low-power multi-hop networks.

Our WISP implementation is a vanilla adaptation of the Wireless Part-time Parliament. It
leverages the WiPP implementation written for XPC together with the single proposer feature
and hybrid ST primitive (§ 3.2.3). This allows us to have efficient and quick majority voting
rounds (with Chaos), reliably reaching all stragglers with the Glossy retransmissions.
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4.2.1 ∆Q and M-Slot parameters

WISP is a Wireless Part-time Parliament protocol built especially for the Hybrid ST primi-
tive. Glossy or Chaos-only approaches are supported and configurable, but lack robustness,
reliability and low latencies. The voting and the dissemination round commence with a Chaos
flood and then continue with Glossy rounds. The majority round can modify both Chaos and
Glossy to guarantee protocol speedups and faster convergence towards the quorum. WISP
focuses mainly on two parameters:

• ∆Q size. Introduced and analysed theoretically in Section 4.1.3, ∆Q determines the
number of additional nodes scheduled for retransmission. Large ∆Q values ensure faster
convergence during Glossy floods, yet will overall impact the protocol’s latency.

• M-Slot size. Chaos rounds were originally designed to reach all nodes in the network.
Majority voting, instead, has to only reach a quorum. Majority Chaos rounds can be
configured to have an arbitrary “M-Slot” length, rather than sticking to the default 25,
50 or 100ms sizes for Chaos slots. Large M-Slot values will grant no latency benefit, but
it is possible to find a local point of minima where a given M-Slot size reaches enough
nodes to guarantee replies from the quorum.

Determining the optimal values for ∆Q and M-Slot is dependent on the network node
density and overall width. We apply the theoretical analysis from Section 4.1.3 to show the
effects of ∆Q and M-Slot in an empirical example. Figures 4.4 and 4.5 show the overall impact
different values of ∆Q and M-Slot have on protocol latency and the number of majority round
retransmissions. As we increase the size of ∆Q, the number of retransmissions required for
protocol convergence during the majority round decreases. This is also seen for the most
uncertain network conditions where only 50% of the nodes are likely to vote in favour of a
proposed value. Latency, though, lies at an optimal point between too little (i.e. 0) and too
large (i.e. 10) values of ∆Q.

(a) Average commit latency (b) Average number of retransmissions

Figure 4.4: Evaluation of WISP with different ∆Q values and 25ms M-Slot size on FlockLab.
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(a) Average commit latency (b) Average number of retransmissions

Figure 4.5: Evaluation of WISP with different M-Slot lengths with ∆Q of 3 on FlockLab.

Figures 4.5a and 4.5b show the latency and retransmission count for different values of
VOTE_YES rates. The VOTE_YES rate is the probability that a node will vote yes for each
proposed value. The probabilities are uniformly distributed and independent, and each point
is the average of 100 runs. The VOTE_YES rate was introduced to mimic hypothetical network
scenarios where varying amounts of nodes wish to commit the values flooded by the global
host.

For probabilities greater than 50% the network is quite stable and is likely to commit all
values. Below the 50% threshold the data for commit latency becomes really unstable because
fewer data-points are available. An empirical analysis of results shows that in the case where
nodes have a 30% VOTE_YES rate, the network is able to commit in less than 5% of protocol
runs. With a 20% VOTE_YES rate, commit rates are below 1%. Intuitively this occurs because
with VOTE_YES rates above 50%, on average each round, above 50% of the replies from nodes
will be yes, meaning that the quorum is constantly reached. With a 30% VOTE_YES rate on
average only 8 of the 27 Flocklab nodes would wish to commit a proposed value. It is thus
incredibly unlikely for the network to reach the 14-node quorum.

Varying both ∆Q and M-Slot lengths generates bell-shaped curves for retransmission
counts (Figures 4.4b and 4.5b). The further away the network is from abort (0% VOTE_YES
rate) or commit (100% VOTE_YES rate) certainty, the higher the number of retransmissions
that have to be executed in order to reach a quorum of nodes with the same reply.

Obtaining optimal values for ∆Q and M-Slot is non-trivial and topology dependent. While
testing we found that 35ms M-Slot values coupled with a ∆Q of 3 was able to reliably yield the
lowest latencies and highest transaction outcome across retransmissions (see Figure 4.6). Any
application of WISP will, though, have to ensure that appropriate tuning of these parameters
is performed in order to maximise the protocol’s performance.

WISP thus extends the idea of consensus in low-power wireless networks to a configurable
majority voting paradigm. As there is no needs for individual proposers to fight for proposal
numbers (as all transactions are executed via the global host), WISP is able to obtain minimal
latency (Figure 4.6b) while guaranteeing perfect reliability starting from 2 retransmissions
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(Figure 4.6a). By using the Hybrid ST primitive, WISP offers a reliable solution to consensus
in WSNs, meeting and solving C3 presented in Section 2.10.

4.2.2 Applications

Out of the box WISP is configured to behave as a majority-based parliament. Similar-to-Paxos
guarantees can be obtained if all nodes have a 100% approval rate of proposed values. As all
protocols use XPC, all voting code is abstracted to an application-defined callback function.
Any arbitrary code can therefore be executed to determine whether a node wishes to vote in
favor or against or a specific proposed value. This opens up for a number of potential uses:

• Configuration management. A common configuration management task is to reli-
ably disseminate channel allocations, in channel hopping communication schemes. It is
important for the network to hop to channels which guarantee a benefit to a majority
of nodes, and not only to the new channel’s proposer. WISP excels at such forms of
configuration management, where nodes are allowed to vote before blindly accepting a
new setup. Overall the network will constantly be more stable and more resilient to
failures or congestion.

• Leader election. ST primitives can be used to greatly decrease the latency of all
leader election protocols, and this is a topic of recent academic interest [3]. WISP allows
applications to implement fully-configurable election rounds where proposed leaders can
be determined based on metadata stored within the node itself. This could include
routing information held by the protocol to exclude leaders it knows it has poor link
reliability to.

• Clustering. Dense networks suffer from taking longer time to converge during Chaos
floods and a number of approaches such as local clustering have been proposed [30].
WISP-based applications can be tailored for this functionality, having nodes perform
leader-election rounds to determine cluster heads and then partition the large network
into individual sub-clusters.

• Failure free commits. What really makes WISP shine, though, is its ability to commit
in the presence of failures. Not all nodes need to be present during a round’s execution

(a) WISP transaction outcome (b) WISP retransmission latency

Figure 4.6: Evaluation of transaction outcome and latency for WISP in FlockLab. 100 runs
per data-point were executed with 35ms M-Slot values and a ∆Q of 3.
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and only a quorum of the total cohort has to reply to the host with the same message.
WISP is therefore inherently failure tolerant. If nodes are expected to commit on all
rounds, it means that potentially up to 50% − 1 nodes could be allowed to fail with
the protocol still being able to terminate. Networks with lossy links or potentially
misbehaving nodes could greatly benefit from such a guarantee where an individual
straggler mote does not delay or actually timeout the whole network’s protocol execution.

4.3 Next Steps

This chapter has introduced WISP together with the Wireless Part-time Parliament, an ex-
tension of the XPC library which allows for network-wide majority voting of individual values.

WiPP is provided as a protocol for XPC and may be used by any application layer which
should require it. Section 4.1 goes through the fundamentals of WiPP covering techniques
used to ensure low latency and fast protocol convergence such as ∆Q, M-Slots and the final
global dissemination round.

A vanilla implementation of the Wireless Part-time Parliament is WISP, an enhanced
Paxos adaptation for low-power multi-hop networks. Being able to match the latency of
state-of-the-art protocols such as WPaxos, WISP (analysed in Section 4.2), opens up XPC for
a variety of reliable real-world applications. Solving C3, WISP provides a solution for WSN
tasks which require reliable consensus, such as leader election, configuration management and
local group clustering. Evaluation of the WISP protocol, in terms of latency and reliability,
together with comparisons to the WPaxos implementation, can be found in Section 6.

To complete XPC’s support for network-wide consensus the next step is to allow for any
node in the cohort to propose values to the global leader. The next chapter extends XPC with
multiple initiator functionality and introduces WIMP, a WiPP extension for Multi-Paxos.
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Proposers

This chapter presents WIMP, a Multi-Paxos implementation for XPC based on the Hybrid
ST primitive. To enable all nodes in the network to propose values to the Baloo host we
extend XPC to support multiple proposers. Multiple proposal is independent of protocol
implementation and can be used by any protocol together with any ST primitive supported
by XPC. WIMP uses multiple proposers, together with the Hybrid ST primitive and the
Wireless Part-time Parliament to provide a reliable, low latency Multi-Paxos implementation.

Section 5.1 introduces the multiple proposer feature. It analyses how the use of contention
slots, together with minimal additions to the payload of primitives used for dissemination,
guarantees proposal liveliness and safety. Section 5.2 then introduces WIMP, analysing its
implementation within XPC.

5.1 Multiple Proposers

In this section we present an extension to WiPP and XPC to allow for multiple proposers.
Multiple proposers means that any node within the network is allowed to propose during a
round with the guarantee that all proposed values will eventually be voted upon, and their
respective transaction outcome globally disseminated. Due to the presence of the global host,
most protocols developed for Baloo leverage the leader to execute all value proposals. This
is a valid and energy-efficient approach, minimising the number of rounds required for each
proposals, therefore maximising the mote’s duty-cycling times.

There are a number of potential applications, where values may be generated from any
node in the network and be voted upon to determine global acceptance. Protocols such as LWB
[14] allow for this many-to-many sharing of payloads. The recent WPaxos [32] implementation
does also supports multiple values being proposed concurrently within the network, with one
of them being eventually committed and disseminated to all nodes.

Multiple proposer is included in XPC, and is subject to the following guarantees:

1. All values will be proposed. If the application layer for any node wishes to propose a
value before a protocol run, said value will eventually be proposed during the subsequent
protocol run.

2. All values will be voted upon. Once a value is proposed, it will be voted on by at
least a quorum of nodes.

3. Protocol latency increases inversely to inter packet arrival rate. The packet
generation rate can be modelled in terms on an hypothetical per-node IPI (inter packet
interval). Given a network of N nodes, in order to obtain an average of one value being
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proposed each round, motes must have an IPI of N rounds (i.e. generating a packet
every N rounds). As the IPI decreases for each node (therefore generating values to be
proposed more frequently), the overall latency of each protocol run will increase as it
must express and disseminate a vote for each of these values.

5.1.1 Technical Overview

In order to guarantee an implementation of multi proposers which is transparent to the pro-
tocol layer, most of the scheduling has to occur behind the scenes leveraging the existing
round structure. To accommodate multiple proposers XPC uses contention slots. During a
contention slot all nodes that are willing to propose a value to the network will broadcast the
value at the same time. The broadcast uses Glossy floods. Due to the capture effect there is a
high probability that at least one of these replies will be reliably heard by the XPC host (even
though all nodes willing to propose will broadcast their value during the same contention slot).
Upon receiving a value from the network the selected XPC protocol is executed throughout
all of its phases (as outlined in Figure 5.1).

Figure 5.1: Overview of how XPC schedules contention slots (preceding all protocol phases)
to enable multiple values to be proposed and voted within the same protocol run.

When multiple proposers are initiated, XPC schedules a contention slot as the first phase
of each protocol run. If the host node wishes to initiate it is given precedence and will override
the round structure by removing the contention slot and directly proposing its value first to the
network. If the host, though, does not initiate, contention rounds are bound by the following
rules:

1. Determining proposed value. Due to the capture effect if two or more nodes in the
network flood a value during the contention slot, one of them will be correctly received
by the host with a high probability. If a value is heard by the host it will initiate the
protocol from Phase 1 proposing the newly retrieved value. If no value is heard the host
switches to the final end round (denoted as E in Figure 5.1).

2. Scheduling a new contention slot. During each round XPC keeps track of a pending
proposal pit, PPB for short, which allows the library to determine if there are other nodes
in the network which are willing to propose (more detail in Section 5.1.2). If at any point
during a protocol run PPB is set, then there must be at least one node in the cohort
which wishes to propose a new value. In this case the protocol does not terminate and
instead a new proposal phase is initiated by scheduling a new contention slot allowing
for the node(s) to broadcast their proposals.

3. End of protocol execution. If during any contention slot either no value is heard, or
the pending proposal bit was never set by a node during a protocol round, then XPC
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switches to the final end round to prompt all network nodes to terminate the protocol’s
execution and run the application code. Upon terminating, XPC constructs the packet
that will initiate the next round. When multiple proposers are enabled it will always
contain a contention slot, this will, though, be overridden in case the host itself is willing
to propose a value.

Figure 5.2: Example execution of an N-Phase protocol with multiple proposers. Values A and
B, from nodes 1 and 2 respectively, are proposed and voted upon by the network.

The multi proposer logic can be seen in action in Figure 5.2. As the host node does not
have a value to propose during this run, XPC schedules a contention slot to begin the first
proposal round. Both node 1 and node 2 will attempt to broadcast their values (A and B).
Due to the capture effect the host will only pick up one of them, in this case value A. As the
N-Phase protocol is run with value A the host picks up that the pending proposal bit (PPB)
has been set, and therefore, after having committed A, schedules a new contention slot during
which it receives a new value to propose: B. During the protocol’s execution with value B no
node manifests the intention of proposing again over the network. XPC therefore schedules
the end round and terminates.

5.1.2 PPB and PVB

XPC’s multiple proposer implementation uses a reactive method. The host will propose any
value that it receives during a contention slot and must take additional measures to determine
if there are pending packets in the network and if the values which are being proposed were
actually originating from a mote in our cohort. For these purposes we introduce two additional
bits of information which are appended to each payload exchanged by the protocol:

• Pending Proposal Bit (PPB). This bit carries information of whether there is at least
one node in the network which has a value which is pending to be proposed. Whenever a
node is set to broadcast it checks if it has a pending value and sets the PPB accordingly.
The PPB is not owned by any node (as during Chaos slots there is no way of determining
which node has set it), and it is only a means for the host to determine if a contention
slot must be scheduled at the end of each round or not. Due to the fact that the PPB
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determines the scheduling of the end round, and thus protocol termination, it can be
seen as a liveliness property guarantee: eventually the PPB will not be set and the
protocol will terminate.

• Proposed Value Bit (PVB). This bit carries information of whether the currently
proposed value was actually proposed by a node in the network. Potential node failures
could cause a node to propose a value during a contention slot but no longer be active
when the value is ready to be committed. PVB adds this sense of ownership to proposals
and allows the host to actually abort values if no node acknowledges it has proposed
it. As PVB guarantees node acknowledgement of proposed values it enforces a safety
property: the network will only accept values proposed by a live node in its cohort.

Both PPB and PVB rely on all nodes broadcasting a reply to the host at some point during
the protocol’s execution. This means that any protocol using multiple proposers is allowed
to have any number of majority voting rounds but must have at least one universal voting
or acknowledgement phase. In the specific Wireless Part-time Parliament case, the reliable
global dissemination round requires acknowledgements from all nodes in the network and is
able to guarantee that PPB is set correctly.

WiPP is unable to guarantee PVB correctness. As the global dissemination round occurs
after a majority of nodes have agreed to commit the value, it is possible that none of these
nodes set the proposed value bit. Once the global dissemination round begins it is too late to
abort a Paxos transaction (as it would break the safety guarantee, having a majority of nodes
already committed). PVB information may be obtained too late for WiPP to abort a transac-
tions corresponding to invalid values. Should correctness of proposed values be a concern, an
optional XPC_PROPOSAL_GUARANTEE feature can be enabled within the project configuration.
With proposal guarantee XPC protocols are prohibited from executing a commit before they
have certainty that the PVB has been set. This means that majority rounds may take longer
than expected as more than a majority of nodes could be contacted in order to reach the one
mote which proposed the current value. Enabling the safety checking of proposal guarantee
can therefore slightly impact latency of majority-based protocols such as WiPP, while having
no significant effect on 2PC or 3PC.

The pending proposal and proposed value bits allow XPC to have a reliable reactive
multiple proposer implementation. Both bits are packed within the underlying primitive
implementations. They add two extra bits to the Chaos payload, and have no impact on the
size of Glossy packets.

5.2 WIMP: WiPP Multi Paxos

With the introduction of multiple proposers the Wireless Part-time Parliament can be used
to generate a simple Multi-Paxos implementation. We propose WIMP, an XPC-based proto-
col able to execute multiple back-to-back WiPP rounds, constantly disseminating all partial
transaction outcomes.

WiPP Multi Paxos (WIMP for short) schedules a contention slot at the beginning of each
proposal round (see Figure 5.3). The contention slot is enabled by the multi proposer func-
tionality of XPC and thus follows the previously mentioned safety and liveliness guarantees:
the protocol will terminate once all nodes have proposed their values (liveliness) and no value
will be committed by the network which wasn’t proposed by a node in the cohort (safety).
Individual WiPP rounds are run for each proposed value, allowing each proposal to be voted
upon, committed and disseminated individually to the network. The global Baloo host is also
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Figure 5.3: Overview of WIMP’s phase structure. All proposal rounds are initiated by a
contention slot followed by majority voting and global dissemination rounds.

allowed to initiate itself, in which case the first proposal round commences directly by flooding
the host’s proposal to the whole network during the voting phase.

WIMP differs from Wireless Multi-Paxos (§ 2.7.1) due to the underlying ST primitive used
and the multiple proposer approach. Wireless Multi-Paxos uses Chaos floods to execute all
data dissemination. WIMP utilises the more reliable Hybrid primitive introduced in Section
3.2.3. Additionally while in Wireless Multi-Paxos value proposals to the leader can occur at
any time, potentially conflicting with protocol phases concurrently being executed, WIMP
uses the structured multi-proposer strategy defined in Section 5.1.

5.2.1 Paxos optimisations

WIMP introduces a number of optimiations to Paxos with two main aims. On the one hand
low-power wireless networks are incredibly memory constraint and must ensure that the small-
est possible buffers are allocated and used as efficiently as possible during execution. On the
other hand we need to utilise the network structure provided by XPC and Baloo. Currently
Baloo uses a global leader to disseminate control packets each round; we already leverage
the leader to be in charge of contention slot scheduling and processing, and could potentially
abstract further protocol-based guarantees, namely:

1. Long lasting leader. Using the Baloo host as a global leader WIMP removes the need
for ballot numbers as there will never be two nodes proposing to the network at the same
time (as proposals can only be executed with the control packet). Proposal rounds will
therefore be executed back-to-back as long as there are pending values to be proposed
by cohort nodes.

2. Message ordering. The global host provides a global ordering guarantee of transac-
tions. Due to the global dissemination round all transactions will have a local ordering
on each individual node. As the host only picks one value at a time to be broadcast after
a contention slot, this stronger requirement ensures that all network nodes constantly
share the same transaction history. If a node is part of the network it must reply during
global dissemination rounds (as otherwise the host executes a timeout) and therefore will
have to execute commit and abort operations in the same order as all other members of
the cohort.

3. Bounded memory. The infinite memory requirement for Multi-Paxos is relaxed as all
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wireless nodes are bound by a finite amount of memory. Due to the global dissemination
of transaction outcomes and lack of proposal numbers, nodes do not need to worry
about inconsistent logs. Values are only consistently committed once all nodes have
acknowledged them during the dissemination round. No node needs to account for
missing proposed value transaction outcomes.

4. Prepare-phase specifics. In Multi-Paxos new nodes have to learn all past transactions
of the network before accepting new values. WIMP nodes learn outcomes of all trans-
actions as the network progresses. As dynamic group membership is not yet supported
(§ 7.3), new nodes are not allowed to join the network after the protocol has begun to
execute, all participants will constantly be kept up to date with the protocol’s execution.

5.2.2 Multiple Proposer Impact

As long as there are nodes willing to propose, WIMP will keep scheduling contention rounds
followed by full WISP runs for each value. WIMP latency is therefore expected to scale linearly
with the average number of concurrent proposers. WIMP pays an additional cost for having
multiple initiation, increasing the fixed latency cost for the execution of each protocol run. As
with all WiPP-based protocols, the cost of a commit round is also expected to be higher than
that of an abort, as transaction commits must be globally disseminated and acknowledged by
all cohort nodes.

(a) WIMP protocol latency. (b) Transaction outcome for 100% VOTE_YES rates.

Figure 5.4: Analysis of WIMP’s behaviour with increasing node IPIs.

These assumptions are verified through an empirical analysis of WIMP’s execution. Figure
5.4a shows a clear linear correlation between average number of concurrent proposals and
overall protocol latency. Once again we analyse the protocol performance with different VOTE_-
YES rates. As the number of proposers increases we see that latency grows linearly for varying
node VOTE_YES rates. Protocol reliability is slightly affected by higher IPIs, while still being
able to consistently commit > 95% of transactions. Unfortunately WSN nodes are bound by
strict memory requirement meaning that our current experimentations are limited by buffer
overflows (we cannot store more than 8MBytes of data on each node, and we can only flush
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to serial when the application is being executed as otherwise the synchronous Glossy floods
could be delayed); this can cause certain values to occasionally go missing due to lack of log
space on larger IPIs (Figure 5.4b). Overall the protocol reliably reaches all nodes willing to
transmit and executes WISP rounds for all proposals. WIMP is therefore a viable Wireless
Multi-Paxos alternative built on top of XPC’s reliable dissemination structure.

5.3 Next Steps

This chapter has introduced WIMP together with support for multiple network proposers for
XPC. Using contention slots any node in the network is able to propose values to the global
host. All proposed values are guaranteed to eventually be voted upon by the cohort. XPC’s
multiple proposer implementation is independent from the underlying protocol or ST primitive
used. This allows for XPC users to fully customise the library, tailoring it for their specific
uses and requirements.

The multiple proposer implementation is showcased together with the Wireless Part-time
Parliament. Implementing Multi-Paxos for WSNs, WIMP uses multiple initiation to show
how multiple values can be reliably disseminated during subsequent proposal rounds. Section
5.2 analyses WIMP’s implementation together with it’s latency and reliability.

The next step is to finally see all XPC protocols in action. The evaluation in Section 6
will consist of an analysis of XPC’s reliability by benchmarking its protocols in various failure
and interference scenarios. The results, together with the overall protocol latencies, will be
compared to state-of-the-art implementations published in 2017 (A2) and 2019 (WPaxos).
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In this section we present experimental results validating the claims made about XPC, WISP
and WIMP. Our analysis will be executed in terms of reliability, latency and broadcast effi-
ciency.

Section 6.1 addresses C4 by analysing the behaviour of protocols when tested under in-
creasing levels of controlled interference. The aim is to evaluate the high reliability guarantees
of XPC, investigating how interference impacts the various universal and majority voting
protocol phases. In Section 6.2 we compare XPC and WiPP to existing, state-of-the-art,
implementations based on A2’s synchronous transmission kernel. This includes comparison
with the original 2017 2PC/3PC implementation [2], and the WPaxos extension proposed in
2019 [32]. The analysis is concluded in Section 6.3 with a brief discussion of the challenges
addressed and solved by this report.

6.1 Interference Analysis

We analyse the behaviour of XPC under varying amounts of radio interference. Interference
causes nodes to miss broadcasted packets, and potentially desynchronize from the network
(causing transmission slots to be missed); protocol reliability must therefore be analysed in
the presence of network interference.

We evaluate XPC using the reliability and latency metrics. The analysis focuses on Hybrid
based protocols (see Section 3.2.3). Four main protocols are selected as targets for evaluation
under interference:

• 2PC-Hybrid. Composed of two phases: a universal voting round and final global
dissemination.

• 3PC-Hybrid.Composed of three phases: two universal voting rounds and final global
dissemination.

• WISP. Composed of a majority voting round and final global dissemination.

• WIMP. Composed of a contention slot to allow for network-wide proposals, followed
by a majority voting round and final global dissemination.

All protocols share a global dissemination round where, if a reply isn’t heard by all network
nodes, the transaction is aborted. All protocols utilise the Hybrid ST primitive, meaning that
broadcasts will commence with a network-wide Chaos flood and will be followed by Glossy
retransmissions.
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6.1.1 Experimental Setup

When testing with interference the protocols are run on a subset of the Flocklab testbed. 22
(out of the possible 27) nodes are used as the cohort and the 5 remaining nodes are used as
jammers. An overview of the individual configuration parameters used is present in Table 6.1.
Most notably, all nodes in the network vote in favor of all proposed values (100% agreement
rate) and each protocol phase is allowed up to 10 retransmissions before timing out and
aborting.

Parameters Used by Protocols

Name Value 2PC 3PC WISP WIMP

Network Nodes 22 X X X X

Max Retransmmissions 10 X X X X

Chaos Round Length 50ms X X X X

Agreement Rate 100% X X X X

M-Slot Length 35ms X X

∆ Q Size 3 X X

Concurrent Initiators 1 X

Table 6.1: XPC configuration for Flocklab interference tests.

To address C4 (presented in Section 2.10) we generate reliable and accurate interference
patterns using JamLab [6], a customizable off-the-shelf interference generation library for WSN
motes. The following interference patterns (as discussed in Section 2.9.2) are used to perform
comparisons:

1. Low Interference is determined by background noise on the FlockLab testbed during
night-time hours (9pm-6am). It models an ideal network deployment with few external
conflicting broadcasts occurring on the channels used by the protocol. When analysed,
protocols should give their best performance under these conditions, both in terms of
speed and in terms of reliability.

2. High Interference is determined by background noise on the FlockLab testbed during
day-time hours (7am-8pm). It provides an estimate of average real-world conditions in
order to set realistic expectations for the protocols being tested. In this case interference
is not controlled.

3. WiFi Interference is generated by JamLab and emulates the interference of non-
saturated WiFi file transfers and radio streaming.

4. Microwave Interference is generated by JamLab and emulates the periodic interfer-
ence caused by microwave ovens over 802.15.4 transmission channels.

Both types of JamLab injected interference were executed during night-time hours. This
was done to minimise the influence of the multitude of different devices broadcasting during
office hours. During testing up to 5 nodes could be configured as jammers. None were activated
during high/low interference measurements. Our FlockLab interference analysis can therefore
be expressed with the following metrics:
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• Interference Model. Low, High, WiFi and Microwave interference models were tested
and evaluated individually for each protocol.

• Average Reliability. Protocol reliability measures the rate at which all nodes in the
network commit the proposed transaction consistently. If even just one node times out
or aborts, the reliability is scored as zero for the given round.

• Latency. Latency measures the overall time from the beginning of an XPC transaction
(i.e. when the Application layer is preempted) until the application is resumed at the
end of the XPC round. As the interference increases, overall protocol latency is expected
to rise to account for nodes being scheduled for retransmission.

• Chaos Round Coverage. The Chaos Coverage metric analyses what percentage of
network nodes was reached, on average, during the first chaos dissemination of each
phase. Universal and majority voting rounds differ in the lengths of the initial Chaos
flood for each protocol phase. Majority phases (MP) have M-Slot length floods, while
all other phases (P1, P2, P3) and the dissemination phase (DP) use the default Chaos
Round Length configuration.

• Average Number of Retransmissions. This metric analyses the number of retrans-
missions required for a protocol to switch to a subsequent stage. P1, P2, P3 and DP
phases must receive replies from every node in the cohort before switching, whereasMP,
the majority phase, is able to proceed when b50% + 1c of the nodes are reached (12 out
of 22 nodes in the case of the reduced FlockLab network).

6.1.2 Simple Interference Models

A full execution of all proposed XPC protocols, evaluated under the four interference models
outlined above can be seen in Table 6.2. In order to obtain a baseline useful for future
comparisons, the Table reports WiFi and Microwave interference values in the presence of one
network jammer.

The data presented in Table 6.2 can be analysed for each of the proposed metrics:

• Reliability. All protocols across all interference models achieve a 100% correct trans-
action outcome. This data backs up and validates XPC’s strong reliability claims, as,
not only is the correct functionality of the protocols maintained in ideal (Low Interfer-
ence) and normal (High Interference) network conditions, but it is also able to sustain
interference specifically injected to cause packet loss and broadcast conflicts.

• Latency. As the interference models increase their disturbance over the channel, proto-
col latencies increase linearly. With the stronger WiFi and Microwave jamming, majority
voting protocols such as WISP and WIMP require replies only from a cohort of nodes
during the voting stage, their latencies increase at a slower rate if compared to universal
voting approaches such as 3PC’s.

• Chaos Coverage. The full potential of the new Hybrid ST primitive can really be
seen when analysing the percentage of the network reached during the initial Chaos
floods. Being able to reach over 90% of nodes during the first 50ms of each phase is
crucial for time efficiency purposes; subsequently switching to reliable Glossy broadcasts
is then able to compromise for Chaos’ unpredictable termination time and lack of reliable
detection of straggler nodes.
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Low Interference Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC-Hybrid 100.00 222.95 P1: 98.51 P1: 1.10
P2: 99.27 P2: 1.07

3PC-Hybrid 100.00 333.72
P1: 98.74 P1: 1.11
P2: 98.99 P2: 1.12
P3: 99.63 P3: 1.01

WISP 100.00 215.87 MP: 98.49 MP: 1.00
DP: 99.46 DP: 1.09

WIMP 100.00 329.25 MP: 98.58 MP: 1.00
DP: 98.47 DP: 1.15

High Interference Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC-Hybrid 100.00 304.19 P1: 92.83 P1: 1.52
P2: 88.38 P2: 1.59

3PC-Hybrid 100.00 432.14
P1: 94.81 P1: 1.40
P2: 94.38 P2: 1.52
P3: 94.39 P3: 1.51

WISP 100.00 241.43 MP: 93.40 MP: 1.01
DP: 97.41 DP: 1.47

WIMP 100.00 350.25 MP: 93.61 MP: 1.00
DP: 92.57 DP: 1.54

Wifi Interference Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC-Hybrid 100.00 383.07 P1: 92.19 P1: 2.29
P2: 90.54 P2: 2.19

3PC-Hybrid 100.00 606.20
P1: 91.32 P1: 2.26
P2: 92.92 P2: 1.96
P3: 89.58 P3: 2.31

WISP 100.00 270.93 MP: 87.79 MP: 1.05
DP: 91.98 DP: 1.44

WIMP 100.00 360.88 MP: 86.09 MP: 1.04
DP: 91.98 DP: 1.70

Microwave Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC-Hybrid 100.00 396.06 P1: 92.97 P1: 2.07
P2: 91.82 P2: 2.17

3PC-Hybrid 100.00 586.67
P1: 92.09 P1: 1.95
P2: 91.58 P2: 2.12
P3: 92.30 P3: 1.95

WISP 100.00 342.53 MP: 78.90 MP: 1.15
DP: 91.14 DP: 2.23

WIMP 100.00 377.31 MP: 86.22 MP: 1.01
DP: 91.69 DP: 1.66

Table 6.2: Comparison of XPC protocol implementations across varying interference levels.
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• Average Retransmissions. Similar to the analysis with latency and Chaos round
coverage, the average number of phase retransmissions reflects the intensity of the chan-
nel’s interference. As the interference increases all global dissemination and universal
voting rounds require more retransmissions to ensure 100% protocol reliability. An ex-
ception are majority phases which, on average, reach a sufficiently large cohort of nodes
to require few sporadic retransmissions (none in the case of low interference).

6.1.3 Multi-node Interference

To further evaluate the reliability of XPC-based protocols, our analysis extends the simple in-
terference model to consider multiple nodes jamming the network. We will focus on microwave
oven interference, as it generated the highest latencies in the case of 1 JamLab node (in Table
6.2). By increasing the levels of microwave oven interference we are therefore more likely
to impact the robustness of the protocol. Comparisons are carried out between 2PC and
WISP, which are respectively representative of XPC’s universal-voting and majority-voting
approaches. Table 6.3 reports the results of executions with up to 5 interfering nodes.

Microwave (2 Nodes) Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC-Hybrid 100.00 1027.18 P1: 82.91 P1: 4.64
P2: 81.54 P2: 5.04

WISP 98.33 625.37 MP: 56.49 MP: 1.57
DP: 82.85 DP: 4.52

Microwave (3 Nodes) Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC-Hybrid 95.92 1025.86 P1: 80.26 P1: 4.95
P2: 81.43 P2: 5.11

WISP 92.86 756.73 MP: 47.00 MP: 1.97
DP: 81.37 DP: 5.22

Microwave (4 Nodes) Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC-Hybrid 57.14 1221.30 P1: 79.59 P1: 6.72
P2: 79.92 P2: 6.11

WISP 59.18 1024.20 MP: 42.06 MP: 2.27
DP: 78.83 DP: 6.91

Microwave (5 Nodes) Reliability (%) Latency (ms) Chaos Coverage (%) Avg. Retr.

2PC-Hybrid 47.22 1291.68 P1: 75.51 P1: 7.85
P2: 79.37 P2: 7.50

WISP 59.09 1178.84 MP: 41.67 MP: 2.83
DP: 73.88 DP: 7.67

Table 6.3: 2PC and WISP analysis with increasing levels of JamLab microwave interference.

As shown in Table 6.3 high levels of interference end up impacting the protocol’s relia-
bility. With 4 interfering nodes 2PC-Hybrid and WISP are correctly committing only 60%
of transaction, timing out due to missing replies in other cases. A decrease in reliability also
affects latency and average retransmissions. In an attempt to reach all straggler nodes the
protocols reach the maximum number of retransmissions (10 for the execution of these tests)
and timeout during the execution of global voting or dissemination rounds (P1, P2 and DP).
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Overall network performance, though, does not reflect the status of the individual nodes.
Figure 6.1 visualises the reliability of each Flocklab node when executing WISP with 5 in-
terfering nodes. It identifies how the 59% reliability of WISP is mainly due to the lack of
reliability of an individual node: mote 18. Even though WISP has majority-based voting,
the global dissemination round requires an acknowledgement from each network participant,
meaning that a single straggler node can cause the protocol to timeout.

Figure 6.1: Visualisation of the reliability of each node during WISP protocol executions with
5 Microwave oven JamLab nodes on FlockLab.

The impact of individual node failures is also reflected in the Chaos coverage and average
retransmission metrics. Even under heavy interference the first Chaos round reaches more
than 70% of the network, yet the average number of retransmissions is incredibly high. This
is due to as a small part of the network (as Figure 6.1 suggests, potentially even one node)
which is constantly unreachable and blocks the protocol from making progress. Dynamic group
membership (§ 7.3) would greatly increase the reliability of XPC protocols under interference.
Being able to exclude straggler nodes from the network, would prevent individual nodes to
cause network timeouts.

Ideally a reliability-under-interference interference comparison should be executed with A2.
Unfortunately the official WPaxos repository [33] does build when cloned from Git (requiring
multiple adjustments to the codebase for compilation), and the A2 source-code [1] has a
tightly coupled codebase. The number of alterations necessary to execute JamLab alongside
a cohort of 22 Flocklab nodes may cause alterations to the main protocol logic, impacting
the truthfulness of the results. Sadly this is typical of research in this area and is a result of
working with bleeding edge unstable research code.

This Section has analysed the performance of XPC under increasingly stronger interference
injected using JamLab. This addresses C4 presented in Section 2.10 by providing reliable
results reproducible by the research community. Being unable to analyse A2 under failure,
the evaluation continues by comparing results of XPC protocols with those presented in the
A2 and WPaxos publications.
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6.2 Comparison with A2 implementations

We compare the latency of XPC to the execution times reported by A2 in 2017 [2] and 2019
(in the WPaxos paper [32]). Our analysis covers all protocols implemented within XPC across
all ST primitives. 2PC and 3PC both support Glossy, Chaos and Hybrid implementations,
whereas the Wireless Part-time Parliament is evaluated through WISP and WIMP (which use
the Hybrid ST primitive). Tests are executed on Flocklab using all 27 nodes.

We show how protocols using XPC reach, and better, the latency of their A2 equivalents.
The Hybrid ST primitive, which has been proven to be reliable in Section 3.2.3, constantly
outperforms Glossy and Chaos in terms of latency. The A2 implementations do not disclose if
their data is measured with commit-only transactions, or if aborted transactions were consid-
ered as well. In our analysis of XPC we present both sets of data side by side. Transactions
abort if at least one node votes against a proposed value during the voting stage. Aborted
transactions have lower completion latencies. If aborted transactions are considered, they
impact measurements of upper-bound protocol execution times.

6.2.1 Two and Three-Phase Commit

Hybrid outperforms Glossy and Chaos for 2PC implementations (see Figure 6.2). 2PC-Hybrid
is able to match the 2019 A2 latencies for commit-only transactions (Figure 6.2a), and provides
a significant speedup in the case of network-wide aborts (Figure 6.2b).

(a) 2PC Commit Comparison (b) 2PC Abort Comparison

Figure 6.2: Comparison with A2 implementations over all XPC versions of 2PC.

Hybrid has also the lowest latency among all ST primitives for 3PC (see Figure 6.3). Simi-
larly to 2PC, 3PC-Hybrid matches A2’s 2019 implementation for transaction commits (Figure
6.3a) and provides a significant improvement over aborts (Figure 6.3b). This validates the
claim that the Hybrid ST primitive fulfills C1. Section 6.1 proves the resiliency and robust-
ness to interference, and this section confirms its low latency. C2 is additionally validated
both by the comparisons executed in this section (which certify that an identical protocol
implementation can use multiple ST primitives), and by the correct execution of Hybrid while
switching between Chaos and Glossy rounds.
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(a) 3PC Commit Comparison (b) 3PC Abort Comparison

Figure 6.3: Comparison with A2 implementations over all XPC versions of 3PC.

6.2.2 WPaxos and WiPP

WISP matches the latency of WPaxos for commit workloads (Figure 6.4a) and provides a
speedup during the execution of aborts (Figure 6.4b). WIMP is impacted by the addition
of the contention slot for multiple proposal, being slightly outperformed by both WISP and
WMulti-Paxos implementations. The probabilistic approach to network proposers (i.e. an
average of one value is proposed each WIMP round) also causes high variance in protocol
execution times. It is possible for WIMP to either execute 2 back-to-back proposals, or even
have empty rounds, while still maintaining an average of one value per protocol execution.
Furthermore it is harder to determine the exact speedup of WIMP aborts (Figure 6.4b) as both
commit and abort transactions may be executed during the same protocol run, contributing

(a) WiPP and WPaxos Commit Comparison (b) WiPP and WPaxos Abort Comparison

Figure 6.4: Comparison with A2’s WPaxos implementations of Simple and Multi-Paxos.
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in different proportions to the cumulative latency measured by the application.
The reliable implementation of consensus protocols WISP and WIMP, which are guaran-

teed to terminate with high reliability under interference, validates and fulfills C3. The use
of majority-based voting, together with the Hybrid ST primitive, provides robust consensus
guarantees for Wireless Sensor Networks.

6.3 Conclusion

In this chapter we have validated the reliability, latency and broadcast efficiency claims made
in this thesis about XPC, WISP and WIMP. The new Hybrid ST primitive has been proven
to be robust and resilient to high levels of network interference. Our 2PC, 3PC, WISP and
WIMP implementations are able to match the latency of state-of-the-art protocols such as
A2, while providing the same correctness guarantees and liveliness properties. We have also
addressed all challenges (C1-C4) proposed in Section 2.10, showing how the they are solved
by either our XPC protocols, or by our repeatable testing methodology.
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7.1 Conclusion and Contributions

Wireless Sensor Networks links are unreliable. The lack of message delivery guarantees in
WSNs makes adoption of consensus protocols impractical, as they do not work in fully asyn-
chronous systems. Synchronous Transmission primitives such as Glossy or Chaos do not pro-
vide both the low-latency and high-reliability necessary to improve the robustness of commu-
nication. High levels of network interference further impact the reliability of individually used
ST primitives. In Section 2.10 we identified four challenges (C1-C4) which remain unsolved
in the current literature, and address the problems present in state-of-the-art publications.

In Chapter 3 we introduced Hybrid, a new approach to Synchronous Transmissions which
leverages the optimal latency of Chaos and optimises it with Glossy’s reliability. Hybrid’s
low-latency and robust dissemination guarantees solves the reliability challenges expressed by
C1. To allow for the Hybrid ST primitive implementation we developed XPC. XPC is a novel,
highly configurable, multi-phase voting library which extends Baloo by enabling protocols to
easily switch between ST primitives during their execution. The implementation of XPC
addresses and solves C2.

In Chapter 4 we proposed WISP, a Paxos-based consensus protocol for Wireless Sensor
Networks which uses the Hybrid ST primitive. To support majority voting protocols XPC was
extended with the Wireless Part-time Parliament. WISP uses WiPP, together with Hybrid
dissemination rounds, to provide a correct and safe solution for distributed consensus. By
relying on the reliability of Hybrid, WISP fulfills the requirements set by C3.

In Chapter 5 we presented WIMP, a reliable Multi-Paxos implementation which uses the
Hybrid ST primitive and supports network-wide value proposal. To allow for multiple nodes
to propose values during the execution of the protocol we extend XPC to support multiple
proposers. WIMP executes back-to-back consensus rounds to vote on all values submitted
by the cohort. This extends the guarantees of C3 by providing strong liveliness and safety
guarantees to all network proposals.

We evaluated Hybrid, WISP andWIMP in Chapter 6, to validate the reliability and latency
claims made in this thesis. All testing was performed on Flocklab and injected interference
was generated with JamLab. This satisfied C4 by providing reproducible results which can
be compared to current research publications. The Hybrid ST primitive is shown to be robust
and reliable under interference across all protocols. Additionally our XPC implementations
of 2PC, 3PC, WISP and WIMP match the latencies of state of the art protocols in literature:
A2 and WPaxos.

In this thesis we made 3 main contributions to the WSN community: Hybrid, WISP and
WIMP. Our implementations address challenges which are currently unsolved in the literature
(C1-C4), and our code is packaged into XPC, an all-in-one compact library with working
examples for each proposed feature. We aim to submit this work for publication to IEEE
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INFOCOM 2020 and keep maintaining and extending its functionality over the years.

7.2 Limitations

In this thesis we have made three main contributions to the WSN community. In this section
we address the limitations of our work that would have been address if we had more time.

• Formal Analysis. Our protocols lack a formal analysis of their implementations. We
could have used formal methods such as process algebra (π-calculus), abstract state ma-
chine (ASM), or high level languages such as TLA+ to model our concurrent distributed
system. This would allow us to provide a formal specification and formally check the
correctness of our proposals.

• Comparison with A2. The A2 codebase is tightly coupled and hard to customise. This
prevented us from being able to execute interference comparison tests using JamLab, as
we had to rely on the published latency and reliability results. Being able to compare
Chaos-based WPaxos with Hybrid-based WISP would have given great insight on the
reliability and robustness improvements provided by the Hybrid ST primitive.

• Cross-testbed evaluation. Online testbeds are changing and TelosB hardware is being
removed. Currently the single largest openly-accessible deployment of TelosB motes
is Indrya2 (with 74 motes), but constant hardware failures and testbed unavailability
prevent it from being a reliable means of evaluation. The results of this thesis have
therefore all been gathered on FlockLab with 27 nodes.

7.3 Future Work

Designing new features for WSN protocols takes significant investigation work. They require
knowledge of the hardware and may need alterations to the underlying kernel used by the
motes. All modifications must be thoroughly evaluated in simulation and run on testbeds, to
prevent impacts on existing features. In this chapter, we present extensions to XPC we have
designed, but not been able to implement, due to time constraints.

Group Membership

Consensus protocols require knowledge of the cohort which is targeted during communica-
tion rounds. Due to interference certain communication links may become unreliable making
certain nodes unreachable. To prevent protocols from stalling during global dissemination
rounds, as unreachable nodes prevent them from making progress, we propose group mem-
bership. With group membership the network’s cohort is dynamic. Straggler nodes will be
removed form the cohort when the round leader detects they no longer reliably reply. Nodes
removed from the cohort will no longer have assigned slots or payload sections to send their
replies in. To be readmitted into the cohort special contention slots will be occasionally sched-
uled by the host, during which excluded nodes may propose themselves for readmission. After
a number of protocol runs, once the node is deemed to be reliable again, it will be reintroduced
as part of the cohort.
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Dynamic Host

Currently the Baloo host is static and defined at compile time by the applications using XPC.
This can hinder the reliability of protocols, as all progress is stalled when the host becomes
unreachable or fails. With Baloo support for dynamic host allocation, XPC may execute
leader election rounds to change the node allocated as host depending on the network’s needs.
Should the original host become unreachable, individual nodes may self-elect themselves as
leaders, and eventually one of them will be acknowledged by a majority of the cohort resuming
the protocol execution.

Impact of Configuration Parameters on Reliability under Interference

When evaluating XPC protocols we have chosen default values for its numerous configuration
parameters. Varying maximum retransmission values, Chaos and M-Slot round lengths or
∆Q sizes will have different impacts on different testbeds (as node density and network sizes
vary). To achieve optimal latency and reliability under interference we should thoroughly
assess the impact of each individual configuration parameter on the transaction outcome and
overall execution time. Being able to empirically analyse the impact of each configuration
parameter across varying testbed topologies may be used to train new algorithms to provide
optimal configurations for new unseen networks.

XPC as a Service

Applications currently using XPC are currently bound to adopting one protocol at a time.
WISP protocol runs cannot, for example, be followed up by the execution of 2PC. To mitigate
this, XPC could be offered as a protocol scheduling service. The host application is in charge
of choosing protocols for each round. When required to vote, individual nodes will be aware
of the value proposed by the host as well as the protocol being used, making decisions accord-
ingly. Providing XPC as a service would allow for protocols, such as group membership or
leader election, to be interleaved with the execution of XPC voting rounds, providing stronger
reliability and safety guarantees.

Contribution to Contiki-NG and Baloo on GitHub

Once published we aim to contribute XPC to the open source Baloo and Contiki-NG GitHub
repositories. By making our code open source, pushing into an actively developed IoT kernel,
we can determine which features should be prioritised due to increased interest or demand from
the community. We believe that the Hybrid ST primitive, and all protocols present within
XPC, will be important enablers for a new class of reliable Internet of Things applications.
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