
DEPARTMENT OF COMPUTING

BENG, JOINT MATHEMATICS AND COMPUTER SCIENCE

C301J - FINAL YEAR INDIVIDUAL PROJECT

Digipound: A Proof-of-Concept
Stablecoin Audited in Real Time

Author:
Shravan Nageswaran
sn2316
CID: 01193565

Supervisor:
Prof. William Knottenbelt

Second Marker:
Prof. Kin Leung

June 19, 2019

Abstract

The twenty-first century calls for an innovative form of money. Cryptocurrencies
traded on blockchains offer a glimpse into the future of currency, but their immense
volatility makes them a risky choice to invest in both the short and long terms. A
cryptocurrency with a defined value can address these concerns. Stablecoins, such
as Tether, are cryptocurrencies whose values are tied to other assets - namely, fiat
currencies such as the US Dollar.

Yet, without a regularly-updating auditing system in place to track both the amount
of Tether issued and the amount of US Dollars held in the Tether reserve account,
the value of Tether, and other stablecoins, can be compromised. Attacks on its smart
contract can go unnoticed, and if discovered that it truly does not have a one-to-one
backing by the US Dollar, the Tether coin and its three billion dollar market cap can
crash just as easily as Bitcoin did in 2018.

This project started out by investigating several types of stablecoins and other assets
to determine that there is a need for a stablecoin with a regularly-updating audit. Its
main outcome was a model of a functional stablecoin, complete with the ability to
issue, trade, and redeem this digital coin, with an audit updating in real time.

First, a standard smart contract for an ERC-20 token, Digipound, was written and
deployed to a test Ethereum blockchain. Next, three main functions were created
to implement each of the stages of the issue-trade-redeem cycle of a stablecoin. In
the issue stage, payments of GBP are accepted using the Stripe platform, triggering
a call to an API that is connected to the Ethereum blockchain, web3, to issue the
aforementioned token. Digipound tokens can be traded through both the project or
independently. In the redeem stage, a call to the web3 API writes a transaction to
burn the Digipound tokens before calling the Stripe API to issue a payout of the ap-
propriate amount of pounds back to the user. These functions were transformed into
a user experience via the Digipound website, which also kept track of the balance of
GBP in a reserve account connected to Stripe as well as a link to a block explorer,
a blockchain search engine, to verify the amount of the Digipound tokens that were
issued. These quantities were tracked in real time and displayed in a clear manner
on the web application’s landing page, representing the auditing system.

Overall, this project resulted in a proof-of-concept for a stablecoin whose value is
explicit and can be easily verified, Digipound. It is currently a Minimum Viable Prod-
uct for an application to trade a real stablecoin token on the Ethereum blockchain,
having the potential to serve as a widely-used and secure platform for digital trans-
actions.

ii

Acknowledgments

This project marks the culmination of an enriching and challenging three years at Im-
perial College London. Throughout my university degree, and ending with my final
project, there have been numerous individuals and groups I would like to recognise
that have contributed to my university experience:

• My project supervisor, Professor William Knottenbelt, for his endless support,
insight, and - most importantly - enthusiasm throughout this year.

• My personal tutor, Professor Christopher Hankin, for his guidance and support
throughout my Imperial education.

• Dr. Robert Chatley, whose course, Software Engineering: Design, taught me
many principles for good design of the Digipound website.

• My entire family, for their unrelenting support, particularly:

• My mother, Vidhya, and father, Parthasarathy, for showing me by example what
it means to work hard, and my brother, Shreyan.

• G. Natarajan, to whom this project is dedicated to, for teaching me that hard
work can be accompanied by a smile.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Contributions . 2
1.4 Organisation . 2

2 Background 4
2.1 Cryptocurrency . 4

2.1.1 Examples . 4
2.1.2 Volatility . 5
2.1.3 Blockchain . 6
2.1.4 Smart Contracts . 8
2.1.5 Storage . 10

2.2 Stablecoins . 10
2.2.1 Collateralisation . 11
2.2.2 Examples . 11
2.2.3 Reserve Accounts . 12

2.3 Tokenisation . 13
2.3.1 Examples . 13
2.3.2 Issue-Trade-Redeem . 15

2.4 Summary . 17
2.5 Vision . 17

3 Design 18
3.1 Components . 18

3.1.1 Digipound . 18
3.1.2 web3 . 21
3.1.3 Stripe . 25
3.1.4 Audit . 30

4 Implementation 34
4.1 MVC . 35
4.2 Laravel . 37

v

CONTENTS Table of Contents

4.2.1 Issue-Trade-Redeem . 37
4.2.2 Signing Transactions . 42
4.2.3 Audit . 43

4.3 Ethereum Node . 45

5 Security 47
5.1 Block Reorganisation Attacks . 47
5.2 Private Keys . 51
5.3 Breach of Smart Contracts . 52
5.4 Losing Keys . 52

6 Testing and Edge Cases 54
6.1 Issue . 54
6.2 Trade . 59
6.3 Redeem . 60

7 Evaluation 64
7.1 Cryptocurrency . 64

7.1.1 Cycle . 64
7.1.2 Valuation and Audit . 65

7.2 Application . 67
7.2.1 Website . 67

8 Conclusion 71
8.1 Takeaways and Lessons Learned . 71
8.2 Future Implementation . 72

8.2.1 Live Application . 72
8.2.2 Acceptance Among Merchants 74
8.2.3 Payment Channel Network . 75

A Additional Functions 77

B User Guide 80

vi

Chapter 1

Introduction

1.1 Motivation

Bitcoin, a peer-to-peer payment network, is considered to have revolutionized cur-
rency. It is the first currency to be transferred online, and is considered much safer
than traditional money due to a network called blockchain. This manages forms of
cryptocurrency by securely recording every one of its transactions.

Yet, a major issue with Bitcoin, and other cryptocurrencies, is volatility. Its rapid
changes in value cause doubts of its ability to serve as a currency.

A possible solution to avoid the volatility of cryptocurrencies is the use of stable-
coins. Stablecoins are cryptocurrencies as well. However, their values are tied to the
value of other assets, namely fiat currencies. For example, Tether is the stablecoin
with the highest market cap, and its value is tied to that of the US Dollar.

The current problem that exists with stablecoins is the ambiguity of its tokens actu-
ally being backed by real units of currency. While tying a value to a tangible asset is a
safe concept in practice, the value of a stablecoin is compromised without a concise
and regularly-updating audit system in place. For example, even the Gemini Dollar,
the first regulated stablecoin, only releases examinations on its holdings once per
month. Without regulation in real time, stablecoins face a potential consequence of
under-collateralization. This will not help assuage investors’ concerns on volatility
or safety.

1.2 Objectives

A potential solution is the creation of a stablecoin which has real time auditing. In
this scenario, a token is only sold and its transaction on the blockchain is only cre-

1

1.3. CONTRIBUTIONS Chapter 1. Introduction

ated when the adequate funds have been received, and a refund of such payment is
made only when the tokens have been burned. Moreover, both the amount of tokens
in circulation and the corresponding reserve of fiat currency are tracked in real time.

The objectives of this project were to design and implement a new stablecoin, whose
value would be tied to that of the GBP, and connect it to an audit to ensure its true
value would never be compromised. A system to issue stablecoin tokens for fiat
currency, provide a medium to trade these tokens, and then allow for them to be
redeemed back into fiat currency, combined with an audit updating in real time, was
a desired outcome of the project.

1.3 Contributions

Setting up this system, in the form of a web application, required both a connec-
tion to a payment API, Stripe, and a connection to a blockchain-based platform,
Ethereum. By deploying a smart contract for an ERC-20 token, the stablecoin token
itself was created. Integrating the system with the Stripe API allowed for creation
of a payment method within the application so users can purchase tokens online,
leading to the following flow. Once the money is received, a transaction is created
on a blockchain, by calling another API, web3. Then, the corresponding amount of
‘digital pounds’ are issued to the user. The ensuing update of the audit shows an
equal amount of fiat pounds and digital pounds in circulation. These digital pounds
are able to be traded between users, through a local node connected to the Ethereum
blockchain, as well. Finally, in a similar manner, these stablecoin tokens can be re-
deemed for fiat currency at any time.

The main result of this project was a proof-of-concept of a stablecoin that is both
accurately backed by real currency and transparent and secure for investors. It can
ultimately serve as an effective decentralized management of digital currency - a
‘digital pound’, or Digipound.

1.4 Organisation

This report is organised into the following chapters:

• Background: I identify the need for such a stablecoin by comparing a variety
of current assets, from cryptocurrencies to wrapped currencies.

• Design: At a high level, I analyse the components of implementing a stable-
coin trading service within a web application framework. I also delve into

2

Chapter 1. Introduction 1.4. ORGANISATION

the creation and deployment of the Digipound token on the Ethereum (test)
blockchain.

• Implementation: I detail the specifics of coding the Digipound web applica-
tion, from issuing, trading, and redeeming the Digipound token to updating
and displaying the realtime audit. I explain this in the context of the Model-
View-Controller architecture present in the Laravel web framework. I identify
and describe prerequistes for running a blockchain-based application locally.

• Security: I identify potential security concerns that are present with a stable-
coin of this potential and explain how I mitigate these.

• Testing and Edge Cases: I detail the completeness of my application by run-
ning a series of tests on all of its flows and components and explain how I
respond to potential edge cases and potential system mishaps.

• Evaluation: I critically analyse my project against my initial objectives of it, as
both a new cryptocurrency and a new web application.

• Conclusion: I describe the takeaways from my project. I present my vision for
Digipound as the future of decentralised assets and detail how to build upon
my current work to achieve such a vision.

3

Chapter 2

Background

2.1 Cryptocurrency

Cryptocurrencies have revolutionised the way money has been perceived. As digital
assets, they are essentially a medium of exchange. They have recently gained much
popularity. For example, the world’s top-trading cryptocurrency, Bitcoin, has a mar-
ket cap of nearly one-hundred and fifty billion dollars [1].

Their benefits lie in their security, as cryptography secures financial transactions,
relative anonymity, and decentralisation. To elaborate on the latter, a cryptocurrency
records all financial transactions on a distributed and decentralised ledger called
a blockchain. Therefore, one can send cryptocurrencies directly to another user
without the use of a third party, such as a centralised banking system.

2.1.1 Examples

As stated above, the most widely used cryptocurrency is Bitcoin. However, there
are many other types of cryptocurrencies, whose implementations differ in multiple
ways. The main differences between cryptocurrencies are in their methods of issue
and places to spend them.

For example, Bitcoin and Dash, among others, are issued in a process called ‘min-
ing.’ Mining a block is the process of adding transaction records to a blockchain.
It is performed whenever a new coin has been issued. A hash is created for the
newly-created block, with requirements of it being unique and hard to find arbitrar-
ily. Finding the hash is essentially a cryptographic puzzle, and the system gives coins
to the ‘miner’ that can solve the puzzle [3].

Cryptocurrenices are traded on platforms, and can be versatile in the way they are
exchanged. To elaborate, one intent to invest on the Ripple blockchain is to transfer

4

Chapter 2. Background 2.1. CRYPTOCURRENCY

money between countries. Users can convert their fiat currency (foreign) to currency
on the Ripple platform, and after requesting a transaction on the Ripple blockchain,
the recipient of the transaction can convert these new coins into whichever currency
desired [5].

The markets and purposes of spending differs among cryptocurrencies, as well. For
example, Bitcoin is the most widely accepted cryptocurrency among merchants. It is
not uncommon for some retailers to accept purchases in Bitcoin, including Microsoft.

Figure 2.1: Microsoft allows customers to pay for services, such as games, apps, and
movies, using Bitcoin [6].

Some cryptocurrencies, however, have a very niche use. In particular, Ether is a
currency that is only used when one requests a service on the Ethereum platform.
Ethereum is a blockchain-based platform, as will be elaborated below, and when one
makes a transaction on it or uses an application on it, Ether is the currency which
is paid to facilitate these functions. Overall, cryptocurrencies have gained immense
popularity and a wide variety of uses.

2.1.2 Volatility

High volatility is currently one of the biggest problems that cryptocurrency faces.
For example, Bitcoin’s historic run in 2017 saw it become one of the most popular
cryptocurrencies [4]. With sudden ascensions come crashes as well. In early 2018,
Bitcoin’s price fell by as much as 65 percent, and the cryptocurrency market suffered
a 342 billion (US) dollar loss [15].

A simple reason why cryptocurrencies are so volatile is the fact that they have no
intrinsic value. As they do not sell anything tangible, or rarely invest their profits

5

2.1. CRYPTOCURRENCY Chapter 2. Background

Figure 2.2: The history of Bitcoin’s price highlights its volatility [4].

back into the cryptocurrency market, it is hard to place a value on many of these
online currencies. Additionally, banks and hedge funds have yet to commit to cryp-
tocurrency as a viable investment, which means that cryptocurrency faces a lack of
institutional capital [14].

The reason for this is that, at its source, a cryptocurrency is just that - a currency.
In most cases, its value is only determined by the cost people are willing to forfeit
for it. Perhaps, with more regulation, diverse investors, and a defined value, the
cryptocurrency market may decrease in volatility, but this seems rather unlikely in
the short term.

2.1.3 Blockchain

Blockchain, a decentralized ledger, is important to cryptocurrency transactions as
it eliminates the need for a centralized third party to validate digital peer-to-peer
exchanges. An electronic coin is often defined as a chain of digital signatures [2].
After each transaction of an electronic coin, payees can verify their signatures to the
recipients of the transactions to continue the chain of ownership.

For reference, a blockchain can be set up as a linked list or an array in most program-
ming languages, so long as each block has at least the following essential attributes:

• The hash of the previous block.

• The current hash of the block.

• The timestamp when the block was created.

• The nonce, whose function is detailed below.

6

Chapter 2. Background 2.1. CRYPTOCURRENCY

Figure 2.3: When transferring a Bitcoin, for example, the current owner digitally signs
a hash of the previous transaction and specifies the public key of the next owner. The
chain is then extended to reflect the transaction [2].

• The list of transactions represented by the block.

In order to ensure that coins cannot be spent multiple times, the hash of each block
is made publicly accessible, along with a timestamp corresponding to the respective
transaction. Every transaction in the chain has a timestamp which reinforces the or-
der of transactions and shows that the data was present in order to create the hash
of the following transaction. To setup a block in order to add a transaction to it,
Bitcoin increments its nonce until it finds a valid hash for that block [2].

There are a few established blockchain-based platforms already in place. Blockchain
implementations can be broken into two types. There are enterprise blockchains
such as Hyperledger where blocks have to be authorised before entering the net-
work. The other alternative, which this project is concerned with, is open public
blockchains, such as Bitcoin and Ethereum [7].

Ethereum is one of the most popular blockchains, and is particularly useful in its
ability to incorporate a scripting language, Solidity, to create applications and new
currencies on a shared blockchain. The Ethereum plaform acts as a medium to de-
ploy smart contracts, which can be written in Solidity.

These smart contracts can reflect any kind of transaction, and they can be eas-
ily accessed on the Ethereum platform. The platform also has its own currency,

7

2.1. CRYPTOCURRENCY Chapter 2. Background

as well, called Ether. As mentioned before, Ether is the fundamental token of
Ethereum which facilitates transactions of all tokens and applications operating on
the Ethereum network.

An additional benefit of the Ethereum network, in context of application or currency
developers, is the presence of numerous test networks, such as the Ropsten test
network. These give developers a testing environment to create their applications
and make transactions without spending real currency such as Ether, before they
bring their applications to the main network. The Ropsten test network was used to
develop a proof-of-concept for the objectives of this project.

2.1.4 Smart Contracts

As stated, one method to deploy a cryptocurrency is the creation of a smart contract
on a Blockchain-based platform, such as Etherum. The smart contract represents a
token, which can represent any tradable, tangible product.

In essence, most smart contracts on a particular blockchain have identical attributes
in their codebases. The code, itself, is not unique, rather it is what the token rep-
resents that distinguishes it. For example, in the case of a stablecoin traded on the
Ethereum network, one token can represent a unit of fiat currency. Main functions
that a smart contract must include are a constructor for the token and also a func-
tion that details the transfer of a token from one address to another. Each address
represents a user that has holdings on a blockchain.

8

Chapter 2. Background 2.1. CRYPTOCURRENCY

Figure 2.4: WBTC is a token deployed on the Ethereum blockchain that serves as a
wrapper for Bitcoin, which will be explained below. Its contract address, token holders,
and list of previous transactions are displayed using Etherscan, which is essentially a
search engine, or block explorer, for the Ethereum network [8].

Contracts can be composed according to a specific technical standard. In the Ethereum
blockchain, the most popular standard is ERC-20, which defines a shared set of rules
for Ethereum tokens to use. As of May 2019, there are over one hundred ninety
thousand ERC-20 compatible tokens on the main Ethereum network [8].

Functions that tokens following the ERC-20 standard must have include [10]:

• totalSupply(), used to access the total supply of the token,

• balanceOf(address tokenOwner), which shows the balance of an account holder
of that token,

• transferFrom(address from, address to, uint256 value), which is espe-
cially essential for a cryptocurrency.

After composing a contract, the next step is to deploy it. In the case of deploying it on
the Ethereum network or its subsidiary test networks, one such IDE that can be used
is called Remix. Remix runs a local Ethereum node to interact with its blockchain
and can compile and deploy the contract for any application.

9

2.2. STABLECOINS Chapter 2. Background

Figure 2.5: The Remix IDE can be used to deploy smart contracts to create cryptocurren-
cies or any applications on the Ethereum blockchain - in this case, a default application
to resemble a voting ballot [11].

Once deployed, a contract is assigned a hexadecimal address and transactions such
as issuing tokens can be written to the blockchain by specifying the address of the
contract of the token to be transferred or the application to be used. These are
the essential steps needed to create a basic cryptocurrency that can be transferred
between users.

2.1.5 Storage

The mechanism where users can store and access their cryptocurrency holdings is
a wallet. Users have access to a public key and a private key; the public key is
hashed and the result makes up a hexadecimal address where cryptocurrency can
be sent to [12]. The private key is what users require to sign each transaction, to
ensure additional security. An example of a wallet for cryptocurrencies on the main
Ethereum network and its test networks is MyEtherWallet.

2.2 Stablecoins

According to the 2018 State of Stablecoins report, there are fifty-seven stablecoins,
of which thirty-nine percent are live [13]. Stablecoins pose a natural solution to the
volatility of cryptocurrency as their values are always backed by some form of asset.
Stablecoins can be traded on the same platforms as other cryptocurrencies. The
most popular platform on which stablecoins are traded is Ethereum, where fourteen
stablecoins are traded [13].

10

Chapter 2. Background 2.2. STABLECOINS

2.2.1 Collateralisation

Stablecoins are very versatile in terms of the asset their values are tied to. For ex-
ample, stablecoins can be backed by collateral or algorithms which determine their
worth. Collateral-backed stablecoins can be valued by traditional collateral or cryp-
tocurrency. Traditional collateral can range from fiat currency to gold.

Figure 2.6: Stablecoins can be backed by many entities [13].

This project is concerned with traditional collateral-backed stablecoins. These par-
ticular stablecoins have recently gained much popularity, and their relation to fiat
currencies results in them being called ‘digital currencies.’ In fact, the head of the
International Monetary Fund, Christine Lagarde, suggested that a change to digi-
tal currencies was imminent for central banks of several countries, namely Canada,
China, Sweden, and Uruguay [16].

2.2.2 Examples

By market cap, Tether is the most popular stablecoin, trading at over three billion
US Dollars [1]. It had been originally claimed that each Tether coin was backed
by one US dollar, although that claim seems to be rather tenuous. To counter this
uncertainty, Cameron Winklevoss released the Gemini Dollar, which claims to be the
world’s first regulated stablecoin that can verify its holding claims [17].

Other examples of stablecoins include the MakerDAI stablecoin, which is actually
backed by the Ether cryptocurrency. Though crypto-based stablecoins are outside
the scope of this project, it is interesting to note that MakerDAI aims to stabilise the

11

2.2. STABLECOINS Chapter 2. Background

Figure 2.7: The stablecoin with the highest market cap, Tether, has the ninth highest
market cap amongst all other cryptocurrencies, as of June 2019 [1].

value of the Dai cryptocurrency by, through using smart contract technology, issuing
users Dai in exchange for Ethereum. This is essentially a loan of Dai, and the idea
is that if the value of Ethereum decreases, MakerDAI will be returned. Surprisingly,
it has relatively low short-term volatility, but naturally, given that it is tied to a cryp-
tocurrency, long term volatility is a drawback [18].

2.2.3 Reserve Accounts

Most stablecoins go hand-in-hand with a reserve account, which supposedly holds
the appropriate amount of collateral relative to the number of stablecoins issued. In
principle, if every holder of a particular stablecoin wanted to sell, or redeem, their
stablecoin holdings for exactly what they paid for, this would be feasible.

However, there is often much doubt among stablecoin investors that their digital
currencies are appropriately backed up by fiat currency. There have been instances
where stablecoins are under-collateralized - or, in the odd case of the USD Coin by
Circle, over-collateralized [19]. Recently, much doubt was cast on Tether’s ability to
be fully redeemed by the US dollar, as investors do not believe that there are suffi-
cient USD reserves in place, the fiat currency which Tether is tied to. What made
matters more concerning was the fact that in March 2019, Tether qualified their
claim that their tokens were backed up by one USD each by stating that their back-
ings included loans from affiliated parties [20]. To date, there is no consumer with

12

Chapter 2. Background 2.3. TOKENISATION

absolute certainty with regards to Tether’s dollar reserves.

To remedy this doubt, certain stablecoins have issued auditing systems which docu-
ment the amount of digital currency in place along with its corresponding reserve of
fiat currency. Yet, no such system is in place to automatically update the audit after
each transaction. The Gemini Dollar, for example, only releases audits monthly [21].

Figure 2.8: As of December 31st, 2018, the amount of Gemini dollars in circulation was
the same as the U.S. Dollar balance in the respective accounts. The previous examina-
tion, however, took place on November 30th, 2018 [21]. There is no information present
to show if there were any fluctuations in collateral during the month of December.

2.3 Tokenisation

Some popular cryptocurrencies serve as ‘wrappers’ for other coins. This is referred
to as tokenizing assets, and provides many advantages:

• Faster and more secure transactions on the blockchain.

• Less intermediaries for trading assets on the blockchain.

• Higher security as users can have control of their asset’s private keys.

• Greater transparency as total tokens, token creation, and removal transactions,
etc. are universally known.

A stablecoin, as designed in this project, can be considered as a ‘wrapper’ for a fiat
currency.

2.3.1 Examples

An example is the recent ERC-20 token called Wrapped Bitcoin (WBTC), which is
backed by Bitcoin [21]. The following sequence of events shows how one can mint
WBTC on the Ethereum chain:

13

2.3. TOKENISATION Chapter 2. Background

Figure 2.9: A merchant can send the custodian, who exchanges assets for wrapped
tokens, Bitcoin, to which the custodian can issue WBTC that is stored on the Ethereum
blockchain [21].

Another example of this type of token is Dogethereum. Dogethereum is a bridge be-
tween Dogecoins, a type of cryptocurrency, and the Ethereum market. Dogethereum
is very similar to WBTC in its manner of issuing tokens. Unlike WBTC, however,
where burning tokens results in sending a block to an unrecoverable address, each
DGD token contains a lock which is activated while the token is in use. Only when
the token is unlocked can the remaining Dogecoins be received [24].

Such ‘wrapping’ does not have to only involve cryptocurrencies. The ensuing exam-
ple of the Zimbabwean dollar, and its eventual hyperinflation, demonstrates physical
tokenisation of a fiat asset, along with its potential downsides if not audited correctly.

The Zimbabwean dollar was released in 1980 to replace the Rhodesian Dollar, and
the government intended for its value to be on par (1:1) with the US dollar. Zim-
babwe would require its citizens to exchange USD for ZWD upon entry to Zimbabwe,
which they could theoretically redeem at any point for the same amount of USD. To
summarise, this claim soon proved invalid. After time, Zimbabwe started requesting
more Zimbabwe dollars to return US dollars, and consumers were unhappy as they
could not use their Zimbabwe dollars outside of Zimbabwe [22]. This led to hyper-
inflation of the ZWD, and Zimbabwe’s currency was suspended in 2009 [23].

The example of the Zimbabwe dollar offers a cautionary tale in terms of tokenisa-
tion of both fiat currencies and cryptocurrencies. It highlights the need for a sta-

14

Chapter 2. Background 2.3. TOKENISATION

Figure 2.10: A one hundred trillion dollar Zimbabwe note seemed unfathomable before
2009, when the value of the Zimbabwe dollar was apparently equal to the US dollar.
However, a secret deficit of USD as well as a lack of willingness from the Zimbabwe gov-
ernment to redeem the ZWD for USD at any time led to the devaluation of the currency,
hence its massive inflation. The ‘wrapped’ nature of the Zimbabwe dollar strikes much
similarity to stablecoins, highlighting the necessity of a strong auditing system, which is
currently not present in any stablecoin[23].

blecoin which can consistently maintain a cycle of issuing, trading, and redeeming
tokens, and whose reserves are always sufficient and verified, potentially by third-
party sources.

2.3.2 Issue-Trade-Redeem

Wrapped tokens allow users the ability to take part in the ‘issue-trade-redeem’ cycle
that is vital to cryptocurrencies.

In the case of Wrapped Bitcoin, the cycle starts with a merchant sending the custo-
dian Bitcoin, which the custodian then receives and proceeds to issue the appropri-
ate amount of WBTC. Now, users can freely exchange this token on the Ethereum
network as they wish, and can supposedly redeem it at any time and receive the
corresponding amount of Bitcoin in return.

It is important to note that the custodian only creates a transaction on the blockchain
to issue WBTC once the appropriate BTC transaction has been confirmed - multiple

15

2.3. TOKENISATION Chapter 2. Background

times, in fact. Redeeming BTC for WBTC tokens, referred to as ‘burning’ is also
only carried through after the custodian receives multiple confirmations from the
Ethereum chain.

Figure 2.11: Burning or redeeming BTC reduces the supply of WBTC and the merchant’s
WBTC balance [21].

Ultimately, this cycle, which is the basis of all tokens, can be summarised as follows:

1. The ability to issue tokens on a particular blockchain-based platform.

2. The ability to trade tokens to any user, with only the obvious restrictions
(enough tokens to trade, etc.)

3. The ability to redeem tokens for the corresponding asset at any given time.

16

Chapter 2. Background 2.4. SUMMARY

2.4 Summary

The following table summarises the background knowledge and existing solution by
identifying the positives and negatives of the aforementioned methods of exchange:

Benefits Drawbacks

C
ry

pt
oc

ur
re

nc
y Anonymity, Security, and Indepen-

dence of P2P transactions.
Volatility, Lack of Regulation.

St
ab

le
co

in
s Perceived Lower Volatility. Can be Misleading if Improper Re-

serves are in Place.

W
ra

pp
er

s Faster and More Secure Due to Less
Intermediaries along the Blockchain.

Can Lead to Inflation if Not Backed
Up Properly.

The aim is to create a new method of exchange which captures all the benefits of the
previous three methods of exchange whilst minimising the drawbacks.

2.5 Vision

WBTC, Dogethereum, and the concept of tokenization inspire a similar model for sta-
blecoins, where tokens are issued only when the appropriate fiat currency has been
received and redeemed once the corresponding transaction has been created to re-
linquish ownership of the token. Moreover, any issued tokens can be exchanged in
a similar manner to that detailed in the above section. This can successfully achieve
a safe and effective ‘issue-trade-redeem’ cycle and decentralized management of a
stablecoin. Additionally, as long as the coins are audited in real time, customers will
have complete control of their digital currency and have little doubt of the value of
their assets.

This vision led to Digipound: my final year project.

17

Chapter 3

Design

Given that such a project is quite time-constrained and intense, especially for a BEng
thesis, below are the components which composed a Minimum Viable Product for
the application Digipound, aptly sharing the name of the stablecoin it trades. This
application was designed during my final year at Imperial College. Digipound aims
to facilitate the three major parts of the issue-trade-redeem cycle for a custom ERC-
20 token, Digipound, encapsulated within a website.

3.1 Components

As alluded to above, the MVP of Digipound involved three main components to
satisfy the preceding requirements of functionality:

• A custom token on a blockchain-based platform.

• A web application to facilitate the issue-trade-redeem cycle of such a token,
involving both an API to interact with the blockchain and an API to handle
payments.

• An auditing mechanism that displays both the current amount of fiat currency
(GBP) in the Digipound reserve account and the amount of Digipound tokens
that have been issued, which can be verified by an external source.

3.1.1 Digipound

The Digipound (symbol: DGP) represents the first component: a custom token that
can be traded on a blockchain. The blockchain chosen for this project was Ethereum,
given its popularity amongst developers, its size and hence security, its speed, and its
compatibility with various standards of tokens. Since the specifics of the token itself
were not the focus of the project, Digipound was created as a standard ERC-20 token.

18

Chapter 3. Design 3.1. COMPONENTS

Nonetheless, this process was quite time-intensive, requiring multiple weeks to com-
pose and deploy a smart contract. Another reason why Ethereum was chosen was
because of its multiple test networks. For the Minimum Viable Product of the ap-
plication, the Digipound token was deployed on the Ropsten test network. This
meant that Digipound still exhibits the same functionality as a token traded on the
Ethereum network, without incurring a cost of transactions in Ether.

Digipound’s smart contract was written in Solidity, the scripting language men-
tioned earlier, identically implementing the same functionality of most ERC-20 to-
kens. As previously stated, the specifics of the contract are irrelevant when com-
pared amongst tokens, as the defining attribute of a token is what asset it represents,
not how it was deployed on the blockchain platform. The following components of
the application detail how the Digipound token was set up to represent the British
pound, which it is fittingly named after.

The smart contract for Digipound defined the basic ERC-20 functions that were men-
tioned above. Alongside the constructor for the smart contract, the functions that
are frequently called in the web application include balanceOf and transferFrom,
whose definitions are also below.

cons t ruc to r () pub l i c
{

symbol = ‘ ‘DGP” ;
name = ‘ ‘ Digipound ” ;
decimals = 18;
to ta lSupp ly = 100000000000000000000000000;
ba lances [0x0B5e6646f3665E5132FDdAAbF1aF95386E70148f]

= to ta lSupp ly ;
emit Trans fe r (address (0) ,

0x0B5e6646f3665E5132FDdAAbF1aF95386E70148f ,
t o ta lSupp ly) ;

}
Listing 3.1: The above code constructs the DGP smart contract.

Here, balances is defined to be a map from address to uint and the next function,
balancesOf, represents a simple lookup function. The map balances is initialised by
assigning the total supply of Digipound to a single address. That address represents
the owner of the contract. I created an arbitrary address to serve as the holder and
issuer of Digipound.

The totalSupply and decimals variables were arbitrarily defined, with the latter
referring to the precision at which an amount of Digipound can be issued. For exam-

19

3.1. COMPONENTS Chapter 3. Design

ple, the decimals of most fiat currencies are 2, as it is possible to issue £6.45 but not
£6.451. Finally, the command emit Transfer(...) safely creates a Transfer event
which is what is interfaced with the Ethereum blockchain.

The second primary function in the Digipound contract is the balanceOf function,
returning the holdings of Digipound at a certain address on the network.

func t ion balanceOf (address tokenOwner)
pub l i c cons tant r e tu rn s (u in t balance)
{

re turn balances [tokenOwner] ;
}

Listing 3.2: Retrieving the balance in DGP of a certain address is implemented as a
simple lookup function given a global map of balances in the contract.

Finally, transferring a token from one address to another calls the transferFrom

function, defined below:

func t ion transferFrom (address from , address to , u in t tokens)
pub l i c r e tu rn s (bool succes s)

{
r equ i r e (tokens <= balances [from]) ;
ba lances [from] = tokens − balances [from] ;
requ i r e (tokens <= allowed [from][msg . sender]) ;
allowed [from][msg . sender]

= allowed [from][msg . sender] − tokens ;
new balance = balances [to] + tokens ;
r equ i r e (new balance >= balance [to]) ;
balance [to] = new balance ;
emit Trans fe r (from , to , tokens) ;
re turn t rue ;

}
Listing 3.3: A transfer updates the balances of the users and then is sent to the
blockchain.

This function essentially updates the balances map and then calls the Transfer

function which interacts with Ethereum. The require checks are just to ensure that
the account transferring the tokens has enough balance to make the transfer and is
not transferring a negative number or a number outside its total allowance to send.

These three functions comprised the basic functionality of the Digipound smart con-
tract, among others which were taken from the Tenzorum blockchain initiative [25].

20

Chapter 3. Design 3.1. COMPONENTS

Once the contract was written, the Remix IDE was used to deploy the contract to
the Ethereum blockchain. Within the IDE, I first compiled the Solidity code and then
deployed the smart contract. I chose to deploy the contract on the Ropsten test net-
work, and after passing it through the Remix IDE, I had officially created a token on
an Ethereum test network!

My contract can easily be viewed by using the block explorer Etherscan set to the
Ropsten network. The following image shows the contract on the blockchain, along
with its address, token holders, and list of transactions.

Figure 3.1: The address of the Digipound contract along with a list of transactions
written to it is publicly accessible [9].

The address of the contract is what is used to identify it and write transactions to it.

Once the Digipound contract was created, my next step was to set up a web applica-
tion with two components that required different APIs:

• An API to interact with Ethereum and call the token defined in the contract I
just deployed to the network (web3).

• An API to handle payments, which can confirm receipt of payments before
issuing tokens, and deposit funds back to a user when redemption of tokens is
requested (Stripe).

3.1.2 web3

web3 is a collection of JavaScript libraries which can interact with the Ethereum
blockchain through an HTTP connection with a local Ethereum node [26]. It was an
ideal choice given that JavaScript is a primary language used to code much of the

21

3.1. COMPONENTS Chapter 3. Design

website’s functionality. web3 can be initialised with a service provider, whether that
is a local Ethereum node running on a computer (see Implementation section), or
a third party provider such as Infura, which is called if no local service provider is
present.

var web3 ;
i f (typeof web3 !== ‘ undefined ’) {

web3 = new Web3(web3 . cu r ren tP rov ide r) ;
} e l s e {

web3 = new Web3(new Web3 . p rov ide r s . Ht tpProv ider (
‘ ‘ h t t p s : // ropsten . i n fu ra . io /”

+ ”<?=getenv (‘ ‘ INFURA PROJECT ID ”)? >”)) ;
}

Listing 3.4: Upon opening of the landing page, the instance of web3 is initialised using
a service provider and can be called throughout the application.

In the application, the web3 libraries that interact with Ethereum will be used in
multiple ways:

• To access the token through the Digipound contract created earlier.

• To transfer instances of the token, whether it is from my reserve account to a
user, from a user to another user, or from a user back to the reserve account
(issue-trade-redeem cycle).

Accessing the token requires outside information about the contract, including the
contract address, as previously explained, and an ABI. An ABI is short for Application
Binary Interface. With it, it is possible to interact with smart contracts from outside
the blockchain, by encoding data about a contract according to its type [27].

The Remix IDE automatically generates an ABI upon compilation of the contract
code in Solidity, so I was able to pass this result, represented as an array of datatype
symbols, to the web3 library to decode. For the contract I created, the following ABI
representation can be found in the Appendix. Both the ABI and contract address can
be passed as arguments into web3 to be able to work with the Digipound token that
I defined.

var ERC−20abi = . . . ; // see appendix
var cont rac tAddress

= ‘ ‘ 0 xf6cd47EB9ca7e1a94e3B70722E9D7964fE14A811 ” ;
var con t r a c t = web3 . eth . con t r a c t (ERC−20abi) ;

22

Chapter 3. Design 3.1. COMPONENTS

var token = con t ra c t . a t (cont rac tAddress) ;
Listing 3.5: Once initialised, the token object can be used to perform the required
functions in JavaScript that are associated with its contract.

The token object can now be used to perform the three stages of the issue-trade-
redeem cycle of Digipound via its web application. Given that the total supply of
DGP is currently held in my single ERC-20 reserve account, as was initialised in the
constructor of the contract, the transfer method in the contract can be used for
each of the stages in the cycle. The main differences are in the sender and recipient
address to be defined in the parameters of the function.

1. Issue:

var mainAddress
= ‘ ‘ 0 x0b5e6646f3665e5132fddaabf1af95386e70148f ” ;

var accountAddress = ‘ ‘ 0 x ” + ‘ ‘{{ $account }} ” ;
var decimals = web3 . toBigNumber (18) ;
var amount

= web3 . toBigNumber(<?php echo $receive amount ?>);
var value = amount . t imes (web3 . toBigNumber (10) .pow(decimals)) ;
ethereum . enable () ;
web3 . eth . defaul tAccount = mainAddress ;
token . t r a n s f e r (accountAddress , value , (error , txHash)

=> {
document . getElementById (‘ ‘ e t h t r a n s a c t i o n ”) . innerText

= ‘ ‘ Ethereum Transac t ion ID : ” + txHash ;
}) ;

Listing 3.6: Issuing tokens is equivalent to writing a transfer on the Digipound
contract from the reserve account to the user’s account.

The idea is that whenever a payment of fiat currency (GBP) has been received,
with confirmation from the payment API, a transfer from the reserve account
to the user’s account is made with the corresponding amount of Digipounds.
As will be detailed later, the function obtains the information of the user’s ac-
count and the amount paid from PHP, and updates the website with the ID
of the transaction on the Ethereum blockchain as proof to the users that they
have received the tokens. The transfer function has the same functionality
as the transferFrom function, except the sender’s address is set as the de-
fault account, which is specified with the line web3.eth.defaultAccount =

mainAddress.

23

3.1. COMPONENTS Chapter 3. Design

The next two functions utilise nearly identical code to the previous one with the
subtle differences in the changes of the mainAddress and the accountAddress

variables.

2. Trade:

var mainAddress = ‘ ‘ 0 x ” + ”{{ $account }} ” ;
var accountAddress = ‘ ‘ 0 x ” + ‘ ‘{{ $rece ive account }} ” ;
var decimals = web3 . toBigNumber (18) ;
var amount

= web3 . toBigNumber(<?php echo $receive amount ?>);
var value

= amount . t imes (web3 . toBigNumber (10) .pow(decimals)) ;
ethereum . enable () ;
web3 . eth . defaul tAccount = mainAddress ;
token . t r a n s f e r (accountAddress , value , (error , txHash)

=> {
document . getElementById ‘ ‘ e t h t r a n s a c t i o n ”) . innerText

= ‘ ‘ Ethereum Transac t ion ID : ” + txHash ;
}) ;

Listing 3.7: Writing a transfer to the network via the contract achieves the trading
of DGP.

Again, information about the user’s account, the account to receive the trade,
and the amount of the trade are passed in through a controller written in PHP,
which will be further explained. The transfer function still achieves the de-
sired affect by once again changing the default address in web3.

3. Redeem:

var mainAddress = ‘ ‘ 0 x ” + ‘ ‘{{ $account }} ” ;
var accountAddress

= ‘ ‘ 0 x0b5e6646f3665e5132fddaabf1af95386e70148f ” ;
var decimals = web3 . toBigNumber (18) ;
var amount = web3 . toBigNumber(<?php echo $receive amount ?>);
var value = amount . t imes (web3 . toBigNumber (10) .pow(decimals)) ;
ethereum . enable () ;
web3 . eth . defaul tAccount = mainAddress ;
token . t r a n s f e r (accountAddress , value , (error , txHash)

=> {

24

Chapter 3. Design 3.1. COMPONENTS

document . getElementById ‘ ‘ e t h t r a n s a c t i o n ”) . innerText
= ‘ ‘ Ethereum Transac t ion ID : ” + txHash ;

}) ;

Listing 3.8: Burning Digipound via the redeem function essentially mimics the
issue function with the mainAddress and accountAddress switched.

Now that the web application was connected with the Ethereum blockchain through
the web3 API and specified how to transfer tokens according to the issue-trade-
redeem cycle, the next step was to link the preceding functions with a payment
API that could accept payments before issuing tokens and return payments after
redeeming tokens.

3.1.3 Stripe

When choosing an API to handle payments, I considered multiple options, including
the Paypal API and Stripe API. When making my decision, I considered the two cases
where I would require the API. These cases occurred in the issue and redeem stages
of the issue-trade-redeem cycle and would require the following functionalities:

• The ability to accept any bank card from users and process the payment, giving
confirmation within the web application that the payment has been received
to instruct it to call the Digipound issue function defined earlier.

• The ability to send back money to users’ bank accounts after they transfer back
the Digipounds into the holder account, completing the redeem stage.

In both of these cases, Stripe proved to be a major update over Paypal. In fact, in my
first version of Digipound, I had made a demo using the Paypal API. However, it was
analysed with respect to the preceding goals and I realised that a change had to be
made to the API, for the following reasons.

In the first example, Stripe was an improvement over Paypal, as when accepting
payments, Paypal takes users to their website to complete the payment and then
updates the balance of the application’s account. However, this can be problematic
if a payment does not go through, because then the application will be unsure of
whether or not to issue DGP to the user.

On the other hand, Stripe can create bank transactions through the application, and
in turn, give local confirmation if the payment has gone through. In the first draft
of my application with Paypal, I had mistakenly assumed success of a payment and
issued the tokens automatically; however, as will be explained in the Testing section,

25

3.1. COMPONENTS Chapter 3. Design

it is important to first validate the success of the payment within the application be-
fore issuing the tokens, which is why Stripe was used in the ultimate version.

pub l i c func t ion submit (Request $request)
{

S t r i p e : : setApiKey (getenv (’ STRIPE SECRET ’)) ;
t r y {

$charge = Charge : : c r ea t e ([
‘ amount ’ => $ POST [‘ amount ’]∗100 ,
‘ currency ’ => ‘ gbp ’ ,
‘ ‘ source ” => $ POST [‘ token ’] ,
‘ ‘ d e s c r i p t i o n ” => ‘ ‘ t e s t ”

]) ;
$new balance = Auth : : user()−>balance ;
$new balance += $ POST [’ amount ’] ;
Auth : : user()−>update

([‘ balance ’ => $new balance]) ;
i f ($charge−>s t a t u s == ‘ ‘ succeeded ”) {

$ t ransac t i on = Transac t ion : : c r ea t e ([
‘ u se r id ’ => Auth : : user()−> id ,
‘ amount ’ => $ POST [’ amount ’] ,
‘ s t r i p e t r a n s a c t i o n ’ => $charge−>id ,
‘ account ’ => Auth : : user()−>account

]) ;
$request−>s e s s i o n ()−> f l a s h (‘ s t a tu s ’ ,

‘ T ransac t ion Succes s fu l ’) ;
}
e l s e {

$request−>s e s s i o n ()−> f l a s h (‘ er ror ’ ,
‘ T ransac t ion f a i l e d ’) ;

}
}
catch (\ S t r i p e \ Error \Card $e) {

$request−>s e s s i o n ()−> f l a s h (‘ er ror ’ ,
‘ T ransac t ion f a i l e d ’) ;

}
re turn r e d i r e c t ()−> route (’ home ’) ;

}
Listing 3.9: When accepting payments, I create a Charge object through Stripe which
contains a status field detailing if the payment was received successfully [28].

26

Chapter 3. Design 3.1. COMPONENTS

This is an excerpt from a controller in PHP - the model-view-controller architecture
of my application will be elaborated upon later - which handles payments. With the
Stripe API, users can enter their card details (the token variable) and an amount
(the amount variable) to an HTML front end page. Submission routes to the above
function, where a Charge object is created in Stripe that routes the payments into a
reserve bank account that I created. The middle parts of the function are concerned
with updating the local user database to keep a backup record of the DGP balance
of each user and a list of all transactions for display purposes on a user’s home page.

Figure 3.2: Stripe provides a widget to collect card details from the front end of the
Digipound web application.

As for the second scenario where the API would be used, both Stripe and Paypal had
functionality for returns. In principle, when a user wanted to redeem Digipounds
for pounds, since both APIs kept a list of transactions, they could return some or all
of the pounds from a combination of transactions back to the user depending on the
amount of Digipounds to redeem. This seemed acceptable, but when considering
edge cases, I realised that traditional returns did not allow total freedom of redeem-
ing Digipounds in all cases.

The preceding implementation works fine if users want to redeem an amount of
Digipounds less than or equal to the total amount of Digipounds they have paid for,
but consider this situation, which is unable to be solved with the Paypal API:

• User 1 purchases £15 worth of DGP (15DGP).

• User 2 purchases £10 worth of DGP (10DGP).

• User 2 trades 5 DGP to User 1.

• User 1 redeems 19 DGP for £19.

This would be problematic, as when processing the last transaction, there is not
£19 worth of transactions User 1 has made through Paypal or Stripe that can be
refunded. Hence, an alternative to traditional refunds was desired. The Paypal API
has no such alternative. Stripe, on the other hand, offers a feature called Payout,
which can directly deposit money from the bank account I created to serve as the
reserve account to any user’s bank account.

The following code details how payouts can be issued through Stripe, when called
from another controller class in PHP after requesting a redemption of DGP in the
front end of the website.

27

3.1. COMPONENTS Chapter 3. Design

pub l i c func t ion submit (Request $request) {
i f ($ POST [‘ amount ’] <= Auth : : user()−>balance) {

i f ($ POST [‘ amount ’] >= 0) {
$new balance = Auth : : user()−>balance ;
$new balance −= $ POST [‘ amount ’] ;
Auth : : user()−>update ([‘ balance ’ => $new balance]) ;
S t r i p e : : setApiKey (getenv (‘ STRIPE SECRET ’)) ;
$ t r a n s f e r = Trans fe r : : c r ea t e ([

‘ ‘ amount ” => $ POST [‘ ‘ amount ”]∗100 ,
‘ ‘ currency ” => ” gbp ” ,
‘ ‘ d e s t i n a t i o n ” => Auth : : user()−>account no

]) ;
Payout : : c r ea t e ([

‘ ‘ amount ” => $ POST [‘ ‘ amount ”]∗100 ,
‘ ‘ currency ” => ‘ ‘ gbp ” ,
‘ ‘ d e s c r i p t i o n ” => ‘ ‘ Digipound Return ”

] , [‘ s t r i pe ac coun t ’ => Auth : : user()−>account no]) ;
$ t r an sac t i on = Transac t ion : : c r ea t e ([

‘ u se r id ’ => Auth : : user()−> id ,
‘ amount ’ => $ POST [‘ amount ’] ,
‘ s t r i p e t r a n s a c t i o n ’ => ‘ Refund ’ ,
‘ account ’ => Auth : : user()−>account

]) ;
$request−>s e s s i o n ()−> f l a s h (‘ r e fund s ta tu s ’ ,

‘ Refund Succes s fu l ’) ;
re turn r e d i r e c t ()−> route (’ home ’) ;

}
e l s e {

$request−>s e s s i o n ()−> f l a s h (‘ er ror ’ ,
‘ T ransac t ion f a i l e d : I n v a l i d number . ’) ;

}
}
e l s e {

$request−>s e s s i o n ()−> f l a s h (‘ er ror ’ ,
‘ T ransac t ion f a i l e d : Not enough funds . ’) ;

}
re turn r e d i r e c t ()−> route (‘ home ’) ;
}

Listing 3.10: A Payout object is created in Stripe to facilitate transfers of GBP in the
redeem phase.

The function first makes the necessary checks before processing the payout. First, it

28

Chapter 3. Design 3.1. COMPONENTS

determines if the user has enough DGP to redeem, which can be accessed through
the backup record of user balances I store locally. Then, it ensures that the user is
redeeming a positive amount.

Making a payout to a user’s bank account in Stripe requires two steps. The first step
is two create a Transfer object, which gives permission to transfer funds from the
bank account associated with Stripe (the reserve account) to a connected account,
the user’s account. Then, a Payout object can be created using similar fields as the
Transfer object which completes the transaction.

Figure 3.3: Stripe can issue payouts to external bank accounts so long as there are
sufficient funds in the reserve bank account; this means that after they redeem a valid
amount of Digipounds, users will be directly deposited GBP into their bank accounts,
completing the issue-trade-redeem cycle of the Digipound stablecoin.

In order to ensure that a user’s bank account can be paid via Stripe, it is set up
as a connected account in Stripe. This is done upon their registration for the Digi-
pound application. The function is defined in the Appendix. A user enters a bank
sortcode, referred to as routing in Stripe, and account number, along with other
relevant personal information such as date of birth. Thus, upon registering for
Digipound, the user’s bank account details are also registered as a connected ac-
count in Stripe; Stripe then assigns the connected account an account ID that is
stored locally and access when making payments, as seen in the line ‘account’ =>

Auth::user()->account.

Now, the issue-trade-redeem cycle has been extended to include payments, ensuring
the completeness of the Digipound stablecoin. The web application consists of a
connection to the Ethereum blockchain (test network) and a connection to a service
that can handle and confirm payments. The final component of the web application
is tying this all together in an audit that updates in real time.

29

3.1. COMPONENTS Chapter 3. Design

Figure 3.4: Stripe allows the creation of a connected account, which can verify personal
information and keep record of all payouts made to the user. Information for all accounts
and payments can be viewed on the dashboard in the Stripe website.

3.1.4 Audit

A reputable and frequently updating auditing system is one of the main components
that distinguishes Digipound from other stablecoins and cryptocurrencies such as
Tether and the Gemini Dollar. For the auditing system, there are two final quantities
that it must report:

1. The total amount of pounds in the reserve account (which was created when
setting up the Stripe connection).

2. The total amount of Digipounds that have been issued.

In both cases, it is necessary to have a third party be able to provide some verifica-
tion to the claims made in the audit. Take for example the Gemini Dollar, mentioned
earlier. According to their website, the US dollar holdings of the Gemini Dollar are
‘examined monthly by BPM, LLP, a registered public accounting firm, in order to

30

Chapter 3. Design 3.1. COMPONENTS

verify the 1:1 peg [17].’

Similarly, Stripe can verify the GBP holdings of the reserve account. To accomplish
this, every time Stripe verifies a payment, I not only issue tokens through the web3
API, but also keep a backup record of account payments that is directly tied to the
Stripe platform. This is because, every time a transaction is created, I record a Stripe
transaction key, a string, which can be looked up. Using this key, I can analyse the
amount of each transaction, whether into the reserve account or from the reserve
account. Now, there is a record of transactions which can be accessed locally, which
are verifiable by a third party.

Figure 3.5: Stripe keeps a running total of the balance in an account. Although this
view is not publicly accessible to users, by keeping track of the Stripe transaction key
each time a successful purchase is made, the application can effectively track and display
the balance of the reserve account by showing individual transactions.

For the second case, two options were considered. Clearly, using the web3 API, it is
simple to add up the DGP balance of all accounts using the balanceOf function to
display a final DGP total in the audit. I had actually implemented this in the first
iteration of the audit, and presented it to my supervisor, who voiced some concerns.
For, although web3 is a third party, there is no indication of its presence in the front
end of the audit, and there is no way to verify this information via an external link.
Therefore, the first implementation of the audit looked exactly like the audit of the

31

3.1. COMPONENTS Chapter 3. Design

Gemini Dollar. As seen in the Background section, the audit of the Gemini Dollar is
not descriptive at all, just showing two numbers representing each of the previous
quantities. After strong consideration, I resolved it was necessary to have a more
thorough auditing system.

I consulted other auditing systems to inspire Digipound’s auditing system, one of
which was Wrapped Bitcoin (WBTC). In this particular section of their audit, titled
“Proof of Assets,” WBTC details how their token, Bitcoin, is spread across multiple
custodian addresses, providing full transparency of its assets to users. My supervi-
sor and I agreed on a more detailed “Proof of Digipound” section that displayed the
balances and addresses of all accounts and then linked a third party to validate this.
Thus, the first option of using the web3 API to verify the Digipound holdings was
removed in favour of a second option: a block explorer.

Figure 3.6: WBTC displays the balances of all of its custodian addresses, which serve
as the intermediary in transactions. Since one of Digipound’s aims is to eliminate this
intermediary, I used a block explorer to find and display a similarly-formatted audit.

A block explorer is an online application that is essentially a search engine for the
blockchain. It displays the contents of individual blocks, smart contracts, transac-
tions, and, most importantly, balances of addresses. It is also publicly accessible. For
example, Bitcoin has a block explorer, called Bitcoin Block Explorer. For the purposes
of this project, the Ropsten Etherscan block explorer was used, an Ethereum block
explorer specifically on the Ropsten test network.

Thus, the second part of the audit was implemented by including a link to the Ether-
scan page of the Digipound token. In the ‘Holders’ tab, a list of addresses and bal-
ances is made explicit, so using a third party definitely results in a more transparent
audit for users. In terms of adding to the front end of the webpage outside of just
displaying a link to the Etherscan block explorer, I use the local database of balances
and address previously mentioned and display these values to mimic the WBTC lay-
out. Another possibility was to also reference the balances from web3, but given that

32

Chapter 3. Design 3.1. COMPONENTS

Figure 3.7: Etherscan can show the balance of all account holders of DGP; excluding
the address “0x0b5e....”, the main token holder, the sum of the balances of the other
addresses satisfies the validation of the second part of the audit.

I added a link to Etherscan to verify it [9], I did not want to waste computation time
through additional API calls as this is still a complete way to display and validate the
total amount of DGP issued for the audit.

With both components carefully thought out, the design of the audit was completed.
Now, a token was present, the issue-trade-redeem infrastructure was in place, and
the functionality of the audit was finished. The next step was to incorporate these
into a web application to which users could easily navigate.

33

Chapter 4

Implementation

When designing the Digipound platform, multiple considerations for the infrastruc-
ture of the website were considered. One was the generic client-server pattern, yet,
with a complex database and connections to multiple APIs, I desired an architectural
pattern with additional tiers.

Figure 4.1: The database consists of two main tables, users and transactions, that are
connected and hold various fields relating to both Stripe, which refer to the payment
of fiat currency, and Ethereum, which refer to blockchain holdings of DGP. These tables
were abstracted as models in the model-view-controller architecture of the Digipound
application.

34

Chapter 4. Implementation 4.1. MVC

4.1 MVC

Using the insight I gained in the second year of my degree, especially in the Soft-
ware Engineering: Design module, I chose to incorporate the Model-View-Controller
(MVC) pattern in my website [29]. From the course, and from additional back-
ground research, I realised that this pattern is suitable for my application given its
three parts:

1. Model: contains the data and specifies methods for each object in the database.

2. View: displays data to user.

3. Controller: handles user input to modify data.

It is important to understand that throughout a web application like Digipound,
there are numerous models, views, and controllers that all communicate whilst
maintaining their core tasks. In particular, there are two models specifying the rela-
tionship between Users and Transactions, with additional functions added to each.

To give one example of how the MVC architecture works within my web application,
take the process of registration. Upon entry to the website, after the landing page, a
user is presented with a form (written in HTML) to register. This is a view:

Figure 4.2: Registering to trade Digipound requires both an Ethereum address where
DGP can be issued to and also a traditional back account where funds in GBP can be
delivered to after DGP are redeemed by the user.

35

4.1. MVC Chapter 4. Implementation

The user enters this information into the form, and upon submission (clicking the
‘Register’ button), a POST request is made to a controller called the Register Con-
troller in PHP. This references the model, which is another class in PHP called User.
The POST request calls the function create, fully shown in the Appendix, which not
only creates a connected account for future payout purposes, as described above,
but also updates the model by creating an object of type User, which is stored in the
database.

re turn User : : c r ea t e ([
‘name ’ => $data [‘ name ’] . ‘ ‘ ” . $data [‘ surname ’] ,
‘ account ’ => $data [‘ account ’] ,
‘ email ’ => $data [’ email ’] ,
‘ password ’ => Hash : : make($data [‘ password ’]) ,
‘ rout ing ’ => $data [‘ rout ing ’] ,
‘ account no ’ => $acct−>id ,
‘ balance ’ => 0

]) ;

Listing 4.1: The function create, when applied to the User model, creates and returns a
new user in the database.

After the controller references the model and updates the database, the user is taken
to another view, the home page. The user’s login details have been successfully
verified and the user can access the home page where information such as the user’s
name and the list of transactions made will be presented.

c l a s s User extends Authen t i ca tab l e
{

use N o t i f i a b l e ;

p ro tec ted $ f i l l a b l e = [
‘name ’ , ‘ email ’ , ‘ account ’ , ‘ rout ing ’ ,

‘ account no ’ , ‘ password ’ , ‘ balance ’
] ;

p ro tec ted $hidden = [
‘ password ’ , ‘ remember token ’ ,

] ;

pub l i c func t ion t r a n s a c t i o n s ()
{

re turn $th i s−>hasMany (‘ App\Transact ion ’) ;
}

36

Chapter 4. Implementation 4.2. LARAVEL

}
Listing 4.2: The User model class specifies what qualities in the database can be modi-
fied and publicly viewed. Additionally, it also specifies a function to return a collection
of transactions. Given that Transaction model has a foreign key which points to a User,
the hasMany relationship can be called to find all transactions associated with each user’s
primary key, id.

This is one of the many interactions between models, views, and controllers in Digi-
pound. With a sound architectural pattern for the website in place, the next step was
to utilise a web framework to add more structure to the codebase. Web frameworks
are vital to use in a time-intensive project as this, in order to expedite tedious pro-
cesses such as creating controller classes, organizing code into folders, etc. By using
a web framework, I could ensure a coherent and organised codebase while being
able to focus on the creative element I was bringing to the website: implementing
the issue-trade-redeem cycle and the real time audit of Digipound.

4.2 Laravel

There are multiple frameworks that use the MVC framework, such as Django, Ruby-
on-Rails, and Laravel. Laravel was chosen because I had the most experience with
it, having learnt about it during my second year Web Applications group project at
Imperial [30]. Reasons why Laravel was chosen over other web frameworks included
the following:

• Built-in models, views, and controllers for authentication, which I was able to
modify to achieve the above registration process and extend to allow users to
login.

• Strong community with extensive documentation, from running local servers
to updating the database through running migrations.

To manage Laravel’s dependencies, the composer command is called in the terminal.
To start the local server, I run the command php artisan serve. This deploys my
website to the localhost and this is what hosts it for the MVP.

The following shows the flow of how both the issue-trade-redeem cycle and the real
time audit were achieved using Laravel and the components mentioned in the Design
section.

4.2.1 Issue-Trade-Redeem

Issue:

37

4.2. LARAVEL Chapter 4. Implementation

1. From the home page, if users select ‘Purchase Digipounds,’ they will be directed
to the payment view. This page consists of the Stripe widget, and a form to
enter the amount of Digipounds to purchase.

2. After submitting the form, a Payment Controller is called which processes the
bank card details that the user entered, using the Stripe API. The controller
contains the function to create a Charge object in Stripe, as seen in the earlier
listing. Once created, this object contains an element status, to inform me if
the payment has been received.

3. If the status field returns success, then, before displaying the ensuing the
HTML view, I call the issue function in web3 to transfer the amount of to-
kens posted in the form to the address of the user, which is accessed through
the User model.

4. Additionally, in the Payment Controller, I then reference the Transaction model
and update the database by creating another transaction which contains the
current user’s id as a foreign key. I then add the stripe transaction id gen-
erated from creating the Charge object, so this payment can be referenced in
the audit.

5. After the back end tasks have been completed, I refresh the home view. The
home view lists all the transactions whose foreign keys link to the current
user’s id, so the view is accordingly updated by the controller as it references
the Transaction model.

Figure 4.3: From the home view, the user can see all previous transactions made
through the Digipound website, consisting of all three elements from the issue-trade-
redeem cycle.

38

Chapter 4. Implementation 4.2. LARAVEL

Trade:
The trade and redeem cycles in terms of the MVC architecture pattern are nearly
identical with slight discrepancies of the functions. Again, a user starts from the
home page before calling the Transfer Controller by clicking the ‘Transfer Digi-
pounds’ button. They are presented with another form with two options: the user to
transfer Digipounds to and the amount of Digipounds to transfer.

Multiple fields were considered when deciding how a user would select another user
to transfer Digipounds to. The most natural one was the id field, the primary key
of the user. However, after coding this form and presenting it to my supervisor, I re-
alised that it seemed a bit ambiguous to transfer significant assets to someone who
was abstracted as just a number. Another consideration was using the user’s name,
but given that there is a strong possibility of multiple users having the same time, this
approach was turned down. A natural alternative was to input the ERC-20 address
of the recipient user, yet I personally disliked this option. My vision is for Digipound
to serve as an easy-to-use bridge between fiat currency and the decentralised web
and if users have to type in a long hexadecimal string to send money, they may as
well make the transfer over a more complicated third-party blockchain platform.

Thus, a compromise was made with a field whose length was in between that of the
user’s id and the user’s ERC-20 address: the user’s email address. Therefore, in the
transfer view, a user would insert the email address of the recipient user along with
the amount to transfer. Before commencing with this feature, I first had to ensure
that the email address field was unique amongst users. This led me to modify the
form in the registration controller mentioned above. Before a user is created in the
registration controller, the fields inputted in the registration form are passed through
a Validator object, which verifies factors such as the type of data submitted into a
form or the length. In the case of ensuring that email addresses are unique among
registered users, all that is necessary is adding a field to the email input to the val-
idator.

re turn Va l i da to r : : make($data , [
‘ name ’ => [‘ required ’ , ‘ s t r i ng ’ , ‘max:255 ’] ,
‘ surname ’ => [‘ required ’ , ‘ s t r i ng ’ , ‘max:255 ’] ,
‘ account ’ => [‘ required ’ , ‘ s t r i ng ’ , ‘max:255 ’ ,

‘ unique : users ’] ,
‘ rout ing ’ => [‘ required ’ , ‘ s t r i ng ’ , ‘max:255 ’] ,
‘ account no ’ => [‘ required ’ , ‘ s t r i ng ’ , ‘max:255 ’] ,
‘ email ’ => [‘ required ’ , ‘ s t r i ng ’ , ‘ email ’ , ‘max:255 ’ ,

‘ unique : users ’] ,
‘ password ’ => [‘ required ’ , ‘ s t r i ng ’ , ‘ min : 6 ’ ,

‘ confirmed ’] ,

39

4.2. LARAVEL Chapter 4. Implementation

]) ;

Listing 4.3: Adding ‘unique:users’ to the email field in the validator ensures that
every email passed through the registration form is unique in the context of the User
model. This allows me to use the email as a way for users to identify recipients of
Digipound transfers. This validator is created everytime the Registration Controller is
called.

After entering the email of the recipient and the amount to transfer, in the same
fashion as the issue cycle, another controller is called which first lookups the user
from the email via the User model and the following command: $recipient =

User::where(‘email’, $ POST[‘email’])

->first(); Here, $ POST[‘email’] refers to the email address submitted by the
form in the initial view, which sends a POST request to the current controller through
HTTP.

Figure 4.4: Transferring DGP through the Digipound platform is aimed to be as straight-
forward as sending an email.

After looking up the recipient, the local values of both users’ balances are incre-
mented or decremented by the amount in the POST request. Following that, the
Transaction model is called to document this transaction in order to update the
home view in the user.

Because there are no Stripe API calls in the trade part of the cycle, as it only deals
with digital currency, it was important to make my own checks to determine if a
transaction is successful. Since no API calls are made yet, before the application
determines to call the web3 API and transfer Digipounds, I have to run checks at the
onset of calling the controller. Two checks are necessary before commencing a trade:

1. The user has entered a valid email address.

2. The user has entered a valid amount to transfer.

40

Chapter 4. Implementation 4.2. LARAVEL

These can just be simple if checks in the controller; in the first case, I have defined
$recipient to be the first user whose email field matches the email field in the POST
request. I just have to determine if this value is null; if so, then this is not a valid
trade, and the application returns to the home view immediately and flashes an er-
ror message. Otherwise, the second check is run, calling two if statements (if the
amount is positive and less than the user’s balance). If this passes, the local database
is updated, as described above, then the trade function in JavaScript using web3 is
called, which is the same as the issue function with the difference of the sender and
return address input. Lastly, the home view is shown and the transfer is complete.

Redeem:
Much like the preceding stages, the redeem phase starts off at the home view and
calls another controller, which runs the same check on the validity of the amount to
redeem as in the trade stage. Then, a Payout is created in Stripe accordingly. Much
like a Charge object in Stripe, a payout contains a success field that determines
whether the web3-backed redeem function is called, burns the DGP and restores
the balance of the original ERC-20 address, and a transaction is added to the local
database and the home view is updated.

As such, the issue-trade-redeem cycle was implemented in the website. The final
step was to effectively explain this cycle to users, which was carried out through a
front end redesign on the Digipound landing page.

Figure 4.5: The issue-trade-redeem cycle is made clear to users upon their entry to the
Digipound website. Digipound ensures easy and effective maintenance of users’ digital
currencies.

41

4.2. LARAVEL Chapter 4. Implementation

4.2.2 Signing Transactions

As is protocol, after issuing any transaction, a user must sign it with a private key
before committing it for secure purposes. The web3 API does include a function for
signing a transaction, but implementing this within the Digipound application would
require users to submit their private keys into the application’s database upon regis-
tration. In this case, when a user makes a transaction along the issue-trade-redeem
cycle, the associated private key can be called from the User model and the transac-
tion can be automatically signed.

This seems sensible in practice. But in reality, users will not feel comfortable di-
vulging their private keys. In the chance that the application is hacked, a hacker will
have access to all of the Digipounds that have been issued, given that the public key
is stored in the database as the from of the user’s ERC-20 address.

An option could be to hash the private key when storing it, just as is applied to the
password in the User database. However, this still causes one major drawback: users
will not have to enter their private keys when sending a transaction. This is very un-
safe, as a scenario could unfold where one user’s username and password can be
stolen, in which case Digipounds can be directly accessed through the application
even if the private key is hashed.

As such, implementation of Digipound called upon a third-party browser extension
that interacts with Ethereum to be able to manage private keys and sign transactions.
One of the most popular browser extensions is Metamask, which works via the web3
API, as well. It allows users to access the decentralised web and securely store
their private keys when they create an account. This is an excellent second line of
defense for Digipound transactions, as a user can initiate all of the issue, trade, and
redeem functions directly through the Digipound platform, which will communicate
with Metamask via the web3 API. Metamask implements the signing function in
web3 that I contemplated including the application, but chose not to given the above
explanation. Hence, users can sign their transactions through Metamask because
Digipound is an ERC-20 token.

42

Chapter 4. Implementation 4.2. LARAVEL

Figure 4.6: Through Digipound and Metamask, this user is able to separate both the
application needed to trade and redeem Digipound and the user’s private key. When
attempting to make a transfer, the Metamask browser extension is called and prompts
the user to confirm, adding security and completion to the issue-trade-redeem cycle in
the Digipound application.

4.2.3 Audit

Given that the audit is the one of the main selling points of Digipound, I decided
that it would be best to display the audit directly on the landing page. Proof of as-
sets should be transparent to everyone and at anytime, differing from the views of
current market stablecoins such as Tether and the Gemini Dollar, who either have no
auditing system or a vague report hidden deep in their website.

Thus, to display the landing page, a controller for the audit is actually called and
passes to the view multiple parameters:

• The current DGP balance of all the users, which is achieved by accessing the
User model through calling User::all(), iterating through this collection, and
adding up the balance of each individual user which was recorded locally.

• The list of all users, called by User::all(). This will help verify the preceding
declaration because I can display individually the users’ ERC-20 addresses and
the balance at those addresses, which additionally elaborates on the proof of
assets to give users a more thorough audit. This feature will be supported by a
link to Etherscan to confirm the balances at each address.

• The list of all elements in the Transaction model, called with Transaction::all().

43

4.2. LARAVEL Chapter 4. Implementation

To the list, I filter out all transactions that were part of the trade section of the
cycle (i.e. ones that involved no transfer of fiat currency). I then identify these
by the stripe transaction field in the model. Fields beginning with ‘ch’ re-
fer to charges (money entering the reserve account) and fields beginning with
‘po’ refer to payouts (money leaving the reserve account).

This collection of transactions is used to show the fluctuation of money in the
reserve account and how it aligns with the amount of Digipounds being issued.
To link to a third party, both the inbound and outbound transactions of GBP
(charges and payout) are listed, adding a hyperlink to each element to the
Stripe website, where one can look up the transaction based on the transaction
ID associated with the Transaction model. The last use of the Transaction col-
lection is to identify the date at which the last transaction was made. Although
the audit is updated in real time, it would be good for users to identify the
time at which the last transaction was made as an extra point of reference to
the accuracy of the audit.

Figure 4.7: The audit, as displayed publicly on the Digipound website, ensures the
‘stability’ of the DGP stablecoin at all times.

44

Chapter 4. Implementation 4.3. ETHEREUM NODE

The controller interacts with the necessary models and sends these parameters to
the landing page view, which updates the audit section accordingly. This is the main
feature of the project, so I made sure to format the view in a clear and unique way.
Features were added to the front end such as an odometer of the final balances to
enhance the display. Ultimately, creating the audit in Digipound was the culmination
of intense research and imagination; it is the main element that sets Digipound apart
from the current stablecoins and cryptocurrencies.

4.3 Ethereum Node

With the main components of the web application created, it was important to find
a way to connect it to the Ethereum blockchain to start trading Digipound. In order
to use the functions in the web3 API and actually connect to Ethereum (in this case,
the Ropsten test network), a local Ethereum node has to be set up, in this case, on
my local server.

A node is essentially a device that is connected to the blockchain network that fa-
cilitates a variety of tasks, including creating transactions. In essence, the node
is a client which establishes a peer-to-peer (P2P) connection with the Ethereum
blockchain. Its tasks include signing and broadcasting transactions, working with
smart contracts, and mining blocks. It is necessary to setup an Ethereum node to
fully demonstrate the MVP.

The Ethereum node will interact with the smart contract for Digipound. Since the
token maintains the ERC-20 standard as per the inclusion of functions in the smart
contract, the node can directly determine if transactions sent from the application
are valid before validating that block. Whenever a transaction is called that uses
the smart contract (essentially, every potential transaction in the issue-trade-redeem
cycle of Digipound, as this involves sending ERC-20 tokens), a full node keeps track
of the current state in the blockchain and performs all of the instructions in the con-
tract necessary to ensure it reaches the correct ensuing state [31].

An example of such a node - the most popular blockchain client - is called Geth.
Geth is run on an RPC server, which stands for remote procedure call, executing
the Ethereum node in the port 8545 [32]. For context, the application for the MVP
is running on the localhost:8000 server. I can connect Geth to the Digipound ap-
plication via the calls made by the web3 API in Digipound. The call in the terminal
which sets up the Ethereum node is as follows:

sudo geth --testnet --rpc --rpcapi

"db, net, eth, web3, personal" --rpccorsdomain "*"

45

4.3. ETHEREUM NODE Chapter 4. Implementation

--rpcaddr 127.0.0.1 --rpcport 8545 console

I will now break this command down. The sudo command allows me to run the
command with the security privileges of a superuser, which is necessary because I
have been running this application on my local profile on my laptop. After Geth is
called, I specify that I want to access a full node of the testnet. I specify the address
127.0.0.1:8545 for the remote procedure call, which I then connect the web3 API
with. Finally, the command -rpcapi "db, net, eth, web3, personal" specifies
API calls that can be made, such as those in the web3 library (web3), enables trading
over the ethereum network (eth), and states that it is modifying the local database
(db) to store the confirmation strings of the Ethereum transactions, among others.

Figure 4.8: Geth makes a connection to the testnet blockchain and contains a compre-
hensive history of blocks. It allows me to write transactions to the Ethereum (Ropsten)
blockchain from a local device, where the MVP of the application is running.

Now that a local node is running, the next step is to identify its address as the
provider for the web3 API. The web3 API can be run from the same server as geth.
This is accomplished through a declaration at the beginning of the application: web3
= new Web3(new Web3.providers.HttpProvider(‘‘http://localhost:8545")); I
use the web3 object throughout to access and modify the full local node at the server
specified, which corresponds to where Geth is running.

At this stage, everything was setup. The capabilities of the decentralised web were
able to be utilised through the Digipound application. The next step was verifying
that the application worked as intended through a series of tests.

46

Chapter 5

Security

At this point, the main objectives of my project had been completed. The issue-trade-
redeem cycle for my ERC-20 token was complete, as was a functioning audit system
which set it apart from other cryptocurrencies and stablecoins because it is updated
in real time and verified by two reputed third parties. When presenting it to my su-
pervisor, I realised with him the potential of Digipound and understood that it could
one day potentially store a large amount of assets. Therefore, a natural extension
was to address the security concerns associated with an application of this potential.

In terms of security, there were four main concerns which my supervisor and I
recognised. The following are defenses or explanations that are used to assess each
breach.

5.1 Block Reorganisation Attacks

Problem. A block reorganisation attack occurs when a malicious miner makes a
public transaction to a merchant on the blockchain, but it gets overriden after the
merchant releases the product to the hacker. This is because the attacker also pri-
vately mines along a blockchain fork from the initial current block [34]. The attacker
generally has an extensive amount of hashpower, with some attacks being referred
to as 51% attacks, because the attacker has acquired a majority of hashpower on the
blockchain.

The theory is that when the attacker makes a transaction to a merchant over the
blockchain, the merchant will see it at send the particular product as expected. How-
ever, at the exact same time, the attacker has created a ‘fork’ in the blockchain. The
attacker mines blocks on a private chain, starting at the original current block (be-
fore the public payment was made), at a much faster rate than public blocks can
be added to the attacker’s public transaction, due to the attacker’s overwhelming

47

5.1. BLOCK REORGANISATION ATTACKS Chapter 5. Security

amount of hashpower. Given that the attacker has a majority of hashpower, at some
point, the attacker is able to mine a private chain along one side of the fork that
is longer than the other side where the original transaction was made. Here, the
attacker will release this chain, override the other side of the fork because the pri-
vate chain is larger, and regain the coins used to make the payment of the product
that has already been received. The blocks on the other side of the chain are now
referred to as ‘uncle’ blocks, and are now uncommitted [35].

Figure 5.1: The orange chain represents the public chain. On the other side, an attacker
has double-spent the amount of cryptocurrency used in Block 39 and 40, mining blocks
on a private chain at a faster rate than blocks are being mined on the public chain.
Releasing the private chain allows the miner to regain the coins used for the original
transaction, as the shorter public chain is abandoned [35].

How can this affect Digipound? On all stages of the issue-trade-redeem cycle, a
51% attack can theoretically occur. The stage which could be the most vulnerable
to it, and also impact Digipound the most, is the redeem phase. The scenario is as
follows: a user makes a request to redeem Digipounds, and a transaction block gets
created, with a valid transaction hash, and added to the blockchain. Naturally, the
application issues the payout via Stripe, and the user receives GBP. However, if this
user performs a 51% attack, the block burning the user’s Digipounds will ultimately
be abandoned, and the Digipound user will end up with both DGP and GBP in return.

This will be disastrous for the audit, as there are now more DGP that have been
issued than GBP in the Digipound reserve account, so the value of DGP is compro-
mised for all users, and the miner ultimately gets fiat currency for free.

How can this be avoided? Most attacks like these can be avoided through waiting
for confirmations after a block has been mined. These are confirmations that the
block has been added to the chain and other blocks have been added after it. In the
current redeem function in the Digipound application, no such confirmations were
made, as I originally called for the payout after the block was created in memory.

48

Chapter 5. Security 5.1. BLOCK REORGANISATION ATTACKS

After talking to my supervisor, I realised that requesting confirmations that the block
has been added should precede the creation a payout in Stripe. In theory, since an
attacker would have a majority of hashpower in the blockchain, there is no minimum
number of confirmations that can fully prevent such an attack. However, having to
wait for multiple confirmations before receiving GBP can be very expensive for the
attackers, and could cause them to abandon the attack especially if the number of
confirmations they have to wait through is quite large.

As such, I implemented this feature in my redeem function. One confirmation means
that one block has been added on after the transaction that the Digipound user
made, two confirmations means that the application waits until two blocks have
been added on before creating the payout in Stripe, and so on. The way I imple-
mented waiting for confirmations used two web3 functions: getTransaction and
currentBlock [26].

When the code in the original redeem function is run, a transaction with a trans-
action hash is created which represents the burning of a user’s Digipounds as they
return back into my original address. This transaction hash can be passed into the
first function and get information about the transaction, the most important of which
is the index of its block along the blockchain. The latter function allows me to find
the index of the current block on the Ethereum (Ropsten) blockchain; hence, the
number of confirmations received is equivalent to the current block’s index minus
the index of the block of the user’s transaction at the point of creating the payout in
Stripe. In order to wait a certain amount of confirmations before preceding, I placed
the above calculations in a while loop which would run until the previous value
equalled a certain number. Finally, I did not want to block the execution of other
tasks in my application, such as other users investing in Digipound, while waiting for
confirmations, so I wrote asynchronous calls to both the web3 functions by adding
error first callbacks.

var t r a n s a c t i o n ;
web3 . eth . ge tTransac t ion (txHash , func t ion (err , r e s u l t) {

i f (! e r r) {
t r a n s a c t i o n = r e s u l t ;

}
}) ;
while (con f i rmat ions < 3) {

var cur rentB lock ;
web3 . eth . getBlockNumber (func t ion (err , r e s u l t) {

i f (! e r r) {
cur rentB lock = r e s u l t ;

}

49

5.1. BLOCK REORGANISATION ATTACKS Chapter 5. Security

}) ;
con f i rmat ions =

t r a n s a c t i o n . blockNumber === n u l l ? 0 :
cur rentB lock − t r a n s a c t i o n . blockNumber ;

}
Listing 5.1: After a redeem transaction is created, to ensure it is added to the blockchain
and the appropriate amount of GBP can be safely paid out to the user, the function waits
for 3 confirmations before proceeding.

As intended, this provided a much more secure way to redeem Digipounds. Three
confirmations are now required before proceeding, and the number was chosen un-
der the influence of Ethereum founder Vitalik Buterin. He stated “...only a small
number of extra confirmations (to be precise, around two to five) on [a fast blockchain
(such as Ethereum)] is required to bridge the gap” between an attackers privately-
mined fork and the public chain in a block reorganisation attack [36].

The Ethereum blockchain, itself, represents a particularly safe and established way to
store Digipound-related blocks. As stated above, it is quite a fast-moving chain, cur-
rently supporting 15 transactions per second, providing good defense against 51%
attacks given three confirmations of a transaction. Another statistic that supports this
is that, according to Crypto51, Ethereum has the second highest cost of achieving
51% hashpower at $133,843 [37]. In fact, the only blockchain with a higher cost,
Bitcoin, has never been subject to a block reorganisation attack. Thus, the fact that
Digipound is an ERC-20 token traded on the Ethereum (Ropsten) blockchain also
means that is it naturally less prone to such attacks compared to less established and
smaller tokens traded on other blockchain-based platforms.

50

Chapter 5. Security 5.2. PRIVATE KEYS

Figure 5.2: The above chart implies that it would only be worthwhile for an attacker
to invest in attacking the Ethereum blockchain if the assets the attacker is trying to
double-spend are worth over $130,000. The previous statement also assumes zero con-
firmations for each stage, and the value is much greater if the attacker has to wait for
confirmation [37].

5.2 Private Keys

Problem. When a user sets up a wallet address to store ERC-20 tokens, both a public
key and a private key are generated which the user must hold onto. The public key
allows transactions to be sent to a user, and the private key provides security when
users send a transaction as they are required to sign it with their private keys. If
gained access to, these keys allow a hacker complete control of one’s cryptocurrency
assets.

How can this affect Digipound? This can affect users of Digipound as they could
lose their tokens if their keys are not held securely.

How can this be avoided? In the current demonstration of Digipound, users can
use a browser extension to store their private keys, such as Metamask, which stores
a user’s private keys in the browser. As such, Metamask also offers an extra line of
confirmation to sign a transaction when a user sends Digipounds, whether in the
trade or redeem phase of the cycle. Given that Digipound is an ERC-20 token, it can
be stored across a variety of wallets, including hardware wallets. These are physical
devices that are used to store private keys in an encrypted offline environment. An
example is Ledger Nano S, which supports thousands of cryptocurrencies across mul-
tiple blockchains including Bitcoin and Ethereum, meaning it can support Digipound
as well.

51

5.3. BREACH OF SMART CONTRACTS Chapter 5. Security

5.3 Breach of Smart Contracts

Problem. There have been many recent, high-profile smart contract hacks, such
as the attack on the DAO, a Decentralised Autonomous Organization comprised of
numerous smart contracts to democratise Ethereum ICOs. A hacker stole 3.6 mil-
lion Ether through identifying the possibility of using the ‘recursive Ethereum send
exploit’ in the code of the smart contracts. Whilst analysing a piece of the Solid-
ity codebase, it became clear to the hacker that when calling a particular function,
split, which sends Ether to the user, the hacker would recall the function again
before the reward went through and updated the hacker’s balance. This results in
transferring more tokens to the hacker than is permitted. These hacks went un-
tracked for a lengthy period of time. Similar hacks have occurred by exploiting
vulnerabilities in smart contracts [33].

How can this affect Digipound? In a staggering development, it was estimated
that 45% of contracts in the Solidity language that are deployed to the Ethereum
network are vulnerable to similar attacks. Given that the average smart contract in
Ethereum holds about $4,531 worth of assets, it is clear that a breach of the Digi-
pound contract in the long run could not only disrupt a large quantity of money, but
could also threaten the stability of Digipound [38]. This is because tokens will be
incorrectly issued without having received the correct amount of fiat currency. Espe-
cially if Digipound gains a high market share among stablecoins, if a surplus of DGP
to GBP would be identified, this would be disastrous as it disproves the valuation of
the cryptocurrency.

How can this be avoided? There are practices to make the code of a smart contract
more secure, but this can be examined in an extension of this project and can be im-
plemented before deploying the Digipound contract to the live Ethereum blockchain.
This project was not particularly focused on changing the scope of the ERC-20 con-
tract, as a feature which secures the valuation of Digipound is the real time auditing
system. The audit provides a great defense against attacks to the smart contract, as
the instant a transaction issuing Digipounds is made that does not send GBP into
the Digipound reserve account, the audit will reflect the lack of fiat currency back-
ing. I can handle this situation immediately and restore Digipound’s valuation, as
explained in the following chapter of the report.

5.4 Losing Keys

Problem. Sometimes, users can outright lose their private keys, meaning all access
to their tokens is lost forever.

How can this affect Digipound? This can affect users of Digipound as their DGP

52

Chapter 5. Security 5.4. LOSING KEYS

holdings could be lost forever.

How can this be avoided? In truth, this sparked a great deal of thought. I consid-
ered adding support for this through Digipound, whether through a social network
storing of private keys or a backup database where users could store their private
keys if they desired (which many would understandably not desire). However, I
realised that both of these options truly diluted the concept of Digipound. This is
because Digipound is not an application meant for users to manage their keys, like
a hardware wallet is, for example.

Digipound is first and foremost a one-to-one bridge from one’s wallet of fiat curren-
cies to one’s decentralised wallet of cryptocurrency. In this mode of thinking, my
supervisor likened users losing their private key to them “throwing their physical
wallets off a bridge.” In this manner, Digipounds can be thought of as “digital cash.”
It is a valuable and unique asset to have, but a rule of thumb is this: people should
not invest in Digipound more than the maximum amount of cash they would feel
comfortable carrying in their physical wallets.

53

Chapter 6

Testing and Edge Cases

Now that functionality of both the audit and the issue-trade-redeem cycle had been
implemented in the website, it was important to run tests and determine how to
handle edge cases: potential problems that could occur on each of the stages in the
stablecoin cycle. These tests were manually performed to ensure completeness of
the application.

6.1 Issue

The proper cycle of issuing Digipounds is the following:

1. The user requests a positive amount of tokens to enter that is less than the total
supply of tokens.

2. The user inputs a valid bank card and hits submit.

3. A charge is created in Stripe which returns a successful status.

4. Upon loading the home view, the ensuing amount of DGP are transferred on
the blockchain, returning the ID of the Ethereum transaction as confirmation.

Testing on a variety of bank cards that were provided by Stripe and with numerous
acceptable amounts always resulted in the correct outcome.

However, in the case of issuing Digipounds, there are multiple edge cases present in
a transaction:

1. A user enters an invalid bank card and the payment cannot be processed.

2. A user enters a negative amount to pay.

54

Chapter 6. Testing and Edge Cases 6.1. ISSUE

Figure 6.1: Whenever a transaction is successful (in this case, issuing 2 DGP), its ID on
the Ethereum blockchain is flashed on the home view so a user can look it up on a block
explorer such as Etherscan.

3. The program crashes after the payment has been processed but before the
transaction can be sent to the Ethereum blockchain, or the Ethereum transac-
tion does not go through.

Each one of these cases was tested. The first case was particularly straight-forward
to test manually, given Stripe has extensive documentation related to testing. Stripe
provides developers with numerous fake cards for testing, some of which are suc-
cessful and others which intentionally fail for specific reasons.

55

6.1. ISSUE Chapter 6. Testing and Edge Cases

Figure 6.2: There are a series of test cards Stripe provides to return errors in creating
charges, hence used to test that Digipounds do not get transferred if the GBP payment
does not succeed.

In the second case, all that was required to test was to enter an invalid number of
tokens to issue, such as -1. Since both of these cases would return errors even before
a request to the web3 API and the Ethereum blockchain was made, I was testing to
ensure the home view was returned immediately with an appropriate error message
and the audit remained untouched.

Both these cases were extensively tested with a variety of failed cards and amounts
and passed each time.

56

Chapter 6. Testing and Edge Cases 6.1. ISSUE

Figure 6.3: When inputting the bank card 4000 0000 0000 9987 to purchase Digi-
pounds, Stripe throws a lost card error and the home view is immediately returned,
flashing the appropriate error message.

The final case is harder to test manually as it stems from a system error rather than
a user error. A system error could come from the application itself, or perhaps result
from an attack on the blockchain that prevents Digipounds from being issued.

To model this, I wanted to see that the pounds have been received into the account
but the Digipounds have not been transferred, due to an error uploading the trans-
action to the Ethereum blockchain. To test this, I targeted my local Ethereum node,
Geth, and aimed to quickly terminate the process using Ctrl + C on the terminal
after a successful payment had been made through the Digipound application.

57

6.1. ISSUE Chapter 6. Testing and Edge Cases

Figure 6.4: Terminating Geth through the exit command (Ctrl + C) relinquishes the
connection to the Ethereum blockchain and prevents transactions such as issuing Digi-
pounds to be written locally.

I ran a test case purchasing 2 Digipounds with the correct card details, waiting for
the payment to arrive, and then immediately closing the connection to Ethereum (it
took a many tries because the call to the web3 API occurs nearly instantaneously
after a payment has been submitted). As expected, it sent the audit into a frenzy.

Figure 6.5: The audit no longer displays a 1:1 ratio, given that the recent £2.00 trans-
action was submitted and 2DGP were not issued.

One option to deal with this failure is to shut down the DGP servers to assess the
situation. However, it is not necessary to do that because there is now a state of
surplus of GBP to DGP, so technically, Digipound has more than enough backing
than is expected. Its value is hence not compromised, as all users can theoretically

58

Chapter 6. Testing and Edge Cases 6.2. TRADE

redeem all of their tokens at the same time, so this situation does not warrant a shut
down yet. Ultimately, there are two types of errors that the audit can sense:

1. Surplus: more GBP than DGP (as in this scenario).

2. Deficit: more DGP than GBP (can be observed if a redeem fails).

Clearly, the latter error warrants a shutdown, because the valuation of Digipound
has now been compromised. However, in the first scenario, given that it is equally
rare, all that is required to do is a quick investigation on which users did not receive
the Digipounds they purchased. Then, these Digipounds can be manually transferred
from a wallet connected to the DGP reserve account. This is made simple with the
models already set up. The transaction database records the Stripe transaction IDs of
both charges and payouts; now it is also necessary to record the ID of the Ethereum
transaction which transfers DGP, as mentioned above.

Figure 6.6: web3 returns ‘undefined’ when a transaction cannot be written to the
blockchain due to the termination of Geth.

This error case can be resolved as follows. Given a surplus - which can be referred to
as ‘Code Yellow’ - I can go through the local database of Digipound transactions and
identify the ones with an ID beginning with ‘ch’, or charges. Then I can determine
the associating ID of the Ethereum transaction, and if it is undefined, it means that
it pertains to this error case. I am able to identify the amount of this transaction in
the model, as well, and manually send that amount of Digipounds over to the user
who made the transaction. Although there is not an automatic solution to this, given
that this is a rare error, the previous implementation resolves the issue and restores
the audit.

In this manner, all edge and error cases were tested and passed when issuing Digi-
pounds.

6.2 Trade

There are three main edge cases when considering trading Digipounds via my appli-
cation:

59

6.3. REDEEM Chapter 6. Testing and Edge Cases

1. A user enters an invalid email address.

2. A user enters an invalid amount to transfer (negative or above their current
balance).

3. The transaction is not correctly written to the Ethereum blockchain.

Again, the first two cases will throw errors before the request to write a transac-
tion to the Ethereum blockchain is made. As stated in the Implementation section,
multiple if checks are made before calling the web3 API and updating the local
Transaction model. Therefore, just like in the issue phase, if one of the checks fails,
the home page is reloaded immediately and flashes an error message.

$ r e c i p i e n t = User : : where (‘ email ’ , $ POST [‘ email ’])−> f i r s t () ;
i f (! $ r e c i p i e n t) {

$request−>s e s s i o n ()−> f l a s h (
‘ er ror ’ , ‘ T ransac t ion f a i l e d : I n v a l i d r e c i p i e n t . ’) ;

}
Listing 6.1: The controller class handling the transfer of Digipounds checks the User
model to ensure that a valid recipient has been entered based on the email address. If
not, the home view is returned immediately, flashing an error message.

As such, all invalid test transfers according to the first two cases failed correctly.

For the third case, when the actual transaction itself is not written to the Ethereum
blockchain, I considered whether or not to interfere. However, I realised that if a
trade fails, since transfers currently only occur between two registered Digipound
users and do not involve any fiat currency being moved, no additional DGP or GBP
will enter or leave the audit. This error has no ramifications to the rest of the Digi-
pound platform, hence executive action does not need to be taken. The only action
the website does is display the Ethereum transaction ID as ‘undefined’ and suggest
the user tries the trade again. To reiterate, the previous error is harmless because no
GBP or DGP has left or entered the reserve accounts untracked.

6.3 Redeem

In order to test the redeem phase of the cycle, three edge cases were considered:

1. A user enters an amount to redeem greater than the user’s current balance.

2. A user enters a negative amount to redeem.

60

Chapter 6. Testing and Edge Cases 6.3. REDEEM

3. A user receives a payout from Stripe, but the transaction of burning the user’s
Digipounds does not go through.

In the first two cases, just as in the previous stages of the cycle, manual tests were
made to ensure the application did not proceed further should an invalid amount to
redeem be entered.

The final edge case required some thought on how to respond. In this situation, a
deficit of GBP to DGP would be present, which is quite a pressing error. The value
of DGP is compromised. One of the main causes for this case is a block reorgani-
sation attack, as mentioned earlier. However, given the limited hash power I had,
along with the aforementioned feature I added to wait for confirmations of the block
being added before processing the return, I was unable to attempt a block reorgani-
sation attack to manually test this edge case. So, as another way to model a deficit,
I manually issued an arbitrary payout to a test user’s bank account on the Digipound
system. Afterwards, the audit reflected the deficit. This models the outcome of a
blockchain attack that creates a transaction but surprisingly does not get committed,
to which the payment of GBP still gets issued in response.

Figure 6.7: The third edge case results in the audit showing a deficit, which, although
extremely rare, can be a major concern for users.

Unlike an earlier situation described where issuing Digipounds fails on the blockchain,
this situation requires immediate action. Should the audit show a deficit, I will now
be pressed to quickly and temporarily shut the system down. Rectifying this situa-
tion, however, has a similar approach. In this case, the ID of the payout has been
added to the local database as a part of the Transaction model, and hence is also
associated with the ID of an Ethereum transaction. Though this ID will not be ‘un-
defined,’ it will not correspond to a committed transaction, which can be confirmed

61

6.3. REDEEM Chapter 6. Testing and Edge Cases

through the following asynchronous call to the web3 API:

web3 . eth . ge tTransac t ion (txHash , func t ion (error , r e s u l t) {
i f (! e r ro r) {

console . log (r e s u l t . blockNumber)
}

}) ;
Listing 6.2: The getTransaction method can be run with an Ethereum Transaction
Hash (txHash) to determine if the associated transaction hash corresponds to a commit-
ted transaction. When calling blockNumber on the result, a null value ensures that this
transaction was not committed to the blockchain and has contributed to the deficit in
the audit.

Now that the payout transaction associated with the uncommitted Ethereum trans-
action has been identified, there are two ways to proceed with this:

Cancel the payout via Stripe. Through Stripe, most payouts aim to be delivered
into the user’s bank account by the end of the day they were issued. However, Stripe
offers a feature called rolling payouts, which delays the deposit of a payout. Per
Stripe’s website, “Most banks deposit payouts into your bank account as soon as
they are received, though some may take a few extra days to make them available
[28].”

An option can be to institute a 2-day rolling phase, meaning that although the pay-
out will be immediately created in Stripe when a Digipound user requests to redeem
DGP, the payment will only be sent after two days. This provides a forty-eight hour
buffer in case the corresponding Ethereum transaction did not commit. Here, I can
identify the payout to be cancelled, and directly notify the bank to cancel the pay-
ment, thus restoring the audit. I can also notify users via their email addresses,
saying that the previous transaction was unsuccessful and prompting them to try
again.

This has the benefit of reversing invalid redeem transactions, but also the drawback
of having users wait for two days to receive their Digipounds, which is not practical
in the long run, when the number of users and transactions on the platform will
increase exponentially. Then, users would demand their transactions to be instant.
Yet, this option is practical in completing the proof-of-concept of the real time au-
diting system, since both Digipounds and the GBP in the reserve account are still
moved at the call of the redeem transaction.

Try to restore the transaction. Currently, the block that has not been added to the
Ethereum blockchain, containing the unconfirmed transaction, represents an uncle
block. In the Bitcoin network, these uncle blocks are removed from the database;

62

Chapter 6. Testing and Edge Cases 6.3. REDEEM

however, Ethereum keeps a pool of uncle blocks and incentivises miners to mine
these unconfirmed blocks. Thus, although quite difficult, there is still an ability to
ultimately commit the transaction. However, this option is outside the scope of this
project, given the time constraints and lack of experience with uncle blocks.

At this stage, the issue-trade-redeem cycle and its connection to the auditing system
were extensively tested. Along with qualitative tests that were run on potential
users with regards to the UI and ease of use (see Evaluation section), this ensured
that Digipound is a complete, tightly-valued, and unique stablecoin, contributing to
the goals of my final year project.

63

Chapter 7

Evaluation

As the nature of my final year project is very applied, building upon lots of current
technologies, I believe honest evaluation is necessary to understand if Digipound can
be a widely-used stablecoin in the future. Given the dual elements of my project: the
Digipound cryptocurrency (DGP) and the Digipound web application, I felt that each
element should be evaluated accordingly, under the premise that the main objectives
for the project were successfully worked towards.

To start, I shall reiterate some of the objectives of this project and evaluate its com-
ponents against it.

• To design a secure and accessible infrastructure for a cryptocurrency to be
issued, traded, and redeemed, whose value is tied to that of a fiat currency.

• To guarantee this valuation by creating an auditing system that updates in real
time and is backed by third parties.

7.1 Cryptocurrency

The Digipound (DGP) token itself is a standard ERC-20 token, yet my project aimed
to satisfy the above ambitious objectives using it.

7.1.1 Cycle

Positives. As the creator of the Digipound token, I own an Ethereum address which
initially held the entirety of the Digipound supply. As such, I was able to handle the
issue and redeem stages of the cycle by using the smart contract written. In terms
of what was in between, the fact that Digipound is an ERC-20 token means that it
is very versatile on where it can be traded and spent, whether within the Digipound
application or in a variety of potential exchanges.

64

Chapter 7. Evaluation 7.1. CRYPTOCURRENCY

For my project, I was able to model the issue-trade-redeem cycle of Digipound on
the Ropsten test network of the Ethereum blockchain. This was very important as
it was essential for my token to be used just like any other cryptocurrency, such as
Bitcoin or Tether. The issue-trade-redeem cycle was the foundation for my project,
as it allowed me to set up a fully-functioning cryptocurrency which led me to break
new ground in the real time auditing feature.

Drawbacks. As stated, my smart contract was deployed on the Ropsten test net-
work, not the Ethereum main network. This meant that all transactions were not
subject to Ether cost, as previously described. The Ether cost is attributed to the gas
of a function, or the computational effort required to write a transaction. Ether is
the token which is used as a fee and will be charged on all stages in the issue-trade-
redeem cycle. This means that users will have to hold investments in Ether before
investing in Digipound.

It is better, however, that the transaction fees are taken in Ether and not Digipound,
as transaction fees are variable based on the gas and the amount of the transaction.
Varying DGP costs would cause the value of Digipound to be compromised. For ex-
ample, processing a 10DGP transaction and a 2DGP transaction should not come
with a fee in Digipounds, as the 10DGP transaction would require a greater fee of
Digipounds. Hence, the value of DGP will also be related to how much DGP was
exchanged, not just the value of the GBP.

To resolve this drawback, once Digipound is brought to the main network, I will
encourage users to invest in a one-time purchase of Ether that is enough to cover a
certain amount of transactions (such as 0.15ETH, approximately 40USD). For con-
text, the average transaction value on Ethereum is about 0.0007ETH [40]. Hence,
40USD is enough for about two-hundred transactions. Users can liken this one-time
cost to the cost of a physical wallet to hold cash, which, in a way, further models
Digipound against fiat currency.

7.1.2 Valuation and Audit

Positives. One of the main motivations for this project was to improve upon sta-
blecoins such as Tether and the Gemini Dollar for their untrustworthy valuation of
their tokens. In the context of the previous examples, this is because Tether does not
document any of its USD holdings and Gemini Dollar only releases one nondescript
audit every month. In fact, a quick look at the Tether market chart reads that it is
currently trading for $1.01, which should worry investors given that its $3B market
cap relies on having 1:1 reserves of USD [39].

Thus, the creation of a thorough auditing system backed by two third-parties serves

65

7.1. CRYPTOCURRENCY Chapter 7. Evaluation

as an upgrade to potential investors. Additionally, the fact that the audit is updated
in real time adds tremendous value, as potential users of Digipound can feel com-
fortable about investing at any time, not just the beginning of each month in the case
of the Gemini Dollar! The audit is what sets Digipound apart from current stablecoin
cryptocurrencies, allowing it to be freely issued and traded with the confidence of
being able to redeem it at any time at a one-to-one ratio of GBP.

Drawbacks. Clearly, the value of DGP will change slightly if moved from a testing
phase to a live phase - but this does not relate to the Ethereum transaction fee previ-
ously mentioned, as costs on transactions are charged in Ether, not Digipound. What
will change is the cost of receiving GBP payments, as the Stripe platform takes ap-
proximately a 2.9% commission on all incoming payments made with Charge objects
[28]. Moreover, thinking in advance, if I were to make the Digipound application
and token live, I would have to consider holding onto a percent of incoming GBP,
as well, in order to maintain Digipound as a sustainable business. Naturally, there
are many costs associated with taking Digipound live, such as maintaining public
servers. Assuming a total of 5% of GBP in the reserve account has to be spent
between Stripe and application maintenance, this sets the Digipound token at a val-
uation of 0.95, or ninety-five pence.

At first glance, it does seem that the previous valuation is a drawback for my project’s
future. However, the important aspect of valuation is whether it is fixed or fluctu-
ating. Since I intend to take 5% on all Digipound transactions, I can ensure that
the valuation of 95 DGP to 100 GBP will remain constant, which is still supported
through the auditing system. As long as the audit shows 95 DGP issued for every
100 GBP in the Digipound reserve account, users will still be confident that they can
redeem their tokens anytime at the 95% valuation. Thus, the value of DGP is always
tied to the GBP, maintaining its identity as a stablecoin which will not be subject to
the volatility of other cryptocurrencies.

One particular drawback in the audit is its state in the infinitesimal time in between
when a payment is received and DGP are issued in the issue phase and when DGP
are burned and a payout is made in the redeem phase. Given the security concerns
expressed earlier, there are natural, albeit small, delays, such as when running con-
firmation checks in the redeem phase. Yet, one of the main features of the audit is
its real time updating capability. However, for example, if users somehow view the
audit at the moment when a process is running that is accepting confirmations from
a block to burn Digipounds pushed by another user, they will witness a misconstrued
surplus, as the payout is still waiting to be issued but the Digipounds have already
been burned. Although a surplus will not be viewed as unfavourably as a deficit, it
will still call into question the value of Digipound.

66

Chapter 7. Evaluation 7.2. APPLICATION

Though this seems like a rare scenario at the moment, it will be more likely as Digi-
pound scales and has to process a large amount of transactions. A suggestion could
be just to update the audit after each transaction, but that would compromise the
most unique feature of Digipound: the real time audit. Ultimately, the response to
this scenario will have to be carefully thought through as the users on the Digipound
platform increase.

To summarise, the ambitious efforts to make DGP a potentially widely-used, versa-
tile, complete, and stable cryptocurrency were mostly successful. Moreover, I am
conscious on some of the drawbacks associated with my efforts, which bodes well as
I attempt to make this cryptocurrency live in the near future.

7.2 Application

Although my project is centered around developing a new cryptocurrency, since Digi-
pound is a stablecoin, the application used to interact with it is an incredibly impor-
tant component, as well. When evaluating the Digipound website, I was able to use
a number of qualitative and quantitative metrics, when testing it not only by myself
but with a group of random users, as well as my supervisor.

7.2.1 Website

In terms of the website’s objectives, I required a platform to allow users to issue,
trade, and redeem Digipounds in a straight-forward manner, and to display the au-
dit in an appealing and concise manner.

Positives. One element of my project I am particularly proud of is the ease-of-use
in investing in Digipound. In order to determine this, I used a variety of metrics
and consulted numerous potential test users. One of the most successful metrics
in my project was the minimum amount of clicks users required to complete func-
tions such as issuing, trading, and redeeming Digipounds and viewing the audit. It
is important to have a relatively low number of clicks per task so to not confuse users.

From the second year Web Applications project lectures, I am familiar with the three-
click rule, which is that users should be able to perform most tasks in three or fewer
clicks. For the aforementioned tasks, the metric ultimately reflected favourably on
the ease-of-use of investing in Digipound via the website:

67

7.2. APPLICATION Chapter 7. Evaluation

Task Number of Clicks Needed 1

Issuing Digipounds. 3
Trading Digipounds 2 3
Redeeming Digipounds. 3
Viewing the Audit. 0

It was promising to see that the functionality of the Digipound token was able to
be used through the Digipound website. Moreover, having spent much effort on the
landing page, I made sure to evaluate it based on test user experiences. The landing
page contained the following components:

• An introduction banner to Digipound.

• An explanation of the issue-trade-redeem cycle.

• The audit, updating in real time.

• A form to register.

Figure 7.1: The landing page describes Digipound as the “future of money” and de-
scribes to users how to use the DGP token and Digipound web application.

I consulted ten final year students at Imperial College London, presented them with
the landing page, and received feedback for the following questions:

1. Is the issue-trade-redeem cycle made clear? 90% said yes.

2. Is the landing page visually appealing? 100% said yes.
1from the landing page to the completion of the task.
2using the Digipound website; amounts may vary when trading token directly on other platforms.

68

Chapter 7. Evaluation 7.2. APPLICATION

3. Does the auditing system make sense? 90% said yes.

4. Does using the Digipound platform seem easy and beneficial? 90% said
yes.

Although ten students is a particularly small sample size, I gleaned that the content
on my landing page was enriching and truly educated people on the benefits of Digi-
pound, serving as a positive evaluation which strongly influences the next step of
making the application live. Along with the tests that were run, the group evalu-
ation made me feel confident in Digipound as an application that users can safely,
informatively, and easily trade the stablecoin.

Drawbacks. The main drawback actually occurs in the use of the web3 API. Since
the API is written in Javascript, admittedly all of its calls are client-facing. This is
because JavaScript is primarily used for front-end development. Additionally, there
are currently no APIs in place to interact with Ethereum via PHP, the language used
in the backend. This would have been ideal as, in my project, when coding the issue-
trade-redeem cycle, the function definitions are facing the client.

I had considered using web3 within Node.js, a JavaScript runtime environment, to
run the issue, trade, and redeem functions outside of the browser. However, I would
have had to run an additional server along with my local PHP server, which is im-
practical in both the short term and the long term. Although functionally, it makes
no difference whether or not the code is run in JavaScript or PHP, it can be slightly
unsettling that users can see the code when clickling ‘Inspect Element’ on the web-
site.

At first, this seems like a security hazard. However, because of the fact that I did not
automate the signing of a private key, rather giving users an extra layer of protec-
tion by allowing them to confirm the transaction of Digipound via a browser exten-
sion like Metamask, no transaction can be written without a follow-up confirmation.
Thus, functionality and security of transactions are not compromised by this draw-
back. Yet, it is important to be conscious of it. I intend on scaling the application
to reach a large number of users so I would soon prefer to keep the interaction with
Ethereum on the back end of my website as is the case with the interaction with
Stripe.

At a high level, another drawback of my application is its inability to handle a large
amount of users trading at one time. This is to be expected, since the application
is being run on a local PHP server on a Macbook laptop that is approximately five
years old. I mention this drawback, however, because I realise another area to con-
sider when bringing the application live are the overhead costs of running it, such
as hosting and data backup. Admittedly, the latter is not as much of a concern given

69

7.2. APPLICATION Chapter 7. Evaluation

all the live transaction records will be stored in Ethereum, as well.

Ultimately, given that the objective of my project was to develop a proof of concept
for a revolutionary, functional, and secure stablecoin, I believe the purely application-
centered drawbacks do not undermine my progress in the project. Rather, they give
me perspective of the realistic challenges that will be faced when trying to scale
Digipound, which I believe is a natural extension of my efforts this year.

70

Chapter 8

Conclusion

The culmination of this project resulted in both reflection on the many concepts
learned and optimism for the real-world implementations of it.

8.1 Takeaways and Lessons Learned

Throughout my project, I learnt a variety of essential skills and unique concepts in
computer science.

Lesson: Blockchain is permanent. This is a particularly important cautionary tale
for any blockchain developer. What happens to be a defining feature of blockchain
can also cause great frustration to engineers who are not careful. I admittedly expe-
rienced the downside of this in the early stages of my project, when, before creating
the official Digipound token, I created a token to understand the process of deploying
a smart contract. I had created an ERC-20 account and experimented with transfer-
ring tokens to the account, directly through a decentralised wallet, MyEtherWallet.
The total supply of the token was quite low, so I experimented sending the entire to-
tal supply. However, when entering the recipient address, I accidentally inputted the
wrong address by one character - after which I proceeded to lose all of the supply of
the test token! Since the transaction was then written to the Ropsten test blockchain,
and I did not have access to the mistaken recipient, the tokens were essentially out
of my reach forever.

Ultimately, there are many positives of the permanency attribute to the blockchain.
Especially in Ethereum, it adds security and completely removes the need for a third
party to facilitate and record transactions of assets. So luckily in this case, I was
able to create another token, with a new and improved name (Digipound), and was
very careful with it throughout the rest of my project. Additionally, when I started to
automate and verify transactions through the Digipound website, the permanency
of blockchain became less daunting. This was, however, a valuable lesson and will

71

8.2. FUTURE IMPLEMENTATION Chapter 8. Conclusion

hold much more weight when I am dealing with live assets on a live blockchain such
as Ethereum, as I intend to when I take Digipound live.

Takeaway: The issue-trade-redeem cycle of stablecoin can be safely and effec-
tively automated in a web framework. By connecting both the Stripe API and web3
API in my Laravel project, and calling them in the correct order at each phase (for
example, issuing Digipound requests the payment first, verifies that it has reached
the reseve account, and then issues the tokens), I have effectively implemented the
issue-trade-redeem cycle, showing a proof of concept of a new stablecoin, as the title
of my project suggests.

Understanding that this was possible set the foundation for Digipound to be assessed
on the same standard as stablecoins such as Tether and the Gemini Dollar, which I
feel it stands out due to the following conclusion:

Takeaway: A real time and third-party supported auditing system to verify the
value of a stablecoin is feasible in practice. Digipound is distinguished by the
auditing feature I implemented. Being able to call third-parties, both through the
application when making the backend calculations of the audit and by listing web-
sites such as Etherscan on the front end to provide users additional proof of assets, I
was able to create an effective and thorough auditing system. This is a feature which
both Tether and Gemini Dollar, along with all other stablecoins, lacked. Although
the audit may have some aforementioned drawbacks in terms of scaling, being able
to develop a proof of concept of this is very promising for Digipound’s ability to serve
as the future of decentralised assets.

8.2 Future Implementation

While most projects were designed to be able to be followed up by a PhD or another
intensive research programme, the applied nature of mine means that a natural
extension would involve demonstrating the application’s impact in the real-world.
Thus, as my Bachelor’s degree comes to a close, and I am proud - and construc-
tively critical - of my achievements in Digipound, I believe that the only way to
demonstrate that Digipound is the future of money is, as hinted earlier, to make the
application live.

8.2.1 Live Application

Making Digipound live is quite simple. It will start with removing both the test re-
strictions from the payment API and the Ethereum blockchain. This is because the
rest of the infrastructure is already in place to have an ERC-20 token trade on the

72

Chapter 8. Conclusion 8.2. FUTURE IMPLEMENTATION

real Ethereum blockchain, backed up by real fiat currency and verified through an
audit in real-time.

In the case of the Stripe API, all that is required is to change the API keys in the en-
vironment file. When setting up a Stripe account, a developer is provided with both
test keys and live keys, which can be switched at any time to turn the application
into a live payment handler.

Putting the Digipound token on Ethereum instead of Ropsten would be just as
straight-forward. The exact same contract can be used given that Digipound was
specified as an ERC-20 token, even including the name and symbol (a quick check on
Etherscan confirms that it is unique). All that is needed is to recompile the contract
using Remix, but this time specify the blockchain to be deployed to as Ethereum, not
Ropsten. If using Remix with a digital wallet which will hold the full supply of the
token, the network can be changed via the broswer extension used to connect the
wallet, such as Metamask, directly.

73

8.2. FUTURE IMPLEMENTATION Chapter 8. Conclusion

Figure 8.1: Changing the network from Ropsten to Ethereum requires one click and will
allow the Remix IDE to delpoy the same Digipound contract to the Ethereum blockchain,
to remove the test restrictions on the token.

These changes are aimed to be implemented shortly after my final presentation,
where the benefits of Digipound will be demonstrated as a proof-of-concept. Once
implemented, Stripe will also start taking commission, as may the Digipound busi-
ness, hence the valuation will be redefined slightly as described above. Despite that,
Digipound can then serve as a platform for people to exchange a guaranteed amount
of money for a guaranteed amount of digital assets, which can be redeemed at any
time and traded at will. It can serve as the model of “digital cash,” which is an
exciting development. Therefore, as “digital cash,” it would be useful to trade it in
various places, leading to a natural second extension of my project.

8.2.2 Acceptance Among Merchants

Making the Digipound a widely accepted token among merchants will be an natural
next step. One of the ways to truly harness the benefits of a guaranteed-collateralised

74

Chapter 8. Conclusion 8.2. FUTURE IMPLEMENTATION

token like Digipound is to exchange it via merchants with products that have defined
values. This gives new meaning to the term e-commerce.

Since Digipound is an ERC-20 token (and will be live at this stage), it already has the
capability to be used as payment in a few services. For example, the website man-
agement system Wordpress has a plugin called Woocommerce with enables payment
in websites. Woocommerce can also be enhanced with a feature called the Ether and
ERC-20 tokens WooCommerce Payment Gateway, a plugin which accepts payments of
ERC-20 tokens [41]. Other infrastructures and features, such as CoinPayments, are
available to process online payments of ERC-20 tokens.

Hence, as Digipound gains more users, there is quite a compelling case to convince
merchants to accept it as a form of payment, because, compared to other ERC-20
tokens and cryptocurrencies, it is not as volatile. Since merchants know the exact
value of a Digipound, they do not even need to haphazardly modify their prices
and can be comfortable with the assets they receive, as it is essentially a form of
decentralised cash.

8.2.3 Payment Channel Network

Ethereum currently supports 15 transactions per second. In this context, when think-
ing about the future of my project, I also have to think about the future of the de-
centralised environment. Given its increasing popularity - the market cap of Ether is
now 30 billion USD - one can only imagine its market share in the upcoming years
(to which Digipound will hopefully contribute). This will potentially mean an in-
crease in transaction fees, measured in Ether, on the Ethereum blockchain.

In turn, the price of transactions could deter users from investing in Digipound.
One solution to this is the presence of offline payment channels for cryptocurren-
cies on the blockchain. A Payment Channel Network (PCN), is an off-chain solution
to address scalability of the blockchain. The idea is that PCNs allow two users to
make an unlimited amount of transactions offline. They do not have to access the
blockchain, except at their first transaction and their last transaction. To explain at a
high level, the network runs parallel to the blockchain, containing a special address,
where transactions can be written without broadcasting to the blockchain. Before
starting the channel, all parties in the channel will input a certain amount of tokens,
and when the channel starts, all users in the channel are free to distribute and trade
the total amount of tokens as they please. The end state of the payment channel is
what is written back to the blockchain, meaning the succession of transactions in the
payment channel was not held accountable to the blockchain transaction rate and is
recorded privately [43].

75

8.2. FUTURE IMPLEMENTATION Chapter 8. Conclusion

Figure 8.2: In the context of Digipound, if user A inputs 5 DGP into a channel with user
B, then A can make as many off-chain transactions as desired to B involving the 5 DGP,
and the only time they interact with the blockchain is when writing the final state of the
channel back to the network [42].

The ability to use PCNs would be vital for Digipound’s ability to scale. Implementing
them is outside the scope of the project but is stated as a valuable resource to have.
This is to ensure Digipound users do not get deterred by high transactions fees on
the Ethereum blockchain, and can continue to trade DGP in high volume, mimick-
ing fiat currency. This would be another revolutionary development, of which the
present work in this project lays a stable foundation for achieving.

Ultimately, the future of Digipound has been thoroughly planned. To be able to turn
the knowledge and skills I have gained at Imperial College London into a tangible
proof-of-concept that can potentially lead to a business that breaks new ground is
quite satisfying. In conclusion, the final result of this project is a working application
for a fully-functioning stablecoin test cryptocurrency whose value can be verified by
third parties in real time. As described above, the impact, market, and possibilities
of this proof-of-concept are very promising and I look forward to developing them
further.

76

Appendix A

Additional Functions

[{ ” cons tant ” : true , ” input s ” : [] , ”name” : ”name” , ” outputs ” :
[{ ”name” : ” ” , ” type ” : ” s t r i n g ” }] ,

” payable ” : fa lse , ” s t a t e M u t a b i l i t y ” : ” view ” , ” type ” : ” func t ion ” } ,
{ ” cons tant ” : fa lse , ” input s ” : [{ ”name” : ” spender ” , ” type ” : ” address ” } ,
{ ”name” : ” tokens ” , ” type ” : ” uint256 ” }] , ”name” : ” approve ” , ” outputs ” :
[{ ”name” : ” succes s ” , ” type ” : ” bool ” }] ,

” payable ” : fa lse , ” s t a t e M u t a b i l i t y ” : ” nonpayable ” , ” type ” : ” func t ion ” } ,
{ ” cons tant ” : true , ” input s ” : [] , ”name” : ” to ta lSupp ly ” , ” outputs ” :
[{ ”name” : ” ” , ” type ” : ” uint256 ” }] ,

” payable ” : fa lse , ” s t a t e M u t a b i l i t y ” : ” view ” , ” type ” : ” func t ion ” } ,
. . .
. . .

{ ” indexed ” : true , ”name” : ” to ” , ” type ” : ” address ” } ,
{ ” indexed ” : fa lse , ”name” : ” tokens ” , ” type ” : ” uint256 ” }] ,

”name” : ” Trans fe r ” , ” type ” : ” event ” } ,
{ ”anonymous ” : fa lse , ” input s ” : [{ ” indexed ” : true , ”name” : ” tokenOwner ” ,

” type ” : ” address ” } ,
{ ” indexed ” : true , ”name” : ” spender ” , ” type ” : ” address ” } ,
{ ” indexed ” : fa lse , ”name” : ” tokens ” , ” type ” : ” uint256 ” }] ,

”name” : ” Approval ” , ” type ” : ” event ” }] ;
Listing A.1: Excerpt of the ABI for the Digipound contract. The entire value is much
larger, but the excerpt shows how the contract is represented when calling the web3 API
in the Digipound application.

77

Chapter A. Additional Functions

pro tec ted func t ion c rea t e (array \$data)
{

S t r i p e : : setApiKey (getenv (’ STRIPE SECRET ’)) ;
t r y {

$bank = Account : : c r ea t e ([
‘ ‘ type ” => ‘ ‘ custom ” ,
‘ ‘ country ” => ‘ ‘GB” ,
‘ ‘ email ” => $data [‘ email ’] ,
‘ ‘ bu s ine s s t ype ” => ‘ i n d i v i d u a l ” ,
‘ ‘ i n d i v i d u a l ” => [

‘ ‘ f i r s t name ” => $data [‘ name ’] ,
‘ ‘ las t name ” => $data [‘ surname ’] ,
. . . /∗ Add i t i ona l r e l e van t f i e l d s

such as address and DOB ∗/ . . .
] ,
‘ ‘ e x t e rna l accoun t ” => [

‘ ‘ o b j e c t ” => ‘ ‘ bank account ” ,
‘ ‘ country ” => ‘ ‘GB” ,
‘ ‘ currency ” => ‘ ‘ gbp ” ,
‘ ‘ account holder name ” => $data [‘ name ’]

. ‘ ‘ ” . $data [‘ surname ’] ,
‘ ‘ routing number ” => $data [‘ rout ing ’] ,
‘ ‘ account number ” => $data [‘ account no ’]

] ,
‘ ‘ t o s accep tance ” => [

‘ ‘ date ” => time () ,
‘ ‘ i p ” => $ SERVER [’REMOTE ADDR’] ,

]
]) ;

re turn User : : c r ea t e ([
‘name ’ => $data [‘ name ’]

. ‘ ‘ ” . $data [‘ surname ’] ,
‘ account ’ => $data [‘ account ’] ,
‘ email ’ => $data [‘ email ’] ,
‘ password ’ => Hash : : make($data [‘ password ’]) ,
‘ rout ing ’ => $data [‘ rout ing ’] ,
‘ account no ’ => $acct−>id ,
‘ balance ’ => 0

]) ;
}
catch (\ S t r i p e \ Error \Card $e) {

$request−>s e s s i o n ()−> f l a s h (’ er ror ’ ,

78

Chapter A. Additional Functions

’ T ransac t ion f a i l e d ’) ;
}

}
catch (\ S t r i p e \ Error \Card $e) {

$request−>s e s s i o n ()−> f l a s h (’ er ror ’ ,
’ T ransac t ion f a i l e d ’) ;

}
}

Listing A.2: Upon registration, a user’s bank details are encapsulated as a connected
account in Stripe so payouts can be sent to them if they choose to redeem Digipounds.

79

Appendix B

User Guide

Setting up the Application

The full source code of the Digipound application, including the Stripe API keys,
are submitted on behalf of the project. To run the application, install and save the
source code. Next, open a new terminal window to install the web3 API to make the
function calls. It can be done with the following command:

$ npm i n s t a l l web3

To run the application locally, ensure that the local port 8545 is unused as it is speci-
fied as the provider for web3. Then, a local Ethereum node can be connected by the
following command:

$ sudo geth −−t e s t n e t −−rpc −−rpcapi ‘ ‘ db , net , eth , web3 , persona l ”
−−rpccorsdomain ‘ ‘ ∗ ”−−rpcaddr 127.0 .0 .1 −−rpcpor t 8545 console

The Digipound application can now be accessed locally. To run a local PHP server,
use the following command:

$ php a r t i s a n serve

At this stage, Digipounds can be issued, but not traded or redeemed on behalf of
the user account. This is because the user has not specified the private key of the
ERC-20 account used to sign up to Digipound, so the user cannot yet sign trans-
actions to the blockchain. To proceed, one course of action is to install a browser
extension like Metamask, which will save private keys and ask for confirmation any-
time a request to trade Digipounds or redeem Digipounds is made from the user
account. More information about Metamask and its installation can be found at
https://metamask.io/.

80

Chapter B. User Guide

Customisation

It is also worth noting that the Digipound application can be thought to implement
the functionality of a fully-audited stablecoin to an ERC-20 token. In theory, this to-
ken can be any ERC-20 token. For example, when making Digipound live, all that is
needed is to change the specified contract address variable in the Digipound source
code and it will run functionally with a live Ethereum token. Similarly, a developer
can set up any ERC-20 token as a stablecoin using the Digipound application code.
Simply replace the varible contractAddress in the issue, trade, and redeem func-
tions with the address of the contract specifying the token to trade, as well as the
erc20-abi variable with the new ABI.

Additionally, the developer can also change the keys of the Stripe account to process
payments. These keys are located in the .env file in the directory. Setting up a
Stripe account to handle payments associated with Digipound can be learned at
https://stripe.com/, and a public and secret key are required to call the Stripe
API from an application.

81

Chapter B. User Guide

Using the Application

Welcome to Digipound!
Join the decentralised
web in seconds.

The Digipound applica-
tion gives users capability
to invest in the fully-
collateralised Digipound
(DGP) stablecoin, which
can be issued, traded, and
redeemed like any other
cryptocurrency.

82

Chapter B. User Guide

To begin, register with the
following details, includ-
ing an email address and
password for login and
trading purposes, an ERC-
20 address to store Digi-
pounds, and a bank ad-
dress to receive GBP after
redeeming DGP.

The home page lists a
user’s current holdings, a
list of previous transac-
tions, a link to the au-
dit, and options to issue,
trade, and redeem Digi-
pounds.

Issuing, trading, and re-
deeming tokens is very
simple with the Digipound
applcation.

83

Chapter B. User Guide

After a successful trans-
action, the Ethereum ID
of the transaction is dis-
played for easy lookup.

In order to trade and
redeem Digipounds, a
browser extension to
store private keys can be
used to sign transactions,
such as Metamask.

To validate the value
of Digipound, the audit
shows a list of all previous
transactions written to the
Digipound smart contract,
with a link to Etherscan
to verify, and a list of all
inbound and outbound
payments, verified by
Stripe.

84

Bibliography

[1] Cryptocurrency Market Capitalizations. https://coinmarketcap.com/. Ac-
cessed 15 Jan 2019. pages 4, 11, 12

[2] Nakamoto, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System. Web. Ac-
cessed 20 Jan 2019. pages 6, 7

[3] Fortney, Luke: Investopedia. Bitcoin Mining, Explained. Web. Accessed 20 Jan
2019. pages 4

[4] Bitcoin Wiki. Bitcoin History and Genesis Block. Web. Accessed 5 Feb 2019.
pages 5, 6

[5] Ripple. https://ripple.com/. Accessed 19 Mar 2019. pages 5

[6] Microsoft Support. Add Money to your Microsoft account. Web. Accessed 20 May
2019. pages 5

[7] Hyperledger. https://www.hyperledger.org/. Accessed 20 May 2019. pages
7

[8] Etherscan Block Explorer. https://etherscan.io. Accessed 10 Apr 2019.
pages 9

[9] Ropsten Block Explorer. https://ropsten.etherscan.io. Accessed 10 Apr
2019. pages 21, 33

[10] The Ethereum. ERC20 Token Standard.
https://theethereum.wiki/w/index.php/ERC20 Token Standard. Accessed
11 Apr 2019. pages 9

[11] Remix - Ethereum IDE. https://remix.ethereum.org. Accessed 10 Apr 2019.
pages 10

[12] Houben, Robby, et. al. Cryptocurrencies and Blockchain - Section 2.1.2. Accessed
19 May 2019. pages 10

[13] Blockchain. 2018 State of Stablecoins. Web. Accessed 1 Feb 2019. pages 10, 11

85

BIBLIOGRAPHY BIBLIOGRAPHY

[14] Iiunuma, Arthur. Why Is the Cryptocurrency Market So Volatile: Expert Take.
Web. Accessed 1 Feb 2019. pages 6

[15] Wikipedia. 2018 Cryptocurrency Crash. Web. Accessed 21 Jan 2019. pages 5

[16] BBC News. IMF’s Lagarde says central banks could issue digital money. Web.
Accessed 14 Nov 2018. pages 11

[17] Gemini Dollar: U.S. Dollars on the Blockchain. https://gemini.com/dollar/.
Examinations section. Accessed 28 Jan 2019. pages 11, 31

[18] Dai Stablecoin. https://makerdao.com/. Examinations section. Accessed 28
Jan 2019. pages 12

[19] Berreman, Allison: ETH News. Circle’s USD Coin Audit Reports Full Fiat Backing.
Web. Accessed 18 Jan 2019. pages 12

[20] Khatri, Yogita: Coin Desk. Tether Says Its USDT Stablecoin May Not Be Backed
By Fiat Alone. Web. Accessed 3 May 2019. pages 12

[21] Kyber Network et. al. Wrapped Tokens. Web. Accessed 25 Jan 2019. pages 13,
14, 16

[22] Chen, James: Investopedia. ZWD (Zimbabwe Dollar). Web. Accessed 25 Mar
2019. pages 14

[23] Federal Reserve Bank of Dallas. Hyperinflation in Zimbabwe. Web. Accessed 30
Mar 2019. pages 14, 15

[24] Odera, Lujan. Why the release of Dogethereum bridge is a big deal for Dogecoin.
Web. Accessed 1 Feb 2019. pages 14

[25] Neto, Moritz: The Tenzorum Blockchain Initiative. How to issue your own token
on Ethereum in less than 20 minutes. Web. Accessed 5 Apr 2019. pages 20

[26] web3.eth. https://web3js.readthedocs.io/en/1.0/. Accessed 19 Apr 2019.
pages 21, 49

[27] web3j. Application Binary Interface.
https://web3j.readthedocs.io/en/latest/abi.html. Accessed 19 Apr
2019. pages 22

[28] web3.eth. https://stripe.com/docs/. Accessed 1 Feb 2019. pages 26, 62, 66

[29] Chatley, Robert. Imperial College London, Software Engineering: Design (CO
220). Interactive Applications. Accessed 20 Dec 2018. pages 35

[30] Laravel. https://laravel.com/docs/. Accessed 21 Dec 2019. pages 37

86

BIBLIOGRAPHY BIBLIOGRAPHY

[31] EthHub. Running an Ethereum Node.
https://docs.ethhub.io/using-ethereum/running-an-ethereum-node/.
Accessed 19 Apr 2019. pages 45

[32] Mislav, Javor. An Introduction to Geth and Running Ethereum Nodes. Web. Ac-
cessed 19 Apr 2019. pages 45

[33] Atzei, Nicola, et. al. A Survey of Attacks on Ethereum Smart Contracts. 2018, pp.
10. pages 52

[34] Frankenfield, Jake: Investopedia. 51% Attack. Web. Accessed 8 Jun 2019.
pages 47

[35] Coinmonks. How a 51% Attack Works.
https://medium.com/coinmonks/what-is-a-51-attack-or-double-spend-attack.

Accessed 8 Jun 2019. pages 48

[36] Buterin, Vitalik. On Slow and Fast Block Times. Web. Accessed 9 Jun 2019.
pages 50

[37] Crypto51. https://www.crypto51.app/. Accessed 7 Jun 2019. pages 50, 51

[38] Luu, Loi, et. al. Making Smart Contracts Smarter. 2016, Chapter 6. pages 52

[39] Tether Market Cap. https://coinmarketcap.com/currencies/tether/. Ac-
cessed 10 Jun 2019. pages 65

[40] Ethereum Average Transaction Fee Chart.
https://bitinfocharts.com/comparison/ethereum-transactionfees.html/.
Accessed 12 Jun 2019. pages 65

[41] WordPress. Ether and ERC20 tokens WooCommerce Payment Gateway.
https://wordpress.org/plugins/ether-and-erc20-tokens

-woocommerce-payment-gateway/. Accessed 7 Jun 2019. pages 75

[42] Malavolta, Giulio, et. al. Concurrency and Privacy with Payment-Channel Net-
works. Accessed 9 Jun 2019. pages 76

[43] Xue, Guoliang. Arizona State University. Payment Channel Networks for
Blockchain-based Cryptocurrencies. Accessed 9 Jun 2019. pages 75

87

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Organisation

	2 Background
	2.1 Cryptocurrency
	2.1.1 Examples
	2.1.2 Volatility
	2.1.3 Blockchain
	2.1.4 Smart Contracts
	2.1.5 Storage

	2.2 Stablecoins
	2.2.1 Collateralisation
	2.2.2 Examples
	2.2.3 Reserve Accounts

	2.3 Tokenisation
	2.3.1 Examples
	2.3.2 Issue-Trade-Redeem

	2.4 Summary
	2.5 Vision

	3 Design
	3.1 Components
	3.1.1 Digipound
	3.1.2 web3
	3.1.3 Stripe
	3.1.4 Audit

	4 Implementation
	4.1 MVC
	4.2 Laravel
	4.2.1 Issue-Trade-Redeem
	4.2.2 Signing Transactions
	4.2.3 Audit

	4.3 Ethereum Node

	5 Security
	5.1 Block Reorganisation Attacks
	5.2 Private Keys
	5.3 Breach of Smart Contracts
	5.4 Losing Keys

	6 Testing and Edge Cases
	6.1 Issue
	6.2 Trade
	6.3 Redeem

	7 Evaluation
	7.1 Cryptocurrency
	7.1.1 Cycle
	7.1.2 Valuation and Audit

	7.2 Application
	7.2.1 Website

	8 Conclusion
	8.1 Takeaways and Lessons Learned
	8.2 Future Implementation
	8.2.1 Live Application
	8.2.2 Acceptance Among Merchants
	8.2.3 Payment Channel Network

	A Additional Functions
	B User Guide

