
MEng Individual Project

Imperial College London

Department of Computing

Visual Odometry Using a Focal-plane
Sensor-processor

Author:
Riku Murai

Supervisors:
Prof. Paul Kelly
Dr. Sajad Saeedi

Second Marker:
Prof. Andrew Davison

June 17, 2019

Abstract

With faster processing units and more sophisticated algorithms, the field of computer vision
has progressed significantly over the past few years. One of its applications is to provide spatial
awareness for the machines, such that they can sense, navigate, and interact with our world.
For such machines, ability to react to abrupt changes in the environment is vital. Focal-plane
Sensor-processor (FPSP) is a new type of imager, which allows parallel computation to occur
on the chip itself. The analog nature of the architecture allows low energy consumption while
promising a high frame-rate.

Our work presents, to the best of our knowledge, the first successful 6 Degrees of Freedom visual
odometry pipeline which uses the data from the FPSP device. It allows a machine to be aware of
its position, while it freely moves around in a three-dimesional space. We propose improvements
to the existing feature detector for the device and introduce a feature tracker with robustness
against noise. Combining the two algorithms, we complete our pipeline with a non-linear pose
estimator. Through the exploitation of parallelism and partitioning of the tasks, we achieve
latency of less than 5ms per pose estimate and under 15mm in the absolute trajectory pose
error.

Acknowledgements

I would like to thank the following people.

• Prof. Paul Kelly for giving me the opportunity to explore this topic, and his continuous
support throughout the project.

• Dr. Sajad Saeedi for his expertise in the field of computer vision, and for his endless
encouragements.

• Dimos Tzoumanikas for helping me setup the Vicon motion capture system.

• My friends for making my last four years of study an enjoyable experience.

• And finally, my parents and my sister for their support throughout my study.

Without their support, this project would not have been possible.

Contents Visual Odometry Using an FPSP

Contents

1 Introduction 5
1.1 Contributions . 6
1.2 Report Structure . 6

2 Background 7
2.1 Focal-plane Sensor-processor . 7

2.1.1 Scamp5 Device . 7
2.1.2 Micro-controller . 7
2.1.3 Programming Model . 8
2.1.4 Performance . 8
2.1.5 Error Model . 9
2.1.6 Development Environment . 9

2.2 Feature Detection and Tracking . 10
2.2.1 Properties of a Good Feature . 10
2.2.2 FAST Corner Detection . 10
2.2.3 Feature Descriptors . 11
2.2.4 Feature Matching . 12
2.2.5 Optical Flow Estimation . 12

2.3 Monocular Visual Odometry . 12
2.3.1 Notations . 12
2.3.2 Methodologies . 12
2.3.3 Camera Model . 13
2.3.4 Pose Representation . 14
2.3.5 2D-2D Pose Estimation . 15
2.3.6 3D-2D Methods . 17
2.3.7 Robust Methods . 18

2.4 Related Works . 19
2.4.1 Visual Odometry/SLAM on a Frame-based Camera 20
2.4.2 Visual Odometry on an Event-based Camera 20
2.4.3 Visual Odometry on an FPSP Device . 21

2.5 Summary . 23

3 Feature Detection and Tracking 24
3.1 Communication with the Scamp5d Device . 24

3.1.1 Motivation . 24
3.1.2 Settings . 25
3.1.3 Communication Methods . 25
3.1.4 Limitations and Optimisation of the Communication 25
3.1.5 Improvements to the Communication API 27
3.1.6 Summary of the Communication with the Scamp5d Device 28

2

Contents Visual Odometry Using an FPSP

3.2 Improved Feature Detection on an FPSP Device 28
3.2.1 Motivation . 28
3.2.2 Prior Works . 28
3.2.3 Comparison Function . 29
3.2.4 Binary Counter . 30
3.2.5 Edge Detection . 30
3.2.6 Two Ring Detector . 31
3.2.7 Non-maximal Suppression . 31
3.2.8 Summary of the Improved Feature Detection on an FPSP Device 32

3.3 Feature Tracking . 33
3.3.1 Motivation . 34
3.3.2 Noise . 34
3.3.3 Problem Formulation . 34
3.3.4 Particle Filter . 35
3.3.5 Implementation Details . 36
3.3.6 Summary of the Feature Tracking . 37

3.4 Summary . 37

4 Visual Odometry 39
4.1 Initial Attempts . 39

4.1.1 Motivation . 39
4.1.2 Pose Representations . 39
4.1.3 Visualisation . 40
4.1.4 Implementation Details . 40
4.1.5 Summary of the Initial Attempts . 41

4.2 Visual Odometry Pipeline . 41
4.2.1 Motivation . 41
4.2.2 Initialisation . 41
4.2.3 Pose Estimation . 42
4.2.4 Map-point Insertion . 42
4.2.5 Summary of the Visual Odometry Pipeline 42

4.3 Low Latency Visual Odometry . 43
4.3.1 Motivation . 43
4.3.2 Preparations . 44
4.3.3 Challenges . 45
4.3.4 Implementation Details . 46
4.3.5 Optimisations . 47
4.3.6 Summary of the Low Latency Visual Odometry 48

4.4 Summary . 49

5 Evaluation 50
5.1 Feature Extraction on an FPSP Device . 50

5.1.1 Methodologies . 50
5.1.2 Observations . 51

5.2 Tracking Features Extracted by an FPSP Device 52
5.2.1 Methodologies . 53
5.2.2 Observations . 54

5.3 Low Latency Visual Odometry Using an FPSP Device 59
5.3.1 Methodologies . 60
5.3.2 Observations . 62

5.4 Limitations and Further Evaluations . 66
5.5 Summary . 67

3

Contents Visual Odometry Using an FPSP

6 Conclusion and Future Works 70
6.1 Contributions . 70

6.1.1 Feature Detection and Tracking . 70
6.1.2 Visual Odometry Using an FPSP Device 70

6.2 Challenges and Lessons Learnt . 71
6.3 Discussions . 71
6.4 Future Works . 72

6.4.1 Visual Odometry . 72
6.4.2 Development Environment and Testing Framework 73

Appendix A Test Data 80

Appendix B Feasibility of the Future Works 82

4

Chapter 1. Introduction Visual Odometry Using an FPSP

Chapter 1

Introduction

Spatial awareness is an ability which is required by many technologies, from virtual reality
to autonomous robots. The knowledge is often obtainable from sources such as satellites or
hardware reference markers. However, in many situations, such information is inaccessible.
Visual odometry is a computer vision algorithm which recovers camera pose estimations from
a sequence of images. No prior information about the environment or the motion is required,
which makes the system usable in a wide variety of situations [41].

Low latency in visual odometry is critical for some of its applications. For the machines which
operates around our surrounding, it is critical that they can respond to the abrupt changes in
the environment.

Using a typical camera, achieving low latency in computer vision is challenging. The frame-rate
of the camera is often limited, which sets a hard boundary for the latency. While use of a
high-speed camera would lower this boundary, it now has a large amount of pixel data that
must be transferred and processed. The data processing creates significant overhead for the
processor, consuming both computational resource and energy. While hardware accelerators
such as Graphics Processing Units (GPUs) can speed up the processing, they are often not
available on a small robot.

Focal-plane Sensor-processor (FPSP) is a next-generation camera technology which allows pixels
of the vision chip to perform computations in parallel, in a Single Instruction, Multiple Data
(SIMD) manner. Processing on the pixels allows the data transferred from the vision chip to be
minimal, reducing the energy and time required to digitalise the analog values. Reducing the
analog to digital conversions allows the FPSP device to be energy efficient while promising a
high frame-rate.

This dissertation aims to achieve a 6 Degrees of Freedom (DoF) visual odometry pipeline,
utilising the FPSP device to reduce the latency.

Use of the FPSP device to perform visual odometry has been explored prior [8, 18]. However, the
methods only achieved 4DoF. Furthermore, the implementation of new algorithms are necessary
due to the limited instruction sets and storage space. Unfortunately, as the algorithms widely
differ from a typical visual odometry algorithm, extending these to support more degrees of
freedom is challenging.

Instead, we propose to break down the visual odometry pipeline and place the tasks accordingly
across the different devices. Such separation allows us to borrow ideas from computer vision
algorithms which were developed for a typical camera.

5

Chapter 1. Introduction Visual Odometry Using an FPSP

1.1 Contributions

The primary objective of our project was to achieve 6DoF tracking using an FPSP device. In
summary, the contributions of this project are as follows

• An improved feature detection algorithm, which is specialised for the FPSP device. Through
ensembling of multiple feature extraction methods, our feature detector is capable of
extracting up to 500 corner features at over 600 Frames Per Second (FPS).

• A robust feature tracking algorithm, which is capable of tracking noisy features produced
by the FPSP device. The feature tracker can operate at over 600FPS. Furthermore, it
does not assume the motion of features, thus, the FPSP device is free to move around in
space while tracking the features. Moreover, the tracker does not limit the use to a static
environment. To the best of our knowledge, this is the first successful implementation of
feature tracker for an FPSP device.

• A low latency monocular 6DoF visual odometry pipeline using an FPSP device, which
to the best of our knowledge has never been attempted before. The pipeline utilises our
feature detection and feature tracking algorithm, producing up to 250 pose estimations
per second, with a small error of less than 15mm in the absolute trajectory pose error.

• Evaluations of the accuracy and performance of our implementations. We assess all of our
implementations, both qualitatively and quantitatively. Comparison against some of the
classical approaches such as the Kande-Lucas-Tomasi (KLT) feature tracker is performed
to measure the significance of operating computer vision algorithms at a high frame-rate.

• A discussion of the limitations of our approaches, and on the further works.

1.2 Report Structure

The rest of the report can be summarised as follows

• Chapter 2, Background contains the necessary contents required to understand the rest of
the dissertation, introducing one type of FPSP device, Scamp5d, and a brief overview of
feature extraction, feature tracking, and monocular visual odometry.

• Chapter 3, Feature Detection and Tracking first details the methods to communicate
between the Scamp5d and a standard computer. Improvements made to the FAST corner
detection on an FPSP device is then introduced. Finally, a discussion about our feature
tracker and its implementation detail is made.

• Chapter 4, Visual Odometry incrementally builds a visual odometry pipeline, and discuss
the necessary implementation details required for our low latency 6DoF visual odometry
pipeline.

• Chapter 5, Evaluation assesses the quality of the feature detector, feature tracker and
visual odometry pipeline, and critically review the performance.

• Chapter 6, Conclusion summarises the works and proposes future directions.

6

Chapter 2. Background Visual Odometry Using an FPSP

Chapter 2

Background

In this chapter, we introduce the next-generation camera technology, FPSP device, and funda-
mental concepts of monocular visual odometry. In the later sections, we survey the different
approaches to monocular visual odometry, and what the different types of camera technologies
have to offer.

2.1 Focal-plane Sensor-processor

A Focal-plane Sensor-processor (FPSP) is a general purpose vision device, where sensor and
processor arrays are embedded together on the same silicon [59]. Compared to conventional
systems, where the camera transfers data to a separate processing unit, FPSP device allows
processing of pixels to occur on the chip itself. Computation can produce a sparse representation
of the data, reducing the data which is transferred.

2.1.1 Scamp5 Device

One example of an FPSP device is the Scamp5, developed by the University of Manchester [13].
Scamp5 is a general purpose vision device, capable of executing a variety of different algorithms
such as feature detection [14] and convolutional neural networks(CNNs) [18, 57]. To aid the
development of CNNs on the device, development of automatic kernel generation for the Scamp5
architecture [19] has been explored as well. In this dissertation, the latest iteration of the
Scamp5, Scamp5d is used.

The chip (Figure 2.1) captures a grayscale image of 256×256 pixels, and each pixel sensor cell
contains a processing element (PE).

Each PE (Figure 2.2) contains 13 general purpose binary registers (R0-R12), 6 general purpose
analog registers (A-F), a FLAG register, and a NEWS register. In contrast to conventional
digital processors, operations can be performed on analog registers. This allows the chip to
bypass the Analog to Digital Conversion (ADC), keeping the PEs compact and further reducing
power consumption.

2.1.2 Micro-controller

A Scamp5d device contains the vision chip, which is integrated with a micro-controller. The
micro-controller (MCU) used is an NXP LPC4357, integrating two ARM Cortex cores, M4

7

Chapter 2. Background Visual Odometry Using an FPSP

A 100,000 fps Vision Sensor with Embedded 535GOPS/W 256x256 SIMD Processor
Array

Stephen J. Carey, Alexey Lopich, David R.W. Barr, Bin Wang and Piotr Dudek

The University of Manchester, School of Electronic and Electrical Engineering

Manchester, M13 9PL, United Kingdom
Tel: 44(0)1613064721; p.dudek@manchester.ac.uk

Abstract
A vision chip operating with 1.9pJ/OP efficiency has been

fabricated in 0.18µm CMOS. Each of the 256x256
pixel-processors (dimensions 32x32µm), contains 14 binary
and 7 analog S2I registers coupled to a photodiode, an
arithmetic logic unit, diffusion and asynchronous propagation
networks. At the chip’s periphery, facilities exist to allow pixel
address extraction, analog or digital readout. The chip has been
exploited to conduct real-time image processing operations at
100,000fps, locating a closed-shape object from amongst
clutter.

Keywords: SIMD, vision-chip, parallel, processor, cellular and array

 Introduction
A conventional embedded vision system, consisting of an

image sensor, followed by A/D converters and image
processor, expends considerable energy acquiring and
transmitting digital images. A vision chip, using dedicated
circuits to process data at a pixel site, can significantly reduce
the power and external bandwidth requirements, providing
pre-processed images, and/or abstract information from the
scene (e.g. location of salient objects, features, etc), instead of
raw video frames.

In this work, we describe a general purpose vision chip with
an array of pixel-parallel mixed-signal processing elements
(PEs). Integration of a software-programmable processor into
a 32µmx32µm silicon area provides greater functionality and
versatility than algorithm-specific vision sensors (e.g. [1,2])
with similar cell size. At a 10MHz instruction rate, the chip
achieves peak computational performance of 655GOPS
(gray-scale arithmetic operations) and energy efficiency of
1.9pJ/OP (5x better than [3] and 2.5x better than [4]) in a
low-cost 180nm CMOS technology. A flexible readout system
enables data reduction on the focal plane. As an example, an
application that discriminates and tracks an object at 100,000
fps is demonstrated.

Chip Architecture
Fig. 1 shows the block diagram of the IC. The image sensor

array is tightly integrated with an array of analog/digital
processing elements programmed as an SIMD computing
system. A sequence of 79-bit instruction words, determines the
algorithms executed by the array. Each PE incorporates a pixel
circuit, 7 analog storage registers, a comparator, a squarer and
a neighbor communication/diffusion network. The analog
system operates in sampled-data current mode – the
programmable connectivity between the storage registers (S2I
memory cells), analog bus and functional nodes enables
microcode-controlled computations in the analog domain [5].
Summation, inversion, subtraction, division, squaring and
spatial diffusion (low pass filter), operate directly on analog
data samples (e.g. gray-level pixel values) without the need for
A/D conversion. The application of masks within the

communication network allows arbitrary patterns of PEs to be
joined, creating a macro cell within which currents can be
summed and stored. A comparator circuit provides an interface
between analog and digital domains. Within the digital
sub-system, 13 bits of DRAM and 1 bit of SRAM are included
with OR and NOT logic operations.

Readout can be in the form of a binary or 8-bit digital data,
analog frames, or global image-wide data. Through controlling
PE addressing, readout can locally OR binary data from
multiple PEs (for digital output) or sum analog current data
(analog readout). A direct readout of an ordinate of an active
(foreground) pixel can be obtained from the asynchronous
address extraction circuitry, providing rapid (“event-based”
[2]) identification of pixels of interest. Readout-based
computations are critical to operations at high frame rates,
whereby processed results, and no images, are output from the
device.

Operations such as flood-fill are accelerated using an
asynchronous propagation network that is formed from
interconnecting adjacent PE cells to allow direction-specific
binary signal triggered propagation in a combination of 4
orthogonal directions.

Implementation and Results

The speed of asynchronous propagation is 3.2ns from cell to
cell, or <1µs to propagate across the entire array. This allows a
62x speed-up over equivalent synchronous operations
(requiring two clock cycles per pixel, with 100ns clock) to
conduct image-wide commands such as hole-filling or binary
object reconstruction.

While the analog datapath makes compact PEs viable, it is
important to achieve acceptable levels of accuracy to ensure
robust processing outcomes, competitive with conventional
digital computation. For registers A and B of a PE at position i,j
in the array, register B is copied to A with errors given by (1).

,ܣ ൌ ,ܤ ݇ଵܤ, ݇ଶ ሻݐ,ሺߝ , (1)ߜ

Figure 1. Architecture of the 256x256 vision chip Figure 2.1: The architecture of Scamp5 [13]. The chip contains 256×256 processing elements

which each corresponds to a pixel each.

and M0 [15]. The M0 core dispatches the instructions for the vision chip and is responsible for
performing other vision chip control tasks. The M4 core is used to perform IO services and has
the capability to run user programs. GPIO pins and communication ports such as SPI, UART,
I2C are exposed to allow sensors such as inertial measurement unit (IMU) to be attached.

2.1.3 Programming Model

The analog architecture is abstracted away, allowing people who are unfamiliar with analog
architecture to code as if they are working on a digital architecture [12]. However, they must be
aware of the errors which are present due to the analog nature of the system.

The chip is programmed in a single instruction, multiple data (SIMD). The same instruction
is executed across all the PEs, which each applies the operation on their local registers. One
can freely use the 13 binary and 6 analog registers. The special registers are the FLAG register,
which can be used to mask analog register operations to provide data-dependent branching
across the PEs [15] and the NEWS register, which is a special register connected to the 4 closest
neighbours (North, East, West, South). The data stored on the NEWS register is accessible
from any of the neighbouring PEs.

The data can be transferred from the micro-controller to a host device through read-out operations.
The read-out operations for the analog registers goes through the ADC, while the digital registers
can be directly read [1]. The infrastructure of the Scamp5 device allows further hardware
acceleration beyond parallel processing. For example, a summation across user-defined patterns
on analog registers is efficiently implemented on the hardware. Moreover, the time required to a
read-out of events (’1’s on the digital register) is proportional to the number of events rather
than the scanning area.

2.1.4 Performance

The chip is capable of executing instructions at 10MHz and achieves peak computational
performance of 655GOPS (grayscale arithmetic operations) and energy efficiency of 1.9pJ/OP [13].
Furthermore, hardware acceleration such as flooding through asynchronous propagation network

8

Chapter 2. Background Visual Odometry Using an FPSP

Figure 2.2: The architecture of the processing element on the chip [12]. Each PE contains
mixture of analog and digital registers together with an analog photo-diode which measures the
intensity.

allows 62× speedup compared to the synchronous version. The chip is capable of tracking an
object at 100,000FPS [11], transferring only the coordinate of the object to the micro-controller.
This allows the instructions to be executed at 10MHz while only consuming 1.23W.

2.1.5 Error Model

The error [13] for copying the content of register Bi,j to Ai,j can be modelled as (2.1)

Ai,j ← Bi,j + k1Bi,j + k2 + εi,j(t) + δi,j (2.1)

The fixed error k2 is unimportant as a simple constant error correction can remove it. The signal
dependent error k1 is non-correctable. At a 10MHz clock, considering a nominal register range
of 0 to 100, k1 is 0.07. εi,j(t) indicates the random error associated with a register transfer, for
example a thermal noise. Root Mean Square Error (RMSE) across the array is 0.09. δi,j is the
error due to fixed pattern noise, a constant error particular to a PE location and registers being
copied.

The clock speed of the chip can be increased from 10MHz to 16MHz. However, this would
increase the noise present on the chip. The values stored in analog registers decays with time.
While it is sufficient for short inter-frame temporary storage, to keep the values across multiple
frames, one must write the data to the digital registers.

2.1.6 Development Environment

The vision system is programmed in GNU C/C++ using Scamp5d development framework [15].
The code for the micro-controller and the PEs are written together, but the instructions for the
PEs are written in a special scope, created by scamp5 kernel begin() and scamp5 kernel -
end(). Scamp5 kernels get compiled into Scamp5 instructions during the run-time upon the
first encounter.

9

Chapter 2. Background Visual Odometry Using an FPSP

The code which runs on the M0 core can be cross-compiled for the simulator client. This enables
the code which runs on the hardware to run on the simulator as is. The simulator emulates the
vision chip hardware and provides easy debugging through displaying state of all the registers
and enabling step by step execution using a debugger.

The Scamp5 device can operate autonomously. However, a connection to a host computer can be
made through a USB 2.0 port. Host application provides GUI for the chip, allowing rendering of
the register states and provides an interface to interact with user-defined values such as threshold
during run-time. The driver library to interface with the micro-controller is provided, allowing
the development of a custom host application for the Scamp5 system.

2.2 Feature Detection and Tracking

Feature detection and matching is an essential aspect of computer vision applications. The
correspondences created between the features across multiple images allows, for example, aligning,
such that they can be stitched into a single picture, or a 3D model can be created using
triangulation [51].

2.2.1 Properties of a Good Feature210 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

xxi

xi+u

u

i

(a) (b) (c)

Figure 4.4 Aperture problems for different image patches: (a) stable (“corner-like”) flow;
(b) classic aperture problem (barber-pole illusion); (c) textureless region. The two images I0

(yellow) and I1 (red) are overlaid. The red vector u indicates the displacement between the
patch centers and the w(xi) weighting function (patch window) is shown as a dark circle.

gradients in at least two (significantly) different orientations are the easiest to localize, as
shown schematically in Figure 4.4a.

These intuitions can be formalized by looking at the simplest possible matching criterion
for comparing two image patches, i.e., their (weighted) summed square difference,

EWSSD(u) =
X

i

w(xi)[I1(xi + u)� I0(xi)]
2, (4.1)

where I0 and I1 are the two images being compared, u = (u, v) is the displacement vector,
w(x) is a spatially varying weighting (or window) function, and the summation i is over all
the pixels in the patch. Note that this is the same formulation we later use to estimate motion
between complete images (Section 8.1).

When performing feature detection, we do not know which other image locations the
feature will end up being matched against. Therefore, we can only compute how stable this
metric is with respect to small variations in position �u by comparing an image patch against
itself, which is known as an auto-correlation function or surface

EAC(�u) =
X

i

w(xi)[I0(xi + �u)� I0(xi)]
2 (4.2)

(Figure 4.5).1 Note how the auto-correlation surface for the textured flower bed (Figure 4.5b
and the red cross in the lower right quadrant of Figure 4.5a) exhibits a strong minimum,
indicating that it can be well localized. The correlation surface corresponding to the roof
edge (Figure 4.5c) has a strong ambiguity along one direction, while the correlation surface
corresponding to the cloud region (Figure 4.5d) has no stable minimum.

1 Strictly speaking, a correlation is the product of two patches (3.12); I’m using the term here in a more qualitative
sense. The weighted sum of squared differences is often called an SSD surface (Section 8.1).

Figure 2.3: Aperture problem for different types of image patches. (a) Corner like feature, (b)
Edge feature, (c) Texture-less region. The two images I0 (yellow) and I1 (red) are overlaid. The
red arrow indicates the possible displacement of the feature between frames. [51].

One property which is required by for a good feature is that it should be possible to reliably find
its correspondences in other images. The correspondence is often established using a local patch
around the feature and as shown in the Figure 2.3, patches with large contrast change (gradient)
is easier to track. For the straight line segments, it suffers from aperture problem, where the
alignment is only possible along the normal to the edge. If the patch contains no textures, the
alignment process is nearly impossible [51].

Another important property of a good feature is its repeatability in extraction. If the feature is
not repeatably detectable, it is difficult to track the feature across frames.

2.2.2 FAST Corner Detection

Features from Accelerated Segment Test (FAST) corner detector [45, 46] is one type of feature
detector, which is computationally efficient. Corners have large gradients, which makes it an easy
feature to track. Before the FAST corner detector, feature extraction from a live video stream at
full frame-rate was too time consuming and left little to no time left for further processing.

10

Chapter 2. Background Visual Odometry Using an FPSP

Figure 2.4: Illustration of the FAST corner detection. The highlighted squares are the pixels
tested for the corner detection and the pixel p is the centre of a candidate corner. The dashed
line indicates the 12 contiguous pixels which are brighter than p by more than the threshold [46].

The algorithm works as follows (Algorithm 1).

Algorithm 1 FAST corner detection
1: procedure FAST corner detection
2: Select a candidate pixel p
3: Consider a ring of 16 pixels around p as shown in Figure 2.4
4: N← Length of longest contiguous pixels in the ring where intensity difference with p is

all below or all above a threshold t
5: if N < 12 then
6: Mark p as corner

Early rejection of a candidate pixel is possible by examining 1, 9, 5 and 13th pixels. A feature
can only exist if three of these test points are all above or below the intensity of p by t. The
number of N contiguous pixels depends on the implementations. However, for N < 12 early
rejection is not possible.

2.2.3 Feature Descriptors

In many of the use cases of the features, they are matched to find the correspondence. For a
continuous video sequence, comparing the features patch-wise may be sufficient. However, in
many cases, the patch will undergo appearance change, for example, changes in orientation,
scale or illumination. These changes are more significant if one wishes to match features from
non-consecutive images. The difference in the appearance makes the task of matching the
features challenging.

Descriptors are often used to solve this problem, and a local patch around the feature is encoded
in such a way that it is invariant to the appearance changes.

One of such feature descriptors is Scale Invariant Feature Transform (SIFT) [37]. It is invariant
to image rotation and scaling, partially invariant to change in illumination and 3D camera
viewpoint, making them suitable for tasks such as motion tracking.

While SIFT features are successful and they are used in many applications, it has a large
computational burden which makes it impractical for real-time applications. This lead to the

11

Chapter 2. Background Visual Odometry Using an FPSP

research of more efficiently descriptors, in particular, binary descriptors. Oriented fast and
Rotated Brief (ORB) [47] features is a common alternative to SIFT features. It is computationally
efficient as feature extraction uses FAST-9 (where N = 9) and the feature descriptor is computed
using binary comparisons.

2.2.4 Feature Matching

Given a list of features and its descriptors for two images, the simplest method to match the
features is to brute-force all the possibilities. However, the complexity grows quadratically
with the number of features. Thus it is impractical for most real-time applications. Instead,
under an assumption that the inter-frame motion is relatively small, an indexing structure such
as multi-dimensional search tree such as K-d tree can be used [51]. The indexing structures
use distance as a heuristic, and as long as the assumption holds, it would not compromise
accuracy.

2.2.5 Optical Flow Estimation

Under an assumption that one wishes to track features across consecutive video, it is possible to
obtain a sub-pixel estimate of how features moved between frames.

One of the commonly used approaches is the Lucas and Kanade Method (LK Method) [5]. It
performs gradient descent on the sum of squared difference of local patch around a feature and
interpolates the relative translation of the feature [51]. Use of Shi-Tomasi features [48], together
with the LK method, is often referred to as the KLT feature tracker.

2.3 Monocular Visual Odometry

The ability to accurately estimate pose is essential for various applications such as navigation
and augmented reality. Multiple sensory information can be fused to solve the problem, and
typically, with more information, more straightforward it is to estimate the pose. Monocular
visual odometry is one of the approaches for pose estimation. It uses a single camera only, which
makes the problem complex and requires high engineering effort to implement. However, it
is rewarding as a single camera is compact, low energy, cheap and operates both indoors and
outdoors [58].

2.3.1 Notations

The notation used to describe the algorithms are as follows. The world frame is represented
with w and the camera frame is represented with c. The position p in world frame is denoted
as wp. The rigid-body transformation Tc,w ∈ SE(3) expresses transformation from world
to camera frame. This allows a point in world frame wp to be mapped to camera frame by
cp = Tc,w · wp

2.3.2 Methodologies

Monocular visual odometry can be categorised based on what information they use to predict
the pose.

12

Chapter 2. Background Visual Odometry Using an FPSP

Figure 2.5: Pinhole camera geometry [27]. C is the camera centre and p is the principle point.
The 3D point X corresponds to point x on the image plane.

1. Direct Methods: It is possible to divide this category into dense and semi-dense methods,
where the dense method uses all of the available pixel information whereas semi-dense
method only uses the pixel information at which the gradient of image brightness is
significant [58]. Typically, they operate under the assumption that the intensity difference
between two subsequent frames is small. This can be described with equation (2.2)

J(x, y) ≈ I(x+ u(x, y), y + v(x, y)) (2.2)

where J, I represents two consecutive images, which is indexed by a pixel coordinate (x, y).
u(x, y), v(x, y) denotes the displacement of the pixels between the images. Rather than
considering these constraints separately, direct monocular Simultaneous Localisation And
Mapping (SLAM) such as LSD-SLAM [20] estimates u and v as a rigid body transformation
of the whole image and the alignment of two images are computed by minimising of
photometric error through non-linear optimisation.

In a scene with a limited amount of textures, the direct methods achieve higher accuracy
and robustness when compared to a feature-based approach.

2. Feature-based Methods: Feature-based methods reduces the computational complexity
by extracting features, rather than considering every pixel. These features are tracked
across multiple frames. Thus, the ability to track the features across multiple frames is
critical for feature-based methods. PTAM [32], which performs parallel camera tracking and
mapping uses FAST corners [46] and local patch correlation to match them. While these
methods work on a small scale, it does not support large loop closure. ORB-SLAM [39]
uses ORB features [47], which allows robust matching across multiple views, and allows
pose estimation to be computed through minimisation of reprojection error.

2.3.3 Camera Model

The pinhole camera is the simplest camera model but is used in many computer vision tasks.
As described in [27] a point on the image x is computed by intersecting the image plane with
line through a 3D point X and a camera centre C as shown in the Figure 2.5. The mapping
between the 3D coordinate to image coordinate can be simply described as X

Y
Z

 7→ (
fX/Z
fY/Z

)
(2.3)

The centre of the projection is the camera centre, and the line from it perpendicular to the image
plane is called principle axis, which intersects at the principle point. Equation (2.3) assumes

13

Chapter 2. Background Visual Odometry Using an FPSP

that the origin of the coordinate of the image plane is the principle point. In general, this may
not be true and the offsets can be expressed as X

Y
Z

 7→ (
fX/Z + px

fY/Z + py

)
(2.4)

Or be expressed in homogeneous coordinates as
X
Y
Z
1

 7→
 fX + Zpx

fY + Zpy

Z

 = K

X
Y
Z
1

 (2.5)

K =

 f px 0
f py 0

1 0

 (2.6)

K is called the camera calibration matrix or intrinsic parameters. Equation (2.5) can be expressed
concisely as

x = K [I | 0] cX (2.7)

The point cX is expressed in the coordinate system where the camera is located at the origin of
the Euclidean coordinate system with principle axis pointing down the z-axis. This is called the
camera coordinate frame.

A point in space, in general, is expressed in the different coordinate frame, known as world
coordinate frame and can be related to the camera coordinate frame through rotations and
translations. Let X̃ and cX̃ be an in-homogeneous vector representing the same point in the
world coordinate and camera coordinate frame respectively. These points can be related by an
equation

cX̃ = R(X̃− C̃) (2.8)

Where C̃ is the coordinate of the camera centre in the world coordinate, and R is a 3×3 rotation
matrix representing the orientation. These are the extrinsic parameters. Equation (2.8) can be
rewritten in a homogeneous coordinate as

cX =
[

R −RC̃
0 1

]
X (2.9)

This allows definition of a 3 × 4 projection matrix forms the mapping of a point in world
coordinate to a point in plane coordinate is defined as

P = K [R | t] (2.10)

Where t = −RC̃

2.3.4 Pose Representation

A pose of a camera in 3D space can be expressed using rigid body motion in Special Euclidean
Group SE(3), containing a 3D rotation R and a 3D translation t. For the translation, we can
represent them as a 3× 1 vector. However, for the rotation, it is more complicated. Rotations
in the 3D space are represented in Special Orthogonal Group SO(3) and have many possible
parameterisations. One parameterisation is to use a 3×3 orthonormal rotation matrix. However,
it excessively uses 9 parameters to represent 3 rotations. Furthermore, an orthogonality constraint
must be enforced. Instead, compact parameterisation of a 3D rotation is often used [51].

14

Chapter 2. Background Visual Odometry Using an FPSP

• Euler Angles: A 3D rotation can be expressed using three rotations around the cardinal
axes. Although it uses only 3 parameters, it is generally poor representation since the
order in which the transforms are applied results in different orientations, and further,
it suffers from Gimbal Lock, making it not possible to move smoothly in the parameter
space.

• Axis-angle: A rotation can be represented using a rotation axis and an angle to rotate by.
Angle-axis representation uses 3 parameters, hence they require no additional constraints
on the parameters. However, the representation of the angle is not unique and adding
multiples of 2π radian to the angle-axis representation yields the same rotation matrix.

• Unit Quaternions: The unit quaternion representation uses a 4-parameter vector with
unit norm constraint to represent the 3D rotation. Apart from dual covering ambiguity,
where q = −q, its representation of a rotation is unique. Furthermore, the representation
is continuous, and there are no discontinuities in the representation.

The most commonly used parameterisation is the unit quaternions, which constitutes a unit
sphere in four-dimensional space [16]. While the representation is not minimal, it is still compact.
Furthermore, it has nice properties such as allowing smooth interpolation of the rotation along
the arc of the 4D unit sphere.

2.3.5 2D-2D Pose Estimation

A 2D-2D method is a branch of pose estimation methods, which uses correspondences on two
image planes to find the relative motion of the camera. It uses the epipolar geometry to find the
relationship between the correspondences and decomposes the found relationship into relative
motion estimate.

Fundamental Matrix

Given two perspective views, a 3D point X can be represented on the image plane as

x = PX, x′ = P′X (2.11)

Where P is the projection matrix and ′ indicates entities associated with the second view. Image
point x and x′ are corresponding point as they are projection of the same 3D point [27].

The epipolar geometry is used to describe the intrinsic projective geometry between two views.
The algebraic representation of the epipolar geometry is the fundamental matrix F which is
3× 3 matrix of rank 2. The fundamental matrix satisfies the relation.

x′Fx = 0 (2.12)

The fundamental matrix relates the corresponding image points on two separate image planes,
and if the camera calibration parameter is known, it is possible to recover the relative pose
estimate.

Essential Matrix

A fundamental matrix is a general form of an essential matrix and describes a similar relationship.
However, an essential matrix has fewer degrees of freedom as it operates on the normalised
coordinates.

15

Chapter 2. Background Visual Odometry Using an FPSP

Figure 2.6: The geometric representation of possible solutions for the camera positions [27].

Let the projection matrix be decomposed as P = K[R | t] and let x = PX be a point in the
image. If the calibration matrix K is knows, then the inverse can be applied to the point x
to obtain the point x̂ = K−1x = [R | t]X. The point x̂ is the image point expressed in the
normalised coordinates. The camera matrix K−1P = [R | t] is the normalised camera matrix,
which is camera matrix with effect of the known calibration removed.

The essential matrix, similarly to the fundamental matrix satisfies

x̂′T Ex̂ = 0 (2.13)

For all corresponding x̂, x̂′ pairs. Substituting for x̂, x̂′

x̂′T Ex̂ = x′T K−T EK−1x = x′T Fx = 0 (2.14)

Hence the relationship between the essential matrix and the fundamental matrix is

E = K−T FK (2.15)

Pose Recovery

It is possible to recover the camera’s extrinsic parameters when given the essential matrix [27].
In case where fundamental matrix is computed instead, given K, the conversion to essential
matrix is possible through Equation (2.15).

Assume that the camera matrix which corresponds to the first image is P = [I | 0]. The camera
matrix, which corresponds to the second image is P′, and it contains the relative transformation.
The essential matrix E can be decompose into E = U diag(1, 1, 0)VT . There are four possible
choices for the second camera matrix P′

P′ = [UWVT | u3], or P′ = [UWVT | − u3],
or P′ = [UWT VT | u3], or P′ = [UWT VT | − u3] (2.16)

16

Chapter 2. Background Visual Odometry Using an FPSP

where

W =

 0 −1 0
1 0 0
0 0 1

 (2.17)

There is only one solution out of four, where the point is in front of both camera positions
(Figure 2.6). Hence, using a 3D single point, it is possible to determine the correct configuration
of the camera position.

8-point Algorithm

One of the methods to compute the fundamental matrix is the 8-point algorithm. It is a simple
and fast algorithm, which uses 8 or more correspondences to compute the fundamental matrix.
Despite its simplicity, the algorithm was often criticised for being too sensitive to noises, and
there were developments of iterative approaches. However, it was shown that with a simple
normalisation trick, the modifies 8-point algorithm performs as good or sometimes better than
the iterative methods. The modified 8-point method remains simple and compared to the
iterative approaches, the overhead of normalisation is insignificant [28].

The 8-point algorithm is an uncalibrated method since the intrinsic camera parameter is not
necessary. It suffers from structure degeneracy if the viewed structure is planer [54]. In such cases,
homography and fundamental matrix can be computed and be selected appropriately.

5-point Algorithm

5-point algorithm [40] is an efficient algorithm for the computation of the essential matrix.
Compared to the 8-point algorithm, it is much more complex, but it has an advantage that it
does not suffer from planar degeneracy.

2.3.6 3D-2D Methods

Monocular visual odometry systems suffer from scale ambiguity. For example, relative motion
estimation using the Fundamental or the Essential matrix (2D-2D method) can only estimate the
direction of the translation [27]. This means that between multiple successive motion estimate,
there is no scale consistency. This is not desirable, as a combination of the relative motion
estimates will not be consistent with the actual trajectory.

Instead, it is possible to reduce the scale ambiguity between each frames using 3D-2D methods.
Given a map of 3D points and corresponding 2D points by minimising the reprojection error,
it is possible to compute the pose estimate. Since the map is consistent across multiple pose
estimation, the scaling between these estimates is consistent.

Bootstrapping

A key assumption made in 3D-2D methods is the availability of the 3D map. However, in reality,
such prior information is often not available. One solution to the problem, which is often referred
to as bootstrapping, is to use the 2D-2D methods for initialisation [32, 39] and create the 3D
map through triangulation.

17

Chapter 2. Background Visual Odometry Using an FPSP

Perspective-n-Points

The aim of Perspective-n-Points problem (PnP) is to determine the position and the orientation
of a camera given its intrinsic parameters and n correspondences between the world and image
coordinates. One of the methods EPnP [35] is applicable to both planar and non-planar
configurations given n ≥ 4. It is a non-iterative solution to the PnP problem and has a
complexity of O(n). Compared to the other iterative methods, it is much faster, more stable,
and is only slightly less accurate. While the algorithm supports n ≥ 4 RANSAC is used on a
small subset of correspondences to filter out the outliers in the data-set.

Motion Only Bundle Adjustment

Given a 3D map and its correspondences on a image plane, poses can be estimated by minimising
the reprojection error, which can be formulated as Equation (2.18) [50].

Tc,w = arg min
Tc,w

1
2
∑

i

‖ui − π(Tc,w wpi)‖2 (2.18)

Where the error between the projected 3D point π(Tc,w wpi) and corresponding observed pixel
point ui is minimised. Notice that minimisation only occurs for Tc,w hence, no refinement to
the 3D map is made.

Equation (2.18) is not a linear problem and requires iterative gradient-based methods such as
Gauss-Newton method and the Levenberg-Marquardt method. Usually, the iterative method
requires manual derivation of the Jacobian. However, a library such as Ceres Solver [4] performs
automatic differentiation to obtain the derivatives.

2.3.7 Robust Methods

In many computer vision algorithms, the input data is noisy and can cause the algorithms
to produce an incorrect hypothesis. Thus, it is important to reduce the effects of outlying
data. Robust methods is a way which allows outlying data to have less or no influence on the
hypothesis, allowing viable solutions to be computed from noisy data.

Random Sample Consensus

For algorithms which operate on a subset of the input data (e.g. 8-point algorithm), an approach
for removing outliers is RANdom SAmple Consensus (RANSAC) [21]. It is capable of interpreting
data which contains errors, generating the most sensible output by fitting multiple hypothesises
and choosing one which explains the data best. Outline of the algorithm is summarised in
Algorithm 2.

Robust Optimisation

Non-linear optimisation methods such as motion-only bundle adjustment use all of the available
input data for the optimisation process. Unlike RANSAC, where a subset of the data is found
to generate the most sound hypothesis, it is possible to modify the formulation such that the
optimisation process is robust to outlying data while using all the data.

18

Chapter 2. Background Visual Odometry Using an FPSP

Algorithm 2 RANSAC Algorithm
1: procedure RANSAC
2: best error← inf
3: best hypothesis← ∅
4: while i < number of iterations do
5: sample set← k randomly sampled samples from the dataset
6: Compute hypothesis H from sample set
7: for sample not in sample set do
8: if sample fits the hypothesis H then
9: Insert sample to sample set

10: Compute better hypothesis H ′ from updated sample set
11: error← Mean error of sample set with respect to hypothesis H ′
12: if error < best error then
13: best error← error
14: best hypothesis← H ′

Let the process of minimisation be formulated as Equation (2.19)

min
∑

i

r2
i (2.19)

Where ri is the residual. In an ideal world with the absence of noisy data, the process of
minimising the residuals gives a reasonable estimate of the optimised parameter. However,
in cases where there exists some outlying data, which is very common in computer vision
tasks, outlying data influences the minimisation. Thus, the estimate is distorted [60]. Robust
optimisation is a means to avoid such influences, in particular M-estimators replaces squared
residuals r2

i with an other function ρ hence formulation is replace with Equation (2.20)

min
∑

i

ρ(ri) (2.20)

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

3

4

5

6

Huber

Tukey

Figure 2.7: Huber and Tukey ρ.
k = 1.345 and c = 4.685

M-estimators which are commonly used in visual odometry is
Huber M-estimator and Tukey M-estimator.

Huber(x) =
{

x2

2 if |x| ≤ k
k(|x| − k

2) otherwise
(2.21)

Tukey(x) =

c2

6

(
1−

[
1− (x/c)2

]3)
if|x| ≤ c

c2

6 otherwise
(2.22)

As shown in Figure 2.7 Tukey M-estimator more aggressively ignores the influence of outliers, by
giving equal weights after a threshold. Similarly, Huber M-estimator does not assign quadratically
increasing weights to outliers, making them both less susceptible to the outliers.

2.4 Related Works

The following section provides an overview of different monocular visual odometry and visual
SLAM systems which operates on standard frame-based cameras, event cameras, and FPSP
devices.

19

Chapter 2. Background Visual Odometry Using an FPSP

2.4.1 Visual Odometry/SLAM on a Frame-based Camera

Parallel Tracking and Mapping (PTAM) [32] is a frame-based SLAM system which operates
effectively on a small scale. It requires no prior information about the surrounding and user
interaction is only required for initialisation. Being a sparse system, they extract FAST corners
and uses local patch around the features for matching. Since the FAST corners are scale
variant, these are extracted at different image pyramids. Two threads are utilised to track and
map simultaneously, which allows adjustment to occur over multiple keyframes. It operates
in real-time for small scenes. However, as the system explores and visits more scenes, the
map maintained becomes larger. Increase in the map size prevents global bundle adjustment
from keeping up with the exploration, and the camera must remain stationary or return to a
well-mapped area to proceed.

ORB-SLAM [39] is another frame-based SLAM-system, which extends on the ideas from PTAM.
The operation of the system is not limited to a small scale, allowing real-time operation in large
environments. Use of the ORB features [47] for tracking, mapping, re-localisation and loop-
closing, makes the system efficient, reliable and straightforward. Unlike the initialisation process
of PTAM, ORM-SLAM requires no user input, as it uses automatic and robust initialisation
procedure based on model selection. The computational overhead which PTAM suffered from
is reduced by the use of a co-visibility graph. Co-visibility graph creates an edge between the
keyframes when the keyframes observe similar features. This allows the bundle adjustment to
occur on a local scale, reducing its complexity. Furthermore, if the system notices that it is
visiting the same scene, it can perform loop closure. Using essential graph, which is a spanning
tree of the co-visibility graph, bundle adjustment is used to optimise the poses. Experiments
show that pose graph optimisation over the essential graph is so effective such that the use of
full bundle adjustment barely improves the performance.

Both PTAM and ORB-SLAM are feature-based methods since they extract features and use
them for tracking. Semi-direct Visual Odometry (SVO) [22] is a semi-direct approach, were
both image intensity and features are used for pose estimation. SVO extract features only for
the keyframes and performs rough motion estimate using minimisation of photometric error of
hundreds of small patches. Using the motion estimate, a correspondence between the 3D map
and the current frame is established, which allows the point feature-based motion estimation to
further refine the results. This method allows sub-pixel feature correspondence, and reduce the
computational overhead by extracting features only on the keyframes. Furthermore, SVO uses
Bayesian filter which explicitly models outlier measurements to estimate the depth of a feature,
rather than using triangulation like in PTAM and ORM-SLAM. While the Bayesian filter is
more computationally expensive, it contributes towards reducing the number of outliers in the
3D map.

2.4.2 Visual Odometry on an Event-based Camera

Most computer vision algorithms operate on frames of the video, which is effective as sensors
can capture a scene at high resolution since the pixels of the imager is simple. However, the
frame-based architecture transfers redundant information, as pixels are sampled repetitively
even if their values are unchanged. The event-driven dynamic vision sensors (DVS) tackles this
problem by reducing the data transfer by asynchronously reporting the log intensity changes. The
pixels do not report values if there are no significant intensity changes, allowing sub-millisecond
latency, which makes the sensor appealing for short latency vision problems [36].

While DVSs is an interesting approach for low latency vision sensor, it disregards absolute
intensity information, which is used in tasks such as object recognition. Dynamic and Active

20

Chapter 2. Background Visual Odometry Using an FPSP

pixel vision sensor (DAVIS) approaches this problem by allowing the simultaneous output of
asynchronous events and synchronous frames [10].

Use of the DVS in visual odometry is an active field of research. Kim et al. demonstrated that
through the use of multiple probabilistic filters, not only 6DoF tracking but a real-time 3D
reconstruction of the scene is possible [31]. This approach, however, requires hardware accelerator
such as GPU to operate in real-time. EVO creates semi-dense 3D map and operates on standard
CPU in real-time [44]. The method works accurately under very challenging scenarios such as
aggressive motion and abrupt changes of illumination.

Combination of the DVS and other sensory information has been explored. Ultimate SLAM
fuses the data from DVS with data from a frame-based camera and inertial sensor, providing
pose estimation which is robust to fast motion and difficult lighting situations [56]. It is
computationally efficient and was integrated onto a computationally-constraint quadrotor.

Kueng et al. presents the first work on event-based visual odometry with the DAVIS [33]. It ex-
tracts features from the synchronous frame, and perform feature tracking using the asynchronous
events, using the Iterative Closest Point (ICP) algorithm. The tracked features are using for
visual odometry using a modified pipeline of SVO.

The DVS/DAVIS and FPSP devices concepts are similar, in a sense that they both perform
data reduction on the camera itself to reduce the bandwidth. However, the DVS/DAVIS often
produces more redundant information, as it lacks the capability to perform computation on the
vision chip itself. For example, FPSP device can output the coordinates of FAST-corner [14]
directly, whereas, for DVS, a computation to reduce the event stream to corner event stream must
be implemented [38]. However, in the case where there is no motion in the scene, DVS/DAVIS
would produce no events, whereas an FPSP device would continuously report data.

2.4.3 Visual Odometry on an FPSP Device

Visual odometry on the FPSP devices is at its early stage of research, and there are many open
problems to be solved. The current state of art visual odometry on the FPSP devices achieves
4DoF, making them suitable for agents which are mechanically restricted to move into one
direction.

Debrunner et al. uses direct methods to estimate the position of the camera [18], achieving a
system which is capable of operating at 400-500Hz.

The 2DoF motion estimate is computed using a gradient-based algorithm, where the previous
frame and current frame is shifted in x, y direction until the sum of absolute difference is
minimised. This corresponds to the translation in x, y axes, assuming that the motion is
constrained in these two axes. Alternatively, it is possible to compute the yaw and pitch of the
camera instead.

This idea is extended to 4DoF, namely yaw, pitch, roll, and translation in the z-axis. The
camera image is partitioned into 16 titles, where on each of the tile, the relative motion vector is
computed. These are combined to form

m =
[
u1 v1 u2 v2 · · · u16 v16

]T

The vector m can be re-written as the linear combinations of normalised base vector fields. Let
{byaw, bpitch, broll, bz} (Figure 2.8) be the vector of same form as m. Then the model can be

21

Chapter 2. Background Visual Odometry Using an FPSP

Figure 2.8: The illustration of the base vector fields [18]. The inter-frame motion can be
represented with linear combinations of these vectors.

.

Figure 2.9: Illustration of the rotation through consecutive shearing [8].

written as
m− (α · byaw + β · bpitch + γ · broll + δ · bz) = ε

Where ε is the error in the estimate. The parameters can be recovered using Ordinary Least
Squares (OLS) under the assumption that the error follows Gaussian distribution.

Let B =
[

byaw bpitch broll bz

]
. Then using OLS and that B is orthonormal,

[
α β γ δ

]T
=
(
BTB

)−1
B>m = B>m

Furthermore, RANSAC is used to eliminate the outliers which is present in the data, making
the system more robust.

Bose et al. proposed a feature-based approach, where camera ego-motion in 4DoF is estimated
by conducting image alignment between two consecutive frames using image transformations.
From the transformations applied to the images, it is possible to compute the camera orientation
and the transformation [8]. Similar to the above method, all of the computation is performed
on the Scamp5 device. The images are converted to edges through binary edge detection. The
binary representation is suited for the Scamp5 architecture since it only occupies a single digital
register on each of the PEs.

Due to the nature of the Scamp5 architecture, the image transformations are not simple compared
to methodologies used commonly. The image scaling is performed by duplicating or deleting
rows and columns, depending on whether the operation is up-scaling or down-scaling. Rotation
is represented by a sequence of three shear transformations [8, 17] (Figure 2.9). The image
alignment is performed iteratively, where at each step, a number of potential transformation are
applied and tested, evaluating whether it improves the alignment.

Since all of the operations occur on the Scamp5, this method is capable of operating at frame-rates
above 1000Hz (ranging between 1000 to 1500Hz), although sufficient lighting is required.

22

Chapter 2. Background Visual Odometry Using an FPSP

2.5 Summary

In this chapter, we have covered the overview of the FPSP device and monocular visual odometry
and surveyed the existing approaches. We notice that frame-based camera and even DVS/DAVIS
transfers redundant information. Furthermore, the field of visual odometry using an FPSP device
is not fully explored, and to best of our knowledge, no 6DoF tracking has been implemented.
To work towards the 6DoF tracking, we first visit feature detection and tracking, which is an
essential part of feature-based visual odometry.

23

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

Chapter 3

Feature Detection and Tracking

In this chapter, we present improvements to the existing feature detection algorithm for an FPSP
device, and our feature tracker, which is capable of tracking the detected features. We will first
discuss the limitations in the communications between an FPSP device and a host device, and
how we can reduce their impact. In the following sections, we will propose the different methods
to improve the feature extraction on the FPSP device, and finally, discuss the implementation
details of our feature tracker.

3.1 Communication with the Scamp5d Device

Focal-plane Sensor-
processor Vision Chip Micro-controller Host Device (e.g.

Laptop/Desktop)

Figure 3.1: Illustration of the communication channels between the devices.

This section introduces the development environment available for communications between
an FPSP device and a host device, exploring different limitations which are present in the
system. The communication occurs between an FPSP vision chip and a micro-controller, a
micro-controller and a host device as illustrated in Figure 3.1. Understanding of the limitations
allows informed decisions to be made when offloading the computationally heavy processing
from an FPSP device to a host device. Furthermore, we will discuss the implementation of the
wrapper class for the API provided, which enables us to register stateful functions.

3.1.1 Motivation

The majority of the previous works [8, 18] on using the FPSP device was implemented solely on
the device itself. This removes the necessity to transfer the data to the host device, however, as
the computational power on an FPSP device is limited, executing computationally expensive
algorithms was not possible.

Instead, an alternative approach is to transfer the data to a more capable host device. Not only
the computational benefits, but this allows many libraries to be used with ease as one does not

24

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

need to cross-compile for the architecture of the micro-controller.

By evaluating the limitation of the communications between an FPSP device and a host device,
we can uncover the additional constraints which we should be aware of.

3.1.2 Settings

Implementation of the Application Programming Interface (API) for the communications between
an FPSP device and a host device (scamp5d interface) was originally developed by Manchester
University [1]. As the API was designed for Linux systems only, we have applied some modification
such that it works for both Linux system and OS-X. Furthermore, we have changed the build
system to use CMake instead of Code::Block build system for ease of use.

For all the experiments, measurements are taken on MacBook Pro (Retina, 13-inch, Early 2015)
3.1 GHz Intel Core i7 16GB RAM, unless otherwise stated.

The frame-rate of the FPSP device is controlled through vs wait frame trigger(). We set
the mode of the frame trigger to be VS FRAME TRIGGER PERIODIC using vs frame trigger -
set().

3.1.3 Communication Methods

Scamp5d Vision System [1] provides multiple means of communications between an FPSP and a
host device. It is capable of transferring different data-types such as analog or digital register
values. For example, scamp5 output events() on an FPSP device would scan a digital register
and send over coordinates of ‘1’s. On the host device, one can register a function to respond
to such data, which is executed upon arrival of the data. The data can be parsed and be
used for further processing. For each of the different data-types, user can register an arbitrary
function.

One important factor to be considered is that scamp5d interface provides on receive packet
and on free packet and latter option transfers the ownership of the data to the user-defined
function, thus the memory allocated for the packet must be freed implicitly.

From a host device, it is also possible to transfer data to an FPSP device. This is particularly
useful for tasks such as parameter tuning since reprogramming of the FPSP device can be avoided.
One method of doing this is to set the slider values of the FPSP device using post message(VS -
MSG ROUTE M0, VS MSG GUI UPDATE, VS GUI USER ITEM <i>, <value>). Since the FPSP de-
vice continuously executes the main loop whilst the power is supplied, the values of the sliders
must be read inside the loop.

3.1.4 Limitations and Optimisation of the Communication

The frame-rate of an FPSP device is limited by multiple factors. The main factor is the amount
of data which is transferred from an FPSP device to the micro-controller and vice-versa. This is
due to the increased amount of data which goes through ADC. Another factor is the number of
instructions per frame. However, this is less significant compared to increasing the amount of
data transfer.

In a case where one is developing on an FPSP device without any need for a host device, the
amount of data transfer and the number of instructions per frame are the two main factors to

25

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

0 2000 4000 6000 8000 10000

Frame Number

1500

2000

2500

3000

3500
P

ro
ce

ss
in

g
T

im
e

(m
ic

ro
se

co
nd

s)

0

20

40

60

80

100

120

140

160

N
um

b
er

of
F

ea
tu

re
s

E
xt

ra
ct

ed

Figure 3.2: Number of features captured at 500FPS with added random delay in the host
applications registered function.

0 2000 4000 6000 8000 10000

Frame Number

2500

5000

7500

10000

12500

15000

17500

20000

P
ro

ce
ss

in
g

T
im

e
(m

ic
ro

se
co

nd
s)

0

100

200

300

400

500

600

N
um

b
er

of
F

ea
tu

re
s

E
xt

ra
ct

ed

Figure 3.3: Number of features captured at 60FPS with added random delay in the host
applications registered function.

26

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

be considered in terms of performance. However, when the development requires a host device,
one must pay attention to the additional overheads.

When an FPSP device transfer data to a host device, a registered function is invoked on the host,
and the FPSP device waits for the invoked function to complete. This means that if the function
takes longer to complete than the frame-rate set on the FPSP device, the device busy-waits for
the completion. The additional delay results in the FPSP device experiencing different exposure
times for each frame. To summarise, the FPSP device would experience different exposure if the
following conditions are met.

1. Time for completion of a registered function on the host device exceeds the frame-rate set
on the FPSP device.

2. Time for completion of a registered function varies across iterations.

To evaluate the effect of different exposure time for the feature detection, we have run a feature
extraction algorithm on an FPSP device and sent the data over to a host device. On the host
device, we artificially added some random delays to our registered function, such that the FPSP
device experiences different exposure times.

In a case where the FPSP device is operating at a high frame-rate, as shown in Figure 3.2
addition of the delay increases the number of features detected. This is expected as at 500FPS,
there is insufficient exposure, and additional exposure illuminates the image better, making the
features more distinct.

On the other hand, when the FPSP device is operating at a low frame-rate, as shown in Figure 3.3,
the number of features detected decreases with the delay. This is caused by over-exposure, where
the image is too bright, and the textures are washed away.

For our purpose, having differing exposure time effects the repeatability of feature detection.
Unreliable feature detection makes the implementation of the feature tracking more challenging,
hence it is in our favour to reduce this effect. To reduce the noise, we dedicate a thread for
receiving data from the FPSP device, where minimal processing is performed to capture the
incoming data. Minimising the time spent in the registered function reduces the variance in the
time it takes to complete, allowing our feature extraction to be more repeatable, thus, more
reliable.

3.1.5 Improvements to the Communication API

The API provided allows the user to register functions for different data-types. This establishes
the communication methods between the Scamp5d device and the host device.

In many cases, different applications require a different set of functions to be registered for
communication. For example, visual odometry and calibration would handle the incoming data
differently. Due to the implementation of the API, to achieve registrations of a different set of
functions, the code must be duplicated. Thus, we implemented a wrapper class for the API,
which allows the user to register different functions by registering lambda functions. The wrapper
class allows the setup of the communication to be encapsulated in the wrapper class, reducing
duplication.

One problem with the approach is that the lambda functions must not contain references, as it
would result in dangling references. This forces the lambda functions to be stateless, which is not
always desirable. To counter this limitation, we allow the wrapper class to be initialised with a
state object, which is passed down to the registered lambda functions. This avoids the dangling
reference problem while allowing the registered function to have states. We have effectively used

27

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

Figure 3.4: Visualisation of features extracted using a frame-based camera (green) and an FPSP
(blue)

the templating feature of C++ such that the type of the state object is not restricted. This allows
one to simply create an arbitrary object and use them freely in the registered functions.

3.1.6 Summary of the Communication with the Scamp5d Device

We have summarised the characteristic of the device, mainly the communications which occur
between the FPSP device and the host device. We have identified a potential limitation in the
communication API. The more in-depth understanding of the device has allowed us to make a
decision such as dedicating a thread for communication purpose only, which aids the algorithms
which operate on the FPSP device to be more stable. Furthermore, we have implemented a
wrapper class for the communication API, which simplifies the interface with the Scamp5d
device.

3.2 Improved Feature Detection on an FPSP Device

This section details the refinements applied to the existing FAST corner detection implemented
for the FPSP device [14]. We examine the current implementation and compare step by step
how our proposed solution improves the quality of the features extracted.

3.2.1 Motivation

As visualised in Figure 3.4 an FPSP device can extract features at a much higher frequency
when compared to a standard frame-based camera. The fast feature extraction allows different
computer vision algorithms to take advantages of the small inter-frame motions. While there is
an implementation of the FAST corner detection on the FPSP device, we have noticed that it is
too sensitive to the features which are hard to track. For accurate feature tracking, suppression
of poor quality features is necessary.

3.2.2 Prior Works

One of the challenges in implementing the FAST corner detection on the FPSP device is
maintaining the count. Ability to count is required, such that the number of contiguous pixels
which has passed the intensity comparison check can be tracked. This is made difficult by the
limitations of the FPSPs instruction sets and the analog register, which is too noisy for the
purpose. As a solution, Chen et al. has proposed the use of a ring counter. While it is simple

28

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

(a) Implementation by Chen et al.. There are
many edges as classified wrongly as a corner,
which makes the task of tracking more difficult.

(b) Our proposed method misclassifies almost
no edges.

Figure 3.5: Comparison of FAST-feature extraction on FPSP device before and after the proposed
refinements. The two methods are tested with the same configuration parameters (200 FPS with
55 as threshold).

and effective, it uses up 8 out of 13 available digital registers just for the counters, which leaves
very few, if any digital registers for long term storage.

Furthermore, unlike the standard implementation of the FAST corner detection [46], the
comparison function is slightly modified.

Sp→x =

darker, Ip→x ≤ Ip − t
similar, Ip − t < Ip→x < Ip + t
brighter, Ip + t ≤ Ip→x

(3.1)

Sp→x =
{

similar, |Ip→x − Ip| ≤ t
different, |Ip→x − Ip| < t

(3.2)

Equation (3.1) shows how the states are assigned to the pixels in a ring in the standard
implementation of FAST corner detection. Equation (3.2) is the formulation implemented for
the FPSP device. While the modification speeds up the computation, it makes the detector
highly sensitive to edges, especially when the edges are at an angle. The comparison function
causes the increase in the sensitivity, as it does not distinguish between the darker and brighter
states. The interleaving of the states allows the features to be detected along edges, as visualised
in Figure 3.5.

An erosion process, which reduces the number of features detected around a single visual corner,
is implemented. However, the process is based on binary comparisons of the features extracted,
and hence, the selection process of the features is arbitrary, as when the device is slightly moved,
it will select a different feature out of the blob of features.

3.2.3 Comparison Function

As shown in Figure 3.5a, Equation (3.2) suffers from being overly sensitive to the edges. Instead,
we follow the Equation (3.1) by performing two-pass feature extraction. The first pass checks

29

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

B

D

B

B

B B B

BBD

B

B

B

B

B B B

BBD

B

D

(a) Comparison function Equation (3.2). As the
comparison does not distinguish brighter and
darker state, the point tested will be wrongly
marked as a corner

B

D

B

B

B B B

BBD

B

B

B

B

B B B

BBD

B

D

(b) Comparison function Equation (3.1). Since
there is no 9 continuous block of same state in
the ring, the point tested will correctly not be
classified as a corner.

Figure 3.6: Demonstration of increase in sensitivity of feature detection around an edge. The
pixel tested is marked with a blue border and brighter/darker state of the ring is indicated as
B/D respectively. The border colour of the pixels in the ring illustrates the continuity of the
ring.

for the contiguous darker states, and the second pass check for the contiguous brighter states.
This reduces the sensitivity against the edges as illustrated in Figure 3.6, as it does not allow
interleaved brighter/darker states to count towards the contiguous pixels.

3.2.4 Binary Counter

While using a ring counter is simple yet effective, with limited resources available on the
FPSP device, it is important to be conservative with the number of registers being used. The
availability of the extra registers allows the implementation of the two-pass comparison function,
as additional registers are used to store the result from the preceding pass.

In the FAST-corner algorithm, a pixel is marked as a feature if N -contiguous pixels have the
same state. Typically N is set to 9 or 12. This motivates us to use only 4 digital registers since a
4-bit counter can count up to 15. Using the logical operations available on the FPSP device, it is
possible to create a general purpose counter, as shown in Algorithm 3. Extending the number of
bits for the counter is trivial, and it could be useful if an application requires long term storage
of a large value.

Note as documented in [1], NIMP(A, B) is ¬(B =⇒ A) not ¬(A =⇒ B).

3.2.5 Edge Detection

The corners extracted using FAST corner detector is further refined through use of edge
detector [6]. Adding a feature detector can be computationally expensive for CPU based
implementation. However, for the FPSP devices, by the nature of SIMD-based systems, it only
adds a little overhead.

The intuition behind combining the edge detection is that, often, the corner points are generated
when two or more edges intersect. Thus, by combining this information with the FAST corner
detector, it is possible to reduce the number of false positives, where a noisy pixel is classified as

30

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

Algorithm 3 4-bit binary counter. Can increment or reset the counter.
1: procedure Binary Counter
2: if RESET then
3: FLAG← 0
4: else
5: FLAG← 1
6: if FLAG = 0 then
7: R1, R2, R3, R4← 0
8: R7← FLAG
9: R6← XOR(R4, R7)

10: R4← R6
11: R6← NIMP(R4, R7)
12: R7← R6
13: Similarly update R3, R2, R1 by repeating line 9-12

a corner. This can be seen in Figure 3.8. We have used an existing implementation of the edge
detector, which is available for Scamp5d devices [1].

3.2.6 Two Ring Detector

4 MUEGGLER ET AL: FAST EVENT-BASED CORNER DETECTION

(a) Events over the last 33 ms. Pos-
itive events (white) and negative
events (black)

(b) Surface of Active Events (SAE).
Brightness represents time, from
past (dark) to present (bright)

(c) Intensity Image (absolute
brightness I(x,y) in (1))

Figure 2: Signal used for corner detection: the Surface of Active Events (SAE).

(a) Circles of radius 3 and 4 pixels (b) Visualization of Surface of Active Events (SAE)

Figure 3: Proposed Method. We compare the timestamps of the latest event of the pixels on
two circles (red and blue) around the current event (in black). (a): The inner (red) and outer
(blue) circle around the current event (black). (b): Visualization of the Surface of Active
Events (SAE) around the current event (black) and of the circles used for the timestamp
comparison. In this example, the event under consideration (center pixel) is classified as
corner.

event cameras. First, we do not need to iterate over all pixels, but only check the current
event using its local neighborhood. This check is performed asynchronously at the moment
the event arrives. Second, the pixel values represent timestamps instead of intensity values
and since the current event is considered the center pixel of the local neighborhood it always
has the highest timestamp on the SAE. Therefore, comparisons of the pixels on the circle to
the center one (as in FAST) are non-informative, and a different spatial comparison pattern
(between pixels on the circle only) is required.

Our method analyzes the distribution of timestamps around the current event to decide
on the presence of a corner. A moving corner will create, locally, a pixel map of timestamps
such as that in Fig. 3(b), with two clearly separated regions (recent vs. old events, i.e., high
vs. low values). Hence, we detect corners by searching for contiguous pixels with higher
timestamps than the rest. We use circular segments for isotropic response and for efficiency
(checking fewer pixels than the whole neighborhood). In contrast to existing methods [17],
we completely avoid the computation of derivatives, which are expensive and amplify noise.

More specifically, we define a patch (local spatial neighborhood) of the SAE around the
current event. In this patch, we focus on the pixels on two centered, concentric circles of

Figure 3.7: Two ring of ra-
dius 3, 4 is used to test
whether pixel selected is a fea-
ture.

We use two-ring FAST corner detector to filter the features,
as illustrated in Figure 3.7. The outer-ring, while it does
not provide a good localisation, it is reliable as it is less
sensitive to the sensor noise. On the other hand, the inner
ring, while it is sensitive to the sensor noise, it provides
a good localisation [38]. Through the combination of the
two feature extractors, we can find features which are both
well localised and is reliable.
This process reduces the features extracted per visual
corner, as shown in Figure 3.9. We have used N = 9 for
the inner ring and N = 12 for the outer ring, both of
which is countable on our 4-bit counter.

3.2.7 Non-maximal Suppression

Whilst applying the above refinements improves the quality of the extracted features, multiple
features are often extracted per visual corners. The multiple features extracted for a visual
corner gives very little if any information and makes task such as tracking more difficult, as
they all contain similar local information. Thus, they are often reduced into one feature using
different strategies.

To improve the repeatability of the feature extraction, the choice of strategy is essential. Similar
to the FAST corner detector [46], we have implemented a non-maximal suppression with 3× 3
mask. Compared to the erosion process of the prior work, non-maximal suppression uses the
analog information, which allows an informed decision to be made about the selection of features
as shown in Figure 3.10

For the non-maximal suppression, the score for each feature must be defined. We define the

31

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

(a) Without edge filter. The noise in the
image is classified as feature.

(b) With edge filter. The noisy features
are removed.

Figure 3.8: Comparison of with and without edge filter.

(a) Without two ring test. Multiple fea-
tures are found near the sharp corner of
circular sector.

(b) With two ring test. There is reduced
amount features per visual corner.

Figure 3.9: Comparison of with and without two ring method.

score function to be
V (p) =

∑
x∈Xp

|Ix − Ip| (3.3)

Where p is the pixel which the score is computed for and Xp is the pixels which belongs to the
inner ring. We chose to use the inner ring, as the value range on the analog register is limited.
This score function allows the computation to happen along-side inner-ring check.

3.2.8 Summary of the Improved Feature Detection on an FPSP Device

We have improved upon the existing feature detection algorithm implemented for an FPSP
device. Due to the addition of additional instructions, the frame-rate of feature extraction has
reduced from 2300FPS to 600FPS, however, for most practical applications 600FPS is sufficiently
fast. The improvements which we have made allow the features which are located close to a

32

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

(a) Erosion process implemented by binary
comparison only. Colour of the pixel rep-
resents score value and darker pixels have
higher score. Binary comparison based
erosion ignores this information and may
remove feature with highest score.

(b) Erosion using non-maximal suppres-
sion. The score function is used to erode
away detected features with low score.

Figure 3.10: Comparison of binary-based and analog-based erosion methods

Algorithm 4 Improved feature detector for an FPSP device.
1: procedure Feature Detector
2: For a pixel p, compute Score using Equation (3.3)
3: InnerRingBrighter← Has 9 contiguous Brighter state in the inner ring
4: InnerRingDarker← Has 9 contiguous Darker state in the inner ring
5: InnerRing← InnerRingBrighter ∨ InnerRingDarker
6: OuterRingBrighter← Has 12 contiguous Brighter state in the outer ring
7: OuterRingDarker← Has 12 contiguous Darker state in the outer ring
8: OuterRing← OuterRingBrighter ∨OuterRingDarker
9: IsEdge← p lies on an edge detect by binary edge filter

10: MaybeFeature← InnerRing ∧OuterRing ∧ IsEdge
11: for NeighbourScore ∈ NeighbouringFeaturesScore do
12: if Score < NeighbourScore then
13: MaybeFeature← False

14: IsFeature← MaybeFeature

visual corner to be extracted, which makes the later algorithms, which uses the feature extracted
to operate more reliably. We summarise the outline of the algorithm in Algorithm 4.

One of the limitations of our feature detector is the illumination in the scene. With a high
frame-rate, the scene must be well-lit such that the image contains distinct textures. To reduce
the influence of the illumination, several methods such as increasing the frame-gain or extracting
features from a gradient image was attempted. However, these methods amplified noise, reducing
the reliability of our feature extractor. This limitation, unfortunately, limits the usability of our
feature extractor. For high frame-rate feature extraction (e.g. 600FPS), a sunlit environment or
indoor environment with lighting equipment is required. However, for lower frame-rates, such as
150-200FPS, given the lights in the room is turned on, it provides sufficient illumination for the
feature extraction.

3.3 Feature Tracking

This section presents a method for tracking features detected on the FPSP device. First, we
evaluate the noise present in our feature extraction method and introduce a probabilistic filter
to reduce the influence of noise.

33

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

3.3.1 Motivation

Feature tracking associates correspondence to the extracted features, which allows many computer
vision algorithms to combine information from multiple images. For instance, one can use such
information to perform tasks such as image stitching [52]. While the field of feature tracking is
well studied, most of the algorithms are designed for the frame-based camera. Such algorithms
inherently suffer motion blur caused by the rapid motion.

To reduce the effect of motion blurs, the use of event camera has been explored. However, the
methods suffer from severe limitations, for example, lack of ability to track features when there
is motion along the optical axis [23], or real-time computation is not possible [61].

Compared to the event camera, the FPSP device transfers significantly less information, as it
allows the computation to occur on the focal-plane. This reduces the computational burden for
the host device, making the FPSP device promising solution for high frame-rate feature tracking,
which does not impose restrictions on the motion and achieves real-time performance.

3.3.2 Noise

Due to the nature of FPSP device, there is a substantial amount of noise present in the system.
This affects our feature detector negatively, as it results in noisy readings.

To understand how much our feature detector is affected by the presence of noise, we have carried
out the following experiment. For each of the different parameters tested, we have executed our
feature detector over 10,000 frames, in a well-lit environment with highly textured objects. The
FPSP device was mounted onto a tripod, such that it is securely positioned. For each of the
frames, we compared the features which were extracted in the previous frame to the current
frame and computed the percentage of the features missing using

1− |Ft ∩ Ft−1|
|Ft|

(3.4)

Where Ft is set of features extracted at frame t. To compute the intersection of the features,
we create a correspondence if the Manhattan distance between the two features is smaller than
2.

As shown in Figure 3.11, we observe that under different setting, the average probability of
features missing does not vary largely. The average probability of features missing across all the
run is 0.0483, which is large as after 100 frames, the chance of a feature being observed for all of
the frames is below 0.01. This motivates us to develop a model which is strong against features
not being observed between consecutive frames.

3.3.3 Problem Formulation

Unlike in a standard frame-based camera where pixel intensity for each pixel is transferred, our
system receives only the position of features. Hence, methods such as Lucas-Kanade are not
applicable here. In an ideal scenario with no noise, as proposed by Chen et al. it is possible to
perform closest neighbour search for feature matching. However, in a realistic situation with
noise, features can be missing in consecutive frames leading to wrong correspondences.

Instead, we view the problem of feature matching from a probabilistic angle. For simplicity,
we will model the problem as tracking of one feature x given observation of multiple features.
However, the reasoning is easy to extend to the tracking of multiple features.

34

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

60FPS fg1 60FPS fg2 100FPS fg1 100FPS fg2 300FPS fg2 400FPS fg2

0

2

4

6

8

10

12

14

16

P
er

ce
nt

ag
e

of
fe

at
ur

e
m

is
si

ng

Figure 3.11: The average percentages of features missing between consecutive frames. The error
bar represents standard deviation. The mean percentage across all the runs were 4.83%, as
shown with a red dotted line. The only configurable parameters adjusted between the runs were
frame-rate (FPS) and frame-gain (fg).

Let set of observations be Dk = {y1, . . . , yk}, where yk represents observed features at time k.
Given such information, most plausible estimate of location of xk is obtained through solving
Equation (3.5).

xk = arg max p(xk | xk−1, Dk) (3.5)

Using a model for state transition x̃k = f(xk−1), initial prediction of xk can be obtained from
the previous state xk−1. Using this as the initial guess, prediction of xk is refined by solving
Equation (3.5), which now can be formulated as Equation (3.7) using Bayes’ Rule.

p(xk | Dk) ∝ p(yk | x̃k)p(x̃k | Dk−1) (3.6)
xk = arg max p(yk | x̃k)p(x̃k | Dk−1) (3.7)

3.3.4 Particle Filter

A particle filter is a simple method for nonlinear state estimation [24]. The distribution of the
state is modelled using particles, and increasing the number of particles improves the estimation
at the cost of computational time.

Use of a particle filter allows estimation of a solution to the Equation (3.5). For each of the
features, there are N random samples {xk(1), . . . , xk(N)} drawn from a probability density
function p(xk−1 | Dk−1). Each of these samples are weighted equally with wi = 1/N .

A particle filter performs state estimation using two steps, Prediction and Update. In the
Prediction step, state transition model is applied to each of the particles. x̃k(i) = f(xk−1(i)).
The state transition model may incorporate if any, known information such as system inputs to
model motions of the particles.

35

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

In the Update step, measurements yk are used to compute p(yk | xk). Using the Equation (3.7)
posterior for each of the particles can be computed as wi = wi · p(yk | xk(i)). Resampling is
performed N times, where each particle i have wi/

∑N
j=1wj chance of being picked. This allows

the distribution of the particles to approximately follow p(xk | Dk).

The estimated state can be obtained either by averaging of the multiple estimates or by picking
a mode of the particles.

A particle filter is effective for our application since the high-frequency observation of the features
means that the displacement of each feature is small between the consecutive frames. This
means that the space of probability density function p(xk | Dk) modelled is small and with little
number particles, we can sufficiently express them

3.3.5 Implementation Details

Our feature tracker is based on the ideas from the particle filter, with modifications to handle
the corner cases more effectively.

A zero-mean Gaussian is assumed for the state transition model of the features. From the high
frame-rate nature of the FPSP devices, it is a valid assumption that the inter-frame motion of
the observed features are small and is approximately zero.

In the update phases where the computation of p(yk | xk) occurs, a local space around each of
the particles is searched to find the shortest distance d from a particle to an observation. We
model the distribution of p(yk | xk) with Equation (3.8), which is a zero-mean Gaussian with
added K to prevent good particles from all dying when there is bad observation [53].

p(yk | xk(i)) = exp
(
−d2

2σ2

)
+K (3.8)

Where σ2 = 1.0 and K = 0.01 in our implementation.

Use of a particle filter based approach for feature tracking has downsides too. For example, if a
wrong correspondence is made, the particles would favour them during the resampling stage.
Once a wrong correspondence is established, it is difficult to remove them. Furthermore, when
a feature goes out of the visible range of the device, the feature should no longer be tracked.
The features could be missing for multiple reasons. (a) The movements of the device could have
resulted in the feature leaving the field of view, (b) Other objects could occlude the feature.

(a) is simple to address, as one can stop tracking features which are close to the edges of the
image plane. However, in a case where the feature is close to an edge but never leaves the image
plane, it is undesirable that this feature is no longer tracked. (b) is harder to handle, as it could
occur anywhere on the image plane.

To handle these problems, we use simple heuristics and measure the variance of the particles.
We call this step pruning phase, where a feature is marked as lost if its particles variance exceeds
a certain threshold.

The likelihood of wrong correspondence being established increases when a feature is not observed
for multiple successive frames. This is due to the wider spread of the particles, which increases
the chance of the particles reaching a wrong feature. Thus, removing the feature if its particles
variance exceeds a threshold reduces the number of wrong correspondences. Furthermore, when
a feature is no longer observable, whether it is caused by the feature leaving the field of view of
the camera, or other objects occlude it, the features particles variance will increase. Hence, the

36

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

Figure 3.12: Snapshots of feature tracking in a dynamic scene. The consistent colours of the
features indicate successful tracking. The images are transferred from the FPSP device for
visualisation purpose only.

pruning phase prevents the feature tracker from attempting to track features which are out of
view.

Consideration of other alternative approaches, such as to count the number of consecutive times
that a feature is not observed was considered. However, the definition of observation of a feature
is ambiguous, especially when the feature trackers non-maximal suppression occurs at a small
scale. Under an assumption that the features are distributed uniformly, when a feature makes
a wrong correspondence, it would likely make correspondences with multiple features. The
approach of counting the number of consecutive times that a feature is not observed would fail
to detect this wrong correspondence. On the contrary, the variance increases in a multi-modal
distribution, allowing the pruning phase to identify the wrong correspondence.

3.3.6 Summary of the Feature Tracking

We have implemented a probabilistic feature tracker, which operates on noisy data produced by
the FPSP device. Efforts were made to reduce the numbers of wrong correspondences, however, if
one is made, our feature tracker struggles to identify them. This is due to the lack of information
which we obtain from the FPSP device. Given more information, we might be able to detect
such errors. For example, by computing the sparse optical flow or the base vector fields [18],
and assuming that the nearby features move in a similar motion, we can filter out the wrong
correspondences which do not coincide with the flow.

Through the use of a particle filter, we have not imposed any restrictions on the motion of the
features. This allows features to be tracked in a dynamic scene, as demonstrated in Figure 3.12,
where the calendar and the checkerboard undergoes a different motion. Support for dynamic
scenes opens up a wide range of possibilities for the feature-tracker since a typical scene in our
daily life contains many dynamic motions.

3.4 Summary

Overall, we have analysed the communication between the FPSP device and the host device and
implemented a feature detector and tracker for the device. The analysis of the communication
under-covered some of its limitations and the need for a dedicated thread for communication
purpose. Our feature detector extends on the existing implementation of FAST corner detector

37

Chapter 3. Feature Detection and Tracking Visual Odometry Using an FPSP

through the ensembling of techniques and heuristics from many works of literature, showing
significant improvements in the result. Finally, for the feature tracker which operates on noisy
features from the FPSP device, we are not aware of any other successful attempt. We have
utilised the high frame-rate nature of the FPSP device, which allows feature tracking to occur at
600FPS in real-time. Furthermore, the underlying particle filter does not restrict the motion of
the scene, hence tracking of the non-static scene is also possible. We hope that our work opens
up new possibilities for FPSP devices and allow the development of many complex computer
vision algorithms which utilises the device.

In the following chapter, we will use our implementation of the feature extractor and tracker to
demonstrate its capability and perform 6DoF visual odometry which has never to the best of
our knowledge been implemented for the device before.

38

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

Chapter 4

Visual Odometry

In this chapter, we will discuss the methods used to implement a low latency 6DoF visual
odometry using data from an FPSP device. We will perform comparisons of the different pose
estimation approaches, and discuss why we decided on our final pipeline, together with the
challenges which we faced.

Low latency visual odometry is an active field of research [8, 18, 33] and has many practical
applications such as Virtual Reality. Use of FPSP devices in visual odometry is promising as
it can process the pixel information on the chip itself. By reducing the amount of data to be
transferred, the device is energy efficient while promising high frame-rate.

4.1 Initial Attempts

In this section, we will cover the initial attempts which were made to develop the visual odometry
pipeline. We used C++ for all of our implementations as the Scamp5 interface library only
exposed C++ API.

4.1.1 Motivation

Before implementing a visual odometry pipeline for an FPSP device, we have developed a pipeline
for a standard frame-based camera. This approach is beneficial as it removes uncertainties in
case of errors. If the algorithm operates with the frame-based dataset, the cause of the error is
likely to lie in the algorithm for the FPSP device and vice-versa.

In this section, we will discuss some of the early attempts made, and how we decided on our
final visual odometry pipeline.

4.1.2 Pose Representations

In our implementation, the 6DoF pose is expressed using a 3D translation and a unit quaternion
(7 parameters). While it is not a minimal representation compared to a 3D translation plus a
yaw-pitch-roll, or angle-axis (6 parameters), it does not suffer from degenerate cases caused by
Gimbal Lock [7] or non-unique representation [51]. For convenience, we use Sophus 1 to abstract
away the mathematical manipulations.

1Sophus: https://github.com/strasdat/Sophus

39

https://github.com/strasdat/Sophus

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

4.1.3 Visualisation

Visualisation is important for visual odometry as it provides a good indication of how well the
system is performing. We have used Pangolin 2 to implement our visualiser. It provides a simple
interface to manage the OpenGL display and interactions. Initially, we used the OpenCV Viz
module. However, it required OpenCV to be built from a source, which limited the portability
of the application.

4.1.4 Implementation Details

Our first implementation of the visual odometry pipeline was based on the 2D-2D correspondences.
This approach avoids the use of a 3D map simplifying the problem. Initially, we performed
pose-estimation using the 5-point algorithm [40]. However, this did not work well. The issue
arises from the small base-line distance between the frames. Skipping several frames did help,
though the number of frames to skip was arbitrary, which made the system unstable.

To overcome this limitation, ideas from ORB-SLAM [39] was used. Similar to their initialisation
algorithm, homography and fundamental matrix were computed, and one was chosen based on
how well it explained the data.

The 8-point algorithm computes the fundamental matrix and is accurate if the scene is non-planar,
and there is sufficient parallax. On the other hand, homography explains the motion when there
are little parallax or the scene is planar. A choice between the two models is made based on the
robust heuristic as suggested by ORM-SLAM.

RH = SH

SH + SF
(4.1)

Score takes into account of both forward (M) and backward transformation (M−1) through the
use of symmetric transfer error [27].

d2
transfer(x, x′,M) = d(x,M−1x′)2 + d(x′,Mx)2 (4.2)

Where x, x′ is the corresponding points and d is a function to compute Euclidean distance
between the two given points.

The score function SM for each models M (H for the homography, F for the fundamental matrix)
is defined as

SM =
∑

i

(
ρM

(
d2

transfer

(
xi,x′i,M

))
+ ρM

(
d2

transfer

(
x′i,xi,M

)))
(4.3)

Where outlier rejection function ρM is defined to be

ρM

(
d2
)

=
{
TH − d2 if d2 < TM

0 if d2 ≥ TM
(4.4)

The values for TM is set to TH = 5.99 and TF = 3.84 based to χ2 test at 95% assuming standard
deviation of 1 pixel. If RH > 0.45 the homography is chosen. Otherwise, the fundamental matrix
is selected.

Use of hypothesis selection did remove the need for skipping of the frames, however, as the
approach is a 2D-2D method, we can only recover the direction of the translation. Recovery of
only the direction of the translation means that the scale of the translation is unknown. Thus,
between the frames, the scaling is inconsistent. Inconsistency in the scale causes ambiguity in
the scaling of the trajectory at a frame level, which causes a significant error to build up. The
error distorts our trajectory, causing its shape not to match the actual trajectory.

2Pangolin: https://github.com/stevenlovegrove/Pangolin

40

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

4.1.5 Summary of the Initial Attempts

We have familiarised with some of the visual odometry methodologies and explored a few of
the different 2D-2D methods. We have set up the basic visualisation and established the pose
representation which we are going to use in the development of our visual odometry pipeline.
Several 2D-2D methods were explored, and we have understood their limitations. Taking these
into consideration, we will create our full visual odometry pipeline which does not suffer from
inter-frame scale ambiguity.

4.2 Visual Odometry Pipeline

In this section, we finalise the visual odometry pipeline, which we have designed for the frame-
based camera. Similar to many of the visual SLAM pipeline [32, 39], we decided to use 3D-2D
methods for the pose estimation. This section covers the different key components implemented
to create the pipeline.

4.2.1 Motivation

Finalising our visual odometry pipeline allows us to build a solid foundation, where we can build
the visual odometry using an FPSP device on top. We chose the 3D-2D method as it is resilient
against the inter-frame scale ambiguity. This allows our trajectory to be representative of the
real trajectory up to an unknown scale.

4.2.2 Initialisation

In monocular visual odometry, the initialisation of a 3D map is an interesting chicken and egg
problem. The 3D-2D methods require the 3D map to estimate the poses, and to create the
map, at least 2 positions must be known in advance. An arbitrary choice about the origin of the
world-frame can be made, which allows the initial camera position to be defined at the origin.
This simplifies the problem as now, only the relative motion estimate is required.

To solve the initialisation problem, we follow a similar approach to ORB-SLAM and perform
bootstrapping using a 2D-2D method. As discussed in Section 4.1.4, ORB-SLAM computes both
the fundamental matrix and the homography and handles planar and non-planar cases separately.
Instead, we use 5-point algorithm [40] to compute the essential matrix, as the essential matrix is
not degenerate against planar-cases.

One problem with using the 5-point algorithm for bootstrapping is that if there is a small base-
line distance between the frames, the pose estimation produces the wrong hypothesis. However,
through observations, we noticed that when the pose estimation is poor, the triangulation of the
features is poor too. This allows us to handle the small base-line distance through rejection of
the initialisation when the quality of the triangulation is poor.

We assess the quality of the triangulation based on the following.

1. Only the points which are triangulated in front of the cameras of two poses are considered
inliers.

2. The average angle between the two cameras and triangulated points is greater than 10
degrees.

3. The average reprojection error is below 3 pixels for both cameras.

41

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

4. At least 50 inlier points are triangulated.

Once all the conditions are met, the map is initialised, and the rest of the pipeline starts. While
the initialisation process is fully automatic, we must have a transitional motion to perform
reliable triangulation.

Our 3D map does not store information such as local patch around a feature or descriptors. In
PTAM and ORB-SLAM, this information is stored in the 3D map to associate a feature detected
with a 3D point, However, as our feature detector for the FPSP device does not transfer such
information, we avoid the use of the information in our implementation. This helps us use the
pipeline together with the FPSP device without significant modifications.

4.2.3 Pose Estimation

Given a 3D map and its corresponding points on a 2D image plane, solving PnP problem allows
the recovery of the position and orientation of the camera in 3D space. OpenCV [9] provides
function solvePnPRansac() which solves PnP problem using RANSAC to filter out the outlying
data. The filtered out data can be used to clean up the 3D map, by removing the mapped point
from the set if it is part of the outliers. To solve the PnP problem, it is essential that a good
initial guess is given. Thus, we use the previous pose estimate as an initial guess.

4.2.4 Map-point Insertion

As the system explores the new regions in the space and detects new features, insertion of the
new features into the 3D map is necessary. However, the triangulation process requires sufficient
base-line distance, and when there is insufficient distance, poor quality triangulation may damage
the 3D map. While one can wait for a couple of frames until the triangulation, inserting the
points as fast as possible is essential as tracking features over a long period is difficult.

We tackle this problem using a simple method [43]. All of the features which are tracked but
not triangulated are stored as candidate points in a list. Insertion to the list occurs when a
feature which is not triangulated is detected. The image plane coordinate of the feature and
the pose estimate of the current frame is inserted as a new candidate point. For every pose
update, the list is traversed to check if any candidate point has small enough reprojection error
and large enough parallax. The similar criteria as the map initialisation are used to verify if
the triangulation is successful. The candidate points are removed from the list upon successful
triangulation, or if the feature is no longer tracked.

4.2.5 Summary of the Visual Odometry Pipeline

We have established a simple pipeline which is required for full visual odometry on frame-based
camera. Our method uses a 3D-2D method to reduce the effect of inter-frame scale ambiguity.
While features such as recovering from error are not implemented, we have a sufficiently good
pipeline which we can extend on. We can qualitatively see the effectiveness of our pipeline in
Figure 4.1. The camera moves in a straight horizontal motion in the dataset [2]. While the
motion is simple, the example is challenging as features go out of view as the camera moves,
meaning insertion of new map point must be successful for the tracking to work. Our pipeline,
although there is a slight curve, successfully track its pose while inserting newly observed
features. Furthermore, our pipeline can comfortably operate at 30FPS. We will discuss the
limitations of our pipeline when used in conjunction with the data from an FPSP device in the
next section.

42

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

Figure 4.1: Visualisation of the 3D map created by the frame-camera pipeline.

Feature TrackingFeature Extraction 3D Map Insertion Pose Estimation

Frame Camera Pose

FPSP device Host Device

Feature Tracking Visual Odometry

Figure 4.2: Illustration of how the visual odometry pipeline is separated.
.

4.3 Low Latency Visual Odometry

In this section, we will discuss the implementations required to connect our visual odometry
pipeline with the data from an FPSP device. Through the use of parallel processing, both on
the FPSP and the host device, we present a low latency visual odometry pipeline which can
operate at 250FPS.

4.3.1 Motivation

Previous to our work, there have been methods proposed to perform 4DoF tracking on an FPSP
device [8, 18]. However, these methods required the development of new algorithms which are
specific to the FPSP device, as the resources and the instruction sets available are limited.
This disallows the use of the well-established works from the visual odometry on a frame-based
camera, slowing down the development process.

Instead, we propose a method which uses a sparse data from the FPSP device and executes a

43

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

(a) Buffering of the feature data from an FPSP
device

(b) Correspondences established using our fea-
ture tracker.

Figure 4.3: Visualisation of the buffering of the incoming features.

well known visual odometry algorithm which was initially designed for a frame-based camera.
Demonstration of the ability to combine classical methods with the FPSP device opens up
many new possibilities, unlocking the full advantage of what the FPSP device has to offer while
working on top of many of the existing researches.

4.3.2 Preparations

To use the data from an FPSP device, setting up the communication between devices is necessary.
Recall in Section 3.1, where we have discussed the limitations of the communication between an
FPSP and a host device. We must dedicate a thread to communicate with the FPSP device
such that our features are reliably extracted. The rest of the pipeline communicates with this
thread through a locked object.

Our visual odometry operates under an assumption that the camera is calibrated. Hence the
intrinsic parameters of the FPSP device must be obtained. Unlike DVS, as the FPSP device
is programmable, it is possible to define an identity function and let the device simply acts
like a grayscale frame-based camera. This allows the use of standard calibration processes, in
particular, we obtain the parameters using OpenCV’s calibrateCamera() with a checkerboard.
Note that since it is possible to send information from a host device to an FPSP device, a simple
branching in the code of the FPSP device allows us to switch the function it is executing from
feature extraction to an identity function, removing the necessity to reprogram the device every
time we wish to recalibrate.

In our previous implementations of visual odometry pipeline, we have established the correspon-
dence of the features across frames using descriptors. We replaced this with our particle filter
based feature tracker, which uses the features extracted from the FPSP device. As illustrated in
Figure 4.2, we perform the feature extraction on the FPSP device and the rest of the operations
on the host device.

An iteration of our pose estimation pipeline takes longer when compared to the time required to
extract features on an FPSP device. Let the time it takes for an iteration of our pipeline be
tvo, and the time it takes for extraction of features from a single frame be tf . Let tvo = n · tf
where bnc is the number of frames the FPSP device has extracted features from in the duration
of one iteration of the pose estimation. If we simply processed a frame at a time, and n > 1,
the unprocessed frames would accumulate, and the pipeline will not able to process the newest
frames. This leads to high latency in our system. A simple solution is to limit the frequency

44

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

of feature extraction such that it coincides with the visual odometry pipeline. However, this
dilutes the advantages of the FPSP device.

Instead, we use buffering as visualised in Figure 4.3. Multiple frames of features are stored in
the buffer and are reduced into a set of a correspondence using our feature tracker. We will refer
to the buffer of frames of features as feature buffer henceforth. Since the feature tracking occurs
on features extracted at high frame-rate, our feature tracker is available to exploit the small
inter-frame motion. The rest of the pipeline only uses these correspondences, allowing the visual
odometry pipeline and the feature detection to operate at a different frequency. This, however,
does mean that the overall latency of the pose-estimation is constrained by the visual odometry
pipeline, which in our case is currently at 30FPS. In the later sections, we will propose methods
to lower the latency.

4.3.3 Challenges

Using the data from the FPSP device is not trivial, especially for complex tasks such as visual
odometry. We will list the main challenges we have faced.

1. Constant frequency of the feature extraction. As the features are extracted at a constant
frequency regardless of the processing performed by rest of the pipeline, if the pipeline
takes longer to remove the data from the feature buffer, the buffer is going to grow larger.
When the feature buffer becomes large, the processes, in particular, the feature tracker is
going to take longer to execute. This causes the feature buffer to grow even larger, putting
even more stress on the system.

2. Accuracy of the feature tracker. Unfortunately, our feature tracker is not as accurate and
contains noises when compared with descriptor matching methods. Furthermore, the errors
in the feature tracker increase over time, and causes bad hypothesises to be generated for
the pose estimation.

We immediately experienced the first challenge when the initialisation process did not terminate.
The culprit behind the non-terminating process was the 5-point algorithm. The execution time
of the algorithm was too long, which caused the feature buffer to build up. To avoid the buffer
from building up, we throttle the execution of the 5-point algorithm. We have experimentally
found that executing the 5-point algorithm once every 20 iterations reduced the stress on our
system, and allows the pipeline to flow. For every iteration, feature tracker is executed to reduce
the feature buffer to correspondences. However, since the feature tracker is computationally
faster when compared to the 5-point algorithm, the size of the feature buffer decreases within
the 20 iterations. Hence, the throttling of the 5-point algorithm acts like smoothing out of the
spike in the buffer size. Furthermore, since we do not drop any frames, our feature tracker takes
advantage of the high frame-rate nature of the FPSP device.

The second challenge imposed challenges to our pose estimation. Solving the PnP problem
with RANSAC struggled to compute a satisfactory pose estimate. We have attempted multiple
parameters and different algorithms available to solve the PnP problem, however, none of the
approaches produced adequate pose estimation.

We believe that the error arises from the type of error which is present in our feature tracker. In
a standard frame-based camera, performing a descriptor matching produces multiple correspon-
dences which are very accurate, with few outliers. Applying RANSAC on such data allows the
algorithm to find a subset of data which contains highly accurate correspondences. On the other
hand, in our feature tracker, the correspondences suffer from slight error in tracking. The error
is present due to the limited data which an FPSP device can transfer, and the accumulation
over successive frames. Thus, the majority of the feature correspondences in our feature tracker

45

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

Methods Rotation Error (Radian) Translation Error Time (µs)
µc c̃ σc µr r̃ σr

Motion Only BA 0.000605 0.000569 0.000284 0.0777 0.0745 0.0364 5075
PnP Iterative 0.00216 0.00201 0.00114 0.322 0.304 0.146 66565

PnP P3P 0.00304 0.00287 0.00154 0.453 0.447 0.198 16138
PnP EPNP 0.0022 0.00204 0.00115 0.327 0.447 0.15 66052

Table 4.1: Evaluation of different methods with 100% noisy dataset. The table contains average,
median, standard deviation of the rotation and translation errors and the average execution
time.

Methods Rotation Error (Radian) Translation Error Time (µs)
µc c̃ σc µr r̃ σr

Motion Only BA 0.000138 0.000129 6.63e-05 0.0177 0.0167 0.00852 4058
PnP Iterative 7.34e-05 6.86e-05 4.07e-05 0.00856 0.00752 0.00489 1770

PnP P3P 8.01e-05 7.37e-05 4.32e-05 0.0104 0.00988 0.00511 534
PnP EPNP 8.58e-05 7.95e-05 4.79e-05 0.0113 0.00988 0.00597 749

Table 4.2: Evaluation of different methods with 10% noisy dataset. The table contains average,
median, standard deviation of the rotation and translation errors and the average execution
time.

contains some random noise. Applying RANSAC on such data does not yield a viable hypothesis
as there may not be any subset which contains highly accurate correspondences.

To address the limitation, we have used motion only bundle adjustment [50]. The motion only
bundle adjustment minimises the reprojection error of all of the features. To add robustness,
we use Tukey M-estimator [60] as the loss function. Unlike the RANSAC approach, all of the
features are used to generate the hypothesis, allowing the errors present in the feature tracking
to average out. Furthermore, in noisy data, computation of motion only bundle adjustment is
much faster when compared to the RANSAC approaches.

We have performed a comparison of the different methods with simulated data, which is 1000
randomly generated point cloud and its projection to a fixed pose close to the origin. All of
the pose estimations use the origin as its initial guess. We artificially added random noise
z ∼ N (0, 1) to all the projected points. This simulates the errors which are present in our feature
tracker. Table 4.1 summarises the result of the experiment. The motion only bundle adjustment
outperforms the other methods in all rotation, translation errors and the execution time. This
coincides with our hypothesis that the PnP with RANSAC only performs well when there is a
subset of data which contains little error. To further verify our hypothesis, we conducted an
experiment where only 10% of the data contains the artificial noise. As shown in Table 4.2, the
PnP methods obtain higher accuracy and faster execution time compared to motion only bundle
adjustment. However, in our scenario, we are likely to encounter noisy correspondences, thus,
we opted to use the motion only bundle adjustment methods.

4.3.4 Implementation Details

Hand-tailored implementation of a non-linear optimisation method such as the Levenberg-
Marquardt or Gauss-Newton method can be difficult and be time-consuming. Furthermore,
manual derivation of the Jacobians is necessary, which is prone to error if one is not careful. We
used Ceres Solver [4] to implement the motion only bundle adjustment. We chose Ceres Solver
over other libraries such as g2o [34] as we had previous experiences.

46

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

0 500 1000 1500 2000 2500

Iteration

0

500

1000

1500

2000

2500

3000

T
im

e
(m

ic
ro

se
co

nd
s)

0

20

40

60

80

N
um

b
er

of
T

ra
ck

ed
F

ea
tu

re
sParallel

Sequential

#Tracked Features

Figure 4.4: Comparison of execution time between the parallelised feature tracker and the
sequential feature tracker.

For our pose representation, the rotation is expressed using a quaternion. While optimising over all
4 parameters works, however, a unit-length constraint of the quaternion must be enforced. This is
wasteful as we are optimising over regions which violate the unit-length constraint. An alternative
approach is to perform local parameterisation of the tangent plane to the unit sphere [27]. The
local parameterisation reduces the dimension of the optimisation process, making the process
more efficient as search is only performed in the feasible space. The local parameterisation of
the quaternion is possible in Ceres Solver by using QuaternionParameterization().

As motion only bundle adjustment is a non-linear optimisation process, the initial guess is
important. Similar to PTAM, we use decaying velocity model, where the velocity reduces to
zero if there are little motions.

v = d · (αv + (1− α)vnew) (4.5)

d is the decay factor and α controls how much the new reading influences the velocity model.
This helps the optimisation process to start with a better estimate, which allows for faster
convergence. In our implementation, we have selected α = 0.5 and d = 0.9.

Computation of the pose-estimate allows the reprojection error of currently tracked features to
be computed. While our motion only bundle adjustment provides robustness against outlying
data, build up of such data can cause a wrong hypothesis to be generated. Thus, reprojection
error of all the tracked features are computed, and if the error is greater than 3 pixels, it is
classified as an outlier and is removed. This reduces the amount of noise in the system and also
lessens the processing required by the feature tracker.

4.3.5 Optimisations

Our implementation uses the data from the FPSP device, which extracts features at 250FPS.
Even with all the modifications which we have introduced, the latency of the pipeline is around
60FPS. Although we use all of the data from the device by buffering, for latency critical
application such as VR and autonomous vehicles, lower latency is necessary.

One of the most significant bottlenecks in our pipeline is the map insertion of the candidate
points. For each iteration, we checked for all of the candidate points whether there is enough
parallax to triangulate the points reliably, hence, the computational cost was linear to the

47

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

number of candidate points. Using ideas from PTAM, we use keyframes to insert the newly
observed features. Only a subset of the frames is marked as keyframes, and the key-frames
contains the features which are observed. If the current and previous keyframes contain the
same features, and this feature has no corresponding 3D point, it is triangulated into the 3D
map. This reduces the complexity as we are only comparing the current keyframe against the
last keyframe. Selection of the keyframe is important as we want to triangulate the features as
fast as we can while making sure that there is sufficient base-line translation such that quality
of triangulation is good. The following criteria are used for keyframe selection.

1. More than 20 frames have been processed since the last keyframe insertion.

2. The pose distance between the last keyframe to the current frame is more than 10% of the
median depth of the visible map.

3. The quality of the pose-estimation is good.

The pose distance is compared using the depth of the scene as if we are close to the object, a
small translation would result in features moving out of the view. Similarly, if the depth of the
scene is large, a small translation would not result in features going out of the view. The depth
median is used instead of the mean to provide robustness against noisy 3D points, and we assess
the quality of the pose estimation by comparing the reprojection errors, before and after the
motion only bundle adjustment.

Another optimisation which we carried out was parallelisation of the feature tracker. Our particle
filter based feature tracker does not share any state between the features tracked. Hence they
can independently be tracked in a multi-threaded manner. We have used Threading Building
Blocks (TBB) 3 to achieve the parallelism. This aids the throughput of the feature tracker and
reduces the buffering of the extracted features. We have performed a comparison of the execution
time between the parallel and sequential version of the feature tracker. As shown in Figure 4.4,
parallelisation of the feature tracker has improved the computation time. We are not certain
about the causes of the spikes in the measurements, however, the overall performance benefit
is evident. On average the parallel and sequential feature tracker took 581.5µs and 1149.9µs
respectively, resulting in 97.7% improvement in computational speed.

To further aid the feature tracker, we reduce the number of features which are tracked using
grid/binning strategy used by [33]. When our pipeline inserts new features to be tracked, the
image plane is divided into small 8× 8 squares. For each of the square, we randomly sample a
single feature and add them to the feature tracker.

These optimisations reduce the latency in the pipeline and allow the optimisation of the pose
estimate to converge faster as the relative motion between the estimates is smaller. While the
grid/binning strategy may cause a good feature to be removed, the optimisations above allow us
to obtain low latency visual odometry, which can operate in 200-250FPS range.

4.3.6 Summary of the Low Latency Visual Odometry

We have discussed the challenges which we faced and the implementation details of our low
latency visual odometry pipeline. We summarised the flow of our visual odometry pipeline
in Figure 4.5. Operation at 200-250FPS is highly beneficial for applications such as VR and
autonomous cars. Unfortunately, our implementation struggles to operate in large scenes as our
feature trackers are not perfect and cause the 3D map to be slightly deformed. However, since
our feature tracker can track features across multiple keyframes, use of multiple viewpoints is a
promising direction to improve the accuracy of the triangulation.

3TBB: https://github.com/intel/tbb

48

https://github.com/intel/tbb

Chapter 4. Visual Odometry Visual Odometry Using an FPSP

Motion Only BA

Triangulate Tracked
Points

Is Key Frame?

Remove outliers

Receive Data from
the FPSP device

Update Particle
Filter

Map Points Keyframes

5-point algorithm Is triangulation
good?

Initialisation

Feature Tracking

Map

Tracking

No

Yes

Yes

No

Figure 4.5: Illustration of our visual odometry pipeline.
.

4.4 Summary

From a very basic 2D-2D method visual odometry pipeline we have iteratively built a full
visual odometry pipeline which is capable of operating in 200-250FPS range. To best of our
knowledge, this is the first ever 6DoF visual odometry for an FPSP device, and we not only we
have implemented a method, but we have also successfully utilised the low-latency of the FPSP
device in our pipeline. With the successful implementation of a visual odometry pipeline, in the
next chapter, we will assess the pipelines performance, together with the feature detector and
feature tracker, which we have previously implemented.

49

Chapter 5. Evaluation Visual Odometry Using an FPSP

Chapter 5

Evaluation

In this chapter, we critically evaluate our implementations and summarise the results. We can
divide our works into three related sections:

1. Feature Extraction: This section aims to extract good features to track using an FPSP
device.

2. Feature Tracking: Using the extracted features, we aim to track the features over a
long period, and even under some violent motions.

3. 6DoF Pose Estimation: The correspondence obtained from the feature tracker is used
to estimate the 6DoF pose estimate in the 3D space. The 6DoF pose estimation aims to
provide accurate pose estimation while maintaining low latency.

5.1 Feature Extraction on an FPSP Device

We have proposed a new method to extract feature on the FPSP device and have shown
qualitatively, the improvements compared to the prior works. However, these comparisons were
made on a static scene, which is a poor representation of the situations in which we expect the
algorithm to be used. On an FPSP device, it is difficult to achieve fair quantitative evaluations
as factors such as the motion of the device are hard to control between the run.

The assessment of the performance of our feature extraction should consider the following
points.

• Out of the features detected, how many of them can be classified to be good features?

• Of the good features detected, how close are they to the reference data.

The term good feature is vague, and hence in the next section, we will discuss the methods
which we used to evaluate the quality of our feature detector.

5.1.1 Methodologies

A quantitative evaluation of the feature extraction is difficult on the physical hardware, thus,
we have performed the evaluation using the simulation environment [15]. Use of the simulation
environment allows multiple implementations to be tested using the same datasets (Appendix A),
which allows a fair comparison. Furthermore, it allows us to generate the reference data from
the same video.

50

Chapter 5. Evaluation Visual Odometry Using an FPSP

Definition of good feature is somewhat arbitrary. However, for our case, a feature is good if it
is easy to track. Similar to the aperture problem, easy features to track is the corner features.
Although our feature tracker does not use any intensity information, this still holds as the corners
are more spatially distributed when compared to edge features, making them easier to match.
This motivates us to create the reference data from a strong set of corner features. To produce
the reference data, we have executed the OpenCVs [9] goodFeaturesToTrack() on the same
test-data. It internally uses Shi-Tomasi method [48] and selects the strong corners.

One of the limitations of the simulation environment is that it is not possible to automatically
restart the video when our feature extractors start. Also, the feature extractor cannot begin
until the simulation environments have started. Lack of ability to automatically restart the video
results in the logging of the features to start on an arbitrary frame, making the comparisons of
the results difficult. As a solution, we have added 30 blank frames at the end of the video and
used them as a synchronisation marker. This works well for the feature detection algorithms as
it extracts no feature from the blank frames.

With the simulation environment and the reference data, it is possible to define the comparison
methods. To evaluate how often the detector detects a good feature, we define a metric hit-ratio
as Equation (5.1)

hit-ratio = Number of good features detected
Total number of features detected (5.1)

A feature is marked as a good feature, if it is within 3 pixel radius of any reference features.

To measure how close the data is to the reference data, we compute for all the good features the
Euclidean distance to its nearest reference feature. We will refer to this as the average pixel
error.

5.1.2 Observations

We have executed both the previous implementation [14] and our implementation using the same
configuration parameters. In Figure 5.3a, we observe that our approach outperform the previous
implementation by roughly 80% for the hit-ratio on the shapes, keyboard dataset and 18% on
the bicycle dataset. On the shapes dataset, our implementation achieves almost 100% hit ratio,
which suggests that all of the features extracted is a good feature to track.

The increase in the hit-ratio for the bicycle dataset is significantly smaller when compared
against the other dataset. Compared to the other dataset, the lighting of the bicycle dataset
is less controlled. Thus, the task of feature detection is made more challenging. For example,
this can be observed in Figure 5.2 where our feature detector only finds features in the brightly
lit area of the image. While the threshold can be adjusted to make sure that the features are
detected in the shadowed regions, it makes the detector overly sensitive in the bright area, which
produces many redundant features.

Figure 5.3b compares the average pixel error of the features. For all of the dataset, we obtain
less error compared to the previous implementation. Note, that pixel errors only take into
account of the features which are classified to be hit. Hence poor hit ratio does not influence
this measurement. The average error of less than 1.2 pixels demonstrates the high accuracy of
our feature detector.

The high hit-ratio and low pixel error can be visually compared in Figure 5.1, where our
implementation only identifies visually sharp corners.

51

Chapter 5. Evaluation Visual Odometry Using an FPSP

Figure 5.1: Visualisation of the features extracted on the shapes dataset. The top row is our
implementation and the bottom row is implementation by Chen et al.

5.2 Tracking Features Extracted by an FPSP Device

We have presented a feature tracking algorithm, which is designed to track features detected using
an FPSP device. While we are not aware of any implementation of the feature tracker which uses
the data from an FPSP device, Chen et al. suggests that a simple closest neighbour matching
is sufficient for the task. We will evaluate our method against the proposal by comparing how
accurately the features are tracked. Furthermore, we will compare our approach against the
frame-based algorithm, which allows us to contrast their performance under some challenging
condition.

To assess the performance of our feature tracker, we consider the following points.

• How accurately can the features be tracked?

• How long can the features be tracked for?

• How does the number of particles affect the feature tracker?

• How fast is the feature tracker?

For similar reasons as feature detection, quantitative evaluation on the hardware is difficult.
Thus the simulated environment is used to measure the quality of the feature trackers. However,
we will perform some qualitative evaluations on the physical hardware to demonstrate the
advantages of high frame-rate, which the FPSP device has to offer.

52

Chapter 5. Evaluation Visual Odometry Using an FPSP

Figure 5.2: Visualisation of the features extracted on the bicycle dataset. The top row is our
implementation and bottom row is results from Shi-Tomasi Corner Detector. Our detector fails
to detect features in the dark shadowed region of the image.

Shapes Keyboard Bicycle
0.0

0.2

0.4

0.6

0.8

1.0

H
it

ra
ti

o

Our method

Chen et al.

(a) Hit ratio

Shapes Keyboard Bicycle
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
rr

or
(p

ix
el

)

Our method

Chen et al.

(b) Average pixel error.

Figure 5.3: Comparison of the hit ratio and the average pixel error between our method and
implementation by Chen et al. The error bar represents standard deviation.

5.2.1 Methodologies

We will conduct the evaluation of our feature tracker in four stages. Firstly, we assess the
quality of our feature tracker. We define the quality of feature tracker by measuring the average
pixel errors and the lifetime of the tracked features. To compute the average pixel errors, the
trajectory of the tracked features is compared against a reference trajectory, which is created
using the KLT algorithm. We perform this assessment using the simulated data, which allows

53

Chapter 5. Evaluation Visual Odometry Using an FPSP

Figure 5.4: A Scamp5d device with a mobile phone attached.

the reference trajectory to be generated using the same dataset.

To perform comparisons with the method proposal by Chen et al., we have implemented a feature
tracking algorithm which uses the k-dimensional tree (kD tree) to perform the closest neighbour
search. Note, we limit the search radius to 3 pixels, such that the errors do not accumulate
when the features are lost.

Secondly, we assess how the number of particles affects the quality of tracking. We vary the
number of particles used by our feature tracker and measure the average pixel errors against the
reference trajectory.

Thirdly, we compare the execution time of our feature tracker and how it varies with the number
of features tracked. Since the controlling number of features is difficult, we have created a simple
simulated data which contains a fixed number of features.

Finally, we perform a qualitative evaluation of the robustness of our method against a violent
motion. To test our method under a rapid motion, using the test-data (Appendix A) is unfair
as the frame-rate is limited to 240FPS. Instead, we attach a standard camera onto the FPSP
device (Figure 5.4) and moving them together in the same motion. The frames of the camera
are recorded at 30FPS while the FPSP device operates at 600FPS. We synchronise the timing
of the recording on the camera and the FPSP device by starting the program once the space key
is hit and ending it similarly. Since the camera records with sound, we can use it to synchronise
the start and the end time. This method is not very precise. However, it is sufficient for a
qualitative comparison of the results.

5.2.2 Observations

We summarise the evaluation of the feature tracking in four stages. In the first stage, we measure
the accuracy of our system and evaluate it against another method. In the second stage, the
discussion of the impact of changing the numbers of the particle is made. In the third stage, we
measure the computational time and how the number of features affects them. Finally, in the
fourth stage, we compare our method against a method on a frame-based camera under some
rapid motions.

54

Chapter 5. Evaluation Visual Odometry Using an FPSP

The Quality of the Tracking

To assess the quality of the tracking, we have executed our particle filter based feature tracker
and the closest neighbour feature tracker on the same test data. The test data is created by
executing the feature extractor algorithms on the test data (Appendix A).

Figure 5.5a shows that the particle filter method outperforms the closest neighbour method,
both in the number of features tracked and average pixel errors. We notice that the closest
neighbour method rapidly loses the number of features being tracked after 3 seconds, while the
particle filter based approach manages to retain the features.

Figure 5.5b shows similar performance in the number of features tracked. The closest neighbour
method approach outperforms the particle filter method in the average pixel error.

Figure 5.5c shows that the particle filter method has smaller average pixel error compared to
the closest neighbour method. However, as shown in Table 5.1, closest neighbour method has
more features tracked until the end of the video clip.

The above results suggest that the closest neighbour approach and particle filter approach has
similar performance. However, there is an important consideration to be made about the noise
present on the physical hardware. Recall in Section 3.3.2 we have investigated the noise in our
feature tracker on the physical device. Since in the simulated environment, the feature extractors
are too reliable, we randomly the remove features from the dataset, at 5% probability. We call
the dataset with the added noise, noisy dataset henceforth. Note, to achieve fair comparisons,
both the algorithms used the same noisy datasets.

Figure 5.5d shows that particle filter method outperforms the closest neighbour method by a
large margin. Closest neighbour method fails to track within 1 second of execution. On the other
hand, the particle filter method manages to track features for more than 8 seconds, although
there is a build up of errors over time.

Similarly, Figure 5.5e too shows similar results, where the closest neighbour method loses all its
feature within 1 second.

Figure 5.5c shows the closest neighbour approach performing almost as well as the particle filter
approach, however, at around 6.5 seconds, the closest neighbour method fails to track particles.
It is likely that the closest neighbour method, when compared to the other datasets, lasted
longer as the number of starting particles are much larger as shown in the Table 5.1.

We further assess the tolerance of our approach against noise by applying a different amount
of artificial noise to the dataset. As an example, a noise level of 0.1 means that a feature is
removed randomly from the dataset with 10% probability. In Figure 5.6, we plot the noise level
against the number of frames which contained features which are successfully tracked over the
total number of frames processed. We observe that our particle filter approach outperforms the
closest neighbour approach widely, demonstrating high robustness against noisy data. The green
dotted line represents the expected noise present in the actual hardware. At this noise level,
our particle filter based approach tracks feature in all of the frames, whereas closest neighbour
approach tracks feature in around a tenth of the frames, showing that our method is 1000%
more effective in tracking the feature across multiple frames.

Number of Particles Required for the Feature Tracker

To assess the influence of using a different number of particles per feature tracked, we compare
the data against the reference data, in a similar manner as the previous section.

55

Chapter 5. Evaluation Visual Odometry Using an FPSP

0 1 2 3 4 5 6 7 8

Time (Seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
rr

or
(P

ix
el

s)

Particle Filter

Closest Neighbour

(a) Comparison on the Shapes dataset.

0 1 2 3 4 5 6 7 8

Time (Seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr

or
(P

ix
el

s)

Particle Filter

Closest Neighbour

(b) Comparison on the Keyboard dataset.

0 1 2 3 4 5 6 7 8

Time (Seconds)

0

1

2

3

4

5

6

E
rr

or
(P

ix
el

s)

Particle Filter

Closest Neighbour

(c) Comparison on the Bicycle dataset.

0 1 2 3 4 5 6 7 8

Time (Seconds)

0

1

2

3

4

5

6

7

8

E
rr

or
(P

ix
el

s)

Particle Filter

Closest Neighbour

(d) Comparison on the noisy Shapes dataset.

0 1 2 3 4 5 6 7 8

Time (Seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr

or
(P

ix
el

s)
Particle Filter

Closest Neighbour

(e) Comparison on the noisy Keyboard dataset.

0 1 2 3 4 5 6 7 8

Time (Seconds)

0

1

2

3

4

5

6

E
rr

or
(P

ix
el

s)

Particle Filter

Closest Neighbour

(f) Comparison on the noisy Bicycle dataset.

Figure 5.5: Average pixel error on the datasets. The centre solid line shows the average error in
pixels and the bound around indicates the amount of features tracked. The dotted line shows
the average of the errors.

56

Chapter 5. Evaluation Visual Odometry Using an FPSP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Noise Level

0.0

0.2

0.4

0.6

0.8

1.0

#
S

uc
ce

ss
fu

l
T

ra
ck

ed
F

ra
m

es
/

#
T

ot
al

F
ra

m
es Particle Filter

Closest Neighbour

Figure 5.6: Amount of artificially added noise
vs ratio of number of frames which contains
successfully tracked features. Green dotted
line indicates our estimated noise present in
the actual hardware.

0 10 20 30 40 50

#Particles

5

10

15

20

E
rr

or
(P

ix
el

s)
Figure 5.7: The number of particles used by
the feature tracker against the tracking error.
The error bar represents one standard devia-
tion.

(a) Our feature tracker on circular motions.

(b) Our feature tracker on vertical motions.

(c) KLT algorithm on circular motions.

(d) KLT algorithm on vertical motions.

Figure 5.8: Visualisation of feature tracker on a rapid circular and vertical motions. The
grayscale image for our feature tracker is taken for visualisation purpose only.

57

Chapter 5. Evaluation Visual Odometry Using an FPSP

Dataset Algorithm µerror #Features Start #Features End

Shapes PF 1.78 29 12
CN 2.07 29 2

Keyboard PF 1.61 24 5
CN 1.38 24 4

Bicycle PF 2.52 69 6
CN 3.00 69 11

Shapes Noisy PF 2.07 28 3
CN 1.30 28 0

Keyboard Noisy PF 1.38 23 2
CN 0.90 23 0

Bicycle Noisy PF 2.53 68 6
CN 2.57 68 0

Table 5.1: The summary of performance of Particle Filter (PF) and Closest Neighbour (CN)
methods for feature tracking. The µerror (pixels) is the mean error of the feature tracker for the
specific dataset.

100 200 300 400 500 600 700 800 900 1000

Number of Tracked Features

0

2000

4000

6000

8000

10000

12000

14000

T
im

e
(m

ic
ro

se
co

nd
)

Parallel

Sequential

Figure 5.9: Execution time of our feature tracker against the number of tracked features. The
error bar represents standard deviation.

As shown in Figure 5.7, after around 20 particles, both mean and standard deviation does not
fluctuate, suggesting that the particles have successfully modelled the probability distribution.
We expect that with a higher frame rate, fewer particles would be required for the feature
tracking. The smaller inter-frame motion would mean that the probability distribution is easier
to approximate, hence a small number of particles would be sufficient to represent. Unfortunately,
our high-speed camera did not support any faster frame-rates. Thus, we could not validate this
hypothesis.

Number of Features Tracked and its Computational Overheads

To assess how the number of features tracked affects the computation time, we have executed our
feature tracker on simulated features for 1000 iterations. We perform the measurements on our
sequential version of the feature tracker and parallelised version of the feature tracker, which we
introduced in Section 4.3.5. All of the timings are measured with microsecond precision.

In Figure 5.9, we observe that for both parallel and sequential implementation, the computation

58

Chapter 5. Evaluation Visual Odometry Using an FPSP

time linearly increases with the number of tracked features. Furthermore, we demonstrate that
our parallelised feature tracker consistently outperforms the sequential version. The consistent
performance increase is possible as our feature tracker internally uses particle filter, which is an
embarrassingly parallel problem.

Our sequential feature tracker can operate at over 600FPS, given that the number of features
around 100. In our experiment, we observe that we manage to track 100 features at 1.52ms,
which corresponds to around 657FPS.

Our parallel feature tracker, on the other hand, can track 200 features at 1.31ms, which is
around 766FPS. While tracking double the amount of features, the parallelised implementation
is still faster than the sequential version. With 500 features, parallelised implementation takes
on average 2.89ms to execute. This is around 346FPS, which is slower than our feature detector
which operates at 600FPS to extract 500 features. However, we believe by using a machine
with more computational capability (e.g. more threads), we can achieve lower execution time,
allowing our feature tracker to operate at full capacity of the feature detector on the FPSP
device.

Tracking Features Under Agile Motions

We compare our implementation against the KLT algorithm to assess the ability to track under
rapid motions. The FPSP device is set to extract feature at 600FPS, and the frame-base camera
recorded the scene at 30FPS. All of the operation for feature tracking occurs in real-time. Since
the field of view and image centre of the FPSP and the frame-based camera is different, we
manually checked the video recorded by the frame-based camera such that no features of interest
leave the view. We configured the KLT algorithm to use four levels of the pyramid and search
window to be 15× 15 pixels.

Figure 5.8a and Figure 5.8c is a visualisation of the trajectory of the features under rapid circular
motions. We see that our tracker tracks more features over a longer period, even under violent
motions. However, we observe in Figure 5.8a that the purple feature towards us adhere to the
orange trajectory. The failure to remove erroneous correspondence is one of the problems which
our approach faces.

Similarly, Figure 5.8b and Figure 5.8d shows similar results where our implementation manages
to track features and has consistent motions between the features, whereas, in the KLT tracker,
we observe that the features motion is inconsistent each other.

5.3 Low Latency Visual Odometry Using an FPSP Device

We have demonstrated a low latency visual odometry pipeline which operates on the data from
an FPSP device. As we are not aware of any visual odometry pipeline for an FPSP device which
is capable of performing 6DoF tracking, we compare our trajectory against the data from the
Vicon motion capture.

Evaluation of the performance of our visual odometry pipeline should consider the following
points.

1. How accurately does the pipeline produce the trajectory?

2. What is the latency of the pipeline?

59

Chapter 5. Evaluation Visual Odometry Using an FPSP

Figure 5.10: Scamp5d device with pearl reflective markers attached to track the position of the
device using the Vicon motion capture system.

Comparison of the trajectories is made difficult by the scale ambiguity which monocular visual
odometry suffers from. We will detail how we obtained our data and methods which we have
used to compute the errors in the next section.

5.3.1 Methodologies

Recall that in monocular visual odometry, trajectories are only recovered up to a scale. The
scale factor which maps the trajectory produced by the pipeline to the trajectory of the physical
world is unknown. Furthermore, the different origins which the pipeline and the Vicon motion
capture system uses must be aligned. Thus, to compare our trajectory against the trajectory
from the Vicon motion capture system, the alignment process is required.

We have used evo [26] to compute the similarity transformation, which internally uses Umeyama
alignment [55] to align the two trajectories. Similarity transformation is a rigid-body transfor-
mation with scaling. We align our pipelines trajectory to the trajectory produced by the Vicon
motion capture system, allowing the translation component to have a unit associated with them.
This allows a more natural interpretation of the results. Umeyama alignment does not align
the initial orientation of the origin, hence, we offset the orientations using the first camera pose
estimate. While we did not have sufficient time to implement, aligning the orientation using all
of the camera pose estimates would result in better initial orientation alignments, which may
further reduce the orientation error.

The Vicon motion capture system requires reflective markers to be attached to the object such
that it can track the object in 3D space. As shown in Figure 5.10, we have attached 3 reflective
pearl markers on the device. We log our pipelines trajectory using the TUM RGB-D dataset
trajectory format [3]. We chose this format as it contains a timestamp, which allows our latency
to be measured easily from the log and the rotational component is logged as a unit quaternion,
which matches the pose representation of our pipeline. The timestamp is produced using the
systems clock, and the epoch time is recorded with microsecond precision. The data from the
Vicon motion capture system is stored as rosbag, which we parse and convert to TUM RGB-D
dataset trajectory format.

When comparing the trajectory produced by the Vicon motion capture system and our visual
odometry pipeline, it is crucial that the timestamp is synchronised. To achieve this, we used

60

Chapter 5. Evaluation Visual Odometry Using an FPSP

0 5 10 15 20 25 30 35 40

Time (Seconds)

−0.05

0.00

T
ra

ns
la

ti
on

(m
) x-axis

0 5 10 15 20 25 30 35 40

Time (Seconds)

0.00

0.05

0.10

T
ra

ns
la

ti
on

(m
) y-axis

0 5 10 15 20 25 30 35 40

Time (Seconds)

−0.1

0.0

T
ra

ns
la

ti
on

(m
) z-axis

Noisy Data Cleaned Data

Figure 5.11: Visualisation of the noisy data from the Vicon motion capture.

vicon bridge 1 which allows the log from Vicon motion capture system to use the system time
on our machine which we are running the visual odometry pipeline on. To reduce the latency in
the setup, we have connected the machine to the Vicon motion capture system using an ethernet
cable, instead of communicating over Wi-Fi. To use the vicon bridge, installation of ROS [42]
was necessary. Since our development environment was OS-X, we have used Docker 2 to create
an environment which is capable of executing vicon bridge.

When plotting the data obtained from the Vicon motion capture system, we have noticed that it
contained some noisy readings. The timestamp ordered the majority of the logged data, however,
few noisy reading did not follow. Since the outlying data is easy to spot, removing of these data
was simple. First, we compute µt, the average of the time intervals between the readings. For
data i, let the timestamp associate to it be ti. If ti − ti−1 > µt + ε where ε is a threshold, we
mark the reading to be an outlier. When the reading is marked as an outlier, it is removed from
the final output. However, we replace the timestamp associated with the outlier with ti +µt such
that the filtering can continue for the next readings. The results of the filtering are visualised in
Figure 5.11. As we can observe, the general shape of the data is preserved while the obvious
spikes are removed.

Given two aligned trajectories which shares the same timestamp, comparison of the trajectories
is simple if the sampling rate of the two trajectories matches. However, in our case where the
pose estimation updates more frequently than the sampling rate of the Vicon motion capture
system, we must further perform some processing. Let a pose estimate pvo

i be our pipelines pose
estimate at time tvo

i , which is somewhere between [tvicon
j−1 , tvicon

j). We must find a pose estimate
from the Vicon motion capture system, which we can compare our pose estimate against. The
simplest method is to pair the pose estimates based on the closest time. For example, in this

1vicon bridge: https://github.com/ethz-asl/vicon_bridge
2Docker: https://www.docker.com/

61

https://github.com/ethz-asl/vicon_bridge
https://www.docker.com/

Chapter 5. Evaluation Visual Odometry Using an FPSP

case, if tvo
i − tvicon

j−1 < tvicon
j − tvo

i , we pair pvo
i with pvicon

j−1 and with pvicon
j otherwise. Despite its

simplicity, this method is unfair, as it penalises the high-frequency visual odometry pipeline. To
avoid this, we perform interpolation of the pose data. For the translation component, simple
linear interpolation suffice. However, for the rotation, simple linear interpolation of either the
Euler angles, the rotation matrix or the quaternion would not result in a constant angular
velocity [16]. This effect is undesirable. Instead, interpolation should occur along the unit sphere
of the quaternion. This method, spherical linear interpolation, often referred to as slerp provides
constant angular velocity during the interpolation. This enables the rotation between the two
Vicon motion capture systems reading to be smoothly interpolated. We have used SciPy [30],
in particular spatial.transform.Slerp() to perform the slerp operation. With the smooth
interpolation of both position and orientation, we can compute the errors in the trajectory.

To measure the error, we must define the metric which we measure the error with. For the
position error, we use the Euclidean distance as the metric. For the orientation error, since the
error of our orientations θx, θy, θz was constrained such that θx, θz ∈ [−π, π); θy ∈ [−π/2, π/2)
we use the Euclidean distance of the difference in Euler angle as the metric [29]. This is a fair
metric to use, under an assumption that our pipelines orientation does not differ from the ground
truth too much. An alternative metric which we could have used is the geodesic distance in
SO(3) as used by [33].

5.3.2 Observations

We have captured the motion of the device using the Vicon motion capture system, in a well-lit
environment with checkerboards to provide textures for tracking. We run the feature extraction
at 250FPS not at the maximum speed of 600FPS, to prevent the pipeline from being flooded by
the stream of features.

We have evaluated our visual odometry pipeline under two different settings. The first settings,
slow-mode, has higher latency. However, we expect that the tracking is accurate. The second
setting, fast-mode, has lower latency. However, we hypothesise that the tracking is less accurate
when compared to the slow-mode. The difference between the two modes is minor. The fast-
mode performs grid/binning strategy, whereas the slow-mode does not. Reducing the number
of features tracked reduces the computational overhead on the feature tracker and also for the
pose-estimation, as fewer correspondences are established. However, with fewer features, the
fast-mode is likely to be more sensitive to noisy readings.

Accuracy of the Visual Odometry Pipeline

First, we will evaluate the accuracy of our visual odometry pipeline and how the different modes
affect the results. The total trajectory distance of slow-mode and fast-mode is 0.95m and 0.64m
respectively In Figure 5.12, we compare the absolute position and orientation of slow-mode
against the ground truth trajectory, which we have obtained from the Vicon motion capture
system. For the translation, although there are some high-frequency noises, we observe that
our translation estimations follow the ground truth data closely. Furthermore, on the z-axis, at
around 1-4s, we notice that our translation estimation deviates from the ground truth. However,
the pipeline quickly recovers, as the pose estimation is performed against the 3D map. The
error would have built up if a 2D-2D method were used, as the new pose estimation is directly
dependent on the previous pose.

For the rotation, we observe that the rotation along x, y-axis follows the ground truth closely.
For the y-axis, between 10-18s, we demonstrate the capability of our rotation estimation by

62

Chapter 5. Evaluation Visual Odometry Using an FPSP

successful tracking of a large rotation. For the z-axis, while the general shape of the curve
is similar to the ground truth, the error increases over time. Figure 5.17 compares our full
trajectory against the ground truth. Our trajectory closely follows the ground truth, however, it
does oscillate at high frequency.

In Figure 5.13, we similarly compare our fast-mode trajectory against the ground truth. Im-
mediately, we notice that the system contains more high-frequency noise when compared to
the slow-mode. As for the translation, we notice that for all of the axis, the estimate follows
the ground truth, with some added noise. Along the z-axis, we notice that there is significantly
more oscillation in error. This effect is also visible in our overall trajectory as visualised in
Figure 5.18.

For the rotation, we observe that while all of the trajectories follow a similar pattern to the
ground truth, they are all shifted in one direction. However, unlike the slow-mode, we do not
observe rotation error increasing over time.

We plot the absolute position and orientation errors of the two modes. For the slow-mode,
Figure 5.14a shows the changes in the absolute position error over time. We notice that the
error does not accumulate, which demonstrate the effective use of the 3D map. Figure 5.14b
shows the changes in the absolute orientation error over time. There is an increasing trend in
error, which we can see from Figure 5.12 is dominated by the error in the z-axis. We observe a
small difference between the Root Mean Square Error (RMSE) and the mean, which suggests
that there are few very large errors.

For the fast-mode, Figure 5.15a shows the changes in the absolute position over time. Similar
to the slow-mode, we observe a reasonably stable error, which suggests that the error is not
accumulating. Figure 5.15b shows the changes in the absolute orientation error over time. We
do not observe error building up over time in the fast-mode.

The metrics taken for the two modes are summarised in the Table 5.2. As we expected, fast-mode
has a higher mean, RMSE and standard deviation of error for both position and orientation
when compared to slow-mode.

Latency of the Visual Odometry Pipeline

For both modes, we have logged the timestamps with microsecond precision. Figure 5.16a
shows the computational time required by the slow-mode. On average, the pipeline operates at
12.0ms, which translates to around 83FPS. Figure 5.16b shows the computational time required
by the fast-mode. On average, the pipeline operates at 4.007ms which translates to around
250FPS, reaching the theoretical maximum speed under our settings. We believe that with more
parameter tuning, we can exceed our current latency.

For both slow-mode and fast-mode, we observe a spike in the processing time. The spike is
likely to be caused by the keyframe insertion as it introduces additional computation. For the
slow-mode, we notice that the frames following the spike suffers from high latency. Recall, the
effect of buffering too much frame of features as discussed in Section 4.3.3. The increase in
computational time on the host machine increased in the size of the buffer, creating overhead
for the following iteration. We, however, notice that the overhead is resolved fast, and the
computation time drops back down to the average. On the other hand, spike caused by insertion
of keyframe does not affect the following frames in the fast-mode. This is because, the number
of the feature being tracked is fewer, and meaning that the keyframe insertion requires less
computation. Hence, the buffer does not build up in size as much, allowing the computation
time of the system to drop back to the average almost immediately.

63

Chapter 5. Evaluation Visual Odometry Using an FPSP

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (Seconds)

0.00

0.05

T
ra

ns
la

ti
on

(m
) x-axis

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (Seconds)

−0.10

−0.05

0.00

T
ra

ns
la

ti
on

(m
) y-axis

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (Seconds)

0.00

0.05

T
ra

ns
la

ti
on

(m
) z-axis

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (Seconds)

−0.2

−0.1

0.0

R
ot

at
io

n
(r

ad
)

x-axis

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (Seconds)

−0.5

0.0

R
ot

at
io

n
(r

ad
)

y-axis

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (Seconds)

0.0

0.2

R
ot

at
io

n
(r

ad
)

z-axis

Estimate Ground Truth

Figure 5.12: Our visual odometry pipeline (slow-mode) against the ground truth. The translations
and rotations corresponds to the absolute position after alignment of the trajectories.

64

Chapter 5. Evaluation Visual Odometry Using an FPSP

0 2 4 6 8

Time (Seconds)

−0.05

0.00

T
ra

ns
la

ti
on

(m
) x-axis

0 2 4 6 8

Time (Seconds)

−0.05

0.00

T
ra

ns
la

ti
on

(m
) y-axis

0 2 4 6 8

Time (Seconds)

−0.025

0.000

0.025

T
ra

ns
la

ti
on

(m
) z-axis

0 2 4 6 8

Time (Seconds)

−0.2

0.0

R
ot

at
io

n
(r

ad
)

x-axis

0 2 4 6 8

Time (Seconds)

−0.05

0.00

0.05

R
ot

at
io

n
(r

ad
)

y-axis

0 2 4 6 8

Time (Seconds)

0.0

0.2

R
ot

at
io

n
(r

ad
)

z-axis

Estimate Ground Truth

Figure 5.13: Our visual odometry pipeline (fast-mode) against the ground truth. The translations
and rotations corresponds to the absolute position after alignment of the trajectories.

65

Chapter 5. Evaluation Visual Odometry Using an FPSP

Mode Position (mm) Orientation (deg)
µ RMSE σ µ RMSE σ

slow-mode 4.71 5.24 2.30 3.67 4.00 1.60
fast-mode 13.7 14.6 5.21 5.87 6.09 1.64

Table 5.2: Summary of absolute position and orientation error. The table contains average, root
means square error and standard deviation of the errors.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (Seconds)

0

2

4

6

8

10

12

14

P
os

it
io

n
E

rr
or

(m
m

)

error

mean

rmse

std

(a) Absolute position error

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (Seconds)

0

2

4

6

8

O
ri

en
ta

ti
on

E
rr

or
(d

eg
re

e)

error

mean

rmse

std

(b) Absolute orientation error

Figure 5.14: Absolute position and orientation error of slow-mode with respect to the ground
truth.

5.4 Limitations and Further Evaluations

While we have made efforts to make sure that the evaluations are carried out under fair conditions,
there are some rooms for criticism of our approaches.

• Simulated environment may not be representative of the actual hardware. For instance, we
artificially added noises posterior to the execution of our feature detector when evaluating
the quality of the tracking. However, we are not certain whether the noise is uniformly
distributed.

• Imperfect time measurements. All of the timings were measured on a laptop, which could
have been executing other processes. For example, while measuring the latency of the
visual odometry pipeline, docker and vicon bridge was running to log the ground truth
data. While some effort was made, such as closing applications irrelevant to the evaluation,
we cannot avoid processes running in the background.

66

Chapter 5. Evaluation Visual Odometry Using an FPSP

0 2 4 6 8

Time (Seconds)

0

5

10

15

20

25

30

35

P
os

it
io

n
E

rr
or

(m
m

)

error

mean

rmse

std

(a) Absolute Position Error.

0 2 4 6 8

Time (Seconds)

0

2

4

6

8

10

O
ri

en
ta

ti
on

E
rr

or
(d

eg
re

e)

error

mean

rmse

std

(b) Absolute Orientation Error.

Figure 5.15: Absolute position and orientation error of fast-mode with respect to the ground
truth.

• Highly controlled lighting and high contrasting texture for visual odometry evaluation.
When evaluating our visual odometry pipeline, we have executed our pipeline in a highly
controlled situation, which is not a very accurate representation of the environment which
we expect our visual odometry pipeline to be used in.

Use of the simulated environment was necessary to obtain the reference data. However, as the
simulator is closed sourced, we were not able to add the error models of the Scamp5d device
studied [57]. While an alternative option was to use a simulation environment which Wong has
created, it would have requires large modifications to our codebase. Use of a simulator with noise
carefully modelled would allow us to avoid introducing artificial noises post-execution.

Regarding the timings, most of our evaluations would only further benefit from reduced compu-
tation time. Furthermore, when we compare the time measurements of two different algorithms,
the difference between them is in order of milliseconds, which suggests that the impact of the
additional process executing is unlikely to negate our conclusion.

The highly controlled lighting and the high contrasting texture were necessary due to the
limitations of our visual odometry pipeline. However, we are positive that improvements can be
made such that we can further extend our pipeline to support a more comprehensive range of
scenes.

5.5 Summary

In this chapter, we have critically evaluated our implementations, discussing the effectiveness
and limitations of our approaches.

67

Chapter 5. Evaluation Visual Odometry Using an FPSP

0 250 500 750 1000 1250 1500 1750

Iteration

10

20

30

40

50

60

70

T
im

e
(m

s)

mean

median

std

(a) slow-mode

0 500 1000 1500 2000

Iteration

2

4

6

8

10

12

14

16

T
im

e
(m

s)

mean

median

std

(b) fast-mode

Figure 5.16: Visualisation of the latency of our visual odometry pipeline. For both slow and fast
mode, we observe a spike in the latency, which is likely to be caused by the keyframe insertion.

We have demonstrated improvements which we have made upon the existing feature detection
algorithm and contrasted our performance quantitatively. We also noticed that both our method
and the existing method perform poorly in dark scenes, which is an interesting problem and
may require some hardware improvements as a solution.

For the feature tracker, we have shown the effectiveness of our particle filter based approach
and the necessity to implement a feature tracker which is robust against noise. Although it
was a qualitative evaluation, we have demonstrated that feature tracking using an FPSP device
is more reliable when compared to feature tracking using a standard frame-based camera in
violently moving scene.

Finally, for the visual odometry, we have shown the high accuracy tracking which our visual
odometry pipeline achieves while maintaining low latency of below 5ms per pose estimate. The
success of the visual odometry pipeline, in fact, entails the success of our feature detector and
feature tracker.

Discussion of the limitations of our evaluation was made, and we will propose some potential
solutions to tackle the issues in the next chapter.

68

Chapter 5. Evaluation Visual Odometry Using an FPSP

x (cm)

4
2

0
2

4 y (cm)
10 8 6 4 2 0

z (
cm

)

0

2

4

6

Estimate
Ground Truth

Figure 5.17: Comparison of the trajectory produced by the slow-mode against the ground truth.

x (cm)

8 6 4 2
0

2

y (
cm

)

8

6

4

2

0

2

z (
cm

)

2

0

2

Estimate
Ground Truth

Figure 5.18: Comparison of the trajectory produced by the fast-mode against the ground truth.

69

Chapter 6. Conclusion and Future Works Visual Odometry Using an FPSP

Chapter 6

Conclusion and Future Works

This dissertation contains contributions to the areas of feature detection, feature tracking, and
monocular visual odometry on a Focal-plane Sensor-Processor (FPSP). As of now, there are
limited research [25] in further processing of the data from an FPSP device on a conventional
computational unit, and our work is one of the most complicated its kind.

To best of our knowledge, this work marks the first successful 6 Degrees of Freedom (DoF)
visual odometry pipeline using an FPSP device, with no prior information about the scene
required. Furthermore, our work presents the first successful tracking of the features from an
FPSP device. We hope that our contributions open up many future potentials for low latency
computer vision.

6.1 Contributions

In this section, we summarise the contributions of our project.

6.1.1 Feature Detection and Tracking

In Chapter 3, we have presented various improvements to the existing feature detector algorithm
and introduced our feature tracker, which is robust against a noisy set of data. Both of the
algorithms operate at over 600FPS and has been demonstrated to operate under challenging
conditions such as violent motions. Furthermore, no restriction is imposed on the motions of the
features, allowing the camera and the tracked objects to move in arbitrary directions, opening
up the use of our feature tracker in a wide variety of situations.

We have further shown the capability of our feature detector and feature tracker through
the successful implementation of our visual odometry pipeline. This strongly entails that our
feature detector and tracker applicable to many more computer vision algorithms, potentially
contributing to towards reducing their latency.

6.1.2 Visual Odometry Using an FPSP Device

In Chapter 4, we have successfully demonstrated to the best of our knowledge, the first 6DoF
visual odometry using an FPSP device. Not only a successful implementation, but we have
also utilised the full potential of the device, and achieved a low latency of under 5ms per pose
estimation. We have also shown that with a high frame-rate, little information is required to

70

Chapter 6. Conclusion and Future Works Visual Odometry Using an FPSP

perform the complex task of pose estimation. The majority of our pipeline operates on the
coordinate information of the features only, which is a very sparse representation of the frame
data. Even with such little data, our pipeline produces highly accurate trajectories.

Unlike the previous approaches to the visual odometry using an FPSP device [8, 18], our
trajectory does not suffer from ambiguity in scale between each frames. Furthermore, we create
a sparse representation of the scene, which is beneficial information for tasks such as loop
closure.

6.2 Challenges and Lessons Learnt

We have based our work on cutting-edge camera technology, with limited documentation and
examples. Not only we had to familiarise and understand the programming model for the
Scamp5d, but we also worked on real hardware, hence, significant efforts were dedicated to
debugging. For instance, the micro-controller on the device had a limit to the number of kernel
functions which one could register. Exceeding the limit causes the program to crash silently,
and moreover, we were unable to use standard tools and debuggers to identify the problem.
Furthermore, the simulation environment does not model such limitations.

The work on the visual odometry has taken up a significant proportion of our time spent on
the project. Lack of previous experiences in the field limited the progress at the early stages.
However, as described in Chapter 4, we have incrementally built on top of our previous works,
which allowed us to learn the different methodologies available in the field while guiding our way
towards the goal.

One decision which was made amidst our project was to implement our visual odometry pipeline.
Using an existing solution may have reduced the time which we have spent learning and
implementing the different methodologies, and it could have resulted in a better system overall.
However, to use the data from an FPSP device, some modification to the solution must be made.
With the limited understanding of the field, effective debugging and understanding where to
introduce the changes may not have been possible. These are high-risks, which we have decided
not to take. However, now equipped with the knowledge, if given a chance to extend on our
work, the next obvious direction is to integrate our system with the existing state-of-the-art
methods.

6.3 Discussions

Although we have implemented a visual odometry pipeline for an FPSP device, we have not fully
discussed its limitation and where our project positions in the widely explored field of visual
odometry.

Our visual odometry pipeline is currently restricted in the area which it can explore. The
limitation arises from the imperfect the feature correspondences. The small errors cause the
triangulation to be deformed, and as the device moves towards the unexplored area, the number
of tracked feature decreases together with the quality of the pose estimations. Hence, the next
triangulation suffers from poor pose estimate, damaging the 3D map.

Furthermore, due to the high frame-rate, the bright illumination in the scene is necessary. We
must use lighting equipment or have sunlight for our feature detector to operate reliably. This
restriction limits the usability of our system.

71

Chapter 6. Conclusion and Future Works Visual Odometry Using an FPSP

Our visual odometry pipeline differs from others in many ways. When compared to the visual
odometry using a frame-based camera, we achieve lower latency, as the frame-rate inherently
limits the latency. The boundary can be lowered through the use of the high-speed camera,
however, it consumes a considerable amount of energy, limiting its practical use. Furthermore,
the processors must be able to process the large amount of pixel information transferred. While
the nature of the data between a frame-based camera and an FPSP device widely differs, the
majority of our pipeline share similar concepts. This is because we have carefully separated
the tasks in our pipeline, in a way which allows us to borrow ideas from frame-based visual
odometry.

Another camera technology which is often used to obtain low latency is the event-based camera.
Use of event-based camera is actively explored, and there are many promising visual odom-
etry/SLAM systems [31, 33, 44]. The two hardware shares similar concepts, however, there
are some critical differences. First, on the event-camera, a stream of asynchronous events are
transferred at sub-millisecond latency, which is not possible on our feature detector. Furthermore,
when the scene is static, the device produces no output, which contributes to a reduction in
the overall amount of data transferred. However, under a rapid motion, there is an increase in
the number of events produced per second. This effect is undesirable as under a fast motion,
we wish to perform pose estimation as quickly as we can. On the other hand, an FPSP device
does not asynchronously provide output data, thus the frame rate is constant. Moreover, the
total amount of data transferred is less as computation can occur on the vision chip itself. In
feature-based visual odometry, features must be extracted from the given data. To extract
features from the stream of events, they must either implement a sophisticated algorithm to
handle the asynchronous nature of the events [38], or if Dynamic and Active pixel VIsion
Sensor (DAVIS) is used to obtain a frame data [33] which they can extract the features from.
These introduce additional computational overheads, and transfers large amount of redundant
information. Overall, when compared to the event-based camera approaches, while some of
the event-based methods have lower latency, our approach transfers less information, and our
performance does not fluctuate with the different motions. Furthermore, as less information is
transferred, our communication channel is less saturated, which suggests that we can transfer
additional information to aid our pipeline.

6.4 Future Works

We have shown through combining an FPSP device with a standard computer, achieving a low
latency visual odometry pipeline is possible. However, there are many open questions which we
could not address.

6.4.1 Visual Odometry

In our visual odometry pipeline, two keyframes are used to triangulate the 3D map. However,
this method is sensitive to noisy readings. As our feature tracker can track features across
multiple frames, methods such as recursive Bayesian depth filter used in SVO [22], or local
bundle adjustment used in ORB-SLAM [39] can be used to improve the quality of the 3D map,
and hence improve the tracking.

Through a fusion of multiple sensory information, we expect our pipeline to be able to produce
better trajectory estimate. For example, an inertial sensor may aid the filtering of the high-
frequency noise, which is currently present in our trajectory.

72

Chapter 6. Conclusion and Future Works Visual Odometry Using an FPSP

We expect to see improvements in the quality of the features extracted if we perform a non-
maximal suppression over a broader range. Naively increasing the patch-size would result
additional computational time, thus, the use of multi-layer Convolutional Neural Networks is a
viable solution. It would allow the units in the final layer to have a large receptive field while
using a small kernel, allowing the network to find the best feature to extract over a large patch
of pixels. Furthermore, with sufficient training data, the network should learn how to detect
features from poorly illuminated scenes.

Our implementation of the feature tracker exploited the opportunity for parallelism. It has been
shown [49] that the underlying particle filter could further benefit from hardware acceleration
using Field-Programmable Gate Array (FPGA). Connecting an FPGA with an FPSP device
has already been demonstrated in [25], making the use of FPGA for particle filter based feature
tracking promising. This would reduce the computational load on the host device, reducing the
latency in the pipeline even more.

Finally, in our current implementation where the feature extraction occurs at 250FPS, the FPSP
device has spare computational time. One effective use of the spare time is to transfer the pixels
information from the FPSP device to the host device. Unlike in DAVIS, where the frame-rate is
fixed, we can transfer the pixel information at an infrequent interval, or on demand. For example,
an image can be transferred upon keyframe insertion. The descriptors can be extracted from
the image, allowing the 3D map for the visual odometry pipeline to be further utilsed. Addition
of the descriptors may even allow implementation of low latency Simultaneous Localisation
and Mapping (SLAM). To assess the feasibility of the approach, we have performed a simple
evaluation. As shown in Appendix B, we execute our visual odometry pipeline while transferring
pixel intensity information at 4FPS. The textures in the snapshots show high contrast, which
suggests that there is sufficient intensity information from which useful information can be
extracted from.

6.4.2 Development Environment and Testing Framework

We have used the simulation environment for the Scamp5d device [15]. However, the environment
was somewhat limited, and as it is a closed source project, which prevented us from making
modifications. There have been multiple implementations of the simulation environment for the
Scamp5d device, which utilised GPU 1, or accurately models noise on the physical device [57].
These implementations, when compared to the original simulator, is limited as the code for the
Scamp5d device cannot operate as is. We strongly believe that the easy to use, an efficient
simulation which models the device accurately is an essential tool to increase the community for
the FPSP devices. Such a tool would open up a development environment for more researchers
who are interested in the device.

As of now, there are no standard test data for the FPSP device. This makes the quantitative
evaluation challenging and comparing the performance of the different algorithms time-consuming.
By creating a test-data, using a high-speed camera and an accurate simulator, it would allow
the researchers to compare and criticise the different works easily.

Currently, the code for an FPSP device is written in a very primitive manner as the instruction
sets for the limited. One difficulty of coding on an FPSP device is that some of the instructions
have side-effects, which overrides the registers which were in use. Furthermore, no compiler-
warnings are available to indicate the use of uninitialised registers. Since the instruction sets
on an FPSP device is limited, it should be possible to implement a semantic checker, which
warns the incorrect use of registers. Furthermore, using register allocation techniques such

1cpa-sim: https://github.com/najiji/cpa-sim

73

Chapter 6. Conclusion and Future Works Visual Odometry Using an FPSP

as graph-colouring, we can reduce the use of redundant registers in our code. Moreover, the
register allocation can take into account the different magnitude of noise each register suffers by.
A cunning register allocation scheme should be able to allocate long-lasting data into a noise
resistant register.

74

Bibliography Visual Odometry Using an FPSP

Bibliography

[1] Scamp5d Vision System: Scamp5d Vision System Introduction. URL https:
//personalpages.manchester.ac.uk/staff/jianing.chen/scamp5d_lib_doc_html/
_p_a_g_e__i_n_t_r_o__d_e_v_i_c_e.html. [Accessed: 2019-06-06].

[2] Parking dataset. https://files.ifi.uzh.ch/rpg/teaching/2016/parking.zip. [Ac-
cessed: 2019-06-07].

[3] Tum file formats. https://vision.in.tum.de/data/datasets/rgbd-dataset/file_
formats. [Accessed: 2019-06-10].

[4] Sameer Agarwal, Keir Mierle, and Others. Ceres Solver. URL http://ceres-solver.org.
[Accessed: 2019-06-06].

[5] Simon Baker and Iain Matthews. Lucas-Kanade 20 years on: A unifying framework.
International journal of computer vision, 56(3):221–255, 2004.

[6] Nitin Bhatia and Megha Chhabra. Accurate corner detection methods using two step
approach. Global Journal of Computer Science and Technology, 2011.

[7] Jose-Luis Blanco. A tutorial on SE(3) transformation parameterizations and on-manifold
optimization.

[8] L. Bose, J. Chen, S. J. Carey, P. Dudek, and W. Mayol-Cuevas. Visual Odometry for Pixel
Processor Arrays. In 2017 IEEE International Conference on Computer Vision (ICCV),
pages 4614–4622, October 2017. doi: 10.1109/ICCV.2017.493.

[9] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[10] Christian Brandli, Raphael Berner, Minhao Yang, Shih-Chii Liu, and Tobi Delbruck. A
240× 180 130 db 3 µs latency global shutter spatiotemporal vision sensor. IEEE Journal of
Solid-State Circuits, 49(10):2333–2341, 2014.

[11] Stephen J Carey, David RW Barr, Bin Wang, Alexey Lopich, and Piotr Dudek. Locating
high speed multiple objects using a SCAMP-5 Vision-Chip. In Cellular Nanoscale Networks
and Their Applications (CNNA), 2012 13th International Workshop on, pages 1–2. IEEE,
2012.

[12] Stephen J Carey, David RW Barr, Bin Wang, Alexey Lopich, and Piotr Dudek. Mixed
signal SIMD processor array vision chip for real-time image processing. Analog Integrated
Circuits and Signal Processing, 77(3):385–399, 2013.

[13] Stephen J Carey, Alexey Lopich, David RW Barr, Bin Wang, and Piotr Dudek. A 100,000
fps vision sensor with embedded 535gops/W 256x256 SIMD processor array. In VLSI
Circuits (VLSIC), 2013 Symposium on, pages C182–C183. IEEE, 2013.

75

https://personalpages.manchester.ac.uk/staff/jianing.chen/scamp5d_lib_doc_html/_p_a_g_e__i_n_t_r_o__d_e_v_i_c_e.html
https://personalpages.manchester.ac.uk/staff/jianing.chen/scamp5d_lib_doc_html/_p_a_g_e__i_n_t_r_o__d_e_v_i_c_e.html
https://personalpages.manchester.ac.uk/staff/jianing.chen/scamp5d_lib_doc_html/_p_a_g_e__i_n_t_r_o__d_e_v_i_c_e.html
https://files.ifi.uzh.ch/rpg/teaching/2016/parking.zip
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats
http://ceres-solver.org

Bibliography Visual Odometry Using an FPSP

[14] Jianing Chen, Stephen J Carey, and Piotr Dudek. Feature Extraction using a Portable
Vision System. page 2, 2017.

[15] Jianing Chen, Stephen J Carey, and Piotr Dudek. Scamp5d Vision System and Development
Framework. In Proceedings of the 12th International Conference on Distributed Smart
Cameras, page 23. ACM, 2018.

[16] Erik B Dam, Martin Koch, and Martin Lillholm. Quaternions, interpolation and animation,
volume 2. Citeseer, 1998.

[17] Thomas Debrunner. Automatic Code Generation and Pose Estimation on Cellular Processor
Arrays (CPAs). Master’s thesis, September 2017.

[18] Thomas Debrunner, Sajad Saeedi, Laurie Bose, Andrew J Davison, and Paul HJ Kelly.
Camera Tracking on Focal-Plane Sensor-Processor Arrays.

[19] Thomas Debrunner, Sajad Saeedi, and Paul HJ Kelly. Auke: Automatic kernel code
generation for an analogue simd focal-plane sensor-processor array. ACM Transactions on
Architecture and Code Optimization (TACO), 15(4):59, 2019.

[20] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-scale direct monocular
SLAM. In European conference on computer vision, pages 834–849. Springer, 2014.

[21] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of
the ACM, 24(6):381–395, 1981.

[22] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast semi-direct monocular
visual odometry. In 2014 IEEE international conference on robotics and automation (ICRA),
pages 15–22. IEEE, 2014.

[23] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Davide Scaramuzza. Asynchronous,
photometric feature tracking using events and frames. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 750–765, 2018.

[24] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEE proceedings F (radar and signal processing),
volume 140, pages 107–113. IET, 1993.

[25] Colin Greatwood, Laurie Bose, Thomas Richardson, Walterio Mayol-Cuevas, Jianing Chen,
Stephen J Carey, and Piotr Dudek. Tracking control of a uav with a parallel visual processor.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4248–4254. IEEE, 2017.

[26] Michael Grupp. evo: Python package for the evaluation of odometry and slam. https:
//github.com/MichaelGrupp/evo, 2017.

[27] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition, 2004.

[28] Richard I Hartley. In defence of the 8-point algorithm. In Computer Vision, 1995. Proceed-
ings., Fifth International Conference on, pages 1064–1070. IEEE, 1995.

[29] Du Q Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of Mathematical
Imaging and Vision, 35(2):155–164, 2009.

[30] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python. http://www.scipy.org/, 2001. [Accessed: 2019-06-13].

76

https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
http://www.scipy.org/

Bibliography Visual Odometry Using an FPSP

[31] Hanme Kim, Stefan Leutenegger, and Andrew J Davison. Real-time 3d reconstruction and
6-DoF tracking with an event camera. In European Conference on Computer Vision, pages
349–364. Springer, 2016.

[32] Georg Klein and David Murray. Parallel tracking and mapping for small AR workspaces.
In Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and
Augmented Reality, pages 1–10. IEEE Computer Society, 2007.

[33] Beat Kueng, Elias Mueggler, Guillermo Gallego, and Davide Scaramuzza. Low-latency visual
odometry using event-based feature tracks. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 16–23. IEEE, 2016.

[34] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram Burgard.
g2o: A general framework for graph optimization. In 2011 IEEE International Conference
on Robotics and Automation, pages 3607–3613. IEEE, 2011.

[35] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. EPnP: An Accurate O(n)
Solution to the PnP Problem. International Journal of Computer Vision, 81(2):155–
166, February 2009. ISSN 0920-5691, 1573-1405. doi: 10.1007/s11263-008-0152-6. URL
http://link.springer.com/10.1007/s11263-008-0152-6.

[36] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128×128 120 db 15µ s latency
asynchronous temporal contrast vision sensor. IEEE journal of solid-state circuits, 43(2):
566–576, 2008.

[37] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[38] Elias Mueggler, Chiara Bartolozzi, and Davide Scaramuzza. Fast event-based corner
detection.

[39] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. ORB-SLAM: a versatile
and accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–1163,
2015.

[40] David Nistér. An efficient solution to the five-point relative pose problem. IEEE transactions
on pattern analysis and machine intelligence, 26(6):0756–777, 2004.

[41] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2004. CVPR 2004., volume 1, pages I–I. Ieee, 2004.

[42] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[43] Henri Rebecq and Titus Cieslewski. Mini-project: A visual odometry pipeline! http:
//rpg.ifi.uzh.ch/docs/teaching/2018/vo_project_statement.pdf. [Accessed: 2019-
06-06].

[44] Henri Rebecq, Timo Horstschäfer, Guillermo Gallego, and Davide Scaramuzza. EVO: A
geometric approach to event-based 6-DOF parallel tracking and mapping in real time. IEEE
Robotics and Automation Letters, 2(2):593–600, 2016.

[45] Edward Rosten and Tom Drummond. Fusing points and lines for high performance tracking.
In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, volume 2,
pages 1508–1515. IEEE, 2005.

77

http://link.springer.com/10.1007/s11263-008-0152-6
http://rpg.ifi.uzh.ch/docs/teaching/2018/vo_project_statement.pdf
http://rpg.ifi.uzh.ch/docs/teaching/2018/vo_project_statement.pdf

Bibliography Visual Odometry Using an FPSP

[46] Edward Rosten and Tom Drummond. Machine Learning for High-Speed Corner Detection.
In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors, Computer Vision – ECCV 2006,
volume 3951, pages 430–443. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-
3-540-33832-1 978-3-540-33833-8. doi: 10.1007/11744023 34. URL http://link.springer.
com/10.1007/11744023_34.

[47] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An efficient
alternative to SIFT or SURF. In 2011 International Conference on Computer Vision, pages
2564–2571, Barcelona, Spain, November 2011. IEEE. ISBN 978-1-4577-1102-2 978-1-4577-
1101-5 978-1-4577-1100-8. doi: 10.1109/ICCV.2011.6126544. URL http://ieeexplore.
ieee.org/document/6126544/.

[48] Jianbo Shi and Carlo Tomasi. Good features to track. Technical report, Cornell University,
1993.

[49] BG Sileshi, Joan Oliver, and Carles Ferrer. Accelerating particle filter on fpga. In 2016
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 591–594. IEEE, 2016.

[50] Hauke Strasdat, José MM Montiel, and Andrew J Davison. Visual SLAM: why filter?
Image and Vision Computing, 30(2):65–77, 2012.

[51] Richard Szeliski. Computer vision: algorithms and applications. Springer Science & Business
Media, 2010.

[52] Rick Szeliski. Image Alignment and Stitching: A Tutorial. Technical Report MSR-TR-2004-
92, October 2004. URL https://www.microsoft.com/en-us/research/publication/
image-alignment-and-stitching-a-tutorial/.

[53] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust Monte Carlo
localization for mobile robots. Artificial intelligence, 128(1-2):99–141, 2001.

[54] Philip HS Torr, Andrew W Fitzgibbon, and Andrew Zisserman. The problem of degeneracy
in structure and motion recovery from uncalibrated image sequences. International Journal
of Computer Vision, 32(1):27–44, 1999.

[55] Shinji Umeyama. Least-squares estimation of transformation parameters between two point
patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence, (4):376–380,
1991.

[56] Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. Ultimate
SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High-
Speed Scenarios. IEEE Robotics and Automation Letters, 3(2):994–1001, 2018.

[57] Matthew Wong. Analog Vision - Neural Network Inference Acceleration using Analog SIMD
Computation in the Focal Plane. Master’s thesis, September 2018.

[58] Georges Younes, Daniel Asmar, Elie Shammas, and John Zelek. Keyframe-based monocular
SLAM: design, survey, and future directions. Robotics and Autonomous Systems, 98:67–88,
2017.

[59] A. Zarándy. Focal-plane sensor-processor chips. Springer New York, 2011. ISBN 978-1-
4419-6474-8. doi: 10.1007/978-1-4419-6475-5.

[60] Zhengyou Zhang. Parameter estimation techniques: A tutorial with application to conic
fitting. Image and Vision Computing, 15(1):59–76, 1997.

78

http://link.springer.com/10.1007/11744023_34
http://link.springer.com/10.1007/11744023_34
http://ieeexplore.ieee.org/document/6126544/
http://ieeexplore.ieee.org/document/6126544/
https://www.microsoft.com/en-us/research/publication/image-alignment-and-stitching-a-tutorial/
https://www.microsoft.com/en-us/research/publication/image-alignment-and-stitching-a-tutorial/

Bibliography Visual Odometry Using an FPSP

[61] Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis. Event-based feature tracking
with probabilistic data association. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 4465–4470. IEEE, 2017.

79

Appendix A. Test Data Visual Odometry Using an FPSP

Appendix A

Test Data

(a) Shapes dataset (b) Keyboard dataset (c) Bicycle dataset

Figure A.1: Snapshot of a frame from the different datasets.

To perform fair comparison of the algorithms, it is important that they are evaluated under the
same configurations. The nature of the FPSP device makes this difficult, however, we present a
method which allows a fair comparison between algorithms for the FPSP device, and further a
fair comparison against frame-based algorithms.

The FPSP device applies to It ∈ ZN×N the pixel values at time t, a user defined function f on
the chip, producing the data D ∈ ZM . Note that to utilise the FPSP device to its full potential,
N2 should be much larger than M . Furthermore, the functions are typically one-way, meaning
that It is not obtainable from D. Since only D is transferred to the micro-controller, it is not
possible to access It. For the algorithms which only depends on D, test data can be created
by logging the output of the FPSP device. However, for comparison of the algorithms which
operates on the device, It is necessary.

As It is not available from the device, alternative solution is to use the simulator with simulated
dataset. The advantage of the simulated data is that it is possible to generate the scene at the
frame-rate of the FPSP device, modelling the small inter-frame motions. However, the dataset
does not contain noise, which is to be expected when capturing frames on a physical device.
An alternative approach is to create test data using standard-camera. It allows test data to be
created from natural scenes, which is a more accurate representation of the scene which the
camera is likely to be used. However, the frame-rate is limited, thus any small abrupt motion
would make the test-data unrepresentative of the scene which the FPSP device may see.

Instead, we generate our test data using high-speed camera which is capable of capturing video at

80

Appendix A. Test Data Visual Odometry Using an FPSP

240FPS. This provides a nice middle-ground, allowing small inter-frame motions and capturing
of the real-scenes. While 240FPS is insufficient for some of the applications of the FPSP devices,
for our purpose, it is sufficiently fast, as long as we move the camera at a reasonable speed.

We provide 3 datasets which we use in our dissertation.

1. shapes: Contains black shapes on a white background, providing high-contrast and sharp
edges. The scene is recorded in an indoor environment. A snapshot of the dataset is shown
in Figure A.1a.

2. keyboard: Is a scene of a desk-top, with a keyboard and monitor in the view. There are
less texture and contrast in the scene. The scene is recorded in an indoor environment. A
snapshot of the dataset is shown in Figure A.1b.

3. bicycle: Is a scene of a bicycle docking station, with half of the image in shadow. This
creates high intensity difference in different parts of the image. The scene is recorded in
an outdoor environment. A snapshot of the dataset is shown in Figure A.1c.

81

Appendix B. Feasibility of the Future Works Visual Odometry Using an FPSP

Appendix B

Feasibility of the Future Works

To demonstrate the feasibility of transferring pixel information while performing our visual
odometry pipeline, we have executed our pipeline and transferred pixel intensity information at
4FPS. Due to the limitation in the time, we could not obtain the ground truth trajectory from
the Vicon motion capture system. However, the circular shape of the trajectory, as shown in
Figure B.3 resembles the motion which we have performed, suggesting that the tracking was
successful.

Figure B.2 shows the latency present in the system. We notice that the latency spikes up
when we transfer the pixel data. However, the average latency of the system is below 5ms.
Figure B.1 shows the snapshots which we have obtained during the execution of our pipeline.
We notice that there is sufficient intensity information to extract useful information such as
ORB descriptors.

These results suggest that transferring pixel information while performing low latency visual
odometry is possible and is a promising direction for future research.

Figure B.1: Snapshots of frames obtained from the FPSP device while operating our visual
odometry pipeline.

82

Appendix B. Feasibility of the Future Works Visual Odometry Using an FPSP

0 500 1000 1500 2000 2500

Iteration

0

5

10

15

20

T
im

e
(m

s)

mean

median

std

Figure B.2: Visualisation of latency of our visual odometry pipeline, while transferring pixel
information .

Figure B.3: Trajectory produced the visual odometry pipeline while transferring pixel information.

83

	Introduction
	Contributions
	Report Structure

	Background
	Focal-plane Sensor-processor
	Scamp5 Device
	Micro-controller
	Programming Model
	Performance
	Error Model
	Development Environment

	Feature Detection and Tracking
	Properties of a Good Feature
	FAST Corner Detection
	Feature Descriptors
	Feature Matching
	Optical Flow Estimation

	Monocular Visual Odometry
	Notations
	Methodologies
	Camera Model
	Pose Representation
	2D-2D Pose Estimation
	3D-2D Methods
	Robust Methods

	Related Works
	Visual Odometry/SLAM on a Frame-based Camera
	Visual Odometry on an Event-based Camera
	Visual Odometry on an FPSP Device

	Summary

	Feature Detection and Tracking
	Communication with the Scamp5d Device
	Motivation
	Settings
	Communication Methods
	Limitations and Optimisation of the Communication
	Improvements to the Communication API
	Summary of the Communication with the Scamp5d Device

	Improved Feature Detection on an FPSP Device
	Motivation
	Prior Works
	Comparison Function
	Binary Counter
	Edge Detection
	Two Ring Detector
	Non-maximal Suppression
	Summary of the Improved Feature Detection on an FPSP Device

	Feature Tracking
	Motivation
	Noise
	Problem Formulation
	Particle Filter
	Implementation Details
	Summary of the Feature Tracking

	Summary

	Visual Odometry
	Initial Attempts
	Motivation
	Pose Representations
	Visualisation
	Implementation Details
	Summary of the Initial Attempts

	Visual Odometry Pipeline
	Motivation
	Initialisation
	Pose Estimation
	Map-point Insertion
	Summary of the Visual Odometry Pipeline

	Low Latency Visual Odometry
	Motivation
	Preparations
	Challenges
	Implementation Details
	Optimisations
	Summary of the Low Latency Visual Odometry

	Summary

	Evaluation
	Feature Extraction on an FPSP Device
	Methodologies
	Observations

	Tracking Features Extracted by an FPSP Device
	Methodologies
	Observations

	Low Latency Visual Odometry Using an FPSP Device
	Methodologies
	Observations

	Limitations and Further Evaluations
	Summary

	Conclusion and Future Works
	Contributions
	Feature Detection and Tracking
	Visual Odometry Using an FPSP Device

	Challenges and Lessons Learnt
	Discussions
	Future Works
	Visual Odometry
	Development Environment and Testing Framework

	Appendix Test Data
	Appendix Feasibility of the Future Works

