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Abstract

Using the Nahm transform we construct solutions to the Hitchin equations in R2. These
solutions can be interpreted as a limiting case of doubly periodic instantons where the
periods of the compact, periodic directions tend to zero. U(1) solutions are constructed
where the Higgs field in the Nahm manifold are taken to be zero. SU(2) solutions are
approximated and the results are applied to the doubly periodic instantons. We also
highlight a correspondence between solutions to the Hitchin equations in R2 and the
periodic monopoles.
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Chapter 1

Introduction

1.1 Motivation

Gauge theories are defined via Lagrangians which are invariant under local Lie group
transformations. The concept of gauge symmetries is in essence, a redundancy in our de-
scription of nature. As a consequence of Noether’s theorems, for every local Lie symmetry,
a gauge field is produced and coupled to matter fields that have the associated symmetry.
The interaction between matter fields and gauge fields gives rise to particle interactions.

The simplest example of a gauge theory is Maxwell’s classical electromagnetism [1] where
the gauge group is U(1), which is abelian. Yang-Mills theory is a gauge theory first in-
troduced to describe properties of isotopic spin [2]. It is based on non-abelian Lie groups
such as SU(2). Non-abelian gauge theory is one of the cornerstones of theoretical physics
as it forms the basis of the standard model with gauge group SU(3)×SU(2)×U(1), which
unifies the description of electromagnetism, weak and strong interactions.

Gauge theory is also rooted in geometry. We can draw direct correspondences between
gauge theory with bundle geometry terminologies such as identifying “field strength” with
“curvature” and “gauge type” with “principal fibre bundle”[3]. Then it would not be
surprising that the study of the topological, as well as the dynamical properties of gauge
fields, were extremely fruitful and they gave rise to the field known as topological soli-
tons. Topological solitons are simply smooth solutions to the equations of motion where
they admit distinct differences from the trivial vacuum solution. In classical gauge theory,
instantons are one class of the topological solitons, along with vortices, monopoles and
domain walls (kinks). Existence of these pseudo-particles has implications outside classical
field theory as we can infer information in associated theories such as (D-brane) String
and other supersymmetric theories [4, 5], which form another branch of theoretical physics.

To construct these solitons explicitly, various methods have been developed by applied
and pure mathematicians alike. Solitons that exist most naturally in Yang-Mills and
Yang-Mills-Higgs are instantons and monopoles respectively. In the cases of instantons,
the Atiyah-Drienfeld-Hitchin-Manin (ADHM) construction [6] is a formalism that uses
purely algebraic methods. For monopoles, the available methods are more diverse but
they can be realised as a set of equivalences between the objects [7]

1. Monopole solution in R3 with maximal symmetry breaking at spatial infinity of a
classical group G.

2. Certain families of spectral curves (spectral data).
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3. Solutions to Nahm’s equation satisfying specific boundary conditions (Nahm data).

In this thesis, we will be focusing on the transformation between objects 1 and 3 as
above, which is an example of the Nahm transform. Nahm [8, 9] originally introduced this
construction as a modification to the ADHM construction where the instanton is invari-
ant under the translation of one coordinate. This lead to the construction of elementary
monopoles as they are simply instantons invariant under time translation. In the paper by
Braam and Van Baal [10], Nahm’s original construction is generalised to a transformation
that maps (anti) self-dual instantons on the base four torus to (anti) self-dual instantons
on the dual four torus. This paper was also when the name Nahm transform was coined.
However, for the construction of instantons on the four torus, the Nahm transform has not
yielded new solutions. The Nahm transform maps one hard problem into another equally
hard problem as finding instantons in the base four torus is same as finding instantons in
the dual four torus.

However, on a generalised four torus, one can take various combinations of periods and
let them tend to zero or infinity. In these extreme limits, the Nahm transform offers the
benefit of dimensional reduction between the base and dual generalised four torus1. For
example, in Nahm’s original construction of a monopole, the base “torus” is R3 and the
dual “torus” is an interval of R. The dimensional reduction property has been used by nu-
merous authors to study instantons on a generalised torus, classified by the base manifold
where the instantons exist on. Some of the well-studied cases are

• Periodic instantons by Kraan and Van Baal [11, 12]. Periodic instantons were also
independently investigated by Lee and Lu [13] at same time using the Nahm trans-
form.

• Doubly periodic instantons by Ford and Pawlowski [14, 15].

• Periodic monopoles by Cherkis, Kapustin and Durcan [16, 17].

• Doubly periodic monopoles by Ward [18].

The study of these solutions was very fruitful in revealing properties of these solitons
as well as implications outside classical dynamics, such as supersymmetric Yang-Mills in
the case of periodic monopoles [16]. However, working with the Nahm transform is very
technical. Although the necessary ingredients to perform the transform are known in
general (the Nahm equation, Weyl operators)[10], the calculations required to arrive at an
explicit solution can be extremely difficult. This motivates us to examine simpler versions
of the Nahm transform by varying the base and dual manifold where the Nahm transform
maps between, as well as the input Nahm data.

1.2 This Thesis

In this thesis, we are concerned with solutions to the Hitchin equations in R2. The Hitchin
equations can be considered as dimensionally reduced Yang-Mills field equations, thus their
solutions correspond to “instantons” existing only in R2. Application of the Nahm trans-
form to the Hitchin equations is simpler as the Nahm and inverse Nahm transform take
the same form, as well as the fact that the base and dual manifold are the same. As the
Nahm transform will map solutions to the Hitchin equations between the two R2 planes,
we will attempt to construct complex solutions on the base R2 from elementary solutions

1The detail of dimensional reduction will be discussed in section Chapter 4
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on the dual R2 plane. This problem is worth studying due to its connection to other
unsolved problems such as the double flux Aharonov Bohm (AB) effect2[19] and periodic
monopoles. The study of the Hitchin equations has been extensive in the past, but only a
few publications attacked the Hitchin equations through the Nahm transform. However,
some solutions to the Hitchin equations can naturally be seen as the limiting configura-
tions of doubly periodic instantons, which we will take as the starting point of our analysis.

The thesis is structured as follows. In Chapter 2 and Chapter 3 we will review instantons
and monopoles respectively, as well as introduce the Hitchin equations as dimensionally
reduced field equations. In Chapter 4 we will review the Nahm transform and give an
example constructions of monopole solutions using the Nahm transform. We will also
consider the Nahm transform for the doubly periodic instantons to set up the considera-
tion of constructing solutions to the Hitchin equations. The main results of the thesis are
presented in Chapter 5 where we consider U(1) and SU(2) solutions to the Hitchin equa-
tions. The chosen simple Nahm potentials are abelian solutions to the Hitchin equations
which describe the AB fluxes through the R2 plane.

2More of the AB effect will be discussed in Chapter 5.
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Chapter 2

Instantons

In this chapter, we will review the general properties of Yang-Mills instantons on R4 in
Section 2.1 as well as some instanton solutions to the pure Yang-Mills self-duality equation
in Section 2.3. The content of this chapter follows from the reviews by M.K.Prasad [20],
D.Tong [21] as well as N.Manton [22]. For more in-depth discussion please refer to those
reviews.

2.1 General Instantons

In this section, we will be following the conventions in [20]. The pure Yang-Mills action is
given by

S = − 1

2e2

∫
Tr(FµνFµν)d4x, (2.1.1)

We will be using Euclidean metrics1 with signature (+,+,+,+), thus the covariant and
contravariant indices are treated as the same. In the literature, the action might differ
by a multiplicative constant. This does not change the form of the dynamical equation
(equations of motion) of the field as the constants can be removed by appropriate scaling
arguments. The constant e is the gauge coupling constant and Fµν is the field strength
tensor defined by

Fµν = ∂νAµ + ∂µAν + [Aµ, Aν ] , (2.1.2)

where Aµ is the gauge potential and µ, ν ∈ {0, 1, 2, 3} represents 4 dimensional space. We
will use the standard notation when taking summation over Greek letters e.g. µ, ν, which
take values µ, ν ∈ {0, 1, 2, 3}, when taking summation over Roman letters e.g. i, j, k, which
take values i, j, k ∈ {1, 2, 3} unless otherwise specified. Here [A,B] is the commutator of A
and B with the definition [A,B] = AB−BA. We denote A0 as the “time” gauge potential
and A1, A2, A3 as the 3 dimensional “space” gauge potential.

We will consider the adjoint representation of the group where the basis (generator) ele-
ments {T a}Na=0 of the Lie algebra g for our gauge group satisfies the relation

[
T a, T b

]
=

fabcT c, where fabc are the structural constants2. Note that N <∞ is the dimension of the
group as we are only considering finite dimensional Lie groups and we can always define a
pairing such that such that

〈
T a, T b

〉
= δab. The gauge potential and field strength written

in terms of {T a} satisfies the relation Aµ = eT aAaµ and F aµν = ∂νA
a
µ + ∂µA

a
ν + efabcAbµA

c
ν

respectively. Instantons are the finite action solutions to the Euler-Lagrange equation

1Instantons in the more physical Minkowski space is a tricky issue and it will not be investigated here.
2It is always possible to consider the basis of a Lie algebra as set of anti-Hermittian and traceless N×N

matrices by simple Lie theory
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obtained from standard calculus of variations on (2.1.1). It is a second order differential
equation

∂µF
µν + [Aµ, F

µν ] = [Dµ, F
µν ] = 0, (2.1.3)

where Dµ is known as the covariant derivative and it is defined as

Dµ = ∂µ +Aµ. (2.1.4)

Gauge transformation of gauge potential and field strength is defined by

Aµ −→ g−1Aµg + g−1∂µg, Fµν −→ g−1Fµνg, (2.1.5)

respectively, where g = eλ
a(x)Ta ∈ G is a unitary operator and λa(x), a = 1, . . . N are N

arbitrary functions. The dual electromagnetic tensor ?Fµν is defined as

?Fαβ =
1

2
εµναβF

µν , (2.1.6)

where its components are the components of the Hodge dual of F = 1
2Fµνdx

µ∧dxν , which
is field strength written in form notation. Following the approach of Belavin et al. in [23],
we write (2.1.1) as

S = − 1

4e2

∫
Tr((Fµν ∓ ?Fµν)2)± 2Tr(Fµν

?Fµν)d4x. (2.1.7)

Since we are concerned with finite action solutions, we demand the field strength to tend
to zero as |x| tends to ∞. This is only possible with Aµ satisfying

Aµ
|x|→∞−−−−→ g−1∂µg, (2.1.8)

for some g ∈ G defined at spatial infinity boundary of R4 and it is called a pure gauge. In
fact, substitution of (2.1.8) into (2.1.7) yields

Smin ≥
8π2

e2
|k|, (2.1.9)

where k is known as the Pontraygin index which is an integer. It is computed with the
formula

k = − 1

16π2

∫
Tr(Fµν

?Fµν)d4x, (2.1.10)

where the Pontraygin index k measures the degree of the maps from boundaries of space-
time ∂R4

∞
∼= S3

∞ to SU(N).

Restricting the gauge group to SU(2), we have that SU(2) is a manifold isomorphic to S3.
Considering an instanton solution Aµ at spatial infinity, it is a smooth map from S3

∞ to
SU(2) ∼= S3. Then geometrically speaking, topological charge k is the number of times the
solution “wraps” S3

∞ around SU(2). Topological charge k is a topological invariant quan-
tity, i.e. a solution of topological charge k0 cannot be continuously deformed to a solution
with topological charge k1 6= k0. We say that solutions of different topological charge
belong to different topological sectors to emphasise this fact. By the result πn(Sn) = Z,
we have k ∈ Z = π3(S3) which is also known as the second Chern class or Pontraygin
number [23] in topology. Thus, the minimum action is given by

Smin = ± 1

2e2

∫
Tr(Fµν

?Fµν)d4x, (2.1.11)
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where equality of (2.1.9) can be attained by the first order (anti) self duality equation

?Fµν = ±Fµν . (2.1.12)

The realisation of the (anti) self-duality equation is a dynamical problem rather than a
topological problem [20]. The configuration space of solutions to (2.1.12) can be considered
as the quotient space A\G where A is the space of gauge potentials and G is the space of
gauge transformation. This space is highly non-trivial due to the existence of topological
sectors and topological charge. An interesting interpretation of instantons arises from
this observation where instantons are tunnelling paths between the vacuums of gauge
equivalent solutions in the same topological charge [24].

2.2 Hitchin Equations

The Hitchin equations [25] are the dimensional reduced self-duality equation (2.1.12) on
R2. To form the Hitchin equations from the self-duality equation in R4, we “freeze” two
of the coordinates of R4, without loss of generality we can choose them to be x1 and x2.
The self-duality equation is then reduced to R2 as solutions are no longer be dependent
on x1 and x2. We form the following objects

x = x0 + ix3 ∈ C, Φ =
1

2
(A1 − iA2), (2.2.1)

where x is the complex variable of the R2 plane and Φ is a complex “Higgs” field. Writing
the remaining gauge potential as a complex potential Ax = 1

2(A0 − iA3) and its complex
conjugate, we can write down the field strength as

Fxx̄ = ∂x̄Ax − ∂xAx̄ + [Ax, Ax̄] . (2.2.2)

Substituting into (2.1.12) yields the celebrated Hitchin equations in complex coordi-
nates[14].

[Dx,Φ] = 0, (2.2.3a)

Fxx̄ =
[
Φ,Φ†

]
= [Dx, Dx̄] , (2.2.3b)

where the covariant derivative Dx̄Φ = ∂x̄+[Ax̄,Φ] and Φ† denoting the complex conjugate
transpose of Φ.

2.3 Instanton Solutions

The first general solution to SU(2) Yang-Mills equation is for the case k = 1 proposed by
Belavin, Polyakov, Schwartz and Tyupkin [23] which is known as the BPST instanton. We
will not present the original construction by Belavin et al. , instead, we will consider the
BPST solution as a special case of the ’t Hooft ansatz. The presentation of the solution
will be in the same form as [22]. We introduce anti-symmetric tensor σµν with

σi0 = τi, σij = εijkτk = − i
2

[τi, τj ] , i, j ∈ {1, 2, 3}, (2.3.1)

where {τi} are the Pauli matrices:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (2.3.2)
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The gauge potential ansatz is

Aµ =
i

2
σµν∂ν log (ρ(x)) . (2.3.3)

One can alternatively give the components of gauge potential as [20]

Aaµ = −1

e
η̄aµν∂ν log(ρ(x)) (2.3.4)

with standard skew-Hermitian, traceless su(2) generators T a = τa

2i to show the dependen-
cies to gauge coupling. The ’t Hooft symbols η̄aµν introduced in [26] satisfies σµν = τaη̄aµν ,
a = 1, 2, 3. Substitution of the ansatz into the Yang-Mills self-duality equation (2.1.12)
gives that ρ satisfies the Laplace equation in R4

∂µ∂
µρ(x) = 0, (2.3.5)

which we have the one pole solution ρ(x) = 1 + λ2

|x−a|2 , and the BPST gauge potential

defined as

Aµ =
i

2
σµν∂ν log

(
1 +

λ2

|x− a|2

)
, (2.3.6)

where a ∈ R4 is arbitrary. There are a total of five real parameters in the solution with
λ ∈ R corresponding the physical size of instanton, while a ∈ R4 corresponding to the
location of instanton in 4-dimensional space. We can see at the point x = a, is an ap-
parent singularity of the solution. This singularity is an artefact of the gauge and it can
be removed with a suitable gauge transformation. Gauge invariant quantities such as the
action density (2.1.1) are smooth in all gauges, thus it is non-singular even when computed
with (2.3.6).

As ρ(x) is chosen as the solution to the Laplace equation (2.3.5), ’t Hooft extended the
construction of BPST instantons to charge k instantons with

ρ(x) = 1 +

k∑
i=1

λ2
i

|x− ai|2
. (2.3.7)

We can interpret this as k charge one BPST instantons with size λi and at space-time ai
where λi and ai are arbitrary. This solution has 5k parameters as each of the k instantons
contributes 5 parameters as in the BPST case. In fact, the index theorem by Atiyah et
al. [27] shows the solutions of SU(2) instantons depends on exactly 8k − 3 parameters,
where k is the Pontraygin index. Hence the ’t Hooft solutions have the correct number of
parameters for k = 1, but it is missing 3k − 3 parameters for k > 1. We will define the
gauge “orientation” of instantons as the orientation of instanton embedding in the gauge
group SU(2). These 3 parameters are not gauge invariant as gauge transformation alters
the orientation when a single charge one instanton is considered. At higher charges, the
relative orientations between charge one instanton constituents are preserved by gauge
transformations. Hence the 3k gauge orientation parameters only exist for k > 1. This
addition parameters along with position and size give the correct number of physical pa-
rameters as in the index theorem.

However, it is more convenient to study instanton parameter spaces and collective coordi-
nates with a hyperkähler structure [28]. To remedy this, pure mathematicians also consider
the 3 gauge orientation parameters of single charged instanton belong to the parameter
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space, hence bring the total number of parameters to 8k, required by hyperkählerity. In
this setting, we call the space of parameters with the additional gauge orientation as the
moduli space and refer to the parameters as moduli.

Jackiw, Nohl and Rebbi [29] extended ’t Hooft’s ansatz using a conformal group transfor-
mation to obtain

ρ(x) =
K∑
i=1

λ2
i

|x− ai|2
, (2.3.8)

which is referred to as JNR solution. In fact, solution (2.3.7) can be seen as a limiting case

of (2.3.8) as aK → ∞, λK → ∞,
λ2
K

a2
K

= 1 and k = K − 1. The JNR solution has 5k + 4

parameters which does not correspond to the number of parameters by the index theorem.
The discrepancy at k = 1 is due to the invariance of field potential with real multiplicative
constant on ρ(x), i.e. ρ(x) → λ0ρ(x). The “size” parameters of the instantons then are
λi
λ0

, i = 1 . . .K, hence reducing the parameter count to 5k + 3 and at k = 1, agrees with
index theorem. JNR at k = 1 gives the most general instanton solution but with k > 1,
it is missing a factor of 3k which can be seen as the missing relative gauge orientation
parameters for each instanton in SU(2).

The ADHM construction by Atiyah et al. [6] is a algebraic construction of all solutions to
self-duality equation (2.1.12) in Yang-Mills theory over compactified Euclidean 4-space S4

which corresponds to instanton solutions. The construction is generalised for all classical
compact groups and it has been extended for instanton solutions in T4 [30]. We will not
present the construction here but one can refer to [31] for the operational rules of ADHM.
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Chapter 3

Magnetic Monopoles

The Dirac magnetic monopoles is a postulated particle with radial magnetic field B such
that Bi, i = 1, 2, 3 is defined as

Bi =
gr̂i

4πr2
, (3.0.1)

where g is the magnetic charge and r is Euclidean distance from the original of R3. The
study of magnetic monopoles started with Dirac [32] with the argument that if monopoles
exist, charge must be quantised with

qg = 2πn~, n ∈ Z, (3.0.2)

where q and g are electric and magnetic charge respectively [33]. Schwinger [34] later
shown the consistency of monopoles with quantum electrodynamics (QED) yet these par-
ticles remain undetected in nature. Due to the mass of monopoles, its production in
particle accelerators is unfeasible. Astronomical searches e.g. in cosmological radiation
also proved to be unfruitful [35]. An interesting development of monopoles is the insight
into super-symmetry and search of multi-monopole solutions[36].

In this Chapter, we will first review the interpretation of topological solitons as mag-
netic monpoles with the gauge group SU(2) in Section 3.1. We will then consider the
Bogomolny-Prasad-Sommerfield (BPS)[37] limit of monopole energy and the solutions as-
sociated with it in Section 3.2. The general content of this chapter follows closely from
the review by Weinberg et al. [38] and for more in depth discussion of the topic, please
refer to [39, 38, 22, 21].

3.1 Monopole Formulation

In Dirac’s original arguments, an U(1) (Dirac) monopole (3.0.1) was constructed from
Maxwell’s equations to show the quantisation of magnetic charge. It contains a Dirac
string with is a curve in R3 that originates from the centre of monopole and extends to
infinity. Dirac’s monopole is not a topological soliton as it is not singular along the Dirac
string. An elementary argument[40] from bundle geometry shows that the Dirac string is,
in fact, the result of the base manifold which the monopole exists in. Dirac monopole to
exists in compactified R3, which we can denote S3

∞ excluding the origin, which has the
same homotopy class as S2. This manifold is non-trivial in the sense that more than one
chart is recovered to completely cover it, thus creating more than one transition functions
and trivialisation functions. The Dirac string corresponds exactly the overlapping of tran-
sition functions and it is not a gauge invariant quantity, it is a gauge artefact.
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To find a class of monopoles without the Dirac string, ’t Hooft considered the U(1) gauge
group of electromagnetism as a subgroup of a larger group with compact covering [41],
e.g. SU(2), the gauge we are interested in. In this formulation, regular solutions to the
field equations are found which corresponds to magnetic monopoles without Dirac Strings
as a pair of strings can be annihilated by forming monopole and anti-monopole pairs.

We consider the Yang-Mills-Higgs Lagrangian which couples a pure Yang-Mills field (2.1.1)
with a Higgs. The gauge group is a large enough group whose symmetry can be sponta-
neously broken down to U(1) by an (adjoint) Higgs field Φ. In the following discussion,
we will focus on SU(2) gauge group for simplicity of expressions. Note that in this chap-
ter, we will revert to using Minkowski metric (+,−,−,−) instead of Euclidean metric in
Chapter 2. The Lagrangian is

L = −1

2
Tr(FµνF

µν) + Tr(DµΦDµΦ)− V (Φ)

= −1

4
(F aµνF

aµν) +
1

2
(DµΦa)(DµΦa)− V (Φa),

(3.1.1)

where Aµ = AaµT
a is the gauge potential with field strength Fµν = F aµνT

a and Φ = ΦaT a

as the Higgs field in R3. In the SU(2) gauge group setting, we write the generators of su(2)

using Pauli matrices {τi} to have a set of traceless Hermitian generators T a =
τa
2

. Thus

{T a}, a ∈ {1, 2, 3} satisfies Tr(T aT b) = 1
2δ
a
b and [T a, T b] = iεabcT

c. In this convention,
we shift gauge coupling constant e into the Lagrangian, then we have Dµ is the covariant
derivative DµΦ = ∂µΦ + ie [Aµ,Φ]. We also have modified formula for field strength
Fµν = ∂µAν − ∂νAµ + ie [Aµ, Aν ]. Under the SU(2) gauge group, we have the gauge
transformation of gauge potential Aµ is the same as instantons gauge potential and Φ
transforms in the same way as Fµν . One of the Higgs potential V (Φ) which corresponds
to the symmetry breaking of SU(2) to U(1) is

V (Φ) = λ(|Φ|2 − η2)2, (3.1.2)

where |Φ|2 = 2Tr(Φ2) = ΦaΦa and λ is a positive real constant.

Figure 3.1: The function V (Φ) with λ = 1, Φ1 = Φ2 = 0 and varying η

In the rest of this chapter it is useful to consider Fµν as a tensor whose components
are composed of components of electric field E and magnetic field B. In natural units
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(c = 1), we have the following relation

Bi =
1

2
εijkFjk, Ei = F0i, (3.1.3)

where Ei and Bi are components of electric and magnetic fields respectively.

Considering Lagrangian (3.1.1) as the difference of kinetic energy T and potential energy
V then

T =
1

4

∫
TrE2

i + Tr(D0Φ)2 d3x, (3.1.4)

and

V = −1

4

∫
TrB2

i + Tr(DiΦ)2 + V (Φ) d3x, (3.1.5)

We can see the total energy is given by

E =
1

4

∫
TrE2

i + TrB2
i + Tr(DµΦ)2 + V (Φ) d3x. (3.1.6)

Assuming energy minima exists it is then obtained when

|Φ|2 = ΦaΦa = η2, DµΦa = 0, F aµν = 0. (3.1.7)

This condition defines the vacuum solution. The set of Φ satisfying vacuum energy thus
forms a sphere S2 in terms of generator coefficients Φa, a = 1, 2, 3, where each point on
the sphere are related to each other by a SU(2) gauge transformation[38]. For η 6= 0, the
vacuum solutions belongs a family of degenerate solutions which only preserves the U(1)
subgroup, i.e. the SU(2) symmetry is spontaneously broken down to U(1) symmetry. If
we choose the vacuum solution to be

Φ = η
τ3

2
, Aµ = 0, (3.1.8)

we have the U(1) subgroup is orientated in one direction of SU(2). In the case presented
above, we have the U(1) is aligned with one of the generators of su(2), namely τ3.

For finite energy solutions, the Higgs field Φ must tends to vacuum solution at spatial
infinity. However, it is not necessary that all solutions at spatial infinity are aligned in
the same arbitrary direction. Thus we will allow the Higgs field in spatial infinity limits
to vary with direction, as long as it is accompanied with a gauge potential with suitable
asymptotics.

Hence we can define a map Φ∞ from S2
∞, the two-sphere representing spatial infinity

to the space of Higgs fields satisfying minimal energy condition (3.1.7). For general gauge
group G with residual gauge group H after it is broken by Higgs field, we require the map
from S2

∞ to G/H. In case of G = SU(2), H = U(1) and SU(2)/U(1) ∼= S2. Thus Φ∞ is a
map from S2

∞ to S2 which can be classified by the homotopy group. It can be shown that
π2(S2) ∈ Z and we define the topological charge n (winding number) of a solution by its
homotopy group π2(S2). The topological charge is given by

n =
1

8π
εijkεabc

∫
S2
∞

Φ̂a∂jΦ̂
b∂kΦ̂

c d2Si, (3.1.9)

where Φ̂a = Φa/|Φ| is the normalised Higgs field such that |Φ̂| = 1
2Tr(Φ̂)2 = 1. n is also

closely related to the first Chern number, cf. instanton charge number which is the second

12



Chern number.

A classic example of non-trivial Higgs field configuration is pointed out by ’t Hooft. In-
stead of taking the Higgs field to be aligned with the z axis, we can consider a unitary
SU(2) transformation defined by

Ω(θ, ϕ) = cos(
1

2
θ)

(
eiϕ 0
0 e−iϕ

)
+ sin(

1

2
θ)

(
0 i
i 0

)
, (3.1.10)

where the Higgs field is taken as (3.1.8) multiplied by Ω(θ, ϕ) above. In this configuration
of Φ (famously known as the “hedgehog” configuration), finite energy condition demands a
new boundary condition which is dependent only on the radial distance at spatial infinity.
’t Hooft and Polyakov gave the asymptotic behaviour of the radial Higgs field approaching
spatial infinity [42] as

Φa(x)
r→∞−−−→ η

xa

r
, (3.1.11)

which has topological charge one. For general charge one monopole with arbitrary Higgs
configuration, the asymptotics of Higgs field is required to be

Φa(x)
r→∞−−−→ η

Φa

|Φ|
= ηΦ̂a. (3.1.12)

Compared to the configuration defined in (3.1.8) which has trivial topological charge, there
is no global gauge transform between them. i.e. one can not deform one configuration
smoothly to reach the other configuration which exactly corresponds to configurations
belonging to different homotopy classes.

Standard calculus of variations yields the following Euler-Lagrange equations:

DµD
µΦ = −λ(|Φ|2 − η2)Φ, (3.1.13a)

DµF
µν = −ie [DνΦ,Φ] . (3.1.13b)

c.f the Euler-Lagrange equations (2.1.3), noting the dependence on gauge coupling con-
stant e and i are result of scaling and generator conventions. A magnetic monopole as a
topological soliton is defined as a smooth, finite energy solution to the equation of motion
(3.1.13).

3.2 BPS Limit and BPS Solution

The BPS limit [37] is the λ = 0 limit of Yang-Mills-Higgs theory. Considering monopoles
only, we set the electric field Ei = 0 1 and we write the energy in λ→ 0 limit as

E =
1

4

∫
TrB2

i + Tr(DµΦ)2d3x. (3.2.1)

By completing the square similarly to completing the square of the instanton action to
obtain

E =
1

4

∫
Tr(Bi ∓DiΦ)2 + Tr(D0Φ)2 d3x± 1

2

∫
Tr(BiDiΦ) d3x

≥ 1

2

∫
Tr(BiDiΦ) d3x,

(3.2.2)

1Similar analysis can be applied to Dyons[43] by setting E 6= 0 and introducing a Dyon angle in the
energy intergral.

13



Then the energy minima is achieved when the following equations are satisfied

Bi = ±DiΦ, D0Φ = 0. (3.2.3)

Considering static equations only, the second energy minima constraint is satisfied trivially
and we have the Bogomolny equation remains

Bi = ±DiΦ. (3.2.4)

or alternatively written as [44]

± 1

2
εijkDkΦ = Fij . (3.2.5)

where the signs of solutions corresponds to monopole and anti monopole pairs similarly
to instanton and anti instanton pairs. The minimum energy thus can be written in terms
of the topological charge n as

E =
1

e
4π|n|η, (3.2.6)

where the topological charge n in BPS limit takes the form

n =
e

8πη

∫
Tr(BiDiΦ) d3x. (3.2.7)

In fact, solutions to the Bogomolny equation (3.2.5) are translational invariant solutions
to self duality equation in pure Yang-Mills (2.1.12), where the invariance is under one
component of Aµ and we can identify it to the Higgs field Φ [23]. We will here explicitly
show the correspondence by assuming x0 as the translational invariant coordinate, hence
∂0 = 0. Self duality Fµν = ?Fµν implies

F10 = F23, F20 = F31, F30 = F12. (3.2.8)

Writing out in terms of gauge potential and taking A0 = Φ, we have

− ∂1Φ + ie [Φ, A1] = ∂3A2 − ∂2A3 + ie [A2, A3] = −B1, (3.2.9)

and similarly for other components. These are exactly the Bogomolny equations in the 3
indices. This observation is one of the key ingredients of the Nahm transform which will
be discussed in more detail in Chapter 4.

Consider static solutions of the field equations. Static solutions are solutions Aµ(x) such
that ∂0Aµ(x) = 0 for all µ ∈ {0, 1, 2, 3}. Static fields obey

DiDiΦ = −λ(|Φ|2 − η2)Φ, (3.2.10a)

DiFij = −ie [DjΦ,Φ] , (3.2.10b)

which follows directly from Euler Lagrange equation (3.1.13).

Seeking spherically symmetric solution as suggested by the hedgehog configuration leads
to the ansatz

Φ = h(r)
xa

r
T a, (3.2.11a)

Ai = εiaj
xj(1− k(r))

r2
T a, (3.2.11b)
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where h(r) and k(r) are arbitrary functions of radius r. Substitution into equation of
motion (3.2.10) to obtain ordinary differential equation for the arbitrary functions h(r)
and k(r)

d2h

dr2
+

2

r

dh

dr
=

2k2h

r2
− λ(η2 − h2)h, (3.2.12a)

d2k

dr2
=

(k2 − 1)k

r2
+ e2h2k. (3.2.12b)

The boundary conditions at r = 0 are h(0) = 0 and k(0) = 1 to avoid singularities. At
r →∞, we require h(∞) = η and k(∞) = 1 for finite energy.

First analytic solution to charge one monopole was found by Prasad et al. [45] with
the simplification λ = 0 in (3.2.12) to arrive at

d2h

dr2
+

2

r

dh

dr
=

2k2h

r2
, (3.2.13a)

d2k

dr2
=

(k2 − 1)k

r2
+ e2h2k. (3.2.13b)

Then it can be solved by having

h(r) = η coth(eηr)− 1

er
, (3.2.14a)

k(r) =
eηr

sinh(eηr)
. (3.2.14b)

These solutions thus are called BPS monopoles where the topological charge is one.
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Chapter 4

Nahm Transform

The Atiyah-Drienfeld-Hitchin-Manin-Nahm (ADHMN) construction or simply the Nahm
transform[9, 8] is an extension of the ADHM method for construction of (anti) self-dual
(BPS) monopoles. Nahm originally presented the relationship between solutions to the
self-duality equation which are invariant under translation in one dimension with solutions
that are invariant under translation in three dimensions. The generalisation of Nahm’s
construction is coined Nahm transform. It draws correspondence between solutions to
(anti) self-dual equations which are invariant under translations in a subgroup of R4. i.e.
solutions exist on generalised torus T4.

In this chapter, we will review the operational procedures of the Nahm transform on
a four torus in Section 4.1 then review properties of Nahm transform in Section 4.2. We
will then review the classic example of Nahm transform for BPS monopole in Section 4.3.
Lastly, we will review the construction of doubly periodic instantons on T2 × R2 using
the Nahm transform in Section 4.4. More precisely, we will follow the presentation in [14]
for the methodology and formula known in doubly periodic instanton in anticipation of
applying them to our treatments of the Hitchin equations.

4.1 General Nahm Transform

Following presentation by Ford et al. [14], we start by considering subgroup Λ of trans-
lation in R4 which the solutions in invariant under, thus solutions will be defined on the
quotient manifold M = R4 \ Λ. By defining Λ as four dimensional lattice with genera-
tors (L0, 0, 0, 0), (0, L1, 0, 0), (0, 0, L2, 0) and (0, 0, 0, L3), we have the solutions lie on the
four torus T4 = M = R4 \ Λ and Lµ are the four periods of T4. Consider a SU(N)
charge k field strength Fµν with the corresponding gauge potential Aµ. Fµν is defined on
T4 when Aµ is periodic in all four coordinates of T4, modulo gauge transformation. i.e.
A(xµ) = A(xµ + Lµ), where xµ are the coordinates of base torus T4.

The fist step of the Nahm transform is to augment the SU(N) gauge potential into U(N)
with the transformation Aµ → Aµ− izµ, where zµ will become the coordinates of the dual

torus T̂4. Define the Weyl operator in U(N) as

Dz(A) = σµD
µ
z (A), Dµ

z (A) =
∂

∂xµ
+Aµ(x)− izµ, (4.1.1)

where σµ = {1, iτ1, iτ2, iτ3} and τi are the Pauli matrices. Existence of k orthonormal,

normalisable (square integrable) zero modes of D†z(A), ψi(x; z), i = 1, 2 . . . k is guaranteed
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by index theorems[46] and if we can explicit find the expressions, the Nahm potential is
given by

Âijµ =

∫
T4

d4x ψi†(x; z)
∂

∂zµ
ψj(x; z), (4.1.2)

where the Nahm potential corresponds to the an U(k) instanton with topological charge
N . The inverse Nahm transform recovers the original gauge potential which is given by

Apqµ =

∫
T̂4

d4z ψ̂p†(z;x)
∂

∂xµ
ψ̂q(z;x), (4.1.3)

where ψ̂p are the N normalisable zero modes of D†x(Â) = −σ†µDµ
x(Â), Dµ

x(Â) = ∂
∂zµ +

Âµ(z)− ixµ. The field strength of original torus is given by

F ijµν(x) =

∫
T̂4

d4z

∫
T̂4

d4z′ψ̂p†(z;x)σ
(
D†xDx

)−1
(z, z′;x)σ†νψ̂q(z′;x)− [ν ↔ µ]. (4.1.4)

We can see that Nahm transform is most naturally defined on the 4-torus T4 as the
manifold is compactified in all directions, thus the self dual property of gauge potentials
are preserved during transformations, without the requirement Fµν → 0 as xµ →∞ [24].

4.2 Properties of Nahm Transform

We will now discuss some of the uses of Nahm transform focusing on its behaviour on
translation invariant solutions over R4 following the review by Jardim [47]. Let Λ denote
a subgroup of translation group over R4, we define the dual translation group

Λ∗ =
{
α ∈ (R4)∗| α(λ) ∈ Z ∀λ ∈ Λ

}
. (4.2.1)

Nahm transform thus draws correspondence between solutions over M = R4 \ Λ and
M̂ = (R4)∗ \ Λ∗. Concrete examples of Λ and their corresponding soliton class are listed
below:

• Λ = {0}, M = R4 gives instanton solutions in R4. This limit of the Nahm transform
effectively becomes the ADHM construction. Thus we say that the Nahm transform
encompasses the ADHM construction.

• Λ = Z, M = R3 × S gives rise to calorons which are periodic instantons in one
dimension.

• Λ = Z2, M = R2 × T2 gives us doubly periodic instantons which unsurprisingly, it
is a class of instanton solutions that are periodic in two dimensions.

• Λ = R, M = R3 gives us a monopole as the Nahm transform maps between the
solutions to Nahm’s equation (4.3.4) and spherical symmetric monopole in R3 (Most
notably, the BPS monopole).

• Λ = Z× R, M = R2 × S gives rise to periodic monopoles.

• Λ = Z2 × R, M = R× T2 gives rise to doubly periodic monopoles.

We can see that the Nahm transform draws correspondence between solutions to self
duality equations in different manifolds. More precisely, Nahm transforms from a 4− torus
T4 have the effect of inverting the dimensional radii which is the direct consequence of the
definition of dual translation group Λ∗. i.e. let (L0, L1, L2, L3) be the period of base torus
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T4, through the Nahm transform the periods of dual torus T̂4 are (1/L0, 1/L1, 1/L2, 1/L3). In
the limits of non-compatified coordinates (Li →∞) or “frozen” coordinates (Li → 0), the
property of inverting periods extends to periods taking values of 0 and ∞. For example,

T2 × R2 −−→
NT

T̂2, R3 × S −−→
NT

Ŝ.

In the interesting case where Λ = Z4, the solutions are defined on the torus T4 while the
transformed solutions exist in the dual torus T̂4. Thus the Λ = Z4 case does not benefit
from the dimensional reduction seen in the previous examples. Yet a remarkable theorem
can be derived in this formulation

Theorem 1. The Nahm transformation transforms between SU(n) gauge potential A of
charge k over manifold R4 \ Λ and SU(k) gauge potential Â of charge n over manifold
(R4)∗ \ Λ∗.

This mapping between gauge potential A in base manifold M and gauge potential Â
in dual manifold M̂ suggests in cases that Nahm data in the dual manifold are known
explicitly, we can use the Nahm transform to construct the solution in the base manifold.
Since the Nahm potential Â is part of the Nahm data, one would use the Nahm transform
method in case the dual manifold M̂ is of lower dimension than M as solving for Â is more
feasible than solving for A. The other interesting case would be for unity charge solutions
in the base manifold, then by theorem above, the Nahm potential Â would be abelian.

4.3 Nahm Transform for BPS Monopole

We will present the construction of SU(2) BPS monopole via the Nahm transform following
the review by Weinberg et al. [38]. The Nahm transform draws correspondence between
charged k BPS monopoles with Nahm data Tµ, µ = 0, 1, 2, 3 of k × k Hermitian matrices
which satisfies the Nahm equation

0 =
dTi
ds

+ i [T0, Ti] +
i

2
εijk [Tj , Tk] , (4.3.1)

where the indices i, j, k = 1, 2, 3, the auxiliary variable s is the coordinate of the dual
manifold M̂ . Through holonomy arguments and appropriate index theorems, M̂ can be
taken as a real interval I = [−η

2 ,
η
2 ] ⊂ R and η is the vacuum Higgs expectation value cf.

Lagrangian for Yang-Mills-Higgs theory (3.1.1). To recover the base gauge potential and
Higgs field, we need to find the zero modes ψ(s, r) of the Weyl operator

D†(s) = − d

ds
− iT0 ⊗ 12 − Ti ⊗ σi + ri1k ⊗ σi, (4.3.2)

where 1k is the k× k identity matrix. It can be shown that for SU(2), only two normalis-
able, linear independent solutions can be found and we denote them as ψi, ψj . The gauge
potential and Higgs field then can be determined as

Φij =

∫ η/2

−η/2
ψi†(s, r)sψj(s, r)ds, (4.3.3a)

Aijµ = −i
∫ η/2

−η/2
ψi†(s, r)∂µψ

j(s, r)ds. (4.3.3b)

This might appear to contradict previously quoted formula of the Nahm transform but it
is the effect of scaling only. We can rescale our monopole Lagrangian (3.1.1) such that
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the gauge coupling is outside the definition of covariant derivative and field strength and

through the uses of skew-Hermitian generators
τa
2i

to recover the expected transformation

(4.1.3). In this convention, one would also need to modify the Nahm equation and Weyl
operator accordingly. For the treatment of the construction in the this convention, please
refer to [22].

It can be shown that due to gauge ambiguity on both manifolds, there is no bijective
correspondence between Nahm data Tµ and solutions to the Bogomolny equation (3.2.4).
i.e. gauge transformation (space time gauge transformation) of Tµ leaves Aµ invariant and
SU(2) gauge transformation of Aµ leaves Tµ invariant[38]. Thus we are free to set T0 = 0
via an appropriate gauge transform and (4.3.1) simplify to

dTi
ds

=
i

2
εijk [Tj , Tk] , (4.3.4)

where indices i, j, k = 1, 2, 3 as before. In fact the Nahm equation is closely related to
generalised Euler-Manakov Top equations which is an well known non-linear integrable
system [48]. (4.3.4) is completely integrable in the sense that a Lax pair exists. The Weyl
zero mode equation hence becomes

0 =

[
− d

ds
− Ti ⊗ σi + ri1k ⊗ σi

]
ψ(s, r). (4.3.5)

The equation appears to be formidable in its current form yet for the case of k = 1, it is
rather simple and recovers the BPS monopole solution (3.2.14). We will outline its simple
construction as follows. In the case k = 1, the Nahm Data Ti are just 1 × 1 matrices
with trivial commutator relation [Ti, Tj ] = 0, we will take Ti = ici for some constant ci.
By translation invariance of Ti we can take Ti(s) = 0. The zero modes of Weyl operator
satisfies [

d

ds
− r · σ

]
ψ(s, r) = 0. (4.3.6)

The two zero modes ψ(s, r) can be solved for trivially by integration as there are no
dependence on s to have

ψ(s, r) = esr·σA(r), (4.3.7)

where A(r) is the r dependent normalisation factor. By choosing trivial orthonormal two
vectors we write

ψi(s, r) =

√
r

sinh ηr
esr·σ

(
1
0

)
, ψj(s, r) =

√
r

sinh ηr
esr·σ

(
0
1

)
, (4.3.8)

which satisfy orthonormality conditions. Apply the identity esr·σ = cosh sr+sinh (sr)r̂ ·σ
to have the Higgs field as

Φij =
1

2

(
η coth ηr − 1

r

)
(r̂ · σ)ij , (4.3.9)

and through similar calculation to arrive at gauge potential Aij . This recovers the BPS
charge one monopole in (3.2.14).

4.4 Doubly Periodic Instantons

Doubly periodic instantons as the name suggests are instantons solutions periodic in two
coordinates where the base manifold is taken as T2 × R2 and the dual manifold is T̂2.
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We will follow closely in the construction in [14]. Considering said base manifold as
deformation of four torus where Nahm transform is most naturally defined on, we will
take two of the periods of T4 to be infinite. Without loss of generality, the periods L0

and L3 are taken to be infinite. Keeping the same convention as Chapter 4 where xµ and
zµ are coordinates of base and dual manifolds respectively, we have the modified Nahm
transform

Âijµ (z) =

∫
T2×R2

d4x ψi
†
(x; z)

∂

∂zµ
ψj(x; z), µ = 1, 2, (4.4.1a)

Âijµ (z) =

∫
T2×R2

d4x ψi
†
(x; z)ixµψ

j(x; z), µ = 0, 3, (4.4.1b)

where ψi(x; z), i = 1, 2 . . . k are again zero modes of Weyl operator D†z(A). The inverse
Nahm transform takes a similar form

Apqµ (x) =

∫
T̂2

d2z ψp†(z;x)
∂

∂xµ
ψq(z;x), µ = 0, 1, 2, 3 (4.4.2a)

where ψp(z;x), r = 1 . . . N are the zero modes of Weyl operator D†x(Â).

We can reduce the dimension of the self-duality equation to the Hitchin equations, then
we have the following on T̂2: [

Dy, Φ̂
]

= 0, (4.4.3a)

F̂yȳ =
[
Φ̂, Φ̂†

]
= [Dy, Dȳ] , (4.4.3b)

where we introduce complex coordinates y = z1 + iz2 and covariant derivative DȳΦ̂ =

∂ȳ +
[
Âȳ, Φ̂

]
. Here we defined complex Nahm potential Ây = 1

2(Â1 − iÂ2) and formed a

complex “Higgs” field out of the remaining Nahm potential components Φ̂(z) = 1
2(Â0−iÂ3)

corresponding to “frozen” coordinates z0 and z3.

We will also introduce a pair of complex coordinates in base manifold T2 × R2 using
xµ such that

x⊥ = x0 + ix3, x‖ = x1 + ix2, (4.4.4)

where x⊥ lies in the non-compact plane R2 whilst x‖ lies in the plane of T2, together them
form the complete coordinates for R2 × T2. Thus, on the base manifold we can define
complex gauge potentials Ax‖ = 1

2 (A1 − iA2), Ax⊥ = 1
2 (A0 − iA3) and their respective

complex conjugates.

We start by recalling the problem of finding a charge one SU(N) gauge potential can
be mapped to finding a charge N U(1) gauge potential on the dual manifold by Theo-
rem 1. Abelian problems are generally more tractable than non-abelian problems and to
recover the original solution we simply apply the inverse Nahm transform. For simplicity,
we take the trivial solution F̂µν = 0 where Φ̂ = 0 which corresponds the radially symmetric
Â. By the Hitchin equations, we can take the Nahm potential Ây to have N simple poles
located at ωi, i = 1 . . . N . The ansatz is given be

Ây = ∂yφ, Âȳ = −∂ȳφ, (4.4.5)

for some complex potential φ. This choice of Â gives the dual field strength

F̂yȳ = −2∂y∂ȳφ = 0. (4.4.6)
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As φ is the solution to Laplace’s equation in C, it is then harmonic with except at the N
simple poles. We consider φ satisfying

−∇2
zφ = −2π

N∑
i=1

κiδ
2(z − ωi), (4.4.7)

where ωi are the position of the poles and κi are N constants. Physically, we can consider
this system as N Aharonov-Bohm fluxes threading through T̂2 where the strength of fluxes
are given by κi. In the case of doubly periodic instantons, we have the addition constraint
that

N∑
i=1

κi = 0, (4.4.8)

to ensure periodicity of Â. We enforce 0 < κi < 1 as it is possible to apply a gauge
transformation to such that the condition holds. Unlike the case of periodic monopoles,
the inverse Nahm transform does not completely remove the singularity of the fluxes in Ây
and Âȳ. This means we need to align the poles of Higgs field Φ [49] in dual manifolds with
the Nahm potential Ây such that only N poles exist, and a SU(N) instanton is produced.
In the simpler case of SU(2), we enforce the poles of Higgs field and Nahm potential are
proportional

κΦ̂ = α∂ȳφ, (4.4.9)

where α is a complex constant. Substitute these components into the Weyl operator to
arrive at the Weyl operator

− i

2
D†x =

(
1
2 x̄⊥ + iακ−1∂ȳφ ∂y + ∂yφ− i

2 x̄‖
∂ȳ − ∂ȳφ− i

2x‖
1
2x⊥ − iα̂κ

−1∂ȳφ

)
, (4.4.10)

where we need to find 2 of its zero modes to construct a SU(2) instanton corresponding
to our Nahm potential (4.4.5). The SU(2) gauge potential ansatz can be given by

Ax⊥ = −τ3

2
∂x⊥ log ρ+ 2πi(τ1 − iτ2)κρ∂x̄‖

ν∗

ρ
, (4.4.11)

and similarly for Ax‖ . In the case of radially symmetric solutions, α = 0, self duality
equation (2.1.12) can be written as

(∂x‖∂x̄‖ + ∂x⊥∂x̄⊥) log ρ+ (4πκρ)2

(
∂x‖

ν

ρ
∂x̄‖

ν∗

ρ
+ ∂x⊥

ν

ρ
∂x̄⊥

ν∗

ρ

)
= 0, (4.4.12a)

∂x⊥

(
ρ2∂x̄⊥

ν∗

ρ

)
+ ∂x‖

(
ρ2∂x̄‖

ν∗

ρ

)
= 0, (4.4.12b)

where ρ(|x⊥|) is a real function of |x⊥| and ν(x‖, |x⊥|) is a complex function such that
x‖ contribute in phase only. We will write ν(x‖, |x⊥|) = ν̃(x‖)V (|x⊥|) = e2iω·xV (|x⊥|),
where V (|x⊥|) is a real function or |x⊥|. Considering in the plane defined by x⊥ only, the
functions V and ρ are radially symmetric. The full T2 × R2 gauge potential can be given
in the form by Van Baal [50]:

Ax⊥ = −1

2

(
∂x⊥ρ

ρ 0

−8πiκρ∂x̄‖
ν∗

ρ −∂x⊥ρ

ρ

)
, Ax̄⊥ =

1

2

(
∂x̄⊥ρ

ρ 8πiκρ∂x‖
ν
ρ

0 −∂x̄⊥ρ

ρ

)
, (4.4.13)

and field strength as

Fx⊥x̄⊥ =

(
∂x⊥∂x̄⊥ log ρ+ (4πκρ)2∂x‖

ν
ρ∂x̄‖

ν∗

ρ −4πiκρ∂x‖∂x⊥
ν
ρ

4πiκρ∂x̄‖∂x̄⊥
ν∗

ρ −∂x⊥∂x̄⊥ log ρ− (4πκρ)2∂x‖
ν
ρ∂x̄‖

ν∗

ρ

)
.

(4.4.14)
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Chapter 5

Solutions to the Hitchin Equations

In this chapter, we will be considering solutions to the Hitchin equations using the Nahm
transform following the same convention as Section 4.4. Solutions to the Hitchin equa-
tions can be considered as large r = |x⊥| limit of the doubly periodic instantons. This
limit can be achieved equivalently by considering the limit of L1, L2 → 0 where L1, L2

are periods of x1, x2 respectively. In this limit, the dependency of x‖ only constitutes to
a phase, Ax‖ “becomes” the Higgs field and condition (4.4.8) is dropped. For this limit
to exists, we need to perform gauge transformations such that x‖ dependence vanishes
and only constant constitution of the Higgs field remains. This formulation also can be
reached starting from doubly periodic instantons by applying the R2 variant of the Nahm
transformation where x⊥ and x̄⊥ are the complex conjugate coordinates over the plane.

In the Hitchin case, we have the added interests that it is closely related to two other un-
solved problems, the solutions to periodic monopoles and the Aharonov Bohm (AB) effect
[19]. As we will see, the Weyl zero mode equation in constructing solutions to the Hitchin
equations can be transformed via elementary functions to the Weyl zero mode equation
of the periodic monopole. The Nahm datum of SU(n) solutions to the Hitchin equations
have n simple poles which correspond to exactly n perpendicular infinite solenoids in the
dual manifold. Thus we can study the phase changes of charged particles moving in the
dual manifold under quantum mechanical influences of these solenoids which is the AB
effect.

We note that in the Hitchin case, the base manifold M and dual manifold M̂ are both R2

which means we do not benefit from the dimensional reduction properties of the Nahm
transform. As it is shown in [51], solutions to the Hitchin equations do not have finite
energy, thus cannot be classified as topological solitons. However in the R2 → R2 setting,
the Nahm transformation transforms between SU(n) gauge potential with k simple poles
and SU(k) gauge potential with n simple poles [16]. Thus to construct SU(n) solutions
with one simple pole, we take the Nahm potentials as abelian solutions with n simple poles
on the dual manifold. This is exactly the same Nahm potential for the doubly instantons
in Section 4.4.

Considering only in the x⊥ plane, we drop the ⊥ subscript and continue with complex
variable x. Start with the Weyl operator

− i

2
D†x =

(
1
2 x̄+ iακ−1∂ȳφ ∂y + ∂yφ
∂ȳ − ∂ȳφ 1

2x− iα̂κ
−1∂ȳφ

)
, (5.0.1)

and recall the Nahm data in dual manifold of charge one doubly periodic instantons.
For clarity of notation we denote the base manifold as R2 and Nahm transformed (dual)
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manifold as R̂2. In the complex plane setting, it is useful to explicitly write down the
Nahm and inverse Nahm transform over R2 in terms of complex variables. Let ψ̂p and ψi

be zero modes of Weyl operators D†x(Â) and D†z(A) respectively, we have

Âijy (y) =

∫
R2

d2x ψi†(x; y)
∂

∂y
ψj(x; y), (5.0.2a)

Apqx (x) =

∫
R̂2

d2y ψ̂p†(y;x)
∂

∂x
ψ̂q(y;x), (5.0.2b)

Recall that the Higgs field on the dual manifold R̂2, Φ̂ is defined by Φ̂ = 1
2

(
Â0 − iÂ3

)
.

We can equally define a complex “Higgs”1 in the base manifold R2 using the “frozen”
coordinates x1 and x2 as Φ = 1

2 (A1 − iA2) which can be obtained through (4.4.1b) to
have

Φ̂ij
y (y) =

∫
R2

d2x ψi†(x; y)ix̄ψj(x; y), (5.0.3a)

Φpq
x (x) =

∫
R̂2

d2y ψ̂p†(y;x)iȳψ̂q(y;x), (5.0.3b)

where we call Φ and Φ̂ as base Higgs field and dual/Nahm Higgs field respectively for
clarity.

This remainder of this chapter will be organised as follows, Section 5.1 and Section 5.2 will
consider the cases of U(1) the SU(2) solution to the Hitchin equations under zero Nahm
Higgs assumption respectively; Section 5.4 and Section 5.5 will consider case of non zero
Nahm Higgs field and draw correspondence to the periodic monopoles.

5.1 The U(1) Solution

The simplest Nahm data for the U(1) solution is a single flux φ = −1
2κ log(yȳ) at origin

of R2 with flux strength κ. Then the Nahm potentials are given by (4.4.5) as

Ây = − κ

2y
, Âȳ =

κ

2ȳ
. (5.1.1)

The Weyl operator becomes

− i

2
D†x =

(
1
2 x̄− iακ

−1 κ
2ȳ ∂y − κ

2y

∂ȳ + κ
2ȳ

1
2x+ iα̂κ−1 κ

2y

)
. (5.1.2)

In the case of zero Nahm Higgs field, α = 0 and we restore radial symmetry broken by
said Higgs field. The Weyl operator thus becomes

− i

2
D†x =

(
1
2 x̄ ∂y − κ

2y

∂ȳ + κ
2ȳ

1
2x

)
. (5.1.3)

Then the normalised zero mode ψ of above Weyl operator is, via Section A.1

ψ =
|x|
√

sin(πκ)

π

(
Kκ(r|x|)

|x|
x e

iθK1−κ(r|x|)

)
, (5.1.4)

1Φ is in fact the A‖ gauge potential when considering doubly periodic instantons.
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where y = reiθ. Only one zero mode exists and it is unique up to a constant phase eiγ .
Note that the above formula recovers the known special case κ = 1

2 [14], with a difference
of constant phase where

K 1
2
(z) = K− 1

2
(z) =

√
π

2z
e−z, (5.1.5a)(

ψ1

ψ2

)∣∣∣∣
κ= 1

2

=
e−r|x|√

2π|x|

(
r−

1
2x

eiθr−
1
2 |x|

)
. (5.1.5b)

To reconstruct the gauge potential in the base manifold R2, we use the inverse Nahm
transform (5.0.2) in polar coordinates where x = seiϑ to have

ψ†(r, θ; s, ϑ)
∂

∂s
ψ(r, θ; s, ϑ) =

s sinπκ

π2

(
(1− κ)Kκ(rs)2+

κK1−κ(rs)2 − 2rsK1−κ(rs)Kκ(rs)
)
.

(5.1.6)

Direct calculation yields that

As =

∫
R̂2

ψ†(r, θ; s, ϑ)
∂

∂s
ψ(r, θ; s, ϑ) r drdθ = 0. (5.1.7)

Consider the gauge potential component Aϑ, we fix the gauge by fixing the phase in the
zero mode solution to (5.1.4). Then,

ψ†(r, θ; s, ϑ)
∂

∂ϑ
ψ(r, θ; s, ϑ) = −isinπκ

π2
s2K1−κ(rs)2. (5.1.8)

Direct calculations thus yields

Aϑ =

∫
R̂2

ψ†(r, θ; s, ϑ)
∂

∂ϑ
ψ(r, θ; s, ϑ) r drdθ = −i(1− κ). (5.1.9)

Translating to Ax and Ax̄, gives gauge potential in complex coordinates as

Ax = −1− k
2x

, Ax̄ =
1− k

2x̄
. (5.1.10)

This is simply a gauge transform of the expected gauge potential

Ax =
κ

2x
, Ax̄ = − κ

2x̄
, (5.1.11)

which can be obtained by the same calculation with the zero mode eiϑψ or applying the
U(1) gauge transformation g = eiϑ. Thus the arbitrariness of phase in (5.1.4) corresponds
exactly to the U(1) gauge freedom of the gauge potential.

Comparing to (5.1.1), we can see that the Nahm transformed gauge potential retain the
form of Nahm potential. The introduction of minus sign in the gauge potential can be
interpreted as the reversal of the flux strength κ → −κ. It is worth noting that starting
with Nahm potential Ây = − κ

2(y−ω) where ω ∈ C is an arbitrary constant, the resulting

gauge potential is the same as (5.1.11). To obtain same correspondence of Nahm and
gauge potential of arbitrarily positioned flux we require the modified Weyl operator with
flux below

− i

2
D†x =

(
1
2(x̄− ω̄) ∂y − κ

2y

∂ȳ + κ
2ȳ

1
2(x− ω)

)
, φ = −1

2
κ log((y − ω)(ȳ − ω̄)), (5.1.12)

where the constant ω corresponds to the flux location.
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5.2 The SU(2) Solution

We will now focus on the case of SU(2) solution to the Hitchin equations. The Nahm
data for SU(2) solutions requires two simple poles. This can be achieved by two fluxes;
one of strength −κ located at y = ω and the other of strength κ located at y = −ω, where
ω ∈ C. Then Nahm data φ satisfies

−∇2
zφ = −2πκ(δ2(ω + z)− δ2(z − ω)), (5.2.1)

where the solution can be found as

φ =
1

2
κ log(|y − ω|2)− 1

2
κ log(|y + ω|2). (5.2.2)

−ω, κ

ω, −κ

z1

z2

Figure 5.1: Positions ±ω and flux strength ∓κ of solenoids on the dual torus

There are in fact no analytic solution known to the zero modes of the Weyl operator
with φ defined as above. Hence we consider the asymptotics of the Weyl operator D†x(Â)
as |y|2 →∞ and approximate the zero modes with respective single solenoid zero modes.
The zero mode of Weyl operator with a single positive flux y = −ω is ψ1 = ψκ(y + ω;x)
where

ψκ(y;x) =
|x|
√

sin(πκ)

π

(
Kκ(
√
yȳ|x|)

|x|
x

√
y
ȳK1−κ(

√
yȳ|x|)

)
. (5.2.3)

In the case of φ = 1
2κ log(yȳ), flux strength −κ, we have

− i

2
D†x =

(
1
2 x̄ ∂y + κ

2y

∂ȳ − κ
2ȳ

1
2x

)
, (5.2.4)

and via similar calculation to Section A.1 we have the normalised solution is

ψ−κ(y;x) =
|x|
√

sin(πκ)

π

(
|x|
x̄

√
ȳ
yK1−κ(

√
yȳ|x|)

Kκ(
√
yȳ|x|)

)
, (5.2.5)

which also extends to solution corresponding to a single flux at y = ω with ψ2 = ψ−κ(y−
ω;x). Hence in large |y|2 and |x|2 limit, Weyl zero modes are approximated as ψ1 and ψ2.
By introducing the set of coordinates definition

y1 = y + ω1 + iω2 = r1e
iθ1 , y2 = y − ω1 − iω2 = r2e

iθ2 , ω = ω1 + iω2, ω1, ω2 ∈ R,
(5.2.6)

we can check that orthonormality condition is satisfied via∫
R̂2

ψ†1ψ2 dydȳ =

∫
R̂2

|x|3 sin(πκ)

x̄π2

(
e−iθ2Kκ(r1|x|)K1−κ(r2|x|)

+ e−iθ1Kκ(r2|x|)K1−κ(r1|x|)
)
dydȳ = 0,

(5.2.7)
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by the fact that the integrand is odd under the exchange of y → −y.

Explicit value of off diagonal elements of Ax and Ax̄ can be found as via calculations
in Section A.2 as

A21
x = ω(κ− 1)e−2iϑ−2s|ω|

√
π

s|ω|
sin(πκ)

π
, (5.2.8a)

A21
x̄ = ωκe−2s|ω|

√
π

s|ω|
sin(πκ)

π
. (5.2.8b)

The opposite off diagonal elements A12 takes similar value where the full R2 gauge potential
approximation for large s are

Ax =

 −1−κ
2x ωκe−2s|ω|

√
π
s|ω|

sin(πκ)
π

ω(κ− 1)e−2iϑ−2s|ω|
√

π
s|ω|

sin(πκ)
π

1−κ
2x

 , (5.2.9a)

Ax̄ =

 1−κ
2x̄ ω(κ− 1)e2iϑ−2s|ω|

√
π
s|ω|

sin(πκ)
π

ωκe−2s|ω|
√

π
s|ω|

sin(πκ)
π −1−κ

2x̄

 . (5.2.9b)

The field strength is then approximated by

F 21
xx̄ = ∂x̄A

21
x − ∂xA21

x̄ + [Ax, Ax̄]21 =
sin(πκ)

π

√
π

s|ω|
ωe−iϑ−2s|ω|

(
|ω| − 1

4s

)
≈ sin(πκ)

π

√
π

s|ω|
ωe−iϑ−2s|ω||ω|,

F 12
xx̄ = ∂x̄A

12
x − ∂xA12

x̄ + [Ax, Ax̄]12 ≈ sin(πκ)

π

√
π

s|ω|
ωeiϑ−2s|ω||ω|,

(5.2.10)

for large s. Here we have F 12
xx̄ =

(
F 21
xx̄

)∗
and the diagonal elements of Fxx̄ are

F 11
xx̄ = ∂x̄A

11
x −∂xA11

x̄ +[Ax, Ax̄]11 = (2κ−1)ω2e−4s|ω| π

s|ω|
sin2(πκ)

π4
≈ O(e−4|ω|s), (5.2.11)

and F 22
xx̄ = −F 11

xx̄ . Note that it vanishes in case κ = 1
2 .

Note that we can remove that phase of e−iϑ in the expression in Fxx̄ using a double
valued gauge transform

g = e
1
2
iϑτ3 =

(
e

1
2
iϑ 0

0 e−
1
2
iϑ

)
, (5.2.12)

with the resulting gauge potential as

Ax =

 − 1
4x + κ

2x ωκe−iϑ−2s|ω|
√

π
s|ω|

sin(πκ)
π

ω(κ− 1)e−iϑ−2s|ω|
√

π
s|ω|

sin(πκ)
π

1
4x −

κ
2x

 , (5.2.13)

and similarly for Ax̄. Both application of gauge transform to the gauge potential and
applying below transformation directly to the Weyl zero modes,

ψ1 → e
1
2
iϑψ1, ψ2 → e−

1
2
iϑψ2, (5.2.14)

will transform away the effect of flux κ. i.e. the diagonal terms of gauge potential Ax
will become 0 when Ax is evaluated for κ = 1

2 . However, this have the interesting effect
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of varying the constant phase in the coefficients of leading order term in non-diagonals of
Ax, where the amount varied is the same as for the non-diagonal terms in Fxx̄.

If we instead take large argument approximation of Bessel functions at the Weyl zero
modes ψ1 and ψ2 directly, then carry through the same calculation we have different
gauge potential A

′

A
′21
x =

∫
R̂2

ψ2† ∂

∂x
ψ1 d2z = −ωe−2iϑ−2s|ω|

√
π

s|ω|
sin(πκ)

2π
, (5.2.15a)

A
′21
x̄ =

∫
R̂2

ψ2† ∂

∂x̄
ψ1 d2z = ωe−2s|ω|

√
π

s|ω|
sin(πκ)

2π
, (5.2.15b)

which are the previous gauge potentials evaluated at κ = 1
2 . The field strength component

F 21
xx̂ remains the same.

Consider the Nahm transform for base Higgs field Φ, since our zero modes ψ1,2 are dis-
placed from the origin by y = −ω and y = ω respectively, we have

Φ11
x =

∫
R2

ψ1†ψ1 i (r(cos θ + i sin θ)− ω) r drdθ = −iω, (5.2.16a)

Φ22
x =

∫
R2

ψ2†ψ2 i (r(cos θ + i sin θ) + ω) r drdθ = iω. (5.2.16b)

Consider the self duality equations, we have ?Fµν = Fµν and more specifically in the
Hitchin formulation,

Fxx̄ =
[
Φ,Φ†

]
. (5.2.17)

Assume the base Higgs field takes the same form as Ax and using form of Fxx̄ in (5.2.10),
we can find

Φx =

 −iω iωeiϕ−iϑ−2s|ω|
√

π
s|ω|

sin(πκ)
4π

−iωe−iϕ+iϑ−2s|ω|
√

π
s|ω|

sin(πκ)
4π iω

 , (5.2.18)

unique up to SU(2) and U(1) symmtries, where ω = |ω|eiϕ.

5.3 Successive Approximations

In view of finding exact analytic self dual solutions, we consider F 21
xx̄ computed in the

previous section as the first order approximations to the true solutions. In the radially
symmetric case of α = 0, Van Baal form of solution (4.4.14),(4.4.13) can be written in
terms of radially symmetric functions ν(s) and ρ(s). Since solutions are self dual, they
also satisfies (4.4.12). In the following we will continue the notation of s = |x| = |x⊥|, fix
F 21
xx̄ and Ax as in (5.2.10) and (5.2.9) respectively. Consider the simple first order ansatz

for ρ

ρ(s) =
C

st
, (5.3.1)

for arbitrary constant C and t. Substitution into the second self duality equation (4.4.12b)
yields the differential equation corresponding to modified Bessel functions

d2V

ds2
+

1

s

dV

ds
− V

(
t2

s2
+ 4|ω|2

)
= 0, (5.3.2)
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where the solution can be taken as V (s) = C1Kt(2s|ω|) by square integrable condition
with C1 arbitrary constant. Choosing

ν∗ =
1

2
sin(πκ)π−

3
2 e2iω·xe−2x|ω||ω|−

1
2 |x|−

1
2 , (5.3.3)

gives asymptotic form of F 21
xx̄ in (4.4.14) given in (5.2.10). Compare to asymptotic of

modified Bessel functions, we determine C1 = 1
π2 . Compare to the value of A11

x in Van
Baal form, we have the relation t = 2(1 − κ) where κ is the flux strength. The general,
first order approximation is then

ρ(s) =
C

s2(1−κ)
, ν∗ =

sin(πκ)

π2
e2iω·xK2(1−κ)(2s|w|). (5.3.4)

For the remainder of the section we will focus on the case κ = 1
2 as the index of modified

Bessel functions in ν∗ becomes integer which simplifies calculations. Physically, κ = 1
2

gives additional symmetries in the dual manifold as gauge potential is invariant under
Weyl reflection. In this specialism,

ρ(s) =
C

s
, ν∗ =

1

π2
e2iω·xK1(2s|w|). (5.3.5)

However this does not satisfies the first self-duality equation (4.4.12a). We can find the
sub leading terms of the functions ρ and ν∗ recursively using the method of successive
approximation through appropriate substitutions to (4.4.12). We expect the solution
takes the form

ρ(s) =
C

s

(
1 +O

(
e−4|w|s

)
+O

(
e−8|w|s

)
. . .
)
, (5.3.6a)

ν∗ =
1

π2
e2iω·xK1(2s|w|)

(
1 +O

(
e−4|w|s

)
+O

(
e−8|w|s

)
. . .
)
, (5.3.6b)

and the second order approximation to ρ(s) can be computed as

ρ(s) =
C

s

(
1 +K0 (2|w|s)2

)
. (5.3.7)

The explicit expression of ρ(s) to this order is only possible with special values of flux
strength κ such that index 2(1−κ) is either integer or half integer. These calculations are
shown more explicitly in Section A.3.

Figure 5.2: The function ρ(s) where C = |w| = 1 in first and second order approximations

The addition of K0(2|w|s)2 term in second order approximation of ρ(s) preserves the
asymptotic behaviour due its exponential decay ≈ O(e−4|w|s) but it introduces a harsher
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singularity as s → 0. We can apply the same operation to find O(e−6|w|s) correction of
ν∗. By considering the anstaz 1

π2 e
2iω·x (K1(2s|w|) + V (s)), we have second order ODE in

V (s)

d2V

dr2
+
dV

dr

(
−1

r
− 4|w|K0

K1

)
+

16|w|2K2
1

π2
+

16|w|2K2
0

π2
+

16|w|K0K1

π2r
= 0, (5.3.8)

which have solution in integral form

V (s) =

∫
1

sK2
1

(∫
−16

π2

(
|w|2sK4

1 + s|w|2K2
0K

2
1 + |w|K0K

3
1

)
ds

)
ds. (5.3.9)

This integral however does not have simple solutions in terms of modified Bessel functions
Kn with integer index. This suggests that the solutions should be written in terms of
special functions encapsulating Bessel functions as a special case as Kn simply does not
have the right structure to satisfy the equations. Since we are able to compute ρ(s) and
ν∗(s) to orders of O(e−4|ω|s) and O(e−2|ω|s) respectively, it is expected that the exact
solution can be written down explicitly.

5.4 Non Zero Higgs Field

Return to the case of U(1) solutions on R2 which has the corresponding Nahm potential
of single flux through the origin of R̂2, we consider the case of non-vanishing Nahm Higgs
field. The Weyl operator is given by

− i

2
D†x =

(
1
2 x̄−

iα
2ȳ ∂y − κ

2y

∂ȳ + κ
2ȳ

1
2x+ iᾱ

2y

)
, (5.4.1)

where the Nahm Higgs field is introduced as the constant α parameter. Considering the
operator

1

4
D†xDx =

(
1
2 x̄−

iα
2ȳ ∂y − κ

2y

∂ȳ + κ
2ȳ

1
2x+ iᾱ

2y

)(
1
2x+ iᾱ

2y −∂y + κ
2y

−∂ȳ − κ
2ȳ

1
2 x̄−

iα
2ȳ

)

=

((
1

2
x+

iᾱ

2y

)(
1

2
x̄− iα

2ȳ

)
−
(
∂y −

κ

2y

)(
∂ȳ +

κ

2ȳ

))(
1 0
0 −1

)
.

(5.4.2)

The zero modes ϕ of the operator D†xDx can be found by solving linear, second order PDE[(
∂y −

κ

2y

)(
∂ȳ +

κ

2ȳ

)
−
(

1

2
x+

iᾱ

2y

)(
1

2
x̄− iα

2ȳ

)]
ϕ = 0, (5.4.3)

with reconstruction equation to the zero modes of D†x as

ψ = D†x

(
ϕ
0

)
. (5.4.4)

Intuitively, we are expecting the gauge potential to take a similar form to (5.1.11). This is
due to the coupling of a Higgs field to the Nahm potentials does not remove the singularity
in R2. The singularity in R2 is expected to be of the same type as zero Higgs case. Hence,
we expect the augmented flux κ′ at the singularity to be more complex than a simple
reversal of sign. However, we should be able to determine it via the interactions of Nahm
Higgs field and flux in the dual manifold, which can be described in terms of κ and α.
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Under the change of variable 1
z̄ = − iα

ȳx̄ , 1
z = iᾱ

yx , we rescale and set the zero of second term
of equation (5.4.3) to be at z = −1, this gives(

∂z −
κ

2z

)(
∂z̄ +

κ

2z̄

)
ϕ =

1

4
|α|2

(
1 +

1

z

)(
1 +

1

z̄

)
ϕ. (5.4.5)

This equation appears to be a direct extension of the zero Nahm Higgs case (5.1.3), yet
it proves to be extremely difficult to find a normalisable solution. In fact, it has direct
correspondence to the another class of solutions known as periodic monopoles.

5.5 Outlook to Periodic Monopoles

Periodic monopoles as name suggests are solutions to the Bogomolny equation which is
periodic in one its non static components, hence the solutions exist on S×R2 and the dual
manifold is Ŝ×R. In consistency with the Nahm transform for the Hitchin equations, we
set the non-compact coordinates to be x0 and x3. We also set x1 to be zero to represent
static solutions. Again defining complex coordinates x⊥ = x0 + ix3 on the base manifold
and enforcing periodicity in x2. On the dual manifold Ŝ×R with coordinates (z1, z2), we
define complex coordinates y = z1 + iz2 with gauge potential Ây = 1

2(Âz1 − iÂz2) and

dual Higgs field Ψ = 1
2(Âz0 − iÂz3). Then the Weyl Operator formed by taking Ây = 0

becomes [49]
i

2
Dx =

(
−1

2x⊥ −Ψ(y) ∂y − a
2

∂ȳ + a
2 −1

2 x̄⊥ − Ψ̄(y)

)
, (5.5.1)

where a is x2. For general SU(2) periodic monopoles, the dual Higgs field Ψ(y) =
λ sinh(βy)[16] where λ ∈ C and β corresponds to the period of x2 coordinate in the
base manifold. In the case of abelian (Dirac) monopoles, we take the Higgs field to be
Ψ = 1

2e
y by setting β = 1 and discard λ as it is not a required parameter in the Nahm

data. Then we have

1

4
D†xDxϕ =

(
−
(
∂y −

a

2

)(
∂ȳ +

a

2

)
+

1

4
(ey + x⊥)

(
eȳ + x̄⊥

))
ϕ = 0. (5.5.2)

Considering the transformation z = ey, z̄ = eȳ, we have the following zero mode equation

|z|2
(
−
(
∂z −

a

2z

)(
∂z̄ +

a

2z̄

)
+

1

4

(
1 +

x⊥
z

)(
1 +

x̄⊥
z̄

))
ϕ = 0. (5.5.3)

Compare with equation (5.4.3), we see that they are almost identical. The relation of κ
with a and α with x⊥ suggest a correspondence between the position of periodic monopoles
and strength of fluxes in the solutions of the Hitchin equations. Indeed on the line x⊥ = 0,
normalisable solution to (5.5.2) can be found in similar form as (5.1.4). The physical Higgs
field in S × R2 can also be found using the Nahm transform. For x⊥ 6= 0, the problem
remains unsolved as solution to (5.4.3) would be simple corollary of solution to periodic
monopoles.
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Chapter 6

Conclusions

6.1 Summary

In this project, we considered solutions to the Hitchin equations using the Nahm trans-
form where the Nahm potentials are taken as abelian in the dual manifold. In Chapter 2
and Chapter 3 we reviewed the topological and dynamical features of instantons and
monopoles. Topological charge and self-duality equations (Bogomolny equations) are pre-
sented for both classes of topological solitons. The derivation of the Hitchin equations
from the self-duality equation of the Pure Yang-Mills action is also presented. The central
transformation of the project is the Nahm transform which is discussed in Chapter 4.
Here we outline the operational rules of the Nahm transform, its property of inverting the
periods of the base four torus, as well as the interchange of topological charge k and gauge
group SU(n). We also reviewed the doubly periodic instantons to motivate the study of
the Hitchin equations using the Nahm transform.

In the Hitchin case, we have the added interest of other unsolved problems, for exam-
ple, the AB effect of twin fluxes and the periodic monopoles. They are closely related to
the Weyl zero modes equation in the inverse Nahm transform. The main results of this
thesis are derived in Chapter 5. In Section 5.1, we considered U(1) solutions of the Hitchin
equations where Nahm potential corresponds to a single flux of arbitrary strength (modulo
gauge transform) through the origin of R2, with zero Nahm Higgs. The expected form of
the corresponding gauge potential is verified for arbitrarily shifted flux. We found that
the gauge potential gains a minus sign from the corresponding Nahm potential which can
be considered as the flipping of flux strength. In Section 5.2, we consider SU(2) solutions
of the Hitchin equations where the Nahm potentials correspond to two fluxes located ω
and −ω away from the origin, again with zero Nahm Higgs. The two Weyl zero modes are
approximated via their asymptotic behaviour at infinity to be zero modes of single flux
translated to the two flux locations. The resultant gauge potential and field strength in
this approximations are computed explicitly. We also note correspondences of symmetries
and ambiguities in the base and dual manifold under Nahm transform. In Section 5.3, the
method of successive approximation is used in attempts to find the exact SU(2) gauge
potentials corresponding to Nahm potentials defined in Section 5.2. Spherically symmetric
functions ρ and ν introduced in the Van Baal form of gauge potential were approximated
to the order of O(e−4|ω|s) and O(e−2|ω|s) respectively. Section 5.4 and Section 5.5 consider
the case of non zero Nahm Higgs field by introducing the α parameter in the Weyl opera-
tor. We showed via elementary transformation the similarity of Weyl zero mode equations
of the Hitchin case and periodic monopoles.

31



6.2 Applications to Doubly Periodic Instantons

Here we present an application of the results from the solutions to the Hitchin equations
in Chapter 5. In the large |x⊥| limit of SU(2) doubly periodic instantons considered in
Section 4.4, gauge potential of the x⊥ plane, Ax⊥ can be approximated by the solutions
to the Hitchin equations. Using the result (5.2.10) we can approximate the action density
of doubly periodic instanton in large |x⊥| limit as

− 1

2
TrFµνF

µν ≈ 32|ω|3

sπ
e−4s|w| sin(πκ)2, (6.2.1)

where the effect of flux strength κ enters in terms of sin(πκ)2 coefficient in the exponential
decay. A more accurate approximation of Ax⊥ can be computed with radially symmetric
functions ρ and ν∗ in (5.3.4). We find action density under this approximation as

− 1

2
TrFµνFµν ≈

128|ω|3

π2
K2

2(1−κ)(2|ω|s) sin(πκ)2. (6.2.2)

Figure 6.1: The action density − 1
2
FµνFµν where κ = 1

2
, |w| = 1 in asymptotic (6.2.1) and first order (6.2.2)

approximations

These two approximations retain the same asymptotics as expected from large ar-
gument limits of modified Bessel functions while the first order approximation produces
stronger singularity as s→ 0. These action densities are more general formulas from that
presented in [14] which has the specialism κ = 1

2 .

6.3 Remarks

Due to time constraints, we were unable to finish some of the more difficult calculations.
Certain intriguing observations were not investigated fully. One of said observations that
is worth investigating is the correspondence of Higgs flux parameter α in the Hitchin case
with the absolute value of the position |x⊥| in the periodic monopoles. The moduli spaces
of these classes of solutions are also worth investigation as they hold non-trivial topology
and geometry mirroring the spaces of gauge potentials modulo gauge transformations. For
calculation intractable in the physical system, one can turn to the approximation in the
moduli spaces similar to the scattering equations [52, 53]. The same approach of using the
Nahm transform can also be applied to other manifolds, for instance, the spatially peri-
odic instantons[54] which exists on T3×R or doubly periodic monopoles. Nahm transform
of these limits of T4 and their dual manifolds are generally known but the technicality
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of executing these calculations (finding zero modes of Weyl operator and performing the
Nahm transform) can be extraordinarily difficult.

For an alternative treatment of solutions to the Hitchin equations, we direct the reader to
a recent publication by Ward [55]. The asymptotics of the base Higgs field under consid-
eration is non-constant; more precisely, determinant of Φ is a polynomial of degree n > 0
in terms of complex variable x of base manifold. For n = 1, 2, rotational symmetrical
solutions, the associated Hitchin equations became can be solved in terms of Painlevé
transcendents. n = 3 case was also investigated by Ward where the singularities of the
solutions are approximated by asymptotic metric in the moduli spaces. It is not yet clear
the connection of this thesis and the paper by Ward but it will be investigated in the
future.

33



Appendix A

Appendix

A.1 U(1) Solution

To find zero mode of (5.1.3) we note that

1

2
x̄ψ1 +Dyψ2 = 0,

1

2
xψ2 +Dȳψ1 = 0, (A.1.1)

where ψ =

(
ψ1

ψ2

)
is the zero mode of (5.1.3), Dy = ∂y − κ

2y and Dȳ = ∂ȳ + κ
2ȳ . We

notice that Dy and Dȳ commutes and we have ψ1 and ψ2 satisfying the same second order
differential equation

DyDȳψ1,2 −
1

4
|x|2ψ1,2 = 0, (A.1.2)

with vanishing condition at spatial infinity. Considering the problem in complex polar co-
ordinates where y = reiθ and ȳ = re−iθ, we have differential operators in polar coordinates

∂y =
e−iθ

2

(
∂r −

i

r
∂θ

)
, ∂ȳ =

eiθ

2

(
∂r +

i

r
∂θ

)
, (A.1.3)

and (
1

r
∂r + ∂2

r +
1

r2
∂2
θ −

2iκ

r2
∂θ −

κ2

r2
− |x|2

)
ψ1,2 = 0. (A.1.4)

We can seek separable solutions in form of ψ1,2 = A1,2Θ(θ)R(r) where Θ(θ) is periodic
with period 2π. Take Θ(θ) = einθ with n ∈ Z and we have following ordinary differential
equation for R(r)

d2R

dr2
+

1

r

dR

dr
−R

(
(n− κ)2

r2
+ |x|2

)
= 0. (A.1.5)

This has solution in term of modified Bessel functions Kν(x) [56]

R = C1I(n−κ)(r|x|) + C2K(n−κ)(r|x|), (A.1.6)

where

Kκ(x) =
π

2

I−κ(x)− Iκ(x)

sinπκ
. (A.1.7)

Since we are seeking normalisable solutions, we have C1 = 0 and the solution becomes

ψ1,2(r, θ) = ein1,2θK(n1,2−κ)(r|x|), (A.1.8)

where it satisfies (A.1.1). To find the particular solution, take n1 = 0 for radially invariant
solution and

ψ1 = K−κ(r|x|) = Kκ(r|x|). (A.1.9)
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ψ2 satisfies
(
∂ȳ + κ

2ȳ

)
ψ1 + 1

2xψ2 = 0. Using the Bessel function identity

z
d

dz
Kν(z) + νKν(z) = −zKν−1(z), (A.1.10)

to have

ψ =

(
Kκ(r|x|)

|x|
x e

iθK1−κ(r|x|)

)
, (A.1.11)

as κ ∈ (0, 1) via gauge transform. Normalisation means that

〈ψ,ψ〉 =

∫
R×R

(
|ψ1|2 + |ψ2|2

)
r drdθ

= 2π

∫ ∞
0

r
(
|Kκ(r|x|)|2 + |K1−κ(r|x|)|2

)
dr

=
2π

|x|2

(
πκ

2 sin(πκ)
+

π(1− κ)

2 sin((1− κ)π)

)
=

π2

|x|2 sin(πκ)
,

(A.1.12)

by the standard integral equality∫ ∞
0

xKν(ax)Kν(bx)dx =
π(ab)−ν(a2ν − b2ν)

2 sin(νπ)(a2 − b2)
. (A.1.13)

Or alternatively by below calculation. Noting

Kν(z) =
1

2

(z
2

)ν ∫ ∞
0

e−t−
z2

4t

tν+1
dt. (A.1.14)

Write ∫ ∞
0

xpKν(x)2dx =
1

4

∫ ∞
0

(x
2

)2ν
xpdx

∫ ∞
0

e−t−
x2

4t

tν+1
dt

∫ ∞
0

e−s−
x2

4s

sν+1
ds. (A.1.15)

Substitution of z = x2
(

1
4t + 1

4s

)
gives∫ ∞

0
xpKν(x)2dx =

1

4

2−p
2
∫ ∞

0
zν+ p

2
− 1

2 e−zdz

∫ ∞
0

∫ ∞
0

e−t−s

(st)ν+1

(
st

t+ s

)ν+ p
2

+ 1
2

dsdt

=
1

4

2−p
2

Γ(ν +
p

2
+

1

2
)

∫ ∞
0

∫ ∞
0

e−t−s

(st)ν+1

(
st

t+ s

)ν+ p
2

+ 1
2

dsdt.

(A.1.16)

Use the substitution x2 = s, y2 = t, x = r cos θ and y = r sin θ to have∫ ∞
0

xpKν(x)2dx =
1

4

2−p
2

Γ(ν +
p

2
+

1

2
)

∫ π
2

0
dθ

∫ ∞
0

dr 4r(r2 cos θ sin θ)pr−2ν−p−1e−r
2

=
1

4

−p
2

Γ(ν +
p

2
+

1

2
)

∫ π
2

0
dθ (cos(θ) sin(θ))p

∫ ∞
0

r2p+1−2ν−p−1e−r
2

=
1

4

1− p
2

Γ(ν +
p

2
+

1

2
)Γ(

p

2
+

1

2
− ν)B(

p+ 1

2
,
p+ 1

2
)

=
1

4

1− p
2

Γ(ν +
p

2
+

1

2
)Γ(

p

2
+

1

2
− ν)

(
Γ(p+1

2 )2

Γ(p+ 1)

)
,

(A.1.17)

which is the desired result. A related, useful result via similar calculation is∫ ∞
0

xpKν(x)Kν−1(x)dx =
1

4

1− p
2

Γ(ν +
p

2
)Γ(

p

2
+ 1− ν)

(
Γ(p2)Γ(p2 + 1)

Γ(p+ 1)

)
. (A.1.18)
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A.2 SU(2) Solution Asymptotics

For off diagonal elements, consider A21
x , using ψ1, ψ2 as defined in Section 5.2 we have

∂xψ
1
1 =

e−iϑ
√

sin(πκ)

2π
((1− κ)Kκ(r1s)− r1sKκ−1(r1s)) , (A.2.1a)

∂xψ
1
2 =

e−2iϑ+iθ1
√

sin(πκ)

2π
((κ− 1)K1−κ(r1s)− r1sKκ(r1s)) , (A.2.1b)

and

A21
x =

∫
R̂2

ψ2† ∂

∂x
ψ1d2z =

se−2iϑ sin(πκ)

2π2
(I1 + J1) , (A.2.2)

where

I1 =

∫
R̂2

eiθ2K1−κ(r2s) ((1− κ)Kκ(r1s)− r1sKκ−1(r1s)) d
2z, (A.2.3a)

J1 =

∫
R̂2

eiθ1Kκ(r2s) ((κ− 1)K1−κ(r1s)− r1sKκ(r1s)) d
2z. (A.2.3b)

Similarly for

A21
x̄ =

∫
R̂2

ψ2† ∂

∂x̄
ψ1d2z =

s sin(πκ)

2π2
(I2 + J2) , (A.2.4)

where

I2 =

∫
R̂2

eiθ2K1−κ(r2s) ((1− κ)Kκ(r1s)− r1sKκ−1(r1s)) d
2z, (A.2.5a)

J2 =

∫
R̂2

eiθ1Kκ(r2s) ((κ+ 1)K1−κ(r1s)− r1sKκ(r1s)) d
2z. (A.2.5b)

Utilising

Kν(z) =

√
π

2z
e−z

[
n−1∑
k=0

1

(2z)k
Γ(ν + k + 1

2)

Γ(ν − k + 1
2)

+ θ3
Γ(ν + n+ 1

2)

(2z)nn! Γ(ν − k + 1
2)

]
, (A.2.6)

and considering asymptotic as z →∞, we have the following approximation

I1 =
π

2s

∫
R̂2

eiθ2e−s(r2+r1)

[
(1− κ) r

− 1
2

1 r
− 1

2
2 − sr

1
2
1 r
− 1

2
2

]
d2z, (A.2.7a)

J1 =
π

2s

∫
R̂2

eiθ1e−s(r2+r1)

[
(κ− 1) r

− 1
2

1 r
− 1

2
2 − sr

1
2
1 r
− 1

2
2

]
d2z. (A.2.7b)

And similarly for I2 and I2. For large s, the integral of e−s(
√
y1ȳ1+

√
y2ȳ2) over C of is

localised in the line segment connecting −ω and ω. Hence integrals over R2 including
these terms can be seen as integrals over the line segment −ω < z < ω. Assuming z2

small,

e−s(
√
y1ȳ1+

√
y2ȳ2) ≈ e−2s|a|e

−s
(

z22
2|z1+a|+

z22
2|z1−a|

)
. (A.2.8)

Noting the Gaussian integral
∫∞
∞ e−s

2ωds =
√

π
ω and in the case ω ∈ R, we have

e−2s|ω|e
−s

(
z22

2|z1+ω|+
z22

2|z1−ω|

)
= e−2s|ω|e

− sz22 |ω|
ω2−z21

≈ e−2s|ω|δ(z2)

√
π(ω2 − z2

1)

s|ω|
,

(A.2.9)
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under integration. Thus we apply affine transformation to the dual manifold R̂2 coordi-

nates such that ω ∈ R. Noting that the terms r
1
2
1 r
− 1

2
2 eθ2 and r

1
2
1 r
− 1

2
2 eθ1 takes opposite

values for z = z1 + iz2 on the line segment joining the fluxes, we have

I1 + J1 ≈
π

2s

∫
`
e−2s|ω|δ(z2)

√
π(ω2 − z2

1)

s|ω|

[
eiθ2 (1− κ) r

− 1
2

1 r
− 1

2
2 + eiθ1 (κ− 1) r

− 1
2

1 r
− 1

2
2

]
d2z

=
π

2s

∫ ω

−ω
e−2s|ω|

√
π(ω2 − z2

1)

s|ω|

[
(κ− 1) r

− 1
2

1 r
− 1

2
2 + (κ− 1) r

− 1
2

1 r
− 1

2
2

]
dz1

=
π

2s
e−2s|ω|

∫ ω

−ω

√
π(ω2 − z2

1)

s|ω|

[
2(κ− 1)(ω2 − z2

1)−
1
2

]
dz1

=
π

s
e−2s|ω|ω(κ− 1)

√
π

s|ω|
,

(A.2.10)

which give the require result. One can employ similar technique to have explicit analytic
form of A12

x̄ as

A12
x̄ =

∫
R̂2

ψ1† ∂

∂x
ψ2 r drdθ =

sei2ϑ sin(πκ)

2π2
(I + J) ≈ ω(κ− 1)e2iϑ−2s|ω|

√
π

s|ω|
sin(πκ)

π
,

(A.2.11a)

I =

∫
R2

e−iθ1K1−κ(r1s) ((1− κ)Kκ(r2s)− r2sKκ−1(r2s)) r drdθ, (A.2.11b)

J =

∫
R2

e−iθ2Kκ(r1s) ((κ− 1)K1−κ(r1s)− r2sKκ(r2s)) r drdθ. (A.2.11c)

A.3 Successive Approximations

Calculations for O
(
e−4|w|r) correction of ρ(s) in (5.3.7). Consider (4.4.12a), we substitute

for ρ the anstaz ρ(s) = 1
s + f(s) to give

∂x⊥∂x̂⊥ log ρ = −4ρ2

π2

(
s2K2

1 |w|2

(1 + f(s))2
+ ∂x⊥

sK1e
−2iw·x

(1 + f(s))2
∂x̂⊥

sK1e
2iw·x

(1 + f(s))2

)
= − 4

π2s2

(
s2K2

1 |w|2 +
s2

4

(
K2

1 (f ′)2

+ 4|w|(f + 1)f ′K0K1 + 4|w|2(f + 1)2K2
0

))
.

(A.3.1)

Assuming f(s) ≈ O
(
e−4|w|s), we ignore higher order terms and the equation reduces to

1

4

(
∂2
r +

1

r
∂r

)
log ρ = − 4

π2

(
K2

1 |w|2 +K2
0 |w|2

)
. (A.3.2)

Solving this equation which is first order in ∂r(log ρ) noting Bessel function identity
(A.1.10) gives

log ρ = − 2

π2
K2

0 + C1 log s+ C2, (A.3.3)

which gives the desired answer with right degree of freedoms in its arbitrary constants.

In case of general κ ∈ [0, 1] as in (5.3.4), same analysis gives

1

4

(
∂2
r +

1

r
∂r

)
log ρ = −16κ2|ω|2 sin2(πκ)

π2

(
K2

2κ−1 +K2
2κ

)
, (A.3.4)
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where the solution

log ρ =

∫
32κ2|ω| sin2(πκ)

π2
K2

2κ−1(2|ω|s)K2
2κ(2|ω|s) ds+ C1 log s, (A.3.5)

can be explicitly written down only if κ = 1
2 by noting ∂xK

2
κ(x) = 2Kκ(x)(Kκ(x) −

Kκ−1(x))(κ− 1).

It is worthy noting that in case κ = 3
4 (or κ = 1

4 via a gauge transform) in (5.3.4),
we have

log ρ =
1

4π2
Ei(−4|ω|s) + C1 log s+ C2, (A.3.6)

where Ei(x) is the exponential integral defined as

Ei(x) = −
∫ ∞
−x

e−t

t
dt, (A.3.7)

which indeed has the correct exponential decaying factor. This specialism is not pursued
further due to complications of working with special functions of these types.
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