
Schemes in Lean

CO401J Project - Final Report

19th of June 2019

Imperial College London

Author
Ramon Fernández Mir

Supervisor
Prof. Kevin Buzzard

Second Marker
Dr. Zaniar Ghadernezhad

Abstract

In this report we present a formal definition of Grothendieck’s notion of a scheme [1, 01IJ]

using the Lean Theorem Prover and explain rigorously all the steps of the process.

https://stacks.math.columbia.edu/tag/01IJ

Acknowledgements

I would like to thank my supervisor, Kevin Buzzard, for giving me the opportunity to con-

tribute to this new era of mathematics and teaching me how to think like a mathematician.

His passion for mathematics and his determination to bring formal mathematics to the next

level have been key to the success of this project.

I am also thankful to the Lean community. Whenever I got stuck I knew I could simply

ask them and my question would rapidly be answered by very bright people who showed me

a genuine interest to move this project forward. In particular, I would like to mention two

undergraduate students here at Imperial, Kenny Lau and Chris Hughes, who not only are

incredibly talented and major contributors to the formalisation of mathematics in Lean but

also hugely helped setting up the foundations of this project.

Throughout this project, there have been a few good friends that have spent more hours

than they thought they ever would hearing about schemes and Lean. I thank Mart́ı, Aris

and Cristóbal for their patience and for these wonderful four years.

Finally, I would like to thank my family, especially my parents Ma Carmen and Juan Carlos,

and my siblings Èlia and Joan for their love and support throughout my degree.

Contents

1 Introduction 1

1.1 Formalising mathematics . 1

1.2 What is a scheme? . 2

1.3 Objectives . 3

1.4 Contributions . 4

1.5 Report layout . 5

2 Theorem Proving in Lean 6

2.1 Dependent type theory . 6

2.2 Language overview . 8

2.3 mathlib . 11

3 Schemes 13

3.1 Commutative algebra . 13

3.1.1 Localisation . 13

3.1.2 Local rings . 18

3.1.3 Gluing functions . 19

3.1.4 The spectrum of a ring . 21

3.2 Sheaf theory . 26

3.2.1 Presheaves . 27

3.2.2 Sheaves . 29

3.2.3 Stalks . 30

3.2.4 Bases . 33

3.2.5 Extensions . 36

3.3 Locally ringed spaces . 39

3.4 Affine schemes . 42

3.5 The type scheme . 49

4 Future Work 51

4.1 Spec-Γ adjointness . 51

4.2 Projective schemes . 52

5 Conclusion 54

Chapter 1

Introduction

1.1 Formalising mathematics

Mathematical proofs are normally written in natural language under the assumption that,

given enough time, every step could be spelled out as a logical formula. Then one could check

that each step is deduced from the previous ones following a simple set of rules. Computers

are particularly good at checking straightforward logical implications and, thanks to them,

it is no longer just an assumption but a reality.

The earliest work on computer-assisted theorem proving took place around the 1950s [2].

Back then, the focus was on completely automated theorem proving, by which we mean that

there is no user input while the theorem is being proved. There was a lot of interest in the

field of artificial intelligence, which had just been born, and, moreover, computers had very

primitive interactive features. For these reasons, it took some years until a more interactive

approach was taken. Introducing interaction was a big step forwards towards the aim of

formalising mathematics. The idea is to have a programming language to write proofs in a

style that resembles natural language and use the system as a proof assistant that checks the

steps. Automation still plays an important role and combining both philosophies is one of

the keys to the success of this field of research.

In 1967, De Brujin started the Automath project, which is a remarkable milestone [3]. He

used the idea that proofs can be seen as objects and formulas as types. To prove that a

formula is valid one needs to give a proof object of such type. The proof assistant acts then

as a type checker. This correspondence is known as the Curry-Howard isomorphism. Apart

from some exceptions such as Mizar or Isabelle/ZF, which are based on set theory, most of

the mainstream proof assistants such as Isabelle/HOL, HOL Light, Coq or Lean rely heavily

on type theory. The rest of this section is devoted to going through some of the biggest

achievements using these systems.

An interesting motivating story is that of the proof of the Kepler’s conjecture. Phrased simply,

it says that the most efficient way to pack oranges is to arrange them in hexagons. Thomas

Hales claimed to have proved it in 1998 [4]. It took a team of twelve experts about four

years to go through the proof only to conclude that they were pretty sure that it was correct.

A couple of years later, in 2005, an even more detailed proof was given and their concerns

were dropped so the proof was finally published [5]. At that point Hales had already started

1

the Flyspeck project, a collaborative project whose goal was to formally verify his proof. In

August 2014 he announced that the proof had been successfully verified using a combination of

Isabelle and HOL Light and it was accepted in 2017 [6]. This story illustrates how formalising

mathematics can play a role in the verification of controversial proofs. Another takeaway,

however, is that it is a highly nontrivial task and that there is a long road ahead of us if the

purpose is for the standard mathematician to adopt these technologies.

Both HOL Light and Isabelle/HOL are based on higher-order logic. The former was written

and is maintained by John Harrison. It stands out for having a remarkably small kernel

(about 400 lines of code) [7]. The latter is the most common extension of Isabelle’s logical

framework. Isabelle was created by Lawrence Paulson and a vast amount of mathematics

has been formalised using it. As of June 2019 there are 475 articles in Isabelle’s Archive of

Formal Proofs. As an example, a complete proof of Gödel’s incompleteness theorems is given

in [8].

Any historical review of formalised mathematics would be incomplete without mentioning

Georges Gonthier. He led the formalisation of two big theorems using the Coq proof assistant.

In 2008 he published a formal proof of the four-colour theorem, which says that any map (in

the cartographic sense) can be coloured using four colours [9]. Five year later, he and his team

finalised the formal proof of the odd order theorem [10]. This theorem says that every finite

group of odd order is solvable and is a major step forward towards the formalisation of the

classification of finite simple groups. Coq’s foundation is known as the Calculus of Inductive

Constructions, based on dependent type theory. These are important concepts that will be

introduced properly and discussed in section 2.1.

The last theorem prover to join the family has been Lean. The project was launched in 2013

by Leonardo de Moura at Microsoft Research. Lean appears after a thorough analysis of

the advantages and disadvantages of the proof assistants mentioned above. It aims at using

the many advantages of dependent type theory without jeopardizing automation. In a short

period of time, it has raised a lot of interest in the formal mathematics community and a

great example of that is mathlib. It is maintained by Jeremy Avigad, Reid Barton, Mario

Carneiro, Johan Commelin, Sébastien Gouëzel, Simon Hudon, Chris Hughes, Robert Y. Lewis

and Patrick Massot, and it has grown exponentially since its creation in 2017 (see section 2.3

for more details). Some papers on theorems formally verified in Lean have started to appear

such as the one written by Robert Y. Lewis on the p-adic numbers and Hensel’s lemma [11]

or the formalisation of the cap set problem [12] written by the author above together with

Sander R. Dahmen and Johannes Hölzl. Finally, it is worth pointing out that Lean is the

language chosen in the Formal Abstracts Project (https://formalabstracts.github.io/),

a project led by Hales with the mission of creating service to give formal statements of the

main theorems presented in papers in the philosophy of the QED manifesto [13].

1.2 What is a scheme?

The word scheme is used for the first time in the mid-1950s by Chevalley and Cartier in a

much more restricted sense. Their discussions inspired Grothendieck to start an incredibly

ambitious program whose goal was to establish general enough foundations for algebraic

geometry [14]. His work is gathered in several fascicles which compose Éléments de géométrie

2

https://formalabstracts.github.io/

algébrique, published between 1960 and 1967. The definition of a scheme (or rather, in his

notation, a prescheme) is definition 2.1.1 in Chapter 2 of the first volume [15]. A pure

mathematics student is typically introduced to the notion of a scheme in a Master’s level

algebraic geometry course. We will try to provide a, for now, superficial understanding of

the origin and importance of this definition.

A ring is, roughly speaking, a structure where we can perform addition and multiplication.

We may assume that multiplication is commutative. Given a topological space X, one can

consider all the continuous functions f : X → R and these form a commutative ring. An

algebraic study of this ring can be used to recognise geometric properties of X. With this idea

in mind, Grothendieck defined a geometric object Spec(R) such that its ring of ‘functions’

was isomorphic in a natural, yet not obvious, way to the ring R. This is the idea behind an

affine scheme and their importance relies on the fact that they can be put together to form

a category which, in a very specific sense, corresponds to the category of commutative rings.

Therefore, we can view the elements of a ring as ‘functions’, which might be intuitive in rings

such as C[x, y] but not so much in, for instance, Z. A nice way to think about it is to see

affine schemes are the geometric objects where we can do algebra, by which we mainly mean

solving equations [16]. A concept that appears frequently in many areas of mathematics

is that of locality. A manifold, for example, is a space where you can locally do calculus.

They were defined in the 19th century and are a great example of the power of this notion in

analysis. We would like to extend this principle to algebra. A scheme is a topological space

that can be covered by affine schemes, i.e. a space where we can locally do algebra.

Modern algebraic geometry is the study of schemes. Before Grothendieck, most of the theory

was built on algebraic varieties. Suppose we are working over C and p(x) ∈ C[x] then the

points a ∈ C where p(a) = 0 form a variety. In the language of schemes, one would instead

look at the prime ideals of C[x]/(p(x)). This simple change of approach already presents many

advantages. The polynomials p1(x) = x and p2(x) = x2 define the same variety, namely {0}.
However, they define different schemes, {(0)} and {(x)} respectively. Schemes are hence

more general than varieties and working in this framework is sometimes indispensable to

solve certain problems. A good example of this phenomenon are the Weil conjectures which

were one of the main motivations for Grothendieck to develop this new formalism. There

are many other notable theorems where scheme theory plays a fundamental role, especially

in Number Theory. As a matter of fact, Wiles’ proof of Fermat’s Last Theorem uses scheme

theory in a crucial way. Of course, understanding how is way beyond the scope of this report.

As we will see, we will struggle enough to simply define a scheme and make all the intuition

given above precise.

1.3 Objectives

The starting point of this project is the work done by Kevin Buzzard, Chris Hughes and

Kenny Lau on formally verifying parts of The Stacks Project [1]. In particular, they formalised

enough to give a definition of an object mathematically equivalent to a scheme. Along the

way, they realised that a lot of the machinery they needed had not been written in Lean

so they filled those gaps and made them available to the community by putting them in

mathlib, the Lean mathematical library, whose contents are summarised in section 2.3. They

also encountered many technical issues which, in some cases, were solved by brute force and

3

hence led to a very large codebase (almost 10000 lines of code) with fairly unmanageable parts.

The code can be found in https://github.com/kbuzzard/lean-stacks-project.

Having learnt from the mistakes made in that first attempt and with a better idea of how to

solve them, the objective of this project is to, starting from scratch, define a scheme in Lean.

This time the definition should be the one given in [1, 01IJ] in the same level of abstraction

without skipping any definition in the process. Moreover, the codebase should be cleaner and

more organised, finding better ways to tackle the numerous technical difficulties.

1.4 Contributions

This project gives the first complete formal definition of a scheme ever written in a theorem

prover. Even though a large amount of mathematics, including incredibly complicated results,

has been successfully formalised, we realised that often the focus was on the proofs rather than

the object themselves. The underlying objects tend to be graphs, groups or other elementary

objects. By formalising a highly complex object such as a scheme we have shown that the

field of formal verification is mature enough to handle modern abstract mathematics.

Regarding the objectives stated in the previous section, they have been satisfactorily accom-

plished. We give a list of the ways in which our project has improved its predecessor:

• The definition of a scheme is not only mathematically correct but also the standard

one, which we have achieved by introducing the concept of a locally ringed space. For

us, a scheme is a locally ringed space that is covered by affine schemes, which are also

locally ringed spaces (see section 3.5). Before, a scheme was defined as a topological

space with a sheaf of rings satisfying a property equivalent to being covered by affine

schemes.

• Our approach on localisation of rings has heavily simplified some of the main proofs.

This is explained in detail in section 3.1.1. Neil Strickland proposed three axioms to

characterise ring localisation and we use his predicate instead of the explicit construc-

tion throughout. Thanks to that, we avoid convoluted arguments about ‘canonically

isomorphic’ structures.

• The files are sensibly organised and the same naming convention is followed throughout.

By doing so, we provide a usable interface for any Lean user that would need to use our

definition of a scheme. For example, our work on sheaf theory, found in section 3.2.2, is

currently being used in the Perfectoid Spaces Project in which Kevin Buzzard, Patrick

Massot and Johan Commelin have given a formal definition of a perfectoid space, a con-

cept introduced by field medalist Peter Scholze in 2012. Their definition is publicly avail-

able in https://github.com/leanprover-community/lean-perfectoid-spaces/.

• Two pull requests have been merged into mathlib:

– We extended a basic result about group homomorphisms to additive groups (https:

//github.com/leanprover-community/mathlib/pull/947).

– We further extended the same result to ring homomorphims (https://github.

com/leanprover-community/mathlib/pull/951).

This project has been mentioned in three talks given by Buzzard:

4

https://github.com/kbuzzard/lean-stacks-project
https://stacks.math.columbia.edu/tag/01IJ
https://github.com/leanprover-community/lean-perfectoid-spaces/
https://github.com/leanprover-community/mathlib/pull/947
https://github.com/leanprover-community/mathlib/pull/947
https://github.com/leanprover-community/mathlib/pull/951
https://github.com/leanprover-community/mathlib/pull/951

• His talk Schemes in Lean in the 4th conference on Artifical Intelligence and Theorem

Proving which took place on April 11th 2019 (http://aitp-conference.org/2019/

slides/KB.pdf) was based on the development of this project.

• In his talk Mathematical objects in dependent type theory on May 29th 2019 at the

Big Proof workshop (http://wwwf.imperial.ac.uk/~buzzard/docs/buzzard_big_

proof2019.pdf) he used some of the issues encountered as examples.

• In May 30th 2019 he gave a talk for the 80th anniversary of the CNRS held by the CNRS-

Imperial Abraham de Moivre UMI (https://www.imperial.ac.uk/news/191573/cnrs-

imperial-umi-workshop-public-lecture-showcases/). It was titled The Future of

Mathematics and it briefly mentioned this project to show that it is possible to formalise

complex mathematical objects.

Finally, we believe that formally defining a scheme is an important achievement especially

since it had never been done before. We are currently in the middle of talks about writing

a paper essentially summarising this report as we think that it is a valuable experience to

share with the formal verification community.

1.5 Report layout

We diverge slightly from the standard layout. There is no ‘Evaluation’ section as, due to

the nature of this project, there are no meaningful performance metrics to be discussed.

Also, there is no existing work that we can directly compare to except from the previous

formalisation attempt. The main differences were already stated in section 1.4 and we will

highlight them as we encounter them in Chapter 3. That being said, we are aware of the

limitations which, in this case, fall under the ‘Future Work’ chapter.

The structure of this report is as follows. In Chapter 2 we introduce Lean both as a theorem

prover and as a programming language. We explain its underlying formalism, give an idea of

how to use it and summarise the contents of mathlib relevant to us. Chapter 3 contains the

mathematical development all the way to the definition of a scheme. Firstly we develop the

theory of ring localisations explaining our own particular approach and proving the results

needed. We also define Spec(R) and prove its main properties. We proceed by covering

the necessary sheaf theory including sheaves on bases and extensions. Finally, we define

locally ringed spaces, prove that Spec(R) has the structure of a locally ringed space and

present our definition of a scheme. Chapter 4 proposes a plan to properly test our API and

ensure its robustness. After that, we give some concluding remarks on the work done in

Chapter 5.

5

http://aitp-conference.org/2019/slides/KB.pdf
http://aitp-conference.org/2019/slides/KB.pdf
http://wwwf.imperial.ac.uk/~buzzard/docs/buzzard_big_proof2019.pdf
http://wwwf.imperial.ac.uk/~buzzard/docs/buzzard_big_proof2019.pdf
https://www.imperial.ac.uk/news/191573/cnrs-imperial-umi-workshop-public-lecture-showcases/
https://www.imperial.ac.uk/news/191573/cnrs-imperial-umi-workshop-public-lecture-showcases/

Chapter 2

Theorem Proving in Lean

In the sections that follow we provide a concise introduction to Lean. Chapter 3 includes a

considerable amount of code in Lean as well as references to Lean’s components. Our aim is

to provide enough background to be able to follow it. This chapter is based on the two main

references for programming in Lean: Theorem Proving in Lean [17] and The Lean reference

manual [18]. Other references where some ideas and examples in this chapter come from are

[19] and Chapter 2 of [20].

2.1 Dependent type theory

One of the core ideas of Lean’s underlying formalism is Martin-Löf’s intuitionistic type theory.

It is an alternative foundation of mathematics based on constructivism. In order to give a

proof, one needs to provide a ‘witness’ so, essentially, proofs by contradiction are not allowed.

His initial formulation introduces dependent types which are, loosely speaking, types that take

other types as inputs [21]. For example, suppose we wanted to define the type list. We

would like to be able to write list N for the type of lists of natural numbers and list R for

the type of lists of real numbers. Now, what would be the type of a function like reverse that

takes a list of any type and reverses it? This can be expressed in the language of dependent

type theory as the pi type Π α : Type, list α → list α.

From this idea, a whole family of dependent type theories was born. Lean is based in one of

them, known as the Calculus of Inductive Constructions. It is the same formalism as Coq’s

and is the most expressive in the family of typed lambda calculi by combining polymorphism,

dependent types and datatypes. Type theory is a very rich area with many interesting

subtleties and we refer the reader to [22] for a formal approach. Instead, we will focus on the

case of Lean.

In Lean’s Calculus of Inductive Constructions, types are first-class citizens. That means that

not only every term has a type but also every type has a type. There are fundamentally two

ways to define types:

• Building a pi type. If A and B are types, we can define the type Π x : A, B, where x

might appear freely in the type B. If it does not, we write A → B.

6

• Inductively by specifying its constructors. The canonical example is the definition of

the type for natural numbers.

inductive nat : Type

| zero : nat

| succ : nat → nat

When a definition such as the one above is given, Lean generates a recursor which, in

this case, would be the principle of mathematical induction. There is an important class

of inductive types, which are those with only one constructor and are given a special

keyword: structure. Consider the following definition.

inductive nat_pair : Type

| mk (fst : nat) (snd : nat) : nat_pair

It does not use recursion in any way which justifies why this notation is introduced.

structure nat_pair :=

(fst : nat) (snd : nat)

A notion that has been mentioned but not properly introduced is that of a term. We use the

word term for any language construct, or expression, that can be typed. We split them into

four groups: types, constants, lambda abstractions and applications.

Types. As we said, types are first-class citizens. In the example above, for instance, nat has

type Type. But we should also be able to give Type a type. This is achieved by providing

a hierarchy of universes. More concretely, Type has type Type 1, Type 1 has type Type 2

and so on. By definition, a type in Lean is an expression of type Sort u for some universe

u. There are two special kinds:

• The type of propositions Prop := Sort 0. This is the type where logical formulas live

in. For example, call the following expression FLT.

∀ n : N, n ≥ 3 → ¬(∃ x y z : N, x^n = y^n + z^n ∧ x * y * z 6= 0)

It has type Prop. If we manage to find a term p : FLT we will have proved Fermat’s

Last Theorem in Lean! This exemplifies the proposition-as-types correspondence. In

this context, terms of a type P : Prop are called proofs. Lean does not distinguish

between proofs of the same proposition, we say that Prop is proof-irrelevant. Another

particularity is that any type defined using types in Prop is of type Prop, known as

impredicativity. As we will see shortly, this does not happen as we go higher in the

hierarchy. The expression Π P : Prop, P → P has type Prop because we, and Lean,

think of it as ∀ P : Prop, P → P, a data-less (second-order) logical formula i.e. a

proposition.

• The type Type := Sort 1 and, in general, Type u := Sort (u+1). If t is of a type

T : Type u we think of it as data. In comparison with Prop, terms behave quite

differently. Both 3 and 5 have type nat but they are certainly not equal in the eyes of

7

Lean. Moreover, universe levels might change. For example, the type of Π T : Type

u, T → T has to be Type (u+1) to avoid paradoxes.

Constants. For any type T, we can add a constant c of type T into the language by writing

constant c : T. Constants are sometimes added behind the scenes. For instance, when we

defined nat, nat.zero automatically became a constant of type nat.

Lambda abstractions. Suppose A and B are types. If b : B is a term, possibly with a free

variable x of type A, then λ x : A, b is a term. Its type is Π x : A, B.

Applications. Instead, assume f : Π x : A, B and a : A. Then we can combine them

to obtain the term f a, of type B.

As a final remark, note that it is inferred from our discussion about Prop that any combination

of terms inside Prop will remain in Prop so, in general, there is no way to generate data from

propositions. This issue disappears if we assume the well-known axiom of choice which, in

Lean, looks as follows:

axiom choice {α : Sort u} : nonempty α → α

We will assume the axiom of choice and work non-constructively. In particular, in this

context, choice will allow us to get data from a proof. Suppose p : A → Prop and we have

a proof h of type ∃ x : A, p x, then we can write classical.some h, which is a term

of type A satisfying p as asserted by h. This is Lean’s way to incorporate non-constructive

arguments to Martin-Löf’s inuitionistic type theory. Note that, under this assumption, it

does not make sense to think of proofs as algorithms as one could do in a constructive

framework. In fact, whenever choice is used, the definition in question has to be marked as

noncomputable because, since we have made data appear magically, it has no computational

interpretation.

2.2 Language overview

So far we have seen the types and terms in Lean but have not discussed the variety of ways

to input them as a front-end user. There are essentially two methods to do it: declaratively

(writing terms explicitly) or interactively (using a sequence of tactics). In both cases, there

are many ways in which Lean helps so that not every detail needs to be spelled out. The

component in Lean’s system whose task is to infer pieces of information not directly given

by the user is called the elaborator. It is built on top of Lean’s small trusted kernel, which is

written in C++ and contains the type-checker as well as an API for manipulating terms and

types.

In this section we discuss the declarative language and its subtleties, and explain what tactics

are and how they are used in practice.

Declarations. We have already seen a few examples of the keywords used to assign a type to

an identifier: inductive and its specialisation structure, and constant and its equivalent

axiom. We would also like to be able to declare terms. This is done using the def keyword.

8

def one : nat := nat.succ nat.zero

In general, for any type T we can write def t : T = a where a is a term of type T. The

alternative keywords lemma and theorem have the same effect but are meant to be used when

T is of type Prop.

As a final remark about declarations, there is special syntax to define terms of a structure

type which we frequently use. Instead of {field1 := a, field2 := b, ...} we can write

〈a, b, ...〉. In addition, we can use projections to access the values of the fields. For

example, consider the structure and with two fields left and right. Using the infix notation

∧ for and, suppose that H : A ∧ B where A and B are of type Prop. We can write and.left H

to obtain the part of the proof H that shows A or H.left or, more concisely, H.1.

Arguments and variables. The declarations above might take variables as inputs. These

can be written right after the identifier as a list (x : X) (y : Y) ... which can then be

used in the declaration. For example, we could write the following.

lemma and_comm (A B : Prop) (H : A ∧ B) : B ∧ A := 〈H.2, H.1〉

Alternatively, these variables can appear outside the definition using the variables keyword,

which is particularly useful if they are to be reused by other definitions.

variables (A B : Prop) (H : A ∧ B)

The scope of these variables would normally be the file they are in but it can be refined by

defining sections or namespaces. The convention that we will follow in Chapter 3 is that the

scope of the variables declared is always the section they appear in.

In the example above, the variables are declared explicitly, which means that, if we wanted

to apply the lemma and_comm, we would have to give it three arguments. It is also possible

to define variables implicitly and hope that Lean can infer them automatically. To make A

and B implicit arguments, we would write {A B : Prop} instead of (A B : Prop). Now the

lemma and_comm just takes one argument, namely H. The implicit arguments will be marked

as metavariables when the expression is parsed so that the elaborator knows that it has to

find them. In this case, this was a sensible idea because the elaborator can easily infer A

and B from H. Even if the argument is explicit, we can write an underscore ‘_’ if we want to

introduce a metavariable and make Lean do the work for us which, of course, is not always

possible. There is one third major way of handling arguments, which is used when the type

of the argument is a type class.

Type classes. When examples get complicated, it might be difficult for the elaborator to

find the right value for a metavariable. A way to solve this issue is to mark a family of types

as a type class and then provide instances, which are elements in the type class and serve

as hints. As an example, we consider the implementation of commutative rings in Lean. A

type A is a commutative ring if all the axioms can be proved after choosing some zero : A,

one : A, add : A × A → A and mul : A × A → A. Suppose we list all the axioms in a

structure and call it comm_ring. A lemma that talks about a commutative ring then could

take arguments (A : Type) (H : comm_ring A). If we want to apply it to Z then we would

9

have to also pass a proof that Z is a commutative ring, which feels strange. A first idea

would be to write {H : comm_ring A}. However, following with our example, it would be, in

general, unrealistic to expect Lean to automatically prove all the axioms for Z if comm_ring

is just a structure. The right way to do it is to annotate comm_ring as a type class. Then we

write in Lean the proof that Z is a commutative ring using the keyword instance.

instance int_comm_ring : comm_ring Z

The arguments of the lemma then become (A : Type) [comm_ring A]. This tells Lean to

use type class inference to deduce that A is a commutative ring which, in particular, means

that it will look through the list of instances and find int_comm_ring when A is Z.

Type classes are used extensively in mathlib as they provide the infrastructure to build the

algebraic hierarchy. We would like the class of commutative rings to be included in the class

of rings and this last one to be included in the class of groups. This is indeed the case and, if

a lemma takes arguments (A : Type) [group A], we can apply it to Z straight away.

The last language feature that we explore is concerned with how a front-end user can enter

terms into the system.

Tactics. As we mentioned at the beginning of the chapter, a term can be written using tactics.

Tactics are instructions that modify existing terms or generate new ones using information

in the current environment (known definitions, lemmas and constants) and local context (list

of hypotheses). They relieve the user from the tedious task of writing long and complicated

terms. Moreover, they make the proofs more readable. They play a crucial role in interactive

theorem proving. When we enter Lean’s interactive mode, we see the local context and the

current goal and see how they change as we use different tactics. We list some of the most

important ones to give an idea of the sort of interaction that Lean allows:

• intro. When the current goal is a pi type Π x : A, B (or a universally quantified

expression ∀ x : A, B), we can use intro a to add a term a : A to the the local

context. The new goal becomes B[a/x] that is, B replacing all occurrences of x by a.

• existsi. If the goal is an existentially quantified proposition ∃ x : T, P x then in-

voking existsi t where t : T will change the goal to P t.

• exact. Given a term of type A and a goal of type B, this tactic solves the goal if the

elaborator is able to unify A and B.

• cases. If one of our hypotheses is an inductive type, applying cases on it will create

a goal for each constructor and expose its arguments.

• refl. We apply this tactic when the goal is of the form a ∼ b where ∼ is a reflexive

relation. In particular, we use it to solve a = b and it only works when the terms are

definitionally equal, i.e. can be reduced to a common term using the various reduction

strategies in Lean’s back-end.

• apply. This tactic tries to match the conclusion of an expression to the current goal.

For example, if h : A → B and the current goal is B, calling apply h will result in the

goal becoming A.

10

• simp. This is a very complex tactic with many variants but it is worth mentioning it as

it is used quite frequently. In its most basic form, simp will try to use relevant lemmas

and hypotheses to simplify the goal.

• rw. As above, the inner workings of the rewriter are quite subtle so we will not go into

much detail. The idea is that we can use know equalities or if-and-only-if’s to change

the type in the goal.

There are many other tactics and useful variations to the ones mentioned. A complete list

can be found in Chapter 6 of [18]. Tactics can be used inside terms using the keyword by

followed by the name of the tactic. In order to use them interactively, we use them inside a

begin ... end block as shown below.

variable (R : N → N → Prop)

lemma forall_ex_of_ex_forall : (∃ x, ∀ y, R x y) → (∀ y, ∃ x, R x y) :=

begin

intros H b, -- H : ∃ x, ∀ y, R x y; b : N ` ∃ (x : N), R x b

cases H with a Ha, -- b a : N; Ha : ∀ y, R a y ` ∃ (x : N), R x b

existsi a, -- b a : N; Ha : ∀ y, R a y ` R a b

exact (Ha b), -- goals accomplished

end

Written as comments on the right hand side of the tactics we see the state of the proof at each

step. That is what a Lean user sees when writing a proof in tactic mode. The tactic intros

is just an extension of intro that takes multiple arguments. Another observation is that

in here we can destruct an existentially quantified proposition without using the classical

library. That is because the goal is of type Prop so there is no data involved. We say that

types in Prop eliminate to other types in Prop. If the goal was of type Type we would need

to use the axiom of choice.

2.3 mathlib

In order to understand the definitions and lemmas stated in this report, it is important to

explain some of the main parts of mathlib. In it we can find anything from the rational

numbers to complex analysis and it is in active development. We give an overview of the

theories that we have used:

• Sets. The definition of a set is in Lean by default but in data/set we find multiple

useful lemmas about the ∈ and ⊆ relations. It also includes the theory of finite sets.

• Relations and quotients. This is another example of an extension of Lean’s core

library. Lean includes the notion of a setoid, which are sets together with an equivalence

relation and are used to define quotient types. Interestingly enough, quotients are dealt

with differently compared to other types. They are initially defined in the kernel, which

allows for definitional equality in some of the common use cases. This part of mathlib

provides another layer of API including, for instance, versions of some lemmas that do

not use type class inference.

11

• Topology. We find basic definitions such as the type class topological_space. It

includes definitions and lemmas for continuity, compactness, bases and so on. As a

remark, we often use the type opens which is a type built from a set together with the

proof that it is open in a topological space.

• Ring theory. This is perhaps the most relevant theory for this project and definitely

the most used in our development. Amongst others, definitions for ideals, prime ide-

als, ring homomorphisms and ring localisations are provided. Moreover, each of these

objects is equipped with a carefully designed set of lemmas.

12

Chapter 3

Schemes

This chapter is the core of the report. It contains the main implementation details and

culminates with our definition of a scheme. We mainly follow [1] but Chapter 2 of [23]

has been used as a guide for the steps to construct a scheme. The idea is to walk the

reader through the codebase in a reasonable order. We combine mathematical definitions

and lemmas in the usual style with their counterparts in Lean. In particular, Lean code for

any statement that is new and not found in mathlib is provided. There are several reasons

to do this. Even though this approach unavoidably introduces some repetition, it serves as a

way to convince the reader that the definitions are correct. Moreover, it brings up interesting

discussions about the design choices made and illustrates the similarities and differences

between mathematicians and computers when defining mathematical objects. No proof in

Lean is included but formal proofs of all the statements that appear can be found in https:

//github.com/ramonfmir/lean-scheme/tree/submission. As stated in the repository, the

code runs on Lean 3.4.2 and mathlib’s version 410ae5d (March 26th 2019).

We assume some familiarity with basic commutative algebra. The definitions that we use

are concisely presented in Chapter 1 of [24]. As a remark, all the rings that appear in this

chapter are commutative rings with unity.

3.1 Commutative algebra

Before we delve into algebraic geometry, we discuss some notions in commutative algebra

that are essential in scheme theory and that interact in a crucial way. We first develop the

theory of ring localisations based on [1, 00CM]. We proceed by discussing briefly local rings

[1, 07BH] and gluing functions [1, 00EI] and relating these concepts with the approach for

ring localisation described in the previous part. Finally, we define the spectrum of a ring and

prove a few important properties found in [1, 00DY].

3.1.1 Localisation

Localisation is a very powerful technique in commutative algebra that allows us to invert

some elements of a ring or a module. This is used to display local properties of the object we

are interested in. For example, if we are given the ring of continuous functions on a space X,

13

https://github.com/ramonfmir/lean-scheme/tree/submission
https://github.com/ramonfmir/lean-scheme/tree/submission
https://github.com/leanprover-community/mathlib/tree/410ae5d9ec48843f0c2bf6787faafaa83c766623
https://stacks.math.columbia.edu/tag/00CM
https://stacks.math.columbia.edu/tag/07BH
https://stacks.math.columbia.edu/tag/00EI
https://stacks.math.columbia.edu/tag/00DY

we might be interested in looking at its behaviour near a point x ∈ X. One thing we can do

is add inverses to all the functions that do not vanish at x. By doing so, all of a sudden, the

ones that do, which is the valuable data associated with x, can be manipulated in a natural

and convenient way.

Normally, localisation is defined as the following construction.

Definition 1. Given a ring R and a multiplicative subset S ⊆ R, the localisation of R

with respect to S is S−1R = (R × S)/∼ where (a, s) ∼ (b, t) if and only if there exists

u ∈ S such that u(at − bs) = 0. We denote by a
s the equivalence class of (a, s). The

operations are defined in the obvious way [1, 00CM].

One can easily check that ∼ is an equivalence relation and that S−1R as above is in fact a

ring. The definition can be extended to modules, but we will ignore modules completely as

basic scheme theory can be built solely with commutative rings.

There are two important kinds of multiplicative sets. Firstly, we can localise away from an

element f ∈ R letting S = {1, f, f2, . . . }, which will be denoted Rf . Secondly, given a prime

ideal pCR, we can localise at p letting S = R \ p, this will be denoted Rp.

As we will see shortly, this widely accepted definition happens to be quite problematic to use

directly in some places so we used an alternative equivalent definition that simplified quite

significantly some of our main proofs. In order to understand better where the new definition

comes from, we first need to understand the universal property of localisation.

Proposition 2. Let A and B be rings and f : A → B a ring homomorphism. If for all

s ∈ S, f(s) is a unit in B, then there exists a unique ring homomorphism g : S−1A→ B

such that the following diagram commutes.

A B

S−1A

f

g

The map A→ S−1A is the canonical map a 7→ a
1 [1, 00CP].

Proof. We define g
(
a
s

)
= f(a)

f(s) . This is a well-defined map as f(s) is invertible by assumption

and one checks that it inherits the homomorphism structure from f after some tedious calcu-

lations. Moreover, it is clear that g
(
a
1

)
= f(a) so we have proved existence. For uniqueness,

suppose that there is another map h : S−1A→ B such that h
(
a
1

)
= f(a), then for s ∈ S we

would have h
(
s
1

)
= f(s) and so 1 = h

(
s
1

)
h
(
1
s

)
= f(s)h

(
1
s

)
. Therefore h

(
1
s

)
= 1

f(s) which

implies that h
(
a
s

)
= f(a)

f(s) = g
(
a
s

)
.

Thanks to this universal property, we can develop the theory of localised rings using the

maps from the base ring. Suppose that we are given a ring B and a ring homomorphism

f : A→ B as above, then we know that there is a unique ring homomorphism g : S−1A→ B.

The question now is whether we can impose more conditions on f to ensure that g is an

isomorphism. These conditions should completely characterise what we mean by localising

14

https://stacks.math.columbia.edu/tag/00CM
https://stacks.math.columbia.edu/tag/00CP

A with respect to S so that we can prove lemmas about this object (or rather this class of

isomorphic objects) using them instead of the explicit construction. In January 2019, Neil

Strickland came up with three necessary and sufficient conditions that f has to satisfy for g

to be an isomorphism.

Definition 3. Let A and B be rings, S ⊆ A a multiplicative subset and f : A → B a

ring homomorphism. We say that f satisfies the localisation predicate of A localised with

respect to S if the following conditions are satisfied:

(L1) For every s ∈ S, f(s) has an inverse in B.

(L2) Elements of B have denominators of the form f(s) for some s ∈ S.

(L3) Given a ∈ A, if f(a) = 0 then as = 0 for some s ∈ S.

variables {A : Type u} {B : Type v} [comm_ring A] [comm_ring B]

variables (S : set A) [is_submonoid S] (f : A → B) [is_ring_hom f]

def inverts_data := Π s : S, {b : B // (f s) * b = 1}

def has_denom_data := Π b : B, {sa : S × A // (f sa.1) * b = f sa.2}

def ann_aux := set.range (λ sa : {sa : S × A // sa.1 * sa.2 = 0}, sa.1.2)

def submonoid_ann : ideal A :=

〈ann_aux S, ann_aux.zero S, ann_aux.add S, ann_aux.smul S〉

structure is_localization_data :=

(inverts : inverts_data S f)

(has_denom : has_denom_data S f)

(ker_le : ker f ≤ submonoid_ann S)

It is worth commenting on the types of inverts_data, has_denom_data and ann_aux. They

all use subtypes, introduced with the syntax {x : T // p x} where p : T → Prop. Sub-

types are used to identify the values of a type satisfying a certain property.

The first result that needs to be checked is that we can choose B = S−1A by which we mean

the explicit construction from Definition 1.

Proposition 4. With the notation above, the canonical map f : A→ S−1A satisfies the

localisation predicate of A localised with respect to S.

lemma is_localization_data.of_of

: is_localization_data S (of : A → localization A S)

Proof. As expected, the proof is straightforward. Pick s ∈ S, then f(s) = s
1 has inverse 1

s

hence (L1) holds. For any a
s ∈ S−1A we have that f(s)as = f(a), which is exactly (L2).

Finally, to show (L3), suppose a
1 = 0

1 then, by definition, there is s ∈ S such that sa = 0.

Next, we make sure that the predicate is invariant under isomorphisms.

15

Proposition 5. Let A, B and C be rings and S ⊆ A a multiplicative set. If f : A→ B

a ring homomorphism satisfying the localisation predicate of A with respect to S and

g : B → C is a ring isomorphism then g ◦ f : A → C also satisfies the predicate of A

localised with respect to S.

variables {C : Type w} [comm_ring C]

variables (S : set A) [is_submonoid S]

variables (f : A → B) [is_ring_hom f] (Hf : is_localization_data S f)

variables (g : B → C) (Hg1 : function.bijective g) (Hg2 : is_ring_hom g)

lemma is_localization_data.of_iso : is_localization_data S (g ◦ f)

Proof. Again, the axioms need to be checked. Pick s ∈ S. By assumption f(s) has an inverse

in B. The inverse for g(f(s)) is g
(

1
f(s)

)
because g(f(s))g

(
1

f(s)

)
= g

(
f(s)
f(s)

)
= g(1) = 1 as

g is a homomorphism so (L1) follows. Now choose any c ∈ C. Since g is surjective, there

exists b ∈ B such that g(b) = c and, by assumption, we can find a ∈ A and s ∈ S such

that f(s)b = f(a) hence g(f(s))c = g(f(a)), which shows (L2). Suppose g(f(a)) = 0 = g(0).

Since g is injective f(a) = 0 so there is s ∈ S such that sa = 0 as (L3) requires.

There is one sanity check missing to ensure that Strickland’s axiomatisation is correct. If

two rings B and C satisfy the localisation predicate for A localised at S we should be able

to exhibit an isomorphism between them. It will follow from the universal property of the

localisaiton predicate.

Proposition 6. Let A, B and C be rings and f : A → B, g : A → C ring homomor-

phisms. If f satisfies the localisation property for A with respect to S and g satisfies

(L1) then there exists a unique ring homomorphism e : B → C such that the following

diagram commutes.

A C

B

g

f e

variables (g : A → C) [is_ring_hom g] (Hg : inverts_data S g)

def is_localization_initial : B → C :=

λ b, g (Hf.has_denom b).1.2 * Hg (Hf.has_denom b).1.1

instance : is_ring_hom (is_localization_initial S f Hf g Hg)

lemma is_localization_initial_comp (a : A)

: is_localization_initial S f Hf g Hg (f a) = g a

lemma is_localization_initial_unique (h : B → C) [is_ring_hom h] (b : B)

: is_localization_initial S f Hf (h ◦ f) (inverts_aux S f h Hf) b = h b

16

Proof. Choose b ∈ B and write b = f(a)
f(s) for a ∈ A and s ∈ S, using (L2). We define

e(b) = g(a)
g(s) . Note that e is well-defined as g(s) is invertible by assumption. The most tedious

part is proving that e is a ring homomorphism. Firstly, we claim that, for any a1, a2 ∈ A,

if f(a1) = f(a2) then g(a1) = g(a2). By (L3), we have that sa1 = sa2 for some s ∈ S. But

then g(s)g(a1) = g(s)g(a2) and, since g(s) is invertible by assumption, g(a1) = g(a2). Let

x, y ∈ B. Then, by (L2) in B, x = f(a1)
f(s1)

, y = f(a2)
f(s2)

and xy = f(a3)
f(s3)

for some a1, a2, a3 ∈ A and

s1, s2, s3 ∈ S. Hence f(a3s1s2) = f(a1a2s3) and thus, by the claim, g(a3s1s2) = g(a1a2s3) so
g(a3)
g(s3)

= g(a1)
g(s1)

g(a2)
g(s2)

which means that e(xy) = e(x)e(y). The same argument works for addition.

We conclude that e is a ring homomorphism. Now take any a ∈ A. We have f(a) = f(a1)
f(s1)

for some a1 ∈ A and s1 ∈ S and, by definition, e(f(a)) = g(a1)
g(s1)

. It remains to show that

g(a) = g(a1)
g(s1)

but f(s1a) = f(a1) so from the claim it follows that g(s1a) = g(a1) which implies

that e ◦ f = g. Finally, for uniqueness suppose h : B → C is any ring homomorphism. We

show that if h◦f = g then h = e. Choose b ∈ B and write b = f(a)
f(s) for some a ∈ A and s ∈ S

using (L2). Now e(b) = g(a)
g(s) = h(f(a))

h(f(s)) = h(b).

We now show that e is bijective if g also satisfies the localisation property for A with respect

to S, which implies the correctness of the predicate. With the same setting as above, pick

any c ∈ C. Then (L2) tells us that c = g(a)
g(s) for some s ∈ S and a ∈ A. Choose b = f(a)

f(s) ∈ B.

Then, by the universal property e(b) = c so, in particular, e is surjective. Now suppose that

e(b) = 0 for some b ∈ B. Again by (L2), we find a ∈ A and s ∈ S such that f(s)b = f(a) and

therefore, by the universal property, g(a) = 0. We use (L3) to obtain that ta = 0 in A for

some t ∈ S. But then f(ts)b = f(ta) = 0 in B and ts ∈ S so f(ts) is invertible and therefore

b = 0 hence e is also injective.

This approach has many advantages. For instance, for a ring R and f, g ∈ R we know that

Rfg and (Rf) g
1

are isomorphic. Unfortunately, they are not definitionally equal as types in

Lean. For Lean, elements of the former are equivalence classes of pairs in R and elements of

the latter are equivalence classes of pairs of equivalence classes of pairs in R so, in a sense, it

is not surprising that Lean thinks that they are completely different.

If we have a lemma about Rfg defined as in Definition 1 then we cannot apply it directly to

(Rf) g
1
. Instead, one would have to explicitly work with the isomorphism, which can unnec-

essarily complicate the problem. This was, in fact, a major issue in the first formalisation

attempt. The way to solve it is to prove such lemma for an arbitrary ring satisfying the

localisation predicate for R away from fg and then prove that (Rf) g
1

satisfies it. This was

one of the tests proposed by Strickland to ensure that the predicate was properly defined.

We successfully managed to prove it shortly after he proposed it.

Proposition 7. The ring (Rf) g
1

satisfies the localisation predicate of R away from fg.

parameters {R : Type u} [comm_ring R] parameters (f g : R)

def Rfg := localization (localization R (powers f)) (powers (of g))

lemma is_localization_data_away_away

: is_localization_data (powers (f * g)) ((of ◦ of) : R → Rfg)

17

Proof. Firstly we define h : R→ (Rf) g
1

as h(x) = x/1
1/1 . It is an easy exercise to check that h

is a ring homomorphism. We proceed by checking the three properties. For (L1), consider

h(fngn) = fngn/1
1/1 , it suffices to check that 1/fn

gn/1 ∈ (Rf) g
1

is its inverse. Note that any element

in (Rf) g
1

is of the form a/fn

gm/1 . Let N = max{n,m}. Then multiplying through by f(fNgN)

clears the denominators, which is exactly what we need to show (L2). Finally, we prove (L3).

If h(a) = a/1
1/1 = 0/1

1/1 , by definition there exists n and m such that fngma = 0. Again, we let

N = max{n,m} and observe that fNgNa = 0 as required.

These sort of rather elementary arguments appear frequently throughout the codebase. An-

other benefit of this approach is that they can be easily separated from the main proofs so

that no focus from the core arguments is lost.

As a concluding remark, we point out that the localisation predicate is_localization_data

is purely constructive, it carries data instead of statements. Observe that instead of asserting

the existence of an inverse it requires the user to provide one. However, in many cases it is

convenient to work with non-constructive predicates and they are also defined together with

a simple interface to go from one to the other.

def inverts (S : set A) (f : A → B) : Prop :=

∀ s : S, ∃ si : B, (f s) * si = 1

def has_denom (S : set A) (f : A → B) : Prop :=

∀ b : B, ∃ (sa : S × A), (f sa.1) * b = (f sa.2)

def is_localization : Prop :=

(inverts S f) ∧ (has_denom S f) ∧ (ker f ≤ submonoid_ann S)

3.1.2 Local rings

In this subsection we briefly discuss local rings. They play an important role when describing

the local behaviour of algebraic structures. In particular, we will impose locality, unsurpris-

ingly, in the definition of locally ringed spaces in section 3.3.

Definition 8. We say that a ring R is a local ring if it has a unique maximal ideal mCR.

Note that not all localised rings are local rings. For instance C[x] localised away from x has

infinitely many maximal ideals, any ideal of the form
(
x−λ
1

)
with λ 6= 0 is maximal. On the

other hand, Z localised at (3) has exactly one maximal ideal, namely
(
3
1

)
. This observation

leads us to the following result.

Lemma 9. If pCR is a prime ideal, Rp is a local ring.

variables {P : ideal A} (HP : ideal.is_prime P)

variables (Hloc : is_localization_data (-P : set A) f)

18

lemma is_local_ring.of_is_localization_away_from_prime : is_local_ring B

Proof. To prove that Rp is local it suffices to prove that the nonunits I = Rp \ R∗p form an

ideal. Formally, first one needs to check that Rp is not the zero ring. Suppose 0 = 1, then

1 ∈ ker(f) so by (L3) there is a v /∈ p such that 1v = 0 but 0 ∈ p for any prime ideal,

so this is nonsense. Now take x, y ∈ I. We need to show that x + y ∈ I. Assume for a

contradiction that (x+ y)z = 1 for some z ∈ Rp. Using (L2) we write x = f(a)
f(r) , y = f(b)

f(s) and

z = f(c)
f(t) for r, s, t /∈ p; a, b ∈ p and c ∈ R. By (L3), we have that there exists v /∈ p such that

v(acs + bcr − rst) = 0 ∈ p but since acs ∈ p and bcr ∈ p we must have that vrst ∈ p which

is a contradiction.

3.1.3 Gluing functions

There is one result in this section and, for now, we will deal with it purely algebraically. In

section 3.4 we will see how it is much deeper and we will rigorously deal with its geometric

implications. Intuitively, one can think of elements of Rf as functions whose domain are

those points that do not vanish at f . If two functions coincide in the intersection of their

domains then we can glue them together.

Lemma 10. Let R be a ring and f1, . . . , fn ∈ R with the property that (f1, . . . , fn) = R.

Then the short sequence:

0 −→ R
α−→

n⊕
i

Rfi
β−→

n⊕
i,j

Rfifj

with α(x) =
(
x
1 , . . . ,

x
1

)
and β

(
x1
f
r1
1

, . . . , xn
frnn

)
=

(
. . . , xi

f
ri
i

− xj

f
rj
j

, . . .

)
is exact [1, 00EJ].

variables {R : Type u} [comm_ring R]

variables {γ : Type v} [fintype γ] {f : γ → R}

variables {Rfi : γ → Type w} [Π i, comm_ring (Rfi i)]

variables {αi : Π i, R → (Rfi i)} [Π i, is_ring_hom (αi i)]

variables {Rfij : γ → γ → Type w} [Π i j, comm_ring (Rfij i j)]

variables {φij : Π i j, R → (Rfij i j)} [Π i j, is_ring_hom (φij i j)]

variables

(Hα : Π i, is_localization_data (powers (f i)) (αi i))

(Hφ : Π i j, is_localization_data (powers ((f i)*(f j))) (φij i j))

(H1 : (1 : R) ∈ ideal.span (set.range f))

def α : R → Π i, Rfi i := λ r i, (αi i) r

19

https://stacks.math.columbia.edu/tag/00EJ

def β1 : (Π i, Rfi i) → (Π i j, Rfij i j)

:= λ ri i j, (is_localization_initial

(powers (f j)) (αi j) (Hα j) (φij i j) (inverts_fj Hφ i j)) (ri j)

def β2 : (Π i, Rfi i) → (Π i j, Rfij i j)

:= λ ri i j, (is_localization_initial

(powers (f i)) (αi i) (Hα i) (φij i j) (inverts_fi Hφ i j)) (ri i)

def β : (Π i, Rfi i) → (Π i j, Rfij i j) := λ r, (β1 Hφ r) - (β2 Hφ r)

lemma standard_covering1 : function.injective α

lemma standard_covering2 : (β Hφ) s = 0 ↔ ∃ r : R, α r = s

Proof. Suppose that α(x) =
(
0
1 , . . . ,

0
1

)
for some x ∈ R. Then x

1 = 0
1 in every Rfi . By (L3),

for any i we have that fni
i x = 0 for some ni. We know that 1 =

∑
i aifi for some ai ∈ R.

It suffices to choose M =
∑

i ni and deduce that x = 1Mx = (
∑

i aifi)
M x = 0. The last

equality is justified by the multinomial theorem and the pigeonhole principle. This concludes

the first part of the proof.

For the second part, firstly note that im(α) ⊆ ker(β) is obvious because for any x ∈ R,

β(α(x)) = β
(
x
1 , . . . ,

x
1

)
=
(
. . . , x1 −

x
1 , . . .

)
=
(
0
1 , . . . ,

0
1

)
. The other direction is the core of

this lemma. What we need to show is that if β
(
x1
f
r1
1

, . . . , xn
frnn

)
=
(
0
1 , . . . ,

0
1

)
then we can find

x ∈ R such that x
1 = xi

f
ri
i

for all i. So assume that xi
f
ri
i

− xj

f
rj
j

= 0 in Rfifj for all i and j. By (L3)

this translates to f
nij

i f
nij

j (f
rj
j xi − f

ri
i xj) = 0 for some nij . Choose M = max{nij} so that

fMi fMj (f
rj
j xi − f

ri
i xj) = 0 for all i and j or, more conveniently, f

M+rj
j fMi xi

(†)
= fM+ri

i fMj xj .

Note that (fM+r1
1 , . . . , fM+rn

n) = R so 1 =
∑

i aif
M+ri
i for some ai ∈ R. Therefore:

xi
f rii

=
fMi xi

fM+ri
i

=
∑
j

ajf
M+rj
j fMi xi

fM+ri
i

(†)
=
∑
j

ajf
M+ri
i fMj xj

fM+ri
i

=

∑
j ajf

M
j xj

1
.

The element we needed to find is precisely
∑

j ajf
M
j xj .

This result is a good example of the usefulness of the localisation predicate. In the first

attempt of formalising it, the authors used the explicit construction as a quotient. The

problem was that the objects they had, which we will encounter later, where only canonically

isomorphic to Rfi and Rfifj . The situation was the following:

0 R
⊕n

i Rfi
⊕n

i,j Rfifj

⊕n
i R
′
fi

⊕n
i,j R

′
fifj

α

α′

β

ψ−1
i ψ−1

ij

β′

ψi ψij

This means that one needs to explicitly check that all the diagrams commute in order to

use the exact sequence as needed. Moreover, these maps, although evident from a mathe-

20

matical point of view, were quite tedious to manipulate in Lean. With our new approach,

whenever we encounter these canonically isomorphic rings, we will simply prove the local-

isation predicate hence avoiding any unnecessarily complicated argument about canonical

isomorphisms.

3.1.4 The spectrum of a ring

In this subsection we develop the main tool to connect algebra and geometry. For now the

goal is to construct a topological space associated to a given ring R and to prove some basic

properties about it. This topological space is precisely Spec(R), which we mentioned in

section 1.2. Later on, we will see how this construction, which at first might seem arbitrary,

captures very nicely the behaviour of R seen as a geometric object.

Definition 11. Given a ring R, its spectrum is the set of all its prime ideals and is

denoted by Spec(R). For T ⊆ R, we define V (T) = {p ∈ Spec(R) | f ∈ p for all f ∈ T}
and D(T) to be the complement of V (T) [1, 00DZ].

def Spec := {P : ideal R // ideal.is_prime P}

def V : set R → set (Spec R) := λ E, {P | E ⊆ P.val}

def V’ : R → set (Spec R) := λ f, {P | f ∈ P.val}

def D : set R → set (Spec R) := λ E, -V(E)

def D’ : R → set (Spec R) := λ f, -V’(f)

The next step is to define a topology on Spec(R) but, before that, we prove a few basic

properties that will become useful later on.

Lemma 12. Given a ring R we have:

(1) For S ⊆ R, V (S) = V ((S)).

(2) For I CR, V (I) = ∅ if and only if I = R.

(3) For f, g ∈ R, D(fg) = D(f) ∩D(g).

(4) For fi ∈ R,
⋃
D(fi) = Spec(R) \ V ({fi}) [1, 00E0].

lemma Spec.V.set_eq_span (S : set R) : V(S) = V(ideal.span S)

lemma Spec.V.empty_iff_ideal_top (I : ideal R) : V(I.val) = ∅ ↔ I = >
lemma Spec.D’.product_eq_inter (f g : R) : D’(f * g) = D’(f) ∩ D’(g)

lemma Spec.D’.union (F : set R) :
⋃

0 (D’ ’’ F) = -V(F)

Proof. If p ∈ V (S) then S ⊆ p and by basic properties of ideals (S) ⊆ p hence p ∈ V ((S)).

The other direction is obvious as S ⊆ (S). This shows (1). For (2), note that V (I) = ∅
means that I is not contained in any prime ideal and in particular it is not contained in any

maximal ideal, hence I = R by Zorn’s lemma. Conversely, if I = R, it is clear that no prime

ideal contains it. Part (3) follows from the definition of a prime ideal: fg /∈ p if and only if

f /∈ p and g /∈ p. Finally, we show (4). If p ∈ D(fi), then fi /∈ p so p /∈ V ({fi}) for all i. On

the other hand, if p /∈ V ({fi}), clearly fi /∈ p for some i.

21

https://stacks.math.columbia.edu/tag/00DZ
https://stacks.math.columbia.edu/tag/00E0

There are two subtleties worth mentioning about these lemmas. In (2), we write V(I.val)

instead of V(I). Lean allows coercions between types, and ideals are coerced to sets as one

would expect. It often happens that some function takes a set as an input but, if given an

ideal instead, Lean will automatically infer this coercion. In this case, however, since the

right hand side of the equality is ∅, whose type could be set A for any A, the elaborator

cannot deduce that the argument expected by V has to be of type set R and so it cannot

perform the coercion. To make this information available to the elaborator, we would need

to write (∅ : set (Spec R)) = V(I). It is a minor issue but it illustrates the amount of

reasoning behind every small design decision and the sort of knowledge about what happens

in the background to properly understand the code.

The other observation is that we write I = > meaning I = R. Type-theoretically it would

not make sense to write I = R. In mathlib this is dealt with by proving that the ideals of

a ring form a complete lattice, where > is an upper bound for every ideal so it is all of R.

We will not go into much more detail but this is yet another example of the paradigm shift

necessary to do formal mathematics.

Going back to Spec(R), we now give it the desired structure.

Lemma 13 (Zariski topology). The set Spec(R) has the structure of a topological space

where the closed subsets are the subsets of the form V (T) for T ⊆ R [1, 00E1].

instance (R : Type u) [comm_ring R] : topological_space (Spec R)

Proof. We need to check the axioms. It follows directly from Lemma 12 (2) that V (R) = ∅.

We show that V (I) ∪ V (J) = V (I ∩ J) for I, J C R. We are allowed to only consider ideals

because of Lemma 12 (1). If I ⊆ p or J ⊆ p clearly I ∩ J ⊆ p. Conversely, if I ∩ J ⊆ p

then IJ ⊆ p so either I ⊆ p or J ⊆ p as required because p is prime. Finally, we prove

that
⋂
V (Ii) = V (

⋃
Ii). But p ∈ V (Ii) for all i translates to Ii ⊆ p for all i which implies

p ∈ V (
⋃
Ii). Conversely, if

⋃
Ii ⊆ p clearly Ii ⊆ p for all i.

Observe that the proofs of the first two axioms above are, in essence, the same as the proofs

of Lemma 12 (3) and (4). The reason why we have proved results about D applied to a single

element separately is because these open sets play an important role in the definition of a

scheme. Opens of the form D(f) are called standard opens.

Lemma 14. Let R be a ring. The set B = {D(f) | f ∈ R} is a basis for Spec(R).

Furthermore, B is a standard basis meaning that Spec(R) ∈ B and that if U, V ∈ B then

U ∩ V ∈ B [1, 00DY].

def D_fs := {U : opens (Spec R) | ∃ f : R, U = DO(f)}

lemma D_fs_basis : opens.is_basis D_fs

lemma D_fs_standard_basis :

opens.univ ∈ D_fs ∧ ∀ {U V}, U ∈ D_fs → V ∈ D_fs → U ∩ V ∈ D_fs

22

https://stacks.math.columbia.edu/tag/00E1
https://stacks.math.columbia.edu/tag/00DY

Proof. Pick any p ∈ Spec(R) and an open set U ⊆ Spec(R) such that p ∈ U . Note that by

definition of the Zariski topology, U = D(T) for some T ⊆ R, hence T * p so in particular

there is some f ∈ T such that f /∈ p hence p ∈ D(f). Moreover, it is clear that D(f) ⊆ D(T)

because if f /∈ q then T * q hence we have proved that the standard opens form a basis.

For the last part, certainly D(1) = Spec(R) as 1 /∈ p for all prime ideals p C R and the fact

that intersections of basis elements are in the basis is exactly Lemma 12 (3).

We now deduce an important property about the standard basis and use it to prove com-

pactness of Spec(R).

Lemma 15. For any set U = {D(f) | f ∈ S ⊆ R} such that
⋃
U = Spec(R) there exists

a finite subset U ′ ⊆ U such that
⋃
U ′ = Spec(R) [1, 00E8].

lemma D_fs_quasi_compact :

∀ S : set R,
⋃

0 (Spec.D’ ’’ S) = Spec.univ R →
∃ F ⊆ S,

set.finite F

∧
⋃

0 (Spec.D’ ’’ F) = Spec.univ R

Proof. From Lemma 12 (4) we deduce that V (S) = ∅ and hence by Lemma 12 (1) and (2),

(S) = R. Therefore 1 =
∑n

i=1 rifi for ri ∈ R and fi ∈ S. Choose F = {f1, . . . , fn}. It just

remains to show that
⋃
D(fi) = Spec(R). Again, by Lemma 12 (4) we just need to prove

that V (F) = ∅, which is obvious because 1 ∈ (F).

Corollary 16. The space Spec(R) is compact [1, 00E8].

lemma Spec.compact : compact_space (Spec R)

Proof. Suppose U = {Ui} is an open cover of Spec(R), i.e.
⋃
U = Spec(R). By standard

topology, we can refine the cover with basis elements so there exists S ⊆ R such that U ′ =

{D(fi) | fi ∈ S} is an open cover and moreover D(fi) ⊆ Ui for all i. It follows from 15 that,

after possibly renaming, we can find {f1, . . . , fn} ⊆ S such that D(f0)∪· · ·∪D(fn) = Spec(R).

Therefore {U1, . . . , Un} is a finite subcover of U so Spec(R) is compact.

So far we have seen that Spec(R) is a topological space associated with a particular basis

and that is compact. The next step is to study the maps between topological spaces of this

form given by maps between the underlying rings.

Definition 17. Let A and B be rings and f : A→ B a ring homomorphism. Then there

is an induced map φ : Spec(B)→ Spec(A) given by the rule φ(p) = f−1(p) [1, 00E2].

def Zariski.induced : Spec B → Spec A :=

λ 〈P, HP〉, 〈ideal.comap f P, @ideal.is_prime.comap _ _ _ _ f _ P HP〉

23

https://stacks.math.columbia.edu/tag/00E8
https://stacks.math.columbia.edu/tag/00E8
https://stacks.math.columbia.edu/tag/00E2

Note that the definition above includes the justification that the map is well-defined, which

is the case because if p is prime then so is f−1(p). The purpose of the @ is to make implicit

arguments explicit. Sometimes, the Lean elaborator cannot infer these arguments from the

context and they need to be provided manually. In this case, Lean could not deduce that the

ideal p (P) was prime (HP) so we had to pass it as an argument.

After this aside, we proceed with our study of these maps.

Lemma 18. The map φ : Spec(B)→ Spec(A) as above is continuous [1, 00E2].

lemma Zariski.induced.continuous : continuous (Zariski.induced f)

Proof. Suppose U ⊆ Spec(B) is an open set or, in other words, U = D(S) for some S ⊆ R.

We claim that φ−1(U) = D(f(S)), which implies the result. Let p C B be a prime ideal.

Then p ∈ φ−1(U) means that φ(p) ∈ D(S) and, by definition, S * f−1(p) which is equivalent

to f(S) * p and this translates to p ∈ D(f(S)) as required.

Next, we give ring localisations a geometric interpretation. Let R be a ring and f ∈ R and let

h : R→ Rf be a ring homomorphism satisfying the localisation predicate for R away from f

as introduced in section 3.1.1. It induces a continuous map φ : Spec(Rf)→ Spec(R).

variables {R : Type u} [comm_ring R]

variables {Rf : Type u} [comm_ring Rf] {h : R → Rf} [is_ring_hom h]

variables {f : R} (HL : is_localization_data (powers f) h)

def φ : Spec Rf → Spec R := Zariski.induced h

It turns out that φ induces a homeomorphism between D(f) and Spec(Rf). We will prove

this fact in several steps.

Lemma 19. The map φ : Spec(Rf)→ Spec(R) is injective [1, 00E4].

lemma phi_injective : function.injective (φ HL)

Proof. Let p, qCRf and suppose that φ(p) = φ(q). We show that p ⊆ q. Pick x ∈ p then, by

(L2), there is a ∈ R and n ∈ N such that h(fn)x = h(a) but then h(a) ∈ p so a ∈ φ(p) = φ(q)

and, hence, we have that h(a) ∈ q. Since it is prime, if we prove that h(fn) /∈ q then x ∈ q

will follow. But assume that h(fn) ∈ q, then since by (L1) it is invertible we would have

1 ∈ q which is absurd. The other direction is identical.

Lemma 20. The map φ : Spec(Rf)→ Spec(R) is an open map [1, 00E4].

lemma phi_opens : ∀ U : set (Spec Rf), is_open U ↔ is_open ((φ HL) ’’ U)

24

https://stacks.math.columbia.edu/tag/00E2
https://stacks.math.columbia.edu/tag/00E4
https://stacks.math.columbia.edu/tag/00E4

Proof. It suffices to show that if U ⊆ Spec(Rf) is open then φ(U) ⊆ Spec(R) is open, the

other implication follows from continuity and injectivity of φ.

First, we claim that for a prime p C R, if f /∈ p then (h(p)) C Rf is prime. We see that

1 /∈ (h(p)) because otherwise there is some x ∈ p and y ∈ Rf such that yh(x) = 1 = h(1).

Then, by (L2), y = h(a)
h(fn) for some n so h(xa) = h(fn) and fmxa = fm+n for some m by (L3).

But then fm+n ∈ p so f ∈ p as it is prime, which is a contradiction. Now take x, y ∈ Rf , write

x = h(a)
h(fn) , y = h(b)

h(fm) and suppose that h(a)
h(fn)

h(b)
h(fm) ∈ (h(p)). We have that h(a)

h(fn)
h(b)
h(fm) = h(c)

h(fk)

for some c ∈ p. Using (L3) we have f l(fkab − cfn+m) = 0 and hence f l+kab ∈ p but f /∈ p
so either a ∈ p or b ∈ p. Without loss of generality, suppose a ∈ p. Then h(a)

h(fn) ∈ (h(p)) as

required so (h(p)) is prime. In addition, φ((h(p))) = p. If x ∈ p then h(x) ∈ h(p) ⊆ (h(p)) so

obviously x ∈ φ((h(p))). Conversely, if x ∈ φ((h(p))) then h(x) = h(a)
h(fn) for some a ∈ p so we

have fm(fnx− a) = 0 and, by the same argument as before, we deduce that x ∈ p.

Going back to the main proof, if U is open then U = D(S) for some S ⊆ Rf . We claim that

φ(D(S)) = D(T) where T = (f)(h−1(S)) ⊆ R.

Suppose that p ∈ D(T) ⊆ Spec(R), i.e. T * p. Then there is x ∈ h−1(S) and n such that

fnx /∈ p so, in particular, f /∈ p. By the previous result, q = (h(p)) CRf is prime. Moreover

φ(q) = p so it is enough to show that q ∈ D(S) ⊆ Spec(Rf). We have h(fnx) /∈ q and hence

h(x) /∈ q but h(x) ∈ S so S * q as required.

Conversely, assume p ∈ φ(D(S)) then p = φ(q) for some q ∈ D(S). The first observation is

that f /∈ p. If it were, then h(f) ∈ q so, arguing similarly as the previous case, 1 ∈ q which

is a contradiction. Therefore, we can apply the claim to obtain that p = φ((h(p))) and, since

φ is injective, q = (h(p)). Hence there is some s ∈ S such that s /∈ (h(p)). Write s = h(a)
h(fn) .

Then a ∈ h−1(S) and we must have a /∈ p. Since p is prime, fa /∈ p so T * p.

Lemma 21. The image of φ : Spec(Rf)→ Spec(R) is D(f) [1, 00E4].

lemma phi_image_Df : (φ HL) ’’ Spec.univ Rf = Spec.D’(f)

Proof. It follows form the proof of Lemma 20 when S = {1}.

As we will see, the fact that we can think of D(f) as Spec(Rf) is crucial so that schemes

make sense. In particular, we use it to prove the following result.

Lemma 22. For any f and any open cover {D(gi)} of D(f), we can find a finite subcover

D(f) = D(g1) ∪ · · · ∪D(gn) [1, 04PM].

def basis_elements_finite_subcover : Prop :=

∀ {U} (BU : U ∈ B) (OC : covering_standard_basis B U),

∃ (γ : Type u) (Hfin : fintype γ) (f : γ → OC.γ),
⋃
((OC.Uis ◦ f)) = U

theorem structure_presheaf.standard_opens_finite_subcover

: basis_elements_finite_subcover (D_fs_standard_basis R)

25

https://stacks.math.columbia.edu/tag/00E4
https://stacks.math.columbia.edu/tag/04PM

Proof. We just saw that D(f) ∼= Spec(Rf) so by compactness (Corollary 16) we can choose

a finite subcover. More precisely, we can consider the cover {φ−1(D(gi))} of Spec(Rf).

Then we can choose {φ−1(D(g1)), . . . , φ
−1(D(gn))} such that they cover Spec(Rf). Re-

call from the proof of Lemma 18 that these are actually {D(h(g1)), . . . , D(h(gn))}. Clearly

{φ(D(h(g1))), . . . , φ(D(h(gn)))} covers D(f). It remains to show that φ(D(h(gi))) ⊆ D(gi)

and then we can choose {D(g1), . . . , D(gn)}. Suppose p ∈ φ(D(h(gi))) then p = φ(q) for some

q ∈ D(h(gi)) and hence h(gi) /∈ q so clearly gi /∈ p and thus p ∈ D(gi).

We use the properties of φ again to prove a result that we will use later on to show that if

D(g) ⊆ D(f) then there is a map Rf → Rg.

Lemma 23. For f, g ∈ R, if D(g) ⊆ D(f) then f is invertible in Rg [1, 01HS].

lemma inverts.of_Dfs_subset {f g : R} (H : D’(g) ⊆ D’(f))

: inverts (powers f) (of : R → localization R (powers g))

Proof. Let fn

1 ∈ Rg. If fn

1 ∈ pC Rg prime then f ∈ q = φ(p) but q ∈ D(g) by Lemma 21 so

q ∈ D(f) which implies that f /∈ q and that is a contradiction. Since fn

1 is not contained in

any prime ideal of Rg, it is a unit in Rg.

Moreover, we can say something about the relationship between f and g as elements.

Lemma 24. Let f, g ∈ R and suppose D(g) ⊆ D(f). Then ge = af for some e and some

a ∈ R [1, 01HS].

lemma pow_eq.of_Dfs_subset {f g : R} (H : D’(g) ⊆ D’(f))

: ∃ (a : R) (e : N), g^e = a * f

Proof. From the previous lemma, there exists r ∈ R and n such that f
1
r
gn = 1

1 . Therefore,

by (L3), there exists m such that gm(rf − gn) = 0. Choosing a = gmr and e = n + m we

obtain ge = af as required.

3.2 Sheaf theory

In the previous section we gave some geometric intuition of the algebraic objects defined. We

could not be very precise because we were missing an important bit of machinery, which will

be developed in the following few subsections. Given a topological space X we would like to

think of ‘functions’ defined on X in a way such that it still makes sense to talk about them

when restricted to some open set U ⊆ X. With some extra conditions, we will see how we can

furthermore use this structure to make sense of the local behaviour of these ‘functions’.

We begin by defining presheaves [1, 006D], sheaves [1, 006S] and stalks [1, 0078]. Then

we discuss the slightly more technical issue of extending a presheaf defined on a basis to a

presheaf defined on the whole space [1, 009H].

26

https://stacks.math.columbia.edu/tag/01HS
https://stacks.math.columbia.edu/tag/01HS
https://stacks.math.columbia.edu/tag/006D
https://stacks.math.columbia.edu/tag/006S
https://stacks.math.columbia.edu/tag/0078
https://stacks.math.columbia.edu/tag/009H

3.2.1 Presheaves

The first structure we need is the one capturing the notion of restriction.

Definition 25. Let X be a topological space. A presheaf of sets F is given by the rules:

(a) For every open subset U ⊆ X, there is a set F (U). The elements of this set are called

the sections of F over U .

(b) If U, V ⊆ X are open subsets such that V ⊆ U , there is a map ρUV : F (U)→ F (V),

called a restriction map.

(c) ρUU is the identity map.

(d) If U, V,W ⊆ X are open subsets such that W ⊆ V ⊆ U , then ρUW = ρVW ◦ ρUV .

The set F (U) is also sometimes denoted Γ(U,F) [1, 006E].

structure presheaf (X : Type u) [topological_space X] :=

(F : opens X → Type v)

(res : ∀ (U V) (HVU : V ⊆ U), F U → F V)

(Hid : ∀ (U), res U U (set.subset.refl U) = id)

(Hcomp : ∀ (U V W) (HWV : W ⊆ V) (HVU : V ⊆ U),

res U W (set.subset.trans HWV HVU) = res V W HWV ◦ res U V HVU)

In the language of category theory, a presheaf on a topological space X is a contravariant

functor from the category of open sets of X, with morphisms given by inclusion, to the

category of sets, groups or rings (or any small category). This was one of our initial design

decisions. We were aware of the benefits of a categorical treatment. However, it is one of

the most difficult areas to formalise because of its foundational nature and at the start of

the project there were still a few important definitions missing so we decided to not use the

category theory library at all at the cost of some generality.

At the time of writing the situation is very different. Scott Morrison, Mario Carneiro and Reid

Barton have given the categorical definition of a presheaf. As mentioned in section 1.4, our

definitions have been used in the Perfectoid Spaces project and are mathematically correct.

However, we think that eventually they should be replaced by the ones in mathlib.

We continue our development by looking at maps between presheaves.

Definition 26. Let F and G be presheaves of sets on a topological space X. A morphism

of presheaves of sets φ : F → G is a structure with the following properties:

(a) For each open subset U ⊆ X, there is a function φ(U) : F (U)→ G (U).

(b) For all open subsets U, V ⊆ X with V ⊆ U , the diagram below commutes [1, 006E].

F (U) G (U)

F (V) G (V)

φ(U)

ρUV ρ′UV

φ(V)

27

https://stacks.math.columbia.edu/tag/006E
https://stacks.math.columbia.edu/tag/006E

structure morphism (F G : presheaf X) :=

(map : ∀ (U), F U → G U)

(commutes : ∀ (U V) (HVU : V ⊆ U),

(G.res U V HVU) ◦ (map U) = (map V) ◦ (F.res U V HVU))

If G is F and φ(U) = idF (U), we call φ the identity morphism and denote it idF . A morphism

φ : F → G is an isomorphism if there exists a morphism ψ : G → F such that ψ ◦ φ = idF

and φ ◦ ψ = idG , where the composition of morphisms is defined in the obvious way.

structure iso (F G : presheaf X) :=

(mor : F −→ G)

(inv : G −→ F)

(mor_inv_id : mor } inv = id F)

(inv_mor_id : inv } mor = id G)

Note that we have introduced some notation: −→ stands for morphism as defined above

and } is a shortcut for composition of morphisms. Lean allows the user to introduce new

notation, which is often useful to make the code more readable.

The definition for isomorphism above is perfectly fine to write statements of the form ‘given

an explicit isomorphism between F and G then . . . ’. However, in mathematics we tend to

work non-constructively so we would like to say ‘if there is an isomorphism between F and

G then . . . ’ instead. Therefore we define F ∼= G to mean nonempty (iso F G), which is a

way of saying that iso F G is a type such that an element can be chosen using the axiom of

choice.

Let us now give a couple of examples of presheaves.

Example 27. Let X be a topological space and S a set, then the constant presheaf given

by F (U) = S and with restriction maps defined to be idS is trivially a presheaf.

Example 28. Consider the real line R and let F be the presheaf defined by the rule F (U) =

{f : U → R | f is continuous and bounded} for open U ⊆ R. Restriction maps are simply

restrictions on the domains of the functions hence it is clear that it is a presheaf.

In this last example we observe that the sections have more structure than just elements of

sets. In fact, each F (U) is naturally a ring, given by the operations (f + g)(x) = f(x) + g(x)

and fg(x) = f(x)g(x). We will mostly be concerned with presheaves of this kind.

Definition 29. A presheaf F on a topological space X is called a presheaf of rings if for

each open set U ⊆ X, F (U) is a ring and all the restriction maps are ring homomorphisms

[1, 006N].

structure presheaf_of_rings (X : Type u) [topological_space X]

extends presheaf X :=

(Fring : ∀ (U), comm_ring (F U))

(res_is_ring_hom : ∀ (U V) (HVU : V ⊆ U), is_ring_hom (res U V HVU))

28

https://stacks.math.columbia.edu/tag/006N

Obviously, the definition of morphism needs to be extended.

Definition 30. A morphism of presheaves of rings φ : F → G on a topological space X

is a morphism of the underlying presheaves of sets such that φ(U) is a ring homomorphism

for every open U ⊆ X [1, 006N].

structure morphism (F G : presheaf_of_rings X)

extends presheaf.morphism F.to_presheaf G.to_presheaf :=

(ring_homs : ∀ (U), is_ring_hom (map U))

The identity map is a ring homomorphism and composition preserves ring homomorphisms so

isomorphisms of presheaves of rings are defined in the same way as isomorphisms of presheaves

of sets.

3.2.2 Sheaves

In this subsection we present the sheaf condition and explain why it is crucial to do geometry.

As before, we also define maps between sheaves and sheaves of rings.

Definition 31. A presheaf F on a topological space X is a sheaf if for any oen U ⊆ X

and any {Ui} covering U the following two conditions hold:

(a) If s, t ∈ F (U) is such that s|Ui = t|Ui for all i, then s = t.

(b) Given si ∈ F (Ui) for each i, if si|Ui∩Uj = sj |Ui∩Uj for all i and j then there exists

s ∈ F (U) such that s|Ui = si for all i [1, 006T].

variables (X : Type u) [T : topological_space X]

def locality (F : presheaf X) :=

∀ {U} (OC : covering U) (s t : F U),

(∀ i, F.res U (OC.Uis i) (subset_covering i) s =

F.res U (OC.Uis i) (subset_covering i) t) →
s = t

def gluing (F : presheaf X) :=

∀ {U} (OC : covering U),

∀ (s : Π i, F (OC.Uis i)),

(∀ j k, res_to_inter_left F (OC.Uis j) (OC.Uis k) (s j) =

res_to_inter_right F (OC.Uis j) (OC.Uis k) (s k)) →
∃ S, ∀ i, F.res U (OC.Uis i) (subset_covering i) S = s i

structure sheaf extends presheaf X :=

(locality : locality to_presheaf)

(gluing : gluing to_presheaf)

29

https://stacks.math.columbia.edu/tag/006N
https://stacks.math.columbia.edu/tag/006T

Informally, the gluing condition says that if a set of ‘functions’ {fi} perhaps defined on

different intervals coincide in their intersections then there is a ‘function’ f that contains all

of them. One can think of continuous piecewise functions for instance as a simple example

of this phenomenon. The locality condition ensures that f is unique.

Dealing with sheaves formally turns out to be way more delicate than that. In fact, we will

spend all of section 3.4 essentially proving the sheaf condition for a special kind of presheaf.

In order to give a deeper insight into it, let us look back at the examples from the previous

subsection.

Example 32. The constant presheaf defined in Example 27 is a sheaf if and only if S is a

singleton. The sheaf condition enforces F (∅) to be a final object, that is, an object in a

category such that every other object maps to it uniquely.

Example 33. The presheaf of bounded real-valued continuous functions from Example 28

is not a sheaf. Let Ui = (i − 1, i + 1) for each i ∈ Z. Clearly
⋃
i Ui = R. Now consider the

functions fi : Ui → R given by fi(x) = x. Each fi is certainly continuous and |fi(x)| ≤ i+1 so

fi ∈ F (Ui). Suppose for a contradiction that some f ∈ F (R) satisfied the gluing condition.

By assumption |f(x)| ≤M for some M but |fM+1(x)| �M .

Example 34. However, if we drop the boundedness condition and define, for open U ⊆ R,

F (U) = {f : U → R | f continuous} with the obvious restriction maps, we obtain a sheaf.

It is a standard application of the pasting lemma from topology.

As a final example and to show the sort of objects on which sheaves are actually useful, we

generalize the idea of the previous one.

Example 35. Let X be a smooth manifold (a topological space where we can locally do

calculus) then for any open U ⊆ X the rule F (U) = C∞X,R(U) = {f : U → R | f smooth}
gives rise to a sheaf. In fact, he same idea works for a complex analytic manifold.

Note that all of the examples that we have seen so far come from analysis, where they appear

very naturally. As it was mentioned in section 1.2 one of the purposes of a scheme is precisely

to transport these ideas from analysis to algebra.

Again, the F (U) often happen to be rings so we define sheaf_of_rings in the same way

but extending presheaf_of_rings instead.

Finally, morphisms of sheaves are simply morphisms of the underlying presheaves.

3.2.3 Stalks

We have seen how presheaves and sheaves let us argue about what happens locally looking

into subsets and their intersections. However, it is not clear at all what happens at a single

element. Stalks allow us to focus on a single element by considering all the open sets it

belongs to at once.

Formally we say that the stalk of a presheaf F at x ∈ X is the colimit of the sets F (U) for

open U 3 x and denote it Fx. This means that there are maps F (U) → Fx for each open

U 3 x such that all diagrams commute and for any other object S satisfying this property

there is a unique map Fx → S. What this means is that Fx contains the information common

30

to all the F (U) with x ∈ U and nothing else. Intuitively, we see how this information must

have something to do with the behaviour of the presheaf around x.

We can explicitly define this colimit.

Definition 36. Let X be a topological space and F a presheaf of sets on X. The

stalk of F at a point x ∈ X is the set of all pairs (U, s) where x ∈ U and s ∈ F (U)

under the equivalence relation given by (U, s) ∼ (V, t) if an only if there exists an open

neighbourhood of x such that W ⊆ U ∩ V and s|W = t|W [1, 0078].

structure stalk.elem :=

(U : opens X)

(HxU : x ∈ U)

(s : F U)

def stalk.relation : stalk.elem F x → stalk.elem F x → Prop := λ Us Vt,

∃ (W : opens X) (HxW : x ∈ W) (HWU : W ⊆ Us.U) (HWV : W ⊆ Vt.U),

F.res Us.U W HWU Us.s = F.res Vt.U W HWV Vt.s

instance stalk.setoid : setoid (stalk.elem F x) :=

{ r := stalk.relation F x,

iseqv := stalk.relation.equivalence F x }

def stalk := quotient (stalk.setoid F x)

First we check that stalks are well-defined and that they satisfy the required property.

Proposition 37. The relation ∼ as above is indeed an equivalence relation [1, 0078].

lemma stalk.relation.equivalence : equivalence (stalk.relation F x)

Proof. Reflexivity and symmetry are obvious. For transitivity suppose (U, a) ∼ (V, b) and

(V, b) ∼ (W, c). This implies that there exists R ⊆ U ∩V and S ⊆ V ∩W such that a|R = b|R
and b|S = c|S so simply choose R ∩ S ⊆ U ∩W . Then, using the composition property of

restriction maps, a|R∩S = (a|R)|R∩S = (b|R)|R∩S = b|R∩S = (b|S)|R∩S = (c|S)|R∩S = c|R∩S
and we are done.

Proposition 38. The stalk Fx defined as above is indeed colimx∈UF (U) [1, 0078].

def to_stalk (U : opens X) (HxU : x ∈ U) : F U → stalk F x :=

λ s, J{U := U, HxU := HxU, s := s}K

variables (S : Type w) [decidable_eq S]

variables (G : Π U, x ∈ U → F U → S)

31

https://stacks.math.columbia.edu/tag/0078
https://stacks.math.columbia.edu/tag/0078
https://stacks.math.columbia.edu/tag/0078

variables (HG : ∀ V U (HVU : V ⊆ U) (HxV : x ∈ V),

(G V HxV) ◦ (F.res U V HVU) = G U (HVU HxV))

def to_stalk.rec : stalk F x → S :=

λ y, quotient.lift_on’ y (λ Us, G Us.1 Us.2 Us.3)

(λ 〈U, HxU, s〉 〈V, HxV, t〉 〈W, HxW, HWU, HWV, Hres〉,
by dsimp; erw [←HG W U HWU s HxW, ←HG W V HWV t HxW, Hres])

lemma to_stalk.rec_to_stalk (U : opens X) (HxU : x ∈ U)

: (to_stalk.rec F x S G HG) ◦ (to_stalk F x U HxU) = G U HxU

Proof. Obvious.

What just happened? Well, for Lean this lemma is completely obvious and the proof is just

rfl (or by refl). It remains to explain these definitions and justify that this is actually

the result that we need, which might not be so clear at first glance. The function to_stalk

is the map F (U) → Fx sending s 7→ (U, s), whose existence is the first requirement, and

we found it! Now suppose that there is some S such that there are maps gU : F (U) → S

(G) and they commute with the restriction maps (HG). Firstly, we need to come up with a

map Fx → S. That is exactly to_stalk.rec which, less obviously from the definition, is

given by (U, s) 7→ gU (s). The reason why the definition includes what looks like a proof is

because one needs to convince Lean that this is actually well-defined. In particular, we show

that if (U, s) ∼ (V, t) then gU (s) = gV (t) so we look at the W ⊆ U ∩ V where s|W = t|W .

Because of compatibility with restrictions, we see that gU (s) = gW (s|W) = gW (t|W) = gV (t)

so the map is well-defined. However, after all this convincing, it is straightforward that

s 7→ (U, s) 7→ gU (s) is the same as s 7→ gU (s) for all U 3 x. Uniqueness is also clear now

as any map Fx → S has to send (U, s) to gU (s) to satisfy the lemma or, in other words, it

needs to be exactly to_stalk.rec.

Again, we mostly care about the case when F is a presheaf of rings.

Definition 39. Given a presheaf of rings F on a topological space X, the stalk of rings

of F at x ∈ X is the stalk of the underlying presheaf of sets of F at x [1, 007G].

definition stalk_of_rings := stalk F.to_presheaf x

There are a couple of checks that are necessary before we move forward.

Proposition 40. The stalk of rings Fx is a ring [1, 007G].

instance stalk_of_rings_is_comm_ring : comm_ring (stalk_of_rings F x)

Proof. We let (X, 0) ∈ Fx be the zero element and (X, 1) ∈ Fx be the unity. Addition

is given by (U, s) + (V, t) = (U ∩ V, s|U∩V + t|U∩V) and multiplication by (U, s) ∗ (V, t) =

32

https://stacks.math.columbia.edu/tag/007G
https://stacks.math.columbia.edu/tag/007G

(U ∩V, s|U∩V ∗t|U∩V). One checks in a similar fashion as before that these are well-defined by

sending everything to the subset where the elements coincide. All the ring axioms need to be

checked but in every case it boils down to finding a subset W small enough where everything

coincides. The axioms are then be inherited from the ring structure of F (W).

Proposition 41. The stalk of rings Fx corresponds to colimx∈UF (U) in the category

of rings [1, 007G].

variables [comm_ring S] [Hg_ring_hom : Π U, is_ring_hom (G U)]

lemma to_stalk.is_ring_hom (U : opens X) (HxU : x ∈ U)

: is_ring_hom (to_stalk F x U HxU)

lemma to_stalk.rec_is_ring_hom : is_ring_hom (to_stalk.rec F x S G Hg)

Proof. We just need to check that the maps in Proposition 38 are ring homomorphisms.

The first lemma follows fairly immediately from the fact that the restriction maps are ring

homomorphisms. For the second one, we use the fact that gU ’s are ring homomorphisms and

that they are compatible with restriction maps.

3.2.4 Bases

The last bit of machinery that needs to be developed has to do with defining a presheaf on

a basis and extending it to the whole space. We define presheaves, sheaves and stalks on a

basis and then specialise these definitions to the case of rings.

Definition 42. Let X be a topological space and B a basis for X, a presheaf of sets on

a basis F is a presheaf of sets on X just defined on the U ∈ B [1, 009I].

structure presheaf_on_basis (X : Type u) [T : topological_space X]

{B : set (opens X)} (HB : opens.is_basis B) :=

(F : Π {U}, U ∈ B → Type v)

(res : ∀ {U V} (BU : U ∈ B) (BV : V ∈ B) (HVU : V ⊆ U), F BU → F BV)

(Hid : ∀ {U} (BU : U ∈ B), (res BU BU (set.subset.refl U)) = id)

(Hcomp : ∀ {U V W}

(BU : U ∈ B) (BV : V ∈ B) (BW : W ∈ B) (HWV : W ⊆ V) (HVU : V ⊆ U),

res BU BW (set.subset.trans HWV HVU) =

(res BV BW HWV) ◦ (res BU BV HVU))

Morphisms are defined in an analogous way as for presheaves on the whole space.

Next we define the sheaf condition for presheaves on basis. We need to be a little bit more

careful here. Previously, we were given an open cover {Ui} for some U ⊆ X and considered

intersections of the Ui’s. The issue is that if Ui, Uj ∈ B it is not necessarily the case that

33

https://stacks.math.columbia.edu/tag/007G
https://stacks.math.columbia.edu/tag/009I

Ui ∩ Uj ∈ B. However, by basic topology, we know that there exist {Uijk} covering Ui ∩ Uj
such that Uijk ∈ B. The following structure carries this information.

structure covering_basis (U : opens X) extends covering U :=

{Iij : γ → γ → Type v}

(Uijks : Π (i j), Iij i j → opens X)

(BUis : ∀ i, Uis i ∈ B)

(BUijks : ∀ i j k, Uijks i j k ∈ B)

(Hintercov : ∀ i j,
⋃

(Uijks i j) = Uis i ∩ Uis j)

Now, instead of considering the restriction to Ui∩Uj , we can consider the restrictions to Uijk
for all k.

Definition 43. Let F be a presheaf of sets on a topological space X and let B be a basis

of X. We say that F is a sheaf of sets on the basis B if it satisfies the following condition.

Pick any open U ⊆ X and {Ui} covering U . If si ∈ F (Ui) satisfy si|Uijk
= sj |Uijk

for all

k where {Uijk} ⊆ B is any open cover for Ui ∩ Uj then there is a unique s ∈ F (U) such

that s|Ui = si for all i [1, 009J].

def is_sheaf_on_basis (F : presheaf_on_basis X HB) : Prop :=

∀ {U} (BU : U ∈ B) (OC : covering_basis U),

∀ (s : Π i, F (OC.BUis i)),

(∀ i j k, F.res (OC.BUis i) (OC.BUijks i j k)

(subset_covering_basis_inter_left i j k) (s i) =

F.res (OC.BUis j) (OC.BUijks i j k)

(subset_covering_basis_inter_right i j k) (s j)) →
∃! S, ∀ i, F.res BU (OC.BUis i) (subset_covering i) S = s i

Note that before we defined a sheaf as a structure extending a presheaf which, in addition,

satisfied the sheaf condition. Here, instead, the sheaf condition is defined as a proposition.

We have both versions in both cases and, mathematically, there is no difference between one

and the other.

It remains to consider stalks on a basis.

Definition 44. Suppose B is a basis for X, F is a presheaf on B and x ∈ X. We

define Fx, the stalk on the basis B, as the set of pairs (U, s) where x ∈ U ∈ B under the

equivalence relation (U, s) ∼ (V, t) if and only if there exists W ⊆ U ∩V such that x ∈W ,

W ∈ B and s|W = t|W [1, 009H].

structure stalk_on_basis.elem :=

(U : opens X)

(BU : U ∈ B)

(Hx : x ∈ U)

(s : F BU)

34

https://stacks.math.columbia.edu/tag/009J
https://stacks.math.columbia.edu/tag/009H

The proof that ∼ is an equivalence relation is analogous to the one in Proposition 37. More-

over, it is also true that Fx = colimx∈U,U∈BF (U) arguing as in Proposition 38.

Again, in exactly the same way as before, we extend these definitions to the case of rings.

Definition 45. A presheaf F on the basis B is a presheaf of rings on the basis B if for

every U ∈ B we have that F (U) is a ring and every restriction map ρUV : F (U)→ F (V)

is a ring homomorphism [1, 009P].

structure presheaf_of_rings_on_basis (X : Type u) [topological_space X]

{B : set (opens α)} (HB : opens.is_basis B)

extends presheaf_on_basis α HB :=

(Fring : ∀ {U} (BU : U ∈ B), comm_ring (F BU))

(res_is_ring_hom : ∀ {U V} (BU : U ∈ B) (BV : V ∈ B) (HVU : V ⊆ U),

is_ring_hom (res BU BV HVU))

The definitions for a sheaf of rings on a basis and a stalk of rings on a basis are the same as

the definitions for a sheaf on a basis and a stalk on a basis respectively with the assumption

that the underlying presheaf is a presheaf of rings on a basis.

Before we pointed out that if B is a basis and U, V ∈ B we cannot assume that U ∩ V ∈ B.

However, if a basis satisfies this condition we say that it is a standard basis. It makes sense

to consider standard bases. In fact, this idea was introduced previously in Lemma 14 where

we proved that the standard opens {D(f)} form a standard basis for Spec(R).

Hereafter we assume that any basis we encounter is standard. All of the results hold for a

general basis but that adds some uninteresting complexity to the proofs, which are already

fairly technical.

Lemma 46. If F is a presheaf of rings on a standard basis then for all x ∈ X we have

that Fx is a ring [1, 009P].

instance comm_ring

: comm_ring (stalk_of_rings_on_standard_basis Bstd F x)

Proof. Under the assumption that the basis is standard the proof is exactly the same as that

of Proposition 40.

The final result in this subsection relates the sheaf condition on a basis with compactness of

the basis elements in the sense of Lemma 22.

Lemma 47. Suppose we are given a presheaf F on a basis B which is standard and

every cover of a basis element admits a finite subcover. If F satisfies the sheaf condition

for finite open covers then F satisifies the sheaf condition for arbitrary covers [1, 009K].

35

https://stacks.math.columbia.edu/tag/009P
https://stacks.math.columbia.edu/tag/009P
https://stacks.math.columbia.edu/tag/009K

def is_sheaf_on_standard_basis_cofinal_systems : Prop :=

∀ {U} (BU : U ∈ B) (OC : covering_standard_basis B U) (H : fintype OC.γ),

locality Bstd F BU OC ∧ gluing Bstd F BU OC

lemma is_sheaf_on_standard_basis_of_cofinal

(F : presheaf_on_basis X HB)

(Hcompact : basis_elements_finite_subcover Bstd)

: is_sheaf_on_standard_basis_cofinal_systems Bstd F →
is_sheaf_on_standard_basis Bstd F

Proof. Pick any U ∈ B and any open cover {Ui} of U . By compactness of the basis, we can

find, after possibly renaming, U = {U1, . . . , Un} covering U and, by assumption, F satisfies

the sheaf condition on U .

For locality suppose that s, t ∈ F (U) and s|Ui = t|Ui for all i then, in particular, s|Uj = t|Uj

for 1 ≤ j ≤ n so s = t and we are done.

To prove the gluing condition, suppose that we have si ∈ F (Ui) such that si|Ui∩Uj = sj |Ui∩Uj

for all i and j. There exists s ∈ F (U) such that s|Uj = sj for 1 ≤ j ≤ n. We claim that

s|Ui = si for all i. Fix an i and define Vj = Ui ∩ Uj for 1 ≤ j ≤ n. Since B is standard,

we have that Vj ∈ B. Moreover V = {V1, . . . , Vn} covers Ui. Consider tj = s|Vj . Then for

every 1 ≤ k, l ≤ n we have tk|Vk∩Vl = s|Vk∩Vl = tl|Vk∩Vl so by the gluing condition on finite

covers applied to Ui and V we have that there exists t ∈ F (Ui) such that t|Vk = tk. Thus

t|Vk = s|Vk = (s|Ui)|Vk so, by locality, t = s|Ui . But also t|Vk = s|Vk = (s|Uk
)|Vk = sk|Vk = si|Vk

and therefore t = si, again by locality. We conclude that s|Ui = si as required.

In [1, 009K] this lemma is proved in more generality. The basis does not need to be standard

or compact. Consider for any U the set of all coverings CovB(U) preordered by refinement.

A subset C(U) ⊆ CovB(U) is called a cofinal system if for every U ∈ CovB(U) there is some

V ∈ C(U) such that V < U . They prove that if for every U ∈ B there is some cofinal system

C(U) such that for all U ∈ C(U) the sheaf condition holds for U then it holds on B. In our

case, since we assume that the basis is compact we take as our cofinal system the set of all

finite covers.

3.2.5 Extensions

In the previous subsection we saw how one can do sheaf theory on the basis. In a philosophical

sense, the basis has all the information of the topological space so we would expect that a

presheaf F defined on a basis B could be naturally extended to a presheaf F ext on the whole

space. Moreover, given U ∈ B we would like F (U) ∼= F ext(U). It turns out that with our

construction of F ext this property is not necessarily true unless F is a sheaf. We present

said construction and study how it relates to the given presheaf on a basis.

36

https://stacks.math.columbia.edu/tag/009K

Definition 48. Suppose F is a presheaf on a basis B. Given any open U ⊆ X not

necessarily in the basis we define the presheaf extension as follows [1, 009N].

F ext(U) = {((Ux, sx)) ∈ Πx∈UFx | ∃V ∈ B such that x ∈ V ⊆ U and σ ∈ F (V)

with (Uy, sy) = (V, σ) for all y ∈ U ∩ V }.

def presheaf_extension (F : presheaf_on_basis X HB) : presheaf X :=

{ F := λ U, {s : Π (x ∈ U), stalk_on_basis F x //

∀ (x ∈ U), ∃ (V) (BV : V ∈ B) (Hx : x ∈ V) (σ : F BV),

∀ (y ∈ U ∩ V), s y = λ _, J{U := V, BU := BV, Hx := H.2, s := σ}K},
res := λ U W HWU FU,

{ val := λ x HxW, (FU.val x (HWU HxW)),

property := λ x HxW,

begin

rcases (FU.2 x (HWU HxW)) with 〈V, 〈BV, 〈HxV, 〈σ, HFV〉〉〉〉,
use [V, BV, HxV, σ],

rintros y 〈HyW, HyV〉,
rw (HFV y 〈HWU HyW, HyV〉),

end },

Hid := λ U, funext (λ x, subtype.eq rfl),

Hcomp := λ U V W HWV HVU, funext (λ x, subtype.eq rfl)}

It is worth explaining the work that needed to be done to define res. Suppose that W ⊆ U ,

then the restriciton maps ρUW : F ext(U) → F ext(W) arise from the obvious restriction

Πx∈UFx → Πx∈WFx. For any x ∈W we have x ∈ U so we choose the V ∈ B and σ ∈ F (V)

given by the property then certainly (Ux, sx) = (V, σ) for all y ∈ W ∩ V ⊆ U ∩ V . This is

exactly the proof that appears in the definition.

We can also require that F is a presheaf of rings on a basis, in which case the resulting object

is a presheaf of rings. Proving that F ext(U) is a ring is a consequence of Fx being a ring and

products of rings being rings. The restriction maps are easily seen to be ring homomorphisms

if we think of them as restrictions from a product of rings.

We now prove an important property about this construction.

Lemma 49. With the same definition as above, F ext is a sheaf [1, 009N].

lemma extension_is_sheaf (F : presheaf_on_basis X HB)

: is_sheaf (presheaf_extension F)

Proof. Fix an open set U ⊆ X and a covering {Ui} of U .

First, we prove locality. Let s, t ∈ F ext(U) be such that s|Ui = t|Ui for all i. In particular

sx = tx in Fx for x ∈ Ui. What we need to show is that for any x ∈ U , sx = tx. But

U =
⋃
Ui so any x ∈ U is in x ∈ Ui for some i and the result follows.

37

https://stacks.math.columbia.edu/tag/009N
https://stacks.math.columbia.edu/tag/009N

Asserting the gluing property will require some more work. Pick any si ∈ F ext(Ui) such that

si|Ui∩Uj = sj |Ui∩Uj for all i and j. We define the global section s ∈ F (U), prove that it is

well-defined and then show that it satisfies the required property. For x ∈ Ui write si(x) for

si ∈ Fx, i.e. value of si in the stalk Fx. Let s be given by (si(x))x∈U where the i is chosen

such that Ui contains x. Note that if x ∈ Ui∩Uj then si(x) = sj(x) by the equivalence relation

defined on stalks. To prove the property, pick any x ∈ U then x ∈ Ui for some i and there is

some x ∈ V ∈ B and σ ∈ F (V) such that si(x) = (V, σ) and therefore the property holds for

every element of U so s ∈ F (U) as required. By construciton, s|Ui = (si(x))x∈Ui = si and so

the sheaf condition is proved.

The exact same proof holds if we start with a presheaf of rings instead. As a matter of fact,

from now on we will only consider presheaves of rings making the next section the natural

continuation of this one. For the same reason explained in Lemma 47, we will assume that

the bases are standard. It simplifies the calculations and we know that it is enough to give

a complete definition of a scheme.

At this point there are several questions that come to mind. It is slightly suspicious that

a sheaf appeared from nowhere. However, it makes some sense because we are setting up

the F ext(U)’s in a way that they can be glued with the F (U) for U ∈ B which is the only

information we have at first. This construction forces that if sections coincide in intersections

in the sense of the sheaf condition then they can be glued together. A way to think about it

is that we start with U ⊆ X and for each x ∈ U we gather all the information we can about

the ‘functions’ on it, which is in Fx defined on the basis. Then we can choose a small enough

neighbourhood of x and a ‘function’ on it in a way that it respects the existing ‘functions’

on the basis elements. It is related to the more general idea of sheaffication which we do not

cover but that can be found in [1, 007X].

The argument above will be formalised at the end of this subsection when we explicitly use

the sheaf condition to prove that there is an isomorphism F ext(U) ∼= F (U). Before we tackle

such issue, we study the extension locally. It turns out that it behaves quite nicely.

Lemma 50. Let F be a presheaf on a standard basis, then for all x ∈ X we have

F ext
x
∼= Fx [1, 009H].

lemma to_stalk_extension.equiv

(F : presheaf_of_rings_on_basis X HB) {U : opens X} (BU : U ∈ B)

: stalk_of_rings_on_standard_basis Bstd F x 'r
stalk_of_rings (presheaf_of_rings_extension Bstd F) x

Proof. For U ∈ B, let φU : F (U)→ F ext(U) be the canonical map φU (s) = (s) ∈ Πx∈UFx.

Note that it trivially satisfies the property of Definition 48. We need to come up with a map

ψ : Fx → F ext
x . Define ψ((U, s)) = (U, φU (s)) ∈ F ext

x . We show that this map is injective,

surjective and a ring homomorphism. Supose that (U, φU (s)) = (V, φV (t)) then there exists

W ⊆ U ∩ V such that φU (s)|W = φV (t)|W . This means that s = t on W so (U, s) = (V, t)

hence ψ is injective. Let (V, t) ∈ F ext
x . By definition, t has the property that there exists

some U ∈ B such that x ∈ U and s ∈ F (U) with (U, s) = ty for all y ∈ U ∩ V ∈ B, which in

our notation translates to (U ∩ V, φU∩V (s)) = (V, t), so the map is surjective. The fact that

38

https://stacks.math.columbia.edu/tag/007X
https://stacks.math.columbia.edu/tag/009H

it is a ring homomorphism comes from the ring structure defined on stalks of presheaves of

rings proved in Lemma 46.

We finish this section with the main result about extensions of presheaves.

Lemma 51. If F is a sheaf of rings on a standard basis B then F ext(U) ∼= F (U) for

U ∈ B [1, 009N].

lemma to_presheaf_of_rings_extension.ring_equiv

(F : presheaf_of_rings_on_basis X HB)

(HF : is_sheaf_on_standard_basis Bstd F.to_presheaf_on_basis)

{U : opens X} (BU : U ∈ B)

: F BU 'r (presheaf_of_rings_extension F Bstd) U

Proof. We prove that the map φU defined in the previous lemma is an isomorphism of rings

for every U ∈ B.

Suppose that φU (s) = φU (t) for some s, t ∈ F (U). This means that (U, s) = (U, t) in Fx for

every x ∈ U . We deduce that there exist open Wx ⊆ U with x ∈ Wx such that s|Wx = t|Wx

for all x. Clearly {Wx} is an open cover of U so, by locality, we deduce that s = t and hence

φU is injective.

Now pick any (sx) ∈ F ext(U). By definition, for every x ∈ U there is a basis element Vx ∈ B
with x ∈ Vx and σx ∈ F (Vx) such that for all y ∈ U ∩ Vx = Wx ∈ B (because B is standard)

we have that sy = (Vx, σx). Similarly as before, we see that {Wx} covers U . We claim

that σx|Wx∩Wy = σy|Wx∩Wy for all x, y ∈ U . Note that for all z ∈ Wx ∩Wy we have that

(Vx, σx) = sz = (Vy, σy) so we can find Wxyz such that z ∈Wxyz ∈ B and σx|Wxyz = σy|Wxyz .

We can therefore cover Wx ∩ Wy with {Wxyz} and apply locality to this intersection to

deduce the claim. By the gluing condition and the claim we find a section s ∈ F (U) such

that s|Wx = σx for all x ∈ U and then φU (s) = ((U, s)) = ((Wx, σx)) = ((Vx, σx)) = (sx),

hence we have proved surjectivity.

By the standard argument, φU is a ring homomorphism.

3.3 Locally ringed spaces

Finally, we have enough machinery to start thinking about schemes. As we will see, a scheme

is a locally ringed space with a certain property hence we first define locally ringed spaces

following [1, 01HA].

A ringed space is simply a topological space X together with a sheaf of rings OX . Note that

we use O for ringed spaces instead of F , following the standard convention. When we study

algebraic geometry we often want to look in one sense or another at the ring of ‘functions’

that characterise a single point x ∈ X. These are often called germs and live in the stalk

of OX at x. We might expect for all the germs which vanish at x to form an ideal as in

general we want that if f(x) = 0 and g(x) = 0 then (f + g)(x) = 0. This would be obvious

in the general setting but sheaves allow more flexibility. The canonical examples such as

39

https://stacks.math.columbia.edu/tag/009N
https://stacks.math.columbia.edu/tag/01HA

the sheaf of real-valued continuous functions on a topological space X satisfy this property.

Moreover, by basic commutative algebra, if the nonunits form an ideal, it must be maximal.

If a function does not vanish at x then we can find a small neighbourhood where it is not

zero anywhere so it is invertible as an element of the stalk. This observation justifies the

following definition.

Definition 52. A locally ringed space is a topological space X with an associated sheaf

of rings OX such that at every x ∈ X the stalk OX,x is a local ring [1, 01HB].

structure locally_ringed_space (X : Type u) [topological_space X] :=

(O : sheaf_of_rings X)

(Hstalks : ∀ x, is_local_ring (stalk_of_rings O.F x))

Introducing the notion of a locally ringed space has been one of the main contributions of

this project. The definition of a scheme defined in the first attempt did not define a scheme

as a locally ringed space. One does not need to impose the condition on stalks as it is true by

construction and that is why we said that the two definitions were mathematically equivalent.

Nevertheless, when doing formal mathematics it is in general a good practice to follow the

mathematical definition as much as follows as there is no obvious way of checking that the

definition itself is the correct one.

If we want to treat schemes as a special kind of locally ringed spaces, it is useful to study the

maps between them. They will be given by the maps between their underlying presheaves.

However, morphisms of presheaves are of no help here as, in general, we want to define maps

between two locally ringed spaces on different topological spaces.

Assume that X and Y are topological spaces and f : X → Y a continuous map.

Definition 53. Given a presheaf F on X, the pushforward f∗F is a presheaf on Y

defined by the rule f∗F (U) = F (f−1(U)) [1, 008C].

def pushforward (F : presheaf X) : presheaf Y :=

{ F := λ U, F (opens.comap Hf U),

res := λ U V HVU, F.res

(opens.comap Hf V) (opens.comap_mono Hf V U HVU),

Hid := λ U, F.Hid (opens.comap Hf U),

Hcomp := λ U V W HWV HVU,

F.Hcomp (opens.comap Hf U) (opens.comap Hf V) (opens.comap Hf W)

(opens.comap_mono Hf W V HWV) (opens.comap_mono Hf V U HVU) }

Pushforwards are the easiest maps to define as they follow naturally from continuity. Now,

we would like to define a presheaf on X from a presheaf on Y using f . This can be done

in general but we will only worry about a particular type of maps, which will make the

definition much more straightforward. In particular we will assume that if U ⊆ X is open

then f(U) ⊆ Y is open. There is only one place where we need this definition, namely to

40

https://stacks.math.columbia.edu/tag/01HB
https://stacks.math.columbia.edu/tag/008C

define a scheme, and the maps there could, in principle, just be inclusions ι : U → X to some

subset U ⊆ X, therefore the following construction is general enough.

Definition 54. If f is an open map then the open pullback f∗F is given by the rule

f∗F (U) = F (f(U)) [1, 008F].

variable (Hf’ : ∀ (U : opens X), is_open (f ’’ U))

def open_pullback (F : presheaf Y) : presheaf X :=

{ F := λ U, F (opens.map Hf’ U),

res := λ U V HVU, F.res

(opens.map Hf’ U) (opens.map Hf’ V) (opens.map_mono Hf’ V U HVU),

Hid := λ U, F.Hid (opens.map Hf’ U),

Hcomp := λ U V W HWV HVU,

F.Hcomp (opens.map Hf’ U) (opens.map Hf’ V) (opens.map Hf’ W)

(opens.map_mono Hf’ W V HWV) (opens.map_mono Hf’ V U HVU)}

For convenience, we package the data needed to define a pullback under an open immersion,

which is a continuous injective open map which is, in essence, an inclusion map.

structure open_immersion_pullback (F : presheaf Y) :=

(f : X → Y)

(Hf1 : continuous f)

(Hf2 : ∀ (U : opens X), is_open (f ’’ U))

(Hf3 : function.injective f)

(range : opens Y := 〈f ’’ set.univ, Hf2 opens.univ〉)
(carrier : presheaf X := open_pullback Hf2 F)

Instead of generating new presheaves, in some situations it is useful to start with F a presheaf

on X and G a presheaf on Y and see whether f can map from one to the other respecting

restrictions.

Definition 55. An f -map from G to F is a set of maps ξU : G (U)→ F (f−1(U)) such

that the following diagram commutes.

G (U) F (f−1(U))

G (V) F (f−1(V))

ξU

ρ′UV
ρUV

ξV

We denote them f# : G → F [1, 008J].

41

https://stacks.math.columbia.edu/tag/008F
https://stacks.math.columbia.edu/tag/008J

structure fmap (F : presheaf α) (G : presheaf β) :=

(map : ∀ (U), G U → F (opens.comap Hf U))

(commutes : ∀ (U V) (HVU : V ⊆ U),

(map V) ◦ (G.res U V HVU)

= (F.res (opens.comap Hf U) (opens.comap Hf V)

(opens.comap_mono Hf V U HVU)) ◦ (map U))

These maps can be composed in the obvious way. Moreover, an f -map between G and F gives

for every x ∈ X an induced map f#x : Gf(x) → Fx given by (U, s) 7→ (f−1(U), ξU (s)).

Pushforwards, pullbacks and f -maps can easily be extended to presheaves of rings.

We are now in a position to define maps between locally ringed spaces, which concludes our

formal study of these objects and leads us to one of the most important constructions that

we will present.

Definition 56. A morphism of locally ringed spaces (X,OX) and (Y,OY) is given by a

continuous map f : X → Y and an f -map f# : OY → OX such that for all x ∈ X the

induced map f#x : Gf(x) → Fx is a local ring map, which means that it sends nonunits to

nonunits [1, 01HB].

structure morphism

{X : Type u} {Y : Type v} [topological_space X] [topological_space Y]

(OX : locally_ringed_space X) (OY : locally_ringed_space Y) :=

(f : X → Y)

(Hf : continuous f)

(fO : fmap Hf OX.O.F OY.O.F)

(Hstalks : ∀ x s,

is_unit (fmap.induced OX.O.F OY.O.F fO x s) → is_unit s)

3.4 Affine schemes

This section formalises the contents of [1, 01HR]. It is here where our work on commutative

algebra and our work on sheaf theory meet.

Recall from section 3.1.4 that given a ring R we can define a topological space Spec(R).

Moreover, we can choose D(f) = {p C R | f /∈ p} for each f ∈ R which we called standard

opens and we showed that {D(f)} forms a standard basis (Lemma 14). Another important

property that we proved was that this basis is compact (Lemma 15). We proceeded by looking

into induced maps from ring homomorphisms (Definition 17) and put particular emphasis on

the induced map φ : Spec(Rf)→ Spec(R) which was used to show Spec(Rf) ∼=φ D(f)

The objective of this section is to show that Spec(R) is a locally ringed space and we will

need all of this machinery to do so. The first step is to define a presheaf of rings on it,

which is often called the structure presheaf. Then, we will prove that it is a sheaf applying

42

https://stacks.math.columbia.edu/tag/01HB
https://stacks.math.columbia.edu/tag/01HR

Lemma 10 appropriately, which will require some work. Finally, it will follow quite nicely

from the definition that the stalks of the structure presheaf are local rings.

In sections 3.2.4 and 3.2.5 we saw how it is possible to define a presheaf on a basis and extend

it to the whole space. That is exactly what we will do to define a presheaf on Spec(R). In the

standard treatment, it is given by the ruleD(f) 7→ Rf . We adopt a slightly different approach.

In Lean we are given some open U ⊆ Spec(R) together with the data ‘∃f ∈ R,U = D(f)’.

We could obtain this f using classical.some. Although in general we use choice freely, it is

not required for this specific definition so we present a computable definition of the structure

presheaf on Spec(R).

Definition 57. Let R be a ring. The structure presheaf on the standard basis OSpec(R)

is the presheaf of rings on the basis B = {D(f) | f ∈ R} given by the rule U 7→ S−1U R for

U ∈ B where SU = {r ∈ R | U ⊆ D(r)} [1, 01HR].

def S (U : opens (Spec R)) : set R := {r : R | U.1 ⊆ D’(r)}

def structure_presheaf_on_basis

: presheaf_of_rings_on_basis (Spec R) (D_fs_basis R) :=

{ F := λ U BU, localization R (S U),

res := λ U V BU BV HVU,

begin

have H := S.rev_mono HVU,

apply quotient.lift

(λ (x : R × (S U)), J(x.1, (〈x.2.1, H x.2.2〉 : (S V)))K),
{ rintros 〈a1, b1, Hb1〉 〈a2, b2, Hb2〉 〈t, Ht, Habt〉; simp,

use [t, H Ht, Habt] }

end,

Hid := λ U BU, funext (λ x, quotient.induction_on x (λ a, by simp)),

Hcomp := λ U V W BU BV BW HWV HVU,

funext (λ x, quotient.induction_on x (λ a, by simp)),

Fring := λ U BU, by apply_instance,

res_is_ring_hom := λ U V BU BV HVU,

{ map_one := rfl,

map_add := λ x y,

quotient.induction_on2 x y (λ 〈r1, s1, hs1〉 〈r2, s2, hs2〉), rfl,

map_mul := λ x y,

quotient.induction_on2 x y (λ 〈r1, s1, hs1〉 〈r2, s2, hs2〉), rfl } }

It might not be obvious at first that this definition is equivalent to the definition found in a

standard reference. In order to convince ourselves, and Lean, we prove that this definition

satisfies the localisation predicate for R away from f . Note that, to prove it, we cannot avoid

using the axiom of choice.

Proposition 58. Suppose U = D(f), then OSpec(R)(U) ∼= Rf .

43

https://stacks.math.columbia.edu/tag/01HR

lemma structure_presheaf.localization

: is_localization_data

(powers (some BU))

(of : R → localization R (S U))

Proof. Let fn

1 ∈ S
−1
U R. It suffices to show that fn ∈ SU which translates to D(f) ⊆ D(fn).

For any prime ideal pCR if f /∈ p then fn /∈ p, therefore (L1) holds. Now take any a
s ∈ S

−1
U R,

then D(f) ⊆ D(s) so by Lemma 24 there exists n ∈ N and b ∈ R such that fn = bs. Therefore
fn

1
a
s = ab

1 which establishes (L2). Finally, suppose that a
s = 0

1 , then at = 0 for some t ∈ SU .

By the same argument as before we can find m ∈ N and c ∈ R such that fm = ct so afm = 0

and we have proved (L3).

Next, we look at the restriction maps ρUV : S−1U R→ S−1V R where U = D(f), V = D(g) and

V ⊆ U . There are canonical maps ψU : R→ S−1U R and ψV : R→ S−1V R. Moreover if s ∈ SU
we have U ⊆ D(s) and since V ⊆ U we deduce that V ⊆ D(s) so s ∈ SV or, in other words,

ψV inverts SU . By the universal property of localisation we have that the following diagram

commutes.

R S−1V R

S−1U R

ψV

ψU ρ′UV

Using the localisation predicate, the map ρ′UV is given by the following definition.

def structure_presheaf_on_basis.res

: localization R (S U) → localization R (S V) :=

is_localization_initial

(S U)

(of : R → localization R (S U))

(of.is_localization_data (S U))

(of : R → localization R (S V))

(inverts_data.of_basis_subset BU BV H)

It will be useful to prove that this map is definitionally equal to the restriction maps defined

on OSpec(R), that is ρUV = ρ′UV .

lemma structure_presheaf_on_basis.res_eq

: (structure_presheaf_on_basis R).res =

@structure_presheaf_on_basis.res R _

However, the proof of this lemma follows trivially from the uniqueness condition in the

localisation property.

44

At this point we are in good position to start proving that OSpec(R) is indeed a sheaf on a

basis. In general, for any sheaf F we can reformulate the sheaf condition by saying that for

all U ∈ B and all covers {Ui} ⊆ B of U the following sequence is exact.

0 −→ F (U)
α−→
⊕
i

F (Ui)
β−→
⊕
i,j

F (Ui ∩ Uj)

Here α is given by the restriction maps (ρUUi)i and β by the differences of the restriction

maps on the intersection
(
ρUi(Ui∩Uj) − ρUj(Ui∩Uj)

)
i,j

. The sequence being exact means that α

is injective, which is precisely the locality condition. Moreover, ker(β) = im(α) so if sections

si ∈ F (Ui) are mapped to zero by β, which means that they coincide in the intersections,

then they are in the image of α so there exists an s ∈ F (U) such that s|Ui = si for all i, in

other words, the gluing condition holds.

The plan is to show that OSpec(R) satisfies this condition for any U = D(f) and any open

cover {Ui} ⊆ B of U , where B is the basis formed by the standard opens. In this case,

OSpec(R)(U) ∼= Rf and if Ui = D(gi) then OSpec(R)(Ui) ∼= Rgi . Moreover Ui ⊆ U implies, by

Lemma 23, that f
1 is invertible in Rgi . This means that it makes sense to think of Rgi as

(Rf) gi
1

. Similary, OSpec(R)(Ui ∩ Uj) ∼= Rgigj which we would like to think of as (Rf) gi
1

gj
1

. Of

course, we will carefully prove these arguments but, assuming they are correct, we are in the

following situation:

0 −→ Rf
α−→
⊕
i

(Rf) gi
1

β−→
⊕
i,j

(Rf) gi
1

gj
1

,

which means that we have almost everything we need to apply Lemma 10.

As a matter of fact, we do not even need to worry about the isomorphism S−1U R ∼= Rf which

we proved in Lemma 58 as a sanity check. The scenario would then be closer to:

0 −→ S−1U R
α−→
⊕
i

(
S−1U R

)
gi
1

β−→
⊕
i,j

(
S−1U R

)
gi
1

gj
1

.

If we look at the input of Lemma 10, we see that in order to make all the arguments above

precise we just need to come up with two sets of maps:

• αi : S−1U R→ S−1Ui
R satifying the localisation predicate for S−1U R away from gi

1 , and

• φij : S−1U R→ S−1Ui∩Uj
R satifying the localisation predicate for S−1U R away from gi

1
gj
1 .

Then β is explicitly calculated from these. Choose αi = ρUUi and φij = ρU(Ui∩Uj). We prove

that these choices work.

Lemma 59. If V ⊆ U for V = D(g) and U = D(f) then the restricion map of OSpec(R)

ρUV : S−1U R→ S−1V R satisfies the localisation predicate for S−1U R away from g
1 .

lemma structure_presheaf.res.localization

: is_localization_data

(powers (of (some BV)))

(structure_presheaf_on_basis.res BU BV H)

45

Proof. Take gn

1 ∈ S
−1
U R, we need to show that ρ

(
gn

1

)
is invertible in S−1V R. Since ρ satisfies

the universal property we have that ρ
(
gn

1

)
= gn

1 so it is invertible by Lemma 58, which shows

(L1). Now pick any a
s ∈ S

−1
V R. By Lemma 58 again, S−1V R ∼= Rg, so there is r ∈ R and

n ∈ N such that gn

1
a
s = r

1 in S−1V R. Now consider gn

1 ,
r
1 ∈ S

−1
U R. To prove (L2) suffices to

show that ρ
(
gn

1

)
a
s = ρ

(
r
1

)
which, again, follows from the universal property hence (L2) is

satisfied. Finally, suppose that a
s ∈ S

−1
U R and ρ

(
a
s

)
= 0

1 . Working on S−1U R, we can multiply

through by some power of f such that fn

1
a
s = b

1 for some b ∈ R. By the universal property,
b
1 = 0

1 in S−1V R. Therefore there exists m ∈ N such that gmb = 0. By Lemma 24, there exists

some k ∈ N such that gk = cf for some c ∈ R. We claim that gkn+m

1
a
s = 0

1 , which is enough

to establish (L3). But this is obvious becasue gkn+m

1
a
s = cnfn

1
gm

1
a
s = cn

1
gmb
1 = 0

1 .

For clarification, we invoke the universal property on the canonical map ψU : R → S−1U R

sending a 7→ a
1 and ρUV . Since, as we showed, ψU satisfies the localisation predicate, we have

ρUV ◦ ψU = ψV . The last proof and the one that follows are fairly technical and somewhat

trivial. Textbooks never go into so much detail and tend to claim that the sheaf condition

follows immediately from the gluing lemma. Nevertheless, we believe it is important to show

the inner workings of our approach and see the localisation predicate in action.

Lemma 60. If V ∩W ⊆ U for W = D(h), V = D(g) and U = D(f) then the restricion

map ρU(V ∩W) : S−1U R→ S−1V ∩WR of OSpec(R) satisfies the localisation predicate for S−1U R

away from g
1
h
1 .

def structure_presheaf_on_basis.res_to_inter

: localization R (S U) → localization R (S (V ∩ W)) :=

structure_presheaf_on_basis.res BU (BVW BV BW) (HVWU HVU)

lemma structure_presheaf.res_to_inter.localization

: is_localization_data

(powers ((of (some BV)) * (of (some BW))))

(structure_presheaf_on_basis.res_to_inter BU BV BW HVU)

Before we start the proof, it is worth explaining one of its main complications. We know that

V ∩W ∈ B so we can use choice to deduce that V ∩W = D(r) for some r ∈ R and apply,

as we did before, the fact that S−1V ∩WR
∼= Rr. It does not seem very useful at first because r

appeared from nowhere. However, Lemma 12 (3) tells us that V ∩W = D(gh). One needs

to be a bit careful here because from D(r) = D(gh) we cannot deduce that r = gh. Instead,

we will need to work with Lemma 24 in both directions. This result gives us that (gh)n = ar

for some a ∈ R and n ∈ N, and rm = bgh for some b ∈ R and m ∈ N.

Proof of 60. Take gk

1
hk

1 ∈ S−1U R. Then, multiplying though by bk

1 we consider rkm

1 and,

by Lemma 59 we can find w
s ∈ S−1V ∩WR such that ρ

(
rkm

1

)
w
t = 1

1 . Therefore, since the

restriction map is a ring homomorphism, ρ
(
bk

1

)
w
t is an inverse for ρ

(
gk

1
hk

1

)
, which proves

(L1). Proceed by choosing any x
s ∈ S

−1
V ∩WR. Again, by Lemma 59, we can find k and y ∈ R

46

such that ρ
(
rk

1

)
x
s = ρ

(y
1

)
. Multiply through by ρ

(
ak

1

)
to obtain ρ

(
gk

1
hk

1

)
x
s = ρ

(
aky
1

)
.

We have thus proved (L2). To show (L3), pick x
s ∈ S−1U R and suppose that ρ

(
x
s

)
= 0

1 .

One more time, we use Lemma 59 and obtain rk

1
x
s = 0

1 . Multiplying through by ak

1 gives
gk

1
hk

1
x
s = 0

1 .

Finally, we have the main pieces to prove the sheaf condition.

Theorem 61. For any ring R, the structure presheaf OSpec(R) is a sheaf on the standard

basis B = {D(f) | f ∈ R}.

theorem structure_presheaf_on_basis_is_sheaf_on_basis

: is_sheaf_on_standard_basis

(D_fs_standard_basis R)

(structure_presheaf_on_basis R).to_presheaf_on_basis

Proof. By Lemma 47 it is enough to consider finite subcovers to prove the sheaf condition if

covers of basis elements can be refined with finite subcovers, which we proved in Lemma 22.

Hence, pick any U ∈ B and any finite open cover {U1, . . . , Un} of U . Suppose U = D(f) and

Ui = D(gi). The localisation map R→ Rf induces homeomorphism D(f) ∼=φ Spec(Rf). We

first check that Spec(Rf) = D
(g1

1

)
∪· · ·∪D

(gn
1

)
. Pick p ∈ Spec(Rf). Clearly, we have φ(p) ∈

D(f) = D (g1)∪ · · · ∪D (gn) so φ(p) ∈ D(gi) for some i. Therefore, p ∈ φ−1(D(gi)) = D
(gi
1

)
where the last equality follows from the observation made in Lemma 18. We now show that
1
1 ∈

(g1
1 , . . . ,

gn
1

)
CRf . By the basic properties of Spec stated in Lemma 12, this is true if and

only if V
(g1

1 , . . . ,
gn
1

)
= ∅ but Spec(Rf)\V

(g1
1 , . . . ,

gn
1

)
= D

(g1
1

)
∪· · ·∪D

(gn
1

)
= Spec(Rf).

The result we just proved together with the localisation predicates for the restriction maps

proved in Lemma 59 and Lemma 60 are exactly the arguments that Lemma 10 takes. There-

fore, by our previous discussion, OSpec(R) is a sheaf on the standard basis B.

Recall from section 3.3 that defining a sheaf of rings on a topological space is not enough to

have a locally ringed space. We are missing the condition that the stalks of OSpec(R) are local

rings.

For any p ∈ Spec(R), there is an map R→ OSpec(R),p given by x 7→
(
Spec(R), x1

)
.

def to_structure_presheaf_on_basis_stalk : R →
stalk_of_rings_on_standard_basis Bstd (structure_presheaf_on_basis R) P

:= λ x,

J{ U := opens.univ,

BU := (D_fs_standard_basis R).1,

Hx := set.mem_univ P,

s := (of : R → localization R (S (opens.univ))) x }K

The fact that OSpec(R),p is a local ring will be a consequence of it satisfying a specific locali-

sation predicate.

47

Lemma 62. With the map defined above, for any prime pCR, the stalk of the structure

presheaf on the standard basis OSpec(R),p satisfies the localisation predicate for R at p.

lemma structure_presheaf_on_basis_stalk.localization

: is_localization_data

(-P.1 : set R)

(to_structure_presheaf_on_basis_stalk P)

Proof. We follow the usual pattern and start by proving (L1). Pick s /∈ p. We need to find

an inverse for
(
Spec(R), s1

)
. We have that p ∈ D(s). Moreover, it is obvious that s ∈ SD(s) so

it is invertible in OSpec(R)(D(s)) = S−1D(s)R. The desired inverse is therefore
(
D(s), 1s

)
. Given

any
(
U, s1

)
∈ OSpec(R),p it follows that s

1 ∈ S
−1
U R. Thus there is a ∈ R and t ∈ SU such that

t
1
s
1 = a

1 . In particular, t ∈ SU means that U ⊆ D(t) so p ∈ D(t) and, thus, t /∈ p so (L2) is

proved. Suppose
(
U, s1

)
=
(
Spec(R), 01

)
. There exists V ⊆ U with p ∈ V where s

1

∣∣
V

= 0
1 .

The universal property of localisation allows us to write s
1 = 0

1 . Hence there exists t ∈ SV
such that ts = 0. By the same argument as before, t /∈ p and (L3) follows.

Let us try to understand this localisation predicate. In section 3.2.3 we showed that stalks

satisfy a certain universal property. Transporting it to this specific case, what we said is

that for any f /∈ p there is a map Rf → OSpec(R),p such that all the diagrams commute

and such that for any other ring S with this property there exists a unique homomorphism

OSpec(R),p → S. We also explained how this construction could be understood as gluing. We

would expect the ring that glues together all the Rf ’s such that f /∈ p to be a ring in which

every f /∈ p is invertible and nothing else, that is precisely Rp.

When we briefly discussed local rings in section 3.1.2 we proved that any ring satisfying the

localisation predicate for R at p was a local ring. So a direct application of Lemma 9 gives

us the result that we need.

lemma structure_presheaf_on_basis_stalk.local

: is_local_ring (to_structure_presheaf_on_basis_stalk P)

Finally, we extend OSpec(R) to the whole space, using the definition introduced in section

3.2.5. Hereafter, OSpec(R) denotes the ring on the whole space rather than just defined on

the basis.

def structure_sheaf.presheaf (R : Type u) [comm_ring R] :=

presheaf_of_rings_extension

(D_fs_standard_basis R)

(structure_presheaf_on_basis R)

It follows from Lemma 49 that the extension is a sheaf of rings.

theorem structure_presheaf_is_sheaf_of_rings (R : Type u) [comm_ring R]

: is_sheaf_of_rings (structure_sheaf.presheaf R)

48

Therefore, we can give a proper definition of the structure sheaf on Spec(R).

def structure_sheaf (R : Type u) [comm_ring R]

: sheaf_of_rings (Spec R) :=

{ F := structure_sheaf.presheaf R,

locality := (structure_presheaf_is_sheaf_of_rings R).1,

gluing := (structure_presheaf_is_sheaf_of_rings R).2 }

We showed in section 3.2.5 that this extension respects the basis elements hence we still have

that OSpec(R)(D(f)) ∼= Rf . More importantly, by Lemma 50, the extension also respects

stalks so OSpec(R),p
∼= Rp for all pCR. The following lemma is an immediate consequence of

that and Proposition 5.

lemma structure_sheaf.stalk_local

: is_local_ring (stalk_of_rings (structure_sheaf R).F P)

We conclude this section with the result we have been building towards which is, without

doubt, the biggest achievement of this project.

Definition 63. For any ring R,
(
Spec(R),OSpec(R)

)
has the structure of a locally ringed

space [1, 01HU].

def Spec.locally_ringed_space : locally_ringed_space (Spec R) :=

{ O := structure_sheaf R,

Hstalks := λ P, structure_sheaf.stalk_local P }

3.5 The type scheme

In this final section we give our formal definition of a scheme.

Definition 64. A scheme is a locally ringed space (X,OX) with an open cover {Ui} such

that the locally ringed space (Ui,OX |Ui) is isomorphic to
(
Spec(R),OSpec(R)

)
for some

ring R [1, 01IJ].

structure scheme (X : Type u) [topological_space X] :=

(carrier : locally_ringed_space X)

(Haffinecov : ∃ (OC : covering.univ X),

∀ i, ∃ (R : Type v) [comm_ring R]

(fpU : open_immersion_pullback (Spec R) carrier.O.F),

fpU.range = OC.Uis i

∧ fpU.carrier ∼= structure_sheaf.presheaf R)

49

https://stacks.math.columbia.edu/tag/01HU
https://stacks.math.columbia.edu/tag/01IJ

Note that we use open pullbacks to express the restriction of the sheaf on the whole space to

the sheaf an open subset as it was hinted in section 3.3.

The first scheme that we can trivially define is the empty scheme.

def empty_scheme : scheme empty

Nonetheless, our main examples of a schemes are affine schemes, which are locally ringed

spaces isomorphic to
(
Spec(R),OSpec(R)

)
for some R [1, 01HW].

We conclude our exposition defining the scheme
(
Spec(R),OSpec(R)

)
.

variables (R : Type u) [comm_ring R]

def affine_scheme : scheme (Spec R)

It is a locally ringed space by Definition 63. Now, we simply choose the cover {Spec(R)} and

create an open immersion pullback from the identity map.

50

https://stacks.math.columbia.edu/tag/01HW

Chapter 4

Future Work

In this chapter we explain the limitations of the project by discussing two possible next steps.

The first has recently been formalised by Kenny Lau and his work revealed some holes the

existing API, mainly some lemmas about locally ringed spaces were missing. The second is

slightly more ambitious and we suggest a possible roadmap. The treatment of this part is

more informal and some knowledge of category theory and slightly more advanced algebra is

assumed.

4.1 Spec-Γ adjointness

As it was mentioned in section 1.2, there is a correspondance between the category of affine

schemes and the category of commutative rings [1, 01I1]. It turns out that Spec is a con-

travariant functor CRing → SchAff , where CRing denotes the category of commutative

rings and SchAff the category of affine schemes. We have not developed this terminol-

ogy in this project but what it means is that for each ring R we obtain an affine scheme

(Spec(R),OSpec(R)) and, for every ring homomorphism f : A → B, a morphism of affine

schemes Spec(f) : (Spec(B),OSpec(B)) → (Spec(A),OSpec(A)) that respects the identity and

composition. The map is the one given in Definition 17. Then some work needs to be done

to prove that it can be used to define an f -map which satisfies the conditions of Defini-

tion 56.

Recall that Γ(U,F) is the same as F (U). In particular, we can consider the global sections

Γ(Spec(R),OSpec(R)). We can also show that Γ is a contravariant functor SchAff → CRing.

The claim now is that Spec and Γ are adjoint functors. This means that they induce bijections

between the sets of homomorphisms in the two categories. Formally, if A is a commutative

ring and (Spec(B),OSpec(B)) an affine scheme then we have

HomCRing(A,Γ(Spec(B),OSpec(B))) ∼= HomSchAff
((Spec(B),OSpec(B)), (Spec(A),OSpec(A))).

Recall that in the definition of the structure sheaf on Spec(R) (Definition 57) the core idea

was that D(f) 7→ Rf although, strictly speaking, our definition was isomorphic, but not

equal, to Rf . Hence Γ(Spec(R),O) ∼= R so we can rewrite the statement above as

HomCRing(A,B) ∼= HomSchAff
((Spec(B),OSpec(B)), (Spec(A),OSpec(A))).

51

https://stacks.math.columbia.edu/tag/01I1

This is the result that we expected. It says that there is a one-to-one arrow-reversing corre-

spondence between maps of rings and maps of affine schemes. In fact, we can say even more.

Since every object in SchAff is isomorphic to
(
Spec(R),OSpec(R)

)
for some R we say that

Spec is an essentially surjective functor which implies that CRing and SchAff are equivalent

categories.

In [1, 01I2] this is deduced from adjointness in a more general setting. We can work in LRS,

the category of locally ringed spaces, and prove that for (X,OX) a locally ringed space

HomCRing(A,Γ(X,OX)) ∼= HomLRS((X,OX), (Spec(A),OSpec(A))).

As a matter of fact, we can replace (Spec(A),OSpec(A)) by any affine scheme (Y,OY) and the

statement becomes

HomCRing(Γ(Y,OY),Γ(X,OX)) ∼= HomLRS((X,OX), (Y,OY)).

Lau has recently proved this statement and we plan on incorporating it into the existing

codebase. However, it raised some concerns regarding the API for locally ringed spaces.

Because our main goal was to give a correct definition of a scheme, when we were at the stage

of defining a locally ringed space we gave the definition of the objects and the morphisms.

However, thanks to this test, we realised that some basic properties about them should be

included in order to make them usable. Therefore, the first next step is to make sure that a

comprehensive API for locally ringed spaces is provided.

4.2 Projective schemes

The first question that anyone in the field of formal verification asks when you tell them that

you have defined a complicated type is whether you are able to give examples of objects of

that type. In our case, we showed that affine schemes are schemes. However, it uses the

cover condition in a trivial way that does not capture its power. For this reason, we think it

is important to give an example of a non-affine scheme [1, 01ND].

Let us consider how one could show that the projective line P1(C) has the structure of a

scheme. But, what is P1(C)? Is it a complex manifold, a sphere in R3 or a scheme? It

seems rather convenient to say that it is a scheme but, in that case, how do we know that

we have defined P1(C) and not something else? The first issue is that the definition requires

a topological space as input. A possibility is to choose X = (Spec(C[x]) t Spec(C[y]))/∼
where the relation ∼ identifies D(x) ⊆ Spec(C[x]) with D(y) ⊆ Spec(C[y]). By a previous

result, D(x) ∼= Spec
(
C
[
x, 1x

])
and D(y) ∼= Spec

(
C
[
y, 1y

])
. The identification is given by

the C-algebra isomorphism y 7→ 1
x . It would require some work but we could prove that X is

a perfectly valid topological space as it is a quotient of a disjoint union of spaces.

52

https://stacks.math.columbia.edu/tag/01I2
https://stacks.math.columbia.edu/tag/01ND

∞

0

The idea is that Spec(C[x]) = {(x−λ) | λ ∈ C}∪{(0)} so it looks like C with an extra point,

whose closure happens to be the whole space and is called a generic point. If we disregard

it, we can think of Spec(C[x]) as the affine line and, in fact, that is how A1(C) is defined

in scheme theory. We now take two copies of the affine line and glue them in a way such

that the ‘zero’ of the second copy, which we will call ∞ ∈ X and is represented by (y) in the

construction, behaves like infinity. The gluing function expresses exactly that by assigning

points near ∞ in the second copy to large values in the first copy.

Then we can augment the two components of X with the structure of an affine scheme as

we did in section 3.4. Now the challenge is to glue together the two sheaves OSpec(C[x]) and

OSpec(C[y]) to get a sheaf OX and prove that (X,OX) is a locally ringed space. If we do so we

will have proved that X has the structure of a scheme and so we will have given a definition

for P1(C).

The suggested test is to prove that this scheme is not isomorphic to any affine scheme as

it is done in [1, 01JE]. By doing so we will not be able to say with absolute certainty that

our definition corresponds to the mathematical notion of the projective line but we will have

shown that we can define a non-affine scheme. They use the relationship between Spec and

Γ discussed earlier. If (X,OX) was an affine scheme then Spec(Γ(X,OX)) ∼= X. However, it

turns out that Γ(X,OX) ∼= C because the global sections need to respect the gluing function

so they are the polynomials f(x) ∈ C[x] such that f
(
1
y

)
is a polynomial in C[y] and are

therefore the constant polynomials. Hence Spec(Γ(X,OX)) consists of one point whereas X

is infinite.

In order to successfully achieve this, one needs to build a robust infrastructure to glue sheaves.

This is currently being done and we are experimenting with several approaches as it is not clear

how to conveniently handle sheaf restrictions. A detailed explanation of the mathematical

details is given in [1, 00AK].

Alternatively, we could develop projective schemes by defining Proj, the projective counter-

part of Spec. We would need to assume that S is a graded ring and define Proj(S) to be

the set of homogeneous prime ideals. There is an analogous construction to the one given for

affine schemes explained in [1, 01M3]. After developing all of this machinery, we could define

the projective line P1(C) to be the scheme
(
Proj(C[x]),OProj(C[x])

)
. We believe that this is

a more long term plan that will require much more effort as, for instance, graded rings are

not in mathlib yet. In addition, since for now the objective is, essentially, to give an example

of a non-affine scheme, the test described above is enough to achieve it.

53

https://stacks.math.columbia.edu/tag/01JE
https://stacks.math.columbia.edu/tag/00AK
https://stacks.math.columbia.edu/tag/01M3

Chapter 5

Conclusion

This project lives in one of the many areas of intersection between mathematics and com-

puter science. Along the way, we have discovered that the two communities are making a

tremendous effort to understand each other’s points of view. On the one hand, experts in

formal verification are finding mechanisms to make theorem provers operate closer to the

way a mathematician would. On the other hand, despite the rather steep learning curve of

these systems, the mathematics community is getting more and more involved and realising

that formalisation will play an important role in the next few decades. However, there is

still some scepticism regarding the viability of formalising mathematics. The only way to

overcome these objections is to keep improving proof assistants both in terms of capabil-

ities and usability and use them to prove important results such as the one described in

section 1.1.

Giving a formal definition of a scheme in Lean is a step in that direction. It serves as an

example that theorem provers can handle modern mathematics. Furthermore, it shows that

it is possible to learn about algebraic geometry and theorem proving at the same time and

how this way of learning new concepts does not necessarily slow down the learning process

but can, instead, provide a deeper understanding.

54

Bibliography

[1] The Stacks Project Authors. The Stacks Project ;. https://stacks.math.columbia.edu

(Accessed: 19/06/2019).

[2] Harrison J, Urban J, Wiedijk F. History of Interactive Theorem Proving. Handbook of

the History of Logic. 2014 12;9:135–214. Available from: https://doi.org/10.1016/

B978-0-444-51624-4.50004-6.

[3] Geuvers H. Proof assistants: History, ideas and future. Sadhana. 2009 Feb;34(1):3–25.

Available from: https://doi.org/10.1007/s12046-009-0001-5.

[4] Hales TC. The Kepler conjecture. arXiv Mathematics e-prints. 1998 Nov;Available from:

https://arxiv.org/abs/math/9811078v1.

[5] Hales TC. A Proof of the Kepler Conjecture. Annals of Mathematics. 2005;162(3):1065–

1185. Available from: http://www.jstor.org/stable/20159940.

[6] Hales T, Adams M, Bauer G, Dang TD, Harrison J, Le Truong H, et al.; Cambridge Uni-

versity Press. A formal proof of the Kepler conjecture. Forum of Mathematics, Pi. 2017;5.

Available from: https://doi.org/10.1017/fmp.2017.1.

[7] Hales TC. Developments in Formal Proofs. arXiv e-prints. 2014 Aug;Available from:

https://arxiv.org/abs/math/1408.6474.

[8] Paulson LC. A machine-assisted proof of Gödel’s incompleteness theorems for the theory

of hereditarily finite sets. The Review of Symbolic Logic. 2014;7(3):484–498. Available

from: https://doi.org/10.1017/S1755020314000112.

[9] Gonthier G. Formal proof–the four-color theorem. Notices of the AMS. 2008;55(11):1382–

1393.

[10] Gonthier G, Asperti A, Avigad J, Bertot Y, Cohen C, Garillot F, et al. A Machine-

Checked Proof of the Odd Order Theorem. In: Blazy S, Paulin-Mohring C, Pichardie D,

editors. Interactive Theorem Proving. Berlin, Heidelberg: Springer Berlin Heidelberg;

2013. p. 163–179.

[11] Lewis RY. A formal proof of Hensel’s lemma over the p-adic integers. In: Proceedings

of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs.

ACM; 2019. p. 15–26.

[12] Dahmen SR, Hölzl J, Lewis RY. Formalizing the Solution to the Cap Set Problem

(preprint). 2019;Available from: https://lean-forward.github.io/e-g/e-g.pdf.

55

https://stacks.math.columbia.edu
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.1007/s12046-009-0001-5
https://arxiv.org/abs/math/9811078v1
http://www.jstor.org/stable/20159940
https://doi.org/10.1017/fmp.2017.1
https://arxiv.org/abs/math/1408.6474
https://doi.org/10.1017/S1755020314000112
https://lean-forward.github.io/e-g/e-g.pdf

[13] The QED Manifesto. In: Proceedings of the 12th International Conference on Automated

Deduction. CADE-12. London, UK, UK: Springer-Verlag; 1994. p. 238–251. Available

from: http://dl.acm.org/citation.cfm?id=648231.752823.

[14] Dieudonne J. The Historical Development of Algebraic Geometry. The American Mathe-

matical Monthly. 1972;79(8):827–866. Available from: http://www.jstor.org/stable/

2317664.

[15] Grothendieck A. Éléments de géométrie algébrique: I. Le langage des schémas. Publi-

cations Mathématiques de l’IHÉS. 1960;4:5–228.

[16] Gannon T. What is a scheme? Notices of the AMS. 2017;64(11):1300–1301.

[17] Avigad J, de Moura L, Kong S. Theorem proving in Lean. Microsoft Research; 2017.

https://leanprover.github.io/tutorial/tutorial.pdf (Accessed: 19/06/2019).

[18] Avigad J, Ebner G, Ullrich S. The Lean Reference Manual. Microsoft Research;

2018. https://leanprover.github.io/reference/lean_reference.pdf (Accessed:

19/06/2019).

[19] de Moura L, Kong S, Avigad J, Van Doorn F, von Raumer J. The Lean theorem prover

(system description). In: International Conference on Automated Deduction. Springer;

2015. p. 378–388.

[20] Lewis RY. Two Tools for Formalizing Mathematical Proofs. 2018;https://

robertylewis.com/files/dissertation.pdf (Accessed: 19/06/2019).

[21] Martin-Löf P, Samnni G. Intuitionistic type theory. Napoli: Bibliopolis; 1984.

[22] Nederpelt R, Geuvers H. Type theory and formal proof: an introduction. Cambridge

University Press; 2014.

[23] Hartshorne R. Algebraic geometry. vol. 52. Springer Science & Business Media; 2013.

[24] Atiyah M. Introduction to commutative algebra. CRC Press; 2018.

56

http://dl.acm.org/citation.cfm?id=648231.752823
http://www.jstor.org/stable/2317664
http://www.jstor.org/stable/2317664
https://leanprover.github.io/tutorial/tutorial.pdf
https://leanprover.github.io/reference/lean_reference.pdf
https://robertylewis.com/files/dissertation.pdf
https://robertylewis.com/files/dissertation.pdf

	Introduction
	Formalising mathematics
	What is a scheme?
	Objectives
	Contributions
	Report layout

	Theorem Proving in Lean
	Dependent type theory
	Language overview
	mathlib

	Schemes
	Commutative algebra
	Localisation
	Local rings
	Gluing functions
	The spectrum of a ring

	Sheaf theory
	Presheaves
	Sheaves
	Stalks
	Bases
	Extensions

	Locally ringed spaces
	Affine schemes
	The type scheme

	Future Work
	Spec- adjointness
	Projective schemes

	Conclusion

