
MENG INDIVIDUAL PROJECT FINAL REPORT

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

SherBlock Holmes:
Digital Blockchain Forensics

Author:
Callum Eden

Supervisor:
Prof. William J Knottenbelt

Second Marker:
Prof. Yves-Alexandre de Montjoye

June 16, 2019

Submitted in partial fulfillment of the requirements for the Masters Of Engineering of
Imperial College London

Abstract

The uptake of cryptocurrencies has soared in recent years; proliferating in popularity and
mainstream adoption. At the dismay of law enforcement, adopters of this new technology
include criminals wishing to evade the regulatory oversight of traditional payment mecha-
nisms to participate in illegal trade (including, but not limited to, drugs, hacks, ransomware
and even murder-for-hire [1]). The largest cryptocurrency of all, Bitcoin, is estimated to be
involved in $76 billion of illegal activity each year [1]. Those using Bitcoin for illegal means
aren’t trivially identifiable; Bitcoin identities are pseudo-anonymous, such that they are not
tied to any real-world entity, but all transactions they are involved in are publicly visible and
entirely transparent.

In this project, we develop a tool to assist with conducting digital forensic investigations
across Bitcoin. Although there do exist some commercial tools which have the same goal,
they are proprietary and not available to the wider community. To develop our tool, we
leverage the transparency of the Bitcoin Blockchain to build a graph database which stores,
and represents the relationships between, Bitcoin’s 420,000,000+ transactions. The graph
database is the foundation to building Radar, a web-based digital forensic investigation tool.
Radar presents historical Bitcoin transactions through interactive, graph-based visualisations.
With the support of intuitive graph-navigation and filtering controls, Radar can be used to
navigate historical Bitcoin activity efficiently. We further Bitcoin associate addresses with the
users which control them by using existing public datasets and by using clustering heuristics
based on Bitcoin idiom-of-use. Working with investigators at the Metropolitan Police and
Coinbase, we show Radar’s effectiveness in identifying suspicious transactions and tracking
the flow of funds.

i

Acknowledgements

I am incredibly grateful to my supervisor William Knottenbelt for his guidance and enthusiasm
in defining the potential of this project.

A big thank you to Alexei Zamyatin for his assistance, on several occasions, in facilitat-
ing my access to the hardware resources required for this project.

Finally, I would like to thank Mat Stanley from the Metropolitan Police and Iggy Azad
from Coinbase for their critique and insight that helped to evaluate this project and scope out
what the future for such an investigation tool could look like.

ii

Contents

1 Introduction 1
1.1 Bitcoin . 2
1.2 Contributions Outline . 2

2 Background 4
2.1 Bitcoin . 4

2.1.1 Addresses, Keys & Hashing . 4
2.1.2 Bitcoin Address Types . 4
2.1.3 Vanity Addresses . 5
2.1.4 Blockchain . 5
2.1.5 Mining . 5
2.1.6 Coinbase . 6
2.1.7 Proof of work . 6
2.1.8 Transactions . 7
2.1.9 Nodes . 8
2.1.10 Immutable History . 8
2.1.11 Mining Pools . 8
2.1.12 Forks . 9
2.1.13 Bitcoind . 10

2.2 Anonymity . 10
2.2.1 Mixing Services . 10
2.2.2 Risks of Using Transaction Anonymisers 10
2.2.3 Peeling Chain . 11
2.2.4 Taint Analysis . 11
2.2.5 TOR . 12

2.3 Bitcoin Address Clustering (on-chain) . 12
2.3.1 Multi-Input Transactions . 12
2.3.2 Change Addresses . 12
2.3.3 Consumer Wallet Heuristic . 13
2.3.4 Optimal Change Heuristic . 13
2.3.5 Behaviour Based Analysis . 14

2.4 Bitcoin address clustering (off-chain) . 14
2.4.1 Tag Collection . 14
2.4.2 Entity Clustering . 14

2.5 Popular Services . 15
2.5.1 Satoshi Dice . 15
2.5.2 Exchanges . 15

2.6 Illegal Activity . 15

iii

CONTENTS Table of Contents

2.6.1 Silk Road . 15
2.6.2 Money Laundering . 16
2.6.3 Bitcoin ATM’s . 16
2.6.4 Significant Thefts . 17

2.7 Existing Forensic Tools . 17
2.7.1 Blockchain Explorer . 17
2.7.2 Chainanalysis . 18
2.7.3 Wallet Explorer . 18
2.7.4 Blockpath . 19
2.7.5 Other Solutions . 20

2.8 Importing Blockchain Data . 20
2.8.1 Bitcoin to Neo4J Tool: Open Source Project 20
2.8.2 Max Baylis: Imperial MSc Project 2018 21
2.8.3 TokenAnalyst: Medium Blog . 21
2.8.4 Blockchain2graph: Open Source Project 21
2.8.5 Analysis of Previous Work . 21

2.9 Know Your Customer . 21
2.10 Privacy Enhanced Cryptocurrencies . 22

2.10.1 ZCash . 22
2.10.2 MimbleWimble (Protocol) . 22
2.10.3 Dash . 22
2.10.4 Monero . 22

2.11 Technology . 23
2.11.1 Spring WebFlux . 23

3 Blockchain Download: Astrolabe 24
3.1 Hardware . 24
3.2 Retrieving Historical Bitcoin Transactions . 24
3.3 Challenges & Solutions: . 25

3.3.1 Efficiency . 25
3.3.2 Job Failure Mitigation . 26
3.3.3 Writing Concurrently from Several Threads 26
3.3.4 Duplicate Addresses . 26

3.4 Result . 27

4 Fetching Historical Price Data: Compass 28
4.1 Source of Price Data . 28
4.2 Storing the Price Data . 28
4.3 Matching Price Data to Bitcoin Data . 28
4.4 Using the Price Data . 29

5 Entity Tagging: Quadrant 30
5.1 Retrieving Wallet Data . 30

5.1.1 Building the Scraper . 30
5.2 Results . 31
5.3 Performing the Address Matching . 32

iv

Table of Contents CONTENTS

6 Database Population 33
6.1 Why Neo4J? . 33

6.1.1 Other DB Solutions . 33
6.1.2 Bulk Import Tool . 34

6.2 Database Design . 34
6.2.1 Data Nodes . 34
6.2.2 Relationships . 34

6.3 Invoking the Import Job . 36
6.4 Challenges & Solutions . 36

6.4.1 Memory Issues . 36
6.4.2 Query Latency Issues . 36
6.4.3 Creating indexes . 37

6.5 Import Result . 37

7 Backend API: Loran 38
7.1 Technology Choices . 38

7.1.1 Alternative Technologies . 38
7.2 API Design . 38

7.2.1 Responses . 40
7.3 Implementation . 41

7.3.1 Overall Design . 41
7.3.2 Node Entities . 43
7.3.3 Serialising Node Entities . 43
7.3.4 Implementing Repositories . 44
7.3.5 Implementing Path Finding . 44

8 Clustering: Balestilha 45
8.1 Algorithm . 45
8.2 Java & Spring Data Approach . 45

8.2.1 Challenges . 47
8.3 Cypher Query . 48

8.3.1 Challenges . 49
8.4 Clustering on demand . 49

8.4.1 Challenges . 51
8.5 Clustering using raw CSV data . 52

9 Investigation Tool: Radar 53
9.1 Technology Choices . 53

9.1.1 Angular 6 & TypeScript . 53
9.1.2 D3 . 54

9.2 Implementation . 54
9.2.1 Routes . 54
9.2.2 Architecture . 55

9.3 Features . 58
9.3.1 Search by Address . 58
9.3.2 Search by Entity Name . 59
9.3.3 Node Information on Hover . 61
9.3.4 Link Data . 61
9.3.5 Traverse the Graph . 62

v

CONTENTS Table of Contents

9.3.6 Link Dependant Colour and Size of Nodes 63
9.3.7 Selecting Fiat Currencies . 63
9.3.8 Filter by Date and Time . 64
9.3.9 Filter by Value in Several Currencies 65
9.3.10 Limiting Nodes . 65
9.3.11 Enable Multi-Input Clustering View . 66
9.3.12 User Input Validation & Feedback . 68
9.3.13 Add Custom Nodes . 68
9.3.14 Link Custom Nodes to Other Nodes . 69
9.3.15 Path Finding . 70
9.3.16 Persisting Data . 71

10 Overall Deployment 72
10.1 Developing on Satoshi . 74

11 Evaluation 75
11.1 Meeting Investigators from Industry . 75

11.1.1 Successes and Weaknesses . 75
11.1.2 Desirable Features . 76
11.1.3 Additional Data Sources . 77

11.2 Performance . 77
11.2.1 Individual Cypher Query Profiling . 77
11.2.2 Performance Under Load . 79
11.2.3 Blockchain Import . 82

11.3 Performing a Historical Investigation . 83
11.3.1 Areas identified for improvement . 88

11.4 Path Finding Correctness . 88
11.5 Clustering Correctness . 89
11.6 Missed Objectives . 90
11.7 Comparisons with existing tools . 90

11.7.1 Wallet Explorer . 90
11.7.2 Blockchain Explorer . 92
11.7.3 Blockpath . 92

11.8 Risks . 94
11.9 Summary . 94

11.9.1 Weaknesses . 94
11.9.2 Strengths . 94

12 Conclusion 96
12.1 Reflection . 96

12.1.1 Future of Crypto-Currency Law Enforcement 96
12.1.2 Working with Data at Scale . 97

12.2 Future Work . 97
12.2.1 Infrastructure for Keeping Database up to Date 97
12.2.2 Path Finding User Experience . 98
12.2.3 Incorporate Information from more Sources 98
12.2.4 Saving Investigations . 99
12.2.5 Exporting Investigation Data . 99
12.2.6 Change Address Clustering Heuristic 99

vi

Table of Contents CONTENTS

12.2.7 More Clustering Heuristics . 100
12.2.8 Set up Watches for Nodes . 100
12.2.9 UI Improvements . 100
12.2.10Several Crypto-Currencies . 101

Appendices 105

A User Guide : Radar 106
A.1 Search . 106
A.2 Investigate . 107

B Radar Views 108

C Locust Evaluation Results 111

D Terminology 117

vii

Chapter 1

Introduction

Cryptocurrencies provide us with a mechanism to send a unit of cryptocurrency to anyone,
directly, anywhere. Cryptocurrencies are entirely virtual; there are no physical coins or even
digital coins per se. There are no banks involved, no mediators and no central reserve con-
trolling coin supply; what cryptocurrencies often have, however, are cryptography principles
such as elliptic curve cryptography and one-way hash functions that help secure ownership of
funds. Cryptocurrencies can be classified by their ability to establish ownership, protecting
against double spending, ensuring anonymity/privacy and minting new currency [2].

There are several leading cryptocurrencies which, together, dominate the cryptocurrency
market capitalisation [see figure 1.1]. The biggest player of all leading cryptocurrencies is
Bitcoin.

2015 2016 2017 2018 2019
Years

0

20

40

60

80

100

M
ar

ke
t C

ap
ita

l S
ha

re
 (%

)

Market Capitalisation of Leading Cryptocurrencies

Bitcoin (BTC)
Ether (ETH)
Ripple (XRP)
Litecoin (LTC)
Monero (XMR)
Dash
Other

Figure 1.1: Market Capitalisation of leading Cryptocurrencies from 2015-2019 [3]

1

1.1. BITCOIN Chapter 1. Introduction

1.1 Bitcoin

Bitcoin is a cryptocurrency that has become a household name in recent years; it dominated
news headlines on several occasions in 2017 as its price dramatically climbed and peaked at
over $19,000 in December 2017, a 1,824% value increase since January of the same year [4].
What may not be as widely known is the excellent vehicle and tool Bitcoin can be for illegal
activity. Bitcoin’s relative lack of tractability, perceived anonymity and lack of regulatory
oversight [5], compared to traditional fiat currencies, has rapidly attracted criminals such
as illegal arms dealers, kidnappers, people smugglers, drug traffickers, blackmailers and
terrorism financers [6] [7].

This unregulated nature of cryptocurrencies has been a cause of great concern for gov-
erning bodies; the Chinese government banned residents from trading cryptocurrencies in
2017, and the Bank of England’s Governor Mark Carney has publicly expressed concerns
about cryptocurrencies [1]. Recent studies have estimated that over a quarter of all Bitcoin
users (26%) and nearly half of all Bitcoin transactions (46%) are associated with illegal
activity [1]; in March 2017 46% of Bitcoin’s transaction value equated to $76 billion, which
is close to the scale of the US and European markets for illegal drugs [1]. Despite numerous
’darknet’ marketplace seizures, such as the infamous Silk Road which was shut down by the
FBI in 2014 who seized over $4 million worth of bitcoin [1], the amount of illegal activity
associated with bitcoin remained close to it’s all-time high as of April 2017 [1].

However, many cryptocurrencies have a distinct weakness for those wishing to evade the law;
every transaction is published on the ’public ledger’ that is the Blockchain and will remain for-
ever accessible. Meanwhile, the capability of digital forensic tools advance further as research
into de-anonymising Bitcoin activity continues. Right now, the individual identities of users
may be masked by the pseudo-anonymity of their Bitcoin address, but through heuristics
based on idioms of use, knowledge of wallet software and even analysis of user behaviour,
Bitcoin addresses can be grouped into clusters [see 2.3] of addresses known to be controlled
by a single user. Combine such clustering with a graphical, interactive representation of
Blockchain data, and suddenly Bitcoin activity becomes more transparent and digital forensic
investigations are made more accessible.

1.2 Contributions Outline

In this project we build such a graphical, interactive tool Radar that can be used to assist with
digital forensic investigations across the Bitcoin Blockchain. The specific contributions of this
project are:

• Astrolabe: In chapter 3, we develop an extension of the Blockchain Health project by
Max Baylis which facilitates downloading the Bitcoin Blockchain and writing data in a
CSV format suitable for import into a graph database.

• Compass: In chapter 4, we develop a tool for retrieving historical bitcoin exchange rate
data in several fiat currencies.

• Quadrant: In chapter 5, we build a tool for retrieving mappings of wallets (entities) to
the Bitcoin addresses known to be under their control from walletexplorer 1.

1http://www.walletexplorer.com

2

Chapter 1. Introduction 1.2. CONTRIBUTIONS OUTLINE

• Balestilha: In chapter 8 we take several different approaches to the implementation of a
clustering algorithm using a multi-input heuristic [see 2.3].

• Radar: In chapter 9, we build a single page web-application which provides a graphical,
interactive interface to Bitcoin’s entire history; boasting near-instantaneous response
times when navigating through Bitcoins 420+ million transactions [8] using intuitive
graph controls. The tool provides various features to initiate and assist with a digital
forensic investigation for Bitcoin.

3

Chapter 2

Background

2.1 Bitcoin

The model of traditional banking is based on a centralised trusted authority [9]; we use a
third party that we trust in order to mediate the transfer of funds, a process in which we must
explicitly define the payee and the payer (i.e. we must identify our friend and ourselves, if
we were transferring money to a friend). Bitcoin has no central authority; it is a distributed
peer-to-peer system. Therefore, sending money to our friend as before no longer requires any
mediation; we send it directly to them. However, transferring funds peer-to-peer of course
possesses several challenges; how do you prevent double spending? How do we ensure that
money is not counterfeit? [9] How is currency issued without a central authority?

Bitcoin solves these challenges by relying on the Blockchain [see 2.1.4] for its ’source of
truth’, which itself is secured through mining [see 2.1.5] and network-wide consensus [9]. All
transactions [see 2.1.8] are publicly available to view on the Blockchain and can be verified
by any node [see 2.1.9].

2.1.1 Addresses, Keys & Hashing

A fundamental concept to Bitcoin is public key cryptography. The basic idea is that we
generate a private and public key pair. We can pick a private key at random and use that
to generate a public key (using elliptic-curve-crypto). The public key can then be used to
receive funds [see transactions 2.1.8] and the private key used to sign transactions to spend
the funds. [9]. It is critical to Bitcoin security that the process of generating a public key
from a private key is one way and using a public key, it should be impossible to generate the
private key.

A Bitcoin address can be generated from a public key. This Bitcoin address is the only
information that a user needs to offer in order to receive payments, and since the address
essentially appears as a random combination of letters and characters, it does not directly
identify the user who generated the address. However, since all transactions are published
publicly, Bitcoin only has pseudo-anonymity [see 2.2].

2.1.2 Bitcoin Address Types

A Bitcoin address may begin with a 1, a 3 or a bc1 which distinguishes between different types
of addresses. A Bitcoin address beginning with 1 indicates a Pay-to-PubKey-Hash address. An

4

Chapter 2. Background 2.1. BITCOIN

address beginning with 3 indicates a Pay-to-Script-Hash address. Addresses beginning with
bc1 are a Bech32 type address (a segregated-witness address) [9].

2.1.3 Vanity Addresses

Vanity addresses typically begin with characters that contain human readable messages; for
example, the address 1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33 is a vanity address as it begins
with the message ’love’ [9]. Vanity addresses are generated by generating and testing billions
of candidate private keys, generating the corresponding public key and comparing the public
key to the desired pattern until a match is found. Vanity addresses are typically used to create
a more distinctive address, for example for businesses to reassure customers they are paying
the correct address and to attempt to prevent adversaries substituting their own address to
steal payments.

2.1.4 Blockchain

The Blockchain is the global ledger for Bitcoin. It contains the entire Bitcoin history, from the
genesis to the most recently mined block. It exists as an ordered, back-linked list of blocks of
transactions [9] where each block is linked to its previous block, known as its parent block,
up to the genesis block.

A block contains a header, containing metadata, then a list of transactions that are included in
that block [9] (see figure 2.1). A block can be uniquely identified by a cryptographic hash of
its header. The metadata of the block contains data such as the previous block hash (used to
create the chain link to the parent described earlier), a difficulty target and the nonce (used
in the process of mining explained in 2.1.7).

Figure 2.1: A simplified structure of a Bitcoin block. [9]

2.1.5 Mining

Mining is the mechanism that underpins the decentralised clearinghouse of transactions and
also the mechanism in which new bitcoin is (currently) issued. Miners, incentivised by the
reward of bitcoin, continuously compete to solve the proof-of-work algorithm [see 2.1.7] for
each block.

As soon as a miner finds a solution for a block, they propagate this to the network, al-
lowing each node to independently verify the block. In order to receive compensation for
their efforts, a miner must include in the block a special transaction from the coinbase [see

5

2.1. BITCOIN Chapter 2. Background

2.1.6] to their own public address. If the block is valid, then the block will be added to the
Blockchain, and eventually, the miner will be remunerated with newly minted bitcoin by the
special coinbase [see 2.1.6] transaction. The successful miner also claims the transaction fees
for the transactions included in the mined block. For all nodes that see this newly mined
block, and is part of their longest chain, the next round of mining begins immediately, again
competing to find the solution of the next blocks proof-of-work algorithm.

2.1.6 Coinbase

The coinbase refers to the input of a special type of transaction (the coinbase transaction)
which, unlike regular transactions, does not consume bitcoin (i.e. it has no ’spending element’).
Rather, it has a singular input called the coinbase. The bitcoin is therefore created out of
nothing. This is the mechanism in which new bitcoin are introduced into the network.

2.1.7 Proof of work

New blocks are mined approximately every 10 minutes; this rate of mining is maintained even
with fluctuations in the hash-rate of the network by periodically adjusting the difficulty of the
proof-of-work algorithm. A change in hash-rate can be attributed to an increased/reduced
amount of computational power of the network; this can be caused by a change in the number
of participants or advancements in mining hardware.

As shown in figure 2.2 the hash-rate of Bitcoin has grown exponentially in recent years,
reflecting an increase in the number of nodes contributing to the network in addition to
advances in hardware. There is, however, a noticeable decline in hash-rate quite recently
(around the time of November 2018) due to a hard-fork [see 2.1.12]. Comparing the hash-rate
to difficulty over time (see figure 2.3) demonstrates how Bitcoin’s difficulty is dynamically
adjusted in response to changes in the networks hash-rate.

So, what exactly is the proof-of-work algorithm that miners are trying to solve? Firstly,
observe in figure 2.1 there exists a ’nonce’ field. This exists as a variable that can be changed
freely by a miner. As simply put as possible, the miner wants to find a hash for the block that
is lower than some target value. This can be achieved by repeatedly adjusting the nonce field
and generating the new resulting block hash and comparing it to the target hash. Since a
hash function is one-way, we have the property that a miner can only find a hash lower than
the target is by performing repeated trial and error of nonces/hashes (i.e. iterating through
different values for the nonce and looking at the hash of the block with that nonce value).

Clearly, the problem of finding a hash lower than a target can have its difficulty adjusted by
adjusting how small or large the target is. A lower target will have fewer hashes that are
smaller than it, and therefore, a lower probability of finding a satisfying hash; the difficulty
and the target are inversely related.

In summary, the Proof-of-Work problem creates a measure of computational effort that
must have been spent in order to achieve a valid solution. Although it is theoretically possible
to find a satisfying solution immediately, it is incredibly unlikely. By adjusting the difficulty
accordingly, Bitcoin achieves an average of 10 minutes’ worth of the networks computational
effort being spent for each solution that is found.

6

Chapter 2. Background 2.1. BITCOIN

Figure 2.2: Bitcoin hash-rate for all of time [10].

Figure 2.3: Bitcoin difficulty for all of time [11].

2.1.8 Transactions

Transactions are the core component facilitating the transfer of funds in Bitcoin. A transaction
tells the network that the owner of some bitcoin has authorised the transfer of that bitcoin
denomination to another owner [9]. In the simplest case, transactions contain inputs, which
represent where the funds are coming from (the sender), and outputs, which represent where
the funds are going to (the new owner).

For the transfer of funds to be confirmed, the transaction must be added to the global
ledger for everyone to see. This means it must be included in a block that is mined on the

7

2.1. BITCOIN Chapter 2. Background

Blockchain. To be included in a future block, the transaction must be propagated to the many
nodes of the network. The creator of the transaction must, therefore, send it to some of the
Bitcoin nodes it knows the location of (its neighbours). These nodes, if the transaction is
valid, will propagate the transaction to their neighbours, which will repeat the same process.
This is the process of ’flooding’ the network with the transaction. In addition to sending the
bitcoin value to the recipient, the sender must also include an incentive for the miner to
perform the work to include the transaction in the block they are currently mining. This is
the transaction fee.

The transaction fee is a small value that is implicitly included in the transaction by leaving
some left-over funds from the inputs once the recipient of the transaction has been ’paid’.
This fee is collected by the miner who includes the transaction in the block they mined. A
larger fee will act as a higher incentive for a miner to include the transaction in the block and
will likely result in the transaction being included in the Blockchain in a timelier fashion.

2.1.9 Nodes

There are several different types of nodes in Bitcoin. One type of node is the ’full node’. Full
nodes maintain a copy of the entire Blockchain locally, containing all transactions. These
nodes must maintain and build their copy of the Blockchain by listening to incoming transac-
tions and blocks. A full node can independently verify each transaction and block using its
own copy of the Blockchain, without relying on information from other nodes. The disadvan-
tage of running a full node is that it consumes a large amount of storage.

Not all nodes require a full copy of the Blockchain, and in many cases cannot hold a full
copy due to resource constraints on devices such as smart-phones. These nodes are called
Simplified Payment Verification (SPV)[9] nodes. These nodes do not have a full picture of the
history of Bitcoin (i.e. all of the transactions) but do know all of the hashes of the blocks in
the Blockchain. An SPV node, therefore, uses the depth of the block that the transaction is in
to verify it, in comparison to the full node which will build a full database of unspent bitcoin
from the transaction to the genesis block and verify it is not a double spend. The SPV node
will wait until the transaction is in a block at a depth of at least 6, relying on the knowledge
that other nodes have accepted the transaction as confirmation that the transaction is valid.

2.1.10 Immutable History

The Blockchain ledger becomes more and more immutable as time passes; this is because,
in order to add a different block into the Blockchain, you must expend effort to re-do the
proof-of-work for that block. Then, in order to change a block buried under other blocks, you
must also expend the energy to re-do the proof-of-work for all of the blocks it is buried under
(since you now require a different parent block hash field value and will then get a different
hash for child blocks). This makes it exponentially less likely to be able to catch up with the
main chain as the chain grows [12]. Therefore, the more blocks a block is ’buried’ by, the
more immutable it becomes, making old blocks in the chain are practically immutable [9].

2.1.11 Mining Pools

As touched upon earlier in mining [see 2.1.5], a miner must expend enormous amounts of
computational effort in order to compete for the proof-of-work solution of a block, resulting

8

Chapter 2. Background 2.1. BITCOIN

in them being compensated for their efforts with new bitcoin.

A miner without a substantial amount of resources at their disposal (i.e. their individ-
ual contribution to the network’s hash-rate is near-negligible) will be unlikely to successfully
mine a block and be compensated for their efforts. It may be the case that they must mine
for many years before they are successful. This makes investing in hardware and energy a
large gamble for many prospective miners; they will likely prefer smaller, but more frequent
enumeration for their efforts. Mining pools are the solution to this problem for many miners.

Mining pools essentially combine many miners’ resources in order to mine a block. Us-
ing many participants, a pool will have a much higher likelihood of being successful in mining
a block. The reward of bitcoin is then paid to the pool, which the pool then distributes
amongst the contributing members of the pool. A pool measures contributions of miners by
giving the miners a much lower target for the block they are mining than the actual, more
difficult, Bitcoin target. This will allow miners to mine blocks with the goal of finding a
solution for the lower pool target, which the pool can recognise and use this as a measure
of their contribution. Occasionally a pool miner will mine a block that meets the lower pool
target and also meets the network’s target; the pool will then propagate this solution to the
network, claim the reward and distribute it according to miners contributions (taking a cut
for itself, of course).

2.1.12 Forks

A fork on the Blockchain can occur naturally; an inherent property of a decentralised network,
such as Bitcoin, is that different nodes can have different views of the world (i.e. due to
transmission delays). However, these forks are usually quickly corrected within a small
number of (usually one) blocks [9]. There also exist forks that have been deliberately created,
i.e. by an attacker attempting to re-write the history of the Blockchain, or by a hard-fork
software release.

A hard-fork in the Blockchain is where the Bitcoin network permanently diverges. A hard-fork
occurs when there is a change in the consensus rules. The consensus rules tell a node which
blocks to accept, and which ones to reject. A block must conform to the consensus rules of
the majority of nodes in order to be added to the chain. When a change to consensus rules
occurs, not all nodes may be on-board. Some may still be running with the old consensus
rules. This would mean they would create and accept blocks using the old rules rather than
the new ones - meaning their blocks will not be accepted by nodes running with the new
rules (hard-forks mean a non-backwards compatible change). This leads to a divergence in
the chain, where one chain is based on blocks added by nodes running the old rules, and the
other chain containing blocks added by nodes running with the new rules.

In a similar vein, there also exist ’soft forks’ which do not lead to a divergence of the
Blockchain since they incorporate a backwards-compatible change. This means that blocks
added by nodes running the old software will not be rejected by those running the new
software.

Figure 2.4 shows how a hard-fork will look on the Blockchain; the fork at block 3 rep-
resents a naturally occurring fork, as mentioned at the beginning of this section, whereas the
fork occurring at block 6 is a hard-fork and may be due to a change in the consensus rules of

9

2.2. ANONYMITY Chapter 2. Background

the network [9].

Figure 2.4: An example of a hard-fork [9].

2.1.13 Bitcoind

Bitcoind (Bitcoin Core daemon) is a headless daemon which implements the Bitcoin protocol
for RPC use.

2.2 Anonymity

Since all transactions to occur in Bitcoin are available to view by the public, Bitcoin can only
offer pseudo-anonymity rather than real anonymity [13]. There exist studies which show it is
possible to de-anonymise Bitcoin transactions based on data that is publicly available [13].
Therefore, there exist services called ’mixers’ which aim to obfuscate transaction origins with
the goal of strengthening privacy and make such de-anonymisation more challenging.

2.2.1 Mixing Services

A mixing service, also known as ’mixer’ or ’tumbler’, works in the following way: A user
wishing to use a mixing service will first create a new address and send bitcoin to an address
of the service, asking the service to send the funds back to their new address. Other users also
using the mixing service will take the same steps and send bitcoin to the service. The service
now holds bitcoin for multiple users. The service can now use any of the addresses in which
it holds bitcoin to send money back to the users of the service. This results in the appearance
of a disconnect between the user’s old address (the one which held the bitcoin initially) and
the new address which now holds their bitcoin [14]. Clearly, this helps disguise the origins of
bitcoin and can be used as a tool in the process of money laundering. The operators of these
services profit by charging a fee in exchange for ’mixing’ their bitcoin.

2.2.2 Risks of Using Transaction Anonymisers

In order for a mixing service to provide functionality, it will likely retain a history of the
senders and recipients. If an attacker wishing to discover users using these services were to
set up a Mixer, they could potentially gain full knowledge of relationships between senders
and recipients if logs were to be kept for this data over a large enough time span [14]. Of
course, this would only be effective if the user relies on a single mixing service; a user could
mitigate this vulnerability by using multiple mixing services, but at the cost of paying more

10

Chapter 2. Background 2.2. ANONYMITY

fees.

Other weaknesses in anonymisation services could be the timing of incoming and outgoing
transactions, in addition to transaction values, which could all be used to correlate the senders
and recipients of bitcoin. Furthermore, the communication between the user and the service
itself, if compromised, could reveal information (such as addresses) used to de-anonymise
transactions.

In addition, studies have shown some other mixing services such as Bitlaunder, DarkLaunder
and Coinmixer to have multiple serious security flaws and can be easily exploited to compro-
mise the privacy of those that use it. In fact, the investigation shows that making a genuinely
secure mixer is a difficult task, which may be refreshing news for law enforcement wishing to
taint bitcoin back to its source, but worry-some for legitimate users of such mixing services
[15].

2.2.3 Peeling Chain

A peeling chain is a pattern of use that exists widely in the Bitcoin network; it can be used in
withdrawals from exchange services and mining pools, and in some cases, it forms part of a
signature of illegal activity. The chain begins at an address that often holds a large bitcoin
value, and the goal is to obfuscate the funds that a wallet holds. This is achieved by a series
of transactions in which the bitcoin will be sent to two or more addresses, one of which will
belong to the service (which owns the originating address) where the majority of the bitcoin
will be sent, and the small remainder to some change addresses.

Recently, peel chains are being used less frequently due to modern Blockchain analysis
software developing the capability to collapse even the most complex peel chains. There also
exists transaction fees at each step of the peel chain, which may make them economically
inefficient.

Figure 2.5: An example of a peel chain. [15]

2.2.4 Taint Analysis

Taint analysis is a measurement of the link a denomination of cryptocurrency has with pre-
vious illegal activity. For instance, if a vendor has accepted a payment of bitcoin where

11

2.3. BITCOIN ADDRESS CLUSTERING (ON-CHAIN) Chapter 2. Background

one of the 3 inputs to the transaction was stolen in a theft, some part of the output of that
transaction will have a ’taint’ measurement to show its link to the theft, even though the
vendor in this example knows nothing of the theft. Taint analysis, therefore, impacts the
fungibility of bitcoin.

Taint analysis was offered in a feature for free by blockchain.info. The definition of ’taint
analysis’ on the site was ‘Taint is the % of funds received by an address that can be traced
back to another address’. The taint therefore usually correlates with the percentage of funds
that are linked to some theft of coins or are known to have been used in some illicit manner.
However, this feature is no longer available on the site, with some speculation to the feature
being retracted in order to provide it as a charged, premium offering.

2.2.5 TOR

The onion router (TOR) is network infrastructure used to obscure geographical locations of
IP addresses by routing communications through multiple proxies located around the globe.
Messages are sent in multiple layers of encryption for each relay, so each relay can decrypt
the outer layer and forward the decrypted resulting message onto the next router. Eventually,
the one-layer encrypted message will reach its destination. Using Tor therefore permits for
protection against eavesdropping and traffic analysis [16].

2.3 Bitcoin Address Clustering (on-chain)

It is possible to define a number of heuristics that can be used in an effort to group distinct
Bitcoin addresses so that they can be collectively associated with an individual user. This
section outlines some of these heuristics that use data from the Blockchain to help cluster
addresses belonging to the same user.

2.3.1 Multi-Input Transactions

Multi-input transactions will be required when some user, say Alice, wishes to transfer some
funds, say the value of v to some other user Bob; however, Alice does not hold a single bitcoin
denomination that is greater or equal to v and therefore must combine multiple smaller
denominations to meet/exceed the value of v.

It is, therefore, a safe assumption to say the owners of each input of a transaction be-
long to the same user, regardless of the distinct addresses each input is locked to [17]. This
heuristic, therefore, leverages this assumption to cluster together addresses whenever they
are the inputs of the same transaction.

2.3.2 Change Addresses

A transaction will often generate change when the value of the inputs exceeds the amount to
be paid to the recipient and any transaction fees, and the remainder will want to be paid back
to the sender. To do this, Bitcoin will generate a change address for the remainder to be sent
to. Therefore, it can usually be safely assumed that when a transaction has two outputs, and
one is a new address that has not appeared before, that this address is the change address
and belongs to the sender of bitcoin for this transaction [17].

12

Chapter 2. Background 2.3. BITCOIN ADDRESS CLUSTERING (ON-CHAIN)

A weakness in using this heuristic as highlighted in previous research [18] is that it is
not robust in the face of changing patterns of use in the network since it is an idiom of
use rather than an inherent property of Bitcoin. In fact, a study by Sarah Meiklejohn et al.
[18] found that falsely linking just a small number of change addresses causes entire re-
lationship graphs to collapse into giant clusters that are not actually controlled by a single user.

However, through careful investigation of false positives and implementing a more conserva-
tive clustering algorithm, it was possible to name 1,600 times more addresses post-clustering
than those already identified through manual tagging [18]. Evidently, these heuristics could
be extremely useful in the process of identifying users and tracking funds, such as by collaps-
ing peeling chains [see peeling chain 2.2.3].

A more conservative algorithm uses additional measures for greater robustness of the algo-
rithm. Robustness: For each transaction, if multiple outputs meet the pattern of a change
address, no address is labelled as the change address. A change address is labelled iff exactly
one output meets the pattern.

• Avoid self-change addresses, where the change address is specified as the input address.

• The address does not appear in any other transaction.

• The transaction is not a coin generation transaction.

• All other output addresses have appeared in previous transactions.

2.3.3 Consumer Wallet Heuristic

This heuristic as presented in ’Data-Driven De-Anonymization in Bitcoin’ by Jonas David Nick
[19] uses the assumption that popular consumer wallets (such as Bitcoin Core, Electrum,
MultiBit, Armory, Android Bitcoin Wallet, etc) by default only allows users to send bitcoins to
a single address. Therefore, transactions generated by a consumer wallet will only have one
or two outputs; one to the recipient address and one as the change address (if change was
required).

This heuristic can then be used in clustering by identifying change addresses: for every
public address p, find the transactions ts in which an output locked to p is spent (i.e. p spends
bitcoin) then ensure every t in ts has less than 3 outputs. If p is spent by a transaction that
has more than 2 outputs, it is not a change address [19] .

2.3.4 Optimal Change Heuristic

This heuristic is also presented in ’Data-Driven De-Anonymization in Bitcoin’ by Jonas David
Nick [19]. It relies on the assumption that wallet software does not spend unnecessary
outputs when constructing transactions, since including more outputs will necessary will lead
to unnecessary bloat in the size of the transaction and therefore higher transaction fees.

Using this assumption, you can assume that the change value will be smaller than any
of the input values; since if this wasn’t true and it was larger, the smaller input could just be
omitted from the transaction and the change output value will be reduced by this amount.

13

2.4. BITCOIN ADDRESS CLUSTERING (OFF-CHAIN) Chapter 2. Background

Therefore, if a transaction has a unique output which is smaller than all inputs, it is very likely
to be the true ’optimal change output’ [19].

2.3.5 Behaviour Based Analysis

Humans naturally fall exhibit behaviour patterns, and since many events on the Blockchain
are human-driven, it is possible to attempt to identify these behaviour patterns and apply
them in clustering the activities of distinct users. Using timestamps and network properties, it
becomes possible to observe such behaviour patterns could include items being purchased,
daily schedule and activities, in addition to non-human behaviour patterns of hardware and
network latencies [20].

The study ’Identifying Bitcoin users by transaction behaviour’ [20] shows that a transac-
tion can be described by its timestamp, connectivity (number of inputs/outputs) and coin
flow. Features can be extracted that help characterise some aspect of transaction behaviour
over time. These features are:

• The time interval between successive transactions

• The hour of the day the transaction took place

• The time of hour (seconds since the start of the hour)

• The time of day (seconds since the start of the day)

• Coin flow - the net bitcoin value

• Input/output balance - The balance of inputs from other users compared to outputs
going to other users.

2.4 Bitcoin address clustering (off-chain)

The previous section outlines heuristics for using on-chain data for address clustering, however,
it is possible that there exists more public information available elsewhere on the internet
that can be used to help cluster addresses [21].

2.4.1 Tag Collection

Tag collection is the process of trying to find a Bitcoin address that is mentioned in the same
data frame as some tag (such as a username or a company name) [21]. Therefore, passive
tag collection can be carried out by crawling sites where this information is likely to appear,
such as social media, bitcoin forums and dark-web marketplaces (for example, Silkroad).
Tagging in this manner may allow addresses to be correlated to known Bitcoin businesses, or
categorised in the type of service they are, such as an exchange, marketplace, mining pool,
mixer, gambling etc.

2.4.2 Entity Clustering

Sarah Meiklejohn et al.’s work [18] is an example of how addresses can be clustered to
be under the control of known entity by proactively engaging with the services through
transactions, which require a public address of the entity. This provides the minimal ’ground

14

Chapter 2. Background 2.5. POPULAR SERVICES

truth’ data needed to bootstrap the formation of larger clusters using the on-chain heuristics
in section 2.3.

2.5 Popular Services

2.5.1 Satoshi Dice

A very popular Bitcoin dice game, introduced in April 2012, is Satoshi Dice. Users may
place bets and, if they win, have some multiple of their bets paid back to them [18]. It is
estimated that Satoshi Dice is responsible for about 60% of activity on the Bitcoin network
and is expected to contribute an extra 14MB to the overall Blockchain daily [18].

2.5.2 Exchanges

Often it is unavoidable to use an exchange service. Exchange services enable a user to
exchange their currency, such as a fiat-money or another cryptocurrency, into bitcoin and vice
versa. For those users attempting to user bitcoin for illicit means, this poses an issue as it is
a point of centralisation; an example is a user who has stolen bitcoin, who wishes to then
convert stolen funds to their fiat currency, but first must go through a known exchange. It’s
possible their bitcoin is now tainted [see 2.2.4] and will not be accepted by many exchanges.

2.6 Illegal Activity

The impact Bitcoin can have in facilitating illegal activity is substantial; in a 2012 intelligence
report [22], the FBI claimed:

“If Bitcoin stabilises and grows in popularity, it will become an increasingly useful
tool for various illegal activities beyond the cyber realm. For instance, child
pornography and Internet gambling are illegal activities already taking place on
the internet which require simple payment transfers. Bitcoin might logically attract
money launderers, human traffickers, terrorists, and other criminals who avoid
traditional financial systems by using the Internet to conduct global monetary
transfers.”

The report now 7 years ago feels almost like an early warning call; since then we have
seen the FBI’s predictions materialise as we see high-profile thefts, money laundering and
drug-buying stories hit headlines.

Why does Bitcoin make life difficult for law enforcement? Bitcoins decentralised nature
introduces a number of vulnerabilities to traditional law enforcement techniques. There is a
lack of anti-money-laundering software, account owners often cannot be directly identified,
and it is more difficult to identify the original source of funds [22].

2.6.1 Silk Road

Silk road was an international online marketplace which operates as a Tor hidden service that
was overwhelmingly used as a market for controlled substances and narcotics [23]. Through
investigation by Nicolas Christin [23], it appeared to be quite an advanced marketplace;
including features for a product rating system with customer feedback, an escrow account for

15

2.6. ILLEGAL ACTIVITY Chapter 2. Background

dispute management, automatic price pegging to the USD for sellers (accounting for bitcoin
price fluctuations) and site-wide promotional campaigns such as ’pot day’ promoting the sale
of cannabis on the site [23]. However, in 2013 the FBI shut down Silk Road, but an almost
identical site Silk Road 2.0 quickly emerged and began generating sales of $8 million a month
with 150,000 active users. Just a year later, the FBI also shut down Silk Road 2.0 and arrested
it’s operator [24].

2.6.2 Money Laundering

Bitcoin can be used for the purpose of money laundering; funds routed through mixers
[see 2.2.1] can conceal the origin and destination of funds such that it can be traced by
law enforcement. This could ultimately facilitate perpetrators in the act of concealing or
mischaracterizing the proceeds of crime (a.k.a money laundering).

2.6.3 Bitcoin ATM’s

Bitcoin ATM’s are physical machines, often installed in small shops, that allow users to buy
and sell various cryptocurrencies by trading in their fiat-money. For example, there exist
many Bitcoin ATM’s in London, UK, where you buy bitcoin in exchange for depositing pound
sterling. The owners of these machines have the incentive of hosting them in their stores as
they can charge a commission fee on these transactions. Over the last few years, these ATM’s
have become increasingly abundant across the UK, as shown in figure 2.6.

However, there have been growing concerns that these ATM’s are being used in the pro-
cess of money-laundering. In a December 2018 report by Bloomberg [25], reporters carry
out an experimental investigation into the anti-money laundering measures being taken by
Bitcoin ATM’s; estimating that more than half of the machines in the US are not following the
rules. Many machines do not verify identification or impose limits on transactions, in direct
violation of several US banking laws [25].

Figure 2.6: Accumulated number of crypto ATMs installed over time - UK only 1

1https://coinatmradar.com/charts/growth/united-kingdom/

16

Chapter 2. Background 2.7. EXISTING FORENSIC TOOLS

2.6.4 Significant Thefts

Not only is Bitcoin used as a mechanism to facilitate off-chain illegal activity; crime also
occurs on-chain in the form of Bitcoin thefts. Thefts are quite common in Bitcoin, and those
of significant value often make the headlines. Below are some major thefts 2:

Theft Name Theft Victims Approx
Loss (B)

Theft date

Mass MyBitcoin Thefts MyBitcoin users with weak
account passwords

4019 June 20th-21st
2011

MyBitcoin Theft MyBitcoin & customers 78739 July 2011
Bitcash.cz Hack Bitcash.cz 484 November 11th,

2013
Linode Hacks Bitcoinica, Bitcoin.cz min-

ing pool, Bitcoin Faucet,
others...

Bitcoinica:
43554,
Bitcoin.cz:
3094, Bit-
coin Faucet:
4

March 1st-2nd
2012

Bitcoinica Hack Bitcoinica 18547 May 12, 2012
Bitcoinica Theft Bitcoinica 40000 July 13th, 2012
CryptoRush Theft CryptoRush 950 March 11th, 2014

The thefts above were selected out of an extensive collection since these thefts, in particular,
include victims of entities collected in the entity tagging section of this project 5.

2.7 Existing Forensic Tools

There exist several digital forensic tools, both free and proprietary; we present in this section
the information on these tools made available to the public (i.e. without making a purchase).

2.7.1 Blockchain Explorer

Blockchain Explorer, accessible at https://www.blockchain.com/explorer, provides a wealth
of information (available on the Blockchain) about addresses, transactions and blocks. For
instance, users can search by a public address in order to inspect the transactions associated
with it. It also has features to provide charts on Bitcoin statistics, such as the network hash
rate and exchange rates. However, in order to carry out a forensic investigation, it will often
be necessary to follow the path of funds between addresses, which would be simplified if
it were possible to do this graphically; Blockchain Explorer does not provide a graphical
interface.

2https://bitcointalk.org/index.php?topic=576337
3https://www.blockchain.com/explorer

17

2.7. EXISTING FORENSIC TOOLS Chapter 2. Background

Figure 2.7: Blockchain Explorer’s address investigation tool 3

2.7.2 Chainanalysis

Chainanalysis is a company which have built a proprietary software solution for digital
blockchain forensics. We cannot know exactly the solutions Chainanalysis provide, or how,
other than through the information used to advertise their product.

ChainAnalysis seem to have 3 main categories of customers and describes features they
can offer to target each type of customer individually. The types of customers and their
associated features are:

• Financial Institutions: Focus on meeting Anti-money laundering (AML) and Know Your
Customer compliance obligations. Tools for due-diligence and detecting suspicious
activity.

• Cryptocurrency Exchanges: Focus on AML obligations and due-diligence (similar to
financial institutions offerings)

• Government: Features for suspect identification, criminal revenues and machine-
learning based pattern recognition.

2.7.3 Wallet Explorer

Wallet Explorer is a website which provides similar capabilities to Blockchain Explorer in
terms of inspecting addresses individually. However, Wallet Explorer additionally has a list of
known entities and the public addresses they are known to be mapped to. This is extremely
useful information in understanding patterns of use and the main players in the bitcoin

18

Chapter 2. Background 2.7. EXISTING FORENSIC TOOLS

network. However, this data is represented in quite a difficult to use format; it is not linked
with network activity and therefore, on its own, it is not very useful in carrying out forensic
investigations.

Figure 2.8: Wallet Explorers catalogue of wallet addresses 4

2.7.4 Blockpath

Blockpath is a website that claims to be a Bitcoin accounting tool. The feature of this site
that was the most interesting is the graphical explorer. The graph allows you to explore
the relationship between addresses. However, there does not appear to be any mapping of
multiple public addresses to a single entity (i.e. clustering), which would be vital to gaining
real insights when performing forensic analysis.

4https://www.walletexplorer.com/
5blockpath.com

19

2.8. IMPORTING BLOCKCHAIN DATA Chapter 2. Background

Figure 2.9: Blockpath’s graphical explorer displaying transactions between addresses 5

2.7.5 Other Solutions

There exist a number of companies claiming to offer similar solutions to Bitcoin analytics.

• Elliptic Similar to Chainanalysis, Elliptic offer proprietary software with main clients
in finance and law enforcement. [See https://www.elliptic.co/what-we-do/bitcoin-
forensics].

• ScoreChain Another proprietary software solution, claiming to perform Bitcoin analytics
for compliance, forensics and CRM. [See https://bitcoin.scorechain.com].

• Block Explorer: Similar to Blockchain Explorer; providing visibility to information
associated with single addresses and blocks. Also incorporates market information
for many other cryptocurrencies and a cryptocurrency related news feature. [See
https://blockexplorer.com/].

2.8 Importing Blockchain Data

There exists previous work in the domain of downloading the Bitcoin Blockchain. We first
researched and assessed these implementations.

2.8.1 Bitcoin to Neo4J Tool: Open Source Project

There exists an open source tool, built by the author of the website learnmeabitcoin.com,
which populates a Neo4J database with the entire Bitcoin Blockchain [26]. This tool requires
a full Bitcoin node to be run in order to have the .dat files stored locally; the tool will parse
the .dat files and write them, using Cypher queries, to the Neo4J database. This approach
has the advantage that it is well respected in the community and has been cited a number

20

learnmeabitcoin.com

Chapter 2. Background 2.9. KNOW YOUR CUSTOMER

of times by those seeking to achieve the same goal [27]; however, the tool will take several
weeks (apparently 60+ days) to complete the import.

2.8.2 Max Baylis: Imperial MSc Project 2018

Max undertook a project titled ’Blockchain Data Analytics and Health Monitoring’ within the
Department of Computing at Imperial [28] which involved bulk extracting data from several
blockchains and writing that data to a MongoDB database. He additionally used Kafka for
streaming new blockchain updates and writing those updates to the database. This data was
used for providing blockchain analytics data in a web-based environment [28].

2.8.3 TokenAnalyst: Medium Blog

TokenAnalyst published a blog article on Medium with the title ’How to load Bitcoin to Neo4J
in a day’ [27]. They describe their process of using RPC to fetch the data, writing the data to
a ’data lake’ in a compressed Arvo format, generating CSV’s from the compressed files and
feeding them to Neo4J’s bulk import tool. Similar to Max’s work, they then use Kafka for
steaming the most recent Bitcoin data to a tool which writes it to Neo4J to keep the database
up to date.

2.8.4 Blockchain2graph: Open Source Project

A company Blockchain Inspector who are ’using Artificial Intelligence to fight fraud in the
Blockchain’ have open-sourced a tool they use with the claim that it extracts Bitcoin data and
writes it to a Neo4J database [29].

2.8.5 Analysis of Previous Work

TokenAnalyst’s approach seems to best describe the ideal situation for this project; an efficient
bulk import into Neo4J and a mechanism for keeping the database up to date. There exists no
open source implementation for their work, only a high-level description of what they did in
their blog post. Max’s work, however, is available to me and his work in fetching data using
RPC could prove useful to our project. The Bitcoin to Neo4J tool would not be a feasible
approach and can be immediately ruled out due to the time requirement of several weeks for
the tool to complete; this would not be acceptable for the timescale of this project. As for
Blockchain Inspector’s open-source solution, upon inspection of the code, it seems the bulk
import process relies on an existing database containing the entire Bitcoin Blockchain and
therefore seems to be more of a tool to migrate from a traditional database to a relational one
(Neo4J). It is therefore not very applicable to our work, creating an intermediate database
storing the Bitcoin Blockchain for the bulk import would be unnecessary and expensive.

2.9 Know Your Customer

Know Your Customer (KYC) is a keystone in the fight against money laundering. It is the
process of a business carrying out customer due-diligence measures and verifies the identity
of its clients. This ensures the business is dealing with bonafide customers and organisations
and helps identify suspicious behaviours or practices. These measures help satisfy anti-money
laundering requirements (AML).

21

2.10. PRIVACY ENHANCED CRYPTOCURRENCIES Chapter 2. Background

2.10 Privacy Enhanced Cryptocurrencies

2.10.1 ZCash

ZCash has shielded transactions in which a zero-knowledge proof is used to verify the sender,
recipient and amount of a transaction, without exposing the information on the public
Blockchain. Shielded transactions are encrypted on the Blockchain, yet still verified by the
network using zk-SNAKRK proofs.

2.10.2 MimbleWimble (Protocol)

MimbleWimble is a blockchain protocol which addresses gaps in many blockchain protocols
by using strong cryptographic primitives to provide good scalability, privacy and fungibility.
Two current implementations of the MimbleWimble Protocol are Grin and Beam. Grin is
developed in Rust and is a community-backed project.

2.10.3 Dash

Dash is a cryptocurrency which offers a privateSend feature where users can mix the funds
they are sending with others on the network; making it more difficult for a third party to
identify where funds came from. There exist master nodes on the network that conduct coin
mixing.

2.10.4 Monero

Monero employs different privacy technologies to other crypto-currencies, such as Bitcoin
and Ethereumm, which have transparent blockchains. Privacy-preserving technologies, such
as ring signatures, ring confidential transactions and stealth addresses, enable a verifiable
blockchain without exposing details such as the sender, recipient or the amount of a transac-
tion. These privacy features all exist by design for all transactions, such that all transactions
made with Monero are made private through these features, rather than the selective privacy
provided by some other privacy enhanced crypto-currencies such as Zcash.

Kovri

Kovri is a private overlay network using routing and encryption, allowing users to hide their
geographical location and IP address. This avoids the need to use Tor which has semi-trusted
authorities, who could have an overreaching influence of network consensus (and therefore
in the determination of who can relay traffic). Kovri makes passive surveillance impossible.

Stealth Addresses

Used to obscure the recipient address of a transaction. Stealth addresses are one-time
(ephemeral) public keys. Observers cannot infer the recipient from the stealth address;
however, the sender can verify that the payment was sent by then. A Monero wallet has a
public view key and a public send key. When Alice sends Monero to Bob, Alice will use Bob’s
public view and send key, in addition to some random data in order to generate the one-time
ephemeral key (stealth address). The entire Blockchain can see the stealth address. Bob,
with his wallet’s private view key, can identify the output of the transaction sent to him on

22

Chapter 2. Background 2.11. TECHNOLOGY

the Blockchain. Bob will be able to generate a one-time private key that corresponds to the
one-time public key in order to spend the funds.

Ring Signatures

Used to obscure the sender. A group of possible signers are fused together to produce a
possible signature. The actual signer is a one time spend key that corresponds with an output
being spent from the senders’ wallet; the non-signers in the ring are past transaction outputs
pulled from the Blockchain being used as decoys. These outputs combined make up the
inputs of a transaction in which it is indistinguishable between the actual signer and the
decoy signers. Key imaged are used to detect double-spends.

Ring Confidential Transaction (CT) Signatures

Obscures the amount of Monero sent in a transaction. Before Ring CT’s, Monero would
require transaction amounts to be split up into smaller denominations and split amongst ring
signatures to ensure there would be enough ring signers (since all signers of a ring must have
outputs of the same value). This means an observer can see the amounts sent in transactions.
Ring CT transactions obscure the value of outputs, but now the sender must commit to the
value of an output (Pedersen commitment scheme) but without publicly disclosing the amount
being sent.

2.11 Technology

2.11.1 Spring WebFlux

Spring Webflux is a reactive-stack web-framework which supports reactive data streams.
Reactive programming is a paradigm built around the publisher-subscriber pattern which
promotes asynchronous, non-blocking approach to data processing.

Key concepts of a reactive stream include backpressure, which is used to control the in-
gestion rate of data by a consumer to prevent consumers being overwhelmed with more data
they can handle. The framework simplifies the processing of unbounded streams of data
without incurring the overhead of buffers.

23

Chapter 3

Blockchain Download: Astrolabe

This section will cover the approach taken to retrieve and store all historical Bitcoin transac-
tions, up to an appropriate (recent) block height of 570,000 - mined on 3rd April 2019.

3.1 Hardware

We had access to a VM on a machine, Satoshi, provided by the Department of Computing at
Imperial. The VM has the following resource allocated to it:

• Processor: 16 of 24 cores, AMD EPYC 7401

• Memory: 16GB

• Storage: ∼5TB SSD Available

3.2 Retrieving Historical Bitcoin Transactions

After analysing the various approaches taken previously to retrieve all bitcoin transactions,
we decided to adapt the contribution of Max Baylis’ Health Monitoring project [see 2.8.2] to
build Astrolabe. Max’s approach uses WebFlux [see 2.11.1] to create parallel streams of data,
fetched using RPC, and writes them to MongoDB; we adapted this work to divert the data
into a CSV format suitable for importing into Neo4J. Below we describe the steps taken to
build CSV files for the entire Bitcoin Blockchain successfully.

• Introduced a new API endpoint. The new endpoint was named extractBitcoinToNeo4j.
This accepted two arguments as path variables, fromHeight and toHeight which are
to be used to define the range of blocks to fetch data from.

• Using the parameters fromHeight and toHeight, we then generate a Flux stream which
uses RPC to invoke the method getBlockHash on a bitcoind [see 2.1.13 instance running
in a container on the same machine.

• The Flux stream of block hashes are then mapped to the actual block data using Flux’s
flatMap operation and by invoking the method getBlock, passing it the block hash
from the previous step.

• The block data is retrieved and deserialised to an intermediary representation in Java.
Each block is then appended to a CSV file in the format required for an import into
Neo4J.

24

Chapter 3. Blockchain Download: Astrolabe 3.3. CHALLENGES & SOLUTIONS:

• The retrieval of a single block will then initiate the process of fetching transactions;
the Flux of blocks will be mapped to individual transactions by fetching each of the
transaction ids in the block and again using RPC to invoke the getrawtransaction on
the bitcoind instance in order to fetch all the data for each transaction.

• Each retrieved transaction will be written to CSV, in addition to writing the relationships
between transactions, blocks and outputs to their own CSV files.

Figure 3.1: A architecture diagram displaying the new components (in green) we introduced to
Max’s Blockchain Health project while implementing Bitcoin to Neo4J historic data population

3.3 Challenges & Solutions:

3.3.1 Efficiency

With multiple cores at our disposal, it would only be logical to try and distribute the workload
across the cores. Fortunately, WebFlux conveniently provides the functionality to do this; by
adding .parallel(n) to the Flux stream, the workload is divided up into n rails (a rail is a sub-
set of the work to do). Then by subsequently applying the .runOn(Schedulers.parallel())

mapping, WebFlux is told to parallelise this work by running each rail on a separate core.

25

3.3. CHALLENGES & SOLUTIONS: Chapter 3. Blockchain Download: Astrolabe

3.3.2 Job Failure Mitigation

A job is a unit of work that Astrolabe handles, such as a request to download a range of
100,000 Bitcoin blocks. When an error from the client is received, possibly due to being
overwhelmed with requests or a temporary network issue, it would be a naive, inefficient
solution to allow a single failure to cause the entire job to fail. Therefore we mitigated
job failure by adding retry logic to RPC requests so that failures will first be handled by
initiating a re-try mechanism with a delay (the delay necessary to allow time for recovery in
the case of being overwhelmed). However, if an unexpected error occurs that we have not
anticipated, the entire job may fail. Therefore, when performing the download, we ensured to
do so in incremental batches. Specifically, we first download data for blocks 0-100,000 then
100,001-200,000 and so on. Therefore, if a failure does occur, progress from other blocks will
have been saved from previously successful runs and only the batch which failed needs to be
re-run.

3.3.3 Writing Concurrently from Several Threads

Although the above parallelisation improves the efficiency of the overall download process,
it introduced the problem of multiple threads writing to a single CSV file concurrently; this
led to data in the CSV files being malformed where threads have written data chunks in an
interleaving fashion.

Fix Interleaving Writes with a Lock

Clearly, each line in the file needs to be written atomically, so we introduced a lock that each
thread must hold in order to perform a write to a CSV file. However, we realised that allowing
only one thread to write to the output file at any one time will create a significant bottleneck
in the workflow; therefore, we sought an alternative solution.

Fix Interleaving Writes with Per-Thread Files

To enable parallel file writing and in order to circumvent the bottleneck of acquiring locks,
we enabled each thread to write to a separate file. For example, the CSV file containing
the block nodes will be named block-data-thread-1.csv, block-data-thread-2.csv and
block-data-thread-3.csv when created by threads with ids 1, 2 and 3 respectively. With
this solution, each write can occur without risk of another thread also attempting to write, so
the necessity to acquire a lock for concurrent access no longer exists.

3.3.4 Duplicate Addresses

While generating the CSV files, we fetch the outputs of a transaction and the addresses
each output is locked to. While generating the CSV, it wasn’t possible to efficiently check if
we had already seen an address before; instead, we had to write every address we see to
the CSV file. Consequentially, when running the Neo4J bulk import job, we encountered
an error as we attempt to define an address node twice. A solution considered was to use
a flag --ignore-duplicate-nodes that can be used when invoking the bulk import tool.
This would ignore any address nodes that have already been defined, solving our problem.
However, as TokenAnalyst found in their work [27], the --ignore-duplicate-nodes flag
massively slows down the import process, as Neo4J needs to check every single node to see
if the one it is adding already exists. Their solution, which we adopted, was to use GNU’s

26

Chapter 3. Blockchain Download: Astrolabe 3.4. RESULT

sort - u command, which allows us to generate a new address CSV file with only the unique
addresses. TokenAnalyst found this process to take around 30 minutes [27]; therefore, this
was a valuable investment in order to speed up the overall import process.

3.4 Result

All Bitcoin Blockchain data was able to be downloaded, parsed and written as CSV files across
a 12 hour period up to block 570,000. Due to the process of human intervention in our
approach, necessary to mitigate the effects of a job failing as described above, the download
was not automatically continuous, such that there were idle times between jobs finishing
and the next being started. Additionally, manual intervention was required post-download
in order to augment the Bitcoin data with price information and entity relationships, as
described in section 4 and section 5 respectively.

27

Chapter 4

Fetching Historical Price Data:
Compass

Users of the tool should be able to view the value of transactions at the time they took place,
in several fiat currencies (such as GBP, USD and EUR). To achieve this functionality, the
historical price index for Bitcoin must be collected and stored for the entire time spanning
from the infancy of Bitcoin to the present day. Therefore, the objective of this contribution is
to collect the historical exchange rates for every block from height 0 to 570,000, and to then
store the various exchange rates as metadata with each block.

4.1 Source of Price Data

Fortunately, CoinDesk has an API providing the historical Bitcoin price index data from late
July 2010 onwards [30]. The API can provide the daily price index for each day for a provided
date range, supporting several fiat currencies.

4.2 Storing the Price Data

Since the historical price data retrieved from CoinDesk is at the granularity of one data point
per day, and a block in Bitcoin is mined approximately every 10 minutes, it would be more
appropriate for the price data to be stored with each block in the database. Storing the data
with each transaction output would not provide any additional value, and would lead us to
encounter a greater storage overhead and computational effort in associating the price data
with each Bitcoin transaction output. Since each output is associated with the transaction
which produced it, and each transaction associated with the block it was mined in, we can
easily find the price index data for an output through a 2 hop graph traversal.

4.3 Matching Price Data to Bitcoin Data

As discussed in the previous section, it would be appropriate to store the historical exchange
rate data with Bitcoin’s block data. Using Python3, we created a program to:

1. Accept CSV file names (for the block CSV files) as input (or a regex for matching files)

2. Read through each line of the CSV (representing a single block)

28

Chapter 4. Fetching Historical Price Data: Compass 4.4. USING THE PRICE DATA

3. Write a new output line with each row (block) augmented with the price data at the
time the block was mined in GBP, USD and EUR.

Since at the time of writing, the current Bitcoin block height was > 570,000, it would not
be efficient to perform a price index request to CoinDesk for each block, repeated each fiat
currency we support. Therefore, Compass first checks a local cache to see if the price data
is already available for a particular date. If not, it performs a fetch which collects the data
for that date and the following 300 days, populating the cache with the additional data.
Requesting 300 days in advance of data reduces the total number of requests made, and the
overhead associated with making each request. We do not request data at the maximum
range (from Bitcoin’s infancy to present day) in order to strike a balance between reducing
the number of requests and keeping response sizes reasonable.

4.4 Using the Price Data

The price data is now associated with each Bitcoin Block in CSV format. These files can be
used in the database import process in section 6 and the exchange rate figures can be stored
with each block entry. When an exchange rate for a particular transaction is required, its
relationship with the block it was mined in can be traversed and the historical exchange rate
for the time the transaction occurred can be found.

29

Chapter 5

Entity Tagging: Quadrant

As discussed in background section 2.4.1, it is possible to associate public addresses with
known entities, such as exchanges, pools and services. Wallet Explorer hosts a wealth of data
mapping entities (e.g. exchanges, pools, services etc.) to the public addresses they are known
to operate under [31]. Therefore, this objective is to collect address tagging information
from Wallet Explorer and to associate it with the historical Bitcoin Blockchain data we have
previously collected.

5.1 Retrieving Wallet Data

Wallet Explorer does not provide functionality for users to download the data they serve. The
data can only be viewed by navigating to each wallet, then to their addresses, then through a
series of paginated tables providing the addresses for that entity.

Our solution to this problem was to build a web scraping program, Quadrant, which navigates
the site and builds a mapping for each wallet (entity) to all of its addresses, which can then
be written to some output file for mapping against the stored bitcoin data at a later stage.

5.1.1 Building the Scraper

We used a popular open-source web-scraping framework scrapy for implementing Quadrant.
We generate a new web crawler by extending the framework’s ’CrawlSpider’ class. In this
class, we define the bounds of the crawl and define methods to parse and extract the data for
each page it visits. For example, we created rules to allow the crawler to navigate to links
with ’addresses’ in the URL and then defined how to extract the wallet name, each of the
addresses from the table and how to follow links to paginate the table in order to view all
addresses for that wallet.

However, when we initially ran Quadrant, we continuously received 403 (Forbidden) error
responses for the majority of requests. After investigation, we discovered the likely cause of
this was due to anti-scraping measures many websites employ. In order to circumvent these
anti-scraping measures, we experimented with several approaches recommended by scrapy’s
documentation titled ’Avoid getting banned’ 1; these included rotating user agents, disabling
cookies, use download delays or use a pool of rotating IP’s.

1https://docs.scrapy.org/en/latest/topics/practices.html?#avoiding-getting-banned

30

Chapter 5. Entity Tagging: Quadrant 5.2. RESULTS

Implementing Delays

This approach worked; we were able to visit many pages without being served a 403 response
as before; however, this took a very long time. A delay of more than 2 seconds was required
to circumvent the website’s scraping detection such that the delay solution works; therefore,
this would be an inefficient solution for scraping thousands of pages containing the required
data on the Wallet Explorer site.

Using Rotating Proxies

We integrated into Quadrant scrapoxy which allows us to hide the scraper behind a cloud
provider (in this instance, AWS). Scrapoxy creates a pool of proxies and routes all requests
through the pool of proxies. We configured scrapoxy to use a personal Amazon EC2 account
and was able to scale up to 20 EC2 instances when performing the scraping (to enable greater
concurrency, but limited at 20 because the account is restricted to 20 instances at the free
tier). Through trial and error, we were able to configure the number of concurrent requests
per proxy to 5, which further maximises concurrency without encountering error responses
due to anti-scraping measures.

5.2 Results

Using 20 EC2 instances, the scrape completed on 14th April 2019 at 10:07:42 successfully
after 1 day, 19 hours and 12 minutes, in which time Quadrant received 240,411 HTTP
responses. This amounted to generating a 920MB data file containing entity to address
mappings. Due to the concurrency of the retrieval process, distinct threads may have fetched
different pages of data for each wallet. To simplify the scraping tool and so that it runs as
fast as possible, the thread will write that wallets information as a new entry in the JSON.
However, this will lead to multiple duplicate keys, such as in the example below.

[
{” wa l l e t ” : ” wal le t1 ” , ” addresses ” : [” add1 ” , ” add2 ”]} ,
{” wa l l e t ” : ” wal le t2 ” , ” addresses ” : [” add3 ”]} ,
{” wa l l e t ” : ” wal le t1 ” , ” addresses ” : [” add4 ” , ” add5 ”]}
]

However, we would like the desired format to be of the format:

{
” wal le t1 ” : [” add1 ” , ” add2 ” , ” add4 ” , ” add5] ,
” wal le t2 ” : [” add3 ”]
}

Thankfully the size of the file to be processed was still small enough to load into memory,
enabling the implementation of performing this transformation to be simpler. We created a
simple script which iterated through the input file and generated a new dictionary containing
wallet names as unique keys and concatenated lists of addresses from each entry matching
the wallet name. We then wrote this out in JSON format to a new file.

31

5.3. PERFORMING THE ADDRESS MATCHING Chapter 5. Entity Tagging: Quadrant

5.3 Performing the Address Matching

From step 5.1 we have a JSON file mapping each entity type to a list of addresses. After
importing the Bitcoin Blockchain into CSV format, and de-duplicating addresses, we have
a CSV containing all distinct addresses to have ever been used in a Bitcoin transaction. For
each address that is controlled by an entity, we now need to generate a new HAS ENTITY

relationship and write it in CSV format. If we were to take a naive approach here, where we
compare all Bitcoin addresses against each address we have a mapping for, we would have an
algorithm which performs O(nm) address matches, where n is the total number of Bitcoin
addresses and m the number of addresses we have an entity mapping for.

We took a more efficient approach and used a Trie data structure. The Trie data more
efficiently stores Bitcoin addresses data since it only needs to store once the common prefixes
of the millions of addresses. The primary benefit, though, is for performing the address
matching. For each Bitcoin address, we only need to walk, at most, the height of the tree,
so we only require O(n) address matches. We were able to implement this approach using
Google’s pygtrie library.

32

Chapter 6

Database Population

We now use the data retrieved for all historical Bitcoin transactions in section 3 and the
augmented datasets developed in sections 4 and 5 and import them into a Neo4J database
using the Neo4J Bulk Import tool.

6.1 Why Neo4J?

Graph DB’s provide efficient traversing of nodes; allowing million of connections to be
traversed per second per core [32]. Scaling independently to the size of the dataset, a graph
database is excellently suited for storing the vast, complex dataset constituting the Bitcoin
Blockchain. Neo4J is an open-source, NoSQL graph-database providing ACID compliant
transactions.

6.1.1 Other DB Solutions

It was very clear from the outset that a graph database would be required; it fitted the
problem of needing to traverse many relationships quickly. Since we are working with such a
large dataset, we must preempt the performance issues associated with searching for data in
a large database. In graph databases, performance remains almost constant as the size of the
dataset grows.

Flexibility was also an important consideration; it would be necessary to easily adapt the
data model over time, such as when introducing a new clustering heuristic or adding a new
property to a node; graph databases provide flexibility to adapt the data structure far easier
than in traditional relational databases. Additionally, since the investigation tool we were
building would display data in a graphical format, it made sense to reflect this in the format
the data is stored.

Other (free) graph DB technologies include Orient DB, Graph Engine, GraphDB Lite, Ti-
tan, and MapGraph. Neo4J was selected due to our familiarity with the technology, its
large support community and due to the graph persisting data to disk, unlike some other
technologies that are in-memory-based solutions which would not be possible due to the size
of our dataset.

33

6.2. DATABASE DESIGN Chapter 6. Database Population

6.1.2 Bulk Import Tool

Neo4J provides functionality for bulk importing data [33]. A Neo4J blog describes an ex-
ample use of this functionality: importing a vast 66GB dataset from Stackoverflow into a
new Neo4J database [34]; however, this is less than a third the size of the Bitcoin blockchain
(approximately 197GB at the beginning of January 2019 [35]).

The import tool is designed to take advantage of the hardware at its disposal; ideal for
our use-case where we have a large amount of SSD and processing power available, and we
need to ensure we can take full advantage of it.

6.2 Database Design

The graph Database will consist of ’nodes’ which will store each data entry and relationships
which exist between nodes, which describe the relations between the data.

6.2.1 Data Nodes

• BLOCK: A Bitcoin block, unique id being the block hash.

• TRANSACTION: A Bitcoin transaction, unique id the txid property.

• OUTPUT: A transaction output, unique id the txid property concatenated with the outputs
index in the transaction.

• COINBASE: The special type of input that mints new bitcoin - has not been produced by
a transaction.

• ADDRESS: A Bitcoin public address, unique id the public address itself.

• ENTITY: A known entity as collected from walletexplorer.com in section 5.

6.2.2 Relationships

We created several types of relationships to exist between nodes in Neo4J. The relationships
can be seen in a visual representation below in figure 6.1.

• CHAINED FROM: Exists between two blocks; represents the relationship between a block
and it’s parent block.

• MINED IN: Exists between a transaction and a block. Represents the relationship between
a transaction and the block it was mined in.

• LOCKED TO Exists between a transaction output and an address. Represents the relation-
ship between an output, and who it can be spent by.

• INPUTS Exists between a transaction output and a transaction. Describes the relationship
between an output and the transaction it later funds.

• OUTPUTS Exists between a transaction and a transaction output. Shows the relationship
between a transaction and the new outputs it generates.

34

Chapter 6. Database Population 6.2. DATABASE DESIGN

• COINBASE Exists between a coinbase node and a block. Represents the special type of
input to a transaction which generates new bitcoin, and is associated with a block as it
was the miners’ reward for successfully mining the block.

• HAS ENTITY Exists between entities and the addresses they are known to control (see
fig 6.2).

Figure 6.1: The nodes and relationships as visualised using the Neo4J Web UI

Figure 6.2: The new HAS ENTITY relationship visualised between a new Entity node and a bitcoin
address.

35

6.3. INVOKING THE IMPORT JOB Chapter 6. Database Population

6.3 Invoking the Import Job

We created a script to wrap the execution of the import job, providing the ability to version
control the script and to ensure reproducibility of the import process. This script first uses
globbing to build the list of input files for each type of node and relationship. It then invokes
the import command, as shown below. Some additional arguments were --max-memory, to
override the default 90% memory usage constraint in an effort to alleviate memory issues. The
argument --ignore-missing-nodes was to prevent a long job failing simply due to a single
relationship referring to a non-existing node, and to instead rely on these bad relationships
being reported to the file as defined by the --report-file option for manual investigation.

$1/ bin / neo4j−admin import
−−nodes :ADDRESS $ a d d r e s s f i l e s a l l
−−nodes :BLOCK $ b l o c k f i l e s a l l
−−nodes : COINBASE $ c o i n b a s e f i l e s a l l
−−node :OUTPUT $ o u t p u t f i l e s a l l
−−nodes :TRANSACTION $ t r a n s a c t i o n f i l e s a l l
−−nodes : ENTITY $ e n t i t y f i l e s a l l
−−r e l a t i o n s h i p s :CHAINED FROM $ r e l a t i o n c h a i n e d f r o m f i l e s
−−r e l a t i o n s h i p s : COINBASE $ r e l a t i o n c o i n b a s e f i l e s
−−r e l a t i o n s h i p s : INPUTS $ r e l a t i o n i n p u t s f i l e s
−−r e l a t i o n s h i p s : LOCKED TO $ r e l a t i o n l o c k e d t o f i l e s
−−r e l a t i o n s h i p s : MINED IN $ r e l a t i o n m i n e d i n f i l e s
−−r e l a t i o n s h i p s :OUTPUTS $ r e l a t i o n o u t p u t s f i l e s
−−max−memory 95%
−−ignore−missing−nodes true
−−report− f i l e ” neo4j−import−debug−r epor t . log ”

6.4 Challenges & Solutions

6.4.1 Memory Issues

While attempting to perform the bulk import, we encountered an issue where the import
job would fail with no output other than the message that the process was killed. This
occurred on repeated runs at around 28% progress into the graph node creation process. After
investigation, we found that this issue was being caused by Neo4J running out of available
memory; we rectified this by allocating a much larger amount of Swap memory for the
VM. The total amount of memory available (including swap) increased to over 30GB. This
allowed the import tool to progress using swap once memory had been exhausted, albeit with
increased memory access latency.

6.4.2 Query Latency Issues

Upon successful population of the database, we performed simple entity lookups to begin to
verify the correctness and performance of the database. However, we discovered immediately
that simple searches for an address node using the tool takes an unacceptably long time (10

36

Chapter 6. Database Population 6.5. IMPORT RESULT

minutes 45 seconds to find an address node by its address and find its immediate neighbours).
We used indexing to solve this issue.

6.4.3 Creating indexes

Indexes are useful for finding the starting point of graph traversal. Radar requires exactly
this functionality to support features to find a particular Bitcoin address, used as the starting
point of an investigation before expanding out neighbours to trace the flow of funds. The
initial search for an address node is where the latency currently exists; therefore, the first
index we created was on the address property of the ADDRESS node. We create this index
by executing the command CREATE INDEX ON :ADDRESS(address) and using the command
CALL db.indexes to track the progress of its population.

Once the index was created, the result for an address node search returned almost im-
mediately. However, when trying to find the relations of the address neighbours (including
non-address nodes), we encountered the same performance issues. Therefore, we created
indexes for each node type using the unique ID that each node would be fetched with. The
complete set of indexes created are:

• :ADDRESS(address)

• :BLOCK(hash)

• :ENTITY(name)

• :OUTPUT(outputId)

• :TRANSACTION(transactionId)

6.5 Import Result

The import operation for the first 570,000 Bitcoin Blocks completed in 5 hours, 32 minutes
and 555 seconds. The operation consumed 22.96GB of memory and created 1.964 billion
nodes, 3.52 billion relationships and 3.03 billion properties. There were no errors or bad
relationships reported.

37

Chapter 7

Backend API: Loran

In order to provide an interface for interacting with Neo4J, and in order to support more
complex functionality such as clustering and path finding, we developed Loran to support the
features of the Radar as described in section 9.

7.1 Technology Choices

Loran was developed in Java using Spring Data as the predominant library used for communi-
cating with Neo4J.

Spring Data provides powerful repository and object-mapping abstractions that can be used
to define a data model and interact with the underlying data store through abstractions with
relative ease. Spring Data has specific support for Neo4J, utilised by creating a repository that
extends their Neo4JRepository<> interface. Spring Data repositories provide ’out-of-the-box’
database interaction functionality; for example, queries can be derived from the repository
method names that are defined. Spring Data also has support for many other underlying data
repositories, such as MongoDB, Redis or Apache Cassandra. Such an abstraction would allow
for the flexibility of changing the core underlying data store, or for the introduction of new
data sources from different types of data stores.

7.1.1 Alternative Technologies

An alternative technology choice, which is often a popular approach, would be to create Loran
using Python Flask. Python Flask was considered, and was an almost equal candidate for
technology choice, but we ultimately decided to choose Java & Spring Data due to the huge
community that exists for Spring MVC and its excellent documentation. Additionally, we were
aware of the future potential of integrating Max Baylis Health Monitoring project [see 2.8.2]
(written in Java) with the interface to Neo4J, in which case implementing Loran in Java using
Spring Data would make such an integration far easier.

7.2 API Design

Loran follows a REST design pattern; generally, IDs are used to retrieve (HTTP GET request)
an entity by passing it as a path variable. Any further options, such as data required for
filtering, exist as an optional query parameter.

38

Chapter 7. Backend API: Loran 7.2. API DESIGN

Listing 7.1: Get an address using the unique full address. Several optional query parameters for
filtering by time, price and enabling clustering and node limiting.

GET / b i t c o i n / address /{ address | s t r i n g }
? s tar tT ime={time f i l t e r s t a r t s i n ce epoch | s t r i n g }
&endTime={time f i l t e r end s ince epoch | s t r i n g }
&s t a r t P r i c e={p r i c e f i l t e r s t a r t | double , as s t r i n g }
&endPrice={p r i c e f i l t e r end | double , as s t r i n g }
&pr i c eUn i t={currency u n i t s of p r i c e f i l t e r | s t r i n g of ’ btc ’ , ’ gbp ’ ,

’ usd ’ or ’ eur ’ }
&i np u t C l u s t e r i n g={t rue / f a l s e | boolean}
&nodeLimit={node l i m i t number | i n t e g e r }

Listing 7.2: Get an entity using the unique name of the entity . All query parameters are optional
for filtering.

GET / b i t c o i n / e n t i t y /{ e n t i t y name | s t r i n g }
? s tar tT ime={time f i l t e r s t a r t s i n ce epoch | s t r i n g }
&endTime={time f i l t e r end s ince epoch | s t r i n g }
&s t a r t P r i c e={p r i c e f i l t e r s t a r t | double , as s t r i n g }
&endPrice={p r i c e f i l t e r end | double , as s t r i n g }
&pr i c eUn i t={currency u n i t s of p r i c e f i l t e r | s t r i n g of ’ btc ’ , ’ gbp ’ ,

’ usd ’ or ’ eur ’ }
&nodeLimit={node l i m i t number | i n t e g e r }

Listing 7.3: Get an output with a unique output ID. All query parameters are optional for filtering.

GET / b i t c o i n / output /{ output id | s t r i n g }
? s tar tT ime={time f i l t e r s t a r t s i n ce epoch | s t r i n g }
&endTime={time f i l t e r end s ince epoch | s t r i n g }

Listing 7.4: Get a transaction with a unique transaction ID (txid). All query parameters are
optional for filtering.

GET / b i t c o i n / t r a n s a c t i o n /{ t r a n s a c t i o n id | s t r i n g }
? s tar tT ime={time f i l t e r s t a r t s i n ce epoch | s t r i n g }
&endTime={time f i l t e r end s ince epoch | s t r i n g }
&s t a r t P r i c e={p r i c e f i l t e r s t a r t | double , as s t r i n g }
&endPrice={p r i c e f i l t e r end | double , as s t r i n g }
&pr i c eUn i t={currency u n i t s of p r i c e f i l t e r | s t r i n g of ’ btc ’ , ’ gbp ’ ,

’ usd ’ or ’ eur ’ }
&nodeLimit={node l i m i t number | i n t e g e r }

Listing 7.5: Get a block with a unique block hash

GET / b i t c o i n / block /{ block hash}

39

7.2. API DESIGN Chapter 7. Backend API: Loran

Listing 7.6: Find a path between two addresses using their full address strings

GET / b i t c o i n / sho r t e s tPa th /{ s t a r t address }/{end address }

7.2.1 Responses

A typical response will contain all information for the requested entity, including its immediate
neighbours. For example, the request
GET /bitcoin/output/fbec1...1 will produce the response shown in listing 7.7. As shown,
searching for an output returns the ids of the neighbouring nodes (see neighbouring node
lockedToAddress) which can subsequently be used in API calls that fetch neighbouring node
data and, therefore, enable a user to trace the flow of funds.

Listing 7.7: GET Output Example Response

{
” outputId ” : ”

fbec1c21ca91d4e5baf55f305b05d294755b4fd069d149344b2104b708e42873
−0” ,

” value ” : 50 ,
” producedByTransact ion ” : {

” t r a n s a c t i o n ” : { . . . }
” eurValue ” : 0 ,
” usdValue ” : 0 ,
” gbpValue ” : 0 ,
” timestamp ” : 1232709019

} ,
” i npu t sTransac t ion ” : {

” t r a n s a c t i o n ” : { . . . } ,
” eurValue ” : 0 ,
” usdValue ” : 0 ,
” gbpValue ” : 0 ,
” timestamp ” : 1233004161

} ,
” lockedToAddress ” : {

” address ” : {
” address ” : ”1BENJudbbZ8dfTwFtCLuJNWMTtBLE2bZa ” ,
” e n t i t y ” : nul l ,
” hasLinkedAddresses ” : t rue

}
}

}

The response for the path finder method takes on a different format. For example, exe-
cuting the path finding query on addresses 1CrnUia9wfeNFbdwKJNj89YqA6qetvYTTE and
17c6L9JUGVenn6CfqXuB93L3Tk8Tbzefui returns the response shown in listing 7.8.

The start and end nodes are fully defined, and each intermediate node on the path (each
potentially of a different type) are included in the intermediateNodes array, with the links
that connect each of the nodes included in the rels array.

1fbec1c21ca91d4e5baf55f305b05d294755b4fd069d149344b2104b708e42873-0

40

Chapter 7. Backend API: Loran 7.3. IMPLEMENTATION

Listing 7.8: Response to a path find query

[
{

” s tar tNode ” : {
” address ” : ”1CrnUia9wfeNFbdwKJNj89YqA6qetvYTTE ” ,
” outputs ” : [

{ . . . }
] ,
” e n t i t y ” : nul l ,
” inputHeur i s t i cL inkedAddres se s ” : nul l ,
” hasLinkedAddresses ” : f a l s e

} ,
” intermediateNodes ” : [

{ . . . } ,
{ . . . } ,
{ . . . }

] ,
” r e l s ” : [

{ . . . } ,
{ . . . } ,
{ . . . }

] ,
” endNode ” : {

” address ” : ”17c6L9JUGVenn6CfqXuB93L3Tk8Tbzefui ” ,
” outputs ” : [

{ . . . }
] ,
” e n t i t y ” : nul l ,
” inputHeur i s t i cL inkedAddres se s ” : nul l ,
” hasLinkedAddresses ” : f a l s e

}
}

]

7.3 Implementation

7.3.1 Overall Design

The API is defined in a class named ‘BitcoinController ’. Defining an API using this class
is achieved using Spring Data by annotating the class with the @RestController and
@RequestMapping annotations. Requests are handled by each of the methods shown in
the BitcoinController class in figure 7.1. A request is sent to the service which coordinates the
data to be returned using a number of the repositories. There exists one repository for each
type of entities.

41

7.3. IMPLEMENTATION Chapter 7. Backend API: Loran

BitcoinController

- bitcoinService: BitcoinService

- pathFinderService: PathFinderService

+ getAddress(address:string): HttpEntity

+ getBlock(hash:string): HttpEntity

+ getEntity(name:string): HttpEntity

+ getOutput(id:string): HttpEntity

+ getTransaction(txid:string): HttpEntity

+ getShortestPath(startAddress:string, endAddress: string): HttpEntity

BitcoinService

+ blockRepository: BlockRepository

+ transactionRepository: TransactionRepository

+ addressRepository: AddressRepository

+ entityRepository: EntityRepository

+ outputRepository: OutputRepository

+ findAddress(address:string): Address

+ findBlock(hash:string): Block

+ findEntity(name:string): Entity

+ findOutput(id:string): Output

+ findTransaction(txid:string): Transaction

«interface»
Neo4JRepository<T, ID extends Serializable>

«interface»
BlockRepository

+ findByHash(hash: string): Block

«interface»
TransactionRepository

+ getTransactionByTransactionId(txid:string): Transaction

«interface»
AddressRepository

+ getAddressByAddress(address:string): Address

+ shortestPath(startAddress:string, endAddress : string):
 Iterable<Map<String, Object>>

«interface»
EntityRepository

+ getEntityByName(name:string): Entity

«interface»
OutputRepository

+ getOutputByOutputId(outputId:string): Output

«annotation»
Service

«annotation»
RequestMapping

«annotation»
RepositoryRestController

PathFinderService

- addressRepository: AddressRepository

+ getShortestPath(startAddress:string, endAddress:string) :
 Iterable<Map<String, Object>>

Figure 7.1: Loran Implementation UML Diagram

42

Chapter 7. Backend API: Loran 7.3. IMPLEMENTATION

7.3.2 Node Entities

A data model can be defined by creating classes and annotating them using the Spring
Data @NodeEntity annotation; Relationships from the database are represented using the
@Relationship annotation. An example of a node entity class implementation is the transac-
tion node type shown in listing 7.9.

The annotation @NodeEntity is used to tell Spring Data this class represents the data model
of a node in Neo4J. The @Id annotation identifies the id field as the node’s unique graph
identifier from Neo4J. @Relationship annotations on the class change the Cypher query sent
when fetching a node, in order to additionally fetch neighbouring node data by traversing
the relationships defined. This helps produce responses as shown in listing 7.7 where the
neighbouring node data is populated.

7.3.3 Serialising Node Entities

The annotation @JsonIgnoreProperties is used to prevent infinite recursion when serialising
responses to be returned by Loran. For instance, if a transaction references an output node
that it produces, and each output references the transaction node that produces it, the
serialisation would recurse infinitely until a stack overflow error is encountered, at which
point serialisation fails. Additionally, methods omitted from listing 7.9 for brevity are the
’Getter and Setter’ methods that exist for the properties; these methods help define the fields
that should be serialised. For instance, no Getter exists for the id field since it is not required
in the response.

Listing 7.9: A transaction node entity

@NodeEntity (labe l = ”TRANSACTION”)
public c lass Transac t ion {

@Id
@GeneratedValue
private Long id ;

private S t r ing t r a n s a c t i o n I d ;

@Relationship (type = ”MINED IN” , d i r e c t i o n = Re la t i on sh ip .OUTGOING)
private Block minedInBlock ;

@JsonIgnorePropert ies (” t r a n s a c t i o n ”)
@Relationship (type = ”INPUTS” , d i r e c t i o n = Re la t i onsh ip . INCOMING)
private L i s t <InputRe la t ion> i nput s ;

@JsonIgnorePropert ies (” inpu t sTransac t i on ”)
@Relationship (type = ”INPUTS” , d i r e c t i o n = Re la t i onsh ip . INCOMING)
private Coinbase co inbase Input ;

@JsonIgnorePropert ies (” t r a n s a c t i o n ”)
@Relationship (type = ”OUTPUTS”)
private L i s t <OutputRelat ion> outputs ;

}

43

7.3. IMPLEMENTATION Chapter 7. Backend API: Loran

7.3.4 Implementing Repositories

As shown in the UML diagram 7.1, repositories all exist as interfaces which extend the
Neo4JRepository interface. In doing so, many of the queries are automatically inferred based
on the names of the methods defined on the interface. For example, the implementation of
the AddressRepository interface is shown in listing 7.10. The method getAddressByAddress

requires no query definition since Spring Data infers the query by the name of the method,
and knows the type as the interface provides the Address type as one of the generic type
arguments when extending Neo4jRepository.

Comparatively, the method shortestPath does require a query definition using the Spring
Data @Query annotation, as shown in listing 7.10; this is as the query is more specialised and
cannot be inferred.

Listing 7.10: AddressRepository interface definition

pub l i c i n t e r f a c e AddressRepos i tory extends Neo4jRepository<Address , Long>
{

Address getAddressByAddress (@Param(” address ”) S t r i ng address) ;

@Query(”MATCH” +
”(a1 :ADDRESS{ address :{0}}) , ” +
”(a2 :ADDRESS{ address :{1}}) , ” +
”p = shor t e s tPa th ((a1)−[:INPUTS | : OUTPUTS | : LOCKED TO∗ . .100]−(

a2)) ” +
”RETURN a1 as startNode , nodes (p) as intermediateNodes ,

r e l a t i o n s h i p s (p) as r e l s ” +
” , a2 as endNode ”)

I t e r a b l e <Map<Str ing , Object>> sho r t e s tPa th (S t r i ng sourceAddress ,
S t r i ng des t ina t ionAddres s) ;

}

7.3.5 Implementing Path Finding

The implementation of the path finding functionality can be seen in listing 7.10. Neo4J
provides the method shortestPath that can be used to find a path between two nodes. We
restricted the type of paths to be of type INPUTS, OUTPUTS or LOCKED TO in order for the path
to represent the flow of funds, rather than paths existing simply due to all nodes on the
blockchain, by definition, are connected via their relationship with the blocks they are mined
in, and blocks with each other.

44

Chapter 8

Clustering: Balestilha

The multi-input clustering heuristic, as described in section 2.3.1 and in the paper by Sarah
Meiklejohn et al. is one the most effective clustering heuristics for Bitcoin [18]. In this section,
we present the several implementations of clustering algorithms, which uses the multi-input
heuristic. We attempted clustering with several approaches due to issues discovered while
running each clustering algorithm. We also present the successful implementation in section
8.5.

8.1 Algorithm

The rough outline of the algorithm is shown below.

• for each transaction tx on the Blockchain

– Fetches inputs ins of tx
– Gets all addresses as where each a in as is an address which an input in from ins

is locked to
– Clusters the addresses as

8.2 Java & Spring Data Approach

The first approach taken was implemented as an extension of the Neo4J API

• Created a new clustering service in Loran

• Fetched all transactions from Neo4J

• For each transaction, make additional requests to Neo4J for inputs and addresses the
inputs are locked to

• When a transaction has multiple inputs, add all addresses that input it to a set in
memory

• Execute a query to create a new relationship between every address in the set (such
that it creates a totally connected sub-graph containing the addresses)

Executing this algorithm for a local instance of the database, which contained a subset of
the Bitcoin Blockchain data (blocks 0-2000 only). The algorithm successfully completed and
screenshots of the resulting database, with the new relationships introduced, can be seen in
figure 8.1 and 8.2.

45

8.2. JAVA & SPRING DATA APPROACH Chapter 8. Clustering: Balestilha

Figure 8.1: Neo4J browser view of the several clusterings of addresses which all feed the same
transaction.

Figure 8.2: Neo4J browser view one one of the clusterings of addresses with their neighbours
expanded to show they all have outputs locked to them which feed the same transaction

46

Chapter 8. Clustering: Balestilha 8.2. JAVA & SPRING DATA APPROACH

8.2.1 Challenges

An issue we anticipated would occur was an issue due to to the size of the dataset we are
working with; we encountered a memory overflow error while the algorithm was attempting
to load Bitcoin transactions into memory.

We solved this issue using paging. Paging allows us to break our request for all transac-
tions to several requests for batches of transactions. Fetching transactions in batches allowed
each batch’s transactions to be processed before fetching the next batch. This helped tackle
memory constraints as we didn’t need to load all Bitcoin transactions up front. See code in
Listing 8.1

Although progress was now being made more steadily using paging, we still experienced
performance issues while trying to cluster all Bitcoin addresses. After running the above algo-
rithm for 24 hours, only 150,000 transactions had been processed. This was infeasibly slow,
most likely due to the overhead of using Spring Data to create new relationships in Neo4J
between all addresses in each address cluster; it was clear a more efficient implementation
was required.

Listing 8.1: Java Implementation using Paging

public ResponseEnt i ty c lu s t e rBy Inpu t () {
// Pageab l e i tem : s t a r t at page 0 , f e t c h 50 i t ems
Pageable pageable = PageRequest . o f (0 , 50) ;

while (true) {
// F e t c h e s t r a n s a c t i o n s f o r t h i s page
Page<Transact ion> a l l T r a n s a c t i o n s = t r a n s ac t i o n R e p o s i t o r y . f i n d A l l

(pageable) ;
a l l T r a n s a c t i o n s . forEach (t r a n s a c t i o n −> {

i f (t r a n s a c t i o n . ge t Input s () == nul l | | t r a n s a c t i o n . ge t Input s
() . s i z e () < 2) {
// co inba s e input or on ly one input
return ; // j u s t s k i p s t h i s i t e r a t i o n only

}
// Fe t ch i n p u t s f o r t h i s t r a n s a c t i o n
L i s t <InputRe la t ion> t r a n s a c t i o n I n p u t s = t r a n s a c t i o n . ge t Input s

() ;
Set<Address> addressesSpendingTransac t ionInputs = new HashSet

<>() ;

t r a n s a c t i o n I n p u t s . forEach (inpu tRe la t i on −> {
S t r ing input Id = inputRe la t i on . ge t Input () . getOutputId () ;

// F e t c h e s the e n t i r e Output node from the database , so i t
’ s

// r e l a t i o n f i e l d s are popu la ted
Output re f e t chedTransac t i on Inpu t = getOutputById (input Id)

;

47

8.3. CYPHER QUERY Chapter 8. Clustering: Balestilha

Address addressSpendingTransact ionInput =
re fe t chedTransac t i on Inpu t . getLockedToAddress () ;

//add ev e r y d i s t i n c t addr e s s to a s e t
i f (addressSpendingTransact ionInput != nul l) {

addressesSpendingTransac t ionInputs . add(
addressSpendingTransact ionInput) ;

}
}) ;

// i t e r a t e through the s e t , l i n k e v e r y i tem in s e t with e v r e y
o the r

addressesSpendingTransac t ionInputs . forEach (address −> {
address . s e t Inpu tHeur i s t i cL inkedAddre s se s (

addressesSpendingTransac t ionInputs) ;

// Saves the updated a d d r e s s e s back to Neo4J repo at
depth 0

th i s . addressRepos i tory . save (address , 0) ;
}) ;

System . out . p r i n t l n (” completed f o r tx ” + t r a n s a c t i o n .
ge tTransac t i on Id ()) ;

}) ;

i f (! a l l T r a n s a c t i o n s . hasNext ()) {
// reached the l a s t page : t e rmina t e
break ;

}

// f e t c h e s the nex t page to r e q u e s t
pageable = a l l T r a n s a c t i o n s . nextPageable () ;

}

return ResponseEnt i ty . s t a t u s (200) . body (” C l u s t e r i n g Complete ”) ;
}

8.3 Cypher Query

The intention of experimenting with a pure Cypher implementation was if we could fully spec-
ify the algorithm in Cypher, then Neo4J could potentially parallelise/optimise the workload
more efficiently if it knows the entire algorithm up-front. We also hoped that using Cypher
would improve performance by bypassing the necessity to interact with the database using
Spring Data, which will be adding some overhead.

We were able to translate the above algorithm in Listing 8.1 to a single Cypher query.
The Cypher implementation is shown in Listing 8.2. The query matches all transactions that
have more than one input, then finds the addresses each input is locked to. It uses the UNWIND

commands to generate all pairs of addresses in the address list for a particular transaction.
The clause WHERE id(first) < id(second) ensures a pair of addresses only occurs once;

48

Chapter 8. Clustering: Balestilha 8.4. CLUSTERING ON DEMAND

rather than two pairs existing for {a,b} and {b,a} where a and b are both addresses.

Listing 8.2: Cypher Implementation

MATCH (t :TRANSACTION)
WHERE s i z e ((t)<−[:INPUTS]−()) > 1
WITH [(t)<−[:INPUTS]−(:OUTPUT)−[:LOCKED TO]−>(a :ADDRESS) | a] as

addresses
UNWIND addresses as f i r s t
UNWIND addresses as second
WITH addresses , f i r s t , second
WHERE id (f i r s t) < id (second)
MERGE (f i r s t)−[:INPUTS SAME TX]−(second)

Before we could execute the query, we first had to clean up the mutations made to the
database by running earlier clustering implementations. To do this, we created a Query to
delete all instances of the relationships we added during the first attempt.

MATCH (:ADDRESS)−[r : INPUT HEURISTIC LINKED ADDRESSES]−(:ADDRESS)
DELETE r

8.3.1 Challenges

When executing the query shown in Listing 8.2 we encountered performance issues where
several hours would elapse with no apparent progress being made.

We investigated this issue using the Cypher PROFILE command to inspect the performance
of this query. The performance report identified issues in the earlier stages where the query
would require the search of all nodes across the database when matching transactions, inputs
and addresses. Since we want to match all nodes, indexes cannot be leveraged to retrieve
nodes, so we loose the performance benefits of indexes and therefore introduce a significant
bottleneck in the query. Furthermore, investigating the issue using the htop command on the
Satoshi VM, we could see that core utilisation was extremely low (almost completely idle).

The main difficulty with this approach is that executing a very expensive query becomes
almost like a ’black-box’ in that it is difficult to understand what Neo4J is doing, since we are
using the Community edition of Neo4J, so we do not have access to logging options that can
be used to help us.

8.4 Clustering on demand

This approach has the intention of tackling the performance issues by only performing clus-
tering when and where it is required, rather than attempting to perform clustering for the
entire Bitcoin Blockchain in advance.

By knowing exactly which address we want to perform the clustering for, and leveraging the
performance enhancements provided by indexes on address, transactions and outputs when

49

8.4. CLUSTERING ON DEMAND Chapter 8. Clustering: Balestilha

fetching them using their respective ID’s, we were able to craft an algorithm to implement
clustering on demand.

This implementation heavily relied on Java 8 streams, specifically using parallel streams to
introduce concurrency in the clustering process, increasing the efficiency of this operation;
critical for an on-demand implementation.

The implementation of this algorithm led me to discover that the initial implementation
(Listing 8.1) was not correct. This heuristic is transitive, such that if addresses A and B input
the same transaction, and B and C input the same transaction then A, B and C can all be
considered as under the control of the same user. The implementation in Listing 8.1 does not
take this transitivity into account. However, we ensured transitivity was encountered before
in the on-demand clustering algorithm in Listing 8.3.

Listing 8.3: Java Implementation of on demand clustering

private void per formInputC lus te r ing (Address addressNode , Date s t a r t , Date
end) {
Set<Address> l inkedAddresses = t r a n s i t i v e I n p u t C l u s t e r i n g (addressNode ,

new HashSet<>() , s t a r t , end) ;
addressNode . s e t Inpu tHeur i s t i cL inkedAddre s se s (l inkedAddresses) ;

}

private Set<Address> t r a n s i t i v e I n p u t C l u s t e r i n g (Address addressNode , Set<
Transact ion> exp loredTransac t ions , Date s t a r t , Date end) {
//a stream o f t r a n s a c t i o n s which a l l have i n p u t s l o ck ed to t h i s

addr e s s
Stream<Transact ion> a l lT ran sac t i on sTh i sAddre s s Inpu t s =

getTransac t ionsForAddress (addressNode , s t a r t , end) ;
HashSet<Transact ion> t h i sAddre s s e sT ransac t i on s =

a l lT ran sac t i on sTh i sAddre s s Inpu t s . c o l l e c t (C o l l e c t o r s . t o C o l l e c t i o n (
HashSet : : new)) ;

// removes a l l t r a n s a c t i o n s we ’ ve a l r eady seen
t h i sAddre s s e sT ransac t i on s . removeAll (exp loredTransac t ions) ;

//now adds the new t r a n s a c t i o n s we ’ r e about to e x p l o r e to the
e x p l o r e d s e t

exp loredTransac t ions . addAl l (th i sAddre s s e sT ransac t i on s) ;

// a l l a d d r e s s e s l i n k e d d i r e c t l y (1 t r a n s a c t i o n hop away) from t h i s
addr e s s

Stream<Address> l inkedAddressesStream =
getAddressesL inkedByTransac t ions (th i sAddre s s e sT ransac t i on s .
pa ra l l e lS t r eam () , s t a r t , end) ;

Set<Address> d i r e c t l yL inkedAddre s se s = l inkedAddressesStream . c o l l e c t (
C o l l e c t o r s . toSe t ()) ;

// a l l a d d r e s s e s l i n k e d t r a n s i t i v e l y (2 t r a n s a c t i o n hops away) from
t h i s addr e s s

Stream<Set<Address>> t r ans i t i veAddre s sS t ream =
di re c t l yL inkedAddre s se s

. stream ()

50

Chapter 8. Clustering: Balestilha 8.4. CLUSTERING ON DEMAND

.map(l inkedAddress −> t r a n s i t i v e I n p u t C l u s t e r i n g (l inkedAddress
, exp loredTransac t ions , s t a r t , end)) ;

d i r e c t l yL inkedAddre s se s . addAl l (t r ans i t i veAddre s sS t ream . f latMap (Set : :
stream) . c o l l e c t (C o l l e c t o r s . toSet ())) ;

return d i r e c t l yL inkedAddre s se s ;
}

private Stream<Transact ion> getTransac t ionsForAddress (Address address ,
Date s t a r t , Date end) {
return address . getOutputs ()

. pa ra l l e lS t r eam ()

.map(outputShe l l −> findOutputNode (outputShe l l . getOutputId () ,
s t a r t , end))

. f i l t e r (outputNode −> outputNode . ge t Inpu t sTransac t i on () !=
nul l)

.map(outputNode −> outputNode . ge t Inpu t sTransac t i on () .
ge tTransac t ion ())

.map(t r a n s a c t i o n S h e l l −> f i ndTransac t i on (t r a n s a c t i o n S h e l l .
ge tT ransac t i on Id ()))

. f i l t e r (t ransact ionNode −> t ransact ionNode . ge t Inpu t s () !=
nul l && transact ionNode . ge t Input s () . s i z e () > 1) ;

}

private Stream<Address> getAddressesL inkedByTransac t ions (Stream<
Transact ion> t ransact ionStream , Date s t a r t , Date end) {
return t ransac t ionSt ream . f latMap (tx −>

getAddressesL inkedByTransact ion (tx , s t a r t , end)) ;
}
private Stream<Address> getAddressesL inkedByTransact ion (Transac t ion

t ransac t i on , Date s t a r t , Date end) {
return t r a n s a c t i o n . ge t Input s ()

. pa ra l l e lS t r eam ()

.map(InputRe la t ion : : ge t Input)

.map(inpu tShe l l −> findOutputNode (inpu tShe l l . getOutputId () ,
s t a r t , end))

.map(Output : : getLockedToAddress) ;
}

8.4.1 Challenges

On-demand clustering can become unsuitable for extremely large clusters; for example, an
address belonging to the wallet of SatoshiDice.com
1LaM2aDLEP49kLbE6y2hvnbrP3agbMwEHb would belong to an extremely large cluster of many
thousands of addresses, and clustering on-demand would take far too long to provide an
acceptable user experience (we experimented with the above address and killed the request
after 30 minutes had elapsed). For addresses belonging to large wallets like the one above,
we attempt to cluster using the entity tagging information obtained in section 5 rather than
using the multi-input heuristic. Since this data is stored in the database, it is quick to traverse
the HAS ENTITY relationships from a known address to find all of the addresses in the cluster.
Therefore, we prioritise providing entity clustering information over multi-input clustering in
order to provide as much valuable information over a shorter time; improving user experience.

51

8.5. CLUSTERING USING RAW CSV DATA Chapter 8. Clustering: Balestilha

For those addresses that do not have a link with a known entity, but exist as part of large
address clusters, we truncate the search to a limit N that is defined by the user. The user
can increase and decrease this limit, including disabling it completely, when initiating the
search [see more on this in section 9]. Therefore, the algorithm will halt once N addresses
belonging to the cluster have been found. This is a trade-off between usability and utility; the
truncation makes the feature more usable since it provides more reasonable response times,
however it does not provide a complete result. The user can still obtain a complete result by
disabling the limit, albeit at the risk of poor user experience.

8.5 Clustering using raw CSV data

The challenges experienced in previous implementations were largely due to the necessity to
write many new HAS ENTITY relationships between address nodes to the already populated
Neo4J database. If we were to circumvent this by calculating these relationships upfront
before the bulk import into Neo4J, we would benefit from the powerful Neo4J Bulk Import
tool making lighter work of writing these many relationships.

Once the relationships exist between clustered addresses in the graph, it will be efficient to
query the database for addresses in the same cluster of a particular address; Neo4J is designed
to traverse a large number of relationships extremely quickly.

Each entry in the CSV file will have the format below where ADDRESS IN CLUSTER and
ANOTHER ADDRESS IN CLUSTER are two Bitcoin addresses and INPUTS SAME TX is the name of
the relationship.

ADDRESS IN CLUSTER, ANOTHER ADDRESS IN CLUSTER, INPUTS SAME TX

The outline of the algorithm is as follows:

• for each Bitcoin transaction tx:

– Fetches inputs ins of tx

– Maps ins to the addresses the input is locked to and generates a set of addresses
as which input the transaction

– Writes a new CSV relationship entry for every pair a1, a2 in as where a1! = a2

• The new relationship CSV files are then used in the Neo4J import tool to re-import the
entire database, now with clustering information represented in the form of relationships
between address nodes.

We leveraged concurrency in the implementation of the above algorithm. We implemented the
algorithm in Java, parallelising the work by splitting the transactions to be iterated through
into batches, so the processing of each batch can be delegated to a separate thread. We
addressed possible race conditions and file lock contentions by having each thread writing to
its own output CSV file.

52

Chapter 9

Investigation Tool: Radar

Our investigation tool Radar is a single-page web application developed using Angular &
Typescript.

9.1 Technology Choices

9.1.1 Angular 6 & TypeScript

Angular 6 provides excellent tooling for scaffolding out a wire-frame application and scaf-
folding out individual components. This is achievable using the @angular-cli tool where a
command as simple as ng new my-app; cd my-app; ng serve will have a wire-frame web
application up and running. This was a lucrative feature of Angular for this project since it
would help expedite the web-application setup process.

Angular 6 applications are written in TypeScript; a statically typed superset of JavaScript.
Using a statically-typed language is a personal preference, where possible, in order to allow
for some compile time type-checking and easier refactoring.

Angular supports RxJS, an asynchronous programming library. RxJS provides an alternative
approach to asynchronous requests; Observables are used rather than using Promises in
JavaScript, which can only be subscribed to once. Observables can be subscribed and listened
to indefinitely and can provide an unlimited number of data updates/messages. This is
particularly useful for this application since every interaction the user makes with the graph
will initiate an asynchronous request to fetch the data to render further nodes/information.
These requests may be made concurrently too, so having a single Observable to listen for all
new ’block data’ or ’transaction data’, for instance, greatly simplifies the implementation.

Alternatives to Angular

React is another solution to building single-page web-applications that is popular in the web
development community. However, React is a library whereas Angular is a fully-fledged MVC
framework providing far more ’out-the-box’ functionality. React only provides the ’V’ (the
view) and will require several other libraries to fill in the model (’M’) and controller (’C’)
components of MVC. Due to our familiarity with Angular, and relative unfamiliarity with
React, there would potentially be a steep learning curve required to adopt React for this
project. Angular would allow us to build and iterate fast since much of the basic functionality
is provided by Angular ’out-the-box’.

53

9.2. IMPLEMENTATION Chapter 9. Investigation Tool: Radar

9.1.2 D3

D3.js is a JavaScript library that can be used for generating SVG visualisations in the browser.
D3 has no direct connection to Neo4J, unlike some other tools. The data will be retrieved by
making HTTP calls to Loran and will involve further steps to fetch the data to render; however,
this is advantageous as it will provide the flexibility to customise Loran’s implementation to
support complex features or to potentially use several data sources to orchestrate a response.

Alternatives to D3

There exist some visualisation tools that have embedded connections to Neo4J. We initially
considered these tools as a possible simplification of the visualisation element of the web
application; however, these tools such as Neovis.js and Popoto.js seem too restrictive in that
their data format must align with the data format in Neo4J. They appear to be very suitable
for visually mirroring the data in Neo4J, but we believe for this project, with the scope for
many visual features with data persisted in locations other than Neo4J, this will prove to be
too constraining. As for other JavaScript libraries similar to D3 with high customisability, we
chose D3 due to the abundance of documentation, community support and example projects
that D3 has.

9.2 Implementation

The most significant features provided by Angular that we used throughout the project were:

• Components & Templates - specifically, two-way data binding. The template will
render the data defined in the component; changes to this data will lead to the template
dynamically re-rendering to display the updated value. The component can listen to
event hooks on the template, such as a click of a button or a value inserted, to retrieve
user input/interactions from the template.

• Services - a way of passing data between components internally in the app and also
used to retrieve data from external sources. The service ’InvestigationService’ is largely
used to communicate data across the components. For instance, the search component
supplies the investigation service with search result data. This is published to an
observable, which is being listened to by the investigation component which renders
the new data as it arrives. Services help with separation of dependencies between
components that should not need to know about each other.

• Dependency Injection - Injectable components (such as services) are requested by
components that require them, rather than creating the dependencies them-self. This
improves efficiency and modularity.

9.2.1 Routes

There existed two main routes within the application:

• /search : Loads the search component

• /investigation : Loads the investigation component (only if navigated there from the
search form, otherwise it re-directs back to /search).

54

Chapter 9. Investigation Tool: Radar 9.2. IMPLEMENTATION

9.2.2 Architecture

The overall architecture of the web application can be seen in figure 9.1. The components
shown in the figure have the following roles:

• Search Component: Renders the search forms. Validates users input, performs requests
to fulfil searches using a Bitcoin-specific service component. Provides search results to
Investigation specific service component.

• Investigation Component: Subscribes to the many data streams of the Investigation
Service and coordinates adding new nodes and links to the graph.

• Graph Component: Listens to updates of the node/link data and updates the graph
when data changes and initialises/re-starts the simulation when required.

• Link Component: Exists simply as a template for the Link SVG on the graph. Some
logic around showing Output values in various currencies and timestamps.

• Node Component: Handles user interactions with the nodes on the graph. Identifies
hover actions and double clicks and communicates accordingly with the services to
inform other components of the actions. E.g., On hover, passes the node information to
the App Service for displaying in the node data component. Additionally handles the
pulsing animation while a node is requesting data to render its neighbours.

• Add Node Component: Provides a form for adding custom nodes to the graph. Vali-
dates form data and publishes new data to the Investigation service.

• Add Link Component: Provides a form for creating a link between custom nodes
in the graph and any other node. Validates the form and publishes new data to the
Investigation Service.

• Node Data Component: Responsible for rendering an overlay component displaying
information about the node currently being hovered over. This data is published to an
Observable in the App service and is subscribed to in order to receive updates.

• Draggable Directive: Applies D3’s draggable behaviour to a node.

• Zoomable Directive: Applies D3’s zoomable behaviour to the graph.

• Investigation Service: Mainly supplies data to the investigation component using
Observables. For example, an observable to publish address data looks like this:

p r i v a t e addressData = new BehaviourSubject (n u l l) ;
currentAddressData = t h i s . addressData . asObservable () ;

supplyNewAddressData (newAddressData : Address) {
t h i s . addressData . next (newAddressData) ;

}

Then in the investigation component, a subscription to the observable will look like this:

55

9.2. IMPLEMENTATION Chapter 9. Investigation Tool: Radar

t h i s . i n v e s t i g a t i o n S e r v i c e . currentAddressData . subsc r i be ((
newAddressData : Address) => {
// handle data update

}) ;

• Bitcoin Service: Uses Angular’s HTTP library to make HTTP requests to Loran to fetch
new data. The calls return an observable with generic type corresponding to the data
model it will populate. For example, a call to fetch an address node is:

re turn t h i s . h t tp . get<Address>(t h i s . serviceDomain + ”/ b i t c o i n
/ getAddress /” + address + t h i s . buildQueryParams ()) ;

• App Service: Uses observables to facilitate the transfer of data between node compo-
nents and node data components.

• D3 Service: Handles calls to D3 to implement Draggable and Zoomable behaviours.

56

Chapter 9. Investigation Tool: Radar 9.2. IMPLEMENTATION

Se
ar

ch
Te

m
pl

at
e

<
>

Pr
op

er
ty

 B
in

di
ng

Se
ar

ch
C

om
po

ne
nt

{..
.}

-
Ev

en
t B

in
di

ng

In
ve

st
ig

at
io

n
Te

m
pl

at
e

<
>

Pr
op

er
ty

 B
in

di
ng

In
ve

st
ig

at
io

n
C

om
po

ne
nt

{..

.}

Ev
en

t B
in

di
ng

Li
nk

 T
em

pl
at

e
<

>
N

od
e

Te
m

pl
at

e
<

>

Pr
op

er
ty

 B
in

di
ng

Li
nk

 C
om

po
ne

nt

{..
.}

Ev
en

t B
in

di
ng

Pr
op

er
ty

 B
in

di
ng

N
od

e
C

om
po

ne
nt

{..

.}

Ev
en

t B
in

di
ng

Lo
ra
n

R
eq

ue
st

/R
es

po
ns

e In
je

ct

Bi
tc

oi
n

Se
rv

ic
e

In
je

ct

In
ve

st
ig

at
io

n
Se

rv
ic

e

Ty
pe

Sc
rip

t
C

om
po

ne
nt

In
je

ct
ab

le
H

TM
L

te
m

pl
at

e

C
hi

ld
 T

em
pl

at
e

(p
er

 li
nk

)
C

hi
ld

 T
em

pl
at

e
(p

er
 n

od
e)

G
ra

ph
 T

em
pl

at
e

<
>

C
hi

ld
 T

em
pl

at
e

Pr
op

er
ty

 B
in

di
ng

G
ra

ph
C

om
po

ne
nt

{..

.}

Ev
en

t B
in

di
ng

Zo
om

ab
le

D
ire

ct
iv

e
{..

.}

D
ire

ct
iv

e

Bi
nd

D
ra

gg
ab

le
D

ire
ct

iv
e

{..
.}

In
je

ct

D
3

Se
rv

ic
e

Ad
d

N
od

e
Te

m
pl

at
e

Pr
op

er
ty

 B
in

di
ng

Ad
d

N
od

e
C

om
po

ne
nt

{..

.}

Ev
en

t B
in

di
ng

Ad
d

Li
nk

Te
m

pl
at

e

Pr
op

er
ty

 B
in

di
ng

Ad
d

Li
nk

C
om

po
ne

nt

{..
.}

Ev
en

t B
in

di
ng

K
ey

W
eb

-A
pp

 B
ou

nd
ar

y

N
od

e
D

at
a

Te
m

pl
at

e

N
od

e
D

at
a

C
om

po
ne

nt
{..

.}

In
je

ct

Ev
en

t B
in

di
ng

In
je

ct

Ap
p

Se
rv

ic
e

Pr
op

er
ty

 B
in

di
ng

Fi
gu

re
9.

1:
A

rc
hi

te
ct

ur
e

of
th

e
W

eb
A

pp
lic

at
io

n

57

9.3. FEATURES Chapter 9. Investigation Tool: Radar

9.3 Features

9.3.1 Search by Address

An investigation can be initiated by searching for a particular Bitcoin address. Submitting the
search form as shown in figure 9.2, loads the investigation view displaying the address and
its immediate neighbours as nodes in the graph, also detailing the relationship types each
link represents, as shown in figure 9.3.

Figure 9.2: A screenshot of the address search form feature.

58

Chapter 9. Investigation Tool: Radar 9.3. FEATURES

Figure 9.3: A screenshot of the search result produced by the search shown in figure 9.2

9.3.2 Search by Entity Name

In order to facilitate investigations that relate to thefts of popular exchanges, we provide the
functionality to initiate an investigation using an entity name. If the entity name exists in the
database (i.e. if it was collected in section 5 from walletexplorer.com), then Radar will be
able to show a bigger picture of all the outputs/transactions associated with the entity, rather
than just a single address it uses [see fig 9.5]. This will provide a better picture of the true
transactions associated with an entity at a given date/time.

59

9.3. FEATURES Chapter 9. Investigation Tool: Radar

Figure 9.4: A screenshot of the search form when searching for the entity ’Bitcoinica-old.com’

Figure 9.5: A screenshot of Radar’s result when searching for the ’bitcoinica-old.com’ entity

60

Chapter 9. Investigation Tool: Radar 9.3. FEATURES

9.3.3 Node Information on Hover

Information associated with each type of node is displayed when a node is hovered over. For
example, hovering over a block will display the time it was mined, its hash and the historical
exchange rates at the time of mining (see fig 9.6). The node being hovered over will expand
in size to visually indicate which node the information is being displayed for. There is also an
option to dismiss the information box using the cross symbol in the top right corner.

Additionally, clicking on each field in the node information box automatically copies that
data to the users’ clipboard. This further improves the user experience as there will exist
fewer steps to copying data (such as long ID’s or hashes), which may be needed for transfer
to another tool for further investigation. The data copied will also be copied without the
extraneous surrounding data such as labels, currency symbols or data formatting; specifically,
selecting dates will copy the epoch time in milliseconds to the clipboard.

Figure 9.6: A screenshot of block information being displayed when hovering over a block node

9.3.4 Link Data

A primary use of Radar will be to investigate the flow of funds; it is important to make this
information visible and digestible. Therefore, each link representing a flow of funds (between
OUTPUT and TRANSACTION nodes) displays the value of the funds in BTC and whichever fiat
currency the user selects as their preference when searching (GBP, EUR, USD). The link
data also provides a timestamp representing the time the transaction was included in the
blockchain; this provides context to the value of the output with respect to their fiat currencies.

The screenshot in figure 9.7 exemplifies the importance of a fiat currency conversion: the same
unit of 0.5 BTC is output by transaction 432f18...1 as is input into transaction 96455e...2,
however their equivalent fiat value in USD is very different at $1,688 when the output is
produced and $2,102 when the output is spent. The timestamp will also provide context

1432f18aa46626934c45805046f9c9791fb60bd41da1eb951b47f73bb3b8c7484
296455e8b6a877f273d14aa13ecb1971577c0d17716b7028c9809c7ca3e1f6e3c

61

9.3. FEATURES Chapter 9. Investigation Tool: Radar

around the timeline of this transfer of funds, in addition to providing an explanation for vast
differences in fiat currency value of a particular output.

Figure 9.7: A screenshot link data between two transac-
tion nodes (green) and an output node. Transactions IDs are:
432f18aa46626934c45805046f9c9791fb60bd41da1eb951b47f73bb3b8c7484,
96455e8b6a877f273d14aa13ecb1971577c0d17716b7028c9809c7ca3e1f6e3c

9.3.5 Traverse the Graph

Double-clicking on a node initiates a request to add that node’s immediate neighbours to
the graph. Once the request receives a response, the node’s neighbours are added to the
existing graph as new nodes and the relationships between the nodes will be represented
with new links. Traversal of the graph is possible through the repetition of this process by
double-clicking any of the new nodes that were added to the graph.

Sometimes the time between initiating a request and receiving a response isn’t near in-
stantaneous, perhaps due to demand on the database or a greater response size. Therefore, to
feedback to the user that a request has been initiated, preventing them from issuing multiple
requests or incorrectly concluding that a node has no neighbours, a node will pulse in size
while a request is pending.

Additionally, when interacting with the graph, it may not be immediately clear which nodes
have already been double clicked and had their neighbours loaded; this could be the case
for nodes with their neighbours hidden due to filtering options. Therefore, nodes will have a
thick black border until their nodes have been expanded (see both green transaction nodes in
fig 9.7) and will have their border removed once expanded (see the orange output node in fig
9.7).

62

Chapter 9. Investigation Tool: Radar 9.3. FEATURES

9.3.6 Link Dependant Colour and Size of Nodes

To indicate the differences in a node’s connectivity among the many other nodes in the graph,
a node’s colour and size adjusts based on the number of links it has outgoing and incident on
it. The rate at which a node’s colour and size changes is normalised by the total number of
links in the graph; a node with 30% of the links in a graph of 10 links will have the same
size/colour as a node with 30% of the links in a graph with 100 links. This feature helps
with identifying potentially more important nodes in a graph, and also assists with visual
arrangement; nodes with more links will have a greater circumference and therefore easier to
arrange many neighbouring nodes around it.

An example of this can be seen in figure 9.8 where an address 1HJtS7...3 has more
links than another address 1HeYaB...4 and therefore has a higher colour density and larger
radius. The figure also exemplifies this for output node b777...0 which has more links than
the other output nodes and is therefore slightly larger and of higher colour density.

Figure 9.8: A screenshot of two address nodes, with a varying number of links each. Address IDs
are: 1HJtS7wLaqdZRf1Cd4FfJDEWL17VJVDcm2,
1HeYaB7gntUXQBtLaeJmqWzAdFf2PWMEfZ

9.3.7 Selecting Fiat Currencies

The Link Data feature, as shown in figure 9.7, displays the fiat currency conversion of output
values. The fiat currency displayed is configurable from the address search form, as shown in
figure 9.9. See figure 9.10 and 9.11 for the graph differences when selecting USD or GBP.

31HJtS7wLaqdZRf1Cd4FfJDEWL17VJVDcm2
41HeYaB7gntUXQBtLaeJmqWzAdFf2PWMEfZ

63

9.3. FEATURES Chapter 9. Investigation Tool: Radar

Figure 9.9: A screenshot of a radio button input field of the address search form, allowing one of
three currencies to be selected

Figure 9.10: A screenshot of link data information displayed in GBP

Figure 9.11: A screenshot of link data information displayed in USD

9.3.8 Filter by Date and Time

The date/time filter allows the user to specify that they only wish to see transactions/outputs
that were mined in the time range specified. The option is disabled by default, but by selecting
the toggle button to enable the feature, shown in figure 9.12, the user can adjust the start and
end date/time for the filter using the calendar component for the date and slider for the time.
The filtering will be further applied for any additional interactions (i.e. loading neighbouring
nodes) the user makes when navigating the graph.

64

Chapter 9. Investigation Tool: Radar 9.3. FEATURES

Figure 9.12: A screenshot of the date/time filter input enabled on the search form.

9.3.9 Filter by Value in Several Currencies

Similar to date filtering, transactions and outputs in the search results can also be filtered by
their value. Their value can be filtered either in bitcoin (BTC) or any of the supported fiat
currencies (GBP, USD, EUR). Once enabled, only transactions/outputs that have a value that
lies in the filter range will be displayed.

Figure 9.13: A screenshot of the price filter input field.

9.3.10 Limiting Nodes

Some nodes that are rendered on the graph may have a huge number of neighbours; such
as a transaction with many inputs or an entity that has many addresses. If the UI were to
attempt to render thousands of nodes using D3, the performance would seriously deteriorate,
and the web application may become unresponsive. Therefore, in order to prevent this from
happening as the default behaviour, the number of nodes that will be rendered will be limited,
configurable using a field on the search form as shown in figure 9.14. The user can disable
node limiting completely and is shown a warning when they do so (see figure 9.15). If they
wish to adjust the number of nodes to render without completely disabling node limiting,
they can easily do so using the slider on the search form.

65

9.3. FEATURES Chapter 9. Investigation Tool: Radar

Figure 9.14: A screenshot of the node limiting input field.

Figure 9.15: A screenshot of the node limiting input field when disabled and showing a warning.

9.3.11 Enable Multi-Input Clustering View

The final option available on the search form is one labelled ’Input Clustering’ which is a sim-
ple toggle, disabled by default, that the user can turn on when performing a search. Enabling
this option will now display ’supernodes’ rather than address nodes whenever addresses can
be clustered; either through using the same-input heuristic as described in section 8 or using
entity tagging data as described in section 5.

For example, an address that belongs to the wallet ’BitKonan.com’ is
1GEp9Fui9XmyVhszPzFazdW3WHyt1adLR6. When searching for this address, with the cluster-
ing option enabled, the search result will be shown with a large supernode for the wallet,
rather than the individual address, as shown in figure 9.16. The output nodes connected to
the supernode will be all of the outputs for each of the addresses belonging to the supernode.
The addresses belonging to the supernode can be viewed by hovering over the node, where
the node data component will display them as a list, as shown in figure 9.17.

For an address that does not belong to a known entity, but can be linked with other ad-
dresses using the multi-input clustering heuristic from section 8, then a similar supernode
will appear, with all of the outputs associated with each address in the cluster rendered as
neighbours.

Similar to limiting the number of outputs and transactions to render, the number of clustered
addresses and linked outputs displayed is also limited when rendering supernodes. This
prevents clustering ’on-demand’ as described in section 8 from taking an unreasonable amount
of time, while also providing the option to the user to disable the limiting from the search
form and obtaining a complete response.

66

Chapter 9. Investigation Tool: Radar 9.3. FEATURES

Figure 9.16: A screenshot of a supernode being displayed for address
1GEp9Fui9XmyVhszPzFazdW3WHyt1adLR6.

Figure 9.17: A screenshot of the node data component showing a list of addresses included in a
supernode.

67

9.3. FEATURES Chapter 9. Investigation Tool: Radar

9.3.12 User Input Validation & Feedback

User input validation exists wherever the user manually inputs data across the web-app.
Examples include user inputs required for searching by address, path finding, adding a custom
node and creating a link. Examples of input validation in the application include highlighting
fields in red and displaying a useful message, such as:

• On the Path Finder Form : No paths found between addresses (if a path does not exist)

• On the Address Search Form : 404, Entity not found (if address does not exist)

Additionally, to indicate loading states to the user, search forms display an animated loading
bar while waiting for a request to return from Loran. This becomes particularly important
for requests that have many linked addresses through clustering since some responses could
take several seconds. To convey loading feedback to the user within the investigation view
(the graph) when a user double-clicks a node and waits for its nodes to expand, we animate
the node such that it pulsates until the request successfully completes and the new nodes are
added to the graph.

9.3.13 Add Custom Nodes

It is possible to add custom nodes to the graph. The intention of this feature is the nodes
will contain information to complement an active investigation; usually, this data will have
an off-chain source. There exist various custom node types, based on the typical types of
off-chain data that may exist in an investigation. One of these types is photographic ID, which
provides the option to upload an image to be displayed in a custom node. The form for
adding a new custom node of photographic id type can be seen in figure 9.18. The user can
additionally choose to define an arbitrary number of custom fields in a key, value format.

Functionality also displayed in fig 9.18 is that the user has successfully uploaded a passport
image. If a user uploads an image to a custom node, it will be displayed with its other
information when a user hovers over the node. More on persisting custom data in section
9.3.16.

Figure 9.18: A screenshot of the form to add a custom node for passport data.

68

Chapter 9. Investigation Tool: Radar 9.3. FEATURES

9.3.14 Link Custom Nodes to Other Nodes

Once a custom node exists, it can be associated with any other node shown on the graph by
creating a link between them. The user can achieve this by hovering over the custom node,
so that the node data view displays, as shown in figure 9.19, and clicking the ’Create a link’
button. A modal form open which the user can submit to introduce the new link; the user
must select the ID of the node they wish to create a link with. To help simplify this process,
the target node form field will have a filtered autocomplete for all of the ID’s that currently
exist on the graph. The user can also change the direction of the link using the middle arrow
button. The link name can then be any custom string defined by the user and will show on
the link as shown in figure 9.21

Figure 9.19: A screenshot of the custom node data component.

Figure 9.20: A screenshot of the form to add a new link from a custom node.

69

9.3. FEATURES Chapter 9. Investigation Tool: Radar

Figure 9.21: A screenshot of the graph after a new link VERIFIED IDENTITY has been introduced
between the custom node and an address node.

9.3.15 Path Finding

The path finder feature allows the user to search for the shortest path between any two valid
addresses. The path can be of any length and include relationship types INPUTS, OUTPUTS or
LOCKED TO. This feature helps identify how two addresses may be linked through the transfer
of funds. The result of the search is rendered in a graphical view, showing all nodes the path
passes through and additionally highlighting the path using red links. Other neighbouring
nodes extraneous to the shortest path are not shown by default but can be loaded using
the double-click interaction. An example search result can be seen in figure 9.22. The two
addresses shown are clearly connected by the funds they input into the same transaction.

Figure 9.22: A screenshot of the result of a path finder search between addresses
17c6L9JUGVenn6CfqXuB93L3Tk8Tbzefui and 1CrnUia9wfeNFbdwKJNj89YqA6qetvYTTE.

70

Chapter 9. Investigation Tool: Radar 9.3. FEATURES

9.3.16 Persisting Data

Instances where data needs to be persisted, such as when a user is uploading an image when
creating a custom identification node, are handled by a simple web server implemented using
expressjs.

We built a simple API to serve the purpose of uploading images.

POST / api / upload /{ f i l e }

This stores the file with its file name where the web server is located; allowing the files
uploaded to be served as assets in the UI.

71

Chapter 10

Overall Deployment

This section describes how the previous sections, and the software components developed in
each, come together to produce the final product.

Diagram in figure 10.1 shows the overall deployment of the software components built
in this project. There are three main types of components in the diagram:

• Active Components: These software components are actively running as part of the
final deployment of this project

• One-Time Components: These software components were manually run and used to
build the foundations of the project, but do not need to be running for the deployed
product. However, they are not completely redundant now. They will be required in the
future, such as for adding new Bitcoin data, performing further clustering, fetching new
price data etc.

• External APIs: These components were not developed as part of this project, but serve
as a data source for the data used in this project.

All components are hosted on a VM on Satoshi [see 3.1].

72

Chapter 10. Overall Deployment

Radar
Angular, D3, Node

Bitcoin RPC (bitcoind)

Astrolabe
Java, Flux, Maven

Neo4J

Loran
Java, Spring Data, Maven

Neo4J Bulk Import

CSV Files

Wallet Explorer

Quadrant
Python, Scrapy, Scrapoxy

Compass
Python

Coin Desk

Balestilha
Java, Spring Data

One-Time
Components

Technologies

Active
Components

Technologies
External API

Key

Figure 10.1: Overall Deployment Diagram.

73

10.1. DEVELOPING ON SATOSHI Chapter 10. Overall Deployment

10.1 Developing on Satoshi

The Satoshi machine (and VM) is only accessible from within the Imperial College network;
yet for most of this project, we worked from outside of the network. This was facilitated using
multi-hop SSH tunnel and a SOCKS proxy within the web browser; all browser requests on
our local machine will then be forwarded using the SOCKS proxy through port 9999, then
through an SSH tunnel to the Department of Computing’s public facing shell server then
through another tunnel (now inside the college network) to the VM on Satoshi. This setup
can be seen in figure 10.2.

The commands used to set up this request routing were:

• On localhost: ssh -l login -L 9999:localhost:9996 shell1.doc.ic.ac.uk

• On DoC shell server: ssh -l login -D 9996 satoshi.doc.ic.ac.uk -p 2222

The end result was a development environment where we could navigate to localhost:8080
and localhost:7474 (for accessing Radar and the Neo4J UI respectively) in the browser on our
local machine and for all requests to be routed to the VM on Satoshi.

ssh -l {login} -D 9996 satoshi.doc.ic.ac.uk -p 2222ssh -l {login} -L 9999:localhost:9996 shell1.doc.ic.ac.uk
Shell1 Satoshi VM

(port 2222)

Imperial College Network
Us

localhost

Figure 10.2: Proxy setup for development on Satoshi from outside the Imperial network

74

Chapter 11

Evaluation

11.1 Meeting Investigators from Industry

In order to gain feedback from the target end-users of this tool, we arranged a meeting with
Mat Stanley, a Detective Sergeant of a London Metropolitan Police cryptocurrency investiga-
tion unit and, in order to also gain a private sector industry perspective, Iggy Azad who is a
senior investigator at Coinbase.

We arranged the meeting with the goal of obtaining qualitative feedback on Radar based on
their domain knowledge and experiences investigating cryptocurrency crime and learn how
they currently achieve this using existing tools. We used this opportunity to find out more
about the offerings of the proprietary software on the market that they have had experience
with, such as ChainAnalysis, in order to compare the strengths and shortcomings of existing
proprietary solutions.

11.1.1 Successes and Weaknesses

From the meeting with Mat and Iggy, where we demonstrated the current functionality of the
tool, we obtained qualitative feedback such that we were able to identify areas of success and
areas of weakness in the current implementation. These areas are summarised below:

• Weakness: The different types of nodes aren’t very clear (Implicit: We had to explain
what the different types of nodes represent).

• Success: The date and price filtering functionality is often very valuable to investigators.
This is often particularly useful when tracing funds through a mixing service [see mixing
services in background section 2.2.1].

• Success: Displaying the historical exchange rate is also very important to investigators;
this enables them to understand better the true value of the flow of funds, which may
be otherwise difficult without historical exchange rates due to the volatility in the value
of Bitcoin.

• Success & Weakness: The Path Finding feature is very useful in investigations, yet not
a feature provided by some of the software products they currently use. However, It
would be useful to be able to type the name of a wallet rather than a specific address
and the path finding functionality to be extended to support paths between any two
wallets or any wallet and specific address.

75

11.1. MEETING INVESTIGATORS FROM INDUSTRY Chapter 11. Evaluation

• Success: Clustering using the wallet information obtained in section 5 will prove
extremely useful; their ChainAnalysis software also provides this data.

• Success: The ability to toggle on/off clustering heuristics is very desirable and not
provided by several other solutions.

• Success & Weakness: Very common usage is to add additional information to compli-
ment an investigation, so being able to do so through the custom node feature is very
useful; however, adding information such as Photographic id is not usually required at
this stage of the investigation. The tool will be used in the run-up to issuing a warrant
to obtain identification from exchanges (who should have it due to KYC [see Know Your
Customer in background section 2.9). Additionally, it would be more intuitive to store
this data with a particular node, rather than existing as a separate node itself.

• Weakness: Secure data storage not addressed by current deployment: If storing investi-
gation specific data, a secure solution is needed such that only the user could access
it.

11.1.2 Desirable Features

Further to our conversation with Mat and Iggy, we were able to curate a list of features
that would be useful to someone wishing to investigate cryptocurrency using Radar. These
features are:

• Support for several cryptocurrencies. Namely: Ethereum, Litecoin, Bitcoin, Bitcoin Cash,
Dash

• Ability to save a graph state as an investigation and come back to it later

• Ability to export the data from an investigation, often in CSV format to provide evidence
for cases - needs to be digestible by a jury.

• Ability to set up notifications/watches for state changes on entities - e.g. an address/wal-
let receives or spends funds

• Automatically detect and alert when an address re-surfaces in a new investigation that
was seen in a previous investigation

• Ability to collapse nodes/remove nodes from the graph

• Offering a compliance/risk score with clustering information - is the data verified? Does
the data come from multiple independent sources?

• Enhance clustering of addresses by considering different types of addresses [see address
types in background section 2.1.2]

• Incorporate address tag information - they often have some significance, e.g. tags may
relate to a gamer tag which can be searched for in other datasets. Also, vanity addresses
often have significance, may include parts of their name which can be used to help link
addresses [see vanity addresses in background section 2.1.3]

76

Chapter 11. Evaluation 11.2. PERFORMANCE

11.1.3 Additional Data Sources

In addition to the additional features, Mat and Iggy also helped us identify additional resources
available that could potentially be used as data sources to feed functionality for the tool.
These data sources are:

• oxt.me: Useful for looking at multi-signature transactions

• bitcoinswhoswho.com: Check addresses against reported scams or see if the address
has associated tags

• Shapeshifter: Given a TXID, tells you where the coin went (which currency?). Also has
a free API.

11.2 Performance

In this section, we gather quantitative measurements on metrics such as query response
times in order to have measurements on the typical users’ experience when making various
requests.

11.2.1 Individual Cypher Query Profiling

In this section, we use the Cypher command PROFILE to profile queries in isolation for ran-
domly selected data (in isolation meaning the database is not currently handling any other
queries).

Through profiling, it became clear that Neo4J would cache recently executed query search
results, and therefore repeating the same query would have a significantly reduced response
time.

Selecting Random ids to Query

In order to prevent the Neo4J instance from caching request responses, potentially leading
to unrealistic results in our experiments, the database must not have seen the address in a
query before. Therefore, to retrieve the addresses to use in the profiled commands, we used
another instance of Neo4J on a local machine to collect the ids to use. This will better reflect
the performance of the queries that will be executed for the users’ address searches when a
cache hit will be highly unlikely. We executed the following query to retrieve the addresses to
use: MATCH(n: ADDRESS) RETURN n LIMIT 20 where 20 is how many ids we would like to
use for profiling.

Profiling Node Retrievals

We performed profiling for 20 randomly selected ids for several types of nodes. For example,
for profiling address nodes we used the Cypher query:

PROFILE MATCH(n: ADDRESS address:’address param’) RETURN n

77

11.2. PERFORMANCE Chapter 11. Evaluation

address response time
14KTLEerB7uWPYZ5KcsxrJZwhFUDVwX9ZN 22ms
14NHfjeRs7vPFVKkAhQg8hWbFr1cemtP1X 17ms
14NNcfY2eFjG5YCC2DmgZfjj8kYmfAvWNs 151ms

14NvmcsMQsMmmWkjYQz4XWKFYFZVvjtwg1 16ms
14PWoVZf2zLP7Xdbpxa98c3VpuhqLgiDEh 17ms

14QFGVvDKJZEBMagGyDctfvboG2bgboBAU 13ms
14QyWYad5GsTmDvcJZD3d2Pjf5FUT1NyMn 19ms
14SJo9Ym8A4vEBBkozrAv8boQHxtDKozSd 34ms

14U5EYTN54agAngQu92D9gESvHYfKw8EqA 13ms
14UV4bnpdNH1AnhJYHzgGRRJbS7Z6t4Zh9 21ms
14UjUdVChndAh8r2yvNbXXhptb2qmrbmG2 16ms
14UyXKWBcVHYcqSpxYcmR9JLZu6pArwDrd 13ms
14VzDyJrL5FBM3vuWd2ngCmwkQAetN2zqy 22ms
14ZT7wtrwjAVGGAB6E8tdHg63q1GaTdCSY 19ms
14ZZFUVoNyXPJrssTgNfmB7LrrpNeSotQx 55ms

14bj9QJfyUWTcw5BubEccohmWz5XLYGG9x 15ms
14bn4VMSpRtb7EDUwpX2rnqC8WSHoHNyMn 16ms

14bz2YUvxEWAhYk7EkVznU3pJC36Lq9967 19ms
14c26aYYJ4K9Wfeh9Uo5KZbkSREzYcjx9i 14ms

14c5uQYWBFPfwwRpmMud8GGj7tFAfC7fE5 16ms
average 26.4 ms

We performed the same profiling for each other type of entity that is retrieved as part of
the functionality for the site. These other entities are shown below along with their average
response times for 20 random ids of each type. Each individual query response time is omitted
for brevity.

Node Type Average response time
ADDRESS 26.4ms

TRANSACTION 20.8ms
OUTPUT 23.55ms
BLOCK 10.90ms
ENTITY 9.45ms

The query profiling results show simple lookups all lay in the range of 9-30ms, which feels
near instantaneous as a user waiting for a search result. There are slight differences notable
between response times for address, transaction and output lookups compared to block and
entity simply due to the differences in the size of the indexes that need to be searched;
obviously, the output index will be substantially larger than the block index as there will be
substantially more outputs than blocks.

Profiling Path Finding

We profile the underlying Cypher query used to implement the path finding feature. To do
this, we select two random addresses a1, a2, similar to the previous section, and execute the
query to find a path between a1 and a2. We select 10 pairs of random addresses and repeat
the profiling 10 times. The results of this process are shown below.

78

Chapter 11. Evaluation 11.2. PERFORMANCE

start address end address response time
(ms)

bc1qzzzc2q48adfzv8p-
zd5nnjhuqxml8pjm46a8rsq

bc1qzzxn3pykntgxnne-
8etmn4fuqt5hf3s2d5zwh0t

51737

bc1qzzzq52uf4uhyurd-
wpqn96tethg8mmr295twne7

bc1qzzxw0ugl2whm7q0-
2lnnnkvsjy0g78w8p4s7mse

470

bc1qzzyrfhgk9shmlrs-
wwvg64x4awjl3jq3nql3aq5

bc1qzzz96yje7jxkwkk-
4a8aed64m7dq7ek7wxmpsad

224649

bc1qzzyl9nfa20hwt26-
mrvm346tyv2sk72j8qdjvdk

bc1qzzzupj2n80wk7tu-
z662twmgdlppvlg25fqfpxy

100016

bc1qzzzr4xau2d88e35-
952t7zvpujvsnlxh23qdga7

bc1qzzz26k5gkplu8la-
jsg5kp0acyzpxkpp5ungcn0

44905

bc1qzzzlt8nd9f80a2u-
c005kavr9dctmuwjhk3fgh7

bc1qzzz4zvemglwlhue-
r56wq4nl2vrlmr7hslex23h

3045

bc1qzzyh94k2r5m4fdx-
pa4yjnt8j8swjtkr49zt3gp

bc1qzzzelhfgx6tydat-
00khrpmrr75d4ddf57zw0nk

1183

bc1qzzz72vr3lvz3967-
fanykm4f6890u5gkqspw2pu

bc1qzzxvqvtga8trt0r-
064sn5sam2p89uy2hmffzug

3291

bc1qzzxmgns300890vj-
tvk6rty2weker8ejaythytc

bc1qzzzlnqktq3gtqfa-
jet24828x839em2a6my0ttx

14924

bc1qzzygmd9klrqce6q-
j0pfx2vzk763z8stq457zv5

bc1qzzzagxs2f5dtk2u-
dx7q4zqc89n20hgzv5e0xw0

37134

average 48135.4 ms

As shown from the table above, the average response times reported when profiling path
finding queries are magnitudes greater than for individual nodes.

11.2.2 Performance Under Load

Below we evaluate the performance of requests sent to Loran created in section 7. If we were
to evaluate the performance of issuing requests individually and sequential, we would not
obtain a realistic representation of the expected performance in a production environment.
Therefore, we use Locust.io to simulate many users concurrently interacting with Radar and
invoking requests to the API. We also use Locust to measure statistics regarding latency and
counts of success/fail responses.

Using Locust, we define a set of tasks that a typical user may perform, with a time range
in which a user may perform them in. We then run experiments which launch a ’swarm’ of
simulated users performing these requests concurrently in order to observe how the system
performs under load; particularly inspecting failure rates and response times.

The tasks defined (which are translated to API calls) are:

• Search for a random address

• Search for a random output

• Search for a random transaction

• Search for a random block

79

11.2. PERFORMANCE Chapter 11. Evaluation

• Search for a path between two random addresses

These tasks invoke a call to the relevant API endpoint to retrieve the data. In order to avoid
the entities already being cached, the entities ids used to retrieve entities are randomly
sampled from a list of 1000 possible ids that have not been used in previous experiments and
are therefore highly unlikely to be cached.

Assumptions

When running the experiments, we make the assumption that each of the above tasks are
carried out at random by a user with a delay of 5-9 seconds (range randomly sampled) before
performing the next task.

10 Concurrent Users

Figure C.2 shows the requests per seconds (top graph) and the median (green) & 95th
percentile (yellow) response times (bottom graph).

Observations:

• Failure rate of 0%

• Request rate of around 1 RPS

• As shown in figure C.2 the 95th percentile measurement will occasionally spike

• Spike can be directly attributed to individual requests to the shortest path endpoint [see
fig C.1]

100 Concurrent Users

We attempted this experiment in order to observe how the system behaves under a signifi-
cantly larger load. The statistics dashboard for this experiment can be seen in C.3.

Observations:

• At approximately one minute, there was a period where no responses were received
(see the ’no data’ label in figure C.3)

• At this time, requests began to return errors of 500 series

• Investigation led us to discover the cause was due to the connection pool for the
database becoming full and the timeout for waiting for a connection to become free
had elapsed

• The connection pool became saturated due to several connections being consumed by
expensive path finding tasks

• The significant latencies of the path finding tasks (for those that did return) can be seen
in figure C.4, and can be seen towards the end of the timeline in figure C.3 where the
response time spikes to the 150,000 ms (150 s) range.

Clearly, invoking several concurrent path finding requests is problematic and will cause user
requests (including non-path finding requests) to fail.

80

Chapter 11. Evaluation 11.2. PERFORMANCE

10 Concurrent Users (without Path Finding)

In order to observe how all other requests would behave without the path finding feature, we
removed the path finding request from the users’ behaviour.

Observations:

• A 0% error rate

• There are still some spikes, that can be attributed to a few requests for Output entities
[see figure C.5 and C.6].

10 Concurrent Users (without Path Finding + with Node Limiting)

Clearly, fetching entities with an unbounded number of neighbours can cause issues, so we
introduced the node limiting query parameter which is used to implement the ’node limiting’
functionality as described in section 9.3.10.

Observations:

• 0% error rate as before

• Spikes now dampened due to node limiting

• Expected response rates for entire experiment [see fig C.7]

100 Concurrent Users (without Path Finding + with Node Limiting)

Observations:

• Now a 0% error rate due to the absence of path finding request

• Spikes dampened by node limiting [see fig C.8]

• Acceptable median response rates for the entire experiment

• Slightly higher 95th percentile response times compared with 10 users, due to greater
load

Conclusion

From these experiments, we learnt that under significant load, the path finding queries are
capable of causing a denial of service to other users of the system. Additionally, requests
that retrieve entities without an upper-bound on the number of neighbours to fetch, request
response times become less predictable. However, without path finding requests and with the
default node limiting option enabled, the system will be able to handle considerable loads
(up to 100 users) comfortably.

81

11.2. PERFORMANCE Chapter 11. Evaluation

11.2.3 Blockchain Import

As described in section 6, running Astrolabe to import the Bitcoin Blockchain up to block
570,000 took 5 hours, 32 minutes and 54 seconds, which was performed in a VM with the
specifications described earlier in section 3.1.

The alternative approaches to performing this task are discussed in section 2.8. These
tools have the following performance metrics:

• Bitcoin to Neo4J Tool: For block height 466,874, the GitHub page says it can take more
than 60 days. Performed on Thinkpad X220 (8GB Ram, 4x2.60GHz CPU) [26].

• TokenAnalyst Approach: Achieve the download and database population in one working
day (approx. 9 hours). They took 6 hours to fetch all bitcoin data using RPC, then
convert it to CSV format. TokenAnalyst explain how they had 32 cores at their disposal
and were able to perform the import in 1 hour 10 minutes [27].

• Blockchain2graph provides stress test information on their Github page, which achieves
48,000 blocks in 24 hours [29]. They do not describe the hardware for this benchmark
data; however, as some indication of the lower bound of hardware used, their ’old’ tests
ran on an Intel Atom with 4GB RAM and 1 TB of disk space.

Existing Solution Comparison

With such different hardware and block heights used for each of the above benchmarks, it
would not be useful to extrapolate the results above to the same block height in order to
compare metrics. We would also need to make approximate estimates on expected perfor-
mance improvements gained if equivalent hardware was used, adding further ambiguity to
the meaningfulness of a quantitative comparison. Rather, such comparisons need to be made
both qualitatively and pragmatically.

Some simpler comparisons can still be made. Clearly, the performance of our approach
far exceeds the implementation of the Bitcoin to Neo4J tool. The approach uses transactional
queries to add data to the database, which may explain the most significant performance
issues with this approach. Neo4J’s bulk import tool, used by our implementation, bypasses
the transnational layer and is designed to heavily utilise parallelisation across multiple cores
which vastly expediates this import process.

TokenAnalyst use the Neo4J import tool and can achieve a very impressive import time of 1
hour 10 minutes; this is faster than our import time, but TokenAnalyst have the advantage
of more powerful hardware with more cores, therefore allowing for greater parallelisation.
This indicates that hardware is the bottleneck for our database population time.

Due to the relatively recent publication of TokenAnalyst’s article describing their process,
we can assume their import process will be to a block height that was recent and therefore
similar to the block height of 570,000 we used for the bulk import process.

Since TokenAnalyst performed the job of populating a database with Bitcoin data in two core
steps, first downloading then importing, as we did, we can also compare our respective times
to download and write all Bitcoin transactions to CSV.

82

Chapter 11. Evaluation 11.3. PERFORMING A HISTORICAL INVESTIGATION

TokenAnalyst are able to achieve writing all Bitcoin data to CSV in 6 hours, compared
Astrolabe taking 12 hours [see section 3]. Again, greater physical resources will have given
them greater ability to parallelise the workload and achieve better performance. However,
one weakness of Astrolabe is the necessity to manually intervene between sub-jobs (i.e. be-
tween the download of blocks 100k-200k and 201k-300k etc). This was done to mitigate the
consequences of the overall job failing, however, this mitigation could be replicated in an
automated fashion in order to reduce idle time across the download period.

11.3 Performing a Historical Investigation

As described earlier in section 2.6.4, there are several well-known thefts of Bitcoin exchanges,
where vast sums of bitcoin were stolen. Using simple information available for these thefts,
such as the wallet name and the date, we show how Radar can be used to provide a better
understanding into the flow of bitcoin funds away from its rightful owner.

One example we use is the Linode Hacks which targeted Bitcoinica.com on the 1st March
2012. We used this wallet name (bitcoinica.com-old) as a starting point of the investigation,
only looking at transactions for the date 1st March 2012.

Initially, we searched for the wallet name with a date filter only. This rendered the view
shown in figure 11.1.
Obviously, the huge amount of information shown in figure 11.1 is not feasible to digest and
understand; therefore we navigated back to the search form to start refining the filters to help
better specify what we are looking for.

We first added price filters in order to show only the high-value transactions on 1st March;
we filtered transactions to only show outputs that were spent of value more than 1000BTC.

We then proceeded to inspect the outputs that were spent on 1st March that were of the
greatest value [see fig 11.2]. By doing so, and expanding out several other high-value outputs
spent on that day, we were able to identify transactions that spent a large amount of funds.
We considered these transactions as suspicious.

The suspicious transactions we identified through this process due to the size of the funds
they spent on this day were:

• 7b45c1742ca9f544cccd92d319ef8a5e19b7dcb8742990724c6a9c2f569ae732: This trans-
action in total spent 20,555.1 BTC - sending all 20,555 BTC to one address and 0.01
BTC to another. Using the neighbour expansion feature, we traced the bulk of the funds:

• 0268b7285b95444808753969099f7ae43fb4193d442e3e0deebb10e2bb1764d0

• a82ad85286c68f37a2feda1f5e8a4efa9db1e642b4ef53cb9fd86170169e5e68

• a57132e2cbc580ac262aa3f7bac1e441d6573f9633118bc48009618585a0967e

• 901dbcef30a541b8b55fae8f7ad9917ef0754bda5b643705f3773e590785c4d3

83

11.3. PERFORMING A HISTORICAL INVESTIGATION Chapter 11. Evaluation

Figure 11.1: A screenshot of the view when searching for entity Bitcoinica.com, filtered by date
on 1st March 2012 only

.

We were able to verify these transactions as suspicious by searching for information relating
to these transactions and discovering the post 1 announcing this hack and the suspicious
transactions identified at the time.

To attempt to simulate what an investigation may involve, we attempt to trace/understand
the flow and destination of funds taken in transaction
7b45c1742ca9f544cccd92d319ef8a5e19b7dcb8742990724c6a9c2f569ae732:

1. 20555BTC to 1DMuVKe9PKpx3dbs2b2MnXuVmLfA4drHif

2. 25000BTC to 128u4nNS2DCbPk61aNAXLUTsHZt5FAEtit

3. 24900BTC to 18E4d3JtQNyUBdxQ4y8ck6RUKXEb7W4KA7

4. 23900BTC to 1D56cDkVmoNGw7YmewL5boFwHyzEgDpygE

5. 23399BTC to 1LJn39nzrwqM8MkevfSDCa1uVZCgJSTMtq

6. 22399BTC to 13Fd5f8yFZCAAbtKQiNcWUmdbUNpVpznA6

1https://bitcointalk.to/index.php?topic=66979.0

84

Chapter 11. Evaluation 11.3. PERFORMING A HISTORICAL INVESTIGATION

7. 21899BTC to 1HZHp77ftbAEy4PQc8wuAahvPnpZHKMfmc

8. 16899BTC to 1Czhv7mDRNPMrzU9Ja7QkYSAvforGKQ2mv

(a) 5000BTC to 1Q3bsvTBcWF32Bt8FZgKAx7s43crvN9RVi

9. 16900BTC to 1Q3bsvTBcWF32Bt8FZgKAx7s43crvN9RVi

10. 17000BTC to 1BKF8kXHsNdQk6f5FognK4ZJCCBifE8ugm

11. 15476BTC to 1MXe7zFRHx9KMwGKAGi2GvTbsHFDgVjcEw

12. 12544BTC to 15GPUomoHVJbBsgY6eWdsKKaV3dywL5poj

13. 12044BTC to 12F1GhUbVJvNW6ki1fRG1ZgeTkm2FixLLi

The main stream of funds make its way to 18ywk3t8XFtkEqMJt8hPG14D3gzTshB4YW where
funds are now not spent until 4th August 2012. This seems to be the beginning of another
chain, spending sums of 100-1000 BTC (usually repeated integer values such as 100, 200,
500 etc) in each transaction, each transaction having only two outputs until the main large
funds reduce down to just over 1000 BTC with transaction
fbab826df674b1e2ae3bedfc566f2692b8940ac1058605fe549753b34ebd8f0d. This seems to
be the end of the peeling chain, as transactions now show characteristics more common to
normal spending; outputs are spent gradually, rather than many in a very short period. Also,
transactions have several inputs, rater than one or two and outputs are of non-integer, more
random looking amouts.
The tool has clearly helped us identify the signature of a peeling chain; a visual representation
of the peeling chain (showing the main addresses and flow of funds) can be seen in figure
11.3; the nodes of the same colour are addresses that were clustered into a supernode using
the ’same-input’ heuristic. This shows that many of the funds from the chain end up in a
cluster controlled by the same user; therefore making the obscuring efforts of the peeling
chain more transparent.

85

11.3. PERFORMING A HISTORICAL INVESTIGATION Chapter 11. Evaluation

Figure 11.2: A screenshot of the view when searching for entity Bitcoinica.com, filtered by date
on 1st March 2012 (note: filtered by the date outputs are spent) and by price, showing outputs
spent with value > 1000BTC. Showing specifically the transaction spending the highest value
outputs

.

86

Chapter 11. Evaluation 11.3. PERFORMING A HISTORICAL INVESTIGATION

1DMuV...1DMuV... 128u4...25000

100

18E4d...24900

1Q3bs...

1000

1D56c...23900 1LJn3...23399 13Fd5...22399 1HZHp21899

1Q3bs...

Same cluster

5000

1Czhv...16899 1Q3bs...16900 1BKF8...
17000

1MXe7...

15476

15GPU...

12544

12F1G... 12044

Same cluster

14Qr3...

Same Cluster

9264
Same Cluster

1Hpop...

Bitcoinica.com

wallet

20555

Figure 11.3: A visual representation of the peeling chain discovered using Radar while investigat-
ing the 1st March 2012 Bitcoinica.com theft

.

87

11.4. PATH FINDING CORRECTNESS Chapter 11. Evaluation

11.3.1 Areas identified for improvement

While performing the investigation using the tool, there were several features we imagined
would have been useful in assisting us with the investigation, but are not currently provided
by the tool. These features are:

• Better distinction between incoming and outgoing funds (different colour links?), and
potentially the ability to hide/show either incoming or outgoing only.

• Caching search parameters: Many times we would view the result of a search and need
to tweak with the filtering parameters, however, the original search data is not cached
and needed to be re-entered which was time-consuming.

• Could introduce functionality to automatically identify peeling chains and organise the
layout to show the main flows, in a similar way to how the diagram is organised in
figure 11.3.

11.4 Path Finding Correctness

To ensure the correctness of the path finding feature, we take Bitcoin addresses that we know
have sent funds between eachother as test cases and check that Radar returns a valid shortest
path between the two addresses. Assuming Radar returns a path between the two addresses
a1 and a2 of length n then we can validate that this is in-fact the shortest path by inspecting
all other nodes os reachable from a1 and a2 of length n− 1. If starting from a1 and we find
a2 in os then we have found a shorter path and the path of length n was not the shortest.
Given that n is the shortest path, we then additionally validate that a2 is reachable from a1 in
a path of length n.

One example test used the address 1HB5XMLmzFVj8ALj6mfBsbifRoD4miY36v and
3AnGAuh5BJ9sJ7TgkZ11XJDPGbaQGs4haM as the start and end nodes. This returned the result
shown in figure 11.4. Repeated validation using this technique led us to be confident that the
path finder feature is in-fact correct.

88

Chapter 11. Evaluation 11.5. CLUSTERING CORRECTNESS

Figure 11.4: A screenshot of Radar showing the result of a path finder query between addresses
1HB5XMLmzFVj8ALj6mfBsbifRoD4miY36v and 3AnGAuh5BJ9sJ7TgkZ11XJDPGbaQGs4haM.

11.5 Clustering Correctness

We can verify the correctness of multi-input clustering by searching for a transaction known
to have several inputs locked to distinct addresses. For example, we were able to verify the
correctness of clustering with immediate neighbours using address
17jkFTQuYaGssazzqZ6CTHgRVQYRgLmf34. This address inputs transaction
8897e...2, and also has inputs from 9 other distinct addresses. The clustering algorithm then
produces a cluster of 10 addresses that are considered to be controlled by the same user.

We now verify the transitive clustering behaviour of the algorithm. To achieve this, we
mutated a local Neo4J database containing a subset of the Bitcoin Blockchain (only blocks
0-2000).

We manually located an instance of addresses that can be clustered transitively using this
heurisitc. The visual representation of the connections existing between two transitively
linked addresses can be seen in figure 11.5. The 3 addresses in this screenshot (in green)
are 15oUEZFKAC8E8BTLt1s1jx4fPxumwB3ecr, 17iqXQcGfjjHSsJK993mu75sPBnLFSEp8F and
1Js6Nx1822qSjETsnp2kkhQFwmRNRWxgak. They are linked through two transactions (in blue)

28897ea9ceaf18a546cdc513b9179bae31a462ee5bf47818eb7ba909082d11777

89

11.6. MISSED OBJECTIVES Chapter 11. Evaluation

04dc7...3 and c7a4b...4.

We were able to verify that executing the clustering algorithm included all 3 of these addresses
in the result, and became confident of the correct transitive behaviour of the implementation
of the clustering algorithm.

Figure 11.5: A screenshot of the Neo4J UI : Visual representation of addresses that are clustered
transitively.

11.6 Missed Objectives

An objective of this project that we, unfortunately, did not have time to complete was applying
the same change address clustering in section 8. This was due to the clustering algorithm not
completing in the time allotted for this project. Although the feature was not complete, the
outline of the algorithm required for implementing this feature can be found in future work
section 12.2.6.

11.7 Comparisons with existing tools

As described in the background section 2.7, there currently exist some tools, both free and
proprietary, that could be used to help carry out a digital forensic investigation. In this section,
we compare the free solutions to Radar, both qualitatively and quantitatively.

11.7.1 Wallet Explorer

Given the example above, where we would like to investigate a theft that occurred from
Bitcoinica.com, we would need to take the following steps on the Wallet Explorer site:

304dc7226529763e8c15d58171d1ac1e28cb6b8d3165005765e65757c7b219d2d
4c7a4bb767027a4382462c32b6a824a53e2715d833c0d86e9676a4fbddedca0a9

90

Chapter 11. Evaluation 11.7. COMPARISONS WITH EXISTING TOOLS

• Navigate to walletexplorer.com one click

• Click bitcoinica.com old one click

• Scan the transactions date table for a date matching 1st March 2012 (the theft date):
this required using the table pagination controls until transactions for March 1st 2012
shows : one click

• We now search for the large transaction values and see a outgoing transaction of 20,555
BTC and inspect that transaction one click. TXID is
7b45c1742ca9f544cccd92d319ef8a5e19b7dcb8742990724c6a9c2f569ae732

• We see the output address of transaction is 1DMuVKe9PKpx3dbs2b2MnXuVmLfA4drHif

one click

• Can click on ’next tx’ to follow the flow of funds: pays the funds to address
128u4nNS2DCbPk61aNAXLUTsHZt5FAEtit

• Can follow the peeling chain in same manner as before with one click on ’next tx’ - n
clicks for n steps of the peeling chain

In comparison, the steps taken to obtain similar data using Radar developed in this project
are:

• Navigate to Radar: one click

• One click to initiate the search for the Bitcoinica.com wallet with all date and price
filter applies such that only nodes for 1st March are shown and only transactions of
high BTC value are shown

• Can instantly identify the high value transaction
7b45c1742ca9f544cccd92d319ef8a5e19b7dcb8742990724c6a9c2f569ae732 so can trace
the funds from that output by double-clicking and seeing the address
128u4nNS2DCbPk61aNAXLUTsHZt5FAEtit : one click

• Can now follow the peeling chain for one click for each step n clicks for n steps of the
peeling chain

We use a quantitative measure of the ’number of user clicks’ to measure the number of steps
that need to be taken to follow a peeling chain after a theft for a given wallet.

Using Wallet Explorer, we find we require 5 + n clicks whereas using Radar, just 3 +
n clicks when following n steps of a peeling chain from the same theft.

Qualitatively, Radar made following the peeling chain far easier as you are given the option
to see where funds peel off to from any stage - using Wallet Explorer, you can only see one
step of the peeling chain at any one time; Radar shows the entire path and overall paints a
better picture of the flow of funds.

Additionally, a factor not considered in the above click metric is if the user wanted to
know what the value of each stage was in its respective fiat currency. Radar integrates the
converted values into the UI; using Wallet Explorer, we would have to add several more clicks
to measure the steps required to convert the transaction values to a fiat currency.

91

11.7. COMPARISONS WITH EXISTING TOOLS Chapter 11. Evaluation

11.7.2 Blockchain Explorer

We compare the functionality of Radar to that provided by Blockchain Explorer [see 2.7.1];
we do not use the clicks metric as before due to variations in the functionality provided by
each tool. Therefore, we carry out a qualitative comparison.

Blockchain Explorer does not provide the functionality to search by an entity name such
as Bitcoinica.com; therefore, we would struggle to identify the transactions related to a theft
from this entity.

Skipping the step of identifying suspicious transactions and presuming we had a partic-
ular transaction of interest, such as 7b45c...5. From this point, we have similar functionality
as provided by Wallet Explorer and can follow links to see each transaction in isolation and
trace the peeling chain, but with the same drawbacks, in comparison to Radar, that it does
not show the whole path.

A feature that Blockchain Explorer does provide is a conversion into USD; however, this
is not a historical conversion, this is a conversion according to the current exchange rate. For
instance, when viewing the above transaction on the site on 12th June 2019, we see it shows
the 20,555 BTC output sent to address DMuVKe9PKpx3dbs2b2MnXuVmLfA4drHif has a value
in USD of $164,885,221.3. However, when this theft occurred, bitcoin had a value that was
magnitudes lower than its value today, therefore this conversion on Blockchain Explorer may
not be very useful to understanding the value of transactions that occurred during the 2012
theft.

11.7.3 Blockpath

We compare the functionality offered by Blockpath [see 2.7.4] to Radar. Again, we do not use
the clicks metric as before due to large variations in the functionality offered. Therefore, we
carry out a qualitative comparison only,

Similar to Blockchain Explorer, Blockpath provides the ability to search for particular transac-
tions and addresses, but not the ability to find all activity for an entity such as Bitcoinica.com,
so it would be difficult to use this tool to identify a suspicious address.

A distinguishing feature Blockpath provides that the other tools do not is a graphical in-
terface. Using a given suspicious transaction id 7b45c..., we attempt to follow the peeling
chain using the graphical interface. Similar to Radar, funds can be followed by double clicking
on nodes which will expand the next step in the flow of funds.

A feature of Blockpath’s graph visualisation which we believe is very useful is the time-
line on the left-hand side [see fig 11.7], and organisation of nodes vertically based on their
timestamps. The organisation of nodes in Blockpath’s graph visualisation is, therefore, more
meaningful than in Radar, where the arrangement is random.

However, Blockpath does not provide the option to filter such that only transactions for
a particular date or value are shown; this, therefore, leads to bloat of the graph which could
make tracing the flow of funds more difficult [see figure 11.6].

57b45c1742ca9f544cccd92d319ef8a5e19b7dcb8742990724c6a9c2f569ae732

92

Chapter 11. Evaluation 11.7. COMPARISONS WITH EXISTING TOOLS

Figure 11.6: A screenshot of the Blockpath graphical interface feature.

Figure 11.7: A screenshot of the Blockpath graphical interface feature, also showing timeline.

93

11.8. RISKS Chapter 11. Evaluation

11.8 Risks

The greatest element of risk was posed by the import task conducted in section 6; having a
functioning graph database populated with historical Bitcoin data was the foundation upon
which all other contributions in this project were based on. It was therefore crucial that this
deliverable of the project was successful at an early stage.

Another significant element of risk is the overhead of interacting with data in such a vast
dataset; without careful consideration of query performance and latencies, much of the
functionality would become unusable. Queries could take an infeasible length of term to
produce a result or fail completely due to memory limits being exceeding while building a
response (such as when finding path that references a huge number of neighbouring nodes).

11.9 Summary

Here we summarise our findings from the evaluation to discuss some of the more significant
weaknesses and strengths of this project.

11.9.1 Weaknesses

A significant weakness of this project is that the Bitcoin data accessible through Radar is
historical only; we did not have time to implement a mechanism for automatically keeping
the database up to date with new Bitcoin data. How this would be done is suggested in the
Future Work section 12.2.1. This is a significant limitation as the more recent investigations
cannot be automatically investigated using Radar if they occur beyond block height 570k (3rd
April 2019); a possible solution here, for the current implementation, is to use Astrolabe to
download blocks 570k+ and the process from section 6 to re-populate the database including
the new blocks. However, this would require manual intervention and therefore a higher
maintenance effort of this product.

Another weakness is that the entity to address associations collected by Quadrant in section
5 were only retrieved from a single source, walletexplorer.com; ideally, we would prefer not
to be dependent on walletexplorer.com for this data, as it exposes us to inaccuracies in their
dataset or risk of losing our entity tagging data source entirely if walletexplorer.com becomes
unavailable or stops serving the data.

As shown in section 11.2.2, requests made using the path finding feature massively in-
creases overall request latencies for other users and can even lead to DoS for other users; this
is a weakness of the current implementation, and can be addressed with a solution proposed
in 12.2.2.

11.9.2 Strengths

Searching for an address with the ability of applying date and price filters works very well
and is effective; feedback from industry investigators and our own test investigation [from
section 11.3] assures us of the effectiveness of these features.

Loran performs well under load, showing it can handle 100 concurrent users well in section

94

Chapter 11. Evaluation 11.9. SUMMARY

11.2.2 (when omitting path finding requests).

The overall investigation tool Radar provides more comprehensive features for conduct-
ing an investigation than existing tools Wallet Explorer, Blockchain Explorer or Blockpath [see
section 11.7].

95

Chapter 12

Conclusion

12.1 Reflection

The purpose and demand for a tool for digital forensic investigations is very apparent; whether
it be used for criminal investigations by bodies such as the Metropolitan Police or meeting
compliance requirements at exchanges such as Coinbase.

With appropriate hardware (several powerful cores, plenty of memory and several TB of SSD
storage), we have shown the task of importing Bitcoins Blockchain into a graph database is
very feasible and can be achieved in a very reasonable amount of time, especially if using
Neo4J’s batch import tool. We have also shown, through our load testing and query profiling
evaluation, a graph database is an appropriate storage solution for a dataset the size of
Bitcoin’s.

We have discovered, in this project, the continuous investment that providing accurate
clustering information requires; whether it be actively curating a list of addresses known
to be under control of a particular exchange, or by hardening clustering algorithms such
as change-address by using new Bitcoin data to influence previous clustering decisions and
achieve a better true-positive clustering rate.

We found through our several approaches of providing clustering information that address
clustering information should be stored with the Blockchain data itself rather than attempting
to perform clustering on demand; clustering on-demand can lead to dramatic variations in
request response times based on the size of a cluster.

We have shown the effectiveness of a tool, such as Radar which provides graphical Blockchain
visualisation with granular filtering controls, in enabling suspicious transactions to be easily
identified; we further have shown the application of the same-input clustering heuristic in
helping with the identification of peeling chain structures.

12.1.1 Future of Crypto-Currency Law Enforcement

The uptake of crypto-currencies with even stronger privacy-preserving features is a cause
for concern for law enforcement; cryptocurrencies such as Monero [see 2.10.4] render
many current cryptocurrency investigation techniques unsuitable. Mat stated this is an issue,
however, due to Monero’s relative difficulty of use, a very low proportion of criminals are

96

Chapter 12. Conclusion 12.2. FUTURE WORK

thought to be using it, in comparison to Bitcoin usage. There is additionally hurdles in the
way of users wishing to buy and sell Monero; Mat referred to an example where, in Japan,
exchanges will have their license remove if they accept Monero.

12.1.2 Working with Data at Scale

Data engineering on a vast scale was one of the most significant experiences and lessons
taken from this project. At almost every stage in this project, it was essential to consider the
algorithmic complexity of our implementation, in addition to considering how data is going
to be stored when we can no longer assume datasets can fit in memory. Careful consideration
of data storage solutions was required, and therefore consideration of the access latencies
each will provide for particular queries (e.g. simple key, value lookups could be satisfied by
MongoDB with an index, but traversing the many relationships or path finding would be
better suited to a graph database).

Throughout the project, we took a different approach to implementation to account for
the scale of the dataset. Examples of this include:

• Using Trie data structure for address to entity matching in section 5.3

• Creating index’s in Neo4j and MongoDB to enable fast retrieval of data in section 6.4
and 8.5 respectively

• Paginating data requesting/reading, such as when paginating requests to Neo4J in
attempts at identifying and writing clustering relationships using Spring Data or reading
huge CSV files in later clustering attempts in section 8.

Even with careful planning and anticipation regarding the size of the dataset, some implemen-
tations didn’t work out (running into several OutOfMemory exceptions and stack-overflows on
the way), and an alternative approach was required; the several attempted implementations
clustering is an example of this.

Working with data of this scale also frequently required consideration of how to best paral-
lelise work in order to utilise the hardware at our disposal fully. Leveraging all CPU cores
by parallelising tasks greatly expedited the time taken for tasks to complete. An example
includes the parallelised asynchronous approach to downloading bitcoin data by issuing many
concurrent requests to the RPC endpoint in section 3, using many Amazon EC2 instances to
concurrently scrape the walletexplorer.com website for entity tagging data or forking several
processes to distribute the workload of identifying addresses to cluster in section 8.5.

12.2 Future Work

Through our own vision of the end product of this tool, our discussions with the Metropolitan
Police and Coinbase and through process of evaluating Radar’s performance and ability to
investigate historical thefts, we have curated a series of improvements and future directions
to take this project with the end goal of building a tool for professional use.

12.2.1 Infrastructure for Keeping Database up to Date

One of the highest priority features for extending this project will be to implement the
infrastructure required for keeping the Neo4J database up to date with the latest Bitcoin data.

97

12.2. FUTURE WORK Chapter 12. Conclusion

This will additionally include extending work in section 5 and 4 to collect the latest wallet
clustering information and exchange rate information for the new Bitcoin data. This has the
goal of having a Neo4J database that reflects the current state of the Bitcoin Blockchain and
will keep up to date autonomously, requiring no maintenance or physical intervention to do
so.

12.2.2 Path Finding User Experience

As shown in the evaluation [see 11.2.2], several concurrent path finding requests may lead
to denial of service for several users. Additionally shown in the evaluation when profiling
a single path finding request, section 11.2.1, the performance and user experience still has
much to be desired.

We believe a solution to improving the user experience when using the path finding feature
could be to transform the feature from an interactive function to an asynchronous one. Path
finding across such a huge data-set is a very resource intensive operation; solutions could
include further investment in hardware, such as purchasing more physical hardware or dele-
gating path finding to a container-based cloud solution. However, without this investment,
there is little that can be done to reduce the demand on resources that path finding requires.
Therefore, an alternative solution could be to change path finding into a background job that
takes lower precedence to the other interactive tasks such as searching for an address.

Providing asynchronous functionality would consist of enabling the user to submit a query
and returning the result to the user at a later date, in a non-interactive way; possibly through
a unique link sent via email. The unique link, when followed, will then render the graphical
result of their path finding query. In this way, the user does not become frustrated waiting
for long path finding queries to complete, and other users are impacted less by other users
submitting expensive queries.

12.2.3 Incorporate Information from more Sources

Meeting with the Metropolitan Police and Coinbase led me to discover several new tools
and data sources that they often use in their investigations; some provide free API’s that
could be used to integrate into this project and provide more features in the investigation
view. For example, ShapeShifter could be used to flag transactions which exchange bitcoin for
another currency; possibly providing a feature that allows funds to be tracked across several
crypto-currencies. This would be most useful if Radar provided support for several more
cryptocurrencies in addition to Bitcoin. Additionally, bitcoinswhoswhos.com can be used to
flag addresses that have been reported as being involved in scams or have tags associated
with them.

Integrating this data into the investigation tool will help make this potentially useful data
more accessible to an investigator, reducing the number of steps the user will need to take to
retrieve it themselves.

Furthermore, as discussed in the evaluation, the entity to address associations are made based
on data from a single source (walletexplorer.com). An improvement would be to retrieve
this data from several sources in order to augment the existing entity to address mapping
dataset, in addition to confirming additional mappings. Confirming mappings from multi-

98

Chapter 12. Conclusion 12.2. FUTURE WORK

ple data sources could provide information to build a ’clustering confidence’ rating, which
could provide a risk/compliance score for how likely an address genuinely belongs to a cluster.

Address tag data could also be sourced ourselves, by taking a Similar approach to Meik-
lejohn et al. [18], where addresses are associated with services and exchanges by interacting
with the services and exchanges. Obviously, this approach will not be free of cost since real
transactions will need to be made, so it is potentially not feasible to do on a rolling basis.

12.2.4 Saving Investigations

Radar currently provides no functionality to save or store the state of the investigation view.
When performing an investigation, it would rarely be an instantaneous process; an investiga-
tion would often span over a period of time such as several days or weeks. This assumption
was confirmed through our discussions with the Metropolitan Police. Therefore, an important
feature would facilitate the user to initiate several investigations and save their current state
for re-visiting at a later date.

This functionality also highlights the importance of the deployment plan if this tool were to be
used in a professional environment; it would be necessary to consider how investigation data
is stored securely such that it cannot be accessed by unauthorised users or the owners of the
product (us). This would potentially require an on-site hardware deployment for on-site (the
user’s location) data storage, or security guarantees regarding the isolation and accessibility
of information if stored off-site (our location/cloud provider).

Further functionality related to investigation state, which was highlighted by the Mat Stanley
as a useful feature, would be to identify when an address re-appears in an investigation that
has appeared in previous investigations by that user/group of users.

12.2.5 Exporting Investigation Data

Data from an investigation conducted using Radar may be required as evidence, such as
to present to a jury in court. Therefore, the data must be exportable as a standardised
format, such as CSV. It would additionally be useful to be able to share an investigation with
colleagues; a useful feature would be the facility to send a unique link to another user who
generates the same investigation view.

12.2.6 Change Address Clustering Heuristic

The first useful clustering heuristic to add to Radar will be the change-address heuristic as
described in section 2.3.2 with infrastructure in place to continuously cluster new incoming
bitcoin data and improve existing clustering on historical data (i.e. remove addresses pre-
viously considered change-addresses if they are used again as outputs of new transactions).
Algorithm:

• for each transaction tx on the blockchain:

– get outputs outs of tx

– get inputs ins of tx

– initialise valid change coutner = 0

99

12.2. FUTURE WORK Chapter 12. Conclusion

– continue if length of outputs < 2

– for each output out of outs:

∗ fetch address a output is locked to
∗ check a has no other outputs locked to it (robustness: change address has one

input), continue otherwise
∗ check out is not in ins (robustness: not self-change), continue otherwise
∗ out is a valid change output, increment valid change counter, remember a as
validChangeAddress

– iff valid change counter == 1, return validChangeAddress as a valid change
address

• If there was a valid change address validChangeAddress, then create new relationship
between addresses which input the transaciton and the change address

12.2.7 More Clustering Heuristics

Additional heuristics to incorporate into Radar could include behaviour based analysis, as
described in section 2.3.5 or consumer heuristic and optimal change heuristic as discussed in
section 2.3.3 and 2.3.4 respectively. For every clustering heuristic that id added, it should be
configurable by the user (i.e ability to turn any combination of clustering heuristics on/off) as
each may provide the user with different information.

Another method of grouping/tagging distinct addresses could be by the address type. As
discussed in section 2.1.2 there are different types of Bitcoin addresses, such as Pay-to-PubKey-
Hash (P2PKH) addresses or Pay-to-Script-Hash (P2SH) addresses. It may be useful to make
a visual distinction between these types of addresses as they could potentially represent a
different role in an organisation; for instance, a P2SH address used in a multi-signature
transaction may be useful in understanding what the purpose of the transaction is, compared
to if it was a P2PKH address.

12.2.8 Set up Watches for Nodes

Rather than periodically checking if a particular address has spent its outputs, it would be far
more useful and efficient for the investigator to be able to set up a notification whenever some
particular state regarding that address changes. This idea could be extended to entire wallets,
such as watching transactions exceeded a certain value being spent by the ’Mt.Gox’ wallet.
Additionally, it could perhaps be possible to create watches for structural/usage patterns
occurring across the Blockchain. For example, ’watch for this address being involved in a
peeling chain’.

12.2.9 UI Improvements

Some smaller improvements/feature additions to the UI that can improve existing functional-
ity

• Add a UI feature that acts as a legend for the different types of nodes

• Extend path finding tool to also accept entity names in addition to addresses

• Ability to collapse nodes relationships and remove nodes entirely

100

Chapter 12. Conclusion 12.2. FUTURE WORK

• Auto-populate search form fields with previous search data

• Improvements to price & date filtering by allowing ’greater than date/value’ or ’less
than date/value’ rather than requiring a range be provided

• Improve the organisation of nodes: more intelligent layout of nodes based on their type,
the direction of flow of funds, the volume of the funds etc.

12.2.10 Several Crypto-Currencies

Several of the existing digital forensic tools [see 2.7] support several additional crypto-
currencies to Bitcoin, including Ethereum, Litecoin, Bitcoin Cash and Dash. Providing support
for these currencies would be a natural extension of this project; however, it will be no small
task. Infrastructure will be required to perform a bulk import of all of the currencies respective
blockchains and infrastructure able to keep all blockchains up to date with the most recent
data. In addition, the various clustering heuristics will likely differ per Blockchain, so could
need re-implementation or different heuristics provided all-together for each distinct chain.

A potential constraint here could be hardware; the download of several blockchains will
require a very sizeable amount of SSD (for reasonable access latency) which may require
considerable financial investment.

101

Bibliography

[1] Sean Foley, Jonathan R. Karlsen, and Tlis J. Putni. Sex, drugs, and bitcoin: How much
illegal activity is financed through cryptocurrencies? The Review of Financial Studies, 32
(5):1798–1853, 2019. pages i, 2

[2] Fergal Reid and Martin Harrigan. pages 197–223. Security and privacy in social
networks. Springer, 2013. pages 1

[3] Cambridge Judge Business School. Distribution of leading cryptocurrencies from 2015
to 2018, by market capitalization, March 2019. URL https://www.statista.com/

statistics/730782/cryptocurrencies-market-capitalization/. Date Accessed:
June 10, 2019. pages 1

[4] Omkar Godbole. Bitcoin price primed to test 20k usd ahead of
cme launch, December 17 2017. URL https://www.coindesk.com/

sell-news-bitcoin-price-tests-20k-ahead-cmes-futures-launch. Date Ac-
cessed: June 8, 2019. pages 2

[5] Rainer Bhme, Nicolas Christin, Benjamin Edelman, and Tyler Moore. Bitcoin: Economics,
technology, and governance. Journal of Economic Perspectives, 29(2):213–238, 2015.
pages 2

[6] Adam Jezard. How bad is bitcoin crime?, April 8 2018. URL https://www.

worldgovernmentsummit.org/observer/articles/how-bad-is-bitcoin-crime.
Date Accessed: June 8, 2019. pages 2

[7] Hiroki Kuzuno and Christian Karam. Blockchain explorer: An analytical process and in-
vestigation environment for bitcoin. pages 9–16. IEEE, Apr 2017. doi: 10.1109/ECRIME.
2017.7945049. URL https://ieeexplore.ieee.org/document/7945049. pages 2

[8] Blockchain.com. Total number of transactions. URL https://www.blockchain.com/

charts/n-transactions-total. Date Accessed: June 8, 2019. pages 3

[9] Andreas Antonopoulos. Mastering Bitcoin, 2nd Edition. O’Reilly Media, Inc, 2 edition, Jun
21, 2017. ISBN 9781491954386. URL http://proquestcombo.safaribooksonline.

com/9781491954379. pages 4, 5, 7, 8, 9, 10

[10] Blockchain.com. Hash rate, January 2019. URL https://www.blockchain.com/

charts/hash-rate?timespan=all. Date Accessed: 13 January, 2019. pages 7

[11] Blockchain.com. Blockchain difficulty, January 2019. URL https://www.blockchain.

com/charts/difficulty. Date Accessed: 13 January, 2019. pages 7

102

https://www.statista.com/statistics/730782/cryptocurrencies-market-capitalization/
https://www.statista.com/statistics/730782/cryptocurrencies-market-capitalization/
https://www.coindesk.com/sell-news-bitcoin-price-tests-20k-ahead-cmes-futures-launch
https://www.coindesk.com/sell-news-bitcoin-price-tests-20k-ahead-cmes-futures-launch
https://www.worldgovernmentsummit.org/observer/articles/how-bad-is-bitcoin-crime
https://www.worldgovernmentsummit.org/observer/articles/how-bad-is-bitcoin-crime
https://ieeexplore.ieee.org/document/7945049
https://www.blockchain.com/charts/n-transactions-total
https://www.blockchain.com/charts/n-transactions-total
http://proquestcombo.safaribooksonline.com/9781491954379
http://proquestcombo.safaribooksonline.com/9781491954379
https://www.blockchain.com/charts/hash-rate?timespan=all
https://www.blockchain.com/charts/hash-rate?timespan=all
https://www.blockchain.com/charts/difficulty
https://www.blockchain.com/charts/difficulty

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL http:

//www.bitcoin.org/bitcoin.pdf. pages 8

[13] Malte Moser. Anonymity of bitcoin transactions an analysis of mixing services. 2013.
pages 10

[14] M. Moser, R. Bhme, and D. Breuker. An inquiry into money laundering tools in the
bitcoin ecosystem. In 2013 APWG eCrime Researchers Summit, pages 1–14, Sep. 2013.
doi: 10.1109/eCRS.2013.6805780. pages 10

[15] Thibault de Balthasar and Julio Hernandez-Castro. An analysis of bitcoin laundry
services. 09 2017. doi: 10.1007/978-3-319-70290-2 18. pages 11

[16] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion
routing. IEEE Journal on Selected Areas in Communications, 16(4):482–494, May 1998.
doi: 10.1109/49.668972. pages 12

[17] Elli Androulaki, Ghassan O. Karame, Marc Roeschlin, Tobias Scherer, and Srdjan Cap-
kun. Evaluating user privacy in bitcoin. In Financial Cryptography and Data Secu-
rity, pages 34–51. Springer, 2013. URL http://book.itep.ru/depository/bitcoin/

User_privacy_in_bitcoin.pdf. pages 12

[18] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy,
Geoffrey M Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments
among men with no names. In Proceedings of the 2013 conference on Internet measure-
ment conference, pages 127–140. ACM, 2013. pages 13, 14, 15, 45, 99

[19] Jonas David Nick. Data-driven de-anonymization inbitcoin. Technical report, ETH
Zurich, August 9, 2015. pages 13, 14

[20] John V. Monaco. Identifying bitcoin users by transaction behavior. volume 9457,
page 15, 2015. URL https://doi.org/10.1117/12.2177039. pages 14

[21] D. Ermilov, M. Panov, and Y. Yanovich. Automatic bitcoin address clustering. In 2017
16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages
461–466, Dec 2017. doi: 10.1109/ICMLA.2017.0-118. pages 14

[22] Bitcoin virtual currency: Intelligence unique features present distinct challenges for
deterring illicit activity. Technical report, 24 April 2012. pages 15

[23] Nicolas Christin. Traveling the silk road: A measurement analysis of a large anonymous
online marketplace. In Proceedings of the 22nd World Wide Web Conference (WWW’13),
pages 213–224, Rio de Janeiro, Brazil, May 2013. URL https://www.andrew.cmu.edu/

user/nicolasc/publications/Christin-WWW13.pdf. pages 15, 16

[24] U.S. Attorney’s Office. Operator of silk road 2.0 website charged in manhat-
tan federal court, November 6 2014. URL https://www.fbi.gov/contact-us/

field-offices/newyork/news/press-releases/operator-of-silk-road-2.

0-website-charged-in-manhattan-federal-court. Date Accessed: January
25, 2019. pages 16

[25] Tom Schoenberg and Matt Robinson. Bitcoin atms are flying under the reg-
ulatory radar, 14 December 2018. URL https://www.bloomberg.com/feature/

2018-bitcoin-atm-money-laundering/. Date Accessed: January 25, 2019. pages 16

103

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://book.itep.ru/depository/bitcoin/User_privacy_in_bitcoin.pdf
http://book.itep.ru/depository/bitcoin/User_privacy_in_bitcoin.pdf
https://doi.org/10.1117/12.2177039
https://www.andrew.cmu.edu/user/nicolasc/publications/Christin-WWW13.pdf
https://www.andrew.cmu.edu/user/nicolasc/publications/Christin-WWW13.pdf
https://www.fbi.gov/contact-us/field-offices/newyork/news/press-releases/operator-of-silk-road-2.0-website-charged-in-manhattan-federal-court
https://www.fbi.gov/contact-us/field-offices/newyork/news/press-releases/operator-of-silk-road-2.0-website-charged-in-manhattan-federal-court
https://www.fbi.gov/contact-us/field-offices/newyork/news/press-releases/operator-of-silk-road-2.0-website-charged-in-manhattan-federal-court
https://www.bloomberg.com/feature/2018-bitcoin-atm-money-laundering/
https://www.bloomberg.com/feature/2018-bitcoin-atm-money-laundering/

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Greg Walker. How to import the bitcoin blockchain into neo4j, January 9 2018. URL
https://neo4j.com/blog/import-bitcoin-blockchain-neo4j/. Date Accessed:
March 25, 2019. pages 20, 82

[27] Cesar Pantoja. How to load bitcoin into neo4j in one day,
February 22 2019. URL https://medium.com/tokenanalyst/

how-to-load-bitcoin-into-neo4j-in-one-day-b555219ed9d2. Date Accessed:
March 25, 2019. pages 21, 26, 27, 82

[28] Max Baylis. Blockchain data analytics and health monitoring. Technical report, Imperial
College London, September 7 2018. pages 21

[29] Stephane Traumat. Github: blockchain2graph, 28 Nov 2018. URL https://github.

com/straumat/blockchain2graph. Date Accessed: 6 February, 2019. pages 21, 82

[30] CoinDesk. Bitcoin price index api. URL https://www.coindesk.com/api. Date Ac-
cessed: April 9, 2019. pages 28

[31] Walletexplorer.com: smart bitcoin block explorer, . URL https://www.walletexplorer.

com/. Date Accessed: January 25, 2019. pages 30

[32] Neo4J. Neo4j: What is a graph database and property graph, . URL https://neo4j.

com/developer/graph-database/. Date Accessed: March 25, 2019. pages 33

[33] Neo4J. Use the import tool, . URL https://neo4j.com/docs/operations-manual/

current/tutorial/import-tool/. Date Accessed: January 19, 2019. pages 34

[34] Michael Hunger and Mark Needham. Effective bulk data import into neo4j, 2016. URL
https://neo4j.com/blog/bulk-data-import-neo4j-3-0/. Date Accessed: Feburary
18, 2019. pages 34

[35] Bitcoin blockchain size 2010-2019 statistic, . URL https://www.statista.com/

statistics/647523/worldwide-bitcoin-blockchain-size/. Date Accessed: Febu-
rary 18, 2019. pages 34

104

https://neo4j.com/blog/import-bitcoin-blockchain-neo4j/
https://medium.com/tokenanalyst/how-to-load-bitcoin-into-neo4j-in-one-day-b555219ed9d2
https://medium.com/tokenanalyst/how-to-load-bitcoin-into-neo4j-in-one-day-b555219ed9d2
https://github.com/straumat/blockchain2graph
https://github.com/straumat/blockchain2graph
https://www.coindesk.com/api
https://www.walletexplorer.com/
https://www.walletexplorer.com/
https://neo4j.com/developer/graph-database/
https://neo4j.com/developer/graph-database/
https://neo4j.com/docs/operations-manual/current/tutorial/import-tool/
https://neo4j.com/docs/operations-manual/current/tutorial/import-tool/
https://neo4j.com/blog/bulk-data-import-neo4j-3-0/
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/

Appendices

105

Appendix A

User Guide : Radar

A.1 Search

• Search for an address: Input the full Bitcoin address into the Address or Entity input
field in the form Begin investigation with an address. If the address exists, you’ll be
navigated to the investigation view.

– View transaction values in fiat alternative currencies: Click the bar labelled
Select a fiat currency under Additional search options to open the expanding filter
panel. Select the desired fiat currency.

– Apply a date filter: Click the bar labelled Filter by date/time under Additional
search options to open the expanding filter panel. Enable the filter selecting the
toggle button which will show the Enabled state. Select the start date of your
desired date range by selecting Start Date (this can be done using the calendar
picker or manually in a mm/dd/yyyy format). Do the same for the end date of
your desired range. The time defaults to 00:00 of your selected date; drag the
slider to change this, if required.

– Filter by price: Click the bar labelled Filter by price under Additional search options

– Limit neighbour rendering: This will be enabled by default; it helps prevent too
many graph nodes being rendered on the UI to prevent performance degrading.
However, this will not be a complete result for your search. You can adjust the limit
(which corresponds to the number of neighbour nodes shown, of each relationship
type, for each node) by selecting Limit Neighbour Rendering and then dragging the
slider to a value of your choice (range of 0-100). If you wish to disable this feature
completely, select the Enabled toggle button, such that it turns to Disabled.

– Enable Input Clustering: Select the Input Clustering bar under Additional search
options to open the expanding panel. Toggle on by selecting the Disabled toggle
button so that it changes to Enabled.

• Search for an entity: Select the Search Type field drop-down in the Begin investigation
with an address and select Entity Name from the dropdown. Then enter the full entity
name in the Address or Entity Field. Filters can be applied in the same way as they are
for an address search. If the entity exists, you’ll be navigated to the investigation view.

• Search for shortest path between two addresses: Enter both of the full addresses in
the fields Start Address and Destination Address in the Path Finder form. You will receive

106

Chapter A. User Guide : Radar A.2. INVESTIGATE

a response No path found between addresses if no path exists; if a path does exist, you’ll
be navigated to the investigation view.

A.2 Investigate

• View a node’s details: Hover over any node; this will lead to the node expanding in
size and showing a node information panel

• Copy node data to clipboard: Simply click on any field in the node information panel,
data will be automatically copied to your clipboard.

• Expand a node’s neighbours: Double click on any node with a black border: this will
lead to the node pulsating in size until all neighbours are fetched. The neighbours will
be automatically added to the graph.

• Arrange layout: Simply drag and drop any node to your desired position

• Perform a new search: Click on the blue Back to Search button in the top left-hand
corner to be navigated to the search view

• Add custom nodes: Click the pink Add a new node button in the top left hand corner.
Select the Custom Node Type dropdown to select the most appropriate node type. Give
the custom node a name by entering its name in the Name of node field

– If Photographic ID selected, you’ll be able to upload an image: select Choose File,
select the image from your local file system and select Upload

– You’ll be able to add an arbitrary number of fields: select Add a property and
give each of your properties a unique name in the Property name field, then its
corresponding value in the Property value field

• Introduce a link between a custom node and any other node: Hover over a custom
node until the custom node view shows. Select the Create a link button. Type (or
select from auto-complete) the ID of the node to connect to. The ID must be a valid
ID of another node currently present on the graph. The link can be given any label by
entering the label in the New Link Label field. The direction of the link can be reversed
clicking the arrow icon.

107

Appendix B

Radar Views

Below are all of the various views that Radar has.

Figure B.1: Radar’s Search View

108

Chapter B. Radar Views

Figure B.2: Radar’s Investigation View

Figure B.3: Radar’s Investigation View with the Add Node overlay displayed

109

Chapter B. Radar Views

Figure B.4: Radar’s Investigation View with the Add Link overlay displayed

110

Appendix C

Locust Evaluation Results

Figure C.1: The Locust statistics dashboard for the requests ordered by decreasing response
times; showing the shortest path requests to be responsible for response time spikes

111

Chapter C. Locust Evaluation Results

Figu
re

C
.2:

Locust
Statistics

D
ashboard

for
load

ofsize
10

users

112

Chapter C. Locust Evaluation Results

Fi
gu

re
C

.3
:

Lo
cu

st
St

at
is

ti
cs

D
as

hb
oa

rd
fo

r
lo

ad
of

si
ze

10
0

us
er

s

113

Chapter C. Locust Evaluation Results

Figure C.4: The Locust statistics dashboard for the requests ordered by decreasing response
times; showing the shortest path requests to be responsible for response time spikes

114

Chapter C. Locust Evaluation Results

Fi
gu

re
C

.5
:

Lo
cu

st
st

at
is

ti
cs

da
sh

bo
ar

d
fo

r
lo

ad
of

si
ze

10
us

er
s,

w
it

ho
ut

sh
or

te
st

pa
th

re
qu

es
ts

115

Chapter C. Locust Evaluation Results

Figure C.6: Locust statistics dashboard for load of size 10 users, showing requests ordered by
decreasing response times; showing the output requests responsible for the spikes in figure C.5

.

Figure C.7: Locust statistics dashboard for load of size 10 users, without path finding requests
and including a node limit of 10.

.

Figure C.8: Locust statistics dashboard for load of size 100 users, without path finding requests
and including a node limit of 10.

.

116

Appendix D

Terminology

• Bitcoin : (Upper-case B) Referring to the protocol rather than the currency

• bitcoin : (Lower-case b) Referring to the units of the cryptocurrency

• Entity: An entity refers to companies and services operating on bitcoin, such as ex-
changes, pools, gambling sites etc.

• Clustering: When using the term clustering, we refer to the process of grouping together
Bitcoin addresses that are assumed to belong to the same user, which may be an
individual bitcoin user or an entity.

• Explorer tools: To assist with referencing particular software components of this project,
each core software component has been given a name, which is quite arbitrary but
following the theme of names of tools explorers used to use to navigate.

117

	1 Introduction
	1.1 Bitcoin
	1.2 Contributions Outline

	2 Background
	2.1 Bitcoin
	2.1.1 Addresses, Keys & Hashing
	2.1.2 Bitcoin Address Types
	2.1.3 Vanity Addresses
	2.1.4 Blockchain
	2.1.5 Mining
	2.1.6 Coinbase
	2.1.7 Proof of work
	2.1.8 Transactions
	2.1.9 Nodes
	2.1.10 Immutable History
	2.1.11 Mining Pools
	2.1.12 Forks
	2.1.13 Bitcoind

	2.2 Anonymity
	2.2.1 Mixing Services
	2.2.2 Risks of Using Transaction Anonymisers
	2.2.3 Peeling Chain
	2.2.4 Taint Analysis
	2.2.5 TOR

	2.3 Bitcoin Address Clustering (on-chain)
	2.3.1 Multi-Input Transactions
	2.3.2 Change Addresses
	2.3.3 Consumer Wallet Heuristic
	2.3.4 Optimal Change Heuristic
	2.3.5 Behaviour Based Analysis

	2.4 Bitcoin address clustering (off-chain)
	2.4.1 Tag Collection
	2.4.2 Entity Clustering

	2.5 Popular Services
	2.5.1 Satoshi Dice
	2.5.2 Exchanges

	2.6 Illegal Activity
	2.6.1 Silk Road
	2.6.2 Money Laundering
	2.6.3 Bitcoin ATM's
	2.6.4 Significant Thefts

	2.7 Existing Forensic Tools
	2.7.1 Blockchain Explorer
	2.7.2 Chainanalysis
	2.7.3 Wallet Explorer
	2.7.4 Blockpath
	2.7.5 Other Solutions

	2.8 Importing Blockchain Data
	2.8.1 Bitcoin to Neo4J Tool: Open Source Project
	2.8.2 Max Baylis: Imperial MSc Project 2018
	2.8.3 TokenAnalyst: Medium Blog
	2.8.4 Blockchain2graph: Open Source Project
	2.8.5 Analysis of Previous Work

	2.9 Know Your Customer
	2.10 Privacy Enhanced Cryptocurrencies
	2.10.1 ZCash
	2.10.2 MimbleWimble (Protocol)
	2.10.3 Dash
	2.10.4 Monero

	2.11 Technology
	2.11.1 Spring WebFlux

	3 Blockchain Download: Astrolabe
	3.1 Hardware
	3.2 Retrieving Historical Bitcoin Transactions
	3.3 Challenges & Solutions:
	3.3.1 Efficiency
	3.3.2 Job Failure Mitigation
	3.3.3 Writing Concurrently from Several Threads
	3.3.4 Duplicate Addresses

	3.4 Result

	4 Fetching Historical Price Data: Compass
	4.1 Source of Price Data
	4.2 Storing the Price Data
	4.3 Matching Price Data to Bitcoin Data
	4.4 Using the Price Data

	5 Entity Tagging: Quadrant
	5.1 Retrieving Wallet Data
	5.1.1 Building the Scraper

	5.2 Results
	5.3 Performing the Address Matching

	6 Database Population
	6.1 Why Neo4J?
	6.1.1 Other DB Solutions
	6.1.2 Bulk Import Tool

	6.2 Database Design
	6.2.1 Data Nodes
	6.2.2 Relationships

	6.3 Invoking the Import Job
	6.4 Challenges & Solutions
	6.4.1 Memory Issues
	6.4.2 Query Latency Issues
	6.4.3 Creating indexes

	6.5 Import Result

	7 Backend API: Loran
	7.1 Technology Choices
	7.1.1 Alternative Technologies

	7.2 API Design
	7.2.1 Responses

	7.3 Implementation
	7.3.1 Overall Design
	7.3.2 Node Entities
	7.3.3 Serialising Node Entities
	7.3.4 Implementing Repositories
	7.3.5 Implementing Path Finding

	8 Clustering: Balestilha
	8.1 Algorithm
	8.2 Java & Spring Data Approach
	8.2.1 Challenges

	8.3 Cypher Query
	8.3.1 Challenges

	8.4 Clustering on demand
	8.4.1 Challenges

	8.5 Clustering using raw CSV data

	9 Investigation Tool: Radar
	9.1 Technology Choices
	9.1.1 Angular 6 & TypeScript
	9.1.2 D3

	9.2 Implementation
	9.2.1 Routes
	9.2.2 Architecture

	9.3 Features
	9.3.1 Search by Address
	9.3.2 Search by Entity Name
	9.3.3 Node Information on Hover
	9.3.4 Link Data
	9.3.5 Traverse the Graph
	9.3.6 Link Dependant Colour and Size of Nodes
	9.3.7 Selecting Fiat Currencies
	9.3.8 Filter by Date and Time
	9.3.9 Filter by Value in Several Currencies
	9.3.10 Limiting Nodes
	9.3.11 Enable Multi-Input Clustering View
	9.3.12 User Input Validation & Feedback
	9.3.13 Add Custom Nodes
	9.3.14 Link Custom Nodes to Other Nodes
	9.3.15 Path Finding
	9.3.16 Persisting Data

	10 Overall Deployment
	10.1 Developing on Satoshi

	11 Evaluation
	11.1 Meeting Investigators from Industry
	11.1.1 Successes and Weaknesses
	11.1.2 Desirable Features
	11.1.3 Additional Data Sources

	11.2 Performance
	11.2.1 Individual Cypher Query Profiling
	11.2.2 Performance Under Load
	11.2.3 Blockchain Import

	11.3 Performing a Historical Investigation
	11.3.1 Areas identified for improvement

	11.4 Path Finding Correctness
	11.5 Clustering Correctness
	11.6 Missed Objectives
	11.7 Comparisons with existing tools
	11.7.1 Wallet Explorer
	11.7.2 Blockchain Explorer
	11.7.3 Blockpath

	11.8 Risks
	11.9 Summary
	11.9.1 Weaknesses
	11.9.2 Strengths

	12 Conclusion
	12.1 Reflection
	12.1.1 Future of Crypto-Currency Law Enforcement
	12.1.2 Working with Data at Scale

	12.2 Future Work
	12.2.1 Infrastructure for Keeping Database up to Date
	12.2.2 Path Finding User Experience
	12.2.3 Incorporate Information from more Sources
	12.2.4 Saving Investigations
	12.2.5 Exporting Investigation Data
	12.2.6 Change Address Clustering Heuristic
	12.2.7 More Clustering Heuristics
	12.2.8 Set up Watches for Nodes
	12.2.9 UI Improvements
	12.2.10 Several Crypto-Currencies

	Appendices
	A User Guide : Radar
	A.1 Search
	A.2 Investigate

	B Radar Views
	C Locust Evaluation Results
	D Terminology

