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Abstract

Deep neural networks are trained using mini-batch Stochastic Gradient Descent (SGD) on
specialised hardware accelerators such as a GPU. Existing training systems support the con-
figuration of the mini-batch size poorly: they couple its value, an accuracy-driven parameter,
with the hardware configuration because of the training algorithms used to scale out to mul-
tiple GPU devices. Constantly increasing the mini-batch size to accommodate faster or more
hardware resources hinders model convergence, and the tuning techniques used to compensate
for this effect are problem- and model-dependent.

In this report, we explore how to design and build a deep learning system where the user can
freely choose the batch size and still utilise all of the available hardware resources. We propose
TENSORBOW, a system that adds support for small-batch training in TensorFlow. TENSORBoOwW
integrates two deep learning systems, TensorFlow and CROSSBOW, combining the best features
of the two into one cohesive solution. TensorFlow, for example, has many optimised operators
and abstractions, but uses by default a single GPU stream per device for training a model.
CROSSBOW is able to train multiple model replicas on one GPU concurrently and uses a novel
synchronisation algorithm, synchronous model averaging, instead of the standard synchronous
parallel SGD, to ensure convergence as the number of model replicas increases. However, it
lacks automatic differentiation and support for advanced user primitives.

TENSORBOW adds support for the design principles of CROSSBOW in TensorFlow. It also
proposes a transparent, automated parallel training interface. The main challenges in imple-
menting TENSORBOW are related to the fact that many TensorFlow components and abstrac-
tions are designed under the assumption of training a single model replica per GPU, making
them unsafe for concurrent use. We extend those components to safely train multiple model
replicas per GPU.

Our experimental results show that TENSORBOW improves TensorFlow’s hardware efficiency
by at least 50%, irrespective of the neural network size used in our evaluation; and that the
synchronisation overhead between models is very small.
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Chapter 1

Introduction

1.1 Context

The current decade is characterised by an unprecedented amount of data. For example, every
day there are tens of petabytes of server logs generated by Microsoft data centres [42]; and
tens of terabytes of user activity logs produced by Facebook social applications [44]. This kind
of data powers a wide range of Artificial Intelligence (AI) applications [43]. Al applications
leverage labelled or unlabelled data samples to train machine learning models in order to solve
problems such as anomaly detection [41], product recommendation [40], user classification [55]
etc. To ensure that data can be trained in a timely manner, practitioners often use hardware
accelerators such as GPUs or TPUs [16]. These devices provide orders of magnitude speed-
up [22] in training time compared to CPUs. This leads to a growing deployment of heterogeneous
hardware, e.g. Facebook’s Big Basin GPU servers, whose architecture was released as part of
the Open Compute project [51], have 8 GPUs installed and they are used for many machine
learning workloads and benchmarks.

Among all machine learning models, Deep Neural Networks (DNNs) have drawn substantial
attention recently due to their unprecedented performance in challenging Al tasks, including
computer vision [22], speech recognition [2I] and natural language processing [20]. A DNN con-
tains many inter-connected layers, such as fully-connected, pooling [10], convolutional [39] and
recurrent [9]. Input data are fed into a DNN and propagate through layers parameterised by a
set of variables (usually represented by an array of floating point numbers) to produce an output
used for prediction. By stacking more and more layers, a DNN can extract increasingly more
features, leading to the recent rise of Deep Learning (DL) models such as VGG [13], ResNet [12]
and Inception [IT]. DNNs can naturally leverage the recent rise of big data and heterogeneous
hardware. Since they are computationally intensive and involve expensive floating-point op-
erations on vectors and matrices, these workloads can be efficiently executed by specialised
hardware accelerators like GPUs.

Supervised training of a deep neural model is often conducted with the Stochastic Gradient
Descent (SGD) training algorithm. This approach uses a dataset with inputs and labels split
into training and test data. The learning process involves predicting the label of each training
data sample and computing an error — in mathematical terms, a loss function. Model variables
are then adjusted using the gradient of the loss function with respect to each one of them. This
process is iterative as it takes several steps to reach a local minimum of the loss function. The
generalisation performance of the model is then judged on how well it predicts the previously
unseen test data. In order to speed up the training process, mini-batch SGD is employed.
Multiple input examples are grouped together in a batch and fed into the model at once. The
training usually completes when a desired test accuracy is reached.

Mini-batch size plays a key role in determining the result of training. The value of a mini-
batch size (in the following, we use batch size for simplicity) is an important parameter of the
training algorithm that must be carefully configured. On one hand, a large batch size means
aggregating multiple examples, thus producing an accurate approximation towards the true
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Figure 1.1: Introduction to synchronous SGD. The input data is split into three partitions
one per GPU device. Each GPU uses a local copy of the model variables to compute a partial
gradient, AP. A synchronisation step aggregates all partial gradients. The aggregated gradient,
P, is communicated to each GPU to update its local model before training the next batch

gradient of the loss function; however, it reduces the number of gradient updates that correct
the model parameters (as we have limited training samples). As a result, the algorithm explores
less minima and this affects the generalisation capability of the model. Using small batch sizes,
on the other hand, leads to a significant number of gradient updates to refine model parameters.
However, as gradients can become less accurate due to the small number of samples used for
one batch, very small batch sizes (i.e., 1 and 2) could adversely affect training. In practice,
users often use small-batch training: typical effective batch sizes are usually between 16 and
512 [7, [4]. These batch sizes balance training speed and accuracy while being applicable to a
wide range of DL models [7, 8| [6].

1.2 Problem statement and related work

Though important, the configuration of batch size is still poorly supported by deep learning
systems today. These systems couple accuracy-oriented tuning for batch size and performance-
oriented tuning for the system processing throughput. Any tuning of the batch size eventually
affects system processing throughput, making it difficult to balance the accuracy and duration
of a training job. Such a coupling is caused by two principle designs adopted by most, if not
all, systems, including TensorFlow [2], PyTorch [56] and Caffe2 [45]:

o Using a single GPU stream for training within a GPU. Deep learning systems often adopt
a dedicated GPU stream for training on a GPU. To fully utilise a contemporary GPU like
a V100, a user has to increase the batch size up to 1024 or higher for certain models [32],
which is orders of magnitude higher than the preferable small-batch range. Adopting a
small-batch for training often results in severe device under-utilisation [4].

o Using the Synchronous SGD algorithm to scale out training on multiple devices. To scale
out training, systems shard the training dataset on multiple GPU devices and adopt
Synchronous SGD (S-SGD) to synchronise model replicas (see Figure[L.1]for more details).
S-SGD, however, couples the mini-batch size with the number of devices, enforcing users
to use large-batch training in a distributed setting. To use 256 GPUs for training, for
example, practitioners have to use a batch size up to 65,536 [5].

To resolve the issues incurred by large batch sizes, users must tune a wide range of hyper-
parameters such as the learning rate or the weight decay [5]. This had led to a large collection of
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hyper-parameter tuning techniques, including auto-tuning [54], linear scaling [5] and warming-
up [B, 25] for the learning rate, auto-tuning the batch size, or auto-tuning the momentum.
Applying these techniques requires expertise in optimisation theory as well as experience in
training models. In addition, these techniques are usually problem-specific and dataset-specific.
For example, the tuning techniques proven useful for residual neural networks [12] are often
hard to apply to generative neural networks [34} 33]. Finally, most, if not all, of these tuning
techniques eventually fail when the batch size gets too big. Constantly increasing batch size
would eventually hinder convergence [14].

More recently, we observe a new system design, namely CROSSBOW [4], that can help freely
configure batch size when scaling training. CROSSBOW has two novel design principles. First,
it advocates for a concurrent training strategy on one GPU. This can be achieved by spawning
parallel GPU streams to train multiple replicas of a deep learning model inside a GPU even
when they are configured to use a small batch size. Second, CROSSBOW argues for alterna-
tive synchronisation techniques, moving away from the de-facto S-SGD. By using a variant
of model averaging techniques [38], 37|, CrROSSBOW is able to consolidate a large number of
model replicas collaboratively trained using small batch sizes. As a proof-of-concept, Crossbow
adopts a clean-slate design and implementation using a custom programming interface. This
prevents CROSSBOW from being used by users who are mainly working with TensorFlow and
other popular frameworks and benefit from a wealth of models already developed.

1.3 Objective and associated challenges

In this project, we explore a new system design that can enable small-batch training for a wide
range of deep learning applications. For this, we realised two principle design choices advocated
by CroOSSBOW in the popular TensorFlow framework. The integration of the two systems is
non-trivial due to limitations of TensorFlow:

e Training one deep learning model per GPU. TensorFlow assumes that it trains a single
model per GPU. This makes it difficult to support small-batch training. Small-batch
training requires to train multiple instances of the same model per GPU concurrently.
However, many of the software design assumptions in TensorFlow do not support this.
Consider, for example, TensorFlow’s GPU memory allocator. TensorFlow instantiates
only one allocator per GPU and it not safe to share it across two or more execution
streams on the same device by default [49].

o Device-oriented data parallel training. TensorFlow assumes that data parallelism is only
achieved by increasing the number of devices, not the number of model replicas trained.
Small-batch training, however, entails training more model replicas than devices. This
breaks many of TensorFlow’s design assumptions about how the dataflow is replicated,
executed, and combined at the end of an iteration of the training algorithm.

o Cumbersome parallel training interface. TensorFlow requires the developers to manu-
ally map operators to GPU devices in order to parallelise their computation. Although
Keras [48], a layer built on top of TensorFlow, automates some of these placement deci-
sions, neither can efficiently automate placement when training multiple model replicas
per GPU.

1.4 Contributions

To address the above challenges, we propose a novel design that enables TensorFlow to efficiently
support small-batch training. The new system, TENSORBOW, supports the following features:

o A task scheduler that supports concurrent training of models on a single GPU. We have
added support for concurrency in TensorFlow (i.e. the ability to train many model replicas
in a single GPU).
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o A model-oriented data parallel training architecture. Instead of using the number of avail-
able devices to determine data parallelism, we use the number of model replicas. TEN-
sOrRBOwW handles the synchronisation among the model replicas.

o An automated parallel training interface. Instead of manually placing operators to devices,
TENSORBOW’s users write a program assuming a single device abstraction. TENSORBOwW
then automatically replicates the dataflow graph within and across devices.

Those modifications enable training TensorFlow models with a 30% reduction in time to
reach a target test accuracy and up to a 50% improvement in a single GPU throughput, show-
casing the benefits of the modified training technique and the improved convergence of training
with a small batch size.

1.5 Academic and Industrial Relevance

This project takes a novel idea from an academic paper and applies it to a well-established
industrial system, making it accessible to a vast target audience.

An improved training algorithm for DL models can lead to a much better resource utili-
sation, improving the productivity of cloud providers that offer training resources as a service
(e.g. Google and Amazon), as well as the productivity of users that rent those resources. By
contributing to two open source projects, one academic (https://github.com/1lsds/Crossbow)
and one industrial (https://github.com/tensorflow/tensorflow), the design and implemen-
tation contributions of this work can be further refined by the community.

The project also enables assessing alternate training algorithms for deep learning. The cur-
rent approaches for scaling mini-batch SGD are non-transferable since they depend on tuning
many different hyper-parameters that are model-specific. By porting CROSSBOW model aver-
aging algorithm in TensorFlow, we aim to promote alternative ways to train and synchronise
models.
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Chapter 2

Background

Training deep learning models requires algorithms that take advantage of the parallelism of
modern hardware. This chapter starts by introducing basic principles from optimisation theory
applied to deep learning algorithms. These concepts are useful to understand what are the
limitations of current state-of-the-art algorithms and why the batch size is such an important
parameter. Then, this chapter presents an overview of two algorithms: the first one (S-SGD)
needs to increase the batch size, while the second one (SMA) tries to keep it constant. The
architecture of TensorFlow and CROSSBOW is presented in detail in the second part of the
chapter to illustrate the pros and cons of each framework. By using distinct features from each
system, we aim to improve convergence time and throughput of deep learning workloads.

2.1 Training algorithms

2.1.1 Mini-batch SGD

Deep learning is an optimisation problem. Optimisation refers to the task of either minimising or
maximising an objective function L(w) by changing model variables w. Optimisation algorithms
for training deep learning models typically include some specialisation on the specific structure
of the objective function, L, otherwise known as the loss function [17].

In supervised learning, the training data set contains multi-featured examples and an asso-
ciated label for each example. The optimisation task is to find the model parameters w that
minimise the number of labels predicted incorrectly.

The input dataset is split into training data and testing data, the latter used to evaluate the
generalisation of the trained model. Training a model involves changing the model variables w
to predict the labels of training data as accurately as possible. It usually takes many iterations
over the training data to minimise the prediction error. The test data is then used to evaluate
how well the model predicts previously unseen examples (the test or validation accuracy).

One iterative method for finding the parameters that give the minimum value of the function
is gradient descent. If we wish to minimise our loss function L(w) given some model parameters
w, gradient descent proposes a new point:

wk ) ) — XFT L (k)

where A is the learning rate at iteration k, a positive scalar determining the step size. The
learning rate can be constant, but typically it will also be adjusted during training.

If w* is the set of parameters that gives the global minimum of the loss function, in order
to derive a loss value with error at most ¢, i.e.

Lw®) — L(w*) < e

we would need O(1) iterations [35].
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However, the loss function is expressed as a sum over all N training examples. Each sample
has a contribution expressed using a function [ that, given w, measures the difference between
the predicted label ¢y = f,,(z) of a sample and the ground truth y.

1 N
=1

Therefore, each iteration takes O(N) and the total computational complexity is O(N2) [35]

Considering the size of the datasets used for deep learning training, it becomes clear that
the cost of this method is prohibitive. To address the issue, the method of Stochastic Gradient
Descent (SGD) was proposed. It uses the insight that there is one main difference between
machine learning algorithms and general optimisation problems: the loss function can be de-
composed as a sum over the training examples. Therefore, optimisation algorithms for machine
learning typically compute each update of the parameters based on an expected value of the
loss function estimated using only a subset of the terms of the full loss function (i.e. by looking
at just a subset of the training data which will be called a mini-batch or batch for simplicity).

With the above, the model parameters are updated based on the following formula:

WD) ) _ ABg, (i ®)

b
Viy(w®) = 3 3 Vil fu(zi)y)
i=1

Since the batch size b is a constant, this brings down the cost of each iteration to O(1), so
the overall complexity of SGD remains O(%) This is a big advantage in the case of a large N.

In the case of deep learning, the model parameters w will be split across many layers. The
technique for training arbitrary multi-layer neural networks is back-propagation [28]. It employs
the chain rule in order to compute the necessary gradients for each update step. The process
has two stages:

1. given a set of inputs, a forward pass through the network calculates the current output of
the model; the error will be the difference between this output and the target result

2. the backward step passes the error to every layer in the network in reverse order and
updates the weights according to the gradient descent method

The most important metric when training a deep learning model is time-to-accuracy, defined
as the time taken in order to reach a desired level of test accuracy. Time-to-accuracy is influ-
enced by 2 components: statistical efficiency (the theoretical bound on the number of iterations
required in order to reach that accuracy - given without a proof in section 2.1) and hardware
efficiency (the duration of each iteration, influenced by the hardware resources available and
the way in which they are used).

2.1.2 The benefits of small-batch training

Batch size plays a key role in determining training accuracy. In the following, I will analyse the
effect of batch sizes and the typical range of batch sizes when training real-world DL models.

The effect of the batch size. Batch size has a sophisticated effect towards the training
process. From the learning point of view, its effect is mainly two-fold:

e Noise of estimated gradient. When running SGD, batching a large number of data sam-
ples for estimating true gradients can significantly reduce the noise of estimation [I7].
This helps improve the robustness of the training process, and thus benefit convergence.
However, noise, on the other hand, is key to enable SGD to thoroughly explore in a given
loss space for minima, leading to stronger generalisation capability of a trained model [31].
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o Number of model updates. A SGD method often works with datasets of limited sizes. As a
result, training is often specified with a fixed number of data epochs and it is anticipated
that the model can converge to a desired accuracy. Using a large batch size, however,
can significantly reduce the number of updates to the model. In the worst case where the
batch size is the same as the dataset size, we end up with updating the model only once
throughout the training. Though the gradient estimation becomes accurate, the DL user
has to specify a very accurate learning rate (as well as other hyper-parameters), which
is prohibitively difficult and usually infeasible, so that SGD can reach the minima in one
iteration of training.

The regime of effective batch sizes. Given this complex effect, batch size must be carefully
configured in order to achieve high training accuracy. DL users often prefer setting up a batch
size that can balance the noise and the number of updates. Recent empirical studies [7] show
that effective batch size often settle within the small size regime (typically between 16 and 256)
across a wide range of DL models. This observation is also supported by DL practitioners and
researchers [6] who often find it difficult to achieve effective validation of a DL model in training
when using batch size larger than 64, leading to recent rethinking of DL system design in key
industry players such as Google and Facebook [1§].

2.1.3 Synchronous Parallel SGD

In order to speed up the training process, the main approach is to divide gradient computation
across multiple GPUs and exploit data parallelism. The idea is to partition the training examples
from a batch and feed them to different GPUs, each computing a partial gradient. The problem
then becomes how to synchronise those partial gradients and combine them to produce an
update for the model variables.

The most common training algorithm is called Synchronous Parallel SGD (S-SGD) [25].
Every GPU is responsible for training a copy of the model on a subset of the batch data. We
will call each of those separate instances of the model a replica. Because each GPU sees a
different set of examples, each replica will have computed a different gradient at each iteration.
The idea of the algorithm is to ensure that all GPUs have a consistent view of the model before
completing an iteration and moving on to the next batch of examples.

The S-SGD algorithm is summarised in Algorithm [I]and it involves 5 key steps. Each GPU:

1. gets a partition of a training batch (line 4);

2. computes a partial gradient using the examples in Step 1 and the local model replica (line
5);

3. agrees with the other GPU devices on the aggregate gradient for this batch by taking the
average over all the partial gradients (line 7);

4. updates the local replica with the average gradient (line 9); and
5. continues to the next iteration (if there is still a batch to process).

This method improves the execution time of an iteration of the algorithm, but it can be
limited by the performance of the slowest node (a straggler), since the algorithm requires the
gradients from all the GPUs before aggregation. One option to address the effect of stragglers is
to use Asynchronous Parallel SGD (A-SGD) [27]. A-SGD modifies Step 3 of the above training
method in that the fastest GPU does not have to wait for all partial gradients to be computed
before updating its own model replica. Instead, it uses only the partial gradients that have been
computed thus far. The downside of A-SGD is that incomplete gradient updates tend to have
a weaker convergence rate [27]. Thus, S-SGD remains the main method used in practice [5].
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Algorithm 1: Synchronous Parallel SGD (S-SGD)
input : wp, an initial model;
B, a set of batches;
n, the batch size;
A, a learning rate parameter;
output: w, the trained model.

1 while target accuracy not reached N |B| > 0 do

// k-th iteration of the learning algorithm

2 select batch b € B;
3 forr=1...Rdo

// replica r in the k-th algorithm iteration
4 get a mini-batch b, of size n/R from b ;
5 compute Aw, = Vln/R(w(k)) using b, ;
6 end
7 Aw = % B Aw,;
8 forr=1...R do

// each replica r updates the model with the average gradient
9 wht) — w®) — XF) A
10 end
11 end

2.1.4 Synchronous Elastic Model Averaging

CrossBow [4] is a new machine learning system developed by the LSDS research group at
Imperial College. It proposes a new algorithm for deep learning training called Synchronous
Model Averaging (SMA), aimed at improving time-to-accuracy when compared with the previ-
ously discussed methods.

The idea behind SMA is based around the notion of a learner [4], an independent entity
which takes some batch of samples and maintains a replica of the model being trained. Each
learner computes the gradient based on the examples it encounters during an iteration. In order
to prevent learners from diverging, a central average model guides the evolution of each learner
by correcting the trajectory of each learner. Updating this central model is the part that makes
this algorithm synchronous. There will be one designated learner chosen to manage the central
model. However, unlike S-SGD, the model constructed by each learner will not be identical at
the end of an iteration.

The intuition behind the concept of corrections is that SMA pulls diverging learners towards
the central model that was computed at the end of the previous iteration. While each learner
is independent, adding those corrections will eventually ensure that they will agree on the
correctness of the central average model and will arrive at the same result. The correction is
computed as the different between the gradients, scaled with a factor a = m

The other novel idea proposed by CrROssSBow is adding a momentum term only to the
update phase of the central model, in order to speed up the convergence of the central model
compared to the learners.

The formalised algorithm is shown in Algorithm Input hyper-parameters such as the
learning rate can also be dynamically adapted during training as it is usually done in other
parallel training methods, if necessary.

As explained in the previous section, training with a small batch size is a good option for
achieving high statistical efficiency, but it may underutilise the GPU resources. The level of
indirection introduced by the concept of a learner in SMA allows us to separate the batch from
the number of replicas and the number of processing devices. Previously, each GPU was training
one replica with a subset of the data within the batch. Now, since each learner gets a batch and
has a model associated, we can co-locate as many of them on a single device as necessary. This
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Algorithm 2: Synchronous model averaging (SMA) (Sourced from [4]

input : wp, an initial model;
wy ...wr, L model replicas trained by L learners;
B, a set of batches;
A, learning rate;
L, & momentum parameter;
output: z, the trained model.

// initialise central average model and its previous version

1 z< wWo;
2 Zprev < 0 )
3 while target accuracy not reached A |B| > L do

// iteration i of the learning algorithm
4 Clye e —0,...,0;

for je{1,...,L} do

// learner j in iteration i of the algorithm

6 Bj — select(B) ) // Select batch for learner j
T B+ B \ {BJ} ; // Remove the batch
8 ij — )\Vl(wj) ) // Gradient for replica j using only examples from B;
9 Cj a(wj — Z) ; // Correction for replica j
10 Wj < W — ij —Cj; // Update replica j
11 end

// Update central average model
12 2z
13 | 24+ 2+ Zle ¢j + 1z — Zprev) ;
14 Zprev < 2
15 end

promises to take advantage of the GPU resources at a much better rate when multiple learners
run concurrently.

Given the observation that many learners may end up co-located onto the same GPU, we
split the synchronisation phase into two stages: intra-GPU and inter-GPU aggregation. There
will be a reference model per GPU, managed by a single learner, and the central model. The
learners executing on a single GPU synchronise with respect to the local reference model, while
the central model is aggregated from the reference models using the SMA algorithm. This
technique accounts for the difference in communication latency within and across GPUs.

Finally, the number of learners per GPU is adjustable automatically at runtime by analysing
the throughput of each GPU measured in batches processed per second. Initially, every GPU
has a single learner, therefore a single replica to train. If the throughput of a processing unit
has increased over the last period with a value above a constant threshold, a new learner is
started on that GPU. On the other hand, if the throughput decreased, a learner is removed
from the working set.

The SMA algorithm proposes a number of very intriguing advantages: an increased hardware
efficiency with minimum statistical efficiency penalty, as well as the possibility of making the
training faster while still being more robust because of the small batch sizes used. We would
like to retain CROSSBOW’s superior performance influenced by this new approach, but we don’t
necessarily want to change the API that other machine learning frameworks offer. Users are
already familiar with these other building blocks that have reached a necessary level of maturity
in their development.

Therefore, we want to interface with programs that can be otherwise run by other machine
learning frameworks available, but apply these ideas in order to improve time-to-accuracy for
training of deep learning models.
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Framework Stars Watchers Forks Date created

TensorFlow 118,674 8,566 71,357 2015-11-07
PyTorch 23,881 1,175 5,667 2016-08-13
MXNet 16,052 1,185 5,811 2015-04-30
CNTK 15,676 1,393 4,198 2015-11-26
Caffe2 7,225 521 1,670 2015-06-25
Chainer 4,468 333 1,185 2015-06-05

Table 2.1: Github project statistics for various deep learning systems (as of 25-01-2019)

2.2 Training systems

2.2.1 Training with a GPU

Graphics Processing Units (GPUs) are throughput-optimised, multi-core computing devices.
While CPUs have a hierarchy of memory caches designed to hide main memory access latency,
GPUs rely on hardware multi-threading [30]. A GPU executes thousands of threads that have
some processing to do while others are issuing requests for some data to be fetched from main
memory. This is the main reason why GPU memory is focused on throughput rather than
latency.

A GPU can be described as a Multiple Instructions Multiple Data (MIMD) processor con-
structed from a collection of multi-threaded Single Instruction Multiple Data (SIMD) processors
(termed streaming multi-processors). GPUs can execute more floating-point instructions per
second than a normal CPU. Although GPUs were initially designed for a narrow set of ap-
plications [30], programmers wanted to see if they could take advantage of the high hardware
efficiency of GPUs by having a common abstraction to specify their applications. Programming
languages were developed in order to enable interfacing with the GPUs. An example is NVIDIA
CUDA (Compute Unified Device Architecture), which is a C-like programming language with
a few restrictions. These programs written for GPUs are called kernels and map to a GPU
thread, which controls a stream of instructions on the actual GPU.

Because many machine learning algorithms perform operations such as matrix multiplica-
tions, involving a large amount of memory, and execute many floating point instructions, GPUs
became a natural choice for executing such workloads since they will achieve more model up-
dates per second. It is common for modern servers to therefore include multiple inter-connected
GPUs [5] to increase the throughput of various machine learning workloads. This is why we
are going to focus on the GPU implementation details of the two frameworks to improve the
existing setup.

2.2.2 TensorFlow

A new algorithm for training would be better supported and tested by an active community of
users and developers of an existing machine learning framework. Table shows the popularity
of various frameworks in terms on the number of “stars”, “watchers” and “forks” of their
respective Github projects. TensorFlow is the most popular deep learning framework, which is
why we chose it for our integration.

TensorFlow [2] is constructed based on the concept of modelling an arbitrary computation
as a dataflow graph. This idea was previously present in many other distributed computing
systems such as Spark [23] and DryadLINQ [15]. However, unlike traditional dataflow sys-
tems, where graph vertices were used to represent a functional transformation on immutable
data, TensorFlow graph vertices encapsulate computations that own or update mutable data.
Within TensorFlow, edges represent tensors (typed multi-dimensional arrays) that flow between
vertices. Tensors follow a producer-consumer pattern, with the input vertex as the producer
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N

import numpy as np
import tensorflow as tf

placeholder for input data

= tf.placeholder(tf.float32, (100, 784), name="x")

matrix of weights

= tf.Variable(tf.random_uniform((784, 100), -1, 1), name="W")
bias vector

= tf.Variable(tf.zeros((100,)), name="b")

result = ReLu(Wx + b)

result = tf.nn.relu(tf.matmul(x, W) + b, name="ReLu")

H O H = H N H

3 sess = tf.Session()

sess.run(tf.global_variables_initializer())

5 sess.run(result, feed_dict={x: np.random.randn(100, 784)1})

Listing 2.1: Logistic regression implemented in TensorFlow
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Figure 2.1: Corresponding computation graph for the logistic regression example of Listing

and the output vertex as its consumer. Listing shows a user program (in Python) that
implements logistic regression. The resulting dataflow graph is shown in Figure [2.1

In a TensorFlow computational graph, each node can have zero or more inputs and zero
or more outputs. A node is an instance of a particular operation. A kernel is the code which
represents a particular implementation of an operation suitable for a particular device (e.g., CPU
or GPU). TensorFlow exposes the available set of operations and kernels using a registration
mechanism, and it allows users to extend these by registering additional operations and/or
kernel definitions.

Apart from tensors, edges can have another special type, called control dependencies. No
data is transmitted along control dependencies. They simply indicate that the source node for
the control dependency edge must finish before the destination node starts executing. This
is a valuable feature because our model may contain mutable state, so control dependencies
can be used directly by clients to enforce an execution order between operations for memory
considerations or other optimisations.

Because many machine learning algorithms require computing gradients for optimisation
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Figure 2.2: TensorFlow automatic differentiation using graph transformations. Sourced from [1].

(as explained in Section 2.1), TensorFlow has automatic differentiation as a feature within the
framework. Automatic differentiation is a method that allows the user to compute the gradient
of any tensor with respect to some set of other tensors it depends on. The method augments
the original dataflow graph. Figure shows an example of this graph transformation. The
framework can automatically find the path in the graph linking an input tensor C' to an output
tensor W. Then, it walks along the inverse path from C to W and, for each node representing
an operation in the original graph, it adds an extra node to the dataflow graph. This represents
the practical implementation of the chain rule. The newly added nodes compute what is called
the gradient kernel for the original operation in the forward path. Any operation can have a
correspondent gradient kernel that uses as inputs the partial gradients computed already along
the backward path and, optionally, the inputs and outputs of the forward operation.

Some of the other core design principles that guide the design of TensorFlow are:

e the ability to model any mathematical operation as a node in the computational graph
e deferred execution to achieve better performance and allow optimisations

e common abstractions for heterogeneous hardware and cross-platform support: it supports
multiple Operating Systems, as well as desktops, servers and mobile devices

e multi-language development and support: TensorFlow implements its API in Python,
C++, Go, Java etc.

e extensibility: mechanisms to add your own operations, kernels and devices

support for local and distributed training

Because of all those benefits, many users have become accustomed to the programming in-
terface that TensorFlow provides and have developed and deployed into production a variety of
models tailored onto its API. There is also increasing interest to support many programming
languages for developing machine learning models using TensorFlow. One such example is Ten-
sorFlow.js, an ecosystem of JavaScript tools aimed at expanding the creation and deployment
of TensorFlow models into web browsers or in applications developed under Node.js.

TensorFlow was widely adopted because it was one of the first projects that offered fast
prototyping and a rich set of predefined bindings for developers. The core of TensorFlow has
reached a desirable level of maturity, so any notable improvements may generate a tremendous
impact.
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Figure 2.3: TensorFlow system architecture. Adapted from [2].

2.2.2.1 Architecture

The TensorFlow architecture is divided by a C API into two parts: the frontend and the back-
end subsystems (Figure . The frontend supports various programming languages, Python
being the one most commonly used by developers to specify dataflow graphs. The frontend
is responsible for assembling the computational graph and calling the C API to request var-
ious services from the TensorFlow backend. The backend is the program that actually does
the execution of the user-specified graph. It is implemented in C++ and contains the runtime
(represented in Figure by the Distributed master and Dataflow executor components), the
kernels implementing the supported operations, a networking layer for communications and a
device layer which abstracts different types of devices (e.g. CPUs, GPUs, or TPUs).

TensorFlow has both a local and a distributed implementation of its interface. Apart from
the 2 main components described in Figure TensorFlow identifies special entities for the
execution of a program: the client, the master and one or more worker processes. The client
corresponds to the frontend and communicates with the master process to start the training,
while each worker process is responsible for facilitating access to one or more computational
devices (such as CPU cores or GPU cards) and for executing graph nodes on those devices as in-
structed by the master. In the local implementation, the master, the client and the worker(s) are
located within a single operating system process running on a single machine. The distributed
implementation uses similar mechanisms and interfaces, but supports running the client, the
master and the workers in different processes on different machines.

In order to understand what information is available to the TensorFlow runtime from the
frontend, we describe the principles behind the construction of the C API and how it acts as a
bridge between the frontend and the backend.

Multi-Language Interoperability TensorFlow uses Bazel as the build tool to generate a
Python package. Before the C++ part of system is compiled, Bazel invokes SWIG. SWIG [52]
is the tool that connects the frontend and the backend of TensorFlow. It is an interface compiler
able to connect programs written in C/C++ with high-level languages such as Python, Ruby,
or Perl. It takes existing function declarations found in C/C++ header files and uses them
to generate wrapper code that another language needs to call to use the underlying C/C++
code. The methods to be exported are specified in special interface files ending with the .i
extension. Apart from a few SWIG-specific directives, .1 files contain ANSI C function and
variable declarations.

Figure shows the outline of the build process. After the necessary files have been auto-
matically generated by SWIG (one containing Python code and the other one C++ code), the
backend is compiled into a shared object that will be dynamically linked to provide access to
the methods present in c_api.h. Then, the Python generated file knows how to load the shared
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Figure 2.4: Outline of the automatic wrapper code generation process. Adapted from [3].

message NodeDef {
// The name given to this operator
string name = 1;
// The operation name
string op = 2;
// Each input is "node:src_output" with "node" being a string name and
// "src_output" indicating which output tensor to use from "node"
repeated string input = 3;
string device = 4;
// Operation-specific graph-construction-time configuration.
map<string, AttrValue> attr = 5;
[...]
};

5 // Represents the graph of operations

message GraphDef {
repeated NodeDef node = 1;
[...]

};

Listing 2.2: Protocol buffer used for the nodes and graph representing the dataflow

library and forward any requests to the appropriate function.

Protocol buffers Another important mechanism for the interaction between the frontend
and the backend are protocol buffers, used for passing serialised data from one language to
another. Protocol buffers [50] are structured messages specified using a platform-independent,
language-neutral syntax. They are composed of an arbitrary number of fields, each one with
a given name and type. The files containing their definition are compiled to generate classes
responsible for reading and writing the data in the target language during the build phase.

Listing shows one important protocol buffer containing the definition of a node and a
dataflow graph. The graph, along with its metadata, is constructed in the client API language
(e.g. Python), and then it is serialised and passed to the backend.

2.2.2.2 User sessions

Now that the mechanisms used by the frontend client to request services from the backend
are explained, we can highlight in more detail the process of constructing a Session, as well
as its responsibilities within the framework, as illustrated in Figure Our focus is on the
DirectSession class implementation, which encapsulates both the master and the worker func-
tionality because this class corresponds to the local implementation of TensorFlow.

Users interact with the TensorFlow backend by creating a Session object. The object’s
methods are exposed via the C API. Next, we describe the two main operations of a session:
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Figure 2.5: TensorFlow session creation workflow

creation of a session and running a session.

Creating a session. The ExtendGraph method, for example, is used to create or augment a
dataflow graph with additional nodes and edges, as indicated by the protocol buffer passed as
an argument to this method When the client program calls tf.Session(), the constructor calls
directly into the shared library in order to get a new session handle via TF_NewSessionRef.
Then, in the backend, the SessionFactory is called to instantiate the Session taking into
account the supplied options. NewSession is actually a virtual method of the SessionFactory
class that will be overriden by the subclasses.

The reason for making NewSession as a virtual method of the class SessionFactory is to en-
able the instantiation of different types of tensorflow: :Session objects using SessionFactory
polymorphism based on the options passed from the frontend. This abstract factory method
inspects the SessionOptions object constructed beforehand. If the target is an empty string
(the default), it indicates a DirectSession, the default option used for running local training
on a single machine.

The constructor of DirectSession is mainly responsible for the creation of a thread pool
to support concurrent execution and keeping track of the available computational devices. Ad-
ditionally, DirectSession will also hold a map of the CPU scheduling threads (executors)
responsible for running computations and returning the results.

Running a session. The Run method of DirectSession is the main path to the TensorFlow
runtime and will handle one iteration of the training algorithm. This is the other primary
method exposed by the C API to Python clients via the function TF_SessionRun wrapper. Be-
cause the dataflow graph is lazily evaluated, the client needs to explicitly start the computation
and pass a set of tensor output names that are requested to be computed, as well as an optional
set of tensors as inputs. Using these arguments, the TensorFlow implementation will traverse
the graph to find all the nodes that the result depends on, isolating them in a subgraph that
will represent the scope of that run.

When the Run member function gets called, the executors for the given arguments (feeds
and fetches, i.e. inputs and outputs) are either retrieved from a stored map which acts as a
cache or constructed. When new executors are created, the CreateGraphs method gets called.
CreateGraphs contains the logic which will determine the subgraphs, decide the placement
of nodes on devices and finally partition the input graph across those devices based on the
identified constraints. Then, the code path for creating executors implements optimisations on
each graph partition such as common subexpression elimination, constant folding etc. Finally,
it will instantiate new local executors which take ownership of the designated graph partition
by calling NewExecutor and adding them to the cache.
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Figure 2.6: TensorFlow session run workflow when creating new executors

After the appropriate executors are obtained by the Run method, those executors are started
in parallel and synchronised using a barrier to ensure all the independent computations have
been completed before processing the results (i.e. outputs) back in the main thread.

2.2.2.3 Executors

The Executor class contains the logic for ordering nodes and operations, preparing inputs to
kernels, processing outputs and propagating results after each kernel execution completes. As
mentioned previously, there is one executor instantiated per graph partition and they will all
run concurrently to speed up the computation. The three main functionalities that need to be
provided by an executor are:

1. input and output processing for each operation implementation (i.e. each graph node)

2. inter-device data exchange (with the help of the additional send/receive nodes and ren-
dezvous points for synchronisation)

3. complete execution of a graph iteration

Each executor will start traversing its subgraph internally. It executes the nodes in an order
which yields a valid topological sort (without doing the sorting explicitly). The execution starts
at the nodes which have an indegree of 0. These nodes are added into a queue of ready nodes,
from where they are processed and dispatched via the ScheduleReady function. This function
uses the thread pool previously created within the session to complete the execution of each
node.

2.2.3 Crossbow

CrossBOW [4] is a deep learning system designed to support resource-efficient and scalable
small-batch training. What sets apart this system is the way to exploit unused GPU resources
when the batch size is too small. It co-locates models on the same GPU, abstracting them by
introducing the notion of learners whose number is adjustable during training.
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Figure 2.7: CROSSBOW system architecture
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Model replication is handled transparently by the system. CROSSBOW supports a variety
of training algorithms, most notably Synchronous Model Averaging (SMA) (Algorithm . The
general contribution of CROSSBOW is that training with SMA achieves better hardware and
statistical efficiency without the need for additional hyper-parameter tuning. If training can
be reasonably accelerated irrespective of the parameters used, we achieve a decoupling between
the system performance considerations and the theoretical convergence properties of the model.

2.2.3.1 Architecture

The architecture of CROSSBOW has unique design choices which make it suitable for training
deep learning models with the SMA algorithm. The concept of a GPU stream is a first class
citizen in the framework, since this is a very important aspect to share GPU resources effec-
tively. All the model variables are replicated for each learner automatically, without the need
to specify additional operators or separate dataflow graphs. It also has efficient mechanisms for
synchronisation that enable learners on the GPU to access a shared average model.

Figure shows a high-level diagram of the most important components of the system.
CROSSBOW has a Java front-end that enables users specify their models. It is responsible
for constructing the computational graph, generating a valid order of execution for operators
and registering it with the backend, which is implemented in C. We refer to the backend as
CRrOssBOW’s multi-GPU runtime library.

When comparing this client and runtime with TensorFlow’s one, the frontend plays a bigger
role in the overall system design. It is not only responsible for assembling the computational
graph. It also supports the following:

e Graph transformations. It transforms a user-supplied graph into a sequence of operators
(via a topological sort). Based on this ordering, it devises an offline memory plan to reuse
if possible memory allocated for storing the inputs and outputs of operators.

o Variable initialisation. When registering the variable size and shape to the back-end,
variables are already initialised in CPU memory (ready to be copied to GPU memory).

e Tuask handling. It has a task dispatcher that will assemble a task for a specific graph and
dispatch it to the runtime; and a result handler to receive task results asynchronously.
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The main components of the CROSSBOW runtime library are:

e The model manager. It handles a pool of model replicas and a pool of device streams to
decide which resources should be used for the next iteration of the training algorithm.

o The task scheduler. It assigns computation or synchronisation tasks to GPU devices.
After assigning tasks to resources, it handles task completion events coming from devices
asynchronously (via callbacks).

e The auto tuner. It modifies the number of learners per GPU based on training throughput.

2.2.3.2 Tasks

The execution of a dataflow graph is comprised of two types of tasks that CROSSBOW issues
and manages: learning tasks and synchronisation tasks. Those types of tasks runs on different
GPU streams (learner streams and synchronisation streams, respectively).

Learning tasks. The learning task encapsulates that sequence of operators that results with
the gradient values for a model replica. It takes an input batch of training examples and a
model replica (picked by the model manager) and will produce a gradient. A learning task can
execute on any of the available learner streams on the GPU where the model replica resides.

Synchronisation tasks. After a sequence of learning tasks, synchronisation starts. A per-
replica synchronisation task computes the difference between the model replica and the central
average model. This difference, together with the gradient for that replica, is used to correct
the trajectory of the corresponding learner in the loss space. These local tasks only require
read access to the central average model, which is why many local synchronisation tasks can
run concurrently on different GPU streams.

Then, the central average model needs to be updated with the aggregate value of all differ-
ences. CROSSBOW allocates one copy of the central average model per GPU that is consistent
across devices. Placing a barrier while learners synchronise their differences would prevent them
from making any further progress (and, as a result, CROSSBOW would use GPU resources in-
efficiently). To overcome this problem, CROSSBOW overlaps these device-wide synchronisation
tasks with subsequent learning tasks using separate synchronisation streams per device.

As highlighted in section [2.1.4] synchronisation tasks have two stages: inter-GPU and intra-
GPU aggregation. The intra-GPU operators will wait all differences to be computed for all
replicas in a particular device to aggregate them locally. The inter-GPU operators then perform
an AllReduce aggregation [60] to combine the per-device differences; and then update the average
model on each device consistently.

2.2.3.3 Task schedulers

In an iteration of the SMA training algorithm, the task scheduler would start a learning task
for each replica in the system, assign it to one of its multiple worker threads and then issue
subsequent synchronisation tasks. The worker thread that gets a task issues calls to the GPU
to execute a sequence of kernels. An important requirement is that all those kernel calls to the
GPU are asynchronous, such that the worker thread can return immediately to schedule the
next task.

When a task finishes and returns the corresponding model replica to the pool of available
one, the task scheduler will take the next input batch and repeat the process in a first-come,
first-served manner. This mechanism improves hardware utilisation because the task scheduler
does not have to wait for a particular replica to become available.

To deal with the data dependencies introduced by overlapping the learning and synchro-
nisation tasks, the task scheduler uses GPU events. To ensure task 7 finishes before another
task 7/, the task scheduler places an event generator after 7 completes and an corresponding
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event handler before 7/ begins. GPU event handlers block any subsequent execution on the
stream they were scheduled until notified. The task scheduler also uses the same event-based
mechanism to process task completion events on the CPU and return the model replicas to the
pool.

Overall, this task scheduler design makes the system extremely good for small learning tasks
because it reduces the dispatching latency as much as possible.

2.3 Summary

The first take-away point of the background is that the choice of optimisation algorithm matters
both in terms of accuracy and hyper-parameter constraints. SMA uses a variant of model aver-
aging techniques to construct a central model from many independent replicas. By introducing
the notion of a learner, it adds a level of indirection that enables us to separate the value of the
batch size from the number of model replicas and the number of computational devices. This
is an improvement over the inherent coupling of S-SGD.

The second main part of the chapter emphasises an important aspect, which is that the choice
of system is as important as the choice of algorithm when considering scaling out the training
process. No framework offers all the advantages, While CROSSBOW automatically replicates the
dataflow graph internally to enable data parallelism and uses concurrency features present in
modern GPUs, it does not support automatic differentiation. On the other hand, TensorFlow
does not replicate the graph (i.e. the user must explicitly program this using a concept known
as towers), but it performs automatic differentiation and offers a wide variety of operators. This
integration aims to enhance both frameworks with features from their counterpart.
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Chapter 3

TensorBow System Design

The key idea of our design is two-fold. First, we make CROSSBOW operators (e.g. a convolutional
layer) pointers to TensorFlow ones. This paves the way for CROSSBOW to access a wealth of
operators and compiler optimisations available in TensorFlow. Second, we make TensorFlow
tensors for model variables (e.g. the weights of a convolutional layer) pointers to CROSSBOW
ones. This allows TensorFlow to automatically access multiple model replicas per GPU without
having to manage them explicitly. We then devise the TENSORBOw API, an interface which
handles execution of a single kernel within the TensorFlow runtime. This helps make the exiting
CRrOSSBOW parallel training abstractions compatible with TensorFlow.

3.1 Design Considerations

At a high level, both CROSSBOW and TensorFlow manage four main components: a set of model
variables, a set of operators that update the model variables, and one or more executors that
dispatch operators to run on a set of GPU devices.

We combine the two systems using TensorFlow as the base, because we want to design
a system that supports all of TensorFlow’s operators (and, thus, supports a wide range of
applications and models). As a result, in our design the computational graph will be managed
at least partially by TensorFlow since we must be able to retain its client API that allows users
to write their applications and models. As explained in the previous chapter, the entry point
for the user-defined dataflow graph of operators will be a TensorFlow Session, which in turn
will interact with the other three components: model variables, operators and devices. We
considered three alternative designs, summarised in Table

Option 1. The first option we considered was to reimplement CROSSBOW’s SMA algorithm
(including auto-tuning the number of learners per GPU) using the interfaces and mechanisms
provided by TensorFlow. Since a considerable amount of time had already been invested in
understanding the TensorFlow framework, this option would result in no interactions, and
thus no inter-operability issues, between the two frameworks. However, many functions of the
TensorFlow executors would need to be changed to reflect performance optimisations available
in CROSSBOW (e.g. overlapping kernel computations). It would be difficult to isolate gradi-
ent computation as it would require us to ensure that each executor gets access not only to
different data, but also to different resources such as memory even on the same device. Fur-
thermore, the operation of applying gradients would need to modified in a non-trivial manner
for synchronisation with SMA.

Option 2. The second option was to simply take the graph passed to the TensorFlow and pass
it to CROSSBOW. CROSSBOW would then take ownership of the computational graph, and use
its own components to complete its execution, including managing the level of device setup and
execution. This solution would require only an adapter layer to map the names of the kernels
and operations from TensorFlow to the ones known by CROSSBOW, as well as to identify and
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Option 1 Option 2 Option 3
Operators TensorFlow TensorFlow TensorFlow
Model variables TensorFlow CROSSBOW CROSSBOW
Executors TensorFlow CROSSBOW CROSSBOW
GPU Device Management TensorFlow CrossBow TensorFlow

Table 3.1: Design options (i.e., which high-level components are managed by which framework).
Option 3 is the one selected

@ >

Figure 3.1: Operator op requires access to 3 variables, vary, varo and vars. Of the three, vary
and varg are local variables and varg is a model variable. In order to translate the TensorFlow
dataflow graph on the left to the CROSSBOW one on the right, there are many possible groupings
of variables that could result in a dataflow misconfiguration
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register the model variables. Despite being the simplest approach, it is limited by the operators
CROSSBOW supports by default: although considerable, it remains a small subset of the the
operators exposed to users by the TensforFlow client API.

Certain operators, for example convolution and batch normalisation, require access to hidden
local variables as well as model variables. Both frameworks handle access to these variables
differently. On one hand, TensorFlow automatically augments the dataflow graph to represent
local variables as nodes that feed their output to these operators. On the other hand, CROSSBOW
embeds them as pointers to memory within the operator. Translating the dataflow graph from
TensorFlow to CROSSBOW requires to identify local variables in the graph and register them to
the corresponding kernel in CROSSBOW. This is difficult because the metadata that identifies
local variables in TensorFlow is not available up-front. It would add a lot of complexity to the
translation as it is be very hard to distinguish between all the possible groupings, as depicted
in Figure [3.1

Option 3. The third design option follows the same pattern as the second one, but instead of
giving away the control of the computation completely to CROSSBOW, TensorFlow retains the
responsibility of managing the execution of an operator scheduled by CrossBow. Thus, we
can still aim to support all TensorFlow operators by using a mutual dependency between the
two frameworks.

For this idea to be possible, the principle behind operator execution must be similar across
frameworks. Additionally, CROSSBOW must retain all the necessary information for the graph
execution and wrap all the data structures and arguments using the classes that TensorFlow uses
for graph execution. CROSSBOW would be responsible for managing the model variables and
scheduling tasks, while requesting support from TensorFlow in terms of the actual computations
being performed when it decides to execute an operator and for synchronisation among replicas.

After considering all design options, the best alternative was this last one for two reasons.
First, we can take advantage of the richer and heavily optimised set of operations for different
platforms already implemented in TensorFlow. Second, using the same implementations for
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Figure 3.2: TENSORBOW unifies components from two systems

operators would offer a common ground for evaluating the efficiency of the training algorithms
and obtaining a better estimation of the deep learning models and use-cases that benefit from
using SMA compared to S-SGD.

In order for TENSORBOW to be fully compatible with the existing TensorFlow client API,
certain TensorFlow components must remain unchanged when realising the workflow described
in the previous argument; and some are replaced by components from the CROSSBOW runtime
library. Figure highlights the relevant components of each framework.

TensorFlow’s Python client and its C API remain unmodified. So are TensorFlow’s kernel
implementations, with the exception of a few classes such as the ones for variable operators, ar-
gument passing etc. These TensorFlow components interact with CROSSBOW’s model manager,
the latter handling model replication. The new TENSORBOw API will replace TensorFlow’s
dataflow executors with CROSSBOW’s multi-threaded task scheduler. Finally, TENSORBOwW
keeps the current device layer from TensorFlow, but it extends it to support multiple execution
streams per GPU. CrROSSBOW’s task scheduler will enable dynamic selection of the target GPU
stream per learning task (as opposed to static assignment, the default strategy in TensorFlow).
Specific implementation details on changes to those components are provided in Chapter

3.2 Workflow

Our proposed solution starts by extending TensorFlow’s Session class. The newly created com-
ponent, TensorBowSession, has a disjoint set of options (added to a custom protocol buffer),
containing the desired logic for all the necessary steps and deciding where the separation of con-
cerns would occur between TensorFlow and CROSSBOW. An outline of the new class hierarchy
in TensorFlow is presented in Figure The new class replicates some of the DirectSession
functionality for session creation, dealing with the client’s requests and processing the results.
The main difference is how task execution is encapsulated within the Session.Run() function
call.

TENSORBOW runs unmodified TensorFlow applications. A Session instance lets users drive
a TensorFlow graph computation by calling the Session’s Run method multiple times. By
providing users with an alternative session implementation, we keep the changes to the existing
TensorFlow code-base minimal. We simply augment the existing functionality rather than
introducing a lot of decision points to separate the code paths. Of course, we still need to
introduce an additional adapter layer (namely, the TensorBow API, described in Section
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Figure 3.4: TENSORBOW’s workflow for replicating the entire computation

and design ways to incorporate data structures from the coupled frameworks. But we can expose
the whole integration as a cohesive solution, while having the freedom to decide our own task
placement, operation execution order and resource management.

At the point where we create a dataflow graph in TENSORBOW, we can influence the number
of partitions and the placement of nodes for the input graph. We make sure that no partitioning
is taking place within a graph by default. We simply replicate the entire graph (containing all
the operations that are to be performed on a GPU), since we want to parallelise the entire
graph computation. Another important reason for this decision is that when partitioning takes
place, TensorFlow introduces special Rendezvous points (realised by adding Send and Receive
nodes in the graph to push to and fetch data from a different device, respectively). It is very
challenging to distinguish between disconnected graphs that are only logically connected via
these special nodes and other graphs that simply reside on a different device. Replicating and
synchronising all of them would introduce unnecessary overheads that we avoid by letting users
specify only a single graph.

Figure shows the workflow of TENSORBOW. After the graph is optimised and returned,
we register all the required information to CROSSBOW to initialise the library. This includes:

e Registering all the unique kernel objects from TensorFlow to CROSSBOW.

e Topologically sorting the graph, and registering it to CROSSBOW. This determines the
execution order of the operators of a learning task.

e Getting the shape of each model variable and the buffer size that it requires in memory
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(depending on the data type) and registering it to CROSSBOW. This information will be
used by CROSSBOW to create multiple model replicas per GPU.

When the CROSSBOW runtime is initialised, a TensorFlow client can start submitting learn-
ing tasks for execution to CROSSBOW the same way it would normally invokes the default
TensorFlow executors. CROSSBOW’s task schedulers have total freedom to decide when to
schedule each operator: on which stream and on which device. The TENSORBOW API permits
them to perform all those necessary operations using TensorFlow’s operator implementations.

The input data for each learning task can be provided by users in two different ways:

1. A feed dictionary. A feed dictionary is a Python dictionary of tensors, passed as input to
the session.run() method. The dictionary is translated to a vector of CPU allocated
tensors by the C API and passed to the TensorBowSession.

2. tf.data. This is a recent package that exposes different operators for data management
(e.g. image decoding and cropping). These operators become nodes in the dataflow graph.
Some operations can be can be executed on the GPU, but not all of them. Because we
don’t partition the graph, we require a GPU implementation for all the nodes that we need
to execute. Thus, we can support only the GPU operators from the tf.data package.

In our prototype we focus on the feed dictionaries because it is easier to control without changing
any operator logic. Using the user-supplied dictionary of inputs makes it easier to ensure that
different model replicas get different data to work on and thus can be trained independently.

3.3 The TensorBow API

The next design consideration is the API that allows TensorFlow runtime to interact with the
CrossBOW runtime. For example, the TENSORBOW session must call CROSSBOW’s functions for
registering the dataflow graph; and TensorFlow variable operators require to access the model
replicas managed by CROSSBOW. Similarly, CROSSBOW needs to call a function which schedules
a particular kernel on a target device. These interactions are managed via the TENSORBOwW
APL

Figure shows an example sequence of function calls that either framework makes for
executing a dataflow graph. We show system interactions for one worker only, but in reality
this is replicated via multiple execution threads to parallelise the computation within and across
GPUs.

After the computational graph is registered in CROSSBOW, TensorFlow instructs CROSSBOW
to execute a specific dataflow, identified by a unique id. In practice, TensorFlow will submit
as many execution requests as model replicas which are available. CROssBOW will assign a
different thread to handle each request and execute them in parallel. TensorFlow will then
block at a barrier waiting for the parallel executions to complete.

For each kernel in the graph, CROSSBOW will call the kernel method in TensorFlow via the
API. TeEnsOrRBow handles the arguments required to call each kernel. TENSORBOW will also
select the right device and a compute stream therein, as instructed by CROSSBOW, and invoke
the Compute method on the kernel. TensorFlow will transparently manage storing the inputs
and outputs of each kernel in the graph based on the graph topology. If some operator requires
access to the model variables, TensorFlow makes appropriate calls to CROSSBOW for fetching
pointers to a model replica buffer, encapsulating the buffer in a Tensor object.

When CROSSBOW has executed the last operator of a task, it sends a notification to
TensorFlow. TensorFlow can then return the result back to the Python client and proceed
to the next wave of parallel execution requests. An alternative would be for TensorFlow’s Run
method to return immediately after scheduling all tasks, without waiting for tasks to complete.
Returning results asynchronously to the client is supported by CROSSBOW, but not TensorFlow.
This would cause problems with the logic of many TensorFlow applications.
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Figure 3.5: The TENSORBOW API enables interoperability between the two frameworks during
the execution of a single learning task.

3.4 Summary

At a high level, what we are really interested in is using TensorFlow as the underlying imple-
mentation of both the learning task and the synchronisation task operators and let CROSSBOW
be responsible for the scheduling decisions and handling model variable replicas. To enable in-
teroperability between the 2 systems, we introduce 2 main components: TensorBowSession, an
extension of the standard TensorFlow Session class, and the TENSORBOw API for managing
any interactions initiated by CROSSBOW. Those additional components are expressive enough
to expose an automated parallel training interface for unmodified TensorFlow programs.
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Chapter 4

System Implementation

In this chapter, we provide details of the challenges faced when implementing TENSORBOW on
top of TensorFlow. We begin by explaining how we added support for concurrent training of two
or more replicas on the same GPU: Section [4.1] describes how we enabled TensorFlow to support
multiple CUDA streams per GPU; and Section explains how we enabled TensorFlow to
support multiple model variable replicas per GPU. In Section we describe how we overcame
concurrency issues when using the aforementioned newly added features at run-time. Finally, in
Section [4.4) we describe how we efficiently synchronise model replicas within and across devices
to reduce the data movement overhead.

4.1 Device Management

4.1.1 Initialisation

The first fundamental limitation we encountered when investigating the open-source implemen-
tation of TensorFlow is its inability to instantiate and use more than one GPU stream for
computation. The default implementation sets the maximum number of streams per GPU used
for kernel computations at 1. This value is hard-coded in the constructor of the GPUDevice
class (the object responsible for stream initialisation and device management logic), as shown
in Listing

In practice, the GPUDevice constructor creates one stream group per GPU device (see List-
ing . Within a stream group, TensorFlow creates a dedicated stream for computation, one
for host-to-device data transfers, one for device-to-host data transfers and one for device-to-
device data transfers. So, by default, it is possible to have up to four concurrent operations per
GPU device: one kernel computation and three data transfers.

We changed the class to create multiple stream groups so that we can train multiple model
replicas in parallel, one per group. There are two reasons for creating new groups rather than
multiple computation streams per group. First, there is very low overhead in calling the CUDA
interface at initialisation time to instantiate a new stream. So, even if the extra data transfer
streams are not used, the impact is negligible. Second, most of the stream synchronisation logic
in TensorFlow expects a stream group as a parameter, so changing the abstraction of a stream
group would not keep the device layer code compatible with the existing implementation. We
enable mutiple multiple stream groups per device by adding a new field to the GPUOptions
protocol buffer message that is specifying their number. The value of the private member
max_streams_ stored on the BaseGPUDevice class, previously hard-coded to 1, is now read from
the GPUOptions and set inside the constructor of the BaseGPUDevice parent class.

The default strategy of TensorFlow with multiple stream groups is to partition the graph
and assign different branches to different stream groups. The assignment is done in round-robin
order based on the following heuristic:

e Nodes with 0 inputs (e.g. constants) are always executed on a different stream.
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class GPUDevice : public BaseGPUDevice {
public:
GPUDevice(const SessionOptions& options, const string& name,
Bytes memory_limit, const Devicelocality& locality,
TfGpuld tf_gpu_id, const string& physical_device_desc,
Allocator* gpu_allocator, Allocator* cpu_allocator)

: BaseGPUDevice(options, name, memory_limit, locality, tf_gpu_id,
physical_device_desc, gpu_allocator, cpu_allocator,
false /* sync every op */, 1 /* max_streams */) {

if (options.config.has_gpu_options()) {

force_gpu_compatible_ =

options.config.gpu_options().force_gpu_compatible() ;

}
}
};

Listing 4.1: Restrictive stream initialisation in GPUDevice class. By default max_streams is one.

class BaseGPUDevice : public LocalDevice {

[...]

private:

struct StreamGroup {

se::Stream* compute = nullptr;
se::Stream* host_to_device = nullptr;
se::Stream* device_to_host nullptr;
gtl::InlinedVector<se::Stream*, 4> device_to_device;
I
[...]

Listing 4.2: TensorFlow’s stream group data structure

e If possible, a node will be placed on the same stream as one of its inputs to avoid inter-
stream dependencies.

e A node with lots of neighbours is placed on a new stream to make the consumers of its
output run in parallel.

This heuristic does not yield many benefits. Most modern deep neural networks have a low
branching factor (e.g., 2 for the ResNet family of networks [I12]) and there are not many oper-
ators within a branch to execute in parallel before an inter-stream dependency presents itself.
Frequent stream synchronisation is also very costly. Our approach on the other hand, is more
beneficial because we introduce inter-stream dependencies only at the end of the dataflow graph
execution.

4.1.2 Dynamic device context selection for GPUs

Since we are interested in reusing the device layer that TensorFlow provides, another imple-
mentation choice is to delegate the responsibility of initialising the devices to TensorFlow.
The CROSSBOW components that would normally provide this logic must be adapted such
that they will only register the device information in their local data structures. These opera-
tions must happen in order to enable CROSSBOW to perform non-device management operations
(i.e. allocating memory or launching kernels are examples of non-device management opera-
tions). Also, it avoids the problem of having each framework operate on a different working
set of device streams. Informing the CROSSBOW model manager about the number of available
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i class Device : public DeviceBase {

2> public:

3 // Performs the actual compute function. Subclasses may override this function
// if they wish to perform some initialisation before each compute.

5 virtual void Compute(OpKernel* op_kernel, OpKernelContext* context) {

6 op_kernel->Compute (context) ;

7}

9 // Provides access to a target device context

0o virtual Status GetDeviceContext(int id, DeviceContext** device_context) {
1 return Status(error::UNIMPLEMENTED, "Device did not override this method");
>}

14 // Provides access to an independent memory allocator for this device

5 virtual Status GetDeviceAllocatorForStream(int id, Allocator** allocator) {
16 return Status(error::UNIMPLEMENTED, "Device does not support this method");

17 }

19 // Returns the resource manager associated w/ this device.
20  virtual ResourceMgr* resource_manager() { return rmgr_; }
1 [...]

2 }

Listing 4.3: TensorFlow’s Device abstract class with its new methods, GetDeviceContext and
GetDeviceAllocatorForStream

compute streams per device is the last stage of the CROSSBOW execution context initialisation
since we must wait for this information to become available in TensorFlow.

Listing shows the common TensorFlow interface for all devices. It includes a Compute
method, which by default just forwards each call to the OpKernel class.

However, the BaseGPUDevice class overrides the default logic to enable the right device
context before the computation takes place. A GPU device context is just an abstraction
over the GPU streams that uses them without taking ownership of the pointers or interacting
with the StreamGroup. After enabling the right device context, the Compute method of the
BaseGPUDevice class waits on any dependent streams to finish the enqueued work. This step
is necessary only if the current operation has a different device context than some parent node
in the computational graph. Then, GPU operations are scheduled by making a request to the
StreamExecutor, an abstract wrapper around the CUDA driver.

The problem with this workflow is that in TensorFlow, when multiple stream groups are
present, an execution thread requests a map which specifies which operator runs on which device
context. This happens at construction time and remains statically allocated for the duration
of the entire program. In TENSORBOW we want to do this assignment at computation time
because we don’t want to impose an execution order across streams. To do this, we need to
change the device layer to get a target device context on demand, for every kernel execution.

Then, we can specify a target device context instead of the default one based on the ar-
guments that accompany each OpKernel. To control this placement, we augment the existing
interface from the BaseGPUDevice to expose a target device context. Then, each task handler
thread from CROSSBOW executing a kernel on the GPU gets to control which device context
it needs to enable via the arguments provided for the computation. The GetDeviceContext
method was added on the Device class for this purpose.

Listing shows how this new function is implemented by the BaseGPUDevice class (it in-
cludes performing bound checking). It is important to note that each device context is reference
counted, so we increase the reference count before returning the object. The caller thread will
then be responsible for releasing the resource.

Finally, when the GPU executes the computation, it knows which request has come from a
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class BaseGPUDevice : public LocalDevice {
public:
[...]
Status GetDeviceContext(int stream_id, DeviceContext** device_context) override {
CHECK_LE(O, stream_id);
CHECK_LT(stream_id, device_contexts_.size());
device_contexts_[stream_id]->Ref();
*device_context = device_contexts_[stream_id];
return Status::0K();

[...]

Listing 4.4: BaseGPUDevice implements the new GetDeviceContext method

CRrROSSBOW task handler thread and it uses this information to bypass the synchronisation check
with other streams. This is now safe as we will isolate the whole graph computation inside a
stream, so any previous nodes have consumed their inputs and produced the outputs using the
same underlying stream via the device context, so the data is available.

4.2 Model variables

The next major implementation component focuses on model variables. While the GPU device
memory associated with multiple model replicas is allocated and managed by CROSSBOW, we
need a way to enable TensorFlow to differentiate between model replicas, fetch the correct
underlying memory buffer for each replica and update them accordingly with the gradients
resulting from the computation of a learning task.

4.2.1 Variable names

TensorFlow manages resources, including model variables, with the help of a resource manager
(the ResourceMgr class). The resource manager stores resources according to their unique name
(the resource name, plus the device name where they reside). Each device has an associated
resource manager. Different threads can share state if they define a resource with the same
name on the same device.

In the case of model variables, we want to avoid having different parallel dataflow compu-
tations access and operate with the same underlying model replica buffers. Model variables
appear in the computational graph as a special node whose Compute method is a stateful ker-
nel that accesses memory resources (basically, tensors). Each variable is stored in the device
resource manager based on the name given by the client Python program (and communicated
via a protocol buffer). The kernel simply invokes a LookupOrCreate method on the resource
manager to create a new entry (a new tensor) for this variable name or retrieve its contents
(some previously allocated tensor).

Knowing how the resource manager indexes elements, we can associate a different name
for each model replica variable to distinguish between resources. Since CROSSBOW allocates a
unique id for each replica, this identifier is a good candidate to include in the updated name.
This additional logic is added to the VariableOp kernel class. Figure shows how this
enhancement achieves the desired result.

4.2.2 Variable buffers

A Tensor class in TensorFlow represents a tensor, associating a data buffer (a void * pointer)
with a shape (i.e. the dimensions of a multi-dimensional array). For data buffers, TensorFlow
uses a TensorBuffer class abstraction. In TENSORBOW, the tensor buffer should point to the
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Figure 4.1: TENSORBOW replicates model variables in the resource manager for each replica to
prevent aliasing.

corresponding model replica variable managed by CrossBoOw. This integration required to
extend the Tensor and TensorBuffer classes with setter methods.

The TensorBuffer class was initially an abstract class with virtual methods to access the
data buffer pointer and its size (the data() and size() methods, respectively). This was
changed in TENSORBOW to reduce the overhead of virtual function calls, which is important
for operators that call many times the function for getting the data (this optimisation was
also included in TensorFlow v1.13). The Tensor setter could then delegate the calls to the
TensorBuffer and change its private data pointer. Two more modifications were made:

e TensorFlow’s TensorBuffers are reference-counted. So, we introduce a modified boolean
field to distinguish between buffers allocated by TensorFlow (and, thus, can be safely
deallocated) and buffers managed by CROSSBOW.

e We introduce an index field to associate a TensorBuffer with a particular CROSSBOW
model replica variable. This index is used to fetch the model variable buffer associated
with a specific node in the dataflow graph (identified by that index).

Listing shows the modified TensorBuffer class after all the modifications, which now
has the responsibility of storing the contents directly. Changing the underlying Tensor buffers
has the only downside of losing the ability to track allocations when running TensorFlow in
debugging mode, since TensorFlow expects this invariant all buffers are allocated using a specific
allocator. But model variables are the only buffers managed by the CROsSSBOW library, allocated
at initialisation and freed at the end of training. So we do not introduce any memory leaks.

4.2.3 Variable initialisation

CROSSBOW has internal mechanisms to deal with model variable initialisation in an elegant way.
Given a CPU buffer allocated on the CPU, populated with initial values, CROSSBOW handles
model replication and copying to GPU memory transparently.

We let TensorFlow initialise model variables on the CPU, and pass them to CrROSSBOW. To
achieve this, we influence the placement of the TensorFlow operators that run model variable
intialisation and place them on the CPU. Since TensorFlow is able to run the initialisation
on any target device directly, we can run the subgraph using the standard TensorFlow execu-
tion management. We use a heuristic to identify the TensorFlow model variable initialisation
subgraph based on the presence of model variables and optimiser nodes.

After the initialised operations are executed on the CPU, the resource manager for that
device will hold tensors that are initialised approriately. We then do a pass over the CPU
registry manager, access those tensor buffers and pass them to CROSSBOW model manager to
use them as the starting point for all model replicas.
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// Interface to access the raw ref-counted data buffer.
class TensorBuffer : public core::RefCounted {
public:
explicit TensorBuffer(void* data_ptr)
: data_(data_ptr), modified_(false), index_(0) {}
“TensorBuffer() override {}

// data() points to a memory region of size() bytes.
void* data() const { return data_; }

void set_modified(bool modified) { modified_ = modified; }
bool modified() const { return modified_; }

void set_index(int index) { index_ = index; }
int index() const { return index_; }

virtual size_t size() const = O;
[...]
private:

void* data_;

bool modified_;

int index_;

aQ .
3

Listing 4.5: Updated TensorBuffer class with the data_, index_, and modified_ fields. The
class now stores the data pointer directly.

4.3 Running learning tasks in parallel

4.3.1 TensorBow Session and input management

In order to build a system that is able to execute learning tasks in parallel, a new component
which controls the options and parameters for dispatching tasks must be introduced. In chapter
3, we motivated the need for introducing a new TensorBowSession class. Its design follows the
same principles as the DirectSession implementation, except it does not support any form of
partial runs. Partial runs allow the user to continue the execution of a graph with a different set
of feeds and fetches, which is not a major concern when training deep learning models for long
durations. Additionally, the API for partial runs is still experimental and subject to changes,
so we decided to focus on the core functionality.

The constructor of the TensorBowSession must initialise the CROSSBOW execution context,
required in all the subsequent calls to the CRossBow API. It contains logic for controlling the
state of the CROSSBOW engine in addition to its own session state.

Apart from handling user requests and dispatching tasks to CROSSBOW, another important
responsibility of the TensorBowSession class is managing model inputs and outputs. The
TensorBowSession has access to a vector of CPU allocated tensors which are given as inputs
to the Run function via the Python argument feed dict. Because it is aware of the number
of model replicas managed by CROSSBOW and the number of task handler threads available, it
will ensure that the data gets sharded so that each worker gets a different partition to work on.

After sharding, the data is transmitted using the TensorFlow call frame structure. The
corresponding kernel functions for passing arguments and returning results (namely ArgQOp and
RetvalOp) are modified to understand if the Compute request comes from the TENSORBOw
API and take care of data movement to and from the GPU.
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/* TensorFlow */
class OpKernel {
public:
explicit OpKernel(OpKernelConstruction* context,
std: :unique_ptr<const NodeDef> node_def);

virtual void Compute (OpKernelContext* context) = 0;
[...]
s

/* CrossBow */
typedef void (*crossbowKernelFunctionP) (void *);

Listing 4.6: Abstract class for kernel implementations in TensorFlow (above), compared to
CROSSBOW’s one (below).

typedef void *crossbowTensorflowKernelP;

3 typedef struct crossbow_kernel {

5

6

8

9

0

11

int id;
char *name;
#ifdef TF_CROSSBOW_INTEGRATION
crossbowTensorflowKernelP tfkernel;
#else
crossbowKernelFunctionP func;
#endif
} crossbow_kernel_t;

Listing 4.7: A CROSSBOW kernel stores a pointer to a TensorFlow kernel object

4.3.2 Kernel execution

In CrossBow, a kernel is registered as a function pointer. In TensorFlow, every kernel inherits
from the OpKernel abstract class and overrides the virtual Compute method to provide an
implementation. Getting a pointer to the Compute method directly is not a straightforward
task, so having access to the actual object instantiated by TensorFlow would yield a more robust
solution. Listing[4.6]shows the representation for kernels employed by each framework. We need
to find a suitable way for storing the TensorFlow kernel implementations and constructing this
additional OpKernelContext class instance which acts as a wrapper for all the arguments to
the Compute method.

TensorFlow instantiates the kernels when new executors are added into the session cache.
Those executors have a very efficient way of storing an immutable version of the computational
graph in a GraphView, coupling together graph nodes and the newly created kernels into a
NodeItem.

In order to get access to the kernels for each operator, we let the session create an executor
for each graph corresponding to a GPU device. Then, we inspect each NodeItem from the
corresponding executor using the graph topological order. This provides access to the kernel
instantiation which we can then register in the CROSSBOW runtime. A separate field had
to be introduced in place of the C function pointers. The tfkernel member has the type
crossbowTensorflowKernelP (i.e. voidx).

At this point, CROSSBOW has the complete information about the model variables and the
dataflow operators that need to be executed. The task scheduler threads can start execution as
soon as the session schedules any computations. Each thread will iterate over the dataflow and
call the TENSORBOW interface function when they need to schedule a particular operator.
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class OpKernelContext {
public:
struct Params {

// The op kernel being computed.
OpKernel* op_kernel = nullptr;
// The device on which the kernel is running.
DeviceBase* device = nullptr;
DeviceContext* op_device_context = nullptr;
// CrossBow kernel arguments
crossbowStreamP stream_info = nullptr;
// Make the OpKernel use a special allocator
Allocator* allocator = nullptr;

[...]

Listing 4.8: New members of the OpKernelContext class, stream_info and allocator, used
to isolate kernel computation to specific GPU streams

CROSSBOW creates a unique stream data structure for encapsulating the information re-
quired by any kernel. Our TENSORBOW interface keeps this structure, but it needs to make
this data structure available to the TensorFlow kernel objects. To achieve this, we augment the
parameters passed to each kernel execution with the stream_info pointer to the CROSSBOW
data structure. Listing[4.8shows the modified OpKernelContext class for passing parameters to
TensorFlow kernels. This method ensures that any information from the CROSSBOW runtime
is immediately accesible within TensorFlow operators and is used to decide when additional
operator logic should execute (e.g. replicating model variables).

One last consideration in terms of kernel execution is handling both synchronous and asyn-
chronous kernels. Subclasses of AsyncOpKernel expose both a ComputeAsync and a Compute
method which awaits the termination of the operation. Therefore, the TENSORBOW API can
call only the device Compute method to launch the kernel on a target stream. This enables us
to handle send and receive nodes. Although we avoided inter-device data transfers by skipping
graph partitioning, TensorFlow has no kernel for casting host memory to device memory. So, at
graph construction time, it inserts send and receive nodes to perform this type casting. There is
no risk in executing the receive node synchronously because the consumer will not block waiting
for the tensor. The data has already been produced by a previous operation.

4.3.3 Stream-safe memory allocation

A limitation of TensorFlow is that its GPU memory allocator cannot be used across streams
on the same GPU [49]. The default allocator is the Best-Fit with Coalescing (BFC) allocator.
TensorFlow creates one such allocator per GPU. The BFC allocator is responsible for managing
the entire device memory performing caching, memory defragmentation and buffer reuse to
improve performance.

When an operator requests from the BFC allocator to reserve memory to store its output
tensor, the allocator can decide whether to reuse an existing memory buffer, previously allocated
for a different operator but currently not used by any other; or, if none of the previous buffers fit,
allocate a new one. New allocation requests can also be directed to GPUcudaMallocAllocator, a
wrapper for CUDA driver memory allocation calls. CUDA driver calls are thread-safe. Memory
reuse decisions, however, by the BFC allocator are not. This is a problem when multiple threads
try to schedule dataflow operators concurrently on different streams on the same GPU, since
their output buffers can get mangled (e.g. overlap).

We had two options to overcome this problem. The first one was to avoid any memory
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Figure 4.2: Comparison between memory allocators in TensorFlow

reuse and use directly the GPUcudaMallocAllocator as the default allocator. The second one
was to create one allocator per GPU stream, each responsible for managing a separate memory
partition. We performed a comparison between the two types of allocators. Figure shows
the results. We observe that both allocators do not affect model convergence (Figure , but
their performance is very different: using the GPUcudaMallocAllocator results in 4x decrease
in throughput compared to the BFCAllocator. This happens because all calls to the driver are
synchronous and every operator makes one. Allocation time also has a high variance [5§].

We implemented the second option: replicate the BFCAllocator. We split the device mem-
ory into as many partitions as the number of stream groups, and instantiate one for each
partition. The GPUDevice class manages an array of allocators (accessible by a getter method).
There is a one-to-one mapping between an allocator and a stream group. The OpKernelContext
class, from where all memory allocation requests originate when a kernel runs, is also extended
to include a pointer to the allocator associated with the stream the kernel runs on (Listing |4.8)).

4.3.4 cuDNN handlers

NVIDIA cuDNN [59] is a library which provides GPU implementations of many primitives for
deep neural networks such as convolutions, pooling layers, and activation functions. To use this
API, an application has to initialise a handler to the cuDNN library that directs subsequent
library function calls to a particular stream on a device.

During device initialisation, TensorFlow creates one cuDNN handle per device, stored in a
corresponding CudnnAccess class. By default, threads access the handler via the GetHandle
method. This method will return a CudnnHandler, which is a RAII (Resource Acquisition Is
Initialisation) wrapper for the handler, protected by a mutex. This hinders performance when
running training multiple replicas per GPU because all cuDNN library calls made by different
threads will be eventually serialised.

To overcome this limitation, we preallocate multiple cuDNN handlers per GPU and store
them in the CudnnAccess class. The class now also caches requests for getting a cuDNN handler
coming from a particular thread (at the time associated with a particular GPU stream), keeping
a one-to-one mapping between handlers and GPU streams. By associating GPU streams with
handlers, cuDNN calls from different training tasks can run concurrently.

4.4 Parallel model synchronisation

We have enabled concurrent training of multiple model replicas on the same GPU. But all the
replicas need to be synchronised in an efficient with the SMA algorithm.
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For each model variable, TensorFlow inserts an optimiser operator in the computational
graph. The optimiser takes the model variable tensor and the gradient tensor as inputs and
applies the gradient to the model variable. After using the gradient, TensorFlow will mark
this node as complete and may reuse the memory allocated for its inputs. This is problematic
because it requires us to develop a solution that either stores a copy of the gradient in memory
or does the synchronisation among replicas on a per-variable basis. When an execution thread
reaches the point of executing an optimiser, we must perform all the necessary computations
for the SMA algorithm for this model variable replica since the gradient buffer may be reused
for one of the next operators.

For SMA (see Chapter [2, Algorithm , the optimiser’s Compute method performs the fol-
lowing local computations in order:

1) Calculates the difference between the current model variable and the average model vari-
able

2) Updates the model variable with the gradient; and

3) “Corrects” the model variable (i.e., it scales the difference computed in Step 1) and updates
the model variable again).

SMA then requires to aggregate the differences from all replicas. With more than one replica
per GPU, the cost of inter-GPU synchronisation scales with the number of model replicas. So,
we take advantage of locality and perform first an aggregation within a device (intra-GPU syn-
chronisation) and then choose only one execution thread per GPU to aggregate values across
devices (inter-GPU synchronisation). Threads that operate on the same device implement a
leader election mechanism to determine which one performs the intra- and inter-GPU synchro-
nisation. The leader is the last thread that computed the difference for a variable (thus, making
sure that results from other threads are in place).

Figure shows this process for two model replicas trained on the same device. The second
thread that updates its weights variable is the last, so it becomes the leader and performs the
local aggregation: it accesses all replicas via CROSSBOW’s model manager and computes the sum
of the differences for all the models located on the same device. It stores the result in a newly
created tensor which is used as input for an NCCL AllReduce operator [60] that aggregates
the differences across GPU devices. This operation is executed on a separate synchronisation
stream to overlap the AllReduce with the remaining computation. The process is identical for
all variables, only the leader is different. For the bias variable, for example, it is the first thread
that performs intra- and inter-GPU synchronisation steps.

4.5 Summary

The main challenges in implementing TENSORBOW are related to the fact that many crucial
TensorFlow components for GPU training (e.g. memory allocators, cuDNN handlers) were
designed under the assumption of training one replica per GPU. So, it was unsafe to use these
components concurrently by two or more GPU streams (and as a result, by two or more CPU
threads, scheduling operators on the same GPU).

We started from a TensorFlow feature that is currently considered “experimental” by the
community, that is, the ability to create multiple stream groups per GPU, and we extended it
to use those streams efficiently to train multiple replicas per GPU. With our changes it is now
safe to train multiple model replicas on the same GPU in TensorFlow and synchronise them
efficiently.
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Figure 4.3: Intra-GPU and inter-GPU variable synchronisation in TENSORBOW
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Chapter 5

Evaluation

The results in this chapter aim to support our design and implementation decisions presented
in the previous chapters. We first argue that training with a large batch size hinders statis-
tical efficiency. On the other hand, a small batch size takes a long time to reach the target
accuracy. We show that training multiple model replicas on a small batch size improves the
time-to-accuracy. TENSORBOW has better performance because of the SMA algorithm and
the improved hardware efficiency (Section [5.2). We show how the system scales in terms of
throughput when the number of GPUs increases (Section, when the number of model repli-
cas increases (Section and when the batch size increases (Section . Finally, we analyse
the effectiveness of our incremental synchronisation approach (Section .

5.1 Experimental Setup

Experiments are deployed on a server with 2 Intel Xeon E5-2640 v4 2.4 GHz CPUs (20 CPU
cores in total) and 64 GB of RAM. The server has 4 NVIDIA GeForce GTX Titan X (Pascal),
each with 3,072 cores and 12 GB of RAM, connected via PCle 3.0 (x16). It runs Linux kernel
4.15 with the NVIDIA driver 418.39. Experiments run in a Docker container with CUDA 10.0
and cuDNN 7.4.2. Our implementation of TENSORBOW extends TensorFlow version 1.12.

Workloads. We use different neural networks in our evaluation with varying depths and
model variable sizes. They are summarised in Table Logistic regression is the smallest of
the examples, but represents a type of workload that enables fast initial tests. The rest of the
models chosen are convolutional neural networks. LeNet is a conventional neural network with
a small memory footprint. The ResNet family of neural networks is one the most prominent
deep neural network architecture and is chosen because it is much more compute intensive than
the others.

The models used for every experiment to compare the two systems are identical: we use the
same hyper-parameters and variable initialisation. In all the experiments, we refer to a given
batch size as the batch size used to compute the gradients for each instance of the model.

5.2 The effect of small-batch training on convergence

The first set of experiments shows the effect of the batch size on model convergence. We show
that the best batch size is not always the one that yields the highest throughput. We train
ResNet-32 and LeNet on TensorFlow and perform a batch size exploration. The graphs show
the median test accuracy over the last 5 epochs, as in [5], to reduce the variation. Figure
shows that the best batch size for ResNet-32 to reach a target test accuracy of 80% is 256. In
Figure shows that by further increasing the batch size value to 1024, we observe a benefit
in throughput (10% more, from around 3,000 images per second to 3,300 images per second),
but the latter batch size never reaches an accuracy of 80% for the model in the first 80 epochs.
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Model Dataset Dataset size (MB) Model size (MB) # operators

Log. Regression MNIST 179.45 0.0314 65
LeNet MNIST 179.45 4.24 169
ResNet-32 CIFAR-10 703.12 1.79 2748

Table 5.1: Model and dataset characteristics used for evaluation.

ResNet-32 on TensorFlow, 1 GPU
100

Test accuracy (%)

TensarFlow batch size 32
TensorFlow batch size 64
TensarFlow batch size 128

207 —— TensorFlow batch size 256
—— TensorFlow batch size 512
—— TensorFlow batch size 1024
D T T T T
0 200 400 600 800 1000

Time (sec)

Figure 5.1: Batch size exploration when training ResNet-32 on 1 GPU with TensorFlow. Batch
sizes between 128 and 512 take approximately the same time to reach test accuracy 80% despite
the fact that training with bigger batch sizes results in higher throughput. By increasing the
batch size to 1,024, the model does not even converge to 80%.

Similarly, for LeNet, the best batch size for TensorFlow is 16 to reach a target test accuracy
of 99%. For a batch size of 8, training reaches 99% accuracy slower: in 934 seconds compared
to 536 seconds for a batch size of 16. For larger batch sizes, the model does not reach the target
accuracy after 100 epochs. Note that a smaller batch size has better statistical efficiency (i.e.
epochs to accuracy) but worse hardware efficiency (i.e. throughput). Our aim is to improve
both numbers.

We compare these findings with the best results obtained with TENSORBOW running SMA.
Figure[5.4shows the time to accuracy for TENSORBOW compared to the best result for TensorFlow.
With 1 replica, for the same batch size 16, the time to accuracy is almost identical. When train-
ing multiple replicas with a batch size of 4, SMA converges in just 382 seconds, decreasing the
time to accuracy by approximately 30%. The line for TENSORBOW with 1 replica and a batch
size of 4 shows how slow a single model converges for this batch size.

Figure[5.5|displays the statistical efficiency of the training process. We observe that a smaller
batch size gives a much better statistical efficiency in terms of epochs to target accuracy, at the
expense of a longer training time. Training with multiple replicas further improves statistical
efficiency. This is because multiple model replicas can explore a larger portion of the space
in parallel while the average model can reduce the variance among them, thus requiring fewer
epochs to find good minima.

With this example, we show that by training multiple model replicas we get a benefit in
hardware efficiency, increasing the performance of a very small batch size even further, without
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ResNet-32 on TensorFlow, 1 GPU
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Figure 5.2: Test accuracy over time when training ResNet-32 on 1 GPU with TensorFlow. Up
to a batch size of 256, the statistical efficiency improves. Any higher value (e.g. 1,024) hinders
the convergence of the model.

hindering its statistical efficiency. This experiment shows that TENSORBOW can improve both
the statistical efficiency and the hardware efficiency for LeNet, resulting in better overall time-
to-accuracy.

5.3 The effect of training multiple replicas per GPU

In this section, we evaluate the scalability of the system as the number of replicas trained
per GPU increases. We show the hardware efficiency results for logistic regression, LeNet and
ResNet-32 when training multiple models in parallel. For each model, we execution the dataflow
graph (i.e. computes the gradients and updates the model variables) but we do not perform
any synchronisation.

Figure |5.6| compares TensorFlow and TENSORBOW training a logistic regression model with
the MNIST dataset on 1 GPU with batch size 16. We measure the throughput as the number
of stream groups (and, consequently, the number of available computational GPU streams)
increases. TensorFlow trains a single model on the device irrespective of the number of streams
available. Even for such a small model, the throughput decreases slightly with the number of
streams due to its stream placement strategy, which induces additional dependencies between
datafloe nodes. For example, constant operators such as the learning rate are placed on a
new stream, even though they are required on every iteration. Overall, this default placement
strategy is not scalable and does not fully take advantage of the available GPU streams.

On the other hand, TENSORBOW will train a model replica on each of the available stream
groups. Despite having to do some extra computations (by executing each operator multiple
times, once per replica) this strategy yields much better hardware efficiency. This is the result
of using the CrROSSBOW task scheduler which is very efficient for small tasks.

Next, we show the results for the convolutional models, ResNet-32 and LeNet. In Figures
and we use box plots to summarise results from 5 different runs. In the plots, the edges
represent the lower and upper quartile values of the throughput, the red line shows the median
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LeNet on TensorFlow, 1 GPU
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Figure 5.3: Batch size exploration when training LeNet on 1 GPU with TensorFlow. Only batch
sizes 8 and 16 converge to the 99% test accuracy target within 100 epochs of training. Batch
size 16 converges the fastest.

and the whiskers extend to £1.5x the interquartile range.

Figure shows the scalability of training ResNet-32 on TENSORBOw. In this experiment
we vary the number of replicas trained on 1 GPU and we monitor the throughput. Using 2
replicas on 1 GPU gives an improvement of more than 43% in the average throughput. Going
from 2 to 3 replicas further improves throughput by 10%, but the throughput drops slightly in
the case of 4 replicas. Being a compute-intensive model, ResNet-32 training causes stragglers to
appear. The throughput starts to saturate because having many replicas introduces stragglers
since we need to wait for all parallel tasks to complete before returning the result of the iteration
to the user. Nonetheless, this experiment shows that TENSORBOW can improve the training
process on 1 GPU for a compute-intensive model. To achieve the best performance for this
model and any larger networks, it is important to identify the right number of model replicas.

A similar behaviour can be observed in Figure when training LeNet. We focus only
on the 1 GPU case because the size of the model is small and the iteration time is short even
for 1 replica (less than 2ms per task). For 1 model replica, the throughput is already higher
than TensorFlow (13,000 images per second compared to 8,700 for TensorFlow). This is caused
by the faster scheduling of CrROSSBOW, which becomes critical for small-sized tasks like the
ones created for LeNet. We can again observe that adding more model replicas improves the
training throughput. Going from 1 to 2 replicas gives an increase of more than 51% in the
average throughput. Increasing the number of replicas further, we can observe that the benefit
is always around 10% when looking at the mean. For this model, we can scale up to 8 model
replicas without affecting the performance.

In summary, this set of experiments shows that we can significantly improve the throughput
for all the tested networks on 1 GPU.
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LeNet, 1 GPU
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Figure 5.4: Time to reach test accuracy 99% when training LeNet on 1 GPU. TENSORBOwW

outperforms the best result for TensorFlow when training 3 replicas with a batch size 4 because
it improves both hardware efficiency and statistical efficiency.

LeNet, 1 GPU
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Figure 5.5: Statistical efficiency, measured as the number of epochs to reach test accuracy
99%, when training LeNet on 1 GPU. A batch size of 4 has better statistical efficiency than

bigger batch sizes. TENSORBOW further improves it by training multiple model replicas and
synchronising them with SMA.
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Logistic Regression, 1 GPU, batch size 16
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Figure 5.6: Comparing TensorFlow and TENSORBOW hardware efficiency when training logistic
regression on 1 GPU with batch size 16 as we vary the number of stream groups per GPU.
TensorFlow cannot take advantage of the multiple streams, while TENSORBOW can.
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Figure 5.7: TENSORBOW’s hardware efficiency when training ResNet-32 on 1 GPU with batch
size 32. Beyond 3 model replicas, there is no further improvement in training throughput.
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TensorBow on LeNet, 1 GPU, batch size 32
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Figure 5.8: TENSORBOW’s hardware efficiency when training LeNet on 1 GPU with batch size
32. The system manages to increase the throughput with multiple model replicas because of
the small network size and very fast scheduling.

5.4 Scaling to multiple GPUs

We established how TENSORBOW scales the training throughput as the number of streams
increases for 1 GPU device. In the next experiment, we evaluate how its scales as the number
of GPUs increases. We use ResNet-32 for this experiment, since the other models are too small
to scale to multiple GPUs. Figure shows the results. We fix the batch size to 32. The
blue line represents the throughput obtained by training the model on TensorFlow with 1 GPU
at 1,062 images per second. Looking at TENSORBOW’s throughput for 1 model replica (black
bars), running on 2 GPUs results in almost a linear increase: from 1,109 to 1,949 images per
second. On 2 GPUs with 2 model replicas each, we observe an improvement of 32% in hardware
efficiency, just a few percentages below the improvement we observe for the 1 GPU case (39%).

On 4 GPUs and a single model replica on each the training throughput is identical to
having 2 GPUs with 2 model replicas. The benefit is sublinear when comparing with the 1
GPU case because of the scheduling overhead caused by working with small tasks. We can
further improve these results by setting the thread affinity, splitting execution threads across
CPU sockets. Training 2 model replicas on each of the 4 GPUs improves the performance by
35%. Therefore, we can conclude that the relative increase in throughput remains constant as
we scale out from 1 to 4 GPUs.

5.5 The effect of batch size

In the previous experiments, we analysed hardware efficiency when training with a small, fixed
batch size. We now study the effect of increasing the batch size. Figure [5.10] shows how
TENSORBOwW and TensorFlow perform when training ResNet-32 on 1 GPU for various batch
sizes. We consider TENSORBOW with 1 and 2 model replicas.

For a small batch size, below 128, the performance of TENSORBOW with 1 replica is on par
with the numbers for TensorFlow. This shows that the overall system overhead (e.g. the one
introduced by the additional operators due to model averaging) is negligible compared to the
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Figure 5.9: Scaling TENSORBOW to multiple GPU devices. The blue line represents the perfor-
mance of TensorFlow on 1 GPU. Irrespective of the number of devices, we observe an increase
in throughput when training a second model replica per GPU.

task size. In all those cases, by adding a second model replica on the same device we increase
the throughput by more than 40%.

Moving to a batch size of 128 or higher, we still see an improvement in hardware efficiency
by adding a second model replica, but the improvement is just over 22% for a batch size of 128
and 256. The reason for this behaviour is that a bigger batch size translates to more compute-
intensive kernels. There is less room for concurrency as fewer GPU resources are left unused by
one operation.

5.6 Synchronisation Overhead

In this section we evaluate the intra- and inter-GPU synchronisation overhead of the SMA
algorithm to understand the effectiveness of our incremental synchronisation implementation
and how much we deviate from the ideal performance.

Intra-GPU synchronisation. In Figure[5.11] we show the throughput when training LeNet
as we vary the number of model replicas on 1 GPU. We compare the case where no synchroni-
sation between models occurs with the case of intra-GPU aggregation. The throughput drops
only slightly. The biggest decrease is for the case of 2 model replicas, from 19,175 images per
second to 15,405 images per second, which represents a decrease of less than 20%. All the other
cases have show a better result, so overall our implementation is reasonably efficient.

The same experiment for ResNet-32 gives a better result because of the increased depth of
the model. In Figure[5.12] the blue line shows the baseline for running the model on TensorFlow.
Having much more operations reduces the impact of intra-GPU synchronisation. For 2 model
replicas, the throughput drops from 1,458 images per second to 1,435 images per second, a
decrease of less than 1.6%. For 3 model replicas, the throughput is 1,585 images per second
compared to 1,753 images per second with no synchronisation, which represents a less than 10%
decrease. Overall, the results for ResNet-32 are much better than the ones for LeNet and both
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Impact of replicas on throughput of ResNet-32
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Figure 5.10: Training throughput when training ResNet-32 on 1 GPU with varying batch sizes.
Small-batch training takes advantage of the resources available, and increases the throughput
by training a second model replica on the GPU. For larger batch sizes, there is less room for
improvement because each operator works on more data, therefore becomes more compute-
intensive.
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Figure 5.11: Intra-GPU synchronisation overhead when training LeNet on 1 GPU. The overall
cost is at most 20% because the model is small and the task duration is short.
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Impact of synchranisation on throughput
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Figure 5.12: Intra-GPU synchronisation overhead when training ResNet-32 on 1 GPU. The
overall performance penalty is small because the model is very deep.

experiments show a manageable overhead for intra-GPU synchronisation.

Inter-GPU synchronisation. To measure the inter-GPU synchronisation, we compare the
performance of TENSORBOW on 2 GPUs with 1 and 2 model replicas with the ideal baseline for
training independent models (Figure . We observe that the overall performance decreases
by about 50%, but the relative increase in throughput by adding a second replica on each
device remains constant. The inter-GPU synchronisation overhead is unavoidable because of
the NCCL operators. We measured the performance of TensorFlow when training ResNet-32
with the same batch size on multiple devices as well. We observed a decrease in throughput of
more than 30% with NCCL.

Overall, given that the relative performance increase stays almost constant in all scenarios,
the synchronisation implementation does not induce unnecessary bottlenecks. We can further
improve the numbers of our TENSORBOW implementation by grouping variables together to
minimise the number of NCCL AllReduce calls issued or by moving the entire synchronisation
step at the end of a learning task.

5.7 Summary

The experimental results presented in this chapter validate our design decisions and implemen-
tation choices and show that GPU resources can be better utilised if more than one model replica
is trained concurrently. TENSORBOW performs on par with TensorFlow when training 1 model
replica per GPU for large neural network models and better for smaller models. Irrespective
of the network size, we show an improvement in the hardware efficiency by at least 43% when
collocating a second model replica on the same device. The intra-GPU synchronisation over-
head is also negligible for compute-intensive models. The inter-GPU synchronisation induces an
additional overhead which is not a bottleneck of the algorithm used. We can attempt additional
techniques such as variable grouping to close the performance gap when communicating across
devices.
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Figure 5.13: Inter-GPU synchronisation overhead in TENSORBOW. The relative gain by training
a second model replica per GPU remains constant.

While these results illustrate that increasing the number of model replicas per GPU can be
beneficial to reduce the training time, they also show that identifying the correct number of
replicas becomes crucial to reach the best performance.
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Chapter 6

Conclusions & Future Work

This project presented some of the current problems faced by deep learning systems. Researchers
are still building systems where they choose a batch size that helps improve resource utilisation
and scale out in terms of throughput, without considering the effect it has on convergence. Any
loss in precision must be compensated by the algorithms used.

With TENSORBOW, we add better support for small batch training in TensorFlow. We make
the necessary changes to support this safely within the TensorFlow infrastructure. Overall, we
show a possible design for how to build a system where, irrespective of the batch size, we aim for
a constant hardware utilisation that is as high as possible. By training multiple model replicas
per device, we take advantage of the free resources and we can aim to improve both hardware
efficiency and statistical efficiency.

We advocate that any future machine learning system should follow a model-oriented data-
parallel design since it helps implementing and testing new training and synchronisation algo-
rithms and does not restrict any of the existing ones. We now describe how we can extend our
prototype to support other components of the TensorFlow ecosystem.

XLA. Accelerated Linear Algebra (XLA) [57] is a compiler capable of optimising computa-
tions specified in TensorFlow. It takes as input a dataflow graph, specified using the TensorFlow
API, and replaces all the operations with a sequence of auto-generated operators. The new
computation graph is described using a protocol buffer and passed to a TensorFlow Session
for execution. This protocol buffer does not differ much from the standard one. Any actual
modifications happen within the Session class during the optimisation phase. We execute
this phase during our TensorBowSession initialisation as well. But we need to study if all of
the XLA operations are capable of running on TENSORBOw. It is very likely that the XLA
target-independent optimisations can be incorporated. However, the XLA can perform spe-
cific optimisations to partition a sub-graph across streams. Such steps would require special
considerations in order to retain the ability to train multiple replicas per GPU.

Distributed TensorBow. We will further study if improving single-node performance of
the training system benefits distributed training. This is an interesting question because the
overall scalability of distributed training may be bounded by local resources and single machine
capabilities in certain scenarios [46]. To address this, the synchronisation mechanism is the
main component which needs to be revisited. It remains to be seen how this component can
be adapted. The intra-GPU aggregation will continue to happen transparently. For inter-
GPU aggregation, the model replicas or gradients need to be exchanged over the network.
NCCL already provides support for doing inter-GPU aggregation between different machines,
so TENSORBOW can be further extended to support this.

Support for large models. Many modern neural network architectures have memory re-
quirements which exceed the capabilities of a single GPU. TensorFlow now has support for
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performing memory swaps during training via special operators [47]. Those operators can be
adapted and tested for multiple model replicas to support training large neural networks.
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Appendix A

Project Setup

CroOsSBOW had to be integrated with TensorFlow as a library so that TensorFlow can use
CROSSBOW’s model manager and task manager. We achieved this by exposing CROSSBOW’s C
API directly to TensorFlow using the extern "C" {} directive and bypassing the JNI header
files used

Bazel [61], the tool used to compile TensorFlow, is very strict with the location of the
files included in the build. We created special BUILD files, so that TensorFlow was aware
of the newly introduced dependency, CrROSSBOW. The dependency were introduced in the
third-party/ folder, which contains various other extensions and tool-kits (e.g. the JPEG
image library). Additionally, we added an 1d.config entry to the linker locate the CROSSBOW
shared dynamic library at run-time.

Finally, the easiest way to enable GPU support for TensorFlow is to use Docker, since it
reduces the number of steps required for setup. The only requirement is having the NVIDIA
GPU drivers installed on the host. Then, any Docker image using nvidia-docker as the base
image has appropriate GPU support. We developed a new Docker file to create an image that
contains all the necessary dependencies for both TensorFlow and CROSSBOW.
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