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Abstract

JavaScript Skimmers are a new type of malware which operate by adding a
small piece of code onto a legitimate website in order to exfiltrate private
information such as credit card numbers to an attackers server, while also

submitting the details to the legitimate site. They are impossible to detect just by
looking at the web page since they operate entirely in the background of the
normal page operation and display no obvious indicators to their presence.

Skimmers entered the public eye in 2018 after a series of high-profile attacks on
major retailers including British Airways, Newegg, and Ticketmaster, claiming the

credit card details of hundreds of thousands of victims between them.

To date, there has been little-to-no work towards preventing websites becoming
infected with skimmers, and even less so for protecting consumers. In this

document, we propose a novel and effective solution for protecting users from
skimming attacks by blocking attempts to contact an attackers server with
sensitive information, in the form of a Google Chrome web extension. Our

extension takes a two-pronged approach, analysing both the dynamic behaviour of
the script such as outgoing requests, as well as static analysis by way of a number
of heuristic techniques on scripts loaded onto the page which may be indicative of

a skimmer.
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1 Introduction

You have an unexpected business trip to Asia next week, but still need to find and purchase
the flights for the journey. You visit and log on to your preferred airline’s website, and
begin to look for a convenient itinerary. You come across the perfect flights, and proceed
to input your credit card details in order to pay. You are fairly tech savvy and in your
mind, you have no doubt that this is a safe, legitimate website – you noticed that the web
browser is displaying the usual green padlock icon, which you know indicates that the site
is being served securely and so is impossible to intercept over the wire. You are certain
that you are not visiting a fraudulent website – after all, you navigated to the website
directly! You submit the form, receive your order confirmation, and end your session.

Not long after your business trip concludes, you receive your most recent credit card
statement in the mail and notice some suspicious-looking transactions – purchases you
definitely didn’t make. But, how could this be? Surely the reputable, established airline
didn’t sell your card details, so how were your details stolen?

The airline website had been compromised with what is known as a JavaScript skimmer,
a malicious script that is added onto real websites to secretly steal customers’ informa-
tion. In fact, this exact scenario took place in the summer of 2018 when attackers went
undetected for over two weeks after successfully inserting a JavaScript skimmer on the
British Airways website, with current estimates of up to 380,000 customers having their
private information stolen [1].

A JavaScript skimmer is a malicious piece of JavaScript code inserted by an attacker
onto a website. Taking their name from the analogous ATM skimmers found in the
real world whereby criminals place counterfeit hardware onto real cash machines to steal
credit card information, the purpose of a JavaScript skimmer is to exfiltrate sensitive user
information entered on a legitimate website – such as credit card information – without
arousing suspicion from the user; In addition to the intended recipient, your private data
is secretly sent to a malicious third-party.

These so-called skimming attacks are sometimes referred to in other literature as form-
jacking [2], JS-Sniffers [3], or Magecart attacks [4], owing to the fact that they were first
widely identified in use on sites running the Magento software.

While other types of attack such as phishing rely on social engineering or the installation
of malicious software on a machine, one key distinction of a skimming attack is that it
is carried out directly on the target website rather than a replica (as would be the case
with phishing). This means that it is virtually impossible for the average consumer to
determine whether a website is infected and difficult even for security researchers because
it will appear visually identical to the uninfected version and other ‘telltale’ indicators of
an attack or scam such as the SSL certificate and the URL will also remain the same as
if the website were uninfected [4]. It is for this reason that attacks such as the one on
British Airways took so long to be discovered.
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Figure 1: Number of websites identified by Symantec as containing skimming code between 13th
August and 20th September 2018 [2]

.

1.1 Motivation

The number of discoveries of this relatively new breed of attack has increased dramatically
over the past year. In September 2018, security firm Symantec reported seeing 88,500
skimming attacks in a single week, up from just 41,000 a month prior [2]. Further, in the
weeks between 13th August and 20th September 2018, a third of all skimming attacks
were found in the final week, indicating a clear increase in activity [2].

The number of ‘high-value’ attacks is also on the increase as attackers move away from
targeting smaller online shops running off-the-shelf e-commerce platforms such as Ma-
gento and instead towards larger websites with more potential for data theft due to a
greater number of purchases being made but with more difficulty to breach due to using
proprietary or hardened systems. In 2018 alone, attackers used JavaScript skimmers to
steal user information from the websites of airline British Airways, ticket broker Ticket-
master, push notification service Feedify, hardware retailer Newegg, and optical retailer
Vision Direct, to name just a few [5].

Not only do skimming attacks put consumers at risk of fraud, but there is also a significant
incentive for businesses to avoid becoming victims of this type of attack too [6]. As well
as harming consumer confidence and trust in their brand [3], with new laws such as
the General Data Protection Regulation (GDPR) which came into force in the European
Union in 2018 and the Data Protection Act in the United Kingdom, companies can receive
extremely large fines for leaking users’ information, either intentionally or by accident.

As a result of their data breach in 2018, British Airways received a group action lawsuit
from law firm SPG Law which could mean the airline has to pay out upwards of £500
million in compensation to affected customers [7]. In another case of data misuse, preg-
nancy club Bounty received a £400,000 fine by the Information Commissioner’s Office in
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April 2019 for misusing user information [8]. Penalties for GDPR violations can be up to
e20 million, or 4% of annual global turnover [9] which has the potential to be financially
crippling for a business of any size.

Current attempts to identify and prevent skimming attacks are few and far between –
even more so for consumer-focused products. One tool from security consultant Willem
de Groot [10] is tailored to work on sites running Magento and has successfully identified
over 40,000 targets since 2015. However, it is works based on identifying known signatures
(e.g. properties of skimmers) meaning that it requires manual updating of records like
suspicious domains (e.g. ‘burner’ domains designed to be used for one target). While this
technique works well for identifying similar attacks used on different websites, it does not
work so well for catching new skimmer variants, and requires a human to identify and
add new variations as they come into use. For example, the scanner could be thwarted
by the attacker registering a new burner domain or using a different type of obfuscation.

1.2 Objectives

The primary objective of this project is to design and implement a system that can,
when presented with a web page, determine whether or not it has been infected with a
skimming attack and stop the malicious code from executing by searching for suspicious
JavaScript code in the page and monitoring network traffic when data is entered into form
fields and/or submitted to see if data has been transmitted to a third party. The product
will not have access to the backend of any website and should work passively, relying on
minimal-to-no human interaction.

Further, the project should be a piece of software that end users can install on their
systems to provide them with protection from websites that are infected with JavaScript
skimmers, similar to antivirus software.

The project should also:

• Have a high precision rate as well as a high recall. In other words, there are minimal
infected sites that go undetected (false negatives), and very few benign sites that get
marked as malicious (false positives). Ideally, we would like to minimise the number
of false negatives to ensure that no user information can be leaked, potentially at
the expense of more false positives.

• Be able to classify a website in a shorter time than a human could reasonably
be expected to do so. Since there is currently no automatic or standardised way
to manually check for skimming attacks, this could potentially be in the order of
minutes for a human at present. The project should ideally lower this figure down
to seconds.

• Not modify and hinder the core functionality of websites and be as lightweight as
possible to only detect and block skimmers, with no other effects on the browsing
experience.
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1.3 Contributions

In the remaining sections of this paper, we outline a novel and what we understand to be
a first-of-its-kind solution for detecting and blocking JavaScript skimmers in the form of
a Google Chrome web extension that is able to protect users from JavaScript skimming
attacks by listening to network traffic (Section 3.4) and utilising a number of heuristic
approaches (Section 3.5) in order to block outgoing requests to attacker-owned servers
and prevent data leakage on internet checkout forms.

We also discuss a method for determining sensitive information on a page (Section 3.3),
and alternative ways of detecting skimmers in future work (Section 3.6).

Finally, we evaluate our extension (Section 4) and show how it is able to automatically
block outgoing requests from skimmers with a high precision and recall, finding very few
false positive and false negative results. We also simulate historically notable skimming
attacks such as those found on Newegg and British Airways to demonstrate how our exten-
sion would have protected users from surrendering their private information to attackers
if it were to be installed on their web browsers at the time (Section 4.3).

9
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2 Background

2.1 Anatomy of a Skimmer

As previously mentioned in Section 1, a JavaScript skimmer is a form of confidentiality
attack that utilises a piece of malicious JavaScript code embedded in a legitimate website
to secretly send personal information such as date of birth, address, and credit card details
to an adversary. Although similar, this is distinct from a phishing attack which works by
making use of a counterfeit website created by an attacker to imitate a legitimate website
or brand, and tricks the victim into believing they are on the real website so they will
divulge their private information. Typically, social engineering will also be used to put
pressure on the phishing victim such as including a link to the phishing site in a forged
email about unrecognised activity, for example (Section 2.6).

2.1.1 Injection Method

In order to carry out a skimming attack, some method of injecting code into a target
website is required such that the skimmer script can be added onto the web page in the
first place. There is no single way of doing this and it depends on the how the target
website is architected and the underlying software it uses. Skimmers may be injected
directly onto the target website’s server by a rogue employee from within the company
or by exploiting a vulnerability in an e-commerce platform such as a cross-site scripting
(XSS) attack. Skimmers could also be inserted onto a site by exploiting a third-party
resource in what is known as a supply-chain attack; For example, if a JavaScript library
hosted on a CDN was exploited by way of a skimmer inserted into its code, any website
which imported the resource would be vulnerable to a skimming attack. In the case of
the British Airways attack, it is still not publicly known how the skimming script was
included on the checkout page in the first place, although several online commentators
speculate that it could be due to a vulnerability in their content management system [11].

Further, in October 2018 at least 20 Magento extensions1 were revealed to contain zero-day
vulnerabilities (i.e. weaknesses that have not previously been discovered or published) that
gave attackers the ability to inject code into other websites using PHP Object Injection
[12].

Preventative measures to stop a skimmer from being injected into a website are out of
scope for this project and instead we choose to focus on their detection after they have
been injected.

1Magento extensions are small pieces of software that extend the functionality of the Magento software.
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2.1.2 Attack Families

Skimming scripts come in many forms and are written and distributed by many different
hacking groups worldwide, with some clearly inspired by existing skimmers, while others
are completely unique. For this reason, it is difficult to separate and categorise different
attack families into a definitive taxonomy. According to California-based cyber security
firm RiskIQ, there are at least seven distinct forms of JavaScript skimming attacks which
vary not only by technical implementation but also by the types of site targeted and the
tactics the hackers use, with a further five variants not currently published publicly. On
the other hand, Russian cyber-defence firm Group-IB, claims to have found upwards of
38 unique skimmer families [3]. However, these numbers are growing as more attackers
begin to utilise skimming attacks, and others create new ways to target their victims and
avoid detection from security researchers [5]. For the purposes of this project, we are only
concerned with the technical details of the skimmers, and not what the attackers do with
the information they steal.

For ease of discussion, we focus on the taxonomy as defined by RiskIQ due to the relatively
small number of classifications and the clear differences between each group.

The following subsections contain details of different groups of skimming attacks, as de-
fined by RiskIQ [5]:

2.1.2.1 Group 1 & 2 Skimmers

Group 1 skimmers were one of the earliest variants found in use, having been first identified
in 2015 [13]. They typically have a wide spread and target many different websites by
looking for flaws in common software that the websites use, such as e-commerce software
like Magento or WooCommerce.

An example of a group 1 skimmer is shown in figure 2. The code works by first examining
the URL of the page to check if it is running on a checkout or payment page – if so, it will
select all input fields on the page (including fields of interest such as credit card number,
expiration date, and CVC/CVV [14]), before sending off the data via an AJAX request
to the attacker-owned website, sometimes know as a drop server. The data is serialised
into a query string with each input name acting as the key and the input contents as the
value. In the example shown, the data is sent in plaintext without any prior encryption
or encoding. It will repeat this process at regular intervals, for example once every five
seconds.

Functionally, group 2 skimmers also behave in the same way. They are awarded a different
classification by RiskIQ due to the way in which scammers handle and use the stolen
information once they have retrieved it.
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Figure 2: A snippet of typical type 1 skimmer code from RiskIQ. [5]

Key points:

• Only runs on specific, targeted URLs (i.e. checkout pages).

• Sends a POST request to an attacker-controlled website regularly with input data.

• Often only starts sending data if input fields are populated.

2.1.2.2 Group 3 Skimmers

Group 3 skimmers are another type of skimmer that aim to target more generally and
broadly so as to try to maximise the number of infected websites and users falling victim
to the attack. Instead of checking for a payment page by analysing the hostname, they
instead look for form fields on the page that match specific CSS-style selectors, allow-
ing to filter elements by HTML tag, input type, id, and so on. An example of this is
input#cc number which would only target input elements with the id attribute set to
‘cc number ’.

From one example RiskIQ found, in addition to creating lists of selectors for things like
generic credit card form inputs, the attackers had also added some targeted field names
for specific payment processing providers like Paypal, Braintree, and Stripe.

The code checks for billing forms on the targeted website at regular intervals and stores

12
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the values of the inputs in the browser local storage. It then does the same for shipping
forms and stores that information in local storage, as well. The data is stored to account
for multi-page checkout processes and makes sure that the attacker can retrieve data that
was entered on previous pages of the checkout process before sending all the amassed data
in one batch. Once the form reaches the final page, the data is sent to the attacker in an
AJAX request similar to in types 1 & 2.

Key points:

• Specifically concerned with the selectors for the inputs and form tag.

• Stores user information in the browser local storage.

• Will not execute if form fields do not match pre-programmed selectors.

2.1.2.3 Group 4 Skimmers

Group 4 skimmers are much more advanced than the three previously discussed. The
malicious scripts often mask themselves as benign-looking files such as images (e.g. with
a PNG file format), and will only return malicious code if requested with a natural-looking
user agent and a referrer header from one of the targeted websites. This is an anti-analysis
technique used by skimmer authors to make it more difficult for researchers and users to
analyse the behaviour of the script in isolation. If the referrer header is unrecognised
by the attacker, some benign code will be served instead such as a JavaScript library.
In addition, this type of skimmer employs various other anti-analysis techniques such
as checking whether the web browser developer console is opened (such as the Chrome
web inspector or Firebug on Firefox), or whether the website is being accessed from a
mobile device. This is somewhat similar to the anti-analysis techniques used in traditional
malware which do not exhibit their usual behaviour when they detect that they are being
run within a virtual machine sandbox environment [15].

Distinct from groups 1, 2 and 3, the malware will construct a unique URL for the drop
server by rotating through a list of attacker-owned domain names, and append a ran-
dom key to the end. These attacker-owned domain names are often designed to appear
legitimate by taking a name similar to that of the target website, as in table 1.

Once the skimmer is certain that it’s on a checkout page using the same method as in
groups 1 & 2, it hijacks the submit button of the page (or the form submission event
itself) and creates a replacement payment form to perform the skimming on, hiding the
real form. This is different to the previous three variants which simply utilise the existing
payment form, and is likely so that the attackers can steal user data in a standardised
format across lots of websites which would usually have distinct checkout form fields.
Some variants of group 4 even include their own rudimentary field validation to ensure
that the user has inputted a valid credit card number. This can be as simple as checking
the length of a field to check whether it is the length of a CVC number, whereas more
sophisticated skimmers go as far as to implement the Luhn algorithm to verify the credit
card checksum.

13
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Legitimate website Impersonation domain
britishairways.com baways.com
newegg.com neweggstats.com

magento.com
magemarts.com
magento-analytics.com
magento-cdn.top

jquery.com
jquery-cdn.top
jquery-libs.su
jquery-min.su

google-analytics.com
g-analytics.com
google-anaiytic.com

doubleclick.com doublecllck.com

Table 1: A selection of malign domain names (right) registered by attackers for hosting skimmers
and functioning as drop servers, with their legitimate counterpart [10].

Key points:

• Requires specific referrer headers and user agent in order to expose itself.

• Recreates the entire (payment) details form.

• Includes anti-analysis code such as looking for developer tools or filling in forms too
rapidly.

2.1.2.4 Group 5 Skimmers

Group 5 skimmers tend to target third-party advertising and analytics services in order to
perform supply chain attacks – the same technique which resulted in Ticketmaster falling
victim to a skimming attack after the third-party service Inbenta was compromised. The
skimmer begins by looking at the URL of the page to determine if it is on a checkout page;
If it isn’t, it will not activate. However if it is, the skimmer will attach event listeners
to every input on the page in order to capture and store the value of a field when it is
interacted with by the user. It will then send the stolen data to the drop server in a
similar manner to before. Often, the skimmer operates on a timer (using setTimeout or
setInterval functions in JavaScript) so that data is exfiltrated at regular time intervals.
This ensures that the attacker will receive data even if the victim abandons their session
part way and never submits the form.

In 2018, a real-time push notification service called Feedify fell victim to a supply chain
attack as described above [3]. Over 60% of websites using Feedify were e-commerce
websites, providing an effective and lucrative platform for the attackers to steal user data.
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Figure 3: An unobfuscated version of the type 6 skimmer used in the British Airways hack [1].

Key points:

• Sends data to drop server at regular intervals.

• Adds event listeners to all form fields.

2.1.2.5 Group 6 Skimmers

Group 6 skimmers have relatively simple code compared to the other types, however they
are specifically tailored for certain (and usually high-profile) websites which indicates that
the attackers have a fairly sophisticated understanding of the inner workings of the site.
Both the Newegg and British Airways attacks fall under type 6.

Group 6 skimmers work by binding the submit button of a payment form with an event
listener which, when pressed, will cause the form data to be serialised as JSON. It is then
sent through an AJAX POST request to the drop server, typically without any modifications
although sometimes with a basic encoding such as base 64.

Figure 3 shows code used in the 2018 British Airways hack sending user data to the
attacker-controlled domain baways.com from table 1.

Key points:

• Serialises all form data before sending to drop server.

• Only sends data once, when submit button is pressed.

• Drop server domain is often similar to target website domain to blend in.
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2.1.2.6 Group 7 Skimmers

Group 7 skimmers are different from the other six variations in that they do not use an
attacker-controlled website to host the skimmer or as a drop server for the exfiltrated data.
Instead, the skimmer code is hosted directly on the compromised website in a script tag,
and the personal information is sent to another compromised websites by making GET

requests for image files with the data encoded as a base 64 URL parameter which has
been concatenated together.

A key distinction is that all previous skimmer types use POST requests and a specific
domain for the purpose of skimming, whereas group 7 does not.

Key points:

• Often GET requests images with user data encoded in URL.

• Sometimes includes validation to only send if form fields have been populated.

2.1.3 Obfuscation Techniques

Unlike other types of malware which may operate on the server side, skimmers are written
in client-side JavaScript and so their source code is accessible to anybody visiting an
infected website. Because of this, skimmer authors often go to great lengths to obfuscate
their code – that is, intentionally distort and modify the source code such that it retains
the same behaviour but is difficult for humans to read and understand what the code
actually does [16].

Although many malicious scripts tend to be obfuscated by their authors (cryptojackers,
heap spraying attacks, skimmers, etc.), the presence of obfuscation does not necessarily
imply that a script is malicious; There are legitimate reasons for authors to obfuscate
their code such as attempts to hide the functionality of proprietary software or to hide
email address from web crawlers, for example [17].

Often, attackers will employ techniques such as string splitting to avoid signature-based
detection systems (which look for certain strings in a file) from picking up on keywords
that could potentially lead to the scripts detection. For example, the string "Hello

world" could be split into several smaller strings and then concatenated together like
"Hel" + "lo w" + "orld". Another common technique is to use escape sequences to
type characters in a different way. For example, the string "\x68\x65\x6c\x6c\x6f"
which uses hexadecimal representations of ASCII characters decodes to "Hello", again,
to avoid signature-based detection [18]. An example of a more advanced technique involves
tokenising an entire file and replacing each token with smaller, equivalent base 62 numbers
(base 64 without special characters) to hinder readability and for compression. Others
may even intentionally add dead code blocks (blocks of code which are unreachable by
the program) to further misdirect those attempting to make sense of the code.

Obfuscation detection is a popular area of research which has seen various attempts at
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generating a good system for detecting obfuscated scripts – with varying levels of success.
Choi et al. [19] developed a system that takes into account features like the size of strings,
reasoning that obfuscated scripts are more likely to contain a large number strings over 40
characters in length. They also use unigrams to measure the frequency of each byte code in
a string, and calculate the entropy to analyse the distribution of said characters. Likarish
et al. [20] instead chose to focus on the script as a whole, and apply classification based
on 65 different features including number of functions called, percentage of whitespace,
number of comments, and number of octal and hexadecimal numbers.

Some research has even attempted to classify obfuscated code by distinguishing between
benign and potentially malicious scripts. Blanc et al. [17] recognise that many obfuscation
detection systems automatically assume that obfuscated code is malicious, which is not
always the case, and attempt to identify unique features present in benign and malicious
obfuscated code respectively. They convert the source code into an abstract syntax tree
(AST) and characterise different subtrees by comparing them to subtree signatures found
in known malicious obfuscated code samples.

2.2 Defending Against Skimmers

2.2.1 Server-side Detection

For webmasters looking to prevent their websites falling victim to skimming attacks, there
are several different intrusion detection systems (IDS) available, where an IDS is defined
as a piece of software that can monitor the network activity of a server and determine
any suspicious activity that could be indicative of a compromise of the system [21].

Two such IDS examples are AIDE and Tripwire [22]. Both of these software can alert
administrators when changes are made to files, and provide logging to give auditability to
any legitimate changes made on the website. This can be useful if an attacker somehow
manages to change the source code of the website to include a reference to a malicious
skimming JavaScript file. AIDE (Advanced Intrusion Detection Environment) was built
as a replacement to Tripwire and includes rootkit detection in addition to Tripwire’s
features.

Webmasters can also protect themselves against supply chain attacks (i.e. code hosted
elsewhere) by testing updates in a sandboxed environment before deploying publicly, and
behaviour monitoring to identify any suspicious patterns in a website’s behaviour [2].

Another new feature in HTML is subresource integrity (SRI) which enables browsers
to ensure that resources have been loaded on a website without any manipulation [23].
The website developer includes an integrity tag in image, style, and script tags which
contains a hash of the file contents. If the hashed file differs from the hash in the integrity
tag, then the content isn’t loaded. Despite having fairly good browser support of 86%
[24], fewer than 2% of the top one million websites currently make use of it (figure 4).

Subresource integrity can be combined with the content security policy (CSP), which uses
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Figure 4: Number of websites using subresource integrity over time. Red line denotes top one
million websites, blue denotes top hundred thousand, and green denotes top ten thousand. [25]

HTTP headers to whitelist which domains and types of resources can be loaded on a web
page [26]. The newest version, CSP 3.0, can even block based on the script content by
providing a hash of the file. These two methods are useful for some scenarios such as when
trying to ensure that compromised content isn’t loaded from a CDN, but their protection
becomes useless if the attacker also has access to the web server itself since they can just
edit the integrity tag or the headers to allow their malicious file to be loaded.

For websites running popular and highly-targeted e-commerce software such as Magento,
there are various recommended methods of securing vulnerabilities to limit the potential
for intruders. For example, securing your administrator password, obfuscating the default
admin panel URL, using multi-factor authorisation, locking down SSH (Secure Shell)
access, and regular auditing [27].

However, the above solutions only benefit the owner of the website. They do not benefit
regular internet users – if a website administrator has not taken the precaution of in-
stalling an intrusion detection system, then there is no guarantee that an attacker hasn’t
compromised the website and is attempting to harvest user data.

2.2.2 Client-side Detection

While server-side detection and defence is the best way to avoid users falling victim to a
skimmer, not all websites take the necessary precautions so it cannot be relied on.

A few cyber-security firms such as Netcraft, Symantec, and RiskIQ, have some existing
methods for identifying skimmers while crawling the internet which do not require access
to the website server itself.

At Netcraft, detection is primarily performed using signature-based techniques. Signature-
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based detection simply means comparing website source code and other information such
as HTTP headers against a large collection of known signatures which have already been
recognised as malicious (snippets of code, suspicious URLs, etc.).

RiskIQ performs their detection using a variety of methods, including signature-based
detection. Their system collects website source code and many other interactions such as
network requests which it can then use in analyses by humans.

In general, cybersecurity firms use their findings in a variety of ways ranging from in-
forming website owners if their website has been breached to selling their feed to browser
vendors and domain registrars who can prevent access to domains which have been iden-
tified as malicious. This method can be ineffective for stopping skimming attacks because
attackers can easily register new domains for their drop servers, and the skimming code
is often hosted directly on the legitimate website mixed in with benign code making it
non-trivial to block.

There are no tools available currently aimed directly at users browsing the web. A tool
of this description would be able to passively audit pages that a user visits and perform
analysis to check for common features of skimming attacks.

2.3 Browser Automation

One of the main aims of this project is to remove the need for human intervention and
analysis to correctly identify websites infected with JavaScript skimmers. It follows that
we will need some form of automatic testing to achieve this. The benefits of automated
testing are many but most notably eliminating the need for human interaction and car-
rying out tasks in a predictable and reliable manner.

Historically, testing websites has been a tricky thing to do. In the past, you might down-
load the source code and perform some kind of static analysis on it. This is typically
unreliable as modern websites are no longer static and the website source is normally not
what will be ultimately displayed to the user due to scripts and other resources such as
images being dynamically loaded in after the initial page load.

This could be especially problematic for detecting skimmers because the malicious code
might be loaded in from another script and it’s impossible to test out dynamic function-
ality from the source code alone – for example, you wouldn’t be able to type data into
the form fields and observe network traffic for suspicious payloads.

2.3.1 Headless Browsers

Headless browsers – web browsers which do not contain any graphical user interface (GUI)
– are a relatively new and popular way to test websites. Unlike downloading and analysing
source code, headless browsers are useful for testing website functionality because they
can emulate a normal browsing experience such as interacting with page elements, running
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Figure 5: The Netcraft toolbar is a popular security browser extension to rank the ‘risk’ of
websites visited [35]

.

JavaScript code, executing AJAX requests, and making/receiving network requests but
without the additional overhead from launching a costly GUI [28].

PhantomJS is an early example of a widely used headless browser. It uses the WebKit
browser engine to render web pages and was popular for performing continuous integration
(CI) tests for websites as well as for things like automated malware classification. However,
in 2013 the Chromium team forked WebKit to create Blink [29] leaving Safari as the only
mainstream browser still using WebKit. In mid-2017, Google released Chrome 59 which
came with a headless mode built-in by default [30] which resulted in the cessation of
development on PhantomJS [31]. An official headless version of Firefox was released in
late-2017 [32], thus providing headless capabilities for the world’s top two most widely
used web browsers.

2.3.2 Automation Libraries

There are several libraries (or ‘drivers’) to make interacting with headless browsers easier
and more user-friendly – they expose useful APIs to simplify opening tabs, clicking links,
monitoring traffic, and so on. Selenium WebDriver is one of the more popular libraries and
can drive several browsers across different platforms; It has support for Google Chrome,
Firefox, and even Internet Explorer. On the other hand, it can be quite slow as it is not
optimised for any one browser, and can be unreliable when run on different browsers and
machines [33]. Puppeteer is another driver launched by Google and designed to work with
Google Chrome. Puppeteer is powered by Node.js and is more efficient than Selenium
for Chrome testing due to being specifically designed for that purpose. In 2018, Google
announced an experimental version of Puppeteer for Firefox – although in its infancy, it
already supports many important parts of the Puppeteer API [34].

20



2.5 Thomas Bower

2.4 Browser Extensions

The concept of extending browser functionality has been around for almost as long as web
browsers have existed; Internet Explorer introduced toolbars in 1999 to add additional
features to the browser like weather and news. Extensions can typically do a wide range
of things from modifying the source code of web pages to provide customisation, to ad-
blocking and even entire games. For a developer, making an extension rather than a
standalone website can be beneficial in some cases as it is able to interact with other
websites and has exposure to powerful APIs that regular web pages would not typically
have access to such as the ability to intercept and drop network requests or inject code
into other websites.

All major browsers have support for extensions in one way or another: Firefox distributes
extensions through the Firefox Addons store, Chrome through the Chrome Web Store, and
Microsoft Edge through the Microsoft Store. Despite the widespread support, extensions
are implemented differently by each browser vendor. In 2015, the World Wide Web
Consortium (W3C) who are responsible for web standards set up a community group for
a browser extension standard and published a report in 2017 [36], however it looks unlikely
to ever gain widespread adoption due to the proliferation of proprietary extension formats
already in use. Despite this, Chrome extensions have become the de-facto standard for
extension programming due to the popularity of Chrome and are now supported on various
browsers such as Opera and Blaze browser. Mozilla also makes it relatively easy to
port between the Chrome Extension API and the Mozilla WebExtension API which they
developed with browser interoperability in mind [37].

Because of the flexibility and power of extensions, they can be a good way of providing
security to users by tracking websites they visit and looking for suspicious features on
them. For example, there are extensions to warn users about phishing websites (like
those from Avast and Netcraft, figure 5), extensions to block tracking cookies and scripts,
extensions to enforce HTTPS everywhere, as well as extensions to block internet malware
more generally (Section 2.6.3).

To our knowledge, there are currently no extensions on the market specifically for identi-
fying JavaScript skimmers, but given that extensions can access all the code a user could
theoretically access and more (such as intercepting network requests), there are no obvious
reasons why it could not be possible.

2.5 Measuring Performance

To evaluate accuracy, we need to have a concept of infected websites and non-infected
websites. We determine an infected website to be a positive result (P) an uninfected
website to be a negative result (N) respectively. In this case, a true positive (TP) is an
infected website which is detected by our system, and a true negative (TN) is a benign
website which is correctly identified as benign. Conversely, a false negative (FN) is an
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infected website which is identified as safe, and a false positive (FP) is a benign website
which is mistakenly detected by the program as malicious [38].

Based on these measures, we can calculate the following metrics:

• True Positive Rate (TPR, also called Recall) which says how good the system is at
detecting skimmers as a proportion of the total number. We want to maximise this
metric.

• False Positive Rate (FPR) denotes how bad the system is at detecting benign web-
sites as containing a skimmer. We want to minimise this metric because we do not
want to list a website as infected when it is in fact not infected.

• Precision denotes the ratio of detected skimmers that are in fact skimmers compared
to the total amount of detections (bearing in mind some may be false positives).

We can calculate these metrics as:

Recall = TP
TP+FN

FPR = FP
TN+FP

Precision = TP
TP+FP

As mentioned in Section 1.2, we would expect our system to yield a high recall rate (few
false negatives), as well as a low false positive rate (few false positives). A low FPR is
important because blocking legitimate websites could result in a degraded user experience
for users if benign resources are blocked as a result of our detection system.

2.6 Related Attacks

Although skimming attacks present their own distinct category of malware, the modus
operandi used in these attacks and their motivations are not unique.

2.6.1 Cryptojacking Attacks

Recently, ‘cryptojacking’ attacks have become more prevalent on the web as attackers
capitalise on the recent rise in popularity and lucrativeness of blockchains and cryptocur-
rencies such as Bitcoin, Ethereum, and Monero. While skimmers are used to steal user
information (e.g. for the attackers to then use themselves or to sell to others), cryptojack-
ers abuse the CPU power of users’ computers to mine cryptocurrencies, earning currency
for the attacker which can be converted into fiat currency, sold to others, or spent on
other goods [39].

Cryptojackers typically manifest themselves as a small JavaScript file inserted onto a
page which then uses the victims CPU power to mine cryptocurrencies for the adversary
without their knowledge or consent. Cryptojackers are slightly different from skimmers in
that they are often inserted onto a website by the webmaster rather than a third party –
sometimes as an alternative to traditional advertisements, although sometimes both may
be present.
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There have been several recent attempts to detect websites infected with cryptojackers:
Rauchberger et al. [39] present MiningHunter, a tool for dynamic analysis of scripts
to identify cryptojackers. The tool logs network activity through a combination of com-
paring the payload with known specimen fingerprints, and searching request URLs using
regular expressions, responses with specific hash values, and websocket content for known
malicious values. By combining these heuristics, the tool is able to make confident guesses
about what is and isn’t a cryptojacker. The authors note that many adversaries try to
avoid detection by rehosting the script, modifying the filename, and obfuscating the source
code.

Similarly, Konoth et al. [40] introduce another tool, MineSweeper, which takes a two-
tiered approach and identifies cryptojacking scripts statically by looking for instances of
certain keywords within the JavaScript code, as well as dynamically by recording network
traffic.

There are also various commercial products available for internet users to protect them-
selves from cryptojackers: NoCoin [41] is a Google Chrome extension that protects users
by maintaining a blacklist of URLs known to host cryptojacking code. Other Chrome ex-
tensions including MinerBlock and Qualys BrowserCheck CoinBlocker [42] use two meth-
ods to block cryptojackers: as well as utilising a blacklist like NoCoin, they also use an
injected script to find and kill cryptojackers dynamically.

2.6.2 Phishing Attacks

Phishing attacks are also loosely related to skimmers as well, since they too are created
to steal private information from their victims. However, they use a different method of
stealing user information compared to skimmers: Attackers set up fake websites which
imitate real brands and attempt to trick users into entering their information under the
impression that the page is safe, often making use of social engineering to place pressure
on the user (e.g. an ‘unknown bank transaction’ notification) so that they don’t notice
it’s a scam.

Nguyen et al. [43] divide phishing detection methods into three distinct categories: black-
lists, heuristics, and machine learning. Blacklists are the most basic form of detection and
rely on a list of phishing websites which are then blocked once encountered – this approach
is difficult to scale up and requires the list to be up-to-date and comprehensive in order
to be effective, which is difficult when over 1.4 million new phishing sites surface every
month [44]. The heuristic approach uses a database of signatures which could indicate
a phishing site, but determined attackers could create new types of phishing site which
don’t match any of the signatures, so there is still the issue of scalability and breadth of
detection. Some examples of heuristics include checking the age of the domain, checking
the page rank, and analysing the hostname [45]. Finally, the machine learning approach
uses machine learning techniques to classify phish based on features of the website and
URL such as Alexa/PageRank ratings, suspicious subdomains, dead links, and so on.

A number of consumer products exist to protect users from phishing attacks. Firstly,
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most modern browsers have in-built protection that displays a warning if a user tries to
navigate to a known phishing site such a Google Safe Browsing2 on Chrome and Firefox’s
Deceptive Content Blocker. Browser extensions exist that do a similar thing, such as the
Microsoft Defender Browser Protection Chrome extension that alerts users about links
in phishing emails and potentially malicious websites. These solutions generally rely on
blacklists and simply block sites if they are present in the blacklist, meaning that they are
not comprehensive and may take some time to block new phishing sites as they appear.

Other extensions do more than just refer to a blacklist: AntiPhish, proposed by Kirda
et al. [46], is a web extension that keeps track of user credentials for different websites
and where different credentials are sent. It can then alert the user and prevent data
leakage if the same credentials get sent to an unrecognised domain. TrustBar is another
extension which uses web page certificates to identify potential phish by checking their
signer, certificate authority, etc. Others like SpoofStick check other heuristic methods like
visual similarity and the page URL [45].

2.6.3 General Javascript Malware

More generally, there has been considerable research into more general purpose JavaScript
malware detection.

Livshits et al. introduce Zozzle, a classifier for identifying JavaScript malware such as
heap spraying attacks – where the attacker is able to perform arbitrary code execution
by filling the heap with code and then using an exploit to execute it [47]. The classifier
is mostly static in that the code being analysed is not run and the analysis is performed
solely on the content of the JavaScript files themselves. It first creates an AST for the
code to map the behaviour of the program and pattern matches on predefined subtrees
which could be indicative of malware. They then create a näıve Bayesian classifier with
a training set of known malicious and benign script samples.

Prophiler, put forward by Canali et al., also uses similar static analysis techniques
such as counting how many iframes are present and the presence of document-modifying
functions to create an efficient, lightweight detection model [48]. On the other hand,
there are some tools which use dynamic analysis and run the code to look for malicious
behaviour such as changes to a users file system, network requests, and so on [49].

There aren’t currently many web extensions users can download to gain protection against
JavaScript malware in general. JustBlock Security is an ‘antivirus’ extension that detects
and blocks a variety of different undesirable features such as trackers, cryptojackers, pop-
ups, and ‘shadow clicks’ (where an invisible link is pressed which opens another, often
suspicious, page).

2https://safebrowsing.google.com/
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3 Implementation

In this section, we discuss the initial design choices for our implementation, how we utilise
information from skimmer specimens to inform the way our detection system operates,
how to detect skimmers in non-trivial cases, and various other ideas which could be utilised
in similar systems.

3.1 Design Overview

As mentioned in Section 2, there were two different routes for tackling the skimmer detec-
tion problem: The first option would be to develop a crawler using a headless browser to
automatically visit websites to look for skimmer scripts and collate a blacklist of known
skimmer scripts. The merits of this solution are that the crawler could automatically visit
as many websites as possible without any human involvement whatsoever. The demerits
are that it is not a trivial task to navigate through websites automatically in general and
is an area of research in itself, secondary to the main aim of the project.

The second option would be to develop a web browser extension which would enable
the user to navigate directly to the checkout page of a website and remove the issue of
automatically navigating there. The downsides of such an approach are that techniques
such as visiting sites multiple times to run multiple tests and submit dummy data is not
possible, and that the navigation is ultimately controlled by the user.

Between the two options, we opted to produce a web extension to enable focus on the
detection aspect of the problem rather than the navigation issue. Another reason for this
is that similar areas of research have seen success from implementing extensions such as
MinerBlock for blocking cryptojackers (Section 2.6.1). In particular, we decided to target
the Chrome browser partially due to its mature extension ecosystem and also to achieve
the greatest possible number of users, owing to their dominant market share and the easy
interoperability between Chrome extensions and extensions for other browsers like Firefox
and Opera (Section 2.4).

3.1.1 Extension Constraints

Chrome extensions are composed of various different components, each serving a different
purpose and each with various constraints to provide security to the user, the sites they
visit, and other installed extensions.

An extension may contain one or more background scripts which run in the background of
the browser and are not linked to any particular tab. They behave as the event handlers
for the rest of the extension and can respond to events such as tabs opening, the extension
being updated, and so on. Although background pages can see certain details about each
tab such as the URL and whether it is active or not, they do not have access to the
contents of a page.
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Figure 6: Basic architecture of the Google Chrome extension.

In addition to the background page, each frame (e.g. a tab or an iframe embedded within
a tab) may be allocated one or more content scripts which have access to the document
object model (DOM) of the page and can make modifications to it, such as adding/re-
moving elements or applying CSS styling. Despite sharing the view of the DOM with
scripts loaded directly onto the page, content scripts operate in an isolated, sandboxed
environment such that they do not conflict or interfere with scripts, functions, or vari-
ables on the page itself. Content scripts can communicate with background scripts using
message passing with window.postMessage and the onmessage event listener. They can
also communicate with scripts loaded directly on web pages using the same technique.

Due to the isolation of content scripts from other scripts loaded directly on a web page,
many things such as overriding variables and calling page functions cannot be achieved
directly from the content script. This restriction can be circumvented by creating an
additional script and injecting the script into the page from the content script. The
injected script is then loaded into the memory of the page and behaves like any other
script loaded directly onto the page. The injected script is able to communicate back
to the content script using message passing or through a combination of custom events
and event listeners. Since the content script is able to send/receive messages to/from
both the background scripts and the injected scripts, the injected script can effectively
communicate to the background script by using the content script as an intermediary to
pass along any messages.

3.1.2 Extension Structure

Our extension is structured as in figure 6. Arrows indicate the directions in which messages
can be passed between contexts. In the background script, we maintain a ‘tab data’ object
containing an overview of every open tab in the browser. The object keys are linked to each
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tab’s ID, and the value is an object containing various properties about the tab including
the URL and a list of potentially suspicious scripts. The suspiciousScripts object is
a key-value store linking script URLs to a list of properties which may be indicative of a
skimmer, which are discussed further in Section 3.5.

3.2 Obtaining Skimmer Scripts

JavaScript skimmers are ephemeral by nature, and pop up and disappear on different
websites frequently and unpredictably. Skimmers are placed onto web pages when attack-
ers find an attack vector that allows them to inject a malicious JavaScript file into the
page, and as such this cannot be predicted or pre-empted reliably. The average lifespan
of a skimmer is just 13 days meaning that they are only active on a given website for
fewer than two weeks [50]. This could be due to attackers moving on to other targets
and cleaning up after themselves, or due to webmasters detecting the breach on their site
and removing the offending code. Despite this, once a website is infected, one in five will
become reinfected in the future due to attackers planting back-doors, adding recurring
automated tasks (e.g. cron jobs), and taking advantage of zero-day exploits in order to
reinstate the skimmer at some point in the future.

3.2.1 Historic Skimmers

In order to understand how to develop an effective detection system and defend against
a comprehensive range of skimmers such as the various groups described in Section 2.1.2,
we needed to find a large source of active and historic skimmers. We found some basic
and more prominent skimming attacks just by searching online; for example, the British
Airways skimmer was widely publicised in the media and has had its code dissected
by security professionals [1]. Despite this, the volume of skimmers readily available or
discussed online is scarce and certainly would not provide enough data to be able to build
a reliable skimmer detector.

For a more reliable source of confirmed skimmers, we were provided a list of 42,717
websites on which a skimmer was detected between 31st January 2018 and 7th February
2019 by Netcraft. Despite this large amount of data, due to the average short lifespan
of a skimmer, only a small proportion of the listed websites were still infected in 2019.
The frequency of detections per month is shown in figure 7 – the vast majority of hits
from early 2018 were no longer active, though a noticeable increase in the number of
detected skimmers can be seen towards the end of 2018. In a sample we tested of roughly
100 skimmers discovered between 31st January and 26th March 2018, 0% of the websites
were still infected in June 2019. Of the websites which were still infected, we saved local
archives of the page assets including the skimming code to analyse and test locally should
the infection be removed from the live version.
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Figure 7: Skimmer detections by Netcraft over a one-year period between January 2018 and
January 2019. A stark increase can be seen towards the end of 2018 and beginning of 2019,
correlating with figure 1.

3.2.2 Live Skimmers

Although the historic data provided more real life skimmer examples than just focusing
on a handful of highly publicised attacks, the bigger problem was still that many of the
detected websites from the previous dataset in Section 3.2.1 were not useful for testing
due to the skimmers being removed. We also received a live feed of skimmers as they
were detected by Netcraft which provided a much fresher data source that we could use
to ensure we were always testing on the most recent infected websites, with a higher
probability that the site would not yet have been fixed. Because skimmers generally rely
on malicious JavaScript code on the front-end and not server-side code, we were able to
make archives of the specimens we found by saving all the page assets locally.
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Input type
Value User
Editable?

Sensitive
Information?

Example(s)

button 7 7 Submit form, ‘Next page’ button
checkbox 7 7 Accept terms and conditions
color 3 7 Choose colour preference
date 3 3 Card expiry date, date of birth
datetime-local 3 3 Card expiry date, date of birth
email 3 3 Personal email address
file 3 3 Passport scan
hidden 7 3 CSRF token
image 3 7 Passport scan, identification photo
month 3 3 Card expiry month, birth month
number 3 3 Card number, CVC, expiry year
password 3 3 User password
radio 7 7 Preferred contact method
range 3 7 Volume control slider
reset 7 7 Reset other form inputs
search 3 7 Find products
submit 7 7 Submit form
tel 3 3 User telephone number
text 3 3 Address, name on card, company name
time 3 7 Delivery timeslot
url 3 7 Personal website
week 3 7 ‘Select holiday week’ input

Table 2: All available input types along with examples of their usage and whether or not their
value could be used to contain sensitive information.

3.3 Identifying User Data

In order to identify whether or not user information is being leaked from the page, we need
to be able to identify for ourselves where on the web page user data is, and to have some
notion of whether or not it is a problem if the data is leaked. For example, it is most likely
okay if a search box has its value sent to external websites – in fact, this is frequently done
for features such as search-as-you-type [51] which display suggestions based on a partial
search query, as well as for advertising and tracking partners to understand how users
interact with a website. In these cases, we would not consider a ‘leak’ of this non-sensitive
data as malicious.

We first attempt to gather the values for all of the interactive HTML elements on the
page, as this is where users are able to insert their information. This includes input,
select, and textarea tags, as well as other HTML elements with the contenteditable

boolean attribute set, meaning that the user can freely edit the text within the element.
We use the native JavaScript document.querySelectorAll function to get the nodes
which match this criteria.

29



3.3.1 Thomas Bower

We also consider iframes in the page – tags containing additional HTML documents which
can be embedded within a parent document – which may also contain inputs. We opted to
use the parent frame as the collector for all the inputs of child frames and be the sole frame
to communicate with the background script. However, due to the same-origin policy, it is
not possible for a parent frame to access the content of an iframe from a different origin
(e.g. scheme, hostname, and port number) for security reasons. This meant that we could
not directly access inputs in an iframe directly from the parent frame if it was loaded
in from another site. However, it is possible to communicate with child frames using
the Window.postMessage function which facilitates cross-origin communication between
different window objects. We use message passing to send a request for input elements
in child frames, and the children then send a response message back containing their list
of inputs concatenated with inputs from their own children, a process which continues
recursively until there are no more children. We also make use of the domjson package to
convert between HTMLElement and plain object representations of page elements to allow
them to be properly serialised when sent as data in a message.

3.3.1 Filtering Unwanted Data

The input tag is very versatile and can manifest itself in a variety of different ways
depending on how its type attribute is defined, from ‘text’ for generic text input, to
more semantic types such as ‘password’ and ‘tel’ for telephone numbers. Table 2 shows
all types available along with whether they are editable by the user and whether we
consider the information to be potentially sensitive. For the purposes of detecting sensitive
information, we are only interested in the input types which are both editable by the user
and have the capacity to store potentially sensitive information. Given these constraints,
we can ignore types such as ‘hidden’, ‘submit’ and ‘reset’ since it isn’t possible for a
user to input any sensitive information in these input types. These can easily be excluded
from a querySelectorAll call by using the CSS :not() selector for the input types we
are not concerned with.

Despite the wide range of new semantic input types introduced in HTML5, many inputs
are still best suited to the generic ‘text’ type, or the website developers have simply
chosen not to move to more semantic types. We can still learn more about what the input
is used for by looking at other ways in which an input identifies itself. For example, other
attributes which may be used on a tag are id and class which can give clue as to the
input’s intended purpose.

Chromium, the open source project on which Google Chrome is based, is able to detect
forms on web pages and suggests to autofill information (figure 10) using a variety of
techniques:

• The autocomplete attribute can be added to input elements and is designed to aid
browsers with automatically filling in data. It takes values such as ‘street-address’
and ‘cc-exp-month’ which are standardised in the WHATWG HTML specification.
If this field is present, the browser will offer to fill in the correct type of data
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Figure 8: Chromium detects input fields and offers to fill them automatically [52].

automatically.

• The name attribute also has recommended values such as ‘fname’ which are similarly
detected by the browser as the correct type, as above.

• For other fields, there is a large list of regular expressions for different types of fields
ranging from addresses to credit card details which are compared against various
input attributes such as class and id. If there is a possible match, then the browser
will offer to fill it in. The regular expressions also support various different languages
such as ‘hausnummer’ for ‘house number’ on German-language websites [53].

We utilise a similar technique to capture only the inputs containing sensitive information.
We take the name and id attributes for each of the inputs on the page and compare their
values against each regular expression to look for a match. If at least one of the regular
expressions matches at least one of the attribute fields, then we include it in our final
list, and discard otherwise. Input fields are often linked to one or more label tags on the
page as well – these are elements which provide a textual explanation of what the field is
for. We compute a list of associated labels for each input and compare the text content
against the regular expressions as well. If one of the labels is a match, then the linked
input is also included in the list for consideration.

Finally, to avoid discarding any inputs which contain sensitive information but are misla-
belled or don’t match one of the regular expressions we use, we compare the value of each
discarded input through a list of common regular expressions looking for values which may
be sensitive information such as credit card numbers, email addresses, telephone numbers,
or card expiry dates.

3.3.2 Data Freshness

Inputs are, by definition, designed to be edited and updated by users. Because each value
will likely change as the user completes a form by filling in their information, we need to
keep track of the changes so that we can see if the new information is being leaked by a
malicious script. When an input is modified (e.g. by a user typing in a field or checking
a checkbox), it triggers an ‘input’ event in JavaScript. This event bubbles which means

31



3.4.1.1 Thomas Bower

that the event first triggers on the element itself, then its parent, and all the way up the
chain of ancestors. We therefore add a listener for ‘input’ events onto the document.body
object which will capture the event for all of its children, including dynamically generated
inputs.

Every time the event is triggered, we run the algorithm as described to fetch every relevant
input element again. We do not bother to update the individual element which was
modified as recapturing all inputs is a relatively cheap action.

3.4 Basic Dynamic Analysis of Scripts

The modus operandi of many basic skimmers is to collect user data from a web page
and send it to a drop server using a POST request (a protocol designed to send or ‘post’
data to a server) or GET request (a protocol designed to receive data from a server). We
observed various different methods of triggering the skimmer to send data including:

• Setting a function to run repeatedly at regular intervals using setInterval to re-
peatedly fetch the values of inputs and then packaging them up into a payload to
be sent using a POST request.

• Similar to above except instead of running at regular intervals, a listener is attached
to a submit button and the data is fetched and then sent after the button is clicked.

• Similar to above except different listeners may be used such as listening for a ‘keyup’
or ‘focusout’ event on an input box.

Because of the variety of trigger methods, we decided first to focus on the behaviour of
the skimmer, rather than the underlying implementation.

3.4.1 Primitive Obfuscation of Requests

3.4.1.1 No Obfuscation

The most basic variety of skimmer we observed sent data to the drop server completely
unobfuscated. Figure 9 shows one example we found on a live website: After the page has
fully loaded, the code first checks if it is on a hostname with the path ‘/checkout ’, and if
so injects an additional script.
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(a) The final screen of the payment form
requests card details

(b) A GET request containing input values from 9a
in query parameters

Figure 9: An infected e-commerce website, ‘Case It’, contains a skimmer which sends user data
in plaintext.

1 $(#confirmorder #button-confirm).live(click, function() {

2 var i = document.createElement("img");

3 i.src = "https://evansmusiccity.com/system/journal2/l.php?p="+

encodeURIComponent("29|"+jQuery("input[name=cc_owner]").val()+"|"+

jQuery("input[name=cc_number]").val()+"|"+jQuery("select[name=

cc_expire_date_month]").val()+"|"+jQuery("select[name=

cc_expire_date_year]").val()+"|"+jQuery("input[name=cc_cvv2]").val()+"

|"+jQuery(".onecheckout-content").html());

4 });

Listing 1: The supplementary script injected by the ‘Case It’ skimmer.

The skimmer script (listing 1) attaches a listener to the form confirmation button so that
whenever it is clicked, an img HTML element is created with the source URL set to that
of the drop server with all the form values appended as URL query parameters. Forcing
the browser to load an image is a common way for skimmers to trigger a GET request,
which we observed in various other skimmer variations as well. Crucially, this skimmer
merely concatenates each input value using a pipe character, and does not attempt any
kind of obfuscation or encryption.

To identify this kind of skimmer, we made use of the webRequest API provided as part of
the Chrome extension API toolkit. The webRequest API allows an extension to observe
traffic to and from a website and can intercept, block, and modify requests in-flight [54].
We added a listener for the onBeforeRequest event which allowed us to observe various
details such as the request body before the request got sent. Using our measure of what
constitutes sensitive input data (Section 3.3), we compare each request body (the payload)
with each input to see if it is included within the request. If there is at least one match,
then the request is dropped and never makes it to the server. For example, in figure 9b
the request query string contains the phrase ‘Joe Bloggs’ which was entered into the ‘Card
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Owner Name’ field in figure 9a along with various other sensitive fields. Because there is
a match, we choose to cancel the request. An exception to this is if the request is made to
a page on the same domain – in this case, we assume the request to be legitimate since it
is unlikely for a skimmer to exfiltrate data to the exact same domain on which the target
website is hosted.

3.4.1.2 Base 64 Encoding

Figure 10: The ‘Case It’ website is infected with a second skimmer that base 64 encodes user
data before sending.

Along with no form of obfuscation at all, we discovered that many skimmers would simply
take the user data and apply a base 64 encoding of the data before sending it to the drop
server. Base 64 encoding is a technique that encodes arbitrary binary data into a character
set of just 64 characters, typically a–z, A–Z, 0–9, ‘+’ and ‘/’. It is simply an encoding
scheme – not encryption – so it can be decoded to retrieve the original data with ease.

To identify this type of skimmer, we added a simple check for each query parameter (GET
requests) and request body (POST requests) to see if the content matched the format of
a base 64 encoded string. A string might feasibly be a base 64 encoded string only if
it is a multiple of four characters in length, and contains only the characters mentioned
previously, with an optional one or two ‘=’ symbols used for padding at the end. However,
it’s worth noting that this relationship is not bijective – just because a string meets the
requirements does not necessarily mean it has been encoded, for example the string ‘Hiya’
would match and could potentially be base 64 encoded, despite being a plaintext English
word in the case. If the format matches, we try to decode it back into plaintext under the
assumption that it is a base 64 encoded string, and then attempt to compare it with our
sensitive input list, the same way as in Section 3.4.1.1.
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(a) Payment page without skimmer offers
choice between card or cash-on-delivery.

(b) Payment page infected by skimmer contains
a fake payment form.

(c) Review order page immediately after pay-
ment page.

(d) Final screen redirects user to third-party
payment from Kuwaiti payment company, Tap.

Figure 11: Comparison of payment flow for users visiting the ‘Cavaraty’ online shop with and
without skimmer.
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Function Name
Insert
> 1 nodes?

Takes String

or Node(s)?

Element.prototype.appendChild 7 Node

Element.prototype.replaceChild 7 Node

Element.prototype.insertBefore 7 Node

Element.prototype.insertAdjacentHTML 3 String

Element.prototype.insertAdjacentElement 7 Node

Element.prototype.append 3 Node

Element.prototype.prepend 3 Node

Element.prototype.before 3 Node

Element.prototype.after 3 Node

Element.prototype.replaceWith 3 Node

Element.innerHTML 3 String

Table 3: List of built-in functions to add to the Document Object Model (DOM) of a web page.

3.4.2 Insertion of Fake Forms

A number of smaller e-commerce websites do not directly handle payment details them-
selves – instead, they use third party payment providers such as Paypal or Worldpay at
the end of the checkout user flow. Although supply-chain attacks do exist, in cases like
these it is generally more difficult to find a way to infect a large and likely well-secured
payment system than the e-commerce website itself, so in some cases the attacker will
inject a fake payment form onto the page to attempt to capture payment details directly
on the e-commerce website. Once the user submits the form, they are redirected to the
real payment form, but by that point it is already too late as their data has already been
transmitted to the attacker.

Figure 11 illustrates a real world example of such a skimming attack. Pictured in (a)
is the payment form when the website is not infected with a skimmer – the user must
select between ‘Cash on Delivery’ to pay with cash or ‘KNET/Visa/MC’ to pay by card
(where KNET is a Kuwaiti payment system [55] and MC refers to Mastercard). Once an
option is chosen, the next page shows an order confirmation (c) and then finally the user
is redirected to an external payment provider, in this case a Kuwaiti payments company
called Tap Payments (d).

In the case that website is infected with the skimmer, the payment selection page (b)
displays a form with inputs for credit card number, cardholder name, CVC, and expiry
date. The skimmer achieves this by having a function repeatedly execute every 100 mil-
liseconds using setInterval to listen for which of the two options is selected. Whenever
the ‘KNET/Visa/MC’ option is selected, the fake HTML form is injected into the page
using insertAdjacentHTML, and removed otherwise. The rest of the user flow remains
the same – once a user enters their details into the fraudulent form, they will then see the
overview page (c) and then the legitimate payment form (d).

The structure of a web page is represented by what is known as the DOM (Document
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Figure 12: Dutch website ‘Maxicool’ is infected with a skimmer which injects an iframe posing
as Swedish payment service, Klarna.

Object Model), a structured tree representing all the nodes on a page in a systematic and
consistent way. Although the previous example uses the insertAdjacentHTML function to
inject the fake payment form, there are a wide variety of different built-in, native functions
that can manipulate the DOM in slightly differing ways. Table 3 shows a list of all the
functions for adding nodes to the DOM. Some of the functions are able to append more
than one node, whereas others only have the capacity for adding one. Additionally, some
of the functions require the node to be supplied in the correct JavaScript type (e.g. as a
HTMLElement object), whereas others can parse a string of HTML code automatically.

We added wrapper functions for each of the insertion functions to observe the content
being added before allowing the real implementation of the function to run. When one of
the functions is called, we first check if the content is a String or Node – if it is a String,
we use DOMParser to convert it to a DOM object. Then, we recursively search the node
and its children for form inputs which are suspicious, using the same methodology as
described in Section 3.3.

If suspicious form inputs are discovered, we mark the script that injected the content as
suspicious, and then if requests are later made from that script to a hostname different
to that of the main website, the requests are blocked and the user notified.
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3.4.3 Insertion of Fake Iframes

In addition to injecting simple form elements into the DOM of a web page, we observed
some group 4 (Section 2.1.2.3) skimmers injecting entire iframe tags linking to websites
belonging to the attacker. This is a convenient attack vector for attackers as it provides
them with more flexibility over the content which they serve to the user, especially if their
access to the skimmer script is limited or no longer possible – their remote page can still
be edited.

Figure 12 shows one such skimmer found on ‘Maxicool’, a small Dutch e-commerce website.
Once on the checkout page, the script removes the legitimate iframe containing the Klarna
checkout form, and inserts a fake Klarna checkout form hosted on the attacker’s website.
Interestingly, it appears as though the attacker copied exactly the payment form from a
real website because the copyright information at the bottom of the form makes reference
to a different e-commerce website that also uses Klarna.

Many legitimate payment services also make use of iframes to embed their payment forms,
however we distinguish these legitimate use cases by noting that no major third-party
payment providers inject their iframes from a script loaded on the page, much less do
they remove another (legitimate) iframe in the process. To detect this, we check for
additions to the DOM much like in Section 3.4.2 to recursively search for any appended
iframes. We then allow the iframe content to finish loading and then perform a deep
search of nodes contained within for any potentially malicious form fields. We also take
into account any removed nodes such as iframes – if a script removes an iframe that was
already on the page to include another iframe containing form fields which are flagged as
sensitive, we flag the iframe and prevent requests from leaving the site, as well as flagging
and placing restrictions on the script which added the iframe.

3.4.4 Storage of Credentials

Not all checkout processes take place on just one web page; Increasingly, more and more
websites are starting to use multi-page checkout processes such as requiring the user to
enter billing address on one page, then navigate to the next page to enter their payment
details. This is either to make the checkout process seem less intimidating to a user with
fewer inputs on each page, or for analytical purposes to track when and how users abandon
a purchase [56]. In cases like these, it is more difficult for an attacker to aggregate all the
data from a single user into a request to their drop server and to match them up with
each other.

Group 3 skimmers – discussed in Section 2.1.2.2 – circumvent this restriction by using
temporary storage in the browser to store details from previous pages such that they
persist when the next step of the process is navigated to. On each page of the checkout
process, the attacker stores the page data in an accessible storage area, and on the final
page retrieves all the data, collates it, and sends it to the drop site.

To detect this kind of skimmer, we first had to identify methods that attackers could use
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to store information in a place that would be later accessible by them. The two most
prominent methods we discovered by looking at native JavaScript APIs and specimens
of real skimming code were by exploiting cookies and browser storage through the Web
Storage API:

• Cookies are an old standard that give state to the stateless HTTP protocol by
recording small pieces of data in a user’s browser. They can be set in JavaScript by
assigning a value to the document.cookie accessor property and retrieved by getting
the value of document.cookie which returns all the cookies that have been set on
a particular origin. They may optionally expire but by default are non-expiring.

• localStorage is an instance of a JavaScript Storage object unique to the origin of
a website which provides a key-value store for arbitrary values. It is one of the two
mechanisms available in the Web Storage API. Compared to cookies, they can store
more data and can also only be read client-side, rather than by the server which
is the intention of cookies. The values in local storage do not expire and must be
manually cleared by either the user or a script.

• sessionStorage is similar to localStorage in that it is a Storage object unique to
a website’s origin and and can store arbitrary data. It is also part of the Web Storage
API. The difference between this and localStorage is that sessionStorage only
lasts as long as the page is open and will be removed once it is closed. On the other
hand, localStorage is persistent. This can be an attractive choice for skimmer
authors as it means their temporary data is automatically cleared once the user
navigates away.

There are a number of other ways of storing client-side data such as the IndexedDB API
for storing much more complex and varied data, though we didn’t observe any skimmers
which use this as it is still too new to have good browser support and adoption, and
overkill for simple applications such as the attackers’ use case.

We target both cookies and the Web Storage API by introducing wrapper functions for
each of the setter functions to add more data into the storage areas. For cookies, we
define a new setter function for document.cookie, and override the setItem function for
both storage types. We then analyse the arguments passed to the function and check the
value for any input values using the same method as in Section 3.3. If values from the
inputs are detected in the function call, we generate a stack trace to determine which
script attempted to perform the action, then flag the script to restrict the requests it can
make to external websites.

3.5 Static Analysis of Scripts

As well as analysing the behaviour of a skimmer script, the code of the scripts themselves
are often notable for their attempts to stay hidden and not arouse suspicion. In this case,
we apply a heuristic approach and test various different properties of the script itself,
instead of simply observing the behaviour.
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(a) With referrer set to target site. (b) With referrer omitted from request.

Figure 13: Comparison of skimmer content with referrer set as target site compared to no refer-
rer.

3.5.1 Differing Content by Referrer (Cloaking)

Several scripts we tested were able to alter their response based on the referrer header
sent in the request, a technique known as cloaking [47]. The referrer header is typically
used to tell a web server where a request originated [57].

Figure 13 shows an example of a script on the ‘Wedding Music Central’ website which
alters based on the referrer header. The skimmer script returns a benign-looking version
of the jQuery library if the referrer header is left blank or set to a random website, whereas
if the referrer is set to the wedding music website, then the script content changes into a
malicious obfuscated skimming script.

Although the presence of this property does not necessarily imply that the script contains a
skimmer, it is a suspicious feature and so we build it into a wider metric for flagging scripts
deemed as suspicious which have more rigorous restrictions placed on them determining
what they can and can’t do.

To determine whether a script loaded onto a website changes based on referrer, we again
use the webRequest API for listening to web traffic. Once a script has finished loading,
the onCompleted listener fires and we attempt to load the script two more times – once
with the referrer set to that of the website we are observing, and one with no referrer at
all. We then compare the responses of the two requests to see if they are the same. If
they are different, we conclude that the script content has changed due to the referrer,
and mark it as such to factor in to our suspicion metric3.

3Due to restrictions on setting referrer headers in the browser, we first set a dummy header
‘SetAsReferer’ which we then catch during a onBeforeSendHeaders listener and replace the dummy
listener with the real referrer header, ‘Referer’.
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Figure 14: Usage of different jQuery minor versions in terms of percentage of total share [59].

3.5.2 Hiding Skimmers Within Libraries

A very common technique attackers use to insert their payload on a website is by using
steganography to hide their malicious code within a legitimate script. The British Airways
attack in 2018 was caused by a piece of malicious skimming code inserted at the end of
a JavaScript file for the Modernizr library (listing 2), a tool used to patch unsupported
JavaScript and CSS features not present in old browsers [1; 58]. In another example we
found, a skimmer was appended at the end of a jQuery file.

1 window.onload=function(){jQuery("#submitButton").bind("mouseup touchend",

function(a){var n={};jQuery("#paymentForm").serializeArray().map(

function(a){n[a.name]=a.value});var e=document.getElementById("

personPaying").innerHTML;n.person=e;var t=JSON.stringify(n);setTimeout

(function(){jQuery.ajax({type:"POST",async:10,url:"https://baways.com/

gateway/app/dataprocessing/api/",data:t,dataType:"application/json"})

},500)})};

Listing 2: The skimming code that was appended to the British Airways Modernizr script.

We cannot know what constitutes an untampered script for a websites own proprietary
scripts without physically receiving copies from the website owner themselves or frequently
caching assets on websites. However, this still wouldn’t allow us to be sure that the
script was compromised as a legitimate change in the code content would also constitute
a change. The subresource integrity attribute is designed to avoid tampering of files,
though it currently has an extremely low adoption rate [25].

On the other hand, we can search for inconsistencies in the code of libraries since there
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is a canonical ‘correct’ copy of the code that can be downloaded from a libraries own
website or a trusted content delivery network (CDN). One consideration that must be
taken into account is that there are often many different versions of the same library. For
example, the most popular JavaScript library in the world is jQuery, a library which aims
to improve various aspects of plain JavaScript such as DOM traversal and manipulation,
which is currently used on 73.9% of all sites on the web [59]. However, there are at least
92 distinct major and minor version of jQuery between the initial 1.0.0 release and the
current 3.4.1 release [60]. Many website administrators choose not to update their library
to the latest version, and so all versions of a library can be seen in use around the web
– jQuery version 1 and its subsequent minor releases are still used on 84.5% of websites
using jQuery, despite the last release being in 2016 [60].

We decided to focus on the most popular JavaScript libraries because they have the great-
est probability of appearing on a website, and therefore it’s more likely that a skimmer
might manifest itself in one of those files compared to a less popular library. According to
W3Techs [59], the top ten most popular JavaScript libraries (% usage on all websites in
brackets) are: jQuery (73.9%), Bootstrap (24.7%), Modernizr (14.7%), Underscore (4.1%),
MooTools (2.8%), ASP.NET Ajax (2.1%), Moment.js (1.7%), Popper (1.6%), Prototype
(1.3%), and Backbone (1.3%). Of the skimmers we obtained that masqueraded as or
appended to a library, 100% were in various versions of the jQuery library, though cases
of appending to Modernizr have also been observed by other researchers, such as in the
British Airways attack.

Using the Chrome extension webRequest API, we added an onCompleted listener for
scripts that fires every time a script finishes loading. To determine whether or not the
script is a library, we first compare the script path and filename to a manually written list
of libraries that we want to check for. For example, if the filename is modernizr.min.js
we assume that the file contains the Modernizr script since there is a match on the
word ‘Modernizr’. If the filename does not contain a match, we then search the rest of
the path name to check if the directories contain the name of a library – often, some
websites will store multiple versions of a library and the path name may be something
like /jquery/1.1.2.js. In this case, there wouldn’t be a match on the file name, but
the directory indicates that the script is the jQuery library. If there is still not match, we
look at the first few lines in the file content to see if there is a library name in a comment
– it is common for libraries to include their name, version, and copyright information at
the start of the file. If there is still no match, we assume that the file is not a relevant
library and move on.

Once the library has been determined, the next step is to find out which version of the
library is being used. Using a similar technique to finding the library name, we use a
regular expression /v?(\d{1,2}(?:.\d{1,2}){1,3})/i which matches version numbers,
for example v1.2.3, 4.5, or V1.12.1.1. Commonly, the library version will be included in
the filename such as underscore-1.5.1.min.js. We apply the regular expression to the
script name and then the path name, for the same reasoning as for the name. In the
previous example, the regular expression would match on 1.5.1 and we would deduce
that is the library version. If no version number is found in the filename or path, we then
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check the contents of the file for a version number. If no version number can be found,
we stop analysing the file. We could try every possible version, though this would be
detrimental for the user experience and use a lot of bandwidth to download each version.

1 "jquery": {

2 "regular": "https://code.jquery.com/jquery-__VERSION__.js",

3 "min": "https://code.jquery.com/jquery-__VERSION__.min.js",

4 },

Listing 3: An example entry in the trusted library code database.

The final variable we need to check is whether the file is minified or not. Minification
involves stripping comments, whitespace, and shortening parts of code such as variable
names to make the overall size of the file as small as possible – this is to improve per-
formance and load time on the page [61]. The first method we use to check for minifica-
tion is by looking for .min.js in the filename, which is a very common way of making
a distinction between a minified file and a unminified file, for example jquery.js and
jquery.min.js. In the first case, we would assume that the file is unminified, and the
latter is minified due to the filename. However, not all minified files follow this naming
convention, so we also look for ‘new line’ characters in the file contents – minified files
typically don’t include many (or any) line breaks since they are usually not necessary and
increase the file size, so comparing proportion of line breaks per total number of charac-
ters in the file is another metric we use. From running tests on minified and unminified
versions of libraries from cdnjs.com, we concluded that on average minified files contain
around 16,000 characters per line compared to just 36 characters per line for unminified
files. We therefore set the threshold to 500 characters per newline character to give some
leeway for any outliers in the unminifed set.

Once we know the library name, version, and whether it is minified, we compare it to a
copy of the same file from a trusted content delivery network. We created a small database
mapping libraries to trusted CDNs – for example, the official jQuery website for jQuery,
and Cloudflare for Modernizr (listing 3). We use a temporary substring, VERSION , in
the database which gets replaced with the real version name before the comparison takes
place.

Before comparing the version served on the website and the trusted version, we make some
effort to normalise the code in each, to ensure a false negative does not arise. We strip all
comments from both files using the strip-comments library, and remove all whitespace
and line breaks, leaving just the code itself. After normalising both files, we perform a
string comparison of the two to see if they differ. If they do, then we tag the page script
as suspicious and place restrictions on what it can send away from the website. If the two
files match, we do not add any such measures.
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3.5.2.1 File Comparison Techniques

In our file comparison technique discussed above, we use the normal JavaScript equality
operator, ===, to check whether the files are identical or not. This is in the worst case an
O(N) operation, where N is the length of the two strings. However, this is typically not
the case and can be reduced to O(1) if the string lengths are different, and will return early
as soon as two characters differ. Because of this, it is an efficient operation to perform.

A more sophisticated solution would be to not only consider whether the files are identical
or not, but what precisely the changes were – in other words, calculate an edit difference.
For example, if code was removed from the file, then it could still be considered safe,
since removing code is unlikely to introduce a skimmer into a script that is known to be
safe. Additionally, we observed several scripts where the webmaster had added one or two
additional lines at the bottom of their script to allow compatibility with other scripts, or
changed the name of some variables. Again, in these cases we would not typically expect
to identify these changes malicious since they are small and isolated. On the other hand,
the addition of a long, contiguous piece of code anywhere within the file might be cause
for concern and is one way in which skimmer authors have been known to insert their
scripts.

One option for a more sophisticated string similarity check would be to compute the Lev-
enshtein distance which computes the number of insertions, deletions, and replacements
required to convert one string to another. For example, ‘book’ and ‘boot’ would have a
distance of one because it requires just one replacement from ‘k’ to ‘t’. A similar solution
could be used to find the difference between the two file contents, as well. A small Leven-
shtein distance could indicate minor change to the file which is of no concern, whereas a
larger value could be indicative of a more substantial change to the file. A downside of this
is that many small changes, such as renaming a variable used in many places, would also
cause a large Levenshtein distance despite being composed of only minor modifications.

In order to gain a more granular idea of what changed between two versions of a file, a diff
could be generated which is similar to Levenshtein distance but provides the facility to
see individual additions and deletions required to get from one version of a file to another.
This option would be better since deletions could be discounted and focus placed on the
additions, since this is likely where the malicious additions would be. Then, long additions
could be analysed and checked for whether or not they could be skimmers.

Despite this, the complexity of these algorithms is substantially more than normal string
comparison. For example, Levenshtein distance operates in O(N ∗ d) time in the worst
case, where N is the string length and d is the edit distance. Likewise, a common diffing
algorithm, the Myers diff algorithm, operates with the same time complexity. These solu-
tions end up taking a substantial amount of time compared to normal string comparison
algorithm – in our testing, generating a diff for two substantially different 30KB files took
upwards of 10 seconds to compute. Due to this, for this application we stuck with basic
string comparison for efficiency.
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Feature # Observed
Standalone file 41
Included in other file 3

Not Obfuscated 4
Obfuscated 40

Table 4: Distribution of (non-)obfuscated skimmers and skimmers hidden in other files in a
sample of skimmers from Netcraft.

3.5.3 Checking for Obfuscated Code

During our analysis of various live skimmers, we noticed that many script authors chose to
obfuscate their code in order to make it more difficult for humans – in particular, security
researchers – to understand. Table 4 shows the distribution of skimmers we observed in
a sample of fresh skimmers from Netcraft, separated by obfuscated and non-obfuscated.
90% of skimmers we observed were obfuscated to some degree, and over 93% were included
in their own file rather than appended to an otherwise legitimate script.

By far the most common obfuscation pattern we saw was from a tool called javascript-
obfuscator 4. The output code from this obfuscator is easily recognisable because it trans-
form variable names into hexadecimal format (e.g. 0xd45f) and pulls all strings used in
the script out into an array of strings (represented by unicode escape sequences) which
is then referenced throughout the program (e.g. 0x2218[ 0xcac13e]). The tool also
supports dead code injection to make it more difficult for humans to debug and follow the
flow of the program. We suspect this tool is the most popular tool for adversaries to use
given its popularity and easily online interface.

To check code for obfuscation, we first break down each script into an abstract syntax
tree (AST) using the abstract-syntax-tree Node module. This generates a JavaScript
object representation of the entire program with each part of the program (e.g. statements,
identifiers, literals) represented in ESTree format5. We then check for several features that
are indicative of an obfuscated file, as used in Likarish et al.’s classifier [20]:

• Identifier names: We filter all the identifiers in the script (such as variables, class
names, etc.) and check for a large proportion of extremely short variable names
(e.g. ‘a’, ‘b’) or hexadecimal names as above.

• Long string arrays: We check all array literals and look for those containing only
strings. This is suspicious as it is a standard feature in many obfuscation tools.

• Many escape sequences: We also noticed that most skimmer scripts obfuscate
their strings as much as possible. This is likely to avoid leaking things like the
drop server URL to people investigating the file or primitive anti-virus systems.
Particularly, hexadecimal or unicode escape sequences are common (e.g. \0u, \0x).

4https://github.com/javascript-obfuscator/javascript-obfuscator
5https://github.com/estree/estree
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(a) First request payload. (b) Second request using same details as (a).

Figure 15: Comparison of requests sent to same dropsite using same details, but with different
payloads due to encryption and blinding.

• Many hexadecimal/octal numbers: Obfuscated scripts typically replace num-
bers from their literal representation (e.g. 15) to their hexadecimal or octal repre-
sentations (e.g. 0xF, 017).

With these measures, we can accurately determine whether or not a script is obfuscated.
Of course, as mentioned in Section 2.1.3, we do not conclude that an obfuscated script is
malicious, much less a skimmer, but it is used to guide the decision and factored in with
other features we look for.

3.6 Advanced Dynamic Analysis of Scripts

In Section 3.4.1, we looked into some basic methods of identifying a data leak as a result
of a skimmer through network requests, and in Sections 3.4 and 3.5 we explored various
heuristics we could use to predict which scripts display behaviour indicative of skimmers.
In this section, we explore ways in which we could directly detect networks requests
dynamically from more advanced skimmers without resorting to heuristics.

3.6.1 Encrypted Requests

Several of the skimmers we observed applied a more advanced encryption/encoding scheme
than a basic encoding such as base 64 (or none at all), for example base 64 with several of
the characters substituted from the standard version6 or as far as RSA Encryption using
libraries like JSEncrypt.

Starov et al. proposed a way to estimate whether or not a given piece of data is included
in network traffic [62]. Their methodology involves repeating a request three times, two of

6Base 64 typically uses characters a–z, A–Z, 0–9, +, /, and = in the output.
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which using the same data inserted into the page’s form fields, and the third with different
data. Then, requests from all three attempts are matched up in triples (r1, r2, r3)∀i ∈ R.
If r1 and r2 (from the attempts with the same form data) contain identical payloads but
r3 (with the different data) contains a different payload, then it is assumed that the form
data was included within the payload. However, this methodology is ineffective when any
given plaintext encrypts to different ciphertexts each time the encryption algorithm runs.

3.6.1.1 Blinding Factors

Figure 15 shows an example of a proprietary encoding scheme used in skimmer network
requests from the ‘Wedding Music Central’ website. 15(a) is the first request containing
the encoded data, and (b) is the same request using the exact same credentials but
repeated several minutes later. It can be seen that the sent data is entirely different
each time despite both requests transmitting the exact same information – one might
expect the request to be the same if the data is identical. However, the reason for this is
that the skimmer script makes use of a random blinding factor to add non-determinism to
the skimmer and limit exposure of what is contained within the payload. In other words,
the script introduces some entropy such that any two payloads containing same data will
not be encrypted into the same ciphertext; Commonly this is achieved by concatenating
a random nonce to the plaintext (e.g. nonce ‖ plaintext) before running some encryption
scheme on it. In the example given, a random number is generated using the Math.random
JavaScript function which is then used to shift the character code points of the payload
by a random amount, generating a completely different set of characters each time.

Another slightly different example was found on the ‘Jofit’ website, an online fitness
apparel store – the code in listing 4 is a snippet from the skimmer placed on the site. In
this example, the pt function gets the current UNIX time (time in milliseconds since
the UNIX epoch on 1st January 1970) which is then used by the se function to combine
the charCode of each character in the plaintext with a digit from the timestamp with the
bitwise XOR operation. Finally, the newly generated string is base 64 encoded and then
sent to the drop server along with the timestamp to allow the adversary to decode the
string back to the original user data.

1 function __pt() { return Math.floor(new Date().getTime() / 1000) }

2 /* ... */

3 function __se(data, time) {

4 let result = "";

5 for (let i = 0, j = 0, sl = data.length, sla = time.length;

6 i < sl; i++, j++) {

7 if (j === sla) { j = 0; }

8 result += (i ? "," : "") +

9 (String(data[i]).charCodeAt() ^ String(time[j]).charCodeAt());

10 }

11 return result;

12 }
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13 /* ... */

14 jQuery.ajax({

15 data: "d=" + encb64(__se(data, __pt().toString())) + "&pt=" + __pt(),

16 /* ... */

17 });

18

Listing 4: A portion of deobfuscated skimmer code found on the ‘Jofit’ website illustrating how
Date.getTime() is used to introduce non-determinism into the system.

Because the system clock will change every time a user submits the form, the encoded
output will be different each time despite the data itself remaining the same.

3.6.1.2 Eliminating Non-Determinism

We considered a number of methods to avoid the problems discussed in Section 3.6.1.1.
Skimmers we observed typically use either the Date object or Math.random to generate
randomness and cause non-identical requests. To remove this non-determinism, we added
a toggle to enable or disable overridden functions which were deterministic. When the
variable is toggled on, we save a snapshot of the UNIX time and the output from one
run of the Math.random function and return those values each time until the variable is
toggled off once more. We make this toggleable such that legitimate scripts that rely on
these functions are not affected and still operate as intended.

3.6.1.3 Replaying Requests

Starov et al. introduced FormLock, a standalone program that scrapes web pages and
submits dummy data to forms [62]. However, due to our implementation being a Chrome
extension, it is not feasible to submit a form multiple times as it could be a false positive
and cause a user’s legitimate checkout form to be submitted multiple times. Instead, we in-
tercept the XMLHttpRequest and window.fetch global objects and use wrapper functions
that perform some actions before calling the actual functions. We use stacktrace.js7

to generate a stack trace and identify which function in which script initiated the request.
We then attempt to call the caller function again (with non-determism disabled as in Sec-
tion 3.6.1.2), twice with the real inputs and once with randomly generated inputs values,
each time saving the state of the payload and comparing the values as in Section 3.6.1.
We add a dummy header to the request which we then catch in our background script
and drop the request in the onBeforeRequest handler before the request is sent to the
server. This is to limit information leakage to the attacker if the script and request is in
fact malicious – we are purely interested in the request which is generated rather than
any kind of response from the server.

Although we had some success with this method, we found that many of the skimming
scripts contained a local state that prevented a request from being sent more than once,

7https://stacktracejs.com
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for example a boolean hasBeenSeen variable that is set to true after the first request.
This is presumably to ensure that their drop servers do not get spammed by requests from
the same user multiple times.

Despite this, the mechanism would still work if the page could be refreshed and the form
resubmitted entirely, discussed further in Sections 4.5.1 and 5.2.2.
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Figure 16: Proportion of various e-commerce technologies used in websites observed by Netcraft.

4 Evaluation

In this section, we evaluate our extension by testing both its effectiveness against detecting
and blocking sites infected with skimming code, and its ability to not falsely identify safe
scripts as malicious. We also analyse its usability and feasibility as a real world extension
when put into the hands of users.

4.1 Testing Against e-Commerce Sites

We were provided with a database of 147,400 domains known to host e-commerce websites
from Netcraft which they detected using their web server survey, a monthly effort to scrape
pages on the web and categorise them based on server technology, and so on. The data was
mostly uncategorised in that it was not known whether or not the sites were infected with
skimming code, though we anticipated that the majority of websites in the data set would
be benign. Each domain was assigned with an e-commerce technology and a country of
origin. Figure 16 shows the distribution of different e-commerce technologies used across
the list of sites – WooCommerce is the most widely observed technology followed by Zen
Cart, OsCommerce, Open Cart, and Magento with similar market shares, and a variety
of less popular services making up the remaining 5.4%.
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WooCommerce Zen Cart OsCommerce Open Cart Magento Other
Total Sites 69349 100% 27806 100% 17055 100% 12657 100% 12550 100% 7983 100%

No Issues 35721 51.5% 16631 59.8% 8733 51.2% 9724 76.8% 8335 66.4% 5802 72.7%
Issues Identified 23749 34.2% 821 3.0% 222 1.3% 1263 10.0% 2358 18.8% 1268 15.9%

Mismatching Libs 22635 32.6% 541 1.9% 146 0.9% 1051 8.3% 1436 11.4% 937 11.7%
Cloaking 998 1.4% 330 1.2% 67 0.4% 43 0.3% 684 5.5% 238 3.0%
Susp. Scripts 3091 4.5% 346 1.2% 44 0.3% 182 1.4% 797 6.4% 192 2.4%
Obfuscation 78 0.2% 25 <0.1% 6 <0.1% 36 0.3% 41 0.4% 29 0.4%
Blocked Reqs 254 0.4% 21 <0.1% 3 <0.1% 6 <0.1% 33 0.3% 19 0.2%

Aborted 9879 14.2% 10354 37.2% 8100 47.5% 1670 13.2% 1857 14.8% 913 11.4%

Table 5: Number of detections by our extension of different heuristic features on the top 148
thousand e-commerce websites as collated by Netcraft.

4.1.1 Test Methodology

To test our extension against this data set, we used headless Chrome – discussed in Section
2.3.1 – to simulate a human navigating the web with our extension installed. We also made
use of Puppeteer, a tool designed to enable better programmatic control of the headless
browser [34]. From the list of e-commerce websites, we iterated through each website and
loaded the front page then scraped the analysis generated by the extension and stored it
in a log file. The data includes how many requests were blocked by the extension, as well
as how many files were flagged for other reasons such as suspicious libraries, obfuscated
scripts, etc.

Analysing a single website requires waiting for the page to fully load which can take an
arbitrarily long amount of time, though we added an upper bound of one minute at which
point our tests time-out to avoid any websites wasting too much testing time. Because of
this, testing each website sequentially could take anywhere from two to 50 days. Obviously,
this is infeasibly long so to combat this we used the puppeteer-cluster library which
provides an interface for orchestrating and running Puppeteer tasks in concurrent clusters
[63]. Individual pages run in their own Chrome tabs and error recovery is abstracted
away by the library in the case that one tab freezes, for example. We therefore test eight
websites concurrently which significantly cuts down testing time to be more reasonable.

Unfortunately, Puppeteer does not yet have support for running extensions in headless
mode (i.e. without the browser graphical interface) so we must run in ‘headful’ mode,
which slows down testing somewhat.

4.1.2 Test Results

The results we gathered after running our extension on the e-commerce sites are displayed
in table 5, separated by the e-commerce software they use as mentioned in Section 4.1.
Out of the 147,400 sites in the database, 32,773 (22.2%) were aborted by our test script
due to no longer being active, timing out, having invalid certificates, etc. Of the 114,627
(77.8%) tests which weren’t aborted, we found that 74.1% of those were identified as
having no issues with the remaining 25.9% containing at least one issues flagged up by
our extension. The most common issue we identified was JavaScript libraries not matching
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Service Type # False Positives
hotjar.com Tracking 119
privy.com Conversion 34
yotpo.com Reviews 19
swymrelay.com Engagement 17
exponea.com Tracking 15
reviews.co.uk Reviews 11
Other n/a 121

Table 6: Number of detections by our extension of different heuristic features on the top 148
thousand e-commerce websites as collated by Netcraft.

with the ‘trusted’ version which made up 78.7% of the total number of issues found; this
is likely due to many scripts containing small modifications from the website owner such
as combining scripts together or adding small tweaks to the library itself.

Despite the number of issues identified, we blocked requests on just 0.29% (336) of sites
in total. By manually visiting each site individually an analysing the request which was
blocked, we determined that 100% of those requests were safe. This result agreed with
our assumption that the majority of the sites in the database would be benign. Upon
further investigation of the false positives, we found that 215 (64%) of the blocked requests
were made to tracking or ‘customer engagement’ widgets. One such example is shown in
figure 17 – this particular instance was flagged because a third party script from Privy
injected a form asking for personal information including first name and email address.
A breakdown of the different services that were blocked is shown in table 6. The most
common source of false positives was from a company called Hotjar which is a tracking
service that creates heatmaps and statistics about user engagement on a site.

Upon manual analysis of the 336 sites with blocked requests, none of the false positives
caused a particularly negative impact to the browsing experience, such as features no
longer working – in the majority of cases, it simply meant that items like tracking would
no longer work which may be of detriment to the site owner losing out on data, but not
to the visitor who would not notice the omission of tracking.

As an aside, it is interesting to note the difference in statistics based on the e-commerce
software used. WooCommerce had the greatest number of blocked requests, closely fol-
lowed by Magento, with the other platforms having a negligible number of them. Addi-
tionally, Zen Cart and OsCommerce had a very low proportion of issues whereas 34.2% of
WooCommerce websites had at least one issue; This is mostly due to all WooCommerce
sites making modifications to library scripts.

4.2 Testing Against Netcraft Skimmer Feed

In addition to the list of unclassified e-commerce websites provided to us in Section 4.1,
we were also provided with a live feed e-commerce sites known to contain skimmers from
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Figure 17: Many of the false positives from testing the e-commerce site database were caused by
tracking and engagement software, such as this newsletter popup on ‘Cocorose London’ generated
by third-party service, Privy.

Netcraft (Section 3.2.2). The sites in the data set were identified using signature-based
methods during crawls of the web. The feed is constantly updated when new skimmers are
found, and there were a total of 6,535 unique infected domains found to contain skimmers
in the range between 21st January 2019 to 7th June 2019.

Due to the average lifetime of a skimmer being just 13 days [50], we expected the majority
of websites included in the feed to no longer be infected by the time we tested our extension
on them. Because of this, we decided to test skimmers found in a the latest 14-day period
to both obtain a good sample size and to maximise the likelihood of the skimmers still
being active; Between 24th May 2019 to 7th June 2019, there were 681 unique domains
containing skimmers discovered by Netcraft.

For this test, we determined that to accurately search for a skimmer it would be beneficial
to navigate to the checkout page of each site, since some skimmers only present themselves
on checkout pages and not a site’s home page; Even if a skimmer script is present on a site’s
home page, it may not display any behaviour indicative of a skimmer and thus would not
be detected by the extension. However, it is not trivial to automatically navigate to the
checkout page of a website due to the vast variety of different proprietary and commercial
software utilised by each website.

4.2.1 Test Methodology

Although figure 16 shows that WooCommerce is the most popular e-commerce software
observed by Netcraft, the feed of sites infected by does not necessarily follow the same
distribution due to differences in how secure and susceptible to hacking each platform is.
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e-Commerce Platform # Observed
Magento 3386
WooCommerce 82
OsCommerce 13
Zen Cart 0
Open Cart 0
Unclassified 2873
Unavailable 181

Table 7: Number of sites identified as being infected with a skimmer sorted by the e-commerce
platforms they use.

The live feed did not contain details of the software used on each site, we calculated this
manually. First, we navigated to the /install.php file on each domain and looked for the
string ‘Magento’ since sites running Magento will always display an error stating ‘FAILED
ERROR: Magento is already installed ’ at this address. From this we found that 3,386 of
the 6,535 sites were running Magento – over 51% of all sites tested. Magento websites
typically follow a similar structure and have predictable URL paths which means that
testing them is easier to automate. We performed similar checks for the other four most
prevalent e-commerce platforms, shown in table 7 – interestingly, even though WooCom-
merce seems to be the most popular e-commerce software at over 46% market share, it
is not the most targeted by attackers with just 1.25% of the skimmers found running on
WooCommerce sites.

To automate the checkout process on the Magento sites, we first navigate to the website’s
homepage and attempt to add an item to the shopping cart by clicking every link on the
home page and looking for an ‘Add to Cart’ button by searching for clickable element
containing the term ‘Cart’, or an onclick handler including .submit() as is often seen
on Magento sites. This follows the rationale that most Magento sites we viewed contained
links to products on the homepage, though few allowed you to add an item to the cart
directly from there. If no links on the home page lead to such a page, we give up the
test and add it to the queue for manual testing. Once we have found the page, we
press the ‘Add to Cart’ button, and then navigate to the checkout by looking for links
containing the term ‘Checkout’. Failing that, we try common Magento URLs such as
/checkout/onepage.

Finally, we work through the checkout page entering preset dummy values for each input
type. The Magento checkout form is very similar across all sites using the software, so it is
trivial to search for class names and ids of the correct buttons to press and form fields to
fill in. Once all the fields are filled in, we submit the form and record the findings reported
by the extension. Since this was just a small-scale test, we anticipated that the crawler
would still get stuck on some websites due to unique form fields or extra fields to fill in,
such as a size dropdown or colour selector when purchasing clothing. In this case, we add
a timeout to terminate the test if it becomes clear that the test has become stuck. For
the stuck tests, we manually complete the process which is possible due to the relatively
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TP FP TN FN Precision Recall
238 6 433 4 0.983 0.975

Table 8: Results after running our skimmer detector on recently infected e-commerce checkout
pages.

small number of sites that need to be tested. We also manually tested non-Magento sites
again, due to the small number of them. To check whether sites were still infected or not,
we manually checked each site to look for the skimmer script or lack thereof – this was
necessary to be able to calculate statistics such as the false positive rate, etc.

4.2.2 Test Results

The results of the tests are found in table 8. Out of the 681 websites flagged by Netcraft
in the 14-day period, only 242 of them were still infected with skimmers, meaning that
the other 439 had either been fixed by their webmasters or had their skimmers removed
by the adversary. Out of the 240 infected sites, we successfully detected and blocked 238
of them, giving a fairly good precision of 98.3%. Additionally, out of the 244 requests
which the extension blocked, only six were false positives, giving a recall of 97.5%.

In Section 2.5, we also discussed minimising the false positive rate (FPR), which describes
the percentage of legitimate requests that got incorrectly classified as malicious and subse-
quently blocked – in our experiment, the FPR was just under 1.4%, meaning that around
one in 70 benign requests get falsely blocked. However, the false positives we observed
were mainly due to features used to improve user experience such as an autocomplete
field for a billing address which sent the partial address to a third party service to return
a list of potential addresses, though this didn’t impede the user experience significantly
since the address could still be manually typed. Other false positives came from scripts
which sent page data such as the mouse position (including form field values) to tracking
and advertising agencies.

The four false negatives were because of our extension not recognising some form fields
and hence missing malicious requests – possibly due to the stopPropagation method
being invoked which stops event bubbling (Section 3.3.2), preventing the document.body

from receiving the input event each time the user enters a value into a field.

4.3 High-Value Websites

In Section 1, we discussed the objectives of the project: namely, to identify and block
skimmers on high-value websites, where ‘high-value’ was defined to mean a website with
a large amount of web traffic and transactions, making it a likely target for an adversary
to insert a skimming script due to the high potential reward of the details of many users.
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4.3.1 Test Methodology

The most high-value and well-published skimming attacks are likely to be the British
Airways, Newegg, and Ticketmaster attacks from 2018. All three sites rank in the top
5,000 websites globally [64] and see many user per day making expensive transactions
for flights, electronics, and concert tickets respectively. Although each site was updated
to remove their skimmers several days or weeks after being added, security researchers
published the source code of each one, allowing us a historical view of the websites at
the time. In addition, we were alerted to another high-value breach on 20th May 2019
from Netcraft involving Asian fashion brand, Uniqlo, which we were able to test while the
skimming script was still live on the website.

Given the small sample size for this test, we manually navigate to the checkout page for
each of the websites in question – this involves adding an item to the shopping cart which
we pick at random. Then, we inject a local copy of the archived skimmer script for that
particular site into the page to insert the script into memory. After that, we proceed to
enter dummy details into the user form, using the same details each time for consistency.
When entering false credit card information, we use official test-use credit card numbers
published by card vendors such as Visa. This is partially to ensure the payment will
legitimately fail and also due to the fact that some skimmers perform validation on form
fields to ensure validity, such as a credit card number’s checksum being correct according
to the Luhn algorithm. After entering all details, we attempt to submit the form. Then,
we record the outgoing requests blocked by our extension. We manually analyse each
blocked request to find the skimmer request and confirm whether or not it was blocked.
All other blocked requests as a result of our extension are determined to be false positives,
i.e. a legitimate request that the skimmer detector falsely identified as malicious.

4.3.2 Test Results

Table 9 documents the results of the test. All four high-value websites tested accurately
blocked the skimmer requests, and every other request was not blocked. In other words,
for this sample, there was a 100% true positive rate, and a 0% false positive rate. For
Uniqlo, the skimmer attempted to make a request every 500 milliseconds, each of which
was blocked. Meanwhile, the other three skimmers tried to send the requests once only,
which was subsequently blocked. Figure 18 shows screenshots of the extension in action
on these sites.

4.4 Usability

4.4.1 Performance Impact

Our extension makes use of many Chrome-specific APIs available exclusively to extensions
to intercept and modify network requests, as well as duplicating requests and temporarily
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(a) Newegg (b) Uniqlo

(c) Ticketmaster (d) British Airways

Figure 18: Examples of the skimmer detector blocking requests to skimmer drop sites and dis-
playing a warning in the interface.

Website Address Alexa Rank Skimmer Detected? # False Positives
newegg.com 765 3 0
uniqlo.com 921 3 0
ticketmaster.com 929 3 0
britishairways.com 3684 3 0

Table 9: Results from testing the skimmer detector extension on various historic high-value
skimmer recreations.

57



4.4.1.2 Thomas Bower

postponing some native functions from running to perform pre-processing such as gen-
erating a stack trace before allowing them to proceed. Because of this, it is conceivable
that there is a performance impact when loading web pages that would otherwise not be
present if the extension were not be used since requests would not need to be analysed
by our extension. Although some overhead is to be expected, we would like to keep this
to a minimum to ensure a good user experience and strike a balance between utility and
performance trade-off.

One study concluded that the bounce rate of a page (that is, the percentage of users who
leave a website after only one page) is proportional to the page load of the website. At
a page load of just one second, the bounce rate is on average 9.6%, however this rises to
22.2% at five seconds and 32.3% at seven seconds. Because of this, we aim to minimise
the effect of our extension on the page load time so as not to disrupt a user’s browsing
patterns and harm the conversion rate of users visiting e-commerce websites [65].

DebugBear, a website monitoring service, studied the performance of 26 popular Chrome
extensions including LastPass, Grammarly, and various advertisement blockers to monitor
their effect on page load, CPU usage, and general user experience [66]. Their findings
indicate that some extensions increase CPU usage time by over 600 milliseconds. They
also found that extensions that inject CSS or JavaScript into the page before the DOM
has finished loading have the greatest impact on overall page load time, something which
our extension does. To gather the metrics, the researchers used the Lighthouse Node.js
module, an open-source automated tool for measuring the performance and overall utility
for web pages and extensions.

4.4.1.1 Test Methodology

To understand the impact of our extension on regular browsing, we used Puppeteer to
visit the top 10,000 websites according to the Alexa ranking [64] both with and without
our extension installed. We measured the page load time and repeated 10 times for each
page to get an average time and to limit the impact of any anomalous data or unusually
long page loads. We also use the Chrome DevTools Protocol to throttle the CPU down
by four times and emulate slow network conditions with 780kb/s download throughput,
330kb/s upload throughtput, and a constant 200ms latency to maintain consistency across
test runs as well as limit the effect of any external factors.

4.4.1.2 Test Results

Our results are shown in figure 19. We found that on average, the top 10,000 sites loaded
in an average time of 14.89 seconds without using our extension in the slow simulated
network conditions. With the extension installed, the pages loaded in an average time of
16.72 seconds. This represents a 12% increase in load time.

Additionally, we re-ran the experiment without using simulated network conditions, but
the results were too noisy to show any conclusive evidence regarding page load time one
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Figure 19: Average time taken for top 10,000 to fully load according to performance.timing

with and without extension installed.

way or the other.

4.4.2 Page Integrity

In previous subsections, we discussed a quantitative analysis of our extension. However,
given that the extension is to be used by real users, we anticipate that the browsing
experience should be as minimally affected as possible except where necessary to block
skimming requests. From manual testing with the extension installed while browsing the
web, we did not experience any negative effect except for a small slowdown (Section 4.4.1)
and the occasional false positive which sometimes prevented things like a newsletter form
from submitting correctly (Section 4.1). One issue we did have was on highly complex
web apps compared to standard websites. For example, we found that the Google suite
of productivity apps such as Google Sheets would sometimes become unresponsive. We
attribute this slowdown due to calculating the stack traces for various built-in functions
which, in complex applications can be a costly operation due to the sheer amount of code
behind it. In testing actual e-commerce sites, we did not experience any such effects with
the integrity of the page. We could potentially alleviate this issue by timing out the stack
trace after a certain amount of time and aborting the check, though this would leave users
vulnerable if a function or script did happen to be malicious.
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4.5 Discussion

4.5.1 Limitations

4.5.1.1 Accessible Source Code

One limitation of using a Chrome extension is that they are distributed as .crx files is
that they are simply repackaged .zip files which means that the contents can be extracted
relative ease. This means that a determined attacker could extract the files used to detect
skimmers and learn the methods we use for detection. They could then attempt to
generate a new type of skimmer that tries to evade detection by finding a weakness or
overview in the code. Unfortunately, this is a limitation of Chrome extensions and there
is no easy way to hide the code from a determined individual other than perhaps moving
the core logic to a backend and using the extension as a shell to block requests based on
a response from the server. The downside of this approach is that contacting a server,
carrying out some checks, and returning a response would add considerable overhead to
the response time of requests, not to mention that request interception in Chrome is
synchronous only meaning that it’s not possible to wait for asynchronous results before
deciding whether or not to drop a request, despite this being possible in Firefox.

4.5.1.2 False Positives

As mentioned above, we did experience a small number of false positives primarily from
scripts such as trackers and advertising. While one could argue that blocking these
scripts is not necessarily a bad thing as it affords the user more privacy and is already in
widespread use in advertisement blocking software, it is not the aim of the project to do
so and so we should avoid blocking these scripts if possible, leaving the decision to the
user whether or not they want to block them by installing an ad blocker. On the other
hand, one could argue that it is better for our extension to be overly cautious rather than
allowing too many false positives in the way of malicious requests reaching an attacker.

4.5.2 Strengths

4.5.2.1 General Data Leakage Tool

Although our implementation currently focuses on JavaScript skimmers in particular,
our extension could easily be extended to become a general data leakage detection tool.
For example, rather than simply looking for skimmers, the tool could be extended with
relative ease to become a more general data exfiltration detector, such as detecting things
like data leakage on contact forms similar to Starov et al ’s research for quantifying leakage
of personally identifiable information.
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4.5.2.2 Usability

In general, our extension is extremely usable by the average consumer. The extension is
easy to install manually, and can be even more easily installed if we were to publish it
to the Chrome extension web store where it is takes just one click. Once installed, the
extension requires no user interaction and will silently work in the background auditing
requests until one is blocked, at which point a small, unobtrusive, popup will inform the
user of what happened. Because of this, the extension can be used even by non-tech savvy
users who may not fully understand skimmers but want to be protected anyway.
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5 Conclusion

This section revisits our initial objectives to outline our achievements in the project, as
well as future work which could be undertaken to improve and develop the idea further.

5.1 Objectives

In Section 1.2, we outlined the primary objectives of this project: To develop and build
a piece of user-facing software that can detect and block JavaScript skimmers while users
browse the internet. We also specified that it should have a high precision and recall,
having few false positives and false negatives.

We have been successful in creating a Google Chrome extension that is able to prevent the
leakage of private user information entered into e-commerce checkout forms with a good
degree of precision. Our true positive rate is 97.5% and false positive rate is 1.4% which
makes the extension suitable for use by consumers without experiencing much disruption
to their normal browsing.

We also set the requirement that the extension should be able to block and identify
skimmers more quickly than a human would be able to, which would normally take in the
order of minutes. Our extension block requests instantaneously once they are detected,
which is of course faster than manual analysis.

Finally, we mentioned that the extension should not modify or negatively affect the be-
haviour of websites other than blocking skimmers, discussed in Section 4.4.2. On the
whole, we found that most websites were not impacted by the presence of our extension,
though a small number of websites did experience some performance issues and in some
cases unresponsiveness, which could be investigated and fixed in future work. We discuss
mitigations for this in Section 5.2.1.

5.2 Future Work

If there were more time in which to undertake this project, and with the knowledge
we have gained from implementing the proof of concept, there are various aspects and
different features we would have liked to implement or investigate further:

5.2.1 Centralised Skimmer Database

In Section 4.4, we noted that browsing the web with our extension causes a small perfor-
mance impact on the load time of pages.

Each time a user visits a web page, the heuristic checks for suspicious scripts are executed.
This means that while navigating around a website, the same checks are often repeated on
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the same scripts multiple times as the user navigates around subpages. Because of this,
it would be beneficial to identify potential bottlenecks and areas which may be causing a
slowdown on the page. If each suspicious script were to be cached somewhere (such as in
a local database), then each script could first be cross-checked against the database before
all the checks are run. This would significantly cut down on the number of extra requests
and costly analysis that has to be done each time a page is loaded, such as generating an
AST for each script or making multiple requests for the same file.

The idea could also be extended from a local database to a global database for all users of
the extension. This would have the added benefit of aggregating all users’ browsing habits
and provide a better protection for all users since the likelihood of another user visiting
a site would mean that skimmer script may have already been flagged by the system and
could be immediately blocked on page load.

5.2.2 Automated Crawling

One of the initial ideas proposed for this project – and an idea explored briefly in Sections
2.3.2 and 4.2 – was to use some kind of automated testing system to navigate through
e-commerce websites without user assistance.

Szyszko demonstrated how Puppeteer and headless Chrome could be used to navigate
phishing websites and fill in input fields automatically in order to submit the form with
valid field values, and observe its subsequent behaviour [67]. A similar system could be
utilised to automatically fill out checkout form fields such as billing address, payment
information, and personal details without human involvement.

A significant hurdle in this project not found in the phishing case is that navigating to
a checkout page in the first place is not trivial. For example, some sites require the user
to create an account before reaching the checkout, while others allow guest checkouts.
Others might place restrictions on what you can have in your cart such as a minimum
spend or incompatible items. Further, many websites feature product pages which are
not as simple as pressing ‘Add to basket’ and may contain configurable options such as
bidding like on eBay or customisation like picking a colour, fabric, or size. The limitation
was mentioned in Section 4.2 when a rudimentary and targeted automation system was
used in testing, but broke frequently due to the heterogeneity of e-commerce websites.

If the aforementioned hurdles could be overcome, all the checks for skimmers could be
performed independently of the extension and the extension could behave as a very thin
wrapper over the database of suspicious scripts to block any banned scripts from load-
ing and/or sending network requests. This would additionally make techniques such as
those in Section 3.6 more feasible since checkout forms could be repeatedly crawled and
submitted without disrupting a user’s browsing activity.
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5.2.3 Substituted Base 64 Detection

Our extension features support for discovering normal base 64 encoded strings containing
private information since these are trivial to decode. A common feature of newer skimmer
scripts is to encode using base 64 then use a bijection to substitute several of the characters
to others such as symbols.

It would be useful to detect this type of encoding and attempt to reverse the transfor-
mation. This could be achieved by either performing analysis on the code itself, or by
doing some kind of frequency analysis on the encoded string and attempting to reverse
the mapping based on estimating the frequency of plaintext letters by the values of fields
on the page.

5.2.4 Better Mismatching Library Detection

In Section 3.5.2, we discussed a technique for comparing JavaScript libraries loaded onto
web pages with a canonical version to look for potentially malicious additions such as a
skimmer appended towards the end of the file. Our approach is currently quite simple
with a binary ‘yes’ or ‘no’ response given for whether a file matches a known safe version
or not. Section 3.5.2.1 discussed other options for comparing files which would give a
more granular overview of how a file differs from another, rather than just knowing that
it differs or not, however they were ultimately abandoned due to taking too much time
and delaying the page from loading. It would be beneficial to revisit this idea and find a
more suitable yet performant method for comparing similarity of files. One option might
be to only compare a small portion of a large file or check a rough and efficient metric for
file similarity before producing a more in-depth analysis.

5.2.5 More Advanced Static Analysis

Although our extension uses some basic static analysis techniques – particularly when
checking for obfuscation – it would be beneficial to attempt a more in-depth analysis
of the skimmer code itself. For example, some research has attempted to distinguish
malicious obfuscated code from benign obfuscated code (Section 2.1.3). We could also
attempt to deobfuscate the code and look for common features in skimmer scripts such
as creating a new XMLHttpRequest object and scraping values from inputs on the page
using querySelectorAll, etc. Again, although these features do not necessarily imply a
skimmer, they could be used to further inform our decision of whether or not to block a
request.

5.2.6 Drop Server Heuristics

A common feature of skimmers is that the drop servers to which the skimmers send their
information are often hastily registered, designed to be disposable, and in many high
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profile cases aim to imitate the domain of the host website, discussed briefly in Section
2.1.2.4. For example, the drop server for the British Airways skimmer was baways.com
and neweggstats.com for that of Newegg. It would be beneficial to perform more analysis
on the properties of the domain to which data is sent, such as geolocating the IP address,
calculating the similarity between the legitimate domain and the drop server domain to
check for imitations, looking at the SSL certificates a domain has, or the checking the
date that the domain was registered. Together, these features could be used to build a
trust rating of the domain to which data was being sent, and then blocked based on a
threshold.

5.2.7 Private Information Severity

In Section 4.2, we noted that some false positives were caused as a result of features such
as email newsletter popups which were blocked due to an email address and name being
sent to a third-party service. Although we check a large number of potentially sensitive
fields such as names, addresses, credit card numbers, and so on, there is clearly a difference
in severity between an email address being sent to an unrecognised location compared to
a credit card number and expiry date. One potentially interesting avenue for further
exploration would be to develop a system to rank different types of personal information
by severity or importance, and allow some requests through if they contain information
that is not likely to be the type that a skimmer would focus on individually. In the earlier
example, it’s unlikely that a skimmer author would find much value in just a name and
email address since they are typically used to steal things like payment details and billing
addresses instead. In that case, it would seem logical to allow the request to go through
unless another factor made it abundantly clear that the request was from a skimmer.
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A User Guide

Initial Setup

1. Clone (git clone) or download the repository. The latest version can be found at:
https://github.com/thomasbower/skimmer-detector.

2. In the directory (cd skimmer-detector), run npm install to get the required de-
pendencies.

3. Run npm run build.dev to build the files needed for testing, or npm run build.prod

if building for production.

4. In Google Chrome or Chromium, navigate to chrome://extension and enable ‘De-
veloper Mode’.

5. With developer mode enabled, select ‘Load Unpacked ’ to load the unpacked exten-
sion. Select the skimmer-detector directory and click okay.

6. The extension should now be active.

Once the extension is enabled, you may browse the web as normal. If a request is blocked,
a red popup notification will be displayed in the top right corner of the page with further
details.

Making Changes

If you make changes to the code, follow the following steps:

1. Run npm run lint from the top-level directory to ensure consistency across the
codebase. npm run lint-fix may be used to automatically try to fix some issues.

2. Run npm run build.dev or npm run build.prod again.

3. Navigate to chrome://extensions and select the refresh button on the skimmer
detector extension.

Running Tests

Evaluation tests are found in the skimmer-detector-evaluation repository at:
https://github.com/thomasbower/skimmer-detector-evaluation. Each test is in a
different file. To run the tests:

1. Run npm install to get all the required dependencies.

2. Choose the test you wish to run and run the command node <test name>.js. The
test will then begin. Output logs will be in the same directory.
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